
Developer Guide

Amazon SageMaker

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon SageMaker Developer Guide

Amazon SageMaker: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon SageMaker Developer Guide

Table of Contents

What is Amazon SageMaker? .. 1
Pricing for Amazon SageMaker ... 1
Are you a first-time user of Amazon SageMaker? ... 1
Overview of machine learning with Amazon SageMaker .. 2
SageMaker Features ... 5

New features .. 5
Machine learning environments ... 7
Major features .. 8

Get started ... 12
Set Up Amazon SageMaker Prerequisites ... 13

Create an AWS Account ... 13
Create an Administrative User and Group ... 14
AWS CLI Prerequisites .. 15

Domain overview .. 16
SageMaker domain ... 18
Quick onboarding ... 50
Custom onboarding using IAM Identity Center .. 52
Custom onboarding using IAM .. 60
Choose an Amazon VPC .. 66

Supported Regions and Quotas .. 68
Quotas ... 68

Use automated ML, no-code, or low-code ... 69
SageMaker Autopilot ... 69

Create a Regression or Classification Job Using the AutoML API ... 73
Create an Image Classification job using the AutoML API ... 158
Create a Text Classification job using the AutoML API ... 169
Create a Time-series Forecasting job using the AutoML API ... 180
Create an LLM fine-tuning job using the AutoML API .. 220
Create a Regression or Classification Job Using the Studio Classic UI 245
Example Notebooks ... 256
Quotas ... 259
API reference ... 261

SageMaker JumpStart ... 263
Open and use JumpStart in Studio .. 264

iii

Amazon SageMaker Developer Guide

Open and use JumpStart in Studio Classic ... 266
Foundation Models ... 270
Task-Specific Models .. 317
Shared Models and Notebooks ... 337
Solution Templates .. 343
SageMaker JumpStart Industry: Financial ... 355

Use machine learning environments offered by SageMaker ... 361
Studio ... 362

Migrating from Amazon SageMaker Studio Classic ... 364
Launch Amazon SageMaker Studio .. 373
Amazon SageMaker Studio UI overview .. 375
Applications supported in Amazon SageMaker Studio ... 379
Amazon SageMaker Studio spaces ... 380
Perform common tasks ... 383
Use NVMe stores with Amazon SageMaker Studio ... 384
Local mode support in Amazon SageMaker Studio .. 386
View and stop running instances .. 394
Amazon SageMaker Studio pricing ... 395
Troubleshooting .. 396

Studio Classic .. 396
Studio Classic Features .. 397
UI Overview ... 398
Launch Amazon SageMaker Studio Classic ... 405
JupyterLab Versioning ... 408
Use the Studio Classic Launcher ... 419
Collaborate with shared spaces ... 423
Use Studio Classic Notebooks ... 433
Customize Studio Classic .. 499
Perform Common Tasks .. 549
Studio Classic Pricing ... 563
Troubleshooting .. 563

SageMaker JupyterLab .. 569
JupyterLab user guide ... 570
JupyterLab administrator guide .. 579
Migrating from SageMaker Studio Classic to SageMaker Studio .. 606

SageMaker Notebook Instances .. 608

iv

Amazon SageMaker Developer Guide

Maintenance ... 609
Use Notebook Instances to build models ... 610
AL2 instances ... 635
JupyterLab versioning ... 639
Create a Notebook Instance ... 641
Access Notebook Instances ... 646
Update a Notebook Instance ... 647
Customize a Notebook Instance .. 648
Example Notebooks ... 659
Set the Notebook Kernel .. 662
Git Repos .. 662
Notebook Instance Metadata ... 672
Monitor Jupyter Logs in Amazon CloudWatch Logs ... 673

SageMaker Studio Lab .. 674
Studio Lab components overview ... 675
Onboard to Studio Lab ... 680
Manage your account .. 681
Launch Studio Lab ... 683
Use Studio Lab starter assets .. 685
Studio Lab pre-installed environments .. 687
Use the Studio Lab project runtime ... 689
Troubleshooting .. 713

SageMaker Canvas ... 716
Are you a first-time SageMaker Canvas user? .. 718
Getting started .. 719
Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 726
Import data into Canvas ... 782
Prepare data .. 824
Use generative AI with foundation models .. 915
Use Ready-to-use models ... 940
Use custom models .. 951
Logging out ... 1094
Limitations and troubleshooting .. 1095
Manage billing and cost ... 1106

SageMaker geospatial capabilities ... 1108
How can I use SageMaker geospatial capabilities? ... 1109

v

Amazon SageMaker Developer Guide

First-time user? ... 1110
Getting started ... 1111
Geospatial processing job ... 1127
Earth Observation Jobs .. 1143
Vector Enrichment Jobs .. 1151
Visualization Using SageMaker geospatial capabilities .. 1152
Amazon SageMaker geospatial Map SDK ... 1156
SageMaker geospatial capabilities FAQ ... 1164
Security and Permissions .. 1165
Types of compute instances .. 1178
Data collections .. 1181

RStudio on Amazon SageMaker ... 1186
Region availability .. 1187
RStudio components ... 1188
Differences from Posit Workbench ... 1188
Manage RStudio on SageMaker .. 1189
Use RStudio on Amazon SageMaker .. 1238

SageMaker Code Editor .. 1243
Code Editor user guide ... 1244
Code Editor adminstrator guide ... 1256

SageMaker HyperPod .. 1266
Prerequisites .. 1268
Getting started with SageMaker HyperPod .. 1276
Operate SageMaker HyperPod .. 1284
SageMaker HyperPod lifecycle configuration best practices ... 1294
Run jobs on HyperPod clusters ... 1307
Cluster resiliency .. 1313
Cluster management ... 1319
References .. 1321
SageMaker HyperPod FAQ ... 1326
HyperPod release notes .. 1328

Use generative AI in SageMaker notebook environments .. 1331
Installation ... 1332
Features .. 1333
Model configuration .. 1335
Use Jupyter AI ... 1342

vi

Amazon SageMaker Developer Guide

Label data with a human-in-the-loop .. 1347
Ground Truth .. 1347

Are You a First-time User of Ground Truth? ... 1348
Getting started ... 1349
Label Images ... 1356
Label Text ... 1381
Label Videos and Video Frames .. 1395
Label 3D Point Clouds .. 1443
Verify and Adjust Labels ... 1507
Creating Custom Labeling Workflows ... 1519
Create a Labeling Job ... 1566
Use Input and Output Data ... 1616
Enhanced Data Labeling ... 1725
Security and Permissions .. 1742
Monitor Labeling Job Status ... 1781

Ground Truth Plus ... 1785
Getting Started with Amazon SageMaker Ground Truth Plus. ... 1787
Request a Project ... 1789
Create a Project Team ... 1791
Open the Project Portal ... 1794
Create a Batch .. 1795
Review Metrics .. 1797
Review Batches ... 1799
Accept or Reject Batches .. 1802

Create and Manage Workforces ... 1802
Using the Amazon Mechanical Turk Workforce ... 1803
Managing Vendor Workforces ... 1808
Use a Private Workforce ... 1810

Crowd HTML Elements Reference .. 1842
SageMaker Crowd HTML Elements ... 1843
Augmented AI Crowd HTML Elements .. 1946

Augmented AI .. 1956
Get Started with Amazon Augmented AI ... 1958
Use Cases and Examples .. 1988
Create a Human Review Workflow ... 1999
Delete a Human Review Workflow ... 2026

vii

Amazon SageMaker Developer Guide

Create and Start a Human Loop ... 2029
Delete a Human Loop ... 2036
Create and Manage Worker Task Templates .. 2040
Monitor and Manage Your Human Loop ... 2055
Output Data .. 2056
Permissions and Security .. 2071
CloudWatch Events .. 2079
API References .. 2082

Prepare data .. 2084
Prepare Data with Data Wrangler .. 2085

Get Started with Data Wrangler ... 2089
Import ... 2102
Create and Use a Data Wrangler Flow .. 2177
Get Insights On Data and Data Quality .. 2186
Automatically Train Models on Your Data Flow .. 2199
Transform Data ... 2200
Analyze and Visualize .. 2261
Reusing Data Flows for Different Datasets ... 2273
Export ... 2284
Use Data Preparation in a Studio Classic Notebook to Get Data Insights 2319
Security and Permissions .. 2325
Release Notes .. 2341
Troubleshoot ... 2347
Increase Amazon EC2 Instance Limit ... 2357
Update Data Wrangler .. 2358
Shut Down Data Wrangler ... 2360

Prepare Data at Scale with Studio Classic using Amazon EMR or AWS Glue 2361
Prepare data using Amazon EMR ... 2362
Prepare data using AWS Glue Interactive Sessions ... 2405

Process data ... 2415
Sample Notebooks .. 2416
CloudWatch Logs and Metrics .. 2417
Data Processing with Apache Spark .. 2417

Running a Spark Processing Job ... 2417
Data Processing with scikit-learn ... 2418
Data Processing with Framework Processors ... 2419

viii

Amazon SageMaker Developer Guide

Hugging Face Framework Processor .. 2420
MXNet Framework Processor ... 2421
PyTorch Framework Processor ... 2423
TensorFlow Framework Processor .. 2424
XGBoost Framework Processor .. 2425

Use Your Own Processing Code ... 2427
Run Scripts with a Processing Container .. 2427
Build Your Own Processing Container ... 2429

Create, store, and share features ... 2436
How Feature Store works .. 2437
Create feature groups ... 2438
Find, discover, and share features .. 2438
Real-time inference for features stored in the online store .. 2438
Offline store for model training and batch inference ... 2438
Feature data ingestion ... 2439
Resilience in Feature Store .. 2439
Get started with Amazon SageMaker Feature Store .. 2439

Feature Store concepts ... 2440
Adding policies to your IAM role .. 2447
Use Feature Store with SDK for Python (Boto3) ... 2447
Using Amazon SageMaker Feature Store in the console ... 2464
Delete a feature group ... 2464

Data sources and ingestion ... 2478
Stream ingestion .. 2479
Data Wrangler with Feature Store .. 2479
Feature Store Spark ... 2481

Feature Processing .. 2491
Feature Store Feature Processor SDK .. 2492
Running Feature Store Feature Processor remotely ... 2494
Creating and running Feature Store Feature Processor pipelines .. 2496
Scheduled and event based executions for Feature Processor pipelines 2497
Monitor Amazon SageMaker Feature Store Feature Processor pipelines 2500
IAM permissions and execution roles ... 2501
Feature Processor restrictions, limits, and quotas ... 2501
Data sources .. 2502
Example Feature Processing code for common use cases ... 2517

ix

Amazon SageMaker Developer Guide

Time to live (TTL) duration for records .. 2521
Cross account feature group discoverability and access ... 2523

Enabling cross account discoverability .. 2525
Enabling cross account access ... 2530

Feature Store storage configurations .. 2542
Online store ... 2542
Offline store .. 2544
Throughput modes .. 2545

Collection types ... 2548
Add features and records to a feature group .. 2549

API ... 2550
Example code .. 2550

Find features in your feature groups .. 2552
How to search for your features ... 2553

Find feature groups in your Feature Store ... 2558
How to find feature groups ... 2560

Adding searchable metadata to your features .. 2566
How to add searchable metadata to your features .. 2567

Create a dataset from your feature groups ... 2574
Using the Amazon SageMaker Python SDK to get your data from your feature groups 2575
Sample Amazon Athena queries ... 2580

Delete records from your feature groups ... 2582
Delete records from the online store .. 2582
Delete records from the offline store .. 2584

Logging Feature Store operations by using AWS CloudTrail .. 2587
Management events .. 2587
Data events .. 2587

Security and access control ... 2589
Using AWS KMS permissions for Amazon SageMaker Feature Store 2589
Authorizing use of a customer managed Key for your online store 2590
Using grants to authorize Feature Store ... 2593
Monitoring Feature Store interaction with AWS KMS .. 2593
Accessing data in your online store ... 2593
Authorizing use of a customer managed key for your offline store 2593

Quotas, naming rules and data types ... 2594
Quota terminologies .. 2594

x

Amazon SageMaker Developer Guide

Limits and quotas .. 2594
Naming rules ... 2595
Data types .. 2595

Amazon SageMaker Feature Store offline store data format ... 2596
Amazon SageMaker Feature Store offline store URI structures .. 2597

Amazon SageMaker Feature Store resources ... 2598
Feature Store example notebooks and workshops ... 2598
Feature Store Python SDK and API .. 2599

Train machine learning models .. 2601
The simplest training workflow in SageMaker .. 2601
Full view of the SageMaker Training workflow and features ... 2602

Before training .. 2604
During training .. 2606
After training ... 2608

Model Training ... 2610
Choose an Algorithm .. 2612

Choose an algorithm implementation ... 2613
Problem types for the basic machine learning paradigms .. 2616
Use Built-in Algorithms ... 2619
Use Reinforcement Learning .. 3058

Run local code as a remote job .. 3066
Set up your environment ... 3067
Invoking a function .. 3075
Configuration file ... 3086
Customize your runtime environment ... 3088
Container image compatibility .. 3089
Logging parameters and metrics with Amazon SageMaker Experiments 3095
Using modular code with the @remote decorator ... 3099
Private repository for runtime dependencies ... 3102
Example notebooks ... 3104

Experiments .. 3104
Supported AWS Regions ... 3105
Create an experiment .. 3106
View, search, and compare experiment runs .. 3114
SageMaker integrations .. 3119
Tutorials .. 3123

xi

Amazon SageMaker Developer Guide

CloudTrail metrics .. 3124
Clean up experiment resources ... 3126
Additional supported SDK .. 3128
Experiments FAQs .. 3133
Search using the console and API .. 3136

Perform Automatic Model Tuning ... 3142
How Hyperparameter Tuning Works .. 3143
Define metrics and environment variables ... 3147
Define Hyperparameter Ranges .. 3150
Track and set completion criteria ... 3155
Tune Multiple Algorithms ... 3159
Example: Hyperparameter Tuning Job .. 3172
Stop Training Jobs Early ... 3187
Run a Warm Start Hyperparameter Tuning Job .. 3189
Resource Limits for Automatic Model Tuning .. 3195
Best Practices for Hyperparameter Tuning ... 3198

Refine data during training ... 3201
How SageMaker smart sifting works ... 3202
Supported frameworks and AWS Regions .. 3204
Apply SageMaker smart sifting to your training script .. 3205
Best practices, considerations, and troubleshooting .. 3215
Security in SageMaker smart sifting .. 3216
SageMaker smart sifting Python SDK reference ... 3217
Release notes .. 3220

Debug and improve model performance ... 3220
Use TensorBoard ... 3221
Use SageMaker Debugger .. 3240
Access a training container through SSM for remote debugging ... 3417
Release notes .. 3427

Profile and optimize computational performance ... 3429
Use SageMaker Profiler ... 3431
Monitor AWS compute resource utilization in SageMaker Studio Classic 3454
Release notes .. 3533

Distributed training ... 3534
Before you get started .. 3535
Get started with distributed training in Amazon SageMaker .. 3536

xii

Amazon SageMaker Developer Guide

Basic distributed training concepts .. 3540
Advanced concepts .. 3542
Strategies ... 3543
Optimize distributed training .. 3545
Scenarios .. 3547
SageMaker distributed data parallelism library ... 3550
SageMaker model parallelism library v2 ... 3605
SageMaker Distributed Training Notebook Examples .. 3780
Distributed computing with SageMaker best practices .. 3784

Training Compiler .. 3789
What Is SageMaker Training Compiler? ... 3789
How It Works .. 3790
Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3792
Bring Your Own Deep Learning Model .. 3825
Enable Training Compiler ... 3838
Example Notebooks and Blogs ... 3859
Best Practices and Considerations .. 3860
Training Compiler FAQ .. 3863
Troubleshooting .. 3865
Release Notes .. 3872

Access Training Data ... 3878
SageMaker Input Modes and AWS Cloud Storage .. 3878
Choosing Data Input Mode Using the SageMaker Python SDK .. 3881
Configure Data Input Channel to Use Amazon FSx for Lustre .. 3883
Best Practices for Choosing Data Source and Input Mode .. 3887

Train Using a Heterogeneous Cluster .. 3889
How to Configure a Heterogeneous Cluster ... 3890
Distributed Training with a Heterogeneous Cluster .. 3894
Modify Your Training Script to Assign Instance Groups ... 3897
Considerations ... 3900
Examples, Blogs, and Case Studies .. 3900

Use Incremental Training ... 3901
Perform Incremental Training (Console) ... 3901
Perform Incremental Training (API) ... 3904

Use Managed Spot Training .. 3907
Using Managed Spot Training ... 3908

xiii

Amazon SageMaker Developer Guide

Managed Spot Training Lifecycle .. 3909
Use Managed Warm Pools ... 3910

How it works ... 3910
Warm pool resource limits ... 3915
How to use SageMaker managed warm pools ... 3916
Considerations ... 3922

Monitor and Analyze Using CloudWatch Metrics .. 3922
Defining Training Metrics ... 3923
Monitoring Training Job Metrics (CloudWatch Console) .. 3927
Monitoring Training Job Metrics (SageMaker Console) .. 3927
Example: Viewing a Training and Validation Curve .. 3929

Use Training Storage Paths ... 3930
Overview .. 3931
Uncompressed model output .. 3932
Tips and Considerations for Setting Up Storage Paths .. 3933
SageMaker Environment Variables and Default Paths for Training Storage Locations 3934

Use Augmented Manifest Files ... 3937
Augmented Manifest File format .. 3937
Stream Augmented Manifest File Data ... 3938
Use an Augmented Manifest File (Console) .. 3939
Use an Augmented Manifest File (API) .. 3941

Use Checkpoints .. 3942
Frameworks and algorithms .. 3944
Enable checkpointing .. 3945
Browse checkpoint files .. 3947
Resume training from a checkpoint ... 3947
Cluster repairs for GPU errors ... 3948
Considerations for checkpointing ... 3949

Deploy models for inference .. 3951
Before you begin ... 3951
Steps for model deployment .. 3952
Inference options ... 3953
Advanced endpoint options .. 3954
Bring your own model .. 3955
Next steps ... 3955

Monitoring ... 3955

xiv

Amazon SageMaker Developer Guide

CI/CD for model deployment .. 3955
Deployment guardrails .. 3956
Inferentia .. 3956
Optimize model performance ... 3956
Autoscaling .. 3956

Model Deployment .. 3957
Model creation with ModelBuilder ... 3958

Build your model with ModelBuilder ... 3958
Define serialization and deserialization methods .. 3960
Customize model loading and handling of requests .. 3963
Build your model and deploy .. 3964
Bring your own container (BYOC) ... 3965
Using ModelBuilder in local mode ... 3965
ModelBuilder examples ... 3968

Validating Models .. 3968
Get an endpoint inference recommendation .. 3969

How it Works .. 3970
How to Get Started ... 3970
Example notebooks ... 3970
Prerequisites .. 3971
Recommendation jobs ... 3983

Real-time inference ... 4043
Deploy models .. 4044
Invoke models ... 4070
Manage endpoints ... 4077
Hosting options .. 4085
Automatically scale models ... 4165
Host instance storage volumes ... 4190
Safely validate models in production .. 4190
Clarify online explainability ... 4204

Serverless Inference .. 4230
How it works ... 4231
Getting started ... 4235
Create, invoke, update, and delete a serverless endpoint ... 4236
Monitor a serverless endpoint ... 4252
Automatically scale Provisioned Concurrency for a serverless endpoint 4254

xv

Amazon SageMaker Developer Guide

Troubleshooting .. 4267
Asynchronous inference ... 4268

How It Works .. 4268
How Do I Get Started? .. 4269
Create, invoke, and update an Asynchronous Endpoint ... 4270
Monitor asynchronous endpoint ... 4283
Check prediction results ... 4287
Autoscale an asynchronous endpoint .. 4291
Troubleshooting .. 4295

Batch Transform .. 4302
Use Batch Transform to Get Inferences from Large Datasets ... 4303
Speed up a Batch Transform Job ... 4305
Use Batch Transform to Test Production Variants .. 4305
Sample Notebooks ... 4306
Associate Prediction Results with Input .. 4306
Storage in Batch Transform ... 4314
Troubleshooting .. 4315

Model parallelism and large model inference ... 4316
Deep learning containers for LMI ... 4317
SageMaker endpoint parameters for LMI ... 4321
LMI tutorials .. 4322
Configurations and settings ... 4342
Choosing instance types for LMI .. 4367
Deploying uncompressed models ... 4373
LMI FAQs .. 4374
LMI troubleshooting .. 4375
Release notes for LMI deep learning containers ... 4376

Update models in production ... 4386
How to get started .. 4386
Auto-Rollback Configuration and Monitoring .. 4387
Blue/Green Deployments ... 4391
Rolling Deployments ... 4406
Exclusions ... 4411

Shadow tests .. 4412
Create a shadow test .. 4412
View, monitor, and edit shadow tests ... 4417

xvi

Amazon SageMaker Developer Guide

Complete a shadow test ... 4424
Best Practices .. 4427
Exclusions ... 4427

Access containers through SSM .. 4428
Allowlist .. 4428
Enable SSM access ... 4429
IAM configuration ... 4429
SSM access with AWS PrivateLink .. 4431
Logging with Amazon CloudWatch Logs .. 4431
Accessing model containers ... 4431

Deploy models with model servers ... 4432
Deploy models with TorchServe ... 4432
Deploy models with DJL Serving .. 4440
Deploy models with Triton Inference Server .. 4445

Deploy models at the edge with SageMaker Edge Manager .. 4455
Why Use Edge Manager? .. 4455
How Does it Work? .. 4455
How Do I Use SageMaker Edge Manager? .. 4456
Getting Started ... 4456
Set Up Devices and Fleets .. 4479
Package Model .. 4487
The Edge Manager Agent ... 4494
Manage Model .. 4515
SageMaker Edge Manager end of life .. 4527

Optimize model performance using Neo ... 4529
What is SageMaker Neo? .. 4529
How it Works .. 4530
Compile Models .. 4530
Cloud Instances ... 4552
Edge Devices ... 4593
Troubleshoot Errors ... 4626

Elastic Inference ... 4636
Migrate from Amazon Elastic Inference to other instances .. 4638
How EI Works .. 4643
Choose an EI Accelerator Type .. 4644
Use EI in a SageMaker Notebook Instance ... 4645

xvii

Amazon SageMaker Developer Guide

Use EI on a Hosted Endpoint .. 4645
Frameworks that Support EI .. 4645
Use EI with SageMaker Built-in Algorithms .. 4646
EI Sample Notebooks .. 4646
Set Up to Use EI ... 4646
Attach EI to a Notebook Instance .. 4651
Endpoints with Elastic Inference ... 4654

Best practices ... 4659
Best practices for deploying models on SageMaker Hosting Services 4659
Monitor Security Best Practices .. 4661
Low latency real-time inference with AWS PrivateLink ... 4661
Migrate inference workload from x86 to AWS Graviton ... 4663
Troubleshoot deployments .. 4666
Inference cost optimization best practices ... 4669
Best practices to minimize interruptions during GPU driver upgrades 4671
Best practices for endpoint security .. 4675

Supported features ... 4677
Resources ... 4683

Blogs, example notebooks, and additional resources ... 4684
Troubleshooting and reference ... 4687
Model Hosting FAQs .. 4688

Implement MLOps ... 4698
Why MLOps? ... 4698

Challenges with MLOps .. 4699
Benefits of MLOps ... 4700

Experiments .. 4701
Workflows .. 4701

Amazon SageMaker Model Building Pipelines ... 4702
Kubernetes Orchestration ... 4846
Notebook Jobs .. 4940

ML Lineage Tracking ... 5003
Tracking Entities ... 5005
SageMaker-Created Entities ... 5007
Manually Create Entities ... 5009
Querying Lineage Entities .. 5014
Cross-Account Tracking ... 5023

xviii

Amazon SageMaker Developer Guide

Catalog models with Model Registry .. 5027
Models, Model Versions, and Model Groups .. 5027
Collections ... 5068
Model Registry FAQ ... 5080

Model Deployment .. 5082
Model Monitor .. 5082
Projects .. 5083

SageMaker Projects .. 5084
SageMaker Studio Permissions Required to Use Projects .. 5087
Create an MLOps Project .. 5089
Templates ... 5090
View Resources ... 5105
Update an MLOps Project .. 5106
Delete an MLOps Project .. 5108
Project walkthrough .. 5109
Project Walkthrough Using Third-party Git Repos .. 5116

MLOps FAQ ... 5122
Monitor data and model quality .. 5130

Model Monitoring .. 5131
How It Works .. 5131

Sample Notebooks ... 5134
Capture data ... 5135

Capture data from real-time endpoint .. 5135
Capture data from batch transform job .. 5143

Monitor data quality ... 5147
Create a Baseline .. 5148
Schedule data quality monitoring jobs ... 5151
Statistics ... 5152
CloudWatch Metrics ... 5154
Violations ... 5155

Monitor model quality ... 5157
Create a Model Quality Baseline ... 5158
Schedule Model Quality Monitoring Jobs ... 5161
Ingest Ground Truth Labels and Merge Them With Predictions ... 5163
Model Quality Metrics ... 5165
Model Quality CloudWatch Metrics .. 5169

xix

Amazon SageMaker Developer Guide

Monitor bias drift .. 5170
Model Monitor Sample Notebook .. 5171
Create a Bias Drift Baseline ... 5172
Bias Drift Violations ... 5174
Configure Bias Drift Monitoring .. 5175
Schedule Bias Drift Monitoring Jobs .. 5179
Inspect Reports for Data Bias Drift .. 5182
CloudWatch Metrics for Bias Drift Analysis .. 5183

Monitor Feature Attribution Drift .. 5184
Model Monitor Example Notebook .. 5185
Create a SHAP Baseline .. 5186
Feature Attribution Drift Violations ... 5188
Configure Attribution Drift Monitoring ... 5189
Schedule Feature Attribute Drift Monitoring Jobs .. 5194
Inspect Reports for Feature Attribute Drift .. 5196
CloudWatch Metrics for Feature Drift Analysis .. 5197

Schedule monitoring jobs .. 5198
cron scheduling ... 5201
Configuring SCPs for monitoring schedules ... 5202

Prebuilt container .. 5204
Interpret results ... 5205

List Executions .. 5205
Inspect a Specific Execution ... 5205
List Generated Reports ... 5206
Violations Report .. 5207

Visualize results for real-time endpoints .. 5208
Advanced topics ... 5214

Customize monitoring ... 5214
AWS CloudFormation Custom Resource for Real-time Endpoints ... 5234

Model Monitor FAQs ... 5238
Evaluate, explain, and detect bias in models .. 5251

Evaluate foundation models ... 5251
What are foundation model evaluations? ... 5252
Get started with model evaluations .. 5253
Foundation model evaluation overview .. 5254
Use a human evaluation ... 5264

xx

Amazon SageMaker Developer Guide

Use an automatic evaluation ... 5280
Customize your workflow using the fmeval library .. 5308
Notebook tutorials ... 5315
Troubleshooting guide .. 5332

Explain and detect bias .. 5336
What is fairness and model explainability? .. 5336
SageMaker Clarify Processing Jobs .. 5340
Configure a SageMaker Clarify Processing Job .. 5342
Run SageMaker Clarify Processing Jobs .. 5414
Get Analysis Results ... 5431
Troubleshoot Jobs .. 5443
Sample notebooks ... 5447
Detect Pre-training Data Bias .. 5449
Detect Post-training Data and Model Bias ... 5470
Model Explainability .. 5504

Use Explainability with Autopilot .. 5508
Use governance to document and track model performance ... 5509

Amazon SageMaker Role Manager .. 5509
Amazon SageMaker Model Cards ... 5509
Amazon SageMaker Model Dashboard ... 5509
Model Cards .. 5510

Prerequisites .. 5510
Intended uses of a model .. 5511
Risk ratings .. 5511
Model card JSON schema ... 5511
Create a model card .. 5529
Manage model cards ... 5537
Cross account support ... 5539
SageMaker APIs .. 5544
Model card FAQs .. 5545

Model Dashboard .. 5547
Model Dashboard elements ... 5548
View Model Monitor schedules and alerts .. 5550
View a model lineage graph .. 5553
View Endpoint Status .. 5555
Model Dashboard FAQ .. 5557

xxi

Amazon SageMaker Developer Guide

Use Docker containers to build models ... 5561
Scenarios and Guidance ... 5561

Use cases for using pre-built Docker containers with SageMaker .. 5562
Use cases for extending a pre-built Docker container .. 5563
Use case for building your own container .. 5563

Docker Container Basics ... 5565
Use Pre-built SageMaker Docker images .. 5565

Prebuilt Deep Learning Images ... 5566
Prebuilt Scikit-learn and Spark ML Images ... 5567
Deep Graph Networks ... 5568
Extend a Pre-built Container ... 5572

Adapting your own Docker container to work with SageMaker .. 5585
Individual Framework Libraries ... 5585
SageMaker Training and Inference Toolkits .. 5586
Adapting your own training container .. 5588
Adapting Your Own Inference Container .. 5606

Create a container with your own algorithms and models ... 5623
Use Your Own Training Algorithms .. 5623
Use Your Own Inference Code .. 5641

Examples and more info .. 5657
Setup ... 5657
Host models trained in Scikit-learn .. 5658
Package TensorFlow and Scikit-learn models for use in SageMaker 5658
Train and deploy a neural network on SageMaker ... 5658
Training using pipe mode ... 5658
Bring your own R model .. 5659
Extend a pre-built PyTorch container Image .. 5659
Train and debug training jobs on a custom container ... 5659

Troubleshooting ... 5659
Configure security in Amazon SageMaker ... 5661

Data Privacy .. 5662
Types of information collected ... 5662
How to opt out of metadata collection .. 5662
Additional information .. 5664

Data Protection .. 5665
Protect Data at Rest Using Encryption .. 5666

xxii

Amazon SageMaker Developer Guide

Protecting Data in Transit with Encryption .. 5669
Key Management .. 5673
Internetwork Traffic Privacy ... 5673

Identity and Access Management .. 5674
Audience ... 5674
Authenticating with Identities ... 5675
Managing Access Using Policies .. 5678
How Amazon SageMaker Works with IAM .. 5681
Identity-Based Policy Examples .. 5685
Cross-Service Confused Deputy Prevention ... 5724
SageMaker Roles .. 5733
Role Manager .. 5767
Access Control ... 5786
Amazon SageMaker API Permissions Reference .. 5789
AWS Managed Policies for SageMaker .. 5828
Troubleshooting .. 5963

Logging and Monitoring .. 5965
Compliance validation .. 5966
Resilience ... 5967
Infrastructure Security .. 5968

SageMaker Scans AWS Marketplace Training and Inference Containers for Security
Vulnerabilities .. 5968
Connect to Resources From Within a VPC .. 5969
Run Training and Inference Containers in Internet-Free Mode ... 5978
Connect to SageMaker Within your VPC ... 5979
Give SageMaker Access to Resources in your Amazon VPC ... 5998

Sell algorithms and packages in the AWS Marketplace .. 6030
Topics ... 6030
SageMaker Algorithms ... 6030
SageMaker Model Packages .. 6031
Use your own algorithms and models with the AWS Marketplace ... 6031

Create Algorithm and Model Package Resources .. 6031
Use Algorithm and Model Package Resources ... 6041

Sell Amazon SageMaker Algorithms and Model Packages ... 6052
Topics .. 6052
Develop Algorithms and Models in Amazon SageMaker ... 6053

xxiii

Amazon SageMaker Developer Guide

List Your Algorithm or Model Package on AWS Marketplace .. 6055
Find and Subscribe to Algorithms and Model Packages on AWS Marketplace 6055

Use Algorithms and Model Packages ... 6056
Monitor AWS resources provisioned while using Amazon SageMaker 6058

Monitoring with CloudWatch .. 6059
Endpoint Invocation Metrics .. 6059
SageMaker Inference Component Metrics .. 6063
Multi-Model Endpoint Metrics ... 6064
Jobs and Endpoint Metrics ... 6067
Inference Recommender Metrics ... 6073
Ground Truth Metrics .. 6074
Feature Store Metrics .. 6077
Pipelines Metrics ... 6080

Logging with CloudWatch ... 6083
Log SageMaker API Calls with CloudTrail ... 6085

SageMaker Information in CloudTrail .. 6085
Operations Performed by Automatic Model Tuning ... 6086
Understanding SageMaker Log File Entries .. 6087

Monitoring user resource access from Amazon SageMaker Studio Classic 6089
Prerequisites .. 6089
Considerations when using sourceIdentity .. 6090
Turn on sourceIdentity .. 6091
Turn off sourceIdentity .. 6092

Automating with EventBridge .. 6093
Model state change ... 6094
Training job state change ... 6094
HyperParameter tuning job state change ... 6096
Transform job state change ... 6098
Endpoint state change .. 6099
Feature group state change ... 6100
Model package state change ... 6101
Pipeline execution state change ... 6103
Pipeline step state change ... 6104
Processing job state change .. 6105
SageMaker image state change .. 6107
SageMaker image version state change .. 6107

xxiv

Amazon SageMaker Developer Guide

Endpoint deployment state change ... 6109
Model card state change .. 6112

Reference .. 6113
ML Frameworks and Languages ... 6113

Apache MXNet .. 6114
Apache Spark .. 6115
Chainer .. 6128
Hugging Face .. 6129
PyTorch ... 6133
R ... 6133
Scikit-learn ... 6137
SparkML Serving .. 6139
TensorFlow ... 6139
Triton Inference Server ... 6140

API Reference ... 6142
Programming Model for Amazon SageMaker .. 6142
APIs, CLI, and SDKs .. 6144

SageMaker Distribution Images .. 6144
Supported packages and versions .. 6145

SageMaker Document History .. 6147
AWS Glossary ... 6159

xxv

Amazon SageMaker Developer Guide

What is Amazon SageMaker?

Amazon SageMaker is a fully managed machine learning (ML) service. With SageMaker, data
scientists and developers can quickly and confidently build, train, and deploy ML models into a
production-ready hosted environment. It provides a UI experience for running ML workflows that
makes SageMaker ML tools available across multiple integrated development environments (IDEs).

With SageMaker, you can store and share your data without having to build and manage your own
servers. This gives you or your organizations more time to collaboratively build and develop your
ML workflow, and do it sooner. SageMaker provides managed ML algorithms to run efficiently
against extremely large data in a distributed environment. With built-in support for bring-your-
own-algorithms and frameworks, SageMaker offers flexible distributed training options that adjust
to your specific workflows. Within a few steps, you can deploy a model into a secure and scalable
environment from the SageMaker console.

Topics

• Pricing for Amazon SageMaker

• Are you a first-time user of Amazon SageMaker?

• Overview of machine learning with Amazon SageMaker

• Amazon SageMaker Features

Pricing for Amazon SageMaker

For information about AWS Free Tier limits and the cost of using SageMaker, see Amazon
SageMaker Pricing.

Are you a first-time user of Amazon SageMaker?

If you're a first-time user of SageMaker, we recommend that you complete the following:

1. Overview of machine learning with Amazon SageMaker – Get an overview of the machine
learning (ML) lifecycle and learn about solutions that are offered. This page explains key
concepts and describes the core components involved in building AI solutions with SageMaker.

2. Get started – Learn how to set up and use SageMaker based on your needs.

Pricing for Amazon SageMaker 1

https://aws.amazon.com/free
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

3. Use automated ML, no-code, or low-code – Learn about low-code and no-code ML options that
simplify a ML workflow by automating machine learning tasks. These options are helpful ML
learning tools because they provide visibility into the code by generating notebooks for each of
the automated ML tasks.

4. Use machine learning environments offered by SageMaker – Familiarize yourself with the ML
environments that you can use to develop your ML workflow, such as information and examples
about ready-to-use and custom models.

5. Explore other topics – Use the SageMaker Developer Guide's table of contents to explore more
topics. For example, you can find information about ML lifecycle stages, in Overview of machine
learning with Amazon SageMaker, and various solutions that SageMaker offers.

6. Amazon SageMaker resources – Refer to the various developer resources that SageMaker offers.

Overview of machine learning with Amazon SageMaker

This section describes a typical machine learning (ML) workflow and summarizes how to
accomplish those tasks with Amazon SageMaker.

In machine learning, you teach a computer to make predictions or inferences. First, you use an
algorithm and example data to train a model. Then you integrate your model into your application
to generate inferences in real time and at scale.

The following diagram illustrates the typical workflow for creating a machine learning model. It
includes three stages in a circular flow that we will cover in more detail below: generate example
data, train a model, and deploy the model.

Overview of machine learning with Amazon SageMaker 2

https://aws.amazon.com/sagemaker/resources

Amazon SageMaker Developer Guide

The diagram illustrates how to perform the following activities in most typical scenarios:

1. Generate example data – To train a model, you need example data. The type of data that you
need depends on the business problem that you want the model to solve (the inferences that
you want the model to generate). For example, suppose that you want to create a model to
predict a number from an input image of a handwritten digit. To train such a model, you need
example images of handwritten numbers.

Data scientists often devote time exploring and preprocessing example data before using it for
model training. To preprocess data, you typically do the following:

a. Fetch the data – You might have in-house example data repositories, or you might use
datasets that are publicly available. Typically, you pull the dataset or datasets into a single
repository.

b. Clean the data – To improve model training, inspect the data and clean it, as needed. For
example, if your data has a country name attribute with values United States and US,
you can edit the data to be consistent.

c. Prepare or transform the data – To improve performance, you might perform additional data
transformations. For example, you might choose to combine attributes. If your model predicts
the conditions that require de-icing an aircraft, instead of using temperature and humidity

Overview of machine learning with Amazon SageMaker 3

Amazon SageMaker Developer Guide

attributes separately, you can combine those attributes into a new attribute to get a better
model.

In SageMaker, you can preprocess example data using SageMaker APIs with the SageMaker
Python SDK in an integrated development environment (IDE). With SDK for Python (Boto3)
you can fetch, explore, and prepare your data for model training. For information about data
preparation, processing, and transforming your data, see Prepare data, Process data, and Create,
store, and share features with Amazon SageMaker Feature Store.

2. Train a model – Model training includes both training and evaluating the model, as follows:

• Training the model – To train a model, you need an algorithm or a pre-trained base model.
The algorithm you choose depends on a number of factors. For a built-in solution, you can
use one of the algorithms that SageMaker provides. For a list of algorithms provided by
SageMaker and related considerations, see Use Amazon SageMaker Built-in Algorithms or Pre-
trained Models. For a UI-based training solution that provides algorithms and models, see
SageMaker JumpStart.

You also need compute resources for training. Depending on the size of your training dataset
and how quickly you need the results, you can use resources ranging from a single general-
purpose instance to a distributed cluster of GPU instances. For more information, see Train a
Model with Amazon SageMaker.

• Evaluating the model – After you train your model, you evaluate it to determine whether
the accuracy of the inferences is acceptable. To train and evaluate your model you can use
the SageMaker Python SDK to send requests to the model for inferences through one of the
available IDEs. For more information about evaluating your model, see Monitor data and
model quality.

3. Deploy the model – You traditionally re-engineer a model before you integrate it with your
application and deploy it. With SageMaker hosting services, you can deploy your model
independently, which decouples it from your application code. For more information, see Deploy
models for inference.

Machine learning is a continuous cycle. After deploying a model, you monitor the inferences,
collect more high-quality data, and evaluate the model to identify drift. You then increase the
accuracy of your inferences by updating your training data to include the newly collected high-
quality data. As more example data becomes available, you continue retraining your model to
increase accuracy.

Overview of machine learning with Amazon SageMaker 4

https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome
https://sagemaker.readthedocs.io/en/stable/
https://sagemaker.readthedocs.io/en/stable/
https://sagemaker.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

Amazon SageMaker Features

Amazon SageMaker includes the following features.

Topics

• New features for re:Invent 2023

• Machine learning environments

• Major features

New features for re:Invent 2023

SageMaker includes the following new features for re:Invent 2023.

SageMaker Canvas chat for data prep

SageMaker Canvas chat for data prep helps you create data preparation flows using LLMs.

Code Editor

Code Editor extends Studio so that you can write, test, debug and run your analytics and
machine learning code in an environment based on Visual Studio Code - Open Source ("Code-
OSS").

Deep learning containers for large model inference

SageMaker has replace the default NCCL kernels with inference optimized kernels to improve
GPU utilization and offer differentiating performance against OSS.

Deploy models for real-time inference

SageMaker Inference provides developer experience and user interface abstractions to help you
get started more quickly with model deployment.

SageMaker customers can now improve the utilization of their accelerated compute instances
by deploying up to thousands of models to a SageMaker endpoint with guaranteed throughput
and auto-scaling on a per model basis.

SageMaker Distribution Images

SageMaker Distribution is a collection of Docker images designed for machine learning,
data science, and data analytics. The images are available across Studio, Studio Lab, Studio
notebooks and Github.

SageMaker Features 5

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat-fine-tune.html
https://docs.aws.amazon.com/sagemaker/latest/dg/code-editor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/large-model-inference-dlc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deploy-models.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-distribution.html

Amazon SageMaker Developer Guide

domain onboarding simplification

A simplified and guided Amazon SageMaker domain onboarding experience with new
capabilities for single users and organization administrators. The capabilities includes direct IAM
Identity Center integration, fine-grained access policy management, seamless SageMaker apps
management and configurations, and VPC and storage configuration.

Amazon S3 Express One Zone

Amazon S3 Express One Zone is new storage class that provides single-digit millisecond access
for the most latency-sensitive applications. Amazon S3 Express One Zone allows customers
to collocate their object storage and compute resources in a single AWS Availability Zone,
optimizing both compute performance and costs with increased data processing speed.

Foundation model evaluations (FMEval)

Foundation model evaluations (FMEval) helps you quantify the risk of providing inaccurate,
toxic or biased content with your language model so that you can choose the best one for your
use case. Bring your own custom dataset or use a built-in to evaluate any language model.
FMEval is integrated with tens of text-based foundation models in SageMaker JumpStart or
bring your own. You can also create customized evaluations using the FMEval library.

SageMaker HyperPod

SageMaker HyperPod is a capability of SageMaker that provides an always-on machine
learning environment on resilient clusters that you can run any machine learning workloads for
developing large machine learning models such as large language models (LLMs) and diffusion
models.

JupyterAI

Jupyter AI and Code Whisperer have been included to SageMaker Distribution. With this update,
users of Studio or Code Editor can easily use generative AI from their notebooks and take
advantage of Code Whisperer's code completion feature.

JupyterLab in Studio

JupyterLab in Studio improves latency and reliability for Studio Notebooks

SageMaker Notebook Jobs

SageMaker Notebook Jobs provides SDK support for notebook jobs so you can schedule your
notebook jobs programmatically.

New features 6

https://docs.aws.amazon.com/sagemaker/latest/dg/gs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-foundation-model-evaluate.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-hyperpod.html
https://docs.aws.amazon.com/sagemaker/latest/dg/jupyterai.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-jl.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run.html

Amazon SageMaker Developer Guide

SageMaker Pipelines

SageMaker Pipelines provides you the option to convert your local machine learning code to a
SageMaker Pipeline step, from which you can create and run a pipeline.

SageMaker smart sifting

SageMaker smart sifting is a capability of SageMaker Training that improves the efficiency of
your training datasets and reduces total training time and cost.

SageMaker Studio

Studio is the latest web-based experience for running ML workflows. Studio offers a suite of
IDEs, including Code Editor, a new Jupyterlab application, RStudio, and Studio Classic.

Machine learning environments

SageMaker includes the following machine learning environments.

SageMaker geospatial capabilities

Build, train, and deploy ML models using geospatial data.

SageMaker Canvas

An auto ML service that gives people with no coding experience the ability to build models and
make predictions with them.

SageMaker Studio

An integrated machine learning environment where you can build, train, deploy, and analyze
your models all in the same application.

SageMaker Studio Lab

A free service that gives customers access to AWS compute resources in an environment based
on open-source JupyterLab.

RStudio on Amazon SageMaker

An integrated development environment for R, with a console, syntax-highlighting editor
that supports direct code execution, and tools for plotting, history, debugging and workspace
management.

Machine learning environments 7

https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-step-decorator.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-smart-sifting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated.html

Amazon SageMaker Developer Guide

Major features

SageMaker includes the following major features in alphabetical order excluding any SageMaker
prefix.

Amazon Augmented AI

Build the workflows required for human review of ML predictions. Amazon A2I brings human
review to all developers, removing the undifferentiated heavy lifting associated with building
human review systems or managing large numbers of human reviewers.

AutoML step

Create an AutoML job to automatically train a model in SageMaker Pipelines.

SageMaker Autopilot

Users without machine learning knowledge can quickly build classification and regression
models.

Batch Transform

Preprocess datasets, run inference when you don't need a persistent endpoint, and associate
input records with inferences to assist the interpretation of results.

SageMaker Clarify

Improve your machine learning models by detecting potential bias and help explain the
predictions that models make.

Collaboration with shared spaces

A shared space consists of a shared JupyterServer application and a shared directory. All user
profiles in a Amazon SageMaker domain have access to all shared spaces in the domain.

SageMaker Data Wrangler

Import, analyze, prepare, and featurize data in SageMaker Studio. You can integrate Data
Wrangler into your machine learning workflows to simplify and streamline data pre-processing
and feature engineering using little to no coding. You can also add your own Python scripts and
transformations to customize your data prep workflow.

Data Wrangler data preparation widget

Interact with your data, get visualizations, explore actionable insights, and fix data quality
issues.

Major features 8

Amazon SageMaker Developer Guide

SageMaker Debugger

Inspect training parameters and data throughout the training process. Automatically detect and
alert users to commonly occurring errors such as parameter values getting too large or small.

SageMaker Edge Manager

Optimize custom models for edge devices, create and manage fleets and run models with an
efficient runtime.

SageMaker Elastic Inference

Speed up the throughput and decrease the latency of getting real-time inferences.

SageMaker Experiments

Experiment management and tracking. You can use the tracked data to reconstruct an
experiment, incrementally build on experiments conducted by peers, and trace model lineage
for compliance and audit verifications.

SageMaker Feature Store

A centralized store for features and associated metadata so features can be easily discovered
and reused. You can create two types of stores, an Online or Offline store. The Online Store
can be used for low latency, real-time inference use cases and the Offline Store can be used for
training and batch inference.

SageMaker Ground Truth

High-quality training datasets by using workers along with machine learning to create labeled
datasets.

SageMaker Ground Truth Plus

A turnkey data labeling feature to create high-quality training datasets without having to build
labeling applications and manage the labeling workforce on your own.

SageMaker Inference Recommender

Get recommendations on inference instance types and configurations (e.g. instance count,
container parameters and model optimizations) to use your ML models and workloads.

Inference shadow tests

Evaluate any changes to your model-serving infrastructure by comparing its performance
against the currently deployed infrastructure.

Major features 9

Amazon SageMaker Developer Guide

SageMaker JumpStart

Learn about SageMaker features and capabilities through curated 1-click solutions, example
notebooks, and pretrained models that you can deploy. You can also fine-tune the models and
deploy them.

SageMaker ML Lineage Tracking

Track the lineage of machine learning workflows.

SageMaker Model Building Pipelines

Create and manage machine learning pipelines integrated directly with SageMaker jobs.

SageMaker Model Cards

Document information about your ML models in a single place for streamlined governance and
reporting throughout the ML lifecycle.

SageMaker Model Dashboard

A pre-built, visual overview of all the models in your account. Model Dashboard integrates
information from SageMaker Model Monitor, transform jobs, endpoints, lineage tracking, and
CloudWatch so you can access high-level model information and track model performance in
one unified view.

SageMaker Model Monitor

Monitor and analyze models in production (endpoints) to detect data drift and deviations in
model quality.

SageMaker Model Registry

Versioning, artifact and lineage tracking, approval workflow, and cross account support for
deployment of your machine learning models.

SageMaker Neo

Train machine learning models once, then run anywhere in the cloud and at the edge.

Notebook-based Workflows

Run your SageMaker Studio notebook as a non-interactive, scheduled job.

Preprocessing

Analyze and preprocess data, tackle feature engineering, and evaluate models.

Major features 10

Amazon SageMaker Developer Guide

SageMaker Projects

Create end-to-end ML solutions with CI/CD by using SageMaker projects.

Reinforcement Learning

Maximize the long-term reward that an agent receives as a result of its actions.

SageMaker Role Manager

Administrators can define least-privilege permissions for common ML activities using custom
and preconfigured persona-based IAM roles.

SageMaker Serverless Endpoints

A serverless endpoint option for hosting your ML model. Automatically scales in capacity to
serve your endpoint traffic. Removes the need to select instance types or manage scaling
policies on an endpoint.

Studio Classic Git extension

A Git extension to enter the URL of a Git repository, clone it into your environment, push
changes, and view commit history.

SageMaker Studio Notebooks

The next generation of SageMaker notebooks that include AWS IAM Identity Center (IAM
Identity Center) integration, fast start-up times, and single-click sharing.

SageMaker Studio Notebooks and Amazon EMR

Easily discover, connect to, create, terminate and manage Amazon EMR clusters in single
account and cross account configurations directly from SageMaker Studio.

SageMaker Training Compiler

Train deep learning models faster on scalable GPU instances managed by SageMaker.

Major features 11

Amazon SageMaker Developer Guide

Get started

If you want to set up Amazon SageMaker for yourself as quickly as possible with no
customization, follow the instructions in Quick setup for single users.

• Open the SageMaker console and access the SageMaker applications from the left navigation
pane.

• Using the quick setup gets you set up with a Amazon SageMaker domain without the need to
learn the details of a domain. For information about the domain default settings, see Default
settings.

• If you do not intend to customize your domain any further, you can skip this Get started chapter
and begin exploring SageMaker ML environment products at Use machine learning environments
offered by SageMaker.

If you want to set up Amazon SageMaker for many users or an organization with customization,
use one of the following step-by-step guides with contextual help for advanced and enterprise
Machine Learning (ML) administrators. Administrators of organizations can onboard their users
or groups through authentication, using AWS Identity and Access Management (IAM) or AWS
IAM Identity Center, define scoped-down access policies, manage SageMaker applications and
configurations, and set up a VPC configuration.

• To set up a custom domain for users using IAM, see Custom onboarding to Amazon SageMaker
domain using IAM.

• To set up a custom domain for groups using authentication in IAM Identity Center, see Custom
onboarding to Amazon SageMaker domain using IAM Identity Center.

Note

If you intend to use the Amazon SageMaker Studio Lab ML environment or if an AWS
account and Amazon SageMaker domain has already been set up for you, you can skip
this Get started chapter and begin exploring SageMaker ML environment products at Use
machine learning environments offered by SageMaker.
If a sign-in URL is provided to you, you can set up by following the instructions in Access
the domain after onboarding.

12

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

After the domain is set up, the administrative user can View and edit domains and the users can
access the ML environments using the sign-in URL or opening the SageMaker console and choosing
the environment from the left navigation pane.

Topics

• Set Up Amazon SageMaker Prerequisites

• Amazon SageMaker domain overview

• Supported Regions and Quotas

Set Up Amazon SageMaker Prerequisites

To get set up with Amazon SageMaker:

• You will need to create an Amazon Web Services (AWS) account to get access to all of the AWS
services and resources for the account.

• To adhere to the Security best practices in IAM, create an administrative user to provision AWS
resources, like creating and updating a Amazon SageMaker domain for users.

• Set up your AWS Command Line Interface (AWS CLI) to manage your AWS services and resources
for the account.

Topics

• Create an AWS Account

• Create an Administrative User and Group

• AWS CLI Prerequisites

Create an AWS Account

If you already have an AWS account, skip this step.

When you sign up for AWS, your AWS account is automatically signed up for all AWS services,
including SageMaker. You are charged only for the services that you use. For details on pricing, see
AWS pricing and Amazon SageMaker pricing.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

Set Up Amazon SageMaker Prerequisites 13

https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://aws.amazon.com/pricing
https://aws.amazon.com/sagemaker/pricing
https://portal.aws.amazon.com/billing/signup

Amazon SageMaker Developer Guide

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

Write down your AWS account ID because you need it for the next task.

Create an Administrative User and Group

When you create an AWS account, you get a single sign-in identity that has complete access to all
of the AWS services and resources in the account. This identity is called the AWS account root user.
Signing in to the AWS console using the email address and password that you used to create the
account gives you complete access to all of the AWS resources in your account.

We strongly recommend that you do not use the root user account for everyday tasks, even
the administrative ones. Instead, adhere to the Security best practices in IAM, and create an
administrative user to provision AWS resources, like creating and updating a Amazon SageMaker
domain for users within the domain. Then securely lock away the root user credentials and use
them to perform only a few account and service management tasks.

To create an administrative user

1. Create an administrative user in your AWS account. For instructions, see Create an
administrative user in the IAM User Guide.

Note

We assume that you use administrator user credentials for the exercises and
procedures in this guide. If you choose to create and use another user, grant that user
minimum permissions. For more information, see Authenticating with Identities.

2. Ensure that your administrator user has the AmazonSageMakerFullAccess policy, as well as a
policy with the following content needed to create a SageMaker domain. For more information
about creating IAM policies, see Creating IAM policies.

Create an Administrative User and Group 14

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:*"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:domain/*",
 "arn:aws:sagemaker:*:*:user-profile/*",
 "arn:aws:sagemaker:*:*:app/*",
 "arn:aws:sagemaker:*:*:flow-definition/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "servicecatalog:*"
],
 "Resource": [
 "*"
]
 }
]
}

AWS CLI Prerequisites

The following prerequisites are required to manage your domain and other AWS services and
resources using the AWS CLI.

• Update the AWS CLI by following the steps in Installing the current AWS CLI Version.

• From your local machine, run aws configure and provide your AWS credentials.

If you do not already have AWS credentials, see Managing access keys for IAM users for
information about creating and managing your access keys.

For information about AWS credentials, see AWS security credentials.

AWS CLI Prerequisites 15

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Amazon SageMaker Developer Guide

Amazon SageMaker domain overview

To have access to most Amazon SageMaker environments and resources, you must complete the
Amazon SageMaker domain onboarding process using the SageMaker console or the AWS CLI. For a
guide describing how to get started using SageMaker based on how you wish to access SageMaker,
and if necessary how to set up a domain, see Get started.

An Amazon SageMaker domain consists of the following:

• An associated Amazon Elastic File System (Amazon EFS) volume

• A list of authorized users

• A variety of security, application, policy, and Amazon Virtual Private Cloud (Amazon VPC)
configurations

The following diagram provides an overview of private apps and shared spaces within each domain.

When onboarding, you can choose to use either AWS Identity and Access Management (IAM) or
AWS IAM Identity Center for authentication methods. When you use IAM authentication, you can
choose either the Set up for single users or the Set up for organizations procedure. RStudio setup
is only available when using the Set up for organizations procedure.

Domain overview 16

Amazon SageMaker Developer Guide

Note

If you onboard using IAM authentication and want to switch to authentication using
IAM Identity Center later, you must delete the domain that you created. Then, you need
to manually re-import all notebooks and other user data that you created. For more
information, see Delete an Amazon SageMaker domain.

The simplest way to create an Amazon SageMaker domain is to follow the Set up for single users
procedure from the SageMaker console. Set up for single users uses default settings. These
settings include shareable notebooks and public internet access. For information on the default
settings, see Default settings.

For more control, including the option of using authentication using IAM Identity Center and
RStudio, use the Set up for organizations procedures.

Authentication using IAM Identity Center

To use authentication using IAM Identity Center with domain, you must onboard to an organization
in AWS Organizations.

Note

The AWS Organizations account must be in the same AWS Region as the domain.

Authentication using IAM Identity Center provides the following benefits over IAM authentication:

• Members given access to domain have a unique sign-in URL that directly opens the domain, and
they sign in with their IAM Identity Center credentials. When you use IAM authentication, you
must sign in through the SageMaker console.

For more information on how to access your domain with IAM Identity Center authentication, see
Access the domain after onboarding.

• Organizations manage their members in IAM Identity Center instead of the domain. You
can assign multiple members access to the domain at the same time. When you use IAM
authentication, you must add and manage members manually, one at time, using the domain
control panel.

Domain overview 17

Amazon SageMaker Developer Guide

Topics

• Amazon SageMaker domain

• Quick onboard to Amazon SageMaker domain

• Custom onboarding to Amazon SageMaker domain using IAM Identity Center

• Custom onboarding to Amazon SageMaker domain using IAM

• Choose an Amazon VPC

Amazon SageMaker domain

Amazon SageMaker domain supports SageMaker machine learning (ML) environments. A
SageMaker domain is composed of the following entities. For onboarding steps to create a domain,
see Amazon SageMaker domain overview.

• domain: An Amazon SageMaker domain consists of an associated Amazon Elastic File System
(Amazon EFS) volume; a list of authorized users; and a variety of security, application, policy, and
Amazon Virtual Private Cloud (Amazon VPC) configurations. Users within a domain can share
notebook files and other artifacts with each other. An account can have multiple domains. For
more information about multiple domains, see Multiple domains overview.

• UserProfile: A user profile represents a single user within a domain. It is the main way to
reference a user for the purposes of sharing, reporting, and other user-oriented features. This
entity is created when a user onboards to the Amazon SageMaker domain. For more information
about user profiles, see Domain user profiles.

• shared space: A shared space consists of a shared JupyterServer application and shared directory.
All users within the domain have access to the shared space. All user profiles in a domain have
access to all shared spaces in the domain. For more information about shared spaces, see
Collaborate with shared spaces.

• App: An app represents an application that supports the reading and execution experience of the
user’s notebooks, terminals, and consoles. The type of app can be JupyterServer, KernelGateway,
RStudioServerPro, or RSession. A user may have multiple apps active simultaneously.

The following tables describe the status values for the domain, UserProfile, shared space,
and App entities. Where applicable, they also give troubleshooting steps.

SageMaker domain 18

Amazon SageMaker Developer Guide

domain status values

Value Description

Pending Ongoing creation of domain.

InService Successful creation of domain.

Updating Ongoing update of domain.

Deleting Ongoing deletion of domain.

Failed Unsuccessful creation of domain. Call the
DescribeDomain API to see the failure
reason for domain creation. Delete the failed
domain and recreate the domain after fixing
the error mentioned in FailureReason .

Update_Failed Unsuccessful update of domain. Call
the DescribeDomain API to see the
failure reason for domain update. Call the
UpdateDomain API after fixing the error
mentioned in FailureReason .

Delete_Failed Unsuccessful deletion of domain. Call the
DescribeDomain API to see the failure
reason for domain deletion. Because deletion
failed, you might have some resources that are
still running, but you cannot use or update the
domain. Call the DeleteDomain API again
after fixing the error mentioned in FailureRe
ason .

UserProfile status values

Value Description

Pending Ongoing creation of UserProfile .

SageMaker domain 19

Amazon SageMaker Developer Guide

Value Description

InService Successful creation of UserProfile .

Updating Ongoing update of UserProfile .

Deleting Ongoing deletion of UserProfile .

Failed Unsuccessful creation of UserProfile .
Call the DescribeUserProfile API to
see the failure reason for UserProfile
creation. Delete the failed UserProfile and
recreate it after fixing the error mentioned in
FailureReason .

Update_Failed Unsuccessful update of UserProfile . Call
the DescribeUserProfile API to see
the failure reason for UserProfile update.
Call the UpdateUserProfile API again
after fixing the error mentioned in FailureRe
ason .

Delete_Failed Unsuccessful deletion of UserProfile . Call
the DescribeUserProfile API to see the
failure reason for UserProfile deletion.
Because deletion failed, you might have some
resources that are still running, but you cannot
use or update the UserProfile . Call the
DeleteUserProfile API again after fixing
the error mentioned in FailureReason .

shared space status values

Value Description

Pending Ongoing creation of shared space.

InService Successful creation of shared space.

SageMaker domain 20

Amazon SageMaker Developer Guide

Value Description

Deleting Ongoing deletion of shared space.

Failed Unsuccessful creation of shared space. Call
the DescribeSpace API to see the failure
reason for shared space creation. Delete the
failed shared space and recreate it after fixing
the error mentioned in FailureReason .

Update_Failed Unsuccessful update of shared space. Call
the DescribeSpace API to see the failure
reason for shared space update. Call the
UpdateSpace API again after fixing the
error mentioned in FailureReason .

Delete_Failed Unsuccessful deletion of shared space.
Call the DescribeSpace API to see the
failure reason for shared space deletion.
Because deletion failed, you might have
some resources that are still running, but you
cannot use or update the shared space. Call
the DeleteSpace API again after fixing the
error mentioned in FailureReason .

Deleted Successful deletion of shared space.

App status values

Value Description

Pending Ongoing creation of App.

InService Successful creation of App.

Deleting Ongoing deletion of App.

SageMaker domain 21

Amazon SageMaker Developer Guide

Value Description

Failed Unsuccessful creation of App. Call the
DescribeApp API to see the failure reason
for App creation. Call the CreateApp API
again after fixing the error mentioned in
FailureReason .

Deleted Successful deletion of App.

Maintenance of applications

At least once every 90 days, SageMaker performs security and performance updates to the
underlying software for Amazon SageMaker Studio Classic JupyterServer and KernelGateway,
SageMaker Canvas, and Amazon SageMaker Data Wrangler applications. Some maintenance items,
such as operating system upgrades, require that SageMaker takes your application offline for
a short time during the maintenance window. Because this maintenance takes the application
offline, you cannot perform any operations while the underlying software is being updated. When
the maintenance activity is in progress, the state of the application transitions from InService
to Pending. When maintenance is complete, the status of the application transitions back to
InService. If patching fails, then the status of the application becomes Failed. If an application is
in the Failed state, we recommend creating a new application of the same type. For information
about creating Studio Classic applications, see Shut Down and Update SageMaker Studio Classic
and Studio Classic Apps. For information about creating SageMaker Canvas applications, see
Manage applications.

For more information, contact https://aws.amazon.com/premiumsupport/.

Topics

• Prerequisites

• Multiple domains overview

• Domain resource isolation

• Setting defaults for a domain

• Attaching a Custom File System to a domain or User Profile

• Environment

• View and edit domains

SageMaker domain 22

Amazon SageMaker Developer Guide

• Delete an Amazon SageMaker domain

• Domain user profiles

• IAM Identity Center Groups in a domain

Prerequisites

To use the features available in an Amazon SageMaker domain, you must first onboard to a
domain. For more information, see Onboard to Amazon SageMaker Domain.

If you are interacting with your domain using the AWS CLI, you must also complete the following
prerequisites.

• Update the AWS CLI by following the steps in Installing the current AWS CLI Version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

Multiple domains overview

Amazon SageMaker supports the creation of multiple Amazon SageMaker domains in a single AWS
Region for each account. Additional domains in a Region have the same features and capabilities
as the first domain in a Region. Each domain can have distinct domain settings. The same user
profile cannot be added to multiple domains in a single Region within the same account. For more
information about domain limits, see Amazon SageMaker endpoints and quotas.

Topics

• Automatic tag propagation

• Domain resource display filtering

• Backfilling domain tags

Automatic tag propagation

By default, any SageMaker resources that support tagging and are created from within the Studio
Classic UI after 11/30/2022 are automatically tagged with a domain ARN tag. The domain ARN
tag is based on the domain ID of the domain that the resource is created in. The following list
describes the only SageMaker resources that do not support automatic tag propagation, as well as
the impacted API calls where the tag is not returned because it was not automatically set.

SageMaker domain 23

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

You can also use these tags for cost allocation using AWS Billing and Cost Management. For more
information, see Using AWS cost allocation tags.

Note

All SageMaker List APIs do not support tag-based resource isolation.
The default app, which manages the Studio UI, is not automatically tagged.

SageMaker resource Affected API calls

ImageVersionArn • describe-image-version

• update-image-version

• delete-image-version

ModelCardExportJobArn describe-model-card-export-job

ModelPackageArn describe-model-package

Domain resource display filtering

By default, SageMaker filters resources displayed within Studio Classic at the domain level.
SageMaker implements resource filtration in Studio Classic using the sagemaker:domain-arn
tag attached to SageMaker resources.

Note

This only applies to the Studio Classic UI. SageMaker does not support resource filtering
using the AWS CLI by default.

Using this resource filtration, SageMaker only displays SageMaker resources created in the domain,
as well as SageMaker resources that do not have a sagemaker:domain-arn tag associated
to them. These untagged resources are either created outside the context of a domain or were
created before 11/30/2022. You can add a tag to these untagged resources for better filtration
by following the steps in Backfilling domain tags. Resources created in other domains are
automatically filtered out.

SageMaker domain 24

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-image-version.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-image-version.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-image-version.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-model-card-export-job.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-model-package.html

Amazon SageMaker Developer Guide

All resources created in shared spaces are automatically filtered to that space.

Backfilling domain tags

If you have created resources in a domain before 11/30/2022, those resources are not
automatically tagged with the domain Amazon Resource Name (ARN) tag.

To accurately attribute resources to their respective domain, you must add the domain tag to
existing resources using the AWS CLI, as follows.

1. Map all existing SageMaker resources and their respective ARNs to the domains that exist in
your account.

2. Run the following command from your local machine to tag the resource with the ARN of the
resource's respective domain. This must be repeated for every SageMaker resource in your
account.

aws resourcegroupstaggingapi tag-resources \
 --resource-arn-list arn:aws:sagemaker:region:account-id:space/domain-id/space-
name \
 --tags sagemaker:domain-arn=arn:aws:sagemaker:region:account-id:domain/domain-
id

Domain resource isolation

You can isolate resources between each of the domains in your account and Region using an AWS
Identity and Access Management policy. With resource isolation, SageMaker resources, such as
models, experiments, training jobs, and pipelines created in one domain, cannot be accessed from
other domains . The following topic shows how to create a new IAM policy that limits access to
resources in the domain to user profiles with the domain tag, as well as how to attach this policy
to the IAM execution role of the domain. You must repeat this process for each domain in your
account. For more information about domain tags and backfilling these tags, see Multiple domains
overview.

Console

The following section shows how to create a new IAM policy that limits access to resources in
the domain to user profiles with the domain tag, as well as how to attach this policy to the IAM
execution role of the domain, from the Amazon SageMaker console.

SageMaker domain 25

Amazon SageMaker Developer Guide

Note

This policy only works in domains that use Amazon SageMaker Studio Classic as the default
experience.

1. Create an IAM policy named StudioDomainResourceIsolationPolicy-domain-id
with the following JSON policy document by completing the steps in Creating IAM policies
(console).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateAPIs",
 "Effect": "Allow",
 "Action": "sagemaker:Create*",
 "NotResource": [
 "arn:aws:sagemaker:*:*:domain/*",
 "arn:aws:sagemaker:*:*:user-profile/*",
 "arn:aws:sagemaker:*:*:space/*"
]
 },
 {
 "Sid": "ResourceAccessRequireDomainTag",
 "Effect": "Allow",
 "Action": [
 "sagemaker:Update*",
 "sagemaker:Delete*",
 "sagemaker:Describe*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/sagemaker:domain-arn": "domain-arn"
 }
 }
 },
 {
 "Sid": "AllowActionsThatDontSupportTagging",
 "Effect": "Allow",
 "Action": [

SageMaker domain 26

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html

Amazon SageMaker Developer Guide

 "sagemaker:DescribeImageVersion",
 "sagemaker:UpdateImageVersion",
 "sagemaker:DeleteImageVersion",
 "sagemaker:DescribeModelCardExportJob",
 "sagemaker:DescribeAction"
],
 "Resource": "*"
 },
 {
 "Sid": "DeleteDefaultApp",
 "Effect": "Allow",
 "Action": "sagemaker:DeleteApp",
 "Resource": "arn:aws:sagemaker:*:*:app/domain-id/*/jupyterserver/
default"
 }
]
}

2. Attach the StudioDomainResourceIsolationPolicy-domain-id policy to the domain's
execution role by completing the steps in Modifying a role (console).

AWS CLI

The following section shows how to create a new IAM policy that limits access to resources in the
domain to user profiles with the domain tag, as well as how to attach this policy to the execution
role of the domain, from the AWS CLI.

Note

This policy only works in domains that use Amazon SageMaker Studio Classic as the default
experience.

1. Create a file named StudioDomainResourceIsolationPolicy-domain-id with the
following content from your local machine.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateAPIs",

SageMaker domain 27

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": "sagemaker:Create*",
 "NotResource": [
 "arn:aws:sagemaker:*:*:domain/*",
 "arn:aws:sagemaker:*:*:user-profile/*",
 "arn:aws:sagemaker:*:*:space/*"
]
 },
 {
 "Sid": "ResourceAccessRequireDomainTag",
 "Effect": "Allow",
 "Action": [
 "sagemaker:Update*",
 "sagemaker:Delete*",
 "sagemaker:Describe*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/sagemaker:domain-arn": "domain-arn"
 }
 }
 },
 {
 "Sid": "AllowActionsThatDontSupportTagging",
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeImageVersion",
 "sagemaker:UpdateImageVersion",
 "sagemaker:DeleteImageVersion",
 "sagemaker:DescribeModelCardExportJob",
 "sagemaker:DescribeAction"
],
 "Resource": "*"
 },
 {
 "Sid": "DeleteDefaultApp",
 "Effect": "Allow",
 "Action": "sagemaker:DeleteApp",
 "Resource": "arn:aws:sagemaker:*:*:app/domain-id/*/jupyterserver/
default"
 }
]

SageMaker domain 28

Amazon SageMaker Developer Guide

}

2. Create a new IAM policy using the StudioDomainResourceIsolationPolicy-domain-id
file.

aws iam create-policy --policy-name StudioDomainResourceIsolationPolicy-domain-id
 --policy-document file://StudioDomainResourceIsolationPolicy-domain-id

3. Attach the newly created policy to a new or existing role that is used as the domain's execution
role.

aws iam attach-role-policy --policy-arn arn:aws:iam:account-
id:policy/StudioDomainResourceIsolationPolicy-domain-id --role-name domain-
execution-role

Setting defaults for a domain

With SageMaker, you can set default settings for your resources at the Amazon SageMaker domain
level. These default settings are used in the creation of resources within the domain. The following
sections list default settings for domain and give information on using context keys when setting
defaults.

Topics

• Domain default settings

• Context keys

Domain default settings

You can set the following defaults when creating or updating a domain. Values passed at the user
profile and shared space level override defaults set at the domain level.

• DefaultUserSettings

• DefaultSpaceSettings

SageMaker domain 29

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UserSettings.html

Amazon SageMaker Developer Guide

Note

DefaultSpaceSettings only supports the use of JupyterLab 3 image ARNs for
SageMakerImageArn. For more information, see JupyterLab Versioning.

"DefaultSpaceSettings": {
 "ExecutionRole": "string",
 "JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "InstanceType": "string",
 "LifecycleConfigArn": "string",
 "SageMakerImageArn": "string",
 "SageMakerImageVersionArn": "string"
 },
 "LifecycleConfigArns": ["string"]
 },
 "KernelGatewayAppSettings": {
 "CustomImages": [
 {
 "AppImageConfigName": "string",
 "ImageName": "string",
 "ImageVersionNumber": number
 }
],
 "DefaultResourceSpec": {
 "InstanceType": "string",
 "LifecycleConfigArn": "string",
 "SageMakerImageArn": "string",
 "SageMakerImageVersionArn": "string"
 },
 "LifecycleConfigArns": ["string"]
 },
 "SecurityGroups": ["string"]
 }

SageMaker domain 30

Amazon SageMaker Developer Guide

Context keys

You can add context keys to the IAM policy that creates a domain. This restricts the values that
users can pass for those fields. The following list shows the context keys that domain supports and
where they're implemented.

• sagemaker:ImageArns

• Implemented as part of DefaultUserSettings:SagemakerImageArn
in DefaultUserSettings.JupyterServerAppSettings and
DefaultUserSettings.KernelGatewayAppSettings. CustomImages in
DefaultUserSettings.KernelGatewayAppSettings.

• Implemented as part of DefaultSpaceSettings:SagemakerImageArn
in DefaultSpaceSettings.JupyterServerAppSettings and
DefaultSpaceSettings.KernelGatewayAppSettings. CustomImages in
DefaultSpaceSettings.KernelGatewayAppSettings.

• sagemaker:VpcSecurityGroupIds

• Implemented as part of DefaultUserSettings:SecurityGroups in
DefaultUserSettings.

• Implemented as part of DefaultSpaceSettings:SecurityGroups in
DefaultSpaceSettings.

• sagemaker:DomainSharingOutputKmsKey

Implemented as part of DefaultUserSettings:S3KmsKeyId in
DefaultSpaceSettings.SharingSettings.

You cannot restrict users to passing incompatible values when using context keys for the defaults.
For example, the values for SageMakerImageArn set as part of DefaultUserSettings and
DefaultSpaceSettings must be compatible. You cannot set the following incompatible default
values. For more information about the available JupyterLab version ARNs, see Setting a default
JupyterLab version.

• Only a JupyterLab version 1 ARN can be used for the SageMakerImageArn value in
DefaultUserSettings

• Only a JupyterLab version 3 ARN can be used for the SageMakerImageArn value in
DefaultSpaceSettings

SageMaker domain 31

Amazon SageMaker Developer Guide

Attaching a Custom File System to a domain or User Profile

When you create a domain, Amazon SageMaker automatically associates it with an Amazon Elastic
File System (Amazon EFS) volume that SageMaker creates for you. You also have the option to
associate the domain with a custom Amazon EFS file system that you've created in your AWS
account. This file system is available to any users who belong to the domain when they use
Amazon SageMaker Studio. Users can attach the file system to any space that they create for the
supported applications: JupyterLab and Code Editor. Then, after running the space and starting the
application, they can access any data, code, or other artifacts that the file system contains.

If you don't want to permit all of the users for a domain to access the file system, you can attach it
to a specific user profile instead. If you do that, the file system is available only in spaces that the
associated user creates.

You can attach a custom file system by using the Amazon SageMaker API, the AWS SDKs, or the
AWS CLI. You can't attach a custom file system by using the SageMaker console.

Prerequisites

Before you can attach a custom Amazon EFS file system to a domain, you must meet the following
requirements:

• You have an Amazon EFS file system in your AWS account. For the steps to create one, see Create
your Amazon EFS file system in the Amazon Elastic File System User Guide.

• Before Studio can access your file system, it must have a mount target in each of the subnets
that you associate with the domain. For more information about assigning mount targets to
subnets, see Creating and managing mount targets and security groups in the Amazon Elastic File
System User Guide.

• For each mount target, you must add the security group that Amazon SageMaker created in
your AWS account when you created the domain. The security group name has the format
security-group-for-inbound-nfs-domain-id.

• Your IAM permissions must allow you to use the
elasticfilesystem:DescribeMountTargets action. For more information about this
action, see Actions, resources, and condition keys for Amazon Elastic File System in the Service
Authorization Reference.

SageMaker domain 32

https://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-resources.html
https://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-resources.html
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticfilesystem.html

Amazon SageMaker Developer Guide

Attaching a custom file system with the AWS CLI

To attach a custom file system to a domain or user profile with the AWS CLI, you pass a
CustomFileSystemConfigs definition when you use any of the following commands:

• create-domain

• update-domain

• create-user-profile

• update-user-profile

Example create-domain command with a custom file system

The following example attaches a file system to a new domain.

aws sagemaker create-domain --domain-name domain-name \
--vpc-id vpc-id --subnet-ids subnet-ids --auth-mode IAM \
--default-user-settings file://default-user-settings.json \
--default-space-settings "ExecutionRole=execution-role-arn"

In this example, the file default-user-settings.json has the following settings, which
include the CustomPosixUserConfig and CustomFileSystemConfigs keys.

{
 "ExecutionRole": "execution-role-arn",
 "CustomPosixUserConfig":
 {
 "Uid": UID,
 "Gid": GID
 },
 "CustomFileSystemConfigs":
 [
 {
 "EFSFileSystemConfig":
 {
 "FileSystemId": "file-system-id",
 "FileSystemPath": "/"
 }
 }
]
}

SageMaker domain 33

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-domain.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-domain.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-user-profile.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-user-profile.html

Amazon SageMaker Developer Guide

This example configuration has the following keys:

• ExecutionRole – The default execution role for the users of the domain.

• CustomPosixUserConfig – The default POSIX identities that are used for file system
operations. You can use these settings to apply your existing POSIX permission structure to the
user profiles that access the custom file system. At a POSIX permissions level, you can control
which users can access the file system and which files or data they can access.

You can also apply CustomPosixUserConfig settings to a user profile when you use the
create-user-profile or update-user-profile commands. The settings that you apply to
a user profile override those that you apply to the associated domain.

• Uid – The POSIX user ID. The default is 200001.

• Gid – The POSIX group ID. The default is 1001.

• CustomFileSystemConfigs – Settings for custom file systems (only Amazon EFS file systems
are supported).

You can also apply CustomFileSystemConfigs settings to a user profile when you use the
create-user-profile or update-user-profile commands. The user profile will have
access to those file systems as well as any that you attach to their domain.

• EFSFileSystemConfig – Settings for custom Amazon EFS file systems.

• FileSystemId – The ID of your Amazon EFS file system.

• FileSystemPath – The path to the file system directory that is accessible to the domain users
in their spaces in Studio. Permitted users can access only this directory and below. The default
path is the file system root: /.

SageMaker creates a symbolic link at the following path: /home/sagemaker-user/custom-
file-systems/file-system-type/file-system-id. With this, the domain users can
navigate to the custom file system from within their home directory, /home/sagemaker-user.

After you attach a custom file system to a domain, the domain users can attach the file system to a
space when they use the create-space command.

Example create-space command with a custom file system

The following example attaches a file system to a new space.

aws sagemaker create-space \

SageMaker domain 34

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-space.html

Amazon SageMaker Developer Guide

--space-name space-name \
--domain-id domain-id \
--ownership-settings "OwnerUserProfileName=user-profile-name" \
--space-sharing-settings "SharingType=Private" \
--space-settings file://space-settings.json

In this example, the file space-settings.json has the following settings, which include the
CustomFileSystems configuration with the FileSystemId key.

{
 "AppType": "JupyterLab",
 "JupyterLabAppSettings":
 {
 "DefaultResourceSpec":
 {
 "InstanceType": "ml.t3.xlarge"
 }
 },
 "CustomFileSystems":
 [
 {
 "EFSFileSystem":
 {
 "FileSystemId": "file-system-id"
 }
 }
]
}

Environment

This page gives information about modifications to the Amazon SageMaker domain environment.
This includes custom images, lifecycle configurations, and git repositories attached to a domain
environment. These can also be attached to a shared space using the AWS CLI by passing values to
the create-space command using the space-settings parameter.

For more information about bringing a custom Amazon SageMaker Studio Classic image, see Bring
your own SageMaker image.

For more information about bringing a custom RStudio image, see Bring your own image to
RStudio on SageMaker.

SageMaker domain 35

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-space.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/rstudio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/rstudio-byoi.html

Amazon SageMaker Developer Guide

For instructions on using a lifecycle configuration with Studio Classic, see Use Lifecycle
Configurations with Amazon SageMaker Studio.

For information about attaching a git repository to a domain, see Attach Suggested Git Repos to
SageMaker.

Complete the following procedure to view the custom images, lifecycle configurations, and git
repositories attached to a domain environment.

Open the Environment page

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select a domain to open the Environment page.

5. On the domain details page, choose the Environment tab.

View and edit domains

This topic shows how to view a list of your Amazon SageMaker domains, view the details of a
domain, and edit domain settings from the Amazon SageMaker console or AWS Command Line
Interface (AWS CLI).

Topics

• View domains

• Edit domain settings

View domains

The following section shows how to view a list of your domains, and details of an individual
domain from the SageMaker console or the AWS CLI.

Console

The console's domain overview page gives information about the structure of a domain, and
it provides a list of your domains. The page's domain structure diagram describes domain
components and how they interact with each other.

The following procedure shows how to view a list of your domains from the SageMaker console.

SageMaker domain 36

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-git-attach.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-git-attach.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

To view the details of the domain, complete the following procedure. This page gives information
about the general settings for the domain, including the name, domain ID, execution role used to
create the domain, and the authentication method of the domain.

1. From the list of domains, select the domain for which you want to open the domain settings
page.

2. On the domain details page, choose the domain settings tab.

AWS CLI

Run the following command from the terminal of your local machine to view a list of domains from
the AWS CLI.

aws sagemaker list-domains --region region

Edit domain settings

You can edit the settings of a domain from the SageMaker console or the AWS CLI. The following
considerations apply when updating the settings of a domain.

• If DefaultUserSettings and DefaultSpaceSettings are set, they cannot be unset.

• DefaultUserSettings.ExecutionRole can only be updated if there are no applications
running in any user profile within the domain. This value cannot be unset.

• DefaultSpaceSettings.ExecutionRole can only be updated if there are no applications
running in any of shared spaces within the domain. This value cannot be unset.

• If the domain was created in VPC only mode, SageMaker automatically applies updates to the
security group settings defined for the domain to all shared spaces created in the domain.

• DomainId cannot be updated.

The following section shows how to edit domain settings from the SageMaker console or the AWS
CLI.

SageMaker domain 37

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Console

You can edit the domain from the SageMaker console using the following procedure.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain for which you want to open the domain settings
page.

5. On the domain details page, you can configure and manage your domain details by choosing
the appropriate tab.

6. To configure the general settings, on the domain details page choose the domain settings tab
then choose Edit.

AWS CLI

Run the following command from the terminal of your local machine to update a domain from
the AWS CLI. For more information about the structure of default-user-settings, see
CreateDomain.

aws sagemaker update-domain \
--domain-id domain-id \
--default-user-settings default-user-settings \
--default-space-settings default-space-settings \
--domain-settings-for-update settings-for-update \
--region region

Delete an Amazon SageMaker domain

A domain consists of a list of authorized users, configuration settings, and an Amazon Elastic File
System (Amazon EFS) volume. The Amazon EFS volume contains data for the users, including
notebooks, resources, and artifacts. A user can have multiple applications (apps) which support the
reading and execution experience of the user’s notebooks, terminals, and consoles.

You can delete your domain using one of the following:

• AWS console

SageMaker domain 38

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html#API_CreateDomain_RequestSyntax

Amazon SageMaker Developer Guide

• AWS Command Line Interface (AWS CLI)

• SageMaker SDK

The following sections explain how to delete a domain and the requirements for doing so.

Requirements

You must satisfy the following requirements to delete a domain.

• You must have admin permission to delete a domain.

• You can only delete an app with the status InService displayed as Ready in the domain. To
delete the containing domain, you don't need to delete an app whose status is Failed. In the
domain, an attempt to delete an app in the failed state results in an error.

• To delete a domain, the domain cannot contain any user profiles or shared spaces. To delete a
user profile or shared space, the user profile or space cannot contain any non-failed apps.

When you delete these resources, the following occurs:

• App – The data (files and notebooks) in a user's home directory is saved. Unsaved notebook
data is lost.

• User profile – The user can no longer sign in to the domain. The user loses access to their home
directory, but the data is not deleted. An admin can retrieve the data from the Amazon EFS
volume where it is stored under the user's AWS account.

• To switch authentication modes from IAM to IAM Identity Center, you must delete the domain.

EFS files

Your files are kept in an Amazon EFS volume as a backup. This backup includes the files in the
mounted directory, which is /home/sagemaker-user for Amazon SageMaker Studio Classic and /
root for kernels.

When you delete files from these mounted directories, the kernel or app may move the deleted
files into a hidden trash folder. If the trash folder is inside the mounted directory, those files are
copied into the Amazon EFS volume and will incur charges. To avoid these Amazon EFS charges,
you must identify and clean the trash folder location. The trash folder location for default apps and
kernels is ~/.local/. This may vary depending on the Linux distribution used for custom apps
or kernels. For more information about the Amazon EFS volume, see Manage Your Amazon EFS
Storage Volume in SageMaker Studio Classic.

SageMaker domain 39

Amazon SageMaker Developer Guide

When you use the SageMaker console to delete the domain, the Amazon EFS volume is detached
but not deleted. The same behavior occurs by default when you use the AWS CLI or the SageMaker
Python SDK to delete the domain. However, when you use the AWS CLI or the SageMaker Python
SDK, you can set the RetentionPolicy to HomeEfsFileSystem=Delete to delete the Amazon
EFS volume along with the domain.

Delete an Amazon SageMaker domain (console)

To delete a domain

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the domain that you want to delete.

5. Repeat the following steps for each user in the User profiles list.

a. Choose the user.

b. On the User Details page, for each non-failed app in the Apps list, choose Action.

c. From the dropdown list, choose Delete.

d. On the Delete app dialog box, choose Yes, delete app. Then enter delete in the
confirmation field, and choose Delete.

e. When Status shows as Deleted for all apps, choose Edit.

f. On the Edit User page, choose Delete user.

g. On the Delete user dialog box, choose Yes, delete user. Then enter delete in the
confirmation field, and choose Delete.

Important

When a user is deleted, they lose access to the Amazon EFS volume that contains
their data, including notebooks and other artifacts. The data is not deleted and can be
accessed by an administrator.

6. When all users are deleted, choose the Space management tab.

7. Repeat the following steps for each shared space in the Spaces list.

a. Select the name of the shared space.

SageMaker domain 40

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

b. Choose Delete app for every app.

c. On the Delete app dialog box, choose Yes, delete app. Then enter delete in the
confirmation field, and choose Delete.

d. Choose Cancel.

e. Select the shared space.

f. Choose Delete.

g. On the Delete space dialog box, choose Yes, delete space. Then enter delete in the
confirmation field, and choose Delete space.

8. When all users and shared spaces are deleted, choose the domain settings tab.

9. Choose Edit.

10. On the General settings page, choose Delete domain.

11. On the Delete domain dialog box, choose Yes, delete domain. Then enter delete in the
confirmation field, and choose Delete.

Delete an Amazon SageMaker domain (AWS CLI)

To delete a domain

1. Retrieve the list of domains in your account.

aws --region Region sagemaker list-domains

2. Retrieve the list of applications for the domain to be deleted.

aws --region Region sagemaker list-apps \
 --domain-id-equals DomainId

3. Delete each application in the list.

aws --region Region sagemaker delete-app \
 --domain-id DomainId \
 --app-name AppName \
 --app-type AppType \
 --user-profile-name UserProfileName

4. Retrieve the list of user profiles in the domain.

SageMaker domain 41

Amazon SageMaker Developer Guide

aws --region Region sagemaker list-user-profiles \
 --domain-id-equals DomainId

5. Delete each user profile in the list.

aws --region Region sagemaker delete-user-profile \
 --domain-id DomainId \
 --user-profile-name UserProfileName

6. Retrieve the list of shared spaces in the domain.

aws --region Region sagemaker list-spaces \
 --domain-id DomainId

7. Delete each shared space in the list.

aws --region Region sagemaker delete-space \
 --domain-id DomainId \
 --space-name SpaceName

8. Delete the domain. To also delete the Amazon EFS volume, specify
HomeEfsFileSystem=Delete.

aws --region Region sagemaker delete-domain \
 --domain-id DomainId \
 --retention-policy HomeEfsFileSystem=Retain

Domain user profiles

A user profile represents a single user within an Amazon SageMaker domain. The user profile is
the main way to reference a user for the purposes of sharing, reporting, and other user-oriented
features. This entity is created when a user onboards to the Amazon SageMaker domain. A user
profile can have (at most) a single JupyterServer application outside the context of a shared space.
The user profile's Studio Classic application is directly associated with the user profile and has
an isolated Amazon EFS directory, an execution role associated with the user profile, and Kernel
Gateway applications. A user profile can also create other applications from the console or from
Amazon SageMaker Studio.

Topics

SageMaker domain 42

Amazon SageMaker Developer Guide

• Add and Remove User Profiles

• View User Profiles and User Profile Details

Add and Remove User Profiles

The following sections demonstrate how to add and remove user profiles from an Amazon
SageMaker domain using the SageMaker console or the AWS Command Line Interface (AWS CLI).

Topics

• Add user profiles

• Remove user profiles

Add user profiles

The following section shows how to add user profiles to a domain using the SageMaker console or
the AWS CLI.

After you add a user profile to the domain, users can login using a URL. If the domain uses AWS
IAM Identity Center for authentication, users receive an email that contains the URL to sign in to
the domain. If the domain uses AWS Identity and Access Management, you can create a URL for a
user profile using CreatePresignedDomainUrl

Add user profiles from the console

You can add user profiles to a domain from the SageMaker console by following this procedure.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to add a user profile to.

5. On the domain details page, choose the User profiles tab.

6. Choose Add user. This opens a new page.

7. Use the default name for your user profile or add a custom name.

8. For Execution role, choose an option from the role selector. If you choose Enter a custom IAM
role ARN, the role must have, at a minimum, an attached trust policy that grants SageMaker
permission to assume the role. For more information, see SageMaker Roles.

SageMaker domain 43

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedDomainUrl.html
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon SageMaker Developer Guide

If you choose Create a new role, the Create an IAM role dialog box opens:

a. For S3 buckets you specify, specify additional Amazon S3 buckets that users of your
notebooks can access. If you don't want to add access to more buckets, choose None.

b. Choose Create role. SageMaker creates a new IAM role, AmazonSageMaker-
ExecutionPolicy, with the AmazonSageMakerFullAccess policy attached.

9. (Optional) Add tags to the user profile. All resources that the user profile creates will have a
domain ARN tag and a user profile ARN tag. The domain ARN tag is based on domain ID, while
the user profile ARN tag is based on the user profile name.

10. Choose Next.

11. Under Default JupyterLab version, select a JupyterLab version from the dropdown to use
as the default for your user profile. For information about selecting a JupyterLab version,
see JupyterLab Versioning.

12. In the SageMaker Projects and JumpStart section, you have two options. You can accept the
default Project and JumpStart settings, or you can customize whether the user profile can
create projects and use JumpStart. For more information, see SageMaker Studio Permissions
Required to Use Projects.

13. Choose Next.

14. (Optional) If the domain has an RStudio license associated, select whether you want to create
the user with one of the following authorizations:

• Unauthorized

• RStudio Admin

• RStudio User

15. Choose Next.

16. For the Canvas base permissions configuration, select whether to establish the minimum
required permissions to use the SageMaker Canvas application.

17. (Optional) For the Time series forecasting configuration: To grant user permissions for time
series forecasting in SageMaker Canvas, leave the Enable time series forecasting option
turned on. It is turned on by default.

18. (Optional) If you left Enable time series forecasting turned on, select Create and use a
new execution role. Alternatively, if you already have an IAM role with the required Amazon
Forecast permissions attached, select Use an existing execution role. For more information,
see the IAM role setup method.

SageMaker domain 44

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jl.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-studio-updates.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-studio-updates.html

Amazon SageMaker Developer Guide

19. Choose Submit.

Create user profiles from the AWS CLI

To create a user profile in a domain from the AWS CLI, run the following command from the
terminal of your local machine. For information about the available JupyterLab version ARNs, see
Setting a default JupyterLab version.

aws --region region \
sagemaker create-user-profile \
--domain-id domain-id \
--user-profile-name user-name \
--user-settings '{
 "JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "SageMakerImageArn": "sagemaker-image-arn",
 "InstanceType": "system"
 }
 }
}'

Remove user profiles

All apps launched by a user profile must be deleted to delete the user profile. The following section
shows how to remove user profiles from a domain using the SageMaker console or AWS CLI.

Remove user profiles from the console

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to remove a user profile from.

5. On the domain details page, choose the User profiles tab.

6. Select the user profile that you want to delete.

7. On the User Details page, for each non-failed app in the Apps list, choose Action.

8. From the dropdown list, choose Delete.

9. On the Delete app dialog box, choose Yes, delete app. Then enter delete in the confirmation
field, and choose Delete.

SageMaker domain 45

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

10. When Status shows as Deleted for all apps, choose Edit.

11. On the Edit User page, choose Delete user.

12. On the Delete user pop-up, choose Yes, delete user.

13. Enter delete in the field to confirm deletion.

14. Choose Delete.

Remove user profiles from the AWS CLI

To delete a user profile from the AWS CLI, run the following command from the terminal of your
local machine.

aws sagemaker delete-user-profile \
--region region \
--domain-id domain-id \
--user-profile-name user-name

View User Profiles and User Profile Details

This topic shows how to view a list of user profiles in an Amazon SageMaker domain, and view
details for a user profile from the SageMaker console or the AWS Command Line Interface (AWS
CLI).

Topics

• View user profiles

• View user profile details

View user profiles

The following section describes how to view a list of user profiles in a domain from the SageMaker
console or the AWS CLI.

View user profiles from the console

Complete the following procedure to view a list of user profiles in the domain from the SageMaker
console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

SageMaker domain 46

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to view a list of user profiles for.

5. On the domain details page, choose the User profiles tab.

View user profiles from the AWS CLI

To view the user profiles in a domain from the AWS CLI, run the following command from the
terminal of your local machine.

aws sagemaker list-user-profiles \
--region region \
--domain-id domain-id

View user profile details

The following section describes how to view the details of a user profile from the SageMaker
console or the AWS CLI.

View user profile details from the console

Complete the following procedure to view the details of a user profile from the SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to view a list of user profiles for.

5. On the domain details page, choose the User profiles tab.

6. Select the user profile that you want to view details for.

View user profile details from the AWS CLI

To describe a user profile from the AWS CLI, run the following command from the terminal of your
local machine.

aws sagemaker describe-user-profile \
--region region \

SageMaker domain 47

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

--domain-id domain-id \
--user-profile-name user-name

IAM Identity Center Groups in a domain

If you use AWS IAM Identity Center authentication for your Amazon SageMaker domain, you can
add and edit group and user access to a domain. For more information about IAM Identity Center
authentication, see What is IAM Identity Center?. The following topics show how to manage IAM
Identity Center users and groups that have access to a domain.

Topics

• View groups and users

• Add groups and users

• Remove groups

View groups and users

Complete the following procedure to view a list of IAM Identity Center groups and users from the
Amazon SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to open the domain settings page
for.

5. On the domain details page, choose the Groups tab.

Add groups and users

The following sections show how to add groups and users to a domain from the SageMaker
console or AWS CLI.

Note

If the domain was created before October 1st, 2023, you can only add groups and users to
the domain from the SageMaker console.

SageMaker domain 48

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

SageMaker console

Complete the following procedure to add groups and users to your domain from the SageMaker
console.

1. On the Groups tab, choose Assign users and groups.

2. On the Assign users and groups page, select the users and groups that you want to add.

3. Choose Assign users and groups.

AWS CLI

Complete the following procedure to add groups and users to your domain from the AWS CLI.

1. Fetch the SingleSignOnApplicationArn of the domain with a call to describe-domain.
SingleSignOnApplicationArn is the ARN of the application managed in IAM Identity
Center.

aws sagemaker describe-domain \
--region region \
--domain-id domain-id

2. Associate the user or group with the domain. To accomplish this, pass the
SingleSignOnApplicationArn value returned from the describe-domain command as the
application-arn parameter in a call to create-application-assignment.You must also pass
the type and ID of the entity to associate.

aws sso-admin create-application-assignment \
--application-arn application-arn \
--principal-id principal-id \
--principal-type principal-type

Remove groups

Complete the following procedure to remove groups from your domain from the SageMaker
console. For information about deleting a user, see Remove user profiles.

1. On the Groups tab, choose the group that you want to remove.

2. Choose Unassign groups.

SageMaker domain 49

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/describe-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/swf/describe-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sso-admin/create-application-assignment.html

Amazon SageMaker Developer Guide

3. On the pop-up window, choose Yes, unassign groups.

4. Enter unassign in the field.

5. Choose Unassign groups.

Quick onboard to Amazon SageMaker domain

This topic describes how to onboard to Amazon SageMaker domain by using the Set up for single
users procedure from the SageMaker console. This procedure sets up your domain in a single click
and uses AWS Identity and Access Management (IAM) authentication.

For information on how to set up your domain with advanced settings, see Custom onboarding
using IAM for the custom IAM authentication set up and Custom onboarding to Amazon SageMaker
domain using IAM Identity Center for the custom IAM Identity Center authentication set up.

RStudio support is not currently available when onboarding using the Set up for single users
procedure. To use RStudio, you must onboard using the Set up for organizations procedure.

Topics

• Quick setup for single users

• Default settings

Quick setup for single users

After satisfying the prerequisites (create an AWS account, create an administrative user, and set up
your AWS CLI) in Set Up Amazon SageMaker Prerequisites, expand one of the following instruction
options and follow the steps.

Onboard to the domain quickly using Set up for single user from the SageMaker landing page

1. Open the SageMaker console.

2. On the landing page you will see New to SageMaker? on the right. If you do not see this
option, open the the left navigation pane and choose Amazon SageMaker at the top of the
navigation pane.

3. Under New to SageMaker?, choose Set up for single user. Your domain and user profile are
created automatically.

Quick onboarding 50

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Onboard to the domain quickly using Set up for single user from the domain page

1. Open the SageMaker console.

2. Open the left navigation pane.

3. Under Admin configurations, choose Domains.

4. Choose Create domain.

5. Choose Set up for single user (Quick setup). Your domain and user profile are created
automatically.

Now that you've onboarded to the domain, you can launch an application by opening the
SageMaker console and choosing the environment from the left navigation pane.

For information about adding users to your domain, see Add and Remove User Profiles.

Default settings

When you onboard to Amazon SageMaker domain using the Set up for single user procedure,
SageMaker uses the following defaults as part of the domain and user profile creation. You can't
modify these defaults using the Set up for single user procedure.

• Domain name: SageMaker automatically assigns the name of the domain with a timestamp in
the following format.

QuickSetupDomain-YYYYMMDDTHHMMSS

• User profile name: SageMaker automatically assigns the name of the user profile with a
timestamp in the following format.

default-YYYYMMDDTHHMMSS

• Domain execution role: SageMaker creates a new IAM role and attaches the
AmazonSageMakerFullAccess policy. When using the quick setup and the updated
Amazon SageMaker Studio is your default experience, your IAM role also includes the
AmazonSageMakerCanvasFullAccess, AmazonSageMakerCanvasAIServicesAccess,
AmazonS3FullAccess policies.

• User profile execution role: SageMaker sets the user profile execution role to the same IAM role
used for the domain execution role.

Quick onboarding 51

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasAIServicesAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonS3FullAccess.html

Amazon SageMaker Developer Guide

• Shared space execution role: SageMaker sets the shared space execution role to the same IAM
role used for the domain execution role.

• SageMaker Canvas time series forecasting role: SageMaker creates a new IAM role with the
permissions required to use the SageMaker Canvas time series forecasting feature.

• Amazon S3 bucket: SageMaker creates an Amazon S3 bucket named with the following format
for notebook sharing.

sagemaker-studio-XXXXXXXXXXXXXXX

• Amazon VPC: SageMaker selects a public VPC with the following logic.

1. If there is a default VPC with associated subnets in the Region, SageMaker uses it.

2. If there is no default VPC or the default VPC has no associated subnets, then SageMaker
uses any existing VPC with associated subnets. If there are multiple existing VPCs,
SageMaker can select any of them.

Custom onboarding to Amazon SageMaker domain using IAM Identity
Center

This topic describes how to onboard to Amazon SageMaker domain using authentication using
AWS IAM Identity Center from the SageMaker console or the AWS CLI. For information about
setting up IAM Identity Center for use with a domain, see Set up IAM Identity Center for use with
Amazon SageMaker domain. For information on how to onboard using AWS Identity and Access
Management (IAM) authentication, see Quick onboarding or Custom onboarding using IAM.

Topics

• Onboard from the console

• Onboard from the AWS CLI

• Access the domain after onboarding

• Set up IAM Identity Center for use with Amazon SageMaker domain

Onboard from the console

After satisfying the prerequisites (create an AWS account, create an administrative user, and set up
your AWS CLI) in Set Up Amazon SageMaker Prerequisites, follow the steps.

Custom onboarding using IAM Identity Center 52

Amazon SageMaker Developer Guide

To onboard to domain using IAM Identity Center

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the domains page, choose Create domain.

5. On the Set up SageMaker domain page, choose Set up for organizations.

6. Select Configure.

Step 1: Domain details

1. For domain Name, enter a unique name for your domain. For example, this can be your project
or team name.

2. Choose Next.

Step 2: Users and ML Activities

Select the group or create the users for the domain and grant them permissions for the ML
activities to which you want them to have access.

In these setup instructions we use the IAM Identity Center option. To use authentication in IAM
Identity Center, you must belong to an organization in AWS Organizations. For information on
setting up an IAM Identity Center, see Set up IAM Identity Center for use with Amazon SageMaker
domain.

The IAM role you configure in this step is assigned to the selected IAM Identity Center group and all
users who are part of that group.

1. Under How do you want to access Studio?, choose AWS Identity Center.

2. Under Who will use Studio? select the IAM Identity Center users or groups, then choose
Select. You need to set up Amazon SageMaker Studio within the same Region in which your
IAM Identity Center is configured. You can change the Region of your domain by choosing the
Region from the dropdown list on the top right of the console or you can change your IAM
Identity Center Region by navigating to the AWS access portal.

3. Under What ML activities do they perform? you can use an existing role by choosing Use an
existing role or you can create a new role by choosing Create a new role and checking the ML
activities to which you wish the role to have access. You can select at most 10 ML activities.

Custom onboarding using IAM Identity Center 53

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/singlesignon

Amazon SageMaker Developer Guide

4. While selecting ML activities, you may need to satisfy requirements. To satisfy a requirement,
choose Add and complete the requirement.

5. After all requirements are satisfied, choose Next.

Step 3: Applications

In this step, you can configure the applications you have enabled in the previous step. For more
information on the ML activities, see ML activity reference.

If the application has not been enabled, you receive a warning for that application. To enable an
application that has not been enabled, return to the previous step by choosing Back and follow the
previous instructions.

Studio configuration:

Under Studio, you have the option to choose between the new and classic version of Studio as
your default experience. This means choosing which ML environment you will interact with after
opening Studio.

• Studio - New includes multiple integrated development environments (IDEs) and applications,
including Amazon SageMaker Studio Classic. If chosen, the Studio Classic IDE has default
settings. For information on the default settings, see Default settings.

• Studio Classic includes the Jupyter IDE. If chosen, you may configure your Studio Classic
configuration.

For information on Studio Classic, see Amazon SageMaker Studio Classic.

SageMaker Canvas configuration:

If you have Amazon SageMaker Canvas enabled, see Getting started with using Amazon SageMaker
Canvas for the instructions and configuration details for onboarding.

Studio Classic configuration:

If you chose Studio - New (recommended) as your default experience, the Studio Classic IDE has
default settings. For information on the default settings, see Default settings.

If you chose Studio Classic as your default experience, you can choose to enable or disable
notebook resource sharing. Notebook resources include artifacts such as cell output and Git

Custom onboarding using IAM Identity Center 54

Amazon SageMaker Developer Guide

repositories. For more information on Notebook resources, see Share and Use an Amazon
SageMaker Studio Classic Notebook.

If you enabled notebook resource sharing:

1. Under S3 location for shareable notebook resources, input your Amazon S3 location.

2. Under Encryption key - optional, leave as No Custom Encryption or choose an existing AWS
KMS key or choose Enter a KMS key ARN and enter your AWS KMS key's ARN.

3. Under Notebook cell output sharing preference, choose Allow users to share cell output or
Disable cell output sharing.

RStudio configuration:

To enable RStudio, you need an RStudio license. To set that up, see RStudio license.

1. Under RStudio Workbench, verify that your RStudio license is automatically detected. For
more information about getting an RStudio license and activating it with SageMaker, see
RStudio license.

2. Select an instance type to launch your RStudio Server on. For more information, see
RStudioServerPro instance type.

3. Under Permission, create your role or select an existing role. The role must have the following
permissions policy. This policy allows the RStudioServerPro application to access necessary
resources. It also allows Amazon SageMaker to automatically launch an RStudioServerPro
application when the existing RStudioServerPro application is in a Deleted or Failed status.
For information about adding permissions to a role, see Modifying a role permissions policy
(console).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "license-manager:ExtendLicenseConsumption",
 "license-manager:ListReceivedLicenses",
 "license-manager:GetLicense",
 "license-manager:CheckoutLicense",
 "license-manager:CheckInLicense",

Custom onboarding using IAM Identity Center 55

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy

Amazon SageMaker Developer Guide

 "logs:CreateLogDelivery",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogDelivery",
 "logs:Describe*",
 "logs:GetLogDelivery",
 "logs:GetLogEvents",
 "logs:ListLogDeliveries",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery",
 "sagemaker:CreateApp"
],
 "Resource": "*"
 }
]
}

4. Under RStudio Connect, add the URL for your RStudio Connect server. RStudio Connect is a
publishing platform for Shiny applications, R Markdown reports, dashboards, plots, and more.
When you onboard to RStudio on SageMaker, an RStudio Connect server is not created. For
more information, see RStudio Connect URL.

5. Under RStudio Package Manager, add the URL for your RStudio Package Manager. SageMaker
creates a default package repository for the Package Manager when you onboard RStudio. For
more information about RStudio Package Manager, see RStudio Package Manager.

6. Select Next.

Code Editor configuration:

If you have Code Editor enabled, see Code Editor for an overview and the configuration details.

Step 4: Network

Choose how you want Studio to connect to other AWS services.

You can choose to disable internet access to your Studio by specifying using Virtual Private Cloud
(VPC) Only network access type. If you choose this option, you cannot run a Studio notebook
unless your VPC has an interface endpoint to the SageMaker API and runtime, or a Network
Address Translation (NAT) gateway with internet access, and your security groups allow outbound
connections. For more information on Amazon VPCs, see Choose an Amazon VPC.

Custom onboarding using IAM Identity Center 56

https://docs.aws.amazon.com/sagemaker/latest/dg/code-editor.html

Amazon SageMaker Developer Guide

If you choose Virtual Private Cloud (VPC) Only the following steps are required. If you choose
Public internet access, the first two of the following steps are required.

1. Under VPC, choose the Amazon VPC ID.

2. Under Subnet, choose one or more subnets. If you don't choose any subnets, SageMaker uses
all the subnets in the Amazon VPC. We recommend that you use multiple subnets that are
not created in constrained Availability Zones. Using subnets in these constrained Availability
Zones can result in insufficient capacity errors and longer application creation times. For more
information about constrained Availability Zones, see Availability Zones.

3. Under Security group(s), choose one or more subnets.

If VPC only is selected, SageMaker automatically applies the security group settings defined for the
domain to all shared spaces created in the domain. If Public internet only is selected, SageMaker
does not apply the security group settings to shared spaces created in the domain.

Step 5: Storage

You have the option to encrypt your data. The Amazon Elastic File System (Amazon EFS) and
Amazon Elastic Block Store (Amazon EBS) file systems that are created for you when you create a
domain. Amazon EBS sizes are used by both Code Editor and JupyterLab spaces.

You cannot change the encryption key after encrypt your Amazon EFS and Amazon EBS file
systems. To encrypt your Amazon EFS and Amazon EBS file systems, you can use the following
configurations.

• Under Encryption key - optional, leave as No Custom Encryption or choose an existing KMS key
or choose Enter a KMS key ARN and enter the ARN of your KMS key.

• Under Default space size - optional, enter the default space size.

• Under Maximum space size - optional, enter the maximum space size.

Step 6: Review and create

Review your domain settings. If you need to change the settings, choose Edit next to the relevant
step. Once you confirm that your domain settings are accurate, choose Submit and the domain is
created for you. This process may take a few minutes.

Custom onboarding using IAM Identity Center 57

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-availability-zones
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

Amazon SageMaker Developer Guide

Onboard from the AWS CLI

Use the following commands to onboard to a domain using authentication using IAM Identity
Center from the AWS CLI.

After satisfying the prerequisites (create an AWS account, create an administrative user, and set up
your AWS CLI) in Set Up Amazon SageMaker Prerequisites, use the following the steps.

1. Create an execution role that is used to create a domain and attach the
AmazonSageMakerFullAccess policy. You can also use an existing role that has, at a minimum,
an attached trust policy that grants SageMaker permission to assume the role. For more
information, see SageMaker Roles.

aws iam create-role --role-name execution-role-name --assume-role-policy-
document file://execution-role-trust-policy.json
aws iam attach-role-policy --role-name execution-role-name --policy-arn
 arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

2. Get the default Amazon Virtual Private Cloud (Amazon VPC) of your account.

aws --region region ec2 describe-vpcs --filters Name=isDefault,Values=true --query
 "Vpcs[0].VpcId" --output text

3. Get the list of subnets in the default Amazon VPC.

aws --region region ec2 describe-subnets --filters Name=vpc-id,Values=default-vpc-
id --query "Subnets[*].SubnetId" --output json

4. Create a domain by passing the default Amazon VPC ID, subnets, and execution role ARN. You
must also pass a SageMaker image ARN. For information on the available JupyterLab version
ARNs, see Setting a default JupyterLab version.

aws --region region sagemaker create-domain --domain-name domain-name --vpc-
id default-vpc-id --subnet-ids subnet-ids --auth-mode SSO --default-user-
settings "ExecutionRole=arn:aws:iam::account-number:role/execution-role-
name,JupyterServerAppSettings={DefaultResourceSpec={InstanceType=system,SageMakerImageArn=image-
arn}}" \ --query DomainArn --output text

5. Verify that the domain has been created.

aws --region region sagemaker list-domains

Custom onboarding using IAM Identity Center 58

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

Access the domain after onboarding

After you are given access to the domain, you are sent an email inviting you to create a password
and use IAM Identity Center. The email also contains the URL to sign in to the domain. For more
information about signing in and session duration, see How to sign in to the user portal.

After you activate your account, go to the domain URL, sign in, and wait for your user profile to be
created. On subsequent visits, you only need to wait for the Studio app to load.

Bookmark the URL. The URL is also available on the domain settings page.

Set up IAM Identity Center for use with Amazon SageMaker domain

To use authentication in IAM Identity Center, you must belong to an organization in AWS
Organizations. If you don't belong to an organization, you can create one by following the steps in
Tutorial: Creating and configuring an organization.

Multi-factor authentication (MFA) is enabled by default when you create an IAM Identity Center
instance. Users are prompted to sign in with MFA when their device, browser, or location changes.
As a security best practice, we strongly recommend enabling MFA for your workforce identities. For
more information, see Manage MFA devices in IAM Identity Center.

After you have created your organization and user, you can create a SageMaker user profile for that
user in IAM Identity Center as follows.

1. From the Amazon SageMaker console: – You can use the Amazon SageMaker console to create
a user profile for the user in IAM Identity Center. If the user in IAM Identity Center hasn’t already
been associated with the domain, it is automatically associated.

2. Using the AWS CLI or AWS CloudFormation – A user in IAM Identity Center assigned to
the domain can create a user profile using the SageMaker console, the AWS CLI or AWS
CloudFormation.

• First, you must use the IAM Identity Center console to assign the user or the user's group to
the domain. For more information about application assignment, see Assign user access.

• Then, use the AWS CLI or AWS CloudFormation to create a SageMaker user profile for the user.

Note

To simplify administration of access permissions, we recommend using IAM Identity Center
to assign groups to the domain (instead of assigning users). Groups allow permissions to

Custom onboarding using IAM Identity Center 59

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosignin.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tutorials_basic.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/mfa-how-to.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/assignuserstoapp.html

Amazon SageMaker Developer Guide

be granted or denied to multiple users at once. A user can be moved out of a group or
to a different group if needed. When assigning user access to applications, IAM Identity
Center does not currently support users being added to nested groups. If a user is added
to a nested group, they might receive a "You do not have any applications" error
message during sign-in. Assignments must be made to the immediate group the user is a
member of.

Return to the Domains page to continue to onboard using IAM Identity Center authentication.

Custom onboarding to Amazon SageMaker domain using IAM

This topic describes how to onboard to Amazon SageMaker domain using the Set up for
organizations procedure for AWS Identity and Access Management (IAM) authentication from the
SageMaker console or the AWS CLI. To onboard faster using IAM, see Quick onboarding.

For information on how to onboard using AWS IAM Identity Center (IAM Identity Center), see
Custom onboarding using IAM Identity Center.

Onboard using console

After satisfying the prerequisites (create an AWS account, create an administrative user, and set up
your AWS CLI) in Set Up Amazon SageMaker Prerequisites, follow the steps.

To onboard to domain using IAM

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the domains page, choose Create domain.

5. On the Setup SageMaker domain page, choose Set up for organizations.

6. Select Configure.

Step 1: domain details

1. For domain Name, enter a unique name for your domain. For example, this can be your project
or team name.

Custom onboarding using IAM 60

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

2. Choose Next.

Step 2: Users and ML Activities

Select the group or create the users for the domain and grant permissions to which ML activities
they will have access.

In these setup instructions, we use the Login through IAM option.

The IAM role you configure in this step is assigned to all of the users you add in this step.

1. Under How do you want to access Studio?, choose Login through IAM.

2. Under Who will use Studio? add the user profile names. To add a user profile name, choose
Add user, enter a user profile name, then choose Select.

3. Under What ML activities do they perform? you can use an existing role by choosing Use an
existing role or you can create a new role by choosing Create a new role and checking the ML
activities to which you wish the role to have access. You can select at most 10 ML activities.

4. While selecting ML activities, you may need to satisfy requirements. To satisfy a requirement,
choose Add and complete the requirement.

5. After all requirements are satisfied, choose Next.

Step 3: Applications

In this step, you can configure the applications you have enabled in the previous step. For more
information on the ML activities, see ML activity reference.

If the application has not been enabled, you receive a warning for that application. To enable an
application that has not been enabled, return to the previous step by choosing Back and follow the
previous instructions.

Studio configuration:

Under Studio, you have the option to choose between the new and classic version of Studio as
your default experience. This means choosing which ML environment you will interact with after
opening Studio.

• Studio - New includes multiple integrated development environments (IDEs) and applications,
including Amazon SageMaker Studio Classic. If chosen, the Studio Classic IDE has default
settings. For information on the default settings, see Default settings.

Custom onboarding using IAM 61

Amazon SageMaker Developer Guide

• Studio Classic includes the Jupyter IDE. If chosen, you may configure your Studio Classic
configuration.

For information on Studio Classic, see Amazon SageMaker Studio Classic.

SageMaker Canvas configuration:

If you have Amazon SageMaker Canvas enabled, see Getting started with using Amazon SageMaker
Canvas for the instructions and configuration details for onboarding.

Studio Classic configuration:

If you chose Studio - New (recommended) as your default experience, the Studio Classic IDE has
default settings. For information on the default settings, see Default settings.

If you chose Studio Classic as your default experience, you can choose to enable or disable
notebook resource sharing. Notebook resources include artifacts such as cell output and Git
repositories. For more information on Notebook resources, see Share and Use an Amazon
SageMaker Studio Classic Notebook.

If you enabled notebook resource sharing:

1. Under S3 location for shareable notebook resources, input your Amazon S3 location.

2. Under Encryption key - optional, leave as No Custom Encryption or choose an existing AWS
KMS key or choose Enter a KMS key ARN and enter your AWS KMS key's ARN.

3. Under Notebook cell output sharing preference, choose Allow users to share cell output or
Disable cell output sharing.

RStudio configuration:

To enable RStudio you will need an RStudio license. To set that up, see RStudio license.

1. Under RStudio Workbench, verify that your RStudio license is automatically detected. For
more information about getting an RStudio license and activating it with SageMaker, see
RStudio license.

2. Select an instance type to launch your RStudio Server on. For more information, see
RStudioServerPro instance type.

3. Under Permission, create your role or select an existing role. The role must have the following
permissions policy. This policy allows the RStudioServerPro application to access necessary

Custom onboarding using IAM 62

Amazon SageMaker Developer Guide

resources. It also allows Amazon SageMaker to automatically launch an RStudioServerPro
app when the existing RStudioServerPro application is in a Deleted or Failed status. For
information about adding permissions to a role, see Modifying a role permissions policy
(console).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "license-manager:ExtendLicenseConsumption",
 "license-manager:ListReceivedLicenses",
 "license-manager:GetLicense",
 "license-manager:CheckoutLicense",
 "license-manager:CheckInLicense",
 "logs:CreateLogDelivery",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogDelivery",
 "logs:Describe*",
 "logs:GetLogDelivery",
 "logs:GetLogEvents",
 "logs:ListLogDeliveries",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery",
 "sagemaker:CreateApp"
],
 "Resource": "*"
 }
]
}

4. Under RStudio Connect, add the URL for your RStudio Connect server. RStudio Connect is a
publishing platform for Shiny applications, R Markdown reports, dashboards, plots, and more.
When you onboard to RStudio on SageMaker, an RStudio Connect server is not created. For
more information, see RStudio Connect URL.

Custom onboarding using IAM 63

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy

Amazon SageMaker Developer Guide

5. Under RStudio Package Manager, add the URL for your RStudio Package Manager. SageMaker
creates a default package repository for the Package Manager when you onboard RStudio. For
more information about RStudio Package Manager, see RStudio Package Manager.

6. Select Next.

Code Editor configuration:

If you have Code Editor enabled, see Code Editor for an overview and the configuration details.

Step 4: Network

Choose how you want Studio to connect to other AWS services.

You can choose to disable internet access to your Studio by specifying using Virtual Private Cloud
(VPC) Only network access type. If you choose this option, you cannot run a Studio notebook
unless your VPC has an interface endpoint to the SageMaker API and runtime, or a Network
Address Translation (NAT) gateway with internet access, and your security groups allow outbound
connections. For more information on Amazon VPCs, see Choose an Amazon VPC.

If you choose Virtual Private Cloud (VPC) Only the following steps are required. If you choose
Public internet access, the first two of the following steps are required.

1. Under VPC, choose the Amazon VPC ID.

2. Under Subnet, choose one or more subnets. If you don't choose any subnets, SageMaker uses
all the subnets in the Amazon VPC. We recommend that you use multiple subnets that are
not created in constrained Availability Zones. Using subnets in these constrained Availability
Zones can result in insufficient capacity errors and longer application creation times. For more
information about constrained Availability Zones, see Availability Zones.

3. Under Security group(s), choose one or more subnets.

If VPC only is selected, SageMaker automatically applies the security group settings defined for the
domain to all shared spaces created in the domain. If Public internet only is selected, SageMaker
does not apply the security group settings to shared spaces created in the domain.

Step 5: Storage

You have the option to encrypt your data. The Amazon Elastic File System (Amazon EFS) and
Amazon Elastic Block Store (Amazon EBS) file systems that are created for you when you create a
domain. Amazon EBS sizes are used by both Code Editor and JupyterLab spaces.

Custom onboarding using IAM 64

https://docs.aws.amazon.com/sagemaker/latest/dg/code-editor.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-availability-zones
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

Amazon SageMaker Developer Guide

You cannot change the encryption key after encrypt your Amazon EFS and Amazon EBS file
systems. To encrypt your Amazon EFS and Amazon EBS file systems, you can use the following
configurations.

• Under Encryption key - optional, leave as No Custom Encryption or choose an existing KMS key
or choose Enter a KMS key ARN and enter the ARN of your KMS key.

• Under Default space size - optional, enter the default space size.

• Under Maximum space size - optional, enter the maximum space size.

Step 6: Review and create

Review your domain settings. If you need to change the settings, choose Edit next to the relevant
step. Once you confirm that your domain settings are accurate, choose Submit and the domain is
created for you. This process may take a few minutes.

Onboard using the AWS CLI

After satisfying the prerequisites (create an AWS account, create an administrative user, and set up
your AWS CLI) in Set Up Amazon SageMaker Prerequisites, use the following commands to onboard
to a domain using authentication using IAM from the AWS CLI.

1. Create an execution role that is used to create a domain and attach the
AmazonSageMakerFullAccess policy. You can also use an existing role that has, at a minimum,
an attached trust policy that grants SageMaker permission to assume the role. For more
information, see SageMaker Roles.

aws iam create-role --role-name execution-role-name
aws iam attach-role-policy --role-name execution-role-name --policy-arn
 arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

2. Get the default Amazon Virtual Private Cloud (Amazon VPC) of your account.

aws --region region ec2 describe-vpcs --filters Name=isDefault,Values=true --query
 "Vpcs[0].VpcId" --output text

3. Get the list of subnets in the default Amazon VPC.

aws --region region ec2 describe-subnets --filters Name=vpc-id,Values=default-vpc-
id --query "Subnets[*].SubnetId" --output json

Custom onboarding using IAM 65

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

4. Create a domain by passing the default Amazon VPC ID, subnets, and execution role ARN. You
must also pass a SageMaker image ARN. For information on the available JupyterLab version
ARNs, see Setting a default JupyterLab version.

aws --region region sagemaker create-domain --domain-name domain-name --vpc-
id default-vpc-id --subnet-ids subnet-ids --auth-mode IAM --default-user-
settings "ExecutionRole=arn:aws:iam::account-number:role/execution-role-
name,JupyterServerAppSettings={DefaultResourceSpec={InstanceType=system,SageMakerImageArn=image-
arn}}" \ --query DomainArn --output text

5. Verify that the domain has been created.

aws --region region sagemaker list-domains

Choose an Amazon VPC

This topic provides detailed information about choosing an Amazon Virtual Private Cloud (Amazon
VPC) when you onboard to Amazon SageMaker domain. For more information about onboarding to
SageMaker domain, see Amazon SageMaker domain overview.

By default, SageMaker domain uses two Amazon VPCs. One Amazon VPC is managed by Amazon
SageMaker and provides direct internet access. You specify the other Amazon VPC, which provides
encrypted traffic between the domain and your Amazon Elastic File System (Amazon EFS) volume.

You can change this behavior so that SageMaker sends all traffic over your specified Amazon
VPC. When you choose this option, you must provide the subnets, security groups, and interface
endpoints that are necessary to communicate with the SageMaker API and SageMaker runtime,
and various AWS services, such as Amazon Simple Storage Service (Amazon S3) and Amazon
CloudWatch, that are used by Studio.

When you onboard to SageMaker domain, you tell SageMaker to send all traffic over your Amazon
VPC by setting the network access type to VPC only.

To specify the Amazon VPC information

When you specify the Amazon VPC entities (that is, the Amazon VPC, subnet, or security group) in
the following procedure, one of three options is presented based on the number of entities you
have in the current AWS Region. The behavior is as follows:

• One entity – SageMaker uses that entity. This can't be changed.

Choose an Amazon VPC 66

Amazon SageMaker Developer Guide

• Multiple entities – You must choose the entities from the dropdown list.

• No entities – You must create one or more entities in order to use domain. Choose Create
<entity> to open the VPC console in a new browser tab. After you create the entities, return to
the domain Get started page to continue the onboarding process.

This procedure is part of the Amazon SageMaker domain onboarding process when you choose Set
up for organizations. Your Amazon VPC information is specified under the Network section.

1. Select the network access type.

Note

If VPC only is selected, SageMaker automatically applies the security group settings
defined for the domain to all shared spaces created in the domain. If Public internet
only is selected, SageMaker does not apply the security group settings to shared
spaces created in the domain.

• Public internet only – Non-Amazon EFS traffic goes through a SageMaker managed Amazon
VPC, which allows internet access. Traffic between the domain and your Amazon EFS volume
is through the specified Amazon VPC.

• VPC only – All SageMaker traffic is through the specified Amazon VPC and subnets. You
must use a subnet that does not have direct internet access in VPC only mode. Internet
access is disabled by default.

2. Choose the Amazon VPC.

3. Choose one or more subnets. If you don't choose any subnets, SageMaker uses all the subnets
in the Amazon VPC. We recommend that you use multiple subnets that are not created in
constrained Availability Zones. Using subnets in these constrained Availability Zones can result
in insufficient capacity errors and longer application creation times. For more information
about constrained Availability Zones, see Availability Zones.

4. Choose the security groups. If you chose Public internet only, this step is optional. If you
chose VPC only, this step is required.

Choose an Amazon VPC 67

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-availability-zones

Amazon SageMaker Developer Guide

Note

For the maximum number of allowed security groups, see UserSettings.

For Amazon VPC requirements in VPC only mode, see Connect SageMaker Studio Notebooks in a
VPC to External Resources.

Supported Regions and Quotas

For the AWS Regions supported by Amazon SageMaker and the Amazon Elastic Compute Cloud
(Amazon EC2) instance types that are available in each Region, see Amazon SageMaker Pricing.

For a list of the SageMaker service endpoints for each Region, see Amazon SageMaker endpoints
and quotas in the AWS General Reference.

Quotas

For a list of SageMaker quotas, see Amazon SageMaker endpoints and quotas in the AWS General
Reference.

The Service Quotas console provides information about your service quotas. You can use the
Service Quotas console to view your default service quotas or to request quota increases. To
request a quota increase for adjustable quotas, see Requesting a quota increase.

You can set up a quota request template for your AWS Organization that automatically requests
quota increases during account creation. For more information, see Using Service Quotas request
templates.

Supported Regions and Quotas 68

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UserSettings.html
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html#limits_sagemaker
https://console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/organization-templates.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/organization-templates.html

Amazon SageMaker Developer Guide

Use automated ML, no-code, or low-code

Amazon SageMaker offers the following features to automate key machine learning tasks and use
no-code or low-code solutions.

• Amazon SageMaker Autopilot is an automated machine learning (AutoML) feature-set that
automates the end-to-end process of building, training, tuning, and deploying machine learning
models. Amazon SageMaker Autopilot analyzes your data, selects algorithms suitable for your
problem type, preprocesses the data to prepare it for training, handles automatic model training,
and performs hyperparameter optimization to find the best performing model for your dataset.

• SageMaker JumpStart provides pretrained, open-source models for a wide range of problem
types to help you get started with machine learning. You can incrementally train and tune
these models before deployment. JumpStart also provides solution templates that set up
infrastructure for common use cases, and executable example notebooks for machine learning
with SageMaker.

Topics

• SageMaker Autopilot

• SageMaker JumpStart

SageMaker Autopilot

Important

As of November 30, 2023, Autopilot's UI is migrating to Amazon SageMaker Canvas as part
of the updated Amazon SageMaker Studio experience. SageMaker Canvas provides data
scientists with no-code capabilities for tasks such as data preparation, feature engineering,
algorithm selection, training and tuning, inference, continuous model monitoring, and
more. SageMaker Canvas supports a variety of use cases, including computer vision,
demand forecasting, intelligent search, and generative AI.
Users of Amazon SageMaker Studio Classic, the previous experience of Studio, can continue
using the Autopilot UI in Studio Classic. Users with coding experience can continue using all
API references in any supported SDK for technical implementation.
If you have been using Autopilot in Studio Classic until now and want to migrate to
SageMaker Canvas, you might have to grant additional permissions to your user profile

SageMaker Autopilot 69

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-reference.html

Amazon SageMaker Developer Guide

or IAM role so that you can create and use the SageMaker Canvas application. For more
information, see the section called “Migrate from Autopilot in Studio Classic to SageMaker
Canvas”.
All UI-related instructions in this guide pertain to Autopilot's standalone features before
migrating to Amazon SageMaker Canvas. Users following these instructions should use
Studio Classic.

Amazon SageMaker Autopilot is a feature set that simplifies and accelerates various stages of the
machine learning workflow by automating the process of building and deploying machine learning
models (AutoML).

Autopilot performs the following key tasks that you can use on autopilot or with various degrees of
human guidance:

• Data analysis and preprocessing: Autopilot identifies your specific problem type, handles
missing values, normalizes your data, selects features, and overall prepares the data for model
training.

• Model selection: Autopilot explores a variety of algorithms and uses a cross-validation
resampling technique to generate metrics that evaluate the predictive quality of the algorithms
based on predefined objective metrics.

• Hyperparameter optimization: Autopilot automates the search for optimal hyperparameter
configurations.

• Model training and evaluation: Autopilot automates the process of training and evaluating
various model candidates. It splits the data into training and validation sets, trains the selected
model candidates using the training data, and evaluates their performance on the unseen data
of the validation set. Lastly, it ranks the optimized model candidates based on their performance
and identifies the best performing model.

• Model deployment: Once Autopilot has identified the best performing model, it provides
the option to deploy the model automatically by generating the model artifacts and the
endpoint exposing an API. External applications can send data to the endpoint and receive the
corresponding predictions or inferences.

Autopilot supports building machine learning models on large datasets up to hundreds of GBs.

The following diagram outlines the tasks of this AutoML process managed by Autopilot.

SageMaker Autopilot 70

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html

Amazon SageMaker Developer Guide

Depending on your comfort level with the machine learning process and coding experience, you
can use Autopilot in different ways:

• Using the Studio Classic UI, users can choose between a no-code experience or have some level
of human input.

Note

Only experiments created from tabular data for problem types such as regression or
classification are available via the Studio Classic UI.

• Using the AutoML API, users with coding experience can use available SDKs to create AutoML
jobs. This approach provides greater flexibility and customization options and is available for all
problem types.

Autopilot currently supports the following problem types:

Note

For regression or classification problems involving tabular data, users can choose between
two options: using the Studio Classic user interface or the API Reference.
Tasks such as text and image classification, time-series forecasting, and fine-tuning of
large language models are exclusively available through the version 2 of the Autopilot API.
For Python users, we recommend using the AWS SDK for Python (Boto3) as the Amazon
SageMaker Python SDK is not currently supported for the Autopilot API version 2.
Users who prefer the convenience of a user interface can use Amazon SageMaker Canvas to
access pre-trained models and generative AI foundation models, or create custom models
tailored for specific text, image classification, forecasting needs, or generative AI.

SageMaker Autopilot 71

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-reference.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html

Amazon SageMaker Developer Guide

• Regression, binary, and multiclass classification with tabular data formatted as CSV or Parquet
files in which each column contains a feature with a specific data type and each row contains an
observation. The column data types accepted include numerical, categorical, text, and time series
that consists of strings of comma-separated numbers.

• To create an Autopilot job as a pilot experiment using the SageMaker API reference, see Create
a regression or classification job for tabular data using the AutoML API.

• To create an Autopilot job as a pilot experiment using the Studio Classic UI, see Create a
Regression or Classification Autopilot experiment for tabular data using the Studio Classic UI.

• If you are an administrator looking to pre-configure default infrastructure, networking, or
security parameters of Autopilot experiments in Studio Classic UI, see Configure the default
parameters of an Autopilot experiment (for administrators).

• Text classification with data formatted as CSV or Parquet files in which a column provides the
sentences to be classified, while another column should provide the corresponding class label.
See Create an AutoML job for text classification using the API.

• Image classification with image formats such as PNG, JPEG, or a combination of both.See Create
an AutoML job for image classification using the API.

• Time-series forecasting with time-series data formatted as CSV or Parquet files.See Create an
AutoML job for time-series forecasting using the API.

• Fine-tuning of large language models (LLMs) for text generation with data formatted as CSV or
Parquet files.See Create an AutoML job to fine-tune text generation models using the API.

Additionally, Autopilot helps users understand how models make predictions by automatically
generating reports that show the importance of each individual feature. This provides transparency
and insights into the factors influencing the predictions, which can be used by risk and compliance
teams and external regulators. Autopilot also provides a model performance report, which
encompasses a summary of evaluation metrics, a confusion matrix, various visualizations such as
receiver operating characteristic curves and precision-recall curves, and more. The specific content
of each report vary depending on the problem type of the Autopilot experiment.

The explainability and performance reports for the best model candidate in an Autopilot
experiment are available for text, image, and tabular data classification problem types.

For tabular data use cases such as regression or classification, Autopilot offers additional visibility
into how the data was wrangled and how the model candidates were selected, trained, and
tuned by generating notebooks that contain the code used to explore the data and find the best
performing model. These notebooks provide an interactive and exploratory environment to help

SageMaker Autopilot 72

Amazon SageMaker Developer Guide

you learn about the impact of various inputs or the trade-offs made in the experiments. You can
experiment further with the higher performing model candidate by making your own modifications
to the data exploration and candidate definition notebooks provided by Autopilot.

With Amazon SageMaker, you pay only for what you use. You pay for the underlying compute
and storage resources within SageMaker or other AWS services, based on your usage. For more
information about the cost of using SageMaker, see Amazon SageMaker Pricing.

Topics

• Create a regression or classification job for tabular data using the AutoML API

• Create an AutoML job for image classification using the API

• Create an AutoML job for text classification using the API

• Create an AutoML job for time-series forecasting using the API

• Create an AutoML job to fine-tune text generation models using the API

• Create a Regression or Classification Autopilot experiment for tabular data using the Studio
Classic UI

• Amazon SageMaker Autopilot example notebooks

• Amazon SageMaker Autopilot quotas

• API Reference guide for Amazon SageMaker Autopilot

Create a regression or classification job for tabular data using the
AutoML API

You can create an Autopilot experiment for tabular data programmatically by calling the
CreateAutoMLJobV2 API action in any language supported by Autopilot or the AWS CLI.

For information on how this API action translates into a function in the language of your choice,
see the See Also section of CreateAutoMLJobV2 and choose an SDK. As an example, for Python
users, see the full request syntax of create_auto_ml_job_v2 in AWS SDK for Python (Boto3).

Note

CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and
DescribeAutoMLJob which offer backward compatibility.
We recommend using the CreateAutoMLJobV2. CreateAutoMLJobV2 can manage
tabular problem types identical to those of its previous version CreateAutoMLJob, as

Create a Regression or Classification Job Using the AutoML API 73

https://aws.amazon.com/sagemaker/pricing
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_SeeAlso
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_auto_ml_job_v2
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html

Amazon SageMaker Developer Guide

well as non-tabular problem types such as image or text classification, or time-series
forecasting.

At a minimum, all experiments on tabular data require the specification of the experiment
name, providing locations for the input and output data, and specifying which target data to
predict. Optionally, you can also specify the type of problem that you want to solve (regression,
classification, multiclass classification), choose your modeling strategy (stacked ensembles or
hyperparameters optimization), select the list of algorithms used by the Autopilot job to train the
data, and more.

After the experiment runs, you can compare trials and delve into the details of the pre-processing
steps, algorithms, and hyperparameter ranges of each model. You also have the option to
download their explainability and performance reports. Use the provided notebooks to see the
results of the automated data exploration or the candidate model definitions.

The following is a collection of mandatory and optional input request parameters for the
CreateAutoMLJobV2 API action. You can find the alternative information for the previous version
of this action, CreateAutoMLJob. However, we recommend using CreateAutoMLJobV2.

Find guidelines on how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a
CreateAutoMLJob to CreateAutoMLJobV2.

Required parameters

CreateAutoMLJobV2

When calling CreateAutoMLJobV2 to create an Autopilot experiment for tabular data, you
must provide the following values:

• An AutoMLJobName to specify the name of your job.

• At least one AutoMLJobChannel in AutoMLJobInputDataConfig to specify your data
source.

• Both an AutoMLJobObjective metric and your chosen type of supervised learning problem
(binary classification, multiclass classification, regression) in AutoMLProblemTypeConfig,
or none at all. For tabular data, you must choose TabularJobConfig as the type of
AutoMLProblemTypeConfig. You set the supervised learning problem in the ProblemType
attribute of TabularJobConfig.

Create a Regression or Classification Job Using the AutoML API 74

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-insights.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-notebook-output.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig

Amazon SageMaker Developer Guide

• An OutputDataConfig to specify the Amazon S3 output path to store the artifacts of your
AutoML job.

• A RoleArn to specify the ARN of the role used to access your data.

CreateAutoMLJob

When calling CreateAutoMLJob to create an AutoML experiment, you must provide the
following four values:

• An AutoMLJobName to specify the name of your job.

• At least one AutoMLChannel in InputDataConfig to specify your data source.

• An OutputDataConfig to specify the Amazon S3 output path to store the artifacts of your
AutoML job.

• A RoleArn to specify the ARN of the role used to access your data.

All other parameters are optional.

Optional parameters

The following sections provide details of some optional parameters that you can pass to your
CreateAutoMLJobV2 API action when using tabular data. You can find the alternative information
for the previous version of this action, CreateAutoMLJob. However, we recommend using
CreateAutoMLJobV2.

How to set the training mode of an AutoML job

For tabular data, the set of algorithms run on your data to train your model candidates is
dependent on your modeling strategy (ENSEMBLING or HYPERPARAMETER_TUNING). The following
details how to set this training mode.

If you keep blank (or null), the Mode is inferred based on the size of your dataset.

For information on Autopilot's stacked ensembles and hyperparameters optimization training
methods, see Training modes and algorithm support

CreateAutoMLJobV2

For tabular data, you must choose TabularJobConfig as the type of
AutoMLProblemTypeConfig.

Create a Regression or Classification Job Using the AutoML API 75

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-RoleArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-AutoMLJobName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-RoleArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig

Amazon SageMaker Developer Guide

You can set the training method of an AutoML job V2 with the TabularJobConfig.Mode
parameter.

CreateAutoMLJob

You can set the training method of an AutoML job with the AutoMLJobConfig.Mode
parameter.

How to select features and algorithms for training an AutoML job

Features selection

Autopilot provides automatic data-preprocessing steps including feature selection and feature
extraction. However, you can manually provide the features to be used in training with the
FeatureSpecificatioS3Uri attribute.

Selected features should be contained within a JSON file in the following format:

{ "FeatureAttributeNames":["col1", "col2", ...] }

The values listed in ["col1", "col2", ...] are case sensitive. They should be a list of strings
containing unique values that are subsets of the column names in the input data.

Note

The list of columns provided as features cannot include the target column.

CreateAutoMLJobV2

For tabular data, you must choose TabularJobConfig as the type of
AutoMLProblemTypeConfig.

You can set the URL to your selected features with the
TabularJobConfig.FeatureSpecificatioS3Uri parameter.

CreateAutoMLJob

You can set the FeatureSpecificatioS3Uri attribute of AutoMLCandidateGenerationConfig
within the CreateAutoMLJob API with the following format:

Create a Regression or Classification Job Using the AutoML API 76

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidateGenerationConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html

Amazon SageMaker Developer Guide

{
 "AutoMLJobConfig": {
 "CandidateGenerationConfig": {
 "FeatureSpecificationS3Uri":"string"
 },
 }
 }

Algorithms selection

By default, your Autopilot job runs a pre-defined list of algorithms on your dataset to train
model candidates. The list of algorithms depends on the training mode (ENSEMBLING or
HYPERPARAMETER_TUNING) used by the job.

You can provide a subset of the default selection of algorithms.

CreateAutoMLJobV2

For tabular data, you must choose TabularJobConfig as the type of
AutoMLProblemTypeConfig.

You can specify an array of selected AutoMLAlgorithms in the AlgorithmsConfig attribute
of CandidateGenerationConfig.

The following is an example of an AlgorithmsConfig attribute listing exactly three
algorithms ("xgboost", "fastai", "catboost") in its AutoMLAlgorithms field for the ensembling
training mode.

{
 "AutoMLProblemTypeConfig": {
 "TabularJobConfig": {
 "Mode": "ENSEMBLING",
 "CandidateGenerationConfig": {
 "AlgorithmsConfig":[
 {"AutoMLAlgorithms":["xgboost", "fastai", "catboost"]}
]
 },
 },
 },
 }

Create a Regression or Classification Job Using the AutoML API 77

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-AutoMLJobConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-CandidateGenerationConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidateGenerationConfig.html#sagemaker-Type-AutoMLCandidateGenerationConfig-FeatureSpecificationS3Uri
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateGenerationConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateGenerationConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateGenerationConfig.html#sagemaker-Type-CandidateGenerationConfig-AlgorithmsConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html

Amazon SageMaker Developer Guide

CreateAutoMLJob

You can specify an array of selected AutoMLAlgorithms in the AlgorithmsConfig attribute
of AutoMLCandidateGenerationConfig.

The following is an example of an AlgorithmsConfig attribute listing exactly three
algorithms ("xgboost", "fastai", "catboost") in its AutoMLAlgorithms field for the ensembling
training mode.

{
 "AutoMLJobConfig": {
 "CandidateGenerationConfig": {
 "AlgorithmsConfig":[
 {"AutoMLAlgorithms":["xgboost", "fastai", "catboost"]}
]
 },
 "Mode": "ENSEMBLING"
 }

For the list of available algorithms per training Mode, see AutoMLAlgorithms. For details on each
algorithm, see Training modes and algorithm support.

How to specify the training and validation datasets of an AutoML job

You can provide your own validation dataset and custom data split ratio, or let Autopilot split the
dataset automatically.

CreateAutoMLJobV2

Each AutoMLJobChannel object (see the required parameter AutoMLJobInputDataConfig) has
a ChannelType, which can be set to either training or validation values that specify how
the data is to be used when building a machine learning model. At least one data source must
be provided and a maximum of two data sources is allowed: one for training data and one for
validation data.

How you split the data into training and validation datasets depends on whether you have one
or two data sources.

• If you only have one data source, the ChannelType is set to training by default and must
have this value.

Create a Regression or Classification Job Using the AutoML API 78

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidateGenerationConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-AutoMLJobConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-CandidateGenerationConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidateGenerationConfig.html#sagemaker-Type-AutoMLCandidateGenerationConfig-AlgorithmsConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html#sagemaker-Type-AutoMLAlgorithmConfig-AutoMLAlgorithms
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html#sagemaker-Type-AutoMLAlgorithmConfig-AutoMLAlgorithms
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker-api/src/AWSSageMakerAPIDoc/build/server-root/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig

Amazon SageMaker Developer Guide

• If the ValidationFraction value in AutoMLDataSplitConfig is not set, 0.2 (20%) of
the data from this source is used for validation by default.

• If the ValidationFraction is set to a value between 0 and 1, the dataset is split based
on the value specified, where the value specifies the fraction of the dataset used for
validation.

• If you have two data sources, the ChannelType of one of the AutoMLJobChannel objects
must be set to training, the default value. The ChannelType of the other data source
must be set to validation. The two data sources must have the same format, either CSV or
Parquet, and the same schema. You must not set the value for the ValidationFraction
in this case because all of the data from each source is used for either training or validation.
Setting this value causes an error.

CreateAutoMLJob

Each AutoMLChannel object (see the required parameter InputDataConfig) has a
ChannelType, which can be set to either training or validation values that specify how
the data is to be used when building a machine learning model. At least one data source must
be provided and a maximum of two data sources is allowed: one for training data and one for
validation data.

How you split the data into training and validation datasets depends on whether you have one
or two data sources.

• If you only have one data source, the ChannelType is set to training by default and must
have this value.

• If the ValidationFraction value in AutoMLDataSplitConfig is not set, 0.2 (20%) of
the data from this source is used for validation by default.

• If the ValidationFraction is set to a value between 0 and 1, the dataset is split based
on the value specified, where the value specifies the fraction of the dataset used for
validation.

• If you have two data sources, the ChannelType of one of the AutoMLChannel objects must
be set to training, the default value. The ChannelType of the other data source must be
set to validation. The two data sources must have the same format, either CSV or Parquet,
and the same schema. You must not set the value for the ValidationFraction in this case
because all of the data from each source is used for either training or validation. Setting this
value causes an error.

Create a Regression or Classification Job Using the AutoML API 79

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLDataSplitConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLDataSplitConfig.html

Amazon SageMaker Developer Guide

For information on split and cross-validation in Autopilot see Cross-validation in Autopilot.

How to set the problem type of an AutoML job

CreateAutoMLJobV2

For tabular data, you must choose TabularJobConfig as the type of
AutoMLProblemTypeConfig.

You can further specify the type of supervised learning problem (binary classification, multiclass
classification, regression) available for the model candidates of your AutoML job V2 with the
TabularJobConfig.ProblemType parameter.

CreateAutoMLJob

You can set the type of problem on an AutoML job with the CreateAutoPilot.ProblemType
parameter. This limits the kind of preprocessing and algorithms that Autopilot tries.
After the job is finished, if you had set the CreateAutoPilot.ProblemType, then the
ResolvedAttribute.ProblemType matches the ProblemType you set. If you keep it blank
(or null), the ProblemType is inferred on your behalf.

Note

In some cases, Autopilot is unable to infer the ProblemType with high enough confidence,
in which case you must provide the value for the job to succeed.

How to add sample weights to an AutoML job

You can add a sample weights column to your tabular dataset and then pass it to your AutoML job
to request dataset rows to be weighted during training and evaluation.

Support for sample weights is available in ensembling mode only. Your weights should be numeric
and non-negative. Data points with invalid or no weight value are excluded. For more information
on the available objective metrics, see Autopilot weighted metrics.

CreateAutoMLJobV2

For tabular data, you must choose TabularJobConfig as the type of
AutoMLProblemTypeConfig.

Create a Regression or Classification Job Using the AutoML API 80

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-ProblemType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-ProblemType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResolvedAttributes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-training-mode
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig

Amazon SageMaker Developer Guide

To set sample weights when creating an experiment (see CreateAutoMLJobV2), you can pass the
name of your sample weights column in the SampleWeightAttributeName attribute of the
TabularJobConfig object. This ensures that your objective metric uses the weights for the
training, evaluation, and selection of model candidates.

CreateAutoMLJob

To set sample weights when creating an experiment (see CreateAutoMLJob), you can pass the
name of your sample weights column in the SampleWeightAttributeName attribute of
the AutoMLChannel object. This ensures that your objective metric uses the weights for the
training, evaluation, and selection of model candidates.

Migrate a CreateAutoMLJob to CreateAutoMLJobV2

We recommend users of CreateAutoMLJob to migrate to CreateAutoMLJobV2.

This section explains the differences in the input parameters between CreateAutoMLJob and
CreateAutoMLJobV2 by highlighting the changes in the position, name, or structure of the objects
and attributes of the input request between the two versions.

• Request attributes that did not change between versions.

{
 "AutoMLJobName": "string",
 "AutoMLJobObjective": {
 "MetricName": "string"
 },
 "ModelDeployConfig": {
 "AutoGenerateEndpointName": boolean,
 "EndpointName": "string"
 },
 "OutputDataConfig": {
 "KmsKeyId": "string",
 "S3OutputPath": "string"
 },
 "RoleArn": "string",
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
]

Create a Regression or Classification Job Using the AutoML API 81

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
https://docs.aws.amazon.com/sagemaker-api/src/AWSSageMakerAPIDoc/build/server-root/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#API_CreateAutoMLJob_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestSyntax

Amazon SageMaker Developer Guide

}

• Request attributes that changed position and structure between versions.

The following attributes changed position: DataSplitConfig, Security
Config, CompletionCriteria, Mode, FeatureSpecificationS3Uri,
SampleWeightAttributeName, TargetAttributeName.

CreateAutoMLJob

{
 "AutoMLJobConfig": {
 "Mode": "string",
 "CompletionCriteria": {
 "MaxAutoMLJobRuntimeInSeconds": number,
 "MaxCandidates": number,
 "MaxRuntimePerTrainingJobInSeconds": number
 },
 "DataSplitConfig": {
 "ValidationFraction": number
 },
 "SecurityConfig": {
 "EnableInterContainerTrafficEncryption": boolean,
 "VolumeKmsKeyId": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
 },
 "CandidateGenerationConfig": {
 "FeatureSpecificationS3Uri": "string"
 }
 },
 "GenerateCandidateDefinitionsOnly": boolean,
 "ProblemType": "string"
}

CreateAutoMLJobV2

{
 "AutoMLProblemTypeConfig": {
 "TabularJobConfig": {
 "Mode": "string",

Create a Regression or Classification Job Using the AutoML API 82

Amazon SageMaker Developer Guide

 "ProblemType": "string",
 "GenerateCandidateDefinitionsOnly": boolean,
 "CompletionCriteria": {
 "MaxAutoMLJobRuntimeInSeconds": number,
 "MaxCandidates": number,
 "MaxRuntimePerTrainingJobInSeconds": number
 },
 "FeatureSpecificationS3Uri": "string",
 "SampleWeightAttributeName": "string",
 "TargetAttributeName": "string"
 }
 },
 "DataSplitConfig": {
 "ValidationFraction": number
 },
 "SecurityConfig": {
 "EnableInterContainerTrafficEncryption": boolean,
 "VolumeKmsKeyId": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
 }
}

• The following attributes changed position and structure between versions.

The following JSON illustrates how AutoMLJobConfig.CandidateGenerationConfig of type
AutoMLCandidateGenerationConfig moved to
AutoMLProblemTypeConfig.TabularJobConfig.CandidateGenerationConfig of type
CandidateGenerationConfig in V2.

CreateAutoMLJob

{
 "AutoMLJobConfig": {
 "CandidateGenerationConfig": {
 "AlgorithmsConfig": [
 {
 "AutoMLAlgorithms": ["string"]
 }
],
 "FeatureSpecificationS3Uri": "string"
 }

Create a Regression or Classification Job Using the AutoML API 83

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-CandidateGenerationConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidateGenerationConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateGenerationConfig.html

Amazon SageMaker Developer Guide

}

CreateAutoMLJobV2

{
 "AutoMLProblemTypeConfig": {
 "TabularJobConfig": {
 "CandidateGenerationConfig": {
 "AlgorithmsConfig": [
 {
 "AutoMLAlgorithms": ["string"]
 }
],
 },
 }
 },
}

• Request attributes that changed name and structure.

The following JSON illustrates how InputDataConfig (An array of AutoMLChannel) changed to
AutoMLJobInputDataConfig (An array of AutoMLJobChannel) in V2. Note that the attributes
SampleWeightAttributeName and TargetAttributeName move out of InputDataConfig
and into AutoMLProblemTypeConfig.

CreateAutoMLJob

{
 "InputDataConfig": [
 {
 "ChannelType": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "string",
 "S3Uri": "string"
 }
 },
 "SampleWeightAttributeName": "string",
 "TargetAttributeName": "string"
 }
]

Create a Regression or Classification Job Using the AutoML API 84

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html

Amazon SageMaker Developer Guide

}

CreateAutoMLJobV2

{
 "AutoMLJobInputDataConfig": [
 {
 "ChannelType": "string",
 "CompressionType": "string",
 "ContentType": "string",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "string",
 "S3Uri": "string"
 }
 }
 }
]
}

Autopilot datasets and problem types

For tabular data (that is data in which each column contains a feature with a specific data type
and each row contains an observation), Autopilot gives you the option of specifying the type of
supervised learning problem available for the model candidates of the AutoML job, such as binary
classification or regression, or of detecting it on your behalf based on the data you provide.

Topics

• Autopilot datasets, data types, and formats

• Autopilot problem types

Autopilot datasets, data types, and formats

Autopilot supports tabular data formatted as CSV files or as Parquet files: each column contains a
feature with a specific data type and each row contains an observation. The properties of these two
file formats differ considerably.

Create a Regression or Classification Job Using the AutoML API 85

Amazon SageMaker Developer Guide

• CSV (comma-separated-values) is a row-based file format that stores data in human readable
plaintext which a popular choice for data exchange as they are supported by a wide range of
applications.

• Parquet is a column-based file format where the data is stored and processed more efficiently
than row-based file formats. This makes them a better option for big data problems.

The data types accepted for columns include numerical, categorical, text, and time series that
consists of strings of comma-separated numbers. If Autopilot detects it is dealing with time series
sequences, it processes them through specialized feature transformers provided by the tsfresh
library. This library takes the time series as an input and outputs a feature such as the highest
absolute value of the time series or descriptive statistics on autocorrelation. These outputted
features are then used as inputs to one of the three problem types.

Autopilot supports building machine learning models on large datasets up to hundreds of GBs. For
details on the default resource limits for input datasets and how to increase them, see Autopilot
quotas.

Autopilot problem types

For the tabular data, you further specify the type of supervised learning problems available for the
model candidates as follows:

Regression

Regression estimates the values of a dependent target variable based on one or more other
variables or attributes that are correlated with it. An example is the prediction of house prices using
features like the number of bathrooms and bedrooms, square footage of the house and garden.
Regression analysis can create a model that takes one or more of these features as an input and
predicts the price of a house.

Binary classification

Binary classification is a type of supervised learning that assigns an individual to one of two
predefined and mutually exclusive classes based on their attributes. It is supervised because
the models are trained using examples where the attributes are provided with correctly labeled
objects. A medical diagnosis for whether an individual has a disease or not based on the results of
diagnostic tests is an example of binary classification.

Create a Regression or Classification Job Using the AutoML API 86

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-quotas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-quotas.html

Amazon SageMaker Developer Guide

Multiclass classification

Multiclass classification is a type of supervised learning that assigns an individual to one of several
classes based on their attributes. It is supervised because the models are trained using examples
where the attributes are provided with correctly labelled objects. An example is the prediction of
the topic most relevant to a text document. A document may be classified as being about, say,
religion or politics or finance, or about one of several other predefined topic classes.

Training modes and algorithm support

Autopilot supports different training modes and algorithms to address machine learning problems,
report on quality and objective metrics, and to use cross-validation automatically, when needed.

Training modes

SageMaker Autopilot can automatically select the training method based on the dataset size, or
you can select it manually. The choices are as follows:

• Ensembling – Autopilot uses the AutoGluon library to train several base models. To find the
best combination for your dataset, ensemble mode runs 10 trials with different model and
meta parameter settings. Then Autopilot combines these models using a stacking ensemble
method to create an optimal predictive model. For a list of algorithms that Autopilot supports in
ensembling mode for tabular data, see the following Algorithms support section.

• Hyperparameter optimization (HPO) – Autopilot finds the best version of a model by tuning
hyperparameters using Bayesian optimization or multi-fidelity optimization while running
training jobs on your dataset. HPO mode selects the algorithms that are most relevant to your
dataset and selects the best range of hyperparameters to tune your models. To tune your
models, HPO mode runs up to 100 trials (default) to find the optimal hyperparameters settings
within the selected range. If your dataset size is less than 100 MB, Autopilot uses Bayesian
optimization. Autopilot chooses multi-fidelity optimization if your dataset is larger than 100 MB.

In multi-fidelity optimization, metrics are continuously emitted from the training containers. A
trial that is performing poorly against a selected objective metric is stopped early. A trial that is
performing well is allocated more resources.

For a list of algorithms that Autopilot supports in HPO mode, see the following Algorithm
support section.

Create a Regression or Classification Job Using the AutoML API 87

https://auto.gluon.ai/scoredebugweight/tutorials/tabular_prediction/index.html

Amazon SageMaker Developer Guide

• Auto – Autopilot automatically chooses either ensembling mode or HPO mode based on your
dataset size. If your dataset is larger than 100 MB, Autopilot chooses HPO. Otherwise, it chooses
ensembling mode. Autopilot can fail to read the size of your dataset in the following cases.

• If you enable Virtual Private Cloud (VPC) mode, for an AutoML job but the S3 bucket
containing the dataset only allows access from the VPC.

• The input S3DataType of your dataset is a ManifestFile.

• The input S3Uri contains more than 1000 items.

If Autopilot is unable to read your dataset size, it defaults to choosing HPO mode.

Note

For optimal runtime and performance, use ensemble training mode for datasets that are
smaller than 100 MB.

Algorithms support

In HPO mode, Autopilot supports the following types of machine learning algorithms:

• Linear learner – A supervised learning algorithm that can solve either classification or regression
problems.

• XGBoost – A supervised learning algorithm that attempts to accurately predict a target variable
by combining an ensemble of estimates from a set of simpler and weaker models.

• Deep learning algorithm – A multilayer perceptron (MLP) and feedforward artificial neural
network. This algorithm can handle data that is not linearly separable.

Note

You don't need to specify an algorithm to use for your machine learning problem. Autopilot
automatically selects the appropriate algorithm to train.

In ensembling mode, Autopilot supports the following types of machine learning algorithms:

Create a Regression or Classification Job Using the AutoML API 88

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLS3DataSource.html#sagemaker-Type-AutoMLS3DataSource-S3DataType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLS3DataSource.html#sagemaker-Type-AutoMLS3DataSource-S3Uri
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html

Amazon SageMaker Developer Guide

• LightGBM – An optimized framework that uses tree-based algorithms with gradient boosting.
This algorithm uses trees that grow in breadth, rather than depth, and is highly optimized for
speed.

• CatBoost – A framework that uses tree-based algorithms with gradient boosting. Optimized for
handling categorical variables.

• XGBoost – A framework that uses tree-based algorithms with gradient boosting that grows in
depth, rather than breadth.

• Random Forest – A tree-based algorithm that uses several decision trees on random sub-samples
of the data with replacement. The trees are split into optimal nodes at each level. The decisions
of each tree are averaged together to prevent overfitting and improve predictions.

• Extra Trees – A tree-based algorithm that uses several decision trees on the entire dataset.
The trees are split randomly at each level. The decisions of each tree are averaged to prevent
overfitting and to improve predictions. Extra trees add a degree of randomization in comparison
to the random forest algorithm.

• Linear Models – A framework that uses a linear equation to model the relationship between two
variables in observed data.

• Neural network torch – A neural network model that's implemented using Pytorch.

• Neural network fast.ai – A neural network model that's implemented using fast.ai.

Metrics and validation

This guide shows metrics and validation techniques that you can use to measure machine learning
model performance. Amazon SageMaker Autopilot produces metrics that measure the predictive
quality of machine learning model candidates. The metrics calculated for candidates are specified
using an array of MetricDatum types.

Autopilot metrics

The following list contains the names of the metrics that are currently available to measure model
performance within Autopilot.

Note

Autopilot supports sample weights. To learn more about sample weights and the available
objective metrics, see Autopilot weighted metrics.

Create a Regression or Classification Job Using the AutoML API 89

https://docs.aws.amazon.com/sagemaker/latest/dg/lightgbm.html
https://docs.aws.amazon.com/sagemaker/latest/dg/catboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.ensemble.ExtraTreesClassifier
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
https://pytorch.org/
https://www.fast.ai/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDatum.html

Amazon SageMaker Developer Guide

The following are the available metrics.

Accuracy

The ratio of the number of correctly classified items to the total number of (correctly and
incorrectly) classified items. It is used for both binary and multiclass classification. Accuracy
measures how close the predicted class values are to the actual values. Values for accuracy
metrics vary between zero (0) and one (1). A value of 1 indicates perfect accuracy, and 0
indicates perfect inaccuracy.

AUC

The area under the curve (AUC) metric is used to compare and evaluate binary classification by
algorithms that return probabilities, such as logistic regression. To map the probabilities into
classifications, these are compared against a threshold value.

The relevant curve is the receiver operating characteristic curve. The curve plots the true
positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of
the threshold value, above which a prediction is considered positive. Increasing the threshold
results in fewer false positives, but more false negatives.

AUC is the area under this receiver operating characteristic curve. Therefore, AUC provides an
aggregated measure of the model performance across all possible classification thresholds. AUC
scores vary between 0 and 1. A score of 1 indicates perfect accuracy, and a score of one half
(0.5) indicates that the prediction is not better than a random classifier.

BalancedAccuracy

BalancedAccuracy is a metric that measures the ratio of accurate predictions to all
predictions. This ratio is calculated after normalizing true positives (TP) and true negatives
(TN) by the total number of positive (P) and negative (N) values. It is used in both binary and
multiclass classification and is defined as follows: 0.5*((TP/P)+(TN/N)), with values ranging from
0 to 1. BalancedAccuracy gives a better measure of accuracy when the number of positives
or negatives differ greatly from each other in an imbalanced dataset, such as when only 1% of
email is spam.

F1

The F1 score is the harmonic mean of the precision and recall, defined as follows: F1 =
2 * (precision * recall) / (precision + recall). It is used for binary classification into classes
traditionally referred to as positive and negative. Predictions are said to be true when they
match their actual (correct) class, and false when they do not.

Create a Regression or Classification Job Using the AutoML API 90

Amazon SageMaker Developer Guide

Precision is the ratio of the true positive predictions to all positive predictions, and it includes
the false positives in a dataset. Precision measures the quality of the prediction when it predicts
the positive class.

Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances.
Recall measures how completely a model predicts the actual class members in a dataset.

F1 scores vary between 0 and 1. A score of 1 indicates the best possible performance, and 0
indicates the worst.

F1macro

The F1macro score applies F1 scoring to multiclass classification problems. It does this by
calculating the precision and recall, and then taking their harmonic mean to calculate the
F1 score for each class. Lastly, the F1macro averages the individual scores to obtain the
F1macro score. F1macro scores vary between 0 and 1. A score of 1 indicates the best possible
performance, and 0 indicates the worst.

InferenceLatency

Inference latency is the approximate amount of time between making a request for a model
prediction to receiving it from a real time endpoint to which the model is deployed. This metric
is measured in seconds and only available in ensembling mode.

LogLoss

Log loss, also known as cross-entropy loss, is a metric used to evaluate the quality of the
probability outputs, rather than the outputs themselves. It is used in both binary and multiclass
classification and in neural nets. It is also the cost function for logistic regression. Log loss is an
important metric to indicate when a model makes incorrect predictions with high probabilities.
Values range from 0 to infinity. A value of 0 represents a model that perfectly predicts the data.

MAE

The mean absolute error (MAE) is a measure of how different the predicted and actual values
are, when they're averaged over all values. MAE is commonly used in regression analysis to
understand model prediction error. If there is linear regression, MAE represents the average
distance from a predicted line to the actual value. MAE is defined as the sum of absolute errors
divided by the number of observations. Values range from 0 to infinity, with smaller numbers
indicating a better model fit to the data.

Create a Regression or Classification Job Using the AutoML API 91

Amazon SageMaker Developer Guide

MSE

The mean squared error (MSE) is the average of the squared differences between the predicted
and actual values. It is used for regression. MSE values are always positive. The better a model is
at predicting the actual values, the smaller the MSE value is.

Precision

Precision measures how well an algorithm predicts the true positives (TP) out of all of the
positives that it identifies. It is defined as follows: Precision = TP/(TP+FP), with values ranging
from zero (0) to one (1), and is used in binary classification. Precision is an important metric
when the cost of a false positive is high. For example, the cost of a false positive is very high if
an airplane safety system is falsely deemed safe to fly. A false positive (FP) reflects a positive
prediction that is actually negative in the data.

PrecisionMacro

The precision macro computes precision for multiclass classification problems. It does this by
calculating precision for each class and averaging scores to obtain precision for several classes.
PrecisionMacro scores range from zero (0) to one (1). Higher scores reflect the model's
ability to predict true positives (TP) out of all of the positives that it identifies, averaged across
multiple classes.

R2

R2, also known as the coefficient of determination, is used in regression to quantify how much a
model can explain the variance of a dependent variable. Values range from one (1) to negative
one (-1). Higher numbers indicate a higher fraction of explained variability. R2 values close
to zero (0) indicate that very little of the dependent variable can be explained by the model.
Negative values indicate a poor fit and that the model is outperformed by a constant function.
For linear regression, this is a horizontal line.

Recall

Recall measures how well an algorithm correctly predicts all of the true positives (TP) in a
dataset. A true positive is a positive prediction that is also an actual positive value in the data.
Recall is defined as follows: Recall = TP/(TP+FN), with values ranging from 0 to 1. Higher scores
reflect a better ability of the model to predict true positives (TP) in the data. It is used in binary
classification.

Recall is important when testing for cancer because it's used to find all of the true positives. A
false positive (FP) reflects a positive prediction that is actually negative in the data. It is often

Create a Regression or Classification Job Using the AutoML API 92

Amazon SageMaker Developer Guide

insufficient to measure only recall, because predicting every output as a true positive yields a
perfect recall score.

RecallMacro

The RecallMacro computes recall for multiclass classification problems by calculating recall
for each class and averaging scores to obtain recall for several classes. RecallMacro scores
range from 0 to 1. Higher scores reflect the model's ability to predict true positives (TP) in a
dataset, whereas a true positive reflects a positive prediction that is also an actual positive value
in the data. It is often insufficient to measure only recall, because predicting every output as a
true positive will yield a perfect recall score.

RMSE

Root mean squared error (RMSE) measures the square root of the squared difference between
predicted and actual values, and is averaged over all values. It is used in regression analysis
to understand model prediction error. It's an important metric to indicate the presence of
large model errors and outliers. Values range from zero (0) to infinity, with smaller numbers
indicating a better model fit to the data. RMSE is dependent on scale, and should not be used to
compare datasets of different sizes.

Metrics that are automatically calculated for a model candidate are determined by the type of
problem being addressed.

Refer to the Amazon SageMaker API reference documentation for the list of available metrics
supported by Autopilot.

Autopilot weighted metrics

Note

Autopilot supports sample weights in ensembling mode only for all available metrics with
the exception of Balanced Accuracy and InferenceLatency. BalanceAccuracy
comes with its own weighting scheme for imbalanced datasets that does not require
sample weights. InferenceLatency does not support sample weights. Both objective
Balanced Accuracy and InferenceLatency metrics ignore any existing sample
weights when training and evaluating a model.

Create a Regression or Classification Job Using the AutoML API 93

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics

Amazon SageMaker Developer Guide

Users can add a sample weights column to their data to ensure that each observation used to
train a machine learning model is given a weight corresponding to its perceived importance to the
model. This is especially useful in scenarios in which the observations in the dataset have varying
degrees of importance, or in which a dataset contains a disproportionate number of samples from
one class compared to others. Assigning a weight to each observation based on its importance or
greater importance to a minority class can help a model’s overall performance, or ensure that a
model is not biased toward the majority class.

For information about how to pass sample weights when creating an experiment in the Studio
Classic UI, see Step 7 in Create an Autopilot experiment using Studio Classic.

For information about how to pass sample weights programmatically when creating an Autopilot
experiment using the API, see How to add sample weights to an AutoML job in Create an Autopilot
experiment programmatically.

Cross-validation in Autopilot

Cross-validation is used in to reduce overfitting and bias in model selection. It is also used to assess
how well a model can predict the values of an unseen validation dataset, if the validation dataset
is drawn from the same population. This method is especially important when training on datasets
that have a limited number of training instances.

Autopilot uses cross-validation to build models in hyperparameter optimization (HPO) and
ensemble training mode. The first step in the Autopilot cross-validation process is to split the data
into k-folds.

K-fold splitting

K-fold splitting is a method that separates an input training dataset into multiple training and
validation datasets. The dataset is split into k equally-sized sub-samples called folds. Models are
then trained on k-1 folds and tested against the remaining kth fold, which is the validation dataset.
The process is repeated k times using a different data set for validation.

The following image depicts k-fold splitting with k = 4 folds. Each fold is represented as a row. The
dark-toned boxes represent the parts of the data used in training. The remaining light-toned boxes
indicate the validation datasets.

Create a Regression or Classification Job Using the AutoML API 94

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html

Amazon SageMaker Developer Guide

Autopilot uses k-fold cross-validation for both hyperparameter optimization (HPO) mode and
ensembling mode.

You can deploy Autopilot models that are built using cross-validation like you would with any other
Autopilot or SageMaker model.

HPO mode

K-fold cross-validation uses the k-fold splitting method for cross-validation. In HPO mode,
Autopilot automatically implements k-fold cross-validation for small datasets with 50,000 or fewer
training instances. Performing cross-validation is especially important when training on small
datasets because it protects against overfitting and selection bias.

HPO mode uses a k value of 5 on each of the candidate algorithms that are used to model the
dataset. Multiple models are trained on different splits, and the models are stored separately.
When training is complete, validation metrics for each of the models are averaged to produce
a single estimation metric. Lastly, Autopilot combines the models from the trial with the
best validation metric into an ensemble model. Autopilot uses this ensemble model to make
predictions.

The validation metric for the models trained by Autopilot is presented as the objective metric in
the model leaderboard. Autopilot uses the default validation metric for each problem type that it

Create a Regression or Classification Job Using the AutoML API 95

Amazon SageMaker Developer Guide

handles, unless you specify otherwise. For the list of all metrics that Autopilot uses, see Autopilot
metrics.

For example, the Boston Housing dataset contains only 861 samples. If you build a model to
predict house sale prices using this dataset without cross-validation, you risk training on a dataset
that is not representative of the Boston housing stock. If you split the data only once into training
and validation subsets, the training fold may only contain data mainly from the suburbs. As a
result, you would train on data that isn't representative of the rest of the city. In this example, your
model would likely overfit on this biased selection. K-fold cross-validation can reduce the risk of
this kind of error by making full and randomized use of the available data for both training and
validation.

Cross-validation can increase training times by an average of 20%. Training times may also increase
significantly for complex datasets.

Note

In HPO mode, you can see the training and validation metrics from each fold in your /aws/
sagemaker/TrainingJobs CloudWatch Logs. For more information about CloudWatch
Logs, see Log Amazon SageMaker Events with Amazon CloudWatch.

Ensembling mode

Note

Autopilot supports sample weights in ensembling mode. For the list of available metrics
supporting sample weights, see Autopilot metrics.

In ensembling mode, cross-validation is performed regardless of dataset size. Customers can either
provide their own validation dataset and custom data split ratio, or let Autopilot split the dataset
automatically into an 80-20% split ratio. The training data is then split into k-folds for cross-
validation, where the value of k is determined by the AutoGluon engine. An ensemble consists
of multiple machine learning models, where each model is known as the base model. A single
base model is trained on (k-1) folds and makes out-of-fold predictions on the remaining fold. This
process is repeated for all k folds, and the out-of-fold (OOF) predictions are concatenated to form
a single set of predictions. All base models in the ensemble follow this same process of generating
OOF predictions.

Create a Regression or Classification Job Using the AutoML API 96

http://lib.stat.cmu.edu/datasets/boston

Amazon SageMaker Developer Guide

The following image depicts k-fold validation with k = 4 folds. Each fold is represented as a row.
The dark-toned boxes represent the parts of the data used in training. The remaining light-toned
boxes indicate the validation datasets.

In the upper part of the image, in each fold, the first base model makes predictions on the
validation dataset after training on the training datasets. At each subsequent fold, the datasets
change roles. A dataset that was previously used for training is now used for validation, and this
also applies in reverse. At the end of k folds, all of the predictions are concatenated to form a
single set of predictions called an out-of-fold (OOF) prediction. This process is repeated for each n
base models.

The OOF predictions for each base model are then used as features to train a stacking model. The
stacking model learns the importance weights for each base model. These weights are used to
combine the OOF predictions to form the final prediction. Performance on the validation dataset
determines which base or stacking model is the best, and this model is returned as the final model.

In ensemble mode, you can either provide your own validation dataset or let Autopilot split the
input dataset automatically into 80% train and 20% validation datasets. The training data is then
split into k-folds for cross-validation and produces an OOF prediction and a base model for each
fold.

These OOF predictions are used as features to train a stacking model, which simultaneously learns
weights for each base model. These weights are used to combine the OOF predictions to form the
final prediction. The validation datasets for each fold are used for hyperparameter tuning of all

Create a Regression or Classification Job Using the AutoML API 97

Amazon SageMaker Developer Guide

base models and the stacking model. Performance on the validation datasets determines which
base or stacking model is the best model, and this model is returned as the final model.

Amazon SageMaker Autopilot model deployment and prediction

This Amazon SageMaker Autopilot guide includes steps for model deployment, setting up real-time
inference, and running inference with batch jobs.

After you train your Autopilot models, you can deploy them to get predictions in one of two ways:

1. Use Real-time inferencing to set up an endpoint and obtain predictions interactively.

2. Use Batch inferencing to make predictions in parallel on batches of observations on an entire
dataset.

Note

To avoid incurring unnecessary charges: After the endpoints and resources that were
created from model deployment are no longer needed, you can delete them. For
information about pricing of instances by Region, see Amazon SageMaker Pricing.

Real-time inferencing

Real-time inference is ideal for inference workloads where you have real-time, interactive,
low latency requirements. This section shows how you can use real-time inferencing to obtain
predictions interactively from your model.

To deploy the model that produced the best validation metric in an Autopilot experiment, you have
several options. For example, when using Autopilot in SageMaker Studio Classic, you can deploy
the model automatically or manually. You can also use SageMaker APIs to manually deploy an
Autopilot model.

The following tabs show three options for deploying your model. These instructions assume that
you have already created a model in Autopilot. If you don't have a model, see Create a regression
or classification job for tabular data using the AutoML API. To see examples for each option, open
each tab.

Create a Regression or Classification Job Using the AutoML API 98

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Deploy using the Autopilot User Interface (UI)

The Autopilot UI contains helpful dropdown menus, toggles, tooltips, and more to help you
navigate through model deployment. You can deploy using either one of the following procedures:
Automatic or Manual.

• Automatic Deployment: To automatically deploy the best model from an Autopilot experiment
to an endpoint

1. Create an experiment in SageMaker Studio Classic.

2. Toggle the Auto deploy value to Yes.

Note

Automatic deployment will fail if either the default resource quota or your
customer quota for endpoint instances in a Region is too limited. In hyperparameter
optimization (HPO) mode, you are required to have at least two ml.m5.2xlarge
instances. In ensembling mode, you are required to have at least one ml.m5.12xlarge
instance. If you encounter a failure related to quotas, you can request a service limit
increase for SageMaker endpoint instances.

• Manual Deployment: To manually deploy the best model from an Autopilot experiment to an
endpoint

1. Create an experiment in SageMaker Studio Classic.

2. Toggle the Auto deploy value to No.

3. Select the model that you want to deploy under Model name.

4. Select the orange Deployment and advanced settings button located on the right of the
leaderboard. This opens a new tab.

5. Configure the endpoint name, instance type, and other optional information.

6. Select the orange Deploy model to deploy to an endpoint.

7. Check the progress of the endpoint creation process in the https://console.aws.amazon.com/
sagemaker/ by navigating to the Endpoints section. That section is located in the Inference
dropdown menu in the navigation panel.

8. After the endpoint status changes from Creating to InService, as shown below, return to
Studio Classic and invoke the endpoint.

Create a Regression or Classification Job Using the AutoML API 99

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Deploy using SageMaker APIs

You can also obtain real-time inference by deploying your model using API calls. This section
shows the five steps of this process using AWS Command Line Interface (AWS CLI) code snippets.

For complete code examples for both AWS CLI commands and AWS SDK for Python (boto3), open
the tabs directly following these steps.

1. Obtain candidate definitions

Obtain the candidate container definitions from InferenceContainers. These candidate
definitions are used to create a SageMaker model.

The following example uses the DescribeAutoMLJob API to obtain candidate definitions for the
best model candidate. See the following AWS CLI command as an example.

aws sagemaker describe-auto-ml-job --auto-ml-job-name <job-name> --region <region>

2. List candidates

The following example uses the ListCandidatesForAutoMLJob API to list all candidates. See the
following AWS CLI command as an example.

aws sagemaker list-candidates-for-auto-ml-job --auto-ml-job-name <job-name> --
region <region>

3. Create a SageMaker model

Use the container definitions from the previous steps to create a SageMaker model by using the
CreateModel API. See the following AWS CLI command as an example.

Create a Regression or Classification Job Using the AutoML API 100

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidate.html#sagemaker-Type-AutoMLCandidate-InferenceContainers
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCandidatesForAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

aws sagemaker create-model --model-name '<your-custom-model-name>' \
 --containers ['<container-definition1>, <container-
definition2>, <container-definition3>]' \
 --execution-role-arn '<execution-role-arn>' --region '<region>

4. Create an endpoint configuration

The following example uses the CreateEndpointConfig API to create an endpoint configuration.
See the following AWS CLI command as an example.

aws sagemaker create-endpoint-config --endpoint-config-name '<your-custom-endpoint-
config-name>' \
 --production-variants '<list-of-production-variants>' \
 --region '<region>'

5. Create the endpoint

The following AWS CLI example uses the CreateEndpoint API to create the endpoint.

aws sagemaker create-endpoint --endpoint-name '<your-custom-endpoint-name>' \
 --endpoint-config-name '<endpoint-config-name-you-just-created>'
 \
 --region '<region>'

Check the progress of your endpoint deployment by using the DescribeEndpoint API. See the
following AWS CLI command as an example.

aws sagemaker describe-endpoint —endpoint-name '<endpoint-name>' —region <region>

After the EndpointStatus changes to InService, the endpoint is ready to use for real-time
inference.

6. Invoke the endpoint

The following command structure invokes the endpoint for real-time inferencing.

aws sagemaker invoke-endpoint --endpoint-name '<endpoint-name>' \
 --region '<region>' --body '<your-data>' [--content-type]
 '<content-type>' <outfile>

Create a Regression or Classification Job Using the AutoML API 101

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide

The following tabs contain complete code examples for deploying a model with AWS SDK for
Python (boto3) or the AWS CLI.

AWS SDK for Python (boto3)

1. Obtain the candidate definitions by using the following code example.

import sagemaker
import boto3

session = sagemaker.session.Session()

sagemaker_client = boto3.client('sagemaker', region_name='us-west-2')
job_name = 'test-auto-ml-job'

describe_response = sm_client.describe_auto_ml_job(AutoMLJobName=job_name)
extract the best candidate definition from DescribeAutoMLJob response
best_candidate = describe_response['BestCandidate']
extract the InferenceContainers definition from the caandidate definition
inference_containers = best_candidate['InferenceContainers']

2. Create the model by using the following the code example.

Create Model
model_name = 'test-model'
sagemaker_role = 'arn:aws:iam:444455556666:role/sagemaker-execution-role'
create_model_response = sagemaker_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = sagemaker_role,
 Containers = inference_containers
)

3. Create the endpoint configuration by using the following the code example.

endpoint_config_name = 'test-endpoint-config'

instance_type = 'ml.m5.2xlarge'
for all supported instance types, see
https://docs.aws.amazon.com/sagemaker/latest/APIReference/
API_ProductionVariant.html#sagemaker-Type-ProductionVariant-InstanceType #
 Create endpoint config

endpoint_config_response = sagemaker_client.create_endpoint_config(

Create a Regression or Classification Job Using the AutoML API 102

Amazon SageMaker Developer Guide

 EndpointConfigName=endpoint_config_name,
 ProductionVariants=[
 {
 "VariantName": "variant1",
 "ModelName": model_name,
 "InstanceType": instance_type,
 "InitialInstanceCount": 1
 }
]
)

print(f"Created EndpointConfig: {endpoint_config_response['EndpointConfigArn']}")

4. Create the endpoint and deploy the model with the following code example.

create endpoint and deploy the model
endpoint_name = 'test-endpoint'
create_endpoint_response = sagemaker_client.create_endpoint(
 EndpointName=endpoint_name,

 EndpointConfigName=endpoint_config_name)
print(create_endpoint_response)

Check the status of creating the endpoint by using the following the code example.

describe endpoint creation status
status = sagemaker_client.describe_endpoint(EndpointName=endpoint_name)
["EndpointStatus"]

5. Invoke the endpoint for real-time inferencing by using the following command structure.

once endpoint status is InService, you can invoke the endpoint for inferencing
if status == "InService":
 sm_runtime = boto3.Session().client('sagemaker-runtime')
 inference_result = sm_runtime.invoke_endpoint(EndpointName='test-endpoint',
 ContentType='text/csv', Body='1,2,3,4,class')

AWS Command Line Interface (AWS CLI)

1. Obtain the candidate definitions by using the following code example.

Create a Regression or Classification Job Using the AutoML API 103

Amazon SageMaker Developer Guide

aws sagemaker describe-auto-ml-job --auto-ml-job-name 'test-automl-job' --
region us-west-2

2. Create the model by using the following code example.

aws sagemaker create-model --model-name 'test-sagemaker-model'
--containers '[{
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sklearn-
automl:2.5-1-cpu-py3", DOC-EXAMPLE-BUCKET1
 "ModelDataUrl": "s3://DOC-EXAMPLE-BUCKET/output/model.tar.gz",
 "Environment": {
 "AUTOML_SPARSE_ENCODE_RECORDIO_PROTOBUF": "1",
 "AUTOML_TRANSFORM_MODE": "feature-transform",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "application/x-recordio-protobuf",
 "SAGEMAKER_PROGRAM": "sagemaker_serve",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code"
 }
}, {
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-
xgboost:1.3-1-cpu-py3",
 "ModelDataUrl": "s3://DOC-EXAMPLE-BUCKET/output/model.tar.gz",
 "Environment": {
 "MAX_CONTENT_LENGTH": "20971520",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv",
 "SAGEMAKER_INFERENCE_OUTPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_SUPPORTED":
 "predicted_label,probability,probabilities"
 }
}, {
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sklearn-
automl:2.5-1-cpu-py3", aws-region
 "ModelDataUrl": "s3://DOC-EXAMPLE-BUCKET/output/model.tar.gz",
 "Environment": {
 "AUTOML_TRANSFORM_MODE": "inverse-label-transform",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv",
 "SAGEMAKER_INFERENCE_INPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_OUTPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_SUPPORTED":
 "predicted_label,probability,labels,probabilities",
 "SAGEMAKER_PROGRAM": "sagemaker_serve",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code"
 }

Create a Regression or Classification Job Using the AutoML API 104

Amazon SageMaker Developer Guide

}]' \
--execution-role-arn 'arn:aws:iam::1234567890:role/sagemaker-execution-role' \
--region 'us-west-2'

For additional details, see creating a model.

The create model command will return a response in the following format.

{
 "ModelArn": "arn:aws:sagemaker:us-west-2:1234567890:model/test-sagemaker-
model"
}

3. Create an endpoint configuration by using the following code example.

aws sagemaker create-endpoint-config --endpoint-config-name 'test-endpoint-config'
 \
--production-variants '[{"VariantName": "variant1",
 "ModelName": "test-sagemaker-model",
 "InitialInstanceCount": 1,
 "InstanceType": "ml.m5.2xlarge"
 }]' \
--region us-west-2

The create endpoint configuration command will return a response in the following
format.

{
 "EndpointConfigArn": "arn:aws:sagemaker:us-west-2:1234567890:endpoint-config/
test-endpoint-config"
}

4. Create an endpoint by using the following code example.

aws sagemaker create-endpoint --endpoint-name 'test-endpoint' \
--endpoint-config-name 'test-endpoint-config' \
--region us-west-2

The create endpoint command will return a response in the following format.

{
Create a Regression or Classification Job Using the AutoML API 105

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-model.html

Amazon SageMaker Developer Guide

 "EndpointArn": "arn:aws:sagemaker:us-west-2:1234567890:endpoint/test-endpoint"
}

Check the progress of the endpoint deployment by using the following describe-endpoint CLI
code example.

aws sagemaker describe-endpoint --endpoint-name 'test-endpoint' --region us-west-2

The previous progress check will return a response in the following format.

{
 "EndpointName": "test-endpoint",
 "EndpointArn": "arn:aws:sagemaker:us-west-2:1234567890:endpoint/test-
endpoint",
 "EndpointConfigName": "test-endpoint-config",
 "EndpointStatus": "Creating",
 "CreationTime": 1660251167.595,
 "LastModifiedTime": 1660251167.595
}

After the EndpointStatus changes to InService, the endpoint is ready for use in real-
time inference.

5. Invoke the endpoint for real-time inferencing by using the following command structure.

aws sagemaker-runtime invoke-endpoint --endpoint-name 'test-endpoint' \
--region 'us-west-2' \
--body '1,51,3.5,1.4,0.2' \
--content-type 'text/csv' \
'/tmp/inference_output'

For more options, see invoking an endpoint.

Deploy models from different accounts

You can deploy an Autopilot model from a different account than the original account that a model
was generated in. To implement cross-account model deployment, this section shows how to do
the following:

1. Grant permission to the deploying account

Create a Regression or Classification Job Using the AutoML API 106

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-endpoint.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker-runtime/invoke-endpoint.html

Amazon SageMaker Developer Guide

To assume the role in the generating account, you must grant permission to the deploying
account. This allows the deploying account to describe Autopilot jobs in the generating account.

The following example uses a generating account with a trusted sagemaker-role entity. The
example shows how to give a deploying account with the ID 111122223333 permission to
assume the role of the generating account.

"Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "sagemaker.amazonaws.com"
],
 "AWS": ["111122223333"]
 },
 "Action": "sts:AssumeRole"
 }

The new account with the ID 111122223333 can now assume the role for the generating
account.

Next, call the DescribeAutoMLJob API from the deploying account to obtain a description of
the job created by the generating account.

The following code example describes the model from the deploying account.

import sagemaker
import boto3
session = sagemaker.session.Session()

sts_client = boto3.client('sts')
sts_client.assume_role

role = 'arn:aws:iam::111122223333:role/sagemaker-role'
role_session_name = "role-session-name"
_assumed_role = sts_client.assume_role(RoleArn=role,
 RoleSessionName=role_session_name)

credentials = _assumed_role["Credentials"]
access_key = credentials["AccessKeyId"]

Create a Regression or Classification Job Using the AutoML API 107

Amazon SageMaker Developer Guide

secret_key = credentials["SecretAccessKey"]
session_token = credentials["SessionToken"]

session = boto3.session.Session()

sm_client = session.client('sagemaker', region_name='us-west-2',
 aws_access_key_id=access_key,
 aws_secret_access_key=secret_key,
 aws_session_token=session_token)

now you can call describe automl job created in account A

job_name = "test-job"
response= sm_client.describe_auto_ml_job(AutoMLJobName=job_name)

2. Grant access to the deploying account to the model artifacts in the generating account.

The deploying account only needs access to the model artifacts in the generating account
to deploy it. These are located in the S3OutputPath that was specified in the original
CreateAutoMLJob API call during model generation.

To give the deploying account access to the model artifacts, choose one of the following
options:

a. Give access to the ModelDataUrl from the generating account to the deploying account.

Next, you need to give the deploying account permission to assume the role. follow the real-
time inferencing steps to deploy.

b. Copy model artifacts from the generating account's original S3OutputPath to the generating
account.

To grant access to the model artifacts, you must define a best_candidate model and
reassign model containers to the new account.

The following example shows how to define a best_candidate model and reassign the
ModelDataUrl.

best_candidate = automl.describe_auto_ml_job()['BestCandidate']

reassigning ModelDataUrl for best_candidate containers below
new_model_locations = ['new-container-1-ModelDataUrl', 'new-container-2-
ModelDataUrl', 'new-container-3-ModelDataUrl']

Create a Regression or Classification Job Using the AutoML API 108

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html#sagemaker-Type-AutoMLOutputDataConfig-S3OutputPath
https://aws.amazon.com/premiumsupport/knowledge-center/cross-account-access-s3/
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-deploy-models.html#autopilot-deploy-models-realtime
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-deploy-models.html#autopilot-deploy-models-realtime
https://aws.amazon.com/premiumsupport/knowledge-center/copy-s3-objects-account/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html#sagemaker-Type-AutoMLOutputDataConfig-S3OutputPath

Amazon SageMaker Developer Guide

new_model_locations_index = 0
for container in best_candidate['InferenceContainers']:
 container['ModelDataUrl'] = new_model_locations[new_model_locations_index++]

After this assignment of containers, follow the steps in Deploy using SageMaker APIs to
deploy.

To build a payload in real-time inferencing, see the notebook example to define a test payload.
To create the payload from a CSV file and invoke an endpoint, see the Predict with your model
section in Create a machine learning model automatically.

Batch inferencing

Batch inferencing, also known as offline inferencing, generates model predictions on a batch of
observations. Batch inference is a good option for large datasets or if you don't need an immediate
response to a model prediction request.

By contrast, online inference (real-time inferencing) generates predictions in real time.

You can make batch inferences from an Autopilot model using the SageMaker Python SDK, the
Autopilot user interface (UI), the AWS SDK for Python (boto3), or the AWS Command Line Interface
(AWS CLI).

The following tabs show three options for deploying your model: Using APIs, Autopilot UI, or using
APIs to deploy from different accounts. These instructions assume that you have already created
a model in Autopilot. If you don't have a model, see Create a regression or classification job for
tabular data using the AutoML API. To see examples for each option, open each tab.

Deploy a model using Autopilot UI

The Autopilot UI contains helpful dropdown menus, toggles, tooltips, and more to help you
navigate through model deployment.

The following steps show how to deploy a model from an Autopilot experiment for batch
predictions.

1. Sign in at https://console.aws.amazon.com/sagemaker/ and select Studio from the navigation
pane.

2. On the left navigation pane, choose Studio.

Create a Regression or Classification Job Using the AutoML API 109

https://aws.amazon.com/getting-started/hands-on/machine-learning-tutorial-automatically-create-models
https://aws.amazon.com/getting-started/hands-on/create-machine-learning-model-automatically-sagemaker-autopilot/#autopilot-cr-room
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-deploy-models.html#autopilot-deploy-models-realtime
https://sagemaker.readthedocs.io/en/stable/
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/cli/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

3. Under Get started, select the Domain that you want to launch the Studio application in. If your
user profile only belongs to one Domain, you do not see the option for selecting a Domain.

4. Select the user profile that you want to launch the Studio Classic application for. If there is
no user profile in the domain, choose Create user profile. For more information, see Add and
Remove User Profiles.

5. Choose Launch Studio. If the user profile belongs to a shared space, choose Open Spaces.

6. When the SageMaker Studio Classic console opens, choose the Launch SageMaker Studio
button.

7. Select AutoML from the left navigation pane.

8. Under Name, select the Autopilot experiment corresponding to the model that you want to
deploy. This opens a new AUTOPILOT JOB tab.

9. In the Model name section, select the model that you want to deploy.

10.Choose Deploy model. This opens a new tab.

11.Choose Make batch predictions at the top of the page.

12.For Batch transform job configuration, input the Instance type, Instance count and other
optional information.

13.In the Input data configuration section, open the dropdown menu.

a. For S3 data type, choose ManifestFile or S3Prefix.

b. For Split type, choose Line, RecordIO, TFRecord or None.

c. For Compression, choose Gzip or None.

14.For S3 location, enter the Amazon S3 bucket location of the input data and other optional
information.

15.Under Output data configuration, enter the S3 bucket for the output data, and choose how to
assemble the output of your job.

a. For Additional configuration (optional), you can enter a MIME type and an S3 Encryption
key.

16.For Input/output filtering and data joins (optional), you enter a JSONpath expression to
filter your input data, join the input source data with your output data, and enter a JSONpath
expression to filter your output data.

a. For examples for each type of filter, see the DataProcessing API.

17.To perform batch predictions on your input dataset, select Create batch transform job. A new
Batch Transform Jobs tab appears.

Create a Regression or Classification Job Using the AutoML API 110

https://docs.aws.amazon.com/sagemaker/latest/dg/domain-user-profile-add-remove.html
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-user-profile-add-remove.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformOutput.html#sagemaker-Type-TransformOutput-AssembleWith
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataProcessing.html#sagemaker-Type-DataProcessing-InputFilter

Amazon SageMaker Developer Guide

18.In the Batch Transform Jobs tab: Locate the name of your job in Status section. Then check the
progress of the job.

Deploy using SageMaker APIs

To use the SageMaker APIs for batch inferencing, there are three steps:

1. Obtain candidate definitions

Candidate definitions from InferenceContainers are used to create a SageMaker model.

The following example shows how to use the DescribeAutoMLJob API to obtain candidate
definitions for the best model candidate. See the following AWS CLI command as an example.

aws sagemaker describe-auto-ml-job --auto-ml-job-name <job-name> --region <region>

Use the ListCandidatesForAutoMLJob API to list all candidates. See the following AWS CLI
command as an example.

aws sagemaker list-candidates-for-auto-ml-job --auto-ml-job-name <job-name> --
region <region>

2. Create a SageMaker model

To create a SageMaker model using the CreateModel API, use the container definitions from the
previous steps. See the following AWS CLI command as an example.

aws sagemaker create-model --model-name '<your-custom-model-name>' \
 --containers ['<container-definition1>, <container-
definition2>, <container-definition3>]' \
 --execution-role-arn '<execution-role-arn>' --region '<region>

3. Create a SageMaker transform job

The following example creates a SageMaker transform job with the CreateTransformJob API. See
the following AWS CLI command as an example.

aws sagemaker create-transform-job --transform-job-name '<your-custom-transform-job-
name>' --model-name '<your-custom-model-name-from-last-step>'\
--transform-input '{
 "DataSource": {

Create a Regression or Classification Job Using the AutoML API 111

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidate.html#sagemaker-Type-AutoMLCandidate-InferenceContainers
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCandidatesForAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-transform-job.html

Amazon SageMaker Developer Guide

 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "<your-input-data>"
 }
 },
 "ContentType": "text/csv",
 "SplitType": "Line"
 }'\
--transform-output '{
 "S3OutputPath": "<your-output-path>",
 "AssembleWith": "Line"
 }'\
--transform-resources '{
 "InstanceType": "<instance-type>",
 "InstanceCount": 1
 }' --region '<region>'

Check the progress of your transform job using the DescribeTransformJob API. See the following
AWS CLI command as an example.

aws sagemaker describe-transform-job --transform-job-name '<your-custom-transform-job-
name>' --region <region>

After the job is finished, the predicted result will be available in <your-output-path>.

The output file name has the following format: <input_data_file_name>.out. As an example,
if your input file is text_x.csv, the output name will be text_x.csv.out.

The following tabs show code examples for SageMaker Python SDK, AWS SDK for Python (boto3),
and the AWS CLI.

SageMaker Python SDK

The following example uses the SageMaker Python SDK to make predictions in batches.

from sagemaker import AutoML

sagemaker_session= sagemaker.session.Session()

job_name = 'test-auto-ml-job' # your autopilot job name
automl = AutoML.attach(auto_ml_job_name=job_name)
output_path = 's3://test-auto-ml-job/output'

Create a Regression or Classification Job Using the AutoML API 112

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTransformJob.html
https://sagemaker.readthedocs.io/en/stable/overview.html

Amazon SageMaker Developer Guide

input_data = 's3://test-auto-ml-job/test_X.csv'

call DescribeAutoMLJob API to get the best candidate definition
best_candidate = automl.describe_auto_ml_job()['BestCandidate']
best_candidate_name = best_candidate['CandidateName']

create model
model = automl.create_model(name=best_candidate_name,
 candidate=best_candidate)

create transformer
transformer = model.transformer(instance_count=1,
 instance_type='ml.m5.2xlarge',
 assemble_with='Line',
 output_path=output_path)

do batch transform
transformer.transform(data=input_data,
 split_type='Line',
 content_type='text/csv',
 wait=True)

AWS SDK for Python (boto3)

The following example uses AWS SDK for Python (boto3) to make predictions in batches.

import sagemaker
import boto3

session = sagemaker.session.Session()

sm_client = boto3.client('sagemaker', region_name='us-west-2')
role = 'arn:aws:iam::1234567890:role/sagemaker-execution-role'
output_path = 's3://test-auto-ml-job/output'
input_data = 's3://test-auto-ml-job/test_X.csv'

best_candidate = sm_client.describe_auto_ml_job(AutoMLJobName=job_name)
['BestCandidate']
best_candidate_containers = best_candidate['InferenceContainers']
best_candidate_name = best_candidate['CandidateName']

create model
reponse = sm_client.create_model(
 ModelName = best_candidate_name,

Create a Regression or Classification Job Using the AutoML API 113

Amazon SageMaker Developer Guide

 ExecutionRoleArn = role,
 Containers = best_candidate_containers
)

Lauch Transform Job
response = sm_client.create_transform_job(
 TransformJobName=f'{best_candidate_name}-transform-job',
 ModelName=model_name,
 TransformInput={
 'DataSource': {
 'S3DataSource': {
 'S3DataType': 'S3Prefix',
 'S3Uri': input_data
 }
 },
 'ContentType': "text/csv",
 'SplitType': 'Line'
 },
 TransformOutput={
 'S3OutputPath': output_path,
 'AssembleWith': 'Line',
 },
 TransformResources={
 'InstanceType': 'ml.m5.2xlarge',
 'InstanceCount': 1,
 },
)

The batch inference job returns a response in the following format.

{'TransformJobArn': 'arn:aws:sagemaker:us-west-2:1234567890:transform-job/test-
transform-job',
 'ResponseMetadata': {'RequestId': '659f97fc-28c4-440b-b957-a49733f7c2f2',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {'x-amzn-requestid': '659f97fc-28c4-440b-b957-a49733f7c2f2',
 'content-type': 'application/x-amz-json-1.1',
 'content-length': '96',
 'date': 'Thu, 11 Aug 2022 22:23:49 GMT'},
 'RetryAttempts': 0}}

AWS Command Line Interface (AWS CLI)

1. Obtain the candidate definitions by using the following the code example.

Create a Regression or Classification Job Using the AutoML API 114

Amazon SageMaker Developer Guide

aws sagemaker describe-auto-ml-job --auto-ml-job-name 'test-automl-job' --
region us-west-2

2. Create the model by using the following the code example.

aws sagemaker create-model --model-name 'test-sagemaker-model'
--containers '[{
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sklearn-
automl:2.5-1-cpu-py3",
 "ModelDataUrl": "s3://test-bucket/out/test-job1/data-processor-models/test-
job1-dpp0-1-e569ff7ad77f4e55a7e549a/output/model.tar.gz",
 "Environment": {
 "AUTOML_SPARSE_ENCODE_RECORDIO_PROTOBUF": "1",
 "AUTOML_TRANSFORM_MODE": "feature-transform",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "application/x-recordio-protobuf",
 "SAGEMAKER_PROGRAM": "sagemaker_serve",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code"
 }
}, {
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-
xgboost:1.3-1-cpu-py3",
 "ModelDataUrl": "s3://test-bucket/out/test-job1/tuning/flicdf10v2-dpp0-xgb/
test-job1E9-244-7490a1c0/output/model.tar.gz",
 "Environment": {
 "MAX_CONTENT_LENGTH": "20971520",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv",
 "SAGEMAKER_INFERENCE_OUTPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_SUPPORTED":
 "predicted_label,probability,probabilities"
 }
}, {
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sklearn-
automl:2.5-1-cpu-py3",
 "ModelDataUrl": "s3://test-bucket/out/test-job1/data-processor-models/test-
job1-dpp0-1-e569ff7ad77f4e55a7e549a/output/model.tar.gz",
 "Environment": {
 "AUTOML_TRANSFORM_MODE": "inverse-label-transform",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv",
 "SAGEMAKER_INFERENCE_INPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_OUTPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_SUPPORTED":
 "predicted_label,probability,labels,probabilities",

Create a Regression or Classification Job Using the AutoML API 115

Amazon SageMaker Developer Guide

 "SAGEMAKER_PROGRAM": "sagemaker_serve",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code"
 }
}]' \
--execution-role-arn 'arn:aws:iam::1234567890:role/sagemaker-execution-role' \
--region 'us-west-2'

3. Create the transform job by using the following the code example.

aws sagemaker create-transform-job --transform-job-name 'test-tranform-job'\
 --model-name 'test-sagemaker-model'\
--transform-input '{
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://test-bucket/data.csv"
 }
 },
 "ContentType": "text/csv",
 "SplitType": "Line"
 }'\
--transform-output '{
 "S3OutputPath": "s3://test-bucket/output/",
 "AssembleWith": "Line"
 }'\
--transform-resources '{
 "InstanceType": "ml.m5.2xlarge",
 "InstanceCount": 1
 }'\
--region 'us-west-2'

4. Check the progress of the transform job by using the following the code example.

aws sagemaker describe-transform-job --transform-job-name 'test-tranform-job' --
region us-west-2

The following is the response from the transform job.

{
 "TransformJobName": "test-tranform-job",
 "TransformJobArn": "arn:aws:sagemaker:us-west-2:1234567890:transform-job/test-
tranform-job",
 "TransformJobStatus": "InProgress",

Create a Regression or Classification Job Using the AutoML API 116

Amazon SageMaker Developer Guide

 "ModelName": "test-model",
 "TransformInput": {
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://test-bucket/data.csv"
 }
 },
 "ContentType": "text/csv",
 "CompressionType": "None",
 "SplitType": "Line"
 },
 "TransformOutput": {
 "S3OutputPath": "s3://test-bucket/output/",
 "AssembleWith": "Line",
 "KmsKeyId": ""
 },
 "TransformResources": {
 "InstanceType": "ml.m5.2xlarge",
 "InstanceCount": 1
 },
 "CreationTime": 1662495635.679,
 "TransformStartTime": 1662495847.496,
 "DataProcessing": {
 "InputFilter": "$",
 "OutputFilter": "$",
 "JoinSource": "None"
 }
}

After the TransformJobStatus changes to Completed, you can check the inference result
in the S3OutputPath.

Deploy models from different accounts

To create a batch inferencing job in a different account than the one that the model was generated
in, follow the instructions in Deploy models from different accounts. Then you can create models
and transform jobs by following the Deploy using SageMaker APIs.

Create a Regression or Classification Job Using the AutoML API 117

Amazon SageMaker Developer Guide

Models generated by Amazon SageMaker Autopilot

This procedure describes how to share a model that you created in Amazon SageMaker Autopilot
with another user in SageMaker Canvas. It also shows how to view details about jobs that you've
run.

Prerequisites

Before you begin this procedure, you must have created and run an Autopilot experiment. For
instructions, see Create a regression or classification job for tabular data using the AutoML API.

Share your Autopilot model

You can share your Autopilot model with another user in SageMaker Canvas. The other user can
then import your model and use it to generate predictions.

To share the model in the Autopilot user interface using a button, see the following section View
model details. The Share Model button is discussed in Step 6.

For more information about how to share a model, see Bring Your Own Model Into Canvas.

View model details

Autopilot generates details about the candidate models that you can obtain. These details include
the following:

• A plot of the aggregated SHAP values that indicate the importance of each feature. This helps
explain your models predictions.

• The summary statistics for various training and validation metrics, including the objective metric.

• A list of the hyperparameters used to train and tune the model.

To view model details after running an Autopilot job, follow these steps:

1. Choose the Home icon

from the left navigation pane to view the top-level Amazon SageMaker Studio Classic
navigation menu.

2. Select the AutoML card from the main working area. This opens a new Autopilot tab.

3. In the Name section, select the Autopilot job that has the details that you want to examine.
This opens a new Autopilot job tab.

Create a Regression or Classification Job Using the AutoML API 118

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html

Amazon SageMaker Developer Guide

4. The Autopilot job panel lists the metric values including the Objective metric for each model
under Model name. The Best model is listed at the top of the list under Model name and is
also highlighted in the Models tab.

• To review model details, select the model that you are interested in and select View
model details. This opens a new Model Details tab.

5. The Model Details tab is divided into four subsections.

1. The top of the Explainability tab contains a plot of aggregated SHAP values that indicate
the importance of each feature. Following that are the metrics and hyperparameter values
for this model.

2. The Performance tab contains metrics statistics a confusion matrix.

3. The Artifacts tab contains information about model inputs, outputs, and intermediate
results.

4. The Network tab summarizes your network isolation and encryption choices.

Note

Feature importance and information in the Performance tab is only generated for the
Best model.

For more information about how the SHAP values help explain predictions based on
feature importance, see the whitepaper Understanding the model explainability. Additional
information is also available in the Model Explainability topic in the SageMaker Developer
Guide.

6. To share your Autopilot model with another SageMaker Canvas user, choose Share Model.
That button is located at the top right of the Model Details tab.

• In the Add Canvas users section, use the down arrow to select a SageMaker Canvas user.

View an Autopilot Model Performance Report

An Amazon SageMaker model quality report (also referred to as performance report) provides
insights and quality information for the best model candidate generated by an AutoML job. This
includes information about the job details, model problem type, objective function, and other

Create a Regression or Classification Job Using the AutoML API 119

https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf

Amazon SageMaker Developer Guide

information related to the problem type. This guide shows how to view Amazon SageMaker
Autopilot performance metrics graphically, or view metrics as raw data in a JSON file.

For example, in classification problems, the model quality report includes the following:

• Confusion matrix

• Area under the receiver operating characteristic curve (AUC)

• Information to understand false positives and false negatives

• Tradeoffs between true positives and false positives

• Tradeoffs between precision and recall

Autopilot also provides performance metrics for all of your candidate models. These metrics are
calculated using all of the training data and are used to estimate model performance. The main
working area includes these metrics by default. The type of metric is determined by the type of
problem being addressed.

Refer to the Amazon SageMaker API reference documentation for the list of available metrics
supported by Autopilot.

You can sort your model candidates with the relevant metric to help you select and deploy the
model that addresses your business needs. For definitions of these metrics, see the Autopilot
candidate metrics topic.

To view a performance report from an Autopilot job, follow these steps:

1. Choose the Home icon

from the left navigation pane to view the top-level Amazon SageMaker Studio Classic
navigation menu.

2. Select the AutoML card from the main working area. This opens a new Autopilot tab.

3. In the Name section, select the Autopilot job that has the details that you want to examine.
This opens a new Autopilot job tab.

4. The Autopilot job panel lists the metric values including the Objective metric for each model
under Model name. The Best model is listed at the top of the list under Model name and it is
highlighted in the Models tab.

Create a Regression or Classification Job Using the AutoML API 120

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics

Amazon SageMaker Developer Guide

• To review model details, select the model that you are interested in and select View in
model details. This opens a new Model Details tab.

5. Choose the Performance tab between the Explainability and Artifacts tab.

a. On the top right section of the tab, select the down arrow on the Download Performance
Reports button.

b. The down arrow provides two options to view Autopilot performance metrics:

i. You can download a PDF of the performance report to view the metrics graphically.

ii. You can view metrics as raw data and download it as a JSON file.

For instructions on how to create and run an AutoML job in SageMaker Studio Classic, see Create a
regression or classification job for tabular data using the AutoML API.

The performance report contains two sections. The first contains details about the Autopilot job
that produced the model. The second section contains a model quality report.

Autopilot Job details

This first section of the report gives some general information about the Autopilot job that
produced the model. These job details include the following information:

• Autopilot candidate name

• Autopilot job name

• Problem type

• Objective metric

• Optimization direction

Model quality report

Model quality information is generated by Autopilot model insights. The report's content that is
generated depends on the problem type it addressed: regression, binary classification, or multiclass
classification. The report specifies the number of rows that were included in the evaluation dataset
and the time at which the evaluation occurred.

Create a Regression or Classification Job Using the AutoML API 121

Amazon SageMaker Developer Guide

Metrics tables

The first part of the model quality report contains metrics tables. These are appropriate for the
type of problem that the model addressed.

The following image is an example of a metrics table that Autopilot generates for a regression
problem. It shows the metric name, value, and standard deviation.

The following image is an example of a metrics table generated by Autopilot for a multiclass
classification problem. It shows the metric name, value, and standard deviation.

Graphical model performance information

The second part of the model quality report contains graphical information to help you evaluate
model performance. The contents of this section depend on the problem type used in modeling.

Create a Regression or Classification Job Using the AutoML API 122

Amazon SageMaker Developer Guide

The area under the receiver operating characteristic curve

The area under the receiver operating characteristic curve represents the trade-off between
true positive and false positive rates. It is an industry-standard accuracy metric used for binary
classification models. AUC (area under the curve) measures the ability the model to predict a
higher score for positive examples, as compared to negative examples. The AUC metric provides an
aggregated measure of the model performance across all possible classification thresholds.

The AUC metric returns a decimal value from 0 to 1. AUC values near 1 indicate that the machine
learning model is highly accurate. Values near 0.5 indicate that the model is performing no better
than guessing at random. AUC values close to 0 indicate that the model has learned the correct
patterns, but is making predictions that are as inaccurate as possible. Values near zero can indicate
a problem with the data. For more information about the AUC metric, see the Receiver operating
characteristic article on Wikipedia.

The following is an example of an area under the receiver operating characteristic curve graph to
evaluate predictions made by a binary classification model. The dashed thin line represents the
area under the receiver operating characteristic curve that a model which classifies no-better-than-
random guessing would score, with an AUC score of 0.5. The curves of more accurate classification
models lie above this random baseline, where the rate of true positives exceeds the rate of false
positives. The area under the receiver operating characteristic curve representing the performance
of the binary classification model is the thicker solid line.

Create a Regression or Classification Job Using the AutoML API 123

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Amazon SageMaker Developer Guide

A summary of the graph's components of false positive rate (FPR) and true positive rate (TPR) are
defined as follows.

• Correct predictions

• True positive (TP): The predicted value is 1, and the true value is 1.

• True negative (TN): The predicted value is 0, and the true value is 0.

• Erroneous predictions

• False positive (FP): The predicted value is 1, but the true value is 0.

• False negative (FN): The predicted value is 0, but the true value is 1.

Create a Regression or Classification Job Using the AutoML API 124

Amazon SageMaker Developer Guide

The false positive rate (FPR) measures the fraction of true negatives (TN) that were falsely
predicted as positives (FP), over the sum of FP and TN. The range is 0 to 1. A smaller value indicates
better predictive accuracy.

• FPR = FP/(FP+TN)

The true positive rate (TPR) measures the fraction true positives that were correctly predicted
as positives (TP) over the sum of TP and false negatives (FN). The range is 0 to 1. A larger value
indicates better predictive accuracy.

• TPR = TP/(TP+FN)

Confusion matrix

A confusion matrix provides a way to visualize the accuracy of the predictions made by a model
for binary and multiclass classification for different problems. The confusion matrix in the model
quality report contains the following.

• The number and percentage of correct and incorrect predictions for the actual labels

• The number and percentage of accurate predictions on the diagonal from the upper-left to the
lower-right corner

• The number and percentage of inaccurate predictions on the diagonal from the upper-right to
the lower-left corner

The incorrect predictions on a confusion matrix are the confusion values.

The following diagram is an example of a confusion matrix for a binary classification problem. It
contains the following information:

• The vertical axis is divided into two rows containing true and false actual labels.

• The horizontal axis is divided into two columns containing true and false labels that were
predicted by the model.

• The color bar assigns a darker tone to a larger number of samples to visually indicate the number
of values that were classified in each category.

In this example, the model predicted actual 2817 false values correctly, and 353 actual true values
correctly. The model incorrectly predicted 130 actual true values to be false and 33 actual false

Create a Regression or Classification Job Using the AutoML API 125

Amazon SageMaker Developer Guide

values to be true. The difference in tone indicates that the dataset is not balanced. The imbalance
is because there are many more actual false labels than actual true labels.

The following diagram is an example of a confusion matrix for a multi-class classification problem.
The confusion matrix in the model quality report contains the following.

• The vertical axis is divided into three rows containing three different actual labels.

• The horizontal axis is divided into three columns containing labels that were predicted by the
model.

• The color bar assigns a darker tone to a larger number of samples to visually indicate the number
of values that were classified in each category.

In the example below, the model correctly predicted actual 354 values for label f, 1094 values for
label i and 852 values for label m. The difference in tone indicates that the dataset is not balanced
because there are many more labels for the value i than for f or m.

Create a Regression or Classification Job Using the AutoML API 126

Amazon SageMaker Developer Guide

The confusion matrix in the model quality report provided can accommodate a maximum of 15
labels for multiclass classification problem types. If a row corresponding to a label shows a Nan
value, it means that the validation dataset used to check model predictions does not contain data
with that label.

Gain curve

In binary classification, a gain curve predicts the cumulative benefit of using a percentage of
the dataset to find a positive label. The gain value is calculated during training by dividing the
cumulative number of positive observations by the total number of positive observations in the
data, at each decile. If the classification model created during training is representative of the
unseen data, you can use the gain curve to predict the percentage of data that you must target to
obtain a percentage of positive labels. The greater the percentage of the dataset used, the higher
the percentage of positive labels found.

In the following example graph, the gain curve is the line with changing slope. The straight line
is the percentage of positive labels found by selecting a percentage of data from the dataset at

Create a Regression or Classification Job Using the AutoML API 127

Amazon SageMaker Developer Guide

random. Upon targeting 20% of the dataset, you would expect to find larger than 40% of the
positive labels. As an example, you might consider using a gain curve to determine your efforts
in a marketing campaign. Using our gain curve example, for 83% of people in a neighborhood to
purchase cookies, you'd send an advertisement to about 60% of the neighborhood.

Lift curve

In binary classification, the lift curve illustrates the uplift of using a trained model to predict the
likelihood of finding a positive label compared to a random guess. The lift value is calculated
during training using the ratio of percentage gain to the ratio of positive labels at each decile. If
the model created during training is representative of the unseen data, use the lift curve to predict
the benefit of using the model over randomly guessing.

In the following example graph, the lift curve is the line with changing slope. The straight line is
the lift curve associated with selecting the corresponding percentage randomly from the dataset.

Create a Regression or Classification Job Using the AutoML API 128

Amazon SageMaker Developer Guide

Upon targeting 40% of the dataset with your model's classification labels, you would expect to
find about 1.7 times the number of the positive labels that you would have found by randomly
selecting 40% of the unseen data.

Precision-recall curve

The precision-recall curve represents the tradeoff between precision and recall for binary
classification problems.

Precision measures the fraction of actual positives that are predicted as positive (TP) out of all
positive predictions (TP and false positive). The range is 0 to 1. A larger value indicates better
accuracy in the predicted values.

• Precision = TP/(TP+FP)

Create a Regression or Classification Job Using the AutoML API 129

Amazon SageMaker Developer Guide

Recall measures the fraction of actual positives that are predicted as positive (TP) out of all actual
positive predictions (TP and false negative). This is also known as the sensitivity or as the true
positive rate. The range is 0 to 1. A larger value indicates better detection of positive values from
the sample.

• Recall = TP/(TP+FN)

The objective of a classification problem is to correctly label as many elements as possible. A
system with high recall but low precision returns a high percentage of false positives.

The following graphic depicts a spam filter that marks every email as spam. It has high recall, but
low precision, because recall doesn't measure false positives.

Give more weight to recall over precision if your problem has a low penalty for false positive
values, but a high penalty for missing a true positive result. For example, detecting an impending
collision in a self-driving vehicle.

By contrast, a system with high precision, but low recall, returns a high percentage of false
negatives. A spam filter that marks every email as desirable (not spam) has high precision but low
recall because precision doesn't measure false negatives.

If your problem has a low penalty for false negative values, but a high penalty for missing a true
negative results, give more weight to precision over recall. For example, flagging a suspicious filter
for a tax audit.

Create a Regression or Classification Job Using the AutoML API 130

Amazon SageMaker Developer Guide

The following graphic depicts a spam filter that has high precision but low recall, because precision
doesn't measure false negatives.

A model that makes predictions with both high precision and high recall produces a high number
of correctly labeled results. For more information, see Precision and recall article in Wikipedia.

Area under precision-recall curve (AUPRC)

For binary classification problems, Amazon SageMaker Autopilot includes a graph of the area
under the precision-recall curve (AUPRC). The AUPRC metric provides an aggregated measure of
the model performance across all possible classification thresholds and uses both precision and
recall. AUPRC does not take the number of true negatives into account. Therefore, it can be useful
to evaluate model performance in cases where there's a large number of true negatives in the data.
For example, to model a gene containing a rare mutation.

The following graphic is an example of an AUPRC graph. Precision at its highest value is 1, and
recall is at 0. In the lower right corner of the graph, recall is its highest value (1) and precision is 0.
In between these two points , the AUPRC curve illustrates the tradeoff between precision and recall
at different thresholds.

Create a Regression or Classification Job Using the AutoML API 131

https://en.wikipedia.org/wiki/Precision_and_recall

Amazon SageMaker Developer Guide

Actual against predicted plot

The actual against predicted plot shows the difference between actual and predicted model values.
In the following example graph, the solid line is a linear line of best fit. If the model were 100%
accurate, each predicted point would equal its corresponding actual point and lie on this line of
best fit. The distance away from the line of best fit is a visual indication of model error. The larger
the distance away from the line of best fit, the higher the model error.

Create a Regression or Classification Job Using the AutoML API 132

Amazon SageMaker Developer Guide

Standardized residual plot

A standardized residual plot incorporates the following statistical terms:

residual

A (raw) residual shows the difference between actual and values predicted by your model. The
larger the difference, the larger the residual value.

standard deviation

The standard deviation is a measure of how values vary from an average value. A high standard
deviation indicates that many values are very different from their average value. A low standard
deviation indicates that many values are close to their average value.

Create a Regression or Classification Job Using the AutoML API 133

Amazon SageMaker Developer Guide

standardized residual

A standardized residual divides the raw residuals by their standard deviation. Standardized
residuals have units of standard deviation and are useful in identifying outliers in data
regardless of the difference in scale of the raw residuals. If a standardized residual is much
smaller or larger than the other standardized residuals, it indicates that the model is not fitting
these observations well.

The standardized residual plot measures the strength of the difference between observed and
expected values. The actual predicted value is displayed on the x axis. A point with a value larger
than an absolute value of 3 is commonly regarded as an outlier.

The following example graph shows that a large number of standardized residuals are clustered
around 0 on the horizontal axis. The values close to zero indicate that the model is fitting these
points well. The points towards the top and bottom of the plot are not predicted well by the
model.

Create a Regression or Classification Job Using the AutoML API 134

Amazon SageMaker Developer Guide

Residual histogram

A residual histogram incorporates the following statistical terms:

residual

A (raw) residual shows the difference between actual and values predicted by your model. The
larger the difference, the larger the residual value.

standard deviation

The standard deviation is a measure of how much values vary from an average value. A high
standard deviation indicates that many values are very different from their average value. A low
standard deviation indicates that many values are close to their average value.

standardized residual

A standardized residual divides the raw residuals by their standard deviation. Standardized
residuals have units of standard deviation. These are useful in identifying outliers in data
regardless of the difference in scale of the raw residuals. If a standardized residual is much
smaller or larger than the other standardized residuals, it would indicate that the model is not
fitting these observations well.

histogram

A histogram is a graph that shows how often a value occurred.

The residual histogram shows the distribution of standardized residual values. A histogram
distributed in a bell shape and centered at zero indicates that the model does not systematically
overpredict or underpredict any particular range of target values.

In the following graphic, the standardized residual values indicate that the model is fitting the data
well. If the graph showed values far away from the center value, it would indicate that those values
don't fit the model well.

Create a Regression or Classification Job Using the AutoML API 135

Amazon SageMaker Developer Guide

Amazon SageMaker Autopilot notebooks generated to manage AutoML tasks

Amazon SageMaker Autopilot manages the key tasks in an automatic machine learning (AutoML)
process using an AutoML job.

The AutoML job creates three notebook-based reports that describe the plan that Autopilot follows
to generate candidate models. A candidate model consists of a (pipeline, algorithm) pair. First,
there’s a data exploration notebook that describes what Autopilot learned about the data that you
provided. Second, there’s a candidate definition notebook, which uses the information about the
data to generate candidates. Third, a model insights report that can help detail the performance
characteristics of the best model in the leaderboard of an Autopilot experiment.

Topics

• Amazon SageMaker Autopilot Data exploration report

• Candidate definition notebook

Create a Regression or Classification Job Using the AutoML API 136

Amazon SageMaker Developer Guide

You can run these notebooks in Amazon SageMaker, or locally, if you have installed the Amazon
SageMaker Python SDK. You can share the notebooks just like any other SageMaker Studio Classic
notebook. The notebooks are created for you to conduct experiments. For example, you could edit
the following items in the notebooks:

• Preprocessors used on the data

• Amount of hyperparameter optimization (HPO) runs and their parallelism

• Algorithms to try

• Instance types used for the HPO jobs

• Hyperparameter ranges

Modifications to the candidate definition notebook are encouraged as a learning tool. With this
capability, you learn how decisions made during the machine learning process impact your results.

Note

When you run the notebooks in your default instance, you incur baseline costs. However,
when you run HPO jobs from the candidate notebook, these jobs use additional compute
resources that incur additional costs.

Amazon SageMaker Autopilot Data exploration report

Amazon SageMaker Autopilot cleans and pre-processes your dataset automatically. High-quality
data improves machine learning efficiency and produces models that make more accurate
predictions.

There are issues with customer-provided datasets that cannot be fixed automatically without
the benefit of some domain knowledge. Large outlier values in the target column for regression
problems, for example, may cause suboptimal predictions for the non-outlier values. Outliers
may need to be removed depending on the modeling objective. If a target column is included by
accident as one of the input features, the final model will validate well, but be of little value for
future predictions.

To help customers discover these sorts of issues, Autopilot provides a data exploration report that
contains insights into potential issues with their data. The report also suggests how to handle the
issues.

Create a Regression or Classification Job Using the AutoML API 137

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

A data exploration notebook containing the report is generated for every Autopilot job. The report
is stored in an Amazon S3 bucket and can be accessed from your output path. The path of the data
exploration report usually adheres to the following pattern.

[s3 output path]/[name of the automl job]/sagemaker-automl-
candidates/[name of processing job used for data analysis]/notebooks/
SageMakerAutopilotDataExplorationNotebook.ipynb

The location of the data exploration notebook can be obtained from the Autopilot API using the
DescribeAutoMLJob operation response, which is stored in DataExplorationNotebookLocation.

When running Autopilot from SageMaker Studio Classic, you can open the data exploration report
using the following steps:

1. Choose the Home icon

from the left navigation pane to view the top-level Amazon SageMaker Studio Classic
navigation menu.

2. Select the AutoML card from the main working area. This opens a new Autopilot tab.

3. In the Name section, select the Autopilot job that has the data exploration notebook that you
want to examine. This opens a new Autopilot job tab.

4. Select Open data exploration notebook from the top right section of the Autopilot job tab.

The data exploration report is generated from your data before the training process begins. This
allows you to stop Autopilot jobs that might lead to meaningless results. Likewise, you can address
any issues or improvements with your dataset before rerunning Autopilot. This way, you can use
your domain expertise to improve the data quality manually, before you train a model on a better-
curated dataset.

The data report contains only static markdown and can be opened in any Jupyter environment. The
notebook that contains the report can be converted to other formats, such as PDF or HTML. For
more information about conversions, see Using the nbconvert script to convert Jupyter notebooks
to other formats..

Topics

• Dataset Summary

• Target Analysis

Create a Regression or Classification Job Using the AutoML API 138

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobArtifacts.html#sagemaker-Type-AutoMLJobArtifacts-DataExplorationNotebookLocation
https://nbconvert.readthedocs.io/en/latest/usage.html
https://nbconvert.readthedocs.io/en/latest/usage.html

Amazon SageMaker Developer Guide

• Data Sample

• Duplicate rows

• Cross column correlations

• Anomalous Rows

• Missing values, cardinality, and descriptive statistics

Dataset Summary

This Dataset Summary provides key statistics characterizing your dataset including the number
of rows, columns, percent duplicate rows and missing target values. It is intended to provide you
with a quick alert when there are issue with your dataset that Amazon SageMaker Autopilot has
detected and that are likely to require your intervention. The insights are surfaced as warnings that
are classified as being of either “high” or “low” severity. The classification depends on the level of
confidence that the issue will adversely impact the performance of the model.

The high and low severity insights appear in the summary as pop-ups. For most of the insights,
recommendations are offered for how to confirm that there is an issue with the dataset that
requires your attention. Proposals are also provided for how to resolve the issues.

Autopilot provides additional statistics about missing or not valid target values in our dataset to
help you detect other issues that may not be captured by high severity insights. An unexpected
number of columns of a particular type might indicate that some columns that you want to use
may be missing from the dataset. It could also indicate that there was an issue with how the data
was prepared or stored. Fixing these data problems brought to your attention by Autopilot can
improve the performance of the machine learning models trained on your data.

High severity insights are shown in the summary section and in other relevant sections in the
report. Examples of high and low-severity insights are usually given depending on the section of
the data report.

Target Analysis

Various high and low-severity insights are shown in this section related to the distribution of
values in the target column. Check that target column contains the correct values. Incorrect values
in target column will likely result in a machine learning model that doesn't serve the intended
business purpose. Several data insights of high and low severity are present in this section. Here are
several examples.

Create a Regression or Classification Job Using the AutoML API 139

Amazon SageMaker Developer Guide

• Outlier target values - Skewed or unusual target distribution for regression, such as heavy tailed
targets.

• High or low target cardinality - Infrequent number of class labels or a large number of unique
classes for classification.

For both regression and classification problem types, not valid values such as numeric infinity, NaN
or empty space in target column are surfaced. Depending on the problem type, different dataset
statistics are presented. A distribution of target column values for a regression problem allows you
to verify if the distribution is what you expected.

The following screenshot shows an Autopilot data report, which includes statistics such as the
mean, median, minimum, maximum, percentage of outliers in your dataset. The screenshot also
includes a histogram showing the distribution of labels in the target column. The histogram shows
Target Column Values on the horizontal axis and Count on the vertical axis. A box highlights the
Outliers Percentage section of the screenshot to indicate where this statistic appears.

Multiple statistics are shown regarding target values and their distribution. If any of the outliers,
not valid values, or missing percentages are greater than zero, these values are surfaced so you
can investigate why your data contains unusable target values. Some unusable target values are
highlighted as a low severity insight warning.

In the following screenshot, a ` symbol was added accidentally to the target column, which
prevented the numeric value of the target from being parsed. A Low severity insight: "Invalid

Create a Regression or Classification Job Using the AutoML API 140

Amazon SageMaker Developer Guide

target values" warning appears. The warning in this example states "0.14% of the labels in the
target column could not be converted to numeric values. The most common non-numeric values
are: ["-3.8e-05","-9-05","-4.7e-05","-1.4999999999999999e-05","-4.3e-05"]. That usually indicates
that there are problems with data collection or processing. Amazon SageMaker Autopilot ignores
all observations with invalid target label."

Autopilot also provides a histogram showing the distribution of labels for classification.

The following screenshot shows an example of statistics given for your target column including the
number of classes, missing or not valid values. A histogram with Target Label on the horizontal
axis and Frequency on the vertical axis shows the distribution of each label category.

Create a Regression or Classification Job Using the AutoML API 141

Amazon SageMaker Developer Guide

Note

You can find definitions of all the terms presented in this and other sections in Definitions
section at the bottom of the report notebook.

Data Sample

Autopilot presents an actual sample of your data to help you spot issues with your dataset. The
sample table scrolls horizontally. Inspect the sample data to verify that all the necessary columns
are present in the dataset.

Create a Regression or Classification Job Using the AutoML API 142

Amazon SageMaker Developer Guide

Autopilot also calculates a measure of prediction power, that can be used to identify a linear
or nonlinear relationship between a feature and the target variable. A value of 0 indicates that
the feature has no predictive value in predicting the target variable. A value of 1 indicates the
highest predictive power for the target variable. For more information on predictive power, see the
Definitions section.

Note

It is not recommended that you use prediction power as a substitute for feature
importance. Only use it if you're certain that prediction power is an appropriate measure
for your use case.

The following screenshot shows example data sample. The top row contains the prediction power
of each column in your dataset. The second row contains the column data type. Subsequent rows
contain the labels. The columns contain the target column followed by each feature column. Each
feature column has an associated prediction power, highlighted in this screenshot, with a box. In
this example, the column containing the feature x51 has a predictive power of 0.68 for the target
variable y. The feature x55 is slightly less predictive with a prediction power of 0.59.

Create a Regression or Classification Job Using the AutoML API 143

Amazon SageMaker Developer Guide

Duplicate rows

If duplicate rows are present in the dataset, Amazon SageMaker Autopilot displays a sample of
them.

Note

It is not recommended to balance a dataset by up-sampling before providing it to
Autopilot. This may result in inaccurate validation scores for the models trained by
Autopilot, and the models that are produced may be unusable.

Cross column correlations

Autopilot uses the Pearson's correlation coefficient, a measure of linear correlation between two
features, to populate a correlation matrix. In the correlation matrix, numeric features are plotted
on both the horizontal and vertical axes, with the Pearson's correlation coefficient plotted at their
intersections. The higher the correlation between two features, the higher the coefficient, with a
maximum value of |1|.

• A value of -1 indicates that the features are perfectly negatively correlated.

• A value of 1, which occurs when a feature is correlated with itself, indicates perfect positive
correlation.

You can use the information in the correlation matrix to remove highly correlated features. A
smaller number of features reduces chances of overfitting a model and can reduce the costs of
production in two ways. It lessens the Autopilot runtime needed and, for some applications, can
make data collection procedures cheaper.

The following screenshot shows an example of a correlation matrix between 7 features. Each
feature is displayed in a matrix on both the horizontal and vertical axes. The Pearson's correlation
coefficient is displayed at the intersection between two features. Each feature intersection has a
color tone associated with it. The higher the correlation, the darker the tone. The darkest tones
occupy the diagonal of the matrix, where each feature is correlated with itself, representing perfect
correlation.

Create a Regression or Classification Job Using the AutoML API 144

Amazon SageMaker Developer Guide

Anomalous Rows

Amazon SageMaker Autopilot detects which rows in your dataset might be anomalous. It then
assigns an anomaly score to each row. Rows with negative anomaly scores are considered
anomalous.

The following screenshot shows the output from an Autopilot analysis for rows containing
anomalies. A column containing an anomalous score appears next to the dataset columns for each
row.

Create a Regression or Classification Job Using the AutoML API 145

Amazon SageMaker Developer Guide

Missing values, cardinality, and descriptive statistics

Amazon SageMaker Autopilot examines and reports on properties of the individual columns of
your dataset. In each section of the data report that presents this analysis, the content is arranged
in order. This is so you can check the most “suspicious” values first. Using these statistics you
can improve contents of individual columns, and improve the quality of the model produced by
Autopilot.

Autopilot calculates several statistics on the categorical values in columns that contain them. These
include the number of unique entries and, for text, the number of unique words.

Autopilot calculates several standard statistics on the numerical values in columns that contain
them. The following image depicts these statistics, including the mean, median, minimum and
maximum values, and the percentages of numerical types and of outlier values.

Create a Regression or Classification Job Using the AutoML API 146

Amazon SageMaker Developer Guide

Candidate definition notebook

The candidate definition notebook contains each suggested preprocessing step, algorithm, and
hyperparameter ranges.

You can choose which candidate to train and tune in two ways. The first, by running sections of
the notebook. The second, by running the entire notebook to optimize all candidates to identify
a best candidate. If you run the entire notebook, only the best candidate is displayed after job
completion.

To run Autopilot from SageMaker Studio Classic, open the candidate definition notebook by
following these steps:

1. Choose the Home icon

from the left navigation pane to view the top-level Amazon SageMaker Studio Classic
navigation menu.

2. Select the AutoML card from the main working area. This opens a new Autopilot tab.

3. In the Name section, select the Autopilot job that has the candidate definition notebook that
you want to examine. This opens a new Autopilot job tab.

Create a Regression or Classification Job Using the AutoML API 147

Amazon SageMaker Developer Guide

4. Choose Open candidate generation notebook from the top right section of the Autopilot
job tab. This opens a new read-only preview of the Amazon SageMaker Autopilot Candidate
Definition Notebook.

To run the candidate definition notebook, follow these steps:

1. Choose Import notebook at the top right of the Amazon SageMaker Autopilot Candidate
Definition Notebook tab. This opens a tab to set up a new notebook environment to run the
notebook.

2. Select an existing SageMaker Image or use a Custom Image.

3. Select a Kernel, an Instance type, and an optional Start-up script.

You can now run the notebook in this new environment.

Configure inference output in generated containers

Autopilot generates an ordered ContainerDefinition list. This can be used to build a model to
deploy in a machine learning pipeline. This model can be used for online hosting and inference.

Customers can list inference container definitions with the ListCandidateForAutoMLJob API.
The list of inference container definitions that represent the best candidate is also available in the
DescribeAutoMLJob response.

Inference container definitions for regression and classification problem types

Autopilot generates inference containers specific to the training mode and the problem type of the
job.

Container definitions for hyperparameter optimization (HPO) mode

• Regression: HPO generates two containers:

1. A feature engineering container that transforms the original features into features that the
regression algorithms can train on.

2. An algorithm container that transforms features and generates a regression score for the
dataset.

• Classification: HPO generates three containers:

1. A feature engineering container that transforms the original features into features that the
classification algorithms can train on.

Create a Regression or Classification Job Using the AutoML API 148

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCandidateForAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-training-mode
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types

Amazon SageMaker Developer Guide

2. An algorithm container that generates the predicted_label with the highest probability.
This container can also produce the various probabilities associated with the classification
outcomes in the inference response.

3. A feature engineering container that performs post-processing of the algorithm prediction.
For example, it can perform an inverse transform on the predicted label and change it to the
original label.

Container definitions for ensembling mode

In ensembling mode, both regression and classification problem types have only one inference
container. This inference container transforms the features and generates the predictions based on
problem type.

Inference responses per problem type

Inference responses for classification models

For classification inference containers, you can select the content of the inference response by
using four predefined keys:

• predicted_label: The label with the highest probability of predicting the correct label, as
determined by Autopilot.

• probability:

• HPO models: The probability of the True class for binary classification. The probability of the
predicted_label for multiclass classification.

• Ensemble models: The probability of the predicted_label for binary and multiclass
classification.

• probabilities: The list of probabilities for all corresponding classes.

• labels: The list of all labels.

For example, for a binary classification problem, if you pass the inference response keys
['predicted_label', 'probability', 'probabilities', 'labels'] and the output
response appears as [1, 0.1, "[0.9, 0.1]", "['1', '0']"], you should interpret it as
follows:

1. predicted_label equals 1 because label "1" has a higher probability (0.9 in this case).

Create a Regression or Classification Job Using the AutoML API 149

Amazon SageMaker Developer Guide

2. For HPO models, probability equals 0.1 which is the probability of the positive_class (0
in this case) selected by Autopilot.

For Ensemble models, probability equals 0.9 which is the probability of the
predicted_label.

3. probabilities lists the probability of each label in labels.

4. labels are the unique labels in the dataset, where the second label ("0" in this case) is the
positive_class selected by Autopilot.

By default, inference containers are configured to generate only the predicted_label. To select
additional inference content, you can update the inference_response_keys parameter to
include up to these three environment variables:

• SAGEMAKER_INFERENCE_SUPPORTED: This is set to provide hints to you about what content
each container supports.

• SAGEMAKER_INFERENCE_INPUT: This should be set to the keys that the container expects in
input payload.

• SAGEMAKER_INFERENCE_OUTPUT: This should be populated with the set of keys that the
container outputs.

Inference responses for classification models in HPO mode

This section shows how to configure the inference response from classification models using
hyperparameter optimization (HPO) mode.

To choose the inference response content in HPO mode: Add the SAGEMAKER_INFERENCE_INPUT
and SAGEMAKER_INFERENCE_OUTPUT variables to the second and third containers that are
generated in HPO mode for classification problems.

The keys supported by the second container (algorithm) are predicted_label, probability, and
probabilities. Note that labels is deliberately not added to SAGEMAKER_INFERENCE_SUPPORTED.

The keys supported by the third classification model container are predicted_label, labels,
probability, and probabilities. Therefore, the SAGEMAKER_INFERENCE_SUPPORTED
environment includes the names of these keys.

To update the definition of the inference containers to receive predicted_label and
probability, use the following code example.

Create a Regression or Classification Job Using the AutoML API 150

Amazon SageMaker Developer Guide

containers[1]['Environment'].update({'SAGEMAKER_INFERENCE_OUTPUT': 'predicted_label,
 probability'})
containers[2]['Environment'].update({'SAGEMAKER_INFERENCE_INPUT': 'predicted_label,
 probability'})
containers[2]['Environment'].update({'SAGEMAKER_INFERENCE_OUTPUT': 'predicted_label,
 probability'})

The following code example updates the definition of the inference containers to receive
predicted_label, probabilities, and labels. Do not pass the labels to the second
container (the algorithm container), because it is generated by the third container independently.

containers[1]['Environment'].update({'SAGEMAKER_INFERENCE_OUTPUT':
 'predicted_label,probabilities'})
containers[2]['Environment'].update({'SAGEMAKER_INFERENCE_INPUT':
 'predicted_label,probabilities'})
containers[2]['Environment'].update({'SAGEMAKER_INFERENCE_OUTPUT': 'predicted_label,
 probabilities,labels'})

The following collapsible sections provide code examples for AWS SDK for Python (Boto3) and
for SageMaker SDK for Python. Each section shows how to select the content of the inference
responses in HPO mode for the respective code example.

AWS SDK for Python (Boto3)

import boto3

sm_client = boto3.client('sagemaker', region_name='<Region>')

role = '<IAM role>'
input_data = '<S3 input uri>'
output_path = '<S3 output uri>'

best_candidate = sm_client.describe_auto_ml_job(AutoMLJobName='<AutoML Job Name>')
['BestCandidate']
best_candidate_containers = best_candidate['InferenceContainers']
best_candidate_name = best_candidate['CandidateName']

best_candidate_containers[1]['Environment'].update({'SAGEMAKER_INFERENCE_OUTPUT':
 'predicted_label, probability'})
best_candidate_containers[2]['Environment'].update({'SAGEMAKER_INFERENCE_INPUT':
 'predicted_label, probability'})

Create a Regression or Classification Job Using the AutoML API 151

Amazon SageMaker Developer Guide

best_candidate_containers[2]['Environment'].update({'SAGEMAKER_INFERENCE_OUTPUT':
 'predicted_label, probability'})

create model
reponse = sm_client.create_model(
 ModelName = '<Model Name>',
 ExecutionRoleArn = role,
 Containers = best_candidate_containers
)

Lauch Transform Job
response = sm_client.create_transform_job(
 TransformJobName='<Transform Job Name>',
 ModelName='<Model Name>',
 TransformInput={
 'DataSource': {
 'S3DataSource': {
 'S3DataType': 'S3Prefix',
 'S3Uri': input_data
 }
 },
 'ContentType': "text/CSV",
 'SplitType': 'Line'
 },
 TransformOutput={
 'S3OutputPath': output_path,
 'AssembleWith': 'Line',
 },
 TransformResources={
 'InstanceType': 'ml.m4.xlarge',
 'InstanceCount': 1,
 },
)

SageMaker SDK for Python

from sagemaker import AutoML

aml = AutoML.attach(auto_ml_job_name='<AutoML Job Name>')
aml_best_model = aml.create_model(name='<Model Name>',
 candidate=None,
 inference_response_keys**=['probabilities',
 'labels'])

Create a Regression or Classification Job Using the AutoML API 152

Amazon SageMaker Developer Guide

aml_transformer = aml_best_model.transformer(accept='text/csv',
 assemble_with='Line',
 instance_type='ml.m5.xlarge',
 instance_count=1,)

aml_transformer.transform('<S3 input uri>',
 content_type='text/csv',
 split_type='Line',
 job_name='<Transform Job Name>',
 wait=True)

Inference responses for classification models in ensembling mode

This section shows how to configure the inference response from classification models using
ensembling mode.

In ensembling mode, to choose the content of the inference response, update the
SAGEMAKER_INFERENCE_OUTPUT environment variable.

The keys supported by the classification model container are predicted_label,
labels, probability, and probabilities. These keys are included in the
SAGEMAKER_INFERENCE_SUPPORTED environment.

To update the inference container definition to receive predicted_label and probability,
refer to the following code example.

containers[0]['Environment'].update({'SAGEMAKER_INFERENCE_OUTPUT': 'predicted_label,
 probability'})

The following collapsible section provides a code example for selecting the content of the
inference responses in ensembling mode. The example uses AWS SDK for Python (Boto3).

AWS SDK for Python (Boto3)

import boto3
sm_client = boto3.client('sagemaker', region_name='<Region>')

role = '<IAM role>'
input_data = '<S3 input uri>'
output_path = '<S3 output uri>'

Create a Regression or Classification Job Using the AutoML API 153

Amazon SageMaker Developer Guide

best_candidate = sm_client.describe_auto_ml_job(AutoMLJobName='<AutoML Job Name>')
['BestCandidate']
best_candidate_containers = best_candidate['InferenceContainers']
best_candidate_name = best_candidate['CandidateName']

*best_candidate_containers[0]['Environment'].update({'SAGEMAKER_INFERENCE_OUTPUT':
 'predicted_label, probability'})
*
create model
reponse = sm_client.create_model(
 ModelName = '<Model Name>',
 ExecutionRoleArn = role,
 Containers = best_candidate_containers
)

Lauch Transform Job
response = sm_client.create_transform_job(
 TransformJobName='<Transform Job Name>',
 ModelName='<Model Name>',
 TransformInput={
 'DataSource': {
 'S3DataSource': {
 'S3DataType': 'S3Prefix',
 'S3Uri': input_data
 }
 },
 'ContentType': "text/CSV",
 'SplitType': 'Line'
 },
 TransformOutput={
 'S3OutputPath': output_path,
 'AssembleWith': 'Line',
 },
 TransformResources={
 'InstanceType': 'ml.m4.xlarge',
 'InstanceCount': 1,
 },
)

The following collapsible section provides a code example that is identical to the SageMaker SDK
for Python example for HPO. It is included for your convenience.

Create a Regression or Classification Job Using the AutoML API 154

Amazon SageMaker Developer Guide

SageMaker SDK for Python

The following HPO code example uses SageMaker SDK for Python.

from sagemaker import AutoML

aml = AutoML.attach(auto_ml_job_name='<AutoML Job Name>')
aml_best_model = aml.create_model(name='<Model Name>',
 candidate=None,
 *inference_response_keys**=['probabilities',
 'labels'])*

aml_transformer = aml_best_model.transformer(accept='text/csv',
 assemble_with='Line',
 instance_type='ml.m5.xlarge',
 instance_count=1,)

aml_transformer.transform('<S3 input uri>',
 content_type='text/csv',
 split_type='Line',
 job_name='<Transform Job Name>',
 wait=True)

Tutorials and example notebooks

Example notebooks, tutorial videos, and walkthroughs to get started with Amazon SageMaker
Autopilot.

Topics

• Example notebooks: Explore modeling with Amazon SageMaker Autopilot

• Videos: Use Autopilot to automate and explore the machine learning process

• Tutorials: Get started with Amazon SageMaker Autopilot

Example notebooks: Explore modeling with Amazon SageMaker Autopilot

Amazon SageMaker Autopilot provides the following example notebooks.

• Direct marketing with Amazon SageMaker Autopilot: This notebook demonstrates how uses the
Bank Marketing Data Set to predict whether a customer will enroll for a term deposit at a bank.
You can use Autopilot on this dataset to get the most accurate ML pipeline by exploring options
contained in various candidate pipelines. Autopilot generates each candidate in a two-step

Create a Regression or Classification Job Using the AutoML API 155

https://sagemaker-examples.readthedocs.io/en/latest/autopilot/sagemaker_autopilot_direct_marketing.html
https://archive.ics.uci.edu/ml/datasets/bank+marketing

Amazon SageMaker Developer Guide

procedure. The first step performs automated feature engineering on the dataset. The second
step trains and tunes an algorithm to produce a model. The notebook contains instructions on
how to train the model and how to deploy the model to perform batch inference using the best
candidate.

• Customer Churn Prediction with Amazon SageMaker Autopilot: This notebook describes using
machine learning for the automated identification of unhappy customers, also known as
customer churn prediction. The example shows how to analyze a publicly available dataset
and perform feature engineering on it. Next it shows how to tune a model by selecting the
best performing pipeline along with the optimal hyperparameters for the training algorithm.
Finally, it shows how to deploy the model to a hosted endpoint and how to evaluate its
predictions against ground truth. However, ML models rarely give perfect predictions. That's
why this notebook also shows how to incorporate the relative costs of prediction mistakes when
determining the financial outcome of using ML.

• Top Candidates Customer Churn Prediction with Amazon SageMaker Autopilot and Batch
Transform (Python SDK): This notebook also describes using machine learning for the automated
identification of unhappy customers, also known as customer churn prediction. This notebook
demonstrates how to configure the model to obtain the inference probability, select the top N
models, and make Batch Transform on a hold-out test set for evaluation.

Note

This notebook works with SageMaker Python SDK >= 1.65.1 released on 6/19/2020.

• Bringing your own data processing code to Amazon SageMaker Autopilot: This notebook
demonstrates how to incorporate and deploy custom data processing code when using Amazon
SageMaker Autopilot. It adds a custom feature selection step to remove irrelevant variables to
an Autopilot job. It then shows how to deploy both the custom processing code and models
generated by Autopilot on a real-time endpoint and, alternatively, for batch processing.

Videos: Use Autopilot to automate and explore the machine learning process

Here is a video series that provides a tour of Amazon SageMaker Autopilot capabilities using Studio
Classic. They show how to start an AutoML job, analyze and preprocess data, how to do feature
engineering and hyperparameter optimization on candidate models, and how to visualize and
compare the resulting model metrics.

Topics

Create a Regression or Classification Job Using the AutoML API 156

https://sagemaker-examples.readthedocs.io/en/latest/autopilot/autopilot_customer_churn.html
https://sagemaker-examples.readthedocs.io/en/latest/autopilot/autopilot_customer_churn_high_level_with_evaluation.html
https://sagemaker-examples.readthedocs.io/en/latest/autopilot/autopilot_customer_churn_high_level_with_evaluation.html
https://sagemaker-examples.readthedocs.io/en/latest/autopilot/custom-feature-selection/Feature_selection_autopilot.html

Amazon SageMaker Developer Guide

• Start an AutoML job with Amazon SageMaker Autopilot

• Review data exploration and feature engineering automated in Autopilot.

• Tune models to optimize performance

• Choose and deploy the best model

• Amazon SageMaker Autopilot tutorial

Start an AutoML job with Amazon SageMaker Autopilot

This video shows you to how to start an AutoML job with Autopilot. (Length: 8:41)

Amazon SageMaker Studio - AutoML with Amazon SageMaker Autopilot (part 1)

Review data exploration and feature engineering automated in Autopilot.

This video shows you how to review the data exploration and candidate definition notebooks
generated by Amazon SageMaker Autopilot. (Length: 10:04)

Amazon SageMaker Studio - AutoML with Amazon SageMaker Autopilot (part 2)

Tune models to optimize performance

This video shows you how to optimize model performance during training using hyperparameter
tuning. (Length: 4:59)

SageMaker Studio - AutoML with Amazon SageMaker Autopilot (part 3)

Choose and deploy the best model

This video shows you how to use job metrics to choose the best model and then how to deploy it.
(Length: 5:20)

SageMaker Studio - AutoML with Amazon SageMaker Autopilot (part 4)

Amazon SageMaker Autopilot tutorial

This video walks you through an end to end demo where we first build a binary classification model
automatically with Amazon SageMaker Autopilot. We see how candidate models have been built
and optimized using auto-generated notebooks. We also look at the top candidates with Amazon
SageMaker Experiments. Finally, we deploy the top candidate (based on XGBoost), and configure
data capture with SageMaker Model Monitor.

Create a Regression or Classification Job Using the AutoML API 157

https://www.youtube.com/embed/qMEtqJPhqpA
https://www.youtube.com/embed/WsfRAeGzgm8
https://www.youtube.com/embed/KZSTsWrDGXs
https://www.youtube.com/embed/vRHyX3kDstI

Amazon SageMaker Developer Guide

End to end demo with AutoML on SageMaker

Tutorials: Get started with Amazon SageMaker Autopilot

Get started tutorials for Autopilot demonstrate how to create a machine learning model
automatically without writing code. They show you how Autopilot simplifies the machine learning
experience by helping you explore your data and try different algorithms. Autopilot builds the best
machine learning model for the problem type using AutoML capabilities while allowing full control
and visibility.

• Create a machine learning model automatically with Autopilot: You assume the role of a
developer working at a bank in this tutorial. You have been asked to develop a machine learning
model to predict if a customer will enroll for a certificate of deposit (CD). This is a binary
classification problem. The model is trained on the marketing dataset that contains information
on customer demographics, responses to marketing events, and external factors.

Create an AutoML job for image classification using the API

The following instructions show how to create an Amazon SageMaker Autopilot job as a pilot
experiment for image classification problem types using SageMaker API Reference.

Note

Tasks such as text and image classification, time-series forecasting, and fine-tuning of
large language models are exclusively available through the version 2 of the Autopilot API.
For Python users, we recommend using the AWS SDK for Python (Boto3) as the Amazon
SageMaker Python SDK is not currently supported for the Autopilot API version 2.
Users who prefer the convenience of a user interface can use Amazon SageMaker Canvas to
access pre-trained models and generative AI foundation models, or create custom models
tailored for specific text, image classification, forecasting needs, or generative AI.

You can create an Autopilot image classification experiment programmatically by calling the
CreateAutoMLJobV2 API action in any language supported by Amazon SageMaker Autopilot or
the AWS CLI.

For information on how this API action translates into a function in the language of your choice,
see the See Also section of CreateAutoMLJobV2 and choose an SDK. As an example, for Python
users, see the full request syntax of create_auto_ml_job_v2 in AWS SDK for Python (Boto3).

Create an Image Classification job using the AutoML API 158

https://www.youtube.com/embed/DRjOOaR2prQ
https://aws.amazon.com/getting-started/hands-on/create-machine-learning-model-automatically-sagemaker-autopilot/#
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-reference.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_SeeAlso
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_auto_ml_job_v2

Amazon SageMaker Developer Guide

The following is a collection of mandatory and optional input request parameters for the
CreateAutoMLJobV2 API action used in image classification.

Required parameters

When calling CreateAutoMLJobV2 to create an Autopilot experiment for image classification, you
must provide the following values:

• An AutoMLJobName to specify the name of your job.

• At least one AutoMLJobChannel in AutoMLJobInputDataConfig to specify your data source.

• An AutoMLProblemTypeConfig of type ImageClassificationJobConfig.

• An OutputDataConfig to specify the Amazon S3 output path to store the artifacts of your
AutoML job.

• A RoleArn to specify the ARN of the role used to access your data.

All other parameters are optional.

Optional parameters

The following sections provide details of some optional parameters that you can pass to your
image classification AutoML job.

How to specify the training and validation datasets of an AutoML job

You can provide your own validation dataset and custom data split ratio, or let Autopilot split the
dataset automatically.

Each AutoMLJobChannel object (see the required parameter AutoMLJobInputDataConfig) has a
ChannelType, which can be set to either training or validation values that specify how the
data is to be used when building a machine learning model.

At least one data source must be provided and a maximum of two data sources is allowed: one
for training data and one for validation data. How you split the data into training and validation
datasets depends on whether you have one or two data sources.

How you split the data into training and validation datasets depends on whether you have one or
two data sources.

• If you only have one data source, the ChannelType is set to training by default and must
have this value.

Create an Image Classification job using the AutoML API 159

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ImageClassificationJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-RoleArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker-api/src/AWSSageMakerAPIDoc/build/server-root/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig

Amazon SageMaker Developer Guide

• If the ValidationFraction value in AutoMLDataSplitConfig is not set, 0.2 (20%) of the
data from this source is used for validation by default.

• If the ValidationFraction is set to a value between 0 and 1, the dataset is split based on
the value specified, where the value specifies the fraction of the dataset used for validation.

• If you have two data sources, the ChannelType of one of the AutoMLJobChannel objects
must be set to training, the default value. The ChannelType of the other data source must
be set to validation. The two data sources must have the same format, either CSV or Parquet,
and the same schema. You must not set the value for the ValidationFraction in this case
because all of the data from each source is used for either training or validation. Setting this
value causes an error.

How to specify the automatic model deployment configuration for an AutoML job

To enable automatic deployment for the best model candidate of an AutoML job, include a
ModelDeployConfig in the AutoML job request. This will allow the deployment of the best model
to a SageMaker endpoint. Below are the available configurations for customization.

• To let Autopilot generate the endpoint name, set AutoGenerateEndpointName to True.

• To provide your own name for the endpoint, set AutoGenerateEndpointName to False
and provide a name of your choice in EndpointName.

Datasets format and objective metric for image classification

In this section we learn about the available formats for datasets used in image classification as
well as the objective metric used to evaluate the predictive quality of machine learning model
candidates. The metrics calculated for candidates are specified using an array of MetricDatum
types.

Datasets formats

Autopilot supports .png, .jpg, and .jpeg image formats. If your dataset contains all .png images use
image/png, if it contains all .jpg or .jpeg images use image/jpeg, and if your dataset contains a
mix of image formats use image/*.

Objective metric

The following list contains the names of the metrics that are currently available to measure the
performance of models for image classification.

Create an Image Classification job using the AutoML API 160

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLDataSplitConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-ModelDeployConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDatum.html

Amazon SageMaker Developer Guide

Accuracy

The ratio of the number of correctly classified items to the total number of (correctly and
incorrectly) classified items. Accuracy measures how close the predicted class values are to
the actual values. Values for accuracy metrics vary between zero (0) and one (1). A value of 1
indicates perfect accuracy, and 0 indicates perfect inaccuracy.

Autopilot model deployment and prediction

This Autopilot guide includes steps for model deployment and setting up real-time inference.

After you train your Autopilot models, you can set up an endpoint and obtain predictions
interactively.

Real-time inferencing

Real-time inference is ideal for inference workloads where you have real-time, interactive,
low latency requirements. This section shows how you can use real-time inferencing to obtain
predictions interactively from your model.

You can use SageMaker APIs to manually deploy the model that produced the best validation
metric in an Autopilot experiment as follows.

Alternatively, you can chose the automatic deployment option when creating your Autopilot
experiment. For information on setting up the automatic deployment of models, see
ModelDeployConfig in the request parameters of CreateAutoMLJobV2. This creates an
endpoint automatically.

Note

To avoid incurring unnecessary charges, you can delete unneeded endpoint and resources
created from model deployment. For information about pricing of instances by Region, see
Amazon SageMaker Pricing.

1. Obtain the candidate container definitions

Obtain the candidate container definitions from InferenceContainers. A container definition
for inference refers to the containerized environment designed for deploying and running your
trained SageMaker model to make predictions.

Create an Image Classification job using the AutoML API 161

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-ModelDeployConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestParameters
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidate.html#sagemaker-Type-AutoMLCandidate-InferenceContainers

Amazon SageMaker Developer Guide

The following AWS CLI command example uses the DescribeAutoMLJobV2 API to obtain
candidate definitions for the best model candidate.

aws sagemaker describe-auto-ml-job-v2 --auto-ml-job-name job-name --region region

2. List candidates

The following AWS CLI command example uses the ListCandidatesForAutoMLJob API to list all
model candidates.

aws sagemaker list-candidates-for-auto-ml-job --auto-ml-job-name <job-name> --
region <region>

3. Create a SageMaker model

Use the container definitions from the previous steps and a candidate of your choice to create
a SageMaker model by using the CreateModel API. See the following AWS CLI command as an
example.

aws sagemaker create-model --model-name '<your-candidate-name>' \
 --containers ['<container-definition1>, <container-
definition2>, <container-definition3>]' \
 --execution-role-arn '<execution-role-arn>' --region '<region>

4. Create an endpoint configuration

The following AWS CLI command example uses the CreateEndpointConfig API to create an
endpoint configuration.

aws sagemaker create-endpoint-config --endpoint-config-name '<your-endpoint-config-
name>' \
 --production-variants '<list-of-production-variants>' \
 --region '<region>'

5. Create the endpoint

The following AWS CLI example uses the CreateEndpoint API to create the endpoint.

aws sagemaker create-endpoint --endpoint-name '<your-endpoint-name>' \
 --endpoint-config-name '<endpoint-config-name-you-just-created>'
 \

Create an Image Classification job using the AutoML API 162

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCandidatesForAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

 --region '<region>'

Check the progress of your endpoint deployment by using the DescribeEndpoint API. See the
following AWS CLI command as an example.

aws sagemaker describe-endpoint —endpoint-name '<endpoint-name>' —region <region>

After the EndpointStatus changes to InService, the endpoint is ready to use for real-time
inference.

6. Invoke the endpoint

The following command structure invokes the endpoint for real-time inferencing.

aws sagemaker invoke-endpoint --endpoint-name '<endpoint-name>' \
 --region '<region>' --body '<your-data>' [--content-type]
 '<content-type>' <outfile>

Explainability report

Amazon SageMaker Autopilot provides an explainability report to help explain how a best model
candidate makes predictions for image classification problems. This report can assist ML engineers,
product managers, and other internal stakeholders in understanding the characteristics of the
model. Both consumers and regulators rely on transparency in machine learning to trust and
interpret decisions made on model predictions. You can use these explanations for auditing and
meeting regulatory requirements, establishing trust in the model, supporting human decision-
making, and debugging and improving model performance.

The Autopilot explanatory functionality for image classification uses a visual class activation
map (CAM) approach that produces a heatmap where the distribution and intensity of each color
highlights the areas of an image that contribute the most to a specific prediction. This approach
relies on principal components derived from an implementation of Eigen-CAM.

Autopilot generates the explainability report as a JSON file. The report includes analysis details
that are based on the validation dataset. Each image used to generate the report contains the
following information:

• input_image_uri: The Amazon S3 URI to the input image taken as input for the heatmap.

• heatmap_image_uri: The Amazon S3 URI to the heatmap image generated by Autopilot.

Create an Image Classification job using the AutoML API 163

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://arxiv.org/ftp/arxiv/papers/2008/2008.00299.pdf

Amazon SageMaker Developer Guide

• predicted_label: The label class predicted by best model trained by Autopilot.

• probability: The confidence with which the predicted_label is predicted.

You can find the Amazon S3 prefix to the explainability artifacts generated
for the best candidate in the response to DescribeAutoMLJobV2 at
BestCandidate.CandidateProperties.CandidateArtifactLocations.Explainability.

The following examples illustrates what the heatmaps look like on few samples from Oxford-IIIT
Pet Dataset. The heatmap image displays color gradients that indicate the relative importance of
different features within the image. The red color represents regions with greater importance in
predicting the "predicted_label" of the input image compared to the features represented by the
blue color.

Input Image Heatmap Image

Create an Image Classification job using the AutoML API 164

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateArtifactLocations.html#sagemaker-Type-CandidateArtifactLocations-Explainability
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://www.robots.ox.ac.uk/~vgg/data/pets/

Amazon SageMaker Developer Guide

Input Image Heatmap Image

Model performance report

An Amazon SageMaker model quality report (also referred to as performance report) provides
insights and quality information for the best model candidate generated by an AutoML job. This
includes information about the job details, model problem type, objective function, and various
metrics. This section details the content of a performance report for image classification problems
and explains how to access the metrics as raw data in a JSON file.

You can find the Amazon S3 prefix to the model quality report artifacts
generated for the best candidate in the response to DescribeAutoMLJobV2 at
BestCandidate.CandidateProperties.CandidateArtifactLocations.ModelInsights.

The performance report contains two sections:

• The first section contains details about the Autopilot job that produced the model.

• The second section contains a model quality report with various performance metrics.

Create an Image Classification job using the AutoML API 165

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateArtifactLocations.html#sagemaker-Type-CandidateArtifactLocations-ModelInsights

Amazon SageMaker Developer Guide

Autopilot job details

This first section of the report gives some general information about the Autopilot job that
produced the model. These details include the following information:

• Autopilot candidate name: The name of the best model candidate.

• Autopilot job name: The name of the job.

• Problem type: The problem type. In our case, image classification.

• Objective metric: The objective metric used to optimize the performance of the model. In our
case, Accuracy.

• Optimization direction: Indicates whether to minimize or maximize the objective metric.

Model quality report

Model quality information is generated by Autopilot model insights. The report's content that is
generated depends on the problem type it addressed. The report specifies the number of rows that
were included in the evaluation dataset and the time at which the evaluation occurred.

Metrics tables

The first part of the model quality report contains metrics tables. These are appropriate for the
type of problem that the model addressed.

The following image is an example of a metrics table generates by Autopilot for an image or text
classification problem. It shows the metric name, value, and standard deviation.

Create an Image Classification job using the AutoML API 166

Amazon SageMaker Developer Guide

Graphical model performance information

The second part of the model quality report contains graphical information to help you evaluate
model performance. The contents of this section depend on the selected problem type.

Confusion matrix

A confusion matrix provides a way to visualize the accuracy of the predictions made by a model for
binary and multiclass classification for different problems.

A summary of the graph's components of false positive rate (FPR) and true positive rate (TPR) are
defined as follows.

• Correct predictions

• True positive (TP): The predicted the value is 1, and the true value is 1.

• True negative (TN): The predicted the value is 0, and the true value is 0.

• Erroneous predictions

• False positive (FP): The predicted the value is 1, but the true value is 0.

• False negative (FN): The predicted the value is 0, but the true value is 1.

The confusion matrix in the model quality report contains the following.

• The number and percentage of correct and incorrect predictions for the actual labels

Create an Image Classification job using the AutoML API 167

Amazon SageMaker Developer Guide

• The number and percentage of accurate predictions on the diagonal from the upper-left to the
lower-right corner

• The number and percentage of inaccurate predictions on the diagonal from the upper-right to
the lower-left corner

The incorrect predictions on a confusion matrix are the confusion values.

The following diagram is an example of a confusion matrix for a multi-class classification problem.
The confusion matrix in the model quality report contains the following.

• The vertical axis is divided into three rows containing three different actual labels.

• The horizontal axis is divided into three columns containing labels that were predicted by the
model.

• The color bar assigns a darker tone to a larger number of samples to visually indicate the number
of values that were classified in each category.

In the example below, the model correctly predicted actual 354 values for label f, 1094 values for
label i and 852 values for label m. The difference in tone indicates that the dataset is not balanced
because there are many more labels for the value i than for f or m.

Create an Image Classification job using the AutoML API 168

Amazon SageMaker Developer Guide

The confusion matrix in the model quality report provided can accommodate a maximum of 15
labels for multiclass classification problem types. If a row corresponding to a label shows a Nan
value, it means that the validation dataset used to check model predictions does not contain data
with that label.

Create an AutoML job for text classification using the API

The following instructions show how to create an Amazon SageMaker Autopilot job as a pilot
experiment for text classification problem types using SageMaker API Reference.

Note

Tasks such as text and image classification, time-series forecasting, and fine-tuning of
large language models are exclusively available through the version 2 of the Autopilot API.
For Python users, we recommend using the AWS SDK for Python (Boto3) as the Amazon
SageMaker Python SDK is not currently supported for the Autopilot API version 2.

Create a Text Classification job using the AutoML API 169

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-reference.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Users who prefer the convenience of a user interface can use Amazon SageMaker Canvas to
access pre-trained models and generative AI foundation models, or create custom models
tailored for specific text, image classification, forecasting needs, or generative AI.

You can create an Autopilot text classification experiment programmatically by calling the
CreateAutoMLJobV2 API action in any language supported by Amazon SageMaker Autopilot or
the AWS CLI.

For information on how this API action translates into a function in the language of your choice,
see the See Also section of CreateAutoMLJobV2 and choose an SDK. As an example, for Python
users, see the full request syntax of create_auto_ml_job_v2 in AWS SDK for Python (Boto3).

The following is a collection of mandatory and optional input request parameters for the
CreateAutoMLJobV2 API action used in text classification.

Required parameters

When calling CreateAutoMLJobV2 to create an Autopilot experiment for text classification, you
must provide the following values:

• An AutoMLJobName to specify the name of your job.

• At least one AutoMLJobChannel in AutoMLJobInputDataConfig to specify your data source.

• An AutoMLProblemTypeConfig of type TextClassificationJobConfig.

• An OutputDataConfig to specify the Amazon S3 output path to store the artifacts of your
AutoML job.

• A RoleArn to specify the ARN of the role used to access your data.

All other parameters are optional.

Optional parameters

The following sections provide details of some optional parameters that you can pass to your text
classification AutoML job.

How to specify the training and validation datasets of an AutoML job

You can provide your own validation dataset and custom data split ratio, or let Autopilot split the
dataset automatically.

Create a Text Classification job using the AutoML API 170

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_SeeAlso
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_auto_ml_job_v2
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextClassificationJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-RoleArn

Amazon SageMaker Developer Guide

Each AutoMLJobChannel object (see the required parameter AutoMLJobInputDataConfig) has a
ChannelType, which can be set to either training or validation values that specify how the
data is to be used when building a machine learning model.

At least one data source must be provided and a maximum of two data sources is allowed: one
for training data and one for validation data. How you split the data into training and validation
datasets depends on whether you have one or two data sources.

How you split the data into training and validation datasets depends on whether you have one or
two data sources.

• If you only have one data source, the ChannelType is set to training by default and must
have this value.

• If the ValidationFraction value in AutoMLDataSplitConfig is not set, 0.2 (20%) of the
data from this source is used for validation by default.

• If the ValidationFraction is set to a value between 0 and 1, the dataset is split based on
the value specified, where the value specifies the fraction of the dataset used for validation.

• If you have two data sources, the ChannelType of one of the AutoMLJobChannel objects
must be set to training, the default value. The ChannelType of the other data source must
be set to validation. The two data sources must have the same format, either CSV or Parquet,
and the same schema. You must not set the value for the ValidationFraction in this case
because all of the data from each source is used for either training or validation. Setting this
value causes an error.

How to specify the automatic model deployment configuration for an AutoML job

To enable automatic deployment for the best model candidate of an AutoML job, include a
ModelDeployConfig in the AutoML job request. This will allow the deployment of the best model
to a SageMaker endpoint. Below are the available configurations for customization.

• To let Autopilotgenerate the endpoint name, set AutoGenerateEndpointName to True.

• To provide your own name for the endpoint, set AutoGenerateEndpointName to False
and provide a name of your choice in EndpointName.

Create a Text Classification job using the AutoML API 171

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker-api/src/AWSSageMakerAPIDoc/build/server-root/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLDataSplitConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-ModelDeployConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents

Amazon SageMaker Developer Guide

Datasets format and objective metric for text classification

In this section we learn about the available formats for datasets used in text classification as well
as the metric used to evaluate the predictive quality of machine learning model candidates. The
metrics calculated for candidates are specified using an array of MetricDatum types.

Datasets formats

Autopilot supports tabular data formatted as CSV files or as Parquet files. For tabular data, each
column contains a feature with a specific data type and each row contains an observation. The
properties of these two file formats differ considerably.

• CSV (comma-separated-values) is a row-based file format that stores data in human readable
plaintext which a popular choice for data exchange as they are supported by a wide range of
applications.

• Parquet is a column-based file format where the data is stored and processed more efficiently
than row-based file formats. This makes them a better option for big data problems.

The data types accepted for columns include numerical, categorical, text.

Autopilot supports building machine learning models on large datasets up to hundreds of GBs.
For details on the default resource limits for input datasets and how to increase them, see Amazon
SageMaker Autopilot quotas.

Objective metric

The following list contains the names of the metrics that are currently available to measure the
performance of models for text classification.

Accuracy

The ratio of the number of correctly classified items to the total number of (correctly and
incorrectly) classified items. Accuracy measures how close the predicted class values are to
the actual values. Values for accuracy metrics vary between zero (0) and one (1). A value of 1
indicates perfect accuracy, and 0 indicates perfect inaccuracy.

Autopilot model deployment and prediction

This Autopilot guide includes steps for model deployment and setting up real-time inference.

Create a Text Classification job using the AutoML API 172

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDatum.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-quotas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-quotas.html

Amazon SageMaker Developer Guide

After you train your Autopilot models, you can set up an endpoint and obtain predictions
interactively.

Real-time inferencing

Real-time inference is ideal for inference workloads where you have real-time, interactive,
low latency requirements. This section shows how you can use real-time inferencing to obtain
predictions interactively from your model.

You can use SageMaker APIs to manually deploy the model that produced the best validation
metric in an Autopilot experiment as follows.

Alternatively, you can chose the automatic deployment option when creating your Autopilot
experiment. For information on setting up the automatic deployment of models, see
ModelDeployConfig in the request parameters of CreateAutoMLJobV2. This creates an
endpoint automatically.

Note

To avoid incurring unnecessary charges, you can delete unneeded endpoint and resources
created from model deployment. For information about pricing of instances by Region, see
Amazon SageMaker Pricing.

1. Obtain the candidate container definitions

Obtain the candidate container definitions from InferenceContainers. A container definition
for inference refers to the containerized environment designed for deploying and running your
trained SageMaker model to make predictions.

The following AWS CLI command example uses the DescribeAutoMLJobV2 API to obtain
candidate definitions for the best model candidate.

aws sagemaker describe-auto-ml-job-v2 --auto-ml-job-name job-name --region region

2. List candidates

The following AWS CLI command example uses the ListCandidatesForAutoMLJob API to list all
model candidates.

Create a Text Classification job using the AutoML API 173

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-ModelDeployConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestParameters
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidate.html#sagemaker-Type-AutoMLCandidate-InferenceContainers
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCandidatesForAutoMLJob.html

Amazon SageMaker Developer Guide

aws sagemaker list-candidates-for-auto-ml-job --auto-ml-job-name <job-name> --
region <region>

3. Create a SageMaker model

Use the container definitions from the previous steps and a candidate of your choice to create
a SageMaker model by using the CreateModel API. See the following AWS CLI command as an
example.

aws sagemaker create-model --model-name '<your-candidate-name>' \
 --containers ['<container-definition1>, <container-
definition2>, <container-definition3>]' \
 --execution-role-arn '<execution-role-arn>' --region '<region>

4. Create an endpoint configuration

The following AWS CLI command example uses the CreateEndpointConfig API to create an
endpoint configuration.

aws sagemaker create-endpoint-config --endpoint-config-name '<your-endpoint-config-
name>' \
 --production-variants '<list-of-production-variants>' \
 --region '<region>'

5. Create the endpoint

The following AWS CLI example uses the CreateEndpoint API to create the endpoint.

aws sagemaker create-endpoint --endpoint-name '<your-endpoint-name>' \
 --endpoint-config-name '<endpoint-config-name-you-just-created>'
 \
 --region '<region>'

Check the progress of your endpoint deployment by using the DescribeEndpoint API. See the
following AWS CLI command as an example.

aws sagemaker describe-endpoint —endpoint-name '<endpoint-name>' —region <region>

After the EndpointStatus changes to InService, the endpoint is ready to use for real-time
inference.

Create a Text Classification job using the AutoML API 174

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide

6. Invoke the endpoint

The following command structure invokes the endpoint for real-time inferencing.

aws sagemaker invoke-endpoint --endpoint-name '<endpoint-name>' \
 --region '<region>' --body '<your-data>' [--content-type]
 '<content-type>' <outfile>

Explainability report

Amazon SageMaker Autopilot provides an explainability report to help explain how a best model
candidate makes predictions for text classification problems. This report can assist ML engineers,
product managers, and other internal stakeholders in understanding the characteristics of the
model. Both consumers and regulators rely on transparency in machine learning to trust and
interpret decisions made on model predictions. You can use these explanations for auditing and
meeting regulatory requirements, establishing trust in the model, supporting human decision-
making, and debugging and improving model performance.

The Autopilot explanatory functionality for text classification uses the axiomatic attribution
method Integrated Gradients. This approach relies on an implementation of Axiomatic Attribution
for Deep Network.

Autopilot generates the explainability report as a JSON file. The report includes analysis details
that are based on the validation dataset. Each sample used to generate the report contains the
following information:

• text: The input text content explained.

• token_scores: The list of scores for every token in the text.

• • attribution: The score depicting the importance of the token.

• description.partial_text: The partial substring that represents the token.

• predicted_label: The label class predicted by the best model candidate.

• probability: The confidence with which the predicted_label was predicted.

You can find the Amazon S3 prefix to the explainability artifacts generated
for the best candidate in the response to DescribeAutoMLJobV2 at
BestCandidate.CandidateProperties.CandidateArtifactLocations.Explainability.

Create a Text Classification job using the AutoML API 175

https://arxiv.org/pdf/1703.01365.pdf
https://arxiv.org/pdf/1703.01365.pdf
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateArtifactLocations.html#sagemaker-Type-CandidateArtifactLocations-Explainability

Amazon SageMaker Developer Guide

The following is an example of analysis content that you could find in the explainability artifacts.

{
 "text": "It was a fantastic movie!",
 "predicted_label": 2,
 "probability": 0.9984835,
 "token_scores": [
 {
 "attribution": 0,
 "description": {
 "partial_text": "It"
 }
 },
 {
 "attribution": -0.022447118861679088,
 "description": {
 "partial_text": "was"
 }
 },
 {
 "attribution": -0.2164326456817965,
 "description": {
 "partial_text": "a"
 }
 },
 {
 "attribution": 0.675,
 "description": {
 "partial_text": "fantastic"
 }
 },
 {
 "attribution": 0.416,
 "description": {
 "partial_text": "movie!"
 }
 }
]
}

In this sample of the JSON report, the explanatory functionality evaluates the text It was a
fantastic movie! and scores the contribution of each of its token to the overall predicted
label. The predicted label is 2, which is a strong positive sentiment, with a probability of 99.85%.

Create a Text Classification job using the AutoML API 176

Amazon SageMaker Developer Guide

The JSON sample then details the contribution of each individual token to this prediction. For
example, the token fantastic has a stronger attribution than the token was. It is the token that
contributed the most to the final prediction.

Model performance report

An Amazon SageMaker model quality report (also referred to as performance report) provides
insights and quality information for the best model candidate generated by an AutoML job. This
includes information about the job details, model problem type, objective function, and various
metrics. This section details the content of a performance report for text classification problems
and explains how to access the metrics as raw data in a JSON file.

You can find the Amazon S3 prefix to the model quality report artifacts
generated for the best candidate in the response to DescribeAutoMLJobV2 at
BestCandidate.CandidateProperties.CandidateArtifactLocations.ModelInsights.

The performance report contains two sections:

• The first section contains details about the Autopilot job that produced the model.

• The second section contains a model quality report with various performance metrics.

Autopilot job details

This first section of the report gives some general information about the Autopilot job that
produced the model. These details include the following information:

• Autopilot candidate name: The name of the best model candidate.

• Autopilot job name: The name of the job.

• Problem type: The problem type. In our case, text classification.

• Objective metric: The objective metric used to optimize the performance of the model. In our
case, Accuracy.

• Optimization direction: Indicates whether to minimize or maximize the objective metric.

Model quality report

Model quality information is generated by Autopilot model insights. The report's content that is
generated depends on the problem type it addressed. The report specifies the number of rows that
were included in the evaluation dataset and the time at which the evaluation occurred.

Create a Text Classification job using the AutoML API 177

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateArtifactLocations.html#sagemaker-Type-CandidateArtifactLocations-ModelInsights

Amazon SageMaker Developer Guide

Metrics tables

The first part of the model quality report contains metrics tables. These are appropriate for the
type of problem that the model addressed.

The following image is an example of a metrics table generated by Autopilot for an image or text
classification problem. It shows the metric name, value, and standard deviation.

Graphical model performance information

The second part of the model quality report contains graphical information to help you evaluate
model performance. The contents of this section depend on the selected problem type.

Confusion matrix

A confusion matrix provides a way to visualize the accuracy of the predictions made by a model for
binary and multiclass classification for different problems.

A summary of the graph's components of false positive rate (FPR) and true positive rate (TPR) are
defined as follows.

• Correct predictions

• True positive (TP): The predicted the value is 1, and the true value is 1.

• True negative (TN): The predicted the value is 0, and the true value is 0.

• Erroneous predictions

Create a Text Classification job using the AutoML API 178

Amazon SageMaker Developer Guide

• False positive (FP): The predicted the value is 1, but the true value is 0.

• False negative (FN): The predicted the value is 0, but the true value is 1.

The confusion matrix in the model quality report contains the following.

• The number and percentage of correct and incorrect predictions for the actual labels

• The number and percentage of accurate predictions on the diagonal from the upper-left to the
lower-right corner

• The number and percentage of inaccurate predictions on the diagonal from the upper-right to
the lower-left corner

The incorrect predictions on a confusion matrix are the confusion values.

The following diagram is an example of a confusion matrix for a multi-class classification problem.
The confusion matrix in the model quality report contains the following.

• The vertical axis is divided into three rows containing three different actual labels.

• The horizontal axis is divided into three columns containing labels that were predicted by the
model.

• The color bar assigns a darker tone to a larger number of samples to visually indicate the number
of values that were classified in each category.

In the example below, the model correctly predicted actual 354 values for label f, 1094 values for
label i and 852 values for label m. The difference in tone indicates that the dataset is not balanced
because there are many more labels for the value i than for f or m.

Create a Text Classification job using the AutoML API 179

Amazon SageMaker Developer Guide

The confusion matrix in the model quality report provided can accommodate a maximum of 15
labels for multiclass classification problem types. If a row corresponding to a label shows a Nan
value, it means that the validation dataset used to check model predictions does not contain data
with that label.

Create an AutoML job for time-series forecasting using the API

Forecasting in machine learning refers to the process of predicting future outcomes or trends
based on historical data and patterns. By analyzing past time-series data and identifying
underlying patterns, machine learning algorithms can make predictions and provide valuable
insights into future behavior. In forecasting, the goal is to develop models that can accurately
capture the relationship between input variables and the target variable over time. This involves
examining various factors such as trends, seasonality, and other relevant patterns within the data.
The collected information is then used to train a machine learning model. The trained model is
capable of generating predictions by taking new input data and applying the learned patterns and

Create a Time-series Forecasting job using the AutoML API 180

Amazon SageMaker Developer Guide

relationships. It can provide forecasts for a wide range of use cases, such as sales projections, stock
market trends, weather forecasts, demand forecasting, and many more.

The following instructions show how to create an Amazon SageMaker Autopilot job as a pilot
experiment for time-series forecasting problem types using SageMaker API Reference.

Note

Tasks such as text and image classification, time-series forecasting, and fine-tuning of
large language models are exclusively available through the version 2 of the Autopilot API.
For Python users, we recommend using the AWS SDK for Python (Boto3) as the Amazon
SageMaker Python SDK is not currently supported for the Autopilot API version 2.
Users who prefer the convenience of a user interface can use Amazon SageMaker Canvas to
access pre-trained models and generative AI foundation models, or create custom models
tailored for specific text, image classification, forecasting needs, or generative AI.

You can create an Autopilot time-series forecasting experiment programmatically by calling the
CreateAutoMLJobV2 API in any language supported by Amazon SageMaker Autopilot or the AWS
CLI.

For information on how this API action translates into a function in the language of your choice,
see the See Also section of CreateAutoMLJobV2 and choose an SDK. As an example, for Python
users, see the full request syntax of create_auto_ml_job_v2 in AWS SDK for Python (Boto3).

Autopilot trains several model candidates with your target time-series, then selects an optimal
forecasting model for a given objective metric. When your model candidates have been
trained, you can find the best candidate metrics in the response to DescribeAutoMLJobV2 at
BestCandidate.

The following sections define the mandatory and optional input request parameters for the
CreateAutoMLJobV2 API used in time-series forecasting.

Note

Refer to the notebook Time-Series Forecasting with Amazon SageMaker Autopilot for a
practical, hands-on time-series forecasting example. In this notebook, you use Amazon
SageMaker Autopilot to train a time-series model and produce predictions using the trained

Create a Time-series Forecasting job using the AutoML API 181

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-reference.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_SeeAlso
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_auto_ml_job_v2
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateProperties.html#sagemaker-Type-CandidateProperties-CandidateMetrics
https://github.com/aws/amazon-sagemaker-examples/blob/main/autopilot/autopilot_time_series.ipynb

Amazon SageMaker Developer Guide

model. The notebook provides instructions for retrieving a ready-made dataset of tabular
historical data on Amazon S3.

Prerequisites

Before using Autopilot to create a time-series forecasting experiment in SageMaker, make sure to:

• Prepare your time-series dataset. Dataset preparation involves collecting relevant data from
various sources, cleaning and filtering it to remove noise and inconsistencies, and organizing it
into a structured format. See Time-series datasets format and missing values filling methods to
learn more about time-series formats requirements in Autopilot. Optionally, you can supplement
your dataset with the public holiday calendar of the country of your choice to capture associated
patterns. For more information on holiday calendars, see National holiday calendars.

Note

We recommend providing at least 3-5 historical data points for each 1 future data point
you want to predict. For example, to forecast 7 days ahead (horizon of 1 week) based on
daily data, train your model on a minimum of 21-35 days of historical data. Make sure to
provide enough data to capture seasonal and recurrent patterns.

• Place your time-series data in an Amazon S3 bucket.

• Grant full access to the Amazon S3 bucket containing your input data for the SageMaker
execution role used to run your experiment. Once this is done, you can use the ARN of this
execution role in Autopilot API requests.

• For information on retrieving your SageMaker execution role, see Get execution role.

• For information on granting your SageMaker execution role permissions to access one or more
specific buckets in Amazon S3, see Add Additional Amazon S3 Permissions to a SageMaker
Execution Role in Create execution role.

Required parameters

When calling CreateAutoMLJobV2 to create an Autopilot experiment for time-series forecasting,
you must provide the following values:

Create a Time-series Forecasting job using the AutoML API 182

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html

Amazon SageMaker Developer Guide

• An AutoMLJobName to specify the name of your job. The name should be of type string, and
should have a minimum length of 1 character and a maximum length of 32.

• At least one AutoMLJobChannel in AutoMLJobInputDataConfig in which you specify the
name of the Amazon S3 bucket that contains your data. Optionally, you can specify the content
(CSV or Parquet files) and compression (GZip) types.

• An AutoMLProblemTypeConfig of type TimeSeriesForecastingJobConfig to configure
the settings of your time-series forecasting job. In particular, you must specify:

• The frequency of predictions, which refers to the desired granularity (hourly, daily, monthly,
etc) of your forecast.

Valid intervals are an integer followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and
min (Minute). For example, 1D indicates every day and 15min indicates every 15 minutes. The
value of a frequency must not overlap with the next larger frequency. For example, you must
use a frequency of 1H instead of 60min.

The valid values for each frequency are the following:

• Minute - 1-59

• Hour - 1-23

• Day - 1-6

• Week - 1-4

• Month - 1-11

• Year - 1

• The horizon of predictions in your forecast, which refers to the number of time-steps that
the model predicts. The forecast horizon is also called the prediction length. The maximum
forecast horizon is the lesser of 500 time-steps or 1/4 of the time-steps in the dataset.

• A TimeSeriesConfig in which you define the schema of your dataset to map the column
headers to your forecast by specifying:

• A TargetAttributeName: The column that contains historical data of the target field to
forecast.

• A TimestampAttributeName: The column that contains a point in time at which the target
value of a given item is recorded.

• A ItemIdentifierAttributeName: The column that contains the item identifiers for
which you want to predict the target value.

Create a Time-series Forecasting job using the AutoML API 183

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesForecastingJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesConfig.html

Amazon SageMaker Developer Guide

The following is an example of those request parameters. In this example, you are setting up a
daily forecast for the expected quantity or level of demand of specific items over a period of 20
days.

"AutoMLProblemTypeConfig": {
 "ForecastFrequency": "D",
 "ForecastHorizon": 20,
 "TimeSeriesConfig": {
 "TargetAttributeName": "demand",
 "TimestampAttributeName": "timestamp",
 "ItemIdentifierAttributeName": "item_id"
 },

• An OutputDataConfig to specify the Amazon S3 output path to store the artifacts of your
AutoML job.

• A RoleArn to specify the ARN of the role used to access your data. You can use the ARN of the
execution role to which you have granted access to your data.

All other parameters are optional. For example, you can set specific forecast quantiles, choose
a filling method for missing values in the dataset, or define how to aggregate data that does
not align with forecast frequency. To learn how to set those additional parameters, see Optional
parameters.

Optional parameters

The following sections provide details of some optional parameters that you can pass to your time-
series forecasting AutoML job.

How to specify custom quantiles

Autopilot trains 6 models candidates with your target time-series, then combines these models
using a stacking ensemble method to create an optimal forecasting model for a given objective
metric. Each Autopilot forecasting model generates a probabilistic forecast by producing forecasts
at quantiles between P1 and P99. These quantiles are used to account for forecast uncertainty. By
default, forecasts will be generated for the 0.1 (p10), 0.5 (p50), and 0.9 (p90). You can choose to
specify your own quantiles.

Create a Time-series Forecasting job using the AutoML API 184

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-RoleArn

Amazon SageMaker Developer Guide

In Autopilot, you can specify up to five forecast quantiles from 0.01 (p1) to 0.99
(p99), by increments of 0.01 or higher in the ForecastQuantiles attribute of
TimeSeriesForecastingJobConfig.

In the following example, you are setting up a daily 10th, 25th, 50th, 75th, and 90th percentile
forecast for the expected quantity or level of demand of specific items over a period of 20 days.

"AutoMLProblemTypeConfig": {
 "ForecastFrequency": "D",
 "ForecastHorizon": 20,
 "ForecastQuantiles": ["p10", "p25", "p50", "p75", "p90"],
 "TimeSeriesConfig": {
 "TargetAttributeName": "demand",
 "TimestampAttributeName": "timestamp",
 "ItemIdentifierAttributeName": "item_id"
 },

How to aggregate data for different forecast frequencies

To create a forecast model (also referred to as the best model candidate from your experiment),
you must specify a forecast frequency. The forecast frequency determines the frequency of
predictions in your forecasts. For example, monthly sales forecasts. Autopilot best model can
generate forecasts for data frequencies that are higher than the frequency at which your data is
recorded.

During training, Autopilot aggregates any data that does not align with the forecast frequency
you specify. For example, you might have some daily data but specify a weekly forecast frequency.
Autopilot aligns the daily data based on the week that it belongs in. Autopilot then combines it
into single record for each week.

During aggregation, the default transformation method is to sum the data. You can configure
the aggregation when you create your AutoML job in the Transformations attribute of
TimeSeriesForecastingJobConfig. The supported aggregation methods are sum (default), avg,
first, min, max. Aggregation is only supported for the target column.

In the following example, you configure the aggregation to calculate the average of the individual
promo forecasts to provide the final aggregated forecast values.

"Transformations": {
 "Aggregation": {

Create a Time-series Forecasting job using the AutoML API 185

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesForecastingJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesForecastingJobConfig.html

Amazon SageMaker Developer Guide

 "promo": "avg"
 }
 }

How to handle missing values in your input datasets

Autopilot provides a number of filling methods to handle missing values in the target and other
numeric columns of your time-series datasets. For information on the list of supported filling
methods and their available filling logic, see Handle missing values.

You configure your filling strategy in the Transformations attribute of
TimeSeriesForecastingJobConfig when creating your AutoML job.

To set a filling method, you need to provide a key-value pair:

• The key is the name of the column for which you want to specify the filling method.

• The value associated with the key is an object that defines the filling strategy for that column.

You can specify multiple filling methods for a single column.

To set a specific value for the filling method, you should set the fill parameter to the desired filling
method value (for example "backfill" : "value"), and define the actual filling value in an
additional parameter suffixed with "_value". For example, to set backfill to a value of 2, you
must include two parameters: "backfill": "value" and "backfill_value":"2".

In the following example, you specify the filling strategy for the incomplete data column, "price"
as follows: All missing values between the first data point of an item and the last are set to 0 after
which all missing values are filled with the value 2 until the end date of the dataset.

"Transformations": {
 "Filling": {
 "price": {
 "middlefill" : "zero",
 "backfill" : "value",
 "backfill_value": "2"
 }
 }
 }

Create a Time-series Forecasting job using the AutoML API 186

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesForecastingJobConfig.html

Amazon SageMaker Developer Guide

How to specify an objective metric

Autopilot produces accuracy metrics to evaluate the model candidates and help you choose which
to use to generate forecasts. When you run a time-series forecasting experiment, you can either
choose AutoML to let Autopilot optimize the predictor for you, or you can manually choose an
algorithm for your predictor.

By default, Autopilot uses the Average Weighted Quantile Loss. However, you can configure
the objective metric when you create your AutoML job in the MetricName attribute of
AutoMLJobObjective.

For the list of available algorithms, see Algorithms support for time-series forecasting.

How to incorporate national holiday information to your dataset

In Autopilot, you can incorporate a feature-engineered dataset of national holiday information to
your time-series. Autopilot provide native support for the holiday calendars of over 250 countries.
After you choose a country, Autopilot applies that country’s holiday calendar to every item in your
dataset during training. This allows the model to identify patterns associated with specific holidays.

You can enable the holiday featurization when you create your AutoML job by
passing an HolidayConfigAttributes object to the HolidayConfig attribute of
TimeSeriesForecastingJobConfig. The HolidayConfigAttributes object contains the two
letters CountryCode attribute that determines the country of the public national holiday calendar
used to augment your time-series dataset.

Refer to Country Codes for the list of supported calendars and their corresponding country code.

How to enable automatic deployment

Autopilot allows you to automatically deploy your forecast model to an endpoint. To
enable automatic deployment for the best model candidate of an AutoML job, include a
ModelDeployConfig in the AutoML job request. This allows the deployment of the best model to
a SageMaker endpoint. Below are the available configurations for customization.

• To let Autopilotgenerate the endpoint name, set AutoGenerateEndpointName to True.

• To provide your own name for the endpoint, set AutoGenerateEndpointName to False
and provide a name of your choice in EndpointName.

Create a Time-series Forecasting job using the AutoML API 187

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HolidayConfigAttributes.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesForecastingJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-ModelDeployConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents

Amazon SageMaker Developer Guide

Time-series datasets format and missing values filling methods

Time-series data refers to a collection of observations or measurements recorded over regular
intervals of time. In this type of data, each observation is associated with a specific timestamp or
time period, creating a sequence of data points ordered chronologically.

The specific columns you include in your time-series dataset depend on the goals of your analysis
and the data available to you. At a minimum, the time-series data is composed of a 3-column table
where:

• One column contains unique identifiers assigned to individual items to refer to their value at a
specific moment.

• Another column represents the point-in-time value or target to log the value of a given item at
a specific moment. After the model is trained on those target values, this target column contains
the values that the model predicts at a specified frequency within a defined horizon.

• And a timestamp column is included to record the date and time when the value was measured.

• Additional columns can contain other factors that may influence the forecast performance. For
example, in a time-series dataset for retail where the target is the sales or revenue, you might
include features that provide information about units sold, product ID, store location, customer
count, inventory levels, as well as covariate indicators such as weather data or demographic
information.

Note

You can add a feature-engineered dataset of national holiday information to your time-
series. By including holidays in your time series model, you can capture the periodic
patterns that holidays create. This helps your forecasts better reflect the underlying
seasonality of your data. For information on the available calendars per country, see
National holiday calendars

Datasets format for time-series forecasting

Autopilot supports numeric, categorical, text, and datetime data types. The data type of the target
column must be numeric.

Autopilot supports time-series data formatted as CSV (default) files or as Parquet files.

Create a Time-series Forecasting job using the AutoML API 188

Amazon SageMaker Developer Guide

• CSV (comma-separated-values) is a row-based file format that stores data in human readable
plaintext which a popular choice for data exchange as they are supported by a wide range of
applications.

• Parquet is a column-based file format where the data is stored and processed more efficiently
than row-based file formats. This makes them a better option for big data problems.

For more information about the resource limits on time-series datasets for forecasting in Autopilot,
see Amazon SageMaker Autopilot time-series forecasting resource limits.

Handle missing values

A common issue in time-series forecasting data is the presence of missing values. Your data might
contain missing values for a number of reasons, including measurement failures, formatting
problems, human errors, or a lack of information to record. For instance, if you are forecasting
product demand for a retail store and an item is sold out or unavailable, there would be no sales
data to record while that item is out of stock. If prevalent enough, missing values can significantly
impact a model's accuracy.

Autopilot provides a number of filling methods to handle missing values, with distinct approaches
for the target column and other additional columns. Filling is the process of adding standardized
values to missing entries in your dataset.

Refer to How to handle missing values in your input datasets to learn how to set the method for
filling missing values in your time-series dataset.

Autopilot supports the following filling methods:

• Front filling: Fills any missing values between the earliest recorded data point among all items
and the starting point of each item (each item can start at a different time). This ensures that the
data for each item is complete and spans from the earliest recorded data point to its respective
starting point.

• Middle filling: Fills any missing values between the start and end dates of the items in the
dataset.

• Back filling: Fills any missing values between the last data point of each item (each item can
stop at a different time) and the last recorded data point among all items.

• Future filling: Fills any missing values between the last recorded data point among all items and
the end of the forecast horizon.

Create a Time-series Forecasting job using the AutoML API 189

Amazon SageMaker Developer Guide

The following image provides a visual representation of the different filling methods.

Choose a filling logic

When choosing a filling logic, you should consider how the logic will be interpreted by your model.
For instance, in a retail scenario, recording 0 sales of an available item is different from recording
0 sales of an unavailable item, as the latter does not imply a lack of customer interest in the item.
Because of this, 0 filling in the target column of the time-series might cause the predictor to be
under-biased in its predictions, while NaN filling might ignore actual occurrences of 0 available
items being sold and cause the predictor to be over-biased.

Filling logic

You can perform filling on the target column and other numeric columns in your datasets. Target
columns have different filling guidelines and restrictions than the rest of the numeric columns.

Filling Guidelines

Column type Filling by
default?

Supported
filling methods

Default filling
logic

Accepted filling
logic

Target column Yes Middle and back
filling

0 • zero - 0
filling.

• value - an
integer or
float number.

• nan - not a
number.

• mean - the
mean value
from the data
series.

Create a Time-series Forecasting job using the AutoML API 190

Amazon SageMaker Developer Guide

Column type Filling by
default?

Supported
filling methods

Default filling
logic

Accepted filling
logic

• median - the
median value
from the data
series.

• min - the
minimum
value from the
data series.

• max - the
maximum
value from the
data series.

Create a Time-series Forecasting job using the AutoML API 191

Amazon SageMaker Developer Guide

Column type Filling by
default?

Supported
filling methods

Default filling
logic

Accepted filling
logic

Other numeric
columns

No Middle, back,
and future filling

No default • zero - 0
filling.

• value - an
integer or
float value.

• mean - the
mean value
from the data
series.

• median - the
median value
from the data
series.

• min - the
minimum
value from the
data series.

• max - the
maximum
value from the
data series.

Note

For both the target and other numeric columns, mean, median, min, and max are
calculated based on a rolling window of the 64 most recent data entries before the missing
values.

Create a Time-series Forecasting job using the AutoML API 192

Amazon SageMaker Developer Guide

National holiday calendars

Autopilot supports a feature-engineered dataset of national holiday information that provides
access to the holiday calendars of over 250 countries.

Holiday calendar features are especially useful in the retail domain, where public holidays can
significantly affect demand.

Refer to How to incorporate national holiday information to your dataset to learn how to add a
calendar to your dataset.

Country Codes

Autopilot provides native support for the public holiday calendars of the following countries. Use
the Country Code when specifying a country with the API.

Supported Countries

Country Country Code

Afghanistan AF

Åland Islands AX

Albania AL

Algeria DZ

American Samoa AS

Andorra AD

Angola AO

Anguilla AI

Antartica AQ

Antigua and Barbuda AG

Argentina AR

Armenia AM

Create a Time-series Forecasting job using the AutoML API 193

Amazon SageMaker Developer Guide

Country Country Code

Aruba AW

Australia AU

Austria AT

Azerbaijan AZ

Bahamas BS

Bahrain BH

Bangladesh BD

Barbados BB

Belarus BY

Belgium BE

Belize BZ

Benin BJ

Bermuda BM

Bhutan BT

Bolivia BO

Bosnia and Herzegovina BA

Botswana BW

Bouvet Island BV

Brazil BR

British Indian Ocean Territory IO

Create a Time-series Forecasting job using the AutoML API 194

Amazon SageMaker Developer Guide

Country Country Code

British Virgin Islands VG

Brunei Darussalam BN

Bulgaria BG

Burkina Faso BF

Burundi BI

Cambodia KH

Cameroon CM

Canada CA

Cape Verde CV

Caribbean Netherlands BQ

Cayman Islands KY

Central African Republic CF

Chad TD

Chile CL

China CN

Christmas Island CX

Cocos (Keeling) Islands CC

Colombia CO

Comoros KM

Cook Islands CK

Create a Time-series Forecasting job using the AutoML API 195

Amazon SageMaker Developer Guide

Country Country Code

Costa Rica CR

Croatia HR

Cuba CU

Curaçao CW

Cyprus CY

Czechia CZ

Democratic Republic of the Congo CD

Denmark DK

Djibouti DJ

Dominica DM

Dominican Republic DO

Ecuador EC

Egypt EG

El Salvador SV

Equatorial Guinea GQ

Eritrea ER

Estonia EE

Eswatini SZ

Ethiopia ET

Falkland Islands FK

Create a Time-series Forecasting job using the AutoML API 196

Amazon SageMaker Developer Guide

Country Country Code

Faroe Islands FO

Fiji FJ

Finland FI

France FR

French Guiana GF

French Polynesia PF

French Southern Territories TF

Gabon GA

Gambia GM

Georgia GE

Germany DE

Ghana GH

Gibraltar GI

Greece GR

Greenland GL

Grenada GD

Guadeloupe GP

Guam GU

Guatemala GT

Guernsey GG

Create a Time-series Forecasting job using the AutoML API 197

Amazon SageMaker Developer Guide

Country Country Code

Guinea GN

Guinea-Bissau GW

Guyana GY

Haiti HT

Heard Island and McDonald Islands HM

Honduras HN

Hong Kong HK

Hungary HU

Iceland IS

India IN

Indonesia ID

Iran IR

Iraq IQ

Ireland IE

Isle of Man IM

Israel IL

Italy IT

Ivory Coast CI

Jamaica JM

Japan JP

Create a Time-series Forecasting job using the AutoML API 198

Amazon SageMaker Developer Guide

Country Country Code

Jersey JE

Jordan JO

Kazakhstan KZ

Kenya KE

Kiribati KI

Kosovo XK

Kuwait KW

Kyrgyzstan KG

Laos LA

Latvia LV

Lebanon LB

Lesotho LS

Liberia LR

Libya LY

Liechtenstein LI

Lithuania LT

Luxembourg LU

Macao MO

Madagascar MG

Malawi MW

Create a Time-series Forecasting job using the AutoML API 199

Amazon SageMaker Developer Guide

Country Country Code

Malaysia MY

Maldives MV

Mali ML

Malta MT

Marshall Islands MH

Martinique MQ

Mauritania MR

Mauritius MU

Mayotte YT

Mexico MX

Micronesia FM

Moldova MD

Monaco MC

Mongolia MN

Montenegro ME

Montserrat MS

Morocco MA

Mozambique MZ

Myanmar MM

Namibia NA

Create a Time-series Forecasting job using the AutoML API 200

Amazon SageMaker Developer Guide

Country Country Code

Nauru NR

Nepal NP

Netherlands NL

New Caledonia NC

New Zealand NZ

Nicaragua NI

Niger NE

Nigeria NG

Niue NU

Norfolk Island NF

North Korea KP

North Macedonia MK

Northern Mariana Islands MP

Norway NO

Oman OM

Pakistan PK

Palau PW

Palestine PS

Panama PA

Papua New Guinea PG

Create a Time-series Forecasting job using the AutoML API 201

Amazon SageMaker Developer Guide

Country Country Code

Paraguay PY

Peru PE

Philippines PH

Pitcairn Islands PN

Poland PL

Portugal PT

Puerto Rico PR

Qatar QA

Republic of the Congo CG

Réunion RE

Romania RO

Russian Federation RU

Rwanda RW

Saint Barthélemy BL

"Saint Helena, Ascension and Tristan da Cunha " SH

Saint Kitts and Nevis KN

Saint Lucia LC

Saint Martin MF

Saint Pierre and Miquelon PM

Saint Vincent and the Grenadines VC

Create a Time-series Forecasting job using the AutoML API 202

Amazon SageMaker Developer Guide

Country Country Code

Samoa WS

San Marino SM

Sao Tome and Principe ST

Saudi Arabia SA

Senegal SN

Serbia RS

Seychelles SC

Sierra Leone SL

Singapore SG

Sint Maarten SX

Slovakia SK

Slovenia SI

Solomon Islands SB

Somalia SO

South Africa ZA

South Georgia and the South Sandwich Islands GS

South Korea KR

South Sudan SS

Spain ES

Sri Lanka LK

Create a Time-series Forecasting job using the AutoML API 203

Amazon SageMaker Developer Guide

Country Country Code

Sudan SD

Suriname SR

Svalbard and Jan Mayen SJ

Sweden SE

Switzerland CH

Syrian Arab Republic SY

Taiwan TW

Tajikistan TJ

Tanzania TZ

Thailand TH

Timor-Leste TL

Togo TG

Tokelau TK

Tonga TO

Trinidad and Tobago TT

Tunisia TN

Turkey TR

Turkmenistan TM

Turks and Caicos Islands TC

Tuvalu TV

Create a Time-series Forecasting job using the AutoML API 204

Amazon SageMaker Developer Guide

Country Country Code

Uganda UG

Ukraine UA

United Arab Emirates AE

United Kingdom UK

United Nations UN

United States US

United States Minor Outlying Islands UM

United States Virgin Islands VI

Uruguay UY

Uzbekistan UZ

Vanuatu VU

Vatican City VA

Venezuela VE

Vietnam VN

Wallis and Futuna WF

Western Sahara EH

Yemen YE

Zambia ZM

Zimbabwe ZW

Create a Time-series Forecasting job using the AutoML API 205

Amazon SageMaker Developer Guide

Objective metrics

Autopilot produces accuracy metrics to evaluate the model candidates and help you choose which
to use to generate forecasts. You can either let Autopilot optimize the predictor for you, or you can
manually choose an algorithm for your predictor. By default, Autopilot uses the Average Weighted
Quantile Loss.

The following list contains the names of the metrics that are currently available to measure the
performance of models for time-series forecasting.

RMSE

Root mean squared error (RMSE) – Measures the square root of the squared difference between
predicted and actual values, and is averaged over all values. It's an important metric to indicate
the presence of large model errors and outliers. Values range from zero (0) to infinity, with
smaller numbers indicating a better model fit to the data. RMSE is dependent on scale, and
should not be used to compare datasets of different sizes.

wQL

Weighted Quantile Loss (wQL) – Assess the accuracy of the forecast by measuring the weighted
absolute differences between predicted and actual P10, P50, and P90 quantiles with lower
values indicating better performance.

Average wQL (default)

Average Weighted Quantile Loss (Average wQL) – Evaluates the forecast by averaging the
accuracy at the P10, P50, and P90 quantiles. A lower value indicates a more accurate model.

MASE

Mean Absolute Scaled Error (MASE) – The mean absolute error of the forecast normalized by
the mean absolute error of a simple baseline forecasting method. A lower value indicates a
more accurate model, where MASE < 1 is estimated to be better than the baseline and MASE > 1
is estimated to be worse than the baseline.

MAPE

Mean Absolute Percent Error (MAPE) – The percentage error (percent difference of the mean
forecasted value versus the actual value) averaged over all time points. A lower value indicates a
more accurate model, where MAPE = 0 is a model with no errors.

Create a Time-series Forecasting job using the AutoML API 206

Amazon SageMaker Developer Guide

WAPE

Weighted Absolute Percent Error (WAPE) – The sum of the absolute error normalized by the
sum of the absolute target, which measure the overall deviation of forecasted values from
observed values. A lower value indicates a more accurate model.

Algorithms support for time-series forecasting

Autopilot trains the following six built-in algorithms with your target time-series. Then, using a
stacking ensemble method, it combines these model candidates to create an optimal forecasting
model for a given objective metric.

• Convolutional Neural Network - Quantile Regression (CNN-QR) – CNN-QR is a proprietary
machine learning algorithm for forecasting time-series using causal convolutional neural
networks (CNNs). CNN-QR works best with large datasets containing hundreds of time-series.

• DeepAR+ – DeepAR+ is a proprietary machine learning algorithm for forecasting time-series
using recurrent neural networks (RNNs). DeepAR+ works best with large datasets containing
hundreds of feature time-series.

• Prophet – Prophet is a popular local Bayesian structural time series model based on an additive
model where non-linear trends are fit with yearly, weekly, and daily seasonality. The Autopilot
Prophet algorithm uses the Prophet class of the Python implementation of Prophet. It works
best with time-series with strong seasonal effects and several seasons of historical data.

• Non-Parametric Time Series (NPTS) – The NPTS proprietary algorithm is a scalable, probabilistic
baseline forecaster. It predicts the future value distribution of a given time-series by sampling
from past observations. NPTS is especially useful when working with sparse or intermittent time
series.

• Autoregressive Integrated Moving Average (ARIMA) – ARIMA is a commonly used statistical
algorithm for time-series forecasting. The algorithm captures standard temporal structures
(patterned organizations of time) in the input dataset. It is especially useful for simple datasets
with under 100 time series.

• Exponential Smoothing (ETS) – ETS is a commonly used statistical algorithm for time-series
forecasting. The algorithm is especially useful for simple datasets with under 100 time series,
and datasets with seasonality patterns. ETS computes a weighted average over all observations
in the time series dataset as its prediction, with exponentially decreasing weights over time.

Create a Time-series Forecasting job using the AutoML API 207

https://facebook.github.io/prophet/
https://facebook.github.io/prophet/docs/quick_start.html#python-ap

Amazon SageMaker Developer Guide

Autopilot model deployment and forecasts

After you train your Autopilot predictor (best model), you can deploy a model to get predictions in
one of two ways:

1. Use Real-time forecasting to set up an endpoint and obtain predictions interactively.

2. Use Batch forecasting to make predictions in parallel on batches of observations on an entire
dataset.

When providing input data for forecasting, the schema of your data should remain the same as
the one used to train your model, including the number of columns, column headers, and data
types. You can forecast for existing or new item IDs within the same or different timestamp range
to predict for a different time period.

Forecasting models predict for the forecast horizon points in the future specified in the input
request at training, which is from the target end date to the target end date + forecast horizon. To
use the model for predicting specific dates, you should provide the data in the same format as the
original input data, extending up to a specified target end date. In this scenario, the model will start
predicting from the new target end date.

For example, if your dataset had monthly data from January to June with a Forecast horizon of
2, then the model would predict the target value for the next 2 months, which would be July and
August. If in August, you want to predict for the next 2 months, this time your input data should be
from January to August and the model will predict for the next 2 months (September, October).

When forecasting future data points, there is no set minimum for the amount of historical data to
provide. Include enough data to capture seasonal and recurrent patterns in your time-series.

Note

We recommend using the following instance types for forecasting:

• For real-time forecasting, use m5.12xlarge instances.

• For batch forecasting, use m5.12xlarge instances for general-purpose workloads and
m5.24xlarge instances for big data forecasting tasks.

Create a Time-series Forecasting job using the AutoML API 208

https://aws.amazon.com/ec2/instance-types/m5/

Amazon SageMaker Developer Guide

Real-time forecasting

You can use real-time forecasting for inference workloads where you have real-time, interactive,
low latency requirements.

Note

For real time forecasting, the dataset should be a subset of the input dataset. The real time
endpoint has an input data size of approximately 6MB and a response timeout limitation of
60 seconds. We recommend bringing in one or few items at a time.

You can use SageMaker APIs to manually deploy the model that produced the best validation
metric in an Autopilot experiment as follows.

Alternatively, you can chose the automatic deployment option when creating your Autopilot
experiment. For information on setting up the automatic deployment of models, see How to
enable automatic deployment.

1. Obtain the candidate container definitions

Obtain the candidate container definitions from InferenceContainers. A container definition
for inference refers to the containerized environment designed for deploying and running your
trained SageMaker model to make predictions.

The following AWS CLI command example uses the DescribeAutoMLJobV2 API to obtain
candidate definitions for the best model candidate.

aws sagemaker describe-auto-ml-job-v2 --auto-ml-job-name job-name --region region

2. List candidates

The following AWS CLI command example uses the ListCandidatesForAutoMLJob API to list all
model candidates.

aws sagemaker list-candidates-for-auto-ml-job --auto-ml-job-name <job-name> --
region <region>

3. Create a SageMaker model

Create a Time-series Forecasting job using the AutoML API 209

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidate.html#sagemaker-Type-AutoMLCandidate-InferenceContainers
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCandidatesForAutoMLJob.html

Amazon SageMaker Developer Guide

Use the container definitions from the previous steps and a candidate of your choice to create
a SageMaker model by using the CreateModel API. See the following AWS CLI command as an
example.

aws sagemaker create-model --model-name '<your-candidate-name>' \
 --containers ['<container-definition1>, <container-
definition2>, <container-definition3>]' \
 --execution-role-arn '<execution-role-arn>' --region '<region>

4. Create an endpoint configuration

The following AWS CLI command example uses the CreateEndpointConfig API to create an
endpoint configuration.

aws sagemaker create-endpoint-config --endpoint-config-name '<your-endpoint-config-
name>' \
 --production-variants '<list-of-production-variants>' \
 --region '<region>'

5. Create the endpoint

The following AWS CLI example uses the CreateEndpoint API to create the endpoint.

aws sagemaker create-endpoint --endpoint-name '<your-endpoint-name>' \
 --endpoint-config-name '<endpoint-config-name-you-just-created>'
 \
 --region '<region>'

Check the progress of your endpoint deployment by using the DescribeEndpoint API. See the
following AWS CLI command as an example.

aws sagemaker describe-endpoint —endpoint-name '<endpoint-name>' —region <region>

After the EndpointStatus changes to InService, the endpoint is ready to use for real-time
inference.

6. Invoke the endpoint

The following command structure invokes the endpoint for real-time inferencing.

Create a Time-series Forecasting job using the AutoML API 210

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide

aws sagemaker invoke-endpoint --endpoint-name '<endpoint-name>' \
 --region '<region>' --body '<your-data-in-bytes>' [--content-type]
 '<content-type>' <outfile>

Batch forecasting

Batch forecasting, also known as offline inferencing, generates model predictions on a batch of
observations. Batch inference is a good option for large datasets or if you don't need an immediate
response to a model prediction request

By contrast, online inference (real-time inferencing) generates predictions in real time.

You can make batch inferences from an Autopilot model using the API reference.

To use the SageMaker APIs for batch inferencing:

1. Obtain candidate definitions

Candidate definitions from InferenceContainers are used to create a SageMaker model.

The following example shows how to use the DescribeAutoMLJobV2 API to obtain candidate
definitions for the best model candidate. See the following AWS CLI command as an example.

aws sagemaker describe-auto-ml-job-v2 --auto-ml-job-name <job-name> --region <region>

Use the ListCandidatesForAutoMLJob API to list all candidates. See the following AWS CLI
command as an example.

aws sagemaker list-candidates-for-auto-ml-job --auto-ml-job-name <job-name> --
region <region>

2. Create a SageMaker model

To create a SageMaker model using the CreateModel API, use the container definitions from the
previous steps. See the following AWS CLI command as an example.

aws sagemaker create-model --model-name '<your-custom-model-name>' \
 --containers ['<container-definition1>, <container-
definition2>, <container-definition3>]' \

Create a Time-series Forecasting job using the AutoML API 211

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidate.html#sagemaker-Type-AutoMLCandidate-InferenceContainers
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCandidatesForAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

 --execution-role-arn '<execution-role-arn>' --region '<region>

3. Create a SageMaker transform job

The following example creates a SageMaker transform job with the CreateTransformJob API. See
the following AWS CLI command as an example.

aws sagemaker create-transform-job --transform-job-name '<your-custom-transform-job-
name>' --model-name '<your-custom-model-name-from-last-step>'\
--transform-input '{
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "<your-input-data>"
 }
 },
 "ContentType": "text/csv",
 "SplitType": "None"
 }'\
--transform-output '{
 "S3OutputPath": "<your-output-path>",
 "AssembleWith": "Line"
 }'\
--transform-resources '{
 "InstanceType": "<instance-type>",
 "InstanceCount": 1
 }' --region '<region>'

Check the progress of your transform job using the DescribeTransformJob API. See the following
AWS CLI command as an example.

aws sagemaker describe-transform-job --transform-job-name '<your-custom-transform-job-
name>' --region <region>

After the job is finished, the predicted result is available in <your-output-path>.

The output file name has the following format: <input_data_file_name>.out. As an example,
if your input file is text_x.csv, the output name will be text_x.csv.out.

The following tabs show code examples for the AWS SDK for Python (boto3), and the AWS CLI.

Create a Time-series Forecasting job using the AutoML API 212

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-transform-job.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTransformJob.html

Amazon SageMaker Developer Guide

AWS SDK for Python (boto3)

The following example uses AWS SDK for Python (boto3) to make predictions in batches.

import sagemaker
import boto3

session = sagemaker.session.Session()

sm_client = boto3.client('sagemaker', region_name='us-west-2')
role = 'arn:aws:iam::1234567890:role/sagemaker-execution-role'
output_path = 's3://test-auto-ml-job/output'
input_data = 's3://test-auto-ml-job/test_X.csv'

best_candidate = sm_client.describe_auto_ml_job_v2(AutoMLJobName=job_name)
['BestCandidate']
best_candidate_containers = best_candidate['InferenceContainers']
best_candidate_name = best_candidate['CandidateName']

create model
reponse = sm_client.create_model(
 ModelName = best_candidate_name,
 ExecutionRoleArn = role,
 Containers = best_candidate_containers
)

Lauch Transform Job
response = sm_client.create_transform_job(
 TransformJobName=f'{best_candidate_name}-transform-job',
 ModelName=model_name,
 TransformInput={
 'DataSource': {
 'S3DataSource': {
 'S3DataType': 'S3Prefix',
 'S3Uri': input_data
 }
 },
 'ContentType': "text/csv",
 'SplitType': 'None'
 },
 TransformOutput={
 'S3OutputPath': output_path,
 'AssembleWith': 'Line',
 },

Create a Time-series Forecasting job using the AutoML API 213

Amazon SageMaker Developer Guide

 TransformResources={
 'InstanceType': 'ml.m5.2xlarge',
 'InstanceCount': 1,
 },
)

The batch inference job returns a response in the following format.

{'TransformJobArn': 'arn:aws:sagemaker:us-west-2:1234567890:transform-job/test-
transform-job',
 'ResponseMetadata': {'RequestId': '659f97fc-28c4-440b-b957-a49733f7c2f2',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {'x-amzn-requestid': '659f97fc-28c4-440b-b957-a49733f7c2f2',
 'content-type': 'application/x-amz-json-1.1',
 'content-length': '96',
 'date': 'Thu, 11 Aug 2022 22:23:49 GMT'},
 'RetryAttempts': 0}}

AWS Command Line Interface (AWS CLI)

1. Obtain the candidate definitions by using the following the code example.

aws sagemaker describe-auto-ml-job-v2 --auto-ml-job-name 'test-automl-job' --
region us-west-2

2. Create the model by using the following the code example.

aws sagemaker create-model --model-name 'test-sagemaker-model'
--containers '[{
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sklearn-
automl:2.5-1-cpu-py3",
 "ModelDataUrl": "s3://test-bucket/out/test-job1/data-processor-models/test-
job1-dpp0-1-e569ff7ad77f4e55a7e549a/output/model.tar.gz",
 "Environment": {
 "AUTOML_SPARSE_ENCODE_RECORDIO_PROTOBUF": "1",
 "AUTOML_TRANSFORM_MODE": "feature-transform",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "application/x-recordio-protobuf",
 "SAGEMAKER_PROGRAM": "sagemaker_serve",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code"
 }
}, {
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-
xgboost:1.3-1-cpu-py3",

Create a Time-series Forecasting job using the AutoML API 214

Amazon SageMaker Developer Guide

 "ModelDataUrl": "s3://test-bucket/out/test-job1/tuning/flicdf10v2-dpp0-xgb/
test-job1E9-244-7490a1c0/output/model.tar.gz",
 "Environment": {
 "MAX_CONTENT_LENGTH": "20971520",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv",
 "SAGEMAKER_INFERENCE_OUTPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_SUPPORTED":
 "predicted_label,probability,probabilities"
 }
}, {
 "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sklearn-
automl:2.5-1-cpu-py3",
 "ModelDataUrl": "s3://test-bucket/out/test-job1/data-processor-models/test-
job1-dpp0-1-e569ff7ad77f4e55a7e549a/output/model.tar.gz",
 "Environment": {
 "AUTOML_TRANSFORM_MODE": "inverse-label-transform",
 "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv",
 "SAGEMAKER_INFERENCE_INPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_OUTPUT": "predicted_label",
 "SAGEMAKER_INFERENCE_SUPPORTED":
 "predicted_label,probability,labels,probabilities",
 "SAGEMAKER_PROGRAM": "sagemaker_serve",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code"
 }
}]' \
--execution-role-arn 'arn:aws:iam::1234567890:role/sagemaker-execution-role' \
--region 'us-west-2'

3. Create the transform job by using the following the code example.

aws sagemaker create-transform-job --transform-job-name 'test-tranform-job'\
 --model-name 'test-sagemaker-model'\
--transform-input '{
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://test-bucket/data.csv"
 }
 },
 "ContentType": "text/csv",
 "SplitType": "None"
 }'\
--transform-output '{
 "S3OutputPath": "s3://test-bucket/output/",

Create a Time-series Forecasting job using the AutoML API 215

Amazon SageMaker Developer Guide

 "AssembleWith": "Line"
 }'\
--transform-resources '{
 "InstanceType": "ml.m5.2xlarge",
 "InstanceCount": 1
 }'\
--region 'us-west-2'

4. Check the progress of the transform job by using the following the code example.

aws sagemaker describe-transform-job --transform-job-name 'test-tranform-job' --
region us-west-2

The following is the response from the transform job.

{
 "TransformJobName": "test-tranform-job",
 "TransformJobArn": "arn:aws:sagemaker:us-west-2:1234567890:transform-job/test-
tranform-job",
 "TransformJobStatus": "InProgress",
 "ModelName": "test-model",
 "TransformInput": {
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://test-bucket/data.csv"
 }
 },
 "ContentType": "text/csv",
 "CompressionType": "None",
 "SplitType": "None"
 },
 "TransformOutput": {
 "S3OutputPath": "s3://test-bucket/output/",
 "AssembleWith": "Line",
 "KmsKeyId": ""
 },
 "TransformResources": {
 "InstanceType": "ml.m5.2xlarge",
 "InstanceCount": 1
 },
 "CreationTime": 1662495635.679,
 "TransformStartTime": 1662495847.496,

Create a Time-series Forecasting job using the AutoML API 216

Amazon SageMaker Developer Guide

 "DataProcessing": {
 "InputFilter": "$",
 "OutputFilter": "$",
 "JoinSource": "None"
 }
}

After the TransformJobStatus changes to Completed, you can check the inference result
in the S3OutputPath.

Amazon SageMaker Autopilot data exploration notebook

Amazon SageMaker Autopilot cleans and pre-processes your dataset automatically. To help users
understand their data, uncover patterns, relationships, and anomalies about the time-series,
Amazon SageMaker Autopilot generates a data exploration static report in the form of a notebook
for users to reference.

The data exploration notebook is generated for every Autopilot job. The report is stored in an
Amazon S3 bucket and can be accessed from the job output path.

You can find the Amazon S3 prefix to the data exploration notebook in the response to
DescribeAutoMLJobV2 at AutoMLJobArtifacts.DataExplorationNotebookLocation.

Reports generated by Amazon SageMaker Autopilot

In addition to the data exploration notebook, Autopilot generates various reports for the best
model candidate of each experiment.

• An explainability report provides insights into how the model makes forecasts.

• A performance report provides a quantitative assessment of the model's forecasting capabilities.

• A backtest results report is generated after testing the model's performance on historical data.

Explainability report

Autopilot explainability report helps you better understand how the attributes in your datasets
impact forecasts for specific time-series (item and dimension combinations) and time points.
Autopilot uses a metric called Impact scores to quantify the relative impact of each attribute and
determine whether they increase or decrease forecast values.

Create a Time-series Forecasting job using the AutoML API 217

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html#sagemaker-DescribeAutoMLJobV2-response-AutoMLJobArtifacts

Amazon SageMaker Developer Guide

For example, consider a forecasting scenario where the target is sales and there are two related
attributes: price and color. Autopilot may find that the item’s color has a high impact on sales
for certain items, but a negligible effect for other items. It may also find that a promotion in the
summer has a high impact on sales, but a promotion in the winter has little effect.

The explainability report is generated only when:

• The time series dataset includes additional feature columns or is associated with a holiday
calendar.

• The base models CNN-QR and DeepAR+ are included in the final ensemble.

Interpret Impact scores

Impact scores measure the relative impact attributes have on forecast values. For example, if the
price attribute has an impact score that is twice as large as the store location attribute,
you can conclude that the price of an item has twice the impact on forecast values than the store
location.

Impact scores also provide information on whether attributes increase or decrease forecast values.

The Impact scores range from -1 to 1, where the sign denotes the direction of the impact. A score
of 0 indicates no impact, while scores close to 1 or -1 indicate a significant impact.

It is important to note that Impact scores measure the relative impact of attributes, not the
absolute impact. Therefore, Impact scores cannot be used to determine whether particular
attributes improve model accuracy. If an attribute has a low Impact score, that does not necessarily
mean that it has a low impact on forecast values; it means that it has a lower impact on forecast
values than other attributes used by the predictor.

Find the explainability report

You can find the Amazon S3 prefix to the explainability artifacts generated
for the best candidate in the response to DescribeAutoMLJobV2 at
BestCandidate.CandidateProperties.CandidateArtifactLocations.Explainability.

Model performance report

Autopilot model quality report (also referred to as performance report) provides insights and
quality information for the best model candidate (best predictor) generated by an AutoML job. This

Create a Time-series Forecasting job using the AutoML API 218

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateArtifactLocations.html#sagemaker-Type-CandidateArtifactLocations-Explainability

Amazon SageMaker Developer Guide

includes information about the job details, objective function, and accuracy metrics (wQL, MAPE,
WAPE, RMSE, MASE).

You can find the Amazon S3 prefix to the model quality report artifacts
generated for the best candidate in the response to DescribeAutoMLJobV2 at
BestCandidate.CandidateProperties.CandidateArtifactLocations.ModelInsights.

Backtests results report

Backtests results provide insights into the performance of a time-series forecasting model by
evaluating its predictive accuracy and reliability. It helps analysts and data scientists assess its
performance on historical data and assists in understanding its potential performance on future,
unseen data.

Autopilot uses backtesting to tune parameters and produce accuracy metrics. During backtesting,
Autopilot automatically splits your time-series data into two sets, a training set and a testing set.
The training set is used to train a model which is then used to generate forecasts for data points in
the testing set. Autopilot uses this testing dataset to evaluate the model's accuracy by comparing
forecasted values with observed values in the testing set.

You can find the Amazon S3 prefix to the model quality report artifacts
generated for the best candidate in the response to DescribeAutoMLJobV2 at
BestCandidate.CandidateProperties.CandidateArtifactLocations.BacktestResults.

Amazon SageMaker Autopilot time-series forecasting resource limits

Resource limits Default limit Adjustable

Size of input dataset 30 GB Yes

Size of a single Parquet file 2 GB No

Maximum number of rows in
a dataset

3 billion Yes

Maximum number of
grouping columns

5 No

Maximum number of
numerical features

13 No

Create a Time-series Forecasting job using the AutoML API 219

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateArtifactLocations.html#sagemaker-Type-CandidateArtifactLocations-ModelInsights
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateArtifactLocations.html#sagemaker-Type-CandidateArtifactLocations-BacktestResults

Amazon SageMaker Developer Guide

Resource limits Default limit Adjustable

Maximum number of
categorical features

10 No

Maximum number of time-
series (unique combinati
ons of item and grouping
columns) per dataset

5,000,000 Yes

Maximum Forecast horizon 500 Yes

Create an AutoML job to fine-tune text generation models using the API

Large language models (LLMs) excel in multiple generative tasks, including text generation,
summarization, completion, question answering, and more. Their performance can be attributed to
their significant size and extensive training on diverse datasets and various tasks. However, specific
domains, such as healthcare and financial services, may require customized fine-tuning to adapt to
unique data and use cases. By tailoring their training to their particular domain, LLMs can improve
their performance and provide more accurate outputs for targeted applications.

Autopilot offers the capability to fine-tune a selection of pre-trained generative text models. In
particular, Autopilot supports the instruction-based fine tuning of a selection of general-purpose
large language models (LLMs) powered by SageMaker JumpStart.

Note

The text generation models that support fine-tuning in Autopilot are currently accessible
exclusively in Regions supported by SageMaker Canvas. See the documentation of
SageMaker Canvas for the full list of its supported Regions.

Fine-tuning a pre-trained model requires a specific dataset of clear instructions that guide the
model on how to generate output or behave for that task. The model learns from the dataset,
adjusting its parameters to conform to the provided instructions. Instruction-based fine-tuning
involves using labeled examples formatted as prompt-response pairs and phrased as instructions.
For more information about fine-tuning, see Fine-tune a foundation model.

Create an LLM fine-tuning job using the AutoML API 220

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-fine-tuning.html

Amazon SageMaker Developer Guide

The following guidelines outline the process of creating an Amazon SageMaker Autopilot job as a
pilot experiment to fine-tune text generation LLMs using the SageMaker API Reference.

Note

Tasks such as text and image classification, time-series forecasting, and fine-tuning of
large language models are exclusively available through the version 2 of the Autopilot API.
For Python users, we recommend using the AWS SDK for Python (Boto3) as the Amazon
SageMaker Python SDK is not currently supported for the Autopilot API version 2.
Users who prefer the convenience of a user interface can use Amazon SageMaker Canvas to
access pre-trained models and generative AI foundation models, or create custom models
tailored for specific text, image classification, forecasting needs, or generative AI.

To create an Autopilot experiment programmatically for fine-tuning an LLM, you can call the
CreateAutoMLJobV2 API in any language supported by Amazon SageMaker Autopilot or the AWS
CLI.

For information about how this API action translates into a function in the language of your choice,
see the See Also section of CreateAutoMLJobV2 and choose an SDK. As an example, for Python
users, see the full request syntax of create_auto_ml_job_v2 in AWS SDK for Python (Boto3).

Note

Autopilot fine-tunes large language models without requiring multiple candidates to be
trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target
model to enhance a default objective metric, the cross-entropy loss. Fine-tuning language
models in Autopilot does not require setting the AutoMLJobObjective field.

Once your LLM is fine-tuned, you can evaluate its performance by accessing various ROUGE
scores through the BestCandidate when making a DescribeAutoMLJobV2 API call. The
model also provides information about its training and validation loss as well as perplexity. For a
comprehensive list of metrics for evaluating the quality of the text generated by the fine-tuned
models, see Metrics for fine-tuning large language models in Autopilot.

Create an LLM fine-tuning job using the AutoML API 221

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-reference.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_SeeAlso
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_auto_ml_job_v2
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateProperties.html#sagemaker-Type-CandidateProperties-CandidateMetrics
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html

Amazon SageMaker Developer Guide

Prerequisites

Before using Autopilot to create a fine-tuning experiment in SageMaker, make sure to take the
following steps:

• (Optional) Choose the pre-trained model you want to fine-tune.

For the list of pre-trained models available for fine-tuning in Amazon SageMaker Autopilot, see
Supported large language models for fine-tuning. The selection of a model is not mandatory; if
no model is specified, Autopilot automatically defaults to the model Falcon7BInstruct.

• Create a dataset of instructions. See Dataset file types and input data format to learn about the
format requirements for your instruction-based dataset.

• Place your dataset in an Amazon S3 bucket.

• Grant full access to the Amazon S3 bucket containing your input data for the SageMaker
execution role used to run your experiment.

• For information on retrieving your SageMaker execution role, see Get execution role.

• For information on granting your SageMaker execution role permissions to access one or more
specific buckets in Amazon S3, see Add Additional Amazon S3 Permissions to a SageMaker
Execution Role in Create execution role.

• Additionally, you should provide your execution role with the necessary permissions to access
the default storage Amazon S3 bucket used by SageMaker JumpStart. This access is required for
storing and retrieving pre-trained model artifacts in SageMaker JumpStart. To grant access to
this Amazon S3 bucket, you must create a new inline custom policy on your execution role.

Here's an example policy that you can use in your JSON editor when configuring AutoML fine-
tuning jobs in us-west-2:

SageMaker JumpStart's bucket names follow a predetermined pattern that depends on the AWS
Regions. You must adjust the name of the bucket accordingly.

{
 "Sid": "Statement1",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket"
],

Create an LLM fine-tuning job using the AutoML API 222

Amazon SageMaker Developer Guide

 "Resource": [
 "arn:aws:s3:::jumpstart-cache-prod-us-west-2",
 "arn:aws:s3:::jumpstart-cache-prod-us-west-2/*"
]
}

Once this is done, you can use the ARN of this execution role in Autopilot API requests.

Required parameters

When calling CreateAutoMLJobV2 to create an Autopilot experiment for LLM fine-tuning, you
must provide the following values:

• An AutoMLJobName to specify the name of your job. The name should be of type string, and
should have a minimum length of 1 character and a maximum length of 32.

• At least one AutoMLJobChannel of the training type within the
AutoMLJobInputDataConfig. This channel specifies the name of the Amazon S3 bucket
where your fine-tuning dataset is located. You have the option to define a validation
channel. If no validation channel is provided, and a ValidationFraction is configured in the
AutoMLDataSplitConfig, this fraction is utilized to randomly divide the training dataset into
training and validation sets. Additionally, you can specify the type of content (CSV or Parquet
files) for the dataset.

• An AutoMLProblemTypeConfig of type TextGenerationJobConfig to configure the
settings of your training job.

In particular, you can specify the name of the base model to fine-tune in the BaseModelName
field. For the list of pre-trained models available for fine-tuning in Amazon SageMaker Autopilot,
see Supported large language models for fine-tuning.

• An OutputDataConfig to specify the Amazon S3 output path to store the artifacts of your
AutoML job.

• A RoleArn to specify the ARN of the role used to access your data.

The following is an example of the full request format used when making an API call to
CreateAutoMLJobV2 for fine-tuning a (Falcon7BInstruct) model.

{
 "AutoMLJobName": "<job_name>",

Create an LLM fine-tuning job using the AutoML API 223

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#API_CreateAutoMLJobV2_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLDataSplitConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextGenerationJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-RoleArn

Amazon SageMaker Developer Guide

 "AutoMLJobInputDataConfig": [
 {
 "ChannelType": "training",
 "CompressionType": "None",
 "ContentType": "text/csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://<bucket_name>/<input_data>.csv"
 }
 }
 }
],
 "OutputDataConfig": {
 "S3OutputPath": "s3://<bucket_name>/output",
 "KmsKeyId": "arn:aws:kms:<region>:<account_id>:key/<key_value>"
 },
 "RoleArn":"arn:aws:iam::<account_id>:role/<sagemaker_execution_role_name>",
 "AutoMLProblemTypeConfig": {
 "TextGenerationJobConfig": {
 "BaseModelName": "Falcon7BInstruct"
 }
 }
}

All other parameters are optional.

Optional parameters

The following sections provide details of some optional parameters that you can pass to your fine-
tuning AutoML job.

How to specify the training and validation datasets of an AutoML job

You can provide your own validation dataset and custom data split ratio, or let Autopilot split the
dataset automatically.

Each AutoMLJobChannel object (see the required parameter AutoMLJobInputDataConfig) has a
ChannelType, which can be set to either training or validation values that specify how the
data is to be used when building a machine learning model.

Create an LLM fine-tuning job using the AutoML API 224

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobInputDataConfig

Amazon SageMaker Developer Guide

At least one data source must be provided and a maximum of two data sources is allowed: one
for training data and one for validation data. How you split the data into training and validation
datasets depends on whether you have one or two data sources.

• If you only have one data source, the ChannelType is set to training by default and must
have this value.

• If the ValidationFraction value in AutoMLDataSplitConfig is not set, 0.2 (20%) of the
data from this source is used for validation by default.

• If the ValidationFraction is set to a value between 0 and 1, the dataset is split based on
the value specified, where the value specifies the fraction of the dataset used for validation.

• If you have two data sources, the ChannelType of one of the AutoMLJobChannel objects
must be set to training, the default value. The ChannelType of the other data source must
be set to validation. The two data sources must have the same format, either CSV or Parquet,
and the same schema. You must not set the value for the ValidationFraction in this case
because all of the data from each source is used for either training or validation. Setting this
value causes an error.

How to enable automatic deployment

With Autopilot, you can automatically deploy your fine-tuned model to an endpoint. To enable
automatic deployment for your fine-tuned model, include a ModelDeployConfig in the AutoML
job request. This allows the deployment of your fine-tuned model to a SageMaker endpoint. Below
are the available configurations for customization.

• To let Autopilot generate the endpoint name, set AutoGenerateEndpointName to True.

• To provide your own name for the endpoint, set AutoGenerateEndpointName to False
and provide a name of your choice in EndpointName.

How to set the EULA acceptance when fine-tuning a model using the AutoML API

For models requiring the acceptance of an end-user license agreement before fine-tuning, you can
accept the EULA by setting the AcceptEula attribute of the ModelAccessConfig to True in
TextGenerationJobConfig when configuring your AutoMLProblemTypeConfig.

Create an LLM fine-tuning job using the AutoML API 225

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLDataSplitConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-ModelDeployConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html#API_ModelDeployConfig_Contents
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelAccessConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextGenerationJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig

Amazon SageMaker Developer Guide

How to set hyperparameters to optimize the learning process of a model

You can optimize the learning process of your text generation model by setting hyperparameter
values in the TextGenerationHyperParameters attribute of TextGenerationJobConfig
when configuring your AutoMLProblemTypeConfig.

Autopilot allows for the setting of four common hyperparameters across all models.

• epochCount: Its value should be a string containing an integer value within the range of 1 to 10.

• batchSize: Its value should be a string containing an integer value within the range of 1 to 64.

• learningRate: Its value should be a string containing a floating-point value within the range of
0 to 1.

• learningRateWarmupSteps: Its value should be a string containing an integer value within the
range of 0 to 250.

For more details on each hyperparameter, see Optimize the learning process of your text
generation models with hyperparameters.

The following JSON example shows a TextGenerationHyperParameters field passed to the
TextGenerationJobConfig where all four hyperparameters are configured.

"AutoMLProblemTypeConfig": {
 "TextGenerationJobConfig": {
 "BaseModelName": "Falcon7B",
 "TextGenerationHyperParameters": {"epochCount":"5", "learningRate":"0.000001",
 "batchSize": "32", "learningRateWarmupSteps": "10"}
 }
}

Supported large language models for fine-tuning

Using Autopilot API, users can fine-tune the following large language models (LLMs). Those models
are powered by Amazon SageMaker JumpStart.

Note

For fine-tuning models that require the acceptance of an end-user license agreement, you
must explicitly declare EULA acceptance when creating your AutoML job. Note that after

Create an LLM fine-tuning job using the AutoML API 226

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextGenerationJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLProblemTypeConfig

Amazon SageMaker Developer Guide

fine-tuning a pretrained model, the weights of the original model are changed, so you do
not need to later accept a EULA when deploying the fine-tuned model.
For information on how to accept the EULA when creating a fine-tuning job using the
AutoML API, see the section called “Set EULA”.

You can find the full details of each model by searching for your SageMaker JumpStart Model ID
in the following model table, and then following the link in the Source column. These details might
include the languages supported by the model, biases it may exhibit, the datasets employed for
fine-tuning, and more.

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

huggingface-textgeneration-
dolly-v2-3b-bf16

Dolly3B Dolly 3B is a 2.8 billion
parameter instruction-follow
ing large language model
based on pythia-2.8b. It is
trained on the instruction/
response fine tuning dataset
databricks-dolly-15k and
can perform tasks including
brainstorming, classification,
questions and answers, text
generation, information
extraction, and summariza
tion.

huggingface-textgeneration-
dolly-v2-7b-bf16

Dolly7B Dolly 7B is a 6.9 billion
parameter instruction-follow
ing large language model
based on pythia-6.9b. It is
trained on the instruction/
response fine tuning dataset
databricks-dolly-15k and
can perform tasks including
brainstorming, classification,

Create an LLM fine-tuning job using the AutoML API 227

https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html#built-in-algorithms-with-pre-trained-model-table
https://huggingface.co/EleutherAI/pythia-2.8b#pythia-28b
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/EleutherAI/pythia-6.9b
https://huggingface.co/datasets/databricks/databricks-dolly-15k

Amazon SageMaker Developer Guide

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

questions and answers, text
generation, information
extraction, and summariza
tion.

huggingface-textgeneration-
dolly-v2-12b-bf16

Dolly12B Dolly 12B is a 12 billion
parameter instruction-follow
ing large language model
based on pythia-12b. It is
trained on the instruction/
response fine tuning dataset
databricks-dolly-15k and
can perform tasks including
brainstorming, classification,
questions and answers, text
generation, information
extraction, and summariza
tion.

huggingface-llm-falcon-7b-b
f16

Falcon7B Falcon 7B is a 7 billion
parameter causal large
language model trained
on 1,500 billion tokens
enhanced with curated
corpora. Falcon-7B is trained
on English and French data
only, and does not generaliz
e appropriately to other
languages. Because the model
was trained on large amounts
of web data, it carries the
stereotypes and biases
commonly found online.

Create an LLM fine-tuning job using the AutoML API 228

https://huggingface.co/EleutherAI/pythia-12b
https://huggingface.co/datasets/databricks/databricks-dolly-15k

Amazon SageMaker Developer Guide

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

huggingface-llm-falcon-7b-i
nstruct-bf16

Falcon7BInstruct Falcon 7B Instruct is a 7
billion parameter causal large
language model built on
Falcon 7B and fine-tuned on
a 250 million tokens mixture
of chat/instruct datasets.
 Falcon 7B Instruct is mostly
trained on English data, and
does not generalize appropria
tely to other languages.
Furthermore, as it is trained
on a large-scale corpora
representative of the web, it
carries the stereotypes and
biases commonly encounter
ed online.

Create an LLM fine-tuning job using the AutoML API 229

Amazon SageMaker Developer Guide

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

huggingface-llm-falcon-40b-
bf16

Falcon40B Falcon 40B is a 40 billion
parameter causal large
language model trained on
1,000 billion tokens enhanced
with curated corpora. It is
trained mostly on English,
German, Spanish, and French,
with limited capabilities in
Italian, Portuguese, Polish,
Dutch, Romanian, Czech, and
Swedish. It does not generaliz
e appropriately to other
languages. Furthermore, as
it is trained on a large-scale
corpora representative of the
web, it carries the stereotyp
es and biases commonly
encountered online.

huggingface-llm-falcon-40b-
instruct-bf16

Falcon40BInstruct Falcon 40B Instruct is a 40
billion parameter causal large
language model built on
Falcon40B and fine-tuned on
a mixture of Baize. It is mostly
trained on English and French
data, and does not generaliz
e appropriately to other
languages. Furthermore, as
it is trained on a large-scale
corpora representative of the
web, it carries the stereotyp
es and biases commonly
encountered online.

Create an LLM fine-tuning job using the AutoML API 230

Amazon SageMaker Developer Guide

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

huggingface-text2text-flan-
t5-large

FlanT5L The Flan-T5 model family
is a set of large language
models that are fine-tuned
on multiple tasks and can be
further trained. These models
are well-suited for tasks
such as language translati
on, text generation, sentence
completion, word sense
disambiguation, summariza
tion, or question answering
. Flan T5 L is a 780 million
parameter large language
model trained on numerous
languages. You can find
the list of the languages
supported by Flan T5 L in the
details of the model retrieved
from your search by model
ID in SageMaker JumpStart's
model table.

Create an LLM fine-tuning job using the AutoML API 231

https://huggingface.co/docs/transformers/model_doc/t5
https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html#built-in-algorithms-with-pre-trained-model-table

Amazon SageMaker Developer Guide

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

huggingface-text2text-flan-
t5-xl

FlanT5XL The Flan-T5 model family
is a set of large language
models that are fine-tune
d on multiple tasks and can
be further trained. These
models are well-suited for
tasks such as language
translation, text generatio
n, sentence completion,
word sense disambiguation,
summarization, or question
answering. Flan T5 XL is a
3 billion parameter large
language model trained on
numerous languages. You can
find the list of the languages
supported by Flan T5 XL
in the details of the model
retrieved from your search
by model ID in SageMaker
JumpStart's model table.

Create an LLM fine-tuning job using the AutoML API 232

https://huggingface.co/docs/transformers/model_doc/t5
https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html#built-in-algorithms-with-pre-trained-model-table

Amazon SageMaker Developer Guide

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

huggingface-text2text-flan-
t5-xxll

FlanT5XXL The Flan-T5 model family
is a set of large language
models that are fine-tuned
on multiple tasks and can be
further trained. These models
are well-suited for tasks
such as language translati
on, text generation, sentence
completion, word sense
disambiguation, summariza
tion, or question answering
. Flan T5 XXL is a 11 billion
parameter model. You can
find the list of the languages
supported by Flan T5 XXL
in the details of the model
retrieved from your search
by model ID in SageMaker
JumpStart's model table.

meta-textgeneration-llama-2
-7b

Llama2-7B Llama 2 is a collection of
pretrained and fine-tune
d generative text models,
ranging in scale from 7 billion
to 70 billion parameters.
Llama2-7B is the 7 billion
parameter model that is
intended for English use and
can be adapted for a variety
of natural language generatio
n tasks.

Create an LLM fine-tuning job using the AutoML API 233

https://huggingface.co/docs/transformers/model_doc/t5
https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html#built-in-algorithms-with-pre-trained-model-table

Amazon SageMaker Developer Guide

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

meta-textgeneration-llama-2
-7b-f

Llama2-7BChat Llama 2 is a collection of
pretrained and fine-tune
d generative text models,
ranging in scale from 7 billion
to 70 billion parameters.
Llama2-7B is the 7 billion
parameter chat model that
is optimized for dialogue use
cases.

meta-textgeneration-llama-2
-13b

Llama2-13B Llama 2 is a collection of
pretrained and fine-tune
d generative text models,
ranging in scale from 7 billion
to 70 billion parameters.
Llama2-13B is the 13 billion
parameter model that is
intended for English use and
can be adapted for a variety
of natural language generatio
n tasks.

meta-textgeneration-llama-2
-13b-f

Llama2-13BChat Llama 2 is a collection of
pretrained and fine-tune
d generative text models,
ranging in scale from 7 billion
to 70 billion parameters.
Llama2-13B is the 13 billion
parameter chat model that
is optimized for dialogue use
cases.

Create an LLM fine-tuning job using the AutoML API 234

Amazon SageMaker Developer Guide

SageMaker JumpStart Model
ID

BaseModelName in API
request

Description

huggingface-llm-mistral-7b Mistral7B Mistral 7B is a seven billion
parameters code and
general purpose English text
generation model. It can be
used in a variety of use cases
including text summarization,
classification, text completio
n, or code completion.

huggingface-llm-mistral-7b-
instruct

Mistral7BInstruct Mistral 7B Instruct is the fine-
tuned version of Mistral 7B
for conversational use cases.
It was specialized using a
variety of publicly available
conversation datasets in
English.

huggingface-textgeneration1-
mpt-7b-bf16

MPT7B MPT 7B is a decoder-style
transformer large language
model with 6.7 billion
parameters, pre-trained from
scratch on 1 trillion tokens
of English text and code. It
is prepared to handle long
context lengths.

huggingface-textgeneration1-
mpt-7b-instruct-bf16

MPT7BInstruct MPT 7B Instruct is a model
for short-form instruction
following tasks. It is built
by fine-tuning MPT 7B on
a dataset derived from
databricks-dolly-15k and
the Anthropic Helpful and
Harmless (HH-RLHF) datasets.

Create an LLM fine-tuning job using the AutoML API 235

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/Anthropic/hh-rlhf

Amazon SageMaker Developer Guide

Dataset file types and input data format

Instruction-based fine-tuning uses labeled datasets to improve the performance of pre-trained
LLMs on specific natural language processing (NLP) tasks. The labeled examples are formatted as
prompt-response pairs and phrased as instructions.

To learn about the supported dataset file types, see Supported dataset file types.

To learn about input data format, see Input data format for instruction-based fine-tuning.

Supported dataset file types

Autopilot supports instruction-based fine-tuning datasets formatted as CSV files (default) or as
Parquet files.

• CSV (comma separated values) is a row-based file format that stores data in human readable
plaintext, which is a popular choice for data exchange as it is supported by a wide range of
applications.

• Parquet is a binary, column-based file format where the data is stored and processed more
efficiently than in human readable file formats such as CSV. This makes it a better option for big
data problems.

Note

The dataset may consist of multiple files, each of which must adhere to a specific template.
For information on how to format your input data, see Input data format for instruction-
based fine-tuning.

Input data format for instruction-based fine-tuning

Each file in the dataset must adhere to the following format:

• The dataset must contain exactly two comma-separated and named columns, input and
output. Autopilot does not allow any additional columns.

• The input columns contain the prompts, and their corresponding output contains the expected
answer. Both the input and output are in string format.

Create an LLM fine-tuning job using the AutoML API 236

Amazon SageMaker Developer Guide

The following example illustrates the input data format for instruction-based fine-tuning in
Autopilot.

input,output
"<prompt text>","<expected generated text>"

Note

We recommend using datasets with a minimum of 1000 rows to ensure optimal learning
and performance of the model.

Additionally, Autopilot sets a maximum limit on the number of rows in the dataset and the context
length based on the type of model being used.

• The limits on the number of rows in a dataset apply to the cumulative count of rows across all
files within the dataset, including multiple files. If there are two channel types defined (one for
training and one for validation), the limit applies to the total number of rows across all datasets
within both channels. When the number of rows exceeds the threshold, the job fails with a
validation error.

• When the length of the input or output of a row in the dataset exceeds the limit set on the
context of the language model, it is automatically truncated. If more than 60% of the rows in the
dataset are truncated, whether in their input or output, Autopilot fails the job with a validation
error.

The following table presents those limits for each model.

SageMaker
JumpStart Model ID

BaseModelName in
API request

Row Limit Context Length Limit

huggingface-textge
neration-dolly-v2-3b-
bf16

Dolly3B 10,000 rows 1024 tokens

huggingface-textge
neration-dolly-v2-7b-
bf16

Dolly7B 10,000 rows 1024 tokens

Create an LLM fine-tuning job using the AutoML API 237

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html

Amazon SageMaker Developer Guide

SageMaker
JumpStart Model ID

BaseModelName in
API request

Row Limit Context Length Limit

huggingface-textge
neration-dolly-v2-
12b-bf16

Dolly12B 10,000 rows 1024 tokens

huggingface-llm-fa
lcon-7b-bf16

Falcon7B 1,000 rows 1024 tokens

huggingface-llm-fa
lcon-7b-instruct-bf16

Falcon7BI
nstruct

1,000 rows 1024 tokens

huggingface-llm-fa
lcon-40b-bf16

Falcon40B 10,000 rows 1024 tokens

huggingface-llm-fa
lcon-40b-instruct-
bf16

Falcon40B
Instruct

10,000 rows 1024 tokens

huggingface-text2t
ext-flan-t5-large

FlanT5L 10,000 rows 1024 tokens

huggingface-text2t
ext-flan-t5-xl

FlanT5XL 10,000 rows 1024 tokens

huggingface-text2t
ext-flan-t5-xxll

FlanT5XXL 10,000 rows 1024 tokens

meta-textgeneration-
llama-2-7b

Llama2-7B 10,000 rows 2048 tokens

meta-textgeneration-
llama-2-7b-f

Llama2-7BChat 10,000 rows 2048 tokens

meta-textgeneration-
llama-2-13b

Llama2-13B 7,000 rows 2048 tokens

Create an LLM fine-tuning job using the AutoML API 238

Amazon SageMaker Developer Guide

SageMaker
JumpStart Model ID

BaseModelName in
API request

Row Limit Context Length Limit

meta-textgeneration-
llama-2-13b-f

Llama2-13BChat 7,000 rows 2048 tokens

huggingface-llm-mi
stral-7b

Mistral7B 10,000 rows 2048 tokens

huggingface-llm-mi
stral-7b-instruct

Mistral7B
Instruct

10,000 rows 2048 tokens

huggingface-textge
neration1-mpt-7b-b
f16

MPT7B 10,000 rows 1024 tokens

huggingface-textge
neration1-mpt-7b-i
nstruct-bf16

MPT7BInstruct 10,000 rows 1024 tokens

Optimize the learning process of your text generation models with
hyperparameters

You can optimize the learning process of your base model by adjusting any combination of the
following hyperparameters. These parameters are available for all models.

• Epoch Count: The epochCount hyperparameter determines how many times the model
goes through the entire training dataset. It influences the training duration and can prevent
overfitting when set appropriately. Large number of epochs may increase the overall runtime
of fine-tuning jobs. We recommend setting a large MaxAutoMLJobRuntimeInSeconds within
the CompletionCriteria of the TextGenerationJobConfig to avoid fine-tuning jobs from
stopping prematurely.

• Batch Size: The batchSize hyperparameter defines the number of data samples used in
each iteration of training. It can affect the convergence speed and memory usage. With large
batch size, the risk of out of memory (OOM) errors increases, which may surface as an internal
server error in Autopilot. To check for such error, check the /aws/sagemaker/TrainingJobs
log group for the training jobs launched by your Autopilot job. You can access those logs in

Create an LLM fine-tuning job using the AutoML API 239

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextGenerationJobConfig.html

Amazon SageMaker Developer Guide

CloudWatch from in the AWS management console. Choose Logs, and then choose the /aws/
sagemaker/TrainingJobs log group. To remedy OOM errors, reduce the batch size.

We recommend starting with a batch size of 1, then incrementally increase it until an out of
memory error occurs. As a reference, 10 epochs typically takes up to 72h to complete.

• Learning Rate: The learningRate hyperparameter controls the step size at which a model's
parameters are updated during training. It determines how quickly or slowly the model's
parameters are updated during training. A high learning rate means that the parameters are
updated by a large step size, which can lead to faster convergence but may also cause the
optimization process to overshoot the optimal solution and become unstable. A low learning
rate means that the parameters are updated by a small step size, which can lead to more stable
convergence but at the cost of slower learning.

• Learning Rate Warmup Steps: The learningRateWarmupSteps hyperparameter specifies the
number of training steps during which the learning rate gradually increases before reaching its
target or maximum value. This helps the model converge more effectively and avoid issues like
divergence or slow convergence that can occur with an initially high learning rate.

To learn about how to adjust hyperparameters for your fine-tuning experiment in Autopilot and
discover their possible values, see How to set hyperparameters to optimize the learning process of
a model.

Metrics for fine-tuning large language models in Autopilot

Using your dataset, Autopilot directly fine-tunes a target language model (LLM) to enhance a
default objective metric, the cross-entropy loss.

Cross-entropy loss is a widely used metric to assess the dissimilarity between the predicted
probability distribution and the actual distribution of words in the training data. By minimizing
cross-entropy loss, the model learns to make more accurate and contextually relevant predictions,
particularly in tasks related to text generation.

After fine-tuning an LLM you can evaluate the quality of its generated text using a range of ROUGE
scores. Additionally, you can analyze the perplexity and cross-entropy training and validation losses
as part of the evaluation process.

• Perplexity loss measures how well the model can predict the next word in a sequence of text,
with lower values indicating a better understanding of the language and context.

Create an LLM fine-tuning job using the AutoML API 240

Amazon SageMaker Developer Guide

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a set of metrics used in the
field of natural language processing (NLP) and machine learning to evaluate the quality of
machine-generated text, such as text summarization or text generation. It primarily assesses the
similarities between the generated text and the ground truth reference (human-written) text of
a validation dataset. ROUGE measures are designed to assess various aspects of text similarity,
including the precision and recall of n-grams (contiguous sequences of words) in the system-
generated and reference texts. The goal is to assess how well a model captures the information
present in the reference text.

There are several variants of ROUGE metrics, depending on the type of n-grams used and the
specific aspects of text quality being evaluated.

The following list contains the name and description of the ROUGE metrics available after the
fine-tuning of large language models in Autopilot.

ROUGE-1, ROUGE-2

ROUGE-N, the primary ROUGE metric, measures the overlap of n-grams between the system-
generated and reference texts. ROUGE-N can be adjusted to different values of n (here 1 or
2) to evaluate how well the system-generated text captures the n-grams from the reference
text.

ROUGE-L

ROUGE-L (ROUGE-Longest Common Subsequence) calculates the longest common
subsequence between the system-generated text and the reference text. This variant
considers word order in addition to content overlap.

ROUGE-L-Sum

ROUGE-L-SUM (Longest Common Subsequence for Summarization) is designed for the
evaluation of text summarization systems. It focuses on measuring the longest common
subsequence between the machine-generated summary and the reference summary.
ROUGE-L-SUM takes into account the order of words in the text, which is important in text
summarization tasks.

Autopilot model deployment and predictions

After fine-tuning a large language model (LLM), you can deploy the model for real-time text
generation by setting up an endpoint to obtain interactive predictions.

Create an LLM fine-tuning job using the AutoML API 241

Amazon SageMaker Developer Guide

Note

We recommend running real-time inference jobs on ml.g5.12xlarge for better
performances. Alternatively, ml.g5.8xlarge instances are suitable for Falcon-7B-Instruct
and MPT-7B-Instruct text generation tasks.
You can find the specifics of these instances within the Accelerated Computing category in
the selection of instance types provided by Amazon EC2.

Real-time text generation

You can use SageMaker APIs to manually deploy your fine-tuned model to a SageMaker Hosting
real-time inference endpoint, then begin making predictions by invoking the endpoint as follows.

Note

Alternatively, you can chose the automatic deployment option when creating your fine-
tuning experiment in Autopilot. For information on setting up the automatic deployment of
models, see How to enable automatic deployment.
You can also use the SageMaker Python SDK and the JumpStartModel class to perform
inferences with models fine-tuned by Autopilot. This can be done by specifying a custom
location for the model's artifact in Amazon S3. For information on defining your model
as a SageMaker JumpStart model and deploying your model for inference, see Low-code
deployment with the JumpStartModel class.

1. Obtain the candidate inference container definitions

You can find the InferenceContainerDefinitions within the BestCandidate object
retrieved from the response to the DescribeAutoMLJobV2 API call. A container definition for
inference refers to the containerized environment designed for deploying and running your
trained model to make predictions.

The following AWS CLI command example uses the DescribeAutoMLJobV2 API to obtain
recommended container definitions for your job name.

aws sagemaker describe-auto-ml-job-v2 --auto-ml-job-name job-name --region region

2. Create a SageMaker model

Create an LLM fine-tuning job using the AutoML API 242

https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://sagemaker.readthedocs.io/en/stable/overview.html#deploy-a-pre-trained-model-directly-to-a-sagemaker-endpoint
https://sagemaker.readthedocs.io/en/stable/overview.html#deploy-a-pre-trained-model-directly-to-a-sagemaker-endpoint
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html#API_DescribeAutoMLJobV2_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html

Amazon SageMaker Developer Guide

Use the container definitions from the previous step to create a SageMaker model by using the
CreateModel API. See the following AWS CLI command as an example. Use the CandidateName
for your model name.

aws sagemaker create-model --model-name '<your-candidate-name>' \
 --primary-container '<container-definition' \
 --execution-role-arn '<execution-role-arn>' --region '<region>

3. Create an endpoint configuration

The following AWS CLI command example uses the CreateEndpointConfig API to create an
endpoint configuration.

Note

To prevent the endpoint creation from timing out due to a lengthy model download,
we recommend setting ModelDataDownloadTimeoutInSeconds = 3600 and
ContainerStartupHealthCheckTimeoutInSeconds = 3600.

aws sagemaker create-endpoint-config --endpoint-config-name '<your-endpoint-config-
name>' \
 --production-variants '<list-of-
production-variants>' ModelDataDownloadTimeoutInSeconds=3600
 ContainerStartupHealthCheckTimeoutInSeconds=3600 \
 --region '<region>'

4. Create the endpoint

The following AWS CLI example uses the CreateEndpoint API to create the endpoint.

aws sagemaker create-endpoint --endpoint-name '<your-endpoint-name>' \
 --endpoint-config-name '<endpoint-config-name-you-just-created>'
 \
 --region '<region>'

Check the progress of your endpoint deployment by using the DescribeEndpoint API. See the
following AWS CLI command as an example.

Create an LLM fine-tuning job using the AutoML API 243

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide

aws sagemaker describe-endpoint —endpoint-name '<endpoint-name>' —region <region>

After the EndpointStatus changes to InService, the endpoint is ready to use for real-time
inference.

5. Invoke the endpoint

The following command invokes the endpoint for real-time inferencing. Your prompt needs to
be encoded in bytes.

Note

The format of your input prompt depends on the language model. For more information
on the format of text generation prompts, see Request format for text generation
models real-time inference.

aws sagemaker invoke-endpoint --endpoint-name '<endpoint-name>' \
 --region '<region>' --body '<your-promt-in-bytes>' [--content-type]
 'application/json' <outfile>

Request format for text generation models real-time inference

Different large language models (LLMs) may have specific software dependencies, runtime
environments, and hardware requirements influencing Autopilot's recommended container to host
the model for inference. Additionally, each model dictates the required input data format and the
expected format for predictions and outputs.

Here are example inputs for some models and recommended containers.

• For Falcon models with the recommended container huggingface-pytorch-tgi-
inference:2.0.1-tgi1.0.3-gpu-py39-cu118-ubuntu20.04:

payload = {
 "inputs": "Large language model fine-tuning is defined as",
 "parameters": {
 "do_sample": false,
 "top_p": 0.9,

Create an LLM fine-tuning job using the AutoML API 244

Amazon SageMaker Developer Guide

 "temperature": 0.1,
 "max_new_tokens": 128,
 "stop": ["<|endoftext|>", "</s>"]
 }
}

• For all other models with the recommended container djl-inference:0.22.1-
fastertransformer5.3.0-cu118:

payload= {
 "text_inputs": "Large language model fine-tuning is defined as"
}

Create a Regression or Classification Autopilot experiment for tabular
data using the Studio Classic UI

Note

All UI-related instructions in this guide pertain to Autopilot's standalone features before
migrating to Amazon SageMaker Canvas. Users following these instructions should use
Studio Classic.

You can use the Amazon SageMaker Studio Classic UI to create Autopilot experiments for
classification or regression problems on tabular data. The UI helps you specify the name of your
experiment, provide locations for the input and output data, and specify which target data to
predict. Optionally, you can also specify the type of problem that you want to solve (regression,
classification, multiclass classification), choose your modeling strategy (stacked ensembles or
hyperparameters optimization), select the list of algorithms used by the Autopilot job to train the
data, and more.

The UI has descriptions, toggle switches, dropdown menus, radio buttons, and more to help you
navigate creating your model candidates. After the experiment runs, you can compare trials and
delve into the details of the pre-processing steps, algorithms, and hyperparameter ranges of
each model. Optionally, you can download their explainability and performance reports. Use the
provided notebooks to see the results of the automated data exploration or the candidate model
definitions.

Create a Regression or Classification Job Using the Studio Classic UI 245

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-insights.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-notebook-output.html

Amazon SageMaker Developer Guide

Alternatively, you can use Autopilot AutoML API in Create a regression or classification job for
tabular data using the AutoML API.

Configure the default parameters of an Autopilot experiment (for administrators)

Autopilot supports setting default values to simplify the configuration of Amazon SageMaker
Autopilot when you create an Autopilot experiment using the Studio Classic UI. Administrators
can use Studio Classic lifecycle configurations (LCC) to set infrastructure, networking, and security
values in configuration files and pre-populate the advanced settings of AutoML jobs.

By doing so, they can fully control network connectivity and access permissions for the resources
associated with Amazon SageMaker Studio Classic, including SageMaker instances, data sources,
output data, and other related services. Specifically, administrators can configure a desired network
architecture, such as Amazon VPC, subnets, and security groups, for a Studio Classic domain or
individual user profiles. Data scientists can focus on data science specific parameters when creating
their Autopilot experiments using the Studio Classic UI. Furthermore, administrators can manage
the encryption of data on the instance in which Autopilot experiments run by setting default
encryption keys.

Note

This feature is currently not available in the Asia Pacific (Hong Kong) and Middle East
(Bahrain) opt-in Regions.

In the following sections, you can find the full list of parameters supporting the setting of defaults
when creating an Autopilot experiment using the Studio Classic UI, and learn how to set those
default values.

Topics

• List of default parameters supported

• Set default Autopilot experiment parameters

List of default parameters supported

The following parameters support setting default values with a configuration file for creating an
Autopilot experiment using the Studio Classic UI. Once set, the values automatically fill in their

Create a Regression or Classification Job Using the Studio Classic UI 246

Amazon SageMaker Developer Guide

corresponding field in the Autopilot' Create Experiment tab in the Studio Classic UI. See Advanced
settings (optional) for a full description of each field.

• Security: Amazon VPC, subnets, and security groups.

• Access: AWS IAM role ARNs.

• Encryption: AWS KMS key IDs.

• Tags: Key-value pairs used to label and organize SageMaker resources.

Set default Autopilot experiment parameters

Administrators can set default values in a configuration file, then manually place the file in a
recommended location within the Studio Classic environment of specific users, or they can pass
the file to a lifecycle configuration script (LCC) to automate the customization of the Studio Classic
environment for a given domain or user profile.

• To set up the configuration file, start by filling in its default parameters.

To configure any or all default values listed in List of default parameters supported,
administrators can create a configuration file named config.yaml, the structure of which
should adhere to this sample configuration file. The following snippet shows a sample
configuration file with all the supported AutoML parameters. For more information on the
format of this file, refer to the full schema.

SchemaVersion: '1.0'
SageMaker:
 AutoMLJob:
 # https://docs.aws.amazon.com/sagemaker/latest/APIReference/
API_CreateAutoMLJob.html
 AutoMLJobConfig:
 SecurityConfig:
 EnableInterContainerTrafficEncryption: true
 VolumeKmsKeyId: 'kms-key-id'
 VpcConfig:
 SecurityGroupIds:
 - 'security-group-id-1'
 - 'security-group-id-2'
 Subnets:
 - 'subnet-1'
 - 'subnet-2'
 OutputDataConfig:

Create a Regression or Classification Job Using the Studio Classic UI 247

https://sagemaker.readthedocs.io/en/stable/overview.html#configuration-file-structure
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/config/config_schema.py

Amazon SageMaker Developer Guide

 KmsKeyId: 'kms-key-id'
 RoleArn: 'arn:aws:iam::111222333444:role/Admin'
 Tags:
 - Key: 'tag_key'
 Value: 'tag_value'

• Then, place the configuration file in the recommended location by either manually copying the
file to its recommended paths or using a lifecycle configuration (LCC).

The configuration file needs to be present in at least one of the following locations in the user's
Studio Classic environment. By default, SageMaker searches for a configuration file in two
locations:

• First, in /etc/xdg/sagemaker/config.yaml. We refer to this file as the administrator
configuration file.

• Then, in /root/.config/sagemaker/config.yaml. We refer to this file as the user
configuration file.

Using the administrator configuration file, administrators can define a set of default values.
Optionally, they can use the user configuration file to override values set in the administrator
configuration file, or set additional default parameter values.

The following snippet shows a sample script which writes the default parameters configuration
file to the administrator location in the user's Studio Classic environment. You can replace /etc/
xdg/sagemaker with /root/.config/sagemaker to write the file to the user location.

Sample script with AutoML intelligent defaults
#!/bin/bash

sudo mkdir -p /etc/xdg/sagemaker

echo "SchemaVersion: '1.0'
CustomParameters:
 AnyStringKey: 'AnyStringValue'
SageMaker:
 AutoMLJob:
 # https://docs.aws.amazon.com/sagemaker/latest/APIReference/
API_CreateAutoMLJob.html
 AutoMLJobConfig:
 SecurityConfig:
 EnableInterContainerTrafficEncryption: true
 VolumeKmsKeyId: 'kms-key-id'

Create a Regression or Classification Job Using the Studio Classic UI 248

Amazon SageMaker Developer Guide

 VpcConfig:
 SecurityGroupIds:
 - 'security-group-id-1'
 - 'security-group-id-2'
 Subnets:
 - 'subnet-1'
 - 'subnet-2'
 OutputDataConfig:
 KmsKeyId: 'kms-key-id'
 RoleArn: 'arn:aws:iam::111222333444:role/Admin'
 Tags:
 - Key: 'tag_key'
 Value: 'tag_value'
" | sudo tee /etc/xdg/sagemaker/config.yaml

• Copy the files manually – To copy the configuration files manually, run the script created in
the previous step from a Studio Classic terminal. In this case, the user profile that executed the
script can create Autopilot experiments with the default values applicable only to them.

• Create a SageMaker lifecycle configuration – Alternatively, you can use a lifecycle
configuration (LCC) to automate the customization of your Studio Classic environment. LCC are
shell scripts triggered by Amazon SageMaker Studio Classic lifecycle events such as starting a
Studio Classic application. This customization includes installing custom packages, configuring
notebook extensions, pre-loading datasets, setting up source code repositories, or, in our case,
pre-populating default parameters. Administrators can attach the LCC to a Studio Classic
domain to automate the configuration of default values for each user profile within that
domain.

The following sections detail how to create a lifecycle configuration so users can load
Autopilot default parameters automatically when launching Studio Classic. You can choose to
create an LCC using the SageMaker Console or the AWS CLI.

Create a LCC from the SageMaker Console

Use the following steps to create an LCC containing your default parameters, attach the
LCC to a domain or a user profile, then launch a Studio Classic application pre-populated
with the default parameters set by the LCC using the SageMaker Console.

• To create a lifecycle configuration that runs the script containing your default values
using the SageMaker Console

• Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

Create a Regression or Classification Job Using the Studio Classic UI 249

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

• On the left side, navigate to Admin configurations, then Lifecycle configurations.

• From the Lifecycle configurations page, navigate to the Studio Classic tab, then
choose Create configuration.

• For Name, type a name using alphanumeric characters and "-", but no spaces. The
name can have a maximum of 63 characters.

• Paste your script in the Scripts section.

• Choose Create configuration to create the lifecycle configuration. This creates an LCC
of type Kernel gateway app.

• To attach the lifecycle configuration to a Studio Classic domain, a space, or a user
profile

Follow the steps in Attach the lifecycle configuration to Studio Classic domain or user
profile to attach your LCC to a Studio Classic domain or a specific user profile.

• To launch your Studio Classic application with the lifecycle configuration

Once the LCC is attached to a domain or a user profile, impacted users can start a Studio
Classic application from the landing page of Studio Classic in Studio to pick up the
defaults set by the LCC automatically. This auto-populates the Studio Classic UI when
creating an Autopilot experiment.

Create a LCC from the AWS CLI

Use the following snippets to launch a Studio Classic application that runs your script using
the AWS CLI. Note that lifecycle_config.sh is the name given to your script in this
example.

Before getting started:

• Ensure that you have updated and configured AWS CLI by completing the prerequisites
described in Create a lifecycle configuration from the AWS CLI.

• Install OpenSSL documentation. The AWS CLI command uses the open-source library
OpenSSL to encode your script in Base64 format. This requirement prevents errors that
occur from spacing and line break encoding.

You can now follow these three steps:

• Create a new lifecycle configuration referencing the configuration script
lifecycle_config.sh

Create a Regression or Classification Job Using the Studio Classic UI 250

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc-create-console.html#studio-lcc-create-console-step2
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc-create-console.html#studio-lcc-create-console-step2
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc-create-cli.html
https://www.openssl.org/source/

Amazon SageMaker Developer Guide

LCC_CONTENT=`openssl base64 -A -in lifecycle_config.sh`

Create a new lifecycle config
aws sagemaker create-studio-lifecycle-config --region region \
--studio-lifecycle-config-name lcc-name \
--studio-lifecycle-config-content $LCC_CONTENT \
--studio-lifecycle-config-app-type default

Note the ARN of the newly created lifecycle configuration that is returned. This ARN is
required to attach the lifecycle configuration to your application.

• Attach the lifecycle configuration to your JupyterServerApp

The following example shows how to create a new user profile with a lifecycle
configuration attached. To update an existing user profile, use the AWS CLI update-
user-profile command. To create or update a domain, see create-domain and update-
domain. Add the lifecycle configuration ARN from the previous step to the settings of
the JupyterServerAppSettings application type. You can add multiple lifecycle
configurations at the same time by using a list of lifecycle configurations.

Create a new UserProfile
aws sagemaker create-user-profile --domain-id domain-id \
--user-profile-name user-profile-name \
--region region \
--user-settings '{
"JupyterServerAppSettings": {
 "LifecycleConfigArns":
 ["lifecycle-configuration-arn"]
 }
}'

Once the LCC is attached to a domain or a user profile, impacted users can shut down
and update their existing Studio Classic application by following the steps in Shut down
and Update Amazon SageMaker Studio Classic, or start a new Studio Classic application
from the AWS Console to pick up the defaults set by the LCC automatically. This auto-
populates the Studio Classic UI when creating an Autopilot experiment. Alternatively,
they can launch a new Studio Classic application using the AWS CLI as follows.

• Launch your Studio Classic application with the lifecycle configuration using the AWS
CLI

Create a Regression or Classification Job Using the Studio Classic UI 251

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-user-profile.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-user-profile.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-update-studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-update-studio.html

Amazon SageMaker Developer Guide

Create a Jupyter Server application
aws sagemaker create-app --domain-id domain-id \
--user-profile-name user-profile-name \
--region region \
--app-type JupyterServer \
--resource-spec LifecycleConfigArn=lifecycle-configuration-arn \
--app-name default

For more information on creating a lifecycle configuration using the AWS CLI, see Create
a Lifecycle Configuration from the AWS CLI.

To create an Autopilot experiment using Studio Classic UI

1. Sign in at https://console.aws.amazon.com/sagemaker/, choose Studio from the left
navigation pane, select your Domain and user profile, then Open Studio.

2. In Studio, choose the Studio Classic icon in the top left navigation pane. This opens a Studio
Classic app.

3. Run or open a Studio Classic application from the space of your choice, or Create Studio
Classic space. . On the Home tab, choose the AutoML card. This opens a new AutoML tab.

4. Choose Create an AutoML experiment. This opens a new Create experiment tab.

5. In the Experiment and data details section, enter the following information:

a. Experiment name – Must be unique to your account in the current AWS Region and
contain a maximum of 63 alphanumeric characters. Can include hyphens (-) but not
spaces.

b. Input data – Provide the Amazon Simple Storage Service (Amazon S3) bucket location
of your input data. This S3 bucket must be in your current AWS Region. The URL must be
in an s3:// format where Amazon SageMaker has write permissions. The file must be
in CSV or Parquet format and contain at least 500 rows. Select Browse to scroll through
available paths and Preview to see a sample of your input data.

c. Is your S3 input a manifest file? – A manifest file includes metadata with your input data.
The metadata specifies the location of your data in Amazon S3. It also specifies how the
data is formatted and which attributes from the dataset to use when training your model.
You can use a manifest file as an alternative to preprocessing when your labeled data is
being streamed in Pipe mode.

Create a Regression or Classification Job Using the Studio Classic UI 252

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc-create-cli.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc-create-cli.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

d. Auto split data? – Autopilot can split your data into an 80-20% split for training and
validation data. If you prefer a custom split, you can choose the Specify split ratio. To use
a custom dataset for validation, choose Provide a validation set.

e. Output data location (S3 bucket) – The name of the S3 bucket location where you want
to store the output data. The URL for this bucket must be in an Amazon S3 format where
Amazon SageMaker has write permissions. The S3 bucket must be in the current AWS
Region. Autopilot can also create this for you in the same location as your input data.

6. Choose Next: Target and features. The Target and features tab opens.

7. In the Target and features section:

• Select a column to set as a target for model predictions.

• Optionally, you can pass the name of a sample weights column in the Sample weight
section to request your dataset rows to be weighted during training and evaluation. For
more information on the available objective metrics, see Autopilot weighted metrics.

Note

Support for sample weights is available in ensembling mode only.

• You can also select features for training and change their data type. The following data
types are available: Text, Numerical, Categorical, Datetime, Sequence, and Auto. All
features are selected by default.

8. Choose Next: Training method. The Training method tab opens.

9. In the Training method section, select your training option: Ensembling, Hyperparameter
optimization (HPO), or Auto to let Autopilot choose the training method automatically based
on the dataset size. Each training mode runs a pre-defined set of algorithms on your dataset
to train model candidates. By default, Autopilot pre-selects all the available algorithms for the
given training mode. You can run an Autopilot training experiment with all the algorithms or
choose your own subset.

For more information on the training modes and the available algorithms, see the Autopilot
training modes section in the Training modes and algorithms page.

10. Choose Next: Deployment and advanced settings to open the Deployment and advanced
settings tab. Settings include the auto-display endpoint name, machine learning problem
type, and additional choices for running your experiment.

Create a Regression or Classification Job Using the Studio Classic UI 253

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-training-mode
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html

Amazon SageMaker Developer Guide

a. Deployment settings – Autopilot can automatically create an endpoint and deploy your
model for you.

To auto-deploy to an automatically generated endpoint, or to provide an endpoint name
for custom deployment, set the toggle to Yes under Auto deploy? If you are importing
data from Amazon SageMaker Data Wrangler, you have additional options to auto-deploy
the best model with or without the transforms from Data Wrangler.

Note

If your Data Wrangler flow contains multi-row operations such as groupby,
join, or concatenate, you can't auto-deploy with these transforms. For more
information, see Automatically Train Models on Your Data Flow.

b. Advanced settings (optional) – Autopilot provides additional controls to manually set
experimental parameters such as defining your problem type, time constraints on your
Autopilot job and trials, security, and encryption settings.

Note

Autopilot supports the setting of default values to simplify the configuration
of Autopilot experiments using Studio Classic UI. Administrators can use Studio
Classic lifecycle configurations (LCC) to set infrastructure, networking, and security
values in configuration files and pre-populate the advanced settings of AutoML
jobs.
To learn about how administrators can automate the customization of an
Autopilot experiment, see Configure the default parameters of an Autopilot
experiment (for administrators).

i. Machine learning problem type – Autopilot can automatically infer the type of
supervised learning problem from your dataset. If you prefer to choose it manually,
you can use the Select the machine learning problem type dropdown menu. Note
that it defaults to Auto. In some cases, SageMaker is unable to infer accurately. When
that happens, you must provide the value for the job to succeed. In particular, you can
choose from the following types:

Create a Regression or Classification Job Using the Studio Classic UI 254

https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-autopilot.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html

Amazon SageMaker Developer Guide

• Binary classification– Binary classification assigns input data to one of two
predefined and mutually exclusive classes, based on their attributes, such as
medical diagnosis based on results of diagnostic tests that determine if someone
has a disease.

• Regression – Regression establishes a relationship between the input variables (also
known as independent variables or features) and the target variable (also known
as the dependent variable). This relationship is captured through a mathematical
function or model that maps the input variables to a continuous output. It is
commonly used for tasks such as predicting house prices based on features like
square footage and the number of bathrooms, stock market trends, or estimating
sales figures.

• Multiclass classification – Multiclass classification assigns input data to one of
several classes based on their attributes, like the prediction of the topic most
relevant to a text document, such as politics, finance, or philosophy.

ii. Runtime – You can define a maximum time limit. Upon reaching the time limit, trials
and jobs that exceed the time constraint automatically stop.

iii. Access – You can choose the role that Amazon SageMaker Studio Classic assumes
to gain temporary access to AWS services (in particular, SageMaker and Amazon S3)
on your behalf. If no role is explicitly defined, Studio Classic automatically uses the
default SageMaker execution role attached to your user profile.

iv. Encryption – To enhance the security of your data at rest and protect it against
unauthorized access, you can specify encryption keys to encrypt data in your Amazon
S3 buckets and in the Amazon Elastic Block Store (Amazon EBS) volume attached to
your Studio Classic domain.

v. Security – You can choose the virtual private cloud (Amazon VPC) in which your
SageMaker job runs. Ensure that the Amazon VPC has access to your input and output
Amazon S3 buckets.

vi. Project – Specify the name of the SageMaker project to associate with this Autopilot
experiment and model outputs. When you specify a project, Autopilot tags the project
to an experiment. This lets you know which model outputs are associated with this
project.

vii. Tags – Tags are an array of key-value pairs. Use tags to categorize your resources from
AWS services, such as their purpose, owner, or environment.

Create a Regression or Classification Job Using the Studio Classic UI 255

Amazon SageMaker Developer Guide

c. Choose Next: Review and create to get a summary of your Autopilot experiment before
you create it.

11. Select Create experiment.The creation of the experiment starts an Autopilot job in SageMaker.
Autopilot provides the status of the experiment, information on the data exploration process
and model candidates in notebooks, a list of generated models and their reports, and the job
profile used to create them.

For information on the notebooks generated by an Autopilot job, see Amazon SageMaker
Autopilot notebooks generated to manage AutoML tasks. For information on the details
of each model candidate and their reports, see Models generated by Amazon SageMaker
Autopilot .

Note

To avoid incurring unnecessary charges: If you deploy a model that is no longer needed,
delete the endpoints and resources that were created during that deployment. Information
about pricing instances by Region is available at Amazon SageMaker Pricing.

Amazon SageMaker Autopilot example notebooks

The following notebooks serve as practical, hands-on examples that address various use cases of
Autopilot.

You can find all of Autopilot's notebooks in the autopilot directory of SageMaker GitHub
examples repository.

We recommend cloning the full Git repository within Studio Classic to access and run the
notebooks directly. For information on how to clone a Git repository in Studio Classic, see Clone a
Git Repository in SageMaker Studio Classic.

Use case Description

Serverless inference By default, Autopilot allows deploying
generated models to real-time inference
 endpoints. In this repository, the notebook
illustrates how to deploy Autopilot models

Example Notebooks 256

https://aws.amazon.com/sagemaker/pricing/
https://github.com/aws/amazon-sagemaker-examples/tree/main/autopilot
https://github.com/aws/amazon-sagemaker-examples/tree/main/autopilot/autopilot-serverless-inference

Amazon SageMaker Developer Guide

Use case Description

trained with ENSEMBLING and HYPERPARA
METER OPTIMIZATION (HPO) modes to
serverless endpoints. Serverless endpoints
automatically launch compute resources and
scale them in and out depending on traffic,
eliminating the need to choose instance types
or manage scaling policies.

Custom feature selection Autopilot inspects your data set, and runs
a number of candidates to figure out the
optimal combination of data preprocessing
steps, machine learning algorithms, and
hyperparameters. You can easily deploy either
on a real-time endpoint or for batch processin
g.

In some cases, you might want to have the
flexibility to bring custom data processin
g code to Autopilot. For example, your
datasets might contain a large number of
independent variables, and you may wish to
incorporate a custom feature selection step to
remove irrelevant variables first. The resulting
smaller dataset can then be used to launch an
Autopilot job. Ultimately, you would also want
to include both the custom processing code
and models from Autopilot for real-time or
batch processing.

Example Notebooks 257

https://github.com/aws/amazon-sagemaker-examples/tree/main/autopilot/custom-feature-selection

Amazon SageMaker Developer Guide

Use case Description

Pipeline example While Autopilot streamlines the process of
building ML models, MLOps engineers are
still responsible for creating, automating,
and managing end-to-end ML workflows in
production. SageMaker Pipelines can assist in
automating various steps of the ML lifecycle
, such as data preprocessing, model training,
hyperparameter tuning, model evaluatio
n, and deployment. This notebook serves
as a demonstration of how to incorporate
Autopilot into a SageMaker Pipelines end-
to-end AutoML training workflow. To launch
an Autopilot experiment within Pipelines,
you must create a model-building workflow
by writing custom integration code using
Pipelines Lambda or Processing steps. For
more information, refer to Move Amazon
SageMaker Autopilot ML models from
experimentation to production using Amazon
SageMaker Pipelines.

Alternatively, when using Autopilot in
Ensembling mode, you can refer to the
notebook example that demonstrates how
to use native AutoML step in SageMaker
Pipeline's native AutoML step. With Autopilot
supported as a native step within Pipelines,
you can now add an automated training step
(AutoMLStep) to your Pipelines and invoke an
Autopilot experiment in Ensembling mode.

More notebooks You can find more notebooks illustrating other
use cases such as batch transform, time-series
forecasting and more in the root directory.

Example Notebooks 258

https://github.com/aws/amazon-sagemaker-examples/tree/main/autopilot/sagemaker-autopilot-pipelines
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-lambda
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://aws.amazon.com/blogs/machine-learning/move-amazon-sagemaker-autopilot-ml-models-from-experimentation-to-production-using-amazon-sagemaker-pipelines/
https://aws.amazon.com/blogs/machine-learning/move-amazon-sagemaker-autopilot-ml-models-from-experimentation-to-production-using-amazon-sagemaker-pipelines/
https://aws.amazon.com/blogs/machine-learning/move-amazon-sagemaker-autopilot-ml-models-from-experimentation-to-production-using-amazon-sagemaker-pipelines/
https://aws.amazon.com/blogs/machine-learning/move-amazon-sagemaker-autopilot-ml-models-from-experimentation-to-production-using-amazon-sagemaker-pipelines/
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/autopilot/sagemaker-autopilot-pipelines/autopilot_pipelines_demo_notebook.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/autopilot/sagemaker-autopilot-pipelines/autopilot_pipelines_demo_notebook.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-automl
https://github.com/aws/amazon-sagemaker-examples/blob/main/autopilot/ap-batch-transform.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/autopilot/autopilot_time_series.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/autopilot/autopilot_time_series.ipynb

Amazon SageMaker Developer Guide

Amazon SageMaker Autopilot quotas

There are quotas that limit the resources available to you when using Amazon SageMaker
Autopilot. Some of these limits are increasable and some are not.

Note

The resource quotas documented in the following sections are valid for versions of Amazon
SageMaker Studio Classic 3.22.2 and higher. For information on updating your version of
SageMaker Studio Classic, see Shut Down and Update SageMaker Studio Classic and Studio
Classic Apps.

Topics

• Quotas that you can increase

• Resource quotas

Quotas that you can increase

Resource limits

Resource Regions Default limits Can be increased up
to

Size of input dataset All 100 GB Hundreds of GBs

Size of a single
Parquet file*

All 2 GB N/A

Target dataset size
for subsampling**

All 5 GB Hundreds of GBs

us-east-1, us-east-2
,us-west-2, ap-northe
ast-1, eu-west-1, eu-
central-1

4 HundredsNumber of concurren
t Autopilot jobs

ap-northeast-2, ap-
southeast-2, eu-

2 Hundreds

Quotas 259

Amazon SageMaker Developer Guide

Resource Regions Default limits Can be increased up
to

west-2, ap-southe
ast-1

All other Regions 1 Tens

Note

*This 2 GB size limit is for a single compressed Parquet file. You can provide a Parquet
dataset that includes multiple compressed Parquet files up to the input dataset maximum
size. After the files are decompressed, they may each expand to a larger size.
**Autopilot automatically subsamples input datasets that are larger than the target dataset
size while accounting for class imbalance and preserving rare class labels.

To request a quota increase:

1. Open the Service Quotas console.

2. Select your quota increase, then choose Request increase at account level.

3. In the Increase quota value, enter the new limit value that you are requesting.

4. Choose Request.

Resource quotas

The following table contains the runtime resource limits for an Amazon SageMaker Autopilot job in
an AWS Region.

Resource limits per Autopilot job

Resource Limit per Autopilot job

Maximum runtime for an Autopilot job 30 days

Quotas 260

https://console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas

Amazon SageMaker Developer Guide

API Reference guide for Amazon SageMaker Autopilot

This section provides a subset of the HTTP service APIs for creating and managing Amazon
SageMaker Autopilot resources (AutoML jobs) programmatically.

For information on the entire SageMaker REST APIs and the available SDKs, see API and SDK
Reference.

If your language of choice is Python, you can refer to AWS SDK for Python (Boto3) directly.

Actions

This list details the operations available in the Reference API to manage AutoML jobs
programmatically.

• CreateAutoMLJob

• CreateAutoMLJobV2

• DescribeAutoMLJob

• DescribeAutoMLJobV2

• ListAutoMLJobs

• ListCandidatesForAutoMLJob

• StopAutoMLJob

Note

CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and
DescribeAutoMLJob which offer backward compatibility.
We recommend using the CreateAutoMLJobV2. CreateAutoMLJobV2 can manage
tabular problem types identical to those of its previous version CreateAutoMLJob, as
well as non-tabular problem types such as image or text classification, or time-series
forecasting.
Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in
Migrate a CreateAutoMLJob to CreateAutoMLJobV2.

Data Types

API reference 261

https://docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/api-and-sdk-reference.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListAutoMLJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCandidatesForAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2

Amazon SageMaker Developer Guide

This list details the API AutoML objects used by the actions above as inbound requests or outbound
responses.

• AutoMLAlgorithmConfig

• AutoMLCandidate

• AutoMLCandidateGenerationConfig

• AutoMLCandidateStep

• AutoMLChannel

• AutoMLContainerDefinition

• AutoMLDataSource

• AutoMLDataSplitConfig

• AutoMLInferenceContainerDefinitions

• AutoMLJobArtifacts

• AutoMLJobChannel

• AutoMLJobCompletionCriteria

• AutoMLJobInputDataConfig

• AutoMLJobConfig

• AutoMLJobObjective

• AutoMLJobStepMetadata

• AutoMLJobSummary

• AutoMLOutputDataConfig

• AutoMLProblemTypeConfig

• AutoMLJobCompletionCriteria

• AutoMLJobSummary

• AutoMLOutputDataConfig

• AutoMLPartialFailureReason

• AutoMLProblemTypeConfig

• AutoMLProblemTypeResolvedAttributes

• AutoMLResolvedAttributes

API reference 262

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidate.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidateGenerationConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLCandidateStep.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLContainerDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLDataSource.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLDataSplitConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLInferenceContainerDefinitions.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobArtifacts.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobChannel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobCompletionCriteria.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobInputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobStepMetadata.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobSummary.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobCompletionCriteria.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobSummary.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLOutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLPartialFailureReason.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeResolvedAttributes.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLResolvedAttributes.html

Amazon SageMaker Developer Guide

• AutoMLSecurityConfig

• AutoMLS3DataSource

• CandidateArtifactLocations

• CandidateGenerationConfig

• CandidateProperties

• FinalAutoMLJobObjectiveMetric

• HolidayConfigAttributes

• ImageClassificationJobConfig

• MetricDatum

• ModelDeployConfig

• ModelDeployResult

• ResolvedAttributes

• TabularJobConfig

• TabularResolvedAttributes

• TextGenerationJobConfig

• TextGenerationResolvedAttribute

• TimeSeriesConfig

• TimeSeriesForecastingJobConfig

• TimeSeriesTransformations

• TuningJobCompletionCriteria

SageMaker JumpStart

SageMaker JumpStart provides pretrained, open-source models for a wide range of problem types
to help you get started with machine learning. You can incrementally train and tune these models
before deployment. JumpStart also provides solution templates that set up infrastructure for
common use cases, and executable example notebooks for machine learning with SageMaker.

You can deploy, fine-tune, and evaluate pretrained models from popular models hubs through the
JumpStart landing page in the updated Studio experience.

SageMaker JumpStart 263

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLSecurityConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLS3DataSource.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateArtifactLocations.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateGenerationConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CandidateProperties.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FinalAutoMLJobObjectiveMetric.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HolidayConfigAttributes.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ImageClassificationJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDatum.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDeployResult.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResolvedAttributes.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularResolvedAttributes.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextGenerationJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextGenerationResolvedAttribute.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesForecastingJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TimeSeriesTransformations.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TuningJobCompletionCriteria.html

Amazon SageMaker Developer Guide

You can also access pretrained models, solution templates, and examples through the JumpStart
landing page in Amazon SageMaker Studio Classic.

The following steps show how to access JumpStart models using Amazon SageMaker Studio and
Amazon SageMaker Studio Classic.

You can also access JumpStart models using the SageMaker Python SDK. For information about
how to use JumpStart models programmatically, see Use SageMaker JumpStart Algorithms with
Pretrained Models.

Open and use JumpStart in Studio

The following sections give information on how to open, use, and manage JumpStart from the
Studio UI.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

Open JumpStart in Studio

In Amazon SageMaker Studio, open the JumpStart landing page either through the Home page or
the Home menu on the left-side panel. This opens the SageMaker JumpStart landing page where
you can explore model hubs and search for models.

• From the Home page, choose JumpStart in the Prebuilt and automated solutions pane.

• From the Home menu in the left panel, navigate to the SageMaker JumpStart node.

For more information on getting started with Amazon SageMaker Studio, see Amazon SageMaker
Studio.

Open and use JumpStart in Studio 264

https://sagemaker.readthedocs.io/en/stable/overview.html#use-sagemaker-jumpstart-algorithms-with-pretrained-models
https://sagemaker.readthedocs.io/en/stable/overview.html#use-sagemaker-jumpstart-algorithms-with-pretrained-models

Amazon SageMaker Developer Guide

Important

Before downloading or using third-party content: You are responsible for reviewing and
complying with any applicable license terms and making sure that they are acceptable for
your use case.

Use JumpStart in Studio

From the SageMaker JumpStart landing page in Studio, you can explore model hubs from
providers of both proprietary and publicly available models.

Open and use JumpStart in Studio 265

Amazon SageMaker Developer Guide

You can find specific hubs or models using the search bar. Within each model hub, you can search
directly for models, sort by provided attributes, or filter based on a list of provided model tasks.

Manage JumpStart in Studio

Choose a model to see its model detail card. In the upper right-hand corner of the model detail
card, choose Fine-tune, Deploy, or Evaluate to start working through the fine-tuning, deployment,
or evaluation workflows, respectively. Note that not all models are available for fine-tuning or
evaluation. For more information on each of these options, see Use foundation models in Studio.

Open and use JumpStart in Studio Classic

The following sections give information on how to open, use, and manage JumpStart from the
Amazon SageMaker Studio Classic UI.

Open and use JumpStart in Studio Classic 266

Amazon SageMaker Developer Guide

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Open JumpStart in Studio Classic

In Amazon SageMaker Studio Classic, open the JumpStart landing page either through the Home
page or the Home menu on the left-side panel.

• From the Home page you can either:

• Choose JumpStart in the Prebuilt and automated solutions pane. This opens the SageMaker
JumpStart landing page.

• Choose a model directly in the SageMaker JumpStart landing page, or choose the Explore All
option to see available solutions or models of a specific type.

• From the Home menu in the left panel you can either:

• Navigate to the SageMaker JumpStart node, then choose Models, notebooks, solutions. This
opens the SageMaker JumpStart landing page.

• Navigate to the JumpStart node, then choose Launched JumpStart assets.

The Launched JumpStart assets page lists your currently launched solutions, deployed model
endpoints, and training jobs created with JumpStart. You can access the JumpStart landing
page from this tab by clicking on the Browse JumpStart button at the top right of the tab.

The JumpStart landing page lists available end-to-end machine learning
solutions, pretrained models, and example notebooks. From any individual
solution or model page, you can choose the Browse JumpStart button

()
at the top right of the tab to return to the SageMaker JumpStart page.

Open and use JumpStart in Studio Classic 267

Amazon SageMaker Developer Guide

Important

Before downloading or using third-party content: You are responsible for reviewing and
complying with any applicable license terms and making sure that they are acceptable for
your use case.

Use JumpStart in Studio Classic

From the SageMaker JumpStart landing page, you can browse for solutions, models, notebooks,
and other resources.

Open and use JumpStart in Studio Classic 268

Amazon SageMaker Developer Guide

You can find JumpStart resources by using the search bar, or by browsing each category. Use the
tabs to filter the available solutions by categories:

• Solutions – In one step, launch comprehensive machine learning solutions that tie SageMaker to
other AWS services. Select Explore All Solutions to view all available solutions.

• Resources – Use example notebooks, blogs, and video tutorials to learn and head start your
problem types.

• Blogs – Read details and solutions from machine learning experts.

• Video tutorials – Watch video tutorials for SageMaker features and machine learning use cases
from machine learning experts.

• Example notebooks – Run example notebooks that use SageMaker features like Spot Instance
training and experiments over a large variety of model types and use cases.

• Data types – Find a model by data type (e.g., Vision, Text, Tabular, Audio, Text Generation).
Select Explore All Models to view all available models.

• ML tasks – Find a model by problem type (e.g., Image Classification, Image Embedding, Object
Detection, Text Generation). Select Explore All Models to view all available models.

• Notebooks – Find example notebooks that use SageMaker features across multiple model types
and use cases. Select Explore All Notebooks to view all available example notebooks.

• Frameworks – Find a model by framework (e.g., PyTorch, TensorFlow, Hugging Face).

Open and use JumpStart in Studio Classic 269

Amazon SageMaker Developer Guide

Manage JumpStart in Studio Classic

From the Home menu in the left panel, navigate to SageMaker JumpStart, then choose Launched
JumpStart assets to list your currently launched solutions, deployed model endpoints, and training
jobs created with JumpStart.

Topics

• JumpStart Foundation Models

• Task-Specific Models

• Shared Models and Notebooks

• Solution Templates

• Amazon SageMaker JumpStart Industry: Financial

JumpStart Foundation Models

Amazon SageMaker JumpStart offers state-of-the-art foundation models for use cases such as
content writing, code generation, question answering, copywriting, summarization, classification,
information retrieval, and more. Use JumpStart foundation models to build your own generative
AI solutions and integrate custom solutions with additional SageMaker features. For more
information, see Getting started with Amazon SageMaker JumpStart.

A foundation model is a large pre-trained model that is adaptable to many downstream tasks and
often serves as the starting point for developing more specialized models. Examples of foundation
models include LLaMa-2-7b, BLOOM 176B, FLAN-T5 XL, or GPT-J 6B, which are pre-trained on
massive amounts of text data and can be fine-tuned for specific language tasks.

Amazon SageMaker JumpStart onboards and maintains publicly available foundation models for
you to access, customize, and integrate into your machine learning lifecycles. For more information,
see Publicly available foundation models. Amazon SageMaker JumpStart also includes proprietary
foundation models from third-party providers. For more information, see Proprietary foundation
models.

To get started exploring and experimenting with available models, see How to use JumpStart
foundation models. All foundation models are available to use programmatically with the
SageMaker Python SDK. For more information, see Use foundation models with the SageMaker
Python SDK.

Foundation Models 270

https://aws.amazon.com/sagemaker/jumpstart/getting-started/

Amazon SageMaker Developer Guide

For more information on considerations to make when choosing a model, see Model sources and
license agreements.

For specifics about customization and fine-tuning foundation models, see Customize a foundation
model.

For more general information on foundation models, see the paper On the Opportunities and Risks
of Foundation Models.

Topics

• Explore the latest foundation models

• How to use JumpStart foundation models

• Model sources and license agreements

• Customize a foundation model

• Evaluate a text generation foundation model in Studio

• Example notebooks

Explore the latest foundation models

Amazon SageMaker JumpStart offers state-of-the-art, built-in publicly available and proprietary
foundation models to customize and integrate into your generative AI workflows.

Publicly available foundation models

Amazon SageMaker JumpStart onboards and maintains open source foundation models from
third-party sources. To get started with one of these publicly available models, see How to use
JumpStart foundation models or explore one of the available Example notebooks. In a given
example notebook for a publicly available model, try switching out the model ID to experiment
with different models within the same model family.

For more information on model IDs and resources on deploying publicly available JumpStart
foundation models with the SageMaker Python SDK, see Use foundation models with the
SageMaker Python SDK.

By definition, foundation models are adaptable to many downstream tasks. Foundation models are
trained on massive amounts of general domain data and the same model can be implemented or
customized for multiple use cases. When choosing your foundation model, start with defining a
specific task, such as text generation or image generation.

Foundation Models 271

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258

Amazon SageMaker Developer Guide

Publicly available text generation models

Text generation foundation models can be used for a variety of downstream tasks, including text
summarization, text classification, question answering, long-form content generation, short-form
copywriting, information extraction, and more.

Publicly available text generation model table

Model Name Model ID Model
Source

Fine-tuna
ble

Alexa TM 20B pytorch-textgeneration1-ale
xa20b

Amazon No

Bloom 1b1 huggingface-textgeneration-
bloom-1b1

Hugging
Face

No

Bloom 1b7 huggingface-textgeneration-
bloom-1b7

Hugging
Face

No

Bloom 3B huggingface-textgeneration1-
bloom-3b

Hugging
Face

Yes

Bloom 560m huggingface-textgeneration-
bloom-560m

Hugging
Face

No

Bloom 7B1 huggingface-textgeneration1-
bloom-7b1

Hugging
Face

Yes

Bloomz 1b1 huggingface-textgeneration-
bloomz-1b1

Hugging
Face

No

Bloomz 1b7 huggingface-textgeneration-
bloomz-1b7

Hugging
Face

No

BloomZ 3B FP16 huggingface-textgeneration1-
bloom-3b-fp16

Hugging
Face

Yes

Bloomz 560m huggingface-textgeneration-
bloomz-560m

Hugging
Face

No

Foundation Models 272

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

BloomZ 7B1 FP16 huggingface-textgeneration1-
bloomz-7b1-fp16

Hugging
Face

Yes

Code Llama 13B meta-textgeneration-llama-c
odellama-13b

Meta Yes

Code Llama 13B
Instruct

meta-textgeneration-llama-c
odellama-13b-instruct

Meta No

Code Llama 13B
Python

meta-textgeneration-llama-c
odellama-13b-python

Meta Yes

Code Llama 34B meta-textgeneration-llama-c
odellama-34b

Meta Yes

Code Llama 34B
Instruct

meta-textgeneration-llama-c
odellama-34b-instruct

Meta No

Code Llama 34B
Python

meta-textgeneration-llama-c
odellama-34b-python

Meta Yes

Code Llama 70B meta-textgeneration-llama-c
odellama-70b

Meta Yes

Code Llama 70B
Instruct

meta-textgeneration-llama-c
odellama-70b-instruct

Meta No

Code Llama 70B
Python

meta-textgeneration-llama-c
odellama-70b-python

Meta Yes

Code Llama 7B meta-textgeneration-llama-c
odellama-7b

Meta Yes

Code Llama 7B
Instruct

meta-textgeneration-llama-c
odellama-7b-instruct

Meta No

Foundation Models 273

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

Code Llama 7B
Python

meta-textgeneration-llama-c
odellama-7b-python

Meta Yes

CyberAgen
tLM2-7B-Chat
(CALM2-7B-Chat)

huggingface-llm-calm2-7b-ch
at-bf16

Hugging
Face

Yes

DistilGPT2 huggingface-textgeneration-
distilgpt2

Hugging
Face

No

Dolly V2 12b BF16 huggingface-textgeneration-
dolly-v2-12b-bf16

Hugging
Face

No

Dolly V2 3b BF16 huggingface-textgeneration-
dolly-v2-3b-bf16

Hugging
Face

No

Dolly V2 7b BF16 huggingface-textgeneration-
dolly-v2-7b-bf16

Hugging
Face

No

Dolphin 2.2.1
Mistral 7B

huggingface-llm-dolphin-2-2
-1-mistral-7b

Hugging
Face

No

Dolphin 2.5 Mixtral
8 7B

huggingface-llm-dolphin-2-5-
mixtral-8x7b

Hugging
Face

No

Dolphin 2.7 Mixtral
8 7B

huggingface-llm-dolphin-2-7-
mixtral-8x7b

Hugging
Face

No

EleutherAI GPT Neo
2.7B

huggingface-llm-eleutherai-
gpt-neo-1-3b

Hugging
Face

No

EleutherAI GPT Neo
2.7B

huggingface-llm-eleutherai-
gpt-neo-2-7b

Hugging
Face

No

Falcon 180B BF16 huggingface-llm-falcon-180b-
bf16

Hugging
Face

No

Foundation Models 274

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

Falcon 180B Chat
BF16

huggingface-llm-falcon-180b-
chat-bf16

Hugging
Face

No

Falcon 40B BF16 huggingface-llm-falcon-40b-
bf16

Hugging
Face

Yes

Falcon 40B Instruct
BF16

huggingface-llm-falcon-40b-
instruct-bf16

Hugging
Face

Yes

Falcon 7B BF16 huggingface-llm-falcon-7b-b
f16

Hugging
Face

Yes

Falcon 7B Instruct
BF16

huggingface-llm-falcon-7b-i
nstruct-bf16

Hugging
Face

Yes

Falcon Lite huggingface-llm-amazon-falc
onlite

Hugging
Face

No

Falcon Lite 2 huggingface-llm-amazon-falc
onlite2

Hugging
Face

No

Falcon RW 1B huggingface-llm-tiiuae-falc
on-rw-1b

Hugging
Face

No

Flan-T5 Base huggingface-text2text-flan-
t5-base

Hugging
Face

Yes

Flan-T5 Base Model
Fine-tuned on the
Samsum Dataset

huggingface-text2text-flan-
t5-base-samsum

Hugging
Face

No

Flan-T5 Large huggingface-text2text-flan-
t5-large

Hugging
Face

Yes

Flan-T5 Small huggingface-text2text-flan-
t5-small

Hugging
Face

Yes

Foundation Models 275

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

Flan-T5 XL huggingface-text2text-flan-
t5-xl

Hugging
Face

Yes

Flan-T5 XXL huggingface-text2text-flan-
t5-xxl

Hugging
Face

Yes

Flan-UL2 BF16 huggingface-text2text-flan-
ul2-bf16

Hugging
Face

No

Gemma 2B huggingface-llm-gemma-2b Hugging
Face

Yes

Gemma 2B Instruct huggingface-llm-gemma-2b-in
struct

Hugging
Face

Yes

Gemma 7B huggingface-llm-gemma-7b Hugging
Face

Yes

Gemma 7B Instruct huggingface-llm-gemma-7b-in
struct

Hugging
Face

Yes

GPT 2 huggingface-textgeneration-
gpt2

Hugging
Face

No

GPT NeoX 20B
FP16

huggingface-textgeneration2-
gpt-neox-20b-fp16

Hugging
Face

No

GPT NeoXT Chat
Base 20B FP16

huggingface-textgeneration2-
gpt-neoxt-chat-base-20b-fp16

Hugging
Face

No

GPT-2 XL huggingface-textgeneration1-
gpt-2-xl

Hugging
Face

Yes

GPT-J 6B huggingface-textgeneration1-
gpt-j-6b

Hugging
Face

Yes

Foundation Models 276

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

GPT-Neo 1.3B huggingface-textgeneration1-
gpt-neo-1-3b

Hugging
Face

Yes

GPT-Neo 125M huggingface-textgeneration1-
gpt-neo-125m

Hugging
Face

Yes

GPT-NEO 2.7B huggingface-textgeneration1-
gpt-neo-2-7b

Hugging
Face

Yes

Japanese StableLM
Instruct Alpha 7B
v2

model-textgenerationjp-japa
nese-stablelm-instruct-alph
a-7b-v2

Hugging
Face

No

LightGPT Instruct
6B

huggingface-textgeneration1-
lightgpt

Hugging
Face

Yes

Lite Llama 460M 1T huggingface-llm-ahxt-litell
ama-460m-1t

Hugging
Face

No

Llama 2 13B meta-textgeneration-llama-2
-13b

Meta Yes

Llama 2 13B Chat meta-textgeneration-llama-2
-13b-f

Meta Yes

Llama 2 13B Chat
Neuron

meta-textgenerationneuron-l
lama-2-13b-f

Meta No

Llama 2 13B
Neuron

meta-textgenerationneuron-l
lama-2-13b

Meta Yes

Llama 2 70B meta-textgeneration-llama-2
-70b

Meta Yes

Llama 2 70B Chat meta-textgeneration-llama-2
-70b-f

Meta Yes

Foundation Models 277

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

Llama 2 70B Chat
Neuron

meta-textgenerationneuron-l
lama-2-70b-f

Meta No

Llama 2 70B
Neuron

meta-textgenerationneuron-l
lama-2-70b

Meta No

Llama 2 7B meta-textgeneration-llama-2
-7b

Meta Yes

Llama 2 7B Chat meta-textgeneration-llama-2
-7b-f

Meta Yes

Llama 2 7B Chat
Neuron

meta-textgenerationneuron-l
lama-2-7b-f

Meta No

Llama 2 7B Neuron meta-textgenerationneuron-l
lama-2-7b

Meta Yes

Llama Guard 7B meta-textgeneration-llama-g
uard-7b

Meta No

Mistral 7B huggingface-llm-mistral-7b Hugging
Face

Yes

Mistral 7B Instruct huggingface-llm-mistral-7b-
instruct

Hugging
Face

No

Mistral 7B
OpenOrca AWQ

huggingface-llm-thebloke-mi
stral-7b-openorca-awq

Hugging
Face

No

Mistral 7B SFT
Alpha

huggingface-llm-huggingface
h4-mistral-7b-sft-alpha

Hugging
Face

No

Mistral 7B SFT Beta huggingface-llm-huggingface
h4-mistral-7b-sft-beta

Hugging
Face

No

Foundation Models 278

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

Mistral Lite huggingface-llm-amazon-mist
rallite

Hugging
Face

No

Mistral Trix V1 huggingface-llm-cultrix-mis
traltrix-v1

Hugging
Face

No

Mixtral 8x7B huggingface-llm-mixtral-8x7b Hugging
Face

Yes

Mixtral 8x7B
Instruct

huggingface-llm-mixtral-8x7b-
instruct

Hugging
Face

Yes

MPT 7B BF16 huggingface-textgeneration1-
mpt-7b-bf16

Hugging
Face

No

MPT 7B Instruct
BF16

huggingface-textgeneration1-
mpt-7b-instruct-bf16

Hugging
Face

No

MPT 7B StoryWrit
er-65k+ BF16

huggingface-textgeneration1-
mpt-7b-storywriter-bf16

Hugging
Face

No

Multilingual GPT huggingface-llm-ai-forever-
mgpt

Hugging
Face

No

Nous Hermes 2
SOLAR 10.7B

huggingface-llm-nousresearch-
nous-hermes-2-solar-10-7b

Hugging
Face

No

Nous Hermes Llama
2 13B

huggingface-llm-nousresearch-
nous-hermes-llama2-13b

Hugging
Face

No

Nous Hermes Llama
2 7B

huggingface-llm-nousresearch-
nous-hermes-llama-2-7b

Hugging
Face

No

Open Hermes 2
Mistral 7B

huggingface-llm-teknium-ope
nhermes-2-mistral-7b

Hugging
Face

No

Foundation Models 279

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

Open LlaMa huggingface-textgeneration-
open-llama

Hugging
Face

No

Open Llama 7B V2 huggingface-llm-openlm-rese
arch-open-llama-7b-v2

Hugging
Face

No

Platypus 2 7B huggingface-llm-garage-baind-
platypus2-7b

Hugging
Face

No

Pythia 160m
Deduped

huggingface-llm-eleutherai-
pythia-160m-deduped

Hugging
Face

No

Pythia 7m Deduped huggingface-llm-eleutherai-
pythia-70m-deduped

Hugging
Face

No

Quality Controlle
d Paraphrase
Generation

huggingface-text2text-qcpg-
sentences

Hugging
Face

No

RedPajama INCITE
Base 3B V1

huggingface-textgeneration1-
redpajama-incite-base-3B-v1-
fp16

Hugging
Face

Yes

RedPajama INCITE
Base 7B V1

huggingface-textgeneration1-
redpajama-incite-base-7B-v1-
fp16

Hugging
Face

Yes

RedPajama INCITE
Chat 3B V1

huggingface-textgeneration1-
redpajama-incite-chat-3B-v1-
fp16

Hugging
Face

Yes

RedPajama INCITE
Chat 7B V1

huggingface-textgeneration1-
redpajama-incite-chat-7B-v1-
fp16

Hugging
Face

Yes

Foundation Models 280

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

RedPajama INCITE
Instruct 3B V1

huggingface-textgeneration1-
redpajama-incite-instruct-3B-
v1-fp16

Hugging
Face

Yes

RedPajama INCITE
Instruct 7B V1

huggingface-textgeneration1-
redpajama-incite-instruct-7B-
v1-fp16

Hugging
Face

Yes

Rinna Bilingual GPT
NeoX 4B Instruction
PPO

huggingface-llm-bilingual-r
inna-4b-instruction-ppo-bf16

Hugging
Face

No

Rinna Japanese
GPT NeoX 3.6B
Instruction PPO

huggingface-llm-rinna-3-6b-
instruction-ppo-bf16

Hugging
Face

No

Star Chat Alpha huggingface-llm-huggingface
h4-starchat-alpha

Hugging
Face

No

Star Chat Beta huggingface-llm-huggingface
h4-starchat-beta

Hugging
Face

No

StarCoder huggingface-llm-starcoder Hugging
Face

No

StarCoderBase huggingface-llm-starcoderbase Hugging
Face

No

T0pp huggingface-text2text-bigsc
ience-t0pp

Hugging
Face

No

T5 One Line
Summary

huggingface-text2text-t5-one-
line-summary

Hugging
Face

No

Foundation Models 281

Amazon SageMaker Developer Guide

Model Name Model ID Model
Source

Fine-tuna
ble

Tiny Llama 1.1B huggingface-llm-tinyllama-1
-1b-intermediate-step-1431k
-3

Hugging
Face

No

Tiny Llama 1.1B
Chat V0.6

huggingface-llm-tinyllama-t
inyllama-1-1b-chat-v0-6

Hugging
Face

No

Tiny Llama 1.1B
Chat V1

huggingface-llm-tinyllama-t
inyllama-1-1b-chat-v1-0

Hugging
Face

No

Writer Palmyra
Small

huggingface-llm-writer-palm
yra-small

Hugging
Face

No

YARN Mistral 7B
128k

huggingface-llm-nousresearch-
yarn-mistral-7b-128k

Hugging
Face

No

Zephyr 7B Alpha huggingface-llm-huggingface
h4-zephyr-7b-alpha

Hugging
Face

No

Zephyr 7B Beta huggingface-llm-huggingface
h4-zephyr-7b-beta

Hugging
Face

No

To explore the latest text generation JumpStart foundation models, use the Text Generation
filter on the Getting started with Amazon SageMaker JumpStart product description page. You
can also explore foundation models based on tasks directly in the Amazon SageMaker Studio
UI or SageMaker Studio Classic UI. Only a subset of publicly available text generation models
are available for fine-tuning in JumpStart. For more information, see Use foundation models in
Amazon SageMaker Studio Classic..

Publicly available image generation models

JumpStart provides a wide variety of Stable Diffusion image generation foundation models
including base models from Stability AI as well as pre-trained models for specific text-to-image
tasks from Hugging Face. If you need to fine-tune your text-to-image foundation model, you can
use Stable Diffusion 2.1 base from Stability AI. If you want to explore models that are already

Foundation Models 282

https://aws.amazon.com/sagemaker/jumpstart/getting-started/?sagemaker-jumpstart-cards.sort-by=item.additionalFields.priority&sagemaker-jumpstart-cards.sort-order=asc&awsf.sagemaker-jumpstart-filter-product-type=product-type%23foundation-model&awsf.sagemaker-jumpstart-filter-text=ml-task-type%23text-generation&awsf.sagemaker-jumpstart-filter-vision=*all&awsf.sagemaker-jumpstart-filter-tabular=*all&awsf.sagemaker-jumpstart-filter-audio-tasks=*all&awsf.sagemaker-jumpstart-filter-multimodal=*all&awsf.sagemaker-jumpstart-filter-RL=*all&awsm.page-sagemaker-jumpstart-cards=1

Amazon SageMaker Developer Guide

trained on specific art styles, you can explore one of the many third-party models from Hugging
Face directly in the Amazon SageMaker Studio UI or SageMaker Studio Classic UI.

To explore the latest image generation JumpStart foundation models, use the Text to Image
filter on the Getting started with Amazon SageMaker JumpStart product description page. To get
started with your chosen text-to-image foundation model, see How to use JumpStart foundation
models.

Proprietary foundation models

Amazon SageMaker JumpStart provides access to proprietary foundation models from third-party
providers such as AI21 Labs, Cohere, and LightOn.

To get started with one of these proprietary models, see How to use JumpStart foundation models.
To use a proprietary foundation model, you must first subscribe to the model in AWS Marketplace.
After subscribing to the model, locate the foundation model in Studio or SageMaker Studio Classic.
For more information, see SageMaker JumpStart.

To explore the latest proprietary foundation models for a variety of use cases, see Getting started
with Amazon SageMaker JumpStart.

How to use JumpStart foundation models

Choose, train, or deploy foundation models through Amazon SageMaker Studio or Amazon
SageMaker Studio Classic, use JumpStart foundation models programmatically with the SageMaker
Python SDK, or discover JumpStart foundation models directly through the SageMaker console.

Topics

• Use foundation models in Studio

• Use foundation models in Amazon SageMaker Studio Classic

• Use foundation models with the SageMaker Python SDK

• Discover foundation models in the SageMaker Console

Use foundation models in Studio

You can fine-tune, deploy, and evaluate both publicly available and proprietary JumpStart
foundation models directly through the Amazon SageMaker Studio UI.

Foundation Models 283

https://aws.amazon.com/sagemaker/jumpstart/getting-started/?sagemaker-jumpstart-cards.sort-by=item.additionalFields.priority&sagemaker-jumpstart-cards.sort-order=asc&awsf.sagemaker-jumpstart-filter-product-type=product-type%23foundation-model&awsf.sagemaker-jumpstart-filter-text=*all&awsf.sagemaker-jumpstart-filter-vision=*all&awsf.sagemaker-jumpstart-filter-tabular=*all&awsf.sagemaker-jumpstart-filter-audio-tasks=*all&awsf.sagemaker-jumpstart-filter-multimodal=ml-task-type%23txt2img&awsf.sagemaker-jumpstart-filter-RL=*all&awsm.page-sagemaker-jumpstart-cards=1
https://www.ai21.com/
https://cohere.com/
https://www.lighton.ai/
https://aws.amazon.com/sagemaker/jumpstart/getting-started/?sagemaker-jumpstart-cards.sort-by=item.additionalFields.priority&sagemaker-jumpstart-cards.sort-order=asc&awsf.sagemaker-jumpstart-filter-product-type=product-type%23foundation-model&awsf.sagemaker-jumpstart-filter-text=*all&awsf.sagemaker-jumpstart-filter-vision=*all&awsf.sagemaker-jumpstart-filter-tabular=*all&awsf.sagemaker-jumpstart-filter-audio-tasks=*all&awsf.sagemaker-jumpstart-filter-multimodal=*all&awsf.sagemaker-jumpstart-filter-RL=*all&sagemaker-jumpstart-cards.q=proprietary&sagemaker-jumpstart-cards.q_operator=AND
https://aws.amazon.com/sagemaker/jumpstart/getting-started/?sagemaker-jumpstart-cards.sort-by=item.additionalFields.priority&sagemaker-jumpstart-cards.sort-order=asc&awsf.sagemaker-jumpstart-filter-product-type=product-type%23foundation-model&awsf.sagemaker-jumpstart-filter-text=*all&awsf.sagemaker-jumpstart-filter-vision=*all&awsf.sagemaker-jumpstart-filter-tabular=*all&awsf.sagemaker-jumpstart-filter-audio-tasks=*all&awsf.sagemaker-jumpstart-filter-multimodal=*all&awsf.sagemaker-jumpstart-filter-RL=*all&sagemaker-jumpstart-cards.q=proprietary&sagemaker-jumpstart-cards.q_operator=AND

Amazon SageMaker Developer Guide

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

In Amazon SageMaker Studio, open the JumpStart landing page either through the Home page or
the Home menu on the left-side panel. This opens the SageMaker JumpStart landing page where
you can explore model hubs and search for models.

• From the Home page, choose JumpStart in the Prebuilt and automated solutions pane.

• From the Home menu in the left panel, navigate to the JumpStart node.

For more information on getting started with Amazon SageMaker Studio, see Amazon SageMaker
Studio.

From the SageMaker JumpStart landing page in Studio, you can explore model hubs from
providers of both publicly available and proprietary models. You can find specific hubs or models
using the search bar. Within each model hub, you can search directly for models, sort by Most likes,
Most downloads, or Recently updated, or filter based on a list of provided model tasks. Choose a
model to see its model detail card. In the upper right corner of the model detail card, choose Fine-
tune, Deploy, or Evaluate to start working through the fine-tuning, deployment, or evaluation
workflows, respectively. Note that not all models are available for fine-tuning or evaluation.

Fine-tune foundation models in Studio

Fine-tuning trains a pre-trained model on a new dataset without training from scratch. This
process, also known as transfer learning, can produce accurate models with smaller datasets and
less training time. To fine-tune JumpStart foundation models, navigate to a model detail card
in the Studio UI. For more information on how to open JumpStart in Studio, see Open and use
JumpStart in Studio. After navigating to the model detail card of your choice, choose Train in the
upper right corner. Note that not all models have fine-tuning available.

Foundation Models 284

Amazon SageMaker Developer Guide

Important

Some foundation models require explicit acceptance of an end-user license agreement
(EULA) before fine-tuning. For more information, see EULA acceptance in Amazon
SageMaker Studio.

Model settings

When using a pre-trained JumpStart foundation model in Amazon SageMaker Studio, the Model
artifact location (Amazon S3 URI) is populated by default. To edit the default Amazon S3 URI,
choose Enter model artifact location. Not all models support changing the model artifact
location.

Data settings

In the Data field, provide an Amazon S3 URI point to your training dataset location. The default
Amazon S3 URI points to an example training dataset. To edit the default Amazon S3 URI, choose
Enter training dataset and change the URI. Be sure to review the model detail card in Amazon
SageMaker Studio for information on formatting training data.

Hyperparameters

You can customize the hyperparameters of the training job that are used to fine-tune the model.
The hyperparameters available for each fine-tunable model differ depending on the model.

The following hyperparameters are common among models:

• Epochs – One epoch is one cycle through the entire dataset. Multiple intervals complete a batch,
and multiple batches eventually complete an epoch. Multiple epochs are run until the accuracy
of the model reaches an acceptable level, or when the error rate drops below an acceptable level.

• Learning rate – The amount that values should be changed between epochs. As the model is
refined, its internal weights are being nudged and error rates are checked to see if the model
improves. A typical learning rate is 0.1 or 0.01, where 0.01 is a much smaller adjustment and
could cause the training to take a long time to converge, whereas 0.1 is much larger and can
cause the training to overshoot. It is one of the primary hyperparameters that you might adjust
for training your model. Note that for text models, a much smaller learning rate (5e-5 for BERT)
can result in a more accurate model.

• Batch size – The number of records from the dataset that is to be selected for each interval to
send to the GPUs for training.

Foundation Models 285

Amazon SageMaker Developer Guide

Review the tool tip prompts and additional information in the model detail card in the Studio UI to
learn more about hyperparameters specific to the model of your choice.

For more information on available hyperparameters, see Commonly supported fine-tuning
hyperparameters.

Deployment

Specify the training instance type and output artifact location for your training job. You can only
choose from instances that are compatible with the model of your choice within the fine-tuning
the Studio UI. The default output artifact location is the SageMaker default bucket. To change the
output artifact location, choose Enter output artifact location and change the Amazon S3 URI.

Security

Specify the security settings to use for your training job, including the IAM role that SageMaker
uses to train your model, whether your training job should connect to a virtual private cloud (VPC),
and any encryption keys to secure your data.

Additional information

In the Additional Information field you can edit the training job name. You can also add and
remove tags in the form of key-value pairs to help organize and categorize your fine-tuning
training jobs.

After providing information for your fine-tuning configuration, choose Submit. If the pre-trained
foundation model that you chose to fine-tune requires explicit agreement of an end-user license
agreement (EULA) before training, the EULA is provided in a pop-up window. To accept the terms
of the EULA, choose Accept. You are responsible for reviewing and complying with any applicable
license terms and making sure they are acceptable for your use case before downloading or using a
model.

Deploy foundation models in Studio

To deploy JumpStart foundation models, navigate to a model detail card in the Studio UI. For more
information on how to open JumpStart in Studio, see Open and use JumpStart in Studio. After
navigating to the model detail page of your choice, choose Deploy in the upper right corner of the
Studio UI. Then, follow the steps in Deploy models with SageMaker Studio.

Foundation Models 286

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deploy-models.html#deploy-models-studio

Amazon SageMaker Developer Guide

Important

Some foundation models require explicit acceptance of an end-user license agreement
(EULA) before deployment. For more information, see EULA acceptance in Amazon
SageMaker Studio.

Evaluate foundation models in Studio

Amazon SageMaker JumpStart has integrations with SageMaker Clarify foundation model
evaluations (FME) in Studio. If a JumpStart model has built-in evaluation capabilities available, you
can choose Evaluate in the upper right corner of the model detail page in the JumpStart Studio UI.
For more information, see Evaluate a foundation model.

Use foundation models in Amazon SageMaker Studio Classic

You can fine-tune and deploy both publicly available and proprietary JumpStart foundation
models through the Studio Classic UI.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

To get started with Studio Classic, see Launch Amazon SageMaker Studio Classic.

Foundation Models 287

https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-evaluate.html

Amazon SageMaker Developer Guide

After opening Amazon SageMaker Studio Classic, choose Models, notebooks, solutions in
the SageMaker JumpStart section of the navigation pane. Then, scroll down to find either
the Foundation Models: Text Generation or Foundation Models: Image Generation section
depending on your use case.

You can choose View model on a suggested foundation model card, or choose Explore All Models
to see all available foundation models for either text generation or image generation. If you choose
to see all available models, you can further filter available models by task, data type, content
type, or framework. You can also search for a model name directly in the Search bar. If you need
guidance on selecting a model, see Explore the latest foundation models.

Important

Some foundation models require explicit acceptance of an end-user license agreement
(EULA). For more information, see EULA acceptance in Amazon SageMaker Studio.

After you choose View model for the foundation model of your choice in Studio Classic, you can
deploy the model. For more information, see Deploy a Model.

Foundation Models 288

Amazon SageMaker Developer Guide

You can also choose Open notebook in the Run in notebook section to run an example notebook
for the foundation model directly in Studio Classic.

Note

To deploy a proprietary foundation model in Studio Classic, you must first subscribe to
the model in AWS Marketplace. The AWS Marketplace link is provided in the associated
example notebook within Studio Classic.

If the model is fine-tunable, you can also fine-tune the model. For more information, see Fine-
Tune a Model. For a list of which JumpStart foundation models are fine-tunable, see Fine-tune a
foundation model.

Use foundation models with the SageMaker Python SDK

All JumpStart foundation models are available to deploy programmatically using the SageMaker
Python SDK. Publicly available text generation foundation models can be deployed using the
model ID in the Publicly available text generation model table. Proprietary models must be
deployed using the model package information after subscribing to the model in AWS Marketplace.

The following sections show how to fine-tune foundation models using the
JumpStartEstimator class and how to deploy models using the JumpStartModel class, along
with additional Python SDK utilities.

Important

Some foundation models require explicit acceptance of an end-user license agreement
(EULA). For more information, see EULA acceptance with the SageMaker Python SDK.

To reference available model IDs for all publicly available foundation models, see the Built-in
Algorithms with pre-trained Model Table. Search for the name of the foundation model of your
choice in the Search bar, change the number of entries shown using the Show entries dropdown
menu, or choose the Next text highlighted in blue on the left side of the page to navigate through
the available models.

Foundation Models 289

https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html
https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html

Amazon SageMaker Developer Guide

Fine-tune publicly available foundation models with the JumpStartEstimator class

You can fine-tune a built-in algorithm or pre-trained model in just a few lines of code using the
SageMaker Python SDK.

1. First, find the model ID for the model of your choice in the Built-in Algorithms with pre-trained
Model Table.

2. Using the model ID, define your training job as a JumpStart estimator.

from sagemaker.jumpstart.estimator import JumpStartEstimator

model_id = "huggingface-textgeneration1-gpt-j-6b"
estimator = JumpStartEstimator(model_id=model_id)

3. Run estimator.fit() on your model, pointing to the training data to use for fine-tuning.

estimator.fit(
 {"train": training_dataset_s3_path, "validation": validation_dataset_s3_path}
)

4. Then, use the deploy method to automatically deploy your model for inference. In this
example, we use the GPT-J 6B model from Hugging Face.

predictor = estimator.deploy()

5. You can then run inference with the deployed model using the predict method.

question = "What is Southern California often abbreviated as?"
response = predictor.predict(question)
print(response)

Note

This example uses the foundation model GPT-J 6B, which is suitable for a wide range
of text generation use cases including question answering, named entity recognition,
summarization, and more. For more information about model use cases, see Explore the
latest foundation models.

Foundation Models 290

https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html
https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html

Amazon SageMaker Developer Guide

You can optionally specify model versions or instance types when creating your
JumpStartEstimator. For more information about the JumpStartEstimator class and its
parameters, see JumpStartEstimator.

Check default instance types

You can optionally include specific model versions or instance types when fine-tuning a pre-trained
model using the JumpStartEstimator class. All JumpStart models have a default instance type.
Retrieve the default training instance type using the following code:

from sagemaker import instance_types

instance_type = instance_types.retrieve_default(
 model_id=model_id,
 model_version=model_version,
 scope="training")
print(instance_type)

You can see all supported instance types for a given JumpStart model with the
instance_types.retrieve() method.

Check default hyperparameters

To check the default hyperparameters used for training, you can use the retrieve_default()
method from the hyperparameters class.

from sagemaker import hyperparameters

my_hyperparameters = hyperparameters.retrieve_default(model_id=model_id,
 model_version=model_version)
print(my_hyperparameters)

Optionally override default hyperparameters for fine-tuning
my_hyperparameters["epoch"] = "3"
my_hyperparameters["per_device_train_batch_size"] = "4"

Optionally validate hyperparameters for the model
hyperparameters.validate(model_id=model_id, model_version=model_version,
 hyperparameters=my_hyperparameters)

For more information on available hyperparameters, see Commonly supported fine-tuning
hyperparameters.

Foundation Models 291

https://sagemaker.readthedocs.io/en/stable/api/inference/model.html#sagemaker.jumpstart.estimator.JumpStartEstimator

Amazon SageMaker Developer Guide

Check default metric definitions

You can also check the default metric definitions:

print(metric_definitions.retrieve_default(model_id=model_id,
 model_version=model_version))

Deploy publicly available foundation models with the JumpStartModel class

You can deploy a built-in algorithm or pre-trained model to a SageMaker endpoint in just a few
lines of code using the SageMaker Python SDK.

1. First, find the model ID for the model of your choice in the Built-in Algorithms with pre-trained
Model Table.

2. Using the model ID, define your model as a JumpStart model.

from sagemaker.jumpstart.model import JumpStartModel

model_id = "huggingface-text2text-flan-t5-xl"
my_model = JumpStartModel(model_id=model_id)

3. Use the deploy method to automatically deploy your model for inference. In this example, we
use the FLAN-T5 XL model from Hugging Face.

predictor = my_model.deploy()

4. You can then run inference with the deployed model using the predict method.

question = "What is Southern California often abbreviated as?"
response = predictor.predict(question)
print(response)

Note

This example uses the foundation model FLAN-T5 XL, which is suitable for a wide range of
text generation use cases including question answering, summarization, chatbot creation,
and more. For more information about model use cases, see Explore the latest foundation
models.

Foundation Models 292

https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html
https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html

Amazon SageMaker Developer Guide

For more information about the JumpStartModel class and its parameters, see JumpStartModel.

Check default instance types

You can optionally include specific model versions or instance types when deploying a pre-trained
model using the JumpStartModel class. All JumpStart models have a default instance type.
Retrieve the default deployment instance type using the following code:

from sagemaker import instance_types

instance_type = instance_types.retrieve_default(
 model_id=model_id,
 model_version=model_version,
 scope="inference")
print(instance_type)

See all supported instance types for a given JumpStart model with the
instance_types.retrieve() method.

Use inference components to deploy multiple models to a shared endpoint

An inference component is a SageMaker hosting object that you can use to deploy one or
more models to an endpoint for increased flexibility and scalability. You must change the
endpoint_type for your JumpStart model to be inference-component-based rather than the
default model-based endpoint.

predictor = my_model.deploy(
 endpoint_name = 'jumpstart-model-id-123456789012',
 endpoint_type = EndpointType.INFERENCE_COMPONENT_BASED
)

For more information on creating endpoints with inference components and deploying SageMaker
models, see Shared resource utilization with multiple models.

Check valid input and output inference formats

To check valid data input and output formats for inference, you can use the
retrieve_options() method from the Serializers and Deserializers classes.

print(sagemaker.serializers.retrieve_options(model_id=model_id,
 model_version=model_version))

Foundation Models 293

https://sagemaker.readthedocs.io/en/stable/api/inference/model.html#sagemaker.jumpstart.model.JumpStartModel

Amazon SageMaker Developer Guide

print(sagemaker.deserializers.retrieve_options(model_id=model_id,
 model_version=model_version))

Check supported content and accept types

Similarly, you can use the retrieve_options() method to check the supported content and
accept types for a model.

print(sagemaker.content_types.retrieve_options(model_id=model_id,
 model_version=model_version))
print(sagemaker.accept_types.retrieve_options(model_id=model_id,
 model_version=model_version))

For more information about utilities, see Utility APIs.

Use proprietary foundation models with the SageMaker Python SDK

Proprietary models must be deployed using the model package information after subscribing to
the model in AWS Marketplace. For more information about SageMaker and AWS Marketplace,
see Buy and Sell Amazon SageMaker Algorithms and Models in AWS Marketplace. To find AWS
Marketplace links for the latest proprietary models, see Getting started with Amazon SageMaker
JumpStart.

After subscribing to the model of your choice in AWS Marketplace, you can deploy the foundation
model using the SageMaker Python SDK and the SDK associated with the model provider. For
example, AI21 Labs, Cohere, and LightOn use the "ai21[SM]", cohere-sagemaker, and
lightonsage packages, respectively.

For example, to define a JumpStart model using Jurassic-2 Jumbo Instruct from AI21 Labs, use the
following code:

import sagemaker
import ai21

role = get_execution_role()
sagemaker_session = sagemaker.Session()
model_package_arn = "arn:aws:sagemaker:us-east-1:865070037744:model-package/j2-jumbo-
instruct-v1-1-43-4e47c49e61743066b9d95efed6882f35"

my_model = ModelPackage(
 role=role, model_package_arn=model_package_arn, sagemaker_session=sagemaker_session

Foundation Models 294

https://sagemaker.readthedocs.io/en/stable/api/utility/index.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://aws.amazon.com/sagemaker/jumpstart/getting-started/?sagemaker-jumpstart-cards.sort-by=item.additionalFields.priority&sagemaker-jumpstart-cards.sort-order=asc&awsf.sagemaker-jumpstart-filter-product-type=product-type%23foundation-model&awsf.sagemaker-jumpstart-filter-text=*all&awsf.sagemaker-jumpstart-filter-vision=*all&awsf.sagemaker-jumpstart-filter-tabular=*all&awsf.sagemaker-jumpstart-filter-audio-tasks=*all&awsf.sagemaker-jumpstart-filter-multimodal=*all&awsf.sagemaker-jumpstart-filter-RL=*all&sagemaker-jumpstart-cards.q=proprietary&sagemaker-jumpstart-cards.q_operator=AND
https://aws.amazon.com/sagemaker/jumpstart/getting-started/?sagemaker-jumpstart-cards.sort-by=item.additionalFields.priority&sagemaker-jumpstart-cards.sort-order=asc&awsf.sagemaker-jumpstart-filter-product-type=product-type%23foundation-model&awsf.sagemaker-jumpstart-filter-text=*all&awsf.sagemaker-jumpstart-filter-vision=*all&awsf.sagemaker-jumpstart-filter-tabular=*all&awsf.sagemaker-jumpstart-filter-audio-tasks=*all&awsf.sagemaker-jumpstart-filter-multimodal=*all&awsf.sagemaker-jumpstart-filter-RL=*all&sagemaker-jumpstart-cards.q=proprietary&sagemaker-jumpstart-cards.q_operator=AND

Amazon SageMaker Developer Guide

)

For step-by-step examples, find and run the notebook associated with the proprietary foundation
model of your choice in SageMaker Studio Classic. See Use foundation models in Amazon
SageMaker Studio Classic for more information. For more information on the SageMaker Python
SDK, see ModelPackage.

Discover foundation models in the SageMaker Console

You can explore JumpStart foundation models directly through the Amazon SageMaker Console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Find JumpStart on the left navigation panel and choose Foundation models.

3. Browse models or search for a specific model. If you need guidance for model selection, see
Explore the latest foundation models. Choose View model to view the model detail page for
the foundation model of your choice.

4. If the model is a proprietary model, choose Subscribe in the upper right corner of the model
detail page to subscribe to the model in AWS Marketplace. You should receive an email
confirming your subscription to the model of your choice. For more information about
SageMaker and AWS Marketplace, see Buy and Sell Amazon SageMaker Algorithms and Models
in AWS Marketplace. Publicly available foundation models do not require a subscription.

5. To view an example notebook in GitHub, choose View code in the upper right corner of the
model detail page.

6. To view and run an example notebook directly in Amazon SageMaker Studio Classic, choose
Open notebook in Studio in the upper right corner of the model detail page.

Model sources and license agreements

Amazon SageMaker JumpStart provides access to hundreds of publicly available and proprietary
foundation models from third-party sources and partners. You can explore the JumpStart
foundation model selection directly in the SageMaker console, Studio, or Studio Classic.

Licenses and model sources

Amazon SageMaker JumpStart provides access to both publicly available and proprietary
foundation models. Foundation models are onboarded and maintained from third-party open
source and proprietary providers. As such, they are released under different licenses as designated
by the model source. Be sure to review the license for any foundation model that you use. You

Foundation Models 295

https://sagemaker.readthedocs.io/en/stable/api/inference/model.html#sagemaker.model.ModelPackage
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html

Amazon SageMaker Developer Guide

are responsible for reviewing and complying with any applicable license terms and making sure
they are acceptable for your use case before downloading or using the content. Some examples of
common foundation model licenses include:

• Alexa Teacher Model

• Apache 2.0

• BigScience Responsible AI License v1.0

• CreativeML Open RAIL++-M license

Similarly, for any proprietary foundation models, be sure to review and comply with any terms of
use and usage guidelines from the model provider. If you have questions about license information
for a specific proprietary model, reach out to model provider directly. You can find model provider
contact information in the Support tab of each model page in AWS Marketplace.

End-user license agreements

Some JumpStart foundation models require explicit acceptance of an end-user license agreement
(EULA) before use.

EULA acceptance in Amazon SageMaker Studio

You may be prompted to accept an end-user license agreement before fine-tuning, deploying, or
evaluating a JumpStart foundation model in Studio. To get started with JumpStart foundation
models in Studio, see Use foundation models in Studio.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

Some JumpStart foundation models require acceptance of an end-user license agreement before
deployment. If this applies to the foundation model that you choose to use, Studio prompts you
with a window containing the EULA content. You are responsible for reviewing and complying
with any applicable license terms and making sure they are acceptable for your use case before
downloading or using a model.

Foundation Models 296

Amazon SageMaker Developer Guide

EULA acceptance in Amazon SageMaker Studio Classic

You may be prompted to accept an end-user license agreement before deploying a JumpStart
foundation model or opening a JumpStart foundation model notebook in Studio Classic. To get
started with JumpStart foundation models in Studio Classic, see Use foundation models in Amazon
SageMaker Studio Classic.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Some JumpStart foundation models require acceptance of an end-user license agreement before
deployment. If this applies to the foundation model that you choose to use, Studio Classic prompts
you with a window titled Review the End User License Agreement (EULA) and Acceptable Use
Policy (AUP) below after you choose either Deploy or Open notebook. You are responsible for
reviewing and complying with any applicable license terms and making sure they are acceptable for
your use case before downloading or using a model.

EULA acceptance with the SageMaker Python SDK

The following sections show you how to explicitly declare EULA acceptance when deploying or
fine-tuning a JumpStart model with the SageMaker Python SDK. For more information on getting
started with JumpStart foundation models using the SageMaker Python SDK, see Use foundation
models with the SageMaker Python SDK.

Before you begin, make sure that you do the following:

• Upgrade to the latest version of the model that you use.

• Install the latest version of the SageMaker Python SDK.

Important

To use the following workflow you must have v2.198.0 or later of the SageMaker Python
SDK installed.

Foundation Models 297

https://github.com/aws/sagemaker-python-sdk/releases/tag/v2.198.0

Amazon SageMaker Developer Guide

EULA acceptance when deploying a JumpStart model

For models that require the acceptance of an end-user license agreement, you must explicitly
declare EULA acceptance when deploying your JumpStart model.

from sagemaker.jumpstart.model import JumpStartModel
model_id = "meta-textgeneration-llama-2-13b"
my_model = JumpStartModel(model_id=model_id)

Declare EULA acceptance when deploying your JumpStart model
predictor = my_model.deploy(accept_eula=True)

The accept_eula value is None by default and must be explicitly redefined as True in order to
accept the end-user license agreement. For more information, see JumpStartModel.

EULA acceptance when fine-tuning a JumpStart model

For fine-tuning models that require the acceptance of an end-user license agreement, you must
explicitly declare EULA acceptance when defining your JumpStart estimator. After fine-tuning a
pre-trained model, the weights of the original model are changed. Therefore, when you deploy the
fine-tuned model later, you do not need to accept a EULA.

from sagemaker.jumpstart.estimator import JumpStartEstimator
model_id = "meta-textgeneration-llama-2-13b"

Declare EULA acceptance when defining your JumpStart estimator
estimator = JumpStartEstimator(model_id=model_id, environment={"accept_eula": "true"})
estimator.fit(
{"train": training_dataset_s3_path, "validation": validation_dataset_s3_path}
)

The accept_eula value is None by default and must be explicitly redefined as "true" within the
estimator environment in order to accept the end-user license agreement. For more information,
see JumpStartEstimator.

EULA acceptance SageMaker Python SDK versions earlier than 2.198.0

Important

When using versions earlier than 2.198.0 of the SageMaker Python SDK, you must use the
SageMaker Predictor class to accept a model EULA.

Foundation Models 298

https://sagemaker.readthedocs.io/en/stable/api/inference/model.html#sagemaker.jumpstart.model.JumpStartModel
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.jumpstart.estimator.JumpStartEstimator
https://github.com/aws/sagemaker-python-sdk/releases/tag/v2.198.0

Amazon SageMaker Developer Guide

After deploying a JumpStart foundation model programmatically using the SageMaker Python
SDK, you can run inference against your deployed endpoint with the SageMaker Predictor class.
For models that require the acceptance of an end-user license agreement, you must explicitly
declare EULA acceptance in your call to the Predictor class:

predictor.predict(payload, custom_attributes="accept_eula=true")

The accept_eula value is false by default and must be explicitly redefined as true in order to
accept the end-user license agreement. The predictor returns an error if you try to run inference
while accept_eula is set to false. For more information on getting started with JumpStart
foundation models using the SageMaker Python SDK, see Use foundation models with the
SageMaker Python SDK.

Important

The custom_attributes parameter accepts key-value pairs in the format
"key1=value1;key2=value2". If you use the same key multiple times, the
inference server uses the last value associated with the key. For example, if you pass
"accept_eula=false;accept_eula=true" to the custom_attributes parameter,
then the inference server associates the value true with the accept_eula key.

Customize a foundation model

Foundation models are extremely powerful models able to solve a wide array of tasks. To solve
most tasks effectively, these models require some form of customization.

The recommended way to first customize a foundation model to a specific use case is through
prompt engineering. Providing your foundation model with well-engineered, context-rich prompts
can help achieve desired results without any fine-tuning or changing of model weights. For more
information, see Prompt engineering for foundation models.

If prompt engineering alone is not enough to customize your foundation model to a specific task,
you can fine-tune a foundation model on additional domain-specific data. For more information,
see Fine-tune a foundation model. The fine-tuning process involves changing model weights.

If you want to customize your model with information from a knowledge library without any
retraining, see Retrieval Augmented Generation (RAG).

Foundation Models 299

https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html

Amazon SageMaker Developer Guide

Prompt engineering for foundation models

Prompt engineering is the process of designing and refining the prompts or input stimuli for
a language model to generate specific types of output. Prompt engineering involves selecting
appropriate keywords, providing context, and shaping the input in a way that encourages the
model to produce the desired response and is a vital technique to actively shape the behavior and
output of foundation models.

Effective prompt engineering is crucial for directing model behavior and achieving desired
responses. Through prompt engineering, you can control a model’s tone, style, and domain
expertise without more involved customization measures like fine-tuning. We recommend
dedicating time to prompt engineering before you consider fine-tuning a model on additional data.
The goal is to provide sufficient context and guidance to the model so that it can generalize and
perform well on unseen or limited data scenarios.

Zero-shot learning

Zero-shot learning involves training a model to generalize and make predictions on unseen classes
or tasks. To perform prompt engineering in zero-shot learning environments, we recommend
constructing prompts that explicitly provide information about the target task and the desired
output format. For example, if you want to use a foundation model for zero-shot text classification
on a set of classes that the model did not see during training, a well-engineered prompt could be:
"Classify the following text as either sports, politics, or entertainment:
[input text]." By explicitly specifying the target classes and the expected output format, you
can guide the model to make accurate predictions even on unseen classes.

Few-shot learning

Few-shot learning involves training a model with a limited amount of data for new classes or
tasks. Prompt engineering in few-shot learning environments focuses on designing prompts that
effectively use the limited available training data. For example, if you use a foundation model for
an image classification task and only have a few examples of a new image class, you can engineer
a prompt that includes the available labeled examples with a placeholder for the target class. For
example, the prompt could be: "[image 1], [image 2], and [image 3] are examples
of [target class]. Classify the following image as [target class]". By
incorporating the limited labeled examples and explicitly specifying the target class, you can guide
the model to generalize and make accurate predictions even with minimal training data.

Foundation Models 300

Amazon SageMaker Developer Guide

Supported inference parameters

Changing inference parameters might also affect the responses to your prompts. While you can
try to add as much specificity and context as possible to your prompts, you can also experiment
with supported inference parameters. The following are examples of some commonly supported
inference parameters:

Inference Parameter Description

max_new_tokens The maximum output length of a foundation model response.
Valid values: integer, range: Positive integer.

temperature Controls the randomness in the output. Higher temperature
results in an output sequence with low-probability words and
lower temperature results in output sequence with high-prob
ability words. If temperature=0 , the response is made up
of only the highest probability words (greedy decoding). Valid
values: float, range: Positive float.

top_p In each step of text generation, the model samples from the
smallest possible set of words with a cumulative probability of
top_p. Valid values: float, range: 0.0, 1.0.

return_full_text If True, then the input text is part of the generated output
text. Valid values: boolean, default: False.

For more information on foundation model inference, see Deploy publicly available foundation
models with the JumpStartModel class.

If prompt engineering is not sufficient to adapt your foundation model to specific business needs,
domain-specific language, target tasks, or other requirements, you can consider fine-tuning your
model on additional data or using Retrieval Augmented Generation (RAG) to augment your model
architecture with enhanced context from archived knowledge sources. For more information, see
Fine-tune a foundation model or Retrieval Augmented Generation (RAG).

Fine-tune a foundation model

Foundation models are computationally expensive and trained on a large, unlabeled corpus. Fine-
tuning a pre-trained foundation model is an affordable way to take advantage of their broad

Foundation Models 301

Amazon SageMaker Developer Guide

capabilities while customizing a model on your own small, corpus. Fine-tuning is a customization
method that involved further training and does change the weights of your model.

Fine-tuning might be useful to you if you need:

• to customize your model to specific business needs

• your model to successfully work with domain-specific language, such as industry jargon,
technical terms, or other specialized vocabulary

• enhanced performance for specific tasks

• accurate, relative, and context-aware responses in applications

• responses that are more factual, less toxic, and better-aligned to specific requirements

There are two main approaches that you can take for fine-tuning depending on your use case and
chosen foundation model.

1. If you're interested in fine-tuning your model on domain-specific data, see Domain adaptation
fine-tuning.

2. If you're interested in instruction-based fine-tuning using prompt and response examples, see
Instruction-based fine-tuning.

Foundation models available for fine-tuning

You can fine-tune any of the following JumpStart foundation models:

• Bloom 3B

• Bloom 7B1

• BloomZ 3B FP16

• BloomZ 7B1 FP16

• Code Llama 13B

• Code Llama 13B Python

• Code Llama 34B

• Code Llama 34B Python

• Code Llama 70B

• Code Llama 70B Python

• Code Llama 7B

Foundation Models 302

Amazon SageMaker Developer Guide

• Code Llama 7B Python

• CyberAgentLM2-7B-Chat (CALM2-7B-Chat)

• Falcon 40B BF16

• Falcon 40B Instruct BF16

• Falcon 7B BF16

• Falcon 7B Instruct BF16

• Flan-T5 Base

• Flan-T5 Large

• Flan-T5 Small

• Flan-T5 XL

• Flan-T5 XXL

• Gemma 2B

• Gemma 2B Instruct

• Gemma 7B

• Gemma 7B Instruct

• GPT-2 XL

• GPT-J 6B

• GPT-Neo 1.3B

• GPT-Neo 125M

• GPT-NEO 2.7B

• LightGPT Instruct 6B

• Llama 2 13B

• Llama 2 13B Chat

• Llama 2 13B Neuron

• Llama 2 70B

• Llama 2 70B Chat

• Llama 2 7B

• Llama 2 7B Chat

• Llama 2 7B Neuron

• Mistral 7B

Foundation Models 303

Amazon SageMaker Developer Guide

• Mixtral 8x7B

• Mixtral 8x7B Instruct

• RedPajama INCITE Base 3B V1

• RedPajama INCITE Base 7B V1

• RedPajama INCITE Chat 3B V1

• RedPajama INCITE Chat 7B V1

• RedPajama INCITE Instruct 3B V1

• RedPajama INCITE Instruct 7B V1

• Stable Diffusion 2.1

Commonly supported fine-tuning hyperparameters

Different foundation models support different hyperparameters when fine-tuning. The following
are commonly-supported hyperparameters that can further customize your model during training:

Inference Parameter Description

epoch The number of passes that the model takes through the fine-
tuning dataset during training. Must be an integer greater than
1.

learning_rate The rate at which the model weights are updated after working
through each batch of fine-tuning training examples. Must be a
positive float greater than 0.

instruction_tuned Whether to instruction-train the model or not. Must be
'True' or 'False'.

per_device_train_b
atch_size

The batch size per GPU core or CPU for training. Must be a
positive integer.

per_device_eval_ba
tch_size

The batch size per GPU core or CPU for evaluation. Must be a
positive integer.

max_train_samples For debugging purposes or quicker training, truncate the
number of training examples to this value. Value -1 means that

Foundation Models 304

Amazon SageMaker Developer Guide

Inference Parameter Description

the model uses all of the training samples. Must be a positive
integer or -1.

max_val_samples For debugging purposes or quicker training, truncate the
number of validation examples to this value. Value -1 means
that the model uses all of the validation samples. Must be a
positive integer or -1.

max_input_length Maximum total input sequence length after tokenization.
Sequences longer than this will be truncated. If -1, max_input
_length is set to the minimum of 1024 and the model_max
_length defined by the tokenizer. If set to a positive value,
max_input_length is set to the minimum of the provided
value and the model_max_length defined by the tokenizer.
Must be a positive integer or -1.

validation_split_r
atio

If there is no validation channel, ratio of train-validation split
from the training data. Must be between 0 and 1.

train_data_split_s
eed

If validation data is not present, this fixes the random splitting
of the input training data to training and validation data used
by the model. Must be an integer.

preprocessing_num_
workers

The number of processes to use for the pre-processing. If None,
main process is used for pre-processing.

lora_r Low-rank adaptation (LoRA) r value, which acts as the scaling
factor for weight updates. Must be a positive integer.

lora_alpha Low-rank adaptation (LoRA) alpha value, which acts as the
scaling factor for weight updates. Generally 2 to 4 times the
size of lora_r. Must be a positive integer.

lora_dropout Dropout value for low-rank adaptation (LoRA) layers Must be a
positive float between 0 and 1.

int8_quantization If True, model is loaded with 8 bit precision for training.

Foundation Models 305

Amazon SageMaker Developer Guide

Inference Parameter Description

enable_fsdp If True, training uses Fully Sharded Data Parallelism.

You can specify hyperparameter values when you fine-tune your model in Studio. For more
information, see Fine-tune foundation models in Studio.

You can also override default hyperparameter values when fine-tuning your model using the
SageMaker Python SDK. For more information, see Fine-tune publicly available foundation models
with the JumpStartEstimator class.

Domain adaptation fine-tuning

Domain adaptation fine-tuning allows you to leverage pre-trained foundation models and
adapt them to specific tasks using limited domain-specific data. If prompt engineering efforts
do not provide enough customization, you can use domain adaption fine-tuning to get your
model working with domain-specific language, such as industry jargon, technical terms, or other
specialized data. This fine-tuning process modifies the weights of the model.

Domain adaptation fine-tuning is available with the following foundation models:

Note

Some JumpStart foundation models, such as Llama 2 7B, require acceptance of an end-user
license agreement before fine-tuning and performing inference. For more information, see
End-user license agreements.

• Bloom 3B

• Bloom 7B1

• BloomZ 3B FP16

• BloomZ 7B1 FP16

• GPT-2 XL

• GPT-J 6B

• GPT-Neo 1.3B

• GPT-Neo 125M

• GPT-NEO 2.7B

Foundation Models 306

Amazon SageMaker Developer Guide

• Llama 2 13B

• Llama 2 13B Chat

• Llama 2 13B Neuron

• Llama 2 70B

• Llama 2 70B Chat

• Llama 2 7B

• Llama 2 7B Chat

• Llama 2 7B Neuron

Prepare and upload training data for domain adaptation fine-tuning

Training data for domain adaptation fine-tuning can be provided in CSV, JSON, or TXT file format.
All training data must be in a single file within a single folder.

The training data is taken from the Text column for CSV or JSON training data files. If no column
is labeled Text, then the training data is taken from the first column for CSV or JSON training data
files.

The following is an example body of a TXT file to be used for fine-tuning:

This report includes estimates, projections, statements relating to our
business plans, objectives, and expected operating results that are “forward-
looking statements” within the meaning of the Private Securities Litigation
Reform Act of 1995, Section 27A of the Securities Act of 1933, and Section 21E
of

Split data for training and testing

You can optionally provide another folder containing validation data. This folder should also
include one CSV, JSON, or TXT file. If no validation dataset is provided, then a set amount of the
training data is set aside for validation purposes. You can adjust the percentage of training data
used for validation when you choose the hyperparameters for fine-tuning your model.

Upload fine-tuning data to Amazon S3

Upload your prepared data to Amazon Simple Storage Service (Amazon S3) to use when fine-
tuning a JumpStart foundation model. You can use the following commands to upload your data:

from sagemaker.s3 import S3Uploader

Foundation Models 307

Amazon SageMaker Developer Guide

import sagemaker
import random

output_bucket = sagemaker.Session().default_bucket()
local_data_file = "train.txt"
train_data_location = f"s3://{output_bucket}/training_folder"
S3Uploader.upload(local_data_file, train_data_location)
S3Uploader.upload("template.json", train_data_location)
print(f"Training data: {train_data_location}")

Create a training job for instruction-based fine-tuning

After your data is uploaded to Amazon S3, you can fine-tune and deploy your JumpStart
foundation model. To fine-tune your model in Studio, see Fine-tune foundation models in Studio.
To fine-tune your model using the SageMaker Python SDK, see Fine-tune publicly available
foundation models with the JumpStartEstimator class.

Example notebooks

For more information on domain adaptation fine-tuning, see the following example notebooks:

• SageMaker JumpStart Foundation Models - Fine-tuning text generation GPT-J 6B model on
domain specific dataset

• Fine-tune LLaMA 2 models on SageMaker JumpStart

Instruction-based fine-tuning

Instruction-based fine-tuning uses labeled examples to improve the performance of a pre-trained
foundation model on a specific task. The labeled examples are formatted as prompt, response
pairs and phrased as instructions. This fine-tuning process modifies the weights of the model.
For more information on instruction-based fine-tuning, see the papers Introducing FLAN: More
generalizable Language Models with Instruction Fine-Tuning and Scaling Instruction-Finetuned
Language Models.

Fine-tuned LAnguage Net (FLAN) models use instruction tuning to make models more amenable
to solving general downstream NLP tasks. Amazon SageMaker JumpStart provides a number of
foundation models in the FLAN model family. For example, FLAN-T5 models are instruction fine-
tuned on a wide range of tasks to increase zero-shot performance for a variety of common use
cases. With additional data and fine-tuning, instruction-based models can be further adapted to
more specific tasks that weren’t considered during pre-training.

Foundation Models 308

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/domain-adaption-finetuning-gpt-j-6b.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/domain-adaption-finetuning-gpt-j-6b.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/llama-2-finetuning.html
https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html
https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416

Amazon SageMaker Developer Guide

Models compatible with instruction-based fine-tuning

Only a subset of JumpStart foundation models are compatible with instruction-based fine-tuning.
Instruction-based fine-tuning is available with the following foundation models:

Note

Some JumpStart foundation models, such as Llama 2 7B, require acceptance of an end-user
license agreement before fine-tuning and performing inference. For more information, see
End-user license agreements.

• Flan-T5 Base

• Flan-T5 Large

• Flan-T5 Small

• Flan-T5 XL

• Flan-T5 XXL

• Llama 2 13B

• Llama 2 13B Chat

• Llama 2 13B Neuron

• Llama 2 70B

• Llama 2 70B Chat

• Llama 2 7B

• Llama 2 7B Chat

• Llama 2 7B Neuron

• Mistral 7B

• RedPajama INCITE Base 3B V1

• RedPajama INCITE Base 7B V1

• RedPajama INCITE Chat 3B V1

• RedPajama INCITE Chat 7B V1

• RedPajama INCITE Instruct 3B V1

• RedPajama INCITE Instruct 7B V1

Foundation Models 309

Amazon SageMaker Developer Guide

Prepare and upload training data for instruction-based fine-tuning

Training data for instruction-based fine-tuning must be provided in JSON Lines text file format,
where each line is a dictionary. All training data must be in a single folder. The folder can include
multiple .jsonl files.

The training folder can also include a template JSON file (template.json) that describes the
input and output formats of your data. If no template file is provided, the following template file is
used:

{
 "prompt": "Below is an instruction that describes a task, paired with an input that
 provides further context. Write a response that appropriately completes the request.\n
\n### Instruction:\n{instruction}\n\n### Input:\n{context}",
 "completion": "{response}"
}

According to the template.json file, each .jsonl entry of the training data must include
{instruction}, {context}, and {response} fields.

If you provide a custom template JSON file, use the "prompt" and "completion" keys to define
your own required fields. According to the following custom template JSON file, each .jsonl entry
of the training data must include {question}, {context}, and {answer} fields:

{
 "prompt": "question: {question} context: {context}",
 "completion": "{answer}"
}

Split data for training and testing

You can optionally provide another folder containing validation data. This folder should also
include one or more .jsonl files. If no validation dataset is provided, then a set amount of the
training data is set aside for validation purposes. You can adjust the percentage of training data
used for validation when you choose the hyperparameters for fine-tuning your model.

Upload fine-tuning data to Amazon S3

Upload your prepared data to Amazon Simple Storage Service (Amazon S3) to use when fine-
tuning a JumpStart foundation model. You can use the following commands to upload your data:

Foundation Models 310

Amazon SageMaker Developer Guide

from sagemaker.s3 import S3Uploader
import sagemaker
import random

output_bucket = sagemaker.Session().default_bucket()
local_data_file = "train.jsonl"
train_data_location = f"s3://{output_bucket}/dolly_dataset"
S3Uploader.upload(local_data_file, train_data_location)
S3Uploader.upload("template.json", train_data_location)
print(f"Training data: {train_data_location}")

Create a training job for instruction-based fine-tuning

After your data is uploaded to Amazon S3, you can fine-tune and deploy your JumpStart
foundation model. To fine-tune your model in Studio, see Fine-tune foundation models in Studio.
To fine-tune your model using the SageMaker Python SDK, see Fine-tune publicly available
foundation models with the JumpStartEstimator class.

Example notebooks

For more information on instruction-based fine-tuning, see the following example notebooks:

• Fine-tune LLaMA 2 models on SageMaker JumpStart

• Introduction to SageMaker JumpStart - Text Generation with Mistral models

• Introduction to SageMaker JumpStart - Text Generation with Falcon models

• SageMaker JumpStart Foundation Models - HuggingFace Text2Text Instruction Fine-Tuning

Retrieval Augmented Generation (RAG)

Foundation models are usually trained offline, making the model agnostic to any data that is
created after the model was trained. Additionally, foundation models are trained on very general
domain corpora, making them less effective for domain-specific tasks. You can use Retrieval
Augmented Generation (RAG) to retrieve data from outside a foundation model and augment your
prompts by adding the relevant retrieved data in context. For more information about RAG model
architectures, see Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.

With RAG, the external data used to augment your prompts can come from multiple data sources,
such as a document repositories, databases, or APIs. The first step is to convert your documents
and any user queries into a compatible format to perform relevancy search. To make the formats

Foundation Models 311

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/llama-2-finetuning.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/mistral-7b-instruction-domain-adaptation-finetuning.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/falcon-7b-instruction-domain-adaptation-finetuning.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/instruction-fine-tuning-flan-t5.html
https://arxiv.org/abs/2005.11401

Amazon SageMaker Developer Guide

compatible, a document collection, or knowledge library, and user-submitted queries are converted
to numerical representations using embedding language models. Embedding is the process by
which text is given numerical representation in a vector space. RAG model architectures compare
the embeddings of user queries within the vector of the knowledge library. The original user
prompt is then appended with relevant context from similar documents within the knowledge
library. This augmented prompt is then sent to the foundation model. You can update knowledge
libraries and their relevant embeddings asynchronously.

The retrieved document should be large enough to contain useful context to help augment the
prompt, but small enough to fit into the maximum sequence length of the prompt. You can
use task-specific JumpStart models, such as the General Text Embeddings (GTE) model from
Hugging Face, to provide the embeddings for your prompts and knowledge library documents.
After comparing the prompt and document embeddings to find the most relevant documents,
construct a new prompt with the supplemental context. Then, pass the augmented prompt to a
text generation model of your choosing.

Example notebooks

For more information on RAG foundation model solutions, see the following example notebooks:

Foundation Models 312

Amazon SageMaker Developer Guide

• Retrieval-Augmented Generation: Question Answering using LangChain and Cohere’s Generate
and Embedding Models from SageMaker JumpStart

• Retrieval-Augmented Generation: Question Answering using LLama-2, Pinecone and Custom
Dataset

• Retrieval-Augmented Generation: Question Answering based on Custom Dataset with Open-
sourced LangChain Library

• Retrieval-Augmented Generation: Question Answering based on Custom Dataset

• Retrieval-Augmented Generation: Question Answering using Llama-2 and Text Embedding
Models

• Amazon SageMaker JumpStart - Text Embedding and Sentence Similarity

You can clone the Amazon SageMaker examples repository to run the available JumpStart
foundation model examples in the Jupyter environment of your choice within Studio. For more
information on applications that you can use to create and access Jupyter in SageMaker, see
Applications supported in Amazon SageMaker Studio.

Evaluate a text generation foundation model in Studio

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the
new Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio
experience is now named Amazon SageMaker Studio Classic. The foundation evaluation
feature can only be used in the updated experience. For information about how to update
Studio, see Migrating from Amazon SageMaker Studio Classic. For information about using
the Studio Classic application, see Amazon SageMaker Studio Classic.

Amazon SageMaker JumpStart has integrations with SageMaker Clarify Foundation Model
Evaluations (FMEval) in Studio. If a JumpStart model has built-in evaluation capabilities available,
you can choose Evaluate in the upper right corner of the model detail page in the JumpStart

Foundation Models 313

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_Cohere+langchain_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_Cohere+langchain_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_pinecone_llama-2_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_pinecone_llama-2_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_langchain_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_langchain_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_jumpstart_knn.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_text_embedding_llama-2_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_text_embedding_llama-2_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/text-embedding-sentence-similarity.html
https://github.com/aws/amazon-sagemaker-examples/tree/main/introduction_to_amazon_algorithms/jumpstart-foundation-models

Amazon SageMaker Developer Guide

Studio UI. For more information on navigating the JumpStart Studio UI, see Open and use
JumpStart in Studio,

Use Amazon SageMaker JumpStart to evaluate text-based foundation models with FMEval.
You can use these model evaluations to compare model quality and responsibility metrics for
one model, between two models, or between different versions of the same model, to help you
quantify model risks. FMEval can evaluate text-based models that perform the following tasks:

• Open-ended generation – The production of natural human responses to text that does not
have a pre-defined structure.

• Text summarization – The generation of a concise and condensed summary while retaining the
meaning and key information contained in larger text.

• Question Answering – The generation of an answer in natural language to a question.

• Classification – The assignment of a class, such as positive versus negative to a text
passage based on its content.

You can use FMEval to automatically evaluate model responses based on specific benchmarks. You
can also evaluate model responses against your own criteria by bringing your own prompt datasets.
FMEval provides a user interface (UI) that guides you through the setup and configuration of an
evaluation job. You can also use the FMEval library inside your own code.

Every evaluation requires quota for two instances:

• Hosting instance – An instance that hosts and deploys an LLM.

• Evaluation instance – An instance that is used to prompt and perform an evaluation of an LLM on
the hosting instance.

If your LLM is already deployed, provide the endpoint, and SageMaker will use your hosting
instance to host and deploy the LLM.

If you are evaluating a SageMaker JumpStart model that is not yet deployed to your account,
FMEval creates a temporary hosting instance for you in your account, and keeps it deployed only
for the length of your evaluation. FMEval uses the default instance that SageMaker JumpStart
recommends for the chosen LLM as your hosting instance. You must have sufficient quota for this
recommended instance.

Every evaluation also uses an evaluation instance to provide prompts to and score the responses
from the LLM. You must also have sufficient quota and memory to run the evaluation algorithms.

Foundation Models 314

Amazon SageMaker Developer Guide

The quota and memory requirements of the evaluation instance are generally smaller than those
required for a hosting instance. We recommend selecting the ml.m5.2xlarge instance. For more
information about quota and memory, see FMEval Troubleshooting guide.

Automatic evaluations can be used to score LLMs across the following dimensions:

• Accuracy – For text summarization, question answering, and text classification

• Semantic robustness – For open-ended generation, text summarization and text classification
tasks

• Factual knowledge – For open-ended generation

• Prompt stereotyping – For open-ended generation

• Toxicity – For open-ended generation, text summarization, and question answering

You can also use human evaluations to manually evaluate model responses. The FMEval UI guides
you through a workflow of selecting one or more models, provisioning resources, and writing
instructions for and contacting your human workforce. After the human evaluation is complete, the
results are displayed in FMEval.

You can access model evaluation through the JumpStart landing page in Studio by selecting
a model to evaluate and then choosing Evaluate. Note that not all JumpStart models have
evaluation capabilities available. For more information about how to configure, provision and run
FMEval, see What are Foundation Model Evaluations?

Example notebooks

For step-by-step examples on how to use publicly available JumpStart foundation models with the
SageMaker Python SDK, refer to the following notebooks on text generation, image generation,
and model customization.

Note

Proprietary and publicly available JumpStart foundation models have different SageMaker
Python SDK deployment workflows. Discover proprietary foundation model example
notebooks through Amazon SageMaker Studio Classic or the SageMaker console. For more
information, see How to use JumpStart foundation models.

Foundation Models 315

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-foundation-model-evaluate.html

Amazon SageMaker Developer Guide

You can clone the Amazon SageMaker examples repository to run the available JumpStart
foundation model examples in the Jupyter environment of your choice within Studio. For more
information on applications that you can use to create and access Jupyter in SageMaker, see
Applications supported in Amazon SageMaker Studio.

Text generation

Explore text generation example notebooks, including guidance on general text generation
workflows, multilingual text classification, real-time batch inference, few-shot learning, chatbot
interactions, and more.

• SageMaker JumpStart Foundation Models - HuggingFace Text2Text Generation with FLAN-T5 XL
as an example

• SageMaker JumpStart Foundation Models - BloomZ: Multilingual Text Classification, Question
and Answering, Code Generation, Paragraph rephrase, and More

• SageMaker JumpStart Foundation Models - HuggingFace Text2Text Generation Batch Transform
and Real-Time Batch Inference

• SageMaker JumpStart Foundation Models - GPT-J, GPT-Neo Few-shot learning

• SageMaker JumpStart Foundation Models - Chatbots

• Introduction to SageMaker JumpStart - Text Generation with Mistral models

• Introduction to SageMaker JumpStart - Text Generation with Falcon models

Image generation

Get started with text-to-image Stable Diffusion models, learn how to deploy an inpainting model,
and experiment with a simple workflow to generate images of your dog.

• Introduction to JumpStart - Text to Image

• Introduction to JumpStart Image editing - Stable Diffusion Inpainting

• Generate fun images of your dog

Model customization

Sometimes your use case requires greater foundation model customization for specific tasks. For
more information on model customization approaches, see Customize a foundation model or
explore one of the following example notebooks.

Foundation Models 316

https://github.com/aws/amazon-sagemaker-examples/tree/main/introduction_to_amazon_algorithms/jumpstart-foundation-models
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/text2text-generation-flan-t5.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/text2text-generation-flan-t5.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/text2text-generation-bloomz.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/text2text-generation-bloomz.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/text2text-generation-Batch-Transform.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/text2text-generation-Batch-Transform.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/text-generation-few-shot-learning.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/text-generation-chatbot.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/mistral-7b-instruction-domain-adaptation-finetuning.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/falcon-7b-instruction-domain-adaptation-finetuning.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart_text_to_image/Amazon_JumpStart_Text_To_Image.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart_inpainting/Amazon_JumpStart_Inpainting.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart_text_to_image/custom_dog_image_generator.html

Amazon SageMaker Developer Guide

• SageMaker JumpStart Foundation Models - Fine-tuning text generation GPT-J 6B model on
domain specific dataset

• SageMaker JumpStart Foundation Models - HuggingFace Text2Text Instruction Fine-Tuning

• Retrieval-Augmented Generation: Question Answering using LangChain and Cohere’s Generate
and Embedding Models from SageMaker JumpStart

• Retrieval-Augmented Generation: Question Answering using LLama-2, Pinecone and Custom
Dataset

• Retrieval-Augmented Generation: Question Answering based on Custom Dataset with Open-
sourced LangChain Library

• Retrieval-Augmented Generation: Question Answering based on Custom Dataset

• Retrieval-Augmented Generation: Question Answering using Llama-2 and Text Embedding
Models

• Amazon SageMaker JumpStart - Text Embedding and Sentence Similarity

Task-Specific Models

JumpStart supports task-specific models across fifteen of the most popular problem types. Of the
supported problem types, Vision and NLP-related types total thirteen. There are eight problem
types that support incremental training and fine-tuning. For more information about incremental
training and hyper-parameter tuning, see SageMaker Automatic Model Tuning. JumpStart also
supports four popular algorithms for tabular data modeling.

You can search and browse models from the JumpStart landing page in Studio or Studio Classic.
When you select a model, the model detail page provides information about the model, and you
can train and deploy your model in a few steps. The description section describes what you can
do with the model, the expected types of inputs and outputs, and the data type needed for fine-
tuning your model.

You can also programmatically utilize models with the SageMaker Python SDK. For a list of all
available models, see the JumpStart Available Model Table.

The list of problem types and links to their example Jupyter notebooks are summarized in the
following table.

Task-Specific Models 317

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/domain-adaption-finetuning-gpt-j-6b.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/domain-adaption-finetuning-gpt-j-6b.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/instruction-fine-tuning-flan-t5.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_Cohere+langchain_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_Cohere+langchain_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_pinecone_llama-2_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_pinecone_llama-2_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_langchain_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_langchain_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_jumpstart_knn.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_text_embedding_llama-2_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/question_answering_text_embedding_llama-2_jumpstart.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/jumpstart-foundation-models/question_answering_retrieval_augmented_generation/text-embedding-sentence-similarity.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://sagemaker.readthedocs.io/en/stable/overview.html#use-prebuilt-models-with-sagemaker-jumpstart
https://sagemaker.readthedocs.io/en/v2.132.0/doc_utils/pretrainedmodels.html

Amazon SageMaker Developer Guide

Problem types Supports
inference with
pre-trained
models

Trainable on a
custom dataset

Supported
frameworks

Example
Notebooks

Image classific
ation

Yes Yes PyTorch,
TensorFlow

Introduction
to JumpStart -
Image Classific
ation

Object detection Yes Yes PyTorch,
TensorFlow,
MXNet

Introduction
to JumpStart -
Object Detection

Semantic
segmentation

Yes Yes MXNet Introduction
to JumpStart
- Semantic
Segmentation

Instance
segmentation

Yes Yes MXNet Introduction
to JumpStart
- Instance
Segmentation

Image
embedding

Yes No TensorFlow,
MXNet

Introduction
to JumpStart
- Image
Embedding

Text classific
ation

Yes Yes TensorFlow Introduction to
JumpStart - Text
Classification

Sentence pair
classification

Yes Yes TensorFlow,
Hugging Face

Introduction
to JumpStart -
Sentence Pair
Classification

Task-Specific Models 318

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_classification/Amazon_JumpStart_Image_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_classification/Amazon_JumpStart_Image_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_classification/Amazon_JumpStart_Image_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_classification/Amazon_JumpStart_Image_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_object_detection/Amazon_JumpStart_Object_Detection.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_object_detection/Amazon_JumpStart_Object_Detection.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_object_detection/Amazon_JumpStart_Object_Detection.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_semantic_segmentation/Amazon_JumpStart_Semantic_Segmentation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_semantic_segmentation/Amazon_JumpStart_Semantic_Segmentation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_semantic_segmentation/Amazon_JumpStart_Semantic_Segmentation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_semantic_segmentation/Amazon_JumpStart_Semantic_Segmentation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_instance_segmentation/Amazon_JumpStart_Instance_Segmentation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_instance_segmentation/Amazon_JumpStart_Instance_Segmentation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_instance_segmentation/Amazon_JumpStart_Instance_Segmentation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_instance_segmentation/Amazon_JumpStart_Instance_Segmentation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_embedding/Amazon_JumpStart_Image_Embedding.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_embedding/Amazon_JumpStart_Image_Embedding.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_embedding/Amazon_JumpStart_Image_Embedding.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_embedding/Amazon_JumpStart_Image_Embedding.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_classification/Amazon_JumpStart_Text_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_classification/Amazon_JumpStart_Text_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_classification/Amazon_JumpStart_Text_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_sentence_pair_classification/Amazon_JumpStart_Sentence_Pair_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_sentence_pair_classification/Amazon_JumpStart_Sentence_Pair_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_sentence_pair_classification/Amazon_JumpStart_Sentence_Pair_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_sentence_pair_classification/Amazon_JumpStart_Sentence_Pair_Classification.ipynb

Amazon SageMaker Developer Guide

Problem types Supports
inference with
pre-trained
models

Trainable on a
custom dataset

Supported
frameworks

Example
Notebooks

Question
answering

Yes Yes PyTorch,
Hugging Face

Introduction
to JumpStart
– Question
Answering

Named entity
recognition

Yes No Hugging Face Introduction
to JumpStart -
Named Entity
Recognition

Text summariza
tion

Yes No Hugging Face Introduction to
JumpStart - Text
Summarization

Text generation Yes No Hugging Face Introduction to
JumpStart - Text
Generation

Machine
translation

Yes No Hugging Face Introduction
to JumpStart
- Machine
Translation

Text embedding Yes No TensorFlow,
MXNet

Introduction to
JumpStart - Text
Embedding

Task-Specific Models 319

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_question_answering/Amazon_JumpStart_Question_Answering.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_question_answering/Amazon_JumpStart_Question_Answering.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_question_answering/Amazon_JumpStart_Question_Answering.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_question_answering/Amazon_JumpStart_Question_Answering.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_named_entity_recognition/Amazon_JumpStart_Named_Entity_Recognition.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_named_entity_recognition/Amazon_JumpStart_Named_Entity_Recognition.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_named_entity_recognition/Amazon_JumpStart_Named_Entity_Recognition.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_named_entity_recognition/Amazon_JumpStart_Named_Entity_Recognition.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_summarization/Amazon_JumpStart_Text_Summarization.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_summarization/Amazon_JumpStart_Text_Summarization.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_summarization/Amazon_JumpStart_Text_Summarization.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_generation/Amazon_JumpStart_Text_Generation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_generation/Amazon_JumpStart_Text_Generation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_generation/Amazon_JumpStart_Text_Generation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_machine_translation/Amazon_JumpStart_Machine_Translation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_machine_translation/Amazon_JumpStart_Machine_Translation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_machine_translation/Amazon_JumpStart_Machine_Translation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_machine_translation/Amazon_JumpStart_Machine_Translation.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_embedding/Amazon_JumpStart_Text_Embedding.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_embedding/Amazon_JumpStart_Text_Embedding.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_embedding/Amazon_JumpStart_Text_Embedding.ipynb

Amazon SageMaker Developer Guide

Problem types Supports
inference with
pre-trained
models

Trainable on a
custom dataset

Supported
frameworks

Example
Notebooks

Tabular classific
ation

Yes Yes LightGBM,
CatBoost,
XGBoost,
AutoGluon
-Tabular,
TabTransformer,
Linear Learner

Introduction
to JumpStart
- Tabular
Classification
- LightGBM,
 CatBoost

Introduction
to JumpStart -
Tabular Classific
ation - XGBoost,
Linear Learner

Introduction
to JumpStart
- Tabular
Classification
- AutoGluon
 Learner

Introduction
to JumpStart -
Tabular Classific
ation - TabTransf
ormer Learner

Task-Specific Models 320

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Classification_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Classification_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Classification_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Classification_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Classification_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Classification_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Classification_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Classification_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Classification_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Classification_TabTransformer.ipynb

Amazon SageMaker Developer Guide

Problem types Supports
inference with
pre-trained
models

Trainable on a
custom dataset

Supported
frameworks

Example
Notebooks

Tabular
regression

Yes Yes LightGBM,
CatBoost,
XGBoost,
AutoGluon
-Tabular,
TabTransformer,
Linear Learner

Introduction
to JumpStart
- Tabular
Regression
- LightGBM,
 CatBoost

Introduction
to JumpStart
– Tabular
Regression -
XGBoost, Linear
Learner

Introduction
to JumpStart
– Tabular
Regression -
AutoGluon
Learner

Introduction
to JumpStart
– Tabular
Regression -
TabTransformer
Learner

Task-Specific Models 321

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Regression_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Regression_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Regression_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Regression_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Regression_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_linear_learner_tabular/Amazon_Tabular_Regression_XGBoost_LinearLearner.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb

Amazon SageMaker Developer Guide

Deploy a Model

When you deploy a model from JumpStart, SageMaker hosts the model and deploys an endpoint
that you can use for inference. JumpStart also provides an example notebook that you can use to
access the model after it's deployed.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Note

Fore more information on JumpStart model deployment in Studio, see Deploy foundation
models in Studio

Model deployment configuration

After you choose a model, the model's tab opens. In the Deploy Model pane, choose Deployment
Configuration to configure your model deployment.

The default instance type for deploying a model depends on the model. The instance type is the
hardware that the training job runs on. In the following example, the ml.p2.xlarge instance is
the default for this particular BERT model.

Task-Specific Models 322

Amazon SageMaker Developer Guide

You can also change the endpoint name, add key;value resource tags, activate or deactive the
jumpstart- prefix for any JumpStart resources related to the model, and specify an Amazon S3
bucket for storing model artifacts used by your SageMaker endpoint.

Choose Security Settings to specify the AWS Identity and Access Management (IAM) role, Amazon
Virtual Private Cloud (Amazon VPC), and encryption keys for the model.

Task-Specific Models 323

Amazon SageMaker Developer Guide

Model deployment security

When you deploy a model with JumpStart, you can specify an IAM role, Amazon VPC, and
encryption keys for the model. If you don't specify any values for these entries: The default IAM
role is your Studio Classic runtime role; default encryption is used; no Amazon VPC is used.

IAM role

You can select an IAM role that is passed as part of training jobs and hosting jobs. SageMaker uses
this role to access training data and model artifacts. If you don't select an IAM role, SageMaker
deploys the model using your Studio Classic runtime role. For more information about IAM roles,
see Identity and Access Management for Amazon SageMaker.

The role that you pass must have access to the resources that the model needs, and must include
all of the following.

• For training jobs: CreateTrainingJob API: Execution Role Permissions.

• For hosting jobs: CreateModel API: Execution Role Permissions.

Task-Specific Models 324

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createmodel-perms

Amazon SageMaker Developer Guide

Note

You can scope down the Amazon S3 permissions granted in each of the following roles. Do
this by using the ARN of your Amazon Simple Storage Service (Amazon S3) bucket and the
JumpStart Amazon S3 bucket.

{
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:ListBucket"
],
 "Resources": [
 "arn:aws:s3:::jumpstart-cache-prod-<region>/*",
 "arn:aws:s3:::jumpstart-cache-prod-<region>",
 "arn:aws:s3:::bucket/*"
]
}

Find IAM role

If you select this option, you must select an existing IAM role from the dropdown list.

Input IAM role

Task-Specific Models 325

Amazon SageMaker Developer Guide

If you select this option, you must manually enter the ARN for an existing IAM role. If your Studio
Classic runtime role or Amazon VPC block the iam:list* call, you must use this option to use an
existing IAM role.

Amazon VPC

All JumpStart models run in network isolation mode. After the model container is created, no
more calls can be made. You can select an Amazon VPC that is passed as part of training jobs and
hosting jobs. SageMaker uses this Amazon VPC to push and pull resources from your Amazon S3
bucket. This Amazon VPC is different from the Amazon VPC that limits access to the public internet
from your Studio Classic instance. For more information about the Studio Classic Amazon VPC, see
Connect SageMaker Studio Notebooks in a VPC to External Resources.

The Amazon VPC that you pass does not need access to the public internet, but it does need
access to Amazon S3. The Amazon VPC endpoint for Amazon S3 must allow access to at least the
following resources that the model needs.

{
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListMultipartUploadParts",
 "s3:ListBucket"
],
 "Resources": [
 "arn:aws:s3:::jumpstart-cache-prod-<region>/*",
 "arn:aws:s3:::jumpstart-cache-prod-<region>",
 "arn:aws:s3:::bucket/*"
]

Task-Specific Models 326

Amazon SageMaker Developer Guide

}

If you do not select an Amazon VPC, no Amazon VPC is used.

Find VPC

If you select this option, you must select an existing Amazon VPC from the dropdown list. After
you select an Amazon VPC, you must select a subnet and security group for your Amazon VPC. For
more information about subnets and security groups, see Overview of VPCs and subnets.

Input VPC

If you select this option, you must manually select the subnet and security group that compose
your Amazon VPC. If your Studio Classic runtime role or Amazon VPC blocks the ec2:list* call,
you must use this option to select the subnet and security group.

Task-Specific Models 327

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

Amazon SageMaker Developer Guide

Encryption keys

You can select an AWS KMS key that is passed as part of training jobs and hosting jobs. SageMaker
uses this key to encrypt the Amazon EBS volume for the container, and the repackaged model in
Amazon S3 for hosting jobs and the output for training jobs. For more information about AWS KMS
keys, see AWS KMS keys.

The key that you pass must trust the IAM role that you pass. If you do not specify an IAM role, the
AWS KMS key must trust your Studio Classic runtime role.

If you do not select an AWS KMS key, SageMaker provides default encryption for the data in the
Amazon EBS volume and the Amazon S3 artifacts.

Find encryption keys

If you select this option, you must select existing AWS KMS keys from the dropdown list.

Input encryption keys

If you select this option, you must manually enter the AWS KMS keys. If your Studio Classic
execution role or Amazon VPC block the kms:list* call, you must use this option to select
existing AWS KMS keys.

Task-Specific Models 328

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys

Amazon SageMaker Developer Guide

Configure default values for JumpStart models

You can configure default values for parameters such as IAM roles, VPCs, and KMS keys to pre-
populate for JumpStart model deployment and training. After configuring default values, the
Studio Classic UI automatically provides your specified security settings and tags to SageMaker
JumpStart models to simplify deployment and training workflows. Administrators and end-users
can initialize default values specified in a configuration file in YAML format.

By default, the SageMaker Python SDK uses two configuration files: one for the administrator and
one for the user. Using the admininistrator configuration file, administrators can define a set of
default values. End-users can override values set in the administrator configuration file and set
additional default values using the end-user configuration file. For more information, see Default
configuration file location.

The following code sample lists the default locations of the configuration files when using the
SageMaker Python SDK in Amazon SageMaker Studio Classic.

Location of the admin config file
/etc/xdg/sagemaker/config.yaml

Location of the user config file
/root/.config/sagemaker/config.yaml

Values specified in the user configuration file override values set in the administrator configuration
file. The configuration file is unique to each user profile within an Amazon SageMaker domain.

Task-Specific Models 329

https://sagemaker.readthedocs.io/en/stable/overview.html#default-configuration-file-location
https://sagemaker.readthedocs.io/en/stable/overview.html#default-configuration-file-location

Amazon SageMaker Developer Guide

The user profile's Studio Classic application is directly associated with the user profile. For more
information, see Domain user profiles.

Administrators can optionally set configuration defaults for JumpStart model training and
deployment through JupyterServer lifecycle configurations. For more information, see Create
and associate a lifecycle configuration.

Default value configuration YAML file

Your configuration file should adhere to the SageMaker Python SDK configuration file structure.
Note that specific fields in the TrainingJob, Model, and EndpointConfig configurations apply
to JumpStart model training and deployment default values.

SchemaVersion: '1.0'
SageMaker:
 TrainingJob:
 OutputDataConfig:
 KmsKeyId: example-key-id
 ResourceConfig:
 # Training configuration - Volume encryption key
 VolumeKmsKeyId: example-key-id
 # Training configuration form - IAM role
 RoleArn: arn:aws:iam::123456789012:role/SageMakerExecutionRole
 VpcConfig:
 # Training configuration - Security groups
 SecurityGroupIds:
 - sg-1
 - sg-2
 # Training configuration - Subnets
 Subnets:
 - subnet-1
 - subnet-2
 # Training configuration - Custom resource tags
 Tags:
 - Key: Example-key
 Value: Example-value
 Model:
 EnableNetworkIsolation: true
 # Deployment configuration - IAM role
 ExecutionRoleArn: arn:aws:iam::123456789012:role/SageMakerExecutionRole
 VpcConfig:
 # Deployment configuration - Security groups
 SecurityGroupIds:

Task-Specific Models 330

https://sagemaker.readthedocs.io/en/stable/overview.html#configuration-file-structure

Amazon SageMaker Developer Guide

 - sg-1
 - sg-2
 # Deployment configuration - Subnets
 Subnets:
 - subnet-1
 - subnet-2
 EndpointConfig:
 AsyncInferenceConfig:
 OutputConfig:
 KmsKeyId: example-key-id
 DataCaptureConfig:
 # Deployment configuration - Volume encryption key
 KmsKeyId: example-key-id
 KmsKeyId: example-key-id
 # Deployment configuration - Custom resource tags
 Tags:
 - Key: Example-key
 Value: Example-value

Fine-Tune a Model

Fine-tuning trains a pretrained model on a new dataset without training from scratch. This process,
also known as transfer learning, can produce accurate models with smaller datasets and less
training time. You can fine-tune a model if its card shows a fine-tunable attribute set to Yes.

Task-Specific Models 331

Amazon SageMaker Developer Guide

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Note

For more information on JumpStart model fine-tuning in Studio, see Fine-tune foundation
models in Studio

Fine-Tuning data source

When you fine-tune a model, you can use the default dataset or choose your own data, which is
located in an Amazon S3 bucket.

To browse the buckets available to you, choose Find S3 bucket. These buckets are limited by the
permissions used to set up your Studio Classic account. You can also specify an Amazon S3 URI by
choosing Enter Amazon S3 bucket location.

Task-Specific Models 332

Amazon SageMaker Developer Guide

Tip

To find out how to format the data in your bucket, choose Learn more. The description
section for the model has detailed information about inputs and outputs.

For text models:

• The bucket must have a data.csv file.

• The first column must be a unique integer for the class label. For example: 1, 2, 3, 4, n

• The second column must be a string.

• The second column should have the corresponding text that matches the type and language for
the model.

For vision models:

• The bucket must have as many subdirectories as the number of classes.

• Each subdirectory should contain images that belong to that class in .jpg format.

Task-Specific Models 333

Amazon SageMaker Developer Guide

Note

The Amazon S3 bucket must be in the same AWS Region where you're running SageMaker
Studio Classic because SageMaker doesn't allow cross-Region requests.

Fine-Tuning deployment configuration

The p3 family is recommended as the fastest for deep learning training, and this is recommended
for fine-tuning a model. The following chart shows the number of GPUs in each instance type.
There are other available options that you can choose from, including p2 and g4 instance types.

Instance type GPUs

p3.2xlarge 1

p3.8xlarge 4

p3.16xlarge 8

p3dn.24xlarge 8

Hyperparameters

You can customize the hyperparameters of the training job that are used to fine-tune the model.
The hyperparameters available for each fine-tunable model differ depending on the model. For
information on each available hyperparameter, reference the hyperparameters documentation for
the model of your choosing in Use Amazon SageMaker Built-in Algorithms or Pre-trained Models.
For example, see Image Classification - TensorFlow Hyperparameters for details on the fine-tunable
Image Classification - TensorFlow hyperparameters.

If you use the default dataset for text models without changing the hyperparameters, you get
a nearly identical model as a result. For vision models, the default dataset is different from the
dataset used to train the pretrained models, so your model is different as a result.

The following hyperparameters are common among models:

Task-Specific Models 334

Amazon SageMaker Developer Guide

• Epochs – One epoch is one cycle through the entire dataset. Multiple intervals complete a batch,
and multiple batches eventually complete an epoch. Multiple epochs are run until the accuracy
of the model reaches an acceptable level, or when the error rate drops below an acceptable level.

• Learning rate – The amount that values should be changed between epochs. As the model is
refined, its internal weights are being nudged and error rates are checked to see if the model
improves. A typical learning rate is 0.1 or 0.01, where 0.01 is a much smaller adjustment and
could cause the training to take a long time to converge, whereas 0.1 is much larger and can
cause the training to overshoot. It is one of the primary hyperparameters that you might adjust
for training your model. Note that for text models, a much smaller learning rate (5e-5 for BERT)
can result in a more accurate model.

• Batch size – The number of records from the dataset that is to be selected for each interval to
send to the GPUs for training.

In an image example, you might send out 32 images per GPU, so 32 would be your batch size.
If you choose an instance type with more than one GPU, the batch is divided by the number of
GPUs. Suggested batch size varies depending on the data and the model that you are using. For
example, how you optimize for image data differs from how you handle language data.

In the instance type chart in the deployment configuration section, you can see the number of
GPUs per instance type. Start with a standard recommended batch size (for example, 32 for a
vision model). Then, multiply this by the number of GPUs in the instance type that you selected.
For example, if you're using a p3.8xlarge, this would be 32(batch size) multiplied by 4 (GPUs),
for a total of 128, as your batch size adjusts for the number of GPUs. For a text model like BERT,
try starting with a batch size of 64, and then reduce as needed.

Training output

When the fine-tuning process is complete, JumpStart provides information about the model:
parent model, training job name, training job ARN, training time, and output path. The output
path is where you can find your new model in an Amazon S3 bucket. The folder structure uses
the model name that you provided and the model file is in an /output subfolder and it's always
named model.tar.gz.

Example: s3://bucket/model-name/output/model.tar.gz

Task-Specific Models 335

Amazon SageMaker Developer Guide

Configure default values for model training

You can configure default values for parameters such as IAM roles, VPCs, and KMS keys to pre-
populate for JumpStart model deployment and training. For more information, see, Configure
default values for JumpStart models.

Share Models

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can share JumpStart models through the Studio Classic UI directly from the Launched
JumpStart assets page using the following procedure:

1. Open Amazon SageMaker Studio Classic and choose Launched JumpStart assets in the
JumpStart section of the lefthand navigation pane.

2. Select the Training jobs tab to view the list of your model training jobs.

3. Under the Training jobs list, select the training job that you want to share. This opens the
training job details page. You cannot share more than one training job at a time.

4. In the header for the training job, choose Share, and select either Share to Canvas or Share with
my organization.

For more information about how to share a model with a SageMaker Canvas user, see Bring Your
Own Model Into Canvas.

Note

Only tabular models can be shared to SageMaker Canvas. Trying to share a non-tabular
model to SageMaker Canvas throws the error Unsupported Data Type.

For more information about sharing models with your organization, see Shared Models and
Notebooks.

Task-Specific Models 336

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html

Amazon SageMaker Developer Guide

Shared Models and Notebooks

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Share your models and notebooks to centralize model artifacts, facilitate discoverability, and
increase the reuse of models within your organization. When sharing your models, you can provide
training and inference environment information and allow collaborators to use these environments
for their own training and inference jobs.

All models that you share and models that are shared with you are searchable in a centralized
location directly in Amazon SageMaker Studio Classic. For information on the onboarding steps to
sign into Amazon SageMaker Studio Classic, see Onboard to Amazon SageMaker Domain.

Access shared models and notebooks

To access your shared content, choose Shared models in the left navigation pane of the Amazon
SageMaker Studio Classic UI.

Add shared content

You can share models or notebooks through the Shared models section of the Studio Classic UI.
For details about each step, see Share models and notebooks through the Studio Classic UI.

Filter shared content

There are three main options for filtering shared models and notebooks:

1. Shared by me – Models and notebooks that you shared to either JumpStart or SageMaker
Canvas.

2. Shared with me – Models and notebooks shared with you

3. Shared by my organization – All models and notebooks that are shared to anyone in your
organization

Shared Models and Notebooks 337

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html

Amazon SageMaker Developer Guide

You can also sort your models and notebooks based on the time they were last
updated or by ascending or descending alphabetical order. Choose the filter

()
icon to further sort your selections.

Share tabular models with SageMaker Canvas users

In addition to sharing models with your organization, you can also share models with collaborators
that use SageMaker Canvas. If you share models to SageMaker Canvas, your collaborators can
import those models into SageMaker Canvas and use them to generate predictions.

Important

Important: You can only share tabular models to SageMaker Canvas.

You can filter for models and notebooks shared to and from SageMaker Canvas by selecting the
filter

()
icon in the Shared by me or Shared with me tabs. For more information about how to share a
model to SageMaker Canvas, see Bring Your Own Model Into Canvas.

Share models and notebooks through the Studio Classic UI

To share models and notebooks, navigate to the Shared models section in
Amazon SageMaker Studio Classic, choose Shared by my organization, and then

Shared Models and Notebooks 338

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html

Amazon SageMaker Developer Guide

select the Add dropdown list. Choose to either add a model or add a notebook.

Add a model

To add a model, choose Shared by my organization, and then select Add model from the the
Add dropdown list. Enter the basic information for your model, and add any training or inference
information you want to share with collaborators to train or deploy your model. After you enter all
the necessary information, choose Add model in the lower right corner.

Basic information

First, add the basic descriptive information about your model. This information is used to improve
the searchability of your model.

1. Add a title for this model. Adding a title automatically populates a unique identifier in the ID
field based on the model title.

2. Add a description of the model.

3. Select a data type from the options: text, vision, tabular, or audio.

Shared Models and Notebooks 339

Amazon SageMaker Developer Guide

4. Select a machine learning task from the list of available tasks, such as image classification or text
generation.

5. Select a machine learning framework.

6. Add metadata information with keywords or phrases to use when searching for a model. Use
commas to separate keywords. Any spaces are automatically replaced with commas.

Enable training

When adding a model to share, you can optionally provide a training environment and allow
collaborators in your organization to train the shared model.

Note

If you are adding a tabular model, you also need to specify a column format and target
column to enable training. For more information, see Amazon SageMaker Canvas in the
Amazon SageMaker Developer Guide.

1. Add a container to use for model training. You can select a container used for an existing
training job, bring your own container in Amazon ECR, or use an Amazon SageMaker Deep
Learning Container.

2. Add environment variables.

3. Provide a training script location.

4. Provide a script mode entry point.

5. Provide an Amazon S3 URI for model artifacts generated during training.

6. Provide the Amazon S3 URI to the default training dataset.

7. Provide a model output path. The model output path should be the Amazon S3 URI path for
any model artifacts generated from training. SageMaker saves the model artifacts as a single
compressed TAR file in Amazon S3.

8. Provide a validation dataset to use for evaluating your model during training. Validation
datasets must contain the same number of columns and the same feature headers as the
training dataset.

9. Turn on network isolation. Network isolation isolates the model container so that no inbound or
outbound network calls can be made to or from the model container.

Shared Models and Notebooks 340

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html

Amazon SageMaker Developer Guide

10.Provide training channels through which SageMaker can access your data. For example, you
might specify input channels named train or test. For each channel, specify a channel name
and a URI to the location of your data. Choose Browse to search for Amazon S3 locations.

11.Provide hyperparameters. Add any hyperparameters with which collaborators should experiment
during training. Provide a range of valid values for these hyperparameters. This range is used
for training job hyperparameter validation. You can define ranges based on the datatype of the
hyperparameter.

12.Select an instance type. We recommend a GPU instance with more memory for training with
large batch sizes. For a comprehensive list of SageMaker training instances across AWS Regions,
see the On-Demand Pricing table in Amazon SageMaker Pricing.

13.Provide metrics. Define metrics for a training job by specifying a name and a regular expression
for each metric that your training monitors. Design the regular expressions to capture the values
of metrics that your algorithm emits. For example, the metric loss might have the regular
expression "Loss =(.*?);".

Enable deployment

When adding a model to share, you can optionally provide an inference environment in which
collaborators in your organization can deploy the shared model for inference.

1. Add a container to use for inference. You can bring your own container in Amazon ECR or use an
Amazon SageMaker Deep Learning Container.

2. Provide the Amazon S3 URI to an inference script. Custom inference scripts run inside your
chosen container. Your inference script should include a function for model loading, and
optionally functions generating predictions, and input and output processing. For more
information on creating inference scripts for the framework of your choice, see Frameworks in
the SageMaker Python SDK documentation. For example, for TensorFlow, see How to implement
the pre- and/or post-processing handler(s).

3. Provide an Amazon S3 URI for model artifacts. Model artifacts are the output that results from
training a model, and typically consist of trained parameters, a model definition that describes
how to compute inferences, and other metadata. If you trained your model in SageMaker, the
model artifacts are saved as a single compressed TAR file in Amazon S3. If you trained your
model outside SageMaker, you need to create this single compressed TAR file and save it in an
Amazon S3 location.

Shared Models and Notebooks 341

https://aws.amazon.com/sagemaker/pricing/
https://sagemaker.readthedocs.io/en/stable/frameworks/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#how-to-implement-the-pre-and-or-post-processing-handler-s
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#how-to-implement-the-pre-and-or-post-processing-handler-s

Amazon SageMaker Developer Guide

4. Select an instance type. We recommend a GPU instance with more memory for training with
large batch sizes. For a comprehensive list of SageMaker training instances across AWS Regions,
see the On-Demand Pricing table in Amazon SageMaker Pricing.

Add a notebook

To add a notebook, choose Shared by my organization, and then select Add notebook from the
the Add dropdown list. Enter the basic information for your notebook and provide an Amazon S3
URI for the location of that notebook.

Basic information

First, add the basic descriptive information about your notebook. This information is used to
improve the searchability of your notebook.

1. Add a title for this notebook. Adding a title automatically populates a unique identifier in the ID
field based on the notebook title.

2. Add a description of the notebook.

3. Select a data type from the options: text, vision, tabular, or audio.

4. Select an ML task from the list of available tasks, such as image classification or text generation.

5. Select an ML framework.

6. Add metadata information with keywords or phrases to use when searching for a notebook. Use
commas to separate keywords. Any spaces are automatically replaced with commas.

Add notebook

Provide an Amazon S3 URI for the location of that notebook. You can choose Browse to search
through your Amazon S3 buckets for your notebook file location. After you find your notebook,
copy the Amazon S3 URI, choose Cancel, and then add the Amazon S3 URI to the Notebook
Location field.

After you enter all the necessary information, choose Add notebook in the lower right corner.

Shared Models and Notebooks 342

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Solution Templates

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Note

JumpStart Solutions are only available in Studio Classic.

SageMaker JumpStart provides one-click, end-to-end solutions for many common machine
learning use cases. Explore the following use cases for more information on available solution
templates.

• Demand forecasting

• Credit rating prediction

• Fraud detection

• Computer vision

• Extract and analyze data from documents

• Predictive maintenance

• Churn prediction

• Personalized recommendations

• Reinforcement learning

• Healthcare and life sciences

• Financial pricing

• Causal inference

Choose the solution template that best fits your use case from the JumpStart landing page. When
you choose a solution template, JumpStart opens a new tab showing a description of the solution
and a Launch button. When you select Launch, JumpStart creates all of the resources that you

Solution Templates 343

Amazon SageMaker Developer Guide

need to run the solution, including training and model hosting instances. For more information on
launching a JumpStart solution, see the section called “Launch a Solution”.

After launching the solution, you can explore solution features and any generated artifacts in
JumpStart. Use the Launched JumpStart assets menu to find your solution. In your solution's
tab, select Open Notebook to use provided notebooks and explore the solution’s features.
When artifacts are generated during launch or after running the provided notebooks, they're
listed in the Generated Artifacts table. You can delete individual artifacts with the trash icon

().
You can delete all of the solution’s resources by choosing Delete solution resources.

Demand forecasting

Demand forecasting uses historical time series data in order to make future estimations in relation
to customer demand over a specific period and streamline the supply-demand decision-making
process across businesses.

Demand forecasting use cases include predicting ticket sales in the transportation industry, stock
prices, number of hospital visits, number of customer representatives to hire for multiple locations
in the next month, product sales across multiple regions in the next quarter, cloud server usage for
the next day for a video streaming service, electricity consumption for multiple regions over the
next week, number of IoT devices and sensors such as energy consumption, and more.

Time series data is categorized as univariate and multi-variate. For example, the total electricity
consumption for a single household is a univariate time series over a period of time. When
multiple univariate time series are stacked on each other, it’s called a multi-variate time series. For
example, the total electricity consumption of 10 different (but correlated) households in a single
neighborhood make up a multi-variate time series dataset.

Solution name Description Get started

Demand forecasting Demand forecasting for
multivariate time series data
using three state-of-the-
art time series forecasting
algorithms: LSTNet, Prophet,
and SageMaker DeepAR.

GitHub »

Solution Templates 344

https://ts.gluon.ai/stable/api/gluonts/gluonts.mx.model.lstnet.html
https://facebook.github.io/prophet/
https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
https://github.com/awslabs/sagemaker-deep-demand-forecast

Amazon SageMaker Developer Guide

Credit rating prediction

Use JumpStart's credit rating prediction solutions to predict corporate credit ratings or to explain
credit prediction decisions made by machine learning models. Compared to traditional credit rating
modeling methods, machine learning models can automate and improve the accuracy of credit
prediction.

Solution name Description Get started

Corporate credit rating
prediction

Multimodal (long text and
tabular) machine learning
for quality credit predictio
ns using AWS AutoGluon
Tabular.

GitHub »

Graph-based credit scoring Predict corporate credit
ratings using tabular data
and a corporate network
by training a Graph Neural
Network GraphSAGE and AWS
AutoGluon Tabular model.

Find in Amazon SageMaker
Studio Classic.

Explain credit decisions Predict credit default in credit
applications and provide
explanations using LightGBM
and SHAP (SHapley Additive
exPlanations).

GitHub »

Fraud detection

Many businesses lose billions annually to fraud. Machine learning based fraud detection models
can help systematically identify likely fraudulent activities from a tremendous amount of data. The
following solutions use transaction and user identity datasets to identify fraudulent transactions.

Solution Templates 345

https://auto.gluon.ai/scoredebugweight/tutorials/tabular_prediction/index.html
https://auto.gluon.ai/scoredebugweight/tutorials/tabular_prediction/index.html
https://github.com/awslabs/sagemaker-corporate-credit-rating
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://auto.gluon.ai/scoredebugweight/tutorials/tabular_prediction/index.html
https://lightgbm.readthedocs.io/en/latest/
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://github.com/awslabs/sagemaker-explaining-credit-decisions

Amazon SageMaker Developer Guide

Solution name Description Get started

Detect malicious users and
transactions

Automatically detect
potentially fraudulent
activity in transactions using
SageMaker XGBoost with
the over-sampling technique
Synthetic Minority Over-samp
ling (SMOTE).

GitHub »

Fraud detection in financial
transactions using deep graph
library

Detect fraud in financial
transactions by training a
graph convolutional network
with the deep graph library
and a SageMaker XGBoost
model.

GitHub »

Financial payment classific
ation

Classify financial payments
based on transaction
information using SageMaker
XGBoost. Use this solution
template as an intermedi
ate step in fraud detection,
personalization, or anomaly
detection.

Find in Amazon SageMaker
Studio Classic.

Computer vision

With the rise of business use cases such as autonomous vehicles, smart video surveillance,
healthcare monitoring and various object counting tasks, fast and accurate object detection
systems are rising in demand. These systems involve not only recognizing and classifying every
object in an image, but localizing each one by drawing the appropriate bounding box around
it. In the last decade, the rapid advances of deep learning techniques greatly accelerated the
momentum of object detection.

Solution Templates 346

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://arxiv.org/abs/1106.1813
https://arxiv.org/abs/1106.1813
https://github.com/awslabs/fraud-detection-using-machine-learning
https://arxiv.org/pdf/1703.06103.pdf
https://www.dgl.ai/
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://github.com/awslabs/sagemaker-graph-fraud-detection
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html

Amazon SageMaker Developer Guide

Solution name Description Get started

Visual product defect
detection

Identify defective regions
in product images either by
training an object detection
model from scratch or fine-
tuning pretrained SageMaker
models.

GitHub »

Handwriting recognition Recognize handwritten text
in images by training an
object detection model and
handwriting recognition
model. Label your own data
using SageMaker Ground
Truth.

GitHub »

Object detection for bird
species

Identify birds species in a
scene using a SageMaker
object detection model.

Find in Amazon SageMaker
Studio Classic.

Extract and analyze data from documents

JumpStart provides solutions for you to uncover valuable insights and connections in business-
critical documents. Use cases include text classification, document summarization, handwriting
recognition, relationship extraction, question and answering, and filling in missing values in tabular
records.

Solution name Description Get started

Privacy for sentiment classific
ation

Anonymize text to better
preserve user privacy in
sentiment classification.

GitHub »

Document understanding Document summariza
tion, entity, and relations
hip extraction using the

GitHub »

Solution Templates 347

https://ieeexplore.ieee.org/document/8709818
https://ieeexplore.ieee.org/document/8709818
https://github.com/awslabs/sagemaker-defect-detection
https://mxnet.apache.org/versions/1.0.0/api/python/gluon/model_zoo.html#mxnet.gluon.model_zoo.vision.resnet34_v1
https://arxiv.org/abs/1910.00663
https://arxiv.org/abs/1910.00663
https://aws.amazon.com/sagemaker/data-labeling/
https://aws.amazon.com/sagemaker/data-labeling/
https://github.com/awslabs/sagemaker-handwritten-text-recognition
https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection.html
https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection.html
https://www.amazon.science/blog/preserving-privacy-in-analyses-of-textual-data
https://github.com/awslabs/sagemaker-privacy-for-nlp
https://github.com/awslabs/sagemaker-document-understanding

Amazon SageMaker Developer Guide

Solution name Description Get started

transformers library in
PyTorch.

Handwriting recognition Recognize handwritten text
in images by training an
object detection model and
handwriting recognition
model. Label your own data
using SageMaker Ground
Truth.

GitHub »

Filling in missing values in
tabular records

Fill missing values in
tabular records by training a
SageMaker AutoPilot model.

GitHub »

Predictive maintenance

Predictive maintenance aims to optimize the balance between corrective and preventative
maintenance by facilitating the timely replacement of components. The following solutions use
sensor data from industrial assets to predict machine failures, unplanned downtime, and repair
costs.

Solution name Description Get started

Predictive maintenance for
vehicle fleets

Predict vehicle fleet failures
using vehicle sensor and
maintenance information
with a convolutional neural
network model.

GitHub »

Predictive maintenance for
manufacturing

Predict the remaining useful
life for each sensor by
training a stacked Bidirecti
onal LSTM neural network

GitHub »

Solution Templates 348

https://huggingface.co/docs/transformers/index
https://mxnet.apache.org/versions/1.0.0/api/python/gluon/model_zoo.html#mxnet.gluon.model_zoo.vision.resnet34_v1
https://arxiv.org/abs/1910.00663
https://arxiv.org/abs/1910.00663
https://aws.amazon.com/sagemaker/data-labeling/
https://aws.amazon.com/sagemaker/data-labeling/
https://github.com/awslabs/sagemaker-handwritten-text-recognition
https://aws.amazon.com/sagemaker/autopilot/
https://github.com/awslabs/filling-in-missing-values-in-tabular-records
https://github.com/awslabs/aws-fleet-predictive-maintenance/
https://arxiv.org/pdf/1801.02143.pdf
https://arxiv.org/pdf/1801.02143.pdf
https://github.com/awslabs/predictive-maintenance-using-machine-learning

Amazon SageMaker Developer Guide

Solution name Description Get started

model using historical sensor
readings.

Churn prediction

Customer churn, or rate of attrition, is a costly problem faced by a wide range of companies. In an
effort to reduce churn, companies can identify customers that are likely to leave their service in
order to focus their efforts on customer retention. Use a JumpStart churn prediction solution to
analyze data sources such as user behavior and customer support chat logs to identify customers
that are at a high risk of cancelling a subscription or service.

Solution name Description Get started

Churn prediction with text Predict churn using numerical
, categorical, and textual
features with BERT encoder
and RandomForestClassifier.

GitHub »

Churn prediction for mobile
phone customers

Identify unhappy mobile
phone customers using
SageMaker XGBoost.

Find in Amazon SageMaker
Studio Classic.

Personalized recommendations

You can use JumpStart solutions to analyze customer identity graphs or user sessions to
better understand and predict customer behavior. Use the following solutions for personalized
recommendations to model customer identity across multiple devices, to determine the likelihood
of a customer making a purchase, or to create a custom movie recommender based on past
customer behavior.

Solution name Description Get started

Entity resolution in identity
graphs with deep graph
library

Perform cross-device entity
linking for online advertising
by training a graph convoluti

GitHub »

Solution Templates 349

https://huggingface.co/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://github.com/awslabs/sagemaker-churn-prediction-text
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://arxiv.org/pdf/1703.06103.pdf
https://github.com/awslabs/sagemaker-graph-entity-resolution

Amazon SageMaker Developer Guide

Solution name Description Get started

onal network with deep graph
library.

Purchase modeling Predict whether a customer
will make a purchase by
training a SageMaker XGBoost
model.

GitHub »

Customized recommender
system

Train and deploy a custom
recommender system that
generates movie suggestio
ns for a customer based on
past behavior using Neural
Collaborative Filtering in
SageMaker.

Find in Amazon SageMaker
Studio Classic.

Reinforcement learning

Reinforcement learning (RL) is a type of learning that is based on interaction with the environment.
This type of learning is used by an agent that must learn behavior through trial-and-error
interactions with a dynamic environment in which the goal is to maximize the long-term rewards
that the agent receives as a result of its actions. Rewards are maximized by trading off exploring
actions that have uncertain rewards with exploiting actions that have known rewards.

RL is well-suited for solving large, complex problems, such as supply chain management, HVAC
systems, industrial robotics, game artificial intelligence, dialog systems, and autonomous vehicles.

Solution name Description Get started

Reinforcement learning for
Battlesnake AI competitions

Provide a reinforcement
learning workflow for training
and inference with the
BattleSnake AI competitions.

GitHub »

Solution Templates 350

https://arxiv.org/pdf/1703.06103.pdf
https://www.dgl.ai/
https://www.dgl.ai/
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://github.com/awslabs/sagemaker-purchase-modelling
https://play.battlesnake.com/
https://github.com/awslabs/sagemaker-battlesnake-ai

Amazon SageMaker Developer Guide

Solution name Description Get started

Distributed reinforce
ment learning for Procgen
challenge

Distributed reinforcement
learning starter kit for
NeurIPS 2020 Procgen
Reinforcement learning
challenge.

GitHub »

Healthcare and life sciences

Clinicians and researchers can use JumpStart solutions to analyze medical imagery, genomic
information, and clinical health records.

Solution name Description Get started

Lung cancer survival predictio
n

Predict non-small cell lung
cancer patient survival status
with 3-dimensional lung
computerized tomography
(CT) scans, genomic data, and
clinical health records using
SageMaker XGBoost.

GitHub »

Financial pricing

Many businesses dynamically adjust pricing on a regular basis in order to maximize their returns.
Use the following JumpStart solutions for price optimization, dynamic pricing, option pricing, or
portfolio optimization use cases.

Solution name Description Get started

Price optimization Estimate price elasticity using
Double Machine Learning
(ML) for causal inference
and the Prophet forecasti
ng procedure. Use these

Find in Amazon SageMaker
Studio Classic.

Solution Templates 351

https://www.aicrowd.com/challenges/neurips-2020-procgen-competition
https://github.com/aws-samples/sagemaker-rl-procgen-ray
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://github.com/aws-samples/machine-learning-pipelines-for-multimodal-health-data/tree/sagemaker-soln-lcsp
https://facebook.github.io/prophet/

Amazon SageMaker Developer Guide

Solution name Description Get started

estimates to optimize daily
prices.

Causal inference

Researchers can use machine learning models such as Bayesian networks to represent causal
dependencies and draw causal conclusions based on data. Use the following JumpStart solution
to understand the causal relationship between Nitrogen-based fertilizer application and corn crop
yields.

Solution name Description Get started

Crop yield counterfactuals Generate a counterfactual
analysis of corn response to
nitrogen. This solution learns
the crop phenology cycle in
its entirety using multi-spe
ctral satellite imagery and
ground-level observations.

Find in Amazon SageMaker
Studio Classic.

Launch a Solution

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Note

JumpStart Solutions are only available in Studio Classic.

Solution Templates 352

https://www.sciencedirect.com/science/article/pii/S2352340921010283#tbl0001

Amazon SageMaker Developer Guide

First, choose a solution through the SageMaker JumpStart landing page in the Amazon SageMaker
Studio Classic UI. For information on the onboarding steps to sign in to Amazon SageMaker Studio
Classic, see Onboard to Amazon SageMaker domain. For details on getting to the SageMaker
JumpStart landing page, see Open and use JumpStart in Studio Classic.

After you choose a solution, a solution's tab opens showing a description of the solution and a
Launch button. To launch a solution, select Launch in the Launch Solution section. JumpStart
then creates all of the resources needed to run the solution. This includes training and model
hosting instances.

Advanced parameters

The solution that you choose may have advanced parameters that you can select. Choose
Advanced Parameters to specify the AWS Identity and Access Management role for the solution.

Solutions are able to launch resources across 9 AWS services that interact with each other. For the
solution to work as expected, newly created components from one service must be able to act on
newly created components from another service. We recommend that you use the default IAM
role to ensure that all needed permissions are added. For more information about IAM roles, see
Identity and Access Management for Amazon SageMaker.

Default IAM role

If you select this option, the default IAM roles that are required by this solution are used. Each
solution requires different resources. The following list describes the default roles that are used for
the solutions based on the service needed. For a description of the permissions required for each
service, see AWS Managed Policies for SageMaker projects and JumpStart.

• API Gateway – AmazonSageMakerServiceCatalogProductsApiGatewayRole

• CloudFormation – AmazonSageMakerServiceCatalogProductsCloudformationRole

• CodeBuild – AmazonSageMakerServiceCatalogProductsCodeBuildRole

• CodePipeline – AmazonSageMakerServiceCatalogProductsCodePipelineRole

• Events – AmazonSageMakerServiceCatalogProductsEventsRole

• Firehose – AmazonSageMakerServiceCatalogProductsFirehoseRole

• Glue – AmazonSageMakerServiceCatalogProductsGlueRole

• Lambda – AmazonSageMakerServiceCatalogProductsLambdaRole

• SageMaker – AmazonSageMakerServiceCatalogProductsExecutionRole

Solution Templates 353

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html

Amazon SageMaker Developer Guide

If you are using a new SageMaker domain with JumpStart project templates enabled, these roles
are automatically created in your account.

If you are using an existing SageMaker domain, these roles may not exist in your account. If this is
the case, you will receive the following error when launching the solution.

Unable to locate the updated roles required to launch this solution, a general role '/
service-role/AmazonSageMakerServiceCatalogProductsUseRole' will be used. Please update
 your studio domain to generate these roles.

You can still launch a solution without the needed role, but the legacy default role
AmazonSageMakerServiceCatalogProductsUseRole is used in place of the needed role. The
legacy default role has trust relationships with all of the services that JumpStart solutions need to
interact with. For the best security, we recommend that you update your domain to have the newly
created default roles for each AWS service.

If you have already onboarded to a SageMaker domain, you can update your domain to generate
the default roles using the following procedure.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Control Panel at the top left of the page.

3. From the domain page, choose the Settings icon (

) to edit the domain settings.

4. On General Settings choose Next.

5. Under SageMaker Projects and JumpStart, select Enable Amazon SageMaker project
templates and Amazon SageMaker JumpStart for this account and Enable Amazon
SageMaker project templates and Amazon SageMaker JumpStart for Studio Classic users,
choose Next.

6. Select Submit.

You should be able to see the default roles listed in Projects - Amazon SageMaker project
templates enabled for this account under the Apps - Studio tab.

Find IAM role

If you select this option, you must select an existing IAM role from the dropdown list for each of
the required services. The selected role must have at least the minimum permissions required for

Solution Templates 354

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

the corresponding service. For a description of the permissions required for each service, see AWS
Managed Policies for SageMaker projects and JumpStart.

Input IAM role

If you select this option, you must manually enter the ARN for an existing IAM role. The selected
role must have at least the minimum permissions required for the corresponding service. For a
description of the permissions required for each service, see AWS Managed Policies for SageMaker
projects and JumpStart.

Amazon SageMaker JumpStart Industry: Financial

Use SageMaker JumpStart Industry: Financial solutions, models, and example notebooks to learn
about SageMaker features and capabilities through curated one-step solutions and example
notebooks of industry-focused machine learning (ML) problems. The notebooks also walk through
how to use the SageMaker JumpStart Industry Python SDK to enhance industry text data and fine-
tune pretrained models.

Topics

• Amazon SageMaker JumpStart Industry Python SDK

• Amazon SageMaker JumpStart Industry: Financial Solution

• Amazon SageMaker JumpStart Industry: Financial Models

• Amazon SageMaker JumpStart Industry: Financial Example Notebooks

• Amazon SageMaker JumpStart Industry: Financial Blog Posts

• Amazon SageMaker JumpStart Industry: Financial Related Research

• Amazon SageMaker JumpStart Industry: Financial Additional Resources

Amazon SageMaker JumpStart Industry Python SDK

SageMaker Runtime JumpStart provides processing tools for curating industry datasets and
fine-tuning pretrained models through its client library called SageMaker JumpStart Industry
Python SDK. For detailed API documentation of the SDK, and to learn more about processing
and enhancing industry text datasets for improving the performance of state-of-the-art models
on SageMaker JumpStart, see the SageMaker JumpStart Industry Python SDK open source
documentation.

SageMaker JumpStart Industry: Financial 355

https://sagemaker-jumpstart-industry-pack.readthedocs.io
https://sagemaker-jumpstart-industry-pack.readthedocs.io

Amazon SageMaker Developer Guide

Amazon SageMaker JumpStart Industry: Financial Solution

SageMaker JumpStart Industry: Financial provides the following solution notebooks:

• Corporate Credit Rating Prediction

This SageMaker JumpStart Industry: Financial solution provides a template for a text-enhanced
corporate credit rating model. It shows how to take a model based on numeric features (in this
case, Altman's famous 5 financial ratios) combined with texts from SEC filings to achieve an
improvement in the prediction of credit ratings. In addition to the 5 Altman ratios, you can add
more variables as needed or set custom variables. This solution notebook shows how SageMaker
JumpStart Industry Python SDK helps process Natural Language Processing (NLP) scoring of
texts from SEC filings. Furthermore, the solution demonstrates how to train a model using the
enhanced dataset to achieve a best-in-class model, deploy the model to a SageMaker endpoint for
production, and receive improved predictions in real time.

• Graph-Based Credit Scoring

Credit ratings are traditionally generated using models that use financial statement data and
market data, which is tabular only (numeric and categorical). This solution constructs a network of
firms using SEC filingsand shows how to use the network of firm relationships with tabular data
to generate accurate rating predictions. This solution demonstrates a methodology to use data on
firm linkages to extend the traditionally tabular-based credit scoring models, which have been used
by the ratings industry for decades, to the class of machine learning models on networks.

Note

The solution notebooks are for demonstration purposes only. They should not be relied on
as financial or investment advice.

You can find these financial services solutions through the SageMaker JumpStart page in Studio
Classic.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the

SageMaker JumpStart Industry: Financial 356

https://www.sec.gov/edgar/searchedgar/companysearch.html

Amazon SageMaker Developer Guide

Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Note

The SageMaker JumpStart Industry: Financial solutions, model cards, and example
notebooks are hosted and runnable only through SageMaker Studio Classic. Log in to the
SageMaker console, and launch SageMaker Studio Classic. For more information about how
to find the solution card, see the previous topic at SageMaker JumpStart.

Amazon SageMaker JumpStart Industry: Financial Models

SageMaker JumpStart Industry: Financial provides the following pretrained Robustly Optimized
BERT approach (RoBERTa) models:

• Financial Text Embedding (RoBERTa-SEC-Base)

• RoBERTa-SEC-WIKI-Base

• RoBERTa-SEC-Large

• RoBERTa-SEC-WIKI-Large

The RoBERTa-SEC-Base and RoBERTa-SEC-Large models are the text embedding models based
on GluonNLP's RoBERTa model and pretrained on S&P 500 SEC 10-K/10-Q reports of the decade
of the 2010's (from 2010 to 2019). In addition to these, SageMaker JumpStart Industry: Financial
provides two more RoBERTa variations, RoBERTa-SEC-WIKI-Base and RoBERTa-SEC-WIKI-Large,
which are pretrained on the SEC filings and common texts of Wikipedia.

You can find these models in SageMaker JumpStart by navigating to the Text Models node,
choosing Explore All Text Models, and then filtering for the ML Task Text Embedding. You
can access any corresponding notebooks after selecting the model of your choice. The paired
notebooks will walk you through how the pretrained models can be fine-tuned for specific
classification tasks on multimodal datasets, which are enhanced by the SageMaker JumpStart
Industry Python SDK.

SageMaker JumpStart Industry: Financial 357

https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://nlp.gluon.ai/api/model.html#gluonnlp.model.RoBERTaModel

Amazon SageMaker Developer Guide

Note

The model notebooks are for demonstration purposes only. They should not be relied on as
financial or investment advice.

The following screenshot shows the pretrained model cards provided through the SageMaker
JumpStart page on Studio Classic.

Note

The SageMaker JumpStart Industry: Financial solutions, model cards, and example
notebooks are hosted and runnable only through SageMaker Studio Classic. Log in to the
SageMaker console, and launch SageMaker Studio Classic. For more information about how
to find the model cards, see the previous topic at SageMaker JumpStart.

SageMaker JumpStart Industry: Financial 358

https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html

Amazon SageMaker Developer Guide

Amazon SageMaker JumpStart Industry: Financial Example Notebooks

SageMaker JumpStart Industry: Financial provides the following example notebooks to
demonstrate solutions to industry-focused ML problems:

• Financial TabText Data Construction – This example introduces how to use the SageMaker
JumpStart Industry Python SDK for processing the SEC filings, such as text summarization
and scoring texts based on NLP score types and their corresponding word lists. To preview the
content of this notebook, see Simple Construction of a Multimodal Dataset from SEC Filings and
NLP Scores.

• Multimodal ML on TabText Data – This example shows how to merge different types of datasets
into a single dataframe called TabText and perform multimodal ML. To preview the content
of this notebook, see Machine Learning on a TabText Dataframe – An Example Based on the
Paycheck Protection Program.

• Multi-category ML on SEC filings data – This example shows how to train an AutoGluon
NLP model over the multimodal (TabText) datasets curated from SEC filings for a multiclass
classification task. Classify SEC 10K/Q Filings to Industry Codes Based on the MDNA Text
Column.

Note

The example notebooks are for demonstrative purposes only. They should not be relied on
as financial or investment advice.

Note

The SageMaker JumpStart Industry: Financial solutions, model cards, and example
notebooks are hosted and runnable only through SageMaker Studio Classic. Log in to the
SageMaker console, and launch SageMaker Studio Classic. For more information about how
to find the example notebooks, see the previous topic at SageMaker JumpStart.

To preview the content of the example notebooks, see Tutorials – Finance in the SageMaker
JumpStart Industry Python SDK documentation.

SageMaker JumpStart Industry: Financial 359

https://sagemaker-jumpstart-industry-pack.readthedocs.io/en/latest/notebooks/finance/notebook1/SEC_Retrieval_Summarizer_Scoring.html
https://sagemaker-jumpstart-industry-pack.readthedocs.io/en/latest/notebooks/finance/notebook1/SEC_Retrieval_Summarizer_Scoring.html
https://sagemaker-jumpstart-industry-pack.readthedocs.io/en/latest/notebooks/finance/notebook2/PPP_TabText_ML.html
https://sagemaker-jumpstart-industry-pack.readthedocs.io/en/latest/notebooks/finance/notebook2/PPP_TabText_ML.html
https://sagemaker-jumpstart-industry-pack.readthedocs.io/en/latest/notebooks/finance/notebook3/SEC_MNIST_ML.html
https://sagemaker-jumpstart-industry-pack.readthedocs.io/en/latest/notebooks/finance/notebook3/SEC_MNIST_ML.html
https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://sagemaker-jumpstart-industry-pack.readthedocs.io/en/latest/notebooks/index.html

Amazon SageMaker Developer Guide

Amazon SageMaker JumpStart Industry: Financial Blog Posts

For thorough applications of using SageMaker JumpStart Industry: Financial solutions, models,
examples, and the SDK, see the following blog posts:

• Use pre-trained financial language models for transfer learning in Amazon SageMaker JumpStart

• Use SEC text for ratings classification using multimodal ML in Amazon SageMaker JumpStart

• Create a dashboard with SEC text for financial NLP in Amazon SageMaker JumpStart

• Build a corporate credit ratings classifier using graph machine learning in Amazon SageMaker
JumpStart

• Domain-adaptation Fine-tuning of Foundation Models in Amazon SageMaker JumpStart on
Financial data

Amazon SageMaker JumpStart Industry: Financial Related Research

For research related to SageMaker JumpStart Industry: Financial solutions, see the following
papers:

• Context, Language Modeling, and Multimodal Data in Finance

• Multimodal Machine Learning for Credit Modeling

• On the Lack of Robust Interpretability of Neural Text Classifiers

• FinLex: An Effective Use of Word Embeddings for Financial Lexicon Generation

Amazon SageMaker JumpStart Industry: Financial Additional Resources

For additional documentation and tutorials, see the following resources:

• The SageMaker JumpStart Industry: Financial Python SDK

• SageMaker JumpStart Industry: Financial Python SDK Tutorials

• The SageMaker JumpStart Industry: Financial GitHub repository

• Getting started with Amazon SageMaker - Machine Learning Tutorials

SageMaker JumpStart Industry: Financial 360

https://aws.amazon.com/blogs/machine-learning/use-pre-trained-financial-language-models-for-transfer-learning-in-amazon-sagemaker-jumpstart/
https://aws.amazon.com/blogs/machine-learning/use-sec-text-for-ratings-classification-using-multimodal-ml-in-amazon-sagemaker-jumpstart/
https://aws.amazon.com/blogs/machine-learning/create-a-dashboard-with-sec-text-for-financial-nlp-in-amazon-sagemaker-jumpstart/
https://aws.amazon.com/blogs/machine-learning/build-a-corporate-credit-ratings-classifier-using-graph-machine-learning-in-amazon-sagemaker-jumpstart/
https://aws.amazon.com/blogs/machine-learning/build-a-corporate-credit-ratings-classifier-using-graph-machine-learning-in-amazon-sagemaker-jumpstart/
https://aws.amazon.com/blogs/machine-learning/domain-adaptation-fine-tuning-of-foundation-models-in-amazon-sagemaker-jumpstart-on-financial-data/
https://aws.amazon.com/blogs/machine-learning/domain-adaptation-fine-tuning-of-foundation-models-in-amazon-sagemaker-jumpstart-on-financial-data/
https://www.pm-research.com/content/iijjfds/3/3/52
https://www.amazon.science/publications/multimodal-machine-learning-for-credit-modeling
https://www.amazon.science/publications/on-the-lack-of-robust-interpretability-of-neural-text-classifiers
https://www.sciencedirect.com/science/article/pii/S2405918821000131
https://pypi.org/project/smjsindustry/
https://sagemaker-jumpstart-industry-pack.readthedocs.io/en/latest/notebooks/index.html#
https://github.com/aws/sagemaker-jumpstart-industry-pack/
https://aws.amazon.com/https://aws.amazon.com/sagemaker/getting-started/

Amazon SageMaker Developer Guide

Use machine learning environments offered by
SageMaker

Important

Amazon SageMaker Studio and Amazon SageMaker Studio Classic are two of the machine
learning environments that you can use to interact with SageMaker.
If your domain was created after November 30, 2023, Studio is your default experience.
If your domain was created before November 30, 2023, Amazon SageMaker Studio Classic
is your default experience. To use Studio if Amazon SageMaker Studio Classic is your
default experience, see Migrating from Amazon SageMaker Studio Classic.
When you migrate from Amazon SageMaker Studio Classic to Amazon SageMaker Studio,
there is no loss in feature availability. Studio Classic also exists as an IDE within Amazon
SageMaker Studio to help you run your legacy machine learning workflows.

SageMaker supports the following machine learning environments:

• Amazon SageMaker Studio (Recommended): The latest web-based experience for running ML
workflows with a suite of IDEs. Studio supports the following applications:

• Amazon SageMaker Studio Classic

• Code Editor, based on Code-OSS, Visual Studio Code - Open Source

• JupyterLab

• Amazon SageMaker Canvas

• RStudio

• Amazon SageMaker Studio Classic: Lets you build, train, debug, deploy, and monitor your machine
learning models.

• Amazon SageMaker Notebook Instances: Lets you prepare and process data, and train and deploy
machine learning models from a compute instance running the Jupyter Notebook application.

• Amazon SageMaker Studio Lab: Studio Lab is a free service that gives you access to AWS compute
resources, in an environment based on open-source JupyterLab, without requiring an AWS
account.

• Amazon SageMaker Canvas: Gives you the ability to use machine learning to generate predictions
without needing to code.

361

Amazon SageMaker Developer Guide

• Amazon SageMaker geospatial: Gives you the ability to build, train, and deploy geospatial models.

• RStudio on Amazon SageMaker: RStudio is an IDE for R, with a console, syntax-highlighting editor
that supports direct code execution, and tools for plotting, history, debugging and workspace
management.

• SageMaker HyperPod: SageMaker HyperPod lets you provision resilient clusters for running
machine learning (ML) workloads and developing state-of-the-art models such as large language
models (LLMs), diffusion models, and foundation models (FMs).

To use these machine learning environments, except Studio Lab, SageMaker Notebook Instances,
and SageMaker HyperPod, you or your organization's administrator must create an Amazon
SageMaker domain. Studio Lab has a separate onboarding process.

Topics

• Amazon SageMaker Studio

• Amazon SageMaker Studio Classic

• SageMaker JupyterLab

• Amazon SageMaker Notebook Instances

• Amazon SageMaker Studio Lab

• Amazon SageMaker Canvas

• Amazon SageMaker geospatial capabilities

• RStudio on Amazon SageMaker

• Get started with Code Editor in Amazon SageMaker Studio

• SageMaker HyperPod

• Use generative AI in SageMaker notebook environments

Amazon SageMaker Studio

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

Studio 362

https://aws.amazon.com/blogs/opensource/getting-started-with-r-on-amazon-web-services/

Amazon SageMaker Developer Guide

Amazon SageMaker Studio is the latest web-based experience for running ML workflows. Studio
offers a suite of integrated development environments (IDEs). These include Code Editor, based on
Code-OSS, Visual Studio Code - Open Source, a new JupyterLab application, RStudio, and Amazon
SageMaker Studio Classic. For more information, see Applications supported in Amazon SageMaker
Studio.

The new web-based UI in Studio is faster and provides access to all SageMaker resources, including
jobs and endpoints, in one interface. ML practitioners can also choose their preferred IDE to
accelerate ML development. A data scientist can use JupyterLab to explore data and tune models.
In addition, a machine learning operations (MLOps) engineer can use Code Editor with the pipelines
tool in Studio to deploy and monitor models in production.

The previous Studio experience is still being supported as Amazon SageMaker Studio Classic.
Studio Classic is the default experience for existing customers, and is available as an application
in Studio. For more information about Studio Classic, see Amazon SageMaker Studio Classic. For
information about how to migrate from Studio Classic to Studio, see Migrating from Amazon
SageMaker Studio Classic.

Studio offers the following benefits:

• A new JupyterLab application that has a faster start-up time and is more reliable than the
existing Studio Classic application. For more information, see SageMaker JupyterLab.

• A suite of IDEs that open in a separate tab, including the new Code Editor, based on Code-OSS,
Visual Studio Code - Open Source application. Users can interact with supported IDEs in a full
screen experience. For more information, see Applications supported in Amazon SageMaker
Studio.

• Access to all of your SageMaker resources in one place. Studio displays running instances across
all of your applications.

• Access to all training jobs in a single view, regardless of whether they were scheduled from
notebooks or initiated from Amazon SageMaker JumpStart.

• Simplified model deployment workflows and endpoint management and monitoring directly
from Studio. You don't need to access the SageMaker console.

• Automatic creation of all configured applications when you onboard to a domain. For
information about onboarding to a domain, see Amazon SageMaker domain overview.

• An improved SageMaker JumpStart experience where you can discover, import, register, fine
tune, and deploy a foundation model. For more information, see SageMaker JumpStart.

Studio 363

Amazon SageMaker Developer Guide

Topics

• Migrating from Amazon SageMaker Studio Classic

• Launch Amazon SageMaker Studio

• Amazon SageMaker Studio UI overview

• Applications supported in Amazon SageMaker Studio

• Amazon SageMaker Studio spaces

• Perform common tasks

• Use NVMe stores with Amazon SageMaker Studio

• Local mode support in Amazon SageMaker Studio

• View and stop running instances

• Amazon SageMaker Studio pricing

• Troubleshooting

Migrating from Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

Amazon SageMaker currently supports two different default experiences: the Amazon SageMaker
Studio experience and the Amazon SageMaker Studio Classic experience. For information about the
benefits of the Studio experience, see Amazon SageMaker Studio.

• For existing customers, Amazon SageMaker Studio Classic is the default experience. You can
migrate to Amazon SageMaker Studio as the default experience using the AWS Command Line
Interface. For more information about Studio Classic, see Amazon SageMaker Studio Classic.

• For new customers, Studio is the default experience.

Migrating from Amazon SageMaker Studio Classic 364

Amazon SageMaker Developer Guide

Note

If the Studio Classic experience is set as the default, you do not have access to new Studio
features.

Migration to Studio from Studio Classic is managed by the administrator of the domain. If you
do not have permissions to set Studio as the default experience for your domain, contact your
administrator.

The following page outlines the major steps needed when migrating to Studio from Studio Classic
by making Studio the default experience for your domain. It also shows how to revert to the Studio
Classic experience as the default.

Topics

• Prerequisites

• Set Studio as the default experience

• Limit access to default applications in Studio

• Update your CORS policy to access Amazon S3 buckets

• Migrate workflows from Studio Classic to JupyterLab

• Migrate from Data Wrangler in Studio Classic to SageMaker Canvas

• Migrate from Autopilot in Studio Classic to SageMaker Canvas

• Revert to Studio Classic experience

Prerequisites

The following prerequisites are required to migrate from Amazon SageMaker Studio Classic to the
Amazon SageMaker Studio experience using the AWS Command Line Interface (AWS CLI).

• Install the AWS CLI by following the steps in Install or update
the latest version of the AWS CLI. If there is an existing version of
the AWS CLI, you must first uninstall that version by following the steps in
Uninstall the AWS CLI version 2. Then, install the latest version of
the AWS CLI.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

Migrating from Amazon SageMaker Studio Classic 365

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/uninstall.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Amazon SageMaker Developer Guide

Set Studio as the default experience

Administrators can make Studio the default experience when creating a domain from the
SageMaker console or the AWS CLI. For more information about setting the default experience
when creating a domain, see Amazon SageMaker domain overview. When you make Studio the
default experience for the domain, Studio is the default experience for all users in the domain.

Administrators can only change the default experience when updating a domain using the AWS
CLI or AWS CloudFormation. For information about the domain resource supported by AWS
CloudFormation, see AWS::SageMaker::Domain.

You can set Studio as the default experience when you create or update a domain from the AWS
CLI. To do so, pass the StudioWebPortal value to the create-domain or update-domain call as
part of the default-user-settings parameter.

StudioWebPortal indicates if the new Studio experience is available for users.
If StudioWebPortal is set to DISABLED, users cannot access Studio in the domain. They will only
be able to use Studio Classic.

The following code example shows how to use the StudioWebPortal value:

aws sagemaker update-domain \
--domain-id domain-id \
--region region \
--default-user-settings '
{
 "StudioWebPortal": "ENABLED",
 "DefaultLandingUri": "studio::"
}
'

Note

The release of Studio includes updates to the AWS managed policies. For more information,
see SageMaker Updates to AWS Managed Policies.

Limit access to default applications in Studio

Because Studio shows an expanded set of applications, users may have access to applications
that weren't displayed before. Administrators can limit access to these default applications by

Migrating from Amazon SageMaker Studio Classic 366

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-domain.html#cfn-sagemaker-domain-defaultusersettings
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html

Amazon SageMaker Developer Guide

creating an AWS Identity and Access Management (IAM) policy that denies access to them. The
policy must then be attached to the execution role of the domain or user profile, as shown in the
following procedure.

1. Create a policy with the following content by following the steps in Creating IAM policies:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSageMakerCreateAppOperations",
 "Effect": "Allow",
 "Action": "sagemaker:CreateApp",
 "Resource": "*"
 },
 {
 "Sid": "DenySageMakerCreateApp",
 "Effect": "Deny",
 "Action": "sagemaker:CreateApp",
 "Resource": "arn:aws:sagemaker:region:555555555555:app/domain-id/user-
profile-name/app-type/*"
 }
]
}

2. Attach the policy to the execution role of the domain or user profile that you want to deny
access to. For instructions, follow the steps in Adding IAM identity permissions (console).

Update your CORS policy to access Amazon S3 buckets

In Studio Classic, users can create, list, and upload files to Amazon Simple Storage Service (Amazon
S3) buckets. To support the same experience in Studio, administrators must attach a Cross-Origin
Resource Sharing (CORS) configuration to the Amazon S3 bucket. This is required because Studio
makes Amazon S3 calls from the internet browser. The browser invokes CORS on behalf of users.
As a result, all of the requests to Amazon S3 buckets fail unless the CORS policy is attached to the
Amazon S3.

This is only required if there is already an existing Amazon S3 default bucket that doesn’t have the
correct CORS policy attached. If an Amazon S3 default bucket doesn't exist, SageMaker creates an
Amazon S3 bucket with the correct CORS policy attached.

Migrating from Amazon SageMaker Studio Classic 367

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Amazon SageMaker Developer Guide

The following procedure shows how to add a CORS configuration to an Amazon S3 bucket.

To add a CORS configuration to an Amazon S3 bucket

1. Verify that there is an Amazon S3 bucket in the same Region as your domain with the
following name. For instructions, see Viewing the properties for an Amazon S3 bucket.

sagemaker-region-accountId

2. Add a CORS configuration with the following content to the default Amazon S3 bucket. For
instructions, see Configuring cross-origin resource sharing (CORS).

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "POST",
 "PUT",
 "GET",
 "HEAD",
 "DELETE"
],
 "AllowedOrigins": [
 "https://*.sagemaker.aws"
],
 "ExposeHeaders": [
 "ETag",
 "x-amz-delete-marker",
 "x-amz-id-2",
 "x-amz-request-id",
 "x-amz-server-side-encryption",
 "x-amz-version-id"
]
 }
]

Migrating from Amazon SageMaker Studio Classic 368

https://docs.aws.amazon.com/AmazonS3/latest/userguide/view-bucket-properties.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/enabling-cors-examples.html

Amazon SageMaker Developer Guide

Migrate workflows from Studio Classic to JupyterLab

Migrating your workflows from the Studio Classic application to the JupyterLab application
involves two distinct processes:

1. Setting Studio as the default experience.

2. Moving data and workflows from Studio Classic to the JupyterLab application.

Studio Classic and Studio use two different types of storage volumes. Studio Classic uses a single
Amazon Elastic File System (Amazon EFS) volume for all data in the application. In Studio, each
application gets its own Amazon Elastic Block Store (Amazon EBS) volume.

SageMaker does not automatically transfer data between these two types of volumes when you
update the default experience of an existing domain. As a result, data that's stored in an Amazon
EBS or Amazon EFS volume stays in that volume. If a user with data in Studio Classic accesses
Studio, when the default experience changes, they won’t see that data in the JupyterLab Amazon
EBS.

For more information about migrating workflows from Studio Classic to JupyterLab, see Migrating
from SageMaker Studio Classic to SageMaker Studio.

Migrate from Data Wrangler in Studio Classic to SageMaker Canvas

Amazon SageMaker Data Wrangler exists as its own feature in the Studio Classic experience.
When you migrate to using the updated Studio experience, use the Amazon SageMaker Canvas
application to access Data Wrangler functionality. SageMaker Canvas is an application in which you
can train and deploy machine learning models without writing any code, and Canvas provides data
preparation features powered by Data Wrangler.

The new Studio experience doesn’t support the classic Data Wrangler UI, and you must create
a Canvas application if you want to continue using Data Wrangler. However, you must have the
necessary permissions to create and use Canvas applications.

Complete the following steps to attach the necessary permissions policies to your SageMaker
domain's or user’s AWS IAM role.

Migrating from Amazon SageMaker Studio Classic 369

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html

Amazon SageMaker Developer Guide

To grant permissions for Data Wrangler functionality inside Canvas

1. Attach the AWS managed policy AmazonSageMakerFullAccess to your user’s IAM role. For
a procedure that shows you how to attach IAM policies to a role, see Adding IAM identity
permissions (console) in the AWS IAM User Guide.

If this permissions policy is too permissive for your use case, you can create scoped-down
policies that include at least the following permissions:

{
 "Sid": "AllowStudioActions",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:DescribeDomain",
 "sagemaker:ListDomains",
 "sagemaker:DescribeUserProfile",
 "sagemaker:ListUserProfiles",
 "sagemaker:DescribeSpace",
 "sagemaker:ListSpaces",
 "sagemaker:DescribeApp",
 "sagemaker:ListApps"
],
 "Resource": "*"
},
{
 "Sid": "AllowAppActionsForUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp",
 "sagemaker:DeleteApp"
],
 "Resource": "arn:aws:sagemaker:*:*:app/*/*/*/*",
 "Condition": {
 "Null": {
 "sagemaker:OwnerUserProfileArn": "true"
 }
 }
}

2. Attach the AWS managed policy AmazonSageMakerCanvasDataPrepFullAccess to your user’s
IAM role.

Migrating from Amazon SageMaker Studio Classic 370

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasDataPrepFullAccess.html

Amazon SageMaker Developer Guide

After attaching the necessary permissions, you can create a Canvas application and log in. For more
information, see Getting started with using Amazon SageMaker Canvas.

When you’ve logged into Canvas, you can directly access Data Wrangler and begin creating data
flows. For more information, see Prepare data in the Canvas documentation.

Migrate from Autopilot in Studio Classic to SageMaker Canvas

Amazon SageMaker Autopilot exists as its own feature in the Studio Classic experience. When you
migrate to using the updated Studio experience, use the Amazon SageMaker Canvas application
to continue using the same automated machine learning (AutoML) capabilities via a user interface
(UI). SageMaker Canvas is an application in which you can train and deploy machine learning
models without writing any code, and Canvas provides a UI to run your AutoML tasks.

The new Studio experience doesn’t support the classic Autopilot UI. You must create a Canvas
application if you want to continue using Autopilot's AutoML features via a UI.

However, you must have the necessary permissions to create and use Canvas applications.

• If you are accessing SageMaker Canvas from Studio, add those permissions to the execution role
of your SageMaker domain or user profile.

• If you are accessing SageMaker Canvas from the Console, add those permissions to your user’s
AWS IAM role.

• If you are accessing SageMaker Canvas via a presigned URL, add those permissions to the IAM
role that you're using for Okta SSO access.

To enable AutoML capabilities in Canvas, add the following policies to your execution role or IAM
user role.

• AWS managed policy: CanvasFullAccess.

• Inline policy:

{
 "Sid": "AllowAppActionsForUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp",
 "sagemaker:DeleteApp"
],
 "Resource": "arn:aws:sagemaker:*:*:app/*/*/*/*",

Migrating from Amazon SageMaker Studio Classic 371

https://docs.aws.amazon.com/sagemaker/AWSIronmanApiDoc/integ/npepin-studio-migration-autopilot-to-canvas/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/setting-up-canvas-sso.html#canvas-optional-access
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess

Amazon SageMaker Developer Guide

 "Condition": {
 "Null": {
 "sagemaker:OwnerUserProfileArn": "true"
 }
 }
}

To attach IAM policies to an execution role

1. Find the execution role attached to your SageMaker user profile

a. In the SageMaker console https://console.aws.amazon.com/sagemaker/, navigate to
Domains, then choose your SageMaker domain.

b. The execution role ARN is listed under Execution role on the User Details page of your user
profile. Make note of the execution role name in the ARN.

c. In the IAM console https://console.aws.amazon.com/iam/, choose Roles.

d. Search for your role by name in the search field.

e. Select the role.

2. Add policies to the role

a. In the IAM console https://console.aws.amazon.com/iam/, choose Roles.

b. Search for your role by name in the search field.

c. Select the role.

d. In the Permissions tab, navigate to the dropdown menu Add permissions.

e. • For managed policies: Select Attach policies, search for the name of the manage policy
you want to attach.

Select the policy then choose Add permissions.

• For inline policies: Select Create inline policy, paste your policy in the JSON tab, choose
next, name your policy, and choose Create.

For a procedure that shows you how to attach IAM policies to a role, see Adding IAM identity
permissions (console) in the AWS IAM User Guide.

After attaching the necessary permissions, you can create a Canvas application and log in. For more
information, see Getting started with using Amazon SageMaker Canvas.
Migrating from Amazon SageMaker Studio Classic 372

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

Amazon SageMaker Developer Guide

Revert to Studio Classic experience

You can revert to Studio Classic as the default experience when you create or update a
domain. To do so, pass DISABLED as the value for StudioWebPortal and
app:JupyterServer: as the value for
DefaultLandingUri to the create-domain or the update-domain call as part of the default-
user-settings
parameter.

StudioWebPortal indicates if the new Studio experience is available
for users, while DefaultLandingUri indicates whether users see
Studio or Studio Classic when launching Studio. If StudioWebPortal is set to DISABLED, users
cannot access
Studio in the domain. They will only be able to use Studio Classic.

aws sagemaker update-domain \
--domain-id domain-id \
--region region \
--default-user-settings '
{
 "StudioWebPortal": "DISABLED",
 "DefaultLandingUri": "app:JupyterServer:"
}
'

Launch Amazon SageMaker Studio

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

This page's topics demonstrate how to launch Amazon SageMaker Studio from the Amazon
SageMaker console and the AWS Command Line Interface (AWS CLI).

Topics

Launch Amazon SageMaker Studio 373

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html

Amazon SageMaker Developer Guide

• Prerequisites

• Launch from the Amazon SageMaker console

• Launch using the AWS CLI

Prerequisites

Before you begin, complete the following prerequisites:

• Onboard to a SageMaker domain with Studio access. If you don't have permissions to set Studio
as the default experience for your domain, contact your administrator. For more information, see
Amazon SageMaker domain overview.

• Update the AWS CLI by following the steps in Installing the current AWS CLI Version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

Launch from the Amazon SageMaker console

Complete the following procedure to launch Studio from the Amazon SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. From the left navigation pane, choose Studio.

3. From the Studio landing page, select the domain and user profile for launching Studio.

4. Choose Open Studio.

5. To launch Studio, choose Launch personal Studio.

Launch using the AWS CLI

This section demonstrates how to launch Studio using the AWS CLI. The procedure to access
Studio using the AWS CLI depends if the domain uses AWS Identity and Access Management
(IAM) authentication or AWS IAM Identity Center authentication. You can use the AWS CLI to
launch Studio by creating a presigned domain URL when your domain uses IAM authentication.
For information about launching Studio with IAM Identity Center authentication, see Custom
onboarding to Amazon SageMaker domain using IAM Identity Center.

Launch Amazon SageMaker Studio 374

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Launch if Studio is the default experience

The following code snippet demonstrates how to launch Studio from the AWS CLI using a
presigned domain URL if Studio is the default experience. For more information, see create-
presigned-domain-url.

aws sagemaker create-presigned-domain-url \
--region region \
--domain-id domain-id \
--user-profile-name user-profile-name \
--session-expiration-duration-in-seconds 43200

Launch if Amazon SageMaker Studio Classic is your default experience

The following code snippet demonstrates how to launch Studio from the AWS CLI using a
presigned domain URL if Studio Classic is the default experience. For more information, see create-
presigned-domain-url.

aws sagemaker create-presigned-domain-url \
--region region \
--domain-id domain-id \
--user-profile-name user-profile-name \
--session-expiration-duration-in-seconds 43200 \
--landing-uri studio::

Amazon SageMaker Studio UI overview

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

The Amazon SageMaker Studio user interface is split into three distinct parts.

• Navigation bar– This section of the UI includes the URL, breadcrumbs, notifications, and user
options.

Amazon SageMaker Studio UI overview 375

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-presigned-domain-url.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-presigned-domain-url.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-presigned-domain-url.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-presigned-domain-url.html

Amazon SageMaker Developer Guide

• Navigation pane– This section of the UI includes a list of the applications that are supported in
Studio and options for the main workflows in Studio.

• Content pane– The main working area that displays the current page of the Studio UI that you
have open.

Topics

• Amazon SageMaker Studio navigation bar

• Amazon SageMaker Studio navigation pane

• Studio content pane

Amazon SageMaker Studio navigation bar

The navigation bar of the Studio UI includes the URL, breadcrumbs, notifications, and user options.

URL Structure

The URL of Studio changes as you navigate the UI. When you navigate to a different page in the UI,
the URL changes to reflect that page. With the updated URL, you open any page in the Studio UI
directly without navigating to the landing page first.

Breadcrumbs

Amazon SageMaker Studio UI overview 376

Amazon SageMaker Developer Guide

As you navigate through the Studio UI, the breadcrumbs keep track of the parent pages of the
current page. By choosing one of these breadcrumbs, you can navigate to parent pages in the UI.

Notifications

The notifications section of the UI gives information about important changes to Studio, updates
to applications, and issues to resolve.

User options

The user options

()
give information about the user profile that is currently using Studio, and gives the option to sign
out of Studio.

Amazon SageMaker Studio navigation pane

Navigation pane

The navigation pane of the UI includes a list of the applications that are supported in Studio. It also
provides options for the main workflows in Studio.

This section of the UI can be used in an expanded or collapsed state. To
change whether the section is expanded or collapsed, select the Collapse icon

().

Applications

The applications section lists the applications that are available in Studio. If you choose one of the
application types, you are directed to the landing page for that application.

Workflows

The list of workflows includes all of the available actions that you can take in Studio. Choose one
of the options to navigate to the landing page for that workflow. If there are multiple workflows
available for that option, choosing the option opens a dropdown menu where you can select the
desired landing page.

The following list describes the options and provides a link for more information.

Amazon SageMaker Studio UI overview 377

Amazon SageMaker Developer Guide

• Home– The main landing page with an overview, getting started, and what’s new.

• Running instances– All of the instances that are currently running in Studio. For more
information, see View and stop running instances.

• Data– Data preparation options where you can collaborate to store, explore, prepare, transform,
and share your data.

• For more information about Amazon SageMaker Data Wrangler, see Prepare data.

• For more information about Amazon SageMaker Feature Store, see Create, store, and share
features with Amazon SageMaker Feature Store.

• For more information about Amazon EMR clusters, see Prepare data using Amazon EMR.

• Auto ML– Automatically build, train, tune, and deploy machine learning (ML) models. For more
information, see Amazon SageMaker Canvas.

• Experiments– Create, manage, analyze, and compare your machine learning experiments using
Amazon SageMaker Experiments. For more information, see Manage Machine Learning with
Amazon SageMaker Experiments.

• Jobs– View jobs created in Studio.

• For more information about training, see Train machine learning models.

• For more information about model evaluation, see Use SageMaker Clarify to evaluate
foundation models.

• Pipelines– Automate your ML workflow with Amazon SageMaker Model Building Pipelines,
which provides resources to help you build, track, and manage your pipeline resources. For more
information, see Amazon SageMaker Model Building Pipelines.

• Models– Organize your models into groups and collections in the model registry, where you
can manage model versions, view metadata, and deploy models to production. For more
information, see Register and Deploy Models with Model Registry.

• JumpStart– Amazon SageMaker JumpStart provides pretrained, open-source models for a wide
range of problem types to help you get started with machine learning. For more information, see
SageMaker JumpStart.

• Deployments– Deploy your machine learning (ML) models for inference.

• For more information about Amazon SageMaker Inference Recommender, see Amazon
SageMaker Inference Recommender.

• For more information about endpoints, see Deploy models for inference.

Amazon SageMaker Studio UI overview 378

Amazon SageMaker Developer Guide

Studio content pane

The main working area is also called the content pane. It displays the current page of the Studio UI
that you have open.

Studio home page

The Studio home page is the primary landing page in the main working area. The home page
includes two distinct tabs. There is an Overview tab and a Getting started tab.

Overview

The Overview tab includes options to start spaces for popular application types, get started with
pre-built and automated solutions for ML workflows, and links to common tasks in the Studio UI.

Getting started

The Getting started tab includes information, guidance, and resources on how to begin with
Studio. This includes a guided tour of the Studio UI, a link to documentation about Studio, and a
selection of quick tips.

Applications supported in Amazon SageMaker Studio

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

Amazon SageMaker Studio supports the following applications:

• Code Editor, based on Code-OSS, Visual Studio Code - Open Source– Code Editor offers a
lightweight and powerful integrated development environment (IDE) with familiar shortcuts,
terminal, and advanced debugging capabilities and refactoring tools. It is a fully managed,
browser-based application in Studio. For more information, see Get started with Code Editor in
Amazon SageMaker Studio.

Applications supported in Amazon SageMaker Studio 379

Amazon SageMaker Developer Guide

• Amazon SageMaker Studio Classic– Amazon SageMaker Studio Classic is a web-based IDE for
machine learning. With Studio Classic, you can build, train, debug, deploy, and monitor your
machine learning models. For more information, see Amazon SageMaker Studio Classic.

• JupyterLab–JupyterLab offers a set of capabilities that augment the fully managed notebook
offering. It includes kernels that start in seconds, a pre-configured runtime with popular
data science, machine learning frameworks, and high performance block storage. For more
information, see SageMaker JupyterLab.

• Amazon SageMaker Canvas– With SageMaker Canvas, you can use machine learning to generate
predictions without writing code. With Canvas, you can chat with popular large language models
(LLMs), access ready-to-use models, or build a custom model that's trained on your data. For
more information, see Amazon SageMaker Canvas.

• RStudio– RStudio is an integrated development environment for R. It includes a console and
syntax-highlighting editor that supports running code directly. It also includes tools for plotting,
history, debugging, and workspace management. For more information, see RStudio on Amazon
SageMaker.

Amazon SageMaker Studio spaces

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

Spaces are used to manage the storage and resource needs of some Amazon SageMaker Studio
applications. Each space has a 1:1 relationship with an instance of an application. Every supported
application that is created gets its own space. The following applications in Studio run on spaces:

• Get started with Code Editor in Amazon SageMaker Studio

• SageMaker JupyterLab

• Amazon SageMaker Studio Classic

A space is composed of the following resources:

Amazon SageMaker Studio spaces 380

Amazon SageMaker Developer Guide

• A storage volume.

• For Studio Classic, the space is connected to the shared Amazon Elastic File System (Amazon
EFS) volume for the domain.

• For other applications, a distinct Amazon Elastic Block Store (Amazon EBS) volume is attached
to the space. All applications are given their own Amazon EBS volume. Applications do not
have access to the Amazon EBS volume of other applications. For more information about
Amazon EBS volumes, see Amazon Elastic Block Store (Amazon EBS).

• The application type of the space.

• The image that the application is based on.

Spaces can be either private or shared:

• Private: Private spaces are scoped to a single user in a domain. Private spaces cannot be shared
with other users. All applications that support spaces also support private spaces.

• Shared: Shared spaces are accessible by all users in the domain. Only Studio Classic supports
shared spaces. For more information about shared spaces, see Collaborate with shared spaces.

Spaces can be created in domains that use either AWS IAM Identity Center or AWS Identity and
Access Management (IAM) authentication. The following sections give general information about
how to access spaces. For specific information about creating and accessing a space, see the
documentation for the respective application type of the space that you're creating.

Topics

• Access spaces

Access spaces

The following sections show how to access the list of spaces associated with the user profile in the
domain.

Accessing spaces from the Amazon SageMaker console

To access spaces from the Amazon SageMaker console

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Under Admin configurations, choose Domains.

Amazon SageMaker Studio spaces 381

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

3. From the list of domains, select the domain that contains the spaces.

4. On the Domain details page, select the Space management tab. For more information about
managing spaces, see Collaborate with shared spaces.

5. From the list of spaces for that domain, select the space to launch.

6. Choose Launch Studio for the space that you want to launch.

Accessing spaces from Studio

Follow these steps to access spaces from Studio for a specific application type.

To access spaces from Studio

1. Open Studio by following the steps in Launch Amazon SageMaker Studio.

2. Select the application type with spaces that you want to access.

Accessing spaces using the AWS CLI

The following sections show how to access a space from the AWS Command Line Interface (AWS
CLI). The procedures are for domains that use AWS Identity and Access Management (IAM) or AWS
IAM Identity Center authentication.

IAM authentication

The following procedure outlines generally how to access a space using IAM authentication from
the AWS CLI.

1. Create a presigned domain URL specifying the name of the space that you want to access.

aws \
 --region region \
 sagemaker \
 create-presigned-domain-url \
 --domain-id domain-id \
 --user-profile-name user-profile-name \
 --space-name space-name

2. Navigate to the URL.

Amazon SageMaker Studio spaces 382

Amazon SageMaker Developer Guide

Accessing a space in IAM Identity Center authentication

The following procedure outlines how to access a space using IAM Identity Center authentication
from the AWS CLI.

1. Use the following command to return the URL associated with the space.

aws \
 --region region \
 sagemaker \
 describe-space \
 --domain-id domain-id \
 --space-name space-name

2. Append the respective redirect parameter for the application type to the URL to be federated
through IAM Identity Center. For more information about the redirect parameters, see
describe-space.

3. Navigate to the URL to be federated through IAM Identity Center.

Perform common tasks

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

The following sections describe how to perform common tasks in Amazon SageMaker Studio. For
an overview of the Studio user interface, see Amazon SageMaker Studio UI overview.

Set cookie preferences

1. Launch Studio following the steps in Launch Amazon SageMaker Studio.

2. At the bottom of the Studio user interface, choose Cookie Preferences.

3. Select the check box for each type of cookie that you want Amazon SageMaker to use.

4. Choose Save preferences.

Perform common tasks 383

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/describe-space.html

Amazon SageMaker Developer Guide

Manage notifications

Notifications give information about important changes to Studio, updates to applications, and
issues to resolve.

1. Launch Studio following the steps in Launch Amazon SageMaker Studio.

2. On the top navigation bar, choose the Notifications

icon ().

3. From the list of notifications, select the notification to get information about it.

Leave feedback

We take your feedback seriously. We encourage you to provide feedback.

At the top navigation of Studio, choose Provide feedback.

Sign out

Signing out of the Studio UI is different than closing the browser window. Signing out clears
session data from the browser and deletes unsaved changes.

This same behavior also happens when the Studio session times out. This happens after 5 minutes.

1. Launch Studio following the steps in Launch Amazon SageMaker Studio.

2. Choose the User options icon

().

3. Choose Sign out.

4. In the pop-up window, choose Sign out.

Use NVMe stores with Amazon SageMaker Studio

Amazon SageMaker Studio applications and their associated notebooks run on Amazon Elastic
Compute Cloud (Amazon EC2) instances. Some of the Amazon EC2 instance types, such as the
ml.m5d instance family, offer non-volatile memory express (NVMe) solid state drives (SSD) instance
stores.

Use NVMe stores with Amazon SageMaker Studio 384

Amazon SageMaker Developer Guide

NVMe instance stores are local ephemeral disk stores that are physically connected to an instance
for fast temporary storage. Studio applications support NVMe instance stores for supported
instance types. For more information about instance types and their associated NVMe store
volumes, see the Amazon Elastic Compute Cloud Instance Type Details.

This following topic provides information about accessing and using NVMe instance stores, as well
as considerations when using NVMe instance stores with Studio.

Considerations

The following considerations apply when using NVMe instance stores with Studio.

• An NVMe instance store is temporary storage. The data stored on the NVMe store is deleted
when the instance is terminated, stopped, or hibernated. When using NVMe stores with Studio
applications, the data on the NVMe instance store is lost whenever the application is deleted,
restarted, or patched. We recommend that you back up valuable data to persistent storage
solutions, such as Amazon Elastic Block Store, Amazon Elastic File System, or Amazon Simple
Storage Service.

• Studio patches instances periodically to install new security updates. When an instance is
patched, the instance is restarted. This restart results in the deletion of data stored in the NVMe
instance store. We recommend that you frequently back up necessary data from the NVMe
instance store to persistent storage solutions, such as Amazon Elastic Block Store, Amazon
Elastic File System, or Amazon Simple Storage Service.

• The following Studio applications support using NVMe storage:

• JupyterLab

• Code Editor, based on Code-OSS, Visual Studio Code - Open Source

• KernelGateway

Access NVMe instance stores

When you select an instance type with attached NVMe instance stores to host a Studio application,
the NVMe instance store directory is mounted to the application container at the following
location:

/mnt/sagemaker-nvme

Use NVMe stores with Amazon SageMaker Studio 385

https://aws.amazon.com/ec2/instance-types/

Amazon SageMaker Developer Guide

If an instance has more than 1 NVMe instance store attached to it, Studio creates a striped logical
volume that spans all of the local disks attached. Studio then mounts this striped logical volume
to the /mnt/sagemaker-nvme directory. As a result, the directory storage size is the sum of all
NVMe instance store volume sizes attached to the instance.

If the /mnt/sagemaker-nvme directory does not exist, verify that the instance type hosting your
application has an attached NVMe instance store volume.

Local mode support in Amazon SageMaker Studio

Amazon SageMaker Studio applications support the use of local mode to create estimators,
processors, and pipelines, then deploy them to a local environment. With local mode, you can test
machine learning scripts before running them in Amazon SageMaker managed training or hosting
environments. Studio supports local mode in the following applications:

• Amazon SageMaker Studio Classic

• JupyterLab

• Code Editor, based on Code-OSS, Visual Studio Code - Open Source

Local mode in Studio applications is invoked using the SageMaker Python SDK. In Studio
applications, local mode functions similarly to how it functions in Amazon SageMaker notebook
instances, with some differences. For more information about using local mode with the SageMaker
Python SDK, see Local Mode.

Note

Studio applications do not support multi-container jobs in local mode. Local mode jobs are
limited to a single instance for training, inference, and processing jobs. When creating a
local mode job, the instance count configuration must be 1.

As part of local mode support, Studio applications support limited Docker access capabilities. With
this support, users can interact with the Docker API from Jupyter notebooks or the image terminal
of the application. Customers can interact with Docker using one of the following:

• Docker CLI

• Docker Compose CLI

• Language specific Docker SDK clients

Local mode support in Amazon SageMaker Studio 386

https://sagemaker.readthedocs.io/en/stable/overview.html#local-mode
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/compose/reference/

Amazon SageMaker Developer Guide

Prerequisites

Complete the following prerequisites to use local mode in Studio applications:

• To pull images from an Amazon Elastic Container Registry repository, the account hosting
the Amazon ECR image must provide access permission for the user’s execution role.
The domain’s execution role must also allow Amazon ECR access.

• Verify that you are using the latest version of the Studio Python SDK by using the following
command:

pip install -U sagemaker

• To use local mode and Docker capabilities, set the following parameter of the domain’s
DockerSettings using the AWS Command Line Interface (AWS CLI):

EnableDockerAccess : ENABLED

• Using EnableDockerAccess, you can also control whether users in the domain can use local
mode. By default, local mode and Docker capabilities aren't allowed in Studio applications. For
more information, see Setting EnableDockerAccess.

• Install the Docker CLI in the Studio application by following the steps in Docker installation.

Setting EnableDockerAccess

The following sections show how to set EnableDockerAccess when the domain has public
internet access or is in VPC-only mode.

Note

Changes to EnableDockerAccess only apply to applications created after the domain is
updated. You must create a new application after updating the domain.

Public internet access

The following example commands show how to set EnableDockerAccess when creating a new
domain or updating an existing domain with public internet access:

create new domain

Local mode support in Amazon SageMaker Studio 387

Amazon SageMaker Developer Guide

aws --region region \
 sagemaker create-domain --domain-name domain-name \
 --vpc-id vpc-id \
 --subnet-ids subnet-ids \
 --auth-mode IAM \
 --default-user-settings "ExecutionRole=execution-role" \
 --domain-settings '{"DockerSettings": {"EnableDockerAccess": "ENABLED"}}' \
 --query DomainArn \
 --output text

update domain
aws --region region \
 sagemaker update-domain --domain-id domain-id \
 --domain-settings-for-update '{"DockerSettings": {"EnableDockerAccess":
 "ENABLED"}}'

VPC-only mode

When using a domain in VPC-only mode, Docker image push and pull requests are routed through
the service VPC instead of the VPC configured by the customer. Because of this functionality,
administrators can configure a list of trusted AWS accounts that users can make Amazon ECR
Docker pull and push operations requests to.

If a Docker image push or pull request is made to an AWS account that is not in the list of trusted
AWS accounts, the request fails. Docker pull and push operations outside of Amazon Elastic
Container Registry (Amazon ECR) aren't supported in VPC-only mode.

The following AWS accounts are trusted by default:

• The account hosting the SageMaker domain.

• SageMaker accounts that host the following SageMaker images:

• DLC framework images

• Sklearn, Spark, XGBoost processing images

To configure a list of additional trusted AWS accounts, specify the VpcOnlyTrustedAccounts
value as follows:

aws --region region \
 sagemaker update-domain --domain-id domain-id \

Local mode support in Amazon SageMaker Studio 388

Amazon SageMaker Developer Guide

 --domain-settings-for-update '{"DockerSettings": {"EnableDockerAccess": "ENABLED",
 "VpcOnlyTrustedAccounts": ["account-list"]}}'

Docker support

Studio also supports limited Docker access capabilities with the following restrictions:

• Usage of Docker networks is not supported.

• Docker volume usage is not supported during container run. Only volume bind mount inputs are
allowed during container orchestration. The volume bind mount inputs must be located on the
Amazon Elastic File System (Amazon EFS) volume for Studio Classic. For JupyterLab and Code
Editor applications, it must be located on the Amazon Elastic Block Store (Amazon EBS) volume.

• Container inspect operations are allowed.

• Container port to host mapping is not allowed. However, you can specify a port for hosting. The
endpoint is then accessible from Studio using the following URL:

http://localhost:port

Docker operations supported

The following table lists all of the Docker API endpoints that are supported in Studio, including any
support limitations. If an API endpoint is missing from the table, Studio doesn't support it.

API Documentation Limitations

SystemAuth

SystemEvents

SystemVersion

SystemPing

SystemPingHead

ContainerCreate • Containers cannot be run in Docker
default bridge or custom Docker networks.

Local mode support in Amazon SageMaker Studio 389

https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/api/v1.43/#tag/System/operation/SystemAuth
https://docs.docker.com/engine/api/v1.43/#tag/System/operation/SystemEvents
https://docs.docker.com/engine/api/v1.43/#tag/System/operation/SystemVersion
https://docs.docker.com/engine/api/v1.43/#tag/System/operation/SystemPing
https://docs.docker.com/engine/api/v1.43/#tag/System/operation/SystemPingHead
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerCreate

Amazon SageMaker Developer Guide

API Documentation Limitations

Containers are run in the same network as
the Studio application container.

• Users can only use the following value
for the network name: sagemaker . For
example:

docker run --net sagemaker parameter
-values

• Only bind mounts are allowed for volume
usage. The host directory should exist on
Amazon EFS for KernelGateway applications
or Amazon EBS for other applications.

• Containers cannot run in privileged mode or
with elevated secure computing permissio
ns.

ContainerStart

ContainerStop

ContainerKill

ContainerDelete

ContainerList

ContainerLogs

ContainerInspect

ContainerWait

ContainerAttach

ContainerPrune

ContainerResize

Local mode support in Amazon SageMaker Studio 390

https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerStart
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerStop
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerKill
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerDelete
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerList
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerLogs
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerInspect
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerWait
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerAttach
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerPrune
https://docs.docker.com/engine/api/v1.43/#tag/Container/operation/ContainerResize

Amazon SageMaker Developer Guide

API Documentation Limitations

ImageCreate VPC-only mode support is limited to Amazon
ECR images in allowlisted accounts.

ImagePrune

ImagePush VPC-only mode support is limited to Amazon
ECR images in allowlisted accounts.

ImageList

ImageInspect

ImageGet

ImageDelete

ImageBuild • VPC-only mode support is limited to
Amazon ECR images in allowlisted accounts.

• Users can only use the following value
for the network name: sagemaker . For
example:

docker build --network
 sagemaker parameter-values

Docker installation

To use Docker, you must manually install Docker from the terminal of your Studio application. The
steps to install Docker are different if the domain has access to the internet or not.

Internet access

If the domain is created with public internet access or in VPC-only mode with limited internet
access, use the following steps to install Docker.

1. (Optional) If your domain is created in VPC-only mode with limited internet access, create a
public NAT gateway with access to the Docker website. For instructions, see NAT gateways.

Local mode support in Amazon SageMaker Studio 391

https://docs.docker.com/engine/api/v1.43/#tag/Image/operation/ImageCreate
https://docs.docker.com/engine/api/v1.43/#tag/Image/operation/ImagePrune
https://docs.docker.com/engine/api/v1.43/#tag/Image/operation/ImagePush
https://docs.docker.com/engine/api/v1.43/#tag/Image/operation/ImageList
https://docs.docker.com/engine/api/v1.43/#tag/Image/operation/ImageInspect
https://docs.docker.com/engine/api/v1.43/#tag/Image/operation/ImageGet
https://docs.docker.com/engine/api/v1.43/#tag/Image/operation/ImageDelete
https://docs.docker.com/engine/api/v1.43/#tag/Image/operation/ImageBuild
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon SageMaker Developer Guide

2. Navigate to the terminal of the Studio application that you want to install Docker in.

3. To return the operating system of the application, run the following command from the
terminal:

cat /etc/os-release

4. Install Docker following the instructions for the operating system of the application in the
Amazon SageMaker Local Mode Examples repository.

For example, install Docker on Ubuntu following the script at https://github.com/aws-
samples/amazon-sagemaker-local-mode/blob/main/sagemaker_studio_docker_cli_install/
sagemaker-ubuntu-focal-docker-cli-install.sh with the following considerations:

• If chained commands fail, run commands one at a time.

• Studio only supports Docker version 20.10.X. and Docker Engine API version 1.41.

• The following packages aren't required to use the Docker CLI in Studio and their installation
can be skipped:

• containerd.io

• docker-ce

• docker-buildx-plugin

Note

You do not need to start the Docker service in your applications. The instance that
hosts the Studio application runs Docker service by default. All Docker API calls are
routed through the Docker service automatically.

5. Use the exposed Docker socket for Docker interactions within Studio applications. By default,
the following socket is exposed:

unix:///docker/proxy.sock

The following Studio application environmental variable for the default USER uses this
exposed socket:

DOCKER_HOST

Local mode support in Amazon SageMaker Studio 392

https://github.com/aws-samples/amazon-sagemaker-local-mode/tree/main/sagemaker_studio_docker_cli_install
https://github.com/aws-samples/amazon-sagemaker-local-mode/blob/main/sagemaker_studio_docker_cli_install/sagemaker-ubuntu-focal-docker-cli-install.sh
https://github.com/aws-samples/amazon-sagemaker-local-mode/blob/main/sagemaker_studio_docker_cli_install/sagemaker-ubuntu-focal-docker-cli-install.sh
https://github.com/aws-samples/amazon-sagemaker-local-mode/blob/main/sagemaker_studio_docker_cli_install/sagemaker-ubuntu-focal-docker-cli-install.sh

Amazon SageMaker Developer Guide

No internet access

If the domain is created in VPC-only mode with no internet access, use the following steps to
install Docker.

1. Navigate to the terminal of the Studio application that you want to install Docker in.

2. Run the following command from the terminal to return the operating system of the
application:

cat /etc/os-release

3. Download the required Docker .deb files to your local machine. For instructions about
downloading the required files for the operating system of the Studio application, see Install
Docker Engine.

For example, install Docker from a package on Ubuntu following the steps 1–4 in Install from a
package with the following considerations:

• Install Docker from a package. Using other methods to install Docker will fail.

• Install the latest packages corresponding to Docker version 20.10.X.

• The following packages aren't required to use the Docker CLI in Studio. You don't need to
install the following:

• containerd.io

• docker-ce

• docker-buildx-plugin

Note

You do not need to start the Docker service in your applications. The instance that
hosts the Studio application runs Docker service by default. All Docker API calls are
routed through the Docker service automatically.

4. Upload the .deb files to the Amazon EFS file system or to the Amazon EBS file system of the
application.

5. Manually install the docker-ce-cli and docker-compose-plugin .deb packages from
the Studio application terminal. For more information and instructions, see step 5 in Install
from a package on the Docker docs website.

Local mode support in Amazon SageMaker Studio 393

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/ubuntu/#install-from-a-package
https://docs.docker.com/engine/install/ubuntu/#install-from-a-package
https://docs.docker.com/engine/install/ubuntu/#install-from-a-package
https://docs.docker.com/engine/install/ubuntu/#install-from-a-package

Amazon SageMaker Developer Guide

6. Use the exposed Docker socket for Docker interactions within Studio applications. By default,
the following socket is exposed:

unix:///docker/proxy.sock

The following Studio application environmental variable for the default USER uses this
exposed socket:

DOCKER_HOST

View and stop running instances

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

The running instances page gives information about all running application instances that were
created in Amazon SageMaker Studio by the user, or were shared with the user.

On this page, you can view and stop running instances for all of your applications and spaces. If
an instance is stopped, it does not appear on this page. Stopped instances can be viewed from the
landing page for their respective application types.

Topics

• View application details

• Stop a running application

View application details

You can view a list of running applications and their details in Studio.

View and stop running instances 394

Amazon SageMaker Developer Guide

To view running instances

1. Launch Studio following the steps in Launch Amazon SageMaker Studio.

2. On the left navigation pane, choose Running instances.

3. From the Running instances page, you can view a list of running applications and details
about those applications.

Stop a running application

You can stop a running application in Studio.

To stop a running application

1. Launch Studio following the steps in Launch Amazon SageMaker Studio.

2. From the list of running instances, select the application that you want to stop.

3. Choose the Stop button for the application.

Amazon SageMaker Studio pricing

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

There is no additional charge for using the Amazon SageMaker Studio UI.

The following do incur costs:

• Amazon Elastic Block Store or Amazon Elastic File System volumes that are mounted with your
applications.

• Any jobs and resources that users launch from Studio applications.

• Launching a JupyterLab application, even if no resources or jobs launched in the application.

Amazon SageMaker Studio pricing 395

Amazon SageMaker Developer Guide

For information about how Amazon SageMaker Studio Classic is billed, see Amazon SageMaker
Studio Classic Pricing.

For more information about billing along with pricing examples, see Amazon SageMaker Pricing.

Troubleshooting

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

This section shows how to troubleshoot common problems in Amazon SageMaker Studio.

Cannot delete Code Editor, based on Code-OSS, Visual Studio Code - Open Source or JupyterLab
application

This issue occurs when a user creates an application from Amazon SageMaker Studio that is only
available in Studio, then reverts to the Studio Classic experience as their default. As a result, the
user cannot delete an application for Code Editor, based on Code-OSS, Visual Studio Code - Open
Source or JupyterLab because they can't access the Studio UI.

To resolve this issue, notify your administrator so that they can delete the application manually
using the AWS Command Line Interface (AWS CLI).

Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Troubleshooting 396

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Amazon SageMaker Studio Classic is a web-based, integrated development environment (IDE) for
machine learning that lets you build, train, debug, deploy, and monitor your machine learning
models. Studio Classic provides all the tools you need to take your models from data preparation
to experimentation to production while boosting your productivity. In a single unified visual
interface, customers can perform the following tasks:

• Write and execute code in Jupyter notebooks

• Prepare data for machine learning

• Build and train machine learning models

• Deploy the models and monitor the performance of their predictions

• Track and debug the machine learning experiments

For information on the onboarding steps to sign in to Studio Classic, see Amazon SageMaker
domain overview.

For the AWS Regions supported by Studio Classic, see Supported Regions and Quotas.

Topics

• Studio Classic Features

• Amazon SageMaker Studio Classic UI Overview

• Launch Amazon SageMaker Studio Classic

• JupyterLab Versioning

• Use the Amazon SageMaker Studio Classic Launcher

• Collaborate with shared spaces

• Use Amazon SageMaker Studio Classic Notebooks

• Customize Amazon SageMaker Studio Classic

• Perform Common Tasks in Amazon SageMaker Studio Classic

• Amazon SageMaker Studio Classic Pricing

• Troubleshooting Amazon SageMaker Studio Classic

Studio Classic Features

Studio Classic includes the following features:

Studio Classic Features 397

Amazon SageMaker Developer Guide

• SageMaker Autopilot

• SageMaker Clarify

• SageMaker Data Wrangler

• SageMaker Debugger

• SageMaker Experiments

• SageMaker Feature Store

• SageMaker JumpStart

• Amazon SageMaker Model Building Pipelines

• SageMaker Model Registry

• SageMaker Projects

• SageMaker Studio Classic Notebooks

• SageMaker Studio Universal Notebook

Amazon SageMaker Studio Classic UI Overview

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker Studio Classic extends the capabilities of JupyterLab with custom resources
that can speed up your Machine Learning (ML) process by harnessing the power of AWS compute.
Previous users of JupyterLab will notice the similarity of the user interface. The most prominent
additions are detailed in the following sections. For an overview of the original JupyterLab
interface, see The JupyterLab Interface.

The following image shows the default view upon launching Amazon SageMaker
Studio Classic. The left navigation panel displays all top-level categories
of features, and a Studio Classic Home page is open in the main working
area. Come back to this central point of orientation by choosing the Home

UI Overview 398

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-use-with-studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-emr-cluster.html
https://jupyterlab.readthedocs.io/en/latest/user/interface.html

Amazon SageMaker Developer Guide

()
icon at any time, then selecting the Home node in the navigation menu.

Try the Getting started notebook for an in-product hands-on guide on how to set up and get
familiar with Amazon SageMaker Studio Classic features. On the Quick actions section of the
Studio Classic Home page, choose Open the Getting started notebook.

Note

This chapter is based on Studio Classic's updated user interface (UI) available on version
v5.38.x and above on JupyterLab3.

• To retrieve your version of Studio Classic UI, from the Studio Classic Launcher, open a
System Terminal, then

1. Run conda activate studio

2. Run jupyter labextension list

3. Search for the version displayed after @amzn/sagemaker-ui version in the
output.

UI Overview 399

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launcher.html

Amazon SageMaker Developer Guide

• For information about updating Amazon SageMaker Studio Classic, see Shut down and
Update SageMaker Studio Classic.

Topics

• Studio Classic Home page

• Studio Classic layout

Studio Classic Home page

The Home page provides access to common tasks and workflows. In particular, it includes a list of
Quick actions for common tasks such as Open Launcher to create notebooks and other resources
and Import & prepare data visually to create a new flow in Data Wrangler.The Home page also
offers tooltips on key controls in the UI.

The Prebuilt and automated solutions help you get started quickly with SageMaker's low-code
solutions such as Amazon SageMaker JumpStart and Autopilot.

In Workflows and tasks, you can find a list of relevant tasks for each step of your ML workflow
that takes you to the right tool for the job. For example, Transform, analyse, and export data
takes you to Amazon SageMaker Data Wrangler and opens the workflow to create a new data flow,
or View all experiments takes you to SageMaker Experiments and opens the experiments list view.

Upon Studio Classic launch, the Home page is open in the main working
area. You can customize your SageMaker Home page by choosing

Customize Layout at the top right of the Home tab.

Studio Classic layout

The Amazon SageMaker Studio Classic interface consists of a menu bar at the top, a collapsible left
sidebar displaying a variety of icons such as the Home icon and the File Browser, a status bar at
the bottom of the screen, and a central area divided horizontally into two panes. The left pane is
a collapsible navigation panel. The right pane, or main working area, contains one or more tabs for
resources such as launchers, notebooks, terminals, metrics, and graphs, and can be further divided.

Report a bug in Studio Classic or choose the notification icon

()

UI Overview 400

Amazon SageMaker Developer Guide

to view notifications from Studio Classic, such as new Studio Classic versions and new SageMaker
features, on the right corner of the menu bar. To update to a new version of Studio Classic, see
Shut Down and Update SageMaker Studio Classic and Studio Classic Apps.

The following sections describe the Studio Classic main user interface areas.

Left sidebar

The left sidebar includes the following icons. When hovering over an icon, a tooltip displays
the icon name. A single click on an icon opens up the left navigation panel with the described
functionality. A double click minimizes the left navigation panel.

Icon Description

Home

Choose the Home icon to open a top-level navigation menu in the left
navigation panel.

Using the Home navigation menu, you can discover and navigate
to the right tools for each step of your ML workflow. The menu also
provides shortcuts to quick-start solutions and learning resources such
as documentation and guided tutorials.

The menu categories group relevant features together. Choosing Data,
for example, expands the relevant SageMaker capabilities for your
data preparations tasks. From here, you can prepare your data with
Data Wrangler, create and store ML features with Amazon SageMaker
Feature Store, and manage Amazon EMR clusters for large-scale data
processing. The categories are ordered following a typical ML workflow
from preparing data, to building, training, and deploying ML models
(data, pipelines, models, and deployments).

When you choose a specific node (such as Data Wrangler), a correspon
ding page opens in the main working area.

Choose Home in the navigation menu to open the Studio Classic Home
page

UI Overview 401

Amazon SageMaker Developer Guide

Icon Description

File Browser

The File Browser displays lists of your notebooks, experiments, trials,
trial components, endpoints, and low-code solutions.

Whether you are in a personal or shared space determines who has
access to your files. You can identify which type of space you are in by
looking at the top right corner. If you are in a personal app, you see a
user icon followed by [user_name] / Personal Studio and if you are
in a collaborative space, you see a globe icon followed by “[user_nam
e] / [space_name]. ”

• Personal Studio Classic app: A private Amazon EFS directory that
only you can access.

• Collaborative space: A shared Amazon EFS directory with other
members of your team for group access to notebooks and resources.
Working in a shared space allows for real-time team collaboration on
notebooks.

• Studio Classic launcher: Choose the plus (+) sign on the menu at the
top of the file browser to open the Amazon SageMaker Studio Classic
Launcher.

• Upload files: Choose the Upload Files icon (

)
to add files to Studio Classic or drag and drop them from your
desktop.

• Open files: Double-click a file to open the file in a new tab or right-
click and select Open.

UI Overview 402

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launcher.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launcher.html

Amazon SageMaker Developer Guide

Icon Description

• Panel management: To work in adjacent files, choose a tab that
contains a notebook, Python, or text file, then choose New View for
File.

For hierarchical entries, a selectable breadcrumb at the top of the
browser shows your location in the hierarchy.

Property Inspector

The Property Inspector is a notebook cell tools inspector which displays
contextual property settings when open.

Running Terminals and Kernels

You can check the list of all the kernels and terminals currently running
across all notebooks, code consoles, and directories. You can shut down
individual resources, including notebooks, terminals, kernels, apps,
and instances. You can also shut down all resources in one of these
categories at the same time.

For more information, see Shut Down Resources.

Git

You can connect to a Git repository and then access a full range of Git
tools and operations.

For more information, see Clone a Git Repository in SageMaker Studio
Classic.

UI Overview 403

Amazon SageMaker Developer Guide

Icon Description

Table of Contents

You can navigate the structure of a document when a notebook or
Python files are open.
A table of contents is auto-generated in the left navigation panel
when you have a notebook, Markdown files, or Python files opened.
The entries are clickable and scroll the document to the heading in
question.

Extensions

You can turn on and manage third-party JupyterLab extensions. You
can check the already installed extensions and search for extensions by
typing the name in the search bar. When you have found the extension
you want to install, choose Install. After installing your new extensions,
be sure to restart JupyterLab by refreshing your browser.

For more information, see JupyterLab Extensions documentation.

Left navigation panel

The left navigation panel content varies with the Icon selected in the left sidebar.

For example, choosing the Home icon displays the navigation menu. Choosing File browser lists
all the files and directories available in your workspace (notebooks, experiments, data flows, trials,
trial components, endpoints, or low-code solutions).

In the navigation menu, choosing a node brings up the corresponding feature page in the main
working area. For example, choosing Data Wrangler in the Data menu opens up the Data
Wrangler tab listing all existing flows.

Main working area

The main working area consists of multiple tabs that contain your open notebooks, terminals, and
detailed information about your experiments and endpoints. In the main working area, you can
arrange documents (such as notebooks and text files) and other activities (such as terminals and
code consoles) into panels of tabs that you can resize or subdivide. Drag a tab to the center of a tab

UI Overview 404

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html

Amazon SageMaker Developer Guide

panel to move the tab to the panel. Subdivide a tab panel by dragging a tab to the left, right, top,
or bottom of the panel. The tab for the current activity is marked with a colored top border (blue
by default).

Note

All feature pages provide in-product contextual help. To access help, choose Show
information. The help interface provides a brief introduction to the tool and links to
additional resources, such as videos, tutorials, or blogs.

Launch Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

After you have onboarded to an Amazon SageMaker domain, you can launch an Amazon
SageMaker Studio Classic application from either the SageMaker console or the AWS CLI. For more
information about onboarding to a domain, see Amazon SageMaker domain overview.

Topics

• Launch Studio Classic Using the Amazon SageMaker Console

• Launch Studio Classic Using the AWS CLI

Launch Studio Classic Using the Amazon SageMaker Console

The process to navigate to Studio Classic from the Amazon SageMaker Console differs depending
on if Studio Classic or Amazon SageMaker Studio are set as the default experience for your domain.
For more information about setting the default experience for your domain, see Migrating from
Amazon SageMaker Studio Classic.

Topics

Launch Amazon SageMaker Studio Classic 405

Amazon SageMaker Developer Guide

• Prerequisite

Prerequisite

To complete this procedure, you must onboard to a domain by following the steps in Onboard to
Amazon SageMaker domain.

Launch Studio Classic if Studio is your default experience

1. Navigate to Studio following the steps in Launch Amazon SageMaker Studio.

2. From the Studio UI, find the applications pane on the left side.

3. From the applications pane, select Studio Classic.

4. From the Studio Classic landing page, select the Studio Classic instance to open.

5. Choose “Open”.

Launch Studio Classic if Studio Classic is your default experience

When Studio Classic is your default experience, you can launch a Amazon SageMaker Studio Classic
application from the SageMaker console using the Studio Classic landing page or the Amazon
SageMaker domain details page. The following sections demonstrate how to launch the Studio
Classic application from the SageMaker console.

Launch Studio Classic from the domain details page

The following sections describe how to launch a Studio Classic application from the domain details
page. The steps to launch the Studio Classic application after you have navigated to the domain
details page differ depending on if you’re launching a personal application or a shared space.

Navigate to the domain details page

The following procedure shows how to navigate to the domain details page.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domain, select the domain that you want to launch the Studio Classic
application in.

Launch Amazon SageMaker Studio Classic 406

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Launch a user profile app

The following procedure shows how to launch a Studio Classic application that is scoped to a user
profile.

1. On the domain details page, choose the User profiles tab.

2. Identify the user profile that you want to launch the Studio Classic application for.

3. Choose Launch for your selected user profile, then choose Studio Classic.

Launch a shared space app

The following procedure shows how to launch a Studio Classic application that is scoped to a
shared space.

1. On the domain details page, choose the Space management tab.

2. Identify the shared space that you want to launch the Studio Classic application for.

3. Choose Launch Studio Classic for your selected shared space.

Launch Studio Classic from the Studio Classic landing page

The following procedure describes how to launch a Studio Classic application from the Studio
Classic landing page.

Launch Studio Classic

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Studio Classic.

3. Under Get started, select the domain that you want to launch the Studio Classic application
in. If your user profile only belongs to one domain, you do not see the option for selecting a
domain.

4. Select the user profile that you want to launch the Studio Classic application for. If there is
no user profile in the domain, choose Create user profile. For more information, see Add and
Remove User Profiles.

5. Choose Launch Studio Classic. If the user profile belongs to a shared space, choose Open
Spaces.

6. To launch a Studio Classic application scoped to a user profile, choose Launch personal Studio
Classic.

Launch Amazon SageMaker Studio Classic 407

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

7. To launch a shared Studio Classic application, choose the Launch shared Studio Classic button
next to the shared space that you want to launch into.

Launch Studio Classic Using the AWS CLI

You can use the AWS Command Line Interface (AWS CLI) to launch Amazon SageMaker Studio
Classic by creating a presigned domain URL.

Prerequisites

Before you begin, complete the following prerequisites:

• Onboard to Amazon SageMaker domain. For more information, see Onboard to Amazon
SageMaker domain.

• Update the AWS CLI by following the steps in Installing the current AWS CLI Version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

The following code snippet demonstrates how to launch Amazon SageMaker Studio Classic from
the AWS CLI using a presigned domain URL. For more information, see create-presigned-domain-
url.

aws sagemaker create-presigned-domain-url \
--region region \
--domain-id domain-id \
--space-name space-name \
--user-profile-name user-profile-name \
--session-expiration-duration-in-seconds 43200

JupyterLab Versioning

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

JupyterLab Versioning 408

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-presigned-domain-url.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-presigned-domain-url.html

Amazon SageMaker Developer Guide

The Amazon SageMaker Studio Classic interface is based on JupyterLab, which is a web-based
interactive development environment for notebooks, code, and data. Studio Classic now supports
using both JupyterLab 1 and JupyterLab 3. The default version of JupyterLab in Studio Classic
is JupyterLab 3. If you created your Amazon SageMaker domain and user profile using the
AWS Management Console before 08/31/2022 or using the AWS Command Line Interface
before 02/22/23, then your Studio Classic instance defaults to JupyterLab 1. After 08/31/2022,
JupyterLab version 1 on Amazon SageMaker Studio Classic only receives security fixes. You can
choose the version that you want to run. However, you can run only a single instance of JupyterLab
at one time per user profile. You can’t run multiple versions of JupyterLab simultaneously.

After 03/31/23, Studio Classic only supports the creation of JupyterLab 3 applications. After that
date, Studio Classic stops supporting JupyterLab 1 application creation. On 04/30/2023, Studio
Classic removes all existing applications that run JupyterLab 1. Update your existing JupyterLab1
applications to JupyterLab 3 before 04/30/2023 following the steps in View and update the
JupyterLab version of an application from the console.

Topics

• JupyterLab 3

• Restricting default JupyterLab version using an IAM policy condition key

• Setting a default JupyterLab version

• View and update the JupyterLab version of an application from the console

• Installing JupyterLab and Jupyter Server extensions

JupyterLab 3

JupyterLab 3 includes the following features that are not available in previous versions. For more
information about these features, see JupyterLab 3.0 is released!.

• Visual debugger when using the Base Python 2.0 and Data Science 2.0 kernels.

• File browser filter

• Table of Contents (TOC)

• Multi-language support

• Simple mode

• Single interface mode

JupyterLab Versioning 409

https://blog.jupyter.org/jupyterlab-3-0-is-out-4f58385e25bb

Amazon SageMaker Developer Guide

Important changes to JupyterLab 3

Consider the following when using JupyterLab 3:

• When setting the JupyterLab version using the AWS CLI, select the corresponding image for your
Region and JupyterLab version from the image list in From the AWS CLI.

• In JupyterLab 3, you must activate the studio conda environment before installing extensions.
For more information, see Installing JupyterLab and Jupyter Server extensions.

• Debugger is only supported when using the following images:

• Base Python 2.0

• Data Science 2.0

• Base Python 3.0

• Data Science 3.0

Restricting default JupyterLab version using an IAM policy condition key

You can use IAM policy condition keys to restrict the version of JupyterLab that your users can
launch.

The following policy shows how to limit the JupyterLab version at the domain level.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Block users from creating JupyterLab 3 apps at the domain level",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateDomain",
 "sagemaker:UpdateDomain"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringLike": {
 "sagemaker:ImageArns": "*image/jupyter-server-3"
 }
 }
 }
]

JupyterLab Versioning 410

Amazon SageMaker Developer Guide

}

The following policy shows how to limit the JupyterLab version at the user profile level.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Block users from creating JupyterLab 3 apps at the user profile
 level",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateUserProfile",
 "sagemaker:UpdateUserProfile"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringLike": {
 "sagemaker:ImageArns": "*image/jupyter-server-3"
 }
 }
 }
]
}

The following policy shows how to limit the JupyterLab version at the application level. The
CreateApp request must include the image ARN for this policy to apply.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Block users from creating JupyterLab 3 apps at the application
 level",
 "Effect": "Deny",
 "Action": "sagemaker:CreateApp",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringLike": {
 "sagemaker:ImageArns": "*image/jupyter-server-3"
 }
 }
 }

JupyterLab Versioning 411

Amazon SageMaker Developer Guide

]
}

Setting a default JupyterLab version

The following sections show how to set a default JupyterLab version for Studio Classic using either
the console or the AWS CLI.

From the console

You can select the default JupyterLab version to use on either the domain or user profile level
during resource creation. To set the default JupyterLab version using the console, see Amazon
SageMaker domain overview.

From the AWS CLI

You can select the default JupyterLab version to use on either the domain or user profile level
using the AWS CLI.

To set the default JupyterLab version using the AWS CLI, you must include the ARN of the desired
default JupyterLab version as part of an AWS CLI command. This ARN differs based on the version
and the Region of the SageMaker domain.

The following table lists the ARNs of the available JupyterLab versions for each Region:

Region JL1 JL3

us-east-1 arn:aws:sagemaker:us-east-1
:081325390199:image/
jupyter-server

arn:aws:sagemaker:us-east-1
:081325390199:image/
jupyter-server-3

us-east-2 arn:aws:sagemaker:us-east-2
:429704687514:image/
jupyter-server

arn:aws:sagemaker:us-east-2
:429704687514:image/
jupyter-server-3

us-west-1 arn:aws:sagemaker:us-west-1
:742091327244:image/
jupyter-server

arn:aws:sagemaker:us-west-1
:742091327244:image/
jupyter-server-3

JupyterLab Versioning 412

Amazon SageMaker Developer Guide

us-west-2 arn:aws:sagemaker:us-west-2
:236514542706:image/
jupyter-server

arn:aws:sagemaker:us-west-2
:236514542706:image/
jupyter-server-3

af-south-1 arn:aws:sagemaker:af-south-
1:559312083959:image/
jupyter-server

arn:aws:sagemaker:af-south-
1:559312083959:image/
jupyter-server-3

ap-east-1 arn:aws:sagemaker:ap-east-1
:493642496378:image/
jupyter-server

arn:aws:sagemaker:ap-east-1
:493642496378:image/
jupyter-server-3

ap-south-1 arn:aws:sagemaker:ap-south-
1:394103062818:image/
jupyter-server

arn:aws:sagemaker:ap-south-
1:394103062818:image/
jupyter-server-3

ap-northeast-2 arn:aws:sagemaker:ap-northe
ast-2:806072073708:image/
jupyter-server

arn:aws:sagemaker:ap-northe
ast-2:806072073708:image/
jupyter-server-3

ap-southeast-1 arn:aws:sagemaker:ap-southe
ast-1:492261229750:image/
jupyter-server

arn:aws:sagemaker:ap-southe
ast-1:492261229750:image/
jupyter-server-3

ap-southeast-2 arn:aws:sagemaker:ap-southe
ast-2:452832661640:image/
jupyter-server

arn:aws:sagemaker:ap-southe
ast-2:452832661640:image/
jupyter-server-3

ap-northeast-1 arn:aws:sagemaker:ap-northe
ast-1:102112518831:image/
jupyter-server

arn:aws:sagemaker:ap-northe
ast-1:102112518831:image/
jupyter-server-3

ca-central-1 arn:aws:sagemaker:ca-centra
l-1:310906938811:image/
jupyter-server

arn:aws:sagemaker:ca-centra
l-1:310906938811:image/
jupyter-server-3

eu-central-1 arn:aws:sagemaker:eu-centra
l-1:936697816551:image/
jupyter-server

arn:aws:sagemaker:eu-centra
l-1:936697816551:image/
jupyter-server-3

JupyterLab Versioning 413

Amazon SageMaker Developer Guide

eu-west-1 arn:aws:sagemaker:eu-west-1
:470317259841:image/
jupyter-server

arn:aws:sagemaker:eu-west-1
:470317259841:image/
jupyter-server-3

eu-west-2 arn:aws:sagemaker:eu-west-2
:712779665605:image/
jupyter-server

arn:aws:sagemaker:eu-west-2
:712779665605:image/
jupyter-server-3

eu-west-3 arn:aws:sagemaker:eu-west-3
:615547856133:image/
jupyter-server

arn:aws:sagemaker:eu-west-3
:615547856133:image/
jupyter-server-3

eu-north-1 arn:aws:sagemaker:eu-north-
1:243637512696:image/
jupyter-server

arn:aws:sagemaker:eu-north-
1:243637512696:image/
jupyter-server-3

eu-south-1 arn:aws:sagemaker:eu-south-
1:592751261982:image/
jupyter-server

arn:aws:sagemaker:eu-south-
1:592751261982:image/
jupyter-server-3

eu-south-2 arn:aws:sagemaker:eu-south-
2:127363102723:image/
jupyter-server

arn:aws:sagemaker:eu-south-
2:127363102723:image/
jupyter-server-3

sa-east-1 arn:aws:sagemaker:sa-east-1
:782484402741:image/
jupyter-server

arn:aws:sagemaker:sa-east-1
:782484402741:image/
jupyter-server-3

cn-north-1 arn:aws-cn:sagemaker:cn-nor
th-1:390048526115:image/
jupyter-server

arn:aws-cn:sagemaker:cn-nor
th-1:390048526115:image/
jupyter-server-3

cn-northwest-1 arn:aws-cn:sagemaker:cn-
northwest-1:390780980
154:image/jupyter-server

arn:aws-cn:sagemaker:cn-
northwest-1:390780980
154:image/jupyter-server-3

JupyterLab Versioning 414

Amazon SageMaker Developer Guide

Create or update domain

You can set a default JupyterServer version at the domain level by invoking CreateDomain or
UpdateDomain and passing the
UserSettings.JupyterServerAppSettings.DefaultResourceSpec.SageMakerImageArn field.

The following shows how to create a domain with JupyterLab 3 as the default, using the AWS CLI:

aws --region <REGION> \
sagemaker create-domain \
--domain-name <NEW_DOMAIN_NAME> \
--auth-mode <AUTHENTICATION_MODE> \
--subnet-ids <SUBNET-IDS> \
--vpc-id <VPC-ID> \
--default-user-settings '{
 "JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "SageMakerImageArn": "arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:image/jupyter-
server-3",
 "InstanceType": "system"
 }
 }
}'

The following shows how to update a domain to use JupyterLab 3 as the default, using the AWS
CLI:

aws --region <REGION> \
sagemaker update-domain \
--domain-id <YOUR_DOMAIN_ID> \
--default-user-settings '{
 "JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "SageMakerImageArn": "arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:image/jupyter-
server-3",
 "InstanceType": "system"
 }
 }
}'

JupyterLab Versioning 415

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateDomain.html

Amazon SageMaker Developer Guide

Create or update user profile

You can set a default JupyterServer version at the user profile level
by invoking CreateUserProfile or UpdateUserProfile and passing
the UserSettings.JupyterServerAppSettings.DefaultResourceSpec.SageMakerImageArn
field.

The following shows how to create a user profile with JupyterLab 3 as the default on an existing
domain, using the AWS CLI:

aws --region <REGION> \
sagemaker create-user-profile \
--domain-id <YOUR_DOMAIN_ID> \
--user-profile-name <NEW_USERPROFILE_NAME> \
--query UserProfileArn --output text \
--user-settings '{
 "JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "SageMakerImageArn": "arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:image/jupyter-
server-3",
 "InstanceType": "system"
 }
 }
}'

The following shows how to update a user profile to use JupyterLab 3 as the default, using the
AWS CLI:

aws --region <REGION> \
sagemaker update-user-profile \
 --domain-id <YOUR_DOMAIN_ID> \
 --user-profile-name <EXISTING_USERPROFILE_NAME> \
--user-settings '{
 "JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "SageMakerImageArn": "arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:image/jupyter-
server-3",
 "InstanceType": "system"
 }
 }
}'

JupyterLab Versioning 416

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateUserProfile.html

Amazon SageMaker Developer Guide

View and update the JupyterLab version of an application from the console

The following shows how to view and update the JupyterLab version of an application.

1. Navigate to the SageMaker domains page.

2. Select a domain to view its user profiles.

3. Select a user to view their applications.

4. To view the JupyterLab version of an application, select the application's name.

5. To update the JupyterLab version, select Action.

6. From the dropdown menu, select Change JupyterLab version.

7. From the Studio Classic settings page, select the JupyterLab version from the dropdown
menu.

8. After the JupyterLab version for the user profile has been successfully updated, restart the
JupyterServer application to make the version changes effective. For more information about
restarting a JupyterServer application, see Shut down and Update SageMaker Studio Classic.

Installing JupyterLab and Jupyter Server extensions

The process for installing JupyterLab and Jupyter Server extensions differs depending on the
JupyterLab version of your Studio Classic instance. In JupyterLab 1, you can open the terminal and
install extensions without activating any conda environment. In JupyterLab 3, you must activate
the studio conda environment before installing extensions. The method for this differs if you're
installing the extensions from within Studio Classic or using a lifecycle configuration script.

Installing Extension from within Studio Classic

To install extensions from within Studio Classic, you must activate the studio environment before
you install extensions.

Before installing extensions
conda activate studio

Install your extensions
pip install <JUPYTER_EXTENSION>

After installing extensions
conda deactivate

JupyterLab Versioning 417

Amazon SageMaker Developer Guide

Installing Extensions using a lifecycle configuration script

If you're installing JupyterLab and Jupyter Server extensions in your lifecycle configuration script,
you must modify your script so that it works with JupyterLab 3. The following sections show the
code needed for existing and new lifecycle configuration scripts.

Existing lifecycle configuration script

If you're reusing an existing lifecycle configuration script that must work with both versions of
JupyterLab, use the following code in your script:

Before installing extension
export
 AWS_SAGEMAKER_JUPYTERSERVER_IMAGE="${AWS_SAGEMAKER_JUPYTERSERVER_IMAGE:-'jupyter-
server'}"
if ["$AWS_SAGEMAKER_JUPYTERSERVER_IMAGE" = "jupyter-server-3"] ; then
 eval "$(conda shell.bash hook)"
 conda activate studio
fi;

Install your extensions
pip install <JUPYTER_EXTENSION>

After installing extension
if ["$AWS_SAGEMAKER_JUPYTERSERVER_IMAGE" = "jupyter-server-3"]; then
 conda deactivate
fi;

New lifecycle configuration script

If you're writing a new lifecycle configuration script that only uses JupyterLab 3, you can use the
following code in your script:

Before installing extension
eval "$(conda shell.bash hook)"
conda activate studio

Install your extensions
pip install <JUPYTER_EXTENSION>

JupyterLab Versioning 418

Amazon SageMaker Developer Guide

conda deactivate

Use the Amazon SageMaker Studio Classic Launcher

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can use the Amazon SageMaker Studio Classic Launcher to create notebooks and text files, and
to launch terminals and interactive Python shells.

You can open Studio Classic Launcher in any of the following ways:

• Choose Amazon SageMaker Studio Classic at the top left of the Studio Classic interface.

• Use the keyboard shortcut Ctrl + Shift + L.

• From the Studio Classic menu, choose File and then choose New Launcher.

• If the SageMaker file browser is open, choose the plus (+) sign in the Studio Classic file browser
menu.

• In the Quick actions section of the Home tab, choose Open Launcher. The Launcher opens
in a new tab. The Quick actions section is visible by default but can be toggled off. Choose
Customize Layout to turn this section back on.

Use the Studio Classic Launcher 419

Amazon SageMaker Developer Guide

The Launcher consists of the following two sections:

Topics

• Notebooks and compute resources

• Utilities and files

Notebooks and compute resources

In this section, you can create a notebook, open an image terminal, or open a Python console.

To create or launch one of those items:

1. Choose Change environment to select a SageMaker image, a kernel, an instance type, and,
optionally, add a lifecycle configuration script that runs on image start-up. For more information
on lifecycle configuration scripts, see Use lifecycle configurations with Amazon SageMaker
Studio Classic. For more information about kernel updates, see Change an Image or a Kernel.

2. Select an item.

Use the Studio Classic Launcher 420

Amazon SageMaker Developer Guide

Note

When you choose an item from this section, you might incur additional usage charges. For
more information, see Usage Metering.

The following items are available:

• Notebook

Launches the notebook in a kernel session on the chosen SageMaker image.

Creates the notebook in the folder that you have currently selected in the file browser. To view
the file browser, in the left sidebar of Studio Classic, choose the File Browser icon.

• Console

Launches the shell in a kernel session on the chosen SageMaker image.

Opens the shell in the folder that you have currently selected in the file browser.

• Image terminal

Launches the terminal in a terminal session on the chosen SageMaker image.

Opens the terminal in the root folder for the user (as shown by the Home folder in the file
browser).

Note

By default, CPU instances launch on a ml.t3.medium instance, while GPU instances launch
on a ml.g4dn.xlarge instance.

Utilities and files

In this section, you can add contextual help in a notebook; create Python, Markdown and text files;
and open a system terminal.

Use the Studio Classic Launcher 421

Amazon SageMaker Developer Guide

Note

Items in this section run in the context of Amazon SageMaker Studio Classic and don't incur
usage charges.

The following items are available:

• Show Contextual Help

Opens a new tab that displays contextual help for functions in a Studio Classic notebook. To
display the help, choose a function in an active notebook. To make it easier to see the help in
context, drag the help tab so that it's adjacent to the notebook tab. To open the help tab from
within a notebook, press Ctrl + I.

The following screenshot shows the contextual help for the Experiment.create method.

Use the Studio Classic Launcher 422

Amazon SageMaker Developer Guide

• System terminal

Opens a bash shell in the root folder for the user (as shown by the Home folder in the file
browser).

• Text File and Markdown File

Creates a file of the associated type in the folder that you have currently selected in the
file browser. To view the file browser, in the left sidebar, choose the File Browser icon

().

Collaborate with shared spaces

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

An Amazon SageMaker Studio Classic shared space consists of a shared JupyterServer application
and a shared directory. All user profiles in a domain have access to all shared spaces in the domain.
Amazon SageMaker automatically scopes resources in a shared space within the context of the
Amazon SageMaker Studio Classic application that you launch in that shared space. Resources in a
shared space include notebooks, files, experiments, and models.

A Studio Classic shared space only supports Studio Classic and KernelGateway applications. A
shared space only supports the use of a JupyterLab 3 image Amazon Resource Name (ARN). For
more information, see JupyterLab Versioning.

Amazon SageMaker automatically tags all SageMaker resources that you create within the scope of
a shared space. You can use these tags to monitor costs and plan budgets using tools, such as AWS
Budgets.

A shared space uses the same VPC settings as the domain that it's created in.

Collaborate with shared spaces 423

Amazon SageMaker Developer Guide

Note

Shared spaces do not support the use of Amazon SageMaker Data Wrangler or Amazon
EMR cross-account clusters.

Automatic tagging

All resources created in a shared space are automatically tagged with a domain ARN tag and shared
space ARN tag. The domain ARN tag is based on the domain ID, while the shared space ARN tag is
based on the shared space name.

You can use these tags to monitor AWS CloudTrail usage. For more information, see Log Amazon
SageMaker API Calls with AWS CloudTrail.

You can also use these tags to monitor costs with AWS Billing and Cost Management. For more
information, see Using AWS cost allocation tags.

Real time co-editing of notebooks

A key benefit of a shared space is that it facilitates collaboration between members of the
shared space in real time. Users collaborating in a workspace get access to a shared Studio
Classic application where they can access, read, and edit their notebooks in real time. Real time
collaboration is only supported for JupyterServer applications within a shared space.

Users with access to a shared space can simultaneously open, view, edit, and execute Jupyter
notebooks in the shared Studio Classic application in that space.

The notebook indicates each co-editing user with a different cursor that shows the user profile
name. While multiple users can view the same notebook, co-editing is best suited for small groups
of two to five users.

To track changes being made by multiple users, we strongly recommended using Studio Classic's
built-in Git-based version control.

JupyterServer 2

To use shared spaces, Jupyter Server version 2 is required. Certain JupyterLab extensions and
packages can forcefully downgrade Jupyter Server to version 1. This prevents the use of shared
space. Run the following from the command prompt to change the version number and continue
using shared spaces.

Collaborate with shared spaces 424

https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon SageMaker Developer Guide

conda activate studio
pip install jupyter-server==2.0.0rc3

Customize a shared space

To attach a lifecycle configuration or custom image to a shared space, you must use the AWS
CLI. For more information about creating and attaching lifecycle configurations, see Create and
associate a lifecycle configuration. For more information about creating and attaching custom
images, see Bring your own SageMaker image.

Create a shared space

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following topic demonstrates how to create an Amazon SageMaker Studio Classic shared space
in an existing Amazon SageMaker domain. If you created your domain without support for shared
spaces, you must add support for shared spaces to your existing domain before you can create a
shared space.

Topics

• Add shared space support to an existing domain

• Create a shared space

Add shared space support to an existing domain

You can use the SageMaker console or the AWS CLI to add support for shared spaces to an existing
domain. If the domain is using VPC only network access, then you can only add shared space
support using the AWS CLI.

Console

Complete the following procedure to add support for shared spaces to an existing domain from the
SageMaker console.

Collaborate with shared spaces 425

Amazon SageMaker Developer Guide

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to open the domain settings page
for.

5. On the domain details page, choose the domain settings tab.

6. Choose Edit.

7. For Space default execution role, set an IAM role that is used by default for all shared spaces
created in the domain.

8. Choose Next.

9. Choose Next.

10. Choose Next.

11. Choose Submit.

AWS CLI

Run the following command from the terminal of your local machine to add default shared space
settings to a domain from the AWS CLI. If you are adding default shared space settings to a domain
within an Amazon VPC, you must also include a list of security groups. shared spaces only support
the use of JupyterLab 3 image ARNs. For more information, see JupyterLab Versioning.

Public Internet domain
aws --region region \
sagemaker update-domain \
--domain-id domain-id \
--default-space-settings "ExecutionRole=execution-role-
arn,JupyterServerAppSettings={DefaultResourceSpec={InstanceType=system,SageMakerImageArn=sagemaker-
image-arn}}"

VPCOnly domain
aws --region region \
sagemaker update-domain \
--domain-id domain-id \
--default-space-settings "ExecutionRole=execution-role-
arn,JupyterServerAppSettings={DefaultResourceSpec={InstanceType=system,SageMakerImageArn=sagemaker-
image-arn}},SecurityGroups=[security-groups]"

Collaborate with shared spaces 426

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Verify that the default shared space settings have been updated.

aws --region region \
sagemaker describe-domain \
--domain-id domain-id

Create a shared space

The following sections demonstrate how to create a shared space from the Amazon SageMaker
console, Amazon SageMaker Studio, or the AWS CLI.

Create from Studio

Complete the following procedure to create a shared space in a domain from Studio.

1. Navigate to Studio following the steps in Launch Amazon SageMaker Studio.

2. From the Studio UI, find the applications pane on the left side.

3. From the applications pane, select Studio Classic.

4. Choose Create Studio Classic space

5. In the pop up window, enter a name for the space.

6. Choose Create space.

Create from the console

Complete the following procedure to create a shared space in a domain from the SageMaker
console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to create a shared space for.

5. On the domain details page, choose the Space management tab.

6. Choose Create.

7. Enter a name for your shared space. shared space names within a domain must be unique. The
execution role for the shared space is set to the domain IAM execution role.

Collaborate with shared spaces 427

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Create from AWS CLI

This section shows how to create a shared space from the AWS CLI.

You cannot set the execution role of a shared space when creating or updating it.
The DefaultDomainExecRole can only be set when creating or updating the domain. shared
spaces only support the use of JupyterLab 3 image ARNs. For more information, see JupyterLab
Versioning.

To create a shared space from the AWS CLI, run the following command from the terminal of your
local machine.

aws --region region \
sagemaker create-space \
--domain-id domain-id \
--space-name space-name \
--space-settings '{
 "JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "SageMakerImageArn": "sagemaker-image-arn",
 "InstanceType": "system"
 }
 }
}'

List and Describe shared spaces

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

This guide shows how to access a list of Amazon SageMaker Studio Classic shared spaces in an
Amazon SageMaker domain with the Amazon SageMaker console, Amazon SageMaker Studio, or
the AWS CLI. It also shows how to view details of a shared space from the AWS CLI.

Topics

Collaborate with shared spaces 428

Amazon SageMaker Developer Guide

• List shared spaces

• View shared space details

List shared spaces

The following topic describes how to view a list of shared spaces within a domain from the
SageMaker console or the AWS CLI.

List shared spaces from Studio

Complete the following procedure to view a list of the shared spaces in a domain from Studio.

1. Navigate to Studio following the steps in Launch Amazon SageMaker Studio.

2. From the Studio UI, find the applications pane on the left side.

3. From the applications pane, select Studio Classic. This page lists all of the Studio Classic
spaces in the domain that you have access to.

List shared spaces from the console

Complete the following procedure to view a list of the shared spaces in a domain from the
SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to view the list of shared spaces for.

5. On the domain details page, choose the Space management tab.

List shared spaces from the AWS CLI

To list the shared spaces in a domain from the AWS CLI, run the following command from the
terminal of your local machine.

aws --region region \
sagemaker list-spaces \
--domain-id domain-id

Collaborate with shared spaces 429

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

View shared space details

The following section describes how to view shared space details from the SageMaker console,
Studio, or the AWS CLI.

View shared spaces details from Studio

Complete the following procedure to view the details of a shared spaces in a domain from Studio.

1. Navigate to Studio following the steps in Launch Amazon SageMaker Studio.

2. From the Studio UI, find the applications pane on the left side.

3. From the applications pane, select Studio Classic. This page lists all of the Studio Classic
spaces in the domain that you have access to.

4. Select the name of the space that you want to view more details for.

View shared space details from the console

You can view the details of a shared space from the SageMaker console using the following
procedure.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to view the list of shared spaces for.

5. On the domain details page, choose the Space management tab.

6. Select the name of the space to open a new page that lists details about the shared space.

View shared space details from the AWS CLI

To view the details of a shared space from the AWS CLI, run the following command from the
terminal of your local machine.

aws --region region \
sagemaker describe-space \
--domain-id domain-id \
--space-name space-name

Collaborate with shared spaces 430

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Edit a shared space

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can only edit the details for an Amazon SageMaker Studio Classic shared space using the AWS
CLI. This is not currently supported from the Amazon SageMaker console. You can only update
workspace attributes when there are no running applications in the shared space.

To edit the details of a shared space from the AWS CLI, run the following command from the
terminal of your local machine. shared spaces only support the use of JupyterLab 3 image ARNs.
For more information, see JupyterLab Versioning.

aws --region region \
sagemaker update-space \
--domain-id domain-id \
--space-name space-name \
--query SpaceArn --output text \
--space-settings '{
 "JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "SageMakerImageArn": "sagemaker-image-arn",
 "InstanceType": "system"
 }
 }
}'

Delete a shared space

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the

Collaborate with shared spaces 431

Amazon SageMaker Developer Guide

Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following topic shows how to delete an Amazon SageMaker Studio Classic shared space from
the Amazon SageMaker console or AWS CLI. A shared space can only be deleted if it has no running
applications.

Topics

• Console

• AWS CLI

Console

Complete the following procedure to delete a shared space in the Amazon SageMaker domain from
the SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to create a shared space for.

5. On the domain details page, choose the Space management tab.

6. Select the shared space that you want to delete. The shared space must not contain any non-
failed apps.

7. Choose Delete. This opens a new window.

8. Choose Yes, delete space.

9. Enter delete in the field.

10. Choose Delete space.

AWS CLI

To delete a shared space from the AWS CLI, run the following command from the terminal of your
local machine.

aws --region region \

Collaborate with shared spaces 432

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

sagemaker delete-space \
--domain-id domain-id \
--space-name space-name

Use Amazon SageMaker Studio Classic Notebooks

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker Studio Classic notebooks are collaborative notebooks that you can launch
quickly because you don't need to set up compute instances and file storage beforehand. A set of
instance types, known as Fast launch types are designed to launch in under two minutes. Studio
Classic notebooks provide persistent storage, which enables you to view and share notebooks even
if the instances that the notebooks run on are shut down.

You can share your notebooks with others, so that they can easily reproduce your results and
collaborate while building models and exploring your data. You provide access to a read-only
copy of the notebook through a secure URL. Dependencies for your notebook are included in the
notebook's metadata. When your colleagues copy the notebook, it opens in the same environment
as the original notebook.

A Studio Classic notebook runs in an environment defined by the following:

• Amazon EC2 instance type – The hardware configuration the notebook runs on. The
configuration includes the number and type of processors (vCPU and GPU), and the amount and
type of memory. The instance type determines the pricing rate.

• SageMaker image – A container image that is compatible with SageMaker Studio Classic. The
image consists of the kernels, language packages, and other files required to run a notebook in
Studio Classic. There can be multiple images in an instance. For more information, see Bring your
own SageMaker image.

• KernelGateway app – A SageMaker image runs as a KernelGateway app. The app provides access
to the kernels in the image. There is a one-to-one correspondence between a SageMaker image
and a KernelGateway app.

Use Studio Classic Notebooks 433

Amazon SageMaker Developer Guide

• Kernel – The process that inspects and runs the code contained in the notebook. A kernel is
defined by a kernel spec in the image. There can be multiple kernels in an image.

You can change any of these resources from within the notebook.

The following diagram outlines how a notebook kernel runs in relation to the KernelGateway App,
User, and domain.

Sample SageMaker Studio Classic notebooks are available in the aws_sagemaker_studio folder
of the Amazon SageMaker example GitHub repository. Each notebook comes with the necessary
SageMaker image that opens the notebook with the appropriate kernel.

We recommend that you familiarize yourself with the SageMaker Studio Classic interface and
the Studio Classic notebook toolbar before creating or using a Studio Classic notebook. For
more information, see Amazon SageMaker Studio Classic UI Overview and Use the Studio Classic
Notebook Toolbar.

Use Studio Classic Notebooks 434

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_sagemaker_studio
https://github.com/awslabs/amazon-sagemaker-examples

Amazon SageMaker Developer Guide

Topics

• How Are Amazon SageMaker Studio Classic Notebooks Different from Notebook Instances?

• Get Started

• Amazon SageMaker Studio Classic Tour

• Create or Open an Amazon SageMaker Studio Classic Notebook

• Use the Studio Classic Notebook Toolbar

• Install External Libraries and Kernels in Amazon SageMaker Studio Classic

• Share and Use an Amazon SageMaker Studio Classic Notebook

• Get Studio Classic Notebook and App Metadata

• Get Notebook Differences

• Manage Resources

• Usage Metering

• Available Resources

How Are Amazon SageMaker Studio Classic Notebooks Different from Notebook
Instances?

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

When you're starting a new notebook, we recommend that you create the notebook in Amazon
SageMaker Studio Classic instead of launching a notebook instance from the Amazon SageMaker
console. There are many benefits to using a Studio Classic notebook, including the following:

• Faster: Starting a Studio Classic notebook is faster than launching an instance-based notebook.
Typically, it is 5-10 times faster than instance-based notebooks.

• Easy notebook sharing: Notebook sharing is an integrated feature in Studio Classic. Users can
generate a shareable link that reproduces the notebook code and also the SageMaker image
required to execute it, in just a few clicks.

Use Studio Classic Notebooks 435

Amazon SageMaker Developer Guide

• Latest Python SDK: Studio Classic notebooks come pre-installed with the latest Amazon
SageMaker Python SDK.

• Access all Studio Classic features: Studio Classic notebooks are accessed from within Studio
Classic. This enables you to build, train, debug, track, and monitor your models without leaving
Studio Classic.

• Persistent user directories: Each member of a Studio team gets their own home directory to
store their notebooks and other files. The directory is automatically mounted onto all instances
and kernels as they're started, so their notebooks and other files are always available. The home
directories are stored in Amazon Elastic File System (Amazon EFS) so that you can access them
from other services.

• Direct access: When using IAM Identity Center, you use your IAM Identity Center credentials
through a unique URL to directly access Studio Classic. You don't have to interact with the AWS
Management Console to run your notebooks.

• Optimized images: Studio Classic notebooks are equipped with a set of predefined SageMaker
image settings to get you started faster.

Note

Studio Classic notebooks don't support local mode. However, you can use a notebook
instance to train a sample of your dataset locally, and then use the same code in a Studio
Classic notebook to train on the full dataset.

When you open a notebook in SageMaker Studio Classic, the view is an extension of the JupyterLab
interface. The primary features are the same, so you'll find the typical features of a Jupyter
notebook and JupyterLab. For more information about the Studio Classic interface, see Amazon
SageMaker Studio Classic UI Overview.

Get Started

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Use Studio Classic Notebooks 436

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

To get started, you or your organization's administrator need to complete the SageMaker domain
onboarding process. For more information, see Amazon SageMaker domain overview.

You can access a Studio Classic notebook in any of the following ways:

• You receive an email invitation to access Studio Classic through your organization's IAM Identity
Center, which includes a direct link to login to Studio Classic without having to use the Amazon
SageMaker console. You can proceed to the the section called “Next Steps”.

• You receive a link to a shared Studio Classic notebook, which includes a direct link to log in to
Studio Classic without having to use the SageMaker console. You can proceed to the the section
called “Next Steps”.

• You onboard to a domain and then log in to the SageMaker console. For more information, see
Amazon SageMaker domain overview.

Launch Amazon SageMaker

Complete the steps in Launch Amazon SageMaker Studio Classic to launch Studio Classic.

Next Steps

Now that you're in Studio Classic, you can try any of the following options:

• To create a Studio Classic notebook or explore Studio Classic end-to-end tutorial notebooks –
See Amazon SageMaker Studio Classic Tour in the next section.

• To familiarize yourself with the Studio Classic interface – See Amazon SageMaker Studio Classic
UI Overview or try the Getting started notebook by selecting Open the Getting started
notebook in the Quick actions section of the Studio Classic Home page.

Amazon SageMaker Studio Classic Tour

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Use Studio Classic Notebooks 437

Amazon SageMaker Developer Guide

For a walkthrough that takes you on a tour of the main features of Amazon SageMaker Studio
Classic, see the xgboost_customer_churn_studio.ipynb sample notebook from the aws/amazon-
sagemaker-examples GitHub repository. The code in the notebook trains multiple models and
sets up the SageMaker Debugger and SageMaker Model Monitor. The walkthrough shows you
how to view the trials, compare the resulting models, show the debugger results, and deploy
the best model using the Studio Classic UI. You don't need to understand the code to follow this
walkthrough.

Prerequisites

To run the notebook for this tour, you need:

• An IAM account to sign in to Studio. For information, see Amazon SageMaker domain overview.

• Basic familiarity with the Studio user interface and Jupyter notebooks. For information, see
Amazon SageMaker Studio Classic UI Overview.

• A copy of the aws/amazon-sagemaker-examples repository in your Studio environment.

To clone the repository

1. Launch Studio Classic following the steps in Launch Amazon SageMaker Studio Classic For
users in IAM Identity Center, sign in using the URL from your invitation email.

2. On the top menu, choose File, then New, then Terminal.

3. At the command prompt, run the following command to clone the aws/amazon-sagemaker-
examples GitHub repository.

$ git clone https://github.com/aws/amazon-sagemaker-examples.git

To navigate to the sample notebook

1. From the File Browser on the left menu, select amazon-sagemaker-examples.

2. Navigate to the example notebook with the following path.

~/amazon-sagemaker-examples/aws_sagemaker_studio/getting_started/
xgboost_customer_churn_studio.ipynb

3. Follow the notebook to learn about Studio Classic's main features.

Use Studio Classic Notebooks 438

https://sagemaker-examples.readthedocs.io/en/latest/aws_sagemaker_studio/getting_started/xgboost_customer_churn_studio.html
https://github.com/aws/amazon-sagemaker-examples
https://github.com/aws/amazon-sagemaker-examples
https://github.com/aws/amazon-sagemaker-examples
https://github.com/aws/amazon-sagemaker-examples
https://github.com/aws/amazon-sagemaker-examples

Amazon SageMaker Developer Guide

Note

If you encounter an error when you run the sample notebook, and some time has passed
from when you cloned the repository, review the notebook on the remote repository for
updates.

Create or Open an Amazon SageMaker Studio Classic Notebook

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

When you Create a Notebook from the File Menu in Amazon SageMaker Studio Classic or Open
a notebook in Studio Classic for the first time, you are prompted to set up your environment by
choosing a SageMaker image, a kernel, an instance type, and, optionally, a lifecycle configuration
script that runs on image start-up. SageMaker launches the notebook on an instance of the chosen
type. By default, the instance type is set to ml.t3.medium (available as part of the AWS Free Tier)
for CPU-based images. For GPU-based images, the default instance type is ml.g4dn.xlarge.

If you create or open additional notebooks that use the same instance type, whether or not the
notebooks use the same kernel, the notebooks run on the same instance of that instance type.

After you launch a notebook, you can change its instance type, SageMaker image, and kernel from
within the notebook. For more information, see Change an Instance Type and Change an Image or
a Kernel.

Note

You can have only one instance of each instance type. Each instance can have multiple
SageMaker images running on it. Each SageMaker image can run multiple kernels or
terminal instances.

Use Studio Classic Notebooks 439

https://aws.amazon.com/free

Amazon SageMaker Developer Guide

Billing occurs per instance and starts when the first instance of a given instance type is launched.
If you want to create or open a notebook without the risk of incurring charges, open the notebook
from the File menu and choose No Kernel from the Select Kernel dialog box. You can read and
edit a notebook without a running kernel but you can't run cells.

Billing ends when the SageMaker image for the instance is shut down. For more information, see
Usage Metering.

For information about shutting down the notebook, see Shut Down Resources.

Topics

• Open a notebook in Studio Classic

• Create a Notebook from the File Menu

• Create a Notebook from the Launcher

• List of the available instance types, images, and kernels

Open a notebook in Studio Classic

Amazon SageMaker Studio Classic can only open notebooks listed in the Studio Classic file browser.
For instructions on uploading a notebook to the file browser, see Upload Files to SageMaker Studio
Classic or Clone a Git Repository in SageMaker Studio Classic.

To open a notebook

1. In the left sidebar, choose the File Browser icon (

)
to display the file browser.

2. Browse to a notebook file and double-click it to open the notebook in a new tab.

Create a Notebook from the File Menu

To create a notebook from the File menu

1. From the Studio Classic menu, choose File, choose New, and then choose Notebook.

2. In the Change environment dialog box, use the dropdown menus to select your Image,
Kernel, Instance type, and Start-up script, then choose Select. Your notebook launches and
opens in a new Studio Classic tab.

Use Studio Classic Notebooks 440

Amazon SageMaker Developer Guide

Create a Notebook from the Launcher

To create a notebook from the Launcher

1. To open the Launcher, choose Amazon SageMaker Studio Classic at the top left of the Studio
Classic interface or use the keyboard shortcut Ctrl + Shift + L.

To learn about all the available ways to open the Launcher, see Use the Amazon SageMaker
Studio Classic Launcher

2. In the Launcher, in the Notebooks and compute resources section, choose Change
environment.

Use Studio Classic Notebooks 441

Amazon SageMaker Developer Guide

3. In the Change environment dialog box, use the dropdown menus to select your Image,
Kernel, Instance type, and Start-up script, then choose Select.

4. In the Launcher, choose Create notebook. Your notebook launches and opens in a new Studio
Classic tab.

To view the notebook's kernel session, in the left sidebar, choose the Running Terminals and
Kernels icon (

).
You can stop the notebook's kernel session from this view.

List of the available instance types, images, and kernels

For a list of all available resources, see:

• Available Studio Classic Instance Types

• Available Amazon SageMaker Images

Use the Studio Classic Notebook Toolbar

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the

Use Studio Classic Notebooks 442

Amazon SageMaker Developer Guide

Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker Studio Classic notebooks extend the JupyterLab interface. For an overview of
the original JupyterLab interface, see The JupyterLab Interface.

The following image shows the toolbar and an empty cell from a Studio Classic notebook.

When you pause on a toolbar icon, a tooltip displays the icon function. Additional notebook
commands are found in the Studio Classic main menu. The toolbar includes the following icons:

Icon Description

Save and checkpoint

Saves the notebook and updates the checkpoint file. For more
information, see Get the Difference Between the Last Checkpoint.

Insert cell

Inserts a code cell below the current cell. The current cell is noted by
the blue vertical marker in the left margin.

Cut, copy, and paste cells

Cuts, copies, and pastes the selected cells.

Run cells

Runs the selected cells and then makes the cell that follows the last
selected cell the new selected cell.

Interrupt kernel

Use Studio Classic Notebooks 443

https://jupyterlab.readthedocs.io/en/latest/user/interface.html

Amazon SageMaker Developer Guide

Icon Description

Interrupts the kernel, which cancels the currently running operation.
The kernel remains active.

Restart kernel

Restarts the kernel. Variables are reset. Unsaved information is not
affected.

Restart kernel and run all cells

Restarts the kernel, then run all the cells of the notebook.

Cell type

Displays or changes the current cell type. The cell types are:

• Code – Code that the kernel runs.

• Markdown – Text rendered as markdown.

• Raw – Content, including Markdown markup, that's displayed as text.

Launch terminal

Launches a terminal in the SageMaker image hosting the notebook. For
an example, see Get App Metadata.

Checkpoint diff

Opens a new tab that displays the difference between the notebook
and the checkpoint file. For more information, see Get the Difference
Between the Last Checkpoint.

Git diff

Only enabled if the notebook is opened from a Git repository. Opens a
new tab that displays the difference between the notebook and the last
Git commit. For more information, see Get the Difference Between the
Last Commit.

Use Studio Classic Notebooks 444

Amazon SageMaker Developer Guide

Icon Description

2 vCPU + 4 GiB Instance type

Displays or changes the instance type the notebook runs in. The format
is as follows:

number of vCPUs + amount of memory + number of GPUs

Unknown indicates the notebook was opened without specifying a
kernel. The notebook runs on the SageMaker Studio instance and
doesn't accrue runtime charges. You can't assign the notebook to an
instance type. You must specify a kernel and then Studio assigns the
notebook to a default type.

For more information, see Create or Open an Amazon SageMaker
Studio Classic Notebook and Change an Instance Type.

Cluster

Connect your notebook to an Amazon EMR cluster and scale your ETL
jobs or run large-scale model training using Apache Spark, Hive, or
Presto.

For more information, see Prepare data using Amazon EMR.

Python 3 (Data
Science)

Kernel and SageMaker Image

Displays or changes the kernel that processes the cells in the notebook.
The format is as follows:

Kernel (SageMaker Image)

No Kernel indicates the notebook was opened without specifying a
kernel. You can edit the notebook but you can't run any cells.

For more information, see Change an Image or a Kernel.

Use Studio Classic Notebooks 445

Amazon SageMaker Developer Guide

Icon Description

Kernel busy status

Displays the busy status of the kernel. When the edge of the circle and
its interior are the same color, the kernel is busy. The kernel is busy
when it is starting and when it is processing cells. Additional kernel
states are displayed in the status bar at the bottom-left corner of
SageMaker Studio.

Share notebook

Shares the notebook. For more information, see Share and Use an
Amazon SageMaker Studio Classic Notebook.

To select multiple cells, click in the left margin outside of a cell. Hold down the Shift key and use
K or the Up key to select previous cells, or use J or the Down key to select following cells.

Install External Libraries and Kernels in Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker Studio Classic notebooks come with multiple images already installed. These
images contain kernels and Python packages including scikit-learn, Pandas, NumPy, TensorFlow,
PyTorch, and MXNet. You can also install your own images that contain your choice of packages
and kernels. For more information on installing your own image, see Bring your own SageMaker
image.

The different Jupyter kernels in Amazon SageMaker Studio Classic notebooks are separate conda
environments. For information about conda environments, see Managing environments.

Use Studio Classic Notebooks 446

https://conda.io/docs/user-guide/tasks/manage-environments.html

Amazon SageMaker Developer Guide

Package installation tools

The method that you use to install Python packages from the terminal differs depending on the
image. Studio Classic supports the following package installation tools:

• Notebooks – The following commands are supported. If one of the following does not work on
your image, try the other one.

• %conda install

• %pip install

• The Jupyter terminal – You can install packages using pip and conda directly. You can also use
apt-get install to install system packages from the terminal.

Note

We do not recommend using pip install -u or pip install --user, because those
commands install packages on the user's Amazon EFS volume and can potentially block
JupyterServer app restarts. Instead, use a lifecycle configuration to reinstall the required
packages on app restarts as shown in Install packages using lifecycle configurations.

We recommend using %pip and %conda to install packages from within a notebook because they
correctly take into account the active environment or interpreter being used. For more information,
see Add %pip and %conda magic functions. You can also use the system command syntax (lines
starting with !) to install packages. For example, !pip install and !conda install.

Conda

Conda is an open source package management system and environment management system that
can install packages and their dependencies. SageMaker supports using conda with either of these
two main channels: the default channel or the conda-forge channel. For more information, see
Conda channels. The conda-forge channel is a community channel where contributors can upload
packages.

Note

Installing packages from conda-forge can take up to 10 minutes. Timing relates to how
conda resolves the dependency graph.

Use Studio Classic Notebooks 447

https://github.com/ipython/ipython/pull/11524
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html

Amazon SageMaker Developer Guide

All of the SageMaker provided environments are functional. User installed packages may not
function correctly.

Conda has two methods for activating environments: conda activate, and source activate.
For more information, see Managing environment.

Supported conda operations

• conda install of a package in a single environment

• conda install of a package in all environments

• Installing a package from the main conda repository

• Installing a package from conda-forge

• Changing the conda install location to use Amazon EBS

• Supporting both conda activate and source activate

Pip

Pip is the tool for installing and managing Python packages. Pip searches for packages on the
Python Package Index (PyPI) by default. Unlike conda, pip doesn't have built in environment
support. Therfore, pip isn't as thorough as conda when it comes to packages with native or system
library dependencies. Pip can be used to install packages in conda environments. You can use
alternative package repositories with pip instead of the PyPI.

Supported pip operations

• Using pip to install a package without an active conda environment

• Using pip to install a package in a conda environment

• Using pip to install a package in all conda environments

• Changing the pip install location to use Amazon EBS

• Using an alternative repository to install packages with pip

Unsupported

SageMaker aims to support as many package installation operations as possible. However, if the
packages were installed by SageMaker and you use the following operations on these packages, it
might make your environment unstable:

Use Studio Classic Notebooks 448

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

Amazon SageMaker Developer Guide

• Uninstalling

• Downgrading

• Upgrading

Due to potential issues with network conditions or configurations, or the availability of conda or
PyPi, packages may not install in a fixed or deterministic amount of time.

Note

Attempting to install a package in an environment with incompatible dependencies can
result in a failure. If issues occur, you can contact the library maintainer about updating the
package dependencies. When you modify the environment, such as removing or updating
existing packages, this may result in instability of that environment.

Install packages using lifecycle configurations

Install custom images and kernels on the Studio Classic instance's Amazon EBS volume so that
they persist when you stop and restart the notebook, and that any external libraries you install
are not updated by SageMaker. To do that, use a lifecycle configuration that includes both a
script that runs when you create the notebook (on-create) and a script that runs each time you
restart the notebook (on-start). For more information about using lifecycle configurations with
Studio Classic, see Use lifecycle configurations with Amazon SageMaker Studio Classic. For sample
lifecycle configuration scripts, see SageMaker Studio Classic Lifecycle Configuration Samples.

Share and Use an Amazon SageMaker Studio Classic Notebook

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can share your Amazon SageMaker Studio Classic notebooks with your colleagues. The
shared notebook is a copy. After you share your notebook, any changes you make to your original

Use Studio Classic Notebooks 449

https://github.com/aws-samples/sagemaker-studio-lifecycle-config-examples

Amazon SageMaker Developer Guide

notebook aren't reflected in the shared notebook and any changes your colleague's make in their
shared copies of the notebook aren't reflected in your original notebook. If you want to share your
latest version, you must create a new snapshot and then share it.

Topics

• Share a Notebook

• Use a Shared Notebook

• Shared spaces and realtime collaboration

Share a Notebook

The following screenshot shows the menu from a Studio Classic notebook.

To share a notebook

1. In the upper-right corner of the notebook, choose Share.

2. (Optional) In Create shareable snapshot, choose any of the following items:

• Include Git repo information – Includes a link to the Git repository that contains the
notebook. This enables you and your colleague to collaborate and contribute to the same Git
repository.

• Include output – Includes all notebook output that has been saved.

Note

If you're an user in IAM Identity Center and you don't see these options, your
IAM Identity Center administrator probably disabled the feature. Contact your
administrator.

3. Choose Create.

4. After the snapshot is created, choose Copy link and then choose Close.

5. Share the link with your colleague.

Use Studio Classic Notebooks 450

Amazon SageMaker Developer Guide

After selecting your sharing options, you are provided with a URL. You can share this link with
users that have access to Amazon SageMaker Studio Classic. When the user opens the URL, they're
prompted to log in using IAM Identity Center or IAM authentication. This shared notebook becomes
a copy, so changes made by the recipient will not be reproduced in your original notebook.

Use a Shared Notebook

You use a shared notebook in the same way you would with a notebook that you created yourself.
You must first login to your account, then open the shared link. If you don't have an active session,
you receive an error.

When you choose a link to a shared notebook for the first time, a read-only version of the
notebook opens. To edit the shared notebook, choose Create a Copy. This copies the shared
notebook to your personal storage.

The copied notebook launches on an instance of the instance type and SageMaker image that the
notebook was using when the sender shared it. If you aren't currently running an instance of the
instance type, a new instance is started. Customization to the SageMaker image isn't shared. You
can also inspect the notebook snapshot by choosing Snapshot Details.

The following are some important considerations about sharing and authentication:

• If you have an active session, you see a read-only view of the notebook until you choose Create a
Copy.

• If you don't have an active session, you need to log in.

• If you use IAM to login, after you login, select your user profile then choose Open Studio Classic.
Then you need to choose the link you were sent.

• If you use IAM Identity Center to login, after you login the shared notebook is opened
automatically in Studio.

Shared spaces and realtime collaboration

A shared space consists of a shared JupyterServer application and a shared directory. A key benefit
of a shared space is that it facilitates collaboration between members of the shared space in
real time. Users collaborating in a workspace get access to a shared Studio Classic application
where they can access, read, and edit their notebooks in real time. Real time collaboration is only
supported for JupyterServer applications within a shared space. Users with access to a shared space
can simultaneously open, view, edit, and execute Jupyter notebooks in the shared Studio Classic

Use Studio Classic Notebooks 451

Amazon SageMaker Developer Guide

application in that space. For more information about shared spaced and real time collaboration,
see Collaborate with shared spaces.

Get Studio Classic Notebook and App Metadata

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can access notebook metadata and App metadata using the Amazon SageMaker Studio Classic
UI.

Topics

• Get Studio Classic Notebook Metadata

• Get App Metadata

Get Studio Classic Notebook Metadata

Jupyter notebooks contain optional metadata that you can access through the Amazon SageMaker
Studio Classic UI.

To view the notebook metadata:

1. In the right sidebar, choose the Property Inspector icon (

).

2. Open the Advanced Tools section.

The metadata should look similar to the following.

{
 "instance_type": "ml.t3.medium",
 "kernelspec": {
 "display_name": "Python 3 (Data Science)",

Use Studio Classic Notebooks 452

Amazon SageMaker Developer Guide

 "language": "python",
 "name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-west-2:<acct-
id>:image/datascience-1.0"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.10"
 }
}

Get App Metadata

When you create a notebook in Amazon SageMaker Studio Classic, the App metadata is written
to a file named resource-metadata.json in the folder /opt/ml/metadata/. You can get the
App metadata by opening an Image terminal from within the notebook. The metadata gives you
the following information, which includes the SageMaker image and instance type the notebook
runs in:

• AppType – KernelGateway

• DomainId – Same as the Studio ClassicID

• UserProfileName – The profile name of the current user

• ResourceArn – The Amazon Resource Name (ARN) of the App, which includes the instance type

• ResourceName – The name of the SageMaker image

Additional metadata might be included for internal use by Studio Classic and is subject to change.

To get the App metadata

1. In the center of the notebook menu, choose the Launch Terminal icon (

).
This opens a terminal in the SageMaker image that the notebook runs in.

Use Studio Classic Notebooks 453

Amazon SageMaker Developer Guide

2. Run the following commands to display the contents of the resource-metadata.json file.

$ cd /opt/ml/metadata/
cat resource-metadata.json

The file should look similar to the following.

{
 "AppType": "KernelGateway",
 "DomainId": "d-xxxxxxxxxxxx",
 "UserProfileName": "profile-name",
 "ResourceArn": "arn:aws:sagemaker:us-east-2:account-id:app/d-xxxxxxxxxxxx/
profile-name/KernelGateway/datascience--1-0-ml-t3-medium",
 "ResourceName": "datascience--1-0-ml",
 "AppImageVersion":""
}

Get Notebook Differences

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can display the difference between the current notebook and the last checkpoint or the last Git
commit using the Amazon SageMaker UI.

The following screenshot shows the menu from a Studio Classic notebook.

Topics

• Get the Difference Between the Last Checkpoint

Use Studio Classic Notebooks 454

Amazon SageMaker Developer Guide

• Get the Difference Between the Last Commit

Get the Difference Between the Last Checkpoint

When you create a notebook, a hidden checkpoint file that matches the notebook is created. You
can view changes between the notebook and the checkpoint file or revert the notebook to match
the checkpoint file.

By default, a notebook is auto-saved every 120 seconds and also when you
close the notebook. However, the checkpoint file isn't updated to match
the notebook. To save the notebook and update the checkpoint file to
match, you must choose the Save notebook and create checkpoint icon (

)
on the left of the notebook menu or use the Ctrl + S keyboard shortcut.

To view the changes between the notebook and the checkpoint file, choose the Checkpoint diff
icon (

)
in the center of the notebook menu.

To revert the notebook to the checkpoint file, from the main Studio Classic menu, choose File then
Revert Notebook to Checkpoint.

Get the Difference Between the Last Commit

If a notebook is opened from a Git repository, you can view the difference between the notebook
and the last Git commit.

To view the changes in the notebook from the last Git commit, choose the Git diff icon (

)
in the center of the notebook menu.

Manage Resources

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the

Use Studio Classic Notebooks 455

Amazon SageMaker Developer Guide

Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can change the instance type, and SageMaker image and kernel from within an Amazon
SageMaker Studio Classic notebook. To create a custom kernel to use with your notebooks, see
Bring your own SageMaker image.

Topics

• Change an Instance Type

• Change an Image or a Kernel

• Shut Down Resources

Change an Instance Type

When you open a new Studio Classic notebook for the first time, you are assigned a default
Amazon Elastic Compute Cloud (Amazon EC2) instance type to run the notebook. When you open
additional notebooks on the same instance type, the notebooks run on the same instance as the
first notebook, even if the notebooks use different kernels.

You can change the instance type that your Studio Classic notebook runs on from within the
notebook.

The following information only applies to Studio Classic notebooks. For information about how
to change the instance type of a Amazon SageMaker notebook instance, see Update a Notebook
Instance.

Important

If you change the instance type, unsaved information and existing settings for the
notebook are lost, and installed packages must be re-installed.
The previous instance type continues to run even if no kernel sessions or apps are active.
You must explicitly stop the instance to stop accruing charges. To stop the instance, see
Shut Down Resources.

The following screenshot shows the menu from a Studio Classic notebook. The processor and
memory of the instance type powering the notebook are displayed as 2 vCPU + 4 GiB.

Use Studio Classic Notebooks 456

Amazon SageMaker Developer Guide

To change the instance type

1. Choose the processor and memory of the instance type powering the notebook. This opens a
pop up window.

2. From the Set up notebook environment pop up window, select the Instance type dropdown
menu.

3. From the Instance type dropdown, choose one of the instance types that are listed.

4. After choosing a type, choose Select.

5. Wait for the new instance to become enabled, and then the new instance type information is
displayed.

For a list of the available instance types, see Available Studio Classic Instance Types.

Change an Image or a Kernel

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

With Amazon SageMaker Studio Classic notebooks, you can change the notebook's image or kernel
from within the notebook.

The following screenshot shows the menu from a Studio Classic notebook. The current SageMaker
kernel and image are displayed as Python 3 (Data Science), where Python 3 denotes the kernel
and Data Science denotes the SageMaker image that contains the kernel. The color of the circle
to the right indicates the kernel is idle or busy. The kernel is busy when the center and the edge of
the circle are the same color.

Use Studio Classic Notebooks 457

Amazon SageMaker Developer Guide

To change a notebook's image or kernel

1. Choose the image/kernel name in the notebook menu.

2. From the Set up notebook environment pop up window, select the Image or Kernel
dropdown menu.

3. From the dropdown menu, choose one of the images or kernels that are listed.

4. After choosing an image or kernel, choose Select.

5. Wait for the kernel's status to show as idle, which indicates the kernel has started.

For a list of available SageMaker images and kernels, see Available Amazon SageMaker Images.

Shut Down Resources

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can shut down individual Amazon SageMaker resources, including notebooks, terminals,
kernels, apps, and instances from Studio Classic. You can also shut down all of the resources in one
of these categories at the same time. Amazon SageMaker Studio Classic does not support shutting
down resources from within a notebook.

Note

When you shut down a Studio Classic notebook instance, additional resources that you
created in Studio Classic are not deleted. For example, additional resources can include
SageMaker endpoints, Amazon EMR clusters, and Amazon S3 buckets. To stop the accrual

Use Studio Classic Notebooks 458

Amazon SageMaker Developer Guide

of charges, you must manually delete these resources. For information about finding
resources that are accruing charges, see Analyzing your costs with AWS Cost Explorer.

The following topics demonstrate how to delete these SageMaker resources.

Topics

• Shut Down an Open Notebook

• Shut Down Resources

Shut Down an Open Notebook

When you shut down a Studio Classic notebook, the notebook is not deleted. The kernel that the
notebook is running on is shut down and any unsaved information in the notebook is lost. You can
shut down an open notebook from the Studio Classic File menu or from the Running Terminal and
Kernels pane. The following procedure shows how to shut down an open notebook from the Studio
Classic File menu.

To shut down an open notebook from the File menu

1. Launch Studio Classic by following the steps in Launch Amazon SageMaker Studio Classic.

2. (Optional) Save the notebook contents by choosing File, then Save Notebook.

3. Choose File.

4. Choose Close and Shutdown Notebook. This opens a pop-up window.

5. From the pop-up window, choose OK.

Shut Down Resources

You can reach the Running Terminals and Kernels pane of Amazon SageMaker Studio Classic by
selecting the

icon. The Running Terminals and Kernels pane consists of four sections. Each section lists all the
resources of that type. You can shut down each resource individually or shut down all the resources
in a section at the same time.

Use Studio Classic Notebooks 459

https://docs.aws.amazon.com/cost-management/latest/userguide/ce-what-is.html

Amazon SageMaker Developer Guide

When you choose to shut down all resources in a section, the following occurs:

• RUNNING INSTANCES/RUNNING APPS – All instances, apps, notebooks, kernel sessions,
consoles/shells, and image terminals are shut down. System terminals aren't shut down.

• KERNEL SESSIONS – All kernels, notebooks and consoles/shells are shut down.

• TERMINAL SESSIONS – All image terminals and system terminals are shut down.

To shut down resources

1. Launch Studio Classic by following the steps in Launch Amazon SageMaker Studio Classic.

2. Choose the Running Terminals and Kernels icon (

).

3. Do either of the following:

• To shut down a specific resource, choose the Shut Down icon (

)
on the same row as the resource.

Use Studio Classic Notebooks 460

Amazon SageMaker Developer Guide

For running instances, a confirmation dialog box lists all of the resources that SageMaker
will shut down. A confirmation dialog box displays all running apps. To proceed, choose Shut
down all.

Note

A confirmation dialog box isn't displayed for kernel sessions or terminal sessions.

• To shut down all resources in a section, choose the X to the right of the section label. A
confirmation dialog box is displayed. Choose Shut down all to proceed.

Note

When you shut down these Studio Classic resources, any additional resources created
from Studio Classic, such as SageMaker endpoints, Amazon EMR clusters, and
Amazon S3 buckets are not deleted. You must manually delete these resources
to stop the accrual of charges. For information about finding resources that are
accruing charges, see Analyzing your costs with AWS Cost Explorer.

Usage Metering

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

There is no additional charge for using Amazon SageMaker Studio Classic. The costs incurred for
running Amazon SageMaker Studio Classic notebooks, interactive shells, consoles, and terminals
are based on Amazon Elastic Compute Cloud (Amazon EC2) instance usage.

When you run the following resources, you must choose a SageMaker image and kernel:

Use Studio Classic Notebooks 461

https://docs.aws.amazon.com/cost-management/latest/userguide/ce-what-is.html

Amazon SageMaker Developer Guide

From the Studio Classic Launcher

• Notebook

• Interactive Shell

• Image Terminal

From the File menu

• Notebook

• Console

When launched, the resource is run on an Amazon EC2 instance of the chosen instance type. If an
instance of that type was previously launched and is available, the resource is run on that instance.

For CPU based images, the default suggested instance type is ml.t3.medium. For GPU based
images, the default suggested instance type is ml.g4dn.xlarge.

The costs incurred are based on the instance type. You are billed separately for each instance.

Metering starts when an instance is created. Metering ends when all the apps on the instance are
shut down, or the instance is shut down. For information about how to shut down an instance, see
Shut Down Resources.

Important

You must shut down the instance to stop incurring charges. If you shut down the notebook
running on the instance but don't shut down the instance, you will still incur charges. When
you shut down the Studio Classic notebook instances, any additional resources, such as
SageMaker endpoints, Amazon EMR clusters, and Amazon S3 buckets created from Studio
Classic are not deleted. Delete those resources to stop accrual of charges.

When you open multiple notebooks on the same instance type, the notebooks run on the same
instance even if they are using different kernels. You are billed only for the time that one instance
is running.

You can change the instance type from within the notebook after you open it. For more
information, see Change an Instance Type.

Use Studio Classic Notebooks 462

Amazon SageMaker Developer Guide

For information about billing along with pricing examples, see Amazon SageMaker Pricing.

Available Resources

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following sections list the available resources for Amazon SageMaker Studio Classic notebooks.

Topics

• Available Studio Classic Instance Types

• Available Amazon SageMaker Images

Available Studio Classic Instance Types

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker Studio Classic notebooks run on Amazon Elastic Compute Cloud (Amazon
EC2) instances. The following Amazon EC2 instance types are available for use with Studio
Classic notebooks. For detailed information on which instance types fit your use case, and their
performance capabilities, see Amazon Elastic Compute Cloud Instance types. For information about
pricing for these instance types, see Amazon EC2 Pricing.

For information about available Amazon SageMaker Notebook Instance types, see
CreateNotebookInstance.

Use Studio Classic Notebooks 463

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html#sagemaker-CreateNotebookInstance-request-InstanceType

Amazon SageMaker Developer Guide

Note

For most use cases, you should use a ml.t3.medium. This is the default instance type for
CPU-based SageMaker images, and is available as part of the AWS Free Tier.

Topics

• CPU instances

• Instances with 1 or more GPUs

CPU instances

The following table lists the Amazon EC2 CPU instance types with no GPU attached that are
available for use with Studio Classic notebooks. It also lists information about the specifications of
each instance type. The default instance type for CPU-based images is ml.t3.medium.

For detailed information on which instance types fit your use case, and their performance
capabilities, see Amazon Elastic Compute Cloud Instance types. For information about pricing for
these instance types, see Amazon EC2 Pricing.

Note

Fast launch instances types are optimized to start in under two minutes.

CPU instances

Instance Use case Fast launch vCPU Memory
(GiB)

Instance
Storage
(GB)

ml.t3.medium General purpose Yes 2 4 Amazon
EBS
Only

ml.t3.large General purpose No 2 8 Amazon
EBS
Only

Use Studio Classic Notebooks 464

https://aws.amazon.com/free
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/

Amazon SageMaker Developer Guide

Instance Use case Fast launch vCPU Memory
(GiB)

Instance
Storage
(GB)

ml.t3.xlarge General purpose No 4 16 Amazon
EBS
Only

ml.t3.2xlarge General purpose No 8 32 Amazon
EBS
Only

ml.m5.large General purpose Yes 2 8 Amazon
EBS
Only

ml.m5.xlarge General purpose No 4 16 Amazon
EBS
Only

ml.m5.2xlarge General purpose No 8 32 Amazon
EBS
Only

ml.m5.4xlarge General purpose No 16 64 Amazon
EBS
Only

ml.m5.8xlarge General purpose No 32 128 Amazon
EBS
Only

ml.m5.12xlarge General purpose No 48 192 Amazon
EBS
Only

ml.m5.16xlarge General purpose No 64 256 Amazon
EBS
Only

Use Studio Classic Notebooks 465

Amazon SageMaker Developer Guide

Instance Use case Fast launch vCPU Memory
(GiB)

Instance
Storage
(GB)

ml.m5.24xlarge General purpose No 96 384 Amazon
EBS
Only

ml.m5d.large General purpose No 2 8 1 x 75
NVMe
SSD

ml.m5d.xlarge General purpose No 4 16 1 x 150
NVMe
SSD

ml.m5d.2xlarge General purpose No 8 32 1 x 300
NVMe
SSD

ml.m5d.4xlarge General purpose No 16 64 2 x 300
NVMe
SSD

ml.m5d.8xlarge General purpose No 32 128 2 x 600
NVMe
SSD

ml.m5d.12
xlarge

General purpose No 48 192 2 x 900
NVMe
SSD

ml.m5d.16
xlarge

General purpose No 64 256 4 x 600
NVMe
SSD

ml.m5d.24
xlarge

General purpose No 96 384 4 x 900
NVMe
SSD

Use Studio Classic Notebooks 466

Amazon SageMaker Developer Guide

Instance Use case Fast launch vCPU Memory
(GiB)

Instance
Storage
(GB)

ml.c5.large Compute
optimized

Yes 2 4 Amazon
EBS
Only

ml.c5.xlarge Compute
optimized

No 4 8 Amazon
EBS
Only

ml.c5.2xlarge Compute
optimized

No 8 16 Amazon
EBS
Only

ml.c5.4xlarge Compute
optimized

No 16 32 Amazon
EBS
Only

ml.c5.9xlarge Compute
optimized

No 36 72 Amazon
EBS
Only

ml.c5.12xlarge Compute
optimized

No 48 96 Amazon
EBS
Only

ml.c5.18xlarge Compute
optimized

No 72 144 Amazon
EBS
Only

ml.c5.24xlarge Compute
optimized

No 96 192 Amazon
EBS
Only

ml.r5.large Memory
optimized

No 2 16 Amazon
EBS
Only

Use Studio Classic Notebooks 467

Amazon SageMaker Developer Guide

Instance Use case Fast launch vCPU Memory
(GiB)

Instance
Storage
(GB)

ml.r5.xlarge Memory
optimized

No 4 32 Amazon
EBS
Only

ml.r5.2xlarge Memory
optimized

No 8 64 Amazon
EBS
Only

ml.r5.4xlarge Memory
optimized

No 16 128 Amazon
EBS
Only

ml.r5.8xlarge Memory
optimized

No 32 256 Amazon
EBS
Only

ml.r5.12xlarge Memory
optimized

No 48 384 Amazon
EBS
Only

ml.r5.16xlarge Memory
optimized

No 64 512 Amazon
EBS
Only

ml.r5.24xlarge Memory
optimized

No 96 768 Amazon
EBS
Only

Instances with 1 or more GPUs

The following table lists the Amazon EC2 instance types with 1 or more GPUs attached that are
available for use with Studio Classic notebooks. It also lists information about the specifications of
each instance type. The default instance type for GPU-based images is ml.g4dn.xlarge.

Use Studio Classic Notebooks 468

Amazon SageMaker Developer Guide

For detailed information on which instance types fit your use case, and their performance
capabilities, see Amazon Elastic Compute Cloud Instance types. For information about pricing for
these instance types, see Amazon EC2 Pricing.

Note

Fast launch instances types are optimized to start in under two minutes.

Instances with 1 or more GPUs

Instance Use case Fast launch GPUs vCPU Memory
(GiB)

GPU
Memory
(GiB)

Instance
Storage
(GB)

ml.p3.2xl
arge

Accelerated
computing

No 1 8 61 16 Amazon
EBS
Only

ml.p3.8xl
arge

Accelerated
computing

No 4 32 244 64 Amazon
EBS
Only

ml.p3.16x
large

Accelerated
computing

No 8 64 488 128 Amazon
EBS
Only

ml.p3dn.2
4xlarge

Accelerated
computing

No 8 96 768 256 2 x
900
NVMe
SSD

ml.p4d.24
xlarge

Accelerated
computing

No 8 96 1152 320
GB
HBM2

8 x
1000
NVMe
SSD

Use Studio Classic Notebooks 469

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/

Amazon SageMaker Developer Guide

Instance Use case Fast launch GPUs vCPU Memory
(GiB)

GPU
Memory
(GiB)

Instance
Storage
(GB)

ml.p4de.2
4xlarge

Accelerated
computing

No 8 96 1152 640
GB
HBM2e

8 x
1000
NVMe
SSD

ml.g4dn.x
large

Accelerated
computing

Yes 1 4 16 16 1 x
125
NVMe
SSD

ml.g4dn.2
xlarge

Accelerated
computing

No 1 8 32 16 1 x
225
NVMe
SSD

ml.g4dn.4
xlarge

Accelerated
computing

No 1 16 64 16 1 x
225
NVMe
SSD

ml.g4dn.8
xlarge

Accelerated
computing

No 1 32 128 16 1 x
900
NVMe
SSD

ml.g4dn.1
2xlarge

Accelerated
computing

No 4 48 192 64 1 x
900
NVMe
SSD

ml.g4dn.1
6xlarge

Accelerated
computing

No 1 64 256 16 1 x
900
NVMe
SSD

Use Studio Classic Notebooks 470

Amazon SageMaker Developer Guide

Instance Use case Fast launch GPUs vCPU Memory
(GiB)

GPU
Memory
(GiB)

Instance
Storage
(GB)

ml.g5.xlarge Accelerated
computing

No 1 4 16 24 1 x
250
NVMe
SSD

ml.g5.2xl
arge

Accelerated
computing

No 1 8 32 24 1 x
450
NVMe
SSD

ml.g5.4xl
arge

Accelerated
computing

No 1 16 64 24 1 x
600
NVMe
SSD

ml.g5.8xl
arge

Accelerated
computing

No 1 32 128 24 1 x
900
NVMe
SSD

ml.g5.12x
large

Accelerated
computing

No 4 48 192 96 1 x
3800
NVMe
SSD

ml.g5.16x
large

Accelerated
computing

No 1 64 256 24 1 x
1900
NVMe
SSD

ml.g5.24x
large

Accelerated
computing

No 4 96 384 96 1 x
3800
NVMe
SSD

Use Studio Classic Notebooks 471

Amazon SageMaker Developer Guide

Instance Use case Fast launch GPUs vCPU Memory
(GiB)

GPU
Memory
(GiB)

Instance
Storage
(GB)

ml.g5.48x
large

Accelerated
computing

No 8 192 768 192 2 x
3800
NVMe
SSD

Available Amazon SageMaker Images

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

This page lists the SageMaker images and associated kernels that are available in Amazon
SageMaker Studio Classic, as well as the format needed to create the ARN for each image.
SageMaker images contain the latest Amazon SageMaker Python SDK and the latest version of the
kernel. For more information, see Deep Learning Containers Images.

Topics

• Image ARN format

• Supported URI tags

• Supported images

• Images slated for deprecation

Image ARN format

The following table lists the image ARN and URI format for each Region. To create the full ARN
for an image, replace the resource-identifier placeholder with the corresponding resource
identifier for the image from the SageMaker images and kernels table. To create the full URI for an

Use Studio Classic Notebooks 472

https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-images.html

Amazon SageMaker Developer Guide

image, replace the tag placeholder with the corresponding cpu or gpu tag. For the list of tags you
can use, see Supported URI tags.

Note

SageMaker Distribution images use a distinct set of image ARNs, which are listed in the
following table.

Region Image ARN Format SageMaker Distribut
ion Image ARN
Format

SageMaker Distribut
ion Image URI Format

us-east-1 arn:aws:sagemaker:
us-east-1:08132539
0199:imag
e/resource-
identifier

arn:aws:sagemaker:
us-east-1:88585479
1233:imag
e/resource-
identifier

885854791233.dkr.e
cr.us-east-1.amazo
naws.com/sagemaker
-distribution-prod
:tag

us-east-2 arn:aws:sagemaker:
us-east-2:42970468
7514:imag
e/resource-
identifier

arn:aws:sagemaker:
us-east-2:13791489
6644:imag
e/resource-
identifier

137914896644.dkr.e
cr.us-east-2.amazo
naws.com/sagemaker
-distribution-prod
:tag

us-west-1 arn:aws:sagemaker:
us-west-1:74209132
7244:imag
e/resource-
identifier

arn:aws:sagemaker:
us-west-1:05363484
1547:imag
e/resource-
identifier

053634841547.dkr.e
cr.us-west-1.amazo
naws.com/sagemaker
-distribution-prod
:tag

us-west-2 arn:aws:sagemaker:
us-west-2:23651454
2706:imag
e/resource-
identifier

arn:aws:sagemaker:
us-west-2:54291844
6943:imag
e/resource-
identifier

542918446943.dkr.e
cr.us-west-2.amazo
naws.com/sagemaker
-distribution-prod
:tag

Use Studio Classic Notebooks 473

Amazon SageMaker Developer Guide

af-south-1 arn:aws:sagemaker:
af-south-1:5593120
83959:ima
ge/resource-
identifier

arn:aws:sagemaker:
af-south-1:2383842
57742:ima
ge/resource-
identifier

238384257742.dkr.e
cr.af-south-1.amaz
onaws.com/
sagemaker-distrib
ution-prod:tag

ap-east-1 arn:aws:sagemaker:
ap-east-1:49364249
6378:imag
e/resource-
identifier

arn:aws:sagemaker:
ap-east-1:52375126
9255:imag
e/resource-
identifier

523751269255.dkr.e
cr.ap-east-1.amazo
naws.com/sagemaker
-distribution-prod
:tag

ap-south-1 arn:aws:sagemaker:
ap-south-1:3941030
62818:ima
ge/resource-
identifier

arn:aws:sagemaker:
ap-south-1:2450905
15133:ima
ge/resource-
identifier

245090515133.dkr.e
cr.ap-south-1.amaz
onaws.com/
sagemaker-distrib
ution-prod:tag

ap-northeast-2 arn:aws:sagemaker:
ap-northeast-2:806
072073708
:image/resource-
identifier

arn:aws:sagemaker:
ap-northeast-2:064
688005998
:image/resource-
identifier

064688005998.dkr.e
cr.ap-northeast-2.
amazonaws.com/
sagemaker-dis
tribution-prod:tag

ap-southeast-1 arn:aws:sagemaker:
ap-southeast-1:492
261229750
:image/resource-
identifier

arn:aws:sagemaker:
ap-southeast-1:022
667117163
:image/resource-
identifier

022667117163.dkr.e
cr.ap-southeast-1.
amazonaws.com/
sagemaker-dis
tribution-prod:tag

ap-southeast-2 arn:aws:sagemaker:
ap-southeast-2:452
832661640
:image/resource-
identifier

arn:aws:sagemaker:
ap-southeast-2:648
430277019
:image/resource-
identifier

648430277019.dkr.e
cr.ap-southeast-2.
amazonaws.com/
sagemaker-dis
tribution-prod:tag

Use Studio Classic Notebooks 474

Amazon SageMaker Developer Guide

ap-northeast-1 arn:aws:sagemaker:
ap-northeast-1:102
112518831
:image/resource-
identifier

arn:aws:sagemaker:
ap-northeast-1:010
972774902
:image/resource-
identifier

010972774902.dkr.e
cr.ap-northeast-1.
amazonaws.com/
sagemaker-dis
tribution-prod:tag

ca-central-1 arn:aws:sagemaker:
ca-central-1:31090
6938811:i
mage/resource-
identifier

arn:aws:sagemaker:
ca-central-1:48156
1238223:i
mage/resource-
identifier

481561238223.dkr.e
cr.ca-central-1.am
azonaws.com/
sagemaker-distr
ibution-prod:tag

eu-central-1 arn:aws:sagemaker:
eu-central-1:93669
7816551:i
mage/resource-
identifier

arn:aws:sagemaker:
eu-central-1:54542
3591354:i
mage/resource-
identifier

545423591354.dkr.e
cr.eu-central-1.am
azonaws.com/
sagemaker-distr
ibution-prod:tag

eu-west-1 arn:aws:sagemaker:
eu-west-1:47031725
9841:imag
e/resource-
identifier

arn:aws:sagemaker:
eu-west-1:81979252
4951:imag
e/resource-
identifier

819792524951.dkr.e
cr.eu-west-1.amazo
naws.com/sagemaker
-distribution-prod
:tag

eu-west-2 arn:aws:sagemaker:
eu-west-2:71277966
5605:imag
e/resource-
identifier

arn:aws:sagemaker:
eu-west-2:02108140
2939:imag
e/resource-
identifier

021081402939.dkr.e
cr.eu-west-2.amazo
naws.com/sagemaker
-distribution-prod
:tag

eu-west-3 arn:aws:sagemaker:
eu-west-3:61554785
6133:imag
e/resource-
identifier

arn:aws:sagemaker:
eu-west-3:85641620
4555:imag
e/resource-
identifier

856416204555.dkr.e
cr.eu-west-3.amazo
naws.com/sagemaker
-distribution-prod
:tag

Use Studio Classic Notebooks 475

Amazon SageMaker Developer Guide

eu-north-1 arn:aws:sagemaker:
eu-north-1:2436375
12696:ima
ge/resource-
identifier

arn:aws:sagemaker:
eu-north-1:1756201
55138:ima
ge/resource-
identifier

175620155138.dkr.e
cr.eu-north-1.amaz
onaws.com/
sagemaker-distrib
ution-prod:tag

eu-south-1 arn:aws:sagemaker:
eu-south-1:5927512
61982:ima
ge/resource-
identifier

arn:aws:sagemaker:
eu-south-1:8106717
68855:ima
ge/resource-
identifier

810671768855.dkr.e
cr.eu-south-1.amaz
onaws.com/
sagemaker-distrib
ution-prod:tag

sa-east-1 arn:aws:sagemaker:
sa-east-1:78248440
2741:imag
e/resource-
identifier

arn:aws:sagemaker:
sa-east-1:56755664
1782:imag
e/resource-
identifier

567556641782.dkr.e
cr.sa-east-1.amazo
naws.com/sagemaker
-distribution-prod
:tag

ap-northeast-3 arn:aws:sagemaker:
ap-northeast-3:792
733760839
:image/resource-
identifier

arn:aws:sagemaker:
ap-northeast-3:564
864627153
:image/resource-
identifier

564864627153.dkr.e
cr.ap-northeast-3.
amazonaws.com/
sagemaker-dis
tribution-prod:tag

ap-southeast-3 arn:aws:sagemaker:
ap-southeast-3:276
181064229
:image/resource-
identifier

arn:aws:sagemaker:
ap-southeast-3:370
607712162
:image/resource-
identifier

370607712162.dkr.e
cr.ap-southeast-3.
amazonaws.com/
sagemaker-dis
tribution-prod:tag

me-south-1 arn:aws:sagemaker:
me-south-1:1175169
05037:ima
ge/resource-
identifier

arn:aws:sagemaker:
me-south-1:5237743
47010:ima
ge/resource-
identifier

523774347010.dkr.e
cr.me-south-1.amaz
onaws.com/
sagemaker-distrib
ution-prod:tag

Use Studio Classic Notebooks 476

Amazon SageMaker Developer Guide

me-central-1 arn:aws:sagemaker:
me-centra
l-1:103105715889:i
mage/resource-
identifier

arn:aws:sagemaker:
me-centra
l-1:358593528301:i
mage/resource-
identifier

358593528301.dkr.e
cr.me-central-1.am
azonaws.com/
sagemaker-distr
ibution-prod:tag

Supported URI tags

The following list shows the tags you can include in your image URI.

• 1-cpu

• 1-gpu

• 0-cpu

• 0-gpu

The following examples show URIs with various tag formats:

• 542918446943.dkr.ecr.us-west-2.amazonaws.com/sagemaker-distribution-prod:1-cpu

• 542918446943.dkr.ecr.us-west-2.amazonaws.com/sagemaker-distribution-prod:0-gpu

Supported images

The following table gives information about the SageMaker images and associated kernels that are
available in Amazon SageMaker Studio Classic, as well as the resource identifier and Python version
included in the image.

SageMaker images and kernels

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

SageMaker
Distribution v0
CPU

SageMaker
Distribut
ion v0 CPU
is a Python
3.8 image that
includes popular

sagemaker-
distribution-cpu-
v0

Python 3
(python3)

Python
3.8

Use Studio Classic Notebooks 477

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

frameworks for
machine learning,
data science and
visualization on
CPU. This includes
deep learning
frameworks like
PyTorch, TensorFlo
w and Keras;
popular Python
packages like
numpy, scikit-le
arn and pandas;
and IDEs like
Jupyter Lab. For
more information,
see the Amazon
SageMaker
 Distribution repo.

Use Studio Classic Notebooks 478

https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

SageMaker
Distribution v0
GPU

SageMaker
Distribut
ion v0 GPU
is a Python
3.8 image that
includes popular
frameworks for
machine learning,
data science and
visualization on
GPU. This includes
deep learning
frameworks like
PyTorch, TensorFlo
w and Keras;
popular Python
packages like
numpy, scikit-le
arn and pandas;
and IDEs like
Jupyter Lab. For
more information,
see the Amazon
SageMaker
 Distribution repo.

sagemaker-
distribution-gpu-
v0

Python 3
(python3)

Python
3.8

Use Studio Classic Notebooks 479

https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

SageMaker
Distribution v1
CPU

SageMaker
Distribut
ion v1 CPU
is a Python
3.10 image that
includes popular
frameworks for
machine learning,
data science and
data analytics on
CPU. This includes
deep learning
frameworks like
PyTorch, TensorFlo
w and Keras;
popular Python
packages like
numpy, scikit-le
arn and pandas;
and IDEs like
Jupyter Lab. For
more information,
see the Amazon
SageMaker
 Distribution repo.

sagemaker-
distribution-cpu-
v1

Python 3
(python3)

Python
3.10

Use Studio Classic Notebooks 480

https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

SageMaker
Distribution v1
GPU

SageMaker
Distribut
ion v1 GPU
is a Python
3.10 image that
includes popular
frameworks for
machine learning,
data science and
data analytics on
GPU. This includes
deep learning
frameworks like
PyTorch, TensorFlo
w and Keras;
popular Python
packages like
numpy, scikit-le
arn and pandas;
and IDEs like
Jupyter Lab. For
more information,
see the Amazon
SageMaker
 Distribution repo.

sagemaker-
distribution-gpu-
v1

Python 3
(python3)

Python
3.10

Base Python 3.0 Official Python
3.10 image from
DockerHub with
boto3 and AWS
CLI included.

sagemaker-base-
python-310-v1

Python 3
(python3)

Python
3.10

Use Studio Classic Notebooks 481

https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

Base Python 2.0 Official Python
3.8 image from
DockerHub with
boto3 and AWS
CLI included.

sagemaker-base-
python-38

Python 3
(python3)

Python
3.8

Data Science 3.0 Data Science
3.0 is a Python
3.10 conda
image based on
anaconda version
2022.10 with the
most commonly
used Python
packages and
libraries, such as
NumPy and SciKit
Learn.

sagemaker-data-
science-310-v1

Python 3
(python3)

Python
3.10

Data Science 2.0 Data Science
2.0 is a Python
3.8 conda
image based on
anaconda version
2021.11 with the
most commonly
used Python
packages and
libraries, such as
NumPy and SciKit
Learn.

sagemaker-data-
science-38

Python 3
(python3)

Python
3.8

Use Studio Classic Notebooks 482

https://docs.conda.io/projects/conda/en/latest/index.html
https://www.anaconda.com/blog/anaconda-distribution-2022-10
https://www.anaconda.com/blog/anaconda-distribution-2022-10
https://docs.conda.io/projects/conda/en/latest/index.html
https://www.anaconda.com/blog/anaconda-individual-edition-2021-11
https://www.anaconda.com/blog/anaconda-individual-edition-2021-11

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

Geospatial 1.0 Amazon
SageMaker
geospatial is a
Python image
consisting of
commonly used
geospatial libraries
such as GDAL,
Fiona, GeoPandas
, Shapely, and
Rasterio, and
allows you to
visualize geospatia
l data within
SageMaker. For
more informati
on, see Amazon
SageMaker
geospatial
Notebook SDK

sagemaker-
geospatial-1.0

Python 3
(python3)

Python
3.10

PyTorch 2.0.0
Python 3.10 CPU
Optimized

The AWS Deep
Learning Container
s for PyTorch 2.0.0
include container
s for training on
CPU, optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

pytorch-2.0.0-cpu-
py310

Python 3
(python3)

Python
3.10

Use Studio Classic Notebooks 483

https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-notebook-sdk.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-notebook-sdk.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-notebook-sdk.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-notebook-sdk.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

PyTorch 2.0.0
Python 3.10 GPU
Optimized

The AWS Deep
Learning Container
s for PyTorch 2.0.0
with CUDA 11.8
include container
s for training on
GPU, optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

pytorch-2.0.0-gpu-
py310

Python 3
(python3)

Python
3.10

PyTorch 1.13
Python 3.9 CPU
Optimized

The AWS Deep
Learning Container
s for PyTorch 1.13
with CUDA 11.3
include container
s for training on
CPU, optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

pytorch-1.13-cpu-
py39

Python 3
(python3)

Python
3.9

Use Studio Classic Notebooks 484

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

PyTorch 1.13
Python 3.9 GPU
Optimized

The AWS Deep
Learning Container
s for PyTorch 1.13
with CUDA 11.7
include container
s for training on
GPU, optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

pytorch-1.13-gpu-
py39

Python 3
(python3)

Python
3.9

PyTorch 1.12
Python 3.8 CPU
Optimized

The AWS Deep
Learning Container
s for PyTorch 1.12
with CUDA 11.3
include container
s for training on
CPU, optimized
for performance
and scale on AWS.
For more informati
on, see AWS Deep
Learning Container
s for PyTorch
1.12.0.

pytorch-1.12-cpu-
py38

Python 3
(python3)

Python
3.8

Use Studio Classic Notebooks 485

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-0-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-0-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-0-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-0-on-sagemaker/

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

PyTorch 1.12
Python 3.8 GPU
Optimized

The AWS Deep
Learning Container
s for PyTorch 1.12
with CUDA 11.3
include container
s for training on
GPU, optimized
for performance
and scale on AWS.
For more informati
on, see AWS Deep
Learning Container
s for PyTorch
1.12.0.

pytorch-1.12-gpu-
py38

Python 3
(python3)

Python
3.8

PyTorch 1.10
Python 3.8 CPU
Optimized

The AWS Deep
Learning Container
s for PyTorch 1.10
include container
s for training on
CPU, optimized
for performance
and scale on AWS.
For more informati
on, see AWS
Deep Learning
Containers for
PyTorch 1.10.2 on
SageMaker.

pytorch-1.10-cpu-
py38

Python 3
(python3)

Python
3.8

Use Studio Classic Notebooks 486

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-0-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-0-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-0-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-12-0-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

PyTorch 1.10
Python 3.8 GPU
Optimized

The AWS Deep
Learning Container
s for PyTorch 1.10
with CUDA 11.3
include container
s for training on
GPU, optimized
for performance
and scale on AWS.
For more informati
on, see AWS
Deep Learning
Containers for
PyTorch 1.10.2 on
SageMaker.

pytorch-1.10-gpu-
py38

Python 3
(python3)

Python
3.8

Use Studio Classic Notebooks 487

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-pytorch-1-10-2-on-sagemaker/

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

SparkAnalytics 2.0 Anaconda
Individual Edition
with PySpark and
Spark kernels. For
more information,
see sparkmagic.

sagemaker-
sparkanalytics-31
0-v1

• SparkMagic
Spark (conda-
env-sm_spar
kmagic-sp
arkkernel)

• SparkMagic
PySpark (conda-
env-sm_spar
kmagic-py
sparkkernel)

• Glue Spark
(conda-env-
sm_glue_is-
glue_spark)

• Glue Python
[PySpark and
Ray] (conda-en
v-sm_glue_is-
glue_pyspark)

Python
3.10

Use Studio Classic Notebooks 488

https://github.com/jupyter-incubator/sparkmagic

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

SparkAnalytics 1.0 Anaconda
Individual Edition
with PySpark and
Spark kernels. For
more information,
see sparkmagic.

sagemaker-
sparkanalytics-v1

• SparkMagic
Spark (conda-
env-sm_spar
kmagic-sp
arkkernel)

• SparkMagic
PySpark (conda-
env-sm_spar
kmagic-py
sparkkernel)

• Glue Spark
(conda-env-
sm_glue_is-
glue_spark)

• Glue Python
[PySpark and
Ray] (conda-en
v-sm_glue_is-
glue_pyspark)

Python
3.8

Use Studio Classic Notebooks 489

https://github.com/jupyter-incubator/sparkmagic

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

TensorFlow 2.12.0
Python 3.10 CPU
Optimized

The AWS Deep
Learning Container
s for TensorFlo
w 2.12.0 with
CUDA 11.2 include
containers for
training on CPU,
optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

tensorflow-2.12.0-
cpu-py310-
ubuntu20.04-
sagemaker-v1.0

Python 3
(python3)

Python
3.10

TensorFlow 2.12.0
Python 3.10 GPU
Optimized

The AWS Deep
Learning Container
s for TensorFlo
w 2.12.0 with
CUDA 11.8 include
containers for
training on GPU,
optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

tensorflow-2.12.0-
gpu-py310-cu118-
ubuntu20.04-
sagemaker-v1

Python 3
(python3)

Python
3.10

Use Studio Classic Notebooks 490

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

TensorFlow 2.11.0
Python 3.9 CPU
Optimized

The AWS Deep
Learning Container
s for TensorFlo
w 2.11.0 with
CUDA 11.2 include
containers for
training on CPU,
optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

tensorflow-2.11.0-
cpu-py39-
ubuntu20.04-
sagemaker-v1.1

Python 3
(python3)

Python
3.9

TensorFlow 2.11.0
Python 3.9 GPU
Optimized

The AWS Deep
Learning Container
s for TensorFlo
w 2.11.0 with
CUDA 11.2 include
containers for
training on GPU,
optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

tensorflow-2.11.0-
gpu-py39-cu112-
ubuntu20.04-
sagemaker-v1.1

Python 3
(python3)

Python
3.9

Use Studio Classic Notebooks 491

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

TensorFlow 2.10
Python 3.9 CPU
Optimized

The AWS Deep
Learning Container
s for TensorFlow
2.10 with CUDA
11.2 include
containers for
training on CPU,
optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

tensorflow-2.10.1-
cpu-py39-
ubuntu20.04-
sagemaker-v1.2

Python 3
(python3)

Python
3.9

TensorFlow 2.10
Python 3.9 GPU
Optimized

The AWS Deep
Learning Container
s for TensorFlow
2.10 with CUDA
11.2 include
containers for
training on GPU,
optimized for
performance and
scale on AWS. For
more information,
see Release Notes
for Deep Learning
Containers.

tensorflow-2.10.1-
gpu-py39-
ubuntu20.04-
sagemaker-v1.2

Python 3
(python3)

Python
3.9

Use Studio Classic Notebooks 492

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html

Amazon SageMaker Developer Guide

SageMaker Image Description Resource Identifie
r

Kernels (and
Identifier)

Python
Version

TensorFlow 2.6
Python 3.8 CPU
Optimized

The AWS Deep
Learning Container
s for TensorFlo
w 2.6 include
containers for
training on GPU,
optimized for
performance and
scale on AWS. For
more informati
on, see AWS Deep
Learning Container
s for TensorFlow
2.6.

tensorflow-2.6-
cpu-py38-ubu
ntu20.04-v1

Python 3
(python3)

Python
3.8

TensorFlow 2.6
Python 3.8 GPU
Optimized

The AWS Deep
Learning Container
s for TensorFlo
w 2.6 with CUDA
11.2 include
containers for
training on GPU,
optimized for
performance and
scale on AWS. For
more informati
on, see AWS Deep
Learning Container
s for TensorFlow
2.6.

tensorflow-2.6-
gpu-py38-cu112-
ubuntu20.04-v1

Python 3
(python3)

Python
3.8

Use Studio Classic Notebooks 493

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-6/

Amazon SageMaker Developer Guide

Images slated for deprecation

SageMaker ends support for images the day after any of the packages in the image reach end-of
life by their publisher.

The following SageMaker images are slated for deprecation. These images are based on Python
3.7, which reached end-of-life on June 27, 2023. Starting on October 30, 2023, SageMaker will
discontinue support for these images and they will not be selectable from the Studio Classic UI. To
avoid non-compliance issues, if you're using any of these images, we recommend that you move to
an image with a later version.

SageMaker images slated for deprecation

SageMaker
Image

Deprecation
date

Description Resource
Identifier

Kernels Python
Version

Data Science October 30,
2023

Data Science
is a Python 3.7
conda image
with the most
commonly
used Python
packages and
libraries, such
as NumPy and
SciKit Learn.

datascience-1.0 Python
3

Python
3.7

SageMaker
JumpStart Data
Science 1.0

October 30,
2023

SageMaker
JumpStart
Data Science
1.0 is a
SageMaker
JumpStart
 image that
includes
commonly used
packages and
libraries.

sagemaker-
jumpstart-data-
science-1.0

Python
3

Python
3.7

Use Studio Classic Notebooks 494

https://endoflife.date/python
https://docs.conda.io/projects/conda/en/latest/index.html

Amazon SageMaker Developer Guide

SageMaker
Image

Deprecation
date

Description Resource
Identifier

Kernels Python
Version

SageMaker
JumpStart
MXNet 1.0

October 30,
2023

SageMaker
JumpStart
MXNet 1.0 is
a SageMaker
JumpStart
image that
includes MXNet.

sagemaker
-jumpstart-
mxnet-1.0

Python
3

Python
3.7

SageMaker
JumpStart
PyTorch 1.0

October 30,
2023

SageMaker
JumpStart
PyTorch 1.0
is a SageMaker
JumpStart
image that
includes
PyTorch.

sagemaker
-jumpstart-
pytorch-1.0

Python
3

Python
3.7

SageMaker
JumpStart
TensorFlow 1.0

October 30,
2023

SageMaker
JumpStart
TensorFlo
w 1.0 is a
SageMaker
JumpStart
 image that
includes
TensorFlow.

sagemaker
-jumpstart-
tensorflow-1.0

Python
3

Python
3.7

Use Studio Classic Notebooks 495

Amazon SageMaker Developer Guide

SageMaker
Image

Deprecation
date

Description Resource
Identifier

Kernels Python
Version

SparkMagic October 30,
2023

Anaconda
Individual
Edition with
PySpark and
Spark kernels.
For more
information, see
sparkmagic.

sagemaker-
sparkmagic

• PySpark

• Spark

Python
3.7

TensorFlow 2.3
Python 3.7 CPU
Optimized

October 30,
2023

The AWS
Deep Learning
Containers
for TensorFlo
w 2.3 include
containers for
training on
CPU, optimized
for performan
ce and scale
on AWS. For
more informati
on, see AWS
Deep Learning
Containers with
TensorFlow
2.3.0.

tensorflow-2.3-
cpu-py37-ubu
ntu18.04-v1

Python
3

Python
3.7

Use Studio Classic Notebooks 496

https://github.com/jupyter-incubator/sparkmagic
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-3-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-3-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-3-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-3-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-with-tensorflow-2-3-0/

Amazon SageMaker Developer Guide

SageMaker
Image

Deprecation
date

Description Resource
Identifier

Kernels Python
Version

TensorFlow 2.3
Python 3.7 GPU
Optimized

October 30,
2023

The AWS
Deep Learning
Containers for
TensorFlow
2.3 with CUDA
11.0 include
containers for
training on
GPU, optimized
for performan
ce and scale
on AWS. For
more informati
on, see AWS
Deep Learning
Containers for
TensorFlow
2.3.1 with CUDA
11.0.

tensorflow-2.3-
gpu-py37-cu1
10-ubuntu
18.04-v3

Python
3

Python
3.7

Use Studio Classic Notebooks 497

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-3-1-with-cuda-11-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-3-1-with-cuda-11-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-3-1-with-cuda-11-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-3-1-with-cuda-11-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-3-1-with-cuda-11-0/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-for-tensorflow-2-3-1-with-cuda-11-0/

Amazon SageMaker Developer Guide

SageMaker
Image

Deprecation
date

Description Resource
Identifier

Kernels Python
Version

TensorFlow 1.15
Python 3.7 CPU
Optimized

October 30,
2023

The AWS
Deep Learning
Containers for
TensorFlow
1.15 include
containers for
training on
CPU, optimized
for performan
ce and scale
on AWS. For
more informati
on, see AWS
Deep Learning
Containers v7.0
for TensorFlow.

tensorflo
w-1.15-cp
u-py37-ub
untu18.04-v7

Python
3

Python
3.7

Use Studio Classic Notebooks 498

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/

Amazon SageMaker Developer Guide

SageMaker
Image

Deprecation
date

Description Resource
Identifier

Kernels Python
Version

TensorFlow 1.15
Python 3.7 GPU
Optimized

October 30,
2023

The AWS
Deep Learning
Containers for
TensorFlow
1.15 with CUDA
11.0 include
containers for
training on
GPU, optimized
for performan
ce and scale
on AWS. For
more informati
on, see AWS
Deep Learning
Containers v7.0
for TensorFlow.

tensorflo
w-1.15-gpu-
py37-cu110-
ubuntu18.04-v8

Python
3

Python
3.7

Customize Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

There are four options for customizing your Amazon SageMaker Studio Classic environment. You
bring your own SageMaker image, use a lifecycle configuration script, attach suggested Git repos
to Studio Classic, or create kernels using persistent Conda environments in Amazon EFS. Use each
option individually, or together.

Customize Studio Classic 499

https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/
https://aws.amazon.com/releasenotes/aws-deep-learning-containers-v7-0-for-tensorflow/

Amazon SageMaker Developer Guide

• Bring your own SageMaker image: A SageMaker image is a file that identifies the kernels,
language packages, and other dependencies required to run a Jupyter notebook in Amazon
SageMaker Studio Classic. Amazon SageMaker provides many built-in images for you to use. If
you need different functionality, you can bring your own custom images to Studio Classic.

• Use lifecycle configurations with Amazon SageMaker Studio Classic: Lifecycle configurations
are shell scripts triggered by Amazon SageMaker Studio Classic lifecycle events, such as starting
a new Studio Classic notebook. You can use lifecycle configurations to automate customization
for your Studio Classic environment. For example, you can install custom packages, configure
notebook extensions, preload datasets, and set up source code repositories.

• Attach suggested Git repos to Studio Classic: You can attach suggested Git repository URLs at
the Amazon SageMaker domain or user profile level. Then, you can select the repo URL from the
list of suggestions and clone that into your environment using the Git extension in Studio Classic.

• Persist Conda environments to the Studio Classic Amazon EFS volume: Studio Classic uses
an Amazon EFS volume as a persistent storage layer. You can save your Conda environment
on this Amazon EFS volume, then use the saved environment to create kernels. Studio
Classic automatically picks up all valid environments saved in Amazon EFS as KernelGateway
kernels. These kernels persist through restart of the kernel, app, and Studio Classic. For more
information, see the Persist Conda environments to the Studio Classic EFS volume section in
Four approaches to manage Python packages in Amazon SageMaker Studio Classic notebooks.

The following topics show how to use these three options to customize your Amazon SageMaker
Studio Classic environment.

Topics

• Bring your own SageMaker image

• Use lifecycle configurations with Amazon SageMaker Studio Classic

• Attach Suggested Git Repos to Studio Classic

Bring your own SageMaker image

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the

Customize Studio Classic 500

https://aws.amazon.com/blogs/machine-learning/four-approaches-to-manage-python-packages-in-amazon-sagemaker-studio-notebooks/

Amazon SageMaker Developer Guide

Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

A SageMaker image is a file that identifies the kernels, language packages, and other dependencies
required to run a Jupyter notebook in Amazon SageMaker Studio Classic. These images are
used to create an environment that you then run Jupyter notebooks from. Amazon SageMaker
provides many built-in images for you to use. For the list of built-in images, see Available Amazon
SageMaker Images.

If you need different functionality, you can bring your own custom images to Studio Classic. You
can create images and image versions, and attach image versions to your domain or shared space,
using the SageMaker control panel, the AWS SDK for Python (Boto3), and the AWS Command Line
Interface (AWS CLI). You can also create images and image versions using the SageMaker console,
even if you haven't onboarded to a SageMaker domain. SageMaker provides sample Dockerfiles to
use as a starting point for your custom SageMaker images in the SageMaker Studio Classic Custom
Image Samples repository.

The following topics explain how to bring your own image using the SageMaker console or AWS
CLI, then launch the image in Studio Classic. For a similar blog article, see Bringing your own R
environment to Amazon SageMaker Studio Classic. For notebooks that show how to bring your
own image for use in training and inference, see Amazon SageMaker Studio Classic Container Build
CLI.

Key terminology

The following section defines key terms for bringing your own image to use with Studio Classic.

• Dockerfile: A Dockerfile is a file that identifies the language packages and other dependencies
for your Docker image.

• Docker image: The Docker image is a built Dockerfile. This image is checked into Amazon ECR
and serves as the basis of the SageMaker image.

• SageMaker image: A SageMaker image is a holder for a set of SageMaker image versions based
on Docker images. Each image version is immutable.

• Image version: An image version of a SageMaker image represents a Docker image and is stored
in an Amazon ECR repository. Each image version is immutable. These image versions can be
attached to a domain or shared space and used with Studio Classic.

Customize Studio Classic 501

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/
https://github.com/aws-samples/sagemaker-studio-custom-image-samples/
https://github.com/aws-samples/sagemaker-studio-custom-image-samples/
https://aws.amazon.com/blogs/machine-learning/bringing-your-own-r-environment-to-amazon-sagemaker-studio/
https://aws.amazon.com/blogs/machine-learning/bringing-your-own-r-environment-to-amazon-sagemaker-studio/
https://github.com/aws/amazon-sagemaker-examples/tree/main/aws_sagemaker_studio/sagemaker_studio_image_build
https://github.com/aws/amazon-sagemaker-examples/tree/main/aws_sagemaker_studio/sagemaker_studio_image_build

Amazon SageMaker Developer Guide

Topics

• Custom SageMaker image specifications

• Prerequisites

• Add a Docker image compatible with Studio Classic to Amazon ECR

• Create a custom SageMaker image

• Attach a custom SageMaker image

• Launch a custom SageMaker image in Amazon SageMaker Studio Classic

• Clean up resources

Custom SageMaker image specifications

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following specifications apply to the container image that is represented by a SageMaker
image version.

Running the image

ENTRYPOINT and CMD instructions are overridden to enable the image to run as a
KernelGateway app.

Port 8888 in the image is reserved for running the KernelGateway web server.

Stopping the image

The DeleteApp API issues the equivalent of a docker stop command. Other processes in the
container won’t get the SIGKILL/SIGTERM signals.

Kernel discovery

SageMaker recognizes kernels as defined by Jupyter kernel specs.

You can specify a list of kernels to display before running the image. If not specified, python3 is
displayed. Use the DescribeAppImageConfig API to view the list of kernels.

Customize Studio Classic 502

https://jupyter-client.readthedocs.io/en/latest/kernels.html#kernelspecs
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAppImageConfig.html

Amazon SageMaker Developer Guide

Conda environments are recognized as kernel specs by default.

File system

The /opt/.sagemakerinternal and /opt/ml directories are reserved. Any data in these
directories might not be visible at runtime.

User data

Each user in a domain gets a user directory on a shared Amazon Elastic File System volume
in the image. The location of the current user's directory on the Amazon EFS volume is
configurable. By default, the location of the directory is /home/sagemaker-user.

SageMaker configures POSIX UID/GID mappings between the image and the host. This defaults
to mapping the root user's UID/GID (0/0) to the UID/GID on the host.

You can specify these values using the CreateAppImageConfig API.

GID/UID limits

Amazon SageMaker Studio Classic only supports the following DefaultUID and DefaultGID
combinations:

• DefaultUID: 1000 and DefaultGID: 100, which corresponds to a non-priveleged user.

• DefaultUID: 0 and DefaultGID: 0, which corresponds to root access.

Metadata

A metadata file is located at /opt/ml/metadata/resource-metadata.json. No additional
environment variables are added to the variables defined in the image. For more information,
see Get App Metadata.

GPU

On a GPU instance, the image is run with the --gpus option. Only the CUDA toolkit should be
included in the image not the NVIDIA drivers. For more information, see NVIDIA User Guide.

Metrics and logging

Logs from the KernelGateway process are sent to Amazon CloudWatch in the customer’s
account. The name of the log group is /aws/sagemaker/studio. The name of the log stream
is $domainID/$userProfileName/KernelGateway/$appName.

Image size

Limited to 25 GB. To view the size of your image, run docker image ls.

Customize Studio Classic 503

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAppImageConfig.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/user-guide.html

Amazon SageMaker Developer Guide

Sample Dockerfile

The following sample Dockerfile creates an image based Amazon Linux 2, installs third party
packages and the python3 kernel, and sets the scope to the non-privileged user.

FROM public.ecr.aws/amazonlinux/amazonlinux:2

ARG NB_USER="sagemaker-user"
ARG NB_UID="1000"
ARG NB_GID="100"

RUN \
 yum install --assumeyes python3 shadow-utils && \
 useradd --create-home --shell /bin/bash --gid "${NB_GID}" --uid ${NB_UID}
 ${NB_USER} && \
 yum clean all && \
 python3 -m pip install ipykernel && \
 python3 -m ipykernel install

USER ${NB_UID}

Prerequisites

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You must satisfy the following prerequisites to bring your own container for use with Amazon
SageMaker Studio Classic.

• The Docker application. For information about setting up Docker, see Orientation and setup.

• Install the AWS CLI by following the steps in Getting started with the AWS CLI.

• A local copy of any Dockerfile for creating a Studio Classic compatible image. For sample custom
images, see the SageMaker Studio Classic custom image samples repository.

• Permissions to access the Amazon Elastic Container Registry (Amazon ECR) service. For more
information, see Amazon ECR Managed Policies.

Customize Studio Classic 504

https://docs.docker.com/get-started/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://github.com/aws-samples/sagemaker-studio-custom-image-samples/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr_managed_policies.html

Amazon SageMaker Developer Guide

• An AWS Identity and Access Management execution role that has the
AmazonSageMakerFullAccess policy attached. If you have onboarded to Amazon SageMaker
domain, you can get the role from the Domain Summary section of the SageMaker control
panel.

• Install the Studio Classic image build CLI by following the steps in SageMaker Docker Build. This
CLI enables you to build a Dockerfile using AWS CodeBuild.

Add a Docker image compatible with Studio Classic to Amazon ECR

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You perform the following steps to add a container image to Amazon ECR:

• Create an Amazon ECR repository.

• Authenticate to Amazon ECR.

• Build a Docker image compatible with Studio Classic.

• Push the image to the Amazon ECR repository.

Note

The Amazon ECR repository must be in the same AWS Region as Studio Classic.

To build and add a container image to Amazon ECR

1. Create an Amazon ECR repository using the AWS CLI. To create the repository using the
Amazon ECR console, see Creating a repository.

aws ecr create-repository \
 --repository-name smstudio-custom \

Customize Studio Classic 505

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://github.com/aws-samples/sagemaker-studio-image-build-cli
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html

Amazon SageMaker Developer Guide

 --image-scanning-configuration scanOnPush=true

The response should look similar to the following.

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-2:acct-id:repository/smstudio-
custom",
 "registryId": "acct-id",
 "repositoryName": "smstudio-custom",
 "repositoryUri": "acct-id.dkr.ecr.us-east-2.amazonaws.com/smstudio-custom",
 ...
 }
}

2. Build the Dockerfile using the Studio Classic image build CLI. The period (.) specifies that
the Dockerfile should be in the context of the build command. This command builds the image
and uploads the built image to the ECR repo. It then outputs the image URI.

sm-docker build . --repository smstudio-custom:custom

The response should look similar to the following.

Image URI: <acct-id>.dkr.ecr.<region>.amazonaws.com/<image_name>

Create a custom SageMaker image

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

This topic describes how you can create a custom SageMaker image using the SageMaker console
or AWS CLI.

Customize Studio Classic 506

Amazon SageMaker Developer Guide

When you create an image from the console, SageMaker also creates an initial image version.
The image version represents a container image in Amazon Elastic Container Registry (ECR). The
container image must satisfy the requirements to be used in Amazon SageMaker Studio Classic.
For more information, see Custom SageMaker image specifications. For information on testing
your image locally and resolving common issues, see the SageMaker Studio Classic Custom Image
Samples repo.

After you have created your custom SageMaker image, you must attach it to your domain or shared
space to use it with Studio Classic. For more information, see Attach a custom SageMaker image.

Create a SageMaker image from the console

The following section demonstrates how to create a custom SageMaker image from the SageMaker
console.

To create an image

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose Images.

4. On the Custom images page, choose Create image.

5. For Image source, enter the registry path to the container image in Amazon ECR. The path is in
the following format:

acct-id.dkr.ecr.region.amazonaws.com/repo-name[:tag] or [@digest]

6. Choose Next.

7. Under Image properties, enter the following:

• Image name – The name must be unique to your account in the current AWS Region.

• (Optional) Display name – The name displayed in the Studio Classic user interface. When not
provided, Image name is displayed.

• (Optional) Description – A description of the image.

• IAM role – The role must have the AmazonSageMakerFullAccess policy attached. Use the
dropdown menu to choose one of the following options:

• Create a new role – Specify any additional Amazon Simple Storage Service (Amazon S3)
buckets that you want users of your notebooks to have access to. If you don't want to
allow access to additional buckets, choose None.

Customize Studio Classic 507

https://console.aws.amazon.com/ecr/
https://github.com/aws-samples/sagemaker-studio-custom-image-samples/blob/main/DEVELOPMENT.md
https://github.com/aws-samples/sagemaker-studio-custom-image-samples/blob/main/DEVELOPMENT.md
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

SageMaker attaches the AmazonSageMakerFullAccess policy to the role. The role
allows users of your notebooks access to the S3 buckets listed next to the checkmarks.

• Enter a custom IAM role ARN – Enter the Amazon Resource Name (ARN) of your IAM role.

• Use existing role – Choose one of your existing roles from the list.

• (Optional) Image tags – Choose Add new tag. You can add up to 50 tags. Tags are searchable
using the Studio Classic user interface, the SageMaker console, or the SageMaker Search
API.

8. Choose Submit.

The new image is displayed in the Custom images list and briefly highlighted. After the image has
been successfully created, you can choose the image name to view its properties or choose Create
version to create another version.

To create another image version

1. Choose Create version on the same row as the image.

2. For Image source, enter the registry path to the Amazon ECR container image. The container
image shouldn't be the same image as used in a previous version of the SageMaker image.

Create a SageMaker image from the AWS CLI

You perform the following steps to create a SageMaker image from the container image using the
AWS CLI.

• Create an Image.

• Create an ImageVersion.

• Create a configuration file.

• Create an AppImageConfig.

To create the SageMaker image entities

1. Create a SageMaker image.

aws sagemaker create-image \
 --image-name custom-image \

Customize Studio Classic 508

Amazon SageMaker Developer Guide

 --role-arn arn:aws:iam::<acct-id>:role/service-role/<execution-role>

The response should look similar to the following.

{
 "ImageArn": "arn:aws:sagemaker:us-east-2:acct-id:image/custom-image"
}

2. Create a SageMaker image version from the container image.

aws sagemaker create-image-version \
 --image-name custom-image \
 --base-image <acct-id>.dkr.ecr.<region>.amazonaws.com/smstudio-custom:custom-
image

The response should look similar to the following.

{
 "ImageVersionArn": "arn:aws:sagemaker:us-east-2:acct-id:image-version/custom-
image/1"
}

3. Check that the image version was successfully created.

aws sagemaker describe-image-version \
 --image-name custom-image \
 --version-number 1

The response should look similar to the following.

{
 "ImageVersionArn": "arn:aws:sagemaker:us-east-2:acct-id:image-version/custom-
image/1",
 "ImageVersionStatus": "CREATED"
}

Note

If the response is "ImageVersionStatus": "CREATED_FAILED", the response
also includes the failure reason. A permissions issue is a common cause of failure.

Customize Studio Classic 509

Amazon SageMaker Developer Guide

You also can check your Amazon CloudWatch logs if you experience a failure when
starting or running the KernelGateway app for a custom image. The name of the log
group is /aws/sagemaker/studio. The name of the log stream is $domainID/
$userProfileName/KernelGateway/$appName.

4. Create a configuration file, named app-image-config-input.json. The Name value of
KernelSpecs must match the name of the kernelSpec available in the Image associated with
this AppImageConfig. This value is case sensitive. You can find the available kernelSpecs in an
image by running jupyter-kernelspec list from a shell inside the container. MountPath
is the path within the image to mount your Amazon Elastic File System (Amazon EFS) home
directory. It needs to be different from the path you use inside the container because that path
will be overridden when your Amazon EFS home directory is mounted.

Note

The following DefaultUID and DefaultGID combinations are the only accepted
values:

• DefaultUID: 1000 and DefaultGID: 100

• DefaultUID: 0 and DefaultGID: 0

{
 "AppImageConfigName": "custom-image-config",
 "KernelGatewayImageConfig": {
 "KernelSpecs": [
 {
 "Name": "python3",
 "DisplayName": "Python 3 (ipykernel)"
 }
],
 "FileSystemConfig": {
 "MountPath": "/home/sagemaker-user",
 "DefaultUid": 1000,
 "DefaultGid": 100
 }
 }
}

Customize Studio Classic 510

Amazon SageMaker Developer Guide

5. Create the AppImageConfig using the file created in the previous step.

aws sagemaker create-app-image-config \
 --cli-input-json file://app-image-config-input.json

The response should look similar to the following.

{
 "AppImageConfigArn": "arn:aws:sagemaker:us-east-2:acct-id:app-image-config/
custom-image-config"
}

Attach a custom SageMaker image

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

To use a custom SageMaker image, you must attach a version of the image to your domain or
shared space. When you attach an image version, it appears in the SageMaker Studio Classic
Launcher and is available in the Select image dropdown list, which users use to launch an activity
or change the image used by a notebook.

To make a custom SageMaker image available to all users within a domain, you attach the image
to the domain. To make an image available to all users within a shared space, you can attach the
image to the shared space. To make an image available to a single user, you attach the image to
the user's profile. When you attach an image, SageMaker uses the latest image version by default.
You can also attach a specific image version. After you attach the version, you can choose the
version from the SageMaker Launcher or the image selector when you launch a notebook.

There is a limit to the number of image versions that can be attached at any given time. After you
reach the limit, you must detach a version in order to attach another version of the image.

Customize Studio Classic 511

Amazon SageMaker Developer Guide

The following sections demonstrate how to attach a custom SageMaker image to your domain
using either the SageMaker console or the AWS CLI. You can only attach a custom image to a share
space using the AWS CLI.

Attach the SageMaker image to a domain

Attach the SageMaker image using the Console

This topic describes how you can attach an existing custom SageMaker image version to your
domain using the SageMaker control panel. You can also create a custom SageMaker image and
image version, and then attach that version to your domain. For the procedure to create an image
and image version, see Create a custom SageMaker image.

To attach an existing image

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the Domains page, select the domain to attach the image to.

5. From the Domain details page, select the Environment tab.

6. On the Environment tab, under Custom SageMaker Studio Classic images attached to
domain, choose Attach image.

7. For Image source, choose Existing image.

8. Choose an existing image from the list.

9. Choose a version of the image from the list.

10. Choose Next.

11. Verify the values for Image name, Image display name, and Description.

12. Choose the IAM role. For more information, see Create a custom SageMaker image.

13. (Optional) Add tags for the image.

14. Specify the EFS mount path. This is the path within the image to mount the user's Amazon
Elastic File System (EFS) home directory.

15. For Image type, select SageMaker Studio image

16. For Kernel name, enter the name of an existing kernel in the image. For information on how
to get the kernel information from the image, see DEVELOPMENT in the SageMaker Studio
Classic Custom Image Samples repository. For more information, see the Kernel discovery and
User data sections of Custom SageMaker image specifications.

Customize Studio Classic 512

https://console.aws.amazon.com/sagemaker/
https://github.com/aws-samples/sagemaker-studio-custom-image-samples/blob/main/DEVELOPMENT.md

Amazon SageMaker Developer Guide

17. (Optional) For Kernel display name, enter the display name for the kernel.

18. Choose Add kernel.

19. Choose Submit.

• Wait for the image version to be attached to the domain. When attached, the version is
displayed in the Custom images list and briefly highlighted.

Attach the SageMaker image using the AWS CLI

The following sections demonstrate how to attach a custom SageMaker image when creating a
new domain or updating your existing domain using the AWS CLI.

Attach the SageMaker image to a new domain

The following section demonstrates how to create a new domain with the version attached. These
steps require that you specify the Amazon Virtual Private Cloud (VPC) information and execution
role required to create the domain. You perform the following steps to create the domain and
attach the custom SageMaker image:

• Get your default VPC ID and subnet IDs.

• Create the configuration file for the domain, which specifies the image.

• Create the domain with the configuration file.

To add the custom SageMaker image to your domain

1. Get your default VPC ID.

aws ec2 describe-vpcs \
 --filters Name=isDefault,Values=true \
 --query "Vpcs[0].VpcId" --output text

The response should look similar to the following.

vpc-xxxxxxxx

2. Get your default subnet IDs using the VPC ID from the previous step.

aws ec2 describe-subnets \
 --filters Name=vpc-id,Values=<vpc-id> \

Customize Studio Classic 513

Amazon SageMaker Developer Guide

 --query "Subnets[*].SubnetId" --output json

The response should look similar to the following.

[
 "subnet-b55171dd",
 "subnet-8a5f99c6",
 "subnet-e88d1392"
]

3. Create a configuration file named create-domain-input.json. Insert the VPC ID,
subnet IDs, ImageName, and AppImageConfigName from the previous steps. Because
ImageVersionNumber isn't specified, the latest version of the image is used, which is the only
version in this case.

{
 "DomainName": "domain-with-custom-image",
 "VpcId": "<vpc-id>",
 "SubnetIds": [
 "<subnet-ids>"
],
 "DefaultUserSettings": {
 "ExecutionRole": "<execution-role>",
 "KernelGatewayAppSettings": {
 "CustomImages": [
 {
 "ImageName": "custom-image",
 "AppImageConfigName": "custom-image-config"
 }
]
 }
 },
 "AuthMode": "IAM"
}

4. Create the domain with the attached custom SageMaker image.

aws sagemaker create-domain \
 --cli-input-json file://create-domain-input.json

The response should look similar to the following.

Customize Studio Classic 514

Amazon SageMaker Developer Guide

{
 "DomainArn": "arn:aws:sagemaker:us-east-2:acct-id:domain/d-xxxxxxxxxxxx",
 "Url": "https://d-xxxxxxxxxxxx.studio.us-east-2.sagemaker.aws/..."
}

Attach the SageMaker image to your current domain

If you have onboarded to a SageMaker domain, you can attach the custom image to your current
domain. For more information about onboarding to a SageMaker domain, see Amazon SageMaker
domain overview. You don't need to specify the VPC information and execution role when
attaching a custom image to your current domain. After you attach the version, you must delete all
the apps in your domain and reopen Studio Classic. For information about deleting the apps, see
Delete an Amazon SageMaker domain.

You perform the following steps to add the SageMaker image to your current domain.

• Get your DomainID from SageMaker control panel.

• Use the DomainID to get the DefaultUserSettings for the domain.

• Add the ImageName and AppImageConfig as a CustomImage to the DefaultUserSettings.

• Update your domain to include the custom image.

To add the custom SageMaker image to your domain

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the Domains page, select the domain to attach the image to.

5. From the Domain details page, select the Domain settings tab.

6. From the Domain settings tab, under General settings, find the DomainId. The ID is in the
following format: d-xxxxxxxxxxxx.

7. Use the domain ID to get the description of the domain.

aws sagemaker describe-domain \
 --domain-id <d-xxxxxxxxxxxx>

Customize Studio Classic 515

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

The response should look similar to the following.

{
 "DomainId": "d-xxxxxxxxxxxx",
 "DefaultUserSettings": {
 "KernelGatewayAppSettings": {
 "CustomImages": [
],
 ...
 }
 }
}

8. Save the default user settings section of the response to a file named default-user-
settings.json.

9. Insert the ImageName and AppImageConfigName from the previous steps as a custom image.
Because ImageVersionNumber isn't specified, the latest version of the image is used, which is
the only version in this case.

{
 "DefaultUserSettings": {
 "KernelGatewayAppSettings": {
 "CustomImages": [
 {
 "ImageName": "string",
 "AppImageConfigName": "string"
 }
],
 ...
 }
 }
}

10. Use the domain ID and default user settings file to update your domain.

aws sagemaker update-domain \
 --domain-id <d-xxxxxxxxxxxx> \
 --cli-input-json file://default-user-settings.json

The response should look similar to the following.

Customize Studio Classic 516

Amazon SageMaker Developer Guide

{
 "DomainArn": "arn:aws:sagemaker:us-east-2:acct-id:domain/d-xxxxxxxxxxxx"
}

Attach the SageMaker image to a shared space

You can only attach the SageMaker image to a shared space using the AWS CLI. After you attach
the version, you must delete all of the applications in your shared space and reopen Studio Classic.
For information about deleting the apps, see Delete an Amazon SageMaker domain.

You perform the following steps to add the SageMaker image to a shared space.

• Get your DomainID from SageMaker control panel.

• Use the DomainID to get the DefaultSpaceSettings for the domain.

• Add the ImageName and AppImageConfig as a CustomImage to the
DefaultSpaceSettings.

• Update your domain to include the custom image for the shared space.

To add the custom SageMaker image to your shared space

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the Domains page, select the domain to attach the image to.

5. From the Domain details page, select the Domain settings tab.

6. From the Domain settings tab, under General settings, find the DomainId. The ID is in the
following format: d-xxxxxxxxxxxx.

7. Use the domain ID to get the description of the domain.

aws sagemaker describe-domain \
 --domain-id <d-xxxxxxxxxxxx>

The response should look similar to the following.

{

Customize Studio Classic 517

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

 "DomainId": "d-xxxxxxxxxxxx",
 ...
 "DefaultSpaceSettings": {
 "KernelGatewayAppSettings": {
 "CustomImages": [
],
 ...
 }
 }
}

8. Save the default space settings section of the response to a file named default-space-
settings.json.

9. Insert the ImageName and AppImageConfigName from the previous steps as a custom image.
Because ImageVersionNumber isn't specified, the latest version of the image is used, which is
the only version in this case.

{
 "DefaultSpaceSettings": {
 "KernelGatewayAppSettings": {
 "CustomImages": [
 {
 "ImageName": "string",
 "AppImageConfigName": "string"
 }
],
 ...
 }
 }
}

10. Use the domain ID and default space settings file to update your domain.

aws sagemaker update-domain \
 --domain-id <d-xxxxxxxxxxxx> \
 --cli-input-json file://default-space-settings.json

The response should look similar to the following.

{
 "DomainArn": "arn:aws:sagemaker:us-east-2:acct-id:domain/d-xxxxxxxxxxxx"

Customize Studio Classic 518

Amazon SageMaker Developer Guide

}

View the attached image in SageMaker

After you create the custom SageMaker image and attach it to your domain, the image appears
in the Environment tab of the domain. You can only view the attached images for shared spaces
using the AWS CLI by using the following command.

aws sagemaker describe-domain \
 --domain-id <d-xxxxxxxxxxxx>

Launch a custom SageMaker image in Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

After you create your custom SageMaker image and attach it to your domain or shared space, the
custom image and kernel appear in selectors in the Change environment dialog box of the Studio
Classic Launcher.

To launch and select your custom image and kernel

1. In Amazon SageMaker Studio Classic, open the Launcher. To open the Launcher, choose
Amazon SageMaker Studio Classic at the top left of the Studio Classic interface or use the
keyboard shortcut Ctrl + Shift + L.

To learn about all the available ways to open the Launcher, see Use the Amazon SageMaker
Studio Classic Launcher

Customize Studio Classic 519

Amazon SageMaker Developer Guide

2. In the Launcher, in the Notebooks and compute resources section, choose Change
environment.

3. In the Change environment dialog, use the dropdown menus to select your Image from the
Custom Image section, and your Kernel, then choose Select.

4. In the Launcher, choose Create notebook or Open image terminal. Your notebook or terminal
launches in the selected custom image and kernel.

To change your image or kernel in an open notebook, see Change an Image or a Kernel.

Note

If you encounter an error when launching the image, check your Amazon CloudWatch logs.
The name of the log group is /aws/sagemaker/studio. The name of the log stream is
$domainID/$userProfileName/KernelGateway/$appName.

Customize Studio Classic 520

Amazon SageMaker Developer Guide

Clean up resources

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following sections show how to clean up the resources you created in the previous sections
from the SageMaker console or AWS CLI. You perform the following steps to clean up the
resources:

• Detach the image and image versions from your domain.

• Delete the image, image version, and app image config.

• Delete the container image and repository from Amazon ECR. For more information, see Deleting
a repository.

Clean up resources from the SageMaker console

The following section shows how to clean up resources from the SageMaker console.

When you detach an image from a domain, all versions of the image are detached. When an image
is detached, all users of the domain lose access to the image versions. A running notebook that
has a kernel session on an image version when the version is detached, continues to run. When the
notebook is stopped or the kernel is shut down, the image version becomes unavailable.

To detach an image

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose Images.

4. Under Custom SageMaker Studio Classic images attached to domain, choose the image and
then choose Detach.

5. (Optional) To delete the image and all versions from SageMaker, select Also delete the
selected images This does not delete the associated container images from Amazon ECR.

Customize Studio Classic 521

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-delete.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-delete.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

6. Choose Detach.

Clean up resources from the AWS CLI

The following section shows how to clean up resources from the AWS CLI.

To clean up resources

1. Detach the image and image versions from your domain by passing an empty custom image
list to the domain. Open the default-user-settings.json file you created in Attach the
SageMaker image to your current domain. To detach the image and image version from a
shared space, open the default-space-settings.json file.

2. Delete the custom images and then save the file.

"DefaultUserSettings": {
 "KernelGatewayAppSettings": {
 "CustomImages": [
],
 ...
 },
 ...
}

3. Use the domain ID and default user settings file to update your domain. To update your shared
space, use the default space settings file.

aws sagemaker update-domain \
 --domain-id <d-xxxxxxxxxxxx> \
 --cli-input-json file://default-user-settings.json

The response should look similar to the following.

{
 "DomainArn": "arn:aws:sagemaker:us-east-2:acct-id:domain/d-xxxxxxxxxxxx"
}

4. Delete the app image config.

aws sagemaker delete-app-image-config \
 --app-image-config-name custom-image-config

Customize Studio Classic 522

Amazon SageMaker Developer Guide

5. Delete the SageMaker image, which also deletes all image versions. The container images in
ECR that are represented by the image versions are not deleted.

aws sagemaker delete-image \
 --image-name custom-image

Use lifecycle configurations with Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Lifecycle configurations are shell scripts triggered by Amazon SageMaker Studio Classic lifecycle
events, such as starting a new Studio Classic notebook. You can use lifecycle configurations to
automate customization for your Studio Classic environment. This customization includes installing
custom packages, configuring notebook extensions, preloading datasets, and setting up source
code repositories.

Using lifecycle configurations gives you flexibility and control to configure Studio Classic to meet
your specific needs. For example, you can create a minimal set of base container images with the
most commonly used packages and libraries, then use lifecycle configurations to install additional
packages for specific use cases across your data science and machine learning teams.

For example lifecycle configuration scripts, see the Studio Classic Lifecycle Configuration examples
GitHub repository. For a blog on implementing lifecycle configuration, see Customize Amazon
SageMaker Studio Classic using Lifecycle Configurations.

Note

Each script has a limit of 16384 characters.

Topics

Customize Studio Classic 523

https://github.com/aws-samples/sagemaker-studio-lifecycle-config-examples
https://github.com/aws-samples/sagemaker-studio-lifecycle-config-examples
https://aws.amazon.com/blogs/machine-learning/customize-amazon-sagemaker-studio-using-lifecycle-configurations/
https://aws.amazon.com/blogs/machine-learning/customize-amazon-sagemaker-studio-using-lifecycle-configurations/

Amazon SageMaker Developer Guide

• Create and associate a lifecycle configuration

• Set default lifecycle configurations

• Debug lifecycle configurations

• Update and detach lifecycle configurations

Create and associate a lifecycle configuration

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker provides interactive applications that enable Studio Classic's visual interface,
code authoring, and run experience. This series shows how to create a lifecycle configuration and
associate it with a SageMaker domain.

Application types can be either JupyterServer or KernelGateway.

• JupyterServer applications: This application type enables access to the visual interface
for Studio Classic. Every user and shared space in Studio Classic gets its own JupyterServer
application.

• KernelGateway applications: This application type enables access to the code run environment
and kernels for your Studio Classic notebooks and terminals. For more information, see Jupyter
Kernel Gateway.

For more information about Studio Classic's architecture and Studio Classic applications, see Use
Amazon SageMaker Studio Classic Notebooks.

Topics

• Create a lifecycle configuration from the AWS CLI

• Create a lifecycle configuration from the SageMaker console

Customize Studio Classic 524

https://jupyter-kernel-gateway.readthedocs.io/en/latest/
https://jupyter-kernel-gateway.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html

Amazon SageMaker Developer Guide

Create a lifecycle configuration from the AWS CLI

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following topic shows how to create a lifecycle configuration using the AWS CLI to automate
customization for your Studio Classic environment.

Prerequisites

Before you begin, complete the following prerequisites:

• Update the AWS CLI by following the steps in Installing the current AWS CLI Version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

• Onboard to SageMaker domain by following the steps in Amazon SageMaker domain overview.

Step 1: Create a lifecycle configuration

The following procedure shows how to create a lifecycle configuration script that prints Hello
World.

Note

Each script can have up to 16,384 characters.

1. From your local machine, create a file named my-script.sh with the following content.

#!/bin/bash
set -eux
echo 'Hello World!'

Customize Studio Classic 525

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Amazon SageMaker Developer Guide

2. Convert your my-script.sh file into base64 format. This requirement prevents errors that
occur from spacing and line break encoding.

LCC_CONTENT=`openssl base64 -A -in my-script.sh`

3. Create a lifecycle configuration for use with Studio Classic. The following command creates a
lifecycle configuration that runs when you launch an associated KernelGateway application.

aws sagemaker create-studio-lifecycle-config \
--region region \
--studio-lifecycle-config-name my-studio-lcc \
--studio-lifecycle-config-content $LCC_CONTENT \
--studio-lifecycle-config-app-type KernelGateway

Note the ARN of the newly created lifecycle configuration that is returned. This ARN is required
to attach the lifecycle configuration to your application.

Step 2: Attach the lifecycle configuration to your domain, user profile, or shared space

To attach the lifecycle configuration, you must update the UserSettings for your domain or
user profile, or the SpaceSettings for a shared space. Lifecycle configuration scripts that are
associated at the domain level are inherited by all users. However, scripts that are associated at the
user profile level are scoped to a specific user, while scripts that are associated at the shared space
level are scoped to the shared space.

The following example shows how to create a new user profile with the lifecycle configuration
attached. You can also create a new domain or space with a lifecycle configuration attached by
using the create-domain and create-space commands, respectively.

Add the lifecycle configuration ARN from the previous step to the settings for the appropriate app
type. For example, place it in the JupyterServerAppSettings of the user. You can add multiple
lifecycle configurations at the same time by passing a list of lifecycle configurations. When a user
launches a JupyterServer application with the AWS CLI, they can pass a lifecycle configuration to
use instead of the default. The lifecycle configuration that the user passes must belong to the list
of lifecycle configurations in JupyterServerAppSettings.

Create a new UserProfile
aws sagemaker create-user-profile --domain-id domain-id \
--user-profile-name user-profile-name \

Customize Studio Classic 526

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/opensearch/create-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-space.html

Amazon SageMaker Developer Guide

--region region \
--user-settings '{
"JupyterServerAppSettings": {
 "LifecycleConfigArns":
 [lifecycle-configuration-arn-list]
 }
}'

The following example shows how to update an existing shared space to attach the lifecycle
configuration. You can also update an existing domain or user profile with a lifecycle configuration
attached by using the update-domain or update-user-profile command. When you update the list
of lifecycle configurations attached, you must pass all lifecycle configurations as part of the list. If a
lifecycle configuration is not part of this list, it will not be attached to the application.

aws sagemaker update-space --domain-id domain-id \
--space-name space-name \
--region region \
--space-settings '{
"JupyterServerAppSettings": {
 "LifecycleConfigArns":
 [lifecycle-configuration-arn-list]
 }
}'

For information about setting a default lifecycle configuration for a resource, see Set default
lifecycle configurations.

Step 3: Launch application with lifecycle configuration

After you attach a lifecycle configuration to a domain, user profile, or space, the user can select
it when launching an application with the AWS CLI. This section describes how to launch an
application with an attached lifecycle configuration. For information about changing the default
lifecycle configuration after launching a JupyterServer application, see Set default lifecycle
configurations.

Launch the desired application type using the create-app command and specify the lifecycle
configuration ARN in the resource-spec argument.

• The following example shows how to create a JupyterServer application with an associated
lifecycle configuration. When creating the JupyterServer, the app-name must be default.
The lifecycle configuration ARN passed as part of the resource-spec parameter must be part

Customize Studio Classic 527

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-user-profile.html

Amazon SageMaker Developer Guide

of the list of lifecycle configuration ARNs specified in UserSettings for your domain or user
profile, or SpaceSettings for a shared space.

aws sagemaker create-app --domain-id domain-id \
--region region \
--user-profile-name user-profile-name \
--app-type JupyterServer \
--resource-spec LifecycleConfigArn=lifecycle-configuration-arn \
--app-name default

• The following example shows how to create a KernelGateway application with an associated
lifecycle configuration.

aws sagemaker create-app --domain-id domain-id \
--region region \
--user-profile-name user-profile-name \
--app-type KernelGateway \
--resource-spec LifecycleConfigArn=lifecycle-configuration-
arn,SageMakerImageArn=sagemaker-image-arn,InstanceType=instance-type \
--app-name app-name

Create a lifecycle configuration from the SageMaker console

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following topic shows how to create a lifecycle configuration from the Amazon SageMaker
console to automate customization for your Studio Classic environment.

Prerequisites

Before you can begin this tutorial, complete the following prerequisite:

• Onboard to Amazon SageMaker Studio Classic. For more information, see Onboard to Amazon
SageMaker Studio Classic.

Customize Studio Classic 528

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html

Amazon SageMaker Developer Guide

Step 1: Create a new lifecycle configuration

You can create a lifecycle configuration by entering a script from the Amazon SageMaker console.

Note

Each script can have up to 16,384 characters.

The following procedure shows how to create a lifecycle configuration script that prints Hello
World.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose Lifecycle configurations.

4. Choose the Studio tab.

5. Choose Create configuration.

6. Under Select configuration type, select the type of application that the lifecycle configuration
should be attached to. For more information about selecting which application to attach the
lifecycle configuration to, see Set default lifecycle configurations.

7. Choose Next.

8. In the section called Configuration settings, enter a name for your lifecycle configuration.

9. In the Scripts section, enter the following content.

#!/bin/bash
set -eux
echo 'Hello World!'

10. (Optional) Create a tag for your lifecycle configuration.

11. Choose Submit.

Step 2: Attach the lifecycle configuration to a domain or user profile

Lifecycle configuration scripts associated at the domain level are inherited by all users. However,
scripts that are associated at the user profile level are scoped to a specific user.

Customize Studio Classic 529

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

You can attach multiple lifecycle configurations to a domain or user profile for both JupyterServer
and KernelGateway applications.

Note

To attach a lifecycle configuration to a shared space, you must use the AWS CLI. For more
information, see Create a lifecycle configuration from the AWS CLI.

The following sections show how to attach a lifecycle configuration to your domain or user profile.

Attach to a domain

The following shows how to attach a lifecycle configuration to your existing domain from the
SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain to attach the lifecycle configuration to.

5. From the Domain details, choose the Environment tab.

6. Under Lifecycle configurations for personal Studio apps, choose Attach.

7. Under Source, choose Existing configuration.

8. Under Studio lifecycle configurations, select the lifecycle configuration that you created in
the previous step.

9. Select Attach to domain.

Attach to your user profile

The following shows how to attach a lifecycle configuration to your existing user profile.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that contains the user profile to attach the
lifecycle configuration to.

Customize Studio Classic 530

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

5. Under User profiles, select the user profile.

6. From the User Details page, choose Edit.

7. On the left navigation, choose Studio settings.

8. Under Lifecycle configurations attached to user, choose Attach.

9. Under Source, choose Existing configuration.

10. Under Studio lifecycle configurations, select the lifecycle configuration that you created in
the previous step.

11. Choose Attach to user profile.

Step 3: Launch an application with the lifecycle configuration

After you attach a lifecycle configuration to a domain or user profile, you can launch an application
with that attached lifecycle configuration. Choosing which lifecycle configuration to launch with
depends on the application type.

• JupyterServer: When launching a JupyterServer application from the console, SageMaker always
uses the default lifecycle configuration. You can't use a different lifecycle configuration when
launching from the console. For information about changing the default lifecycle configuration
after launching a JupyterServer application, see Set default lifecycle configurations.

To select a different attached lifecycle configuration, you must launch with the AWS CLI. For
more information about launching a JupyterServer application with an attached lifecycle
configuration from the AWS CLI, see Create a lifecycle configuration from the AWS CLI.

• KernelGateway: You can select any of the attached lifecycle configurations when launching a
KernelGateway application using the Studio Classic Launcher.

The following procedure describes how to launch a KernelGateway application with an attached
lifecycle configuration from the SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Launch Studio Classic. For more information, see Launch Amazon SageMaker Studio Classic.

3. In the Studio Classic UI, open the Studio Classic Launcher. For more information, see Use the
Amazon SageMaker Studio Classic Launcher.

4. In the Studio Classic Launcher, navigate to the Notebooks and compute resources section.

5. Click the Change environment button.

Customize Studio Classic 531

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

6. On the Change environment dialog, use the dropdown menus to select your Image, Kernel,
Instance type, and a Start-up script. If there is no default lifecycle configuration, the Start-
up script value defaults to No script. Otherwise, the Start-up script value is your default
lifecycle configuration. After you select a lifecycle configuration, you can view the entire script.

7. Click Select.

8. Back to the Launcher, click the Create notebook to launch a new notebook kernel with your
selected image and lifecycle configuration.

Step 4: View logs for a lifecycle configuration

You can view the logs for your lifecycle configuration after it has been attached to a domain or user
profile.

1. First, provide access to CloudWatch for your AWS Identity and Access Management (IAM) role.
Add read permissions for the following log group and log stream.

• Log group:/aws/sagemaker/studio

• Log stream:domain/user-profile/app-type/app-name/LifecycleConfigOnStart

For information about adding permissions, see Enabling logging from certain AWS services.

2. From within Studio Classic, navigate to the Running Terminals and Kernels

icon to monitor your lifecycle configuration.

3. Select an application from the list of running applications. Applications
with attached lifecycle configurations have an attached indicator icon

.

4. Select the indicator icon for your application. This opens a new panel that lists the lifecycle
configuration.

5. From the new panel, select View logs. This opens a new tab that displays the logs.

Customize Studio Classic 532

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html

Amazon SageMaker Developer Guide

Set default lifecycle configurations

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Although you can attach multiple lifecycle configuration scripts to a single resource, you can only
set one default lifecycle configuration for each JupyterServer or KernelGateway application. The
behavior of the default lifecycle configuration depends on whether it is set for JupyterServer or
KernelGateway apps.

• JupyterServer apps: When set as the default lifecycle configuration script for JupyterServer
apps, the lifecycle configuration script runs automatically when the user signs in to Studio
Classic for the first time or restarts Studio Classic. Use this default lifecycle configuration to
automate one-time setup actions for the Studio Classic developer environment, such as installing
notebook extensions or setting up a GitHub repo. For an example of this, see Customize Amazon
SageMaker Studio using Lifecycle Configurations.

• KernelGateway apps: When set as the default lifecycle configuration script for KernelGateway
apps, the lifecycle configuration is selected by default in the Studio Classic launcher. Users can
launch a notebook or terminal with the default script selected, or they can select a different one
from the list of lifecycle configurations.

SageMaker supports setting a default lifecycle configuration for the following resources:

• Domains

• User profiles

• Shared spaces

While domains and user profiles support setting a default lifecycle configuration from both the
Amazon SageMaker console and AWS Command Line Interface, shared spaces only support setting
a default lifecycle configuration from the AWS CLI.

Customize Studio Classic 533

https://aws.amazon.com/blogs/machine-learning/customize-amazon-sagemaker-studio-using-lifecycle-configurations/
https://aws.amazon.com/blogs/machine-learning/customize-amazon-sagemaker-studio-using-lifecycle-configurations/

Amazon SageMaker Developer Guide

You can set a lifecycle configuration as the default when creating a new resource or updating an
existing resource. The following topics demonstrate how to set a default lifecycle configuration
using the SageMaker console and AWS CLI.

Default lifecycle configuration inheritance

Default lifecycle configurations set at the domain level are inherited by all users and shared spaces.
Default lifecycle configurations set at the user and shared space level are scoped to only that user
or shared space. User and space defaults override defaults set at the domain level.

A default KernelGateway lifecycle configuration set for a domain applies to all KernelGateway
applications launched in the domain. Unless the user selects a different lifecycle configuration from
the list presented in the Studio Classic launcher, the default lifecycle configuration is used. The
default script also runs if No Script is selected by the user. For more information about selecting
a script, see Step 3: Launch an application with the lifecycle configuration.

Topics

• Set defaults from the AWS CLI

• Set defaults from the SageMaker console

Set defaults from the AWS CLI

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can set default lifecycle configuration scripts from the AWS CLI for the following resources:

• Domains

• User profiles

• Shared spaces

The following sections outline how to set default lifecycle configuration scripts from the AWS CLI.

Customize Studio Classic 534

Amazon SageMaker Developer Guide

Topics

• Prerequisites

• Set a default lifecycle configuration when creating a new resource

• Set a default lifecycle configuration for an existing resource

Prerequisites

Before you begin, complete the following prerequisites:

• Update the AWS CLI by following the steps in Installing the current AWS CLI version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

• Onboard to SageMaker domain by following the steps in Amazon SageMaker domain overview.

• Create a lifecycle configuration following the steps in Create and associate a lifecycle
configuration.

Set a default lifecycle configuration when creating a new resource

To set a default lifecycle configuration when creating a new domain, user profile, or space, pass
the ARN of your previously created lifecycle configuration as part of one of the following AWS CLI
commands:

• create-user-profile

• create-domain

• create-space

You must pass the lifecycle configuration ARN for the following values in the KernelGateway or
JupyterServer default settings:

• DefaultResourceSpec:LifecycleConfigArn - This specifies the default lifecycle
configuration for the application type.

• LifecycleConfigArns - This is the list of all lifecycle configurations attached to the
application type. The default lifecycle configuration must also be part of this list.

Customize Studio Classic 535

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-user-profile.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/opensearch/create-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-space.html

Amazon SageMaker Developer Guide

For example, the following API call creates a new user profile with a default lifecycle configuration.

aws sagemaker create-user-profile --domain-id domain-id \
--user-profile-name user-profile-name \
--region region \
--user-settings '{
"KernelGatewayAppSettings": {
 "DefaultResourceSpec": {
 "InstanceType": "ml.t3.medium",
 "LifecycleConfigArn": "lifecycle-configuration-arn"
 },
 "LifecycleConfigArns": [lifecycle-configuration-arn-list]
 }
}'

Set a default lifecycle configuration for an existing resource

To set or update the default lifecycle configuration for an existing resource, pass the ARN of your
previously created lifecycle configuration as part of one of the following AWS CLI commands:

• update-user-profile

• update-domain

• update-space

You must pass the lifecycle configuration ARN for the following values in the KernelGateway or
JupyterServer default settings:

• DefaultResourceSpec:LifecycleConfigArn - This specifies the default lifecycle
configuration for the application type.

• LifecycleConfigArns - This is the list of all lifecycle configurations attached to the
application type. The default lifecycle configuration must also be part of this list.

For example, the following API call updates a user profile with a default lifecycle configuration.

aws sagemaker update-user-profile --domain-id domain-id \
--user-profile-name user-profile-name \
--region region \
--user-settings '{

Customize Studio Classic 536

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-user-profile.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-space.html

Amazon SageMaker Developer Guide

"KernelGatewayAppSettings": {
 "DefaultResourceSpec": {
 "InstanceType": "ml.t3.medium",
 "LifecycleConfigArn": "lifecycle-configuration-arn"
 },
 "LifecycleConfigArns": [lifecycle-configuration-arn-list]
 }
}'

The following API call updates a domain to set a new default lifecycle configuration.

aws sagemaker update-domain --domain-id domain-id \
--region region \
--default-user-settings '{
"JupyterServerAppSettings": {
 "DefaultResourceSpec": {
 "InstanceType": "ml.t3.medium",
 "LifecycleConfigArn": "lifecycle-configuration-arn"
 },
 "LifecycleConfigArns": [lifecycle-configuration-arn-list]
 }
}'

Set defaults from the SageMaker console

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can set default lifecycle configuration scripts from the SageMaker console for the following
resources.

• Domains

• User profiles

Customize Studio Classic 537

Amazon SageMaker Developer Guide

You cannot set default lifecycle configuration scripts for shared spaces from the SageMaker
console. For information about setting defaults for shared spaces, see Set defaults from the AWS
CLI.

The following sections outline how to set default lifecycle configuration scripts from the
SageMaker console.

Topics

• Prerequisites

• Set a default lifecycle configuration for a domain

• Set a default lifecycle configuration for a user profile

Prerequisites

Before you begin, complete the following prerequisites:

• Onboard to SageMaker domain by following the steps in Amazon SageMaker domain overview.

• Create a lifecycle configuration following the steps in Create and associate a lifecycle
configuration.

Set a default lifecycle configuration for a domain

The following procedure shows how to set a default lifecycle configuration for a domain from the
SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. From the list of domains, select the name of the domain to set the default lifecycle
configuration for.

3. From the Domain details page, choose the Environment tab.

4. Under Lifecycle configurations for personal Studio apps, select the lifecycle configuration
that you want to set as the default for the domain. You can set distinct defaults for
JupyterServer and KernelGateway applications.

5. Choose Set as default. This opens a pop up window that lists the current defaults for
JupyterServer and KernelGateway applications.

6. Choose Set as default to set the lifecycle configuration as the default for its respective
application type.

Customize Studio Classic 538

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Set a default lifecycle configuration for a user profile

The following procedure shows how to set a default lifecycle configuration for a user profile from
the SageMaker console.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. From the list of domains, select the name of the domain that contains the user profile that you
want to set the default lifecycle configuration for.

3. From the Domain details page, choose the User profiles tab.

4. Select the name of the user profile to set the default lifecycle configuration for. This opens a
User Details page.

5. From the User Details page, choose Edit. This opens an Edit user profile page.

6. From the Edit user profile page, choose Step 2 Studio settings.

7. Under Lifecycle configurations attached to user, select the lifecycle configuration that you
want to set as the default for the user profile. You can set distinct defaults for JupyterServer
and KernelGateway applications.

8. Choose Set as default. This opens a pop up window that lists the current defaults for
JupyterServer and KernelGateway applications.

9. Choose Set as default to set the lifecycle configuration as the default for its respective
application type.

Debug lifecycle configurations

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following topics show how to get information about and debug your lifecycle configurations.

Topics

• Verify lifecycle configuration process from CloudWatch Logs

Customize Studio Classic 539

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

• JupyterServer app failure

• KernelGateway app failure

• Lifecycle configuration timeout

Verify lifecycle configuration process from CloudWatch Logs

Lifecycle configurations only log STDOUT and STDERR.

STDOUT is the default output for bash scripts. You can write to STDERR by appending >&2 to the
end of a bash command. For example, echo 'hello'>&2.

Logs for your lifecycle configurations are published to your AWS account using Amazon
CloudWatch. These logs can be found in the /aws/sagemaker/studio log stream in the
CloudWatch console.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Logs from the left side. From the dropdown menu, select Log groups.

3. On the Log groups page, search for aws/sagemaker/studio.

4. Select the log group.

5. On the Log group details page, choose the Log streams tab.

6. To find the logs for a specific app, search the log streams using the following format:

domain-id/user-profile-name/app-type/app-name

For example, to find the lifecycle configuration logs for domain d-m85lcu8vbqmz, user profile
i-sonic-js, application type JupyterServer and application name test-lcc-echo, use
the following search string:

d-m85lcu8vbqmz/i-sonic-js/JupyterServer/test-lcc-echo

7. Select the log stream appended with LifecycleConfigOnStart to view the script execution
logs.

JupyterServer app failure

If your JupyterServer app crashes because of an issue with the attached lifecycle configuration,
Studio Classic displays the following error message on the Studio Classic startup screen.

Customize Studio Classic 540

https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide

Failed to create SageMaker Studio due to start-up script failure

Select the View script logs link to view the CloudWatch logs for your JupyterServer app.

In the case where the faulty lifecycle configuration is specified in the DefaultResourceSpec
of your domain, user profile, or shared space, Studio Classic continues to use the lifecycle
configuration even after restarting Studio Classic.

To resolve this error, follow the steps in Set default lifecycle configurations to remove the lifecycle
configuration script from the DefaultResourceSpec or select another script as the default. Then
launch a new JupyterServer app.

KernelGateway app failure

If your KernelGateway app crashes because of an issue with the attached lifecycle configuration,
Studio Classic displays the error message in your Studio Classic Notebook.

Choose View script logs to view the CloudWatch logs for your KernelGateway app.

In this case, your lifecycle configuration is specified in the Studio Classic Launcher when launching
a new Studio Classic Notebook.

To resolve this error, use the Studio Classic launcher to select a different lifecycle configuration or
select No script.

Note

A default KernelGateway lifecycle configuration specified in DefaultResourceSpec
applies to all KernelGateway images in the domain, user profile, or shared space unless
the user selects a different script from the list presented in the Studio Classic launcher.
The default script also runs if No Script is selected by the user. For more information on
selecting a script, see Step 3: Launch an application with the lifecycle configuration.

Lifecycle configuration timeout

There is a lifecycle configuration timeout limitation of 5 minutes. If a lifecycle configuration script
takes longer than 5 minutes to run, Studio Classic throws an error.

To resolve this error, ensure that your lifecycle configuration script completes in less than 5
minutes.

Customize Studio Classic 541

Amazon SageMaker Developer Guide

To help decrease the run time of scripts, try the following:

• Cut down on necessary steps. For example, limit which conda environments to install large
packages in.

• Run tasks in parallel processes.

• Use the nohup command in your script to ensure that hangup signals are ignored and do not
stop the execution of the script.

Update and detach lifecycle configurations

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

A lifecycle configuration script can't be changed after it's created. To update your script, you must
create a new lifecycle configuration script and attach it to the respective domain, user profile, or
shared space. For more information about creating and attaching the lifecycle configuration, see
Create and associate a lifecycle configuration.

The following topic shows how to detach a lifecycle configuration using the AWS CLI and
SageMaker console.

Topics

• Prerequisites

• Detach using the AWS CLI

Prerequisites

Before detaching a lifecycle configuration, you must complete the following prerequisite.

• To successfully detach a lifecycle configuration, no running application can be using the lifecycle
configuration. You must first shut down the running applications as shown in Shut Down and
Update SageMaker Studio Classic and Studio Classic Apps.

Customize Studio Classic 542

Amazon SageMaker Developer Guide

Detach using the AWS CLI

To detach a lifecycle configuration using the AWS CLI, remove the desired lifecycle configuration
from the list of lifecycle configurations attached to the resource and pass the list as part of the
respective command:

• update-user-profile

• update-domain

• update-space

For example, the following command removes all lifecycle configurations for KernelGateways
attached to the domain.

aws sagemaker update-domain --domain-id domain-id \
--region region \
--default-user-settings '{
"KernelGatewayAppSettings": {
 "LifecycleConfigArns":
 []
 }
}'

Attach Suggested Git Repos to Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker Studio Classic offers a Git extension for you to enter the URL of a Git
repository (repo), clone it into your environment, push changes, and view commit history. In
addition to this Git extension, you can also attach suggested Git repository URLs at the Amazon
SageMaker domain or user profile level. Then, you can select the repo URL from the list of
suggestions and clone that into your environment using the Git extension in Studio Classic.

Customize Studio Classic 543

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-user-profile.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-space.html

Amazon SageMaker Developer Guide

The following topics show how to attach Git repo URLs to a domain or user profile from the AWS
CLI and SageMaker console. You'll also learn how to detach these repository URLs.

Topics

• Attach a Git Repository from the AWS CLI

• Attach a Git Repository from the SageMaker Console

• Detach Git Repos

Attach a Git Repository from the AWS CLI

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following topic shows how to attach a Git repository URL using the AWS CLI, so that Amazon
SageMaker Studio Classic automatically suggests it for cloning. After you attach the Git repository
URL, you can clone it by following the steps in Clone a Git Repository in SageMaker Studio Classic.

Prerequisites

Before you begin, complete the following prerequisites:

• Update the AWS CLI by following the steps in Installing the current AWS CLI Version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

• Onboard to Amazon SageMaker domain. For more information, see Amazon SageMaker domain
overview.

Attach the Git repo to a domain or user profile

Git repo URLs associated at the domain level are inherited by all users. However, Git repo URLs that
are associated at the user profile level are scoped to a specific user. You can attach multiple Git
repo URLs to a domain or user profile by passing a list of repository URLs.

Customize Studio Classic 544

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Amazon SageMaker Developer Guide

The following sections show how to attach a Git repo URL to your domain and user profile.

Attach to a domain

The following command attaches a Git repo URL to an existing domain.

aws sagemaker update-domain --region region --domain-id domain-id \
 --default-user-settings
 JupyterServerAppSettings={CodeRepositories=[{RepositoryUrl="repository"}]}

Attach to a user profile

The following shows how to attach a Git repo URL to an existing user profile.

aws sagemaker update-user-profile --domain-id domain-id --user-profile-name user-name\
 --user-settings
 JupyterServerAppSettings={CodeRepositories=[{RepositoryUrl="repository"}]}

Attach a Git Repository from the SageMaker Console

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following topic shows how to associate a Git repository URL from the Amazon SageMaker
console to clone it in your Studio Classic environment. After you associate the Git repository URL,
you can clone it by following the steps in Clone a Git Repository in SageMaker Studio Classic.

Prerequisites

Before you can begin this tutorial, you must onboard to Amazon SageMaker domain. For more
information, see Amazon SageMaker domain overview.

Attach the Git repo to a domain or user profile

Git repo URLs associated at the domain level are inherited by all users. However, Git repo URL that
are associated at the user profile level are scoped to a specific user.

Customize Studio Classic 545

Amazon SageMaker Developer Guide

The following sections show how to attach a Git repo URL to a domain and user profile.

Attach to a domain

To attach a Git repo URL to an existing domain

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the domain to attach the Git repo to.

5. On the domain details page, choose the Environment tab.

6. On the Suggested code repositories for the domain tab, choose Attach.

7. Under Source, enter the Git repository URL.

8. Select Attach to domain.

Attach to a user profile

The following shows how to attach a Git repository URL to an existing user profile.

To attach a Git repository URL to a user profile

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the domain that includes the user profile to attach the Git repo to.

5. On the domain details page, choose the User profiles tab.

6. Select the user profile to attach the Git repo URL to.

7. On the User details page, choose Edit.

8. On the Studio settings page, choose Attach from the Suggested code repositories for the
user section.

9. Under Source, enter the Git repository URL.

10. Choose Attach to user.

Customize Studio Classic 546

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Detach Git Repos

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

This guide shows how to detach Git repository URLs from an Amazon SageMaker domain or user
profile using the AWS CLI or Amazon SageMaker console.

Topics

• Detach a Git repo using the AWS CLI

• Detach the Git repo using the SageMaker console

Detach a Git repo using the AWS CLI

To detach all Git repo URLs from a domain or user profile, you must pass an empty list of code
repositories. This list is passed as part of the JupyterServerAppSettings parameter in an
update-domain or update-user-profile command. To detach only one Git repo URL, pass
the code repositories list without the desired Git repo URL. This section shows how to detach all Git
repo URLs from your domain or user profile using the AWS Command Line Interface (AWS CLI).

Detach from a domain

The following command detaches all Git repo URLs from a domain.

aws sagemaker update-domain --region region --domain-name domain-name \
 --domain-settings JupyterServerAppSettings={CodeRepositories=[]}

Detach from a user profile

The following command detaches all Git repo URLs from a user profile.

aws sagemaker update-user-profile --domain-name domain-name --user-profile-name user-
name\

Customize Studio Classic 547

Amazon SageMaker Developer Guide

 --user-settings JupyterServerAppSettings={CodeRepositories=[]}

Detach the Git repo using the SageMaker console

The following sections show how to detach a Git repo URL from a domain or user profile using the
SageMaker console.

Detach from a domain

Use the following steps to detach a Git repo URL from an existing domain.

To detach a Git repo URL from an existing domain

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the domain with the Git repo URL that you want to detach.

5. On the domain details page, choose the Environment tab.

6. On the Suggested code repositories for the domain tab, select the Git repository URL to
detach.

7. Choose Detach.

8. From the new window, choose Detach.

Detach from a user profile

Use the following steps to detach a Git repo URL from a user profile.

To detach a Git repo URL from a user profile

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the domain that includes the user profile with the Git repo URL that you want to detach.

5. On the domain details page, choose the User profiles tab.

6. Select the user profile with the Git repo URL that you want to detach.

7. On the User details page, choose Edit.

Customize Studio Classic 548

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

8. On the Studio settings page, select the Git repo URL to detach from the Suggested code
repositories for the user tab.

9. Choose Detach.

10. From the new window, choose Detach.

Perform Common Tasks in Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following sections describe how to perform common tasks in Amazon SageMaker Studio
Classic. For an overview of the Studio Classic interface, see Amazon SageMaker Studio Classic UI
Overview.

Topics

• Upload Files to SageMaker Studio Classic

• Clone a Git Repository in SageMaker Studio Classic

• Stop a Training Job in SageMaker Studio Classic

• Use TensorBoard in Amazon SageMaker Studio Classic

• Using CodeWhisperer and CodeGuru extensions with SageMaker

• Manage Your Amazon EFS Storage Volume in SageMaker Studio Classic

• Provide Feedback on SageMaker Studio Classic

• Shut Down and Update SageMaker Studio Classic and Studio Classic Apps

Upload Files to SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the

Perform Common Tasks 549

Amazon SageMaker Developer Guide

Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

When you onboard to Amazon SageMaker Studio Classic, a home directory is created for you in the
Amazon Elastic File System (Amazon EFS) volume that was created for your team. Studio Classic
can only open files that have been uploaded to your directory. The Studio Classic file browser maps
to your home directory.

Note

Studio Classic does not support uploading folders. While you can only upload individual
files, you can upload multiple files at the same time.

To upload files to your home directory

1. In the left sidebar, choose the File Browser icon (

).

2. In the file browser, choose the Upload Files icon (

).

3. Select the files you want to upload and then choose Open.

4. Double-click a file to open the file in a new tab in Studio Classic.

Clone a Git Repository in SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker Studio Classic can only connect only to a local Git repository (repo). This means
that you must clone the Git repo from within Studio Classic to access the files in the repo. Studio

Perform Common Tasks 550

Amazon SageMaker Developer Guide

Classic offers a Git extension for you to enter the URL of a Git repo, clone it into your environment,
push changes, and view commit history. If the repo is private and requires credentials to access,
then you are prompted to enter your user credentials. This includes your username and personal
access token. For more information about personal access tokens, see Managing your personal
access tokens.

Admins can also attach suggested Git repository URLs at the Amazon SageMaker domain or user
profile level. Users can then select the repo URL from the list of suggestions and clone that into
Studio Classic. For more information about attaching suggested repos, see Attach Suggested Git
Repos to Studio Classic.

The following procedure shows how to clone a GitHub repo from Studio Classic.

To clone the repo

1. In the left sidebar, choose the Git icon (

).

2. Choose Clone a Repository. This opens a new window.

3. In the Clone Git Repository window, enter the URL in the following format for the Git repo
that you want to clone or select a repository from the list of Suggested repositories.

https://github.com/path-to-git-repo/repo.git

4. If you entered the URL of the Git repo manually, select Clone "git-url" from the dropdown
menu.

5. Under Project directory to clone into, enter the path to the local directory that you want
to clone the Git repo into. If this value is left empty, Studio Classic clones the repo into
JupyterLab's root directory.

6. Choose Clone. This opens a new terminal window.

7. If the repo requires credentials, you are prompted to enter your username and personal access
token. This prompt does not accept passwords, you must use a personal access token. For more
information about personal access tokens, see Managing your personal access tokens.

8. Wait for the download to finish. After the repo has been cloned, the File Browser opens to
display the cloned repo.

9. Double click the repo to open it.

10. Choose the Git icon to view the Git user interface which now tracks the repo.

Perform Common Tasks 551

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

Amazon SageMaker Developer Guide

11. To track a different repo, open the repo in the file browser and then choose the Git icon.

Stop a Training Job in SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

You can stop a training job with the Amazon SageMaker Studio Classic UI. When you stop a
training job, its status changes to Stopping at which time billing ceases. An algorithm can delay
termination in order to save model artifacts after which the job status changes to Stopped. For
more information, see the stop_training_job method in the AWS SDK for Python (Boto3).

To stop a training job

1. Follow the View, search, and compare experiment runs procedure on this page until you open
the Describe Trial Component tab.

2. At the upper-right side of the tab, choose Stop training job. The Status at the top left of the
tab changes to Stopped.

3. To view the training time and billing time, choose AWS Settings.

Use TensorBoard in Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following doc outlines how to install and run TensorBoard in Amazon SageMaker Studio
Classic.

Perform Common Tasks 552

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.stop_training_job

Amazon SageMaker Developer Guide

Note

This guide shows how to open the TensorBoard application through a SageMaker Studio
Classic notebook server of an individual SageMaker domain user profile. For a more
comprehensive TensorBoard experience integrated with SageMaker Training and the access
control functionalities of SageMaker domain, see Use TensorBoard to debug and analyze
training jobs in Amazon SageMaker.

Prerequisites

This tutorial requires a SageMaker domain. For more information, see Amazon SageMaker domain
overview

Set Up TensorBoardCallback

1. Launch Studio Classic, and open the Launcher. For more information, see Use the Amazon
SageMaker Studio Classic Launcher

2. In the Amazon SageMaker Studio Classic Launcher, under Notebooks and compute
resources, choose the Change environment button.

3. On the Change environment dialog, use the dropdown menus to select the TensorFlow 2.6
Python 3.8 CPU Optimized Studio Classic Image.

4. Back to the Launcher, click the Create notebook tile. Your notebook launches and opens in a
new Studio Classic tab.

5. Run this code from within your notebook cells.

6. Import the required packages.

import os
import datetime
import tensorflow as tf

7. Create a Keras model.

mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

def create_model():

Perform Common Tasks 553

Amazon SageMaker Developer Guide

 return tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation='softmax')
])

8. Create a directory for your TensorBoard logs

LOG_DIR = os.path.join(os.getcwd(), "logs/fit/" +
 datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

9. Run training with TensorBoard.

model = create_model()
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR,
 histogram_freq=1)

model.fit(x=x_train,
 y=y_train,
 epochs=5,
 validation_data=(x_test, y_test),
 callbacks=[tensorboard_callback])

10. Generate the EFS path for the TensorBoard logs. You use this path to set up your logs from the
terminal.

EFS_PATH_LOG_DIR = "/".join(LOG_DIR.strip("/").split('/')[1:-1])
print (EFS_PATH_LOG_DIR)

Retrieve the EFS_PATH_LOG_DIR. You will need it in the TensorBoard installation section.

Install TensorBoard

1. Click on the Amazon SageMaker Studio Classic button on the top left corner of Studio
Classic to open the Amazon SageMaker Studio Classic Launcher. This launcher must be opened

Perform Common Tasks 554

Amazon SageMaker Developer Guide

from your root directory. For more information, see Use the Amazon SageMaker Studio Classic
Launcher

2. In the Launcher, under Utilities and files, click System terminal.

3. From the terminal, run the following commands. Copy EFS_PATH_LOG_DIR from the Jupyter
notebook. You must run this from the /home/sagemaker-user root directory.

pip install tensorboard
tensorboard --logdir <EFS_PATH_LOG_DIR>

Launch TensorBoard

1. To launch TensorBoard, copy your Studio Classic URL and replace lab? with proxy/6006/ as
follows. You must include the trailing / character.

https://<YOUR_URL>.studio.region.sagemaker.aws/jupyter/default/proxy/6006/

2. Navigate to the URL to examine your results.

Using CodeWhisperer and CodeGuru extensions with SageMaker

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker Studio Classic is an integrated machine learning environment where you can
build, train, deploy, and analyze your models all in the same application. This topic shows how
to generate code recommendations and suggest improvements related to code issues by using
Amazon CodeWhisperer and Amazon CodeGuru with Amazon SageMaker.

The following extensions support writing code by generating code recommendations and
suggesting improvements related to code issues:

• Amazon CodeWhisperer

Perform Common Tasks 555

Amazon SageMaker Developer Guide

• Amazon CodeGuru

What is Amazon CodeWhisperer?

Amazon CodeWhisperer is a service powered by machine learning that helps improve developer
productivity. CodeWhisperer achieves this by generating code recommendations based on
developers’ comments in natural language and their code in the IDE. During preview, Amazon
CodeWhisperer is available for the Java, JavaScript, Python, C# and TypeScript programming
languages. The service integrates with JupyterLab, Amazon SageMaker Studio Classic, Amazon
SageMaker notebook instances, and other integrated development environments (IDEs).

For more information, see the Setting up CodeWhisperer with Amazon SageMaker Studio Classic.

What is Amazon CodeGuru?

Amazon CodeGuru Security uses automated reasoning and machine learning informed by AWS
security best practices. CodeGuru Security automatically creates comprehensive security policies,
detects security vulnerabilities in your code, and suggests quality improvements. Together, these
recommendations can help you create and deploy secure applications.

CodeGuru Security improves the security of your code in the following ways:

• Proactively detects security policy violations and vulnerabilities.

• Provides recommendations for addressing security risks.

• Suggests improvements to inefficient methods.

From SageMaker, you can call CodeGuru Security by using the open-source Jupyter plugin. You
can use CodeGuru Security to scan notebooks for a variety of issues that can affect the security,
correctness, reproducibility, maintainability, and performance of your code. For more information,
see Tutorial: Run scans with SageMaker Studio Classic and JupyterLab.

Manage Your Amazon EFS Storage Volume in SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the

Perform Common Tasks 556

https://docs.aws.amazon.com/codewhisperer/latest/userguide/sagemaker-setup.html
https://docs.aws.amazon.com/codeguru/latest/security-ug/get-started-notebooks-tutorial.html

Amazon SageMaker Developer Guide

Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The first time a user on your team onboards to Amazon SageMaker Studio Classic, Amazon
SageMaker creates an Amazon Elastic File System (Amazon EFS) volume for the team. A home
directory is created in the volume for each user who onboards to Studio Classic as part of your
team. Notebook files and data files are stored in these directories. Users don't have access to other
team member's home directories. Amazon SageMaker domain does not support mounting custom
or additional Amazon EFS volumes.

Important

Don't delete the Amazon EFS volume. If you delete it, the domain will no longer function
and all of your users will lose their work.

To find your Amazon EFS volume

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the Domains page, select the domain to find the ID for.

5. From the Domain details page, select the Domain settings tab.

6. Under General settings, find the Domain ID. The ID will be in the following format: d-
xxxxxxxxxxxx.

7. Pass the Domain ID, as DomainId, to the describe_domain method.

8. In the response from describe_domain, note the value for the HomeEfsFileSystemId key.
This is the Amazon EFS file system ID.

9. Open the Amazon EFS console. Make sure the AWS Region is the same Region that's used by
Studio Classic.

10. Under File systems, choose the file system ID from the previous step.

11. To verify that you've chosen the correct file system, select the Tags heading. The value
corresponding to the ManagedByAmazonSageMakerResource key should match the Studio
Classic ID.

Perform Common Tasks 557

https://console.aws.amazon.com/sagemaker/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.describe_domain
https://console.aws.amazon.com/efs#/file-systems/

Amazon SageMaker Developer Guide

For information on how to access the Amazon EFS volume, see Using file systems in Amazon EFS.

To delete the Amazon EFS volume, see Deleting an Amazon EFS file system.

Provide Feedback on SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Amazon SageMaker takes your feedback seriously. We encourage you to provide feedback.

To provide feedback

1. At the right of SageMaker Studio Classic, find the Feedback icon

().

2. Choose a smiley emoji to let us know how satisfied you are with SageMaker Studio Classic and
add any feedback you'd care to share with us.

3. Decide whether to share your identity with us, then choose Submit.

Shut Down and Update SageMaker Studio Classic and Studio Classic Apps

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

The following topics show how to shut down and update SageMaker Studio Classic and Studio
Classic Apps.

Perform Common Tasks 558

https://docs.aws.amazon.com/efs/latest/ug/using-fs.html
https://docs.aws.amazon.com/efs/latest/ug/delete-efs-fs.html

Amazon SageMaker Developer Guide

Studio Classic provides a notification icon

()
in the upper-right corner of the Studio Classic UI. This notification icon displays the number of
unread notices. To read the notices, select the icon.

Studio Classic provides two types of notifications:

• Upgrade – Displayed when Studio Classic or one of the Studio Classic apps have released a new
version. To update Studio Classic, see Shut down and Update SageMaker Studio Classic. To
update Studio Classic apps, see Shut down and Update Studio Classic Apps.

• Information – Displayed for new features and other information.

To reset the notification icon, you must select the link in each notice. Read notifications may still
display in the icon. This does not indicate that updates are still needed after you have updated
Studio Classic and Studio Classic Apps.

To learn how to update Amazon SageMaker Data Wrangler, see Shut down and Update Studio
Classic Apps.

To ensure that you have the most recent software updates, update Amazon SageMaker Studio
Classic and your Studio Classic apps using the methods outlined in the following topics.

Topics

• Shut down and Update SageMaker Studio Classic

• Shut down and Update Studio Classic Apps

Shut down and Update SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

To update Amazon SageMaker Studio Classic to the latest release, you must shut down the
JupyterServer app. You can shut down the JupyterServer app from the SageMaker console, from

Perform Common Tasks 559

https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler.html

Amazon SageMaker Developer Guide

Amazon SageMaker Studio or from within Studio Classic. After the JupyterServer app is shut down,
you must reopen Studio Classic through the SageMaker console or from Studio which creates a new
version of the JupyterServer app.

You cannot delete the JupyterServer application while the Studio Classic UI is still open in the
browser. If you delete the JupyterServer application while the Studio Classic UI is still open in the
browser, SageMaker automatically re-creates the JupyterServer application.

Any unsaved notebook information is lost in the process. The user data in the Amazon EFS volume
isn't impacted.

Some of the services within Studio Classic, like Data Wrangler, run on their own app. To update
these services you must delete the app for that service. To learn more, see Shut down and Update
Studio Classic Apps.

Note

A JupyterServer app is associated with a single Studio Classic user. When you update the
app for one user it doesn't affect other users.

The following page shows how to update the JupyterServer App from the SageMaker console, from
Studio, or from inside Studio Classic.

Shut down and update from the SageMaker console

1. Navigate to https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the domain that includes the Studio Classic application that you want to update.

5. Under User profiles, select your user name.

6. Under Apps, in the row displaying JupyterServer, choose Action, then choose Delete.

7. Choose Yes, delete app.

8. Type delete in the confirmation box.

9. Choose Delete.

10. After the app has been deleted, launch a new Studio Classic app to get the latest version.

Perform Common Tasks 560

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Shut down and update from Studio

1. Navigate to Studio following the steps in Launch Amazon SageMaker Studio.

2. From the Studio UI, find the applications pane on the left side.

3. From the applications pane, select Studio Classic.

4. From the Studio Classic landing page, select the Studio Classic instance to stop.

5. Choose Stop.

6. After the app has been stopped, select Run to use the latest version.

Shut down and update from inside Studio Classic

1. Launch Studio Classic.

2. On the top menu, choose File then Shut Down.

3. Choose one of the following options:

• Shutdown Server – Shuts down the JupyterServer app. Terminal sessions, kernel sessions,
SageMaker images, and instances aren't shut down. These resources continue to accrue
charges.

• Shutdown All – Shuts down all apps, terminal sessions, kernel sessions, SageMaker images,
and instances. These resources no longer accrue charges.

4. Close the window.

5. After the app has been deleted, launch a new Studio Classic app to use the latest version.

Shut down and Update Studio Classic Apps

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

To update an Amazon SageMaker Studio Classic app to the latest release, you must first shut down
the corresponding KernelGateway app from the SageMaker console. After the KernelGateway app

Perform Common Tasks 561

Amazon SageMaker Developer Guide

is shut down, you must reopen it through SageMaker Studio Classic by running a new kernel. The
kernel automatically updates. Any unsaved notebook information is lost in the process. The user
data in the Amazon EFS volume isn't impacted.

After an application has been shut down for 24 hours, SageMaker deletes all metadata for the
application. To be considered an update and retain application metadata, applications must be
restarted within 24 hours after the previous application has been shut down. After this time
window, creation of an application is considered a new application rather than an update of the
previous application.

Note

A KernelGateway app is associated with a single Studio Classic user. When you update the
app for one user it doesn't effect other users.

To update the KernelGateway app

1. Navigate to https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the domain that includes the application that you want to update.

5. Under User profiles, select your user name.

6. Under Apps, in the row displaying the App name, choose Action, then choose Delete

To update Data Wrangler, delete the app that starts with sagemaker-data-wrang.

7. Choose Yes, delete app.

8. Type delete in the confirmation box.

9. Choose Delete.

10. After the app has been deleted, launch a new kernel from within Studio Classic to use the
latest version.

Perform Common Tasks 562

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Amazon SageMaker Studio Classic Pricing

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

When the first member of your team onboards to Amazon SageMaker Studio Classic, Amazon
SageMaker creates an Amazon Elastic File System (Amazon EFS) volume for the team. When this
member, or any member of the team, opens Studio Classic, a home directory is created in the
volume for the member. A storage charge is incurred for this directory. Subsequently, additional
storage charges are incurred for the notebooks and data files stored in the member's home
directory. For pricing information on Amazon EFS, see Amazon EFS Pricing.

Additional costs are incurred when other operations are run inside Studio Classic, for example,
running a notebook, running training jobs, and hosting a model.

For information on the costs associated with using Studio Classic notebooks, see Usage Metering.

For information about billing along with pricing examples, see Amazon SageMaker Pricing.

If Amazon SageMaker Studio is your default experience, see Amazon SageMaker Studio pricing for
more pricing information.

Troubleshooting Amazon SageMaker Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Studio Classic Pricing 563

https://aws.amazon.com/efs/pricing/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

This topic describes how to troubleshoot common Amazon SageMaker Studio Classic issues during
setup and use. The following are common errors that might occur while using Amazon SageMaker
Studio Classic. Each error is followed by its solution.

Studio Classic application issues

The following issues occur when launching and using the Studio Classic application.

• Screen not loading: Clearing workspace and waiting doesn't help

When launching the Studio Classic application, a pop-up displays the following message. No
matter which option is selected, Studio Classic does not load.

Loading...
The loading screen is taking a long time. Would you like to clear the workspace or
 keep waiting?

The Studio Classic application can have a launch delay if multiple tabs are open in the Studio
Classic workspace or several files are on Amazon EFS. This pop-up should disappear in a few
seconds after the Studio Classic workspace is ready.

If you continue to see a loading screen with a spinner after selecting either of the options, there
could be connectivity issues with the Amazon Virtual Private Cloud used by Studio Classic.

To resolve connectivity issues with the Amazon Virtual Private Cloud (Amazon VPC) used by
Studio Classic, verify the following networking configurations:

• If your domain is set up in VpcOnly mode: Verify that there is an Amazon VPC endpoint for
AWS STS, or a NAT Gateway for outbound traffic, including traffic over the internet. To do this,
follow the steps in Connect SageMaker Studio Notebooks in a VPC to External Resources.

• If your Amazon VPC is set up with a custom DNS instead of the DNS provided by Amazon:
Verify that the routes are configured using Dynamic Host Configuration Protocol (DHCP)
for each Amazon VPC endpoint added to the Amazon VPC used by Studio Classic. For more
information about setting default and custom DHCP option sets, see DHCP option sets in
Amazon VPC.

• Internal Failure when launching Studio Classic

When launching Studio Classic, you are unable to view the Studio Classic UI. You also see an error
similar to the following, with Internal Failure as the error detail.

Troubleshooting 564

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html

Amazon SageMaker Developer Guide

Amazon SageMaker Studio
The JupyterServer app default encountered a problem and was stopped.

This error can be caused by multiple factors. If completion of these steps does not resolve your
issue, create an issue with https://aws.amazon.com/premiumsupport/.

• Missing Amazon EFS mount target: Studio Classic uses Amazon EFS for storage. The Amazon
EFS volume needs a mount target for each subnet that the Amazon SageMaker domain
is created in. If this Amazon EFS mount target is deleted accidentally, the Studio Classic
application cannot load because it cannot mount the user’s file directory. To resolve this issue,
complete the following steps.

To verify or create mount targets.

1. Find the Amazon EFS volume that is associated with the domain by using
the DescribeDomain API call.

2. Sign in to the AWS Management Console and open the Amazon EFS console at https://
console.aws.amazon.com/efs/.

3. From the list of Amazon EFS volumes, select the Amazon EFS volume that is associated
with the domain.

4. On the Amazon EFS details page, select the Network tab. Verify that there are mount
targets for all of the subnets that the domain is set up in.

5. If mount targets are missing, add the missing Amazon EFS mount targets. For instructions,
see Creating and managing mount targets and security groups.

6. After the missing mount targets are created, launch the Studio Classic application.

• Conflicting files in the user’s .local folder: If you're using JupyterLab version 1 on Studio
Classic, conflicting libraries in your .local folder can cause issues when launching the Studio
Classic application. To resolve this, update your user profile's default JupyterLab version to
JupyterLab 3.0. For more information about viewing and updating the JupyterLab version, see
JupyterLab Versioning.

• ConfigurationError: LifecycleConfig when launching Studio Classic

You can't view the Studio Classic UI when launching Studio Classic. This is caused by issues with
the default lifecycle configuration script attached to the domain.

Troubleshooting 565

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeDomain.html
https://console.aws.amazon.com/efs/
https://console.aws.amazon.com/efs/
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs.html

Amazon SageMaker Developer Guide

To resolve lifecycle configuration issues

1. View the Amazon CloudWatch Logs for the lifecycle configuration to trace the command
that caused the failure. To view the log, follow the steps in Verify lifecycle configuration
process from CloudWatch Logs.

2. Detach the default script from the user profile or domain. For more information, see Update
and detach lifecycle configurations.

3. Launch the Studio Classic application.

4. Debug your lifecycle configuration script. You can run the lifecycle configuration script from
the system terminal to troubleshoot. When the script runs successfully from the terminal,
you can attach the script to the user profile or the domain.

• SageMaker Studio Classic core functionalities are not available.

If you get this error message when opening Studio Classic, it may be due to Python package
version conflicts. This occurs if you used the following commands in a notebook or terminal to
install Python packages that have version conflicts with SageMaker package dependencies.

!pip install

pip install --user

To resolve this issue, complete the following steps:

1. Uninstall recently installed Python packages. If you’re not sure which package to uninstall,
create an issue with https://aws.amazon.com/premiumsupport/.

2. Restart Studio Classic:

a. Shut down Studio Classic from the File menu.

b. Wait for one minute.

c. Reopen Studio Classic by refreshing the page or opening it from the AWS Management
Console.

The problem should be resolved if you have uninstalled the package which caused the conflict.
To install packages without causing this issue again, use %pip install without the --user
flag.

If the issue persists, create a new user profile and set up your environment with that user profile.

Troubleshooting 566

Amazon SageMaker Developer Guide

If these solutions don't fix the issue, create an issue with https://aws.amazon.com/
premiumsupport/.

• Unable to open Studio Classic from the AWS Management Console.

If you are unable to open Studio Classic and cannot make a new running instance with all default
settings, create an issue with https://aws.amazon.com/premiumsupport/.

KernelGateway application issues

The following issues are specific to KernelGateway applications that are launched in Studio Classic.

• Cannot access the Kernel session

When the user launches a new notebook, they are unable to connect to the notebook session. If
the KernelGateway application's status is In Service, you can verify the following to resolve
the issue.

• Check Security Group configurations

If the domain is set up in VPCOnly mode, the security group associated with the domain
must allow traffic between the ports in the range 8192-65535 for connectivity between the
JupyterServer and KernelGateway apps.

To verify the security group rules

1. Get the security groups associated with the domain using the DescribeDomain API call.

2. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

3. From the left navigation, under Security, choose Security Groups.

4. Filter by the IDs of the security groups that are associated with the domain.

5. For each security group:

a. Select the security group.

b. From the security group details page, view the Inbound rules. Verify that traffic is
allowed between ports in the range 8192-65535.

Troubleshooting 567

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeDomain.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon SageMaker Developer Guide

For more information about security group rules, see Control traffic to resources using security
groups. For more information about requirements to use Studio Classic in VPCOnly mode,
see Connect SageMaker Studio Notebooks in a VPC to External Resources.

• Verify firewall and WebSocket connections

If the KernelGateway apps have an InService status and the user is unable to connect to the
Studio Classic notebook session, verify the firewall and WebSocket settings.

1. Launch the Studio Classic application. For more information, see Launch Amazon
SageMaker Studio Classic.

2. Open your web browser’s developer tools.

3. Choose the Network tab.

4. Search for an entry that matches the following format.

wss://<domain-id>.studio.<region>.sagemaker.aws/jupyter/default/api/kernels/
<unique-code>/channels?session_id=<unique-code>

If the status or response code for the entry is anything other than 101, then your network
settings are preventing the connection between the Studio Classic application and the
KernelGateway apps.

To resolve this issue, contact the team that manages your networking settings to allow list
the Studio Classic URL and enable WebSocket connections.

• Unable to launch an app caused by exceeded resource quotas

When a user tries to launch a new notebook, the notebook creation fails with either of the
following errors. This is caused by exceeding resource quotas.

• Unable to start more Apps of AppType [KernelGateway] and
 ResourceSpec(instanceType=[]) for UserProfile []. Please delete an App with a
 matching AppType and ResourceSpec, then try again

Studio Classic supports up to four running KernelGateway apps on the same instance. To
resolve this issue, you can do either of the following:

• Delete an existing KernelGateway application running on the instance, then restart the new
notebook.

Troubleshooting 568

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#working-with-security-group-rules
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#working-with-security-group-rules

Amazon SageMaker Developer Guide

• Start the new notebook on a different instance type

For more information, see Change an Instance Type.

• An error occurred (ResourceLimitExceeded) when calling the CreateApp operation

In this case, the account does not have sufficient limits to create a Studio Classic application
on the specified instance type. To resolve this, navigate to the Service Quotas console at
https://console.aws.amazon.com/servicequotas/. In that console, request to increase the
Studio KernelGateway Apps running on instance-type instance limit. For more
information, see AWS service quotas.

SageMaker JupyterLab

Create a JupyterLab space within Amazon SageMaker Studio to launch the JupyterLab application.
A JupyterLab space is a private space within Studio that manages the storage and compute
resources needed to run the JupyterLab application. The JupyterLab application is a web-based
interactive development environment (IDE) for notebooks, code, and data. Use the JupyterLab
application's flexible and extensive interface to configure and arrange machine learning (ML)
workflows.

By default, the JupyterLab application comes with the SageMaker Distribution image. The
distribution image has popular packages, such as the following:

• PyTorch

• TensorFlow

• Keras

• NumPy

• Pandas

• Scikit-learn

Within the JupyterLab application, you can use Amazon CodeWhisperer, a generative AI powered
code companion to generate, debug, and explain your code.

Build unified analytics and ML workflows in same Jupyter notebook. Run interactive Spark jobs
on Amazon EMR and AWS Glue serverless infrastructure, right from your notebook. Monitor and

SageMaker JupyterLab 569

https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon SageMaker Developer Guide

debug jobs faster using the inline Spark UI. In a few steps, you can automate your data prep by
scheduling the notebook as a job.

The JupyterLab application helps you work collaboratively with your peers. Use the built-in Git
integration within the JupyterLab IDE to share and version code. Bring your own file storage
system if you have an Amazon EFS volume.

The JupyterLab application runs on a single Amazon Elastic Compute Cloud (Amazon EC2) instance
and uses a single Amazon Elastic Block Store (Amazon EBS) volume for storage. You can switch
faster instances or increase the Amazon EBS volume size for your needs.

The JupyterLab 4 application runs in a JupyterLab space within Studio. Studio Classic uses the
JupyterLab 3 application. JupyterLab 4 provides the following benefits:

• A faster IDE than Amazon SageMaker Studio Classic, especially with large notebooks

• Improved document search

• A more performant and accessible text editor

For more information about JupyterLab, see JupyterLab Documentation.

Topics

• JupyterLab user guide

• JupyterLab administrator guide

• Migrating from SageMaker Studio Classic to SageMaker Studio

JupyterLab user guide

This guide shows JupyterLab users how to run analytics and machine learning workflows within
SageMaker Studio. You can get fast storage and scale your compute up or down, depending on
your needs.

JupyterLab only supports private spaces, where private spaces are scoped to a single user in a
domain. For information about Studio spaces, see Amazon SageMaker Studio spaces.

To get started using JupyterLab, create a private space and launch your JupyterLab application.
The private space running your JupyterLab application is a JupyterLab space. The JupyterLab space
uses a single Amazon EC2 instance for your compute and a single Amazon EBS volume for your

JupyterLab user guide 570

https://jupyterlab.readthedocs.io/en/stable/#

Amazon SageMaker Developer Guide

storage. Everything in your space such as your code, git profile, and environment variables are
stored on the same Amazon EBS volume. The volume has 3000 IOPS and a throughput of 125
megabytes per second (MBps). You can use the fast storage to open and run multiple Jupyter
notebooks on the same instance. You can also switch kernels in a notebook very quickly.

Your administrator has configured the default Amazon EBS storage settings for your space. The
default storage size is 5 GB, but you can increase the amount of space that you get. You can talk to
your administrator to provide you with guidelines.

You can switch the Amazon EC2 instance type that you’re using to run JupyterLab, scaling your
compute up or down depending on your needs. The Fast launch instances start up much faster
than the other instances.

Your administrator might provide you with a lifecycle configuration that customizes your
environment. You can specify the lifecycle configuration when you create the space.

If your administrator gives you access to an Amazon EFS, you can configure your JupyterLab space
to access it.

By default, the JupyterLab application uses the SageMaker distribution image. This includes
support for many machine learning, analytics, and deep learning packages. However, if you need a
custom image, your administrator can help provide access to the custom images.

The Amazon EBS volume persists independently from the life of an instance. You won’t lose your
data when you change instances. Use the conda and pip package management libraries to create
reproducible custom environments that persist even when you switch instance types.

To get started using JupyterLab, create a space or choose the space that your administrator created
for you and open JupyterLab.

Use the following procedure to create a space and open JupyterLab.

To create a space and open JupyterLab

1. Open Studio. For information about opening Studio, see Launch Amazon SageMaker Studio.

2. Choose JupyterLab.

3. Choose Create JupyterLab space.

4. For Name, specify the name of the space.

5. Choose Create space.

JupyterLab user guide 571

Amazon SageMaker Developer Guide

6. (Optional) For Instance, specify the Amazon EC2 instance that runs the space.

7. (Optional) For Image, specify an image that your administrator provided to customize your
environment.

8. (Optional) For Space Settings, specify the following:

• Storage (GB) – Up to 100 GB or the amount that your administrator specifies.

• Lifecycle Configuration – A lifecycle configuration that your administrator specifies.

• Attach custom EFS filesystem – An Amazon EFS to which your administrator provides
access.

9. Choose Run space.

10. Choose Open JupyterLab.

Configure space

After you create a JupyterLab space, you can configure it to do the following:

• Change the instance type.

• Change the storage volume.

• (Admin set up required) Use a custom image.

• (Admin set up required) Use a lifecycle configuration.

• (Admin set up required) Attach a custom Amazon EFS.

Important

You must stop the JupyterLab space every time you configure it. Use the following
procedure to configure the space.

To configure a space

1. Within Studio, navigate to the JupyterLab application page.

2. Choose the name of the space.

3. (Optional) For Image, specify an image that your administrator provided to customize your
environment.

JupyterLab user guide 572

Amazon SageMaker Developer Guide

4. (Optional) For Space Settings, specify the following:

• Storage (GB) – Up to 100 GB or the amount that your administrator configured for the
space.

• Lifecycle Configuration – A lifecycle configuration that your administrator provides.

• Attach custom EFS filesystem – An Amazon EFS to which your administrator provides
access.

5. Choose Run space.

When you open the JupyterLab application, your space has the updated configuration.

After you open JupyterLab, you can configure your environment using the terminal. To open the
terminal, navigate to the Launcher and choose Terminal.

The following are examples of different ways that you can configure an environment in JupyterLab.

Note

Within Studio, you can use lifecycle configurations to customize your environment, but
we recommend using a package manager instead. Using lifecycle configurations is a
more error-prone method. It’s easier to add or remove dependencies than it is to debug a
lifecycle configuration script. It can also increase the JupyterLab startup time.
For information about lifecycle configurations, see Using lifecycle configurations with
JupyterLab.

Customize your environment using a package manager

Use pip or conda to customize your environment. We recommend using package managers instead
of lifecycle configuration scripts.

Create and activate your custom environment

This section provides examples of different ways that you can configure an environment in
JupyterLab.

A basic conda environment has the minimum number of packages that are required for your
workflows in SageMaker. Use the following template to a create a basic conda environment:

JupyterLab user guide 573

Amazon SageMaker Developer Guide

initialize conda for shell interaction
conda init

create a new fresh environment
conda create --name test-env

check if your new environment is created successfully
conda info --envs

activate the new environment
conda activate test-env

install packages in your new conda environment
conda install pip boto3 pandas ipykernel

list all packages install in your new environment
conda list

parse env name information from your new environment
export CURRENT_ENV_NAME=$(conda info | grep "active environment" | cut -d : -f 2 | tr -
d ' ')

register your new environment as Jupyter Kernel for execution
python3 -m ipykernel install --user --name $CURRENT_ENV_NAME --display-name "user-env:
($CURRENT_ENV_NAME)"

to exit your new environment
conda deactivate

The following image shows the location of the environment that you've created.

To change your environment, choose it and select an option from the dropdown menu.

JupyterLab user guide 574

Amazon SageMaker Developer Guide

Choose Select to select a kernel for the environment.

Clean up a conda environment

Cleaning up conda environments that you’re not using can help free up disk space and improve
performance. Use the following template to clean up a conda environment:

list your environments to select an environment to clean
conda info --envs # or conda info -e

once you've selected your environment to purge
conda remove --name test-env --all

JupyterLab user guide 575

Amazon SageMaker Developer Guide

run conda environment list to ensure the target environment is purged
conda info --envs # or conda info -e

Create a conda environment with a specific Python version

Cleaning up conda environments that you’re not using can help free up disk space and improve
performance. Use the following template to clean up a conda environment:

create a conda environment with a specific python version
conda create --name py38-test-env python=3.8.10

activate and test your new python version
conda activate py38-test-env & python3 --version

Install ipykernel to facilicate env registration
conda install ipykernel

parse env name information from your new environment
export CURRENT_ENV_NAME=$(conda info | grep "active environment" | cut -d : -f 2 | tr -
d ' ')

register your new environment as Jupyter Kernel for execution
python3 -m ipykernel install --user --name $CURRENT_ENV_NAME --display-name "user-env:
($CURRENT_ENV_NAME)"

deactivate your py38 test environment
conda deactivate

Create a conda environment with a specific set of packages

Use the following template to create a conda environment with a specific version of Python and set
of packages:

prefill your conda environment with a set of packages,
conda create --name py38-test-env python=3.8.10 pandas matplotlib=3.7 scipy ipykernel

activate your conda environment and ensure these packages exist
conda activate py38-test-env

JupyterLab user guide 576

Amazon SageMaker Developer Guide

check if these packages exist
conda list | grep -E 'pandas|matplotlib|scipy'

parse env name information from your new environment
export CURRENT_ENV_NAME=$(conda info | grep "active environment" | cut -d : -f 2 | tr -
d ' ')

register your new environment as Jupyter Kernel for execution
python3 -m ipykernel install --user --name $CURRENT_ENV_NAME --display-name "user-env:
($CURRENT_ENV_NAME)"

deactivate your conda environment
conda deactivate

Clone conda from an existing environment

Clone your conda environment to preserve its working state. You experiment in the cloned
environment without having to worry about introducing breaking changes in your test
environment.

Use the following command to clone an environment.

create a fresh env from a base environment
conda create --name py310-base-ext --clone base # replace 'base' with another env

activate your conda environment and ensure these packages exist
conda activate py310-base-ext

install ipykernel to register your env
conda install ipykernel

parse env name information from your new environment
export CURRENT_ENV_NAME=$(conda info | grep "active environment" | cut -d : -f 2 | tr -
d ' ')

register your new environment as Jupyter Kernel for execution
python3 -m ipykernel install --user --name $CURRENT_ENV_NAME --display-name "user-env:
($CURRENT_ENV_NAME)"

deactivate your conda environment

JupyterLab user guide 577

Amazon SageMaker Developer Guide

conda deactivate

Clone conda from a reference YAML file

Create a conda environment from a reference YAML file. The following is an example of a YAML file
that you can use.

anatomy of a reference environment.yml
name: py311-new-env
channels:
 - conda-forge
dependencies:
 - python=3.11
 - numpy
 - pandas
 - scipy
 - matplotlib
 - pip
 - ipykernel
 - pip:
 - git+https://github.com/huggingface/transformers

Under pip, we recommend specifying only the dependencies that aren't available with conda.

Use the following commands to create a conda environment from a YAML file.

create your conda environment
conda create -f environment.yml

activate your env
conda activate py311-new-env

Share environments between instance types

You can share conda environments by saving them to an Amazon EFS directory outside of your
Amazon EBS volume. Another user can access the environment in the directory where you saved it.

JupyterLab user guide 578

Amazon SageMaker Developer Guide

Important

There are limitations with sharing your environments. For example, we don't recommend
an environment meant to run on a GPU Amazon EC2 instance over an environment running
on a CPU instance.

Use the following commands as a template to specify the target directory where you’re creating
a custom environment. You’re creating a conda within a particular path. You create it within the
Amazon EFS directory. You can spin up a new instance and do conda activate path and do it within
the Amazon EFS.

if you know your environment path for your conda environment
conda create --prefix /home/sagemaker-user/my-project/py39-test python=3.9

activate the env with full path from prefix
conda activate home/sagemaker-user/my-project/py39-test

parse env name information from your new environment
export CURRENT_ENV_NAME=$(conda info | grep "active environment" | awk -F' : ' '{print
 $2}' | awk -F'/' '{print $NF}')

register your new environment as Jupyter Kernel for execution
python3 -m ipykernel install --user --name $CURRENT_ENV_NAME --display-name "user-env-
prefix:($CURRENT_ENV_NAME)"

deactivate your conda environment
conda deactivate

JupyterLab administrator guide

This guide for administrators describes SageMaker JupyterLab resources, such as those from
Amazon Elastic Block Store (Amazon EBS) and Amazon Elastic Compute Cloud (Amazon EC2). The
topics also show how to provide user access and change storage size.

A SageMaker JupyterLab space is composed of the following resources:

• A distinct Amazon EBS volume that stores all of the data, such as the code and the environment
variables.

JupyterLab administrator guide 579

Amazon SageMaker Developer Guide

• The Amazon EC2 instance used to run the space.

• The image used to run JupyterLab.

Note

Applications do not have access to the EBS volume of other applications. For example, Code
Editor, based on Code-OSS, Visual Studio Code - Open Source doesn't have access to the
EBS volume for JupyterLab. For more information about EBS volumes, see Amazon Elastic
Block Store (Amazon EBS).

You can use the Amazon SageMaker API to do the following:

• Change the default storage size of the EBS volume for your users.

• Change the maximum size of the EBS storage

• Specify the user settings for the application. For example, you can specify whether the user is
using a custom image or a code repository.

• Specify the support application type.

The default size of the Amazon EBS volume is 5 GB. You can increase the volume size to a
maximum of 16,384 GB. If you don't do anything, your users can increase their volume size to 100
GB. The volume size can be changed only once within a six hour period.

The kernels associated with the JupyterLab application run on the same Amazon EC2 instance that
runs JupyterLab. When you create a space, the latest version of the SageMaker Distribution Image
is used by default. For more information about SageMaker Distribution Images, see SageMaker
Distribution Images.

Important

For information about updating the space to use the latest version of the SageMaker
Distribution Image, see Updating the SageMaker Distribution Image.

The following sections walk you through the configurations that you need to perform as an
administrator.

JupyterLab administrator guide 580

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

Amazon SageMaker Developer Guide

Topics

• Give your users access to private spaces

• Change the default storage size for your JupyterLab users

• Using lifecycle configurations with JupyterLab

• Attach Git repos

• Customize environments using custom images

• Updating the SageMaker Distribution Image

• Delete unused resources

• Quotas

Give your users access to private spaces

To give users access to private spaces, you must attach a permissions policy to their IAM roles. You
can also use the permissions policy to restrict private spaces and their associated applications to a
specific user profile.

The following permission policy grants access to private spaces. This allows users to create their
own private space and list other private spaces within their domain. A user with this policy can't
access the private space of a different user. For information about Studio spaces, see Amazon
SageMaker Studio spaces.

The policy provides users with permissions to the following:

• Private spaces.

• A user profile for accessing private spaces.

To provide permissions, you can attach the following policy to the IAM roles of your users. You can
also use this policy to restrict private spaces, and their associated applications, to a specific user
profile.

{
 "Version": "2012-10-17",
 "Statement": [
 {

 "Effect": "Allow",

JupyterLab administrator guide 581

Amazon SageMaker Developer Guide

 "Action": [
 "sagemaker:CreateApp",
 "sagemaker:DeleteApp"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:app/*",
 "Condition": {
 "Null": {
 "sagemaker:OwnerUserProfileArn": "true"
 }
 }
 },
 {
 "Sid": "SMStudioCreatePresignedDomainUrlForUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:user-profile/
${sagemaker:DomainId}/${sagemaker:UserProfileName}"
 },
 {
 "Sid": "SMStudioAppPermissionsListAndDescribe",
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListApps",
 "sagemaker:ListDomains",
 "sagemaker:ListUserProfiles",
 "sagemaker:ListSpaces",
 "sagemaker:DescribeApp",
 "sagemaker:DescribeDomain",
 "sagemaker:DescribeUserProfile",
 "sagemaker:DescribeSpace"
],
 "Resource": "*"
 },
 {
 "Sid": "SMStudioAppPermissionsTagOnCreate",
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddTags"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:*/*",
 "Condition": {
 "Null": {

JupyterLab administrator guide 582

Amazon SageMaker Developer Guide

 "sagemaker:TaggingAction": "false"
 }
 }
 },
 {
 "Sid": "SMStudioRestrictSharedSpacesWithoutOwners",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateSpace",
 "sagemaker:UpdateSpace",
 "sagemaker:DeleteSpace"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:space/
${sagemaker:DomainId}/*",
 "Condition": {
 "Null": {
 "sagemaker:OwnerUserProfileArn": "true"
 }
 }
 },
 {
 "Sid": "SMStudioRestrictSpacesToOwnerUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateSpace",
 "sagemaker:UpdateSpace",
 "sagemaker:DeleteSpace"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:space/
${sagemaker:DomainId}/*",
 "Condition": {
 "ArnLike": {
 "sagemaker:OwnerUserProfileArn": "arn:aws:sagemaker:$AWS Region:
$111122223333:user-profile/${sagemaker:DomainId}/${sagemaker:UserProfileName}"
 },
 "StringEquals": {
 "sagemaker:SpaceSharingType": [
 "Private",
 "Shared"
]
 }
 }
 },
 {

JupyterLab administrator guide 583

Amazon SageMaker Developer Guide

 "Sid": "SMStudioRestrictCreatePrivateSpaceAppsToOwnerUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp",
 "sagemaker:DeleteApp"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:app/
${sagemaker:DomainId}/*",
 "Condition": {
 "ArnLike": {
 "sagemaker:OwnerUserProfileArn": "arn:aws:sagemaker:
${aws:Region}:${aws:PrincipalAccount}:user-profile/${sagemaker:DomainId}/
${sagemaker:UserProfileName}"
 },
 "StringEquals": {
 "sagemaker:SpaceSharingType": [
 "Private"
]
 }
 }
 },
]
}

Change the default storage size for your JupyterLab users

You can change the default storage settings for your users. You can also change the default storage
settings based on your organizational requirements and the needs of your users.

To change the storage size, this section provides commands to do the following:

1. Update the Amazon EBS storage settings in the Amazon SageMaker domain (domain).

2. Create a user profile and specify the storage settings within it.

Use the following AWS Command Line Interface (AWS CLI) commands to change the default
storage size.

Use the following AWS CLI command to update the domain:

JupyterLab administrator guide 584

Amazon SageMaker Developer Guide

aws --region $REGION sagemaker update-domain \
--domain-id $DOMAIN_ID \
--default-user-settings '{
 "SpaceStorageSettings": {
 "DefaultEbsStorageSettings":{
 "DefaultEbsVolumeSizeInGb":5,
 "MaximumEbsVolumeSizeInGb":100
 }
 }
}'

Use the following AWS CLI command to create the user profile and specify the default storage
settings:

aws --region $REGION sagemaker create-user-profile \
--domain-id $DOMAIN_ID \
--user-profile-name $USER_PROFILE_NAME \
--user-settings '{
 "SpaceStorageSettings": {
 "DefaultEbsStorageSettings":{
 "DefaultEbsVolumeSizeInGb":5,
 "MaximumEbsVolumeSizeInGb":100
 }
 }
}'

Use the following AWS CLI commands to update the default storage settings in the user profile:

aws --region $REGION sagemaker update-user-profile \
--domain-id $DOMAIN_ID \
--user-profile-name $USER_PROFILE_NAME \
--user-settings '{
 "SpaceStorageSettings": {
 "DefaultEbsStorageSettings":{
 "DefaultEbsVolumeSizeInGb":25,
 "MaximumEbsVolumeSizeInGb":200
 }
 }
}'

JupyterLab administrator guide 585

Amazon SageMaker Developer Guide

Using lifecycle configurations with JupyterLab

Lifecycle configurations are shell scripts that are triggered by JupyterLab lifecycle events,
such as starting a new JupyterLab notebook. You can use lifecycle configurations to automate
customization for your JupyterLab environment. This customization includes installing custom
packages, configuring notebook extensions, preloading datasets, and setting up source code
repositories.

Using lifecycle configurations gives you flexibility and control to configure JupyterLab to meet
your specific needs. For example, you can create a minimal set of base container images with the
most commonly used packages and libraries. Then you can use lifecycle configurations to install
additional packages for specific use cases across your data science and machine learning teams.

Note

Each script has a limit of 16,384 characters.

Topics

• Create and associate a lifecycle configuration

• Debug lifecycle configurations

• Detach lifecycle configurations

Create and associate a lifecycle configuration

This topic includes instructions for creating and associating a lifecycle configuration with
JupyterLab. You use the AWS Command Line Interface (AWS CLI) or the AWS Management Console
to automate customization for your JupyterLab environment.

Lifecycle configurations are shell scripts triggered by JupyterLab lifecycle events, such as starting a
new JupyterLab notebook. For more information about lifecycle configurations, see Using lifecycle
configurations with JupyterLab.

Create a lifecycle configuration (AWS CLI)

Learn how to create a lifecycle configuration using the AWS Command Line Interface (AWS CLI) to
automate customization for your Studio environment.

JupyterLab administrator guide 586

Amazon SageMaker Developer Guide

Prerequisites

Before you begin, complete the following prerequisites:

• Update the AWS CLI by following the steps in Installing the current AWS CLI Version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

• Onboard to Amazon SageMaker domain. For conceptual information, see Amazon SageMaker
domain overview. For a quickstart guide, see Quick onboard to Amazon SageMaker domain.

Step 1: Create a lifecycle configuration

The following procedure shows how to create a lifecycle configuration script that prints Hello
World.

Note

Each script can have up to 16,384 characters.

1. From your local machine, create a file named my-script.sh with the following content:

#!/bin/bash
set -eux
echo 'Hello World!'

2. Use the following to convert your my-script.sh file into base64 format. This requirement
prevents errors that occur from spacing and line break encoding.

LCC_CONTENT=`openssl base64 -A -in my-script.sh`

3. Create a lifecycle configuration for use with Studio. The following command creates a lifecycle
configuration that runs when you launch an associated JupyterLab application:

aws sagemaker create-studio-lifecycle-config \
--region region \
--studio-lifecycle-config-name my-jl-lcc \
--studio-lifecycle-config-content $LCC_CONTENT \
--studio-lifecycle-config-app-type JupyterLab

JupyterLab administrator guide 587

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Amazon SageMaker Developer Guide

Note the ARN of the newly created lifecycle configuration that is returned. This ARN is required
to attach the lifecycle configuration to your application.

Step 2: Attach the lifecycle configuration to your Amazon SageMaker domain (domain) and
user profile

To attach the lifecycle configuration, you must update the UserSettings for your domain or user
profile. Lifecycle configuration scripts that are associated at the domain level are inherited by all
users. However, scripts that are associated at the user profile level are scoped to a specific user.

You can create a new user profile, domain, or space with a lifecycle configuration attached by using
the following commands:

• create-user-profile

• create-domain

• create-space

The following command creates a user profile with a lifecycle configuration. Add the lifecycle
configuration ARN from the preceding step to the JupyterLabAppSettings of the user. You
can add multiple lifecycle configurations at the same time by passing a list of them. When a user
launches a JupyterLab application with the AWS CLI, they can specify a lifecycle configuration
instead of using the default one. The lifecycle configuration that the user passes must belong to
the list of lifecycle configurations in JupyterLabAppSettings.

Create a new UserProfile
aws sagemaker create-user-profile --domain-id domain-id \
--user-profile-name user-profile-name \
--region region \
--user-settings '{
"JupyterLabAppSettings": {
 "LifecycleConfigArns":
 [lifecycle-configuration-arn-list]
 }
}'

JupyterLab administrator guide 588

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-user-profile.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-space.html

Amazon SageMaker Developer Guide

Create a lifecycle configuration (Console)

Learn how to create a lifecycle configuration using the AWS Management Console to automate
customization for your Studio environment.

Step 1: Create a lifecycle configuration

Use the following procedure to create a lifecycle configuration script that prints Hello World.

To create a lifecycle configuration

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose Lifecycle configurations.

4. Choose the JupyterLab tab.

5. Choose Create configuration.

6. For Name, specify the name of the lifecycle configuration.

7. For the text box under Scripts, specify the following lifecycle configuration:

#!/bin/bash
set -eux
echo 'Hello World!'

8. Choose Create configuration.

Step 2: Attach the lifecycle configuration to your Amazon SageMaker domain (domain) and
user profile

Lifecycle configuration scripts associated at the domain level are inherited by all users. However,
scripts that are associated at the user profile level are scoped to a specific user.

You can attach multiple lifecycle configurations to a domain or user profile for JupyterLab.

Use the following procedure to attach a lifecycle configuration to a domain.

To attach a lifecycle configuration to a domain

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

JupyterLab administrator guide 589

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain to attach the lifecycle configuration to.

5. From the Domain details, choose the Environment tab.

6. Under Lifecycle configurations for personal Studio apps, choose Attach.

7. Under Source, choose Existing configuration.

8. Under Studio lifecycle configurations, select the lifecycle configuration that you created in
the previous step.

9. Select Attach to domain.

Use the following procedure to attach a lifecycle configuration to a user profile.

To attach a lifecycle configuration to a user profile

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that contains the user profile to attach the
lifecycle configuration to.

5. Under User profiles, select the user profile.

6. From the User Details page, choose Edit.

7. On the left navigation, choose Studio settings.

8. Under Lifecycle configurations attached to user, choose Attach.

9. Under Source, choose Existing configuration.

10. Under Studio lifecycle configurations, select the lifecycle configuration that you created in
the previous step.

11. Choose Attach to user profile.

Debug lifecycle configurations

The following topics show how to get information about and debug your lifecycle configurations.

Topics

• Verify lifecycle configuration process from CloudWatch Logs

JupyterLab administrator guide 590

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

• Lifecycle configuration timeout

Verify lifecycle configuration process from CloudWatch Logs

Lifecycle configurations only log STDOUT and STDERR.

STDOUT is the default output for bash scripts. You can write to STDERR by appending >&2 to the
end of a bash command. For example, echo 'hello'>&2.

Logs for your lifecycle configurations are published to your AWS account using Amazon
CloudWatch. These logs can be found in the /aws/sagemaker/studio log stream in the
CloudWatch console.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Choose Logs from the left navigation pane. From the dropdown menu, select Log groups.

3. On the Log groups page, search for aws/sagemaker/studio.

4. Select the log group.

5. On the Log group details page, choose the Log streams tab.

6. To find the logs for a specific app, search the log streams using the following format:

domain-id/user-profile-name/app-type/app-name

The following search string finds the lifecycle configuration logs for the domain d-
m85lcu8vbqmz, user profile i-sonic-js, application type JupyterLab, and application
name test-lcc-echo:

d-m85lcu8vbqmz/i-sonic-js/JupyterLab/test-lcc-echo

7. To view the script execution logs, select the log stream appended with
LifecycleConfigOnStart.

Lifecycle configuration timeout

There is a lifecycle configuration timeout limitation of 5 minutes. If a lifecycle configuration script
takes longer than 5 minutes to run, you get an error.

To resolve this error, make sure that your lifecycle configuration script completes in less than 5
minutes.

JupyterLab administrator guide 591

https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide

To help decrease the runtime of scripts, try the following:

• Reduce unnecessary steps. For example, limit which conda environments to install large
packages in.

• Run tasks in parallel processes.

• Use the nohup command in your script to make sure that hangup signals are ignored so that the
script runs without stopping.

Detach lifecycle configurations

To update your script, you must create a new lifecycle configuration script and attach it to
the respective Amazon SageMaker domain (domain), user profile, or shared space. A lifecycle
configuration script can't be changed after it's created. For more information about creating and
attaching the lifecycle configuration, see Create and associate a lifecycle configuration.

The following section shows how to detach a lifecycle configuration using the AWS Command Line
Interface (AWS CLI).

Detach using the AWS CLI

To detach a lifecycle configuration using the (AWS CLI), remove the desired lifecycle configuration
from the list of lifecycle configurations attached to the resource. You then pass the list as part of
the respective command:

• update-user-profile

• update-domain

• update-space

For example, the following command removes all lifecycle configurations for the JupyterLab
application that's attached to the domain.

aws sagemaker update-domain --domain-id domain-id \
--region region \
--default-user-settings '{
"JupyterLabAppSettings": {
 "LifecycleConfigArns":
 []
 }

JupyterLab administrator guide 592

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-user-profile.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-space.html

Amazon SageMaker Developer Guide

}'

Attach Git repos

JupyterLab offers a Git extension to enter the URL of a Git repository (repo), clone it into an
environment, push changes, and view the commit history. You can also attach suggested Git repo
URLs to a Amazon SageMaker domain (domain) or user profile.

The following sections show how to attach Git repo URLs to a domain or user profile from the AWS
Command Line Interface (AWS CLI) and the SageMaker console. A section also provides AWS CLI
commands to detach these repository URLs.

Attach a Git repository (AWS CLI)

This section shows how to attach a Git repository (repo) URL using the AWS CLI. After you attach
the Git repo URL, you can clone it by following the steps in Clone a Git repo in Amazon SageMaker
Studio.

Prerequisites

Before you begin, complete the following prerequisites:

• Update the AWS CLI by following the steps in Installing the current AWS Command Line
Interface Version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

• Onboard to Amazon SageMaker domain. For more information, see Amazon SageMaker domain
overview.

Attach the Git repo to a Amazon SageMaker domain (domain) or user profile

Git repo URLs that are associated at the domain level are inherited by all users. However, Git repo
URLs that are associated at the user profile level are scoped to a specific user. You can attach
multiple Git repo URLs to a Amazon SageMaker domain or to a user profile by passing a list of
repository URLs.

The following sections show how to attach a Git repo URL to your domain and your user profile.

Attach to a Amazon SageMaker domain

The following command attaches a Git repo URL to an existing domain:

JupyterLab administrator guide 593

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Amazon SageMaker Developer Guide

aws sagemaker update-domain --region region --domain-id domain-id \
 --default-user-settings
 JupyterLabAppSettings={CodeRepositories=[{RepositoryUrl="repository"}]}

Attach to a user profile

The following command attaches a Git repo URL to an existing user profile:

aws sagemaker update-user-profile --domain-id domain-id --user-profile-name user-name\
 --user-settings
 JupyterLabAppSettings={CodeRepositories=[{RepositoryUrl="repository"}]}

Clone a Git repo in Amazon SageMaker Studio

Amazon SageMaker Studio connects to a local Git repo only. To access the files in the repo, clone
the Git repo from within Studio. To do so, Studio offers a Git extension for you to enter the URL of
a Git repo, clone it into your environment, push changes, and view commit history.

If the repo is private and requires credentials to access, you receive a prompt to enter your
user credentials. Your credentials include your username and personal access token. For more
information about personal access tokens, see Managing your personal access tokens.

Admins can also attach suggested Git repository URLs at the Amazon SageMaker domain or user
profile level. Users can then select the repo URL from the list of suggestions and clone that into
Studio. For more information about attaching suggested repos, see Attach Suggested Git Repos to
Studio Classic.

Detach Git repo URLs

This section shows how to detach Git repository URLs from an Amazon SageMaker domain
(domain) or a user profile. You can detach repo URLs by using the AWS Command Line Interface
(AWS CLI) or the Amazon SageMaker console.

Detach a Git repo using the AWS CLI

To detach all Git repo URLs from a domain or user profile, you must pass an empty list of code
repositories. This list is passed as part of the JupyterLabAppSettings parameter in an update-
domain or update-user-profile command. To detach only one Git repo URL, pass the code
repositories list without the desired Git repo URL.

JupyterLab administrator guide 594

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

Amazon SageMaker Developer Guide

Detach from an Amazon SageMaker domain

The following command detaches all Git repo URLs from a domain:

aws sagemaker update-domain --region region --domain-name domain-name \
 --domain-settings JupyterLabAppSettings={CodeRepositories=[]}

Detach from a user profile

The following command detaches all Git repo URLs from a user profile:

aws sagemaker update-user-profile --domain-name domain-name --user-profile-name user-
name\
 --user-settings JupyterLabAppSettings={CodeRepositories=[]}

Customize environments using custom images

If you need functionality that is different than what's provided by SageMaker distribution, you can
bring your own image with your custom extensions and packages. You can also use it to personalize
the JupyterLab UI for your own branding or compliance needs.

For a tutorial that helps you create an image that your users can run in their JupyterLab
environment, see Provide users with access to custom images.

For requirements for your image, see Dockerfile specifications.

Topics

• Provide users with access to custom images

• Dockerfile specifications

Provide users with access to custom images

This documentation provides step-by-step instructions to provide your users with access to custom
images within their JupyterLab environments. You can use the information on this page to create
custom environments for your user’s workflows. The process involves utilizing:

• Docker

• AWS Command Line Interface

• Amazon Elastic Container Registry

JupyterLab administrator guide 595

Amazon SageMaker Developer Guide

• Amazon SageMaker AWS Management Console

After following the guidance on this page, JupyterLab users on the Amazon SageMaker domain
will have access to the custom image and environment from their Jupyter spaces to empower their
machine learning workflows.

Important

This page assumes that you have the AWS Command Line Interface and Docker installed on
your local machine.

To have your users successfully run their image within JupyterLab, you must do the following:

To have your users successfully run the image

1. Create the Dockerfile

2. Build the image from the Dockerfile

3. Upload the image to Amazon Elastic Container Registry

4. Attach the image to you Amazon SageMaker domain

5. Have your users access the image from your JupyterLab space

Step 1: Create the Dockerfile

Create a Dockerfile to define the steps needed to create the environment needed to run the
application in your user's container.

Important

Your Dockerfile must meet the specifications provided in Dockerfile specifications.

Use the following Dockerfile template to create an Amazon Linux 2 image:

FROM public.ecr.aws/amazonlinux/amazonlinux:2

ARG NB_USER="sagemaker-user"

JupyterLab administrator guide 596

Amazon SageMaker Developer Guide

ARG NB_UID="1000"
ARG NB_GID="100"
RUN yum install --assumeyes python3 shadow-utils && \
 useradd --create-home --shell /bin/bash --gid "${NB_GID}" --uid ${NB_UID}
 ${NB_USER} && \
 yum clean all && \
 python3 -m pip install jupyterlab

RUN python3 -m pip install --upgrade pip

RUN python3 -m pip install --upgrade urllib3==1.26.6

USER ${NB_UID}
CMD jupyter lab --ip 0.0.0.0 --port 8888 \
 --ServerApp.base_url="/jupyterlab/default" \
 --ServerApp.token='' \
 --ServerApp.allow_origin='*'

Use the following Dockerfile template to create an Amazon SageMaker Distribution Image:

FROM public.ecr.aws/sagemaker/sagemaker-distribution:latest-cpu
ARG NB_USER="sagemaker-user"
ARG NB_UID=1000
ARG NB_GID=100

ENV MAMBA_USER=$NB_USER

USER root

RUN apt-get update
RUN micromamba install sagemaker-inference --freeze-installed --yes --channel conda-
forge --name base

USER $MAMBA_USER

ENTRYPOINT ["jupyter-lab"]
CMD ["--ServerApp.ip=0.0.0.0", "--ServerApp.port=8888", "--ServerApp.allow_origin=*",
 "--ServerApp.token=''", "--ServerApp.base_url=/jupyterlab/default"]

JupyterLab administrator guide 597

Amazon SageMaker Developer Guide

Step 2: Build the Dockerfile

In the same directory as your Dockerfile, build your image using the following command:

docker build -t username/imagename:tag your-account-id.dkr.ecr.AWS
 Region.amazonaws.com/your-repository-name:tag

Important

Your image must be tagged in the following format: 123456789012.dkr.ecr.your-
region.amazonaws.com/your-repository-name:tag
You won’t be able to push it to an Amazon Elastic Container Registry repository otherwise.

Step 3: Push the image to the Amazon Elastic Container Registry repository

After you’ve built your image, log in to your Amazon ECR repository using the following command:

aws ecr get-login-password --region AWS Region | docker login --username AWS --
password-stdin 123456789012.dkr.ecr.AWS Region.amazonaws.com

After you’ve logged in, push your Dockerfile using the following command:

docker push 123456789012.dkr.ecr.AWS Region.amazonaws.com/your-repository-name:tag

Step 4: Attach image to the Amazon SageMaker domain of your users

After you’ve pushed the image, you must access it from your Amazon SageMaker domain. Use the
following procedure to attach the image to a SageMaker domain:

1. Open the SageMaker console.

2. Under Admin configurations, choose domains.

3. From the list of domains, select a domain.

JupyterLab administrator guide 598

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

4. Open the Environment tab.

5. For Custom images for personal Studio apps, choose Attach image.

6. Specify the image source.

7. Choose Next.

8. Choose Submit.

Your users can now select the image that you’ve attached to their Domain from their JupyterLab
space.

Dockerfile specifications

The image that you specify in your Dockerfile must match the specifications in the following
sections to create the image successfully.

Running the image

• Entrypoint – We recommend embedding the entry point into the image using the Docker
CMD or Entrypoint instructions. You can also configure ContainerEntrypoint and
ContainerArguments that are passed to the container at runtime.

• EnvVariables – With Studio, you can configure ContainerEnvironment variables that are
made available to a container. The environment variable is overwritten with the environment
variables from SageMaker. To provide you with a better experience, the environment variables
are usually AWS_ and SageMaker_namespaced to give priority to platform environments.

The following are the environment variables:

• AWS_REGION

• AWS_DEFAULT_REGION

• AWS_CONTAINER_CREDENTIALS_RELATIVE_URI

• SageMaker_SPACE_NAME

Specifications for the user and file system

• WorkingDirectory – The Amazon EBS volume used as storage. It's attached to /home/
sagemaker-user, the working directory of the container. Use the WORKDIR command to define
the working directory.

JupyterLab administrator guide 599

Amazon SageMaker Developer Guide

• UID – The user ID of the Docker container. UID=1000 is a supported value. You can add sudo
access to your users. The IDs are remapped to prevent a process running in the container from
having more privileges than necessary.

• GID – The group ID of the Docker container. GID=100 is a supported value. You can add sudo
access to your users. The IDs are remapped to prevent a process running in the container from
having more privileges than necessary.

• Metadata directories – The /opt/.sagemakerintenral and /opt/ml directories that are used
by AWS. The metadata file in /opt/ml contains metadata about resources such as DomainId.

Use the following command to show the file system contents:

cat /opt/ml/metadata/resource-metadata.json
{"AppType":"JupyterLab","DomainId":"example-domain-id","UserProfileName":"example-
user-profile-name,"ResourceArn":"arn:aws:sagemaker:AWS
 Region:111122223333;:app/domain-ID/user-ID/Jupyte
rLab/default","ResourceName":"default","AppImageVersion":"current"}

• Logging directories – /var/logs/studio are reserved for the logging directories of JupyterLab
and the extensions associated with it. We recommend that you don't use the folders in creating
your image.

Health check and URL for applications

• Base URL – The base URL for the BYOI application must be jupyterlab/default. You can
only have one application and it must always be named default.

• HealthCheck API – The HostAgent uses the HealthCheckAPI at port 8888 to check the
health of the JupyterLab application. jupyterlab/default/api/status is the endpoint for
the health check.

• Home/Default URL – The /opt/.sagemakerinternal and /opt/ml directories that
are used by AWS. The metadata file in /opt/ml contains metadata about resources such as
DomainId.

• Authentication – To enable authentication for your users, turn off the Jupyter notebooks token
or password based authentication and allow all origins.

JupyterLab administrator guide 600

Amazon SageMaker Developer Guide

The following is a sample Amazon Linux 2 Dockerfile that meets the preceding specifications:

FROM public.ecr.aws/amazonlinux/amazonlinux:2

ARG NB_USER="sagemaker-user"
ARG NB_UID="1000"
ARG NB_GID="100"
RUN yum install --assumeyes python3 shadow-utils && \
 useradd --create-home --shell /bin/bash --gid "${NB_GID}" --uid ${NB_UID}
 ${NB_USER} && \
 yum clean all && \
 python3 -m pip install jupyterlab

RUN python3 -m pip install --upgrade pip

RUN python3 -m pip install --upgrade urllib3==1.26.6

USER ${NB_UID}
CMD jupyter lab --ip 0.0.0.0 --port 8888 \
 --ServerApp.base_url="/jupyterlab/default" \
 --ServerApp.token='' \
 --ServerApp.allow_origin='*'

The following is a sample Amazon SageMaker Distribution Dockerfile that meets the preceding
specifications:

FROM public.ecr.aws/sagemaker/sagemaker-distribution:latest-cpu
ARG NB_USER="sagemaker-user"
ARG NB_UID=1000
ARG NB_GID=100

ENV MAMBA_USER=$NB_USER

USER root

RUN apt-get update
RUN micromamba install sagemaker-inference --freeze-installed --yes --channel conda-
forge --name base

JupyterLab administrator guide 601

Amazon SageMaker Developer Guide

USER $MAMBA_USER

ENTRYPOINT ["jupyter-lab"]
CMD ["--ServerApp.ip=0.0.0.0", "--ServerApp.port=8888", "--ServerApp.allow_origin=*",
 "--ServerApp.token=''", "--ServerApp.base_url=/jupyterlab/default"]

Updating the SageMaker Distribution Image

Important

This topic assumes that you've created a space and given the user access to it. For more
information, see Give your users access to private spaces.

Update the JupyterLab spaces that you've already created to use the latest version of the
SageMaker Distribution Image. You can use either the Studio UI or the AWS Command Line
Interface (AWS CLI) to update the image.

The following sections provide information about updating an image.

Update the image (UI)

Updating the image involves restarting the JupyterLab space of your user. Use the following
procedure to update your user's JupyterLab space with the latest image.

To update the image (UI)

1. Open Studio. For information about opening Studio, see Launch Amazon SageMaker Studio.

2. Choose JupyterLab.

3. Select the JupyterLab space of your user.

4. Choose Stop space.

5. For Image, select an updated version of the SageMaker Distribution Image. For the latest
image, choose Latest.

6. Choose Run space.

JupyterLab administrator guide 602

Amazon SageMaker Developer Guide

Update the image (AWS CLI)

This section assumes that you have the AWS Command Line Interface (AWS CLI) installed. For
information about installing the AWS CLI, see Install or update to the latest version of the AWS CLI.

To update the image, you must the do the following for your user's space:

1. Delete the JupyterLab application

2. Update the space

3. Create the application

Important

You must have the following information ready before you start updating the image:

• domain ID – The ID of your user's Amazon SageMaker domain.

• Application type – JupyterLab.

• Application name – default.

• Space name – The name specified for the space.

• Instance type – The Amazon EC2 instance type that you're using to run the application.
For example, ml.t3.medium.

• SageMaker Image ARN – The Amazon Resource Name (ARN) of the SageMaker
Distribution Image. You can provide the latest version of the SageMaker Distribution
Image by specifying either sagemaker-distribution-cpu or sagemaker-
distribution-gpu as the resource identifier.

To delete the JupyterLab application, run the following command:

aws sagemaker delete-app \
--domain-id your-user's-domain-id
--app-type JupyterLab \
--app-name default \
--space-name name-of-your-user's-space

To update your user's space, run the following command:

JupyterLab administrator guide 603

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon SageMaker Developer Guide

aws sagemaker update-space \
--space-name name-of-your-user's-space \
--domain-id your-user's-domain-id

If you've updated the space successfully, you'll see the space ARN in the response:

{
"SpaceArn": "arn:aws:sagemaker:AWS Region:111122223333:space/your-user's-domain-id/
name-of-your-user's-space"
}

To create the application, run the following command:

aws sagemaker create-app \
--domain-id your-user's-domain-id \
--app-type JupyterLab \
--app-name default \
--space-name name-of-your-user's-space \
--resource-spec "InstanceType=instance-type,SageMakerImageArn=arn:aws:sagemaker:AWS
 Region:555555555555:image/sagemaker-distribution-resource-identifier"

Delete unused resources

To avoid incurring additional costs running JupyterLab, we recommend deleting unused resources
in the following order:

1. JupyterLab applications

2. Spaces

3. User profiles

4. domains

JupyterLab administrator guide 604

Amazon SageMaker Developer Guide

Use the following AWS Command Line Interface (AWS CLI) commands to delete resources within a
domain:

Delete a JupyterLab application

aws --region AWS Region sagemaker delete-app --domain-id example-domain-id --app-
name default --app-type JupyterLab --space-name example-space-name

Delete a space

Important

If you delete a space, you delete the Amazon EBS volume associated with it. We
recommend backing up any valuable data before you delete your space.

aws --region AWS Region sagemaker delete-space --domain-id example-domain-id --
space-name example-space-name

Delete a user profile

aws --region AWS Region sagemaker delete-user-profile --domain-id example-domain-id
 --user-profile example-user-profile

Quotas

JupyterLab, has quotas for the following:

• The sum of all Amazon EBS volumes within an AWS account.

• The instance types that are available for your users.

• The number of instances for a particular that your users can launch.

JupyterLab administrator guide 605

Amazon SageMaker Developer Guide

To get more storage and compute for your users, request an increase to your AWS quotas. For more
information about requesting a quota increase, see Amazon SageMaker endpoints and quotas.

Migrating from SageMaker Studio Classic to SageMaker Studio

Important

Before you can migrate users from Amazon SageMaker Studio Classic to Amazon
SageMaker Studio, you must give them permissions in Studio. For more information, see
Set Studio as the default experience.

Migrating your users from Amazon SageMaker Studio Classic to Amazon SageMaker Studio lets
your users leverage the features and improved performance of Studio. This guide provides an
overview of the migration process. It provides guidance on transferring user data, migrating
lifecycle configurations, and ensuring the compatibility of JupyterLab extensions.

Migrating your users from Studio Classic to Studio involves the following:

• Migrating user data

• Bringing user lifecycle configurations

• Migrating user JupyterLab extensions

Migrate user data from Amazon SageMaker Studio Classic to Amazon SageMaker
Studio

Studio Classic stores files in Amazon Elastic File System (Amazon EFS) volumes. Studio stores files
in Amazon Elastic Block Store (Amazon EBS).

We recommend that you transfer user home directories from Amazon EFS to Amazon EBS.
Transferring the home directories helps your users maintain their working environments after
migration.

You can migrate home directories in various ways. The following is an example of a method that
you can use:

1. Identify the EFS volume that you use for Studio Classic user storage.

Migrating from SageMaker Studio Classic to SageMaker Studio 606

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

2. For each user, copy their home directory from Amazon EFS to the corresponding EBS volume
allocated for JupyterLab.

3. Update the new EBS volume permissions so users can access their migrated home directories in
JupyterLab.

4. Communicate steps to users so they know what to expect when launching JupyterLab for the
first time after migration.

You can use AWS DataSync to copy the contents of a Studio Classic EFS file system to an Amazon
S3 bucket.

After the DataSync task finishes, the contents of the Studio Classic user home directories
are copied to the target Amazon S3 bucket. The S3 object keys have a prefix matching the
HomeEfsFileSystemUid value for each user profile. You can use the DescribeUserProfile
operation to get the value.

You can implement a shell script to copy the home directory from Amazon S3 to the /home/
sagemaker-user directory on the Amazon EBS volume. The script should do all of the following:

• Get the current user's profile and HomeEfsFileSystemUid value.

• Use the HomeEfsFileSystemUid to identify the S3 prefix for the contents of the user's home
directory.

• Copy the objects under the S3 prefix to /home/sagemaker-user.

Important

Before you run the script, check for the following:

• The Amazon EBS volume is large enough to store the objects that you're exporting.

• You aren't migrating hidden files and folders, such as .bashrc and .condarc if you
aren't intending to do so.

• The AWS Identity and Access Management (IAM) execution role that's associated with
Studio Classic user profiles has the policies configured to access only the respective home
directory in Amazon S3.

You can run the script manually in the JupyterLab application or set it as a lifecycle configuration.

Migrating from SageMaker Studio Classic to SageMaker Studio 607

Amazon SageMaker Developer Guide

When you implement the script, do the following:

• Only copy the specific user's directory, not all Amazon S3 data.

• Resolve any errors or incomplete transfers.

• Preserve permissions, ownership, and metadata of files and directories.

• To avoid duplicates, delete previous copies of files in /home/sagemaker-user.

• Verify that the script can run multiple times without issue.

After you sync the home directories for all users, delete the exported home directories from
Amazon S3. This will help reduce storage costs and detach the lifecycle configuration.

Bring lifecycle configurations from Studio to JupyterLab

Amazon SageMaker Studio Classic notebooks are based on kernel gateway architecture. The
Jupyter Server kernel and the other kernels run on separate compute resources. Within Studio
Classic, you frequently had to create separate lifecycle configurations for both kernel gateway and
Jupyter Server applications. For more information about Studio Classic lifecycle configurations, see
SageMaker JupyterLab.

In Amazon SageMaker Studio, both Jupyter Server and the kernels run on the same Amazon EC2
instance. The runtime environments of Studio JupyterLab applications are based on images from
the SageMaker Distribution. The runtimes in Studio Classic run on different images, unless an
image from SageMaker Distribution has been specified.

To migrate user environments successfully, we recommend changing your LCC scripts and testing
them.

Migrate JupyterLab extensions

Studio Classic uses JupyterLab 3. Studio uses JupyterLab 4. Custom JupyterLab extensions in
Studio Classic might not work in Studio, so we recommend checking extensions compatibility. You
might have to upgrade them.

For more information about extensions, see Extension Compatibility with JupyterLab 4.0.

Amazon SageMaker Notebook Instances

An Amazon SageMaker notebook instance is a machine learning (ML) compute instance running
the Jupyter Notebook App. SageMaker manages creating the instance and related resources. Use

SageMaker Notebook Instances 608

https://github.com/jupyterlab/jupyterlab/issues/14590

Amazon SageMaker Developer Guide

Jupyter notebooks in your notebook instance to prepare and process data, write code to train
models, deploy models to SageMaker hosting, and test or validate your models.

SageMaker also provides sample notebooks that contain complete code walkthroughs. These
walkthroughs show how to use SageMaker to perform common machine learning tasks. For more
information, see Example Notebooks.

For information about pricing with Amazon SageMaker notebook instance, see Amazon SageMaker
Pricing.

Maintenance

SageMaker updates the underlying software for Amazon SageMaker Notebook Instances at least
once every 90 days. Some maintenance updates, such as operating system upgrades, may require
your application to be taken offline for a short period of time. It is not possible to perform any
operations during this period while the underlying software is being updated. We recommend that
you restart your notebooks at least once every 30 days to automatically consume patches.

For more information, contact https://aws.amazon.com/premiumsupport/.

Topics

• Use Notebook Instances to build models

• Amazon Linux 2 notebook instances

• JupyterLab versioning

• Create a Notebook Instance

• Access Notebook Instances

• Update a Notebook Instance

• Customize a Notebook Instance Using a Lifecycle Configuration Script

• Example Notebooks

• Set the Notebook Kernel

• Associate Git Repositories with SageMaker Notebook Instances

• Notebook Instance Metadata

• Monitor Jupyter Logs in Amazon CloudWatch Logs

Maintenance 609

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Use Notebook Instances to build models

One of the best ways for machine learning (ML) practitioners to use Amazon SageMaker is to
train and deploy ML models using SageMaker notebook instances. The SageMaker notebook
instances help create the environment by initiating Jupyter servers on Amazon Elastic Compute
Cloud (Amazon EC2) and providing preconfigured kernels with the following packages: the Amazon
SageMaker Python SDK, AWS SDK for Python (Boto3), AWS Command Line Interface (AWS CLI),
Conda, Pandas, deep learning framework libraries, and other libraries for data science and machine
learning.

Machine Learning with the SageMaker Python SDK

To train, validate, deploy, and evaluate an ML model in a SageMaker notebook instance, use the
SageMaker Python SDK. The SageMaker Python SDK abstracts AWS SDK for Python (Boto3) and
SageMaker API operations. It enables you to integrate with and orchestrate other AWS services,
such as Amazon Simple Storage Service (Amazon S3) for saving data and model artifacts, Amazon
Elastic Container Registry (ECR) for importing and servicing the ML models, Amazon Elastic
Compute Cloud (Amazon EC2) for training and inference.

You can also take advantage of SageMaker features that help you deal with every stage of
a complete ML cycle: data labeling, data preprocessing, model training, model deployment,
evaluation on prediction performance, and monitoring the quality of model in production.

If you're a first-time SageMaker user, we recommend you to use the SageMaker Python SDK,
following the end-to-end ML tutorial. To find the open source documentation, see the Amazon
SageMaker Python SDK.

Tutorial Overview

This Get Started tutorial walks you through how to create a SageMaker notebook instance, open a
Jupyter notebook with a preconfigured kernel with the Conda environment for machine learning,
and start a SageMaker session to run an end-to-end ML cycle. You'll learn how to save a dataset to
a default Amazon S3 bucket automatically paired with the SageMaker session, submit a training job
of an ML model to Amazon EC2, and deploy the trained model for prediction by hosting or batch
inferencing through Amazon EC2.

This tutorial explicitly shows a complete ML flow of training the XGBoost model from the
SageMaker built-in model pool. You use the US Adult Census dataset, and you evaluate the
performance of the trained SageMaker XGBoost model on predicting individuals' income.

Use Notebook Instances to build models 610

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://archive.ics.uci.edu/ml/datasets/adult

Amazon SageMaker Developer Guide

• SageMaker XGBoost – The XGBoost model is adapted to the SageMaker environment and
preconfigured as Docker containers. SageMaker provides a suite of built-in algorithms that are
prepared for using SageMaker features. To learn more about what ML algorithms are adapted
to SageMaker, see Choose an Algorithm and Use Amazon SageMaker Built-in Algorithms. For
the SageMaker built-in algorithm API operations, see First-Party Algorithms in the Amazon
SageMaker Python SDK.

• Adult Census dataset – The dataset from the 1994 Census bureau database by Ronny Kohavi and
Barry Becker (Data Mining and Visualization, Silicon Graphics). The SageMaker XGBoost model is
trained using this dataset to predict if an individual makes over $50,000 a year or less.

Topics

• Step 1: Create an Amazon SageMaker Notebook Instance

• Step 2: Create a Jupyter Notebook

• Step 3: Download, Explore, and Transform a Dataset

• Step 4: Train a Model

• Step 5: Deploy the Model to Amazon EC2

• Step 6: Evaluate the Model

• Step 7: Clean Up

Step 1: Create an Amazon SageMaker Notebook Instance

An Amazon SageMaker notebook instance is a fully managed machine learning (ML) Amazon
Elastic Compute Cloud (Amazon EC2) compute instance that runs the Jupyter Notebook App. You
use the notebook instance to create and manage Jupyter notebooks for preprocessing data and to
train and deploy machine learning models.

To create a SageMaker notebook instance

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Notebook instances, and then choose Create notebook instance.

3. On the Create notebook instance page, provide the following information (if a field is not
mentioned, leave the default values):

a. For Notebook instance name, type a name for your notebook instance.

Use Notebook Instances to build models 611

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://xgboost.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-choose.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://sagemaker.readthedocs.io/en/stable/algorithms/index.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://archive.ics.uci.edu/ml/datasets/adult
http://www.census.gov/en.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

b. For Notebook Instance type, choose ml.t2.medium. This is the least expensive instance
type that notebook instances support, and it suffices for this exercise. If a ml.t2.medium
instance type isn't available in your current AWS Region, choose ml.t3.medium.

c. For Platform Identifier, choose a platform type to create the notebook instance on.
This platform type dictates the Operating System and the JupyterLab version that your
notebook instance is created with. For information about platform identifier type, see
Amazon Linux 2 notebook instances. For information about JupyterLab versions, see
JupyterLab versioning.

d. For IAM role, choose Create a new role, and then choose Create role. This IAM role
automatically gets permissions to access any S3 bucket that has sagemaker in the name.
It gets these permissions through the AmazonSageMakerFullAccess policy, which
SageMaker attaches to the role.

Note

If you want to grant the IAM role permission to access S3 buckets without
sagemaker in the name, you need to attach the S3FullAccess policy or limit
the permissions to specific S3 buckets to the IAM role. For more information and
examples of adding bucket policies to the IAM role, see Bucket Policy Examples.

e. Choose Create notebook instance.

In a few minutes, SageMaker launches an ML compute instance—in this case, a notebook
instance—and attaches a 5 GB of Amazon EBS storage volume to it. The notebook
instance has a preconfigured Jupyter notebook server, SageMaker and AWS SDK libraries,
and a set of Anaconda libraries.

For more information about creating a SageMaker notebook instance, see Create a
Notebook Instance.

(Optional) Change SageMaker Notebook Instance Settings

If you want to change the ML compute instance type or the size of the Amazon EBS storage of a
SageMaker notebook instance that's already created, you can edit the notebook instance settings.

To change and update the SageMaker Notebook instance type and the EBS volume

1. On the Notebook instances page in the SageMaker console, choose your notebook instance.

Use Notebook Instances to build models 612

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-create-ws.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-create-ws.html

Amazon SageMaker Developer Guide

2. Choose Actions, choose Stop, and then wait until the notebook instance fully stops.

3. After the notebook instance status changes to Stopped, choose Actions, and then choose
Update settings.

a. For Notebook instance type, choose a different ML instance type.

b. For Volume size in GB, type a different integer to specify a new EBS volume size.

Note

EBS storage volumes are encrypted, so SageMaker can't determine the amount of
available free space on the volume. Because of this, you can increase the volume
size when you update a notebook instance, but you can't decrease the volume size.
If you want to decrease the size of the ML storage volume in use, create a new
notebook instance with the desired size.

4. At the bottom of the page, choose Update notebook instance.

5. When the update is complete, Start the notebook instance with the new settings.

For more information about updating SageMaker notebook instance settings, see Update a
Notebook Instance.

(Optional) Advanced Settings for SageMaker Notebook Instances

The following tutorial video shows how to set up and use SageMaker notebook instances through
the SageMaker console with advanced options, such as SageMaker lifecycle configuration and
importing GitHub repositories. (Length: 26:04)

For complete documentation about SageMaker notebook instance, see Use Amazon SageMaker
notebook Instances.

Step 2: Create a Jupyter Notebook

To start scripting for training and deploying your model, create a Jupyter notebook in the
SageMaker notebook instance. Using the Jupyter notebook, you can conduct machine learning
(ML) experiments for training and inference while accessing the SageMaker features and the AWS
infrastructure.

Use Notebook Instances to build models 613

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-update.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-update.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html

Amazon SageMaker Developer Guide

To create a Jupyter notebook

1. Open the notebook instance as follows:

a. Sign in to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

b. On the Notebook instances page, open your notebook instance by choosing either Open
JupyterLab for the JupyterLab interface or Open Jupyter for the classic Jupyter view.

Note

If the notebook instance status shows Pending in the Status column, your
notebook instance is still being created. The status will change to InService when
the notebook instance is ready for use.

2. Create a notebook as follows:

• If you opened the notebook in the JupyterLab view, on the File menu, choose New, and then
choose Notebook. For Select Kernel, choose conda_python3. This preinstalled environment
includes the default Anaconda installation and Python 3.

• If you opened the notebook in the classic Jupyter view, on the Files tab, choose New, and
then choose conda_python3. This preinstalled environment includes the default Anaconda
installation and Python 3.

3. Save the notebooks as follows:

• In the JupyterLab view, choose File, choose Save Notebook As..., and then rename the
notebook.

• In the Jupyter classic view, choose File, choose Save as..., and then rename the notebook.

Step 3: Download, Explore, and Transform a Dataset

In this step, you load the Adult Census dataset to your notebook instance using the SHAP (SHapley
Additive exPlanations) Library, review the dataset, transform it, and upload it to Amazon S3. SHAP
is a game theoretic approach to explain the output of any machine learning model. For more
information about SHAP, see Welcome to the SHAP documentation.

To run the following example, paste the sample code into a cell in your notebook instance.

Use Notebook Instances to build models 614

https://console.aws.amazon.com/sagemaker/
https://archive.ics.uci.edu/ml/datasets/adult
https://shap.readthedocs.io/en/latest/

Amazon SageMaker Developer Guide

Load Adult Census Dataset Using SHAP

Using the SHAP library, import the Adult Census dataset as shown following:

import shap
X, y = shap.datasets.adult()
X_display, y_display = shap.datasets.adult(display=True)
feature_names = list(X.columns)
feature_names

Note

If the current Jupyter kernel does not have the SHAP library, install it by running the
following conda command:

%conda install -c conda-forge shap

If you're using JupyterLab, you must manually refresh the kernel after the installation and
updates have completed. Run the following IPython script to shut down the kernel (the
kernel will restart automatically):

import IPython
IPython.Application.instance().kernel.do_shutdown(True)

The feature_names list object should return the following list of features:

['Age',
 'Workclass',
 'Education-Num',
 'Marital Status',
 'Occupation',
 'Relationship',
 'Race',
 'Sex',
 'Capital Gain',
 'Capital Loss',
 'Hours per week',
 'Country']

Use Notebook Instances to build models 615

Amazon SageMaker Developer Guide

Tip

If you're starting with unlabeled data, you can use Amazon SageMaker Ground Truth to
create a data labeling workflow in minutes. To learn more, see Label Data.

Overview the Dataset

Run the following script to display the statistical overview of the dataset and histograms of the
numeric features.

display(X.describe())
hist = X.hist(bins=30, sharey=True, figsize=(20, 10))

Use Notebook Instances to build models 616

https://docs.aws.amazon.com/sagemaker/latest/dg/data-label.html

Amazon SageMaker Developer Guide

Tip

If you want to use a dataset that needs to be cleaned and transformed, you can simplify
and streamline data preprocessing and feature engineering using Amazon SageMaker Data
Wrangler. To learn more, see Prepare ML Data with Amazon SageMaker Data Wrangler.

Split the Dataset into Train, Validation, and Test Datasets

Using Sklearn, split the dataset into a training set and a test set. The training set is used to train
the model, while the test set is used to evaluate the performance of the final trained model. The
dataset is randomly sorted with the fixed random seed: 80 percent of the dataset for training set
and 20 percent of it for a test set.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
 random_state=1)
X_train_display = X_display.loc[X_train.index]

Split the training set to separate out a validation set. The validation set is used to evaluate the
performance of the trained model while tuning the model's hyperparameters. 75 percent of the
training set becomes the final training set, and the rest is the validation set.

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25,
 random_state=1)
X_train_display = X_display.loc[X_train.index]
X_val_display = X_display.loc[X_val.index]

Using the pandas package, explicitly align each dataset by concatenating the numeric features with
the true labels.

import pandas as pd
train = pd.concat([pd.Series(y_train, index=X_train.index,
 name='Income>50K', dtype=int), X_train], axis=1)
validation = pd.concat([pd.Series(y_val, index=X_val.index,
 name='Income>50K', dtype=int), X_val], axis=1)
test = pd.concat([pd.Series(y_test, index=X_test.index,
 name='Income>50K', dtype=int), X_test], axis=1)

Check if the dataset is split and structured as expected:

Use Notebook Instances to build models 617

https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler.html

Amazon SageMaker Developer Guide

train

validation

test

Use Notebook Instances to build models 618

Amazon SageMaker Developer Guide

Convert the Train and Validation Datasets to CSV Files

Convert the train and validation dataframe objects to CSV files to match the input file format
for the XGBoost algorithm.

Use 'csv' format to store the data
The first column is expected to be the output column
train.to_csv('train.csv', index=False, header=False)
validation.to_csv('validation.csv', index=False, header=False)

Upload the Datasets to Amazon S3

Using the SageMaker and Boto3, upload the training and validation datasets to the default
Amazon S3 bucket. The datasets in the S3 bucket will be used by a compute-optimized SageMaker
instance on Amazon EC2 for training.

The following code sets up the default S3 bucket URI for your current SageMaker session, creates a
new demo-sagemaker-xgboost-adult-income-prediction folder, and uploads the training
and validation datasets to the data subfolder.

import sagemaker, boto3, os
bucket = sagemaker.Session().default_bucket()
prefix = "demo-sagemaker-xgboost-adult-income-prediction"

boto3.Session().resource('s3').Bucket(bucket).Object(
 os.path.join(prefix, 'data/train.csv')).upload_file('train.csv')

Use Notebook Instances to build models 619

Amazon SageMaker Developer Guide

boto3.Session().resource('s3').Bucket(bucket).Object(
 os.path.join(prefix, 'data/validation.csv')).upload_file('validation.csv')

Run the following AWS CLI to check if the CSV files are successfully uploaded to the S3 bucket.

! aws s3 ls {bucket}/{prefix}/data --recursive

This should return the following output:

Step 4: Train a Model

The Amazon SageMaker Python SDK provides framework estimators and generic estimators
to train your model while orchestrating the machine learning (ML) lifecycle accessing the
SageMaker features for training and the AWS infrastructures, such as Amazon Elastic Container
Registry (Amazon ECR), Amazon Elastic Compute Cloud (Amazon EC2), Amazon Simple Storage
Service (Amazon S3). For more information about SageMaker built-in framework estimators, see
Frameworksin the Amazon SageMaker Python SDK documentation. For more information about
built-in algorithms, see Use Amazon SageMaker Built-in Algorithms or Pre-trained Models.

Topics

• Choose the Training Algorithm

• Create and Run a Training Job

Choose the Training Algorithm

To choose the right algorithm for your dataset, you typically need to evaluate different models to
find the most suitable models to your data. For simplicity, the SageMaker XGBoost Algorithm built-
in algorithm is used throughout this tutorial without the pre-evaluation of models.

Tip

If you want SageMaker to find an appropriate model for your tabular dataset, use Amazon
SageMaker Autopilot that automates a machine learning solution. For more information,
see SageMaker Autopilot.

Use Notebook Instances to build models 620

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/frameworks/index.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Create and Run a Training Job

After you figured out which model to use, start constructing a SageMaker estimator for training.
This tutorial uses the XGBoost built-in algorithm for the SageMaker generic estimator.

To run a model training job

1. Import the Amazon SageMaker Python SDK and start by retrieving the basic information from
your current SageMaker session.

import sagemaker

region = sagemaker.Session().boto_region_name
print("AWS Region: {}".format(region))

role = sagemaker.get_execution_role()
print("RoleArn: {}".format(role))

This returns the following information:

• region – The current AWS Region where the SageMaker notebook instance is running.

• role – The IAM role used by the notebook instance.

Note

Check the SageMaker Python SDK version by running sagemaker.__version__.
This tutorial is based on sagemaker>=2.20. If the SDK is outdated, install the latest
version by running the following command:

! pip install -qU sagemaker

If you run this installation in your exiting SageMaker Studio or notebook instances, you
need to manually refresh the kernel to finish applying the version update.

2. Create an XGBoost estimator using the sagemaker.estimator.Estimator class. In the
following example code, the XGBoost estimator is named xgb_model.

from sagemaker.debugger import Rule, ProfilerRule, rule_configs
from sagemaker.session import TrainingInput

Use Notebook Instances to build models 621

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

s3_output_location='s3://{}/{}/{}'.format(bucket, prefix, 'xgboost_model')

container=sagemaker.image_uris.retrieve("xgboost", region, "1.2-1")
print(container)

xgb_model=sagemaker.estimator.Estimator(
 image_uri=container,
 role=role,
 instance_count=1,
 instance_type='ml.m4.xlarge',
 volume_size=5,
 output_path=s3_output_location,
 sagemaker_session=sagemaker.Session(),
 rules=[
 Rule.sagemaker(rule_configs.create_xgboost_report()),
 ProfilerRule.sagemaker(rule_configs.ProfilerReport())
]
)

To construct the SageMaker estimator, specify the following parameters:

• image_uri – Specify the training container image URI. In this example, the SageMaker
XGBoost training container URI is specified using sagemaker.image_uris.retrieve.

• role – The AWS Identity and Access Management (IAM) role that SageMaker uses to
perform tasks on your behalf (for example, reading training results, call model artifacts from
Amazon S3, and writing training results to Amazon S3).

• instance_count and instance_type – The type and number of Amazon EC2 ML
compute instances to use for model training. For this training exercise, you use a single
ml.m4.xlarge instance, which has 4 CPUs, 16 GB of memory, an Amazon Elastic Block
Store (Amazon EBS) storage, and a high network performance. For more information about
EC2 compute instance types, see Amazon EC2 Instance Types. For more information about
billing, see Amazon SageMaker pricing.

• volume_size – The size, in GB, of the EBS storage volume to attach to the training
instance. This must be large enough to store training data if you use File mode (File
mode is on by default). If you don't specify this parameter, its value defaults to 30.

• output_path – The path to the S3 bucket where SageMaker stores the model artifact and
training results.

Use Notebook Instances to build models 622

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

• sagemaker_session – The session object that manages interactions with SageMaker API
operations and other AWS service that the training job uses.

• rules – Specify a list of SageMaker Debugger built-in rules. In this example, the
create_xgboost_report() rule creates an XGBoost report that provides insights into the
training progress and results, and the ProfilerReport() rule creates a report regarding
the EC2 compute resource utilization. For more information, see SageMaker Debugger
XGBoost Training Report.

Tip

If you want to run distributed training of large sized deep learning models, such as
convolutional neural networks (CNN) and natural language processing (NLP) models,
use SageMaker Distributed for data parallelism or model parallelism. For more
information, see Distributed training in Amazon SageMaker.

3. Set the hyperparameters for the XGBoost algorithm by calling the set_hyperparameters
method of the estimator. For a complete list of XGBoost hyperparameters, see XGBoost
Hyperparameters.

xgb_model.set_hyperparameters(
 max_depth = 5,
 eta = 0.2,
 gamma = 4,
 min_child_weight = 6,
 subsample = 0.7,
 objective = "binary:logistic",
 num_round = 1000
)

Tip

You can also tune the hyperparameters using the SageMaker hyperparameter
optimization feature. For more information, see Perform Automatic Model Tuning with
SageMaker.

4. Use the TrainingInput class to configure a data input flow for training. The following
example code shows how to configure TrainingInput objects to use the training and

Use Notebook Instances to build models 623

Amazon SageMaker Developer Guide

validation datasets you uploaded to Amazon S3 in the Split the Dataset into Train, Validation,
and Test Datasets section.

from sagemaker.session import TrainingInput

train_input = TrainingInput(
 "s3://{}/{}/{}".format(bucket, prefix, "data/train.csv"), content_type="csv"
)
validation_input = TrainingInput(
 "s3://{}/{}/{}".format(bucket, prefix, "data/validation.csv"),
 content_type="csv"
)

5. To start model training, call the estimator's fit method with the training and validation
datasets. By setting wait=True, the fit method displays progress logs and waits until
training is complete.

xgb_model.fit({"train": train_input, "validation": validation_input}, wait=True)

For more information about model training, see Train a Model with Amazon SageMaker. This
tutorial training job might take up to 10 minutes.

After the training job has done, you can download an XGBoost training report and a profiling
report generated by SageMaker Debugger. The XGBoost training report offers you insights into
the training progress and results, such as the loss function with respect to iteration, feature
importance, confusion matrix, accuracy curves, and other statistical results of training. For
example, you can find the following loss curve from the XGBoost training report which clearly
indicates that there is an overfitting problem.

Use Notebook Instances to build models 624

Amazon SageMaker Developer Guide

Run the following code to specify the S3 bucket URI where the Debugger training reports are
generated and check if the reports exist.

rule_output_path = xgb_model.output_path + "/" +
 xgb_model.latest_training_job.job_name + "/rule-output"
! aws s3 ls {rule_output_path} --recursive

Use Notebook Instances to build models 625

Amazon SageMaker Developer Guide

Download the Debugger XGBoost training and profiling reports to the current workspace:

! aws s3 cp {rule_output_path} ./ --recursive

Run the following IPython script to get the file link of the XGBoost training report:

from IPython.display import FileLink, FileLinks
display("Click link below to view the XGBoost Training report",
 FileLink("CreateXgboostReport/xgboost_report.html"))

The following IPython script returns the file link of the Debugger profiling report that shows
summaries and details of the EC2 instance resource utilization, system bottleneck detection
results, and python operation profiling results:

profiler_report_name = [rule["RuleConfigurationName"]
 for rule in
 xgb_model.latest_training_job.rule_job_summary()
 if "Profiler" in rule["RuleConfigurationName"]][0]
profiler_report_name
display("Click link below to view the profiler report",
 FileLink(profiler_report_name+"/profiler-output/profiler-report.html"))

Tip

If the HTML reports do not render plots in the JupyterLab view, you must choose Trust
HTML at the top of the reports.
To identify training issues, such as overfitting, vanishing gradients, and other
problems that prevents your model from converging, use SageMaker Debugger and
take automated actions while prototyping and training your ML models. For more
information, see Use Amazon SageMaker Debugger to debug and improve model
performance. To find a complete analysis of model parameters, see the Explainability
with Amazon SageMaker Debugger example notebook.

You now have a trained XGBoost model. SageMaker stores the model artifact in your S3 bucket. To
find the location of the model artifact, run the following code to print the model_data attribute of
the xgb_model estimator:

Use Notebook Instances to build models 626

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html#Explainability-with-Amazon-SageMaker-Debugger
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html#Explainability-with-Amazon-SageMaker-Debugger

Amazon SageMaker Developer Guide

xgb_model.model_data

Tip

To measure biases that can occur during each stage of the ML lifecycle (data collection,
model training and tuning, and monitoring of ML models deployed for prediction), use
SageMaker Clarify. For more information, see Model Explainability. For an end-to-end
example, see the Fairness and Explainability with SageMaker Clarify example notebook.

Step 5: Deploy the Model to Amazon EC2

To get predictions, deploy your model to Amazon EC2 using Amazon SageMaker.

Topics

• Deploy the Model to SageMaker Hosting Services

• (Optional) Use SageMaker Predictor to Reuse the Hosted Endpoint

• (Optional) Make Prediction with Batch Transform

Deploy the Model to SageMaker Hosting Services

To host a model through Amazon EC2 using Amazon SageMaker, deploy the model that you
trained in Create and Run a Training Job by calling the deploy method of the xgb_model
estimator. When you call the deploy method, you must specify the number and type of EC2 ML
instances that you want to use for hosting an endpoint.

import sagemaker
from sagemaker.serializers import CSVSerializer
xgb_predictor=xgb_model.deploy(
 initial_instance_count=1,
 instance_type='ml.t2.medium',
 serializer=CSVSerializer()
)

• initial_instance_count (int) – The number of instances to deploy the model.

• instance_type (str) – The type of instances that you want to operate your deployed model.

Use Notebook Instances to build models 627

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability.html

Amazon SageMaker Developer Guide

• serializer (int) – Serialize input data of various formats (a NumPy array, list, file, or buffer) to
a CSV-formatted string. We use this because the XGBoost algorithm accepts input files in CSV
format.

The deploy method creates a deployable model, configures the SageMaker hosting services
endpoint, and launches the endpoint to host the model. For more information, see the SageMaker
generic Estimator's deploy class method in the Amazon SageMaker Python SDK. To retrieve the
name of endpoint that's generated by the deploy method, run the following code:

xgb_predictor.endpoint_name

This should return the endpoint name of the xgb_predictor. The format of the endpoint name
is "sagemaker-xgboost-YYYY-MM-DD-HH-MM-SS-SSS". This endpoint stays active in the
ML instance, and you can make instantaneous predictions at any time unless you shut it down
later. Copy this endpoint name and save it to reuse and make real-time predictions elsewhere in
SageMaker Studio or SageMaker notebook instances.

Tip

To learn more about compiling and optimizing your model for deployment to Amazon EC2
instances or edge devices, see Compile and Deploy Models with Neo.

(Optional) Use SageMaker Predictor to Reuse the Hosted Endpoint

After you deploy the model to an endpoint, you can set up a new SageMaker predictor by pairing
the endpoint and continuously make real-time predictions in any other notebooks. The following
example code shows how to use the SageMaker Predictor class to set up a new predictor object
using the same endpoint. Re-use the endpoint name that you used for the xgb_predictor.

import sagemaker
xgb_predictor_reuse=sagemaker.predictor.Predictor(
 endpoint_name="sagemaker-xgboost-YYYY-MM-DD-HH-MM-SS-SSS",
 sagemaker_session=sagemaker.Session(),
 serializer=sagemaker.serializers.CSVSerializer()
)

Use Notebook Instances to build models 628

https://sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator.deploy
https://sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator.deploy
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

Amazon SageMaker Developer Guide

The xgb_predictor_reuse Predictor behaves exactly the same as the original xgb_predictor.
For more information, see the SageMaker Predictor class in the Amazon SageMaker Python SDK.

(Optional) Make Prediction with Batch Transform

Instead of hosting an endpoint in production, you can run a one-time batch inference job to make
predictions on a test dataset using the SageMaker batch transform. After your model training
has completed, you can extend the estimator to a transformer object, which is based on the
SageMaker Transformer class. The batch transformer reads in input data from a specified S3 bucket
and makes predictions.

To run a batch transform job

1. Run the following code to convert the feature columns of the test dataset to a CSV file and
uploads to the S3 bucket:

X_test.to_csv('test.csv', index=False, header=False)

boto3.Session().resource('s3').Bucket(bucket).Object(
os.path.join(prefix, 'test/test.csv')).upload_file('test.csv')

2. Specify S3 bucket URIs of input and output for the batch transform job as shown following:

The location of the test dataset
batch_input = 's3://{}/{}/test'.format(bucket, prefix)

The location to store the results of the batch transform job
batch_output = 's3://{}/{}/batch-prediction'.format(bucket, prefix)

3. Create a transformer object specifying the minimal number of parameters: the
instance_count and instance_type parameters to run the batch transform job, and the
output_path to save prediction data as shown following:

transformer = xgb_model.transformer(
 instance_count=1,
 instance_type='ml.m4.xlarge',
 output_path=batch_output
)

4. Initiate the batch transform job by executing the transform() method of the transformer
object as shown following:

Use Notebook Instances to build models 629

https://sagemaker.readthedocs.io/en/stable/predictors.html#sagemaker.predictor.RealTimePredictor
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/inference/transformer.html

Amazon SageMaker Developer Guide

transformer.transform(
 data=batch_input,
 data_type='S3Prefix',
 content_type='text/csv',
 split_type='Line'
)
transformer.wait()

5. When the batch transform job is complete, SageMaker creates the test.csv.out prediction
data saved in the batch_output path, which should be in the following format: s3://
sagemaker-<region>-111122223333/demo-sagemaker-xgboost-adult-income-
prediction/batch-prediction. Run the following AWS CLI to download the output data
of the batch transform job:

! aws s3 cp {batch_output} ./ --recursive

This should create the test.csv.out file under the current working directory. You'll be able
to see the float values that are predicted based on the logistic regression of the XGBoost
training job.

Step 6: Evaluate the Model

Now that you have trained and deployed a model using Amazon SageMaker, evaluate the model
to ensure that it generates accurate predictions on new data. For model evaluation, use the test
dataset that you created in Step 3: Download, Explore, and Transform a Dataset.

Evaluate the Model Deployed to SageMaker Hosting Services

To evaluate the model and use it in production, invoke the endpoint with the test dataset and
check whether the inferences you get returns a target accuracy you want to achieve.

To evaluate the model

1. Set up the following function to predict each line of the test set. In the following example
code, the rows argument is to specify the number of lines to predict at a time. You can change
the value of it to perform a batch inference that fully utilizes the instance's hardware resource.

import numpy as np
def predict(data, rows=1000):

Use Notebook Instances to build models 630

Amazon SageMaker Developer Guide

 split_array = np.array_split(data, int(data.shape[0] / float(rows) + 1))
 predictions = ''
 for array in split_array:
 predictions = ','.join([predictions,
 xgb_predictor.predict(array).decode('utf-8')])
 return np.fromstring(predictions[1:], sep=',')

2. Run the following code to make predictions of the test dataset and plot a histogram. You need
to take only the feature columns of the test dataset, excluding the 0th column for the actual
values.

import matplotlib.pyplot as plt

predictions=predict(test.to_numpy()[:,1:])
plt.hist(predictions)
plt.show()

3. The predicted values are float type. To determine True or False based on the float values,
you need to set a cutoff value. As shown in the following example code, use the Scikit-learn
library to return the output confusion metrics and classification report with a cutoff of 0.5.

import sklearn

cutoff=0.5

Use Notebook Instances to build models 631

Amazon SageMaker Developer Guide

print(sklearn.metrics.confusion_matrix(test.iloc[:, 0], np.where(predictions >
 cutoff, 1, 0)))
print(sklearn.metrics.classification_report(test.iloc[:, 0], np.where(predictions >
 cutoff, 1, 0)))

This should return the following confusion matrix:

4. To find the best cutoff with the given test set, compute the log loss function of the logistic
regression. The log loss function is defined as the negative log-likelihood of a logistic model
that returns prediction probabilities for its ground truth labels. The following example code
numerically and iteratively calculates the log loss values (-(y*log(p)+(1-y)log(1-p)),
where y is the true label and p is a probability estimate of the corresponding test sample. It
returns a log loss versus cutoff graph.

import matplotlib.pyplot as plt

cutoffs = np.arange(0.01, 1, 0.01)
log_loss = []
for c in cutoffs:
 log_loss.append(
 sklearn.metrics.log_loss(test.iloc[:, 0], np.where(predictions > c, 1, 0))
)

plt.figure(figsize=(15,10))
plt.plot(cutoffs, log_loss)
plt.xlabel("Cutoff")
plt.ylabel("Log loss")
plt.show()

Use Notebook Instances to build models 632

Amazon SageMaker Developer Guide

This should return the following log loss curve.

5. Find the minimum points of the error curve using the NumPy argmin and min functions:

print(
 'Log loss is minimized at a cutoff of ', cutoffs[np.argmin(log_loss)],
 ', and the log loss value at the minimum is ', np.min(log_loss)
)

This should return: Log loss is minimized at a cutoff of 0.53, and the log
loss value at the minimum is 4.348539186773897.

Instead of computing and minimizing the log loss function, you can estimate a cost function as
an alternative. For example, if you want to train a model to perform a binary classification for
a business problem such as a customer churn prediction problem, you can set weights to the
elements of confusion matrix and calculate the cost function accordingly.

You have now trained, deployed, and evaluated your first model in SageMaker.

Use Notebook Instances to build models 633

Amazon SageMaker Developer Guide

Tip

To monitor model quality, data quality, and bias drift, use Amazon SageMaker Model
Monitor and SageMaker Clarify. To learn more, see Amazon SageMaker Model Monitor,
Monitor Data Quality, Monitor Model Quality, Monitor Bias Drift, and Monitor Feature
Attribution Drift.

Tip

To get human review of low confidence ML predictions or a random sample of predictions,
use Amazon Augmented AI human review workflows. For more information, see Using
Amazon Augmented AI for Human Review.

Step 7: Clean Up

To avoid incurring unnecessary charges, use the AWS Management Console to delete the endpoints
and resources that you created while running the exercises.

Note

Training jobs and logs cannot be deleted and are retained indefinitely.

Note

If you plan to explore other exercises in this guide, you might want to keep some of these
resources, such as your notebook instance, S3 bucket, and IAM role.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/ and
delete the following resources:

• The endpoint. Deleting the endpoint also deletes the ML compute instance or instances that
support it.

1. Under Inference, choose Endpoints.

Use Notebook Instances to build models 634

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-use-augmented-ai-a2i-human-review-loops.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-use-augmented-ai-a2i-human-review-loops.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

2. Choose the endpoint that you created in the example, choose Actions, and then choose
Delete.

• The endpoint configuration.

1. Under Inference, choose Endpoint configurations.

2. Choose the endpoint configuration that you created in the example, choose Actions, and
then choose Delete.

• The model.

1. Under Inference, choose Models.

2. Choose the model that you created in the example, choose Actions, and then choose
Delete.

• The notebook instance. Before deleting the notebook instance, stop it.

1. Under Notebook, choose Notebook instances.

2. Choose the notebook instance that you created in the example, choose Actions, and then
choose Stop. The notebook instance takes several minutes to stop. When the Status
changes to Stopped, move on to the next step.

3. Choose Actions, and then choose Delete.

2. Open the Amazon S3 console at https://console.aws.amazon.com/s3/, and then delete the
bucket that you created for storing model artifacts and the training dataset.

3. Open the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/, and
then delete all of the log groups that have names starting with /aws/sagemaker/.

Amazon Linux 2 notebook instances

Amazon SageMaker notebook instances currently support Amazon Linux 2 (AL2) operating
systems. You can select the operating system that your notebook instance is based on when you
create the notebook instance.

SageMaker supports notebook instances based on the following Amazon Linux 2 operating
systems.

• notebook-al2-v1: These notebook instances support JupyterLab version 1. For information
about JupyterLab versions, see JupyterLab versioning.

AL2 instances 635

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide

• notebook-al2-v2: These notebook instances support JupyterLab version 3. For information
about JupyterLab versions, see JupyterLab versioning.

Notebook instances created before 08/18/2021 automatically run on Amazon Linux (AL1).
Notebook instances based on AL1 entered a maintenance phase as of 12/01/2022 and are no
longer available for new notebook instance creation as of 02/01/2023. To replace AL1, you now
have the option to create Amazon SageMaker notebook instances with AL2. For more information,
see AL1 Maintenance Phase Plan.

Topics

• Supported instance types

• Available Kernels

• AL1 Maintenance Phase Plan

Supported instance types

Amazon Linux 2 supports instance types listed under Notebook Instances in Amazon SageMaker
Pricing with the exception that Amazon Linux 2 does not support ml.p2 instances.

Available Kernels

The following table gives information about the available kernels for SageMaker notebook
instances. All of these images are supported on notebook instances based on both the notebook-
al2-v1 and notebook-al2-v2 operating systems.

SageMaker notebook instance kernels

Kernel name Description

R A kernel used to perform data analysis and
visualization using R code from a Jupyter
notebook.

Sparkmagic (PySpark) A kernel used to do data science with remote
Spark clusters from Jupyter notebooks using
the Python programming language. This
kernel comes with Python 3.10.

AL2 instances 636

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Kernel name Description

Sparkmagic (Spark) A kernel used to do data science with remote
Spark clusters from Jupyter notebooks using
the Scala programming language. This kernel
comes with Python 3.10.

Sparkmagic (SparkR) A kernel used to do data science with remote
Spark clusters from Jupyter notebooks using
the R programming language. This kernel
comes with Python 3.10.

conda_python3 A conda environment that comes pre-insta
lled with popular packages for data science
and machine learning. This kernel comes with
Python 3.10.

conda_pytorch_p310 A conda environment that comes pre-installed
with PyTorch version 2.0.1, as well as popular
data science and machine learning packages.
This kernel comes with Python 3.10.

conda_tensorflow2_p310 A conda environment that comes pre-insta
lled with TensorFlow version 2.13, as well as
popular data science and machine learning
packages. This kernel comes with Python 3.10.

AL1 Maintenance Phase Plan

The following table is a timeline for when AL1 entered its extended maintenance phase. The AL1
maintenance phase also coincides with the deprecation of Python 2 and Chainer. Notebooks based
on AL2 do not have managed Python 2 and Chainer kernels.

Date Description

08/18/2021 Notebook instances based on AL2 are
launched. Newly launched notebook instances

AL2 instances 637

Amazon SageMaker Developer Guide

Date Description

still default to AL1. AL1 is supported with
security patches and updates, but no new
features. You can choose between the two
operating systems when launching a new
notebook instance.

10/31/2022 The default platform identifier for SageMaker
notebook instances changes from Amazon
Linux (al1-v1) to Amazon Linux 2 (al2-v2).
 You can choose between the two operating
systems when launching a new notebook
instance.

12/01/2022 AL1 is no longer supported with non-criti
cal security patches and updates. AL1 still
receives fixes for critical security-related
issues. You can still launch instances on AL1,
but assume the risks associated with using an
unsupported operating system.

02/01/2023 AL1 is no longer an available option for new
notebook instance creation. After this date,
customers can create notebook instances with
the AL2 platform identifiers. Existing al1-v1
notebook instances are not affected.

AL2 instances 638

https://nvd.nist.gov/vuln-metrics/cvss#

Amazon SageMaker Developer Guide

Date Description

03/31/2024 AL1 reaches its end of life on notebook
instances on March 31, 2024. After this
date, AL1 will no longer receive any security
updates, bug fixes, or be available for new
notebook instance creation.

• Existing AL1 notebook instances with a
STOPPED status cannot be restarted.

• AL1 notebook instances with the
INSERVICE status are not affected until
they are stopped.

Migrating to Amazon Linux 2

Your existing AL1 notebook instance is not automatically migrated to Amazon Linux 2. To
upgrade your AL1 notebook instance to Amazon Linux 2, you must create a new notebook
instance, replicate your code and environment, and delete your old notebook instance. For more
information, see the Amazon Linux 2 migration blog.

JupyterLab versioning

The Amazon SageMaker notebook instance interface is based on JupyterLab, which is a web-based
interactive development environment for notebooks, code, and data. Notebooks now support
using either JupyterLab 1 or JupyterLab 3. A single notebook instance can run a single instance of
JupyterLab (at most). You can have multiple notebook instances with different JupyterLab versions.

You can configure your notebook to run your preferred JupyterLab version by selecting the
appropriate platform identifier. Use either the AWS CLI or the SageMaker console when creating
your notebook instance. For more information about platform identifiers, see Amazon Linux 2
vs Amazon Linux notebook instances. If you don’t explicitly configure a platform identifier, your
notebook instance defaults to running JupyterLab 1.

Topics

• JupyterLab 3

• Creating a notebook with your JupyterLab version

JupyterLab versioning 639

https://aws.amazon.com/blogs/machine-learning/migrate-your-work-to-amazon-sagemaker-notebook-instance-with-amazon-linux-2/
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-al2.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-al2.html

Amazon SageMaker Developer Guide

• View the JupyterLab version of a notebook from the console

JupyterLab 3

JupyterLab 3 support is available only on the Amazon Linux 2 operating system platform.
JupyterLab 3 includes the following features that are not available in JupyterLab 1. For more
information about these features, see JupyterLab 3.0 is released!.

• Visual debugger when using the following kernels:

• conda_pytorch_p38

• conda_tensorflow2_p38

• conda_amazonei_pytorch_latest_p37

• File browser filter

• Table of Contents (TOC)

• Multi-language support

• Simple mode

• Single interface mode

• Live editing SVG files with updated rendering

• User interface for notebook cell tags

Important changes to JupyterLab 3

For information about important changes when using JupyterLab 3, see the following JupyterLab
change logs:

• v2.0.0

• v3.0.0

Package version changes

JupyterLab 3 has the following package version changes from JupyterLab 1:

• JupyterLab has been upgraded from 1.x to 3.x.

• Jupyter notebook has been upgraded from 5.x to 6.x.

JupyterLab versioning 640

https://blog.jupyter.org/jupyterlab-3-0-is-out-4f58385e25bb
https://github.com/jupyterlab/jupyterlab/releases
https://jupyterlab.readthedocs.io/en/stable/getting_started/changelog.html#for-developers

Amazon SageMaker Developer Guide

• jupyterlab-git has been updated to version 0.37.1.

• nbserverproxy 0.x (0.3.2) has been replaced with jupyter-server-proxy 3.x (3.2.1).

Creating a notebook with your JupyterLab version

You can select the JupyterLab version when creating your notebook instance from the console
following the steps in Create a Notebook Instance.

You can also select the JupyterLab version by passing the platform-identifier parameter
when creating your notebook instance using the AWS CLI as follows:

create-notebook-instance --notebook-instance-name <NEW_NOTEBOOK_NAME> \
--instance-type <INSTANCE_TYPE> \
--role-arn <YOUR_ROLE_ARN> \
--platform-identifier <PLATFORM_TO_USE>

View the JupyterLab version of a notebook from the console

You can view the JupyterLab version of a notebook using the following procedure:

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. From the left navigation, select Notebook.

3. From the dropdown menu, select Notebook instances to navigate to the Notebook instances
page.

4. From the list of notebook instances, select your notebook instance name.

5. On the Notebook instance settings page, view the Platform Identifier to see the JupyterLab
version of the notebook.

Create a Notebook Instance

An Amazon SageMaker notebook instance is a ML compute instance running the Jupyter Notebook
App. SageMaker manages creating the instance and related resources. Use Jupyter notebooks in
your notebook instance to prepare and process data, write code to train models, deploy models to
SageMaker hosting, and test or validate your models.

To create a notebook instance, use either the SageMaker console or the
CreateNotebookInstance API.

Create a Notebook Instance 641

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html

Amazon SageMaker Developer Guide

The notebook instance type you choose depends on how you use your notebook instance. You
want to ensure that your notebook instance is not bound by memory, CPU, or IO. If you plan
to load a dataset into memory on the notebook instance for exploration or preprocessing, we
recommend that you choose an instance type with enough RAM memory for your dataset. This
would require an instance with at least 16 GB of memory (.xlarge or larger). If you plan to use the
notebook for compute intensive preprocessing, we recommend you choose a compute-optimized
instance such as a c4 or c5.

A best practice when using a SageMaker notebook is to use the notebook instance to orchestrate
other AWS services. For example, you can use the notebook instance to manage large dataset
processing by making calls to AWS Glue for ETL (extract, transform, and load) services or Amazon
EMR for mapping and data reduction using Hadoop. You can use AWS services as temporary forms
of computation or storage for your data.

You can store and retrieve your training and test data using an Amazon S3 bucket. You can then
use SageMaker to train and build your model, so the instance type of your notebook would have no
bearing on the speed of your model training and testing.

After receiving the request, SageMaker does the following:

• Creates a network interface—If you choose the optional VPC configuration, SageMaker creates
the network interface in your VPC. It uses the subnet ID that you provide in the request to
determine which Availability Zone to create the subnet in. SageMaker associates the security
group that you provide in the request with the subnet. For more information, see Connect a
Notebook Instance in a VPC to External Resources.

• Launches an ML compute instance—SageMaker launches an ML compute instance in a
SageMaker VPC. SageMaker performs the configuration tasks that allow it to manage your
notebook instance, and if you specified your VPC, it enables traffic between your VPC and the
notebook instance.

• Installs Anaconda packages and libraries for common deep learning platforms—SageMaker
installs all of the Anaconda packages that are included in the installer. For more information, see
Anaconda package list. In addition, SageMaker installs the TensorFlow and Apache MXNet deep
learning libraries.

• Attaches an ML storage volume—SageMaker attaches an ML storage volume to the ML compute
instance. You can use the volume as a working area to clean up the training dataset or to
temporarily store validation, test, or other data. Choose any size between 5 GB and 16384 GB,
in 1 GB increments, for the volume. The default is 5 GB. ML storage volumes are encrypted, so
SageMaker can't determine the amount of available free space on the volume. Because of this,

Create a Notebook Instance 642

https://docs.anaconda.com/anaconda/packages/pkg-docs

Amazon SageMaker Developer Guide

you can increase the volume size when you update a notebook instance, but you can't decrease
the volume size. If you want to decrease the size of the ML storage volume in use, create a new
notebook instance with the desired size.

Only files and data saved within the /home/ec2-user/SageMaker folder persist between
notebook instance sessions. Files and data that are saved outside this directory are overwritten
when the notebook instance stops and restarts. Each notebook instance's /tmp directory
provides a minimum of 10 GB of storage in an instance store. An instance store is temporary,
block-level storage that isn't persistent. When the instance is stopped or restarted, SageMaker
deletes the directory's contents. This temporary storage is part of the root volume of the
notebook instance.

If the instance type used by the notebook instance has NVMe support, then customers can use
the NVMe instance store volumes available for that instance type. For instances with NVMe
store volumes, all instance store volumes are automatically attached to the instance at launch.
For more information about instance types and their associated NVMe store volumes, see the
Amazon Elastic Compute Cloud Instance Type Details.

To make the attached NVMe store volume available for your notebook instance, complete the
steps in Make instance store volumes available on your instance with root access or using a
lifecycle configuration script.

Note

NVMe instance store volumes are not persistent storage. This storage is short-lived
with the instance and must be reconfigured every time an instance with this storage is
launched.

• Copies example Jupyter notebooks— These Python code examples illustrate model training and
hosting exercises using various algorithms and training datasets.

To create a SageMaker notebook instance:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Notebook instances, then choose Create notebook instance.

3. On the Create notebook instance page, provide the following information:

a. For Notebook instance name, type a name for your notebook instance.

Create a Notebook Instance 643

https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/add-instance-store-volumes.html#making-instance-stores-available-on-your-instances
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

b. For Notebook instance type, choose an instance size suitable for your use case. For a list
of supported instance types and quotas, see Amazon SageMaker Service Quotas.

c. For Elastic Inference, choose an inference accelerator type to associate with the notebook
instance if you plan to conduct inferences from the notebook instance, or choose none.
For information about elastic inference, see Use Amazon SageMaker Elastic Inference (EI) .

d. For Platform Identifier, choose a platform type to create the notebook instance on.
This platform type dictates the Operating System and the JupyterLab version that your
notebook instance is created with. For information about platform identifier type, see
Amazon Linux 2 notebook instances. For information about JupyterLab versions, see
JupyterLab versioning.

e. (Optional) Additional configuration lets advanced users create a shell script that can run
when you create or start the instance. This script, called a lifecycle configuration script,
can be used to set the environment for the notebook or to perform other functions. For
information, see Customize a Notebook Instance Using a Lifecycle Configuration Script.

f. (Optional) Additional configuration also lets you specify the size, in GB, of the ML storage
volume that is attached to the notebook instance. You can choose a size between 5 GB
and 16,384 GB, in 1 GB increments. You can use the volume to clean up the training
dataset or to temporarily store validation or other data.

g. (Optional) For Minimum IMDS Version, select a version from the dropdown list. If this
value is set to v1, both versions can be used with the notebook instance. If v2 is selected,
then only IMDSv2 can be used with the notebook instance. For information about IMDSv2,
see Use IMDSv2.

Note

Starting October 31, 2022, the default minimum IMDS Version for SageMaker
notebook instances changes from IMDSv1 to IMDSv2.
Starting February 1, 2023, IMDSv1 is no longer be available for new notebook
instance creation. After this date, you can create notebook instances with a
minimum IMDS version of 2.

h. For IAM role, choose either an existing IAM role in your account that has the
necessary permissions to access SageMaker resources or choose Create a new
role. If you choose Create a new role, SageMaker creates an IAM role named
AmazonSageMaker-ExecutionRole-YYYYMMDDTHHmmSS. The AWS managed policy

Create a Notebook Instance 644

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html#limits_sagemaker
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

Amazon SageMaker Developer Guide

AmazonSageMakerFullAccess is attached to the role. The role provides permissions
that allow the notebook instance to call SageMaker and Amazon S3.

i. For Root access, to enable root access for all notebook instance users, choose Enable.
To disable root access for users, choose Disable.If you enable root access, all notebook
instance users have administrator privileges and can access and edit all files on it.

j. (Optional) Encryption key lets you encrypt data on the ML storage volume attached to
the notebook instance using an AWS Key Management Service (AWS KMS) key. If you
plan to store sensitive information on the ML storage volume, consider encrypting the
information.

k. (Optional) Network lets you put your notebook instance inside a Virtual Private Cloud
(VPC). A VPC provides additional security and restricts access to resources in the VPC from
sources outside the VPC. For more information on VPCs, see Amazon VPC User Guide.

To add your notebook instance to a VPC:

i. Choose the VPC and a SubnetId.

ii. For Security Group, choose your VPC's default security group.

iii. If you need your notebook instance to have internet access, enable direct internet
access. For Direct internet access, choose Enable. Internet access can make your
notebook instance less secure. For more information, see Connect a Notebook
Instance in a VPC to External Resources.

l. (Optional) To associate Git repositories with the notebook instance, choose a default
repository and up to three additional repositories. For more information, see Associate Git
Repositories with SageMaker Notebook Instances.

m. Choose Create notebook instance.

In a few minutes, Amazon SageMaker launches an ML compute instance—in this case,
a notebook instance—and attaches an ML storage volume to it. The notebook instance
has a preconfigured Jupyter notebook server and a set of Anaconda libraries. For more
information, see the
CreateNotebookInstance API.

4. When the status of the notebook instance is InService, in the console, the notebook
instance is ready to use. Choose Open Jupyter next to the notebook name to open the classic
Jupyter dashboard.

Create a Notebook Instance 645

https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html

Amazon SageMaker Developer Guide

Note

To augment the security of your Amazon SageMaker notebook instance, all regional
notebook.region.sagemaker.aws domains are registered in the internet Public
Suffix List (PSL). For further security, we recommend that you use cookies with a
__Host- prefix if you ever need to set sensitive cookies for the domains of your
SageMaker notebook instances. This helps to defend your domain against cross-site
request forgery attempts (CSRF). For more information, see the Set-Cookie page in the
mozilla.org developer documentation website.

You can choose Open JupyterLab to open the JupyterLab dashboard. The dashboard provides
access to your notebook instance and sample SageMaker notebooks that contain complete
code walkthroughs. These walkthroughs show how to use SageMaker to perform common
machine learning tasks. For more information, see Example Notebooks. For more information,
see Control root access to a SageMaker notebook instance.

For more information about Jupyter notebooks, see The Jupyter notebook.

Access Notebook Instances

To access your Amazon SageMaker notebook instances, choose one of the following options:

• Use the console.

Choose Notebook instances. The console displays a list of notebook instances in your account.
To open a notebook instance with a standard Jupyter interface, choose Open Jupyter for that
instance. To open a notebook instance with a JupyterLab interface, choose Open JupyterLab for
that instance.

The console uses your sign-in credentials to send a

Access Notebook Instances 646

https://publicsuffix.org/
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://www.mozilla.org/en-GB/?v=1
https://jupyter-notebook.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

CreatePresignedNotebookInstanceUrl API request to SageMaker. SageMaker returns
the URL for your notebook instance, and the console opens the URL in another browser tab and
displays the Jupyter notebook dashboard.

Note

The URL that you get from a call to
CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to
use the URL after the 5-minute limit expires, you are directed to the AWS Management
Console sign-in page.

• Use the API.

To get the URL for the notebook instance, call the
CreatePresignedNotebookInstanceUrl API and use the URL that the API returns to open
the notebook instance.

Use the Jupyter notebook dashboard to create and manage notebooks and to write code. For more
information about Jupyter notebooks, see http://jupyter.org/documentation.html.

Update a Notebook Instance

After you create a notebook instance, you can update it using the SageMaker console and
UpdateNotebookInstance API operation.

You can update the tags of a notebook instance that is InService. To update any other attribute
of a notebook instance, its status must be Stopped.

To update a notebook instance in the SageMaker console:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Notebook instances.

3. Choose the notebook instance that you want to update by selecting the notebook instance
Name from the list.

4. If your notebook Status is not Stopped, select the Stop button to stop the notebook instance.

When you do this, the notebook instance status changes to Stopping. Wait until the status
changes to Stopped to complete the following steps.

Update a Notebook Instance 647

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
http://jupyter.org/documentation.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateNotebookInstance.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

5. Select the Edit button to open the Edit notebook instance page. For information about the
notebook properties you can update, see Create a Notebook Instance.

6. Update your notebook instance and select the Update notebook instance button at the
bottom of the page when you are done to return to the notebook instances page. Your
notebook instance status changes to Updating.

When the notebook instance update is complete, the status changes to Stopped.

Customize a Notebook Instance Using a Lifecycle Configuration Script

To install packages or sample notebooks on your notebook instance, configure networking and
security for it, or otherwise use a shell script to customize it, use a lifecycle configuration. A
lifecycle configuration provides shell scripts that run only when you create the notebook instance
or whenever you start one. When you create a notebook instance, you can create a new lifecycle
configuration and the scripts it uses or apply one that you already have.

You can also use a lifecycle configuration script to access AWS services from your notebook. For
example, you can create a script that lets you use your notebook to control other AWS resources,
such as an Amazon EMR instance.

We maintain a public repository of notebook lifecycle configuration scripts that address common
use cases for customizing notebook instances at https://github.com/aws-samples/amazon-
sagemaker-notebook-instance-lifecycle-configuration-samples.

Note

Each script has a limit of 16384 characters.
The value of the $PATH environment variable that is available to both scripts is /usr/
local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin. The working
directory, which is the value of the $PWD environment variable, is /.
View CloudWatch Logs for notebook instance lifecycle configurations in log group /
aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/
[LifecycleConfigHook].
Scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it
fails and the notebook instance is not created or started. To help decrease the run time of
scripts, try the following:

Customize a Notebook Instance 648

https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-configuration-samples
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-configuration-samples

Amazon SageMaker Developer Guide

• Cut down on necessary steps. For example, limit which conda environments in which to
install large packages.

• Run tasks in parallel processes.

• Use the nohup command in your script.

You can see a list of notebook instance lifecycle configurations you previously created by choosing
Lifecycle configuration in the SageMaker console. You can attach a notebook instance lifecycle
configuration when you create a new notebook instance. For more information about creating a
notebook instance, see Create a Notebook Instance.

To create a lifecycle configuration

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose Lifecycle configurations.

4. From the Lifecycle configurations page, choose the Notebook Instance tab.

5. Choose Create configuration.

6. For Name, type a name using alphanumeric characters and "-", but no spaces. The name can
have a maximum of 63 characters.

7. (Optional) To create a script that runs when you create the notebook and every time you start
it, choose Start notebook.

8. In the Start notebook editor, type the script.

9. (Optional) To create a script that runs only once, when you create the notebook, choose Create
notebook.

10. In the Create notebook editor, type the script configure networking.

11. Choose Create configuration.

Lifecycle Configuration Best Practices

The following are best practices for using lifecycle configurations:

Customize a Notebook Instance 649

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Important

We do not recommend storing sensitive information in your lifecycle configuration script.

• Lifecycle configurations run as the root user. If your script makes any changes within the /
home/ec2-user/SageMaker directory, (for example, installing a package with pip), use the
command sudo -u ec2-user to run as the ec2-user user. This is the same user that Amazon
SageMaker runs as.

• SageMaker notebook instances use conda environments to implement different kernels for
Jupyter notebooks. If you want to install packages that are available to one or more notebook
kernels, enclose the commands to install the packages with conda environment commands that
activate the conda environment that contains the kernel where you want to install the packages.

For example, if you want to install a package only for the python3 environment, use the
following code:

#!/bin/bash
sudo -u ec2-user -i <<EOF

This will affect only the Jupyter kernel called "conda_python3".
source activate python3

Replace myPackage with the name of the package you want to install.
pip install myPackage
You can also perform "conda install" here as well.

source deactivate

EOF

If you want to install a package in all conda environments in the notebook instance, use the
following code:

#!/bin/bash
sudo -u ec2-user -i <<EOF

Note that "base" is special environment name, include it there as well.
for env in base /home/ec2-user/anaconda3/envs/*; do
 source /home/ec2-user/anaconda3/bin/activate $(basename "$env")

Customize a Notebook Instance 650

Amazon SageMaker Developer Guide

 # Installing packages in the Jupyter system environment can affect stability of
 your SageMaker
 # Notebook Instance. You can remove this check if you'd like to install Jupyter
 extensions, etc.
 if [$env = 'JupyterSystemEnv']; then
 continue
 fi

 # Replace myPackage with the name of the package you want to install.
 pip install --upgrade --quiet myPackage
 # You can also perform "conda install" here as well.

 source /home/ec2-user/anaconda3/bin/deactivate
done

EOF

• You must store all conda environments in the default environments folder (/home/user/
anaconda3/envs).

Important

When you create or change a script, we recommend that you use a text editor that provides
Unix-style line breaks, such as the text editor available in the console when you create a
notebook. Copying text from a non-Linux operating system might introduce incompatible
line breaks and result in an unexpected error.

Install External Libraries and Kernels in Notebook Instances

Amazon SageMaker notebook instances come with multiple environments already installed. These
environments contain Jupyter kernels and Python packages including: scikit, Pandas, NumPy,
TensorFlow, and MXNet. These environments, along with all files in the sample-notebooks
folder, are refreshed when you stop and start a notebook instance. You can also install your own
environments that contain your choice of packages and kernels.

The different Jupyter kernels in Amazon SageMaker notebook instances are separate conda
environments. For information about conda environments, see Managing environments in the
Conda documentation.

Customize a Notebook Instance 651

https://conda.io/docs/user-guide/tasks/manage-environments.html

Amazon SageMaker Developer Guide

Install custom environments and kernels on the notebook instance's Amazon EBS volume. This
ensures that they persist when you stop and restart the notebook instance, and that any external
libraries you install are not updated by SageMaker. To do that, use a lifecycle configuration that
includes both a script that runs when you create the notebook instance (on-create) and a
script that runs each time you restart the notebook instance (on-start). For more information
about using notebook instance lifecycle configurations, see Customize a Notebook Instance
Using a Lifecycle Configuration Script. There is a GitHub repository that contains sample lifecycle
configuration scripts at SageMaker Notebook Instance Lifecycle Config Samples.

The examples at https://github.com/aws-samples/amazon-sagemaker-notebook-instance-
lifecycle-config-samples/blob/master/scripts/persistent-conda-ebs/on-create.sh and https://
github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/blob/
master/scripts/persistent-conda-ebs/on-start.sh show the best practice for installing environments
and kernels on a notebook instance. The on-create script installs the ipykernel library to
create custom environments as Jupyter kernels, then uses pip install and conda install to
install libraries. You can adapt the script to create custom environments and install libraries that
you want. SageMaker does not update these libraries when you stop and restart the notebook
instance, so you can ensure that your custom environment has specific versions of libraries that you
want. The on-start script installs any custom environments that you create as Jupyter kernels, so
that they appear in the dropdown list in the Jupyter New menu.

Package installation tools

SageMaker notebooks support the following package installation tools:

• conda install

• pip install

You can install packages using the following methods:

• Lifecycle configuration scripts.

For example scripts, see SageMaker Notebook Instance Lifecycle Config Samples. For more
information on lifecycle configuration, see Customize a Notebook Instance Using a Lifecycle
Configuration Script.

• Notebooks – The following commands are supported.

• %conda install

• %pip install

Customize a Notebook Instance 652

https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/blob/master/scripts/persistent-conda-ebs/on-create.sh
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/blob/master/scripts/persistent-conda-ebs/on-create.sh
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/blob/master/scripts/persistent-conda-ebs/on-start.sh
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/blob/master/scripts/persistent-conda-ebs/on-start.sh
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/blob/master/scripts/persistent-conda-ebs/on-start.sh
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html

Amazon SageMaker Developer Guide

• The Jupyter terminal – You can install packages using pip and conda directly.

From within a notebook you can use the system command syntax (lines starting with !) to install
packages, for example, !pip install and !conda install. More recently, new commands
have been added to IPython: %pip and %conda. These commands are the recommended way to
install packages from a notebook as they correctly take into account the active environment or
interpreter being used. For more information, see Add %pip and %conda magic functions.

Conda

Conda is an open source package management system and environment management system,
which can install packages and their dependencies. SageMaker supports using Conda with either of
the two main channels, the default channel, and the conda-forge channel. For more information,
see Conda channels. The conda-forge channel is a community channel where contributors can
upload packages.

Note

Due to how Conda resolves the dependency graph, installing packages from conda-forge
can take significantly longer (in the worst cases, upwards of 10 minutes).

The Deep Learning AMI comes with many conda environments and many packages preinstalled.
Due to the number of packages preinstalled, finding a set of packages that are guaranteed to be
compatible is difficult. You may see a warning "The environment is inconsistent, please check the
package plan carefully". Despite this warning, SageMaker ensures that all the SageMaker provided
environments are correct. SageMaker cannot guarantee that any user installed packages will
function correctly.

Note

Users of SageMaker, AWS Deep Learning AMI and Amazon EMR can access the commercial
Anaconda repository without taking a commercial license through February 1, 2024 when
using Anaconda in those services. For any usage of the commercial Anaconda repository
after February 1, 2024, customers are responsible for determining their own Anaconda
license requirements.

Customize a Notebook Instance 653

https://github.com/ipython/ipython/pull/11524
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html

Amazon SageMaker Developer Guide

Conda has two methods for activating environments: conda activate/deactivate, and source
activate/deactivate. For more information, see Should I use 'conda activate' or 'source activate' in
Linux.

SageMaker supports moving Conda environments onto the Amazon EBS volume, which is persisted
when the instance is stopped. The environments aren't persisted when the environments are
installed to the root volume, which is the default behavior. For an example lifecycle script, see
persistent-conda-ebs.

Supported conda operations (see note at the bottom of this topic)

• conda install of a package in a single environment

• conda install of a package in all environments

• conda install of a R package in the R environment

• Installing a package from the main conda repository

• Installing a package from conda-forge

• Changing the Conda install location to use EBS

• Supporting both conda activate and source activate

Pip

Pip is the de facto tool for installing and managing Python packages. Pip searches for packages on
the Python Package Index (PyPI) by default. Unlike Conda, pip doesn't have built in environment
support, and is not as thorough as Conda when it comes to packages with native/system library
dependencies. Pip can be used to install packages in Conda environments.

You can use alternative package repositories with pip instead of the PyPI. For an example lifecycle
script, see on-start.sh.

Supported pip operations (see note at the bottom of this topic)

• Using pip to install a package without an active conda environment (install packages system
wide)

• Using pip to install a package in a conda environment

• Using pip to install a package in all conda environments

• Changing the pip install location to use EBS

• Using an alternative repository to install packages with pip

Customize a Notebook Instance 654

https://stackoverflow.com/questions/49600611/python-anaconda-should-i-use-conda-activate-or-source-activate-in-linux
https://stackoverflow.com/questions/49600611/python-anaconda-should-i-use-conda-activate-or-source-activate-in-linux
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/tree/master/scripts/persistent-conda-ebs
https://github.com/aws-samples/amazon-sagemaker-notebook-instance-lifecycle-config-samples/blob/master/scripts/add-pypi-repository/on-start.sh

Amazon SageMaker Developer Guide

Unsupported

SageMaker aims to support as many package installation operations as possible. However, if the
packages were installed by SageMaker or DLAMI, and you use the following operations on these
packages, it might make your notebook instance unstable:

• Uninstalling

• Downgrading

• Upgrading

We do not provide support for installing packages via yum install or installing R packages from
CRAN.

Due to potential issues with network conditions or configurations, or the availability of Conda or
PyPi, we cannot guarantee that packages will install in a fixed or deterministic amount of time.

Note

We cannot guarantee that a package installation will be successful. Attempting to install a
package in an environment with incompatible dependencies can result in a failure. In such a
case you should contact the library maintainer to see if it is possible to update the package
dependencies. Alternatively you can attempt to modify the environment in such a way as
to allow the installation. This modification however will likely mean removing or updating
existing packages, which means we can no longer guarantee stability of this environment.

Notebook Instance Software Updates

Amazon SageMaker periodically tests and releases software that is installed on notebook instances.
This includes:

• Kernel updates

• Security patches

• AWS SDK updates

• Amazon SageMaker Python SDK updates

• Open source software updates

Customize a Notebook Instance 655

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

To ensure that you have the most recent software updates, stop and restart your notebook
instance, either in the SageMaker console or by calling
StopNotebookInstance.

You can also manually update software installed on your notebook instance while it is running by
using update commands in a terminal or in a notebook.

Note

Updating kernels and some packages might depend on whether root access is enabled
for the notebook instance. For more information, see Control root access to a SageMaker
notebook instance.

You can check the Personal Health Dashboard or the security bulletin at Security Bulletins for
updates.

Control an Amazon EMR Spark Instance Using a Notebook

You can use a notebook instance created with a custom lifecycle configuration script to access
AWS services from your notebook. For example, you can create a script that lets you use your
notebook with Sparkmagic to control other AWS resources, such as an Amazon EMR instance. You
can then use the Amazon EMR instance to process your data instead of running the data analysis
on your notebook. This allows you to create a smaller notebook instance because you won't use the
instance to process data. This is helpful when you have large datasets that would require a large
notebook instance to process the data.

The process requires three procedures using the Amazon SageMaker console:

• Create the Amazon EMR Spark instance

• Create the Jupyter Notebook

• Test the notebook-to-Amazon EMR connection

To create an Amazon EMR Spark instance that can be controlled from a notebook using
Sparkmagic

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the navigation pane, choose Create cluster.

Customize a Notebook Instance 656

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopNotebookInstance.html
https://aws.amazon.com/premiumsupport/technology/personal-health-dashboard/
https://aws.amazon.com/security/security-bulletins/
https://console.aws.amazon.com/elasticmapreduce/

Amazon SageMaker Developer Guide

3. On the Create Cluster - Quick Options page, under Software configuration, choose Spark:
Spark 2.4.4 on Hadoop 2.8.5 YARN with Ganglia 3.7.2 and Zeppelin 0.8.2.

4. Set additional parameters on the page and then choose Create cluster.

5. On the Cluster page, choose the cluster name that you created. Note the Master Public DNS,
the EMR master's security group, and the VPC name and subnet ID where the EMR cluster was
created. You will use these values when you create a notebook.

To create a notebook that uses Sparkmagic to control an Amazon EMR Spark instance

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, under Notebook instances, choose Create notebook.

3. Enter the notebook instance name and choose the instance type.

4. Choose Additional configuration, then, under Lifecycle configuration, choose Create a new
lifecycle configuration.

5. Add the following code to the lifecycle configuration script:

OVERVIEW
This script connects an Amazon EMR cluster to an Amazon SageMaker notebook
 instance that uses Sparkmagic.
#
Note that this script will fail if the Amazon EMR cluster's master node IP
 address is not reachable.
1. Ensure that the EMR master node IP is resolvable from the notebook instance.
One way to accomplish this is to have the notebook instance and the Amazon
 EMR cluster in the same subnet.
2. Ensure the EMR master node security group provides inbound access from the
 notebook instance security group.
Type - Protocol - Port - Source
Custom TCP - TCP - 8998 - $NOTEBOOK_SECURITY_GROUP
3. Ensure the notebook instance has internet connectivity to fetch the
 SparkMagic example config.
#
https://aws.amazon.com/blogs/machine-learning/build-amazon-sagemaker-notebooks-
backed-by-spark-in-amazon-emr/

PARAMETERS
EMR_MASTER_IP=your.emr.master.ip

Customize a Notebook Instance 657

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

cd /home/ec2-user/.sparkmagic

echo "Fetching Sparkmagic example config from GitHub..."
wget https://raw.githubusercontent.com/jupyter-incubator/sparkmagic/master/
sparkmagic/example_config.json

echo "Replacing EMR master node IP in Sparkmagic config..."
sed -i -- "s/localhost/$EMR_MASTER_IP/g" example_config.json
mv example_config.json config.json

echo "Sending a sample request to Livy.."
curl "$EMR_MASTER_IP:8998/sessions"

6. In the PARAMETERS section of the script, replace your.emr.master.ip with the Master
Public DNS name for the Amazon EMR instance.

7. Choose Create configuration.

8. On the Create notebook page, choose Network - optional.

9. Choose the VPC and subnet where the Amazon EMR instance is located.

10. Choose the security group used by the Amazon EMR master node.

11. Choose Create notebook instance.

While the notebook instance is being created, the status is Pending. After the instance has been
created and the lifecycle configuration script has successfully run, the status is InService.

Note

If the notebook instance can't connect to the Amazon EMR instance, SageMaker can't
create the notebook instance. The connection can fail if the Amazon EMR instance and
notebook are not in the same VPC and subnet, if the Amazon EMR master security group is
not used by the notebook, or if the Master Public DNS name in the script is incorrect.

To test the connection between the Amazon EMR instance and the notebook

1. When the status of the notebook is InService, choose Open Jupyter to open the notebook.

2. Choose New, then choose Sparkmagic (PySpark).

Customize a Notebook Instance 658

Amazon SageMaker Developer Guide

3. In the code cell, enter %%info and then run the cell.

The output should be similar to the following

Current session configs: {'driverMemory': '1000M', 'executorCores': 2, 'kind':
 'pyspark'}
 No active sessions.

Example Notebooks

Your notebook instance contains example notebooks provided by Amazon SageMaker. The example
notebooks contain code that shows how to apply machine learning solutions by using SageMaker.
Notebook instances use the nbexamples Jupyter extension, which enables you to view a read-
only version of an example notebook or create a copy of it that you can modify and run. For more
information about the nbexamples extension, see https://github.com/danielballan/nbexamples.
For information about example notebooks for SageMaker Studio, see Use Amazon SageMaker
Studio Classic Notebooks.

Note

Example notebooks typically download datasets from the internet. If you disable
SageMaker-provided internet access when you create your notebook instance, example
notebooks might not work. For more information, see Connect a Notebook Instance in a
VPC to External Resources.

Use or View Example Notebooks in Jupyter Classic

To view or use the example notebooks in the classic Jupyter view, choose the SageMaker Examples
tab.

Example Notebooks 659

https://github.com/danielballan/nbexamples

Amazon SageMaker Developer Guide

To view a read-only version of an example notebook in the Jupyter classic view, on the SageMaker
Examples tab, choose Preview for that notebook. To create a copy of an example notebook in
the home directory of your notebook instance, choose Use. In the dialog box, you can change the
notebook's name before saving it.

Use or View Example Notebooks in Jupyterlab

To view or use the example notebooks in the Jupyterlab view, choose the examples icon in the left
navigation panel.

Example Notebooks 660

Amazon SageMaker Developer Guide

To view a read-only version of an example notebook, choose the name of the notebook. This opens
the notebook as a tab in the main area. To create a copy of an example notebook in the home
directory of your notebook instance, choose Create a Copy in the top banner. In the dialog box,
type a name for the notebook and then choose CREATE COPY.

For more information about the example notebooks, see the SageMaker examples GitHub
repository.

Example Notebooks 661

https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/awslabs/amazon-sagemaker-examples

Amazon SageMaker Developer Guide

Set the Notebook Kernel

Amazon SageMaker provides several kernels for Jupyter that provide support for Python 2 and
3, Apache MXNet, TensorFlow, and PySpark. To set a kernel for a new notebook in the Jupyter
notebook dashboard, choose New, and then choose the kernel from the list. For more information
about the available kernels, see Available Kernels.

You can also create a custom kernel that you can use in your notebook instance. For information,
see Install External Libraries and Kernels in Notebook Instances.

Associate Git Repositories with SageMaker Notebook Instances

Associate Git repositories with your notebook instance to save your notebooks in a source control
environment that persists even if you stop or delete your notebook instance. You can associate
one default repository and up to three additional repositories with a notebook instance. The
repositories can be hosted in AWS CodeCommit, GitHub, or on any other Git server. Associating Git
repositories with your notebook instance can be useful for:

• Persistence - Notebooks in a notebook instance are stored on durable Amazon EBS volumes,
but they do not persist beyond the life of your notebook instance. Storing notebooks in a Git
repository enables you to store and use notebooks even if you stop or delete your notebook
instance.

• Collaboration - Peers on a team often work on machine learning projects together. Storing your
notebooks in Git repositories allows peers working in different notebook instances to share
notebooks and collaborate on them in a source-control environment.

• Learning - Many Jupyter notebooks that demonstrate machine learning techniques are available
in publicly hosted Git repositories, such as on GitHub. You can associate your notebook instance
with a repository to easily load Jupyter notebooks contained in that repository.

There are two ways to associate a Git repository with a notebook instance:

Set the Notebook Kernel 662

Amazon SageMaker Developer Guide

• Add a Git repository as a resource in your Amazon SageMaker account. Then, to access the
repository, you can specify an AWS Secrets Manager secret that contains credentials. That way,
you can access repositories that require authentication.

• Associate a public Git repository that is not a resource in your account. If you do this, you cannot
specify credentials to access the repository.

Topics

• Add a Git Repository to Your Amazon SageMaker Account

• Create a Notebook Instance with an Associated Git Repository

• Associate a CodeCommit Repository in a Different AWS Account with a Notebook Instance

• Use Git Repositories in a Notebook Instance

Add a Git Repository to Your Amazon SageMaker Account

To manage your GitHub repositories, easily associate them with your notebook instances, and
associate credentials for repositories that require authentication, add the repositories as resources
in your Amazon SageMaker account. You can view a list of repositories that are stored in your
account and details about each repository in the SageMaker console and by using the API.

You can add Git repositories to your SageMaker account in the SageMaker console or by using the
AWS CLI.

Note

You can use the SageMaker API
CreateCodeRepository to add Git repositories to your SageMaker account, but step-by-
step instructions are not provided here.

Add a Git Repository to Your SageMaker Account (Console)

To add a Git repository as a resource in your SageMaker account

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Under Notebook, choose Git repositories, then choose Add repository.

Git Repos 663

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCodeRepository.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCodeRepository.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

3. To add an CodeCommit repository, choose AWS CodeCommit. To add a GitHub or other Git-
based repository, choose GitHub/Other Git-based repo.

To add an existing CodeCommit repository

1. Choose Use existing repository.

2. For Repository, choose a repository from the list.

3. Enter a name to use for the repository in SageMaker. The name must be 1 to 63 characters.
Valid characters are a-z, A-Z, 0-9, and - (hyphen).

4. Choose Add repository.

To create a new CodeCommit repository

1. Choose Create new repository.

2. Enter a name for the repository that you can use in both CodeCommit and SageMaker. The
name must be 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

3. Choose Create repository.

To add a Git repository hosted somewhere other than CodeCommit

1. Choose GitHub/Other Git-based repo.

2. Enter a name of up to 63 characters. Valid characters include alpha-numeric characters, a
hyphen (-), and 0-9.

3. Enter the URL for the repository. Do not provide a username in the URL. Add the sign-in
credentials in AWS Secrets Manager as described in the next step.

4. For Git credentials, choose the credentials to use to authenticate to the repository. This is
necessary only if the Git repository is private.

Note

If you have two-factor authentication enabled for your Git repository, enter a personal
access token generated by your Git service provider in the password field.

Git Repos 664

Amazon SageMaker Developer Guide

a. To use an existing AWS Secrets Manager secret, choose Use existing secret, and then
choose a secret from the list. For information about creating and storing a secret, see
Creating a Basic Secret in the AWS Secrets Manager User Guide. The name of the secret you
use must contain the string sagemaker.

Note

The secret must have a staging label of AWSCURRENT and must be in the following
format:
{"username": UserName, "password": Password}
For GitHub repositories, we recommend using a personal access token in the
password field. For information, see https://help.github.com/articles/creating-a-
personal-access-token-for-the-command-line/.

b. To create a new AWS Secrets Manager secret, choose Create secret, enter a name for the
secret, and then enter the sign-in credentials to use to authenticate to the repository. The
name for the secret must contain the string sagemaker.

Note

The IAM role you use to create the secret must have the
secretsmanager:GetSecretValue permission in its IAM policy.
The secret must have a staging label of AWSCURRENT and must be in the following
format:
{"username": UserName, "password": Password}
For GitHub repositories, we recommend using a personal access token.

c. To not use any credentials, choose No secret.

5. Choose Create secret.

Add a Git Repository to Your Amazon SageMaker Account (CLI)

Use the create-code-repository AWS CLI command. Specify a name for the repository as
the value of the code-repository-name argument. The name must be 1 to 63 characters. Valid
characters are a-z, A-Z, 0-9, and - (hyphen). Also specify the following:

Git Repos 665

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

Amazon SageMaker Developer Guide

• The default branch

• The URL of the Git repository

Note

Do not provide a username in the URL. Add the sign-in credentials in AWS Secrets
Manager as described in the next step.

• The Amazon Resource Name (ARN) of an AWS Secrets Manager secret that contains the
credentials to use to authenticate the repository as the value of the git-config argument

For information about creating and storing a secret, see Creating a Basic Secret in the AWS Secrets
Manager User Guide. The following command creates a new repository named MyRespository in
your Amazon SageMaker account that points to a Git repository hosted at https://github.com/
myprofile/my-repo".

For Linux, OS X, or Unix:

aws sagemaker create-code-repository \
 --code-repository-name "MyRepository" \
 --git-config Branch=branch,RepositoryUrl=https://github.com/
myprofile/my-repo,SecretArn=arn:aws:secretsmanager:us-east-2:012345678901:secret:my-
secret-ABc0DE

For Windows:

aws sagemaker create-code-repository ^
 --code-repository-name "MyRepository" ^
 --git-config "{\"Branch\":\"master\", \"RepositoryUrl\" :
 \"https://github.com/myprofile/my-repo\", \"SecretArn\" :
 \"arn:aws:secretsmanager:us-east-2:012345678901:secret:my-secret-ABc0DE\"}"

Note

The secret must have a staging label of AWSCURRENT and must be in the following format:
{"username": UserName, "password": Password}
For GitHub repositories, we recommend using a personal access token.

Git Repos 666

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

Amazon SageMaker Developer Guide

Create a Notebook Instance with an Associated Git Repository

You can associate Git repositories with a notebook instance when you create the notebook instance
by using the AWS Management Console, or the AWS CLI. If you want to use a CodeCommit
repository that is in a different AWS account than the notebook instance, set up cross-account
access for the repository. For information, see Associate a CodeCommit Repository in a Different
AWS Account with a Notebook Instance.

Topics

• Create a Notebook Instance with an Associated Git Repository (Console)

• Create a Notebook Instance with an Associated Git Repository (CLI)

Create a Notebook Instance with an Associated Git Repository (Console)

To create a notebook instance and associate Git repositories in the Amazon SageMaker console

1. Follow the instructions at Step 1: Create an Amazon SageMaker Notebook Instance.

2. For Git repositories, choose Git repositories to associate with the notebook instance.

a. For Default repository, choose a repository that you want to use as your default
repository. SageMaker clones this repository as a subdirectory in the Jupyter startup
directory at /home/ec2-user/SageMaker. When you open your notebook instance,
it opens in this repository. To choose a repository that is stored as a resource in your
account, choose its name from the list. To add a new repository as a resource in your
account, choose Add a repository to SageMaker (opens the Add repository flow in a
new window) and then follow the instructions at Create a Notebook Instance with an
Associated Git Repository (Console). To clone a public repository that is not stored in your
account, choose Clone a public Git repository to this notebook instance only, and then
specify the URL for that repository.

b. For Additional repository 1, choose a repository that you want to add as an additional
directory. SageMaker clones this repository as a subdirectory in the Jupyter startup
directory at /home/ec2-user/SageMaker. To choose a repository that is stored as
a resource in your account, choose its name from the list. To add a new repository as
a resource in your account, choose Add a repository to SageMaker (opens the Add
repository flow in a new window) and then follow the instructions at Create a Notebook
Instance with an Associated Git Repository (Console). To clone a repository that is not

Git Repos 667

Amazon SageMaker Developer Guide

stored in your account, choose Clone a public Git repository to this notebook instance
only, and then specify the URL for that repository.

Repeat this step up to three times to add up to three additional repositories to your
notebook instance.

Create a Notebook Instance with an Associated Git Repository (CLI)

To create a notebook instance and associate Git repositories by using the AWS CLI, use the
create-notebook-instance command as follows:

• Specify the repository that you want to use as your default repository as the value of the
default-code-repository argument. Amazon SageMaker clones this repository as a
subdirectory in the Jupyter startup directory at /home/ec2-user/SageMaker. When you
open your notebook instance, it opens in this repository. To use a repository that is stored as
a resource in your SageMaker account, specify the name of the repository as the value of the
default-code-repository argument. To use a repository that is not stored in your account,
specify the URL of the repository as the value of the default-code-repository argument.

• Specify up to three additional repositories as the value of the additional-code-
repositories argument. SageMaker clones this repository as a subdirectory in the Jupyter
startup directory at /home/ec2-user/SageMaker, and the repository is excluded from the
default repository by adding it to the .git/info/exclude directory of the default repository.
To use repositories that are stored as resources in your SageMaker account, specify the names
of the repositories as the value of the additional-code-repositories argument. To use
repositories that are not stored in your account, specify the URLs of the repositories as the value
of the additional-code-repositories argument.

For example, the following command creates a notebook instance that has a repository named
MyGitRepo, that is stored as a resource in your SageMaker account, as a default repository, and an
additional repository that is hosted on GitHub:

aws sagemaker create-notebook-instance \
 --notebook-instance-name "MyNotebookInstance" \
 --instance-type "ml.t2.medium" \
 --role-arn "arn:aws:iam::012345678901:role/service-role/
AmazonSageMaker-ExecutionRole-20181129T121390" \
 --default-code-repository "MyGitRepo" \

Git Repos 668

Amazon SageMaker Developer Guide

 --additional-code-repositories "https://github.com/myprofile/my-
other-repo"

Note

If you use an AWS CodeCommit repository that does not contain "SageMaker" in its name,
add the codecommit:GitPull and codecommit:GitPush permissions to the role that
you pass as the role-arn argument to the create-notebook-instance command. For
information about how to add permissions to a role, see Adding and Removing IAM Policies
in the AWS Identity and Access Management User Guide.

Associate a CodeCommit Repository in a Different AWS Account with a Notebook
Instance

To associate a CodeCommit repository in a different AWS account with your notebook instance, set
up cross-account access for the CodeCommit repository.

To set up cross-account access for a CodeCommit repository and associate it with a notebook
instance:

1. In the AWS account that contains the CodeCommit repository, create an IAM policy that allows
access to the repository from users in the account that contains your notebook instance. For
information, see Step 1: Create a Policy for Repository Access in AccountA in the CodeCommit
User Guide.

2. In the AWS account that contains the CodeCommit repository, create an IAM role, and attach
the policy that you created in the previous step to that role. For information, see Step 2: Create
a Role for Repository Access in AccountA in the CodeCommit User Guide.

3. Create a profile in the notebook instance that uses the role that you created in the previous
step:

a. Open the notebook instance.

b. Open a terminal in the notebook instance.

c. Edit a new profile by typing the following in the terminal:

vi /home/ec2-user/.aws/config

d. Edit the file with the following profile information:

Git Repos 669

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account-administrator-a.html#cross-account-create-policy-a
https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account-administrator-a.html#cross-account-create-role-a
https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account-administrator-a.html#cross-account-create-role-a

Amazon SageMaker Developer Guide

[profile CrossAccountAccessProfile]
region = us-west-2
role_arn =
 arn:aws:iam::CodeCommitAccount:role/CrossAccountRepositoryContributorRole
credential_source=Ec2InstanceMetadata
output = json

Where CodeCommitAccount is the account that contains the CodeCommit
repository, CrossAccountAccessProfile is the name of the new profile, and
CrossAccountRepositoryContributorRole is the name of the role you created in
the previous step.

4. On the notebook instance, configure git to use the profile you created in the previous step:

a. Open the notebook instance.

b. Open a terminal in the notebook instance.

c. Edit the Git configuration file typing the following in the terminal:

vi /home/ec2-user/.gitconfig

d. Edit the file with the following profile information:

[credential]
 helper = !aws codecommit credential-helper --
profile CrossAccountAccessProfile $@
 UseHttpPath = true

Where CrossAccountAccessProfile is the name of the profile that you created in the
previous step.

Use Git Repositories in a Notebook Instance

When you open a notebook instance that has Git repositories associated with it, it opens in the
default repository, which is installed in your notebook instance directly under /home/ec2-user/
SageMaker. You can open and create notebooks, and you can manually run Git commands in a
notebook cell. For example:

!git pull origin master

Git Repos 670

Amazon SageMaker Developer Guide

To open any of the additional repositories, navigate up one folder. The additional repositories are
also installed as directories under /home/ec2-user/SageMaker.

If you open the notebook instance with a JupyterLab interface, the jupyter-git extension is
installed and available to use. For information about the jupyter-git extension for JupyterLab, see
https://github.com/jupyterlab/jupyterlab-git.

When you open a notebook instance in JupyterLab, you see the git repositories associated with it
on the left menu:

You can use the jupyter-git extension to manage git visually, instead of using the command line:

Git Repos 671

https://github.com/jupyterlab/jupyterlab-git

Amazon SageMaker Developer Guide

Notebook Instance Metadata

When you create a notebook instance, Amazon SageMaker creates a JSON file on the instance at
the location /opt/ml/metadata/resource-metadata.json that contains the ResourceName
and ResourceArn of the notebook instance. You can access this metadata from anywhere
within the notebook instance, including in lifecycle configurations. For information about
notebook instance lifecycle configurations, see Customize a Notebook Instance Using a Lifecycle
Configuration Script.

Note

The resource-metadata.json file can be modified with root access.

The resource-metadata.json file has the following structure:

{
 "ResourceArn": "NotebookInstanceArn",
 "ResourceName": "NotebookInstanceName"

Notebook Instance Metadata 672

Amazon SageMaker Developer Guide

}

You can use this metadata from within the notebook instance to get other information about
the notebook instance. For example, the following commands get the tags associated with the
notebook instance:

NOTEBOOK_ARN=$(jq '.ResourceArn'
 /opt/ml/metadata/resource-metadata.json --raw-output)
aws sagemaker list-tags --resource-arn $NOTEBOOK_ARN

The output looks like the following:

{
 "Tags": [
 {
 "Key": "test",
 "Value": "true"
 }
]
}

Monitor Jupyter Logs in Amazon CloudWatch Logs

Jupyter logs include important information such as events, metrics, and health information that
provide actionable insights when running Amazon SageMaker notebooks. By importing Jupyter
logs into CloudWatch Logs, customers can use CloudWatch Logs to detect anomalous behaviors,
set alarms, and discover insights to keep the SageMaker notebooks running more smoothly. You
can access the logs even when the Amazon EC2 instance that hosts the notebook is unresponsive,
and use the logs to troubleshoot the unresponsive notebook. Sensitive information such as
AWS account IDs, secret keys, and authentication tokens in presigned URLs are removed so that
customers can share logs without leaking private information.

To view Jupyter logs for a notebook instance:

1. Sign in to the AWS Management Console and open the SageMaker console at https://
console.aws.amazon.com/sagemaker/.

2. Choose Notebook instances.

3. In the list of notebook instances, choose the notebook instance for which you want to view
Jupyter logs by selecting the Notebook instance Name.

Monitor Jupyter Logs in Amazon CloudWatch Logs 673

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

This will bring you to the details page for that notebook instance.

4. Under Monitor on the notebook instance details page, choose View logs.

5. In the CloudWatch console, choose the log stream for your notebook instance. Its name is in
the form NotebookInstanceName/jupyter.log.

For more information about monitoring CloudWatch logs for SageMaker, see Log Amazon
SageMaker Events with Amazon CloudWatch.

Amazon SageMaker Studio Lab

Amazon SageMaker Studio Lab is a free service that gives customers access to AWS compute
resources, in an environment based on open-source JupyterLab. It is based on the same
architecture and user interface as Amazon SageMaker Studio Classic, but with a subset of Studio
Classic capabilities.

With Studio Lab, you can use AWS compute resources to create and run your Jupyter notebooks
without signing up for an AWS account. Because Studio Lab is based on open-source JupyterLab,
you can take advantage of open-source Jupyter extensions to run your Jupyter notebooks.

Studio Lab compared to Amazon SageMaker Studio Classic

While Studio Lab provides free access to AWS compute resources, Amazon SageMaker Studio
Classic provides the following advanced machine learning capabilities that Studio Lab does not
support.

• Continuous integration and continuous delivery (SageMaker Pipelines)

• Real-time predictions

• Large-scale distributed training

• Data preparation (Amazon SageMaker Data Wrangler)

• Data labeling (Amazon SageMaker Ground Truth)

• Feature Store

• Bias analysis (Clarify)

• Model deployment

• Model monitoring

SageMaker Studio Lab 674

Amazon SageMaker Developer Guide

Studio Classic also supports fine-grained access control and security by using AWS Identity
and Access Management (IAM), Amazon Virtual Private Cloud (Amazon VPC), and AWS Key
Management Service (AWS KMS). Studio Lab does not support these Studio Classic features, nor
does it support the use of estimators and built-in SageMaker algorithms.

To export your Studio Lab projects for use with Studio Classic, see Export an Amazon SageMaker
Studio Lab environment to Amazon SageMaker Studio Classic.

The following topics give information about Studio Lab and how to use it

Topics

• Amazon SageMaker Studio Lab components overview

• Onboard to Amazon SageMaker Studio Lab

• Manage your account

• Launch your Amazon SageMaker Studio Lab project runtime

• Use Amazon SageMaker Studio Lab starter assets

• Studio Lab pre-installed environments

• Use the Amazon SageMaker Studio Lab project runtime

• Troubleshooting

Amazon SageMaker Studio Lab components overview

Amazon SageMaker Studio Lab consists of the following components. The following topics give
more details about these components.

Topics

• Landing page

• Studio Lab account

• Project overview page

• Preview page

• Project

• Compute instance type

• Project runtime

Studio Lab components overview 675

Amazon SageMaker Developer Guide

• Session

Landing page

You can request an account and sign in to an existing account on your landing page. To navigate
to the landing page, see the Amazon SageMaker Studio Lab website. For more information about
creating a Studio Lab account, see Onboard to Amazon SageMaker Studio Lab.

The following screenshot shows the Studio Lab landing page interface for requesting a user
account and signing in.

Studio Lab account

Your Studio Lab account gives you access to Studio Lab. For more information about creating a user
account, see Onboard to Amazon SageMaker Studio Lab.

Project overview page

You can launch a compute instance and view information about your project on this page. To
navigate to this page, you must sign in from the Amazon SageMaker Studio Lab website. The URL
takes the following format.

https://studiolab.sagemaker.aws/users/<YOUR_USER_NAME>

Studio Lab components overview 676

https://studiolab.sagemaker.aws/
https://studiolab.sagemaker.aws/

Amazon SageMaker Developer Guide

The following screenshot shows a project overview in the Studio Lab user interface.

Preview page

On this page, you can access a read-only preview of a Jupyter notebook. You can not execute the
notebook from preview, but you can copy that notebook into your project. For many customers,
this may be the first Studio Lab page that customers see, as they may be opening a notebook from
GitHub notebook. For more information on how to use GitHub resources, see Use GitHub resources.

To copy the notebook preview to your Studio Lab project:

1. Sign in to your Studio Lab account. For more information about creating a Studio Lab account,
see Onboard to Amazon SageMaker Studio Lab.

2. Under Notebook compute instance, choose a compute instance type. For more information
about compute instance types, see Compute instance type.

3. Choose Start runtime. You might be asked to solve a CAPTCHA puzzle. For more information
on CAPTCHA, see What is a CAPTCHA puzzle?

4. One time setup, for first time starting runtime using your Studio Lab account:

a. Enter a mobile phone number to associate with your Amazon SageMaker Studio Lab
account and choose Continue.

For information on supported countries and regions, see Supported countries and regions
(SMS channel).

b. Enter the 6-digit code sent to the associated mobile phone number and choose Verify.

5. Choose Copy to project.

Studio Lab components overview 677

https://docs.aws.amazon.com/waf/latest/developerguide/waf-captcha-puzzle.html
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-countries.html
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-countries.html

Amazon SageMaker Developer Guide

Project

Your project contains all of your files and folders, including your Jupyter notebooks. You have
full control over the files in your project. Your project also includes the JupyterLab-based user
interface. From this interface, you can interact with your Jupyter notebooks, edit your source code
files, integrate with GitHub, and connect to Amazon S3. For more information, see Use the Amazon
SageMaker Studio Lab project runtime.

The following screenshot shows a Studio Lab project with the file browser open and the Studio Lab
Launcher displayed.

Compute instance type

Your Amazon SageMaker Studio Lab project runtime is based on an EC2 instance. You are allotted
15 GB of storage and 16 GB of RAM. Availability of compute instances is not guaranteed and is
subject to demand. If you require additional storage or compute resources, consider switching to
Studio.

Amazon SageMaker Studio Lab offers the choice of a CPU (Central Processing Unit) and a GPU
(Graphical Processing Unit). The following sections give information about these two options,
including selection guidance.

CPU

Studio Lab components overview 678

Amazon SageMaker Developer Guide

A central processing unit (CPU) is designed to handle a wide range of tasks efficiently, but is limited
in how many tasks it can run concurrently. For machine learning, a CPU is recommended for
compute intensive algorithms, such as time series, forecasting, and tabular data.

The CPU compute type has up to 4 hours at a time with a limit of 8 hours in a 24-hour period.

GPU

A graphics processing unit (GPU) is designed to render high-resolution images and video
concurrently. A GPU is recommended for deep learning tasks, especially for transformers and
computer vision.

The GPU compute type has up to 4 hours at a time with a limit of 4 hours in a 24-hour period.

Compute time

When compute time for Studio Lab reaches its time limit, the instance stops all running
computations. Studio Lab does not support time limit increases.

Studio Lab automatically saves your environment when you update your environment and every
time you create a new file. Custom-installed extensions and packages persist even after your
runtime has ended.

File edits are periodically saved, but are not saved when your runtime ends. To ensure that you do
not lose your progress, save your work manually. If you have content in your Studio Lab project
that you don’t want to lose, we recommend that you back up your content elsewhere. For more
information about exporting your environment and files, see Export an Amazon SageMaker Studio
Lab environment to Amazon SageMaker Studio Classic.

During long computation, you do not need to keep your project open. For example, you can start
training a model, then close your browser. The instance keeps running for up to the compute type
limit in a 24-hour period. You can then sign in later to continue your work.

We recommend that you use checkpointing in your deep learning jobs. You can use saved
checkpoints to restart a job from the previously saved checkpoint. For more information, see File I/
O.

Project runtime

The project runtime is the period of time when your compute instance is running.

Studio Lab components overview 679

https://d2l.ai/chapter_deep-learning-computation/read-write.html?highlight=checkpointing
https://d2l.ai/chapter_deep-learning-computation/read-write.html?highlight=checkpointing

Amazon SageMaker Developer Guide

Session

A user session begins every time you launch your project.

Onboard to Amazon SageMaker Studio Lab

To onboard to Amazon SageMaker Studio Lab, follow the steps in this guide. In the following
sections, you learn how to request a Studio Lab account, create your account, and sign in.

Topics

• Request a Studio Lab account

• Create a Studio Lab account

• Sign in to Studio Lab

Request a Studio Lab account

To use Studio Lab, you must first request approval to create a Studio Lab account. An AWS account
cannot be used for onboarding to Studio Lab.

The following steps show how to request a Studio Lab account.

1. Navigate to the Studio Lab landing page.

2. Select Request account.

3. Enter the required information into the form.

4. Select Submit request.

5. If you receive an email to verify your email address, follow the instructions in the email to
complete this step.

Your account request must be approved before you can register for a Studio Lab account. Your
request will be reviewed within five business days. When your account request is approved, you
receive an email with a link to the Studio Lab account registration page. This link expires seven
days after your request is approved. If the link expires, you must submit a new account request.

Note: Your account request is denied if your email has been associated with activity that violates
our Terms of Service or other agreements.

Onboard to Studio Lab 680

https://studiolab.sagemaker.aws
https://aws.amazon.com/service-terms/

Amazon SageMaker Developer Guide

Referral codes

Studio Lab referral codes enable new account requests to be automatically approved to support
machine learning events like workshops, hackathons, and classes. With a referral code, a trusted
host can get their participants immediate access to Studio Lab. After an account has been created
using a referral code, the account continues to exist after the expiration of the code.

To get a referral code, contact Sales Support. To use a referral code, enter the code as part of the
account request form.

Create a Studio Lab account

After your request is approved, complete the following steps to create your Studio Lab account.

1. Select Create account in the account request approval email to open a new page.

2. From the new page, enter your Email, a Password, and a Username.

3. Select Create account.

You might be asked to solve a CAPTCHA puzzle. For more information on CAPTCHA, see What
is a CAPTCHA puzzle?

Sign in to Studio Lab

After you register for your account, you can sign in to Studio Lab.

1. Navigate to the Studio Lab landing page.

2. Select Sign in to open a new page.

3. Enter your Email or Username and Password.

4. Select Sign in to open a new page to your project.

You might be asked to solve a CAPTCHA puzzle. For more information on CAPTCHA, see What
is a CAPTCHA puzzle?

Manage your account

The following topic gives information about managing your account, including changing your
password, deleting your account, and getting information that we have collected. These topics

Manage your account 681

https://aws.amazon.com/contact-us/sales-support/
https://docs.aws.amazon.com/waf/latest/developerguide/waf-captcha-puzzle.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-captcha-puzzle.html
https://studiolab.sagemaker.aws
https://docs.aws.amazon.com/waf/latest/developerguide/waf-captcha-puzzle.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-captcha-puzzle.html

Amazon SageMaker Developer Guide

require that you sign in to your Amazon SageMaker Studio Lab account. For more information, see
Sign in to Studio Lab.

Change your password

Follow these steps to change your Amazon SageMaker Studio Lab password.

1. Navigate to the Studio Lab project overview page. The URL takes the following format.

https://studiolab.sagemaker.aws/users/<YOUR_USER_NAME>

2. From the top-right corner, select your user name to open a dropdown menu.

3. From the dropdown menu, select Change password to open a new page.

4. Enter your current password into the Enter your current password field.

5. Enter your new password into the Create a new password and Confirm your new password
fields.

6. Select Submit.

Delete your account

Follow these steps to delete your Studio Lab account.

1. Navigate to the Studio Lab project overview page. The URL takes the following format.

https://studiolab.sagemaker.aws/users/<YOUR_USER_NAME>

2. From the top-right corner, select your user name to open a dropdown menu.

3. From the dropdown menu, select Delete account to open a new page.

4. Enter your password to confirm the deletion of your Studio Lab account.

5. Select Delete.

Customer information

Studio Lab collects your email address, user name, encrypted password, project files,
and metadata. When requesting an account, you can optionally choose to provide your first and
last name, country, organization name, occupation, and the reason for your interest in this product.

Manage your account 682

Amazon SageMaker Developer Guide

We protect all customer personal data with encryption. For more information about how your
personal information is handled, see the Privacy Notice.

When you delete your account, all of your information is deleted immediately. If you have an
inquiry about this, submit the Amazon SageMaker Studio Lab Form. For information and support
related to AWS compliance, see Compliance support.

Launch your Amazon SageMaker Studio Lab project runtime

The Amazon SageMaker Studio Lab project runtime lets you write and run code directly from
your browser. It is based on JupyterLab and has an integrated terminal and console. For more
information about JupyterLab, see the JupyterLab Documentation.

The following topic gives information about how to manage your project runtime. These topics
require that you sign in to your Amazon SageMaker Studio Lab account. For more information
about signing in, see Sign in to Studio Lab. For more information about your project, see Amazon
SageMaker Studio Lab components overview.

Topics

• Start your project runtime

• Stop your project runtime

• View remaining compute time

• Change your compute type

Start your project runtime

To use Studio Lab, you must start your project runtime. This runtime gives you access to the
JupyterLab environment.

1. Navigate to the Studio Lab project overview page. The URL takes the following format.

https://studiolab.sagemaker.aws/users/<YOUR_USER_NAME>

2. Under My Project, select a compute type. For more information about compute types, see
Compute instance type.

3. Select Start runtime.

Launch Studio Lab 683

https://aws.amazon.com/privacy/
https://pages.awscloud.com/GLOBAL_PM_PA_amazon-sagemaker_20211116_7014z000000rjq2-registration.html
https://aws.amazon.com/contact-us/compliance-support/
https://jupyterlab.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

You might be asked to solve a CAPTCHA puzzle. For more information on CAPTCHA, see What
is a CAPTCHA puzzle?

4. One time setup, for first time starting runtime using your Studio Lab account:

a. Enter a mobile phone number to associate with your Amazon SageMaker Studio Lab
account and choose Continue.

For information on supported countries and regions, see Supported countries and regions
(SMS channel).

b. Enter the 6-digit code sent to the associated mobile phone number and choose Verify.

5. After the runtime is running, select Open project to open the project runtime environment in
a new browser tab.

Stop your project runtime

When you stop your project runtime, your files are not automatically saved. To ensure that you
don't lose your work, save all of your changes before stopping your project runtime.

• Under My Project, select Stop runtime.

View remaining compute time

Your project runtime has limited compute time based on the compute type that you select. For
more information about compute time in Studio Lab, see Compute instance type.

• Under My Project, view Time remaining.

Change your compute type

You can switch your compute type based on your workflow. For more information about compute
types, see Compute instance type.

1. Save any project files before changing the compute type.

2. Navigate to the Studio Lab project overview page. The URL takes the following format.

https://studiolab.sagemaker.aws/users/<YOUR_USER_NAME>

Launch Studio Lab 684

https://docs.aws.amazon.com/waf/latest/developerguide/waf-captcha-puzzle.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-captcha-puzzle.html
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-countries.html
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-countries.html

Amazon SageMaker Developer Guide

3. Under My Project, select the desired compute type (CPU or GPU).

4. Confirm your choice by selecting Restart in the Restart project runtime? dialog box. Studio
Lab stops your current project runtime, then starts a new project runtime with your updated
compute type.

5. After your project runtime has started, select Open project. This opens your project runtime
environment in a new browser tab. For information about using your project runtime
environment, see Use the Amazon SageMaker Studio Lab project runtime.

Use Amazon SageMaker Studio Lab starter assets

Amazon SageMaker Studio Lab supports the following assets to help machine learning (ML)
practitioners get started. This guide shows you how to clone notebooks for your project.

Getting started notebook

Studio Lab comes with a starter notebook that gives general information and guides you
through key workflows. When you launch your project runtime for the first time, this notebook
automatically opens.

Dive into Deep Learning

Dive into Deep Learning (D2L) is an interactive, open-source book that teaches the ideas,
mathematical theory, and code that power machine learning. With over 150 Jupyter notebooks,
D2L provides a comprehensive overview of deep learning principles. For more information about
D2L, see the D2L website.

The following procedure shows how to clone the D2L Jupyter notebooks to your instance.

1. Start and open the Studio Lab project runtime environment by following Start your project
runtime.

2. Once Studio Lab is open, choose the Git tab

()
on the left sidebar.

3. Choose Clone a Repository. Under Git repository URL (.git) paste the MLU git
repository D2L by following the steps below. If you do not see the Clone a Repository
option because you are currently in a Git repository, return to the user directory to
clone a new repository. You return to the user directory by choosing the Folder tab

Use Studio Lab starter assets 685

https://d2l.ai/

Amazon SageMaker Developer Guide

()
on the left sidebar. In the Folder tab beneath the file search bar choose the folder icon to the
left of the currently open repository. Once you are in the user directory, choose the Git tab on
the left sidebar and choose Clone a Repository.

4. Navigate to the Studio Lab project overview page. The URL takes the following format.

https://studiolab.sagemaker.aws/users/<YOUR_USER_NAME>

5. Under New to machine learning?, choose Dive into Deep Learning.

6. From the new Dive into Deep Learning browser tab, choose GitHub to open a new page with
the example notebooks.

7. Choose Code and copy the GitHub repository's URL in the HTTPS tab.

8. Return to the Studio Lab open project browser tab, paste the D2L repository URL, and clone
the repository.

AWS Machine Learning University

The AWS Machine Learning University (MLU) provides access to the machine learning courses used
to train Amazon’s own developers. With AWS MLU, any developer can learn how to use machine
learning with the learn-at-your-own-pace MLU Accelerator learning series. The MLU Accelerator
series is designed to help developers begin their ML journey. It offers three-day foundational
courses on these three subjects: Natural Language Processing, Tabular Data, and Computer Vision.
For more information, see Machine Learning University.

The following procedure shows how to clone the AWS MLU Jupyter notebooks to your instance.

1. Start and open the Studio Lab project runtime environment by following Start your project
runtime.

2. Once Studio Lab is open, choose the Git tab

()
on the left sidebar.

3. Choose Clone a Repository. Under Git repository URL (.git) paste the MLU git
repository URL by following the steps below. If you do not see the Clone a Repository
option because you are currently in a Git repository, return to the user directory to
clone a new repository. You return to the user directory by choosing the Folder tab

()

Use Studio Lab starter assets 686

https://aws.amazon.com/machine-learning/mlu/

Amazon SageMaker Developer Guide

on the left sidebar. In the Folder tab beneath the file search bar choose the folder icon to the
left of the currently open repository. Once you are in the user directory, choose the Git tab on
the left sidebar and choose Clone a Repository.

4. Navigate to the Studio Lab project overview page. The URL takes the following format.

https://studiolab.sagemaker.aws/users/<YOUR_USER_NAME>

5. Under New to machine learning?, choose AWS Machine Learning University.

6. From the new AWS Machine Learning University browser tab, find a course that interests you
by reading the Course Summary for each course.

7. Choose the corresponding GitHub repository of interest under Course Content, to open a new
page with the example notebooks.

8. Choose Code and copy the GitHub repository's URL in the HTTPS tab.

9. Return to the Studio Lab open project browser tab, paste the D2L repository URL, and choose
Clone to clone the repository.

 Roboflow

Roboflow gives you the tools to train, fine-tune, and label objects for computer vision applications.
For more information, see https://roboflow.com/.

The following procedure shows how to clone the Roboflow Jupyter notebooks to your instance.

1. Navigate to the Studio Lab project overview page. The URL takes the following format.

https://studiolab.sagemaker.aws/users/<YOUR_USER_NAME>

2. Under Resources and community, find Try Computer Vision.

3. Under Try Computer Vision choose a Roboflow model. For more information, see https://
roboflow.com/.

4. Follow the tutorial under the Notebook preview.

Studio Lab pre-installed environments

Amazon SageMaker Studio Lab uses conda environments to contain your packages (or libraries).
An environment is a folder that contains the packages you have installed. You can interact with
an environment by using the terminal or your JupyterLab notebook. To use an environment and

Studio Lab pre-installed environments 687

https://roboflow.com/
https://roboflow.com/
https://roboflow.com/

Amazon SageMaker Developer Guide

the packages installed within, you must choose the corresponding kernel that contains the same
name as the environment when opening your JupyterLab notebook. For a walkthrough on how
to manage your environments, see Manage your environment. For more information on installing
packages within your environment, see Customize your environment.

Studio Lab has various environments pre-installed for you. Any changes made to persistent
memory environments will remain for your next session. Any changes to non-persistent memory
environments will not remain for your next sessions, but the packages within will be updated and
tested for compatability by Amazon SageMaker. You will typically want to use the sagemaker-
distribution non-persistent memory environment if you want to use a fully managed
environment that already contains many popular packages used by machine learning (ML)
engineers and data scientists. Otherwise you can use the default environment if you want to
significantly customize your environment.

In the following we list the pre-installed environments and their use cases. To view the packages
installed in an environment, see Customize your environment.

• sagemaker-distribution: Non-persistent memory environment that is regularly updated
and tested for compatibility, fully managed by Amazon SageMaker. This environment contains
popular packages used in ML, data science, and visualization. The sagemaker-distribution
environment is closely related to the environment used in Amazon SageMaker Studio Classic,
so after graduating from Studio Lab to Studio Classic the notebooks should run similarly. For
information on exporting your environment from Studio Lab to Studio Classic, see Export an
Amazon SageMaker Studio Lab environment to Amazon SageMaker Studio Classic.

• default: Persistent memory environment with very few packages pre-installed. Any installed
packages or changes to this environment will continue on your next session.

• studiolab: Persistent memory environment where JupyterLab and other related packages are
installed. This environment should only be used for JupyterLab and Jupyter server extensions,
for configuring the JupyterLab user interface.

• studiolab-safemode: Non-persistent memory environment. This environment is
automatically activated when there is an issue while starting your project runtime. Used for
troubleshooting. For information on troubleshooting, see Troubleshooting.

• base: Non-persistent memory environment. This environment is only used for system tooling
and should not be used by customers.

For information on SageMaker images and their versions, see Available Amazon SageMaker Images.

Studio Lab pre-installed environments 688

Amazon SageMaker Developer Guide

Use the Amazon SageMaker Studio Lab project runtime

The following topics give information about using the Amazon SageMaker Studio Lab project
runtime. Before you can use the Studio Lab project runtime, you must onboard to Studio Lab by
following the steps in Onboard to Amazon SageMaker Studio Lab.

Topics

• Amazon SageMaker Studio Lab UI overview

• Create or open an Amazon SageMaker Studio Lab notebook

• Use the Amazon SageMaker Studio Lab notebook toolbar

• Manage your environment

• Use external resources in Amazon SageMaker Studio Lab

• Get notebook differences

• Export an Amazon SageMaker Studio Lab environment to Amazon SageMaker Studio Classic

• Shut down resources

Amazon SageMaker Studio Lab UI overview

Amazon SageMaker Studio Lab extends the JupyterLab interface. Previous users of JupyterLab
will notice similarities between the JupyterLab and Studio Lab UI, including the workspace. For an
overview of the basic JupyterLab interface, see The JupyterLab Interface.

The following image shows Studio Lab with the file browser open and the Studio Lab Launcher
displayed.

Use the Studio Lab project runtime 689

https://jupyterlab.readthedocs.io/en/latest/user/interface.html

Amazon SageMaker Developer Guide

You will find the menu bar at the top of the screen. The left sidebar contains icons to open file
browsers, resource browsers, and tools. The status bar is located at the bottom-left corner of
Studio Lab.

The main work area is divided horizontally into two panes. The left pane is the file and resource
browser. The right pane contains one or more tabs for resources, such as notebooks and terminals.

Topics

• Left sidebar

• File and resource browser

• Main work area

Left sidebar

The left sidebar includes the following icons. When you hover over an icon, a tooltip displays
the icon name. When you choose an icon, the file and resource browser displays the described
functionality. For hierarchical entries, a selectable breadcrumb at the top of the browser shows
your location in the hierarchy.

Use the Studio Lab project runtime 690

Amazon SageMaker Developer Guide

Icon Description

File Browser

Choose the Upload Files icon (

)
to add files to Studio Lab.

Double-click a file to open the file in a new tab.

To have adjacent files open, choose a tab that contains a notebook,
Python, or text file, and then choose New View for File.

Choose the plus (+) sign on the menu at the top of the file browser to
open the Studio Lab Launcher.

Running Terminals and Kernels

You can see a list of all of the running terminals and kernels in your
project. For more information, see Shut down resources.

Git

You can connect to a Git repository and then access a full range of Git
tools and operations. For more information, see Use external resources
in Amazon SageMaker Studio Lab.

Table of Contents

You can access the Table of Contents for your current Jupyter
notebook.

Extension Manager

You can enable and manage third-party JupyterLab extensions.

Use the Studio Lab project runtime 691

Amazon SageMaker Developer Guide

File and resource browser

The file and resource browser shows lists of your notebooks and files. On the menu at the top of
the file browser, choose the plus (+) sign to open the Studio Lab Launcher. The Launcher allows you
to create a notebook or open a terminal.

Main work area

The main work area has multiple tabs that contain your open notebooks and terminals.

Create or open an Amazon SageMaker Studio Lab notebook

When you create a notebook in Amazon SageMaker Studio Lab or open a notebook in Studio Lab,
you must select a kernel for the notebook. The following topics describe how to create and open
notebooks in Studio Lab.

For information about shutting down the notebook, see Shut down resources.

Topics

• Open a Studio Lab notebook

• Create a notebook from the file menu

• Create a notebook from the Launcher

Open a Studio Lab notebook

Studio Lab can only open notebooks listed in the Studio Lab file browser. To clone a notebook into
your file browser from an external repository, see Use external resources in Amazon SageMaker
Studio Lab.

To open a notebook

1. In the left sidebar, choose the File Browser icon (

)
to display the file browser.

2. Browse to a notebook file and double-click it to open the notebook in a new tab.

Use the Studio Lab project runtime 692

Amazon SageMaker Developer Guide

Create a notebook from the file menu

To create a notebook from the File menu

1. From the Studio Lab menu, choose File, choose New, and then choose Notebook.

2. To use the default kernel, in the Select Kernel dialog box, choose Select. Otherwise, to select a
different kernel, use the dropdown menu.

Create a notebook from the Launcher

To create a notebook from the Launcher

1. Open the Launcher by using the keyboard shortcut Ctrl + Shift + L.

Alternatively, you can open Launcher from the left sidebar: Choose the File Browser icon, and
then choose the plus (+) icon.

2. To use the default kernel from the Launcher, under Notebook, choose default:Python.
Otherwise, select a different kernel.

After you choose the kernel, your notebook launches and opens in a new Studio Lab tab.

To view the notebook's kernel session, in the left sidebar, choose the Running Terminals and
Kernels icon (

).
You can stop the notebook's kernel session from this view.

Use the Amazon SageMaker Studio Lab notebook toolbar

Amazon SageMaker Studio Lab notebooks extend the JupyterLab interface. For an overview of the
basic JupyterLab interface, see The JupyterLab Interface.

The following image shows the toolbar and an empty cell from a Studio Lab notebook.

When you hover over a toolbar icon, a tooltip displays the icon function. You can find additional
notebook commands in the Studio Lab main menu. The toolbar includes the following icons:

Use the Studio Lab project runtime 693

https://jupyterlab.readthedocs.io/en/latest/user/interface.html

Amazon SageMaker Developer Guide

Icon Description

Save and checkpoint

Saves the notebook and updates the checkpoint file.

Insert cell

Inserts a code cell below the current cell. The current cell is noted by
the blue vertical marker in the left margin.

Cut, copy, and paste cells

Cuts, copies, and pastes the selected cells.

Run cells

Runs the selected cells. The cell that follows the last-selected cell
becomes the new-selected cell.

Interrupt kernel

Interrupts the kernel, which cancels the currently-running operation.
The kernel remains active.

Restart kernel

Restarts the kernel. Variables are reset. Unsaved information is not
affected.

Restart kernel and re-run notebook

Restarts the kernel. Variables are reset. Unsaved information is not
affected. Then re-runs the entire notebook.

Cell type

Displays or changes the current cell type. The cell types are:

• Code – Code that the kernel runs.

• Markdown – Text rendered as markdown.

Use the Studio Lab project runtime 694

Amazon SageMaker Developer Guide

Icon Description

• Raw – Content, including Markdown markup, that's displayed as text.

Checkpoint diff

Opens a new tab that displays the difference between the notebook
and the checkpoint file. For more information, see Get notebook
differences.

Git diff

Only enabled if the notebook is opened from a Git repository. Opens a
new tab that displays the difference between the notebook and the last
Git commit. For more information, see Get notebook differences.

default Kernel

Displays or changes the kernel that processes the cells in the notebook.

No Kernel indicates that the notebook was opened without specifyin
g a kernel. You can edit the notebook, but you can't run any cells.

Kernel busy status

Displays a kernel's busy status by showing the circle's edge and its
interior as the same color. The kernel is busy when it is starting and
when it is processing cells. Additional kernel states are displayed in the
status bar at the bottom-left corner of Studio Lab.

Manage your environment

Amazon SageMaker Studio Lab provides pre-installed environments for your Studio Lab notebook
instances. Environments allow you to start up a Studio Lab notebook instance with the packages
you want to use. This is done by installing packages in the environment and then selecting the
environment as a Kernel.

Studio Lab has various environments pre-installed for you. You will typically want to use the
sagemaker-distribution environment if you want to use a fully managed environment
that already contains many popular packages used for machine learning (ML) engineers and

Use the Studio Lab project runtime 695

Amazon SageMaker Developer Guide

data scientists. Otherwise you can use the default environment if you want persistent
customization for your environment. For more information on the available pre-installed Studio
Lab environments, see Studio Lab pre-installed environments.

You can customize your environment by adding new packages (or libraries) to it. You can
also create new environments from Studio Lab, import compatible environments, reset your
environment to create space, and more.

The following commands are for running in a Studio Lab terminal. However, while installing
packages it is highly recommended to install them within your Studio Lab Jupyter notebook to
ensure that the packages are installed in the intended environment. To run the commands in a
Jupyter notebook, prefix the command with a % before running the cell. For example, the code
snippet pip list in a terminal is the same as %pip list in a Jupyter notebook.

The following sections give information about your default conda environment, how to
customize it, and how to add and remove conda environments. For a list of sample environments
that you can install into Studio Lab, see Creating Custom conda Environments. To use these sample
environment YAML files with Studio Lab, see Step 4: Install your Studio Lab conda environments in
Studio Classic.

Topics

• Your default environment

• View environments

• Create, activate, and use new conda environments

• Using sample Studio Lab environments

• Customize your environment

• Refresh Studio Lab

Your default environment

Studio Lab uses conda environments to encapsulate the software packages that are needed to run
notebooks. Your project contains a default conda environment, named default, with the IPython
kernel. This environment serves as the default kernel for your Jupyter notebooks.

Use the Studio Lab project runtime 696

https://github.com/aws/studio-lab-examples/tree/main/custom-environments
https://ipython.readthedocs.io/en/stable/
https://ipython.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

View environments

To view the environments in Studio Lab you can use a terminal or Jupyter notebook. The following
command will be for a Studio Lab terminal. If you wish to run the corresponding commands in a
Jupyter notebook, see Manage your environment.

Open the Studio Lab terminal by opening the File Browser

()
panel, choose the plus (+) sign on the menu at the top of the file browser to open the Launcher,
then choose Terminal. From the Studio Lab terminal, list the conda environments by running the
following.

conda env list

This command outputs a list of the conda environments and their locations in the file system.
When you onboard to Studio Lab, you automatically activate the studiolab conda environment.
The following is an example of listed environments after you onboard.

conda environments:
#
default /home/studio-lab-user/.conda/envs/default
studiolab * /home/studio-lab-user/.conda/envs/studiolab
studiolab-safemode /opt/amazon/sagemaker/safemode-home/.conda/envs/studiolab-
safemode
base /opt/conda
sagemaker-distribution /opt/conda/envs/sagemaker-distribution

The * marks the activated environment.

Create, activate, and use new conda environments

If you would like to maintain multiple environments for different use cases, you can create new
conda environments in your project. The following sections show how to create and activate new
conda environments. For a Jupyter notebook that shows how to create a custom environment, see
Setting up a Custom Environment in SageMaker Studio Lab.

Note

Maintaining multiple environments counts against your available Studio Lab memory.

Use the Studio Lab project runtime 697

https://github.com/aws/studio-lab-examples/blob/main/custom-environments/custom_environment.ipynb

Amazon SageMaker Developer Guide

Create conda environment

To create a conda environment, run the following conda command from your terminal. This
example creates a new environment with Python 3.9.

conda create --name <ENVIRONMENT_NAME> python=3.9

Once the conda environment is created, you can view the environment in your environment list. For
more information on how to view your environment list, see View environments.

Activate a conda environment

To activate any conda environment, run the following command in the terminal.

conda activate <ENVIRONMENT_NAME>

When you run this command, any packages installed using conda or pip are installed in the
environment. For more information on installing packages, see Customize your environment.

Use a conda environment

To use your new conda environments with notebooks, make sure the ipykernel package is
installed in the environment.

conda install ipykernel

Once the ipykernel package is installed in the environment, you can select the environment as
the kernel for your notebook.

You may need to restart JupyterLab to see the environment available as a kernel. This can be done
by choosing Amazon SageMaker Studio Lab in the top menu of Studio Lab and choosing Restart
JupyterLab....

When you create a new notebook from the Studio Lab Launcher, you will have the option to choose
the kernel under Notebook. For an overview of the Studio Lab UI, see Amazon SageMaker Studio
Lab UI overview.

When a Jupyter notebook is open, you can choose the kernel by choosing Kernel from the top
menu and choose Change Kernel....

Use the Studio Lab project runtime 698

Amazon SageMaker Developer Guide

Using sample Studio Lab environments

Studio Lab provides sample custom environments through the SageMaker Studio Lab Examples
repository. The following shows how to clone and build these environments.

1. Clone the SageMaker Studio Lab Examples GitHub repository by following the instructions in
Use GitHub resources.

2. In Studio Lab choose the File Browser icon

()
on the left menu, so that the File Browser panel shows on the left.

3. Navigate to the studio-lab-examples/custom-environments directory in the File
Browser.

4. Open the directory for the environment that you want to build.

5. Right click the .yml file in the folder, then select Build conda Environment.

6. You can now use the environment as a kernel after your conda environment has finished
building. For instructions on how to use an existing environment as a kernel, see Create,
activate, and use new conda environments

Customize your environment

You can customize your environment by installing and removing extensions and packages as
needed. Studio Lab comes with environments with packages pre-installed and using an existing
environment may save you time and memory, as pre-installed packages do not count against your
available Studio Lab memory. For more information on the available pre-installed Studio Lab
environments, see Studio Lab pre-installed environments.

Any installed extensions and packages installed on your default environment will persist in
your project, so you do not need to install your packages for every project runtime session.
However, extensions and packages installed on your sagemaker-distribution environment
will not persist, so you will need to install new packages during your next session. Thus, it is highly
recommended to install packages within your notebook to ensure that the packages are installed in
the intended environment.

To view your environments, run the command conda env list.

To activate your environment, run the command conda activate <ENVIRONMENT_NAME>.

To view the packages in an environment, run the command conda list.

Use the Studio Lab project runtime 699

https://github.com/aws/studio-lab-examples

Amazon SageMaker Developer Guide

Install packages

It is highly recommended to install your packages within your Jupyter notebook to ensure that
your packages are installed in the intended environment. To install additional packages to your
environment from a Jupyter notebook, run one of the following commands in a cell within your
Jupyter notebook. These commands install packages in the currently activated environment.

• %conda install <PACKAGE>

• %pip install <PACKAGE>

We don't recommend using the !pip or !conda commands because they can behave in
unexpected ways when you have multiple environments.

After you install new packages to your environment, you may need to restart the kernel to ensure
that the packages work in your notebook. This can be done by choosing Amazon SageMaker
Studio Lab in the top menu of Studio Lab and choosing Restart JupyterLab....

Remove packages

To remove a package, run the command

%conda remove <PACKAGE_NAME>

This command will also remove any package that depends on <PACKAGE_NAME>, unless a
replacement can be found without that dependency.

To remove all of the packages in an environment, run the command

conda deactivate
&& conda env remove --name
<ENVIRONMENT_NAME>

Refresh Studio Lab

To refresh Studio Lab, remove all of your environments and files.

1. List all conda environments.

conda env list

Use the Studio Lab project runtime 700

Amazon SageMaker Developer Guide

2. Activate the base environment.

conda activate base

3. Remove each environment in the list of conda environments, besides base.

conda remove --name <ENVIRONMENT_NAME> --all

4. Delete all of the files on your Studio Lab.

rm -rf *.*

Use external resources in Amazon SageMaker Studio Lab

With Amazon SageMaker Studio Lab, you can integrate external resources, such as Jupyter
notebooks and data, from Git repositories and Amazon S3. You can also add an Open in Studio
Lab button to your GitHub repo and notebooks. This button lets you clone your notebooks directly
from Studio Lab.

The following topics show how to integrate external resources.

Topics

• Use GitHub resources

• Add an Open in Studio Lab button to your notebook

• Import files from your computer

• Connect to Amazon S3

Use GitHub resources

Studio Lab offers integration with GitHub. With this integration, you can clone notebooks and
repositories directly to your Studio Lab project.

The following topics give information about how to use GitHub resources with Studio Lab.

Studio Lab sample notebooks

To get started with a repository of sample notebooks tailored for Studio Lab, see Studio Lab
Sample Notebooks.

Use the Studio Lab project runtime 701

https://github.com/aws/studio-lab-examples#sagemaker-studio-lab-sample-notebooks
https://github.com/aws/studio-lab-examples#sagemaker-studio-lab-sample-notebooks

Amazon SageMaker Developer Guide

This repository provides notebooks for the following use cases and others.

• Computer vision

• Connecting to AWS

• Creating custom environments

• Geospatial data analysis

• Natural language processing

• Using R

Clone a GitHub repo

To clone a GitHub repo to your Studio Lab project, follow these steps.

1. Start your Studio Lab project runtime. For more information on launching Studio Lab project
runtime, see Start your project runtime.

2. In Studio Lab, choose the File Browser icon

()
on the left menu, so that the File Browser panel shows on the left.

3. Navigate to your user directory by choosing the file icon beneath the file search bar.

4. Select the Git icon

()
from the left menu to open a new dropdown menu.

5. Choose Clone a Repository.

6. Paste the repository's URL under Git repository URL (.git).

7. Select Clone.

Clone individual notebooks from GitHub

To open a notebook in Studio Lab, you must have access to the repo that the notebook is in. The
following examples describe Studio Lab permission-related behavior in various situations.

• If a repo is public, you can automatically clone the notebook into your project from the Studio
Lab preview page.

• If a repo is private, you are prompted to sign in to GitHub from the Studio Lab preview page. If
you have access to a private repo, you can clone the notebook into your project.

Use the Studio Lab project runtime 702

Amazon SageMaker Developer Guide

• If you don't have access to a private repo, you cannot clone the notebook from the Studio Lab
preview page.

The following sections show two options for you to copy a GitHub notebook in your Studio Lab
project. These options depend on whether the notebook has an Open in Studio Lab button.

Option 1: Copy notebook with an Open in Studio Lab button

The following procedure shows how to copy a notebook that has an Open in Studio Lab button.
If you want to add this button to your notebook, see Add an Open in Studio Lab button to your
notebook.

1. Sign in to Studio Lab following the steps in Sign in to Studio Lab.

2. In a new browser tab, navigate to the GitHub notebook that you want to clone.

3. In the notebook, select the Open in Studio Lab button to open a new page in Studio Lab with
a preview of the notebook.

4. If your project runtime is not already running, start it by choosing the Start runtime button at
the top of the preview page. Wait for the runtime to start before proceeding to the next step.

5. After your project runtime has started, select Copy to project to open your project runtime in
a new browser tab.

6. In the Copy from GitHub? dialog box, select Copy notebook only. This copies the notebook
file to your project.

Option 2: Clone any GitHub notebook

The following procedure shows how to copy any notebook from GitHub.

1. Navigate to the notebook in GitHub.

2. In the browser’s address bar, modify the notebook URL, as follows.

Original URL
https://github.com/<PATH_TO_NOTEBOOK>

Modified URL
https://studiolab.sagemaker.aws/import/github/<PATH_TO_NOTEBOOK>

3. Navigate to the modified URL. This opens a preview of the notebook in Studio Lab.

Use the Studio Lab project runtime 703

Amazon SageMaker Developer Guide

4. If your project runtime is not already running, start it by choosing the Start runtime button at
the top of the preview page. Wait for the runtime to start before proceeding to the next step.

5. After your project runtime has started, select Copy to project to open your project runtime in
a new browser tab.

6. In the Copy from GitHub? dialog box, select Copy notebook only to copy the notebook file to
your project.

Add an Open in Studio Lab button to your notebook

When you add the Open in Studio Lab button to your notebooks, others can clone your notebooks
or repositories directly to their Studio Lab projects. If you are sharing your notebook within a public
GitHub repository, your content will be publicly readable. Do not share private content, such as
AWS access keys or AWS Identity and Access Management credentials, in your notebook.

To add the functional Open in Studio Lab button to your Jupyter notebook or repository, add the
following markdown to the top of your notebook or repository.

[![Open In SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)]
(https://studiolab.sagemaker.aws/import/github/<PATH_TO_YOUR_NOTEBOOK_ON_GITHUB>)

Import files from your computer

The following steps show how to import files from your computer to your Studio Lab project.

1. Open the Studio Lab project runtime.

2. Open the File Browser panel.

3. In the actions bar of the File Browser panel, select the Upload Files button.

4. Select the files that you want to upload from your local machine.

5. Select Open.

Alternatively, you can drag and drop files from your computer into the File Browser panel.

Connect to Amazon S3

The AWS CLI enables AWS integration in your Studio Lab project. With this integration, you can pull
resources from Amazon S3 to use with your Jupyter notebooks.

Use the Studio Lab project runtime 704

Amazon SageMaker Developer Guide

To use AWS CLI with Studio Lab, complete the following steps. For a notebook that outlines this
integration, see Using Studio Lab with AWS Resources.

1. Install the AWS CLI following the steps in Installing or updating the latest version of the AWS
CLI.

2. Configure your AWS credentials by following the steps in Quick setup. The role for your AWS
account must have permissions to access the Amazon S3 bucket that you are copying data
from.

3. From your Jupyter notebook, clone resources from the Amazon S3 bucket, as needed. The
following command shows how to clone all resources from an Amazon S3 path to your project.
For more information, see the AWS CLI Command Reference.

!aws s3 cp s3://<BUCKET_NAME>/<PATH_TO_RESOURCES>/ <PROJECT_DESTINATION_PATH>/ --
recursive

Get notebook differences

You can display the difference between the current notebook and the last checkpoint, or the last
Git commit, using the Amazon SageMaker Studio Lab project UI.

Topics

• Get the difference between the last checkpoint

• Get the difference between the last commit

Get the difference between the last checkpoint

When you create a notebook, a hidden checkpoint file that matches the notebook is created. You
can view changes between the notebook and the checkpoint file, or revert the notebook to match
the checkpoint file.

To save the Studio Lab notebook and update the checkpoint file to
match: Choose the Save notebook and create checkpoint icon (

).
This is located on the Studio Lab menu's left side. The keyboard shortcut for Save notebook and
create checkpoint is Ctrl + s.

Use the Studio Lab project runtime 705

https://github.com/aws/studio-lab-examples/blob/main/connect-to-aws/Access_AWS_from_Studio_Lab.ipynb
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/cp.html

Amazon SageMaker Developer Guide

To view changes between the Studio Lab notebook and the checkpoint file: Choose the Checkpoint
diff icon (

),
located in the center of the Studio Lab menu.

To revert the Studio Lab notebook to the checkpoint file: On the main Studio Lab menu, choose
File, and then Revert Notebook to Checkpoint.

Get the difference between the last commit

If a notebook is opened from a Git repository, you can view the difference between the notebook
and the last Git commit.

To view the changes in the notebook from the last Git commit: Choose the Git diff icon (

)
in the center of the notebook menu.

Export an Amazon SageMaker Studio Lab environment to Amazon SageMaker
Studio Classic

Amazon SageMaker Studio Classic offers many features for machine learning and deep learning
work flows that are unavailable in Amazon SageMaker Studio Lab. This page shows how to
migrate a Studio Lab environment to Studio Classic to take advantage of more compute capacity,
storage, and features. However, you may want to familiarize yourself with Studio Classic's prebuilt
containers, which are optimized for the full MLOP pipeline. For more information, see Amazon
SageMaker Studio Lab

To migrate your Studio Lab environment to Studio Classic, you must first onboard to Studio Classic
following the steps in Amazon SageMaker domain overview.

Topics

• Step 1: Export your Studio Lab conda environment

• Step 2: Save your Studio Lab artifacts

• Step 3: Import your Studio Lab artifacts to Studio Classic

• Step 4: Install your Studio Lab conda environments in Studio Classic

Use the Studio Lab project runtime 706

Amazon SageMaker Developer Guide

Step 1: Export your Studio Lab conda environment

You can export a conda environment and add libraries or packages to the environment by
following the steps in Manage your environment. The following example demonstrates using the
default environment to be exported to Studio Classic.

1. Open the Studio Lab terminal by opening the File Browser

()
panel, choose the plus (+) sign on the menu at the top of the file browser to open the
Launcher, then choose Terminal. From the Studio Lab terminal, list the conda environments
by running the following.

conda env list

This command outputs a list of the conda environments and their locations in the file
system. When you onboard to Studio Lab, you automatically activate the studiolab conda
environment.

conda environments: #
 default /home/studio-lab-user/.conda/envs/default
 studiolab * /home/studio-lab-user/.conda/envs/studiolab
 studiolab-safemode /opt/amazon/sagemaker/safemode-home/.conda/
envs/studiolab-safemode
 base /opt/conda

We recommend that you do not export the studiolab, studiolab-safemode, and base
environments. These environments are not usable in Studio Classic for the following reasons:

• studiolab: This sets up the JupyterLab environment for Studio Lab. Studio Lab runs a
different major version of JupyterLab than Studio Classic, so it is not usable in Studio Classic.

• studiolab-safemode: This also sets up the JupyterLab environment for Studio Lab.
Studio Lab runs a different major version of JupyterLab than Studio Classic, so it is not
usable in Studio Classic.

• base: This environment comes with conda by default. The base environment in Studio Lab
and the base environment in Studio Classic have incompatible versions of many packages.

2. For the conda environment that you want to migrate to Studio Classic, first activate the conda
environment. The default environment is then changed when new libraries are installed or

Use the Studio Lab project runtime 707

Amazon SageMaker Developer Guide

removed from it. To get the exact state of the environment, export it into a YAML file using the
command line. The following command lines export the default environment into a YAML file,
creating a file called myenv.yml.

conda activate default
conda env export > ~/myenv.yml

Step 2: Save your Studio Lab artifacts

Now that you have saved your environment to a YAML file, you can move the environment file to
any platform.

Save to a local machine using Studio Lab GUI

Note

Downloading a directory from the Studio Lab GUI by right-clicking on the directory is
currently unavailable. If you wish to export a directory, please follow the steps using the
Save to Git repository tab.

One option is to save the environment onto your local machine. To do this, use the following
procedure.

1. In Studio Lab, choose the File Browser

()
icon on the left menu, so that the File Browser panel shows on the left.

2. Navigate to your user directory by choosing the file icon beneath the file search bar.

3. Choose (right-click) the myenv.yml file and then choose Download. You can repeat this
process for other files you want to import to Studio Classic.

Save to a Git repository

Another option is to save your environment to a Git repository. This option uses GitHub as
an example. These steps require a GitHub account and repository. For more information, visit
GitHub. The following procedure shows how to synchronize your content with GitHub using the
Studio Lab terminal.

Use the Studio Lab project runtime 708

https://github.com/

Amazon SageMaker Developer Guide

1. From the Studio Lab terminal, navigate to your user directory and make a new directory to
contain the files you want to export.

cd ~
mkdir <NEW_DIRECTORY_NAME>

2. After you create a new directory, copy any file or directory you want to export to
<NEW_DIRECTORY_NAME>.

Copy a file using the following code format:

cp <FILE_NAME> <NEW_DIRECTORY_NAME>

For example, replace <FILE_NAME> with myenv.yml.

Copy any directory using the following code format:

cp -r <DIRECTORY_NAME> <NEW_DIRECTORY_NAME>

For example, replace <DIRECTORY_NAME> with any directory name in your user directory.

3. Navigate to the new directory and initialize the directory as a Git repository using the
following command. For more information, see the git-init documentation.

cd <NEW_DIRECTORY_NAME>
git init

4. Using Git, add all relevant files and then commit your changes.

git add .
git commit -m "<COMMIT_MESSAGE>"

For example, replace <COMMIT_MESSAGE> with Add Amazon SageMaker Studio Lab
artifacts to GitHub repository to migrate to Amazon SageMaker Studio
Classic .

5. Push the commit to your remote repository. This repository has the format https://
github.com/<GITHUB_USERNAME>/ <REPOSITORY_NAME>.git where
<GITHUB_USERNAME> is your GitHub user name and the <REPOSITORY_NAME> is your

Use the Studio Lab project runtime 709

https://git-scm.com/docs/git-init

Amazon SageMaker Developer Guide

remote repository name. Create a branch <BRANCH_NAME> to push the content to the
GitHub repository.

git branch -M <BRANCH_NAME>
git remote add origin https://github.com/<GITHUB_USERNAME>/<REPOSITORY_NAME>.git
git push -u origin <BRANCH_NAME>

Step 3: Import your Studio Lab artifacts to Studio Classic

The following procedure shows how to import artifacts to Studio Classic. The instructions on using
Feature Store through the console depends on if you have enabled Studio or Studio Classic as your
default experience. For information on accessing Studio Classic through the console, see Launch
Studio Classic if Studio is your default experience.

From Studio Classic, you can import files from your local machine or from a Git repository. You can
do this using the Studio Classic GUI or terminal. The following procedure uses the examples from
Step 2: Save your Studio Lab artifacts.

Import using the Studio Classic GUI

If you saved the files to your local machine, you can import the files to Studio Classic using the
following steps.

1. Open the File Browser

()
panel at the top left of Studio Classic.

2. Choose the Upload Files icon (

)
on the menu at the top of the File Browser panel.

3. Navigate to the file that you want to import, then choose Open.

Note

To import a directory into Studio Classic, first compress the directory on your
local machine to a file. On a Mac, right-click the directory and choose Compress
"<DIRECTORY_NAME>". In Windows, right-click the directory and choose Send to, and
then choose Compressed (zipped) folder. After the directory is compressed, import the

Use the Studio Lab project runtime 710

Amazon SageMaker Developer Guide

compressed file using the preceding steps. Unzip the compressed file by navigating to
the Studio Classic terminal and running the command <DIRECTORY_NAME>.zip.

Import using a Git repository

This example provides two options for how to clone a GitHub repository
into Studio Classic. You can use the Studio Classic GUI by choosing the Git

()
tab on the left side of Studio Classic. Choose Clone a Repository, then paste your GitHub
repository URL from Step 2: Save your Studio Lab artifacts. Another option is to use the Studio
Classic terminal by using the following procedure.

1. Open the Studio Classic Launcher. For more information on opening the Launcher, see
Amazon SageMaker Studio Classic Launcher.

2. In the Launcher, in the Notebooks and compute resources section, choose Change
environment.

3. In Studio Classic, open the Launcher. To open the Launcher, choose Amazon SageMaker
Studio Classic at the top-left corner of Studio Classic.

To learn about all the available ways to open the Launcher, see Use the Amazon SageMaker
Studio Classic Launcher.

4. In the Change environment dialog, use the Image dropdown list to select the Data Science
image and choose Select. This image comes with conda pre-installed.

5. In the Studio Classic Launcher, choose Open image terminal.

6. From the image terminal, run the following command to clone your repository. This
command creates a directory named after <REPOSITORY_NAME> in your Studio Classic
instance and clones your artifacts in that repository.

git clone https://github.com/<GITHUB_USERNAME>/<REPOSITORY_NAME>.git

Step 4: Install your Studio Lab conda environments in Studio Classic

You can now recreate your conda environment by using your YAML file in your Studio Classic
instance. Open the Studio Classic Launcher. For more information on opening the Launcher, see
Amazon SageMaker Studio Classic Launcher. From the Launcher, choose Open image terminal.

Use the Studio Lab project runtime 711

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launcher.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launcher.html

Amazon SageMaker Developer Guide

In the terminal navigate to the directory that contains the YAML file, then run the following
commands.

conda env create --file <ENVIRONMENT_NAME>.yml
conda activate <ENVIRONMENT_NAME>

After these commands are complete, you can select your environment as the kernel for your Studio
Classic notebook instances. To view the available environment, run conda env list. To activate
your environment, run conda activate <ENVIRONMENT_NAME>.

Shut down resources

In this guide, you will learn how to shut down individual resources, including notebooks, terminals,
and kernels. You can also shut down all resources in one of these categories at the same time.

Topics

• Shut down an open notebook

• Shut down resources

Shut down an open notebook

You can shut down an open notebook from the Amazon SageMaker Studio Lab File menu or from
the Running Terminals and Kernels pane.

Note

When you shut down a notebook, any unsaved information in the notebook is lost. The
notebook is not deleted.

To shut down an open notebook from the File menu

1. Save the notebook contents by choosing the

icon, located in the notebook menu.

2. Choose File then Close and Shutdown Notebook.

3. Choose OK.

Use the Studio Lab project runtime 712

Amazon SageMaker Developer Guide

Shut down resources

On the left sidebar of Studio Lab, you will find the Running Terminals and Kernels pane and

icon. The Running Terminals and Kernels pane has three sections. Each section lists all of the
resources of that type. You can shut down each resource individually, or shut down all resources in
a section simultaneously.

When you shut down all resources in a section, the following occurs:

• KERNELS – All kernels, notebooks, and consoles are shut down.

• TERMINALS – All terminals are shut down.

To shut down resources

1. In the left sidebar, choose the Running Terminals and Kernels icon (

).

2. Do either of the following:

• To shut down a specific resource: Choose the SHUT DOWN icon on the same row as the
resource.

• To shut down all resources in a section: Choose Shut Down All, which is located to the
right of the section label. After a confirmation dialog box appears, choose Shut down all to
proceed.

Troubleshooting

The guide shows common errors that might occur when using Amazon SageMaker Studio Lab. Each
error contains a description, as well as a solution to the error.

Note

You cannot share your password with multiple users or use Studio Lab to mine
cryptocurrency. We don’t recommend using Studio Lab for production tasks because of
runtime limits.

Troubleshooting 713

Amazon SageMaker Developer Guide

Can’t access account

If you can’t access your account, verify that you are using the correct email and password. If you
have forgotten your password, use the following steps to reset your password. If you still cannot
access your account, you must request and register for a new account using the instructions in
Onboard to Amazon SageMaker Studio Lab.

Forgot password

If you forget your password, you must reset it using the following steps.

1. Navigate to the Studio Lab landing page.

2. Select Sign in.

3. Select Forgot password? to open a new page.

4. Enter the email address that you used to sign up for an account.

5. Select Send reset link to send an email with a password reset link.

6. From the password reset email, select Reset your password.

7. Enter your new password.

8. Select Submit.

Can't launch project runtime

If the Studio Lab project runtime does not launch, try launching it again. If this doesn't work,
switch the instance type from CPU to GPU (or in reverse). For more information, see Change your
compute type.

Runtime stopped running unexpectedly

If there is an issue with the environment used to run JupyterLab, then Studio Lab will automatically
recreate the environment. Studio Lab does not support manual activation of this process.

Conflicting versions

Because you can add packages and modify your environment as needed, you may run into
conflicts between packages in your environment. If there are conflicts between packages in your
environment, you must remove the conflicting package.

Environment build fails

Troubleshooting 714

https://studiolab.sagemaker.aws

Amazon SageMaker Developer Guide

When you build an environment from a YAML file, a package-version conflict or file issue might
cause a build to fail. To resolve this, remove the environment by running the following command.
Do this before attempting to build it again.

conda remove --name <YOUR_ENVIRONMENT> --all

Error message about allowing to download script from domain *.awswaf.com

Studio Classic uses the web application firewall service AWS WAF to protect your resources,
which uses JavaScript. If you are using a browser security plugin that prevents JavaScript from
downloading, this error may pop up. To use Studio Classic, allow the JavaScript download from
*.awswaf.com as a trusted domain. For more information on AWS WAF, see AWS WAF from the AWS
WAF, AWS Firewall Manager, and AWS Shield Advanced. Developer Guide.

Disk space is full

If you run into a notification saying mentioning that your disk space is full or File Load Error
for <FILE_NAME> while attempting to open a file, you can remove files, directories, libraries,
or environments to increase space. For more information on managing your libraries and
environments, see Manage your environment.

Project runtime is in safe mode notification

If you run into a notification that Project runtime is in safe mode, you must free up some disk
space to resume using the Studio Lab project runtime. Follow the instructions in the preceding
troubleshoot item, Disk space is full. Once up to at least 500 MB of space has been cleared,
you may restart the project runtime to use Studio Lab. This can be done by choosing Amazon
SageMaker Studio Lab in the top menu of Studio Lab and choosing Restart JupyterLab....

git Cannot import cv2

If you run into an error when importing cv2 after installing opencv-python, you must uninstall
opencv-python and install opencv-python-headless as follows.

%pip uninstall opencv-python --yes
%pip install opencv-python-headless

You can then import cv2 as expected.

Studio Lab becomes unresponsive when opening large files

Troubleshooting 715

https://docs.aws.amazon.com/waf/latest/developerguide/waf-chapter.html

Amazon SageMaker Developer Guide

The Studio Lab IDE may fail to render when large files are opened, resulting in blocked access
to Studio Lab resources. To resolve this, reset the Studio Lab workspace using the following
procedure.

1. After you open the IDE, copy the URL in your browser's address bar. This URL should be in
the https://xxxxxx.studio.us-east-2.sagemaker.aws/studiolab/default/
jupyter/lab format. Close the tab.

2. In a new tab, paste the URL and remove anything after https://xxxxxx.studio.us-
east-2.sagemaker.aws/studiolab/default/jupyter/lab.

3. Add ?reset to the end of the URL, so it is in the https://xxxxxx.studio.us-
east-2.sagemaker.aws/studiolab/default/jupyter/lab?reset format.

4. Navigate to the updated URL. This resets the saved UI state and makes the Studio Lab IDE
responsive.

Amazon SageMaker Canvas

Amazon SageMaker Canvas gives you the ability to use machine learning to generate predictions
without needing to write any code. The following are some use cases where you can use SageMaker
Canvas:

• Predict customer churn

• Plan inventory efficiently

• Optimize price and revenue

• Improve on-time deliveries

• Classify text or images based on custom categories

• Identify objects and text in images

• Extract information from documents

With Canvas, you can chat with popular large language models (LLMs), access Ready-to-use
models, or build a custom model trained on your data.

Canvas chat is a functionality that leverages open-source and Amazon LLMs to help you boost
your productivity. You can prompt the models to get assistance with tasks such as generating
content, summarizing or categorizing documents, and answering questions. To learn more, see Use
generative AI with foundation models.

SageMaker Canvas 716

Amazon SageMaker Developer Guide

The Ready-to-use models in Canvas can extract insights from your data for a variety of use cases.
You don’t have to build a model to use Ready-to-use models because they are powered by Amazon
AI services, including Amazon Rekognition, Amazon Textract, and Amazon Comprehend. You only
have to import your data and start using a solution to generate predictions.

If you want a model that is customized to your use case and trained with your data, you can build a
model. You can get predictions customized to your data by doing the following:

1. Import your data from one or more data sources.

2. Build a predictive model.

3. Evaluate the model's performance.

4. Generate predictions with the model.

Canvas supports the following types of custom models:

• Numeric prediction (also known as regression)

• Categorical prediction for 2 and 3+ categories (also known as binary and multi-class
classification)

• Time series forecasting

• Single-label image prediction (also known as image classification)

• Multi-category text prediction (also known as multi-class text classification)

You can also bring your own models into Canvas from Amazon SageMaker Studio Classic.

To learn more about pricing, see the SageMaker Canvas pricing page. You can also see Manage
billing and cost in SageMaker Canvas for more information.

SageMaker Canvas is currently available in the following Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

SageMaker Canvas 717

https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html
https://docs.aws.amazon.com/textract/latest/dg/what-is.html
https://docs.aws.amazon.com/comprehend/latest/dg/what-is.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html
https://aws.amazon.com/sagemaker/canvas/pricing/

Amazon SageMaker Developer Guide

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Stockholm)

• South America (São Paulo)

Topics

• Are you a first-time SageMaker Canvas user?

• Getting started with using Amazon SageMaker Canvas

• Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators)

• Import data into Canvas

• Prepare data

• Use generative AI with foundation models

• Use Ready-to-use models

• Use custom models

• Logging out of Amazon SageMaker Canvas

• Limitations and troubleshooting

• Manage billing and cost in SageMaker Canvas

Are you a first-time SageMaker Canvas user?

If you are a first-time user of SageMaker Canvas, we recommend that you begin by reading the
following sections:

• For IT administrators – Setting Up and Managing Amazon SageMaker Canvas (for IT
Administrators)

Are you a first-time SageMaker Canvas user? 718

Amazon SageMaker Developer Guide

• For analysts and individual users – Getting started with using Amazon SageMaker Canvas

Getting started with using Amazon SageMaker Canvas

This guide tells you how to get started with using SageMaker Canvas. If you're an IT administrator
and would like more in-depth details, see Setting Up and Managing Amazon SageMaker Canvas
(for IT Administrators) to set up SageMaker Canvas for your users.

Topics

• Prerequisites for setting up Amazon SageMaker Canvas

• Step 1: Log in to SageMaker Canvas

• Step 2: Use SageMaker Canvas to get predictions

Prerequisites for setting up Amazon SageMaker Canvas

To set up a SageMaker Canvas application, you must first onboard to Amazon SageMaker domain,
which supports the various machine learning (ML) environments such as Canvas and SageMaker
Studio.

The following section describes how to set up an Amazon SageMaker domain and give yourself
Canvas permissions.

Important

For you to set up Amazon SageMaker Canvas, your version of Amazon SageMaker Studio
must be 3.19.0 or later. For information about updating Amazon SageMaker Studio, see
Shut down and Update SageMaker Studio Classic.

Onboard to domain

To set up your domain, first see Amazon SageMaker domain overview to learn more about
domains.

Then, when you’re ready to set up your domain, choose one of the following setup methods:

1. (Quick) Quick onboard to Amazon SageMaker domain – Choose this option if you’d like to
quickly set up your domain. This grants your user all of the default Canvas permissions and basic

Getting started 719

https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html

Amazon SageMaker Developer Guide

functionality. Any additional features such as document querying can be enabled later by an
admin. If you want to configure more granular permissions, we recommend that you choose
option 2 or 3.

2. (Advanced) Custom onboarding to Amazon SageMaker domain using IAM Identity Center –
Choose this option if you’d like to complete a more advanced setup of your domain. To use the
IAM Identity Center method, you must be part of an organization in AWS Organizations.

3. (Advanced) Custom onboarding to Amazon SageMaker domain using IAM – Choose this
option if you’d like to complete a more advanced setup of your domain and don’t require the
organizational setup of the IAM Identity Center.

If you’re doing the Quick setup (option 1 in the preceding list), then you can skip the rest of this
section and move on to Step 1: Log in to SageMaker Canvas.

If you’re doing the Advanced setup (options 2 or 3), then you can specify the Canvas features
to which you’d like to grant your users access. Use the rest of this section as you complete the
advanced domain setup to help you configure the permissions that are specific to Canvas.

In either the Custom onboarding to Amazon SageMaker domain using IAM Identity Center or
the Custom onboarding to Amazon SageMaker domain using IAM setup instructions, for Step 2:
Users and ML Activities, you must select the Canvas permissions that you want to grant. In the
ML activities section, you can select the following permissions policies to grant access to Canvas
features. You can only select up to 8 ML activities total when setting up your domain. The first
two permissions in the following list are required to use Canvas, while the rest are for additional
features.

• Run Studio Applications – These permissions are necessary to start up the Canvas application.

• Canvas Core Access – These permissions grant you access to the Canvas application and the basic
functionality of Canvas, such as creating datasets, using basic data transforms, and building and
analyzing models.

• (Optional) Canvas Data Preparation (powered by Data Wrangler) – These permissions grant
you access to create data flows and use advanced transforms to prepare your data in Canvas.
These permissions are also necessary for creating data processing jobs and data preparation job
schedules.

• (Optional) Canvas AI Services – These permissions grant you access to the Ready-to-use models,
foundation models, and Chat with Data features in Canvas.

Getting started 720

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat.html#canvas-fm-chat-query
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasDataPrepFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasAIServicesAccess.html

Amazon SageMaker Developer Guide

• (Optional) Kendra access – This permission grants you access to the document querying feature,
where you can query documents stored in an Amazon Kendra index using foundation models in
Canvas.

If you select this option, then in the Canvas Kendra Access section, enter the IDs for your
Amazon Kendra indexes to which you want to grant access.

• (Optional) Canvas MLOps – This permission grants you access to the model deployment feature
in Canvas, where you can deploy models for use in production.

In the domain setup’s Step 3: Applications section, choose Configure Canvas and then do the
following:

1. For the Canvas storage configuration, specify where you want Canvas to store the application
data, such as model artifacts, batch predictions, datasets, and logs. SageMaker creates a
Canvas/ folder inside this bucket to store the data. For more information, see Configure your
Amazon S3 storage. For this section, do the following:

a. Select System managed if you want to set the location to the default SageMaker-created
bucket that follows the pattern s3://sagemaker-{Region}-{your-account-id}.

b. Select Custom S3 to specify your own Amazon S3 bucket as the storage location. Then,
enter the Amazon S3 URI.

c. (Optional) For Encryption key, specify a KMS key for encrypting Canvas artifacts stored at
the specified location.

2. (Optional) For the Canvas Ready-to-use models configuration, do the following:

a. Leave the Enable Canvas Ready-to-use models option turned on to give your users
permissions to generate predictions with Ready-to-use models in Canvas (it is turned on
by default). This option also gives you permissions to chat with generative-AI powered
models. For more information, see Use generative AI with foundation models.

b. Leave the Enable document query using Amazon Kendra option turned on to give your
users permissions to use foundation models for querying documents stored in an Amazon
Kendra index. Then, from the dropdown menu, select the existing indexes to which
you want to grant access. For more information, see Use generative AI with foundation
models.

3. (Optional) For the ML Ops permissions configuration section, do the following:

Getting started 721

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat.html#canvas-fm-chat-query
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasDirectDeployAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-deploy-model.html

Amazon SageMaker Developer Guide

a. Leave the Enable direct deployment of Canvas models option turned on to give your
users permissions to deploy their models from Canvas to a SageMaker endpoint. For more
information about model deployment in Canvas, see Deploy your models to an endpoint.

b. Leave the Enable Model Registry registration permissions for all users option turned
on to give your users permissions to register their model version to the SageMaker model
registry (it is turned on by default). For more information, see Register a model version in
the SageMaker model registry.

c. If you left the Enable Model Registry registration permissions for all users option turned
on, then select either Register to Model Registry only or Register and approve model in
Model Registry.

4. (Optional) For the Local file upload configuration section, turn on the Enable local file
upload option to give your users permissions to upload files to Canvas from their local
machines. Turning this option on attaches a cross-origin resource sharing (CORS) policy to
the Amazon S3 bucket specified in the Canvas storage configuration (and overrides any
existing CORS policy). To learn more about local file upload permissions, see Grant Your Users
Permissions to Upload Local Files.

5. (Optional) For the OAuth settings section, do the following:

a. Choose Add OAuth configuration.

b. For Data source, select your data source.

c. For Secret setup, select Create a new secret and enter the information you have from
your identity provider. If you haven’t done the initial OAuth setup with your data source
yet, see Set up connections to data sources with OAuth.

6. (Optional) For the Time series forecasting configuration, leave the Enable time series
forecasting option turned on to give your users permissions to do time series forecasting in
SageMaker Canvas (it is turned on by default).

• If you left Enable time series forecasting turned on, select Create and use a new
execution role, or select Use an existing execution role if you already have an IAM role
with the required Amazon Forecast permissions attached (for more information, see the
IAM role setup method).

7. Finish configuring the rest of the domain settings using the Custom onboarding to Amazon
SageMaker domain using IAM Identity Center or Custom onboarding to Amazon SageMaker
domain using IAM procedures.

Getting started 722

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-set-up-forecast.html#canvas-set-up-forecast-iam

Amazon SageMaker Developer Guide

Note

If you encounter any issues with granting permissions through the console, such as
permissions for Ready-to-use models, see the topic Troubleshooting issues with granting
permissions through the SageMaker console.

You should now have a SageMaker domain set up and all of the Canvas permissions configured.

You can edit the Canvas permissions for a domain or a specific user after the initial domain setup.
Individual user settings override the domain settings. To learn how to view or edit your Canvas
permissions in the domain settings, see View and edit domains.

Give yourself permissions to use specific features in Canvas

The following information outlines the various permissions that you can grant to a Canvas user to
allow the use of various features and functionalities within Canvas. Some of these permissions can
be granted during the domain setup, but some require additional permissions or configuration.
Refer to the specific permissions information for each feature that you want to enable:

• Local file upload. The permissions for local file upload are turned on by default in the Canvas
base permissions when setting up your domain. If you can't upload local files from your machine
to SageMaker Canvas, you can attach a CORS policy to the Amazon S3 bucket that you specified
in the Canvas storage configuration. If you allowed SageMaker to use the default bucket, the
bucket follows the naming pattern s3://sagemaker-{Region}-{your-account-id}. For
more information, see Grant Your Users Permissions to Upload Local Files.

• Custom image and text prediction models. The permissions for building custom image and
text prediction models are turned on by default in the Canvas base permissions when setting
up your domain. However, if you have a custom IAM configuration and don't want to attach the
AmazonSageMakerCanvasFullAccess policy to your user's IAM execution role, then you must
explicitly grant your user the necessary permissions. For more information, see Grant Your Users
Permissions to Build Custom Image and Text Prediction Models.

• Ready-to-use models and foundation models. You might want to use the Canvas Ready-to-
use models to make predictions for your data. With the Ready-to-use models permissions,
you can also chat with generative AI-powered models. The permissions are turned on by
default when setting up your domain, or you can edit the permissions for a domain that
you’ve already created. The Canvas Ready-to-use models permissions option adds the

Getting started 723

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-set-up-local-upload.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess

Amazon SageMaker Developer Guide

AmazonSageMakerCanvasAIServicesAccess policy to your execution role. For more information,
see the Get started section of the Ready-to-use models documentation.

For more information about getting started with generative AI foundation models, see Use
generative AI with foundation models.

• Fine-tune foundation models. If you'd like to fine-tune foundation models in Canvas,
you can either add the permissions when setting up your domain, or you can edit the
permissions for the domain or user profile after creating your domain. You must add the
AmazonSageMakerCanvasAIServicesAccess policy to the AWS IAM role you chose when setting
up the user profile, and you must also add a trust relationship with Amazon Bedrock to the role.
For instructions on how to add these permissions to your IAM role, see Grant Users Permissions
to Fine-tune Foundation Models.

• Time series forecasting. If you’d like to perform forecasts on time series data, you can add time
series forecasting permissions when setting up your domain, or you can edit the permissions
for a domain or user profile after creating your domain. The required permissions are the
AmazonSageMakerCanvasForecastAccess managed policy and a trust relationship
with Amazon Forecast to the AWS IAM role you chose when setting up the user profile. For
instructions on how to add these permissions to your IAM role, see Grant Your Users Permissions
to Perform Time Series Forecasting.

• Send batch predictions to Amazon QuickSight. You might want to send batch predictions, or
datasets of predictions you generate from a custom model, to Amazon QuickSight for analysis.
In QuickSight, you can build and publish predictive dashboards with your prediction results. For
instructions on how to add these permissions to your Canvas user's IAM role, see Grant Your
Users Permissions to Send Predictions to Amazon QuickSight.

• Deploy Canvas models to a SageMaker endpoint. SageMaker Hosting offers endpoints which
you can use to deploy your model for use in production. You can deploy models built in
Canvas to a SageMaker endpoint and then make predictions programmatically in a production
environment. For more information, see Deploy your models to an endpoint.

• Register model versions to the model registry. You might want to register versions of your
model to the SageMaker model registry, which is a repository for tracking the status of updated
versions of your model. A data scientist or MLOps team working in the SageMaker model registry
can view the versions of your model that you’ve built and approve or reject them. Then, they can
deploy your model version to production or kick off an automated workflow. Model registration
permissions are turned on by default for your domain. You can manage permissions at the
user profile level and grant or remove permissions to specific users. For more information, see
Register a model version in the SageMaker model registry.

Getting started 724

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-set-up-forecast.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-set-up-forecast.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-send-predictions.html
https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-quicksight-permissions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-quicksight-permissions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html

Amazon SageMaker Developer Guide

• Collaboration with data scientists. If you want to collaborate with Studio Classic users and
share models, you must add additional permissions to the AWS IAM role you chose when
setting up the user profile. For instructions on how to add the policy to the role, see Grant Users
Permissions to Collaborate with Studio Classic.

• Import data from Amazon Redshift. If you want to import data from Amazon Redshift, you
must give yourself additional permissions. You must add the AmazonRedshiftFullAccess
managed policy to the AWS IAM role you chose when setting up the user profile. For instructions
on how to add the policy to the role, see Grant Users Permissions to Import Amazon Redshift
Data.

Note

The necessary permissions to import through other data sources, such as Amazon
Athena and SaaS platforms, are included in the AmazonSageMakerFullAccess and
AmazonSageMakerCanvasFullAccess policies. If you followed the standard setup
instructions, these policies should already be attached to your execution role. For more
information about these data sources and their permissions, see Connect to data sources.

Step 1: Log in to SageMaker Canvas

When the initial setup is complete, you can access SageMaker Canvas with any of the following
methods, depending on your use case:

• In the SageMaker console, choose the Canvas in the left navigation pane. Then, on the Canvas
page, select your user from the dropdown and launch the Canvas application.

• Open SageMaker Studio, and in the Studio interface, go to the Canvas page and launch the
Canvas application.

• Use your organization’s SAML 2.0-based SSO methods, such as Okta or the IAM Identity Center.

When you log into SageMaker Canvas for the first time, there is a welcome message with quick
links to help you get started using the main features of Canvas.

Getting started 725

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate-permissions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate-permissions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-redshift-permissions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-redshift-permissions.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html

Amazon SageMaker Developer Guide

If you close this message, you can revisit it at any time by choosing the Help button in the left
navigation pane of the application.

Step 2: Use SageMaker Canvas to get predictions

After you’ve logged in to Canvas, you can start building models and generating predictions for your
data.

You can either use Canvas Ready-to-use models to make predictions without building a model, or
you can build a custom model for your specific business problem. Review the following information
to decide whether Ready-to-use models or custom models are best for your use case.

• Ready-to-use models. With Ready-to-use models, you can use pre-built models to extract
insights from your data. The Ready-to-use models cover a variety of use cases, such as language
detection and document analysis. To get started making predictions with Ready-to-use models,
see Use Ready-to-use models.

• Custom models. With custom models, you can build a variety of model types that are
customized to make predictions for your data. Use custom models if you’d like to build a
model that is trained on your business-specific data and if you’d like to use features such as
collaborating with data scientists and evaluating your model’s performance. To get started with
building a custom model, see Use custom models.

You can also bring your own model (BYOM) from other features in SageMaker. An Amazon
SageMaker Studio user can share their model with a Canvas user, and the Canvas user can generate
predictions with the model. To learn more, see Bring your own model to SageMaker Canvas.

Setting Up and Managing Amazon SageMaker Canvas (for IT
Administrators)

You can use the information in this section to help your users do the following:

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 726

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-evaluate-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html

Amazon SageMaker Developer Guide

• Optional: Grant your users permissions to upload their files locally.

• Set up Okta SSO for your users.

• Update SageMaker Canvas.

• Clean up or delete the installation of SageMaker Canvas.

• Optional: Set up Amazon Forecast so users can do time series forecasting.

• Optional: Set up an Amazon Virtual Private Cloud.

• Optional: Encrypt data using AWS Key Management Service.

• Optional: Grant your users permissions to import Amazon Redshift data.

You can also set up SageMaker Canvas for your users with AWS CloudFormation. For more
information, see AWS::SageMaker::App in the AWS CloudFormation User Guide.

Topics

• Grant Your Users Permissions to Upload Local Files

• Set Up SageMaker Canvas for Your Users

• Configure your Amazon S3 storage

• Grant permissions for cross-account Amazon S3 storage

• Encrypt Your SageMaker Canvas Data with AWS KMS

• Grant Your Users Permissions to Build Custom Image and Text Prediction Models

• Grant Your Users Permissions to Perform Time Series Forecasting

• Grant Users Permissions to Fine-tune Foundation Models

• Update SageMaker Canvas for Your Users

• Request a Quota Increase

• Grant Users Permissions to Import Amazon Redshift Data

• Grant Users Permissions to Collaborate with Studio Classic

• Grant Your Users Permissions to Send Predictions to Amazon QuickSight

• Manage applications

• Configure Amazon SageMaker Canvas in a VPC without internet access

• Set up connections to data sources with OAuth

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 727

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-app.html

Amazon SageMaker Developer Guide

Grant Your Users Permissions to Upload Local Files

If your users are uploading files from their local machines to SageMaker Canvas, you must attach
a CORS (cross-origin resource sharing) configuration to the Amazon S3 bucket that they're using.
When setting up the SageMaker domain or user profile, you can specify either a custom Amazon
S3 location or the default location, which is a SageMaker created Amazon S3 bucket with a name
that uses the following pattern: s3://sagemaker-{Region}-{your-account-id}. SageMaker
Canvas adds your users' data to the bucket whenever they upload a file.

To grant users permissions to upload local files to the bucket, you can attach a CORS configuration
to it using either of the following procedures. You can use the first method when setting up your
domain or editing the existing domain settings, where you opt in to allow SageMaker to attach the
CORS configuration to the bucket for you. The second method is the manual method, where you
can attach the CORS configuration to the bucket yourself.

domain setup method

To grant your users permissions to upload local files, you can choose Enable Canvas permissions
when setting up your domain. This attaches a Cross-Origin Resource Sharing (CORS) configuration
to the Canvas storage configuration's Amazon S3 bucket and grants all users in the domain
permission to upload local files into SageMaker Canvas. By default, the permissions option is
turned on when you set up a domain, but you can turn off this option if you don’t want to grant
your users permission to upload files.

Note

If you have an existing CORS configuration on the storage configuration Amazon S3 bucket,
turning on Enable Canvas permissions overwrites the existing configuration with the new
configuration.

The following procedure shows how you can turn on this option when doing a Quick setup for your
domain in the console.

1. In the User profile section, enter a Name for the user.

2. Select an Execution role for the user.

3. Turn on Enable SageMaker Canvas permissions. (By default, this option is turned on.)

4. Finish setting up the domain.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 728

Amazon SageMaker Developer Guide

If you are doing a Standard setup for your domain, then use the following procedure for the
Canvas settings section to turn on local file upload.

1. For Enable and configure Canvas permissions, select Local file upload. (It's already checked
by default.)

2. Choose Next.

3. Finish setting up the domain.

Your users can now upload local files into their SageMaker Canvas application.

You can also turn on or turn off local upload permissions for an existing domain by using the
following procedure.

1. Go to the Amazon SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of Domains, choose your domain.

5. On the Domain settings page, choose the Domain settings, tab.

6. Choose Edit.

7. In the navigation pane, choose Canvas settings.

8. Select or deselect Enable local file upload.

9. Finish any other modifications you want to make to the domain, and then choose Submit to
submit your changes.

Amazon S3 bucket method

If you want to manually attach the CORS configuration to the SageMaker Amazon S3 bucket, use
the following procedure.

1. Sign in to https://console.aws.amazon.com/s3/.

2. Choose your bucket. If your domain uses the default SageMaker created bucket, the bucket’s
name uses the following pattern: s3://sagemaker-{Region}-{your-account-id}.

3. Choose Permissions.

4. Navigate to Cross-origins resource sharing (CORS).

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 729

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/s3/

Amazon SageMaker Developer Guide

5. Choose Edit.

6. Add the following CORS policy:

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "POST"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": []
 }
]

7. Choose Save changes.

In the preceding procedure, the CORS policy must have "POST" listed under AllowedMethods.

After you've gone through the procedure, you should have:

• An IAM role assigned to each of your users.

• Amazon SageMaker Studio Classic runtime permissions for each of your users. SageMaker Canvas
uses Studio Classic to run the commands from your users.

• If the users are uploading files from their local machines, a CORS policy attached to their
Amazon S3 bucket.

If your users still can't upload the local files after you update the CORS policy, the browser might
be caching the CORS settings from a previous upload attempt. If they're running into issues,
instruct them to clear their browser cache and try again.

Set Up SageMaker Canvas for Your Users

To set up Amazon SageMaker Canvas, do the following:

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 730

Amazon SageMaker Developer Guide

• Create an Amazon SageMaker domain.

• Create user profiles for the domain

• Set up Okta Single Sign On (Okta SSO) for your users.

• Activate link sharing for models.

Use Okta Single-Sign On (Okta SSO) to grant your users access to Amazon SageMaker Canvas.
SageMaker Canvas supports SAML 2.0 SSO methods. The following sections guide you through
procedures to set up Okta SSO.

To set up a domain, see Onboard to Amazon SageMaker Runtime Studio Using IAM. You can use
the following information to help you complete the procedure in the section:

• You can ignore the step about creating projects.

• You don't need to provide access to additional Amazon S3 buckets. Your users can use the
default bucket that we provide when we create a role.

• To grant your users access to share their notebooks with data scientists, turn on Notebook
Sharing Configuration.

• Use Amazon SageMaker Studio Classic version 3.19.0 or later. For information about updating
Amazon SageMaker Studio Classic, see Shut down and Update SageMaker Studio Classic.

Use the following procedure to set up Okta. For all of the following procedures, you specify the
same IAM role for IAM-role .

Add the SageMaker Canvas application to Okta

Set up the sign-on method for Okta.

1. Sign in to the Okta Admin dashboard.

2. Choose Add application. Search for AWS Account Federation.

3. Choose Add.

4. Optional: Change the name to Amazon SageMaker Canvas.

5. Choose Next.

6. Choose SAML 2.0 as the Sign-On method.

7. Choose Identity Provider Metadata to open the metadata XML file. Save the file locally.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 731

https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-iam.html

Amazon SageMaker Developer Guide

8. Choose Done.

Set up ID federation in IAM

AWS Identity and Access Management (IAM) is the AWS service that you use to gain access to your
AWS account. You gain access to AWS through an IAM account.

1. Sign in to the AWS console.

2. Choose AWS Identity and Access Management (IAM).

3. Choose Identity Providers.

4. Choose Create Provider.

5. For Configure Provider, specify the following:

• Provider Type – From the dropdown list, choose SAML.

• Provider Name – Specify Okta.

• Metadata Document – Upload the XML document that you've saved locally from step 7 of
Add the SageMaker Canvas application to Okta.

6. Find your identity provider under Identity Providers. Copy its Provider ARN value.

7. For Roles, choose the IAM role that you're using for Okta SSO access.

8. Under Trust Relationship for the IAM role, choose Edit Trust Relationship.

9. Modify the IAM trust relationship policy by specifying the Provider ARN value that you've
copied and add the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::123456789012:saml-provider/Okta"
 },
 "Action": [
 "sts:AssumeRoleWithSAML",
 "sts:SetSourceIdentity",
 "sts:TagSession"
],

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 732

Amazon SageMaker Developer Guide

 "Condition": {
 "StringEquals": {
 "SAML:aud": "https://signin.aws.amazon.com/saml"
 }
 }
 }
]
}

10. For Permissions, add the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AmazonSageMakerPresignedUrlPolicy",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:CreatePresignedDomainUrlWithPrincipalTag"
],
 "Resource": "*"
 }
]
}

Configure SageMaker Canvas in Okta

Configure Amazon SageMaker Canvas in Okta using the following procedure.

To configure Amazon SageMaker Canvas to use Okta, follow the steps in this section. You must
specify unique user names for each SageMakerStudioProfileName field. For example, you can use
user.login as a value. If the username is different from the SageMaker Canvas profile name,
choose a different uniquely identifying attribute. For example, you can use an employee's ID
number for the profile name.

For an example of values that you can set for Attributes, see the code following the procedure.

1. Under Directory, choose Groups.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 733

Amazon SageMaker Developer Guide

2. Add a group with the following pattern: sagemaker#canvas#IAM-role#AWS-account-id.

3. In Okta, open the AWS Account Federation application integration configuration.

4. Select Sign On for the AWS Account Federation application.

5. Choose Edit and specify the following:

• SAML 2.0

• Default Relay State – https://Region.console.aws.amazon.com/sagemaker/home?
region=Region#/studio/canvas/open/StudioId. You can find the Studio Classic ID in the
console: https://console.aws.amazon.com/sagemaker/

6. Choose Attributes.

7. In the SageMakerStudioProfileName fields, specify unique values for each username. The
usernames must match the usernames that you've created in the AWS console.

Attribute 1:
Name: https://aws.amazon.com/SAML/Attributes/
PrincipalTag:SageMakerStudioUserProfileName
Value: ${user.login}

Attribute 2:
Name: https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys
Value: {"SageMakerStudioUserProfileName"}

8. Select Environment Type. Choose Regular AWS.

• If your environment type isn't listed, you can set your ACS URL in the ACS URL field. If
your environment type is listed, you don't need to enter your ACS URL

9. For Identity Provider ARN, specify the ARN you used in step 6 of the preceding procedure.

10. Specify a Session Duration.

11. Choose Join all roles.

12. Turn on Use Group Mapping by specifying the following fields:

• App Filter – okta

• Group Filter – ^aws\#\S+\#(?IAM-role[\w\-]+)\#(?accountid\d+)$

• Role Value Pattern – arn:aws:iam::$accountid:saml-provider/
Okta,arn:aws:iam::$accountid:role/IAM-role

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 734

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

13. Choose Save/Next.

14. Under Assignments, assign the application to the group that you've created.

Add optional policies on access control in IAM

In IAM, you can apply the following policy to the administrator user who creates the user profiles.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateSageMakerStudioUserProfilePolicy",
 "Effect": "Allow",
 "Action": "sagemaker:CreateUserProfile",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": [
 "studiouserid"
]
 }
 }
 }
]
}

If you choose to add the preceding policy to the admin user, you must use the following
permissions from Set up ID federation in IAM.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AmazonSageMakerPresignedUrlPolicy",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:CreatePresignedDomainUrlWithPrincipalTag"
],

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 735

Amazon SageMaker Developer Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:ResourceTag/studiouserid": "${aws:PrincipalTag/
SageMakerStudioUserProfileName}"
 }
 }
 }
]
}

Configure your Amazon S3 storage

When you set up your SageMaker Canvas application, the default storage location for model
artifacts, datasets, and other application data is an Amazon S3 bucket that Canvas creates. This
default Amazon S3 bucket follows the naming pattern s3://sagemaker-{Region}-{your-
account-id} and exists in the same Region as your Canvas application.

However, you can customize the storage location and specify your own Amazon S3 bucket for
storing Canvas application data. You might want to use your own Amazon S3 bucket for storing
application data for any of the following reasons:

• Your organization has internal naming conventions for Amazon S3 buckets.

• You want to enable cross-account access to model artifacts or other Canvas data.

• You want to be compliant with internal security guidelines, such as restricting users to specific
Amazon S3 buckets or model artifacts.

• You want enhanced visibility and access to logs produced by Canvas, independent of the AWS
console or SageMaker Studio Classic.

By specifying your own Amazon S3 bucket, you can have increased control over your own storage
and be compliant with your organization.

To get started, you can either create a new SageMaker domain or user profile, or you can update
an existing domain or user profile. Note that the user profile settings override the domain-level
settings. For example, you can use the default bucket configuration at the domain level, but
you can specify a custom Amazon S3 bucket for an individual user. After specifying your own
Amazon S3 bucket for the domain or user profile, Canvas creates a subfolder called Canvas/

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 736

Amazon SageMaker Developer Guide

<UserProfileName> under the input Amazon S3 URI and saves all artifacts generated in the
Canvas application under this subfolder.

Important

If you update an existing domain or user profile, you no longer have access to your Canvas
artifacts from the previous location. Your files are still in the old Amazon S3 location, but
you can no longer view them from Canvas. The new configuration takes effect the next
time you log into the application.

For more information about granting cross-account access to your Amazon S3 bucket, see Granting
cross-account object permissions in the Amazon S3 User Guide.

The following sections describe how to specify a custom Amazon S3 bucket for your Canvas
storage configuration. If you’re setting up a new SageMaker domain (or a new user in a domain),
then use the New domain setup method or the New user profile setup method. If you have an
existing Canvas user profile and would like to update the profile's storage configuration, use the
Existing user method.

Before you begin

If you’re specifying an Amazon S3 URI from a different AWS account, or if you’re using a bucket
that is encrypted with AWS KMS, then you must configure permissions before proceeding. You
must grant AWS IAM permissions to ensure that Canvas can download and upload objects to and
from your bucket. For detailed information on how to grant the required permissions, see Grant
permissions for cross-account Amazon S3 storage.

Additionally, the final Amazon S3 URI for the training folder in your Canvas storage location must
be 128 characters or less. The final Amazon S3 URI consists of your bucket path s3://<your-
bucket-name>/<folder-name>/ plus the path that Canvas adds to your bucket: Canvas/
<user-profile-name>/Training. For example, an acceptable path that is less than 128
characters is s3://<my-bucket>/<machine-learning>/Canvas/<user-1>/Training.

New domain setup method

If you’re setting up a new domain and Canvas application, use this section to configure the storage
location at the domain level. This configuration applies to all new users you create in the domain,
unless you specify a different storage location for individual user profiles.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 737

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example4.html#access-policies-walkthrough-example4-overview
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example4.html#access-policies-walkthrough-example4-overview

Amazon SageMaker Developer Guide

When doing a Standard setup for your domain, use the following procedure for the Canvas
settings section:

1. For the Canvas storage configuration, do the following:

a. Select System managed if you want to set the location to the default SageMaker bucket
that follows the pattern s3://sagemaker-{Region}-{your-account-id}.

b. Select Custom S3 to specify your own Amazon S3 bucket as the storage location. Then,
enter the Amazon S3 URI.

c. (Optional) For Encryption key, specify a KMS key for encrypting Canvas artifacts stored at
the specified location.

2. Finish setting up the domain and choose Submit.

Your domain is now configured to use the Amazon S3 location you specified for SageMaker Canvas
application storage.

New user profile setup method

If you’re setting up a new user profile in your domain, use this section to configure the storage
location for the user. This configuration overrides the domain-level configuration.

When adding a user profile to your domain, use the following procedure for the Canvas settings
section:

1. For the Canvas storage configuration, do the following:

a. Select System managed if you want to set the location to the default SageMaker created
bucket that follows the pattern s3://sagemaker-{Region}-{your-account-id}.

b. Select Custom S3 to specify your own Amazon S3 bucket as the storage location. Then,
enter the Amazon S3 URI.

c. (Optional) For Encryption key, specify a KMS key for encrypting Canvas artifacts stored at
the specified location.

2. Finish setting up the user profile and choose Submit.

Your user profile is now configured to use the Amazon S3 location you specified for SageMaker
Canvas application storage.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 738

Amazon SageMaker Developer Guide

Existing user method

If you have an existing Canvas user profile and would like to update the Amazon S3 storage
location, you can edit the SageMaker domain or user profile settings. The change takes effect the
next time you log into the Canvas application.

Note

When you change the storage location for an existing Canvas application, you lose access to
your Canvas artifacts from the previous storage location. The artifacts are still stored in the
old Amazon S3 location, but you can no longer view them from Canvas.

Remember that the user profile settings override the general domain settings, so you can update
the Amazon S3 storage location for specific user profiles without changing it for all of the users.
You can update the storage configuration for an existing domain or user by using the following
procedures.

Update an existing domain

Use the following procedure to update the storage configuration for a domain.

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, choose your domain.

5. On the domain settings page, choose the domain settings tab.

6. Choose Edit.

7. In the navigation pane, choose Canvas settings.

8. For the Canvas storage configuration, do the following:

a. Select System managed if you want to set the location to the default SageMaker
created bucket that follows the pattern s3://sagemaker-{Region}-{your-
account-id}.

b. Select Custom S3 to specify your own Amazon S3 bucket as the storage location. Then,
enter the Amazon S3 URI.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 739

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

c. (Optional) For Encryption key, specify a KMS key for encrypting Canvas artifacts
stored at the specified location.

9. Finish any other modifications you want to make to the domain, and then choose Submit
to save your changes.

Update an existing user profile

Use the following procedure to update the storage configuration for a user profile.

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, choose your domain.

5. From the list of users in the domain, choose the user whose configuration you want to edit.

6. On the User Details page, choose Edit.

7. In the navigation pane, choose Canvas settings.

8. For the Canvas storage configuration, do the following:

a. Select System managed if you want to set the location to the default SageMaker
bucket that follows the pattern s3://sagemaker-{Region}-{your-account-id}.

b. Select Custom S3 to specify your own Amazon S3 bucket as the storage location. Then,
enter the Amazon S3 URI.

c. (Optional) For Encryption key, specify a KMS key for encrypting Canvas artifacts
stored at the specified location.

9. Finish any other modifications you want to make to the user profile, and then choose
Submit to save your changes.

The storage location for your Canvas user profile should now be updated. The next time you log
into the Canvas application, you receive a notification that the storage location has been updated.
You lose access to any previous artifacts that you created in Canvas. You can still access the files in
Amazon S3, but you can no longer view them in Canvas.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 740

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Grant permissions for cross-account Amazon S3 storage

When setting up your SageMaker domain or user profile for users to access SageMaker Canvas, you
specify an Amazon S3 storage location for Canvas artifacts. These artifacts include saved copies
of your input datasets, model artifacts, predictions, and other application data. You can either use
the default SageMaker created Amazon S3 bucket, or you can customize the storage location and
specify your own bucket for storing Canvas application data.

You can specify an Amazon S3 bucket in another AWS account for storing your Canvas data, but
first you must grant cross-account permissions so that Canvas can access the bucket.

The following sections describe how to grant permissions to Canvas for uploading and
downloading objects to and from an Amazon S3 bucket in another account. There are additional
permissions for when your bucket is encrypted with AWS KMS.

Requirements

Before you begin, review the following requirements:

• Cross-account Amazon S3 buckets (and any associated AWS KMS keys) must be in the same AWS
Region as the Canvas user domain or user profile.

• The final Amazon S3 URI for the training folder in your Canvas storage location must be 128
characters or less. The final S3 URI consists of your bucket path s3://<your-bucket-name>/
<folder-name>/ plus the path that Canvas adds to your bucket: Canvas/<user-profile-
name>/Training. For example, an acceptable path that is less than 128 characters is s3://
<my-bucket>/<machine-learning>/Canvas/<user-1>/Training.

Permissions for cross-account Amazon S3 buckets

The following section outlines the basic steps for granting the necessary permissions so that
Canvas can access your Amazon S3 bucket in another account. For more detailed instructions, see
Example 2: Bucket owner granting cross-account bucket permissions in the Amazon S3 User Guide.

1. Create an Amazon S3 bucket, bucketA, in Account A.

2. The Canvas user exists in another account called Account B. In the following steps, we refer to
the Canvas user's IAM role as roleB in Account B.

Give the IAM role roleB in Account B permission to download (GetObject) and upload
(PutObject) objects to and from bucketA in Account A by attaching an IAM policy.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 741

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example2.html

Amazon SageMaker Developer Guide

To limit access to a specific bucket folder, define the folder name in the resource element, such
as arn:aws:s3:::<bucketA>/FolderName/*. For more information, see How can I use IAM
policies to grant user-specific access to specific folders?

Note

Bucket-level actions, such as GetBucketCors and GetBucketLocation, should be
added on bucket-level resources, not folders.

The following example IAM policy grants the required permissions for roleB to access objects
in bucketA:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::bucketA/FolderName/*",
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketCors",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::bucketA",
]
 }
]
}

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 742

https://aws.amazon.com/premiumsupport/knowledge-center/iam-s3-user-specific-folder/
https://aws.amazon.com/premiumsupport/knowledge-center/iam-s3-user-specific-folder/

Amazon SageMaker Developer Guide

3. Configure the bucket policy for bucketA in Account A to grant permissions to the IAM role
roleB in Account B.

Note

Admins must also turn off Block all public access under the bucket Permissions
section.

The following is an example bucket policy for bucketA to grant the necessary permissions to
roleB:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::accountB:role/roleB"
 },
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::bucketA/FolderName/*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::accountB:role/roleB"
 },
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketCors",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::bucketA"
 }
]
}

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 743

Amazon SageMaker Developer Guide

After configuring the preceding permissions, your Canvas user profile in Account B can now use the
Amazon S3 bucket in Account A as the storage location for Canvas artifacts.

Permissions for cross-account Amazon S3 buckets encrypted with AWS KMS

The following procedure shows you how to grant the necessary permissions so that Canvas can
access your Amazon S3 bucket in another account that is encrypted with AWS KMS. The steps
are similar to the procedure above, but with additional permissions. For more information about
granting cross-account KMS key access, see Allowing users in other accounts to use a KMS key in
the AWS KMS Developer Guide.

1. Create an Amazon S3 bucket, bucketA, and an Amazon S3 KMS key s3KmsInAccountA in
Account A.

2. The Canvas user exists in another account called Account B. In the following steps, we refer to
the Canvas user's IAM role as roleB in Account B.

Give the IAM role roleB in Account B permission to do the following:

• Download (GetObject) and upload (PutObject) objects to and from bucketA in Account
A.

• Access the AWS KMS key s3KmsInAccountA in Account A.

The following example IAM policy grants the required permissions for roleB to access objects
in bucketA and use the KMS key s3KmsInAccountA:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::bucketA/FolderName/*"
]
 },
 {

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 744

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "s3:GetBucketCors",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::bucketA"
]
 },
 {
 "Action": [
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:RetireGrant",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlainText",
 "kms:Decrypt"
],
 "Effect": "Allow",
 "Resource": "arn:aws:kms:{region}:accountA:key/s3KmsInAccountA"
 }
]
}

3. Configure the bucket policy for bucketA and the key policy for s3KmsInAccountA in Account
A to grant permissions to the IAM role roleB in Account B.

The following is an example bucket policy for bucketA to grant the necessary permissions to
roleB:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::accountB:role/roleB"
 },
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:PutObject"
],

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 745

Amazon SageMaker Developer Guide

 "Resource": "arn:aws:s3:::bucketA/FolderName/*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::accountB:role/roleB"
 },
 "Action": [
 "s3:GetBucketCors",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::bucketA"
 }
]
}

The following example is a key policy that you attach to the KMS key s3KmsInAccountA in
Account A to grant roleB access. For more information about how to create and attach a key
policy statement, see Creating a key policy in the AWS KMS Developer Guide.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::accountB:role/roleB"
]
 },
 "Action": [
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:RetireGrant",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlainText",
 "kms:Decrypt"
],
 "Resource": "*"
}

After configuring the preceding permissions, your Canvas user profile in Account B can now use the
encrypted Amazon S3 bucket in Account A as the storage location for Canvas artifacts.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 746

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-overview.html

Amazon SageMaker Developer Guide

Encrypt Your SageMaker Canvas Data with AWS KMS

You might have data that you want to encrypt while using Amazon SageMaker Canvas, such as your
private company information or customer data. SageMaker Canvas uses AWS Key Management
Service to protect your data. AWS KMS is a service that you can use to create and manage
cryptographic keys for encrypting your data. For more information about AWS KMS, see AWS Key
Management Service in the AWS KMS Developer Guide.

Amazon SageMaker Canvas provides you with several options for encrypting your data. SageMaker
Canvas provides default encryption within the application for tasks such as building your model
and generating insights. You can also choose to encrypt data stored in Amazon S3 to protect your
data at rest. SageMaker Canvas supports importing encrypted datasets, so you can establish an
encrypted workflow. The following sections describe how you can use AWS KMS encryption to
protect your data while building models with SageMaker Canvas.

Encrypt your data in SageMaker Canvas

With SageMaker Canvas, you can use two different AWS KMS encryption keys to encrypt your
data in SageMaker Canvas, which you can specify when setting up your domain. These two keys
can be the same or different. SageMaker Canvas uses one key for temporary application storage,
visualizations, or compute purposes (such as building models). You can use either the default AWS
managed key or specify your own. You can also specify an optional key that SageMaker Canvas
uses for long-term storage of model objects and datasets, which are stored in the Region’s default
SageMaker S3 bucket for your account.

Prerequisites

To use your own KMS key for either of the previously described purposes, you must first grant your
user's IAM role permission to use the key. Then, you can specify the KMS key when setting up your
domain.

The simplest way to grant your role permission to use the key is to modify the key policy. Use the
following procedure to grant your role the necessary permissions.

1. Open the AWS KMS console.

2. In the Key Policy section, choose Switch to policy view.

3. Modify the key's policy to grant permissions for the kms:GenerateDataKey and
kms:Decrypt actions to the IAM role. You can add a statement that's similar to the following:

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 747

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://console.aws.amazon.com/kms/

Amazon SageMaker Developer Guide

{
 "Sid": "ExampleStmt",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "<arn:aws:iam::111122223333:role/Jane>"
 },
 "Resource": "*"
}

4. Choose Save changes.

The less preferred method is to modify the user’s IAM role to grant the user permissions to
use or manage the KMS key. If you use this method, the KMS key policy must also allow access
management through IAM. To learn how to grant permission to a KMS key through the user’s IAM
role, see Specifying KMS keys in IAM policy statements in the AWS KMS Developer Guide.

Prerequisites for time series forecasting

To use your AWS KMS key to encrypt time series forecasting models in SageMaker Canvas, you
must modify the key policy for the KMS key used to store objects to Amazon S3. Your key policy
must grant permissions to the AmazonSageMakerCanvasForecastRole, which SageMaker
creates when you grant time series forecasting permissions for your users. Amazon Forecast uses
the AmazonSageMakerCanvasForecastRole to perform time series forecasting operations in
SageMaker Canvas. Your KMS key must grant permissions to this role in order to ensure data is
encrypted for time series forecasting.

To modify the permissions of your KMS key policy to allow encrypted time series forecasting, do
the following.

1. Open the AWS KMS console.

2. In the Key Policy section, choose Switch to policy view.

3. Modify the key's policy to have the permissions specified in the following example:

{
 "Sid": "Enable IAM Permissions for Amazon Forecast KMS access",

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 748

https://docs.aws.amazon.com/kms/latest/developerguide/cmks-in-iam-policies.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasForecastAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-set-up-forecast.html
https://console.aws.amazon.com/kms/)

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Principal": {
 "AWS": "<arn:aws:iam::111122223333:role/service-role/
AmazonSagemakerCanvasForecastRole-111122223333>"
 },
 "Action": [
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:RetireGrant",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlainText",
 "kms:Decrypt"
],
 "Resource": "*"
}

4. Choose Save changes.

You can now use your KMS key to encrypt time series forecasting operations in SageMaker Canvas.

Note

The following permissions are only required if you are using the IAM role setup method
to configure time series forecasting. Add the following permissions policy to your user's
IAM role. You must also update the key policy with updated policies required for Amazon
Forecast. For more information about the permissions required for time series forecasting,
see Grant Your Users Permissions to Perform Time Series Forecasting.

{
 "Sid": "Enable IAM Permissions for Amazon Forecast KMS access",
 "Effect": "Allow",
 "Principal": {
 "AWS": "<arn:aws:iam::111122223333:role/AmazonSageMaker-111122223333>"
 },
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:RetireGrant",
 "kms:GenerateDataKey"

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 749

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-set-up-forecast.html#canvas-set-up-forecast-iam

Amazon SageMaker Developer Guide

 "kms:GenerateDataKeyWithoutPlainText",
],
 "Resource": "*"
}

Encrypt your data in the SageMaker Canvas application

The first KMS key you can use in SageMaker Canvas is used for encrypting application data stored
on Amazon Elastic Block Store (Amazon EBS) volumes and in the Amazon Elastic File System that
SageMaker creates in your domain. SageMaker Canvas encrypts your data with this key in the
underlying application and temporary storage systems created when using compute instances for
building models and generating insights. SageMaker Canvas passes the key to other AWS services,
such as Autopilot, whenever SageMaker Canvas initiates jobs with them to process your data.

You can specify this key by setting the KmsKeyID in the CreateDomain API call or while doing the
Standard domain setup in the console. If you don’t specify your own KMS key, SageMaker uses a
default AWS managed KMS key to encrypt your data in the SageMaker Canvas application.

To specify your own KMS key for use in the SageMaker Canvas application through the console,
first set up your Amazon SageMaker domain using the Standard setup. Use the following
procedure to complete the Network and Storage Section for the domain.

1. Fill out your desired Amazon VPC settings.

2. For Encryption key, choose Enter a KMS key ARN.

3. For KMS ARN, enter the ARN for your KMS key, which should
have a format similar to the following: arn:aws:kms:example-
region-1:123456789098:key/111aa2bb-333c-4d44-5555-a111bb2c33dd

Encrypt your SageMaker Canvas data saved in Amazon S3

The second KMS key you can specify is used for data that SageMaker Canvas stores to Amazon S3.
SageMaker Canvas saves duplicates of your input datasets, application and model data, and output
data to the Region’s default SageMaker S3 bucket for your account. The naming pattern for this
bucket is s3://sagemaker-{Region}-{your-account-id}, and SageMaker Canvas stores
data in the Canvas/ folder.

1. Turn on Enable notebook resource sharing.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 750

Amazon SageMaker Developer Guide

2. For S3 location for shareable notebook resources, leave the default Amazon S3 path. Note
that SageMaker Canvas does not use this Amazon S3 path; this Amazon S3 path is used for
Studio Classic notebooks.

3. For Encryption key, choose Enter a KMS key ARN.

4. For KMS ARN, enter the ARN for your KMS key, which should have a format similar to the
following: arn:aws:kms:us-east-1:111122223333:key/111aa2bb-333c-4d44-5555-
a111bb2c33dd

Import encrypted datasets from Amazon S3

Your users might have datasets that have been encrypted with a KMS key. While the preceding
section shows you how to encrypt data in SageMaker Canvas and data stored to Amazon S3, you
must grant your user's IAM role additional permissions if you want to import data from Amazon S3
that is already encrypted with AWS KMS.

To grant your user permissions to import encrypted datasets from Amazon S3 into SageMaker
Canvas, add the following permissions to the IAM execution role that you've used for the user
profile.

 "kms:Decrypt",
 "kms:GenerateDataKey"

To learn how to edit the IAM permissions for a role, see Adding and removing IAM identity
permissions in the IAM User Guide. For more information about KMS keys, see Key policies in AWS
Key Management Service in the AWS KMS Developer Guide.

FAQs

Refer to the following FAQ items for answers to commonly asked questions about SageMaker
Canvas AWS KMS support.

Q: Does SageMaker Canvas retain my KMS key?

A: No. SageMaker Canvas may temporarily cache your key or pass it on to other AWS services (such
as Autopilot), but SageMaker Canvas does not retain your KMS key.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 751

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon SageMaker Developer Guide

Q: I specified a KMS key when setting up my domain. Why did my dataset fail to import in
SageMaker Canvas?

A: Your user’s IAM role may not have permissions to use that KMS key. To grant your user
permissions, see the Prerequisites. Another possible error is that you have a bucket policy on your
Amazon S3 bucket that requires the use of a specific KMS key that doesn’t match the KMS key you
specified in your domain. Make sure that you specify the same KMS key for your Amazon S3 bucket
and your domain.

Q: How do I find the Region’s default SageMaker Amazon S3 bucket for my account?

A: The default Amazon S3 bucket follows the naming pattern s3://
sagemaker-{Region}-{your-account-id}. The Canvas/ folder in this bucket stores your
SageMaker Canvas application data.

Q: Can I change the default SageMaker Amazon S3 bucket used to store SageMaker Canvas
data?

A: No, SageMaker creates this bucket for you.

Q: What does SageMaker Canvas store in the default SageMaker Amazon S3 bucket?

A: SageMaker Canvas uses the default SageMaker Amazon S3 bucket to store duplicates of your
input datasets, model artifacts, and model outputs.

Q: What use cases are supported for using KMS keys with SageMaker Canvas?

A: With SageMaker Canvas, you can use your own encryption keys with AWS KMS for building
regression, binary and multi-class classification, and time series forecasting models, as well as for
batch inference with your model.

Q: Can I encrypt time series forecasting models in SageMaker Canvas?

A: Yes. You must give your KMS key additional permissions in order to perform encrypted time
series forecasting. For more information about how to modify your key’s policy in order to grant
time series forecasting permissions, see Prerequisites for time series forecasting.

Grant Your Users Permissions to Build Custom Image and Text Prediction Models

In Amazon SageMaker Canvas, you can build custom models to meet your specific business
need. Two of these custom model types are single-label image predicion and multi-category text

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 752

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-build-model.html

Amazon SageMaker Developer Guide

prediction. The permissions to build these model types are included in the AWS Identity and Access
Management (IAM) policy called AmazonSageMakerCanvasFullAccess, which SageMaker attaches
by default to your user's IAM execution role if you leave the Canvas base permissions turned on.

However, if you are using a custom IAM configuration, then you must explicitly add permissions
to your user's IAM execution role so that they can build custom image and text prediction model
types. To grant the necessary permissions to build image and text prediction models, read the
following section to learn how to attach a least-permissions policy to your role.

To add the permissions to the user's IAM role, do the following:

1. Go to the IAM console.

2. Choose Roles.

3. In the search box, search for the user's IAM role by name and select it.

4. On the page for the user's role, under Permissions, choose Add permissions.

5. Choose Create inline policy.

6. Select the JSON tab, and then paste the following least-permissions policy into the editor.

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateAutoMLJobV2",
 "sagemaker:DescribeAutoMLJobV2"
],
 "Resource": "*"
 }
]
}

7. Choose Review policy.

8. Enter a Name for the policy.

9. Choose Create policy.

For more information about AWS managed policies, see Managed policies and inline policies in the
IAM User Guide.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 753

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html#canvas-prerequisites
https://console.aws.amazon.com/iamv2
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

Amazon SageMaker Developer Guide

Grant Your Users Permissions to Perform Time Series Forecasting

In order to perform time series forecasts in Amazon SageMaker Canvas, your users must have the
necessary permissions. The preferred method to give your users these permissions is to turn on the
time series forecasting option when setting up the Amazon SageMaker domain, or when editing
the settings for a specific user profile. You can also use the manual method of attaching a policy
and trust relationship for Amazon Forecast to the AWS Identity and Access Management (IAM) role.

If you want to encrypt your time series forecasts with your own key, you must use an AWS KMS
key and modify your KMS key's policy to grant permissions to the role used by Amazon Forecast.
For more information about setting up your KMS key and modifying the policy for time series
forecasting, see Prerequisites for time series forecasting.

domain setup method

SageMaker provides you with the option to grant time series forecasting permissions to users
through the domain settings. You can toggle the permissions for all of the users in your domain,
and SageMaker manages attaching the required IAM policy and trust relationship for you.

If you are setting up your Amazon SageMaker domain for the first time and want to turn on time
series forecasting permissions for all users in the domain, then use the following procedures.

Quick setup

Use the following procedure to turn on SageMaker Canvas time series forecasting permissions
when doing a Quick setup for your domain.

1. In the Amazon SageMaker domain Quick setup, fill out the Name and Default execution
role fields in the User profile section.

2. Leave the Enable SageMaker Canvas permissions option turned on. It is turned on by
default.

3. Choose Submit to finish setting up your domain.

Standard setup

Use the following procedure to turn on SageMaker Canvas time series forecasting permissions
when doing a Standard setup for your domain.

1. In the Amazon SageMaker domain Standard setup, fill out the General settings, Studio
settings, and RStudio settings pages.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 754

Amazon SageMaker Developer Guide

2. Choose the Canvas settings page.

3. For the Canvas base permissions configuration, leave the Enable Canvas base
permissions option turned on. It is turned on by default. These permissions are required in
order to turn on time series forecasting permissions.

4. For the Time series forecasting configuration, leave the Enable time series forecasting
option turned on. It is turned on by default.

5. Select Create and use a new execution role, or select Use an existing execution role if
you already have an IAM role with the required Amazon Forecast permissions attached. For
more information, see the IAM role setup method.

6. Finish making any other changes to your domain setup, and then choose Submit.

Your users should now have the necessary permissions to perform time series forecasting in
SageMaker Canvas.

User setup method

You can configure time series forecasting permissions for individual users in an existing domain.
The user profile settings override the general domain settings, so you can grant permissions to
specific users without giving permissions to all of your users. To grant time series forecasting
permissions to a specific user that doesn't already have permissions, use the following procedure.

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. On the domains page, choose your domain.

5. In the User profiles tab, select the name of the user whose permissions you want to edit.

6. On the User Details page, choose Edit.

7. Choose the Canvas settings page.

8. Turn on Enable Canvas base permissions. These permissions are required in order to turn on
time series forecasting permissions.

9. Turn on the Enable time series forecasting option.

10. If you want to use a different execution role for the user than the role specified in the domain,
select Create and use a new execution role, or Use an existing execution role if you already
have an IAM role ready to use.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 755

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Note

If you want to use an existing IAM role, make sure that it has the IAM policy
AmazonSageMakerCanvasForecastAccess attached and has a trust relationship
that establishes Amazon Forecast as a service principal. For more information, see the
section IAM role setup method.

11. The Canvas settings page should look like the following screenshot. Finish making any other
changes to your user profile, and then choose Submit to save your changes.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 756

Amazon SageMaker Developer Guide

Your user should now have permission to do time series forecasting in SageMaker Canvas.

You can also remove your user's permissions by using the preceding procedure and turning off the
Enable time series forecasting option.

IAM role setup method

You can manually grant your users permissions to perform time series forecasting in Amazon
SageMaker Canvas by adding additional permissions to the AWS Identity and Access Management
(IAM) role specified for the user’s profile. The IAM role must have a trust relationship with Amazon
Forecast and an attached policy that gives permissions to Forecast.

The following section shows you how to create the trust relationship and attach the
AmazonSageMakerCanvasForecastAccess managed policy to your IAM role, which grants the
minimum permissions necessary for time series forecasting to work in SageMaker Canvas.

Note

The AmazonSageMakerCanvasForecastAccess policy grants permissions to access the
SageMaker created Amazon S3 bucket, which is the default storage location for Canvas
application data. If you've specified a custom Amazon S3 storage location for Canvas
application data, you must update the permissions in the policy to your own Amazon S3
bucket. For more information about custom Amazon S3 storage locations for Canvas, see
Configure your Amazon S3 storage.

To configure an IAM role with the manual method, use the following procedure.

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. On the Domains page, choose your domain.

5. From the list of User profiles, select the profile of the user you to whom want to grant time
series forecasting permissions.

6. Under Details, copy or make a note of the name of the user's Execution role. The name of the
IAM role should be similar to the following: 111122223333.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 757

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasForecastAccess
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

7. Once you have the name of the user's IAM role, go to the IAM console.

8. Choose Roles.

9. Search for the user's IAM role by name from the list of roles and select it.

10. Under Permissions, choose Add permissions.

11. Choose Attach policies.

12. Search for the AmazonSageMakerCanvasForecastAccess managed policy and select it.
Choose Attach policies to attach the policy to the role.

After attaching the policy, the role's Permissions section should now include
AmazonSageMakerCanvasForecastAccess.

13. Return to the IAM role's page, and under Trust relationships, choose Edit trust policy.

14. In the Edit trust policy editor, update the trust policy to add Forecast as a service principal.
The policy should look like the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 758

https://console.aws.amazon.com/iamv2
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasForecastAccess

Amazon SageMaker Developer Guide

 "Principal": {
 "Service": [
 "sagemaker.amazonaws.com",
 "forecast.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

15. After editing the trust policy, choose Update policy.

You should now have an IAM role that has the policy AmazonSageMakerCanvasForecastAccess
attached to it and a trust relationship established with Amazon Forecast, giving users permission
to perform time series forecasting in SageMaker Canvas. For information about AWS managed
policies, see Managed policies and inline policies.

Note

If you use this method to set up time series forecasting and want to use AWS KMS
encryption for your forecasts, then you must configure your KMS key’s policy to grant
additional permissions. For more information, see Prerequisites for time series forecasting.

Grant Users Permissions to Fine-tune Foundation Models

In order to grant permissions for fine-tuning foundation models in Amazon SageMaker Canvas, you
must complete the permissions setup described on this page. You must grant the user permissions
for Ready-to-use models, which attaches the AmazonSageMakerCanvasAIServicesAccess policy
to your user’s AWS IAM execution role. You must also create a trust relationship between Amazon
Bedrock and the IAM execution role.

Grant Ready-to-use models permissions

The permissions you need for fine-tuning foundation models are included in the Canvas Ready-
to-use models permissions. You must turn on the Canvas Ready-to-use models configuration
permissions when setting up your Amazon SageMaker domain. For more information, see
Prerequisites for setting up Amazon SageMaker Canvas.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 759

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasForecastAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess

Amazon SageMaker Developer Guide

You can edit your domain or user profile settings to turn on the Canvas Ready-to-use models
configuration setting. For more information on editing your domain settings, see View and Edit
domains.

You can also manually attach the AmazonSageMakerCanvasAIServicesAccess policy to the user’s
IAM execution role through the IAM console. For more information about attaching a policy to a
role, see Adding and removing IAM identity permissions in the AWS IAM User Guide.

Create a trust relationship with Amazon Bedrock

You must create a trust relationship with Amazon Bedrock so that Amazon Bedrock can assume
your user’s IAM role while fine-tuning foundation models.

To add a trust relationship to your, take note of your domain or user profile’s IAM role. Then, do the
following:

1. Go to the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Search for the user's IAM role by name from the list of roles and select it.

4. Choose the Trust relationships tab.

5. Choose Edit trust policy.

6. In the policy editor, find the Add a principal option in the right panel and choose Add.

7. In the dialog box, for Principal type, select AWS services.

8. For ARN, enter bedrock.amazonaws.com.

9. Choose Add principal.

10. Choose Update policy.

You should now have a trust relationship with Amazon Bedrock and the necessary permissions to
fine-tune foundation models in SageMaker Canvas.

Update SageMaker Canvas for Your Users

You can update to the latest version of Amazon SageMaker Canvas as either a user or an IT
administrator. You can update Amazon SageMaker Canvas for a single user at a time.

To update the Amazon SageMaker Canvas application, you must delete the previous version.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 760

https://docs.aws.amazon.com/sagemaker/latest/dg/domain-view-edit.html
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-view-edit.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

Important

Deleting the previous version of Amazon SageMaker Canvas doesn't delete the data or
models that the users have created.

Use the following procedure to log in to AWS, open Amazon SageMaker domain, and update
Amazon SageMaker Canvas. The users can start using the SageMaker Canvas application when they
log back in.

1. Sign in to the Amazon SageMaker console at Amazon SageMaker Runtime.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. On the Domains page, choose your domain.

5. From the list of User profiles, choose a user profile.

6. For the list of Apps, find the Canvas application (the App type says Canvas) and choose Delete
app.

7. Complete the dialog box and choose Confirm action.

The following image shows the user profile page and highlights the Delete app action from the
preceding procedure.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 761

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Request a Quota Increase

Your users might use AWS resources in amounts that exceed those specified by their quotas. If your
users are resource constrained and encounter errors in SageMaker Canvas, you can request a quota
increase for them.

For more details about SageMaker quotas and how to request a quota increase, see Quotas.

Amazon SageMaker Canvas uses the following services to process the requests of your users:

• Amazon SageMaker Autopilot

• Amazon SageMaker Studio Classic domain

• Amazon Forecast

For a list of the available quotas for SageMaker Canvas operations that aren't used to forecast time
series data, see Amazon SageMaker endpoints and quotas.

For a list of the available quotas for SageMaker Canvas operations that are used to forecast time
series data, see Amazon Forecast endpoints and quotas.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 762

https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#regions-quotas-quotas
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/forecast.html

Amazon SageMaker Developer Guide

Request an increase for instances to build custom models

When building a custom model, if you encounter an error during post-building analysis that tells
you to increase your quota for ml.m5.2xlarge instances, use the following information to resolve
the issue.

You must increase the SageMaker Hosting endpoint quota for the ml.m5.2xlarge instance type
to a non-zero value in your AWS account. After building a model, SageMaker Canvas hosts the
model on a SageMaker Hosting endpoint and uses the endpoint to generate the post-building
analysis. If you don't increase the default account quota of 0 for ml.m5.2xlarge instances,
SageMaker Canvas cannot complete this step and generates an error during post-building analysis.

For the procedure to increase the quota, see Requesting a quota increase in the Service Quotas
User Guide.

Grant Users Permissions to Import Amazon Redshift Data

Your users might have datasets stored in Amazon Redshift. Before users can import data from
Amazon Redshift into SageMaker Canvas, you must add the AmazonRedshiftFullAccess
managed policy to the IAM execution role that you've used for the user profile and add Amazon
Redshift as a service principal to the role's trust policy. You must also associate the IAM execution
role with your Amazon Redshift cluster. Complete the procedures in the following sections to give
your users the required permissions to import Amazon Redshift data.

Add Amazon Redshift permissions to your IAM role

You must grant Amazon Redshift permissions to the IAM role specified in your user profile.

To add the AmazonRedshiftFullAccess policy to the user's IAM role, do the following.

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles.

3. In the search box, search for the user's IAM role by name and select it.

4. On the page for the user's role, under Permissions, choose Add permissions.

5. Choose Attach policies.

6. Search for the AmazonRedshiftFullAccess managed policy and select it.

7. Choose Attach policies to attach the policy to the role.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 763

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

After attaching the policy, the role’s Permissions section should now include
AmazonRedshiftFullAccess.

To add Amazon Redshift as a service principal to the IAM role, do the following.

1. On the same page for the IAM role, under Trust relationships, choose Edit trust policy.

2. In the Edit trust policy editor, update the trust policy to add Amazon Redshift as a service
principal. An IAM role that allows Amazon Redshift to access other AWS services on your
behalf has a trust relationship as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "redshift.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

3. After editing the trust policy, choose Update policy.

You should now have an IAM role that has the policy AmazonRedshiftFullAccess attached to
it and a trust relationship established with Amazon Redshift, giving users permission to import
Amazon Redshift data into SageMaker Canvas. For more information about AWS managed policies,
see Managed policies and inline policies in the IAM User Guide.

Associate the IAM role with your Amazon Redshift cluster

In the settings for your Amazon Redshift cluster, you must associate the IAM role that you granted
permissions to in the preceding section.

To associate an IAM role with your cluster, do the following.

1. Sign in to the Amazon Redshift console at https://console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, and then choose the name of the cluster that you
want to update.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 764

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://console.aws.amazon.com/redshiftv2/

Amazon SageMaker Developer Guide

3. In the Actions dropdown menu, choose Manage IAM roles. The Cluster permissions page
appears.

4. For Available IAM roles, enter either the ARN or the name of the IAM role, or choose the IAM
role from the list.

5. Choose Associate IAM role to add it to the list of Associated IAM roles.

6. Choose Save changes to associate the IAM role with the cluster.

Amazon Redshift modifies the cluster to complete the change, and the IAM role to which you
previously granted Amazon Redshift permissions is now associated with your Amazon Redshift
cluster. Your users now have the required permissions to import Amazon Redshift data into
SageMaker Canvas.

Grant Users Permissions to Collaborate with Studio Classic

Note

The functionality described on this page only applies to Amazon SageMaker Studio Classic.
Currently, you can only share models to Canvas (or view shared Canvas models) in Studio
Classic. If you’re currently using the latest version of Studio, you must run Studio Classic
from within the latest version of Studio to share models to Canvas or view models shared
from Canvas. For more information about accessing Studio Classic, see the Studio Classic
documentation.

Your Amazon SageMaker Canvas users might want to share their models with users in Amazon
SageMaker Studio Classic to receive feedback and model updates, and Studio Classic users might
want to share models with Canvas users so that they can generate predictions in Canvas. The
following permissions grant Canvas users and Studio Classic users access to share models with each
other.

For more information about how Canvas users can share models with Studio Classic users, see
Collaborate with data scientists. For more information about how Canvas users can bring a model
shared from Studio Classic, see Bring your own model to SageMaker Canvas.

Before Canvas and Studio Classic users can collaborate, the users must be in the same Amazon
SageMaker domain. Add the following IAM permissions added to the same IAM execution role that
you've used for their profiles.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 765

https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html

Amazon SageMaker Developer Guide

To add the permissions to the users’ IAM role, do the following:

1. Go to the IAM console.

2. Choose Roles.

3. In the search box, search for the user's IAM role by name and select it.

4. On the page for the user's role, under Permissions, choose Add permissions.

5. Choose Create inline policy.

6. In the Policy editor, choose JSON and enter the following IAM policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateSharedModel",
 "sagemaker:DescribeSharedModel",
 "sagemaker:ListSharedModelEvents",
 "sagemaker:ListSharedModels",
 "sagemaker:ListSharedModelVersions",
 "sagemaker:SendSharedModelEvent",
 "sagemaker:UpdateSharedModel"
],
 "Resource": "*"
 }
]
}

7. Choose Next.

8. Enter a name for the policy in the Policy name field.

9. Choose Create policy to create the policy and attach it to the role.

For more information about AWS managed policies, see Managed policies and inline policies in the
IAM User Guide.

Grant Your Users Permissions to Send Predictions to Amazon QuickSight

You must grant your SageMaker Canvas users permissions to send batch predictions to Amazon
QuickSight. In Amazon QuickSight, users can create analyses and reports with a dataset and

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 766

https://console.aws.amazon.com/iamv2
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

Amazon SageMaker Developer Guide

prepare dashboards to share their results. For more information about sending prediction to
QuickSight for analysis, see Send predictions to Amazon QuickSight.

To grant the necessary permissions to share batch predictions with users in QuickSight, you must
add a permissions policy to the AWS Identity and Access Management (IAM) execution role that
you’ve used for the user profile. The following section shows you how to attach a least-permissions
policy to your role.

Add the permissions policy to your IAM role

To add the permissions policy, use the following procedure:

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles.

3. In the search box, search for the user's IAM role by name and select it.

4. On the page for the user's role, under Permissions, choose Add permissions.

5. Choose Create inline policy.

6. Select the JSON tab, and then paste the following least-permissions policy into the editor.
Replace the placeholders <your-account-number> with your own AWS account number.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "quicksight:CreateDataSet",
 "quicksight:ListUsers",
 "quicksight:ListNamespaces",
 "quicksight:CreateDataSource",
 "quicksight:PassDataSet",
 "quicksight:PassDataSource"
],
 "Resource":[
 "arn:aws:quicksight:*:<your-account-number>:datasource/*",
 "arn:aws:quicksight:*:<your-account-number>:user/*",
 "arn:aws:quicksight:*:<your-account-number>:namespace/*",
 "arn:aws:quicksight:*:<your-account-number>:dataset/*"
]
 }

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 767

https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

]
}

7. Choose Review policy.

8. Enter a Name for the policy.

9. Choose Create policy.

You should now have a customer-managed IAM policy attached to your execution role that grants
your Canvas users the necessary permissions to send batch predictions to users in QuickSight.

Manage applications

The following sections describe how you can manage your SageMaker Canvas applications. You can
view, delete, or relaunch your applications from the Domains section of the SageMaker console.

Check for active applications

To check if you have any actively running SageMaker Canvas applications, use the following
procedure.

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. On the Domains page, choose your domain.

5. On the Domain details page, under User profiles, select the user profile name for the Canvas
application that you want to view.

6. Under Apps, find the application that says Canvas in the App type column.

The Status column displays the status of the application, such as Ready, Pending, or Deleted. If
the application is Ready, then your SageMaker Canvas workspace instance is active. You can delete
the application from the console or log out from the SageMaker Canvas interface.

Delete an application

If you want to terminate your SageMaker Canvas workspace instance, you can either log out from
the SageMaker Canvas application or delete your application from the SageMaker console. A
workspace instance is dedicated for your use from when you start using SageMaker Canvas to the

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 768

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

point when you stop using it. Deleting the application only terminates the workspace instance
and stops workspace instance charges. Models and datasets aren’t affected, but Quick build tasks
automatically restart when you relaunch the application.

To delete your Canvas application through the AWS console, first close the browser tab in which
your Canvas application was open. Then, use the following procedure to delete your SageMaker
Canvas application.

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. On the Domains page, choose your domain.

5. On the Domain details page, under User profiles, select the user profile name for the Canvas
application you want to view.

6. Under Apps, find the application that says Canvas in the App type column.

7. In the Action column, choose Delete app.

8. In the Delete app dialog box, select the Yes, delete app prompt, confirm the deletion by
typing delete in the text field, and then choose Delete.

After you've successfully deleted the application, the Status column says Deleted. Otherwise, your
application is still active.

You can also terminate the workspace instance by logging out from within the SageMaker Canvas
application.

Relaunch an application

If you delete or log out of your SageMaker Canvas application and want to relaunch the
application, use the following procedure.

1. Navigate to the SageMaker console.

2. In the navigation pane, choose Canvas.

3. On the SageMaker Canvas landing page, in the Get Started box, select your user profile from
the dropdown.

4. Choose Open Canvas to open the application.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 769

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

SageMaker Canvas begins launching the application.

You can also use the following secondary procedure if you encounter any issues with the previous
procedure.

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. On the Domains page, choose your domain.

5. On the Domain details page, under User profiles, select the user profile name for the
SageMaker Canvas application you want to view.

6. Choose Launch and select Canvas from the dropdown list.

SageMaker Canvas begins launching the application.

Configure Amazon SageMaker Canvas in a VPC without internet access

The Amazon SageMaker Canvas application runs in a container in an AWS managed Amazon Virtual
Private Cloud (VPC). If you want to further control access to your resources or run SageMaker
Canvas without public internet access, you can configure your Amazon SageMaker domain and VPC
settings. Within your own VPC, you can configure settings such as security groups (virtual firewalls
that control inbound and outbound traffic from Amazon EC2 instances) and subnets (ranges of IP
addresses in your VPC). To learn more about VPCs, see How Amazon VPC works.

When the SageMaker Canvas application is running in the AWS managed VPC, it can interact with
other AWS services using either an internet connection or through VPC endpoints created in a
customer-managed VPC (without public internet access). SageMaker Canvas applications can access
these VPC endpoints through a Studio Classic-created network interface that provides connectivity
to the customer-managed VPC. The default behavior of the SageMaker Canvas application is to
have internet access. When using an internet connection, the containers for the preceding jobs
access AWS resources over the internet, such as the Amazon S3 buckets where you store training
data and model artifacts.

However, if you have security requirements to control access to your data and job containers, we
recommend that you configure SageMaker Canvas and your VPC so that your data and containers
aren’t accessible over the internet. SageMaker uses the VPC configuration settings you specify
when setting up your domain for SageMaker Canvas.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 770

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/vpc/latest/userguide/how-it-works.html

Amazon SageMaker Developer Guide

If you want to configure your SageMaker Canvas application without internet access, you must
configure your VPC settings when you onboard to Amazon SageMaker domain, set up VPC
endpoints, and grant the necessary AWS Identity and Access Management permissions. For
information about configuring a VPC in Amazon SageMaker, see Choose an Amazon VPC. The
following sections describe how to run SageMaker Canvas in a VPC without public internet access.

Configure Amazon SageMaker Canvas in a VPC without internet access

You can send traffic from SageMaker Canvas to other AWS services through your own VPC. If
your own VPC doesn't have public internet access and you've set up your domain in VPC only
mode, then SageMaker Canvas won't have public internet access as well. This includes all requests,
such as accessing datasets in Amazon S3 or training jobs for standard builds, and the requests go
through VPC endpoints in your VPC instead of the public internet. When you onboard to domain
and Choose an Amazon VPC, you can specify your own VPC as the default VPC for the domain,
along with your desired security group and subnet settings. Then, SageMaker creates a network
interface in your VPC that SageMaker Canvas uses to access VPC endpoints in your VPC. Note that
the security group and subnet settings are set after you finish onboarding to domain.

When onboarding to domain, if you choose Public internet only as the network access type, the
VPC is SageMaker managed and allows internet access.

You can change this behavior by choosing VPC only so that SageMaker sends all traffic to a
network interface that SageMaker creates in your specified VPC. When you choose this option, you
must provide the subnets, security groups, and VPC endpoints that are necessary to communicate
with the SageMaker API and SageMaker Runtime, and various AWS services, such as Amazon S3
and Amazon CloudWatch, that are used by SageMaker Canvas. Note that you can only import data
from Amazon S3 buckets located in the same Region as your VPC.

The following procedures show how you can configure these settings to use SageMaker Canvas
without the internet.

Step 1: Onboard to Amazon SageMaker domain

To send SageMaker Canvas traffic to a network interface in your own VPC instead of over the
internet, specify the VPC you want to use when onboarding to Amazon SageMaker domain. You
must also specify at least two subnets in your VPC that SageMaker can use. Choose Standard
setup and do the following procedure when configuring the Network and Storage Section for the
domain.

1. Select your desired VPC.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 771

Amazon SageMaker Developer Guide

2. Choose two or more Subnets. If you don’t specify the subnets, SageMaker uses all of the
subnets in the VPC.

3. Choose one or more Security group(s).

4. Choose VPC Only to turn off direct internet access in the AWS managed VPC where SageMaker
Canvas is hosted.

After disabling internet access, finish the onboarding process to set up your domain. For more
information about the VPC settings for Amazon SageMaker domain, see Choose an Amazon VPC.

Step 2: Configure VPC endpoints and access

Note

In order to configure Canvas in your own VPC, you must enable private DNS hostnames
for your VPC endpoints. For more information, see Connect to SageMaker Through a VPC
Interface Endpoint.

SageMaker Canvas only accesses other AWS services to manage and store data for its functionality.
For example, it connects to Amazon Redshift if your users access an Amazon Redshift database.
It can connect to an AWS service such as Amazon Redshift using an internet connection or a VPC
endpoint. Use VPC endpoints if you want to set up connections from your VPC to AWS services that
don't use the public internet.

A VPC endpoint creates a private connection to an AWS service that uses a networking path that
is isolated from the public internet. For example, if you set up access to Amazon S3 using a VPC
endpoint from your own VPC, then the SageMaker Canvas application can access Amazon S3 by
going through the network interface in your VPC and then through the VPC endpoint that connects
to Amazon S3. The communication between SageMaker Canvas and Amazon S3 is private.

For more information about configuring VPC endpoints for your VPC, see AWS PrivateLink. If you
are using Amazon Bedrock models in Canvas with a VPC, for more information about controlling
access to your data, see Protect jobs using a VPC in the Amazon Bedrock User Guide.

The following are the VPC endpoints for each service you can use with SageMaker Canvas:

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 772

https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://docs.aws.amazon.com/bedrock/latest/userguide/usingVPC.html#configureVPC

Amazon SageMaker Developer Guide

Service Endpoint Endpoint type

AWS Application Auto Scaling com.amazo
naws.Region.application-
autoscaling

Interface

Amazon Athena com.amazo
naws.Region.athena

Interface

Amazon SageMaker com.amazo
naws.Region.sagemaker.api

com.amazo
naws.Region.sagemake
r.runtime

com.amazo
naws.Region.notebook

Interface

AWS Security Token Service com.amazonaws.Region.sts Interface

Amazon Elastic Container
Registry (Amazon ECR)

com.amazo
naws.Region.ecr.api

com.amazo
naws.Region.ecr.dkr

Interface

Amazon Elastic Compute
Cloud (Amazon EC2)

com.amazonaws.Region.ec2 Interface

Amazon Simple Storage
Service (Amazon S3)

com.amazonaws.Region.s3 Gateway

Amazon Redshift com.amazo
naws.Region.redshift-data

Interface

AWS Secrets Manager com.amazo
naws.Region.secretsmanager

Interface

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 773

Amazon SageMaker Developer Guide

Service Endpoint Endpoint type

AWS Systems Manager com.amazonaws.Region.ssm Interface

Amazon CloudWatch com.amazo
naws.Region.monitoring

Interface

Amazon CloudWatch Logs com.amazonaws.Region.logs Interface

Amazon Forecast com.amazo
naws.Region.forecast

com.amazo
naws.Region.forecastquery

Interface

Amazon Textract com.amazo
naws.Region.textract

Interface

Amazon Comprehend com.amazo
naws.Region.comprehend

Interface

Amazon Rekognition com.amazo
naws.Region.rekognition

Interface

AWS Glue com.amazonaws.Region.glue Interface

AWS Application Auto Scaling com.amazo
naws.Region.application-
autoscaling

Interface

Amazon Relational Database
Service (Amazon RDS)

com.amazonaws.Region.rds Interface

Amazon Bedrock com.amazo
naws.Region.bedrock-
runtime

Interface

Amazon Kendra com.amazo
naws.Region.kendra

Interface

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 774

Amazon SageMaker Developer Guide

Note

For Amazon Bedrock, the interface endpoint service name
com.amazonaws.Region.bedrock has been deprecated. Create a new VPC endpoint
with the service name listed in the preceding table.
Additionally, you can't fine-tune foundation models from Canvas VPCs with no internet
access. This is because Amazon Bedrock doesn't support VPC endpoints for model
customization APIs. To learn more about fine-tuning foundation models in Canvas, see
Fine-tune foundation models.

You must also add an endpoint policy for Amazon S3 to control AWS principal access to your VPC
endpoint. For information about how to update your VPC endpoint policy, see Control access to
VPC endpoints using endpoint policies.

The following are two VPC endpoint policies that you can use. Use the first policy if you only want
to grant access to the basic functionality of Canvas, such as importing data and creating models.
Use the second policy if you want to grant access to the additional genenerative AI features in
Canvas.

Basic VPC endpoint policy

The following policy grants the necessary access to your VPC endpoint for basic operations in
Canvas.

 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:CreateBucket",
 "s3:GetBucketCors",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 775

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat.html

Amazon SageMaker Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 }

Generative AI VPC endpoint policy

The following policy grants the necessary access to your VPC endpoint for basic operations in
Canvas, as well as using generative AI foundation models.

 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:CreateBucket",
 "s3:GetBucketCors",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*",
 "arn:aws:s3:::*fmeval/datasets*",
 "arn:aws:s3:::*jumpstart-cache-prod*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 }

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 776

Amazon SageMaker Developer Guide

Step 3: Grant IAM permissions

The SageMaker Canvas user must have the necessary AWS Identity and Access Management
permissions to allow connection to the VPC endpoints. The IAM role to which you give permissions
must be the same one you used when onboarding to Amazon SageMaker domain. You can attach
the SageMaker managed AmazonSageMakerFullAccess policy to the IAM role for the user to
give the user the required permissions. If you require more restrictive IAM permissions and use
custom policies instead, then give the user’s role the ec2:DescribeVpcEndpointServices
permission. SageMaker Canvas requires these permissions to verify the existence of the required
VPC endpoints for standard build jobs. If it detects these VPC endpoints, then standard build jobs
run by default in your VPC. Otherwise, they will run in the default AWS managed VPC.

For instructions on how to attach the AmazonSageMakerFullAccess IAM policy to your user’s
IAM role, see Adding and removing IAM identity permissions.

To grant your user’s IAM role the granular ec2:DescribeVpcEndpointServices permission, use
the following procedure.

1. Sign in to the AWS Management Console and open the IAM console.

2. In the navigation pane, choose Roles.

3. In the list, choose the name of the role to which you want to grant permissions.

4. Choose the Permissions tab.

5. Choose Add permissions and then choose Create inline policy.

6. Choose the JSON tab and enter the following policy, which grants the
ec2:DescribeVpcEndpointServices permission:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "ec2:DescribeVpcEndpointServices",
 "Resource": "*"
 }
]
}

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 777

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

7. Choose Review policy, and then enter a Name for the policy (for example,
VPCEndpointPermissions).

8. Choose Create policy.

The user’s IAM role should now have permissions to access the VPC endpoints configured in your
VPC.

(Optional) Step 4: Override security group settings for specific users

If you are an administrator, you might want different users to have different VPC settings, or user-
specific VPC settings. When you override the default VPC’s security group settings for a specific
user, these settings are passed on to the SageMaker Canvas application for that user.

You can override the security groups that a specific user has access to in your VPC when you set
up a new user profile in Studio Classic. You can use the CreateUserProfile SageMaker API call
(or create_user_profile with the AWS CLI), and then in the UserSettings, you can specify the
SecurityGroups for the user.

Set up connections to data sources with OAuth

The following section describes the steps you must take to set up OAuth connections to data
sources from SageMaker Canvas. OAuth is a common authentication platform for granting access
to resources without sharing passwords. With OAuth, you can quickly connect to your data from
Canvas and import it for building models. Canvas currently supports OAuth for Snowflake and
Salesforce Data Cloud.

Note

You can only establish one OAuth connection for each data source.

Set up OAuth for Salesforce Data Cloud

To set up OAuth for Salesforce Data Cloud, follow these general steps:

1. Sign in to Salesforce Data Cloud.

2. In Salesforce Data Cloud, create a new app connection and do the following:

a. Enable OAuth settings.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 778

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_user_profile
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://oauth.net/2/

Amazon SageMaker Developer Guide

b. When prompted for a callback URL (or the URL of the resource accessing your data),
specify the URL for your Canvas application. The Canvas application URL follows this
format: https://<domain-id>.studio.<region>.sagemaker.aws/canvas/
default

c. Copy the consumer key and secret.

d. Copy your authorization URL and token URL.

For more detailed instructions about performing the preceding tasks in Salesforce Data Cloud, see
Import data from Salesforce Data Cloud in the Data Wrangler documentation for importing data
from Salesforce Data Cloud.

After enabling access from Salesforce Data Cloud and getting your connection information, you
must create an AWS Secrets Manager secret to store the information and add it to your Amazon
SageMaker domain or user profile. Note that you can add a secret to both a domain and user
profile, but Canvas looks for secrets in the user profile first.

To add a secret to your domain or user profile, do the following:

1. Go to the Amazon SageMaker console.

2. Choose domains in the navigation pane.

3. From the list of domains, choose your domain.

a. If adding your secret to your domain, do the following:

i. Choose the domain.

ii. On the domain settings page, choose the domain settings tab.

iii. Choose Edit.

b. If adding the secret to your user profile, do the following:

i. Choose the user’s domain.

ii. On the domain settings page, choose the user profile.

iii. On the User Details page, choose Edit.

4. In the navigation pane, choose Canvas settings.

5. For OAuth settings, choose Add OAuth configuration.

6. For Data source, select Salesforce Data Cloud.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 779

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

7. For Secret Setup, select Create a new secret. Alternatively, if you already created an AWS
Secrets Manager secret with your credentials, enter the ARN for the secret. If creating a new
secret, do the following:

a. For Identity Provider, select SALESFORCE.

b. For Client ID, Client Secret, Authorization URL, and Token URL, enter all of the
information you gathered from Salesforce Data Cloud in the previous procedure.

8. Save your domain or user profile settings.

You should now be able to create a connection to your data in Salesforce Data Cloud from Canvas.

Set up OAuth for Snowflake

To set up authentication for Snowflake, Canvas supports identity providers that you can use
instead of having users directly enter their credentials into Canvas.

The following are links to the Snowflake documentation for the identity providers that Canvas
supports:

• Azure AD

• Okta

• Ping Federate

The following process describes the general steps you must take. For more detailed instructions
about performing these steps, you can refer to the Setting up Snowflake OAuth Access section in
the Data Wrangler documentation for importing data from Snowflake.

To set up OAuth for Snowflake, do the following:

1. Register Canvas as an application with the identity provider. This requires specifying
a redirect URL to Canvas, which should follow this format: https://<domain-
id>.studio.<region>.sagemaker.aws/canvas/default

2. Within the identity provider, create a server or API that sends OAuth tokens to Canvas so
that Canvas can access Snowflake. When setting up the server, use the authorization code
and refresh token grant types, specify the access token lifetime, and set a refresh token
policy. Additionally, within the External OAuth Security Integration for Snowflake, enable
external_oauth_any_role_mode.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 780

https://docs.snowflake.com/en/user-guide/oauth-azure.html
https://docs.snowflake.com/en/user-guide/oauth-okta.html
https://docs.snowflake.com/en/user-guide/oauth-pingfed.html

Amazon SageMaker Developer Guide

3. Get the following information from the identity provider: token URL, authorization URL, client
ID, client secret. For Azure AD, also retrieve the OAuth scope credentials.

4. Store the information retrieved in the previous step in an AWS Secrets Manager secret.

a. For Okta and Ping Federate, the secret should look like the following format:

{"token_url":"https://identityprovider.com/oauth2/example-portion-of-URL-path/
v2/token",
"client_id":"example-client-id", "client_secret":"example-client-secret",
 "identity_provider":"OKTA"|"PING_FEDERATE",
"authorization_url":"https://identityprovider.com/oauth2/example-portion-of-
URL-path/v2/authorize"}

b. For Azure AD, the secret should also include the OAuth scope credentials as the
datasource_oauth_scope field.

After configuring the identity provider and the secret, you must create an AWS Secrets Manager
secret to store the information and add it to your Amazon SageMaker domain or user profile. Note
that you can add a secret to both a domain and user profile, but Canvas looks for secrets in the
user profile first.

To add a secret to your domain or user profile, do the following:

1. Go to the Amazon SageMaker console.

2. Choose domains in the navigation pane.

3. From the list of domains, choose your domain.

a. If adding your secret to your domain, do the following:

i. Choose the domain.

ii. On the domain settings page, choose the domain settings tab.

iii. Choose Edit.

b. If adding the secret to your user profile, do the following:

i. Choose the user’s domain.

ii. On the domain settings page, choose the user profile.

iii. On the User Details page, choose Edit.

4. In the navigation pane, choose Canvas settings.

Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators) 781

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

5. For OAuth settings, choose Add OAuth configuration.

6. For Data source, select Snowflake.

7. For Secret Setup, select Create a new secret. Alternatively, if you already created an AWS
Secrets Manager secret with your credentials, enter the ARN for the secret. If creating a new
secret, do the following:

a. For Identity Provider, select SNOWFLAKE.

b. For Client ID, Client Secret, Authorization URL, and Token URL, enter all of the
information you gathered from the identity provider in the previous procedure.

8. Save your domain or user profile settings.

You should now be able to create a connection to your data in Snowflake from Canvas.

Import data into Canvas

Amazon SageMaker Canvas supports importing tabular, image, and document data. You can import
data from both local and external data sources into Canvas. Use the datasets that you import to
build models and make predictions for other datasets.

Each use case for which you can build a custom model accepts different types of input. For
example, if you want to build a single-label image classification model, then you should import
image data. For more information about the different model types and the data they accept, see
Build a custom model. You can import data and build custom models in SageMaker Canvas for the
following data types:

• Tabular (CSV, Parquet, or tables)

• Categorical – Use categorical data to build custom categorical prediction models for 2 and 3+
category prediction.

• Numeric – Use numeric data to build custom numeric prediction models.

• Text – Use text data to build custom multi-category text prediction models.

• Timeseries – Use timeseries data to build custom time series forecasting models.

• Image (JPG or PNG) – Use image data to build custom single-label image prediction models.

• Document (PDF, JPG, PNG, TIFF) – Document data is only supported for SageMaker Canvas
Ready-to-use models. To learn more about Ready-to-use models that can make predictions for
document data, see Use Ready-to-use models.

Import data into Canvas 782

Amazon SageMaker Developer Guide

You can import data into Canvas from the following data sources:

• Local files on your computer

• Amazon S3 buckets

• Amazon Redshift provisioned clusters (not Amazon Redshift Serverless)

• AWS Glue Data Catalog through Amazon Athena

• Amazon Aurora

• Amazon Relational Database Service (Amazon RDS)

• Salesforce Data Cloud

• Snowflake

• Databricks, SQLServer, MariaDB, and other popular databases through JDBC connectors

• Over 40 external SaaS platforms, such as SAP OData

For a full list of data sources from which you can import, see the following table:

Source Type Supported data types

Local file upload Local Tabular, Image, Document

Amazon Aurora Amazon internal Tabular

Amazon S3 bucket Amazon internal Tabular, Image, Document

Amazon RDS Amazon internal Tabular

Amazon Redshift provision
ed clusters (not Redshift
Serverless)

Amazon internal Tabular

AWS Glue Data Catalog
(through Amazon Athena)

Amazon internal Tabular

Databricks External Tabular

Snowflake External Tabular

Salesforce Data Cloud External Tabular

Import data into Canvas 783

https://www.databricks.com/
https://www.salesforce.com/products/genie/overview/

Amazon SageMaker Developer Guide

Source Type Supported data types

SQLServer External Tabular

MySQL External Tabular

PostgreSQL External Tabular

MariaDB External Tabular

Amplitude External SaaS platform Tabular

CircleCI External SaaS platform Tabular

DocuSign Monitor External SaaS platform Tabular

Domo External SaaS platform Tabular

Datadog External SaaS platform Tabular

Dynatrace External SaaS platform Tabular

Facebook Ads External SaaS platform Tabular

Facebook Page Insights External SaaS platform Tabular

Google Ads External SaaS platform Tabular

Google Analytics 4 External SaaS platform Tabular

Google Search Console External SaaS platform Tabular

GitHub External SaaS platform Tabular

GitLab External SaaS platform Tabular

Infor Nexus External SaaS platform Tabular

Instagram Ads External SaaS platform Tabular

Jira Cloud External SaaS platform Tabular

Import data into Canvas 784

https://docs.aws.amazon.com/appflow/latest/userguide/amplitude.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-circleci.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-docusign-monitor.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-domo.html
https://docs.aws.amazon.com/appflow/latest/userguide/datadog.html
https://docs.aws.amazon.com/appflow/latest/userguide/dynatrace.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-facebook-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-facebook-page-insights.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-google-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-google-analytics-4.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-google-search-console.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-github.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-gitlab.html
https://docs.aws.amazon.com/appflow/latest/userguide/infor-nexus.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-instagram-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-jira-cloud.html

Amazon SageMaker Developer Guide

Source Type Supported data types

LinkedIn Ads External SaaS platform Tabular

LinkedIn Ads External SaaS platform Tabular

Mailchimp External SaaS platform Tabular

Marketo External SaaS platform Tabular

Microsoft Teams External SaaS platform Tabular

Mixpanel External SaaS platform Tabular

Okta External SaaS platform Tabular

Salesforce External SaaS platform Tabular

Salesforce Marketing Cloud External SaaS platform Tabular

Salesforce Pardot External SaaS platform Tabular

SAP OData External SaaS platform Tabular

SendGrid External SaaS platform Tabular

ServiceNow External SaaS platform Tabular

Singular External SaaS platform Tabular

Slack External SaaS platform Tabular

Stripe External SaaS platform Tabular

Trend Micro External SaaS platform Tabular

Typeform External SaaS platform Tabular

Veeva External SaaS platform Tabular

Zendesk External SaaS platform Tabular

Import data into Canvas 785

https://docs.aws.amazon.com/appflow/latest/userguide/connectors-linkedin-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-linkedin-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-mailchimp.html
https://docs.aws.amazon.com/appflow/latest/userguide/marketo.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-microsoft-teams.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-mixpanel.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-okta.html
https://docs.aws.amazon.com/appflow/latest/userguide/salesforce.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-salesforce-marketing-cloud.html
https://docs.aws.amazon.com/appflow/latest/userguide/pardot.html
https://docs.aws.amazon.com/appflow/latest/userguide/sapodata.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-sendgrid.html
https://docs.aws.amazon.com/appflow/latest/userguide/servicenow.html
https://docs.aws.amazon.com/appflow/latest/userguide/singular.html
https://docs.aws.amazon.com/appflow/latest/userguide/slack.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-stripe.html
https://docs.aws.amazon.com/appflow/latest/userguide/trend-micro.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-typeform.html
https://docs.aws.amazon.com/appflow/latest/userguide/veeva.html
https://docs.aws.amazon.com/appflow/latest/userguide/zendesk.html

Amazon SageMaker Developer Guide

Source Type Supported data types

Zendesk Chat External SaaS platform Tabular

Zendesk Sell External SaaS platform Tabular

Zendesk Sunshine External SaaS platform Tabular

Zoom Meetings External SaaS platform Tabular

For instructions on how to import data and information regarding input data requirements, such as
the maximum file size for images, see Create a dataset.

Canvas also provides several sample datasets in your application to help you get started. To learn
more about the SageMaker-provided sample datasets you can experiment with, see Use sample
datasets.

After you import a dataset into Canvas, you can update the dataset at any time. You can do a
manual update or you can set up a schedule for automatic dataset updates. For more information,
see Update a dataset.

For more information specific to each dataset type, see the following sections:

Tabular

To import data from an external data source (such as a Snowflake database or a SaaS platform),
you must authenticate and connect to the data source in the Canvas application. For more
information, see Connect to data sources.

After creating datasets in Canvas, you can join multiple datasets into a single dataset. Joining
datasets is only supported for tabular datasets. As long as your data is arranged into tables, you
can join datasets from various sources, such as Amazon Redshift, Amazon Athena, or Snowflake.
For information about joining datasets, see Join data that you've imported into SageMaker Canvas.

Image

For information about how to edit an image dataset and perform tasks such as assigning or
reassigning labels, adding images, or deleting images, see Edit an image dataset.

Import data into Canvas 786

https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zendesk-chat.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zendesk-sell.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zendesk-sunshine.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zoom.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-sample-datasets.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-sample-datasets.html

Amazon SageMaker Developer Guide

Create a dataset

The following sections describe how to create a dataset in Amazon SageMaker Canvas. For custom
models, you can create datasets for tabular and image data. For Ready-to-use models, you can
use tabular and image datasets as well as document datasets. Choose your workflow based on the
following information:

• For categorical, numeric, text, and timeseries data, see Import tabular data.

• For image data, see Import image data.

• For document data, see Import document data.

Note

For information about how to import a document dataset for Ready-to-use models that
accept document data, see the Import document data workflow in the Ready-to-use
models documentation.

A dataset can consist of multiple files. For example, you might have multiple files of inventory data
in CSV format. You can upload these files together as a dataset as long as the schema (or column
names and data types) of the files match.

Canvas also supports managing multiple versions of your dataset. When you create a dataset,
the first version is labeled as V1. You can create a new version of your dataset by updating your
dataset. You can do a manual update, or you can set up an automated schedule for updating your
dataset with new data. For more information, see Update a dataset.

When you import your data into Canvas, make sure that it meets the requirements in the following
table. The limitations are specific to the type of model you’re building.

Limit 2 category,
3+ category,
numeric, and
time series
models

Text prediction
models

Image predictio
n models

*Document data
for Ready-to-
use models

Supported file
types

CSV and Parquet
(local upload,

CSV and Parquet
(local upload,

JPG, PNG PDF, JPG, PNG,
TIFF

Import data into Canvas 787

Amazon SageMaker Developer Guide

Limit 2 category,
3+ category,
numeric, and
time series
models

Text prediction
models

Image predictio
n models

*Document data
for Ready-to-
use models

Amazon S3, or
databases)

JSON (database
s)

Amazon S3, or
databases)

JSON (database
s)

Maximum file
size

5 GB (for all files
in the dataset)

5 MB (for all files
in the dataset)

30 MB per image 5 MB per
document

Maximum
number of
files in tabular
datasets

50 50 N/A N/A

Maximum
number of
files in tabular
datasets for a
single manual
upload

20 20 N/A N/A

Maximum
number of
columns

1000 1000 N/A N/A

Maximum
number of
entries (rows,
images, or
documents) for
Quick builds

50,000 rows 7500 rows 5000 images N/A

Import data into Canvas 788

Amazon SageMaker Developer Guide

Limit 2 category,
3+ category,
numeric, and
time series
models

Text prediction
models

Image predictio
n models

*Document data
for Ready-to-
use models

Maximum
number of
entries (rows,
images, or
documents) for
Standard builds

N/A 150,000 rows 180,000 images N/A

Minimum
number of
entries (rows) for
Quick builds

2 category: 500
rows

3+ category,
numeric, time
series: N/A

N/A N/A N/A

Minimum
number of
entries (rows,
images, or
documents) for
Standard builds

250 rows 50 rows 50 images N/A

Minimum
number of
entries (rows
or images) per
label

N/A 25 rows 25 rows N/A

Import data into Canvas 789

Amazon SageMaker Developer Guide

Limit 2 category,
3+ category,
numeric, and
time series
models

Text prediction
models

Image predictio
n models

*Document data
for Ready-to-
use models

Minimum
number of labels

2 category: 2

3+ category: 3

Numeric, time
series: N/A

2 2 N/A

Minimum
sample size
for random
sampling

500 N/A N/A N/A

Maximum
sample size
for random
sampling

40,000 N/A N/A N/A

Maximum
number of labels

2 category: 2

3+ category,
numeric, time
series: N/A

1000 1000 N/A

*Document data is currently only supported for Ready-to-use models that accept document data.
You can't build a custom model with document data.

Also note the following restrictions:

• For tabular data, Canvas disallows selecting any file with extensions other
than .csv, .parquet, .parq, and .pqt for both local upload and Amazon S3 import. CSV files must
be comma delimited and not have newline characters except when denoting a new row.

• For tabular data using Parquet files, note the following:

Import data into Canvas 790

Amazon SageMaker Developer Guide

• Parquet files can't include complex types like maps and lists.

• The column names of Parquet files can't contain spaces.

• If using compression, Parquet files must use either gzip or snappy compression types. For more
information about the preceding compression types, see the gzip documentation and the
snappy documentation.

• For image data, if you have any unlabeled images, you must label them before building your
model. For information about how to assign labels to images within the Canvas application, see
Edit an image dataset.

• If you set up automatic dataset updates or automatic batch prediction configurations, you can
only create a total of 20 configurations in your Canvas application. For more information, see
Manage automations.

After you import a dataset, you can view your datasets on the Datasets page at any time.

Import tabular data

With tabular datasets, you can build categorical, numeric, time series forecasting, and text
prediction models. Review the limitations table in the preceding Import a dataset section to
ensure that your data meets the requirements for tabular data (note that the sample size limits
only apply when previewing your data before building your model).

Use the following procedure to import a tabular dataset into Canvas:

1. Open your SageMaker Canvas application.

2. In the left navigation pane, choose Datasets.

3. Choose Import.

4. In the popup dialog box, in the Dataset name field, enter a name for the dataset and choose
Create.

5. On the Import page, open the Data Source dropdown menu.

6. Choose your data source:

• To upload files from your computer, choose Local upload.

• To import data from another source, such as an Amazon S3 bucket or a Snowflake database,
search for your data source in the Search data source bar. Then, choose the tile for your
desired data source.

Import data into Canvas 791

https://www.gzip.org/
https://github.com/google/snappy

Amazon SageMaker Developer Guide

Note

You can only import data from the tiles that have an active connection. If you want
to connect to a data source that is unavailable to you, contact your administrator. If
you’re an administrator, see Connect to data sources.

The following screenshot shows the Data Source dropdown menu.

7. (Optional) If you’re connecting to an Amazon Redshift or Snowflake database for the first time,
a dialog box appears to create a connection. Fill out the dialog box with your credentials and
choose Create connection. If you already have a connection, choose your connection.

8. From your data source, select your files to import. For local upload and importing from
Amazon S3, you can select files. For Amazon S3 only, you also have the option to directly
enter the S3 URI or ARN of your bucket in the Input S3 endpoint field and then choose files
to import. For database sources, you can drag-and-drop data tables from the left navigation
pane.

9. (Optional) For tabular data sources that support SQL querying (such as Amazon Redshift,
Amazon Athena, or Snowflake), you can choose Edit in SQL to make SQL queries and join
tables before importing them. For more information, see Join data that you've imported into
SageMaker Canvas.

Import data into Canvas 792

Amazon SageMaker Developer Guide

The following screenshot shows the Edit SQL view for an Amazon Athena data source.

10. (Optional) You can choose Preview to preview your dataset before importing. For tabular
datasets, this shows you up to the first 100 rows of your dataset. The following screenshot
shows you the Import preview screen

11. When you’re ready to import your data, choose Import data.

While your dataset is importing into Canvas, you can see your datasets listed on the Datasets page.
From this page, you can View your dataset details.

When the Status of your dataset shows as Ready, Canvas successfully imported your data and you
can proceed with building a model.

If you have a connection to a data source, such as an Amazon Redshift database or a SaaS
connector, you can return to that connection. For Amazon Redshift and Snowflake, you can add
another connection by creating another dataset, returning to the Import data page, and choosing
the Data Source tile for that connection. From the dropdown menu, you can open the previous
connection or choose Add connection.

Note

For SaaS platforms, you can only have one connection per data source.

Import data into Canvas 793

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-build-model.html

Amazon SageMaker Developer Guide

Import image data

With image datasets, you can build single-label image prediction custom models, which predict a
label for an image. Review the limitations in the preceding Import a dataset section to ensure that
your image dataset meets the requirements for image data.

Note

You can only import image datasets from local file upload or an Amazon S3 bucket. Also,
for image datasets, you must have at least 25 images per label.

Use the following procedure to import an image dataset into Canvas:

1. Open your SageMaker Canvas application.

2. In the left navigation pane, choose Datasets.

3. Choose Create.

4. From the dropdown menu, choose Image.

5. In the popup dialog box, in the Dataset name field, enter a name for the dataset and choose
Create.

6. On the Import page, open the Data Source dropdown menu.

7. Choose your data source. To upload files from your computer, choose Local upload. To import
files from Amazon S3, choose Amazon S3.

8. From your computer or Amazon S3 bucket, select the images or folders of images that you
want to upload.

9. When you’re ready to import your data, choose Import data.

While your dataset is importing into Canvas, you can see your datasets listed on the Datasets page.
From this page, you can View your dataset details.

When the Status of your dataset shows as Ready, Canvas successfully imported your data and you
can proceed with building a model.

When you are building your model, you can edit your image dataset, and you can assign or re-
assign labels, add images, or delete images from your dataset. For more information about how to
edit your image dataset, see Edit an image dataset.

Import data into Canvas 794

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-build-model.html

Amazon SageMaker Developer Guide

Import document data

The Ready-to-use models for expense analysis, identity document analysis, document analysis, and
document queries support document data. You can’t build a custom model with document data.

With document datasets, you can generate predictions for expense analysis, identity document
analysis, document analysis, and document queries Ready-to-use models. Review the limitations
table in the Create a dataset section to ensure that your document dataset meets the requirements
for document data.

Note

You can only import document datasets from local file upload or an Amazon S3 bucket.

Use the following procedure to import a document dataset into Canvas:

1. Open your SageMaker Canvas application.

2. In the left navigation pane, choose Datasets.

3. Choose Create.

4. From the dropdown menu, choose Document.

5. In the popup dialog box, in the Dataset name field, enter a name for the dataset and choose
Create.

6. On the Import page, open the Data Source dropdown menu.

7. Choose your data source. To upload files from your computer, choose Local upload. To import
files from Amazon S3, choose Amazon S3.

8. From your computer or Amazon S3 bucket, select the document files that you want to upload.

9. When you’re ready to import your data, choose Import data.

While your dataset is importing into Canvas, you can see your datasets listed on the Datasets page.
From this page, you can View your dataset details.

When the Status of your dataset shows as Ready, Canvas has successfully imported your data.

On the Datasets page, you can choose your dataset to preview it, which shows you up to the first
100 documents of your dataset.

Import data into Canvas 795

Amazon SageMaker Developer Guide

View your dataset details

For each of your datasets, you can view all of the files in a dataset, the dataset’s version history,
and any auto update configurations for the dataset. From the Datasets page, you can also initiate
actions such as Update a dataset or Build a custom model.

To view the details for a dataset, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose Datasets.

3. From the list of datasets, choose your dataset.

On the Data tab, you can see a preview of your data. If you choose Dataset details, you can see
all of the files that are part of your dataset. Choose a file to see only the data from that file in the
preview. For image datasets, the preview only shows you the first 100 images of your dataset.

On the Version history tab, you can see a list of all of the versions of your dataset. A new version
is made whenever you update a dataset. To learn more about updating a dataset, see Update a
dataset. The following screenshot shows the Version history tab in the Canvas application.

Import data into Canvas 796

Amazon SageMaker Developer Guide

On the Auto updates tab, you can enable auto updates for the dataset and set up a configuration
to update your dataset on a regular schedule. To learn more about setting up auto updates for a
dataset, see Configure automatic updates for a dataset. The following screenshot shows the Auto
updates tab with auto updates turned on and a list of auto update jobs that have been performed
on the dataset.

Import data into Canvas 797

Amazon SageMaker Developer Guide

Update a dataset

After importing your initial dataset into Amazon SageMaker Canvas, you might have additional
data that you want to add to your dataset. For example, you might get inventory data at the end
of every week that you want to add to your dataset. Instead of importing your data multiple times,
you can update your existing dataset and add or remove files from it.

Note

You can only update datasets that you have imported through local upload or Amazon S3.

Import data into Canvas 798

Amazon SageMaker Developer Guide

You can update your dataset either manually or automatically. With automatic updates, you specify
a location where Canvas checks for files at a frequency you specify. If you import new files during
the update, the schema of the files must match the existing dataset exactly.

Every time you update your dataset, Canvas creates a new version of your dataset. You can only use
the latest version of your dataset to build a model or generate predictions. For more information
about viewing the version history of your dataset, see View your dataset details.

You can also use dataset updates with automated batch predictions, which starts a batch
prediction job whenever you update your dataset. For more information, see Make batch
predictions.

The following sections describe how to do manual and automatic updates to your dataset.

Manually update a dataset

To do a manual update, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose Datasets.

3. From the list of datasets, choose the dataset you want to update.

4. Choose the Update dataset dropdown menu and choose Manual update. You are taken to the
import data workflow.

5. From the Data source dropdown menu, choose either Local upload or Amazon S3.

6. The page shows you a preview of your data. From here, you can add or remove files from the
dataset. If you’re importing tabular data, the schema of the new files (column names and data
types) must match the schema of the existing files. Additionally, your new files must not exceed
the maximum dataset size or file size. For more information about these limitations, see Import
a dataset.

Note

If you add a file with the same name as an existing file in your dataset, the new file
overwrites the old version of the file.

7. When you’re ready to save your changes, choose Update dataset.

You should now have a new version of your dataset.

Import data into Canvas 799

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-import-dataset.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-import-dataset.html

Amazon SageMaker Developer Guide

On the Datasets page, you can choose the Version history tab to see all of the versions of your
dataset and the history of both manual and automatic updates you’ve made.

Configure automatic updates for a dataset

An automatic update is when you set up a configuration for Canvas to update your dataset at a
given frequency. We recommend that you use this option if you regularly receive new files of data
that you want to add to your dataset.

When you set up the auto update configuration, you specify an Amazon S3 location where you
upload your files and a frequency at which Canvas checks the location and imports files. Each
instance of Canvas updating your dataset is referred to as a job. For each job, Canvas imports all of
the files in the Amazon S3 location. If you have new files with the same names as existing files in
your dataset, Canvas overwrites the old files with the new files.

For automatic dataset updates, Canvas doesn’t perform schema validation. If the schema of files
imported during an automatic update don’t match the schema of the existing files or exceed the
size limitations (see Import a dataset for a table of file size limitations), then you get errors when
your jobs run.

Note

You can only set up a maximum of 20 automatic configurations in your Canvas application.
Additionally, Canvas only does automatic updates while you’re logged in to your Canvas
application. If you log out of your Canvas application, automatic updates pause until you
log back in.

To configure automatic updates for your dataset, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose Datasets.

3. From the list of datasets, choose the dataset you want to update.

4. Choose the Update dataset dropdown menu and choose Automatic update. You are taken to
the Auto updatestab for the dataset.

5. Turn on the Auto update enabled toggle.

6. For Specify a data source, enter the Amazon S3 path to a folder where you plan to regularly
upload files.

Import data into Canvas 800

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-import-dataset.html

Amazon SageMaker Developer Guide

7. For Choose a frequency, select Hourly, Weekly, or Daily.

8. For Specify a starting time, use the calendar and time picker to select when you want the first
auto update job to start.

9. When you’re ready to create the auto update configuration, choose Save.

Canvas begins the first job of your auto update cadence at the specified starting time.

For more information about viewing your auto update job history or making changes to your
auto update configuration through the Automations page in the Canvas application, see Manage
automations.

The following sections describe how to view, update, and delete your automatic update
configuration through the Datasets page in the Canvas application.

View your automatic dataset update jobs

To view the job history for your automatic dataset updates, on your dataset details page, choose
the Auto updates tab.

Each automatic update to a dataset shows as a job in the Auto updates tab under the Job history
section. For each job, you can see the following:

• Job created – The timestamp for when Canvas started updating the dataset.

• Files – The number of files in the dataset.

• Cells (Columns x Rows) – The number of columns and rows in the dataset.

• Status – The status of the dataset after the update. If the job was successful, the status is Ready.
If the job failed for any reason, the status is Failed, and you can hover over the status for more
details.

Edit your automatic dataset update configuration

You might want to make changes to your auto update configuration for a dataset, such as changing
the frequency of the updates. You might also want to turn off your automatic update configuration
to pause the updates to your dataset.

To make changes to your auto update configuration for a dataset, go to the Auto updates tab of
your dataset and choose Edit to make changes to the configuration.

Import data into Canvas 801

Amazon SageMaker Developer Guide

To pause your dataset updates, turn off your automatic configuration. You can turn off auto
updates by going to the Auto updates tab of your dataset and turning the Enable auto updates
toggle off. You can turn this toggle back on at any time to resume the update schedule.

Delete your automatic dataset update configuration

To learn how to delete your configuration, see Delete an automatic configuration.

Connect to data sources

In Amazon SageMaker Canvas, you can import data from a location outside of your local file system
through an AWS service, a SaaS platform, or other databases using JDBC connectors. For example,
you might want to import tables from a data warehouse in Amazon Redshift, or you might want to
import Google Analytics data.

When you go through the Import workflow to import data in the Canvas application, you can
choose your data source and then select the data that you want to import. For certain data sources,
like Snowflake and Amazon Redshift, you must specify your credentials and add a connection to
the data source.

The following screenshot shows the data sources toolbar in the Import workflow, with all of
the available data sources highlighted. You can only import data from the data sources that are
available to you. Contact your administrator if your desired data source isn’t available.

Import data into Canvas 802

Amazon SageMaker Developer Guide

The following sections provide information about establishing connections to external data
sources and and importing data from them. Review the following section first to determine what
permissions you need to import data from your data source.

Permissions

Review the following information to ensure that you have the necessary permissions to import
data from your data source:

• Amazon S3: You can import data from any Amazon S3 bucket as long as your user has
permissions to access the bucket. For more information about using AWS IAM to control access to
Amazon S3 buckets, see Identity and access management in Amazon S3 in the Amazon S3 User
Guide.

• Amazon Athena: If you have the AmazonSageMakerFullAccess policy and the
AmazonSageMakerCanvasFullAccess policy attached to your user’s execution role, then you can
query your AWS Glue Data Catalog with Amazon Athena. If you’re part of an Athena workgroup,
make sure that the Canvas user has permissions to run Athena queries on the data. For more
information, see Using workgroups for running queries in the Amazon Athena User Guide.

• Amazon DocumentDB: You can import data from any Amazon DocumentDB database as long
as you have the credentials (username and password) to connect to the database and have the
minimum base Canvas permissions attached to your user’s execution role. For more information
about Canvas permissions, see the Prerequisites for setting up Amazon SageMaker Canvas.

• Amazon Redshift: To give yourself the necessary permissions to import data from Amazon
Redshift, see Grant Users Permissions to Import Amazon Redshift Data.

• Amazon RDS: If you have the AmazonSageMakerCanvasFullAccess policy attached to your user’s
execution role, then you’ll be able to access your Amazon RDS databases from Canvas.

• SaaS platforms: If you have the AmazonSageMakerFullAccess policy and the
AmazonSageMakerCanvasFullAccess policy attached to your user’s execution role, then you have
the necessary permissions to import data from SaaS platforms. See Use SaaS connectors with
Canvas for more information about connecting to a specific SaaS connector.

• JDBC connectors: For database sources such as Databricks, MySQL or MariaDB, you must enable
username and password authentication on the source database before attempting to connect
from Canvas. If you’re connecting to a Databricks database, you must have the JDBC URL that
contains the necessary credentials.

Import data into Canvas 803

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-redshift-permissions.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html

Amazon SageMaker Developer Guide

Connect to a database stored in AWS

You might want to import data that you’ve stored in AWS. You can import data from Amazon S3,
use Amazon Athena to query a database in the AWS Glue Data Catalog, import data from Amazon
RDS, or make a connection to a provisioned Amazon Redshift database (not Redshift Serverless).

You can create multiple connections to Amazon Redshift. For Amazon Athena, you can access any
databases that you have in your AWS Glue Data Catalog. For Amazon S3, you can import data from
a bucket as long as you have the necessary permissions.

Review the following sections for more detailed information.

Connect to data in Amazon S3, Amazon Athena, or Amazon RDS

For Amazon S3, you can import data from an Amazon S3 bucket as long as you have permissions to
access the bucket.

For Amazon Athena, you can access databases in your AWS Glue Data Catalog as long as you have
permissions through your Amazon Athena workgroup.

For Amazon RDS, if you have the AmazonSageMakerCanvasFullAccess policy attached to your
user’s role, then you’ll be able to import data from your Amazon RDS databases into Canvas.

To import data from an Amazon S3 bucket, or to run queries and import data tables with Amazon
Athena, see Create a dataset. You can only import tabular data from Amazon Athena, and you can
import tabular and image data from Amazon S3.

Connect to an Amazon DocumentDB database

Amazon DocumentDB is a fully managed, serverless, document database service. You can import
unstructured document data stored in an Amazon DocumentDB database into SageMaker Canvas
as a tabular dataset, and then you can build machine learning models with the data.

Important

Your SageMaker domain must be configured in VPC only mode to add connections to
Amazon DocumentDB. You can only access Amazon DocumentDB clusters in the same
Amazon VPC as your Canvas application. Additionally, Canvas can only connect to TLS-
enabled Amazon DocumentDB clusters. For more information about how to set up Canvas
in VPC only mode, see Configure Amazon SageMaker Canvas in a VPC without internet
access.

Import data into Canvas 804

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/serverless-etl-aws-glue/aws-glue-data-catalog.html
https://docs.aws.amazon.com/athena/latest/ug/manage-queries-control-costs-with-workgroups.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html

Amazon SageMaker Developer Guide

To import data from Amazon DocumentDB databases, you must have credentials to access
the Amazon DocumentDB database and specify the username and password when creating
a database connection. You can configure more granular permissions and restrict access by
modifying the Amazon DocumentDB user permissions. To learn more about access control in
Amazon DocumentDB, see Database Access Using Role-Based Access Control in the Amazon
DocumentDB Developer Guide.

When you import from Amazon DocumentDB, Canvas converts your unstructured data into a
tabular dataset by mapping the fields to columns in a table. Additional tables are created for each
complex field (or nested structure) in the data, where the columns correspond to the sub-fields
of the complex field. For more detailed information about this process and examples of schema
conversion, see the Amazon DocumentDB JDBC Driver Schema Discovery GitHub page.

Canvas can only make a connection to a single database in Amazon DocumentDB. To import data
from a different database, you must create a new connection.

You can import data from Amazon DocumentDB into Canvas by using the following methods:

• Create a dataset. You can import your Amazon DocumentDB data and create a tabular dataset
in Canvas. If you choose this method, make sure that you follow the Import tabular data
procedure.

• Create a Data Flow. You can create a data preparation pipeline in Canvas and add your Amazon
DocumentDB database as a data source.

To proceed with importing your data, follow the procedure for one of the methods linked in the
preceding list.

When you reach the step in either workflow to choose a data source (Step 5 for creating a dataset,
or Step 6 for creating a data flow), do the following:

1. For Data Source, open the dropdown menu and choose DocumentDB.

2. Choose Add connection.

3. In the dialog box, specify your Amazon DocumentDB credentials:

a. Enter a Connection name. This is a name used by Canvas to identify this connection.

b. For Cluster, select the cluster in Amazon DocumentDB that stores your data. Canvas
automatically populates the dropdown menu with Amazon DocumentDB clusters in the
same VPC as your Canvas application.

Import data into Canvas 805

https://docs.aws.amazon.com/documentdb/latest/developerguide/role_based_access_control.html
https://github.com/aws/amazon-documentdb-jdbc-driver/blob/develop/src/markdown/schema/schema-discovery.md
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-import-dataset.html#canvas-import-dataset-tabular

Amazon SageMaker Developer Guide

c. Enter the Username for your Amazon DocumentDB cluster.

d. Enter the Password for your Amazon DocumentDB cluster.

e. Enter the name of the Database to which you want to connect.

f. The Read preference option determines which types of instances on your cluster Canvas
reads the data from. Select one of the following:

• Secondary preferred – Canvas defaults to reading from the cluster’s secondary
instances, but if a secondary instance isn’t available, then Canvas reads from a primary
instance.

• Secondary – Canvas only reads from the cluster’s secondary instances, which prevents
the read operations from interfering with the cluster’s regular read and write
operations.

g. Choose Add connection. The following image shows the dialog box with the preceding
fields for an Amazon DocumentDB connection.

Import data into Canvas 806

Amazon SageMaker Developer Guide

You should now have an Amazon DocumentDB connection, and you can use your Amazon
DocumentDB data in Canvas to create either a dataset or a data flow.

Connect to an Amazon Redshift database

You can import data from Amazon Redshift, a data warehouse where your organization keeps its
data. Before you can import data from Amazon Redshift, the AWS IAM role you use must have the
AmazonRedshiftFullAccess managed policy attached. For instructions on how to attach this
policy, see Grant Users Permissions to Import Amazon Redshift Data.

To import data from Amazon Redshift, you do the following:

1. Create a connection to an Amazon Redshift database.

2. Choose the data that you're importing.

3. Import the data.

You can use the Amazon Redshift editor to drag datasets onto the import pane and import them
into SageMaker Canvas. For more control over the values returned in the dataset, you can use the
following:

• SQL queries

• Joins

With SQL queries, you can customize how you import the values in the dataset. For example, you
can specify the columns returned in the dataset or the range of values for a column.

You can use joins to combine multiple datasets from Amazon Redshift into a single dataset. You
can drag your datasets from Amazon Redshift into the panel that gives you the ability to join the
datasets.

You can use the SQL editor to edit the dataset that you've joined and convert the joined dataset
into a single node. You can join another dataset to the node. You can import the data that you've
selected into SageMaker Canvas.

Use the following procedure to import data from Amazon Redshift.

1. In the SageMaker Canvas application, go to the Datasets page.

2. Choose Create, and from the dropdown menu, choose Tabular.

Import data into Canvas 807

Amazon SageMaker Developer Guide

3. Enter a name for the dataset and choose Create.

4. For Data Source, open the dropdown menu and choose Redshift.

5. Choose Add connection.

6. In the dialog box, specify your Amazon Redshift credentials:

a. For Authentication method, choose IAM.

b. Enter the Cluster identifier to specify to which cluster you want to connect. Enter only the
cluster identifier and not the full endpoint of the Amazon Redshift cluster.

c. Enter the Database name of the database to which you want to connect.

d. Enter a Database user to identify the user you want to use to connect to the database.

e. For ARN, enter the IAM role ARN of the role that the Amazon Redshift cluster should
assume to move and write data to Amazon S3. For more information about this role, see
Authorizing Amazon Redshift to access other AWS services on your behalf in the Amazon
Redshift Management Guide.

f. Enter a Connection name. This is a name used by Canvas to identify this connection.

7. From the tab that has the name of your connection, drag the .csv file that you're importing to
the Drag and drop table to import pane.

8. Optional: Drag additional tables to the import pane. You can use the GUI to join the tables. For
more specificity in your joins, choose Edit in SQL.

9. Optional: If you're using SQL to query the data, you can choose Context to add context to the
connection by specifying values for the following:

• Warehouse

• Database

• Schema

10. Choose Import data.

The following image shows an example of fields specified for an Amazon Redshift connection.

Import data into Canvas 808

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html

Amazon SageMaker Developer Guide

The following image shows the page used to join datasets in Amazon Redshift.

The following image shows an SQL query being used to edit a join in Amazon Redshift.

Import data into Canvas 809

Amazon SageMaker Developer Guide

Connect to your data with JDBC connectors

With JDBC, you can connect to your databases from sources such as Databricks, SQLServer, MySQL,
PostgreSQL, MariaDB, Amazon RDS, and Amazon Aurora.

You must make sure that you have the necessary credentials and permissions to create the
connection from Canvas.

• For Databricks, you must provide a JDBC URL. The URL formatting can vary between
Databricks instances. For information about finding the URL and the specifying
the parameters within it, see JDBC configuration and connection parameters in the
Databricks documentation. The following is an example of how a URL can be formatted:
jdbc:spark://aws-sagemaker-datawrangler.cloud.databricks.com:443/
default;transportMode=http;ssl=1;httpPath=sql/protocolv1/
o/3122619508517275/0909-200301-cut318;AuthMech=3;UID=token;PWD=personal-
access-token

• For other database sources, you must set up username and password authentication, and then
specify those credentials when connecting to the database from Canvas.

Additionally, your data source must either be accessible through the public internet, or if your
Canvas application is running in VPC only mode, then the data source must run in the same VPC.

Import data into Canvas 810

https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#jdbc-configuration-and-connection-parameters

Amazon SageMaker Developer Guide

For more information about configuring an Amazon RDS database in a VPC, see Amazon VPC VPCs
and Amazon RDS in the Amazon RDS User Guide.

After you’ve configured your data source credentials, you can sign in to the Canvas application and
create a connection to the data source. Specify your credentials (or, for Databricks, the URL) when
creating the connection.

Connect to data sources with OAuth

Canvas supports using OAuth as an authentication method for connecting to your data in
Snowflake and Salesforce Data Cloud. OAuth is a common authentication platform for granting
access to resources without sharing passwords.

Note

You can only establish one OAuth connection for each data source.

To authorize the connection, you must following the initial setup described in Set up connections
to data sources with OAuth.

After setting up the OAuth credentials, you can do the following to add a Snowflake or Salesforce
Data Cloud connection with OAuth:

1. Sign in to the Canvas application.

2. Create a tabular dataset. When prompted to upload data, choose Snowflake or Salesforce Data
Cloud as your data source.

3. Create a new connection to your Snowflake or Salesforce Data Cloud data source. Specify
OAuth as the authentication method and enter your connection details.

You should now be able to import data from your databases in Snowflake or Salesforce Data Cloud.

Connect to a SaaS platform

You can import data from Snowflake and over 40 other external SaaS platforms. For a full list of
the connectors, see the table on Import data into Canvas.

Import data into Canvas 811

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.html
https://oauth.net/2/

Amazon SageMaker Developer Guide

Note

You can only import tabular data, such as data tables, from SaaS platforms.

Use Snowflake with Canvas

Snowflake is a data storage and analytics service, and you can import your data from Snowflake
into SageMaker Canvas. For more information about Snowflake, see the Snowflake documentation.

You can import data from your Snowflake account by doing the following:

1. Create a connection to the Snowflake database.

2. Choose the data that you're importing by dragging and dropping the table from the left
navigation menu into the editor.

3. Import the data.

You can use the Snowflake editor to drag datasets onto the import pane and import them into
SageMaker Canvas. For more control over the values returned in the dataset, you can use the
following:

• SQL queries

• Joins

With SQL queries, you can customize how you import the values in the dataset. For example, you
can specify the columns returned in the dataset or the range of values for a column.

You can join multiple Snowflake datasets into a single dataset before you import into Canvas using
SQL or the Canvas interface. You can drag your datasets from Snowflake into the panel that gives
you the ability to join the datasets, or you can edit the joins in SQL and convert the SQL into a
single node. You can join other nodes to the node that you've converted. You can then combine the
datasets that you've joined into a single node and join the nodes to a different Snowflake dataset.
Finally, you can import the data that you've selected into Canvas.

Use the following procedure to import data from Snowflake to Amazon SageMaker Canvas.

1. In the SageMaker Canvas application, go to the Datasets page.

Import data into Canvas 812

https://www.snowflake.com/en/

Amazon SageMaker Developer Guide

2. Choose Import.

3. For Data Source, open the dropdown menu and choose Snowflake.

4. Choose Add connection.

5. In the Add a new Snowflake connection dialog box, specify your Snowflake credentials. For
the Authentication method, you can choose Basic - username password, ARN or OAuth.
OAuth lets you authenticate without providing a password but requires additional setup. For
more information about setting up OAuth credentials for Snowflake, see Set up connections to
data sources with OAuth.

6. Choose Add connection.

7. From the tab that has the name of your connection, drag the .csv file that you're importing to
the Drag and drop table to import pane.

8. Optional: Drag additional tables to the import pane. You can use the user interface to join the
tables. For more specificity in your joins, choose Edit in SQL.

9. Optional: If you're using SQL to query the data, you can choose Context to add context to the
connection by specifying values for the following:

• Warehouse

• Database

• Schema

Adding context to a connection makes it easier to specify future queries.

10. Choose Import data.

The following image shows an example of fields specified for a Snowflake connection.

Import data into Canvas 813

Amazon SageMaker Developer Guide

The following image shows the page used to add context to a connection.

Import data into Canvas 814

Amazon SageMaker Developer Guide

The following image shows the page used to join datasets in Snowflake.

Import data into Canvas 815

Amazon SageMaker Developer Guide

The following image shows a SQL query being used to edit a join in Snowflake.

Import data into Canvas 816

Amazon SageMaker Developer Guide

Use SaaS connectors with Canvas

Note

For SaaS platforms besides Snowflake, you can only have one connection per data source.

Before you can import data from a SaaS platform, your administrator must authenticate and create
a connection to the data source. For more information about how administrators can create a
connection with a SaaS platform, see Managing Amazon AppFlow connections in the Amazon
AppFlow User Guide.

If you’re an administrator getting started with Amazon AppFlow for the first time, see Getting
started in the Amazon AppFlow User Guide.

Import data into Canvas 817

https://docs.aws.amazon.com/appflow/latest/userguide/connections.html
https://docs.aws.amazon.com/appflow/latest/userguide/getting-started.html
https://docs.aws.amazon.com/appflow/latest/userguide/getting-started.html

Amazon SageMaker Developer Guide

To import data from a SaaS platform, you can follow the standard Import tabular data procedure,
which shows you how to import tabular datasets into Canvas.

Join data that you've imported into SageMaker Canvas

Note

You can only make joins for tabular datasets in SageMaker Canvas.

You can use Amazon SageMaker Canvas to join multiple datasets into a single dataset. A join
combines the two datasets. By default, SageMaker Canvas automatically joins the datasets on their
matching column names. The option to combine multiple datasets might give you the ability to get
more insight from the models that you build.

You can make the following joins for your datasets:

• Inner – Returns a dataset with matching values in both datasets.

• Left – Returns a dataset that has:

• All the rows from the dataset to the left of the join.

• All the rows from the dataset to the right of the join that have matching values with the
columns to the left of the join.

• Right – Returns a dataset that has:

• All the rows from the dataset to the right of the join.

• All the rows from the dataset to the left of the join that have matching values with the
columns to the right of the join.

• Outer – Returns all the rows when there is a match in either the left or the right dataset. The
dataset from an outer join might have null values that SageMaker Canvas might impute when
you build a model.

Use the following procedure to join your datasets.

To join datasets, do the following.

1. Navigate to the Datasets page.

2. Choose Join data.

Import data into Canvas 818

Amazon SageMaker Developer Guide

3. Drag and drop the datasets that you're joining into the Drag and drop datasets to join box.

4. Configure the join. Amazon SageMaker Canvas shows you a preview of the joined data after
you configure it.

5. Choose Save joined data to save the output of the join.

The following images show the workflow of the preceding procedure.

Import data into Canvas 819

Amazon SageMaker Developer Guide

Import data into Canvas 820

Amazon SageMaker Developer Guide

Import data into Canvas 821

Amazon SageMaker Developer Guide

Use sample datasets

SageMaker Canvas provides sample datasets addressing unique use cases so you can start building,
training, and validating models quickly without writing any code. The use cases associated with
these datasets highlight the capabilities of SageMaker Canvas, and you can leverage these datasets
to get started with building models. You can find the sample datasets in the Datasets page of your
SageMaker Canvas application.

Sample datasets

The following datasets are the samples that SageMaker Canvas provides by default. These datasets
cover use cases such as predicting house prices, loan defaults, and readmission for diabetic
patients; forecasting sales; predicting machine failures to streamline predictive maintenance in
manufacturing units; and generating supply chain predictions for transportation and logistics.

Import data into Canvas 822

Amazon SageMaker Developer Guide

The datasets are stored in the sample_dataset folder in the default Amazon S3 bucket that
SageMaker creates for your account in a Region.

• canvas-sample-diabetic-readmission.csv: This dataset contains historical data including
over fifteen features with patient and hospital outcomes. You can use this dataset to predict
whether high-risk diabetic patients are likely to get readmitted to the hospital within 30 days of
discharge, after 30 days, or not at all. Use the redadmitted column as the target column, and
use the 3+ category prediction model type with this dataset. To learn more about how to build
a model with this dataset, see the SageMaker Canvas workshop page. This dataset was obtained
from the UCI Machine Learning Repository.

• canvas-sample-housing.csv: This dataset contains data on the characteristics tied to a given
housing price. You can use this dataset to predict housing prices. Use the median_house_value
column as the target column, and use the numeric prediction model type with this dataset. To
learn more about building a model with this dataset, see the SageMaker Canvas workshop page.
This is the California housing dataset obtained from the StatLib repository.

• canvas-sample-loans.csv: This dataset contains complete loan data for all loans issued from
2007–2011, including the current loan status and latest payment information. You can use this
dataset to predict whether a customer will repay a loan. Use the loan_status column as the
target column, and use the 3+ category prediction model type with this dataset. To learn more
about how to build a model with this dataset, see the SageMaker Canvas workshop page. This
data uses the LendingClub data obtained from Kaggle.

• canvas-sample-maintenance.csv: This dataset contains data on the characteristics tied to a
given maintenance failure type. You can use this dataset to predict which failure will occur in the
future. Use the Failure Type column as the target column, and use the 3+ category prediction
model type with this dataset. To learn more about how to build a model with this dataset,
see the SageMaker Canvas workshop page. This dataset was obtained from the UCI Machine
Learning Repository.

• canvas-sample-shipping-logs.csv: This dataset contains complete shipping data for all products
delivered, including estimated time shipping priority, carrier, and origin. You can use this
dataset to predict the estimated time of arrival of the shipment in number of days. Use the
ActualShippingDays column as the target column, and use the numeric prediction model type
with this dataset. To learn more about how to build a model with this data, see the SageMaker
Canvas workshop page. This is a synthetic dataset created by Amazon.

• canvas-sample-sales-forecasting.csv: This dataset contains historical time series sales data
for retail stores. You can use this dataset to forecast sales for a particular retail store. Use the
sales column as the target column, and use the time series forecasting model type with this

Import data into Canvas 823

https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/1-use-cases/5-hcls
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/1-use-cases/2-real-estate
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/1-use-cases/4-finserv
https://www.kaggle.com/datasets/wordsforthewise/lending-club
https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/1-use-cases/6-manufacturing
https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance+Dataset
https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance+Dataset
https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/1-use-cases/7-supply-chain
https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/1-use-cases/7-supply-chain

Amazon SageMaker Developer Guide

dataset. To learn more about how to build a model with this dataset, see the SageMaker Canvas
workshop page. This is a synthetic dataset created by Amazon.

Re-import a deleted sample dataset

If you no longer wish to use the sample datasets, you can delete them from the Datasets page
of your SageMaker Canvas application. However, these datasets are still stored in the Amazon S3
bucket that you specified as the Canvas storage location, so you can always access them later.

If you used the default Amazon S3 bucket, the bucket name follows the pattern
sagemaker-{region}-{account ID}. You can find the sample datasets in the directory path
Canvas/sample_dataset.

If you delete a sample dataset from your SageMaker Canvas application and want to access the
sample dataset again, use the following procedure.

1. Navigate to the Datasets page in your SageMaker Canvas application.

2. Choose Import data.

3. From the list of Amazon S3 buckets, select the bucket that is your Canvas storage location.
If using the default SageMaker-created Amazon S3 bucket, it follows the naming pattern
sagemaker-{region}-{account ID}.

4. Select the Canvas folder.

5. Select the sample_dataset folder, which contains all of the sample datasets for SageMaker
Canvas.

6. Select the dataset you want to import, and then choose Import data.

Prepare data

Note

Previously, Amazon SageMaker Data Wrangler was part of the SageMaker Studio Classic
experience. Now, if you update to using the new Studio experience, you must use
SageMaker Canvas to access Data Wrangler and receive the latest feature updates. If you
have been using Data Wrangler in Studio Classic until now and want to migrate to Data
Wrangler in Canvas, you might have to grant additional permissions so that you can create

Prepare data 824

https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/1-use-cases/3-retail
https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/1-use-cases/3-retail
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-storage-configuration.html

Amazon SageMaker Developer Guide

and use a Canvas application. For more information, see Migrate from Data Wrangler in
Studio Classic to SageMaker Canvas.

Use Amazon SageMaker Data Wrangler in Amazon SageMaker Canvas to prepare, featurize and
analyze your data. You can integrate a Data Wrangler data preparation flow into your machine
learning (ML) workflows to simplify and streamline data pre-processing and feature engineering
using little to no coding. You can also add your own Python scripts and transformations to
customize workflows.

• Data Flow – Create a data flow to define a series of ML data prep steps. You can use a flow to
combine datasets from different data sources, identify the number and types of transformations
you want to apply to datasets, and define a data prep workflow that can be integrated into an
ML pipeline.

• Transform – Clean and transform your dataset using standard transforms like string, vector, and
numeric data formatting tools. Featurize your data using transforms like text and date/time
embedding and categorical encoding.

• Generate Data Insights – Automatically verify data quality and detect abnormalities in your data
with Data Wrangler Data Quality and Insights Report.

• Analyze – Analyze features in your dataset at any point in your flow. Data Wrangler includes
built-in data visualization tools like scatter plots and histograms, as well as data analysis tools
like target leakage analysis and quick modeling to understand feature correlation.

• Export – Export your data preparation workflow to a different location. The following are
example locations:

• Amazon Simple Storage Service (Amazon S3) bucket

• Amazon SageMaker Feature Store – Store the features and their data in a centralized store.

• Automate data preparation – Create machine learning workflows from your data flow.

• Amazon SageMaker Model Building Pipelines – Build workflows that manage your SageMaker
data preparation, model training, and model deployment jobs.

• Serial inference pipeline – Create a serial inference pipeline from your data flow. Use it to make
predictions on new data.

• Python script – Store the data and their transformations in a Python script for your custom
workflows.

Prepare data 825

Amazon SageMaker Developer Guide

Create a Data Flow

Use a Data Wrangler flow in SageMaker Canvas, or data flow, to create and modify a data
preparation pipeline. The datasets, transformations, and analyses that you use in the data flow are
represented as steps.

Import data into a data flow

To get started with using a data flow, import your data into it. To use datasets larger than 5 GB,
you must import your data directly from the data source instead of using a SageMaker Canvas
dataset.

Use the following procedure to import your data into a data flow.

To import your data into a data flow

1. Open SageMaker Canvas.

2. On the left-hand navigation, choose

.

3. Choose Data flows.

4. Choose Create.

5. (Optional) For Data flow name, specify a name for the data flow.

6. • To use a SageMaker Canvas dataset that you've already imported into SageMaker Canvas,
choose Select existing dataset.

a. Select the dataset type.

b. Select the SageMaker Canvas dataset.

• To import your data directly from a data source, choose Import data.

a. For Data Source, choose a data source.

b. Connect to a data source to browse through data and import a dataset. For
information about connecting to a data source or importing data, see the following
pages:

• Import data into Canvas

• Connect to data sources

c. Choose Import data

Prepare data 826

Amazon SageMaker Developer Guide

d. (Optional) If the first row of your dataset is the header, choose Use first row as
header.

e. Choose Import data.

The Data Flow UI

When you import a dataset, the original dataset appears on the data flow and is named Source.
SageMaker Canvas automatically infers the types of each column in your dataset and creates a new
dataframe named Data types. You can select this frame to update the inferred data types.

Each time you add a transform step, you create a new dataframe. When multiple transform steps
(other than Join or Concatenate) are added to the same dataset, they are stacked.

Join and Concatenate create standalone steps that contain the new joined or concatenated
dataset.

Add a Step to Your Data Flow

Select + next to any dataset or previously added step and then select one of the following options:

• Edit data types (For a Data types step only): If you have not added any transforms to a Data
types step, you can select Edit data types to update the data types Data Wrangler inferred when
importing your dataset.

• Add transform: Adds a new transform step. See Transform data to learn more about the data
transformations you can add.

• Add analysis: Adds an analysis. You can use this option to analyze your data at any point in the
data flow. See Perform exploratory data analysis (EDA) to learn more about the analyses you can
add.

• Join: Joins two datasets and adds the resulting dataset to the data flow. To learn more, see Join
Datasets.

• Concatenate: Concatenates two datasets and adds the resulting dataset to the data flow. To
learn more, see Concatenate Datasets.

Delete a Step from Your Data Flow

To delete a step, select the + next to the step and select Delete. If the node is a node that has a
single input, you delete only the step that you select. Deleting a step that has a single input doesn't

Prepare data 827

Amazon SageMaker Developer Guide

delete the steps that follow it. If you're deleting a step for a source, join, or concatenate node, all
the steps that follow it are also deleted.

To delete a step from a stack of steps, select the stack and then select the step you want to delete.

You can use one of the following procedures to delete a step without deleting the downstream
steps.

Delete a step in the Data Wrangler flow

You can delete an individual step for nodes in your data flow that have a single input. You can't
delete individual steps for source, join, and concatenate nodes.

Use the following procedure to delete a step in the Data Wrangler flow.

1. Choose the group of steps that has the step that you're deleting.

2. Choose the icon next to the step.

3. Choose Delete step.

Delete a step in the table view

Use the following procedure to delete a step in the table view.

You can delete an individual step for nodes in your data flow that have a single input. You can't
delete individual steps for source, join, and concatenate nodes.

1. Choose the step and open the table view for the step.

2. Move your cursor over the step so the ellipsis icon appears.

3. Choose the icon next to the step.

4. Choose Delete.

Perform exploratory data analysis (EDA)

Data Wrangler includes built-in analyses that help you generate visualizations and data analyses in
a few clicks. You can also create custom analyses using your own code.

You add an analysis to a dataframe by selecting a step in your data flow, and then choosing Add
analysis. To access an analysis you've created, select the step that contains the analysis, and select
the analysis.

Prepare data 828

Amazon SageMaker Developer Guide

All analyses are generated using 20,000 rows of your dataset.

You can add the following analysis to a dataframe:

• Data visualizations, including histograms and scatter plots.

• A quick summary of your dataset, including number of entries, minimum and maximum values
(for numeric data), and most and least frequent categories (for categorical data).

• A quick model of the dataset, which can be used to generate an importance score for each
feature.

• A target leakage report, which you can use to determine if one or more features are strongly
correlated with your target feature.

• A custom visualization using your own code.

Use the following sections to learn more about these options.

Get insights on data and data quality

Use the Data Quality and Insights Report to perform an analysis of the data that you've imported
into Data Wrangler. We recommend that you create the report after you import your dataset. You
can use the report to help you clean and process your data. It gives you information such as the
number of missing values and the number of outliers. If you have issues with your data, such as
target leakage or imbalance, the insights report can bring those issues to your attention.

Use the following procedure to create a Data Quality and Insights report. It assumes that you've
already imported a dataset into your Data Wrangler flow.

To create a Data Quality and Insights report

1. Choose a + next to a node in your Data Wrangler flow.

2. Select Get data insights.

3. For Analysis name, specify a name for the insights report.

4. (Optional) For Target column, specify the target column.

5. For Problem type, specify Regression or Classification.

6. For Data size, specify one of the following:

• 20 K – Uses the first 20000 rows of the dataset that you've imported to create the report.

Prepare data 829

Amazon SageMaker Developer Guide

• Entire dataset – Uses the entire dataset that you've imported to create the report.

Note

Creating a Data Quality and Insights report on the entire dataset uses an Amazon
SageMaker processing job. A SageMaker processing job provisions the additional
compute resources required to get insights for all of your data. For more information
about SageMaker processing jobs, see Process data.

7. Choose Create.

The following topics show the sections of the report:

Topics

• Summary

• Target column

• Quick model

• Feature summary

• Samples

• Definitions

You can either download the report or view it online. To download the report, choose the
download button at the top right corner of the screen.

Summary

The insights report has a brief summary of the data that includes general information such as
missing values, invalid values, feature types, outlier counts, and more. It can also include high
severity warnings that point to probable issues with the data. We recommend that you investigate
the warnings.

Target column

When you create the Data Quality and Insights Report, Data Wrangler gives you the option to
select a target column. A target column is a column that you're trying to predict. When you choose
a target column, Data Wrangler automatically creates a target column analysis. It also ranks the

Prepare data 830

Amazon SageMaker Developer Guide

features in the order of their predictive power. When you select a target column, you must specify
whether you’re trying to solve a regression or a classification problem.

For classification, Data Wrangler shows a table and a histogram of the most common classes. A
class is a category. It also presents observations, or rows, with a missing or invalid target value.

For regression, Data Wrangler shows a histogram of all the values in the target column. It also
presents observations, or rows, with a missing, invalid, or outlier target value.

Quick model

The Quick model provides an estimate of the expected predicted quality of a model that you train
on your data.

Data Wrangler splits your data into training and validation folds. It uses 80% of the samples for
training and 20% of the values for validation. For classification, the sample is stratified split. For
a stratified split, each data partition has the same ratio of labels. For classification problems, it's
important to have the same ratio of labels between the training and classification folds. Data
Wrangler trains the XGBoost model with the default hyperparameters. It applies early stopping on
the validation data and performs minimal feature preprocessing.

For classification models, Data Wrangler returns both a model summary and a confusion matrix.

To learn more about the information that the classification model summary returns, see
Definitions.

A confusion matrix gives you the following information:

• The number of times the predicted label matches the true label.

• The number of times the predicted label doesn't match the true label.

The true label represents an actual observation in your data. For example, if you're using a model
to detect fraudulent transactions, the true label represents a transaction that is actually fraudulent
or non-fraudulent. The predicted label represents the label that your model assigns to the data.

You can use the confusion matrix to see how well the model predicts the presence or the absence
of a condition. If you're predicting fraudulent transactions, you can use the confusion matrix to
get a sense of both the sensitivity and the specificity of the model. The sensitivity refers to the
model's ability to detect fraudulent transactions. The specificity refers to the model's ability to
avoid detecting non-fraudulent transactions as fraudulent.

Prepare data 831

Amazon SageMaker Developer Guide

Feature summary

When you specify a target column, Data Wrangler orders the features by their prediction power.
Prediction power is measured on the data after it is split into 80% training and 20% validation
folds. Data Wrangler fits a model for each feature separately on the training fold. It applies
minimal feature preprocessing and measures prediction performance on the validation data.

It normalizes the scores to the range [0,1]. Higher prediction scores indicate columns that are more
useful for predicting the target on their own. Lower scores point to columns that aren’t predictive
of the target column.

It’s uncommon for a column that isn’t predictive on its own to be predictive when it’s used in
tandem with other columns. You can confidently use the prediction scores to determine whether a
feature in your dataset is predictive.

A low score usually indicates the feature is redundant. A score of 1 implies perfect predictive
abilities, which often indicates target leakage. Target leakage usually happens when the dataset
contains a column that isn’t available at the prediction time. For example, it could be a duplicate of
the target column.

Samples

Data Wrangler provides information about whether your samples are anomalous or if there are
duplicates in your dataset.

Data Wrangler detects anomalous samples using the isolation forest algorithm. The isolation forest
associates an anomaly score with each sample (row) of the dataset. Low anomaly scores indicate
anomalous samples. High scores are associated with non-anomalous samples. Samples with a
negative anomaly score are usually considered anomalous and samples with positive anomaly score
are considered non-anomalous.

When you look at a sample that might be anomalous, we recommend that you pay attention to
unusual values. For example, you might have anomalous values that result from errors in gathering
and processing the data. The following is an example of the most anomalous samples according
to the Data Wrangler’s implementation of the isolation forest algorithm. We recommend using
domain knowledge and business logic when you examine the anomalous samples.

Data Wrangler detects duplicate rows and calculates the ratio of duplicate rows in your data. Some
data sources could include valid duplicates. Other data sources could have duplicates that point

Prepare data 832

Amazon SageMaker Developer Guide

to problems in data collection. Duplicate samples that result from faulty data collection could
interfere with machine learning processes that rely on splitting the data into independent training
and validation folds.

The following are elements of the insights report that can be impacted by duplicated samples:

• Quick model

• Prediction power estimation

• Automatic hyperparameter tuning

You can remove duplicate samples from the dataset using the Drop duplicates transform under
Manage rows. Data Wrangler shows you the most frequently duplicated rows.

Definitions

The following are definitions for the technical terms that are used in the data insights report.

Feature types

The following are the definitions for each of the feature types:

• Numeric – Numeric values can be either floats or integers, such as age or income. The
machine learning models assume that numeric values are ordered and a distance is defined
over them. For example, 3 is closer to 4 than to 10 and 3 < 4 < 10.

• Categorical – The column entries belong to a set of unique values, which is usually much
smaller than the number of entries in the column. For example, a column of length 100
could contain the unique values Dog, Cat, and Mouse. The values could be numeric, text, or a
combination of both. Horse, House, 8, Love, and 3.1 would all be valid values and could be
found in the same categorical column. The machine learning model does not assume order or
distance on the values of categorical features, as opposed to numeric features, even when all
the values are numbers.

• Binary – Binary features are a special categorical feature type in which the cardinality of the
set of unique values is 2.

• Text – A text column contains many non-numeric unique values. In extreme cases, all the
elements of the column are unique. In an extreme case, no two entries are the same.

• Datetime – A datetime column contains information about the date or time. It can have
information about both the date and time.

Prepare data 833

Amazon SageMaker Developer Guide

Feature statistics

The following are definitions for each of the feature statistics:

• Prediction power – Prediction power measures how useful the column is in predicting the
target.

• Outliers (in numeric columns) – Data Wrangler detects outliers using two statistics that are
robust to outliers: median and robust standard deviation (RSTD). RSTD is derived by clipping
the feature values to the range [5 percentile, 95 percentile] and calculating the standard
deviation of the clipped vector. All values larger than median + 5 * RSTD or smaller than
median - 5 * RSTD are considered to be outliers.

• Skew (in numeric columns) – Skew measures the symmetry of the distribution and is defined
as the third moment of the distribution divided by the third power of the standard deviation.
The skewness of the normal distribution or any other symmetric distribution is zero. Positive
values imply that the right tail of the distribution is longer than the left tail. Negative values
imply that the left tail of the distribution is longer than the right tail. As a rule of thumb, a
distribution is considered skewed when the absolute value of the skew is larger than 3.

• Kurtosis (in numeric columns) – Pearson's kurtosis measures the heaviness of the tail of the
distribution. It's defined as the fourth moment of the distribution divided by the square of
the second moment. The kurtosis of the normal distribution is 3. Kurtosis values lower than 3
imply that the distribution is concentrated around the mean and the tails are lighter than the
tails of the normal distribution. Kurtosis values higher than 3 imply heavier tails or outliers.

• Missing values – Null-like objects, empty strings and strings composed of only white spaces
are considered missing.

• Valid values for numeric features or regression target – All values that you can cast to finite
floats are valid. Missing values are not valid.

• Valid values for categorical, binary, or text features, or for classification target – All values
that are not missing are valid.

• Datetime features – All values that you can cast to a datetime object are valid. Missing values
are not valid.

• Invalid values – Values that are either missing or you can't properly cast. For example, in a
numeric column, you can't cast the string "six" or a null value.

Quick model metrics for regression

The following are the definitions for the quick model metrics:

Prepare data 834

Amazon SageMaker Developer Guide

• R2 or coefficient of determination) – R2 is the proportion of the variation in the target that
is predicted by the model. R2 is in the range of [-infty, 1]. 1 is the score of the model that
predicts the target perfectly and 0 is the score of the trivial model that always predicts the
target mean.

• MSE or mean squared error – MSE is in the range [0, infty]. 0 is the score of the model that
predicts the target perfectly.

• MAE or mean absolute error – MAE is in the range [0, infty] where 0 is the score of the model
that predicts the target perfectly.

• RMSE or root mean square error – RMSE is in the range [0, infty] where 0 is the score of the
model that predicts the target perfectly.

• Max error – The maximum absolute value of the error over the dataset. Max error is in the
range [0, infty]. 0 is the score of the model that predicts the target perfectly.

• Median absolute error – Median absolute error is in the range [0, infty]. 0 is the score of the
model that predicts the target perfectly.

Quick model metrics for classification

The following are the definitions for the quick model metrics:

• Accuracy – Accuracy is the ratio of samples that are predicted accurately. Accuracy is in the
range [0, 1]. 0 is the score of the model that predicts all samples incorrectly and 1 is the score
of the perfect model.

• Balanced accuracy – Balanced accuracy is the ratio of samples that are predicted accurately
when the class weights are adjusted to balance the data. All classes are given the same
importance, regardless of their frequency. Balanced accuracy is in the range [0, 1]. 0 is the
score of the model that predicts all samples wrong. 1 is the score of the perfect model.

• AUC (binary classification) – This is the area under the receiver operating characteristic
curve. AUC is in the range [0, 1] where a random model returns a score of 0.5 and the perfect
model returns a score of 1.

• AUC (OVR) – For multiclass classification, this is the area under the receiver operating
characteristic curve calculated separately for each label using one versus rest. Data Wrangler
reports the average of the areas. AUC is in the range [0, 1] where a random model returns a
score of 0.5 and the perfect model returns a score of 1.

• Precision – Precision is defined for a specific class. Precision is the fraction of true positives
out of all the instances that the model classified as that class. Precision is in the range [0, 1].

Prepare data 835

Amazon SageMaker Developer Guide

1 is the score of the model that has no false positives for the class. For binary classification,
Data Wrangler reports the precision of the positive class.

• Recall – Recall is defined for a specific class. Recall is the fraction of the relevant class
instances that are successfully retrieved. Recall is in the range [0, 1]. 1 is the score of the
model that classifies all the instances of the class correctly. For binary classification, Data
Wrangler reports the recall of the positive class.

• F1 – F1 is defined for a specific class. It's the harmonic mean of the precision and recall. F1 is
in the range [0, 1]. 1 is the score of the perfect model. For binary classification, Data Wrangler
reports the F1 for classes with positive values.

Textual patterns

Patterns describe the textual format of a string using an easy to read format. The following are
examples of textual patterns:

• "{digits:4-7}" describes a sequence of digits that have a length between 4 and 7.

• "{alnum:5}" describes an alpha-numeric string with a length of exactly 5.

Data Wrangler infers the patterns by looking at samples of non-empty strings from your data.
It can describe many of the commonly used patterns. The confidence expressed as a percentage
indicates how much of the data is estimated to match the pattern. Using the textual pattern,
you can see which rows in your data you need to correct or drop.

The following describes the patterns that Data Wrangler can recognize:

Pattern Textual Format

{alnum} Alphanumeric strings

{any} Any string of word characters

{digits} A sequence of digits

{lower} A lowercase word

{mixed} A mixed-case word

{name} A word beginning with a capital letter

Prepare data 836

Amazon SageMaker Developer Guide

Pattern Textual Format

{upper} An uppercase word

{whitespace} Whitespace characters

A word character is either an underscore or a character that might appear in a word in any
language. For example, the strings 'Hello_word' and 'écoute' both consist of word
characters. 'H' and 'é' are both examples of word characters.

Histogram

Use histograms to see the counts of feature values for a specific feature. You can inspect the
relationships between features using the Color by option.

You can use the Facet by feature to create histograms of one column, for each value in another
column.

Scatter plot

Use the Scatter Plot feature to inspect the relationship between features. To create a scatter plot,
select a feature to plot on the X axis and the Y axis. Both of these columns must be numeric typed
columns.

You can color scatter plots by an additional column.

Additionally, you can facet scatter plots by features.

Table summary

Use the Table Summary analysis to quickly summarize your data.

For columns with numerical data, including log and float data, a table summary reports the
number of entries (count), minimum (min), maximum (max), mean, and standard deviation (stddev)
for each column.

For columns with non-numerical data, including columns with string, Boolean, or date/time data,
a table summary reports the number of entries (count), least frequent value (min), and most
frequent value (max).

Prepare data 837

Amazon SageMaker Developer Guide

Quick model

Use the Quick Model visualization to quickly evaluate your data and produce importance scores
for each feature. A feature importance score score indicates how useful a feature is at predicting
a target label. The feature importance score is between [0, 1] and a higher number indicates that
the feature is more important to the whole dataset. On the top of the quick model chart, there is a
model score. A classification problem shows an F1 score. A regression problem has a mean squared
error (MSE) score.

When you create a quick model chart, you select a dataset you want evaluated, and a target label
against which you want feature importance to be compared. Data Wrangler does the following:

• Infers the data types for the target label and each feature in the dataset selected.

• Determines the problem type. Based on the number of distinct values in the label column, Data
Wrangler determines if this is a regression or classification problem type. Data Wrangler sets
a categorical threshold to 100. If there are more than 100 distinct values in the label column,
Data Wrangler classifies it as a regression problem; otherwise, it is classified as a classification
problem.

• Pre-processes features and label data for training. The algorithm used requires encoding features
to vector type and encoding labels to double type.

• Trains a random forest algorithm with 70% of data. Spark’s RandomForestRegressor is used to
train a model for regression problems. The RandomForestClassifier is used to train a model for
classification problems.

• Evaluates a random forest model with the remaining 30% of data. Data Wrangler evaluates
classification models using an F1 score and evaluates regression models using an MSE score.

• Calculates feature importance for each feature using the Gini importance method.

Target leakage

Target leakage occurs when there is data in a machine learning training dataset that is strongly
correlated with the target label, but is not available in real-world data. For example, you may
have a column in your dataset that serves as a proxy for the column you want to predict with your
model.

When you use the Target Leakage analysis, you specify the following:

• Target: This is the feature about which you want your ML model to be able to make predictions.

Prepare data 838

http://spark.apache.org/docs/2.1.0/api/python/pyspark.ml.html#pyspark.ml.classification.DecisionTreeClassificationModel.featureImportances
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier

Amazon SageMaker Developer Guide

• Problem type: This is the ML problem type on which you are working. Problem type can either
be classification or regression.

• (Optional) Max features: This is the maximum number of features to present in the visualization,
which shows features ranked by their risk of being target leakage.

For classification, the target leakage analysis uses the area under the receiver operating
characteristic, or AUC - ROC curve for each column, up to Max features. For regression, it uses a
coefficient of determination, or R2 metric.

The AUC - ROC curve provides a predictive metric, computed individually for each column using
cross-validation, on a sample of up to around 1000 rows. A score of 1 indicates perfect predictive
abilities, which often indicates target leakage. A score of 0.5 or lower indicates that the information
on the column could not provide, on its own, any useful information towards predicting the target.
Although it can happen that a column is uninformative on its own but is useful in predicting
the target when used in tandem with other features, a low score could indicate the feature is
redundant.

Multicollinearity

Multicollinearity is a circumstance where two or more predictor variables are related to each
other. The predictor variables are the features in your dataset that you're using to predict a target
variable. When you have multicollinearity, the predictor variables are not only predictive of the
target variable, but also predictive of each other.

You can use the Variance Inflation Factor (VIF), Principal Component Analysis (PCA), or Lasso
feature selection as measures for the multicollinearity in your data. For more information, see the
following.

Variance Inflation Factor (VIF)

The Variance Inflation Factor (VIF) is a measure of collinearity among variable pairs. Data
Wrangler returns a VIF score as a measure of how closely the variables are related to each other.
A VIF score is a positive number that is greater than or equal to 1.

A score of 1 means that the variable is uncorrelated with the other variables. Scores greater
than 1 indicate higher correlation.

Theoretically, you can have a VIF score with a value of infinity. Data Wrangler clips high scores
to 50. If you have a VIF score greater than 50, Data Wrangler sets the score to 50.

Prepare data 839

Amazon SageMaker Developer Guide

You can use the following guidelines to interpret your VIF scores:

• A VIF score less than or equal to 5 indicates that the variables are moderately correlated with
the other variables.

• A VIF score greater than or equal to 5 indicates that the variables are highly correlated with
the other variables.

Principle Component Analysis (PCA)

Principal Component Analysis (PCA) measures the variance of the data along different
directions in the feature space. The feature space consists of all the predictor variables that you
use to predict the target variable in your dataset.

For example, if you're trying to predict who survived on the RMS Titanic after it hit an iceberg,
your feature space can include the passengers' age, gender, and the fare that they paid.

From the feature space, PCA generates an ordered list of variances. These variances are also
known as singular values. The values in the list of variances are greater than or equal to 0. We
can use them to determine how much multicollinearity there is in our data.

When the numbers are roughly uniform, the data has very few instances of multicollinearity.
When there is a lot of variability among the values, we have many instances of multicollinearity.
Before it performs PCA, Data Wrangler normalizes each feature to have a mean of 0 and a
standard deviation of 1.

Note

PCA in this circumstance can also be referred to as Singular Value Decomposition (SVD).

Lasso feature selection

Lasso feature selection uses the L1 regularization technique to only include the most predictive
features in your dataset.

For both classification and regression, the regularization technique generates a coefficient for
each feature. The absolute value of the coefficient provides an importance score for the feature.
A higher importance score indicates that it is more predictive of the target variable. A common
feature selection method is to use all the features that have a non-zero lasso coefficient.

Prepare data 840

Amazon SageMaker Developer Guide

Detect anomalies in time series data

You can use the anomaly detection visualization to see outliers in your time series data. To
understand what determines an anomaly, you need to understand that we decompose the time
series into a predicted term and an error term. We treat the seasonality and trend of the time series
as the predicted term. We treat the residuals as the error term.

For the error term, you specify a threshold as the number of standard of deviations the residual
can be away from the mean for it to be considered an anomaly. For example, you can specify a
threshold as being 3 standard deviations. Any residual greater than 3 standard deviations away
from the mean is an anomaly.

You can use the following procedure to perform an Anomaly detection analysis.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add analysis.

3. For Analysis type, choose Time Series.

4. For Visualization, choose Anomaly detection.

5. For Anomaly threshold, choose the threshold that a value is considered an anomaly.

6. Choose Preview to generate a preview of the analysis.

7. Choose Add to add the transform to the Data Wrangler data flow.

Seasonal trend decomposition in time series data

You can determine whether there's seasonality in your time series data by using the Seasonal Trend
Decomposition visualization. We use the STL (Seasonal Trend decomposition using LOESS) method
to perform the decomposition. We decompose the time series into its seasonal, trend, and residual
components. The trend reflects the long term progression of the series. The seasonal component is
a signal that recurs in a time period. After removing the trend and the seasonal components from
the time series, you have the residual.

You can use the following procedure to perform a Seasonal-Trend decomposition analysis.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add analysis.

3. For Analysis type, choose Time Series.

4. For Visualization, choose Seasonal-Trend decomposition.

Prepare data 841

Amazon SageMaker Developer Guide

5. For Anomaly threshold, choose the threshold that a value is considered an anomaly.

6. Choose Preview to generate a preview of the analysis.

7. Choose Add to add the transform to the Data Wrangler data flow.

Create custom visualizations

You can add an analysis to your Data Wrangler flow to create a custom visualization. Your dataset,
with all the transformations you've applied, is available as a Pandas DataFrame. Data Wrangler uses
the df variable to store the dataframe. You access the dataframe by calling the variable.

You must provide the output variable, chart, to store an Altair output chart. For example, you can
use the following code block to create a custom histogram using the Titanic dataset.

import altair as alt
df = df.iloc[:30]
df = df.rename(columns={"Age": "value"})
df = df.assign(count=df.groupby('value').value.transform('count'))
df = df[["value", "count"]]
base = alt.Chart(df)
bar = base.mark_bar().encode(x=alt.X('value', bin=True, axis=None), y=alt.Y('count'))
rule = base.mark_rule(color='red').encode(
 x='mean(value):Q',
 size=alt.value(5))
chart = bar + rule

To create a custom visualization:

1. Next to the node containing the transformation that you'd like to visualize, choose the +.

2. Choose Add analysis.

3. For Analysis type, choose Custom Visualization.

4. For Analysis name, specify a name.

5. Enter your code in the code box.

6. Choose Preview to preview your visualization.

7. Choose Save to add your visualization.

If you don’t know how to use the Altair visualization package in Python, you can use custom code
snippets to help you get started.

Prepare data 842

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://altair-viz.github.io/

Amazon SageMaker Developer Guide

Data Wrangler has a searchable collection of visualization snippets. To use a visualization snippet,
choose Search example snippets and specify a query in the search bar.

The following example uses the Binned scatterplot code snippet. It plots a histogram for 2
dimensions.

The snippets have comments to help you understand the changes that you need to make to the
code. You usually need to specify the column names of your dataset in the code.

import altair as alt

Specify the number of top rows for plotting
rows_number = 1000
df = df.head(rows_number)
You can also choose bottom rows or randomly sampled rows
df = df.tail(rows_number)
df = df.sample(rows_number)

chart = (
 alt.Chart(df)
 .mark_circle()
 .encode(
 # Specify the column names for binning and number of bins for X and Y axis
 x=alt.X("col1:Q", bin=alt.Bin(maxbins=20)),
 y=alt.Y("col2:Q", bin=alt.Bin(maxbins=20)),
 size="count()",
)
)

:Q specifies that label column has quantitative type.
For more details on Altair typing refer to
https://altair-viz.github.io/user_guide/encoding.html#encoding-data-types

Transform data

Amazon SageMaker Data Wrangler provides numerous ML data transforms to streamline cleaning,
transforming, and featurizing your data. When you add a transform, it adds a step to the data flow.
Each transform you add modifies your dataset and produces a new dataframe. All subsequent
transforms apply to the resulting dataframe.

Prepare data 843

Amazon SageMaker Developer Guide

Data Wrangler includes built-in transforms, which you can use to transform columns without any
code. You can also add custom transformations using PySpark, Python (User-Defined Function),
pandas, and PySpark SQL. Some transforms operate in place, while others create a new output
column in your dataset.

You can apply transforms to multiple columns at once. For example, you can delete multiple
columns in a single step.

You can apply the Process numeric and Handle missing transforms only to a single column.

Use this page to learn more about these built-in and custom transforms.

Transform UI

Most of the built-in transforms are located in the Prepare tab of the Data Wrangler UI. You can
access the join and concatenate transforms through the data flow view. Use the following table to
preview these two views.

Transform

You can add a transform to any step in your data flow. Use the following procedure to add a
transform to your data flow.

To add a step to your data flow, do the following.

1. Choose the + next to the step in the data flow.

2. Choose Add transform.

3. Choose Add step.

4. Choose a transform.

5. (Optional) You can search for the transform that you want to use. Data Wrangler highlights
the query in the results.

Join View

To join two datasets, select the first dataset in your data flow and choose Join. When you
choose Join. Your left and right datasets are displayed in the left panel. The main panel displays
your data flow, with the newly joined dataset added.

When you choose Configure to configure your join, you see results similar to those shown in the
following image. Your join configuration is displayed in the left panel. You can use this panel to

Prepare data 844

Amazon SageMaker Developer Guide

choose the joined dataset name, join type, and columns to join. The main panel displays three
tables. The top two tables display the left and right datasets on the left and right respectively.
Under this table, you can preview the joined dataset.

See Join Datasets to learn more.

Concatenate View

To concatenate two datasets, you select the first dataset in your data flow and choose
Concatenate. Your left and right datasets are displayed in the left panel. The main panel
displays your data flow, with the newly concatenated dataset added.

When you choose Configure to configure your concatenation, you see results similar to those
shown in the following image. Your concatenate configuration displays in the left panel.
You can use this panel to choose the concatenated dataset's name, and choose to remove
duplicates after concatenation and add columns to indicate the source dataframe. The main
panel displays three tables. The top two tables display the left and right datasets on the left
and right respectively. Under this table, you can preview the concatenated dataset.

See Concatenate Datasets to learn more.

Join Datasets

You join dataframes directly in your data flow. When you join two datasets, the resulting joined
dataset appears in your flow. The following join types are supported by Data Wrangler.

• Left Outer – Include all rows from the left table. If the value for the column joined on a left table
row does not match any right table row values, that row contains null values for all right table
columns in the joined table.

• Left Anti – Include rows from the left table that do not contain values in the right table for the
joined column.

• Left semi – Include a single row from the left table for all identical rows that satisfy the criteria
in the join statement. This excludes duplicate rows from the left table that match the criteria of
the join.

• Right Outer – Include all rows from the right table. If the value for the joined column in a right
table row does not match any left table row values, that row contains null values for all left table
columns in the joined table.

• Inner – Include rows from left and right tables that contain matching values in the joined
column.

Prepare data 845

Amazon SageMaker Developer Guide

• Full Outer – Include all rows from the left and right tables. If the row value for the joined column
in either table does not match, separate rows are created in the joined table. If a row doesn’t
contain a value for a column in the joined table, null is inserted for that column.

• Cartesian Cross – Include rows which combine each row from the first table with each row from
the second table. This is a Cartesian product of rows from tables in the join. The result of this
product is the size of the left table times the size of the right table. Therefore, we recommend
caution in using this join between very large datasets.

Use the following procedure to join two dataframes.

1. Select + next to the left dataframe that you want to join. The first dataframe you select is
always the left table in your join.

2. Choose Join.

3. Select the right dataframe. The second dataframe you select is always the right table in your
join.

4. Choose Configure to configure your join.

5. Give your joined dataset a name using the Name field.

6. Select a Join type.

7. Select a column from the left and right tables to join.

8. Choose Apply to preview the joined dataset on the right.

9. To add the joined table to your data flow, choose Add.

Concatenate Datasets

Concatenate two datasets:

1. Choose + next to the left dataframe that you want to concatenate. The first dataframe you
select is always the left table in your concatenate.

2. Choose Concatenate.

3. Select the right dataframe. The second dataframe you select is always the right table in your
concatenate.

4. Choose Configure to configure your concatenate.

5. Give your concatenated dataset a name using the Name field.

Prepare data 846

https://en.wikipedia.org/wiki/Cartesian_product

Amazon SageMaker Developer Guide

6. (Optional) Select the checkbox next to Remove duplicates after concatenation to remove
duplicate columns.

7. (Optional) Select the checkbox next to Add column to indicate source dataframe if, for each
column in the new dataset, you want to add an indicator of the column's source.

8. Choose Apply to preview the new dataset.

9. Choose Add to add the new dataset to your data flow.

Balance Data

You can balance the data for datasets with an underrepresented category. Balancing a dataset can
help you create better models for binary classification.

Note

You can't balance datasets containing column vectors.

You can use the Balance data operation to balance your data using one of the following operators:

• Random oversampling – Randomly duplicates samples in the minority category. For example,
if you're trying to detect fraud, you might only have cases of fraud in 10% of your data. For an
equal proportion of fraudulent and non-fraudulent cases, this operator randomly duplicates
fraud cases within the dataset 8 times.

• Random undersampling – Roughly equivalent to random oversampling. Randomly removes
samples from the overrepresented category to get the proportion of samples that you desire.

• Synthetic Minority Oversampling Technique (SMOTE) – Uses samples from the underrepresented
category to interpolate new synthetic minority samples. For more information about SMOTE, see
the following description.

You can use all transforms for datasets containing both numeric and non-numeric features. SMOTE
interpolates values by using neighboring samples. Data Wrangler uses the R-squared distance
to determine the neighborhood to interpolate the additional samples. Data Wrangler only uses
numeric features to calculate the distances between samples in the underrepresented group.

For two real samples in the underrepresented group, Data Wrangler interpolates the numeric
features by using a weighted average. It randomly assigns weights to those samples in the range of

Prepare data 847

Amazon SageMaker Developer Guide

[0, 1]. For numeric features, Data Wrangler interpolates samples using a weighted average of the
samples. For samples A and B, Data Wrangler could randomly assign a weight of 0.7 to A and 0.3 to
B. The interpolated sample has a value of 0.7A + 0.3B.

Data Wrangler interpolates non-numeric features by copying from either of the interpolated real
samples. It copies the samples with a probability that it randomly assigns to each sample. For
samples A and B, it can assign probabilities 0.8 to A and 0.2 to B. For the probabilities it assigned, it
copies A 80% of the time.

Custom Transforms

The Custom Transforms group allows you to use Python (User-Defined Function), PySpark, pandas,
or PySpark (SQL) to define custom transformations. For all three options, you use the variable df
to access the dataframe to which you want to apply the transform. To apply your custom code
to your dataframe, assign the dataframe with the transformations that you've made to the df
variable. If you're not using Python (User-Defined Function), you don't need to include a return
statement. Choose Preview to preview the result of the custom transform. Choose Add to add the
custom transform to your list of Previous steps.

You can import the popular libraries with an import statement in the custom transform code
block, such as the following:

• NumPy version 1.19.0

• scikit-learn version 0.23.2

• SciPy version 1.5.4

• pandas version 1.0.3

• PySpark version 3.0.0

Important

Custom transform doesn't support columns with spaces or special characters in the name.
We recommend that you specify column names that only have alphanumeric characters
and underscores. You can use the Rename column transform in the Manage columns
transform group to remove spaces from a column's name. You can also add a Python
(Pandas) Custom transform similar to the following to remove spaces from multiple
columns in a single step. This example changes columns named A column and B column
to A_column and B_column respectively.

Prepare data 848

Amazon SageMaker Developer Guide

df.rename(columns={"A column": "A_column", "B column": "B_column"})

If you include print statements in the code block, the result appears when you select Preview. You
can resize the custom code transformer panel. Resizing the panel provides more space to write
code.

The following sections provide additional context and examples for writing custom transform code.

Python (User-Defined Function)

The Python function gives you the ability to write custom transformations without needing to
know Apache Spark or pandas. Data Wrangler is optimized to run your custom code quickly. You
get similar performance using custom Python code and an Apache Spark plugin.

To use the Python (User-Defined Function) code block, you specify the following:

• Input column – The input column where you're applying the transform.

• Mode – The scripting mode, either pandas or Python.

• Return type – The data type of the value that you're returning.

Using the pandas mode gives better performance. The Python mode makes it easier for you to
write transformations by using pure Python functions.

PySpark

The following example extracts date and time from a timestamp.

from pyspark.sql.functions import from_unixtime, to_date, date_format
df = df.withColumn('DATE_TIME', from_unixtime('TIMESTAMP'))
df = df.withColumn('EVENT_DATE', to_date('DATE_TIME')).withColumn(
'EVENT_TIME', date_format('DATE_TIME', 'HH:mm:ss'))

pandas

The following example provides an overview of the dataframe to which you are adding transforms.

df.info()

Prepare data 849

Amazon SageMaker Developer Guide

PySpark (SQL)

The following example creates a new dataframe with four columns: name, fare, pclass, survived.

SELECT name, fare, pclass, survived FROM df

If you don’t know how to use PySpark, you can use custom code snippets to help you get started.

Data Wrangler has a searchable collection of code snippets. You can use to code snippets to
perform tasks such as dropping columns, grouping by columns, or modelling.

To use a code snippet, choose Search example snippets and specify a query in the search bar. The
text you specify in the query doesn’t have to match the name of the code snippet exactly.

The following example shows a Drop duplicate rows code snippet that can delete rows with similar
data in your dataset. You can find the code snippet by searching for one of the following:

• Duplicates

• Identical

• Remove

The following snippet has comments to help you understand the changes that you need to make.
For most snippets, you must specify the column names of your dataset in the code.

Specify the subset of columns
all rows having identical values in these columns will be dropped

subset = ["col1", "col2", "col3"]
df = df.dropDuplicates(subset)

to drop the full-duplicate rows run
df = df.dropDuplicates()

To use a snippet, copy and paste its content into the Custom transform field. You can copy and
paste multiple code snippets into the custom transform field.

Prepare data 850

Amazon SageMaker Developer Guide

Custom Formula

Use Custom formula to define a new column using a Spark SQL expression to query data in the
current dataframe. The query must use the conventions of Spark SQL expressions.

Important

Custom formula doesn't support columns with spaces or special characters in the name.
We recommend that you specify column names that only have alphanumeric characters
and underscores. You can use the Rename column transform in the Manage columns
transform group to remove spaces from a column's name. You can also add a Python
(Pandas) Custom transform similar to the following to remove spaces from multiple
columns in a single step. This example changes columns named A column and B column
to A_column and B_column respectively.

df.rename(columns={"A column": "A_column", "B column": "B_column"})

You can use this transform to perform operations on columns, referencing the columns by name.
For example, assuming the current dataframe contains columns named col_a and col_b, you
can use the following operation to produce an Output column that is the product of these two
columns with the following code:

col_a * col_b

Other common operations include the following, assuming a dataframe contains col_a and col_b
columns:

• Concatenate two columns: concat(col_a, col_b)

• Add two columns: col_a + col_b

• Subtract two columns: col_a - col_b

• Divide two columns: col_a / col_b

• Take the absolute value of a column: abs(col_a)

For more information, see the Spark documentation on selecting data.

Prepare data 851

http://spark.apache.org/docs/latest/api/python

Amazon SageMaker Developer Guide

Reduce Dimensionality within a Dataset

Reduce the dimensionality in your data by using Principal Component Analysis (PCA). The
dimensionality of your dataset corresponds to the number of features. When you use
dimensionality reduction in Data Wrangler, you get a new set of features called components. Each
component accounts for some variability in the data.

The first component accounts for the largest amount of variation in the data. The second
component accounts for the second largest amount of variation in the data, and so on.

You can use dimensionality reduction to reduce the size of the data sets that you use to train
models. Instead of using the features in your dataset, you can use the principal components
instead.

To perform PCA, Data Wrangler creates axes for your data. An axis is an affine combination of
columns in your dataset. The first principal component is the value on the axis that has the largest
amount of variance. The second principal component is the value on the axis that has the second
largest amount of variance. The nth principal component is the value on the axis that has the nth
largest amount of variance.

You can configure the number of principal components that Data Wrangler returns. You can either
specify the number of principal components directly or you can specify the variance threshold
percentage. Each principal component explains an amount of variance in the data. For example,
you might have a principal component with a value of 0.5. The component would explain 50% of
the variation in the data. When you specify a variance threshold percentage, Data Wrangler returns
the smallest number of components that meet the percentage that you specify.

The following are example principal components with the amount of variance that they explain in
the data.

• Component 1 – 0.5

• Component 2 – 0.45

• Component 3 – 0.05

If you specify a variance threshold percentage of 94 or 95, Data Wrangler returns Component 1
and Component 2. If you specify a variance threshold percentage of 96, Data Wrangler returns all
three principal components.

You can use the following procedure to run PCA on your dataset.

Prepare data 852

Amazon SageMaker Developer Guide

To run PCA on your dataset, do the following.

1. Open your Data Wrangler data flow.

2. Choose the +, and select Add transform.

3. Choose Add step.

4. Choose Dimensionality Reduction.

5. For Input Columns, choose the features that you're reducing into the principal components.

6. (Optional) For Number of principal components, choose the number of principal components
that Data Wrangler returns in your dataset. If specify a value for the field, you can't specify a
value for Variance threshold percentage.

7. (Optional) For Variance threshold percentage, specify the percentage of variation in the
data that you want explained by the principal components. Data Wrangler uses the default
value of 95 if you don't specify a value for the variance threshold. You can't specify a variance
threshold percentage if you've specified a value for Number of principal components.

8. (Optional) Deselect Center to not use the mean of the columns as the center of the data. By
default, Data Wrangler centers the data with the mean before scaling.

9. (Optional) Deselect Scale to not scale the data with the unit standard deviation.

10. (Optional) Choose Columns to output the components to separate columns. Choose Vector to
output the components as a single vector.

11. (Optional) For Output column, specify a name for an output column. If you're outputting the
components to separate columns, the name that you specify is a prefix. If you're outputting
the components to a vector, the name that you specify is the name of the vector column.

12. (Optional) Select Keep input columns. We don't recommend selecting this option if you plan
on only using the principal components to train your model.

13. Choose Preview.

14. Choose Add.

Encode Categorical

Categorical data is usually composed of a finite number of categories, where each category
is represented with a string. For example, if you have a table of customer data, a column that
indicates the country a person lives in is categorical. The categories would be Afghanistan, Albania,
Algeria, and so on. Categorical data can be nominal or ordinal. Ordinal categories have an inherent

Prepare data 853

Amazon SageMaker Developer Guide

order, and nominal categories do not. The highest degree obtained (High school, Bachelors,
Masters, and so on) is an example of ordinal categories.

Encoding categorical data is the process of creating a numerical representation for categories. For
example, if your categories are Dog and Cat, you may encode this information into two vectors,
[1,0] to represent Dog, and [0,1] to represent Cat.

When you encode ordinal categories, you may need to translate the natural order of categories
into your encoding. For example, you can represent the highest degree obtained with the following
map: {"High school": 1, "Bachelors": 2, "Masters":3}.

Use categorical encoding to encode categorical data that is in string format into arrays of integers.

The Data Wrangler categorical encoders create encodings for all categories that exist in a column at
the time the step is defined. If new categories have been added to a column when you start a Data
Wrangler job to process your dataset at time t, and this column was the input for a Data Wrangler
categorical encoding transform at time t-1, these new categories are considered missing in the
Data Wrangler job. The option you select for Invalid handling strategy is applied to these missing
values. Examples of when this can occur are:

• When you use a .flow file to create a Data Wrangler job to process a dataset that was updated
after the creation of the data flow. For example, you may use a data flow to regularly process
sales data each month. If that sales data is updated weekly, new categories may be introduced
into columns for which an encode categorical step is defined.

• When you select Sampling when you import your dataset, some categories may be left out of
the sample.

In these situations, these new categories are considered missing values in the Data Wrangler job.

You can choose from and configure an ordinal and a one-hot encode. Use the following sections to
learn more about these options.

Both transforms create a new column named Output column name. You specify the output format
of this column with Output style:

• Select Vector to produce a single column with a sparse vector.

• Select Columns to create a column for every category with an indicator variable for whether the
text in the original column contains a value that is equal to that category.

Prepare data 854

Amazon SageMaker Developer Guide

Ordinal Encode

Select Ordinal encode to encode categories into an integer between 0 and the total number of
categories in the Input column you select.

Invalid handing strategy: Select a method to handle invalid or missing values.

• Choose Skip if you want to omit the rows with missing values.

• Choose Keep to retain missing values as the last category.

• Choose Error if you want Data Wrangler to throw an error if missing values are encountered in
the Input column.

• Choose Replace with NaN to replace missing with NaN. This option is recommended if your ML
algorithm can handle missing values. Otherwise, the first three options in this list may produce
better results.

One-Hot Encode

Select One-hot encode for Transform to use one-hot encoding. Configure this transform using the
following:

• Drop last category: If True, the last category does not have a corresponding index in the one-
hot encoding. When missing values are possible, a missing category is always the last one and
setting this to True means that a missing value results in an all zero vector.

• Invalid handing strategy: Select a method to handle invalid or missing values.

• Choose Skip if you want to omit the rows with missing values.

• Choose Keep to retain missing values as the last category.

• Choose Error if you want Data Wrangler to throw an error if missing values are encountered in
the Input column.

• Is input ordinal encoded: Select this option if the input vector contains ordinal encoded data.
This option requires that input data contain non-negative integers. If True, input i is encoded as a
vector with a non-zero in the ith location.

Similarity encode

Use similarity encoding when you have the following:

• A large number of categorical variables

Prepare data 855

Amazon SageMaker Developer Guide

• Noisy data

The similarity encoder creates embeddings for columns with categorical data. An embedding is a
mapping of discrete objects, such as words, to vectors of real numbers. It encodes similar strings to
vectors containing similar values. For example, it creates very similar encodings for "California" and
"Calfornia".

Data Wrangler converts each category in your dataset into a set of tokens using a 3-gram
tokenizer. It converts the tokens into an embedding using min-hash encoding.

The similarity encodings that Data Wrangler creates:

• Have low dimensionality

• Are scalable to a large number of categories

• Are robust and resistant to noise

For the preceding reasons, similarity encoding is more versatile than one-hot encoding.

To add the similarity encoding transform to your dataset, use the following procedure.

To use similarity encoding, do the following.

1. Sign in to the Amazon SageMaker Console.

2. Choose Open Studio Classic.

3. Choose Launch app.

4. Choose Studio.

5. Specify your data flow.

6. Choose a step with a transformation.

7. Choose Add step.

8. Choose Encode categorical.

9. Specify the following:

• Transform – Similarity encode

• Input column – The column containing the categorical data that you're encoding.

Prepare data 856

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

• Target dimension – (Optional) The dimension of the categorical embedding vector. The
default value is 30. We recommend using a larger target dimension if you have a large
dataset with many categories.

• Output style – Choose Vector for a single vector with all of the encoded values. Choose
Column to have the encoded values in separate columns.

• Output column – (Optional) The name of the output column for a vector encoded output.
For a column-encoded output, this is the prefix of the column names followed by listed
number.

Featurize Text

Use the Featurize Text transform group to inspect string-typed columns and use text embedding
to featurize these columns.

This feature group contains two features, Character statistics and Vectorize. Use the following
sections to learn more about these transforms. For both options, the Input column must contain
text data (string type).

Character Statistics

Use Character statistics to generate statistics for each row in a column containing text data.

This transform computes the following ratios and counts for each row, and creates a new column
to report the result. The new column is named using the input column name as a prefix and a suffix
that is specific to the ratio or count.

• Number of words: The total number of words in that row. The suffix for this output column is -
stats_word_count.

• Number of characters: The total number of characters in that row. The suffix for this output
column is -stats_char_count.

• Ratio of upper: The number of uppercase characters, from A to Z, divided by all characters in the
column. The suffix for this output column is -stats_capital_ratio.

• Ratio of lower: The number of lowercase characters, from a to z, divided by all characters in the
column. The suffix for this output column is -stats_lower_ratio.

• Ratio of digits: The ratio of digits in a single row over the sum of digits in the input column. The
suffix for this output column is -stats_digit_ratio.

Prepare data 857

Amazon SageMaker Developer Guide

• Special characters ratio: The ratio of non-alphanumeric (characters like #$&%:@) characters
to over the sum of all characters in the input column. The suffix for this output column is -
stats_special_ratio.

Vectorize

Text embedding involves mapping words or phrases from a vocabulary to vectors of real numbers.
Use the Data Wrangler text embedding transform to tokenize and vectorize text data into term
frequency–inverse document frequency (TF-IDF) vectors.

When TF-IDF is calculated for a column of text data, each word in each sentence is converted to
a real number that represents its semantic importance. Higher numbers are associated with less
frequent words, which tend to be more meaningful.

When you define a Vectorize transform step, Data Wrangler uses the data in your dataset to define
the count vectorizer and TF-IDF methods . Running a Data Wrangler job uses these same methods.

You configure this transform using the following:

• Output column name: This transform creates a new column with the text embedding. Use this
field to specify a name for this output column.

• Tokenizer: A tokenizer converts the sentence into a list of words, or tokens.

Choose Standard to use a tokenizer that splits by white space and converts each word to
lowercase. For example, "Good dog" is tokenized to ["good","dog"].

Choose Custom to use a customized tokenizer. If you choose Custom, you can use the following
fields to configure the tokenizer:

• Minimum token length: The minimum length, in characters, for a token to be valid. Defaults
to 1. For example, if you specify 3 for minimum token length, words like a, at, in are
dropped from the tokenized sentence.

• Should regex split on gaps: If selected, regex splits on gaps. Otherwise, it matches tokens.
Defaults to True.

• Regex pattern: Regex pattern that defines the tokenization process. Defaults to ' \\ s+'.

• To lowercase: If chosen, Data Wrangler converts all characters to lowercase before
tokenization. Defaults to True.

To learn more, see the Spark documentation on Tokenizer.

Prepare data 858

https://spark.apache.org/docs/3.0.0/ml-features#tokenizer

Amazon SageMaker Developer Guide

• Vectorizer: The vectorizer converts the list of tokens into a sparse numeric vector. Each token
corresponds to an index in the vector and a non-zero indicates the existence of the token in the
input sentence. You can choose from two vectorizer options, Count and Hashing.

• Count vectorize allows customizations that filter infrequent or too common tokens. Count
vectorize parameters include the following:

• Minimum term frequency: In each row, terms (tokens) with smaller frequency are filtered.
If you specify an integer, this is an absolute threshold (inclusive). If you specify a fraction
between 0 (inclusive) and 1, the threshold is relative to the total term count. Defaults to 1.

• Minimum document frequency: Minimum number of rows in which a term (token) must
appear to be included. If you specify an integer, this is an absolute threshold (inclusive). If
you specify a fraction between 0 (inclusive) and 1, the threshold is relative to the total term
count. Defaults to 1.

• Maximum document frequency: Maximum number of documents (rows) in which a term
(token) can appear to be included. If you specify an integer, this is an absolute threshold
(inclusive). If you specify a fraction between 0 (inclusive) and 1, the threshold is relative to
the total term count. Defaults to 0.999.

• Maximum vocabulary size: Maximum size of the vocabulary. The vocabulary is made up of
all terms (tokens) in all rows of the column. Defaults to 262144.

• Binary outputs: If selected, the vector outputs do not include the number of appearances of
a term in a document, but rather are a binary indicator of its appearance. Defaults to False.

To learn more about this option, see the Spark documentation on CountVectorizer.

• Hashing is computationally faster. Hash vectorize parameters includes the following:

• Number of features during hashing: A hash vectorizer maps tokens to a vector index
according to their hash value. This feature determines the number of possible hash values.
Large values result in fewer collisions between hash values but a higher dimension output
vector.

To learn more about this option, see the Spark documentation on FeatureHasher

• Apply IDF applies an IDF transformation, which multiplies the term frequency with the standard
inverse document frequency used for TF-IDF embedding. IDF parameters include the following:

• Minimum document frequency : Minimum number of documents (rows) in which a
term (token) must appear to be included. If count_vectorize is the chosen vectorizer, we
recommend that you keep the default value and only modify the min_doc_freq field in Count
vectorize parameters. Defaults to 5.

Prepare data 859

https://spark.apache.org/docs/3.0.0/ml-features#countvectorizer
https://spark.apache.org/docs/3.0.0/ml-features#featurehasher

Amazon SageMaker Developer Guide

• Output format:The output format of each row.

• Select Vector to produce a single column with a sparse vector.

• Select Flattened to create a column for every category with an indicator variable for whether
the text in the original column contains a value that is equal to that category. You can only
choose flattened when Vectorizer is set as Count vectorizer.

Transform Time Series

In Data Wrangler, you can transform time series data. The values in a time series dataset are
indexed to specific time. For example, a dataset that shows the number of customers in a store for
each hour in a day is a time series dataset. The following table shows an example of a time series
dataset.

Hourly number of customers in a store

Number of customers Time (hour)

4 09:00

10 10:00

14 11:00

25 12:00

20 13:00

18 14:00

For the preceding table, the Number of Customers column contains the time series data. The time
series data is indexed on the hourly data in the Time (hour) column.

You might need to perform a series of transformations on your data to get it in a format that you
can use for your analysis. Use the Time series transform group to transform your time series data.
For more information about the transformations that you can perform, see the following sections.

Topics

• Group by a Time Series

• Resample Time Series Data

Prepare data 860

Amazon SageMaker Developer Guide

• Handle Missing Time Series Data

• Validate the Timestamp of Your Time Series Data

• Standardizing the Length of the Time Series

• Extract Features from Your Time Series Data

• Use Lagged Features from Your Time Series Data

• Create a Datetime Range In Your Time Series

• Use a Rolling Window In Your Time Series

Group by a Time Series

You can use the group by operation to group time series data for specific values in a column.

For example, you have the following table that tracks the average daily electricity usage in a
household.

Average daily household electricity usage

Household ID Daily timestamp Electricity usage
(kWh)

Number of
household occupants

household_0 1/1/2020 30 2

household_0 1/2/2020 40 2

household_0 1/4/2020 35 3

household_1 1/2/2020 45 3

household_1 1/3/2020 55 4

If you choose to group by ID, you get the following table.

Electricity usage grouped by household ID

Household ID Electricity usage series
(kWh)

Number of household
occupants series

household_0 [30, 40, 35] [2, 2, 3]

Prepare data 861

Amazon SageMaker Developer Guide

Household ID Electricity usage series
(kWh)

Number of household
occupants series

household_1 [45, 55] [3, 4]

Each entry in the time series sequence is ordered by the corresponding timestamp. The first
element of the sequence corresponds to the first timestamp of the series. For household_0, 30 is
the first value of the Electricity Usage Series. The value of 30 corresponds to the first timestamp
of 1/1/2020.

You can include the starting timestamp and ending timestamp. The following table shows how
that information appears.

Electricity usage grouped by household ID

Household ID Electricity
usage series
(kWh)

Number of
household
occupants series

Start_time End_time

household_0 [30, 40, 35] [2, 2, 3] 1/1/2020 1/4/2020

household_1 [45, 55] [3, 4] 1/2/2020 1/3/2020

You can use the following procedure to group by a time series column.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

3. Choose Add step.

4. Choose Time Series.

5. Under Transform, choose Group by.

6. Specify a column in Group by this column.

7. For Apply to columns, specify a value.

8. Choose Preview to generate a preview of the transform.

9. Choose Add to add the transform to the Data Wrangler data flow.

Prepare data 862

Amazon SageMaker Developer Guide

Resample Time Series Data

Time series data usually has observations that aren't taken at regular intervals. For example, a
dataset could have some observations that are recorded hourly and other observations that are
recorded every two hours.

Many analyses, such as forecasting algorithms, require the observations to be taken at regular
intervals. Resampling gives you the ability to establish regular intervals for the observations in
your dataset.

You can either upsample or downsample a time series. Downsampling increases the interval
between observations in the dataset. For example, if you downsample observations that are taken
either every hour or every two hours, each observation in your dataset is taken every two hours.
The hourly observations are aggregated into a single value using an aggregation method such as
the mean or median.

Upsampling reduces the interval between observations in the dataset. For example, if you
upsample observations that are taken every two hours into hourly observations, you can use an
interpolation method to infer hourly observations from the ones that have been taken every two
hours. For information on interpolation methods, see pandas.DataFrame.interpolate.

You can resample both numeric and non-numeric data.

Use the Resample operation to resample your time series data. If you have multiple time series in
your dataset, Data Wrangler standardizes the time interval for each time series.

The following table shows an example of downsampling time series data by using the mean as the
aggregation method. The data is downsampled from every two hours to every hour.

Hourly temperature readings over a day before downsampling

Timestamp Temperature (Celsius)

12:00 30

1:00 32

2:00 35

3:00 32

4:00 30

Prepare data 863

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html

Amazon SageMaker Developer Guide

Temperature readings downsampled to every two hours

Timestamp Temperature (Celsius)

12:00 30

2:00 33.5

4:00 35

You can use the following procedure to resample time series data.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

3. Choose Add step.

4. Choose Resample.

5. For Timestamp, choose the timestamp column.

6. For Frequency unit, specify the frequency that you're resampling.

7. (Optional) Specify a value for Frequency quantity.

8. Configure the transform by specifying the remaining fields.

9. Choose Preview to generate a preview of the transform.

10. Choose Add to add the transform to the Data Wrangler data flow.

Handle Missing Time Series Data

If you have missing values in your dataset, you can do one of the following:

• For datasets that have multiple time series, drop the time series that have missing values that are
greater than a threshold that you specify.

• Impute the missing values in a time series by using other values in the time series.

Imputing a missing value involves replacing the data by either specifying a value or by using an
inferential method. The following are the methods that you can use for imputation:

• Constant value – Replace all the missing data in your dataset with a value that you specify.

Prepare data 864

Amazon SageMaker Developer Guide

• Most common value – Replace all the missing data with the value that has the highest frequency
in the dataset.

• Forward fill – Use a forward fill to replace the missing values with the non-missing value that
precedes the missing values. For the sequence: [2, 4, 7, NaN, NaN, NaN, 8], all of the missing
values are replaced with 7. The sequence that results from using a forward fill is [2, 4, 7, 7, 7, 7,
8].

• Backward fill – Use a backward fill to replace the missing values with the non-missing value that
follows the missing values. For the sequence: [2, 4, 7, NaN, NaN, NaN, 8], all of the missing values
are replaced with 8. The sequence that results from using a backward fill is [2, 4, 7, 8, 8, 8, 8].

• Interpolate – Uses an interpolation function to impute the missing values. For more information
on the functions that you can use for interpolation, see pandas.DataFrame.interpolate.

Some of the imputation methods might not be able to impute of all the missing value in your
dataset. For example, a Forward fill can't impute a missing value that appears at the beginning of
the time series. You can impute the values by using either a forward fill or a backward fill.

You can either impute missing values within a cell or within a column.

The following example shows how values are imputed within a cell.

Electricity usage with missing values

Household ID Electricity usage series (kWh)

household_0 [30, 40, 35, NaN, NaN]

household_1 [45, NaN, 55]

Electricity usage with values imputed using a forward fill

Household ID Electricity usage series (kWh)

household_0 [30, 40, 35, 35, 35]

household_1 [45, 45, 55]

The following example shows how values are imputed within a column.

Prepare data 865

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html

Amazon SageMaker Developer Guide

Average daily household electricity usage with missing values

Household ID Electricity usage (kWh)

household_0 30

household_0 40

household_0 NaN

household_1 NaN

household_1 NaN

Average daily household electricity usage with values imputed using a forward fill

Household ID Electricity usage (kWh)

household_0 30

household_0 40

household_0 40

household_1 40

household_1 40

You can use the following procedure to handle missing values.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

3. Choose Add step.

4. Choose Handle missing.

5. For Time series input type, choose whether you want to handle missing values inside of a cell
or along a column.

6. For Impute missing values for this column, specify the column that has the missing values.

7. For Method for imputing values, select a method.

Prepare data 866

Amazon SageMaker Developer Guide

8. Configure the transform by specifying the remaining fields.

9. Choose Preview to generate a preview of the transform.

10. If you have missing values, you can specify a method for imputing them under Method for
imputing values.

11. Choose Add to add the transform to the Data Wrangler data flow.

Validate the Timestamp of Your Time Series Data

You might have time stamp data that is invalid. You can use the Validate time stamp function to
determine whether the timestamps in your dataset are valid. Your timestamp can be invalid for one
or more of the following reasons:

• Your timestamp column has missing values.

• The values in your timestamp column are not formatted correctly.

If you have invalid timestamps in your dataset, you can't perform your analysis successfully. You
can use Data Wrangler to identify invalid timestamps and understand where you need to clean
your data.

The time series validation works in one of the two ways:

You can configure Data Wrangler to do one of the following if it encounters missing values in your
dataset:

• Drop the rows that have the missing or invalid values.

• Identify the rows that have the missing or invalid values.

• Throw an error if it finds any missing or invalid values in your dataset.

You can validate the timestamps on columns that either have the timestamp type or the string
type. If the column has the string type, Data Wrangler converts the type of the column to
timestamp and performs the validation.

You can use the following procedure to validate the timestamps in your dataset.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

Prepare data 867

Amazon SageMaker Developer Guide

3. Choose Add step.

4. Choose Validate timestamps.

5. For Timestamp Column, choose the timestamp column.

6. For Policy, choose whether you want to handle missing timestamps.

7. (Optional) For Output column, specify a name for the output column.

8. If the date time column is formatted for the string type, choose Cast to datetime.

9. Choose Preview to generate a preview of the transform.

10. Choose Add to add the transform to the Data Wrangler data flow.

Standardizing the Length of the Time Series

If you have time series data stored as arrays, you can standardize each time series to the same
length. Standardizing the length of the time series array might make it easier for you to perform
your analysis on the data.

You can standardize your time series for data transformations that require the length of your data
to be fixed.

Many ML algorithms require you to flatten your time series data before you use them. Flattening
time series data is separating each value of the time series into its own column in a dataset.
The number of columns in a dataset can't change, so the lengths of the time series need to be
standardized between you flatten each array into a set of features.

Each time series is set to the length that you specify as a quantile or percentile of the time series
set. For example, you can have three sequences that have the following lengths:

• 3

• 4

• 5

You can set the length of all of the sequences as the length of the sequence that has the 50th
percentile length.

Time series arrays that are shorter than the length you've specified have missing values added. The
following is an example format of standardizing the time series to a longer length: [2, 4, 5, NaN,
NaN, NaN].

Prepare data 868

Amazon SageMaker Developer Guide

You can use different approaches to handle the missing values. For information on those
approaches, see Handle Missing Time Series Data.

The time series arrays that are longer than the length that you specify are truncated.

You can use the following procedure to standardize the length of the time series.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

3. Choose Add step.

4. Choose Standardize length.

5. For Standardize the time series length for the column, choose a column.

6. (Optional) For Output column, specify a name for the output column. If you don't specify a
name, the transform is done in place.

7. If the datetime column is formatted for the string type, choose Cast to datetime.

8. Choose Cutoff quantile and specify a quantile to set the length of the sequence.

9. Choose Flatten the output to output the values of the time series into separate columns.

10. Choose Preview to generate a preview of the transform.

11. Choose Add to add the transform to the Data Wrangler data flow.

Extract Features from Your Time Series Data

If you're running a classification or a regression algorithm on your time series data, we recommend
extracting features from the time series before running the algorithm. Extracting features might
improve the performance of your algorithm.

Use the following options to choose how you want to extract features from your data:

• Use Minimal subset to specify extracting 8 features that you know are useful in downstream
analyses. You can use a minimal subset when you need to perform computations quickly. You can
also use it when your ML algorithm has a high risk of overfitting and you want to provide it with
fewer features.

• Use Efficient subset to specify extracting the most features possible without extracting features
that are computationally intensive in your analyses.

• Use All features to specify extracting all features from the tune series.

Prepare data 869

Amazon SageMaker Developer Guide

• Use Manual subset to choose a list of features that you think explain the variation in your data
well.

Use the following the procedure to extract features from your time series data.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

3. Choose Add step.

4. Choose Extract features.

5. For Extract features for this column, choose a column.

6. (Optional) Select Flatten to output the features into separate columns.

7. For Strategy, choose a strategy to extract the features.

8. Choose Preview to generate a preview of the transform.

9. Choose Add to add the transform to the Data Wrangler data flow.

Use Lagged Features from Your Time Series Data

For many use cases, the best way to predict the future behavior of your time series is to use its
most recent behavior.

The most common uses of lagged features are the following:

• Collecting a handful of past values. For example, for time, t + 1, you collect t, t - 1, t - 2, and t - 3.

• Collecting values that correspond to seasonal behavior in the data. For example, to predict the
occupancy in a restaurant at 1:00 PM, you might want to use the features from 1:00 PM on the
previous day. Using the features from 12:00 PM or 11:00 AM on the same day might not be as
predictive as using the features from previous days.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

3. Choose Add step.

4. Choose Lag features.

5. For Generate lag features for this column, choose a column.

6. For Timestamp Column, choose the column containing the timestamps.

Prepare data 870

Amazon SageMaker Developer Guide

7. For Lag, specify the duration of the lag.

8. (Optional) Configure the output using one of the following options:

• Include the entire lag window

• Flatten the output

• Drop rows without history

9. Choose Preview to generate a preview of the transform.

10. Choose Add to add the transform to the Data Wrangler data flow.

Create a Datetime Range In Your Time Series

You might have time series data that don't have timestamps. If you know that the observations
were taken at regular intervals, you can generate timestamps for the time series in a separate
column. To generate timestamps, you specify the value for the start timestamp and the frequency
of the timestamps.

For example, you might have the following time series data for the number of customers at a
restaurant.

Time series data on the number of customers at a restaurant

Number of customers

10

14

24

40

30

20

If you know that the restaurant opened at 5:00 PM and that the observations are taken hourly, you
can add a timestamp column that corresponds to the time series data. You can see the timestamp
column in the following table.

Prepare data 871

Amazon SageMaker Developer Guide

Time series data on the number of customers at a restaurant

Number of customers Timestamp

10 1:00 PM

14 2:00 PM

24 3:00 PM

40 4:00 PM

30 5:00 PM

20 6:00 PM

Use the following procedure to add a datetime range to your data.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

3. Choose Add step.

4. Choose Datetime range.

5. For Frequency type, choose the unit used to measure the frequency of the timestamps.

6. For Starting timestamp, specify the start timestamp.

7. For Output column, specify a name for the output column.

8. (Optional) Configure the output using the remaining fields.

9. Choose Preview to generate a preview of the transform.

10. Choose Add to add the transform to the Data Wrangler data flow.

Use a Rolling Window In Your Time Series

You can extract features over a time period. For example, for time, t, and a time window length
of 3, and for the row that indicates the tth timestamp, we append the features that are extracted
from the time series at times t - 3, t -2, and t - 1. For information on extracting features, see
Extract Features from Your Time Series Data.

You can use the following procedure to extract features over a time period.

Prepare data 872

Amazon SageMaker Developer Guide

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add transform.

3. Choose Add step.

4. Choose Rolling window features.

5. For Generate rolling window features for this column, choose a column.

6. For Timestamp Column, choose the column containing the timestamps.

7. (Optional) For Output Column, specify the name of the output column.

8. For Window size, specify the window size.

9. For Strategy, choose the extraction strategy.

10. Choose Preview to generate a preview of the transform.

11. Choose Add to add the transform to the Data Wrangler data flow.

Featurize Datetime

Use Featurize date/time to create a vector embedding representing a datetime field. To use this
transform, your datetime data must be in one of the following formats:

• Strings describing datetime: For example, "January 1st, 2020, 12:44pm".

• A Unix timestamp: A Unix timestamp describes the number of seconds, milliseconds,
microseconds, or nanoseconds from 1/1/1970.

You can choose to Infer datetime format and provide a Datetime format. If you provide a
datetime format, you must use the codes described in the Python documentation. The options you
select for these two configurations have implications for the speed of the operation and the final
results.

• The most manual and computationally fastest option is to specify a Datetime format and select
No for Infer datetime format.

• To reduce manual labor, you can choose Infer datetime format and not specify a datetime
format. It is also a computationally fast operation; however, the first datetime format
encountered in the input column is assumed to be the format for the entire column. If there are
other formats in the column, these values are NaN in the final output. Inferring the datetime
format can give you unparsed strings.

Prepare data 873

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

Amazon SageMaker Developer Guide

• If you don't specify a format and select No for Infer datetime format, you get the most robust
results. All the valid datetime strings are parsed. However, this operation can be an order of
magnitude slower than the first two options in this list.

When you use this transform, you specify an Input column which contains datetime data in one of
the formats listed above. The transform creates an output column named Output column name.
The format of the output column depends on your configuration using the following:

• Vector: Outputs a single column as a vector.

• Columns: Creates a new column for every feature. For example, if the output contains a year,
month, and day, three separate columns are created for year, month, and day.

Additionally, you must choose an Embedding mode. For linear models and deep networks, we
recommend choosing cyclic. For tree-based algorithms, we recommend choosing ordinal.

Format String

The Format string transforms contain standard string formatting operations. For example, you
can use these operations to remove special characters, normalize string lengths, and update string
casing.

This feature group contains the following transforms. All transforms return copies of the strings in
the Input column and add the result to a new, output column.

Name Function

Left pad Left-pad the string with a given Fill character
 to the given width. If the string is longer than
width, the return value is shortened to width
characters.

Right pad Right-pad the string with a given Fill
character to the given width. If the string
is longer than width, the return value is
shortened to width characters.

Center (pad on either side) Center-pad the string (add padding on both
sides of the string) with a given Fill character

Prepare data 874

Amazon SageMaker Developer Guide

Name Function

 to the given width. If the string is longer than
width, the return value is shortened to width
characters.

Prepend zeros Left-fill a numeric string with zeros, up to
a given width. If the string is longer than
width, the return value is shortened to width
characters.

Strip left and right Returns a copy of the string with the leading
and trailing characters removed.

Strip characters from left Returns a copy of the string with leading
characters removed.

Strip characters from right Returns a copy of the string with trailing
characters removed.

Lower case Convert all letters in text to lowercase.

Upper case Convert all letters in text to uppercase.

Capitalize Capitalize the first letter in each sentence.

Swap case Converts all uppercase characters to lowercase
and all lowercase characters to uppercase
characters of the given string, and returns it.

Add prefix or suffix Adds a prefix and a suffix the string column.
You must specify at least one of Prefix and
Suffix.

Remove symbols Removes given symbols from a string. All
listed characters are removed. Defaults to
white space.

Prepare data 875

Amazon SageMaker Developer Guide

Handle Outliers

Machine learning models are sensitive to the distribution and range of your feature values.
Outliers, or rare values, can negatively impact model accuracy and lead to longer training times.
Use this feature group to detect and update outliers in your dataset.

When you define a Handle outliers transform step, the statistics used to detect outliers are
generated on the data available in Data Wrangler when defining this step. These same statistics are
used when running a Data Wrangler job.

Use the following sections to learn more about the transforms this group contains. You specify an
Output name and each of these transforms produces an output column with the resulting data.

Robust standard deviation numeric outliers

This transform detects and fixes outliers in numeric features using statistics that are robust to
outliers.

You must define an Upper quantile and a Lower quantile for the statistics used to calculate
outliers. You must also specify the number of Standard deviations from which a value must vary
from the mean to be considered an outlier. For example, if you specify 3 for Standard deviations, a
value must fall more than 3 standard deviations from the mean to be considered an outlier.

The Fix method is the method used to handle outliers when they are detected. You can choose
from the following:

• Clip: Use this option to clip the outliers to the corresponding outlier detection bound.

• Remove: Use this option to remove rows with outliers from the dataframe.

• Invalidate: Use this option to replace outliers with invalid values.

Standard Deviation Numeric Outliers

This transform detects and fixes outliers in numeric features using the mean and standard
deviation.

You specify the number of Standard deviations a value must vary from the mean to be considered
an outlier. For example, if you specify 3 for Standard deviations, a value must fall more than 3
standard deviations from the mean to be considered an outlier.

The Fix method is the method used to handle outliers when they are detected. You can choose
from the following:

Prepare data 876

Amazon SageMaker Developer Guide

• Clip: Use this option to clip the outliers to the corresponding outlier detection bound.

• Remove: Use this option to remove rows with outliers from the dataframe.

• Invalidate: Use this option to replace outliers with invalid values.

Quantile Numeric Outliers

Use this transform to detect and fix outliers in numeric features using quantiles. You can define an
Upper quantile and a Lower quantile. All values that fall above the upper quantile or below the
lower quantile are considered outliers.

The Fix method is the method used to handle outliers when they are detected. You can choose
from the following:

• Clip: Use this option to clip the outliers to the corresponding outlier detection bound.

• Remove: Use this option to remove rows with outliers from the dataframe.

• Invalidate: Use this option to replace outliers with invalid values.

Min-Max Numeric Outliers

This transform detects and fixes outliers in numeric features using upper and lower thresholds. Use
this method if you know threshold values that demark outliers.

You specify a Upper threshold and a Lower threshold, and if values fall above or below those
thresholds respectively, they are considered outliers.

The Fix method is the method used to handle outliers when they are detected. You can choose
from the following:

• Clip: Use this option to clip the outliers to the corresponding outlier detection bound.

• Remove: Use this option to remove rows with outliers from the dataframe.

• Invalidate: Use this option to replace outliers with invalid values.

Replace Rare

When you use the Replace rare transform, you specify a threshold and Data Wrangler finds all
values that meet that threshold and replaces them with a string that you specify. For example, you
may want to use this transform to categorize all outliers in a column into an "Others" category.

Prepare data 877

Amazon SageMaker Developer Guide

• Replacement string: The string with which to replace outliers.

• Absolute threshold: A category is rare if the number of instances is less than or equal to this
absolute threshold.

• Fraction threshold: A category is rare if the number of instances is less than or equal to this
fraction threshold multiplied by the number of rows.

• Max common categories: Maximum not-rare categories that remain after the operation. If the
threshold does not filter enough categories, those with the top number of appearances are
classified as not rare. If set to 0 (default), there is no hard limit to the number of categories.

Handle Missing Values

Missing values are a common occurrence in machine learning datasets. In some situations, it is
appropriate to impute missing data with a calculated value, such as an average or categorically
common value. You can process missing values using the Handle missing values transform group.
This group contains the following transforms.

Fill Missing

Use the Fill missing transform to replace missing values with a Fill value you define.

Impute Missing

Use the Impute missing transform to create a new column that contains imputed values where
missing values were found in input categorical and numerical data. The configuration depends on
your data type.

For numeric data, choose an imputing strategy, the strategy used to determine the new value to
impute. You can choose to impute the mean or the median over the values that are present in your
dataset. Data Wrangler uses the value that it computes to impute the missing values.

For categorical data, Data Wrangler imputes missing values using the most frequent value in the
column. To impute a custom string, use the Fill missing transform instead.

Add Indicator for Missing

Use the Add indicator for missing transform to create a new indicator column, which contains a
Boolean "false" if a row contains a value, and "true" if a row contains a missing value.

Drop Missing

Use the Drop missing option to drop rows that contain missing values from the Input column.

Prepare data 878

Amazon SageMaker Developer Guide

Manage Columns

You can use the following transforms to quickly update and manage columns in your dataset:

Name Function

Drop Column Delete a column.

Duplicate Column Duplicate a column.

Rename Column Rename a column.

Move Column Move a column's location in the dataset.
Choose to move your column to the start or
end of the dataset, before or after a reference
column, or to a specific index.

Manage Rows

Use this transform group to quickly perform sort and shuffle operations on rows. This group
contains the following:

• Sort: Sort the entire dataframe by a given column. Select the check box next to Ascending order
for this option; otherwise, deselect the check box and descending order is used for the sort.

• Shuffle: Randomly shuffle all rows in the dataset.

Manage Vectors

Use this transform group to combine or flatten vector columns. This group contains the following
transforms.

• Assemble: Use this transform to combine Spark vectors and numeric data into a single column.
For example, you can combine three columns: two containing numeric data and one containing
vectors. Add all the columns you want to combine in Input columns and specify a Output
column name for the combined data.

• Flatten: Use this transform to flatten a single column containing vector data. The input column
must contain PySpark vectors or array-like objects. You can control the number of columns
created by specifying a Method to detect number of outputs. For example, if you select Length

Prepare data 879

Amazon SageMaker Developer Guide

of first vector, the number of elements in the first valid vector or array found in the column
determines the number of output columns that are created. All other input vectors with too
many items are truncated. Inputs with too few items are filled with NaNs.

You also specify an Output prefix, which is used as the prefix for each output column.

Process Numeric

Use the Process Numeric feature group to process numeric data. Each scalar in this group is
defined using the Spark library. The following scalars are supported:

• Standard Scaler: Standardize the input column by subtracting the mean from each value and
scaling to unit variance. To learn more, see the Spark documentation for StandardScaler.

• Robust Scaler: Scale the input column using statistics that are robust to outliers. To learn more,
see the Spark documentation for RobustScaler.

• Min Max Scaler: Transform the input column by scaling each feature to a given range. To learn
more, see the Spark documentation for MinMaxScaler.

• Max Absolute Scaler: Scale the input column by dividing each value by the maximum absolute
value. To learn more, see the Spark documentation for MaxAbsScaler.

Sampling

After you've imported your data, you can use the Sampling transformer to take one or more
samples of it. When you use the sampling transformer, Data Wrangler samples your original
dataset.

You can choose one of the following sample methods:

• Limit: Samples the dataset starting from the first row up to the limit that you specify.

• Randomized: Takes a random sample of a size that you specify.

• Stratified: Takes a stratified random sample.

You can stratify a randomized sample to make sure that it represents the original distribution of
the dataset.

You might be performing data preparation for multiple use cases. For each use case, you can take a
different sample and apply a different set of transformations.

Prepare data 880

https://spark.apache.org/docs/3.0.0/ml-features#standardscaler
https://spark.apache.org/docs/3.0.0/ml-features#robustscaler
https://spark.apache.org/docs/3.0.0/ml-features#minmaxscaler
https://spark.apache.org/docs/3.0.0/ml-features#maxabsscaler

Amazon SageMaker Developer Guide

The following procedure describes the process of creating a random sample.

To take a random sample from your data.

1. Choose the + to the right of the dataset that you've imported. The name of your dataset is
located below the +.

2. Choose Add transform.

3. Choose Sampling.

4. For Sampling method, choose the sampling method.

5. For Approximate sample size, choose the approximate number of observations that you want
in your sample.

6. (Optional) Specify an integer for Random seed to create a reproducible sample.

The following procedure describes the process of creating a stratified sample.

To take a stratified sample from your data.

1. Choose the + to the right of the dataset that you've imported. The name of your dataset is
located below the +.

2. Choose Add transform.

3. Choose Sampling.

4. For Sampling method, choose the sampling method.

5. For Approximate sample size, choose the approximate number of observations that you want
in your sample.

6. For Stratify column, specify the name of the column that you want to stratify on.

7. (Optional) Specify an integer for Random seed to create a reproducible sample.

Search and Edit

Use this section to search for and edit specific patterns within strings. For example, you can find
and update strings within sentences or documents, split strings by delimiters, and find occurrences
of specific strings.

The following transforms are supported under Search and edit. All transforms return copies of the
strings in the Input column and add the result to a new output column.

Prepare data 881

Amazon SageMaker Developer Guide

Name Function

Find substring Returns the index of the first occurrence of
the Substring for which you searched , You
can start and end the search at Start and End
respectively.

Find substring (from right) Returns the index of the last occurrence of
the Substring for which you searched. You
can start and end the search at Start and End
respectively.

Matches prefix Returns a Boolean value if the string contains
a given Pattern. A pattern can be a character
 sequence or regular expression. Optionally,
you can make the pattern case sensitive.

Find all occurrences Returns an array with all occurrences of a
given pattern. A pattern can be a character
sequence or regular expression.

Extract using regex Returns a string that matches a given Regex
pattern.

Extract between delimiters Returns a string with all characters found
between Left delimiter and Right delimiter.

Extract from position Returns a string, starting from Start position
in the input string, that contains all characters
up to the start position plus Length.

Find and replace substring Returns a string with all matches of a given
Pattern (regular expression) replaced by
Replacement string.

Replace between delimiters Returns a string with the substring found
between the first appearance of a Left
delimiter and the last appearance of a Right

Prepare data 882

Amazon SageMaker Developer Guide

Name Function

delimiter replaced by Replacement string. If
no match is found, nothing is replaced.

Replace from position Returns a string with the substring between
Start position and Start position plus Length
replaced by Replacement string. If Start
position plus Length is greater than the
length of the replacement string, the output
contains ….

Convert regex to missing Converts a string to None if invalid and returns
the result. Validity is defined with a regular
expression in Pattern.

Split string by delimiter Returns an array of strings from the input
string, split by Delimiter, with up to Max
number of splits (optional). The delimiter
defaults to white space.

Split data

Use the Split data transform to split your dataset into two or three datasets. For example, you can
split your dataset into a dataset used to train your model and a dataset used to test it. You can
determine the proportion of the dataset that goes into each split. For example, if you’re splitting
one dataset into two datasets, the training dataset can have 80% of the data while the testing
dataset has 20%.

Splitting your data into three datasets gives you the ability to create training, validation, and test
datasets. You can see how well the model performs on the test dataset by dropping the target
column.

Your use case determines how much of the original dataset each of your datasets get and the
method you use to split the data. For example, you might want to use a stratified split to make sure
that the distribution of the observations in the target column are the same across datasets. You
can use the following split transforms:

Prepare data 883

Amazon SageMaker Developer Guide

• Randomized split — Each split is a random, non-overlapping sample of the original dataset. For
larger datasets, using a randomized split might be computationally expensive and take longer
than an ordered split.

• Ordered split – Splits the dataset based on the sequential order of the observations. For
example, for an 80/20 train-test split, the first observations that make up 80% of the dataset
go to the training dataset. The last 20% of the observations go to the testing dataset. Ordered
splits are effective in keeping the existing order of the data between splits.

• Stratified split – Splits the dataset to make sure that the number of observations in the input
column have proportional representation. For an input column that has the observations 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, an 80/20 split on the column would mean that
approximately 80% of the 1s, 80% of the 2s, and 80% of the 3s go to the training set. About
20% of each type of observation go to the testing set.

• Split by key – Avoids data with the same key occurring in more than one split. For example, if you
have a dataset with the column 'customer_id' and you're using it as a key, no customer id is in
more than one split.

After you split the data, you can apply additional transformations to each dataset. For most use
cases, they aren't necessary.

Data Wrangler calculates the proportions of the splits for performance. You can choose an error
threshold to set the accuracy of the splits. Lower error thresholds more accurately reflect the
proportions that you specify for the splits. If you set a higher error threshold, you get better
performance, but lower accuracy.

For perfectly split data, set the error threshold to 0. You can specify a threshold between 0 and 1
for better performance. If you specify a value greater than 1, Data Wrangler interprets that value
as 1.

If you have 10000 rows in your dataset and you specify an 80/20 split with an error of 0.001, you
would get observations approximating one of the following results:

• 8010 observations in the training set and 1990 in the testing set

• 7990 observations in the training set and 2010 in the testing set

The number of observations for the testing set in the preceding example is in the interval between
8010 and 7990.

Prepare data 884

Amazon SageMaker Developer Guide

By default, Data Wrangler uses a random seed to make the splits reproducible. You can specify a
different value for the seed to create a different reproducible split.

Randomized split

Use the following procedure to perform a randomized split on your dataset.

To split your dataset randomly, do the following

1. Choose the + next to the node containing the dataset that you're splitting.

2. Choose Add transform.

3. Choose Split data.

4. (Optional) For Splits, specify the names and proportions of each split. The proportions
must sum to 1.

5. (Optional) Choose the + to create an additional split.

• Specify the names and proportions of all the splits. The proportions must sum to 1.

6. (Optional) Specify a value for Error threshold other than the default value.

7. (Optional) Specify a value for Random seed.

8. Choose Preview.

9. Choose Add.

Ordered split

Use the following procedure to perform an ordered split on your dataset.

To make an ordered split in your dataset, do the following.

1. Choose the + next to the node containing the dataset that you're splitting.

2. Choose Add transform.

3. For Transform, choose Ordered split.

4. Choose Split data.

5. (Optional) For Splits, specify the names and proportions of each split. The proportions
must sum to 1.

6. (Optional) Choose the + to create an additional split.

Prepare data 885

Amazon SageMaker Developer Guide

• Specify the names and proportions of all the splits. The proportions must sum to 1.

7. (Optional) Specify a value for Error threshold other than the default value.

8. (Optional) For Input column, specify a column with numeric values. Uses the values of the
columns to infer which records are in each split. The smaller values are in one split with the
larger values in the other splits.

9. (Optional) Select Handle duplicates to add noise to duplicate values and create a dataset
of entirely unique values.

10. (Optional) Specify a value for Random seed.

11. Choose Preview.

12. Choose Add.

Stratified split

Use the following procedure to perform a stratified split on your dataset.

To make a stratified split in your dataset, do the following.

1. Choose the + next to the node containing the dataset that you're splitting.

2. Choose Add transform.

3. Choose Split data.

4. For Transform, choose Stratified split.

5. (Optional) For Splits, specify the names and proportions of each split. The proportions
must sum to 1.

6. (Optional) Choose the + to create an additional split.

• Specify the names and proportions of all the splits. The proportions must sum to 1.

7. For Input column, specify a column with up to 100 unique values. Data Wrangler can't
stratify a column with more than 100 unique values.

8. (Optional) Specify a value for Error threshold other than the default value.

9. (Optional) Specify a value for Random seed to specify a different seed.

10. Choose Preview.

11. Choose Add.

Prepare data 886

Amazon SageMaker Developer Guide

Split by column keys

Use the following procedure to split by the column keys in your dataset.

To split by the column keys in your dataset, do the following.

1. Choose the + next to the node containing the dataset that you're splitting.

2. Choose Add transform.

3. Choose Split data.

4. For Transform, choose Split by key.

5. (Optional) For Splits, specify the names and proportions of each split. The proportions
must sum to 1.

6. (Optional) Choose the + to create an additional split.

• Specify the names and proportions of all the splits. The proportions must sum to 1.

7. For Key columns, specify the columns with values that you don't want to appear in both
datasets.

8. (Optional) Specify a value for Error threshold other than the default value.

9. Choose Preview.

10. Choose Add.

Parse Value as Type

Use this transform to cast a column to a new type. The supported Data Wrangler data types are:

• Long

• Float

• Boolean

• Date, in the format dd-MM-yyyy, representing day, month, and year respectively.

• String

Validate String

Use the Validate string transforms to create a new column that indicates that a row of text data
meets a specified condition. For example, you can use a Validate string transform to verify that a

Prepare data 887

Amazon SageMaker Developer Guide

string only contains lowercase characters. The following transforms are supported under Validate
string.

The following transforms are included in this transform group. If a transform outputs a Boolean
value, True is represented with a 1 and False is represented with a 0.

Name Function

String length Returns True if a string length equals
specified length. Otherwise, returns False.

Starts with Returns True if a string starts will a specified
 prefix. Otherwise, returns False.

Ends with Returns True if a string length equals
specified length. Otherwise, returns False.

Is alphanumeric Returns True if a string only contains
numbers and letters. Otherwise, returns
False.

Is alpha (letters) Returns True if a string only contains letters.
Otherwise, returns False.

Is digit Returns True if a string only contains digits.
Otherwise, returns False.

Is space Returns True if a string only contains
numbers and letters. Otherwise, returns
False.

Is title Returns True if a string contains any white
spaces. Otherwise, returns False.

Is lowercase Returns True if a string only contains lower
case letters. Otherwise, returns False.

Is uppercase Returns True if a string only contains upper
case letters. Otherwise, returns False.

Prepare data 888

Amazon SageMaker Developer Guide

Name Function

Is numeric Returns True if a string only contains
numbers. Otherwise, returns False.

Is decimal Returns True if a string only contains decimal
numbers. Otherwise, returns False.

Unnest JSON Data

If you have a .csv file, you might have values in your dataset that are JSON strings. Similarly, you
might have nested data in columns of either a Parquet file or a JSON document.

Use the Flatten structured operator to separate the first level keys into separate columns. A first
level key is a key that isn't nested within a value.

For example, you might have a dataset that has a person column with demographic information on
each person stored as JSON strings. A JSON string might look like the following.

 "{"seq": 1,"name": {"first": "Nathaniel","last": "Ferguson"},"age": 59,"city":
 "Posbotno","state": "WV"}"

The Flatten structured operator converts the following first level keys into additional columns in
your dataset:

• seq

• name

• age

• city

• state

Data Wrangler puts the values of the keys as values under the columns. The following shows the
column names and values of the JSON.

Prepare data 889

Amazon SageMaker Developer Guide

seq, name, age, city, state
1, {"first": "Nathaniel","last": "Ferguson"}, 59, Posbotno, WV

For each value in your dataset containing JSON, the Flatten structured operator creates columns
for the first-level keys. To create columns for nested keys, call the operator again. For the preceding
example, calling the operator creates the columns:

• name_first

• name_last

The following example shows the dataset that results from calling the operation again.

seq, name, age, city, state, name_first, name_last
1, {"first": "Nathaniel","last": "Ferguson"}, 59, Posbotno, WV, Nathaniel, Ferguson

Choose Keys to flatten on to specify the first-level keys that want to extract as separate columns.
If you don't specify any keys, Data Wrangler extracts all the keys by default.

Explode Array

Use Explode array to expand the values of the array into separate output rows. For example, the
operation can take each value in the array, [[1, 2, 3,], [4, 5, 6], [7, 8, 9]] and create a new column
with the following rows:

 [1, 2, 3]
 [4, 5, 6]
 [7, 8, 9]

Data Wrangler names the new column, input_column_name_flatten.

You can call the Explode array operation multiple times to get the nested values of the array into
separate output columns. The following example shows the result of calling the operation multiple
times on a dataset with a nested array.

Prepare data 890

Amazon SageMaker Developer Guide

Putting the values of a nested array into separate columns

id array id array_items id array_ite
ms_items

1 [[cat, dog],
[bat, frog]]

1 [cat, dog] 1 cat

2 [[rose,
petunia], [lily,
daisy]]

1 [bat, frog] 1 dog

 2 [rose,
petunia]

1 bat

 2 [lily, daisy] 1 frog

 2 2 rose

 2 2 petunia

 2 2 lily

 2 2 daisy

Transform Image Data

Use Data Wrangler to import and transform the images that you're using for your machine learning
(ML) pipelines. After you've prepared your image data, you can export it from your Data Wrangler
flow to your ML pipeline.

You can use the information provided here to familiarize yourself with importing and transforming
image data in Data Wrangler. Data Wrangler uses OpenCV to import images. For more information
about supported image formats, see Image file reading and writing.

After you've familiarized yourself with the concepts of transforming your image data, go through
the following tutorial, Prepare image data with Amazon SageMaker Data Wrangler.

The following industries and use cases are examples where applying machine learning to
transformed image data can be useful:

Prepare data 891

https://docs.opencv.org/3.4/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://aws.amazon.com/blogs/machine-learning/prepare-image-data-with-amazon-sagemaker-data-wrangler/

Amazon SageMaker Developer Guide

• Manufacturing – Identifying defects in items from the assembly line

• Food – Identifying spoiled or rotten food

• Medicine – Identifying lesions in tissues

When you work with image data in Data Wrangler, you go through the following process:

1. Import – Select the images by choosing the directory containing them in your Amazon S3
bucket.

2. Transform – Use the built-in transformations to prepare the images for your machine learning
pipeline.

3. Export – Export the images that you’ve transformed to a location that can be accessed from the
pipeline.

Use the following procedure to import your image data.

To import your image data

1. Navigate to the Create connection page.

2. Choose Amazon S3.

3. Specify the Amazon S3 file path that contains the image data.

4. For File type, choose Image.

5. (Optional) Choose Import nested directories to import images from multiple Amazon S3
paths.

6. Choose Import.

Data Wrangler uses the open-source imgaug library for its built-in image transformations. You can
use the following built-in transformations:

• ResizeImage

• EnhanceImage

• CorruptImage

• SplitImage

• DropCorruptedImages

• DropImageDuplicates

Prepare data 892

https://imgaug.readthedocs.io/en/latest/

Amazon SageMaker Developer Guide

• Brightness

• ColorChannels

• Grayscale

• Rotate

Use the following procedure to transform your images without writing code.

To transform the image data without writing code

1. From your Data Wrangler flow, choose the + next to the node representing the images that
you've imported.

2. Choose Add transform.

3. Choose Add step.

4. Choose the transform and configure it.

5. Choose Preview.

6. Choose Add.

In addition to using the transformations that Data Wrangler provides, you can also use your own
custom code snippets. For more information about using custom code snippets, see Custom
Transforms. You can import the OpenCV and imgaug libraries within your code snippets and use
the transforms associated with them. The following is an example of a code snippet that detects
edges within the images.

A table with your image data is stored in the `df` variable
import cv2
import numpy as np
from pyspark.sql.functions import column

from sagemaker_dataprep.compute.operators.transforms.image.constants import
 DEFAULT_IMAGE_COLUMN, IMAGE_COLUMN_TYPE
from sagemaker_dataprep.compute.operators.transforms.image.decorators import
 BasicImageOperationDecorator, PandasUDFOperationDecorator

@BasicImageOperationDecorator
def my_transform(image: np.ndarray) -> np.ndarray:

Prepare data 893

Amazon SageMaker Developer Guide

 # To use the code snippet on your image data, modify the following lines within the
 function
 HYST_THRLD_1, HYST_THRLD_2 = 100, 200
 edges = cv2.Canny(image,HYST_THRLD_1,HYST_THRLD_2)
 return edges

@PandasUDFOperationDecorator(IMAGE_COLUMN_TYPE)
def custom_image_udf(image_row):
 return my_transform(image_row)

df = df.withColumn(DEFAULT_IMAGE_COLUMN,
 custom_image_udf(column(DEFAULT_IMAGE_COLUMN)))

When apply transformations in your Data Wrangler flow, Data Wrangler only applies them to
a sample of the images in your dataset. To optimize your experience with the application, Data
Wrangler doesn't apply the transforms to all of your images.

Filter data

Use Data Wrangler to filter the data in your columns. When you filter the data in a column, you
specify the following fields:

• Column name – The name of the column that you're using to filter the data.

• Condition – The type of filter that you're applying to values in the column.

• Value – The value or category in the column to which you're applying the filter.

You can filter on the following conditions:

• = – Returns values that match the value or category that you specify.

• != – Returns values that don't match the value or category that you specify.

• >= – For Long or Float data, filters for values that are greater than or equal to the value that you
specify.

• <= – For Long or Float data, filters for values that are less than or equal to the value that you
specify.

• > – For Long or Float data, filters for values that are greater than the value that you specify.

Prepare data 894

Amazon SageMaker Developer Guide

• < – For Long or Float data, filters for values that are less than the value that you specify.

For a column that has the categories, male and female, you can filter out all the male values. You
could also filter for all the female values. Because there are only male and female values in the
column, the filter returns a column that only has female values.

You can also add multiple filters. The filters can be applied across multiple columns or the same
column. For example, if you're creating a column that only has values within a certain range, you
add two different filters. One filter specifies that the column must have values greater than the
value that you provide. The other filter specifies that the column must have values less than the
value that you provide.

Use the following procedure to add the filter transform to your data.

To filter your data

1. From your Data Wrangler flow, choose the + next to the node with the data that you're
filtering.

2. Choose Add transform.

3. Choose Add step.

4. Choose Filter data.

5. Specify the following fields:

• Column name – The column that you're filtering.

• Condition – The condition of the filter.

• Value – The value or category in the column to which you're applying the filter.

6. (Optional) Choose + following the filter that you've created.

7. Configure the filter.

8. Choose Preview.

9. Choose Add.

Chat for data prep

Important

For administrators:

Prepare data 895

Amazon SageMaker Developer Guide

• Chat for data prep requires the AmazonSageMakerCanvasAIServicesAccess
policy. For more information, see AWS managed policy:
AmazonSageMakerCanvasAIServicesAccess

• Chat for data prep requires access to Amazon Bedrock and the Anthropic Claude model
within it. For more information, see Add model access.

• You must run SageMaker Canvas data prep in the same AWS Region as the Region where
you're running your model. Chat for data prep is available in the US East (N. Virginia), US
West (Oregon), and Europe (Frankfurt) AWS Regions.

In addition to using the built-in transforms and analyses, you can use natural language to explore,
visualize, and transform your data in a conversational interface. Within the conversational
interface, you can use natural language queries to understand and prepare your data to build ML
models.

The following are examples of some prompts that you can use:

• Summarize my data

• Drop column example-column-name

• Replace missing values with median

• Plot histogram of prices

• What is the most expensive item sold?

• How many distinct items were sold?

• Sort data by region

When you’re transforming your data using your prompts, you can view a preview that shows how
data is being transformed. You can choose to add it as step in your Data Wrangler flow based on
what you see in the preview.

The responses to your prompts generate code for your transformations and analyses. You can
modify the code to update the output from the prompt. For example, you can modify the code for
an analysis to change the values of the axes of a graph.

Use the following procedure to start chatting with your data:

Prepare data 896

https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html#add-model-access

Amazon SageMaker Developer Guide

To chat with your data

1. Open the SageMaker Canvas data flow.

2. Choose the speech bubble.

3. Specify a prompt.

4. (Optional) If an analysis has been generated by your query, choose Add to analyses to
reference it for later.

Prepare data 897

Amazon SageMaker Developer Guide

5. (Optional) If you've transformed your data using a prompt, do the following.

a. Choose Preview to view the results.

b. (Optional) Modify the code in the transform and choose Update.

c. (Optional) If you're happy with the results of the transform, choose Add to steps to add it
to the steps panel on the right-hand navigation.

After you’ve prepared your data using natural language, you can create a model using your
transformed data. For more information about creating a model, see Build a custom model.

Process data

You can process or export your data to a location that is suitable for your machine learning
workflows. For example, you can export the transformed data as SageMaker Canvas dataset and
create a machine learning model from it.

After you've exported your data you can choose Create model to create a machine learning model
from your data. For more information about creating a model, see Build a custom model.

Prepare data 898

Amazon SageMaker Developer Guide

Important

Note that SageMaker Canvas datasets have a 5 GB limit. If you're processing more than 5
GB of data, you can use a sampling transform to reduce the size of the dataset before you
export it . Alternatively, you can export data to Amazon S3. For more information about
importing datasets, see Create a dataset.

Within the Data Wrangler flow (data flow), in SageMaker Canvas only applies the transformations
to the SageMaker Canvas dataset. To process all of the data that you've imported, see Export data
using a processing job You can use any of the following methods to process your data:

• Exporting data – Exports the dataset with the transformations that you've made.

• Exporting your data flow – Exports your data flow using a Jupyter notebook. You can modify the
code and use it in your machine learning workflows.

• Running a processing job from your data flow – Exports the dataset with the transformations
that you've made in a highly performant manner. We recommend running a processing job on
datasets larger than 5 GB.

Export data

Export your data to create a dataset with transformations from your flow applied to it. You can
export any node in your data flow to the following locations:

• SageMaker Canvas dataset

• Amazon S3

For Amazon S3, you can export your data as one of the following file types:

• CSV

• Parquet

You can export your dataset as a SageMaker Canvas dataset to create a model using your
transformed data. Use the following procedure to export a SageMaker Canvas dataset from a node
in your data flow.

Prepare data 899

Amazon SageMaker Developer Guide

To export a node in your flow as a SageMaker Canvas dataset

1. Navigate to your data flow.

2. Choose the + next to the node that you're exporting.

3. Select Export data.

4. Select Canvas dataset.

5. Choose Export.

Export your dataset to Amazon S3 to use your transformed data in machine learning workflows
external to SageMaker Canvas.

To export a SageMaker Canvas dataset to Amazon S3

1. Navigate to your data flow.

2. Choose the + next to the node that you're exporting.

3. Select Export data.

4. Select Amazon S3.

5. Specify values for the following fields:

• Amazon S3 location – the S3 location where you're exporting the file.

• File type – The format of the file that you're exporting.

• Delimiter – the value used to separate values in the file.

• Compression (Optional) – The compression method used to reduce the file size. You can use
the following compression methods:

• None

• bzip2

• deflate

• gzip

• KMS Key ID or ARN (Optional) – An ARN or ID of an AWS KMS key. A KMS key is a
cryptographic key. You can use the key to encrypt the output data from the job. For more
information about KMS keys, see AWS Key Management Service.

6. Choose Export.

Prepare data 900

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

Export data using a processing job

A SageMaker Canvas dataset is a sample of your data. Use an Amazon SageMaker processing job to
apply transformations in your data flow to all of your data.

To create a SageMaker processing job, do the following:

1. Create a destination node

2. Create a job

A destination node tells SageMaker Canvas where to store the data that it processed. You create a
processing job to output the transformed data to the location specified by the destination node.
Creating a processing job runs the computational resources needed to output the transformed data
to Amazon S3.

You can use a destination node to export some of the transformations or all of the transformations
that you've made in your Data Wrangler flow.

You can use multiple destination nodes to export different transformations or sets of
transformations. The following example shows two destination nodes in a single Data Wrangler
flow.

Use the following procedure to create a destination node.

To create destination nodes

1. Choose the + next to the nodes that represent the transformations that you want to export.

2. Choose Add destination.

3. Choose Amazon S3.

4. Specify the following fields.

• Dataset name – The name that you specify for the dataset that you're exporting.

• File type – The format of the file that you're exporting.

• Delimiter – The value used to separate other values.

• Compression (CSV and Parquet files only) – The compression method used to reduce the file
size. You can use the following compression methods:

• bzip2

Prepare data 901

Amazon SageMaker Developer Guide

• deflate

• gzip

• Amazon S3 location – The S3 location that you're using to output the files.

• (Optional) Number of partitions – The number of datasets that you're writing as the output
of the processing job.

• (Optional) Partition by column – Writes all data with the same unique value from the
column.

5. Choose Add destination.

You can create multiple destination nodes within the same data flow. When you create a processing
job, it can simultaneously perform different sets of transformations on your data and save them to
different Amazon S3 locations.

Export data flow

Exporting your data flow translates the operations that you've made in Data Wrangler and exports
it into a Jupyter notebook that you can modify and run.

A data flow is the series of data preparation steps that you've performed on your data. In your data
preparation, you perform one or more transformations to your data. Each transformation is done
using a transform step. The flow has a series of nodes that represent the import of your data and
the transformations that you've performed. For an example of nodes, see the following image.

As an alternative to using a destination node, you can use the Export data flow option to export
your Data Wrangler flow to Amazon S3 using a Jupyter notebook. You can integrate the output
code into your machine learning pipelines. You can choose any data node in your data flow and
export it. Exporting the data node exports the transformation that the node represents and the
transformations that precede it.

Use the following procedure to generate a Jupyter notebook and run it to export your data flow to
Amazon S3.

1. Choose the + next to the node that you want to export.

2. Choose Export data flow.

3. Choose one of the following:

• Save to Amazon S3 (via Jupyter notebook).

Prepare data 902

Amazon SageMaker Developer Guide

• Amazon Personalize.

4. Select one of the following:

• Download a local copy

• Export to S3 location

5. If you're exporting to Amazon S3, specify the S3 location where you're export the notebook.

6. Choose Export.

Create a schedule to automatically process new data

If you're processing data periodically, you can create a schedule to run the processing job
automatically. For example, you can create a schedule that runs a processing job automatically
when you get new data. For more information about processing jobs, see Export data using a
processing job.

When you create a job, you must specify an IAM role that has permissions to create the job. You
can use the AmazonSageMakerCanvasDataPrepFullAccess policy to add permissions.

Add the following trust policy to the role to allow EventBridge to assume it.

{
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
}

Important

When you create a schedule, Data Wrangler creates an eventRule in EventBridge. You
incur charges for both the event rules that you create and the instances used to run the
processing job.
For information about EventBridge pricing, see Amazon EventBridge pricing. For
information about processing job pricing, see Amazon SageMaker Pricing.

Prepare data 903

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasDataPrepFullAccess.html
https://aws.amazon.com/eventbridge/pricing/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

You can set a schedule using one of the following methods:

• CRON expressions

Note

Data Wrangler doesn't support the following expressions:

• LW#

• Abbreviations for days

• Abbreviations for months

• RATE expressions

• Recurring – Set an hourly or daily interval to run the job.

• Specific time – Set specific days and times to run the job.

The following sections provide procedures on creating jobs.

CRON

Use the following procedure to create a schedule with a CRON expression.

To specify a schedule with a CRON expression, do the following.

1. Open your Data Wrangler flow.

2. Choose Create job.

3. (Optional) For Output KMS key, specify an AWS KMS key to configure the output of the
job.

4. Choose Next.

5. Select Associate Schedules.

6. Choose Create a new schedule.

7. For Schedule Name, specify the name of the schedule.

8. For Run Frequency, choose CRON.

9. Specify a valid CRON expression.

10. Choose Create.

11. (Optional) Choose Add another schedule to run the job on an additional schedule.

Prepare data 904

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html#eb-rate-expressions

Amazon SageMaker Developer Guide

Note

You can associate a maximum of two schedules. The schedules are independent and
don't affect each other unless the times overlap.

12. Choose one of the following:

• Schedule and run now – Data Wrangler the job runs immediately and subsequently runs
on the schedules.

• Schedule only – Data Wrangler the job only runs on the schedules that you specify.

13. Choose Run

RATE

Use the following procedure to create a schedule with a RATE expression.

To specify a schedule with a RATE expression, do the following.

1. Open your Data Wrangler flow.

2. Choose Create job.

3. (Optional) For Output KMS key, specify an AWS KMS key to configure the output of the
job.

4. Choose Next, 2. Configure job.

5. Select Associate Schedules.

6. Choose Create a new schedule.

7. For Schedule Name, specify the name of the schedule.

8. For Run Frequency, choose Rate.

9. For Value, specify an integer.

10. For Unit, select one of the following:

• Minutes

• Hours

• Days

11. Choose Create.

Prepare data 905

Amazon SageMaker Developer Guide

12. (Optional) Choose Add another schedule to run the job on an additional schedule.

Note

You can associate a maximum of two schedules. The schedules are independent and
don't affect each other unless the times overlap.

13. Choose one of the following:

• Schedule and run now – Data Wrangler the job runs immediately and subsequently runs
on the schedules.

• Schedule only – Data Wrangler the job only runs on the schedules that you specify.

14. Choose Run

Recurring

Use the following procedure to create a schedule that runs a job on a recurring basis.

To specify a schedule with a CRON expression, do the following.

1. Open your Data Wrangler flow.

2. Choose Create job.

3. (Optional) For Output KMS key, specify an AWS KMS key to configure the output of the
job.

4. Choose Next, 2. Configure job.

5. Select Associate Schedules.

6. Choose Create a new schedule.

7. For Schedule Name, specify the name of the schedule.

8. For Run Frequency, make sure Recurring is selected by default.

9. For Every x hours, specify the hourly frequency that the job runs during the day. Valid
values are integers in the inclusive range of 1 and 23.

10. For On days, select one of the following options:

• Every Day

• Weekends

Prepare data 906

Amazon SageMaker Developer Guide

• Weekdays

• Select Days

• (Optional) If you've selected Select Days, choose the days of the week to run the job.

Note

The schedule resets every day. If you schedule a job to run every five hours, it runs
at the following times during the day:

• 00:00

• 05:00

• 10:00

• 15:00

• 20:00

11. Choose Create.

12. (Optional) Choose Add another schedule to run the job on an additional schedule.

Note

You can associate a maximum of two schedules. The schedules are independent and
don't affect each other unless the times overlap.

13. Choose one of the following:

• Schedule and run now – Data Wrangler the job runs immediately and subsequently runs
on the schedules.

• Schedule only – Data Wrangler the job only runs on the schedules that you specify.

14. Choose Run

Specific time

Use the following procedure to create a schedule that runs a job at specific times.

To specify a schedule with a CRON expression, do the following.

Prepare data 907

Amazon SageMaker Developer Guide

1. Open your Data Wrangler flow.

2. Choose Create job.

3. (Optional) For Output KMS key, specify an AWS KMS key to configure the output of the
job.

4. Choose Next, 2. Configure job.

5. Select Associate Schedules.

6. Choose Create a new schedule.

7. For Schedule Name, specify the name of the schedule.

8. Choose Create.

9. (Optional) Choose Add another schedule to run the job on an additional schedule.

Note

You can associate a maximum of two schedules. The schedules are independent and
don't affect each other unless the times overlap.

10. Choose one of the following:

• Schedule and run now – Data Wrangler the job runs immediately and subsequently runs
on the schedules.

• Schedule only – Data Wrangler the job only runs on the schedules that you specify.

11. Choose Run

You can use the SageMaker AWS Management Console to view the jobs that are scheduled to run.
Your processing jobs run within SageMaker Pipelines. Each processing job has its own pipeline. It
runs as a processing step within the pipeline. You can view the schedules that you've created within
a pipeline. For information about viewing a pipeline, see View a Pipeline.

Use the following procedure to view the jobs that you've scheduled.

To view the jobs you've scheduled, do the following.

1. Open Amazon SageMaker Studio Classic.

2. Open SageMaker Pipelines

3. View the pipelines for the jobs that you've created.

Prepare data 908

Amazon SageMaker Developer Guide

The pipeline running the job uses the job name as a prefix. For example, if you've created a job
named housing-data-feature-enginnering, the name of the pipeline is canvas-data-
prep-housing-data-feature-engineering.

4. Choose the pipeline containing your job.

5. View the status of the pipelines. Pipelines with a Status of Succeeded have run the processing
job successfully.

To stop the processing job from running, do the following:

To stop a processing job from running, delete the event rule that specifies the schedule. Deleting
an event rule stops all the jobs associated with the schedule from running. For information about
deleting a rule, see Disabling or deleting an Amazon EventBridge rule.

You can stop and delete the pipelines associated with the schedules as well. For information about
stopping a pipeline, see StopPipelineExecution. For information about deleting a pipeline, see
DeletePipeline.

Refit transforms to the entire dataset and export them

When you import data, Data Wrangler uses a sample of the data to apply the encodings. Data
Wrangler uses the first 20,000 rows as a sample.

The following transformations can use your data to create a column in the dataset:

• Encode Categorical

• Featurize Text

• Handle Outliers

• Handle Missing Values

If you used sampling to import your data, the preceding transforms only use the data from the
sample to create the column. The transform might not have used all of the relevant data. For
example, if you use the Encode Categorical transform, there might have been a category in the
entire dataset that wasn't present in the sample.

You can either use a destination node or a Jupyter notebook to refit the transformations to the
entire dataset. When Data Wrangler exports the transformations in the flow, it creates a SageMaker

Prepare data 909

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-delete-rule.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeletePipeline.html#API_DeletePipeline_RequestSyntax

Amazon SageMaker Developer Guide

processing job. When the processing job finishes, Data Wrangler saves the following files in either
the default Amazon S3 location or an S3 location that you specify:

• The Data Wrangler flow file that specifies the transformations that are refit to the dataset

• The dataset with the refit transformations applied to it

You can open a Data Wrangler flow file within SageMaker Canvas and apply the transformations
to a different dataset. For example, if you've applied the transformations to a training dataset, you
can open and use the Data Wrangler flow file to apply the transformations to a dataset used for
inference.

Use the following procedure to run a Jupyter notebook to refit the transformations and export the
data.

To run a Jupyter notebook and to refit the transformations and export your Data Wrangler flow, do
the following.

1. Choose the + next to the node that you want to export.

2. Choose Export to.

3. Choose the location to which you're exporting the data.

4. For the refit_trained_params object, set refit to True.

5. For the output_flow field, specify the name of the output flow file with the refit
transformations.

6. Run the Jupyter notebook.

Automate data preparation in SageMaker Canvas

After you transform your data in data flow, you can export the transforms to your machine
learning workflows. When you export your transforms, SageMaker Canvas creates a Jupyter
notebook. You must run the notebook within Amazon SageMaker Studio Classic. For information
about getting started with Studio Classic, contact your administrator.

Automate data preparation using SageMaker Pipelines

When you want to build and deploy large-scale machine learning (ML) workflows, you can
use SageMaker Pipelines to create workflows that manage and deploy SageMaker jobs. With
SageMaker Pipelines, you can build workflows that manage your SageMaker data preparation,

Prepare data 910

Amazon SageMaker Developer Guide

model training, and model deployment jobs. You can use the first-party algorithms that SageMaker
offers by using SageMaker Pipelines. For more information on SageMaker Pipelines, see SageMaker
Pipelines.

When you export one or more steps from your data flow to SageMaker Pipelines, Data Wrangler
creates a Jupyter notebook that you can use to define, instantiate, run, and manage a pipeline.

Use a Jupyter Notebook to Create a Pipeline

Use the following procedure to create a Jupyter notebook to export your Data Wrangler flow to
SageMaker Pipelines.

Use the following procedure to generate a Jupyter notebook and run it to export your Data
Wrangler flow to SageMaker Pipelines.

1. Choose the + next to the node that you want to export.

2. Choose Export data flow.

3. Choose SageMaker Pipelines (via Jupyter Notebook).

4. Download the Jupyter notebook or copy it to an Amazon S3 location. We recommend
copying it to an Amazon S3 location that you can access within Studio Classic. Contact your
administrator if you need guidance on a suitable location.

5. Run the Jupyter notebook.

You can use the Jupyter notebook that Data Wrangler produces to define a pipeline. The pipeline
includes the data processing steps that are defined by your Data Wrangler flow.

You can add additional steps to your pipeline by adding steps to the steps list in the following
code in the notebook:

pipeline = Pipeline(
 name=pipeline_name,
 parameters=[instance_type, instance_count],
 steps=[step_process], #Add more steps to this list to run in your Pipeline
)

For more information on defining pipelines, see Define SageMaker Pipeline.

Prepare data 911

https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/define-pipeline.html

Amazon SageMaker Developer Guide

Automate data preparation using an inference endpoint

Use your Data Wrangler flow to process data at the time of inference by creating a SageMaker
serial inference pipeline from your Data Wrangler flow. An inference pipeline is a series of steps
that results in a trained model making predictions on new data. A serial inference pipeline within
Data Wrangler transforms the raw data and provides it to the machine learning model for a
prediction. You create, run, and manage the inference pipeline from a Jupyter notebook within
Studio Classic. For more information about accessing the notebook, see Use a Jupyter notebook to
create an inference endpoint.

Within the notebook, you can either train a machine learning model or specify one that you've
already trained. You can either use Amazon SageMaker Autopilot or XGBoost to train the model
using the data that you've transformed in your Data Wrangler flow.

The pipeline provides the ability to perform either batch or real-time inference. You can also add
the Data Wrangler flow to SageMaker Model Registry. For more information about hosting models,
see Host multiple models in one container behind one endpoint.

Important

You can't export your Data Wrangler flow to an inference endpoint if it has the following
transformations:

• Join

• Concatenate

• Group by

If you must use the preceding transforms to prepare your data, use the following
procedure.

To prepare your data for inference with unsupported transforms

1. Create a Data Wrangler flow.

2. Apply the preceding transforms that aren't supported.

3. Export the data to an Amazon S3 bucket.

4. Create a separate Data Wrangler flow.

5. Import the data that you've exported from the preceding flow.

6. Apply the remaining transforms.

Prepare data 912

Amazon SageMaker Developer Guide

7. Create a serial inference pipeline using the Jupyter notebook that we provide.

For information about exporting your data to an Amazon S3 bucket see Export data.
For information about opening the Jupyter notebook used to create the serial inference
pipeline, see Use a Jupyter notebook to create an inference endpoint.

Data Wrangler ignores transforms that remove data at the time of inference. For example, Data
Wrangler ignores the Handle Missing Values transform if you use the Drop missing configuration.

If you've refit transforms to your entire dataset, the transforms carry over to your inference
pipeline. For example, if you used the median value to impute missing values, the median
value from refitting the transform is applied to your inference requests. You can either refit the
transforms from your Data Wrangler flow when you're using the Jupyter notebook or when you're
exporting your data to an inference pipeline. For information about refitting transforms, see Refit
transforms to the entire dataset and export them.

The serial inference pipeline supports the following data types for the input and output strings.
Each data type has a set of requirements.

Supported datatypes

• text/csv – the datatype for CSV strings

• The string can't have a header.

• Features used for the inference pipeline must be in the same order as features in the training
dataset.

• There must be a comma delimiter between features.

• Records must be delimited by a newline character.

The following is an example of a validly formatted CSV string that you can provide in an
inference request.

abc,0.0,"Doe, John",12345\ndef,1.1,"Doe, Jane",67890

• application/json – the datatype for JSON strings

Prepare data 913

Amazon SageMaker Developer Guide

• The features used in the dataset for the inference pipeline must be in the same order as the
features in the training dataset.

• The data must have a specific schema. You define schema as a single instances object that
has a set of features. Each features object represents an observation.

The following is an example of a validly formatted JSON string that you can provide in an
inference request.

{
 "instances": [
 {
 "features": ["abc", 0.0, "Doe, John", 12345]
 },
 {
 "features": ["def", 1.1, "Doe, Jane", 67890]
 }
]
}

Use a Jupyter notebook to create an inference endpoint

Use the following procedure to export your Data Wrangler flow to create an inference pipeline.

To create an inference pipeline using a Jupyter notebook, do the following.

1. Choose the + next to the node that you want to export.

2. Choose Export data flow.

3. Choose SageMaker Inference Pipeline (via Jupyter Notebook).

4. Download the Jupyter notebook or copy it to an Amazon S3 location. We recommend
copying it to an Amazon S3 location that you can access within Studio Classic. Contact your
administrator if you need guidance on a suitable location.

5. Run the Jupyter notebook.

When you run the Jupyter notebook, it creates an inference flow artifact. An inference flow artifact
is a Data Wrangler flow file with additional metadata used to create the serial inference pipeline.
The node that you're exporting encompasses all of the transforms from the preceding nodes.

Prepare data 914

Amazon SageMaker Developer Guide

Important

Data Wrangler needs the inference flow artifact to run the inference pipeline. You can't use
your own flow file as the artifact. You must create it by using the preceding procedure.

Automate data preparation using Python Code

To export all steps in your data flow to a Python file that you can manually integrate into any data
processing workflow, use the following procedure.

Use the following procedure to generate a Jupyter notebook and run it to export your Data
Wrangler flow to Python code.

1. Choose the + next to the node that you want to export.

2. Choose Export data flow.

3. Choose Python Code.

4. Download the Jupyter notebook or copy it to an Amazon S3 location. We recommend
copying it to an Amazon S3 location that you can access within Studio Classic. Contact your
administrator if you need guidance on a suitable location.

5. Run the Jupyter notebook.

You might need to configure the Python script to make it run in your pipeline. For example,
if you're running a Spark environment, make sure that you are running the script from an
environment that has permission to access AWS resources.

Use generative AI with foundation models

Amazon SageMaker Canvas provides generative AI foundation models that you can use to start
conversational chats. These content generation models are trained on large amounts of text data
to learn the statistical patterns and relationships between words, and they can produce coherent
text that is statistically similar to the text on which they were trained. You can use this capability to
increase your productivity by doing the following:

• Generate content, such as document outlines, reports, and blogs

• Summarize text from large corpuses of text, such as earnings call transcripts, annual reports, or
chapters of user manuals

Use generative AI with foundation models 915

Amazon SageMaker Developer Guide

• Extract insights and key takeaways from large passages of text, such as meeting notes or
narratives

• Improve text and catch grammatical errors or typos

The foundation models are a combination of Amazon SageMaker JumpStart and Amazon Bedrock
large language models (LLMs). Canvas offers the following models:

Model Type Description

Amazon Titan Amazon Bedrock model Amazon Titan is a powerful,
general-purpose language
model that you can use for
tasks such as summariza
tion, text generation (such
as creating a blog post),
classification, open-ende
d Q&A, and information
extraction. It is pretrained
on large datasets, making it
suitable for complex tasks
and reasoning. To continue
supporting best practices
in the responsible use of AI,
Amazon Titan foundation
models are built to detect
and remove harmful content
in the data, reject inappropr
iate content in the user input,
and filter model outputs
that contain inappropriate
content (such as hate speech,
profanity, and violence).

Anthropic Claude Instant Amazon Bedrock model Anthropic's Claude Instant is
a faster and more cost-effe
ctive yet still very capable

Use generative AI with foundation models 916

https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-service.html

Amazon SageMaker Developer Guide

Model Type Description

model. This model can
handle a range of tasks
including casual dialogue,
text analysis, summariza
tion, and document question
answering. Just like Claude-2,
Claude Instant can support
up to 100,000 tokens in each
prompt, equivalent to about
200 pages of information.

Anthropic Claude-2 Amazon Bedrock model Claude-2 is Anthropic's most
powerful model, which excels
at a wide range of tasks from
sophisticated dialogue and
creative content generatio
n to detailed instruction
following. Claude-2 can take
up to 100,000 tokens in
each prompt, equivalent to
about 200 pages of informati
on. It can generate longer
responses compared to its
prior version. It supports
use cases such as question
answering, information
extraction, removing PII,
content generation, multiple-
choice classification, roleplay,
comparing text, summariza
tion, and document Q&A with
citation.

Use generative AI with foundation models 917

Amazon SageMaker Developer Guide

Model Type Description

Falcon-7B-Instruct SageMaker JumpStart model Falcon-7B-Instruct has 7
billion parameters and was
fine-tuned on a mixture of
chat and instruct datasets.
It is suitable as a virtual
assistant and performs best
when following instructions
or engaging in conversat
ion. Since the model was
trained on large amounts of
English-language web data,
it carries the stereotypes
and biases commonly found
online and is not suitable for
languages other than English.
Compared to Falcon-40B-
Instruct, Falcon-7B-Instruct
is a slightly smaller and more
compact model.

Use generative AI with foundation models 918

Amazon SageMaker Developer Guide

Model Type Description

Falcon-40B-Instruct SageMaker JumpStart model Falcon-40B-Instruct has 40
billion parameters and was
fine-tuned on a mixture of
chat and instruct datasets.
It is suitable as a virtual
assistant and performs best
when following instructions
or engaging in conversat
ion. Since the model was
trained on large amounts of
English-language web data,
it carries the stereotypes
and biases commonly found
online and is not suitable for
languages other than English.
Compared to Falcon-7B-
Instruct, Falcon-40B-Instruc
t is a slightly larger and more
powerful model.

Use generative AI with foundation models 919

Amazon SageMaker Developer Guide

Model Type Description

Jurassic-2 Mid Amazon Bedrock model Jurassic-2 Mid is a high-perf
ormance text generation
model trained on a massive
corpus of text (current up
to mid 2022). It is highly
versatile, general-purpose,
and capable of composing
human-like text and solving
complex tasks such as
question answering, text
classification, and many
others. This model offers
zero-shot instruction capabilit
ies, allowing it to be directed
with only natural language
and without the use of
examples. It performs up to
30% faster than its predecess
or, the Jurassic-1 model.

Jurassic-2 Mid is AI21’s
mid-sized model, carefully
designed to strike the right
balance between exceptional
quality and affordability.

Use generative AI with foundation models 920

Amazon SageMaker Developer Guide

Model Type Description

Jurassic-2 Ultra Amazon Bedrock model Jurassic-2 Ultra is a high-
performance text generatio
n model trained on a massive
corpus of text (current up
to mid 2022). It is highly
versatile, general-purpose,
and capable of composing
human-like text and solving
complex tasks such as
question answering, text
classification, and many
others. This model offers
zero-shot instruction capabilit
ies, allowing it to be directed
with only natural language
and without the use of
examples. It performs up to
30% faster than its predecess
or, the Jurassic-1 model.

Compared to Jurassic-2 Mid,
Jurassic-2 Ultra is a slightly
larger and more powerful
model.

Use generative AI with foundation models 921

Amazon SageMaker Developer Guide

Model Type Description

Llama-2-7b-Chat SageMaker JumpStart model Llama-2-7b-Chat is a
foundation model by Meta
that is suitable for engaging
in meaningful and coherent
conversations, generating
new content, and extractin
g answers from existing
notes. Since the model was
trained on large amounts of
English-language internet
data, it carries the biases and
limitations commonly found
online and is best-suited for
tasks in English.

Use generative AI with foundation models 922

Amazon SageMaker Developer Guide

Model Type Description

Llama-2-13B-Chat Amazon Bedrock model Llama-2-13B-Chat by Meta
was fine-tuned on conversat
ional data after initial
training on internet data.
It is optimized for natural
dialog and engaging chat
abilities, making it well-suit
ed as a conversational agent.
Compared to the smaller
Llama-2-7b-Chat, Llama-2-1
3B-Chat has nearly twice as
many parameters, allowing
it to remember more context
and produce more nuanced
conversational responses. Like
Llama-2-7b-Chat, Llama-2-1
3B-Chat was trained on
English-language data and
is best-suited for tasks in
English.

Use generative AI with foundation models 923

Amazon SageMaker Developer Guide

Model Type Description

Llama-2-70B-Chat Amazon Bedrock model Like Llama-2-7b-Chat and
Llama-2-13B-Chat, the
Llama-2-70B-Chat model
by Meta is optimized for
engaging in natural and
meaningful dialog. With 70
billion parameters, this large
conversational model can
remember more extensive
context and produce highly
coherent responses when
compared to the more
compact model versions.
However, this comes at the
cost of slower responses and
higher resource requireme
nts. Llama-2-70B-Chat was
trained on large amounts of
English-language internet
data and is best-suited for
tasks in English.

Use generative AI with foundation models 924

Amazon SageMaker Developer Guide

Model Type Description

Mistral-7B SageMaker JumpStart model Mistral-7B by Mistral.AI is an
excellent general purpose
language model suitable
for a wide range of natural
language (NLP) tasks like
text generation, summariza
tion, and question answering
. It utilizes grouped-query
attention (GQA) which
allows for faster inference
speeds, making it perform
comparably to models with
twice or three times as many
parameters. It was trained
on a mixture of text data
including books, websites,
and scientific papers in the
English language, so it is best-
suited for tasks in English.

Use generative AI with foundation models 925

Amazon SageMaker Developer Guide

Model Type Description

Mistral-7B-Chat SageMaker JumpStart model Mistral-7B-Chat is a conversat
ional model by Mistral.AI
based on Mistral-7B. While
Mistral-7B is best for general
NLP tasks, Mistral-7B-Chat
has been further fine-tune
d on conversational data
to optimize its abilities for
natural, engaging chat. As
a result, Mistral-7B-Chat
generates more human-like
responses and remembers the
context of previous responses
. Like Mistral-7B, this model
is best-suited for English
language tasks.

MPT-7B-Instruct SageMaker JumpStart model MPT-7B-Instruct is a model
for long-form instruction
following tasks and can
assist you with writing tasks
including text summarization
and question-answering to
save you time and effort. This
model was trained on large
amounts of fine-tuned data
and can handle larger inputs,
such as complex documents
. Use this model when you
want to process large bodies
of text or want the model to
generate long responses.

Use generative AI with foundation models 926

Amazon SageMaker Developer Guide

The foundation models from Amazon Bedrock are currently only available in the US East (N.
Virginia) and US West (Oregon) Regions. Additionally, when using foundation models from Amazon
Bedrock, you are charged based on the volume of input tokens and output tokens, as specified by
each model provider. For more information, see the Amazon Bedrock pricing page. The SageMaker
JumpStart foundation models are deployed on SageMaker Hosting instances, and you are charged
for the duration of usage based on the instance type used. For more information about the cost of
different instance types, see the Amazon SageMaker Hosting: Real-Time Inference section on the
SageMaker pricing page.

Document querying is an additional feature that you can use to query and get insights from
documents stored in indexes using Amazon Kendra. With this functionality, you can generate
content from the context of those documents and receive responses that are specific to your
business use case, as opposed to responses that are generic to the large amounts of data on which
the foundation models were trained. For more information about indexes in Amazon Kendra, see
the Amazon Kendra Developer Guide.

If you would like to get responses from any of the foundation models that are customized to your
data and use case, you can fine-tune foundation models. To learn more, see Fine-tune foundation
models.

To get started, see the following sections.

Prerequisites

The following sections outline the prerequisites for interacting with foundation models and using
the document query feature in Canvas. The rest of the content on this page assumes that you’ve
met the prerequisites for foundation models. The document query feature requires additional
permissions.

Prerequisites for foundation models

The permissions you need for interacting with models are included in the Canvas Ready-
to-use models permissions. To use the generative AI-powered models in Canvas, you must
turn on the Canvas Ready-to-use models configuration permissions when setting up
your Amazon SageMaker domain. For more information, see Prerequisites for setting up
Amazon SageMaker Canvas. The Canvas Ready-to-use models configuration attaches the
AmazonSageMakerCanvasAIServicesAccess policy to your Canvas user's AWS Identity and Access
Management (IAM) execution role. If you encounter any issues with granting permissions, see the
topic Troubleshooting issues with granting permissions through the SageMaker console.

Use generative AI with foundation models 927

https://aws.amazon.com/bedrock/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess

Amazon SageMaker Developer Guide

If you’ve already set up your domain, you can edit your domain settings and turn on the
permissions. For instructions on how to edit your domain settings, see View and edit domains.
When editing the settings for your domain, go to the Canvas settings and turn on the Enable
Canvas Ready-to-use models option.

Certain SageMaker JumpStart foundation models also require that you request a SageMaker
instance quota increase. Canvas hosts the models that you’re currently interacting with on these
instances, but the default quota for your account may be insufficient. If you run into an error while
running any of the following models, request a quota increase for the associated instance types:

• Falcon-40B – ml.g5.12xlarge, ml.g5.24xlarge

• Falcon-13B – ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge

• MPT-7B-Instruct – ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge

For the preceding instances types, request an increase from 0 to 1 for the endpoint usage quota.
For more information about how to increase an instance quota for your account, see Requesting a
quota increase in the Service Quotas User Guide.

Prerequisites for document querying

Note

Document querying is supported in the following AWS Regions: US East (N. Virginia),
US East (Ohio), US West (Oregon), Europe (Ireland), Asia Pacific (Singapore), Asia Pacific
(Sydney), Asia Pacific (Tokyo), and Asia Pacific (Mumbai).

The document querying feature requires that you already have an Amazon Kendra index that stores
your documents and document metadata. For more information about Amazon Kendra, see the
Amazon Kendra Developer Guide. To learn more about the quotas for querying indexes, see Quotas
in the Amazon Kendra Developer Guide.

You must also make sure that your Canvas user profile has the necessary permissions for document
querying. The AmazonSageMakerCanvasFullAccess policy must be attached to the AWS IAM
execution role for the SageMaker domain that hosts your Canvas application (this policy is attached
by default to all new and existing Canvas user profiles). You must also specifically grant document
querying permissions and specify access to one or more Amazon Kendra indexes.

Use generative AI with foundation models 928

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html
https://docs.aws.amazon.com/kendra/latest/dg/quotas.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html

Amazon SageMaker Developer Guide

If your Canvas administrator is setting up a new domain or user profile, have them set up the
domain by following the instructions in Prerequisites for setting up Amazon SageMaker Canvas.
While setting up the domain, they can turn on the document querying permissions through the
Canvas Ready-to-use models configuration.

The Canvas administrator can manage document querying permissions at the user profile level as
well. For example, if the administrator wants to grant document querying permissions to some
user profiles but remove permissions for others, they can edit the permissions for a specific user.

The following procedure shows how to turn on document querying permissions for a specific user
profile:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the user profile’s domain.

5. On the domain details page, choose the User profile whose permissions you want to edit.

6. On the User Details page, choose Edit.

7. In the left navigation pane, choose Canvas settings.

8. In the Canvas Ready-to-use models configuration section, turn on the Enable document
query using Amazon Kendra toggle.

9. In the dropdown, select one or more Amazon Kendra indexes to which you want to grant
access.

10. Choose Submit to save the changes to your domain settings.

You should now be able to use Canvas foundation models to query documents in the specified
Amazon Kendra indexes.

Start a new conversation to generate, extract, or summarize content

To get started with generative AI foundation models in Canvas, you can initiate a new chat session
with one of the models. For SageMaker JumpStart models, you are charged while the model is
active, so you must start up models when you want to use them and shut them down when you
are done interacting. If you do not shut down a SageMaker JumpStart model, Canvas shuts it down
after 2 hours of inactivity. For Amazon Bedrock models (such as Amazon Titan), you are charged

Use generative AI with foundation models 929

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

by prompt; the models are already active and don’t need to be started up or shut down. You are
charged directly for use of these models by Amazon Bedrock.

To open a chat with a model, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose Ready-to-use models.

3. Choose Generate, extract and summarize content.

4. On the welcome page, you’ll receive a recommendation to start up the default model. You can
start the recommended model, or you can choose Select another model from the dropdown
to choose a different one.

5. If you selected a SageMaker JumpStart foundation model, you have to start it up before it is
available for use. Choose Start up the model, and then the model is deployed to a SageMaker
instance. It might take several minutes for this to complete. When the model is ready, you can
enter prompts and ask the model questions.

If you selected a foundation model from Amazon Bedrock, you can start using it instantly by
entering a prompt and asking questions.

Depending on the model, you can perform various tasks. For example, you can enter a passage
of text and ask the model to summarize it. Or, you can ask the model to come up with a short
summary of the market trends in your domain.

The model’s responses in a chat are based on the context of your previous prompts. If you want to
ask a new question in the chat that is unrelated to the previous conversation topic, we recommend
that you start a new chat with the model.

Extract information from documents with document querying

Note

This section assumes that you’ve completed the section above Prerequisites for document
querying.

Document querying is a feature that you can use while interacting with foundation models in
Canvas. With document querying, you can access a corpus of documents stored in an Amazon
Kendra index, which holds the contents of your documents and is structured in a way to make

Use generative AI with foundation models 930

Amazon SageMaker Developer Guide

documents searchable. You can ask specific questions that are targeted to the data in your Amazon
Kendra index, and the foundation model returns answers to your questions. For example, you can
query an internal knowledge base of IT information and ask questions such as “How do I connect to
my company’s network?” For more information about setting up an index, see the Amazon Kendra
Developer Guide.

When using the document query feature, the foundation models restrict their responses to the
content of the documents in your index with a technique called Retrieval Augmented Generation
(RAG). This technique bundles the most relevant information from the index along with the user's
prompt and sends it to the foundation model to get a response. Responses are limited to what
can be found in your index, preventing the model from giving you incorrect responses based on
external data. For more information about this process, see the blog post Quickly build high-
accuracy Generative AI applications on enterprise data.

To get started, in a chat with a foundation model in Canvas, turn on the Document query toggle at
the top of the page. From the dropdown, select the Amazon Kendra index that you want to query.
Then, you can begin asking questions related to the documents in your index.

Important

Document querying supports the Compare model outputs feature. Any existing chat history
is overwritten when you start a new chat to compare model outputs.

Model management

Note

The following section describes starting up and shutting down models, which only applies
to the SageMaker JumpStart foundation models, such as Falcon-40B-Instruct. You can
access Amazon Bedrock models, such as Amazon Titan, instantly at any time.

You can start up as many SageMaker JumpStart models as you like. Each active SageMaker
JumpStart model incurs charges on your account, so we recommend that you don’t start up more
models than you are currently using.

To start up another model, you can do the following:

Use generative AI with foundation models 931

https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html
https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html
https://aws.amazon.com/blogs/machine-learning/quickly-build-high-accuracy-generative-ai-applications-on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/
https://aws.amazon.com/blogs/machine-learning/quickly-build-high-accuracy-generative-ai-applications-on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/

Amazon SageMaker Developer Guide

1. On the Generate, extract and summarize content page, choose New chat.

2. Choose the model from the dropdown menu. If you want to choose a model not displayed in
the dropdown, choose Start up another model, and then select the model that you want to
start up.

3. Choose Start up model.

The model should begin starting up, and within a few minutes you can chat with the model.

We highly recommend that you shut down models that you aren’t using. The models automatically
shut down after 2 hours of inactivity. However, to manually shut down a model, you can do the
following:

1. On the Generate, extract and summarize content page, open the chat for the model that you
want to shut down.

2. On the chat page, choose the More options icon
().

3. Choose Shut down model.

4. In the Shut down model confirmation box, choose Shut down.

The model begins shutting down. If your chat compares two or more models, you can shut
down an individual model from the chat page by choosing the model’s More options icon
()
and then choosing Shut down model.

Compare model outputs

You might want to compare the output of different models side by side to see which model output
you prefer. This can help you decide which model is best suited to your use case. You can compare
up to three models in chats.

Note

Each individual model incurs charges on your account.

You must start a new chat to add models for comparison. To compare the output of models side by
side in a chat, do the following:

Use generative AI with foundation models 932

Amazon SageMaker Developer Guide

1. In a chat, choose New chat.

2. Choose Compare, and use the dropdown menu to select the model that you want to add. To
add a third model, choose Compare again to add another model.

Note

If you want to use a SageMaker JumpStart model that isn’t currently active, you are
prompted to start up the model.

When the models are active, you see the two models side by side in the chat. You can submit your
prompt, and each model responds in the same chat, as shown in the following screenshot.

When you’re done interacting, make sure to shut down any SageMaker JumpStart models
individually to avoid incurring further charges.

Use generative AI with foundation models 933

Amazon SageMaker Developer Guide

Fine-tune foundation models

The foundation models that you can access through Amazon SageMaker Canvas can help you
with a range of general purpose tasks. However, if you have a specific use case and would like to
customized responses based on your own data, you can fine-tune a foundation model.

To fine-tune a foundation model, you provide a dataset that consists of sample prompts and model
responses. Then, you train the foundation model on the data. Finally, the fine-tuned foundation
model is able to provide you with more specific responses.

This topic describes how to fine-tune foundation models in Canvas.

Before you begin

Before fine-tuning a foundation model, make sure that you have the permissions for Ready-to-
use models in Canvas and a trust relationship with Amazon Bedrock. For more information, see the
Grant Users Permissions to Fine-tune Foundation Models.

You must also have a dataset that is formatted for fine-tuning large language models (LLMs). The
following is a list of requirements for your dataset:

• The dataset must be tabular and contain at least two columns of text data–one input column
(which contains example prompts to the model) and one output column (which contains example
responses from the model).

An example is the following:

Input Output

What are your shipping terms? We offer free shipping on all orders over $50.
Orders under $50 have a shipping fee of
$5.99.

How can I return an item? To return an item, please visit our returns
center and follow the instructions. You must
provide your order number and the reason
for the return.

Use generative AI with foundation models 934

Amazon SageMaker Developer Guide

Input Output

I'm having trouble with my product. What
can I do?

Please contact our customer support team
and we will be happy to help you troublesh
oot the issue.

• We recommend that the dataset has at least 100 text pairs (rows of corresponding input and
output items). This ensures that the foundation model has enough data for fine-tuning and
increases the accuracy of its responses.

• Each input and output item should contain a maximum of 512 characters. Anything longer is
reduced to 512 characters when fine-tuning the foundation model.

When fine-tuning an Amazon Bedrock model, you must adhere to the Amazon Bedrock quotas. For
more information, see Model customization quotas in the Amazon Bedrock User Guide.

For more information about general dataset requirements and limitations in Canvas, see Create a
dataset.

Fine-tune a foundation model

You can fine-tune a foundation model by using any of the following methods in the Canvas
application:

• While in a Generate, extract and summarize content chat with a foundation model, choose the
Fine-tune model icon
().

• While in a chat with a foundation model, if you’ve re-generated the response two or more times,
then Canvas offers you the option to Fine-tune model. The following screenshot shows you what
this looks like.

• On the My models page, you can create a new model by choosing New model, and then select
Fine-tune foundation model.

• On the Ready-to-use models home page, you can choose Create your own model, and then in
the Create new model dialog box, choose Fine-tune foundation model.

Use generative AI with foundation models 935

https://docs.aws.amazon.com/bedrock/latest/userguide/quotas.html#model-customization-quotas

Amazon SageMaker Developer Guide

• While browsing your datasets in the Data Wrangler tab, you can select a dataset and choose
Create a model. Then, choose Fine-tune foundation model.

After you’ve begun to fine-tune a model, do the following:

Select a dataset

On the Select tab of fine-tuning a model, you choose the data on which you’d like to train the
foundation model.

Either select an existing dataset or create a new dataset that meets the requirements listed in
the Before you begin section. For more information about how to create a dataset, see Create a
dataset.

When you’ve selected or created a dataset and you’re ready to move on, choose Select dataset.

Fine-tune the model

After selecting your data, you’re now ready to begin training and fine-tune the model.

On the Fine-tune tab, do the following:

1. For Select up to 3 base models, open the dropdown menu and check up to 3 foundation
models (up to 2 SageMaker JumpStart models and 1 Amazon Bedrock model) that you’d
like to fine-tune during the training job. By fine-tuning multiple foundation models, you can
compare their performance and ultimately choose the one best suited to your use case as the
default model. For more information about default models, see View model candidates in the
model leaderboard.

2. For Select Input column, select the column of text data in your dataset that contains the
example model prompts.

3. For Select Output column, select the column of text data in your dataset that contains the
example model responses.

4. (Optional) To configure advanced settings for the training job, choose Configure model. For
more information about the advanced model building settings, see Advanced model building
configurations.

In the Configure model pop-up window, do the following:

a. For Hyperparameters, you can adjust the Epoch count, Batch size, Learning rate,
and Learning rate warmup steps for each model you selected. For more information

Use generative AI with foundation models 936

Amazon SageMaker Developer Guide

about these parameters, see the Hyperparameters section in the SageMaker JumpStart
documentation.

b. For Data split, you can specify percentages for how to divide your data between the
Training set and Validation set.

c. For Max job runtime, you can set the maximum amount of time that Canvas runs the
build job. This feature is only available for SageMaker JumpStart foundation models.

d. After configuring the settings, choose Save.

5. Choose Fine-tune to begin training the foundation models you selected.

After the fine-tuning job begins, you can leave the page. When the model shows as Ready on the
My models page, it’s ready for use, and you can now analyze the performance of your fine-tuned
model.

Analyze the fine-tuned model

On the Analyze tab of your fine-tuned model, you can see the model’s performance.

The Overview tab on this page shows you the perplexity and loss scores, along with analyses that
visualize the model’s improvement over time during training. The following screenshot shows the
Overview tab.

On this page, you can see the following visualizations:

Use generative AI with foundation models 937

https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-fine-tune.html#jumpstart-hyperparameters
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-fine-tune.html#jumpstart-hyperparameters

Amazon SageMaker Developer Guide

• The Perplexity Curve measures how well the model predicts the next word in a sequence, or
how grammatical the model’s output is. Ideally, as the model improves during training, the score
decreases and results in a curve that lowers and flattens over time.

• The Loss Curve quantifies the difference between the correct output and the model’s predicted
output. A loss curve that decreases and flattens over time indicates that the model is improving
its ability to make accurate predictions.

The Advanced metrics tab shows you the hyperparameters and additional metrics for your model.
It looks like the following screenshot:

The Advanced metrics tab contains the following information:

• The Explainability section contains the Hyperparameters, which are the values set before
the job to guide the model’s fine-tuning. If you didn’t specify custom hyperparameters in the
model’s advanced settings in the Fine-tune the model section, then Canvas selects default
hyperparameters for you.

For SageMaker JumpStart models, you can also see the advanced metric ROUGE (Recall-Oriented
Understudy for Gisting Evaluation), which evaluates the quality of summaries generated by the
model. It measures how well the model can summarize the main points of a passage.

Use generative AI with foundation models 938

https://en.wikipedia.org/wiki/ROUGE_(metric)
https://en.wikipedia.org/wiki/ROUGE_(metric)

Amazon SageMaker Developer Guide

• The Artifacts section provides you with links to artifacts generated during the fine-tuning job.
You can access the training and validation data saved in Amazon S3, as well as the link to the
model evaluation report (to learn more, see the following paragraph).

To get more model evaluation insights, you can download a report that is generated using
SageMaker Clarify, which is a feature that can help you detect bias in your model and data. First,
generate the report by choosing Generate evaluation report at the bottom of the page. After
the report has generated, you can download the full report by choosing Download report or by
returning to the Artifacts section.

You can also access a Jupyter notebook that shows you how to replicate your fine-tuning job in
Python code. You can use this to replicate or make programmatic changes to your fine-tuning job
or get a deeper understanding of how Canvas fine-tunes your model. To learn more about model
notebooks and how to access them, see Download a model notebook.

For more information about how to interpret the information in the Analyze tab of your fine-tuned
model, see the topic Evaluate Your Model's Performance in Amazon SageMaker Canvas.

After analyzing the Overview and Advanced metrics tabs, you can also choose to open the Model
leaderboard, which shows you the list of the base models trained during the build. The model
with the lowest loss score is considered the best performing model and is selected as the Default
model, which is the model whose analysis you see in the Analyze tab. You can only test and deploy
the default model. For more information about the model leaderboard and how to change the
default model, see View model candidates in the model leaderboard.

Test a fine-tuned model in a chat

After analyzing the performance of a fine-tuned model, you might want to test it out or compare
its responses with the base model. You can test a fine-tuned model in a chat in the Generate,
extract and summarize content feature.

Start a chat with a fine-tuned model by choosing one of the following methods:

• On the fine-tuned model’s Analyze tab, choose Test in Ready-to-use foundation models.

• On the Canvas Ready-to-use models page, choose Generate, extract and summarize content.
Then, choose New chat and select the version of your fine-tuned model that you want to test.

Use generative AI with foundation models 939

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-configure-processing-jobs.html

Amazon SageMaker Developer Guide

The model starts up in a chat, and you can interact with it like any other foundation model. You
can add more models to the chat and compare their outputs. For more information about the
functionality of chats, see Use generative AI with foundation models.

Operationalize fine-tuned models

After fine-tuning your model in Canvas, you can register the model to the SageMaker model
registry for integration into your organizations MLOps processes. For more information, see
Register a model version in the SageMaker model registry.

Important

You can only register SageMaker JumpStart based fine-tuned models, not Amazon Bedrock
based models.

Use Ready-to-use models

With Amazon SageMaker Canvas Ready-to-use models, you can make predictions on your data
without writing a single line of code or having to build a model—all you have to bring is your data.
The Ready-to-use models use pre-built models to generate predictions without requiring you to
spend the time, expertise, or cost required to build a model, and you can choose from a variety of
use cases ranging from language detection to expense analysis.

Canvas integrates with existing AWS services, such as Amazon Textract, Amazon Rekognition,
and Amazon Comprehend, to analyze your data and make predictions or extract insights. You can
use the predictive power of these services from within the Canvas application to get high quality
predictions for your data.

Canvas supports the following Ready-to-use models types:

Ready-to-use model Description Supported data type

Sentiment analysis Detect sentiment in lines of
text, which can be positive,
negative, neutral, or mixed.
Currently, you can only do
sentiment analysis for English
language text.

Plain text or tabular (CSV,
Parquet)

Use Ready-to-use models 940

https://docs.aws.amazon.com/textract/latest/dg/what-is.html
https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html
https://docs.aws.amazon.com/comprehend/latest/dg/what-is.html

Amazon SageMaker Developer Guide

Ready-to-use model Description Supported data type

Entities extraction Extract entities, which are
real-world objects such
as people, places, and
commercial items, or units
such as dates and quantities,
from text.

Plain text or tabular (CSV,
Parquet)

Language detection Determine the dominant
language in text such as
English, French, or German.

Plain text or tabular (CSV,
Parquet)

Personal information
detection

Detect personal informati
on that could be used to
identify an individual,
such as addresses, bank
account numbers, and phone
numbers, from text.

Plain text or tabular (CSV,
Parquet)

Object detection in images Detect objects, concepts,
scenes, and actions in your
images.

Image (JPG, PNG)

Text detection in images Detect text in your images. Image (JPG, PNG)

Expense analysis Extract information from
invoices and receipts, such
as date, number, item prices,
total amount, and payment
terms.

Document (PDF, JPG, PNG,
TIFF)

Identity document analysis Extract information from
passports, driver licenses, and
other identity documentation
issued by the US Government.

Document (PDF, JPG, PNG,
TIFF)

Use Ready-to-use models 941

Amazon SageMaker Developer Guide

Ready-to-use model Description Supported data type

Document analysis Analyze documents and
forms for relationships
among detected text.

Document (PDF, JPG, PNG,
TIFF)

Document queries Extract information from
structured documents such as
paystubs, bank statements,
W-2s, and mortgage applicati
on forms by asking questions
using natural language.

Document (PDF)

Get started

To get started with Ready-to-use models, review the following information.

Prerequisites

To use Ready-to-use models in Canvas, you must turn on the Canvas Ready-to-use models
configuration permissions when setting up your Amazon SageMaker domain. The Canvas Ready-
to-use models configuration attaches the AmazonSageMakerCanvasAIServicesAccess policy to
your Canvas user's AWS Identity and Access Management (IAM) execution role. If you encounter any
issues with granting permissions, see the topic Troubleshooting issues with granting permissions
through the SageMaker console.

If you’ve already set up your domain, you can edit your domain settings and turn on the
permissions. For instructions on how to edit your domain settings, see View and Edit domains.
When editing the settings for your domain, go to the Canvas settings and turn on the Enable
Canvas Ready-to-use models option.

(Optional) Opt out of AI services data storage

Certain AWS AI services store and use your data to make improvements to the service. You can opt
out of having your data stored or used for service improvements. To learn more about how to opt
out, see AI services opt-out policies in the AWS Organizations User Guide.

How to use Ready-to-use models

To get started with Ready-to-use models, do the following:

Use Ready-to-use models 942

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html#canvas-prerequisites
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-view-edit.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_ai-opt-out.html

Amazon SageMaker Developer Guide

1. (Optional) Import your data. You can import a tabular, image, or document dataset to generate
batch predictions, or a dataset of predictions, with Ready-to-use models. To get started with
importing a dataset, see Import data into a data flow.

2. Generate predictions. You can generate single or batch predictions with your chosen Ready-
to-use model. To get started with making predictions, see Make predictions with Ready-to-use
models.

Make predictions with Ready-to-use models

Ready-to-use models are available for text, image, and document data. Each data type has Ready-
to-use models that are designed to work best for each use case. Use the following guide to
determine which Ready-to-use models you can use with your input data:

• Text data: Sentiment analysis, entities extraction, language detection, personal information
detection

• Image data: Object detection in images, text detection in images

• Document data: Expense analysis, identity document analysis, document analysis, document
queries

The following screenshot shows you the landing page for Ready-to-use models, which showcases
all of the different solutions.

Use Ready-to-use models 943

Amazon SageMaker Developer Guide

Each Ready-to-use model supports both Single predictions and Batch predictions for your
dataset. A Single prediction is when you only need to make one prediction. For example, you have
one image from which you want to extract text, or one paragraph of text for which you want to
detect the dominant language. A Batch prediction is when you’d like to make predictions for an
entire dataset. For example, you might have a CSV file of customer reviews for which you’d like
to analyze the customer sentiment, or you might have image files in which you’d like to detect
objects.

When you have your data and have identified your use case, choose one of the following workflows
to make predictions for your data.

Make predictions for text data

The following procedures describe how to make both single and batch predictions for text
datasets. You can use the procedures for the following Ready-to-use model types: sentiment
analysis, entities extraction, language detection, and personal information detection.

Note

For sentiment analysis, you can only use English language text.

Single predictions

To make a single prediction for Ready-to-use models that accept text data, do the following:

1. In the left navigation pane of the Canvas application, choose Ready-to-use models.

2. On the Ready-to-use models page, choose the Ready-to-use model for your use case. For text
data, it should be one of the following: Sentiment analysis, Entities extraction, Language
detection, or Personal information detection.

3. On the Run predictions page for your chosen Ready-to-use model, choose Single prediction.

4. For Text field, enter the text for which you’d like to get a prediction.

5. Choose Generate prediction results to get your prediction.

In the right pane Prediction results, you receive an analysis of your text in addition to a
Confidence score for each result or label. For example, if you chose language detection and
entered a passage of text in French, you might get French with a 95% confidence score and traces
of other languages, like English, with a 5% confidence score.

Use Ready-to-use models 944

Amazon SageMaker Developer Guide

The following screenshot shows the results for a single prediction using language detection where
the model is 100% confident that the passage is English.

Batch predictions

To make batch predictions for Ready-to-use models that accept text data, do the following:

1. In the left navigation pane of the Canvas application, choose Ready-to-use models.

2. On the Ready-to-use models page, choose the Ready-to-use model for your use case. For text
data, it should be one of the following: Sentiment analysis, Entities extraction, Language
detection, or Personal information detection.

3. On the Run predictions page for your chosen Ready-to-use model, choose Batch prediction.

4. Choose Select dataset if you’ve already imported your dataset. If not, choose Import new
dataset, and then you are directed through the import data workflow.

5. From the list of available datasets, select your dataset and choose Generate predictions to get
your predictions.

After the prediction job finishes running, on the Run predictions page, you see an output dataset
listed under Predictions. This dataset contains your results, and if you select the More options icon
(),
you can Preview the output data. Then, you can choose Download to download the results.

Use Ready-to-use models 945

Amazon SageMaker Developer Guide

Make predictions for image data

The following procedures describe how to make both single and batch predictions for image
datasets. You can use the procedures for the following Ready-to-use model types: object detection
images and text detection in images.

Single predictions

To make a single prediction for Ready-to-use models that accept image data, do the following:

1. In the left navigation pane of the Canvas application, choose Ready-to-use models.

2. On the Ready-to-use models page, choose the Ready-to-use model for your use case. For
image data, it should be one of the following: Object detection images or Text detection in
images.

3. On the Run predictions page for your chosen Ready-to-use model, choose Single prediction.

4. Choose Upload image.

5. You are prompted to select an image to upload from your local computer. Select the image
from your local files, and then the prediction results generate.

In the right pane Prediction results, you receive an analysis of your image in addition to a
Confidence score for each object or text detected. For example, if you chose object detection in
images, you receive a list of objects in the image along with a confidence score of how certain the
model is that each object was accurately detected, such as 93%.

The following screenshot shows the results for a single prediction using the object detection
in images solution, where the model predicts objects such as a clock tower and bus with 100%
confidence.

Use Ready-to-use models 946

Amazon SageMaker Developer Guide

Batch predictions

To make batch predictions for Ready-to-use models that accept image data, do the following:

1. In the left navigation pane of the Canvas application, choose Ready-to-use models.

2. On the Ready-to-use models page, choose the Ready-to-use model for your use case. For
image data, it should be one of the following: Object detection images or Text detection in
images.

3. On the Run predictions page for your chosen Ready-to-use model, choose Batch prediction.

4. Choose Select dataset if you’ve already imported your dataset. If not, choose Import new
dataset, and then you are directed through the import data workflow.

5. From the list of available datasets, select your dataset and choose Generate predictions to get
your predictions.

After the prediction job finishes running, on the Run predictions page, you see an output dataset
listed under Predictions. This dataset contains your results, and if you select the More options icon
(),
you can choose View prediction results to preview the output data. Then, you can choose
Download prediction and download the results as a CSV or a ZIP file.

Use Ready-to-use models 947

Amazon SageMaker Developer Guide

Make predictions for document data

The following procedures describe how to make both single and batch predictions for document
datasets. You can use the procedures for the following Ready-to-use model types: expense analysis,
identity document analysis, and document analysis.

Note

For document queries, only single predictions are currently supported.

Single predictions

To make a single prediction for Ready-to-use models that accept document data, do the following:

1. In the left navigation pane of the Canvas application, choose Ready-to-use models.

2. On the Ready-to-use models page, choose the Ready-to-use model for your use case. For
document data, it should be one of the following: Expense analysis, Identity document
analysis, or Document analysis.

3. On the Run predictions page for your chosen Ready-to-use model, choose Single prediction.

4. If your Ready-to-use model is identity document analysis or document analysis, complete the
following actions. If you’re doing expense analysis or document queries, skip this step and go
to Step 5 or Step 6, respectively.

a. Choose Upload document.

b. You are prompted to upload a PDF, JPG, or PNG file from your local computer. Select the
document from your local files, and then the prediction results will generate.

5. If your Ready-to-use model is expense analysis, do the following:

a. Choose Upload invoice or receipt.

b. You are prompted to upload a PDF, JPG, PNG, or TIFF file from your local computer. Select
the document from your local files, and then the prediction results will generate.

6. If your Ready-to-use model is document queries, do the following:

a. Choose Upload document.

b. You are prompted to upload a PDF file from your local computer. Select the document
from your local files. Your PDF must be 1–100 pages long.

Use Ready-to-use models 948

Amazon SageMaker Developer Guide

Note

If you're in the Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), or
Europe (Frankfurt) regions, then the maximum PDF size for document queries is 20
pages.

c. In the right side pane, enter queries to search for information in the document. The
number of characters you can have in a single query is from 1–200. You can add up to 15
queries at a time.

d. Choose Submit queries, and then the results generate with answers to your queries. You
are billed once for each submissions of queries you make.

In the right pane Prediction results, you’ll receive an analysis of your document.

The following information describes the results for each type of solution:

• For expense analysis, the results are categorized into Summary fields, which include fields such
as the total on a receipt, and Line item fields, which include fields such as individual items on a
receipt. The identified fields are highlighted on the document image in the output.

• For identity document analysis, the output shows you the fields that the Ready-to-use model
identified, such as first and last name, address, or date of birth. The identified fields are
highlighted on the document image in the output.

• For document analysis, the results are categorized into Raw text, Forms, Tables, and Signatures.
Raw text includes all of the extracted text, while Forms, Tables, and Signatures only include
information on the form that falls into those categories. For example, Tables only includes
information extracted from tables in the document. The identified fields are highlighted on the
document image in the output.

• For document queries, Canvas returns answers to each of your queries. You can open the
collapsible query dropdown to view a result, along with a confidence score for the prediction. If
Canvas finds multiple answers in the document, then you might have more than one result for
each query.

The following screenshot shows the results for a single prediction using the document analysis
solution.

Use Ready-to-use models 949

Amazon SageMaker Developer Guide

Batch predictions

To make batch predictions for Ready-to-use models that accept document data, do the following:

1. In the left navigation pane of the Canvas application, choose Ready-to-use models.

2. On the Ready-to-use models page, choose the Ready-to-use model for your use case. For
image data, it should be one of the following: Expense analysis, Identity document analysis,
or Document analysis.

3. On the Run predictions page for your chosen Ready-to-use model, choose Batch prediction.

4. Choose Select dataset if you’ve already imported your dataset. If not, choose Import new
dataset, and then you are directed through the import data workflow.

5. From the list of available datasets, select your dataset and choose Generate predictions. If
your use case is document analysis, continue to Step 6.

6. (Optional) If your use case is Document analysis, another dialog box called Select features to
include in batch prediction appears. You can select Forms, Tables, and Signatures to group
the results by those features. Then, choose Generate predictions.

After the prediction job finishes running, on the Run predictions page, you see an output dataset
listed under Predictions. This dataset contains your results, and if you select the More options icon

Use Ready-to-use models 950

Amazon SageMaker Developer Guide

(),
you can choose View prediction results to preview the analysis of your document data.

The following information describes the results for each type of solution:

• For expense analysis, the results are categorized into Summary fields, which include fields such
as the total on a receipt, and Line item fields, which include fields such as individual items on a
receipt. The identified fields are highlighted on the document image in the output.

• For identity document analysis, the output shows you the fields that the Ready-to-use model
identified, such as first and last name, address, or date of birth. The identified fields are
highlighted on the document image in the output.

• For document analysis, the results are categorized into Raw text, Forms, Tables, and Signatures.
Raw text includes all of the extracted text, while Forms, Tables, and Signatures only include
information on the form that falls into those categories. For example, Tables only includes
information extracted from tables in the document. The identified fields are highlighted on the
document image in the output.

After previewing your results, you can choose Download prediction and download the results as a
ZIP file.

Use custom models

With Amazon SageMaker Canvas, you can build a custom model that is trained with your data. By
training a custom model on your data, you are able to capture characteristics and trends that are
specific and most representative of your data. For example, you might want to create a custom
time series forecasting model that you train on inventory data from your warehouse to manage
your logistics operations.

You can train a Canvas custom model on the following types of datasets:

• Tabular (including numeric, categorical, timeseries, and text data)

• Image

The following table shows the types of custom models that you can build in Canvas, along with
their supported data types and data sources.

Use custom models 951

Amazon SageMaker Developer Guide

Model type Example use case Supported data
types

Supported data
sources

Numeric prediction Predicting house
prices based on
features like square
footage

Numeric Local upload,
Amazon S3, SaaS
connectors

2 category prediction Predicting whether
or not a customer is
likely to churn

Binary or categorical Local upload,
Amazon S3, SaaS
connectors

3+ category predictio
n

Predicting patient
outcomes after being
discharged from the
hospital

Categorical Local upload,
Amazon S3, SaaS
connectors

Time series forecasti
ng

Predicting your
inventory for the next
quarter

Timeseries Local upload,
Amazon S3, SaaS
connectors

Single-label image
prediction

Predicting types
of manufacturing
defects in images

Image (JPG, PNG) Local upload,
Amazon S3

Multi-category text
prediction

Predicting categorie
s of products, such as
clothing, electronics,
or household goods,
based on product
descriptions

Source column: text

Target column: binary
or categorical

Local upload,
Amazon S3

Get started

To get started with building and generating predictions from a custom model, do the following:

Use custom models 952

Amazon SageMaker Developer Guide

• Determine your use case and type of model that you want to build. For more information about
the custom model types, see Build a custom model. For more information about the data types
and sources supported for custom models, see Import data into Canvas.

• Import your data into Canvas. You can build a custom model with any tabular or image dataset
that meets the input requirements. For more information about the input requirements, see
Create a dataset.

To learn more about sample datasets provided by SageMaker with which you can experiment, see
Use sample datasets.

• Build your custom model. You can do a Quick build to get your model and start making
predictions more quickly, or you can do a Standard build for greater accuracy.

For numeric, categorical, and time series forecasting model types, you can clean and prepare
your data with features such as advanced transforms and joins. For image prediction models, you
can Edit an image dataset to update your labels or add and delete images. Note that you can't
use these features for multi-category text prediction models.

• Evaluate your model's performance and determine how well it might perform on real-world data.

• (Optional) For certain model types, you can collaborate with data scientists in Amazon
SageMaker Studio Classic who can help review and improve your model.

• Make single or batch predictions with your model.

Note

If you already have a trained model in Amazon SageMaker Studio Classic that you’d like to
share with Canvas, you can bring your own model to SageMaker Canvas. Review the BYOM
prerequisites to determine whether your model is eligible for sharing.

Build a custom model

Use Amazon SageMaker Canvas to build a custom model on the dataset that you've imported.
Use the model that you've built to make predictions on new data. SageMaker Canvas uses the
information in the dataset to build up to 250 models and choose the one that performs the best.

When you begin building a model, Canvas automatically recommends one or more model types.
Model types fall into one of the following categories:

Use custom models 953

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-importing-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-sample-datasets.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-build-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-prepare-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-joining-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-evaluate-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-make-predictions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html#canvas-byom-prereqs
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html#canvas-byom-prereqs

Amazon SageMaker Developer Guide

• Numeric prediction – This is known as regression in machine learning. Use the numeric
prediction model type when you want to make predictions for numeric data. For example, you
might want to predict the price of houses based on features such as the house’s square footage.

• Categorical prediction – This is known as classification in machine learning. When you want to
categorize data into groups, use the categorical prediction model types:

• 2 category prediction – Use the 2 category prediction model type (also known as binary
classification in machine learning) when you have two categories that you want to predict for
your data. For example, you might want to determine whether a customer is likely to churn.

• 3+ category prediction – Use the 3+ category prediction model type (also known as multi-
class classification in machine learning) when you have three or more categories that you
want to predict for your data. For example, you might want to predict a customer's loan status
based on features such as previous payments.

• Time series forecasting – Use time series forecasts when you want to make predictions over a
period of time. For example, you might want to predict the number of items you’ll sell in the
next quarter. For information about time series forecasts, see Time Series Forecasts in Amazon
SageMaker Canvas.

• Image prediction – Use the single-label image prediction model type (also known as single-label
image classification in machine learning) when you want to assign labels to images. For example,
you might want to classify different types of manufacturing defects in images of your product.

• Text prediction – Use the multi-category text prediction model type (also known as multi-
class text classification in machine learning) when you want to assign labels to passages of text.
For example, you might have a dataset of customer reviews for a product, and you want to
determine whether customers liked or disliked the product. You might have your model predict
whether a given passage of text is Positive, Negative, or Neutral.

For a table of the supported input data types for each model type, see Use custom models.

For each tabular data model that you build (which includes numeric, categorical, time series
forecasting, and text prediction models), you choose the Target column. The Target column is the
column that contains the information that you want to predict. For example, if you're building a
model to predict whether people have cancelled their subscriptions, the Target column contains
data points that are either a yes or a no about someone's cancellation status.

For image prediction models, you build the model with a dataset of images that have been
assigned labels. For the unlabeled images that you provide, the model predicts a label. For
example, if you’re building a model to predict whether an image is a cat or a dog, you provide

Use custom models 954

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-time-series.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-time-series.html

Amazon SageMaker Developer Guide

images labeled as cats or dogs when building the model. Then, the model can accept unlabeled
images and predict them as either cats or dogs.

What happens when you build a model

To build your model, you can choose either a Quick build or a Standard build. The Quick build
has a shorter build time, but the Standard build generally has a higher accuracy. The following
table outlines the average build times for each model and build type, along with the minimum and
maximum number of data points you should have for each build type.

Limit Numeric and
categorical
prediction

Time series
forecasting

Image predictio
n

Text prediction

Quick build time 2‐20 minutes 2‐20 minutes 15‐30 minutes 15‐30 minutes

Standard build
time

2‐4 hours 2‐4 hours 2‐5 hours 2‐5 hours

Maximum
number of
entries (rows
or images) for
Quick builds

50,000 50,000 5000 7500

If you log out while running a Quick build, your build might be interrupted until you log in again.
When you log in again, Canvas resumes the Quick build.

Canvas predicts values by using the information in the rest of the dataset, depending on the model
type:

• For categorical prediction, Canvas puts each row into one of the categories listed in the Target
column.

• For numeric prediction, Canvas uses the information in the dataset to predict the numeric values
in the Target column.

• For time series forecasting, Canvas uses historical data to predict values for the Target column in
the future.

Use custom models 955

Amazon SageMaker Developer Guide

• For image prediction, Canvas uses images that have been assigned labels to predict labels for
unlabeled images.

• For text prediction, Canvas analyzes text data that has been assigned labels to predict labels for
passages of unlabeled text.

Additional features to help you build your model

Note

The following features are available for numeric and categorical prediction and time series
forecasting models.

Before building your model, you can filter your data or prepare it using advanced transforms. For
more information about preparing your data for model building, see Prepare data with advanced
transformations.

You can also use visualization and analytics to explore your data and determine which features are
best to include in your model. For more information, see Explore and analyze your data.

To learn more about additional features such as previewing your model, validating your dataset,
and changing the size of the random sample used to build your model, see Preview your model.

For tabular datasets with multiple columns (such as datasets for building categorical, numeric, or
time series forecasting model types), you might have rows with missing data points. While Canvas
builds the model, it automatically adds missing values. Canvas uses the values in your dataset to
perform a mathematical approximation for the missing values. For the highest model accuracy, we
recommend adding in the missing data if you can find it. Note that the missing data feature is not
supported for text prediction or image prediction models.

Get started

To get started with building a custom model, see Build a model and follow the procedure for the
type of model that you want to build.

Build a model

The following sections show you how to build a model for each of the main types of custom
models.

Use custom models 956

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-explore-data.html

Amazon SageMaker Developer Guide

• To build numeric prediction, 2 category prediction, or 3+ category prediction models, see Build a
custom numeric or categorical prediction model.

• To build single-label image prediction models, see Build a custom image prediction model.

• To build multi-category text prediction models, see Build a custom text prediction model.

• To build time series forecasting models, see Build a time series forecasting model.

Note

If you encounter an error during post-building analysis that tells you to increase your quota
for ml.m5.2xlarge instances, see Request a Quota Increase.

Build a custom numeric or categorical prediction model

Numeric and categorical prediction models support both Quick builds and Standard builds.

To build a numeric or categorical prediction model, use the following procedure:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. Choose New model.

4. In the Create new model dialog box, do the following:

a. Enter a name in the Model name field.

b. Select the Predictive analysis problem type.

c. Choose Create.

5. For Select dataset, select your dataset from the list of datasets. If you haven’t already
imported your data, choose Import to be directed through the import data workflow.

6. When you’re ready to begin building your model, choose Select dataset.

7. On the Build tab, for the Target column dropdown list, select the target for your model that
you would like to predict.

8. For Model type, Canvas automatically detects the problem type for you. If you want to change
the type or configure advanced model settings, choose Configure model.

When the Configure model dialog box opens, do the following:

Use custom models 957

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-requesting-quota-increases.html

Amazon SageMaker Developer Guide

a. For Model type, choose the model type that you want to build.

b. After you choose the model type, there are additional Advanced settings. For more
information about each of the advanced settings, see Advanced model building
configurations. To configure the advanced settings, do the following:

i. (Optional) For the Objective metric dropdown menu, select the metric that you want
Canvas to optimize while building your model. If you don’t select a metric, Canvas
chooses one for you by default. For descriptions of the available metrics, see Metrics
reference.

ii. For Training method, choose Auto, Ensemble, or Hyperparameter optimization
(HPO) mode.

iii. For Algorithms, select the algorithms that you want to include for building model
candidates.

iv. For Data split, specify in percentages how you want to split your data between the
Training set and the Validation set. The training set is used for building the model,
while the validation set is used for testing accuracy of model candidates.

v. For Max candidates and runtime, do the following:

A. Set the Max candidates value, or the maximum number of model candidates that
Canvas can generate. Note that Max candidates is only available in HPO mode.

B. Set the hour and minute values for Max job runtime, or the maximum amount
of time that Canvas can spend building your model. After the maximum time,
Canvas stops building and selects the best model candidate.

c. After configuring the advanced settings, choose Save.

9. Select or deselect columns in your data to include or drop them from your build.

Note

If you make batch predictions with your model after building, Canvas adds dropped
columns to your prediction results. However, Canvas does not add the dropped
columns to your batch predictions for time series models.

10. (Optional) Use the visualization and analytics tools that Canvas provides to visualize your data
and determine which features you might want to include in your model. For more information,
see Explore and analyze your data.

Use custom models 958

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-explore-data.html

Amazon SageMaker Developer Guide

11. (Optional) Use data transformations to clean, transform, and prepare your data for model
building. For more information, see Prepare your data with advanced transformations. You
can view and remove your transforms by choosing Model recipe to open the Model recipe side
panel.

12. (Optional) For additional features such as previewing the accuracy of your model, validating
your dataset, and changing the size of the random sample that Canvas takes from your
dataset, see Preview your model.

13. After reviewing your data and making any changes to your dataset, choose Quick build or
Standard build to begin a build for your model. The following screenshot shows the Build
page and the Quick build and Standard build options.

After your model begins building, you can leave the page. When the model shows as Ready on the
My models page, it’s ready for analysis and predictions.

Build a custom image prediction model

Single-label image prediction models support both Quick builds and Standard builds.

To build a single-label image prediction model, use the following procedure:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

Use custom models 959

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-prepare-data.html

Amazon SageMaker Developer Guide

3. Choose New model.

4. In the Create new model dialog box, do the following:

a. Enter a name in the Model name field.

b. Select the Image analysis problem type.

c. Choose Create.

5. For Select dataset, select your dataset from the list of datasets. If you haven’t already
imported your data, choose Import to be directed through the import data workflow.

6. When you’re ready to begin building your model, choose Select dataset.

7. On the Build tab, you see the Label distribution for the images in your dataset. The Model
type is set to Single-label image prediction.

8. On this page, you can preview your images and edit the dataset. If you have any unlabeled
images, choose Edit dataset and Assign labels to unlabeled images. You can also perform
other tasks when you Edit an image dataset, such as renaming labels and adding images to the
dataset.

9. After reviewing your data and making any changes to your dataset, choose Quick build or
Standard build to begin a build for your model. The following screenshot shows the Build
page of an image prediction model that is ready to be built.

Use custom models 960

Amazon SageMaker Developer Guide

After your model begins building, you can leave the page. When the model shows as Ready on the
My models page, it’s ready for analysis and predictions.

Build a custom text prediction model

Multi-category text prediction models support both Quick builds and Standard builds.

To build a text prediction model, use the following procedure:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. Choose New model.

4. In the Create new model dialog box, do the following:

a. Enter a name in the Model name field.

b. Select the Text analysis problem type.

c. Choose Create.

5. For Select dataset, select your dataset from the list of datasets. If you haven’t already
imported your data, choose Import to be directed through the import data workflow.

6. When you’re ready to begin building your model, choose Select dataset.

7. On the Build tab, for the Target column dropdown list, select the target for your model that
you would like to predict. The target column must have a binary or categorical data type, and
there must be at least 25 entries (or rows of data) for each unique label in the target column.

8. For Model type, confirm that the model type is automatically set to Multi-category text
prediction.

9. For the training column, select your source column of text data. This should be the column
containing the text that you want to analyze.

10. Choose Quick build or Standard build to begin building your model. The following screenshot
shows the Build page of a text prediction model that is ready to be built.

Use custom models 961

Amazon SageMaker Developer Guide

After your model begins building, you can leave the page. When the model shows as Ready on the
My models page, it’s ready for analysis and predictions.

Build a time series forecasting model

Time series forecasting models support both Quick builds and Standard builds.

To build a time series forecasting model, use the following procedure:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. Choose New model.

4. In the Create new model dialog box, do the following:

a. Enter a name in the Model name field.

b. Select the Time series forecasting problem type.

c. Choose Create.

5. For Select dataset, select your dataset from the list of datasets. If you haven’t already
imported your data, choose Import to be directed through the import data workflow.

6. When you’re ready to begin building your model, choose Select dataset.

Use custom models 962

Amazon SageMaker Developer Guide

7. On the Build tab, for the Target column dropdown list, select the target for your model that
you would like to predict.

8. For Model type, Canvas automatically detects the problem type for you. If you want to change
the type or configure advanced model settings, choose Configure model.

When the Configure model dialog box opens, do the following:

a. For Model type, choose the model type that you want to build.

b. For Time series configuration, specify the following values:

i. For the Item ID column dropdown, choose a column in your dataset that uniquely
identifies each row.

ii. (Optional) For the Group column dropdown, choose a categorical column that you
want to use for grouping your forecasting values.

iii. For the Time stamp column dropdown, select the column with timestamps (in
datetime format). For more information about the accepted datetime formats, see
Time Series Forecasts in Amazon SageMaker Canvas.

iv. For the Forecast length field, enter the period of time for which you want to forecast
values.

v. (Optional) Turn on the Use holiday schedule toggle to select a holiday schedule from
various countries.

vi. Choose Save.

c. After configuring your time series settings, there are additional Advanced settings. For
more information about each of the advanced settings, see Advanced model building
configurations. To configure the advanced settings, do the following:

i. (Optional) For the Objective metric dropdown menu, select the metric that you want
Canvas to optimize while building your model. If you don’t select a metric, Canvas
chooses one for you by default. For descriptions of the available metrics, see Metrics
reference.

ii. For Forecast quantiles, enter up to 5 comma-separated quantile values to specify the
upper and lower bounds of your forecast.

iii. For Forecast frequency, specify the following:

A. For Frequency, enter a Unit and Value to specify the frequency for the
forecasted values.

Use custom models 963

Amazon SageMaker Developer Guide

B. For Aggregation, select an aggregation method for how Canvas handles data
that doesn’t fit the frequency.

iv. For Max job runtime, set hour and minute values for the maximum amount of time
that Canvas can spend building your model. After the maximum time, Canvas stops
building and selects the best model candidate.

d. After configuring the advanced settings, choose Save.

9. Select or deselect columns in your data to include or drop them from your build.

Note

If you make batch predictions with your model after building, Canvas adds dropped
columns to your prediction results. However, Canvas does not add the dropped
columns to your batch predictions for time series models.

10. (Optional) Use the visualization and analytics tools that Canvas provides to visualize your data
and determine which features you might want to include in your model. For more information,
see Explore and analyze your data.

11. (Optional) Use data transformations to clean, transform, and prepare your data for model
building. For more information, see Prepare your data with advanced transformations. You
can view and remove your transforms by choosing Model recipe to open the Model recipe side
panel.

12. (Optional) For additional features such as previewing the accuracy of your model, validating
your dataset, and changing the size of the random sample that Canvas takes from your
dataset, see Preview your model.

13. After reviewing your data and making any changes to your dataset, choose Quick build or
Standard build to begin a build for your model.

After your model begins building, you can leave the page. When the model shows as Ready on the
My models page, it’s ready for analysis and predictions.

Advanced model building configurations

Amazon SageMaker Canvas supports various advanced settings that you can configure when
building a model. The following page lists all of the advanced settings along with additional
information about their options and configurations.

Use custom models 964

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-explore-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-prepare-data.html

Amazon SageMaker Developer Guide

Note

The following advanced settings are currently only supported for numeric, categorical, and
time series forecasting model types.

Advanced numeric and categorical prediction model settings

Canvas supports the following advanced settings for numeric and categorical prediction model
types.

Objective metric

The objective metric is the metric that you want Canvas to optimize while building your model. If
you don’t select a metric, Canvas chooses one for you by default. For descriptions of the available
metrics, see the Metrics reference.

Training method

Canvas can automatically select the training method based on the dataset size, or you can select it
manually. The following training methods are available for you to choose from:

• Ensembling – SageMaker leverages the AutoGluon library to train several base models. To find
the best combination for your dataset, ensemble mode runs 5–10 trials with different model and
meta parameter settings. Then, these models are combined using a stacking ensemble method
to create an optimal predictive model. For a list of algorithms supported by ensemble mode for
tabular data, see the following Algorithms section.

• Hyperparameter optimization (HPO) – SageMaker finds the best version of a model by tuning
hyperparameters using Bayesian optimization or multi-fidelity optimization while running
training jobs on your dataset. HPO mode selects the algorithms that are most relevant to your
dataset and selects the best range of hyperparameters to tune your models. To tune your
models, HPO mode runs up to 100 trials (default) to find the optimal hyperparameters settings
within the selected range. If your dataset size is less than 100 MB, SageMaker uses Bayesian
optimization. SageMaker chooses multi-fidelity optimization if your dataset is larger than 100
MB.

For a list of algorithms supported by HPO mode for tabular data, see the following Algorithms
section.

Use custom models 965

Amazon SageMaker Developer Guide

• Auto – SageMaker automatically chooses either ensembling mode or HPO mode based on your
dataset size. If your dataset is larger than 100 MB, SageMaker chooses HPO mode. Otherwise, it
chooses ensembling mode.

Algorithms

In Ensembling mode, Canvas supports the following machine learning algorithms:

• LightGBM – An optimized framework that uses tree-based algorithms with gradient boosting.
This algorithm uses trees that grow in breadth, rather than depth, and is highly optimized for
speed.

• CatBoost – A framework that uses tree-based algorithms with gradient boosting. Optimized for
handling categorical variables.

• XGBoost – A framework that uses tree-based algorithms with gradient boosting that grows in
depth, rather than breadth.

• Random Forest – A tree-based algorithm that uses several decision trees on random sub-samples
of the data with replacement. The trees are split into optimal nodes at each level. The decisions
of each tree are averaged together to prevent overfitting and improve predictions.

• Extra Trees – A tree-based algorithm that uses several decision trees on the entire dataset.
The trees are split randomly at each level. The decisions of each tree are averaged to prevent
overfitting and to improve predictions. Extra trees add a degree of randomization in comparison
to the random forest algorithm.

• Linear Models – A framework that uses a linear equation to model the relationship between two
variables in observed data.

• Neural network torch – A neural network model that's implemented using Pytorch.

• Neural network fast.ai – A neural network model that's implemented using fast.ai.

In HPO mode, Canvas supports the following machine learning algorithms:

• XGBoost – A supervised learning algorithm that attempts to accurately predict a target variable
by combining an ensemble of estimates from a set of simpler and weaker models.

• Deep learning algorithm – A multilayer perceptron (MLP) and feedforward artificial neural
network. This algorithm can handle data that is not linearly separable.

Use custom models 966

https://docs.aws.amazon.com/sagemaker/latest/dg/lightgbm.html
https://docs.aws.amazon.com/sagemaker/latest/dg/catboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.ensemble.ExtraTreesClassifier
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
https://pytorch.org/
https://www.fast.ai/
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html

Amazon SageMaker Developer Guide

Data split

You have the option to specify how you want to split your dataset between the training set (the
portion of your dataset used for building the model) and the validation set, (the portion of your
dataset used for verifying the model’s accuracy). For example, a common split ratio is 80% training
and 20% validation, where 80% of your data is used to build the model while 20% is saved for
measuring model performance. If you don’t specify a custom ratio, then Canvas splits your dataset
automatically.

Max candidates

Note

This feature is only available in the HPO training mode.

You can specify the maximum number of model candidates that Canvas generates while building
your model. We recommend that you use the default number of candidates, which is 100, to build
the most accurate models. The maximum number you can specify is 250. Decreasing the number of
model candidates may impact your model’s accuracy.

Max job runtime

You can specify the maximum job runtime, or the maximum amount of time that Canvas spends
building your model. After the time limit, Canvas stops building and selects the best model
candidate.

The maximum time that you can specify is 720 hours. We highly recommend that you keep the
maximum job runtime greater than 30 minutes to ensure that Canvas has enough time to generate
model candidates and finish building your model.

Advanced time series forecasting model settings

For time series forecasting models, Canvas supports the following metrics listed in the previous
section:

• Objective metric

• Algorithms

• Max job runtime

Use custom models 967

Amazon SageMaker Developer Guide

Time series forecasting models also support the following advanced settings:

Aggregation

If you set the forecasting frequency lower than the frequency of your recorded data, Canvas
aggregates any data points that don’t match the new frequency. For example, if you have daily
data points but would like to make a weekly forecast, you can set the frequency to weekly, and
then Canvas combines all of the daily data points for each week into a single record. Aggregation is
only supported for the target column, and the column values must be in datetime format.

The default aggregation method is to sum the values of the aggregated data points, but you can
also set the aggregation method to the following:

• avg – Canvas sets the record’s value to the average of all the aggregated data points.

• first – Canvas sets the record’s value to the first value of the aggregated data points.

• min – Canvas sets the record’s value to the minimum value found in the aggregated data points.

• max – Canvas sets the record’s value to the maximum value found in the aggregated data points.

Forecast quantiles

For time series forecasting, SageMaker trains 6 model candidates with your target time series.
Then, SageMaker combines these models using a stacking ensemble method to create an optimal
forecasting model for a given objective metric. Each forecasting model generates a probabilistic
forecast by producing forecasts at quantiles between P1 and P99. These quantiles are used to
account for forecast uncertainty. By default, forecasts are generated for 0.1 (p10), 0.5 (p50), and
0.9 (p90). You can choose to specify up to five of your own quantiles from 0.01 (p1) to 0.99 (p99),
by increments of 0.01 or higher.

Preview your model

Note

The following functionalities are only available for custom models built with tabular
datasets. Multi-category text prediction models are also excluded.

SageMaker Canvas provides you with tools to preview your model and validate data before you
begin building. The following functionalities include previewing the accuracy of your model,

Use custom models 968

Amazon SageMaker Developer Guide

validating your dataset to prevent issues while building the model, and changing the size of the
random sample for your model.

Preview a model

With Amazon SageMaker Canvas, you can get insights from your data before you build a model by
choosing Preview model. For example, you can see how the data in each column is distributed. For
models built using categorical data, you can also choose Preview model to generate an Estimated
accuracy prediction of how well the model might analyze your data. The accuracy of a Quick build
or a Standard build represents how well the model can perform on real data and is generally
higher than the Estimated accuracy.

Amazon SageMaker Canvas automatically handles missing values in your dataset while it builds the
model. It infers the missing values by using adjacent values that are present in the dataset.

Validate data

Before you build your model, SageMaker Canvas checks your dataset for issues that might cause
your build to fail. If SageMaker Canvas finds any issues, then it warns you on the Build page before
you attempt to build a model.

You can choose Validate data to see a list of the issues with your dataset. You can then use the
SageMaker Canvas data preparation features, or your own tools, to fix your dataset before starting
a build. If you don’t fix the issues with your dataset, then your build fails.

Use custom models 969

Amazon SageMaker Developer Guide

If you make changes to your dataset to fix the issues, you have the option to re-validate your
dataset before attempting a build. We recommend that you re-validate your dataset before
building.

The following table shows the issues that SageMaker Canvas checks for in your dataset and how to
resolve them.

Issue Resolution

Wrong model type for your data Try another model type or use a different
dataset.

Missing values in your target column Replace the missing values, drop rows with
missing values, or use a different dataset.

Too many unique labels in your target column Verify that you've used the correct column for
your target column, or use a different dataset.

Too many non-numeric values in your target
column

Choose a different target column, select
another model type, or use a different dataset.

One or more column names contain double
underscores

Rename the columns to remove any double
underscores, and try again.

None of the rows in your dataset are complete Replace the missing values, or use a different
dataset.

Too many unique labels for the number of
rows in your data

Check that you're using the right target
column, increase the number of rows in your
dataset, consolidate similar labels, or use a
different dataset.

Random sample

SageMaker Canvas uses the random sampling method to sample your dataset. The random sample
method means that each row has an equal chance of being picked for the sample. You can choose a
column in the preview to get summary statistics for the random sample, such as the mean and the
mode.

Use custom models 970

Amazon SageMaker Developer Guide

By default, SageMaker Canvas uses a random sample size of 20,000 rows from your dataset
for datasets with more than 20,000 rows. For datasets smaller than 20,000 rows, the default
sample size is the number of rows in your dataset. You can increase or decrease the sample size by
choosing Random sample in the Build tab of the SageMaker Canvas application. You can use the
slider to select your desired sample size, and then choose Update to change the sample size. The
maximum sample size you can choose for a dataset is 40,000 rows, and the minimum sample size is
500 rows. If you choose a large sample size, the dataset preview and summary statistics might take
a few moments to reload.

The Build page shows a preview of 100 rows from your dataset. If the sample size is the same size
as your dataset, then the preview uses the first 100 rows of your dataset. Otherwise, the preview
uses the first 100 rows of the random sample.

Edit an image dataset

In Amazon SageMaker Canvas, you can edit your image datasets and review your labels before
building a model. You might want to perform tasks such as assigning labels to unlabeled images
or adding more images to the dataset. These tasks can all be done in the Canvas application,
providing you with one place to modify your dataset and build a model.

Note

Before building a model, you must assign labels to all images in your dataset. Also, you
must have at least 25 images per label and a minimum of two labels. For more information
about assigning labels, see the section on this page called Assign labels to unlabeled
images. If you can’t determine a label for an image, you should delete it from your dataset.
For more information about deleting images, see the section on this page Add or delete
images from the dataset.

To begin editing your image dataset, you should be on the Build tab while building your single-
label image prediction model.

A new page opens that shows the images in your dataset along with their labels. This page
categorizes your image dataset into Total images, Labeled images, and Unlabeled images. You
can also review the Dataset preparation guide for best practices on building a more accurate
image prediction model.

The following screenshot shows the page for editing your image dataset.

Use custom models 971

Amazon SageMaker Developer Guide

From this page, you can do the following actions.

View the properties for each image (label, size, dimensions)

To view an individual image, you can search for it by file name in the search bar. Then, choose the
image to open the full view. You can view the image properties and reassign the image’s label.
Choose Save when you’re doing viewing the image.

Add, rename, or delete labels in the dataset

Canvas lists the labels for your dataset in the left navigation pane. You can add new labels to the
dataset by entering a label in the Add label text field.

To rename or delete a label from your dataset, choose the More options icon
()
next to the label and select either Rename or Delete. If you rename the label, you can enter the
new label name and choose Confirm. If you delete the label, the label is removed from all images
in your dataset that have that label. Any images with that label are left unlabeled.

Assign labels to unlabeled images

To view the unlabeled images in your dataset, choose Unlabeled in the left navigation pane. For
each image, select it and open the label titled Unlabeled and select a label to assign to the image

Use custom models 972

Amazon SageMaker Developer Guide

from the dropdown list. You can also select more than one image and perform this action, and all
selected images are assigned the label you chose.

Reassign labels to images

You can reassign labels to images by selecting the image (or multiple images at a time) and
opening the dropdown titled with the current label. Select your desired label, and the image or
images are updated with the new label.

Sort your images by label

You can view all the images for a given label by choosing the label in the left navigation pane.

Add or delete images from the dataset

You can add more images to your dataset by choosing Add images in the top navigation pane.
You’ll be taken through the workflow to import more images. The images you import are added to
your existing dataset.

You can delete images from your dataset by selecting them and then choosing Delete in the top
navigation pane.

Note

After making any changes to your dataset, choose Save dataset to make sure that you
don’t lose your changes.

Explore and analyze your data

Note

You can only use SageMaker Canvas visualizations and analytics for models built on tabular
datasets. Multi-category text prediction models are also excluded.

In Amazon SageMaker Canvas, you can explore the variables in your dataset using visualizations
and analytics and create in-application visualizations and analytics. You can use these explorations
to uncover relationships between your variables before building your model.

Use custom models 973

Amazon SageMaker Developer Guide

For more information about visualization techniques in Canvas, see Explore your data using
visualization techniques.

For more information about analytics in Canvas, see Explore your data using analytics.

Explore your data using visualization techniques

Note

You can only use SageMaker Canvas visualizations for models built on tabular datasets.
Multi-category text prediction models are also excluded.

With Amazon SageMaker Canvas, you can explore and visualize your data to gain advanced insights
into your data before building your ML models. You can visualize using scatter plots, bar charts,
and box plots, which can help you understand your data and discover the relationships between
features that could affect the model accuracy.

In the Build tab of the SageMaker Canvas application, choose Data visualizer to begin creating
your visualizations.

You can change the visualization sample size to adjust the size of the random sample taken
from your dataset. A sample size that is too large might affect the performance of your data
visualizations, so we recommend that you choose an appropriate sample size. To change the
sample size, use the following procedure.

1. Choose Visualization sample.

2. Use the slider to select your desired sample size.

3. Choose Update to confirm the change to your sample size.

Note

Certain visualization techniques require columns of a specific data type. For example, you
can only use numeric columns for the x and y-axes of scatter plots.

Use custom models 974

Amazon SageMaker Developer Guide

Scatter plot

To create a scatter plot with your dataset, choose Scatter plot in the Visualization panel. Choose
the features you want to plot on the x and y-axes from the Columns section. You can drag and
drop the columns onto the axes or, once an axis has been dropped, you can choose a column from
the list of supported columns.

You can use Color by to color the data points on the plot with a third feature. You can also use
Group by to group the data into separate plots based on a fourth feature.

The following image shows a scatter plot that uses Color by and Group by. In this example, each
data point is colored by the MaritalStatus feature, and grouping by the Department feature
results in a scatter plot for the data points of each department.

Bar chart

To create a bar chart with your dataset, choose Bar chart in the Visualization panel. Choose the
features you want to plot on the x and y-axes from the Columns section. You can drag and drop
the columns onto the axes or, once an axis has been dropped, you can choose a column from the
list of supported columns.

You can use Group by to group the bar chart by a third feature. You can use Stack by to vertically
shade each bar based on the unique values of a fourth feature.

Use custom models 975

Amazon SageMaker Developer Guide

The following image shows a bar chart that uses Group by and Stack by. In this example, the bar
chart is grouped by the MaritalStatus feature and stacked by the JobLevel feature. For each
JobRole on the x axis, there is a separate bar for the unique categories in the MaritalStatus
feature, and every bar is vertically stacked by the JobLevel feature.

Box plot

To create a box plot with your dataset, choose Box plot in the Visualization panel. Choose the
features you want to plot on the x and y-axes from the Columns section. You can drag and drop
the columns onto the axes or, once an axis has been dropped, you can choose a column from the
list of supported columns.

You can use Group by to group the box plots by a third feature.

The following image shows a box plot that uses Group by. In this example, the x and y-axes show
JobLevel and JobSatisfaction, respectively, and the colored box plots are grouped by the
Department feature.

Use custom models 976

Amazon SageMaker Developer Guide

Explore your data using analytics

Note

You can only use SageMaker Canvas analytics for models built on tabular datasets. Multi-
category text prediction models are also excluded.

With analytics in Amazon SageMaker Canvas, you can explore your dataset and gain insight on all
of your variables before building a model. You can determine the relationships between features
in your dataset using correlation matrices. You can use this technique to summarize your dataset
into a matrix that shows the correlations between two or more values. This helps you identify and
visualize patterns in a given dataset for advanced data analysis.

The matrix shows the correlation between each feature as positive, negative, or neutral. You might
want to include features that have a high correlation with each other when building your model.
Features that have little to no correlation might be irrelevant to your model, and you can drop
those features when building your model.

To get started with correlation matrices in SageMaker Canvas, see the following section.

Use custom models 977

Amazon SageMaker Developer Guide

Create a correlation matrix

You can create a correlation matrix when you are preparing to build a model in the Build tab of the
SageMaker Canvas application.

For instructions on how to begin creating a model, see Build a model.

After you’ve started preparing a model in the SageMaker Canvas application, do the following:

1. In the Build tab, choose Data visualizer.

2. Choose Analytics.

3. Choose Correlation matrix.

You should see a visualization similar to the following screenshot, which shows up to 15 columns
of the dataset organized into a correlation matrix.

After you’ve created the correlation matrix, you can customize it by doing the following:

1. Choose your columns

For Columns, you can select the columns that you want to include in the matrix. You can compare
up to 15 columns from your dataset.

Use custom models 978

Amazon SageMaker Developer Guide

Note

You can use numeric, categorical, or binary column types for a correlation matrix. The
correlation matrix doesn’t support datetime or text data column types.

To add or remove columns from the correlation matrix, select and deselect columns from the
Columns panel. You can also drag and drop columns from the panel directly onto the matrix. If
your dataset has a lot of columns, you can search for the columns you want in the Search columns
bar.

To filter the columns by data type, choose the dropdown list and select All, Numeric, or
Categorical. Selecting All shows you all of the columns from your dataset, whereas the Numeric
and Categorical filters only show you the numeric or categorical columns in your dataset. Note
that binary column types are included in the numeric or categorical filters.

For the best data insights, include your target column in the correlation matrix. When you include
your target column in the correlation matrix, it appears as the last feature on the matrix with a
target symbol.

2. Choose your correlation type

SageMaker Canvas supports different correlation types, or methods for calculating the correlation
between your columns.

To change the correlation type, use the Columns filter mentioned in the preceding section to
filter for your desired column type and columns. You should see the Correlation type in the side
panel. For numeric comparisons, you have the option to select either Pearson or Spearman. For
categorical comparisons, the correlation type is set as MI. For categorical and mixed comparisons,
the correlation type is set as Spearman & MI.

For matrices that only compare numeric columns, the correlation type is either Pearson or
Spearman. The Pearson measure evaluates the linear relationship between two continuous
variables. The Spearman measure evaluates the monotonic relationship between two variables.
For both Pearson and Spearman, the scale of correlation ranges from -1 to 1, with either end of
the scale indicating a perfect correlation (a direct 1:1 relationship) and 0 indicating no correlation.
You might want to select Pearson if your data has more linear relationships (as revealed by a
scatter plot visualization). If your data is not linear, or contains a mixture of linear and monotonic
relationships, then you might want to select Spearman.

Use custom models 979

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-explore-data.html#canvas-explore-data-scatterplot

Amazon SageMaker Developer Guide

For matrices that only compare categorical columns, the correlation type is set to Mutual
Information Classification (MI). The MI value is a measure of the mutual dependence between two
random variables. The MI measure is on a scale of 0 to 1, with 0 indicating no correlation and 1
indicating a perfect correlation.

For matrices that compare a mix of numeric and categorical columns, the correlation type
Spearman & MI is a combination of the Spearman and MI correlation types. For correlations
between two numeric columns, the matrix shows the Spearman value. For correlations between a
numeric and categorical column or two categorical columns, the matrix shows the MI value.

Lastly, remember that correlation does not necessarily indicate causation. A strong correlation
value only indicates that there is a relationship between two variables, but the variables might not
have a causal relationship. Carefully review your columns of interest to avoid bias when building
your model.

3. Filter your correlations

In the side panel, you can use the Filter correlations feature to filter for the range of correlation
values that you want to include in the matrix. For example, if you want to filter for features that
only have positive or neutral correlation, you can set the Min to 0 and the Max to 1 (valid values
are -1 to 1).

For Spearman and Pearson comparisons, you can set the Filter correlations range anywhere from
-1 to 1, with 0 meaning that there is no correlation. -1 and 1 mean that the variables have a strong
negative or positive correlation, respectively.

For MI comparisons, the correlation range only goes from 0 to 1, with 0 meaning that there is no
correlation and 1 meaning that the variables have a strong correlation, either positive or negative.

Each feature has a perfect correlation (1) with itself. Therefore, you might notice that the top row
of the correlation matrix is always 1. If you want to exclude these values, you can use the filter to
set the Max less than 1.

Keep in mind that if your matrix compares a mix of numeric and categorical columns and uses
the Spearman & MI correlation type, then the categorical x numeric and categorical x categorical
correlations (which use the MI measure) are on a scale of 0 to 1, whereas the numeric x numeric
correlations (which use the Spearman measure) are on a scale of -1 to 1. Review your correlations
of interest carefully to ensure that you know the correlation type being used to calculate each
value.

Use custom models 980

Amazon SageMaker Developer Guide

4. Choose the visualization method

In the side panel, you can use Visualize by to change the visualization method of the matrix.
Choose the Numeric visualization method to show the correlation (Pearson, Spearman, or MI)
value, or choose the Size visualization method to visualize the correlation with differently sized and
colored dots. If you choose Size, you can hover over a specific dot on the matrix to see the actual
correlation value.

5. Choose a color palette

In the side panel, you can use Color selection to change the color palette used for the scale of
negative to positive correlation in the matrix. Select one of the alternative color palettes to change
the colors used in the matrix.

Prepare data with advanced transformations

Note

You can only use advanced transformations for models built on tabular datasets. Multi-
category text prediction models are also excluded.

Your machine learning dataset might require data preparation before you build your model. You
might want to clean your data due to various issues, which might include missing values or outliers,
and perform feature engineering to improve the accuracy of your model. Amazon SageMaker
Canvas provides ML data transforms with which you can clean, transform, and prepare your data
for model building. You can use these transforms on your datasets without any code. SageMaker
Canvas adds the transforms you use to the Model recipe, which is a record of the data preparation
done on your data before building the model. Any data transforms you use only modify the input
data for model building and do not modify your original data source.

The following transforms are available in SageMaker Canvas for you to prepare your data for
building.

Note

The preview of your dataset shows the first 100 rows of the dataset. If your dataset has
more than 20,000 rows, Canvas takes a random sample of 20,000 rows and previews
the first 100 rows from that sample. You can only search for and specify values from the

Use custom models 981

Amazon SageMaker Developer Guide

previewed rows, and the filter functionality only filters the previewed rows and not the
entire dataset.

Drop columns

You can exclude a column from your model build by dropping it in the Build tab of the SageMaker
Canvas application. Deselect the column you want to drop, and it isn't included when building the
model.

Note

If you drop columns and then make batch predictions with your model, SageMaker Canvas
adds the dropped columns back to the ouput dataset available for you to download.
However, SageMaker Canvas does not add the dropped columns back for time series
models.

Filter rows

The filter functionality filters the previewed rows (the first 100 rows of your dataset) according
to conditions that you specify. Filtering rows creates a temporary preview of the data and does
not impact the model building. You can filter to preview rows that have missing values, contain
outliers, or meet custom conditions in a column you choose.

Filter rows by missing values

Missing values are a common occurrence in machine learning datasets. If you have rows with null or
empty values in certain columns, you might want to filter for and preview those rows.

To filter missing values from your previewed data, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Filter by rows
().

2. Choose the Column you want to check for missing values.

3. For the Operation, choose Is missing.

SageMaker Canvas filters for rows that contain missing values in the Column you selected and
provides a preview of the filtered rows.

Use custom models 982

Amazon SageMaker Developer Guide

Filter rows by outliers

Outliers, or rare values in the distribution and range of your data, can negatively impact model
accuracy and lead to longer building times. SageMaker Canvas enables you to detect and filter rows
that contain outliers in numeric columns. You can choose to define outliers with either standard
deviations or a custom range.

To filter for outliers in your data, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Filter by rows
().

2. Choose the Column you want to check for outliers.

3. For the Operation, choose Is outlier.

4. Set the Outlier range to either Standard deviation or Custom range.

5. If you choose Standard deviation, specify a SD (standard deviation) value from 1–3. If you
choose Custom range, select either Percentile or Number, and then specify the Min and Max
values.

The Standard deviation option detects and filters for outliers in numeric columns using the mean
and standard deviation. You specify the number of standard deviations a value must vary from the
mean to be considered an outlier. For example, if you specify 3 for SD, a value must fall more than
3 standard deviations from the mean to be considered an outlier.

Use custom models 983

Amazon SageMaker Developer Guide

The Custom range option detects and filters for outliers in numeric columns using minimum and
maximum values. Use this method if you know your threshold values that delimit outliers. You can
set the Type of the range to either Percentile or Number. If you choose Percentile, the Min and
Max values should be the minimum and maximum of the percentile range (0-100) that you want
to allow. If you choose Number, the Min and Max values should be the minimum and maximum
numeric values that you want to filter in the data.

Filter rows by custom values

You can filter for rows with values that meet custom conditions. For example, you might want
to preview rows that have a price value greater than 100 before removing them. With this
functionality, you can filter rows that exceed the threshold you set and preview the filtered data.

To use the custom filter functionality, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Filter by rows
().

2. Choose the Column you want to check.

3. Select the type of Operation you want to use, and then specify the values for the selected
condition.

Use custom models 984

Amazon SageMaker Developer Guide

For the Operation, you can choose one of the following options. Note that the available operations
depend on the data type of the column you choose. For example, you cannot create a is greater
than operation for a column containing text values.

Operation Supported data
type

Supported
feature type

Function

Is equal to Numeric, Text Binary, Categoric
al

Filters rows where the value in
Column equals the values you
specify.

Is not equal to Numeric, Text Binary, Categoric
al

Filters rows where the value in
Column doesn't equal the values
you specify.

Is less than Numeric N/A Filters rows where the value in
Column is less than the value you
specify.

Is less than or
equal to

Numeric N/A Filters rows where the value in
Column is less than or equal to the
value you specify.

Is greater than Numeric N/A Filters rows where the value in
Column is greater than the value
you specify.

Is greater than
or equal to

Numeric N/A Filters rows where the value in
Column is greater than or equal to
the value you specify.

Is between Numeric N/A Filters rows where the value in
Column is between or equal to two
values you specify.

Contains Text Categorical Filters rows where the value in
Column contains a values you
specify.

Use custom models 985

Amazon SageMaker Developer Guide

Operation Supported data
type

Supported
feature type

Function

Starts with Text Categorical Filters rows where the value in
Column begins with a value you
specify.

Ends with Categorical Categorical Filters rows where the value in
Column ends with a value you
specify.

After you set the filter operation, SageMaker Canvas updates the preview of the dataset to show
you the filtered data.

Functions and operators

You can use mathematical functions and operators to explore and distribute your data. You can use
the SageMaker Canvas supported functions or create your own formula with your existing data and
create a new column with the result of the formula. For example, you can add the corresponding
values of two columns and save the result to a new column.

You can nest statements to create more complex functions. The following are some examples of
nested functions that you might use.

Use custom models 986

Amazon SageMaker Developer Guide

• To calculate BMI, you could use the function weight / (height ^ 2).

• To classify ages, you could use the function Case(age < 18, 'child', age < 65,
'adult', 'senior').

You can specify functions in the data preparation stage before you build your model. To use a
function, do the following.

• In the Build tab of the SageMaker Canvas application, choose View all and then choose Custom
formula to open the Custom formula panel.

• In the Custom formula panel, you can choose a Formula to add to your Model Recipe. Each
formula is applied to all of the values in the columns you specify. For formulas that accept two or
more columns as arguments, use columns with matching data types; otherwise, you get an error
or null values in the new column.

• After you’ve specified a Formula, add a column name in the New Column Name field.
SageMaker Canvas uses this name for the new column that is created.

• (Optional) Choose Preview to preview your transform.

• To add the function to your Model Recipe, choose Add.

SageMaker Canvas saves the result of your function to a new column using the name you specified
in New Column Name. You can view or remove functions from the Model Recipe panel.

SageMaker Canvas supports the following operators for functions. You can use either the text
format or the in-line format to specify your function.

Operator Description Supported
data types

Text format In-line
format

Add Returns the sum of the values Numeric Add(sales1,
sales2)

sales1 +
sales2

Subtract Returns the difference
between the values

Numeric Subtract(
sales1,
sales2)

sales1 ‐
sales2

Use custom models 987

Amazon SageMaker Developer Guide

Operator Description Supported
data types

Text format In-line
format

Multiply Returns the product of the
values

Numeric Multiply(
sales1,
sales2)

sales1 *
sales2

Divide Returns the quotient of the
values

Numeric Divide(sales1,
sales2)

sales1 /
sales2

Mod Returns the result of the
modulo operator (the
remainder after dividing the
two values)

Numeric Mod(sales1,
sales2)

sales1 %
sales2

Abs Returns the absolute value of
the value

Numeric Abs(sales1) N/A

Negate Returns the negative of the
value

Numeric Negate(c1) ‐c1

Exp Returns e (Euler's number)
raised to the power of the
value

Numeric Exp(sales1) N/A

Log Returns the logarithm (base
10) of the value

Numeric Log(sales1) N/A

Ln Returns the natural logarithm
(base e) of the value

Numeric Ln(sales1) N/A

Pow Returns the value raised to a
power

Numeric Pow(sales1,
2)

sales1 ^ 2

If Returns a true or false label
based on a condition you
specify

Boolean,
Numeric,
Text

If(sales1
>7000,
'truelabel,
'falselabel')

N/A

Use custom models 988

Amazon SageMaker Developer Guide

Operator Description Supported
data types

Text format In-line
format

Or Returns a Boolean value of
whether one of the specified
values or conditions is true or
not

Boolean Or(fullprice,
discount)

fullprice ||
discount

And Returns a Boolean value of
whether two of the specified
values or conditions are true
or not

Boolean And(sales
1,sales2)

sales1 &&
sales2

Not Returns a Boolean value
that is the opposite of the
specified value or conditions

Boolean Not(sales1) !sales1

Case Returns a Boolean value
based on conditional
statements (returns c1 if
cond1 is true, returns c2 if
cond2 is true, else returns c3)

Boolean,
Numeric,
Text

Case(cond1,
c1, cond2, c2,
c3)

N/A

Equal Returns a Boolean value of
whether two values are equal

Boolean,
Numeric,
Text

N/A c1 = c2

c1 == c2

Not equal Returns a Boolean value of
whether two values are not
equal

Boolean,
Numeric,
Text

N/A c1 != c2

Less than Returns a Boolean value of
whether c1 is less than c2

Boolean,
Numeric,
Text

N/A c1 < c2

Greater than Returns a Boolean value of
whether c1 is greater than c2

Boolean,
Numeric,
Text

N/A c1 > c2

Use custom models 989

Amazon SageMaker Developer Guide

Operator Description Supported
data types

Text format In-line
format

Less than or
equal

Returns a Boolean value of
whether c1 is less than or
equal to c2

Boolean,
Numeric,
Text

N/A c1 <= c2

Greater than
or equal

Returns a Boolean value of
whether c1 is greater than or
equal to c2

Boolean,
Numeric,
Text

N/A c1 >= c2

SageMaker Canvas also supports aggregate operators, which can perform operations such as
calculating the sum of all the values or finding the minimum value in a column. You can use
aggregate operators in combination with standard operators in your functions. For example, to
calculate the difference of values from the mean, you could use the function Abs(height –
avg(height)). SageMaker Canvas supports the following aggregate operators.

Aggregate
operator

Description Format Example

sum Returns the sum of all the values in
a column

sum sum(c1)

minimum Returns the minimum value of a
column

min min(c2)

maximum Returns the maximum value of a
column

max max(c3)

average Returns the average value of a
column

avg avg(c4)

std Returns the sample standard
deviation of a column

std std(c1)

stddev Returns the standard deviation of
the values in a column

stddev stddev(c1)

Use custom models 990

Amazon SageMaker Developer Guide

Aggregate
operator

Description Format Example

variance Returns the unbiased variance of the
values in a column

variance variance(c1)

approx_co
unt_distinct

Returns the approximate number of
distinct items in a column

approx_co
unt_distinct

approx_co
unt_distinct(c1)

count Returns the number of items in a
column

count count(c1)

first Returns the first value of a column first first(c1)

last Returns the last value of a column last last(c1)

stddev_pop Returns the population standard
deviation of a column

stddev_pop stddev_pop(c1)

variance_pop Returns the population variance of
the values in a column

variance_pop variance_pop(c1)

Manage rows

With the Manage rows transform, you can perform sort, random shuffle, and remove rows of data
from the dataset.

Sort rows

To sort the rows in a dataset by a given column, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Manage rows and then choose
Sort rows.

2. For Sort Column, choose the column you want to sort by.

3. For Sort Order, choose either Ascending or Descending.

4. Choose Add to add the transform to the Model recipe.

Use custom models 991

Amazon SageMaker Developer Guide

Shuffle rows

To randomly shuffle the rows in a dataset, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Manage rows and then choose
Shuffle rows.

2. Choose Add to add the transform to the Model recipe.

Drop duplicate rows

To remove duplicate rows in a dataset, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Manage rows and then choose
Drop duplicate rows.

2. Choose Add to add the transform to the Model recipe.

Remove rows by missing values

Missing values are a common occurrence in machine learning datasets and can impact model
accuracy. Use this transform if you want to drop rows with null or empty values in certain columns.

To remove rows that contain missing values in a specified column, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Manage rows.

2. Choose Drop rows by missing values.

3. Choose Add to add the transform to the Model recipe.

SageMaker Canvas drops rows that contain missing values in the Column you selected. After
removing the rows from the dataset, SageMaker Canvas adds the transform in the Model recipe
section. If you remove the transform from the Model recipe section, the rows return to your
dataset.

Use custom models 992

Amazon SageMaker Developer Guide

Remove rows by outliers

Outliers, or rare values in the distribution and range of your data, can negatively impact model
accuracy and lead to longer building times. With SageMaker Canvas, you can detect and remove
rows that contain outliers in numeric columns. You can choose to define outliers with either
standard deviations or a custom range.

To remove outliers from your data, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Manage rows.

2. Choose Drop rows by outlier values.

3. Choose the Column you want to check for outliers.

4. Set the Operator to Standard deviation, Custom numeric range, or Custom quantile range.

5. If you choose Standard deviation, specify a Standard deviations (standard deviation) value
from 1–3. If you choose Custom numeric range or Custom quantile range, specify the Min
and Max values (numbers for numeric ranges, or percentiles between 0–100% for quantile
ranges).

6. Choose Add to add the transform to the Model recipe.

The Standard deviation option detects and removes outliers in numeric columns using the mean
and standard deviation. You specify the number of standard deviations a value must vary from the

Use custom models 993

Amazon SageMaker Developer Guide

mean to be considered an outlier. For example, if you specify 3 for Standard deviations, a value
must fall more than 3 standard deviations from the mean to be considered an outlier.

The Custom numeric range and Custom quantile range options detect and remove outliers
in numeric columns using minimum and maximum values. Use this method if you know your
threshold values that delimit outliers. If you choose a numeric range, the Min and Max values
should be the minimum and maximum numeric values that you want to allow in the data. If you
choose a quantile range, the Min and Max values should be the minimum and maximum of the
percentile range (0–100) that you want to allow.

After removing the rows from the dataset, SageMaker Canvas adds the transform in the Model
recipe section. If you remove the transform from the Model recipe section, the rows return to your
dataset.

Remove rows by custom values

You can remove rows with values that meet custom conditions. For example, you might want to
exclude all of the rows with a price value greater than 100 when building your model. With this
transform, you can create a rule that removes all rows that exceed the threshold you set.

To use the custom remove transform, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Manage rows.

2. Choose Drop rows by formula.

Use custom models 994

Amazon SageMaker Developer Guide

3. Choose the Column you want to check.

4. Select the type of Operation you want to use, and then specify the values for the selected
condition.

5. Choose Add to add the transform to the Model recipe.

For the Operation, you can choose one of the following options. Note that the available operations
depend on the data type of the column you choose. For example, you cannot create a is greater
than operation for a column containing text values.

Operation Supported data
type

Supported
feature type

Function

Is equal to Numeric, Text Binary, Categoric
al

Removes rows where the value
in Column equals the values you
specify.

Is not equal to Numeric, Text Binary, Categoric
al

Removes rows where the value in
Column doesn't equal the values
you specify.

Is less than Numeric N/A Removes rows where the value in
Column is less than the value you
specify.

Is less than or
equal to

Numeric N/A Removes rows where the value in
Column is less than or equal to the
value you specify.

Is greater than Numeric N/A Removes rows where the value in
Column is greater than the value
you specify.

Is greater than
or equal to

Numeric N/A Removes rows where the value in
Column is greater than or equal to
the value you specify.

Use custom models 995

Amazon SageMaker Developer Guide

Operation Supported data
type

Supported
feature type

Function

Is between Numeric N/A Removes rows where the value in
Column is between or equal to two
values you specify.

Contains Text Categorical Removes rows where the value
in Column contains a values you
specify.

Starts with Text Categorical Removes rows where the value in
Column begins with a value you
specify.

Ends with Text Categorical Removes rows where the value
in Column ends with a value you
specify.

After removing the rows from the dataset, SageMaker Canvas adds the transform in the Model
recipe section. If you remove the transform from the Model recipe section, the rows return to your
dataset.

Use custom models 996

Amazon SageMaker Developer Guide

Rename columns

With the rename columns transform, you can rename columns in your data. When you rename a
column, SageMaker Canvas changes the column name in the model input.

You can rename a column in your dataset by double-clicking on the column name
in the Build tab of the SageMaker Canvas application and entering a new name.
Pressing the Enter key submits the change, and clicking anywhere outside the input
cancels the change. You can also rename a column by clicking the More options icon
(),
located at the end of the row in list view or at the end of the header cell in grid view, and choosing
Rename.

Your column name can’t be longer than 32 characters or have double underscores (__), and you
can’t rename a column to the same name as another column. You also can’t rename a dropped
column.

The following screenshot shows how to rename a column by double-clicking the column name.

When you rename a column, SageMaker Canvas adds the transform in the Model recipe section. If
you remove the transform from the Model recipe section, the column reverts to its original name.

Use custom models 997

Amazon SageMaker Developer Guide

Manage columns

With the following transforms, you can change the data type of columns and replace missing
values or outliers for specific columns. SageMaker Canvas uses the updated data types or values
when building your model but doesn’t change your original dataset. Note that if you've dropped
a column from your dataset using the Drop columns transform, you can't replace values in that
column.

Replace missing values

Missing values are a common occurrence in machine learning datasets and can impact model
accuracy. You can choose to drop rows that have missing values, but your model is more accurate
if you choose to replace the missing values instead. With this transform, you can replace missing
values in numeric columns with the mean or median of the data in a column, or you can also
specify a custom value with which to replace missing values. For non-numeric columns, you can
replace missing values with the mode (most common value) of the column or a custom value.

Use this transform if you want to replace the null or empty values in certain columns. To replace
missing values in a specified column, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Manage columns.

2. Choose Replace missing values.

3. Choose the Column in which you want to replace missing values.

4. Set Mode to Manual to replace missing values with values that you specify. With the
Automatic (default) setting, SageMaker Canvas replaces missing values with imputed values
that best fit your data. This imputation method is done automatically for each model build,
unless you specify the Manual mode.

5. Set the Replace with value:

• If your column is numeric, then select Mean, Median, or Custom. Mean replaces missing
values with the mean for the column, and Median replaces missing values with the median
for the column. If you choose Custom, then you must specify a custom value that you want
to use to replace missing values.

• If your column is non-numeric, then select Mode or Custom. Mode replaces missing values
with the mode, or the most common value, for the column. For Custom, specify a custom
value. that you want to use to replace missing values.

6. Choose Add to add the transform to the Model recipe.

Use custom models 998

Amazon SageMaker Developer Guide

After replacing the missing values in the dataset, SageMaker Canvas adds the transform in the
Model recipe section. If you remove the transform from the Model recipe section, the missing
values return to the dataset.

Replace outliers

Outliers, or rare values in the distribution and range of your data, can negatively impact model
accuracy and lead to longer building times. SageMaker Canvas enables you to detect outliers in
numeric columns and replace the outliers with values that lie within an accepted range in your
data. You can choose to define outliers with either standard deviations or a custom range, and you
can replace outliers with the minimum and maximum values in the accepted range.

To replace outliers in your data, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Manage columns.

2. Choose Replace outlier values.

3. Choose the Column in which you want to replace outliers.

4. For Define outliers, choose Standard deviation, Custom numeric range, or Custom quantile
range.

5. If you choose Standard deviation, specify a Standard deviations (standard deviation) value
from 1–3. If you choose Custom numeric range or Custom quantile range, specify the Min
and Max values (numbers for numeric ranges, or percentiles between 0–100% for quantile
ranges).

Use custom models 999

Amazon SageMaker Developer Guide

6. For Replace with, select Min/max range.

7. Choose Add to add the transform to the Model recipe.

The Standard deviation option detects outliers in numeric columns using the mean and standard
deviation. You specify the number of standard deviations a value must vary from the mean to be
considered an outlier. For example, if you specify 3 for Standard deviations, a value must fall more
than 3 standard deviations from the mean to be considered an outlier. SageMaker Canvas replaces
outliers with the minimum value or maximum value in the accepted range. For example, if you
configure the standard deviations to only include values from 200–300, then SageMaker Canvas
changes a value of 198 to 200 (the minimum).

The Custom numeric range and Custom quantile range options detect outliers in numeric
columns using minimum and maximum values. Use this method if you know your threshold
values that delimit outliers. If you choose a numeric range, the Min and Max values should be the
minimum and maximum numeric values that you want to allow. SageMaker Canvas replaces any
values that fall outside of the minimum and maximum to the minimum and maximum values. For
example, if your range only allows values from 1–100, then SageMaker Canvas changes a value of
102 to 100 (the maximum). If you choose a quantile range, the Min and Max values should be the
minimum and maximum of the percentile range (0–100) that you want to allow.

After replacing the values in the dataset, SageMaker Canvas adds the transform in the Model
recipe section. If you remove the transform from the Model recipe section, the original values
return to the dataset.

Use custom models 1000

Amazon SageMaker Developer Guide

Change data type

SageMaker Canvas provides you with the ability to change the data type of your columns between
numeric, text, and datetime, while also displaying the associated feature type for that data type.
A data type refers to the format of the data and how it is stored, while the feature type refers to
the characteristic of the data used in machine learning algorithms, such as binary or categorical.
This gives you the flexibility to manually change the type of data in your columns based on the
features. The ability to choose the right data type ensures data integrity and accuracy prior to
building models. These data types are used when building models.

Note

Currently, changing the feature type (for example, from binary to categorical) is not
supported.

The following table lists all of the supported data types in Canvas.

Use custom models 1001

Amazon SageMaker Developer Guide

Data type Description Example

Numeric Numeric data represents
numerical values

1, 2, 3

1.1, 1.2. 1.3

Text Text data represents
sequences of characters, like
names or descriptions

A, B, C, D

apple, banana, orange

1A!, 2A!, 3A!

Datetime Datetime data represents
dates and times in timestamp
format

2019-07-01 01:00:00,
2019-07-01 02:00:00,
2019-07-01 03:00:00

The following table lists all of the supported feature types in Canvas.

Feature type Description Example

Binary Binary features represent two
possible values

0, 1, 0, 1, 0 (2 distinct values)

true, false, true (2 distinct
values)

Categorical Categorical features represent
distinct categories or groups

apple, banana, orange, apple
(3 distinct values)

A, B, C, D, E, A, D, C (5 distinct
values)

To modify data type of a column in a dataset, do the following.

1. In the Build tab of the SageMaker Canvas application, go to the Column view or Grid view and
select the Data type dropdown for the specific column.

2. In the Data type dropdown, choose the data type to convert to. The following screenshot
shows the dropdown menu.

Use custom models 1002

Amazon SageMaker Developer Guide

3. For Column, choose or verify the column you want to change the data type for.

4. For New data type, choose or verify the new data type you want to convert to.

5. If the New data type is Datetime or Numeric, choose one of the following options under
Handle invalid values:

a. Replace with empty value – Invalid values are substituted with an empty value

b. Delete rows – Rows with an invalid value are removed from the dataset

c. Replace with custom value – Invalid values are substituted with the Custom Value that
you specify.

6. Choose Add to add the transform to the Model recipe.

The data type for your column should now be updated.

Prepare time series data

Use the following functionalities to prepare your time series data for building time series
forecasting models.

Resample time series data

By resampling time-series data, you can establish regular intervals for the observations in your
time series dataset. This is particularly useful when working with time series data containing
irregularly spaced observations. For instance, you can use resampling to transform a dataset with
observations recorded every one hour, two hour and three hour intervals into a regular one hour

Use custom models 1003

Amazon SageMaker Developer Guide

interval between observations. Forecasting algorithms require the observations to be taken at
regular intervals.

To resample time series data, do the following.

1. In the Build tab of the SageMaker Canvas application, choose Time series.

2. Choose Resample.

3. For Timestamp column, choose the column you want to apply the transform to. You can only
select columns of the Datetime type.

4. In the Frequency settings section, choose a Frequency and Rate. Frequency is the unit of
frequency and Rate is the interval of the unit of frequency to be applied to the column. For
example, choosing Calendar Day for Frequency value and 1 for Rate sets the interval to
increase every 1 calendar day, such as 2023-03-26 00:00:00, 2023-03-27 00:00:00,
2023-03-28 00:00:00. See the table after this procedure for a complete list of Frequency
value.

5. Choose Add to add the transform to the Model recipe.

The following table lists all of the Frequency types you can select when resampling time series
data.

Frequency Description Example values (assuming
Rate is 1)

Business Day Resample observations in
the datetime column to 5
business days of the week
(Monday, Tuesday, Wednesday
, Thursday, Friday)

2023-03-24 00:00:00

2023-03-27 00:00:00

2023-03-28 00:00:00

2023-03-29 00:00:00

2023-03-30 00:00:00

2023-03-31 00:00:00

2023-04-03 00:00:00

Calendar Day Resample observations
in the datetime column

2023-03-26 00:00:00

Use custom models 1004

Amazon SageMaker Developer Guide

Frequency Description Example values (assuming
Rate is 1)

to all 7 days of the week
(Monday, Tuesday, Wednesday
, Thursday, Friday, Saturday,
Sunday)

2023-03-27 00:00:00

2023-03-28 00:00:00

2023-03-29 00:00:00

2023-03-30 00:00:00

2023-03-31 00:00:00

2023-04-01 00:00:00

Week Resample observations in the
datetime column to the first
day of each week

2023-03-13 00:00:00

2023-03-20 00:00:00

2023-03-27 00:00:00

2023-04-03 00:00:00

Month Resample observations in the
datetime column to the first
day of each month

2023-03-01 00:00:00

2023-04-01 00:00:00

2023-05-01 00:00:00

2023-06-01 00:00:00

Annual Quarter Resample observations in the
datetime column to the last
day of each quarter

2023-03-31 00:00:00

2023-06-30 00:00:00

2023-09-30 00:00:00

2023-12-31 00:00:00

Use custom models 1005

Amazon SageMaker Developer Guide

Frequency Description Example values (assuming
Rate is 1)

Year Resample observations in the
datetime column to the last
day of each year

2022-12-31 0:00:00

2023-12-31 00:00:00

2024-12-31 00:00:00

Hour Resample observations in the
datetime column to each hour
of each day

2023-03-24 00:00:00

2023-03-24 01:00:00

2023-03-24 02:00:00

2023-03-24 03:00:00

Minute Resample observations in
the datetime column to each
minute of each hour

2023-03-24 00:00:00

2023-03-24 00:01:00

2023-03-24 00:02:00

2023-03-24 00:03:00

Second Resample observations in
the datetime column to each
second of each minute

2023-03-24 00:00:00

2023-03-24 00:00:01

2023-03-24 00:00:02

2023-03-24 00:00:03

When applying the resampling transform, you can use the Advanced option to specify how the
resulting values of the rest of the columns (other than the timestamp column) in your dataset are
modified. This can be achieved by specifying the resampling methodology, which can either be
downsampling or upsampling for both numeric and non-numeric columns.

Downsampling increases the interval between observations in the dataset. For example, if you
downsample observations that are taken either every hour or every two hours, each observation
in your dataset is taken every two hours. The values of other columns of the hourly observations

Use custom models 1006

Amazon SageMaker Developer Guide

are aggregated into a single value using a combination method. The following tables show an
example of downsampling time series data by using mean as the combination method. The data is
downsampled from every two hours to every hour.

The following table shows the hourly temperature readings over a day before downsampling.

Timestamp Temperature (Celsius)

12:00 pm 30

1:00 am 32

2:00 am 35

3:00 am 32

4:00 am 30

The following table shows the temperature readings after downsampling to every two hours.

Timestamp Temperature (Celsius)

12:00 pm 30

2:00 am 33.5

2:00 am 35

4:00 am 32.5

To downsample time series data, do the following:

1. Expand the Advanced section under the Resample transform.

2. Choose Non-numeric combination to specify the combination method for non-numeric
columns. See the table below for a complete list of combination methods.

3. Choose Numeric combination to specify the combination method for numeric columns. See
the table below for a complete list of combination methods.

Use custom models 1007

Amazon SageMaker Developer Guide

If you don’t specify combination methods, the default values are Most Common for Non-numeric
combination and Mean for Numeric combination. The following table lists the methods for
numeric and non-numeric combination.

Downsampling methodology Combination method Description

Non-numeric combination Most Common Aggregate values in the non-
numeric column by the most
commonly ocurring value

Non-numeric combination Last Aggregate values in the non-
numeric column by the last
value in the column

Non-numeric combination First Aggregate values in the non-
numeric column by the first
value in the column

Numeric combination Mean Aggregate values in the
numeric column by the taking
the mean of all the values in
the column

Numeric combination Median Aggregate values in the
numeric column by the taking
the median of all the values in
the column

Numeric combination Min Aggregate values in the
numeric column by the taking
the minimum of all the values
in the column

Numeric combination Max Aggregate values in the
numeric column by the taking
the maximum of all the
values in the column

Use custom models 1008

Amazon SageMaker Developer Guide

Downsampling methodology Combination method Description

Numeric combination Sum Aggregate values in the
numeric column by adding all
the values in the column

Numeric combination Quantile Aggregate values in the
numeric column by the taking
the quantile of all the values
in the column

Upsampling reduces the interval between observations in the dataset. For example, if you
upsample observations that are taken every two hours into hourly observations, the values of
other columns of the hourly observations are interpolated from the ones that have been taken
every two hours.

To upsample time series data, do the following:

1. Expand the Advanced section under the Resample transform.

2. Choose Non-numeric estimation to specify the estimation method for non-numeric columns.
See the table after this procedure for a complete list of methods.

3. Choose Numeric estimation to specify the estimation method for numeric columns. See the
table below for a complete list of methods.

4. (Optional) Choose ID Column to specify the column that has the IDs of the observations of
the time series. Specify this option if your dataset has two time series. If you have a column
representing only one time series, don't specify a value for this field. For example, you can
have a dataset that has the columns id and purchase. The id column has the following
values: [1, 2, 2, 1]. The purchase column has the following values [$2, $3, $4, $1].
Therefore, the dataset has two time series—one time series is: 1: [$2, $1], and the other
time series is 2: [$3, $4].

If you don’t specify estimation methods, the default values are Forward Fill for Non-numeric
estimation and Linear for Numeric estimation. The following table lists the methods for
estimation.

Use custom models 1009

Amazon SageMaker Developer Guide

Upsampling methodology Estimation method Description

Non-numeric estimation Forward Fill Interpolate values in the non-
numeric column by taking the
consecutive values after all
the values in the column

Non-numeric estimation Backward Fill Interpolate values in the non-
numeric column by taking the
consecutive values before all
the values in the column

Non-numeric estimation Keep Missing Interpolate values in the non-
numeric column by showing
empty values

Numeric estimation Linear, Time, Index, Zero, S-
Linear, Nearest, Quadratic,
Cubic, Barycentric, Polynomia
l, Krogh, Piecewise Polynomia
l, Spline, P-chip, Akima, Cubic
Spline, From Derivatives

Interpolate values in the
numeric column by using
the specfied interpolator.
For information on interpola
tion methods, see pandas.Da
taFrame.interpolate in the
pandas documentation.

The following screenshot shows the Advanced settings with the fields for downsampling and
upsampling filled out.

Use custom models 1010

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html

Amazon SageMaker Developer Guide

Use datetime extraction

With the datetime extraction transform, you can extract values from a datetime column to a
separate column. For example, if you have a column containing dates of purchases, you can extract
the month value to a separate column and use the new column when building your model. You can
also extract multiple values to separate columns with a single transform.

Your datetime column must use a supported timestamp format. For a list of the formats that
SageMaker Canvas supports, see Time Series Forecasts in Amazon SageMaker Canvas. If your
dataset does not use one of the supported formats, update your dataset to use a supported
timestamp format and re-import it to Amazon SageMaker Canvas before building your model.

To perform a datetime extraction, do the following.

1. In the Build tab of the SageMaker Canvas application, on the transforms bar, choose View all.

2. Choose Extract features.

3. Choose the Timestamp column from which you want to extract values.

Use custom models 1011

Amazon SageMaker Developer Guide

4. For Values, select one or more values to extract from the column. The values you can extract
from a timestamp column are Year, Month, Day, Hour, Week of year, Day of year, and
Quarter.

5. (Optional) Choose Preview to preview the transform results.

6. Choose Add to add the transform to the Model recipe.

SageMaker Canvas creates a new column in the dataset for each of the values you extract. Except
for Year values, SageMaker Canvas uses a 0-based encoding for the extracted values. For example,
if you extract the Month value, January is extracted as 0, and February is extracted as 1.

You can see the transform listed in the Model recipe section. If you remove the transform from the
Model recipe section, the new columns are removed from the dataset.

Evaluate Your Model's Performance in Amazon SageMaker Canvas

After you’ve built your model, you can evaluate how well your model performed on your data
before using it to make predictions. You can use information, such as the model’s accuracy when
predicting labels and advanced metrics, to determine whether your model can make sufficiently
accurate predictions for your data.

On the Analyze page for your model, Amazon SageMaker Canvas provides the following three
tabs:

Use custom models 1012

Amazon SageMaker Developer Guide

• Overview – Gives you a general overview of the model’s performance, depending on the model
type.

• Scoring – Shows visualizations that you can use to get more insights into your model's
performance beyond the overall accuracy metrics.

• Advanced metrics – Contains your model’s scores for advanced metrics and additional
information that can give you a deeper understanding of your model's performance. You can also
view information such as the column impacts.

The section Evaluate your model's performance describes how to view and interpret your model’s
Overview and Scoring tabs. The section Use advanced metrics in your analyses contains more
detailed information about the Advanced metrics used to quantify your model’s accuracy.

You can also view more advanced information for specific model candidates, which are all of the
model iterations that Canvas runs through while building your model. Based on the advanced
metrics for a given model candidate, you can select a different candidate to be the default, or the
version that is used for making predictions and deploying. For each model candidate, you can view
the Advanced metrics information to help you decide which model candidate you’d like to select
as the default. You can view this information by selecting the model candidate from the Model
leaderboard. For more information, see View model candidates in the model leaderboard.

Canvas also provides the option to download a Jupyter notebook so that you can view and run the
code used to build your model. This is useful if you’d like to make adjustments to the code or learn
more about how your model was built. For more information, see Download a model notebook.

Evaluate your model's performance

Amazon SageMaker Canvas provides overview and scoring information for the different types
of model. Your model’s score can help you determine how accurate your model is when it makes
predictions. The additional scoring insights can help you quantify the differences between the
actual and predicted values.

To view the analysis of your model, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. Choose the model that you built.

4. In the top navigation pane, choose the Analyze tab.

5. Within the Analyze tab, you can view the overview and scoring information for your model.

Use custom models 1013

Amazon SageMaker Developer Guide

The following sections describe how to interpret the scoring for each model type.

Evaluate categorical prediction models

The Overview tab shows you the column impact for each column. Column impact is a percentage
score that indicates how much weight a column has in making predictions in relation to the other
columns. For a column impact of 25%, Canvas weighs the prediction as 25% for the column and
75% for the other columns.

The following screenshot shows the Accuracy score for the model, along with the Optimization
metric, which is the metric that you choose to optimize when building the model. In this case, the
Optimization metric is Accuracy. You can specify a different optimization metric if you build a new
version of your model.

The Scoring tab for a categorical prediction model gives you the ability to visualize all the
predictions. Line segments extend from the left of the page, indicating all the predictions the
model has made. In the middle of the page, the line segments converge on a perpendicular
segment to indicate the proportion of each prediction to a single category. From the predicted
category, the segments branch out to the actual category. You can get a visual sense of how
accurate the predictions were by following each line segment from the predicted category to the
actual category.

The following image gives you an example Scoring section for a 3+ category prediction model.

Use custom models 1014

Amazon SageMaker Developer Guide

You can also view the Advanced metrics tab for more detailed information about your model’s
performance, such as the advanced metrics, error density plots, or confusion matrices. To learn
more about the Advanced metrics tab, see Use advanced metrics in your analyses.

Evaluate numeric prediction models

The Overview tab shows you the column impact for each column. Column impact is a percentage
score that indicates how much weight a column has in making predictions in relation to the other
columns. For a column impact of 25%, Canvas weighs the prediction as 25% for the column and
75% for the other columns.

The following screenshot shows the RMSE score for the model on the Overview tab, which in
this case is the Optimization metric. The Optimization metric is the metric that you choose to
optimize when building the model. You can specify a different optimization metric if you build a
new version of your model.

Use custom models 1015

Amazon SageMaker Developer Guide

The Scoring tab for numeric prediction shows a line to indicate the model's predicted value in
relation to the data used to make predictions. The values of the numeric prediction are often +/-
the RMSE (root mean squared error) value. The value that the model predicts is often within the
range of the RMSE. The width of the purple band around the line indicates the RMSE range. The
predicted values often fall within the range.

The following image shows the Scoring section for numeric prediction.

You can also view the Advanced metrics tab for more detailed information about your model’s
performance, such as the advanced metrics, error density plots, or confusion matrices. To learn
more about the Advanced metrics tab, see Use advanced metrics in your analyses.

Use custom models 1016

Amazon SageMaker Developer Guide

Evaluate time series forecasting models

On the Analyze page for time series forecasting models, you can see an overview of the model’s
metrics. You can hover over each metric for more information, or you can see Use advanced metrics
in your analyses.

In the Column impact section, you can see the score for each column. Column impact is a
percentage score that indicates how much weight a column has in making predictions in relation
to the other columns. For a column impact of 25%, Canvas weighs the prediction as 25% for the
column and 75% for the other columns.

The following screenshot shows the time series metrics scores for the model, along with the
Optimization metric, which is the metric that you choose to optimize when building the model. In
this case, the Optimization metric is RMSE. You can specify a different optimization metric if you
build a new version of your model.

Evaluate image prediction models

The Overview tab shows you the Per label performance, which gives you an overall accuracy score
for the images predicted for each label. You can choose a label to see more specific details, such as
the Correctly predicted and Incorrectly predicted images for the label.

You can turn on the Heatmap toggle to see a heatmap for each image. The heatmap shows you
the areas of interest that have the most impact when your model is making predictions. For more
information about heatmaps and how to use them to improve your model, choose the More info
icon next to the Heatmap toggle.

The Scoring tab for single-label image prediction models shows you a comparison of what the
model predicted as the label versus what the actual label was. You can select up to 10 labels at a
time. You can change the labels in the visualization by choosing the labels dropdown menu and
selecting or deselecting labels.

Use custom models 1017

Amazon SageMaker Developer Guide

You can also view insights for individual labels or groups of labels, such as the three labels with
the highest or lowest accuracy, by choosing the View scores for dropdown menu in the Model
accuracy insights section.

The following screenshot shows the Scoring information for a single-label image prediction model.

Evaluate text prediction models

The Overview tab shows you the Per label performance, which gives you an overall accuracy
score for the passages of text predicted for each label. You can choose a label to see more specific
details, such as the Correctly predicted and Incorrectly predicted passages for the label.

The Scoring tab for multi-category text prediction models shows you a comparison of what the
model predicted as the label versus what the actual label was.

In the Model accuracy insights section, you can see the Most frequent category, which tells you
the category that the model predicted most frequently and how accurate those predictions were. If
you model predicts a label of Positive correctly 99% of the time, then you can be fairly confident
that your model is good at predicting positive sentiment in text.

The following screenshot shows the Scoring information for a multi-category text prediction
model.

Use custom models 1018

Amazon SageMaker Developer Guide

Use advanced metrics in your analyses

The following section describes how to find and interpret the advanced metrics for your model in
Amazon SageMaker Canvas.

Note

Advanced metrics are only currently available for numeric and categorical prediction
models.

To find the Advanced metrics tab, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. Choose the model that you built.

4. In the top navigation pane, choose the Analyze tab.

5. Within the Analyze tab, choose the Advanced metrics tab.

Use custom models 1019

Amazon SageMaker Developer Guide

In the Advanced metrics tab, you can find the Performance tab. The page looks like the following
screenshot.

At the top, you can see an overview of the metrics scores, including the Optimization metric,
which is the metric that you selected (or that Canvas selected by default) to optimize when
building the model.

The following sections describe more detailed information for the Performance tab within the
Advanced metrics.

Performance

In the Performance tab, you’ll see a Metrics table, along with visualizations that Canvas creates
based on your model type. For categorical prediction models, Canvas provides a confusion matrix,
whereas for numeric prediction models, Canvas provides you with residuals and error density charts.

In the Metrics table, you are provided with a full list of your model’s scores for each advanced
metric, which is more comprehensive than the scores overview at the top of the page. The metrics
shown here depend on your model type. For a reference to help you understand and interpret each
metric, see Metrics reference.

To understand the visualizations that might appear based on your model type, see the following
options:

Use custom models 1020

Amazon SageMaker Developer Guide

• Confusion matrix – Canvas uses confusion matrices to help you visualize when a model makes
predictions correctly. In a confusion matrix, your results are arranged to compare the predicted
values against the actual values. The following example explains how a confusion matrix works
for a 2 category prediction model that predicts positive and negative labels:

• True positive – The model correctly predicted positive when the true label was positive.

• True negative – The model correctly predicted negative when the true label was negative.

• False positive – The model incorrectly predicted positive when the true label was negative.

• False negative – The model incorrectly predicted negative when the true label was positive.

• Precision recall curve – The precision recall curve is a visualization of the model’s precision score
plotted against the model’s recall score. Generally, a model that can make perfect predictions
would have precision and recall scores that are both 1. The precision recall curve for a decently
accurate model is fairly high in both precision and recall.

• Residuals – Residuals are the difference between the actual values and the values predicted by
the model. A residuals chart plots the residuals against the corresponding values to visualize
their distribution and any patterns or outliers. A normal distribution of residuals around zero
indicates that the model is a good fit for the data. However, if the residuals are significantly
skewed or have outliers, it may indicate that the model is overfitting the data or that there are
other issues that need to be addressed.

• Error density – An error density plot is a representation of the distribution of errors made by a
model. It shows the probability density of the errors at each point, helping you to identify any
areas where the model may be overfitting or making systematic errors.

View model candidates in the model leaderboard

When you build a model in Amazon SageMaker Canvas, SageMaker trains multiple model
candidates, or different iterations of the model, and selects the one with the highest value for the
optimization metric by default. The default model candidate is the only version that you can use
with the other functionality in Canvas like making predictions, registering to the model registry or
deploying to an endpoint.

However, you might want to review all of the model candidates and select a different candidate
to be the default model. You can view all of the model candidates and more details about each
candidate on the Model leaderboard in Canvas.

To view the Model leaderboard, do the following:

Use custom models 1021

Amazon SageMaker Developer Guide

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. Choose the model that you built.

4. In the top navigation pane, choose the Analyze tab.

5. Within the Analyze tab, choose Model leaderboard.

The Model leaderboard page opens, which looks like the following screenshot.

You can see that the first model candidate listed is marked as the Default model. This is the model
candidate with which you can make predictions or deploy to endpoints.

To view more detailed metrics information about the model candidates to compare them, you can
choose the More options icon
()
and choose View model details.

Use custom models 1022

Amazon SageMaker Developer Guide

Important

Loading the model details for non-default model candidates may take a few minutes
(typically less than 10 minutes), and SageMaker Hosting charges apply. For more
information, see SageMaker Pricing.

The model candidate opens in the Analyze tab, and the metrics shown are specific to that model
candidate. When you’re done reviewing the model candidate’s metrics, you can go back or exit the
view to return to the Model leaderboard.

If you’d like to set the Default model to a different candidate, you can choose the More options
icon
()
and choose Change to the default model. Changing the default model for a model trained using
HPO mode might take several minutes.

Note

If your model is already deployed in production, registered to the model registry, or has
automations set up, you must delete your deployment, model registration, or automations
before changing the default model.

Metrics reference

The following sections describe the metrics that are available in Amazon SageMaker Canvas for
each model type.

Metrics for numeric prediction

The following list defines the metrics for numeric prediction in SageMaker Canvas and gives you
information about how you can use them.

• InferenceLatency – The approximate amount of time between making a request for a model
prediction to receiving it from a real-time endpoint to which the model is deployed. This metric is
measured in seconds and is only available for models built with the Ensemblingmode.

• MAE – Mean absolute error. On average, the prediction for the target column is +/- {MAE} from
the actual value.

Use custom models 1023

https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-register-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-manage-automations.html

Amazon SageMaker Developer Guide

Measures how different the predicted and actual values are when they're averaged over all
values. MAE is commonly used in numeric prediction to understand model prediction error. If the
predictions are linear, MAE represents the average distance from a predicted line to the actual
value. MAE is defined as the sum of absolute errors divided by the number of observations.
Values range from 0 to infinity, with smaller numbers indicating a better model fit to the data.

• MAPE – Mean absolute percent error. On average, the prediction for the target column is +/-
{MAPE} % from the actual value.

MAPE is the mean of the absolute differences between the actual values and the predicted or
estimated values, divided by the actual values and expressed as a percentage. A lower MAPE
indicates better performance, as it means that the predicted or estimated values are closer to the
actual values.

• MSE – Mean squared error, or the average of the squared differences between the predicted and
actual values.

MSE values are always positive. The better a model is at predicting the actual values, the smaller
the MSE value is.

• R2 – The percentage of the difference in the target column that can be explained by the input
column.

Quantifies how much a model can explain the variance of a dependent variable. Values range
from one (1) to negative one (-1). Higher numbers indicate a higher fraction of explained
variability. Values close to zero (0) indicate that very little of the dependent variable can be
explained by the model. Negative values indicate a poor fit and that the model is outperformed
by a constant function (or a horizontal line).

• RMSE – Root mean squared error, or the standard deviation of the errors.

Measures the square root of the squared difference between predicted and actual values, and is
averaged over all values. It is used to understand model prediction error, and it's an important
metric to indicate the presence of large model errors and outliers. Values range from zero (0) to
infinity, with smaller numbers indicating a better model fit to the data. RMSE is dependent on
scale, and should not be used to compare datasets of different types.

Use custom models 1024

Amazon SageMaker Developer Guide

Metrics for categorical prediction

This section defines the metrics for categorical prediction in SageMaker Canvas and gives you
information about how you can use them.

The following is a list of available metrics for 2-category prediction:

• Accuracy – The percentage of correct predictions.

Or, the ratio of the number of correctly predicted items to the total number of predictions.
Accuracy measures how close the predicted class values are to the actual values. Values for
accuracy metrics vary between zero (0) and one (1). A value of 1 indicates perfect accuracy, and 0
indicates complete inaccuracy.

• AUC – A value between 0 and 1 that indicates how well your model is able to separate the
categories in your dataset. A value of 1 indicates that it was able to separate the categories
perfectly.

• BalancedAccuracy – Measures the ratio of accurate predictions to all predictions.

This ratio is calculated after normalizing true positives (TP) and true negatives (TN) by the total
number of positive (P) and negative (N) values. It is defined as follows: 0.5*((TP/P)+(TN/N)),
with values ranging from 0 to 1. The balanced accuracy metric gives a better measure of accuracy
when the number of positives or negatives differ greatly from each other in an imbalanced
dataset, such as when only 1% of email is spam.

• F1 – A balanced measure of accuracy that takes class balance into account.

It is the harmonic mean of the precision and recall scores, defined as follows: F1 = 2 *
(precision * recall) / (precision + recall). F1 scores vary between 0 and 1. A
score of 1 indicates the best possible performance, and 0 indicates the worst.

• InferenceLatency – The approximate amount of time between making a request for a model
prediction to receiving it from a real-time endpoint to which the model is deployed. This metric is
measured in seconds and is only available for models built with the Ensemblingmode.

• LogLoss – Log loss, also known as cross-entropy loss, is a metric used to evaluate the quality of
the probability outputs, rather than the outputs themselves. Log loss is an important metric to
indicate when a model makes incorrect predictions with high probabilities. Values range from 0
to infinity. A value of 0 represents a model that perfectly predicts the data.

• Precision – Of all the times that {category x} was predicted, the prediction was correct
{precision}% of the time.

Use custom models 1025

Amazon SageMaker Developer Guide

Precision measures how well an algorithm predicts the true positives (TP) out of all of the
positives that it identifies. It is defined as follows: Precision = TP/(TP+FP), with values
ranging from zero (0) to one (1). Precision is an important metric when the cost of a false
positive is high. For example, the cost of a false positive is very high if an airplane safety system
is falsely deemed safe to fly. A false positive (FP) reflects a positive prediction that is actually
negative in the data.

• Recall – The model correctly predicted {recall}% to be {category x} when {target_column} was
actually {category x}.

Recall measures how well an algorithm correctly predicts all of the true positives (TP) in a
dataset. A true positive is a positive prediction that is also an actual positive value in the data.
Recall is defined as follows: Recall = TP/(TP+FN), with values ranging from 0 to 1. Higher
scores reflect a better ability of the model to predict true positives (TP) in the data. Note that it is
often insufficient to measure only recall, because predicting every output as a true positive yields
a perfect recall score.

The following is a list of available metrics for 3+ category prediction:

• Accuracy – The percentage of correct predictions.

Or, the ratio of the number of correctly predicted items to the total number of predictions.
Accuracy measures how close the predicted class values are to the actual values. Values for
accuracy metrics vary between zero (0) and one (1). A value of 1 indicates perfect accuracy, and 0
indicates complete inaccuracy.

• BalancedAccuracy – Measures the ratio of accurate predictions to all predictions.

This ratio is calculated after normalizing true positives (TP) and true negatives (TN) by the total
number of positive (P) and negative (N) values. It is defined as follows: 0.5*((TP/P)+(TN/N)),
with values ranging from 0 to 1. The balanced accuracy metric gives a better measure of accuracy
when the number of positives or negatives differ greatly from each other in an imbalanced
dataset, such as when only 1% of email is spam.

• F1macro – The F1macro score applies F1 scoring by calculating the precision and recall, and then
taking their harmonic mean to calculate the F1 score for each class. Then, the F1macro averages
the individual scores to obtain the F1macro score. F1macro scores vary between 0 and 1. A score
of 1 indicates the best possible performance, and 0 indicates the worst.

Use custom models 1026

Amazon SageMaker Developer Guide

• InferenceLatency – The approximate amount of time between making a request for a model
prediction to receiving it from a real-time endpoint to which the model is deployed. This metric is
measured in seconds and is only available for models built with the Ensemblingmode.

• LogLoss – Log loss, also known as cross-entropy loss, is a metric used to evaluate the quality of
the probability outputs, rather than the outputs themselves. Log loss is an important metric to
indicate when a model makes incorrect predictions with high probabilities. Values range from 0
to infinity. A value of 0 represents a model that perfectly predicts the data.

• PrecisionMacro – Measures precision by calculating precision for each class and averaging scores
to obtain precision for several classes. Scores range from zero (0) to one (1). Higher scores reflect
the model's ability to predict true positives (TP) out of all of the positives that it identifies,
averaged across multiple classes.

• RecallMacro – Measures recall by calculating recall for each class and averaging scores to obtain
recall for several classes. Scores range from 0 to 1. Higher scores reflect the model's ability to
predict true positives (TP) in a dataset, whereas a true positive reflects a positive prediction that
is also an actual positive value in the data. It is often insufficient to measure only recall, because
predicting every output as a true positive will yield a perfect recall score.

Note that for 3+ category prediction, you also receive the average F1, Accuracy, Precision, and
Recall metrics. The scores for these metrics are just the metric scores averaged for all categories.

Metrics for image and text prediction

The following is a list of available metrics for image prediction and text prediction.

• Accuracy – The percentage of correct predictions.

Or, the ratio of the number of correctly predicted items to the total number of predictions.
Accuracy measures how close the predicted class values are to the actual values. Values for
accuracy metrics vary between zero (0) and one (1). A value of 1 indicates perfect accuracy, and 0
indicates complete inaccuracy.

• F1 – A balanced measure of accuracy that takes class balance into account.

It is the harmonic mean of the precision and recall scores, defined as follows: F1 = 2 *
(precision * recall) / (precision + recall). F1 scores vary between 0 and 1. A
score of 1 indicates the best possible performance, and 0 indicates the worst.

• Precision – Of all the times that {category x} was predicted, the prediction was correct
{precision}% of the time.

Use custom models 1027

Amazon SageMaker Developer Guide

Precision measures how well an algorithm predicts the true positives (TP) out of all of the
positives that it identifies. It is defined as follows: Precision = TP/(TP+FP), with values
ranging from zero (0) to one (1). Precision is an important metric when the cost of a false
positive is high. For example, the cost of a false positive is very high if an airplane safety system
is falsely deemed safe to fly. A false positive (FP) reflects a positive prediction that is actually
negative in the data.

• Recall – The model correctly predicted {recall}% to be {category x} when {target_column} was
actually {category x}.

Recall measures how well an algorithm correctly predicts all of the true positives (TP) in a
dataset. A true positive is a positive prediction that is also an actual positive value in the data.
Recall is defined as follows: Recall = TP/(TP+FN), with values ranging from 0 to 1. Higher
scores reflect a better ability of the model to predict true positives (TP) in the data. Note that it is
often insufficient to measure only recall, because predicting every output as a true positive yields
a perfect recall score.

Note that for image and text prediction models where you are predicting 3 or more categories, you
also receive the average F1, Accuracy, Precision, and Recall metrics. The scores for these metrics are
just the metric scores average for all categories.

Metrics for time series forecasts

The following defines the advanced metrics for time series forecasts in Amazon SageMaker Canvas
and gives you information about how you can use them.

• Average Weighted Quantile Loss (wQL) – Evaluates the forecast by averaging the accuracy at the
P10, P50, and P90 quantiles. A lower value indicates a more accurate model.

• Weighted Absolute Percent Error (WAPE) – The sum of the absolute error normalized by the
sum of the absolute target, which measures the overall deviation of forecasted values from
observed values. A lower value indicates a more accurate model, where WAPE = 0 is a model with
no errors.

• Root Mean Square Error (RMSE) – The square root of the average squared errors. A lower RMSE
indicates a more accurate model, where RMSE = 0 is a model with no errors.

• Mean Absolute Percent Error (MAPE) – The percentage error (percent difference of the mean
forecasted value versus the actual value) averaged over all time points. A lower value indicates a
more accurate model, where MAPE = 0 is a model with no errors.

Use custom models 1028

Amazon SageMaker Developer Guide

• Mean Absolute Scaled Error (MASE) – The mean absolute error of the forecast normalized by the
mean absolute error of a simple baseline forecasting method. A lower value indicates a more
accurate model, where MASE < 1 is estimated to be better than the baseline and MASE > 1 is
estimated to be worse than the baseline.

Make predictions for your data

Use the custom model that you've built in SageMaker Canvas to make predictions for your data.
The following sections show you how to make predictions for numeric and categorical prediction
models, image prediction models, and text prediction models. For information about how to make
predictions with a time series forecast model, see Make a time series forecast.

Numeric and categorical prediction, image prediction, and text prediction custom models support
making the following types of predictions for your data:

• Single predictions — A Single prediction is when you only need to make one prediction. For
example, you have one image or passage of text that you want to classify.

• Batch predictions — A Batch prediction is when you’d like to make predictions for an entire
dataset. For example, you have a CSV file of customer reviews for which you’d like to predict the
customer sentiment, or you have a folder of image files that you'd like to classify. You should
make predictions with a dataset that matches your input dataset. Canvas provides you with the
ability to do manual batch predictions, or you can configure automatic batch predictions that
initiate whenever a specified dataset is updated in Canvas.

For each prediction or set of predictions, SageMaker Canvas returns the following:

• The predicted values

• The probability of the predicted value being correct

Get started

Choose one of the following workflows to make predictions with your custom model:

• Make batch predictions

• Make single predictions

After generating predictions with your model, you can also do the following:

Use custom models 1029

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-make-time-series-forecast.html

Amazon SageMaker Developer Guide

• Update your model by creating a new version. If you want to try to improve the prediction
accuracy of your model, you can build new versions of your model. You can update your data
or change any advanced transformations you used, and then you can review and compare the
versions of your model to choose the best one.

• Register a model version in the SageMaker model registry. You can register versions of your
model to the SageMaker model registry, which is a feature for tracking and managing the status
of model versions and machine learning pipelines. A data scientist or MLOps team user with
access to the SageMaker model registry can review your model versions and approve or reject
them before deploying them to production.

• Send your batch predictions to Amazon QuickSight. In Amazon QuickSight, you can build and
publish dashboards with your batch prediction datasets. This can help you analyze and share
results generated by your custom model.

Make single predictions

Note

This section describes how to get single predictions from your model inside the Canvas
application. For information about making real-time invocations in a production
environment by deploying your model to an endpoint, see Deploy your models to an
endpoint.

Make single predictions if you want to get a prediction for a single data point. You can use this
feature to get real-time predictions or to experiment with changing individual values to see how
they impact the prediction outcome.

Choose one of the following procedures based on your model type.

Make single predictions with numeric and categorical prediction models

To make a single prediction for a numeric or categorical prediction model, do the following:

1. In the left navigation pane of the Canvas application, choose My models.

2. On the My models page, choose your model.

3. After opening your model, choose the Predict tab.

4. On the Run predictions page, choose Single prediction.

Use custom models 1030

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-update-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-send-predictions.html

Amazon SageMaker Developer Guide

5. For each Column field, which represents the columns of your input data, you can change the
Value. Select the dropdown menu for the Value you want to change. For numeric fields, you
can enter a new number. For fields with labels, you can select a different label.

6. When you’re ready to generate the prediction, in the right Prediction pane, choose Update.

In the right Prediction pane, you’ll see the prediction result. You can Copy the prediction result
chart, or you can also choose Download to either download the prediction result chart as an image
or to download the values and prediction as a CSV file.

Make single predictions with image prediction models

To make a single prediction for a single-label image prediction model, do the following:

1. In the left navigation pane of the Canvas application, choose My models.

2. On the My models page, choose your model.

3. After opening your model, choose the Predict tab.

4. On the Run predictions page, choose Single prediction.

5. Choose Import image.

6. You’ll be prompted to upload an image. You can upload an image from your local computer or
from an Amazon S3 bucket.

7. Choose Import to import your image and generate the prediction.

In the right Prediction results pane, the model lists the possible labels for the image along with a
Confidence score for each label. For example, the model might predict the label Sea for an image,
with a confidence score of 96%. The model may have predicted the image as a Glacier with only
a confidence score of 4%. Therefore, you can determine that your model is fairly confident in
predicting images of the sea.

Make single predictions with text prediction models

To make a single prediction for a multi-category text prediction model, do the following:

1. In the left navigation pane of the Canvas application, choose My models.

2. On the My models page, choose your model.

3. After opening your model, choose the Predict tab.

4. On the Run predictions page, choose Single prediction.

Use custom models 1031

Amazon SageMaker Developer Guide

5. For the Text field, enter the text for which you’d like to get a prediction.

6. Choose Generate prediction results to get your prediction.

In the right Prediction results pane, you receive an analysis of your text in addition to a
Confidence score for each possible label. For example, if you entered a good review for a product,
you might get Positive with a confidence score of 85%, while the confidence score for Neutral
might be 10% and the confidence score for Negative only 5%.

Make batch predictions

Make batch predictions when you have an entire dataset for which you’d like to generate
predictions.

There are two types of batch predictions you can make:

• Manual batch predictions are when you have a dataset for which you want to make one-time
predictions.

• Automatic batch predictions are when you set up a configuration that runs a batch prediction
whenever a specific dataset is updated. For example, if you’ve configured weekly updates to
a SageMaker Canvas dataset of inventory data, you can set up automatic batch predictions
that run whenever you update the dataset. After setting up an automated batch predictions
workflow, see Manage automations for more information about viewing and editing the details
of your configuration. For more information about setting up automatic dataset updates, see
Configure automatic updates for a dataset.

Note

You can only set up automatic batch predictions for datasets imported through local
upload or Amazon S3. Additionally, automatic batch predictions can only run while you’re
logged in to the Canvas application. If you log out of Canvas, automatic batch prediction
jobs resume when you log back in.

To get started, reviewing the following section for batch prediction dataset requirements, and then
choose one of the following manual or automatic batch prediction workflows.

Batch prediction dataset requirements

Use custom models 1032

Amazon SageMaker Developer Guide

For batch predictions, make sure that your datasets meet the requirements outlined in Create a
dataset.

You might not be able to make predictions on some datasets because they have incompatible
schemas. A schema is an organizational structure. For a tabular dataset, the schema is the names of
the columns and the data type of the data in the columns. An incompatible schema might happen
for one of the following reasons:

• The dataset that you're using to make predictions has fewer columns than the dataset that you're
using to build the model.

• The data types in the columns you used to build the dataset might be different from the data
types in dataset that you're using to make predictions.

• The dataset that you're using to make predictions and the dataset that you've used to build the
model have column names that don't match. The column names are case sensitive. Column1 is
not the same as column1.

To ensure that you can successfully generate batch predictions, match the schema of your batch
predictions dataset to the dataset you used to train the model.

Note

For batch predictions, if you dropped any columns when building your model, Canvas adds
the dropped columns back to the prediction results. However, Canvas does not add the
dropped columns to your batch predictions for time series models.

Make manual batch predictions

Choose one of the following procedures to make manual batch predictions based on your model
type.

Make manual batch predictions with numeric and categorical prediction models

To make manual batch predictions for a numeric or categorical prediction model, do the following:

1. In the left navigation pane of the Canvas application, choose My models.

2. On the My models page, choose your model.

3. After opening your model, choose the Predict tab.

Use custom models 1033

Amazon SageMaker Developer Guide

4. On the Run predictions page, choose Batch prediction.

5. Choose Select dataset if you’ve already imported your dataset. If not, choose Import new
dataset, and then you’ll be directed through the import data workflow.

6. From the list of available datasets, select your dataset and choose Generate predictions to get
your predictions.

After the prediction job finishes running, on the Run predictions page, you see an output dataset
listed under Predictions. This dataset contains your results, and if you select the More options icon
(),
you can choose Preview to preview the output data. You can see the input data matched to the
prediction and the probability that the prediction is correct. Then, you can choose Download
prediction to download the results as a file.

Make manual batch predictions with image prediction models

To make manual batch predictions for a single-label image prediction model, do the following:

1. In the left navigation pane of the Canvas application, choose My models.

2. On the My models page, choose your model.

3. After opening your model, choose the Predict tab.

4. On the Run predictions page, choose Batch prediction.

5. Choose Select dataset if you’ve already imported your dataset. If not, choose Import new
dataset, and then you’ll be directed through the import data workflow.

6. From the list of available datasets, select your dataset and choose Generate predictions to get
your predictions.

After the prediction job finishes running, on the Run predictions page, you see an output dataset
listed under Predictions. This dataset contains your results, and if you select the More options icon
(),
you can choose View prediction results to see the output data. You can see the images along
with their predicted labels and confidence scores. Then, you can choose Download prediction to
download the results as a CSV or a ZIP file.

Make manual batch predictions with text prediction models

To make manual batch predictions for a multi-category text prediction model, do the following:

Use custom models 1034

Amazon SageMaker Developer Guide

1. In the left navigation pane of the Canvas application, choose My models.

2. On the My models page, choose your model.

3. After opening your model, choose the Predict tab.

4. On the Run predictions page, choose Batch prediction.

5. Choose Select dataset if you’ve already imported your dataset. If not, choose Import new
dataset, and then you’ll be directed through the import data workflow. The dataset you
choose must have the same source column as the dataset with which you built the model.

6. From the list of available datasets, select your dataset and choose Generate predictions to get
your predictions.

After the prediction job finishes running, on the Run predictions page, you see an output dataset
listed under Predictions. This dataset contains your results, and if you select the More options icon
(),
you can choose Preview to see the output data. You can see the images along with their predicted
labels and confidence scores. Then, you can choose Download prediction to download the results.

Make automatic batch predictions

To set up a schedule for automatic batch predictions, do the following:

1. In the left navigation pane of Canvas, choose My models.

2. Choose your model.

3. Choose the Predict tab.

4. Choose Batch prediction.

5. For Generate predictions, choose Automatic.

6. The Automate batch predictions dialog box pops up. Choose Select dataset and choose the
dataset for which you want to automate predictions. Note that you can only select a dataset
that was imported through local upload or Amazon S3.

7. After selecting a dataset, choose Set up.

Canvas runs a batch predictions job for the dataset after you set up the configuration. Then, every
time you Update a dataset, either manually or automatically, another batch predictions job runs.

After the prediction job finishes running, on the Run predictions page, you see an output dataset
listed under Predictions. This dataset contains your results, and if you select the More options icon

Use custom models 1035

Amazon SageMaker Developer Guide

(),
you can choose Preview to preview the output data. You can see the input data matched to the
prediction and the probability that the prediction is correct. Then, you can choose Download to
download the results.

The following sections describe how to view, update, and delete your automatic batch prediction
configuration through the Datasets page in the Canvas application. You can only set up a
maximum of 20 automatic configurations in Canvas. For more information about viewing your
automated batch predictions job history or making changes to your automatic configuration
through the Automations page, see Manage automations.

View your automatic batch prediction jobs

To view your job history for your automatic batch predictions, go to the Predict tab of your model.

Each automatic batch prediction job shows up in the Predict tab of your model. Under Predictions,
you can see the All jobs tab and the Configuration tabs:

• All jobs – In this tab, you can see all of the batch prediction jobs for this model. You can
filter the jobs by configuration name. For each job, you can see fields such as the Input
dataset, which includes the version of the dataset, and the Prediction type, such as
whether the predictions were automatic or manual. If you choose the More options icon
(),
you can choose View prediction or Download prediction.

• Configuration – In this tab, you can see all of the automatic batch prediction
configurations you’ve created for this model. For each configuration, you can see
fields such as the timestamp for when it was Created, the Input dataset it tracks
for updates, and the Next job scheduled. If you choose the More options icon
(),
you can choose View all jobs to see the job history and in progress jobs for the configuration.

Edit your automatic batch prediction configuration

You might want to make changes to your auto update configuration for a dataset, such as changing
the frequency of the updates. You might also want to turn off your automatic update configuration
to pause the updates to your dataset.

When you edit a batch prediction configuration, you can change the target dataset but not the
frequency (since automatic batch predictions occur whenever the dataset is updated).

Use custom models 1036

Amazon SageMaker Developer Guide

To edit your auto update configuration, do the following:

1. Go to the Predict tab of your model.

2. Under Predictions, choose the Configuration tab.

3. Find your configuration and choose the More options icon
().

4. From the dropdown menu, choose Update configuration.

5. The Automate batch prediction dialog box opens. You can select another dataset and choose
Set up to save your changes.

Your automatic batch predictions configuration is now updated.

To pause your automatic batch predictions, turn off your automatic configuration by doing the
following:

1. Go to the Predict tab of your model.

2. Under Predictions, choose the Configuration tab.

3. Find your configuration from the list and turn off the Auto update toggle.

Automatic batch predictions are now paused. You can turn the toggle back on at any time to
resume the update schedule.

Delete your automatic batch prediction configuration

To learn how to delete your automatic batch prediction configuration, see Delete an automatic
configuration.

You can also delete your configuration by doing the following:

1. Go to the Predict tab of your model.

2. Under Predictions, choose the Configuration tab.

3. Find your configuration from the list and choose the More options icon
().

4. From the dropdown menu, choose Delete configuration.

Your configuration should now be deleted.

Use custom models 1037

Amazon SageMaker Developer Guide

Send predictions to Amazon QuickSight

Note

You can send batch predictions to Amazon QuickSight for numeric and categorical
prediction and time series forecasting models. You can also send predictions generated
with BYOM models. Single-label image prediction and multi-category text prediction
models are excluded.

Once you generate batch predictions with custom tabular models in SageMaker Canvas, you can
send those predictions as CSV files to Amazon QuickSight, which is a business intelligence (BI)
service to build and publish predictive dashboards.

For example, if you built a 2 category prediction model to determine whether a customer will
churn, you can create a visual, predictive dashboard in Amazon QuickSight to show the percentage
of customers that are expected to churn. To learn more about Amazon QuickSight, see the Amazon
QuickSight User Guide.

The following sections show you how to send your batch predictions to Amazon QuickSight for
analysis.

Before you begin

Your user must have the necessary AWS Identity and Access Management (IAM) permissions to
send your predictions to Amazon QuickSight. Your administrator can set up the IAM permissions
for your user. For more information, see Grant Your Users Permissions to Send Predictions to
Amazon QuickSight.

Your Amazon QuickSight account must contain the default namespace, which is set up when you
first create your Amazon QuickSight account. Contact your administrator to help you get access to
Amazon QuickSight. For more information, see Setting up for Amazon QuickSight in the Amazon
QuickSight User Guide.

Your Amazon QuickSight account must be created in the same Region as your Canvas application.
If your Amazon QuickSight account’s home Region differs from your Canvas application’s Region,
you must either close and recreate your Amazon QuickSight account, or set up a Canvas application
in the same Region as your Amazon QuickSight account. You can check your Amazon QuickSight
home Region by doing the following (assuming you already have an Amazon QuickSight account):

Use custom models 1038

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html
https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://docs.aws.amazon.com/quicksight/latest/user/setting-up.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html#canvas-prerequisites

Amazon SageMaker Developer Guide

1. Open your Amazon QuickSight console.

2. When the page loads, your Amazon QuickSight home Region is appended to the URL in the
following format: https://<your-home-region>.quicksight.aws.amazon.com/.

You must know the usernames of the Amazon QuickSight users to whom you want to send your
predictions. You can send predictions to yourself or other users who have the right permissions.
Any users to whom you send predictions must be in the default namespace of your Amazon
QuickSight account and have the Author or Admin role in Amazon QuickSight.

Additionally, Amazon QuickSight must have access to the SageMaker default Amazon S3 bucket for
your domain, which is named with the following format: sagemaker-{REGION}-{ACCOUNT_ID}.
The Region should be the same as your Amazon QuickSight account's home Region and your
Canvas application’s Region. To learn how to give Amazon QuickSight access to the batch
predictions stored in your Amazon S3 bucket, see the topic I can’t connect to Amazon S3 in the
Amazon QuickSight User Guide.

Supported data formats

Before sending your predictions, check that the data format of your batch predictions is compatible
with Amazon QuickSight.

• To learn more about the accepted data formats for timeseries data, see Supported date formats
in the Amazon QuickSight User Guide.

• To learn more about data values that might prevent you from sending to Amazon QuickSight,
see Unsupported values in data in the Amazon QuickSight User Guide.

Also note that Amazon QuickSight uses the character " as a text qualifier, so if your Canvas data
contains any " characters, make sure that you close all matching quotes. Any mismatching quotes
can cause issues with sending your dataset to Amazon QuickSight.

Send your batch predictions to Amazon QuickSight

Use the following procedure to send your predictions to Amazon QuickSight:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. On the My models page, choose your model.

Use custom models 1039

https://quicksight.aws.amazon.com/
https://docs.aws.amazon.com/quicksight/latest/user/namespaces.html
https://docs.aws.amazon.com/quicksight/latest/user/troubleshoot-connect-S3.html
https://docs.aws.amazon.com/quicksight/latest/user/supported-date-formats.html
https://docs.aws.amazon.com/quicksight/latest/user/unsupported-data-values.html

Amazon SageMaker Developer Guide

4. Choose the Predict tab.

5. Under Predictions, select the dataset (or datasets) of batch predictions that you’d like to share.
You can share up to 5 datasets of batch predictions at a time.

6. After you select your dataset, choose Send to Amazon QuickSight.

Note

The Send to Amazon QuickSight button doesn’t activate unless you select one or
more datasets.

Alternatively, you can preview your predictions by choosing the More options icon
()
and then View prediction results. From the dataset preview, you can choose Send to Amazon
QuickSight. The following screenshot shows you the Send to Amazon QuickSight button in a
dataset preview.

7. In the Send to Amazon QuickSight dialog box, do the following:

Use custom models 1040

Amazon SageMaker Developer Guide

a. For QuickSight users, enter the name of the Amazon QuickSight users to whom you
want to send your predictions. If you want to send them to yourself, enter your own
username. You can only send predictions to users in the default namespace of the
Amazon QuickSight account, and the user must have the Author or Admin role in
Amazon QuickSight.

b. Choose Send.

The following screenshot shows the Send to Amazon QuickSight dialog box:

After you send your batch predictions, the QuickSight field for the datasets you sent shows as
Sent. In the confirmation box that confirms your predictions were sent, you can choose Open
Amazon QuickSight to open your Amazon QuickSight application. If you’re done using Canvas, you
should log out of the Canvas application.

The Amazon QuickSight users that you’ve sent datasets to can open their Amazon QuickSight
application and view the Canvas datasets that have been shared with them. Then, they can create
predictive dashboards with the data. For more information, see Getting started with Amazon
QuickSight data analysis in the Amazon QuickSight User Guide.

By default, all of the users to whom you send predictions have owner permissions for the dataset in
Amazon QuickSight. Owners are able to create analyses, refresh, edit, delete, and re-share datasets.
The changes that owners make to a dataset change the dataset for all users with access. To change

Use custom models 1041

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-log-out.html
https://docs.aws.amazon.com/quicksight/latest/user/getting-started.html
https://docs.aws.amazon.com/quicksight/latest/user/getting-started.html

Amazon SageMaker Developer Guide

the permissions, go to the dataset in Amazon QuickSight and manage its permissions. For more
information, see Viewing and editing the permissions users that a dataset is shared with in the
Amazon QuickSight User Guide.

Download a model notebook

Note

The model notebook feature is only available for tabular models and fine-tuned foundation
models. Model notebooks aren't supported for image prediction, text prediciton, or time
series forecasting models.
If you'd like to generate a model notebook for a tabular model built before this feature was
launched, you must rebuild the model to generate a notebook.

For eligible models that you successfully build in Amazon SageMaker Canvas, a Jupyter notebook
containing a report of all the model building steps is generated. This Jupyter notebook contains
Python code that you can run locally or run in an environment like Amazon SageMaker Studio
Classic to replicate the steps necessary to build your model. The notebook can be useful if you’d
like to experiment with the code or see the backend details of how Canvas builds models.

To access the model notebook, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. Choose the model and version that you built.

4. On the model version’s page, choose the More options icon
()
in the header.

5. From the dropdown menu, choose View notebook.

6. A popup appears with the notebook content. You can choose Download and then do one of
the following:

a. Choose Download to save the notebook content to your local device.

b. Choose Copy S3 URI to copy the Amazon S3 location where the notebook is stored.
The notebook is stored in the Amazon S3 bucket specified in your Canvas storage

Use custom models 1042

https://docs.aws.amazon.com/quicksight/latest/user/sharing-data-sets.html#view-users-data-set

Amazon SageMaker Developer Guide

configuration, which is configured in the Prerequisites for setting up Amazon SageMaker
Canvas section.

You should now be able to view the notebook either locally or as an object in Amazon S3. You can
upload the notebook to an IDE to edit and run the code, or you can share the notebook with others
in your organization to review.

Send your model to Amazon QuickSight

If you use Amazon QuickSight and want to leverage SageMaker Canvas in your Amazon QuickSight
visualizations, you can build an Amazon SageMaker Canvas model and use it as a predictive field
in your Amazon QuickSight dataset. A predictive field is a field in your Amazon QuickSight dataset
that can make predictions for a given column in your dataset, similar to how Canvas users make
single or batch predictions with a model. To learn more about how to integrate Canvas predictive
abilities into your Amazon QuickSight datasets, see SageMaker Canvas integration in the Amazon
QuickSight User Guide.

The following steps explain how you can add a predictive field to your Amazon QuickSight dataset
using a Canvas model:

1. Open the Canvas application and build a model with your dataset.

2. After building the model in Canvas, send the model to Amazon QuickSight. A schema
file automatically downloads to your local machine when you send the model to Amazon
QuickSight. You upload this schema file to Amazon QuickSight in the next step.

3. Open Amazon QuickSight and choose a dataset with the same schema as the dataset you used
to build your model. Add a predictive field to the dataset and do the following:

a. Specify the model sent from Canvas.

b. Upload the schema file that was downloaded in Step 2.

4. Save and publish your changes, and then generate predictions for the new dataset. Amazon
QuickSight uses the model to fill in the target column with predictions.

In order to send a model from Canvas to Amazon QuickSight, you must meet the following
prerequisites:

• You must have both Canvas and Amazon QuickSight set up. Your Amazon QuickSight account
must be created in the same AWS Region as your Canvas application. If your Amazon QuickSight

Use custom models 1043

https://docs.aws.amazon.com/quicksight/latest/user/sagemaker-canvas-integration.html
https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://docs.aws.amazon.com/quicksight/latest/user/welcome.html

Amazon SageMaker Developer Guide

account’s home Region differs from your Canvas application’s Region, you must either close and
recreate your Amazon QuickSight account, or set up a Canvas application in the same Region
as your Amazon QuickSight account. Your Amazon QuickSight account must also contain the
default namespace, which you set up when you first create your Amazon QuickSight account.
Contact your administrator to help you get access to Amazon QuickSight. For more information,
see Setting up for Amazon QuickSight in the Amazon QuickSight User Guide.

• Your user must have the necessary AWS Identity and Access Management (IAM) permissions to
send your predictions to Amazon QuickSight. Your administrator can set up the IAM permissions
for your user. For more information, see Grant Your Users Permissions to Send Predictions to
Amazon QuickSight.

• Amazon QuickSight must have access to the Amazon S3 bucket that you’ve specified for Canvas
application storage. For more information, see Configure your Amazon S3 storage.

Time Series Forecasts in Amazon SageMaker Canvas

Note

Time series forecasting models are only supported for tabular datasets.

Amazon SageMaker Canvas gives you the ability to use machine learning time series forecasts.
Time series forecasts give you the ability to make predictions that can vary with time.

You can make a time series forecast for the following examples:

• Forecasting your inventory in the coming months.

• The number of items sold in the next four months.

• The effect of reducing the price on sales during the holiday season.

• Item inventory in the next 12 months.

• The number of customers entering a store in the next several hours.

• Forecasting how a 10% reduction in the price of a product affects sales over a time period.

To make a time series forecast, your dataset must have the following:

• A timestamp column with all values having the datetime type.

Use custom models 1044

https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html#canvas-prerequisites
https://docs.aws.amazon.com/quicksight/latest/user/setting-up.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-quicksight-permissions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-quicksight-permissions.html

Amazon SageMaker Developer Guide

• A target column that has the values that you're using to forecast future values.

• An item ID column that contains unique identifiers for each item in your dataset, such as SKU
numbers.

The datetime values in the timestamp column must use one of the following formats:

• YYYY-MM-DD HH:MM:SS

• YYYY-MM-DDTHH:MM:SSZ

• YYYY-MM-DD

• MM/DD/YY

• MM/DD/YY HH:MM

• MM/DD/YYYY

• YYYY/MM/DD HH:MM:SS

• YYYY/MM/DD

• DD/MM/YYYY

• DD/MM/YY

• DD-MM-YY

• DD-MM-YYYY

You can make forecasts for the following intervals:

• 1 min

• 5 min

• 15 min

• 30 min

• 1 hour

• 1 day

• 1 week

• 1 month

• 1 year

Use custom models 1045

Amazon SageMaker Developer Guide

Future values in your input dataset

Canvas automatically detects columns in your dataset that might potentially contain future values.
If present, these values can enhance the accuracy of predictions. Canvas marks these specific
columns with a Future values label. Canvas infers the relationship between the data in these
columns and the target column that you are trying to predict, and utilizes that relationship to
generate more accurate forecasts.

For example, you can forecast the amount of ice cream sold by a grocery store. To make a forecast,
you must have a timestamp column and a column that indicates how much ice cream the grocery
store sold. For a more accurate forecast, your dataset can also include the price, the ambient
temperature, the flavor of the ice cream, or a unique identifier for the ice cream.

Ice cream sales might increase when the weather is warmer. A decrease in the price of the ice cream
might result in more units sold. Having a column with ambient temperature data and a column
with pricing data can improve your ability to forecast the number of units of ice cream the grocery
store sells.

While providing future values is optional, it helps you to perform what-if analyses directly in the
Canvas application, showing you how changes in future values could alter your predictions.

Handling missing values

You might have missing data for different reasons. The reason for your missing data might inform
how you want Canvas to impute it. For example, your organization might use an automatic system
that only tracks when a sale happens. If you're using a dataset that comes from this type of
automatic system, you have missing values in the target column.

Important

If you have missing values in the target column, we recommend using a dataset that
doesn't have them. SageMaker Canvas uses the target column to forecast future values.
Missing values in the target column can greatly reduce the accuracy of the forecast.

For missing values in the dataset, Canvas automatically imputes the missing values for you by
filling the target column with 0 and other numeric columns with the median value of the column.

However, you can select your own filling logic for the target column and other numeric columns in
your datasets. Target columns have different filling guidelines and restrictions than the rest of the

Use custom models 1046

Amazon SageMaker Developer Guide

numeric columns. Target columns are filled up to the end of the historical period, whereas numeric
columns are filled across both historical and future periods all the way to the end of the forecast
horizon. Canvas only fills future values in a numeric column if your data has at least one record
with a future timestamp and a value for that specific column.

You can choose one of the following filling logic options to impute missing values in your data:

• zero – Fill with 0.

• NaN – Fill with NaN, or not a number. This is only supported for the target column.

• mean – Fill with the mean value from the data series.

• median – Fill with the median value from the data series.

• min – Fill with the minimum value from the data series.

• max – Fill with the maximum value from the data series.

When choosing a filling logic, you should consider how your model interprets the logic. For
example, in a retail scenario, recording zero sales of an available item is different from recording
zero sales of an unavailable item, as the latter scenario doesn’t necessarily imply a lack of customer
interest in the unavailable item. In this case, filling with 0 in the target column of the dataset
might cause the model to be under-biased in its predictions and infer a lack of customer interest in
unavailable items. Conversely, filling with NaN might cause the model to ignore true occurrences of
zero items being sold of available items.

Types of forecasts

You can make one of the following types of forecasts:

• Single item

• All items

For a forecast on all the items in your dataset, SageMaker Canvas returns a forecast for the future
values for each item in your dataset.

For a single item forecast, you specify the item and SageMaker Canvas returns a forecast for the
future values. The forecast includes a line graph that plots the predicted values over time.

Topics

• Gain additional insights from your forecast

Use custom models 1047

Amazon SageMaker Developer Guide

• Make a time series forecast

Gain additional insights from your forecast

In Amazon SageMaker Canvas, you can use the following optional methods to get more insights
from your forecast:

• Group column

• Holiday schedule

• What-if scenario

You can specify a column in your dataset as a Group column. Amazon SageMaker Canvas groups
the forecast by each value in the column. For example, you can group the forecast on columns
containing price data or unique item identifiers. Grouping a forecast by a column lets you make
more specific forecasts. For example, if you group a forecast on a column containing item
identifiers, you can see the forecast for each item.

Overall sales of items might be impacted by the presence of holidays. For example, in the United
States, the number of items sold in both November and December might differ greatly from the
number of items sold in January. If you use the data from November and December to forecast the
sales in January, your results might be inaccurate. Using a holiday schedule prevents you getting
inaccurate results. You can use a holiday schedule for 251 countries.

For a forecast on a single item in your dataset, you can use what-if scenarios. A what-if scenario
gives you the ability to change values in your data and change the forecast. For example, you can
answer the following questions by using a what-if scenario, "What if I lowered prices? How would
that affect the number of items sold?"

Make a time series forecast

To make a time series forecast, you choose a target column. The target column contains the data
that you want to predict. For example, your target column might have data on the number of
items sold. After you select the target column, Amazon SageMaker Canvas selects a Model type.
SageMaker Canvas uses the time-series data to automatically choose a time series model that
you can use to make predictions on your data. After you build the model, you can evaluate its
performance and use it to make predictions on new data.

Use the following procedure to make a time series forecast.

Use custom models 1048

Amazon SageMaker Developer Guide

To make a time-series forecast, do the following.

1. Import the data.

2. Choose a target column in your dataset.

3. SageMaker Canvas automatically chooses Time series forecasting as the model type. Choose
Set configuration to confirm that you're performing a time series forecast.

4. Specify the following fields:

• Item ID column – The column that contains unique identifiers for each item in your dataset.
For example, an SKU number uniquely identifies an item.

• Optional: Group column – Groups the time series forecast by values in the column. For
example, you can group your forecast for an item by store.

• Time stamp column – The column containing the time stamps in your dataset. For a list
of the supported datetime formats for this column, see Time Series Forecasts in Amazon
SageMaker Canvas.

• Future timestamp – A timestamp that indicates a future forecast time. SageMaker Canvas
forecasts values up to the point in time specified by the timestamp.

• Optional: Holiday schedule – Activate the holiday schedule to use a country's holiday
schedule. Use it to make your forecasts with holiday data more accurate.

You can have one of the following types of missing values:

• Missing future values

• Missing values

Missing future values are missing values in the target column. SageMaker Canvas uses the values
in the target column to forecast the values in the future. If you have missing values in the target
column, your forecast might be less accurate. We highly recommend updating the dataset.

Missing values are values that are missing in any column other than the target column. With
missing values that aren't in the target column, it's helpful to note the following:

• They generally don't reduce the accuracy of your forecast as much as missing future values.

• SageMaker Canvas automatically imputes the missing values.

Use custom models 1049

Amazon SageMaker Developer Guide

You can evaluate the model by seeing how close the predictions are within the actual value. You
can also use the Column Impact metric to determine the direction and magnitude of the column's
impact on the model's predictions. For example, in the following image, holidays had the largest
positive impact on the forecast for demand. Price had the largest negative impact on demand.

After you've built a model, you can make the following types of forecasts:

• Single item – Make a forecast for a single item in a dataset and a line graph of the values that
SageMaker Canvas forecasts. For example, you can see how sales of an item vary over time.

• All items – Make a forecast for all items in a dataset.

• What-if scenario – See how changing values in the dataset can affect the overall forecast for a
single item.

Use custom models 1050

Amazon SageMaker Developer Guide

The following image shows a single item forecast with a what-if scenario. In a what-if scenario, you
have the ability to change values that can vary with time. You can see how changing the values
affects the forecast.

The points connected by the solid blue line are the values that the model forecasts. The points
connected by the dashed lines show the what-if scenario.

Updating a Model in Amazon SageMaker Canvas

Amazon SageMaker Canvas gives you the ability to update the models that you've built using new
data. SageMaker Canvas shows you a model history, so that you can compare the models that
you've built recently to those that you've generated in the past.

Each model that you build has a version number. The first model is Version 1, or V1. You can use
model versions to see changes in prediction accuracy when you update your data or use advanced
transformations.

Use custom models 1051

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-prepare-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-prepare-data.html

Amazon SageMaker Developer Guide

Note

Text prediction and image prediction models only support one model version.

For new versions of a model, you can only choose datasets that have the same target column
as the target column in Version 1. You must build at least one version of a model to add a new
version, and you can delete versions that aren’t useful to you anymore.

You can also see Register a model version in the SageMaker model registry to help you track your
versions over time and collaborate with Studio Classic users who can approve or reject your model
versions.

Use the following procedure to add a new model version or to view all of the versions for you
model.

To add a new model version, do the following:

1. Open your SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. On the My models page, choose your model. You can Filter by problem type to find your
model more easily.

4. After choosing your model, the Versions page opens, listing all of the versions of your model.

5. Choose Add version.

The following image shows the Versions page for a model, on which you can view your model
versions and add new versions.

Use custom models 1052

Amazon SageMaker Developer Guide

On the Versions page, you can view the following information for each of your model versions:

• Status – This field tells you whether your model is currently building (In building), done
building (Ready), failed to build (Failed), or still being edited (In draft).

• Model score, F1, Precision, Recall, and AUC – If you turn on the Show advanced metrics
toggle on this page, you can see these model metrics. These metrics indicate the accuracy and
performance of your model. For more information, see Evaluate your model.

• Shared – This field tells you whether or not you’ve shared the model version with SageMaker
Studio Classic users.

• Model registry – This field tells you whether or not you’ve registered the version to a model
registry. For more information, see Register a model version in the SageMaker model registry.

After you choose a new version, you start the process of building another model. The process for
building a new version of a model is almost the same as the process for building a model for the
first time. For new versions of a model, you can only choose datasets that have the same target
column as the target column in Version 1. For more information about building a model, see Build
a custom model.

Use custom models 1053

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-evaluate-model.html

Amazon SageMaker Developer Guide

Operationalize your models

After building a model in SageMaker Canvas that you feel confident about, you might want
to integrate your model with the machine learning operations (MLOps) processes in your
organization. MLOps includes common tasks such as deploying a model for use in production or
setting up continuous integration and continuous deployment (CI/CD) pipelines.

The following topics describe how you can use features within Canvas to use a Canvas-built model
in production.

Topics

• Register a model version in the SageMaker model registry

• Deploy your models to an endpoint

Register a model version in the SageMaker model registry

With SageMaker Canvas, you can build multiple iterations, or versions, of your model to improve it
over time. You might want to build a new version of your model if you acquire better training data
or if you want to attempt to improve the model’s accuracy. For more information about adding
versions to your model, see Update a model.

After you’ve built a model that you feel confident about, you might want to evaluate its
performance and have it reviewed by a data scientist or MLOps engineer in your organization
before using it in production. To do this, you can register your model versions to the SageMaker
model registry. The SageMaker model registry is a repository that data scientists or engineers can
use to catalog machine learning (ML) models and manage model versions and their associated
metadata, such as training metrics. They can also manage and log the approval status of a model.

After you register your model versions to the SageMaker model registry, a data scientist or your
MLOps team can access the SageMaker model registry through SageMaker Studio Classic, which
is a web-based integrated development environment (IDE) for working with machine learning
models. In the SageMaker model registry interface in Studio Classic, the data scientist or MLOps
team can evaluate your model and update its approval status. If the model doesn’t perform to their
requirements, the data scientist or MLOps team can update the status to Rejected. If the model
does perform to their requirements, then the data scientist or MLOps team can update the status
to Approved. Then, they can deploy your model to an endpoint or automate model deployment
with CI/CD pipelines. You can use the SageMaker model registry feature to seamlessly integrate
models built in Canvas with the MLOps processes in your organization.

Use custom models 1054

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-update-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-build-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html#deploy-model-prereqs
https://aws.amazon.com/blogs/machine-learning/building-automating-managing-and-scaling-ml-workflows-using-amazon-sagemaker-pipelines/

Amazon SageMaker Developer Guide

The following diagram summarizes an example of registering a model version built in Canvas to
the SageMaker model registry for integration into an MLOps workflow.

You can register tabular, image, and text model versions to the SageMaker model registry. This
includes time series forecasting models and SageMaker JumpStart based fine-tuned foundation
models.

Note

Currently, you can't register BYOM model versions or Amazon Bedrock based fine-tuned
foundation models built in Canvas to the SageMaker model registry.

The following sections show you how to register a model version to the SageMaker model registry
from Canvas.

Permissions management

By default, you have permissions to register model versions to the SageMaker model registry.
SageMaker grants these permissions for all new and existing Canvas user profiles through the
AmazonSageMakerCanvasFullAccess policy, which is attached to the AWS IAM execution role for
the SageMaker domain that hosts your Canvas application.

If your Canvas administrator is setting up a new domain or user profile, when they're setting up the
domain and following the prerequisite instructions in the Getting started guide, SageMaker turns
on the model registration permissions through the ML Ops permissions configuration option,
which is enabled by default.

Use custom models 1055

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat-fine-tune.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat-fine-tune.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html#canvas-prerequisites

Amazon SageMaker Developer Guide

The Canvas administrator can manage model registration permissions at the user profile level as
well. For example, if the administrator wants to grant model registration permissions to some
user profiles but remove permissions for others, they can edit the permissions for a specific user.
The following procedure shows how to turn off model registration permissions for a specific user
profile:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the user profile’s domain.

5. On the domain details page, choose the User profile whose permissions you want to edit.

6. On the User Details page, choose Edit.

7. In the left navigation pane, choose Canvas settings.

8. In the ML Ops permissions configuration section, turn off the Enable Model Registry
registration permissions toggle.

9. Choose Submit to save the changes to your domain settings.

The user profile should no longer have model registration permissions.

Register a model version to the SageMaker model registry

SageMaker model registry tracks all of the model versions that you build to solve a particular
problem in a model group. When you build a SageMaker Canvas model and register it to SageMaker
model registry, it gets added to a model group as a new model version. For example, if you build
and register four versions of your model, then a data scientist or MLOps team working in the
SageMaker model registry interface can view the model group and review all four versions of the
model in one place.

When registering a Canvas model to the SageMaker model registry, a model group is automatically
created and named after your Canvas model. Optionally, you can rename it to a name of your
choice, or use an existing model group in the SageMaker model registry. For more information
about creating a model group, see Create a Model Group.

Use custom models 1056

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry-model-group.html

Amazon SageMaker Developer Guide

Note

Currently, you can only register models built in Canvas to the SageMaker model registry in
the same account.

To register a model version to the SageMaker model registry from the Canvas application, use the
following procedure:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose My models.

3. On the My models page, choose your model. You can Filter by problem type to find your
model more easily.

4. After choosing your model, the Versions page opens, listing all of the versions of your model.
You can turn on the Show advanced metrics toggle to view the advanced metrics, such as
Recall and Precision, to compare your model versions and determine which one you’d like to
register.

5. From the list of model versions, for the the version that you want to register, choose the More
options icon
().
Alternatively, you can double click on the version that you need to register,
and then on the version details page, choose the More options icon
().

6. In the dropdown list, choose Add to Model Registry. The Add to Model Registry dialog box
opens.

7. In the Add to Model Registry dialog box, do the following:

a. (Optional) In the SageMaker Studio Classic model group section, for the Model group
name field, enter the name of the model group to which you want to register your
version. You can specify the name for a new model group that SageMaker creates for you,
or you can specify an existing model group. If you don’t specify this field, Canvas registers
your version to a default model group with the same name as your model.

b. Choose Add.

Your model version should now be registered to the model group in the SageMaker model
registry. When you register a model version to a model group in the SageMaker model registry, all

Use custom models 1057

Amazon SageMaker Developer Guide

subsequent versions of the Canvas model are registered to the same model group (if you choose
to register them). If you register your versions to a different model group, you need to go to the
SageMaker model registry and delete the model group. Then, you can re-register your model
versions to the new model group.

To view the status of your models, you can return to the Versions page for your model in the
Canvas application. This page shows you the Model Registry status of each version. If the status is
Registered, then the model has been successfully registered.

If you want to view the details of your registered model version, for the Model Registry status, you
can hover over the Registered field to see the Model registry details pop-up box. These details
contain more info, such as the following:

• The Model package group name is the model group that your version is registered to in the
SageMaker model registry.

• The Approval status, which can be Pending Approval, Approved, or Rejected. If a Studio
Classic user approves or rejects your version in the SageMaker model registry, then this status is
updated on your model versions page when you refresh the page.

The following screenshot shows the Model registry details box, along with an Approval status of
Approved for this particular model version.

Deploy your models to an endpoint

In Amazon SageMaker Canvas, you can deploy your models to an endpoint to make predictions.
SageMaker provides the ML infrastructure for you to host your model on an endpoint with the

Use custom models 1058

https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry-delete-model-group.html

Amazon SageMaker Developer Guide

compute instances that you choose. Then, you can invoke the endpoint (send a prediction request)
and get a real-time prediction from your model. With this functionality, you can use your model
in production to respond to incoming requests, and you can integrate your model with existing
applications and workflows.

To get started, you should have a model version that is ready to deploy. For more information
about building a model in Canvas, see Build a custom model.

Important

You can deploy any model type in SageMaker Canvas except for time series forecasting
models.

Review the following Permissions management section, and then begin creating new deployments
in the Deploy a model section.

Permissions management

By default, you have permissions to deploy model versions to the SageMaker Hosting endpoints.
SageMaker grants these permissions for all new and existing Canvas user profiles through the
AmazonSageMakerCanvasFullAccess policy, which is attached to the AWS IAM execution role for
the SageMaker domain that hosts your Canvas application.

If your Canvas administrator is setting up a new domain or user profile, when they're setting up
the domain and following the prerequisite instructions in the Prerequisites for setting up Amazon
SageMaker Canvas, SageMaker turns on the model deployment permissions through the Enable
direct deployment of Canvas models option, which is enabled by default.

The Canvas administrator can manage model deployment permissions at the user profile level as
well. For example, if the administrator wants to grant model deployment permissions to some user
profiles but remove permissions for others, they can edit the permissions for a specific user.

The following procedure shows how to turn off model deployment permissions for a specific user
profile:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

Use custom models 1059

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerCanvasFullAccess.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. From the list of domains, select the user profile’s domain.

5. On the domain details page, choose the User profile whose permissions you want to edit.

6. On the User Details page, choose Edit.

7. In the left navigation pane, choose Canvas settings.

8. In the ML Ops permissions configuration section, turn off the Enable direct deployment of
Canvas models toggle.

9. Choose Submit to save the changes to your domain settings.

The user profile should no longer have model deployment permissions.

Deploy a model

To get started with deploying your model, you create a new deployment in Canvas and specify
the model version that you want to deploy along with the ML infrastructure, such as the type and
number of compute instances that you would like to use for hosting the model.

Canvas suggests a default type and number of instances based on your model type, or you can
learn more about the various SageMaker instance types on the Amazon SageMaker pricing page.
You are charged based on the SageMaker instance pricing while your endpoint is active.

After your model is deployed to a SageMaker Hosting real-time inference endpoint, you can begin
making predictions by invoking the endpoint.

There are several different ways for you to deploy a model version from the Canvas application.
You can access the model deployment option through any of the following methods:

• On the My models page of the Canvas application, you can choose the model that you want
to deploy. Then, from the model’s Versions page, you can choose the More options icon
()
next to a model version and select Deploy.

• When on the details page for a model version, on the Analyze tab, you can choose the Deploy
option.

• When on the details page for a model version, on the Predict tab, you can choose the More
options icon
()
at the top of the page and select Deploy.

Use custom models 1060

https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html

Amazon SageMaker Developer Guide

• On the Operations page of the Canvas application, you can choose the Deployments tab and
then choose Create deployment.

All of these methods open the Deploy model side panel, where you specify the deployment
configuration for your model. To deploy the model from this panel, do the following:

1. (Optional) If you’re creating a deployment from the Operations page, you’ll have the option
to Select model and version. Use the dropdown menus to select the model and model version
that you want to deploy.

2. Enter a name in the Deployment name field.

3. For Instance type, SageMaker detects a default instance type and number that is suitable for
your model. However, you can change the instance type that you would like to use for hosting
your model.

Note

If you run out of the instance quota for the chosen instance type on your AWS account,
you can request a quota increase. For more information about the default quotas and
how to request an increase, see Amazon SageMaker endpoints and quotas in the AWS
General Reference guide.

4. For Instance count, you can set the number of active instances that are used for your
endpoint. SageMaker detects a default number that is suitable for your model, but you can
change this number.

5. When you’re ready to deploy your model, choose Deploy.

Your model should now be deployed to an endpoint. For information about how to view your
deployment details or perform various actions, see the following sections.

View your deployments

You might want to check the status or details of a model deployment in Canvas. For example, if
your deployment failed, you might want to check the details to troubleshoot.

You can view your Canvas model deployments from the Canvas application or from the Amazon
SageMaker console.

To view deployment details from Canvas, choose one of the following procedures:

Use custom models 1061

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

To view your deployment details from the Operations page, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation pane, choose Operations.

3. Choose the Deployments tab.

4. Choose your deployment by name from the list.

To view your deployment details from a model version’s page, do the following:

1. In the SageMaker Canvas application, go to your model version’s details page.

2. Choose the Deploy tab.

3. On the Deployments section that lists all of the deployment configurations associated with
that model version, find your deployment.

4. Choose the More options icon
(),
and then select View details to open the details page.

The details page for your deployment opens, and you can view information such as the time of
the most recent prediction, the endpoint’s status and configuration, and the model version that is
currently deployed to the endpoint.

You can also view your currently active Canvas workspace instances and active endpoints from the
SageMaker dashboard in the SageMaker console. Your Canvas endpoints are listed alongside any
other SageMaker Hosting endpoints that you’ve created, and you can filter them by searching for
endpoints with the Canvas tag.

The following screenshot shows the SageMaker dashboard. In the Canvas section, you can see that
one workspace instance is in service and four endpoints are active.

Use custom models 1062

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Update a deployment configuration

You can also update your deployment configuration. For example, you can deploy an updated
model version to the endpoint, or you can update the instance type or number of instances behind
the endpoint based on your capacity needs.

There are several different ways for you to update your deployment from the Canvas application.
You can use any of the following methods:

• On the Operations page of the Canvas application, you can choose the Deployments tab and
select the deployment that you want to update. Then, choose Update configuration.

• When on the details page for a model version, on the Deploy tab, you can view the
deployments for that version. Next to the deployment, choose the More options icon

Use custom models 1063

Amazon SageMaker Developer Guide

()
and then choose Update configuration.

Both of the preceding methods open the Update configuration side panel, where you can make
changes to your deployment configuration. To update the configuration, do the following:

1. For the Select version dropdown menu, you can select a different model version to deploy to
the endpoint.

Note

When updating a deployment configuration, you can only choose a different model
version to deploy. To deploy a different model, create a new deployment.

2. For Instance type, you can select a different instance type for hosting your model.

3. For Instance count, you can change the number of active instances that are used for your
endpoint.

4. Choose Save.

Your deployment configuration should now be updated.

Test your deployment

You can test your deployment by invoking the endpoint, or making single prediction requests,
through the Canvas application. The endpoint returns a response with the prediction along
with the probabilities of that prediction being correct. You can use this functionality to confirm
that your endpoint responds to requests before invoking your endpoint programmatically in a
production environment.

Note

Execution length is an estimate of the time taken to invoke and get a response from the
endpoint in Canvas. For detailed latency metrics, see SageMaker Endpoint Invocation
Metrics.

To test your endpoint through the Canvas application, do the following:

Use custom models 1064

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation

Amazon SageMaker Developer Guide

1. Open the SageMaker Canvas application.

2. In the left navigation panel, choose Operations.

3. Choose the Deployments tab.

4. From the list of deployments, choose the one with the endpoint that you want to invoke.

5. On the deployment’s details page, choose the Test deployment tab.

6. On the deployment testing page, you can modify the Value fields to specify a new data point.

7. After modifying the values, choose Update to get the prediction result.

The prediction loads, along with the Invocation result fields which indicate whether or not the
invocation was successful and how long the request took to process.

The following screenshot shows a prediction performed in the Canvas application on the Test
deployment tab.

For all model types except numeric prediction, the prediction returns the following fields:

• predicted_label – the predicted output

• probability – the probability that the predicted label is correct

Use custom models 1065

Amazon SageMaker Developer Guide

• labels – the list of all the possible labels

• probabilities – the probabilities corresponding to each label (the order of this list matches the
order of the labels)

For numeric prediction models, the prediction only contains the score field, which is the predicted
output of the model, such as the predicted price of a house.

You can continue making single predictions through the deployment testing page, or you can see
the following section Invoke your endpoint to learn how to invoke your endpoint programmatically
from applications.

Invoke your endpoint

After testing your deployment, you can use your endpoint in production with your applications by
invoking the endpoint programmatically the same way that you can invoke any other SageMaker
real-time endpoint. Invoking an endpoint programmatically returns a response object which
contains the same fields as mentioned in the preceding section Test your deployment .

For more detailed information about how to programmatically invoke endpoints, see Invoke
models for real-time inference.

The following Python examples show you how to invoke your endpoint based on the model type.

Numeric and categorical prediction models

The following example shows you how to invoke numeric or categorical prediction models.

import boto3
import pandas as pd

client = boto3.client("runtime.sagemaker")
body = pd.DataFrame(['feature_column1', 'feature_column2'], ['feature_column1',
 'feature_column2']).to_csv(header=False, index=False).encode("utf-8")

response = client.invoke_endpoint(
 EndpointName="endpoint_name",
 ContentType="text/csv",
 Body=body,
 Accept="application/json"
)

Use custom models 1066

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html

Amazon SageMaker Developer Guide

Image prediction models

The following example shows you how to invoke image prediction models.

import boto3
client = boto3.client("runtime.sagemaker")
with open("example_image.jpg", "rb") as file:
 body = file.read()
 response = client.invoke_endpoint(
 EndpointName="endpoint_name",
 ContentType="application/x-image",
 Body=body,
 Accept="application/json"
)

Text prediction models

The following example shows you how to invoke text prediction models.

import boto3
import pandas as pd

client = boto3.client("runtime.sagemaker")
body = pd.DataFrame([["Example text 1"], ["Example text 2"]]).to_csv(header=False,
 index=False).encode("utf-8")

response = client.invoke_endpoint(
 EndpointName="endpoint_name",
 ContentType="text/csv",
 Body=body,
 Accept="application/json"
)

Delete a model deployment

You can delete your model deployment from the Canvas application. This action also deletes the
endpoint from the SageMaker console and shuts down any endpoint-related resources.

Note

Optionally, you can delete your endpoint through the SageMaker console or using the
SageMaker DeleteEndpoint API. For more information, see Delete Endpoints and

Use custom models 1067

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Resources. However, when you delete the endpoint through the SageMaker console or APIs
instead of the Canvas application, the list of deployments in Canvas isn’t automatically
updated. You must also delete the deployment from the Canvas application to remove it
from the list.

To delete a deployment in Canvas, do the following:

1. Open the SageMaker Canvas application.

2. In the left navigation panel, choose Operations.

3. Choose the Deployments tab.

4. From the list of deployments, choose the one that you want to delete.

5. At the top of the deployment details page, choose the More options icon
().

6. Choose Delete deployment.

7. In the Delete deployment dialog box, choose Delete.

Your deployment and SageMaker Hosting endpoint should now be deleted from both Canvas and
the SageMaker console.

Manage automations

In SageMaker Canvas, you can create automations that update your dataset or generate predictions
from your model on a schedule. For example, you might receive new shipping data on a daily basis.
You can set up an automatic update for your dataset and automatic batch predictions that run
whenever the dataset is updated. Using these features, you can set up an automated workflow and
reduce the amount of time you spend manually updating datasets and making predictions.

Note

You can only set up a maximum of 20 automatic configurations in your Canvas application.
Automations are only active while you’re logged in to the Canvas application. If you log out
of Canvas, your automatic jobs pause until you log back in.

The following sections describe how to view, edit, and delete configurations for existing
automations. To learn how to set up automations, see the following topics:

Use custom models 1068

Amazon SageMaker Developer Guide

• To set up automatic dataset updates, see Update a dataset.

• To set up automatic batch predictions, see Make batch predictions.

View your automations

You can also view all of your auto update jobs by going to the left navigation pane of Canvas and
choosing Automations. The Automations page combines automations for both automatic dataset
updates and automatic batch predictions. From the Automationspage, you can see the following
tabs:

• All jobs – You can see every instance of a Dataset update or Batch prediction job that
Canvas has done. For each job, you can see fields such as the associated Input dataset, the
Configuration name of the associated auto update configuration, and the Status showing
whether the job was successful or not. You can filter the jobs by configuration name:

• For dataset update jobs, you can choose the latest version of the dataset, or the most recent
job, to preview the dataset.

• For batch prediction jobs, you can choose the More options icon
()
to view or download the predictions for that job.

• Configuration – You can see all of the Dataset update and Batch prediction configurations
you’ve created. For each configuration, you can see fields such as the associated Input
dataset and the Frequency of the jobs. You can also turn off or turn on the Auto update
toggle to pause or resume automatic updates. If you choose the More options icon
()
for a specific configuration, you can choose to View all jobs for the configuration, Update
configuration, or Delete configuration.

Edit your automatic configurations

After setting up a configuration, you might want to make changes to it. For automatic dataset
updates, you can update the Amazon S3 location for Canvas to import data, the frequency of the
updates, and the starting time. For automatic batch predictions, you can change the dataset that
the configuration tracks for updates. You can also turn off the automation to temporarily pause
updates until you choose to resume them.

The following sections show you how to update each type of configuration.

Use custom models 1069

Amazon SageMaker Developer Guide

Note

You can’t change the frequency for automatic batch predictions because automatic batch
predictions run every time the target dataset is updated.

Edit your automatic dataset update configuration

You might want to make changes to your auto update configuration for a dataset, such as changing
the frequency of the updates. You might also want to turn off your automatic update configuration
to pause the updates to your dataset.

To make changes to your auto update configuration for a dataset, do the following:

1. In the left navigation pane of Canvas, choose Automations.

2. Choose the Configuration tab.

3. For your auto update configuration, choose the More options icon
().

4. In the dropdown menu, choose Update configuration. You are taken to the Auto updates tab of
the dataset.

5. Make your changes to the configuration. When you’re done making changes, choose Save.

To pause your dataset updates, turn off your automatic configuration. One way to turn off auto
updates is by doing the following:

1. In the left navigation pane of Canvas, choose Automations.

2. Choose the Configuration tab.

3. Find your configuration from the list and turn off the Auto update toggle.

Automatic updates for your dataset are now paused. You can turn this toggle back on at any time
to resume the update schedule.

Edit your automatic batch prediction configuration

When you edit a batch prediction configuration, you can change the target dataset but not the
frequency (since automatic batch predictions occur whenever the dataset is updated).

Use custom models 1070

Amazon SageMaker Developer Guide

To make changes to your automatic batch predictions configuration, do the following:

1. In the left navigation pane of Canvas, choose Automations.

2. Choose the Configuration tab.

3. For your auto update configuration, choose the More options icon
().

4. In the dropdown menu, choose Update configuration. You are taken to the Auto updates tab of
the dataset.

5. The Automate batch prediction dialog box opens. You can select another dataset and choose
Set up to save your changes.

Your automatic batch predictions configuration is now updated.

To pause your automatic batch predictions, turn off your automatic configuration. Use the
following procedure to turn off your configuration:

1. In the left navigation pane of Canvas, choose Automations.

2. Choose the Configuration tab.

3. Find your configuration from the list and turn off the Auto update toggle.

Automatic batch predictions for your dataset are now paused. You can turn this toggle back on at
any time to resume the update schedule.

Delete an automatic configuration

You might want to delete a configuration to stop your automated workflow in SageMaker Canvas.

To delete a configuration for automatic dataset updates or automatic batch predictions, do the
following:

1. In the left navigation pane of Canvas, choose Automations.

2. Choose the Configuration tab.

3. Find your auto update configuration, and choose the More options icon
().

4. Choose Delete configuration.

5. In the dialog box that pops up, choose Delete.

Use custom models 1071

Amazon SageMaker Developer Guide

Your auto update configuration is now deleted.

Collaborate with data scientists

Note

The functionality described on this page only applies to Amazon SageMaker Studio Classic.
Currently, you can only share models to Canvas (or view shared Canvas models) in Studio
Classic. If you’re currently using the latest version of Studio, you must run Studio Classic
from within the latest version of Studio to share models to Canvas or view models shared
from Canvas. For more information about accessing Studio Classic, see the Studio Classic
documentation.

With Amazon SageMaker Canvas, business analysts using Canvas and data scientists using Amazon
SageMaker Studio Classic can share ML models and collaborate with each other while working in
their own environments to share domain knowledge and provide expert inputs towards improving
models.

Using SageMaker Canvas collaboration, you can share Standard build models from Canvas with
data scientists in Studio Classic to review, update, and share back with Canvas users. Users in
Canvas can share one version of a model with up to 23 Studio Classic users.

Note

Collaboration on models with Studio Classic users isn’t supported for single-label image
prediction, multi-category text prediction, or time series forecasting model types.
Additionally, SageMaker Canvas doesn't support sharing your model to the same user
profile as the one that created the model. You must have two separate user profiles to
share a model.

The following sections describe the steps for collaboration:

• In the Canvas application, a business analyst shares their model with a Studio Classic user.

• The Studio Classic user receives the shared model in the Studio Classic application. They can
choose to share feedback with the analyst, make updates to the model, or share an alternate
model version.

Use custom models 1072

https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html

Amazon SageMaker Developer Guide

• The business analyst receives the feedback or updated model in Canvas and can generate
predictions in view-only mode.

To collaborate, the Canvas user and Studio Classic user must be in the same Amazon SageMaker
domain. For more information about setting up your domain and users, see the SageMaker Canvas
Prerequisites.

Note

Model collaboration is different from Bring your own model to SageMaker Canvas,
where you can bring a model that you’ve trained anywhere and import it into Canvas for
generating predictions.

Prerequisites

Before a Canvas user and Studio Classic user can collaborate on models, the users' IAM role must
have AWS Identity and Access Management (IAM) permissions to share models. If you haven’t
already set up permissions, see Grant Users Permissions to Collaborate with Studio Classic.

The Canvas user must also have a Standard build model trained in Canvas and ready to share.

Note

Collaboration does not support Quick build models.

You should also have the user profile name of the Studio Classic user with whom you want to
collaborate. The Studio Classic user must be in the same Amazon SageMaker domain as your
Canvas user. You can find a user’s profile name by using the following procedure:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation panel, choose Domains.

3. From the list of Domains, choose your domain. This opens the domain details page, where
you can find all of the User profiles for the domain.

Keep the user profile name ready for the first step of the following tutorial.

Use custom models 1073

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html#canvas-prerequisites
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html#canvas-prerequisites
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Canvas users: Share a model with Studio Classic users

Within the Canvas application, share your model version with Studio Classic users or request
feedback from them. You should use a model version that has been built; you can’t share a model
version that is a draft or currently building. You can only share one version per model.

To share your Canvas model with Studio Classic users, use the following procedure.

1. Open the SageMaker Canvas application.

2. From the Models page, select the model that you want to share. You can only share Standard
build models.

3. In the header, choose Share.

4. In the Share Model dialog box, do the following:

a. From the Choose a model version to share dropdown list, select the model version for
which you want feedback.

b. From the SageMaker Studio users dropdown list, select Studio Classic users by their
profile names. You can add up to 23 Studio Classic users.

c. For the Add a note field, you can enter a quick note that accompanies your model when
you send it to the Studio Classic users.

d. Choose Share.

e. In the Share Model confirmation box that appears, choose Share.

You have now shared your model with the Studio Classic users, and the users receive a notification
in Studio Classic that a model has been shared with them.

Studio Classic users: Receive a model in Studio Classic from Canvas users

In Studio Classic, if a model has been shared with you, you receive a notification similar to the
following when you open the Studio Classic application.

Choose View shared models to open the Shared models and notebooks page in Studio Classic.
If you miss the notification, you can find the Shared models and notebooks page by doing the
following:

1. Open your Amazon SageMaker Studio Classic application.

Use custom models 1074

Amazon SageMaker Developer Guide

2. In the side navigation pane, choose the Home icon

().

3. In the side navigation bar that opens, choose Models.

4. In the dropdown list, choose Shared models to open the Shared models and notebooks page.

On the Shared models and notebooks page, select the filter Shared with me. You should see the
Canvas model that has been shared with you in the list of shared models. Choose View model on
the shared model, which opens the model details page in Autopilot. The opened model should
have a banner at the top that looks similar to the following screenshot.

From this page, you can see the model details, as well as any notes about the model shared with
you by the Canvas user. In the Canvas banner at the top, you can choose the following actions:

• Share feedback with the Canvas user.

• Make updates to the shared model and share the updates with the Canvas user.

• Share an alternate version of the model with the Canvas user. Canvas uses Autopilot to train
multiple versions of the model and select the best version. You can select a different version if
you decide that it’s better for your use case.

For more information on the preceding actions, see the following sections.

Share feedback

You might want to send a comment or feedback to the Canvas user without making any changes to
the model.

To share feedback on the shared model, use the following procedure:

1. On the model details page, choose Share feedback.

2. In the Share feedback dialog box, add a note in the Add feedback field.

3. Choose Share to send the feedback to the Canvas user.

Use custom models 1075

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html

Amazon SageMaker Developer Guide

After giving feedback, you can view the feedback you sent in the Canvas banner at the top of the
model details page. The Canvas user receives the feedback in the Canvas application and can make
changes based on your feedback.

Share an updated model with the Canvas user

You might want to make changes to the model that the Canvas user shared with you. For example,
you might want to use advanced data transformations such as one-hot encoding to improve
the accuracy of the model. You can update the model with Amazon SageMaker Data Wrangler
and Amazon SageMaker Autopilot in Studio Classic, which are features that help you make data
transformations and train your model.

Warning

If you exit the following workflow at any time, your model updates are not saved, and you
must restart the workflow.

To update the model and send the updated model to the Canvas user, use the following procedure:

1. On the model details page, in the Canvas banner, choose Update model.

2. In the banner’s dropdown list, choose Update data transformations.

3. The workflow opens your model in Amazon SageMaker Data Wrangler, where you can
choose to edit the data transformations used for the model. Make your data transformations
in the Data Wrangler interface. For more information about Data Wrangler and the data
transformations you can use, see the Data Wrangler documentation.

4. After you’ve finished your data transformations, choose Retrain model on the Canvas banner
to open the Export data and train a model with SageMaker Autopilot page in the Data
Wrangler interface.

Use custom models 1076

https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler.html

Amazon SageMaker Developer Guide

5. Verify the fields on the Export data and train a model with SageMaker Autopilot page, and
then choose Export and train to export your data transformations to Amazon SageMaker
Autopilot.

6. The workflow opens the Create an Autopilot experiment page in Autopilot, where you can
create an Autopilot experiment and retrain the model with the updated data transformations.
Fill out the fields for each of the Create an Autopilot experiment pages.

For more information about Autopilot and Autopilot experiments, see Create an experiment in
the Autopilot documentation.

7. After you’ve finished configuring your Autopilot experiment and reviewed the final settings,
choose Create experiment in the Autopilot interface to begin training the model. The model
trains, during which you can choose Stop training in the Autopilot interface at any time.

8. After the model has trained, the Canvas banner at the top of the page compares the metrics
of the old model with the updated model. The Best model summary lists the metrics, such
as Recall and Precision, and whether the new model improves the metrics or not. Review
the metrics and decide whether you would like to share the updated model or not. For more
information about Autopilot metrics, see Metrics and validation.

9. If you decide that you want to share the updated model with the Canvas user, choose Share in
the banner.

10. In the Share dialog box, do the following:

a. For the Select a model to share dropdown list, the best model from your Autopilot
experiment should already be selected and marked with a label Best Candidate. If the
model version that you want to share is not selected, open the dropdown and select the
correct version.

b. For the Add feedback field, you can enter a note for the Canvas user.

c. Choose Share to share the updated model and note with the Canvas user.

After sharing the model, you receive a notification that your model was shared successfully similar
to the following screenshot.

Use custom models 1077

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html

Amazon SageMaker Developer Guide

You can choose View shared models in the banner to return to the Shared models and notebooks
page. From this page, you can see the updated model that you shared with the Canvas user under
the Shared by me label.

Share an alternate model with the Canvas user

When SageMaker Canvas builds a model, Amazon SageMaker Autopilot trains multiple versions
of the model and selects the best one. You might decide that an alternate version of the model
is better according to your needs. You can share an alternate Autopilot version of the model with
the Canvas user instead of making changes to the one they sent. For more information about
Autopilot, see the Autopilot documentation.

To share an alternate model, use the following procedure:

1. On the model details page, in the Canvas banner, choose Update model.

2. In the banner’s dropdown list, choose Recommend an alternate Auto ML candidate.

3. The page for the Autopilot job opens where you can review all of the trained model versions.
When you're ready to share an alternate version, in the Canvas banner at the top of the page,
choose Share.

4. In the Share dialog box, do the following:

a. For the Select a model to share dropdown list, the best model from the Autopilot
experiment is selected and marked with the label Best Candidate. Open the dropdown
and select the alternate model version that you want to share.

b. For the Add feedback field, you can enter a note for the Canvas user.

c. Choose Share to share the alternate model version and note with the Canvas user.

After sharing the model, you receive a notification that your alternate model was shared
successfully similar to the following screenshot.

You can choose View shared models in the banner to return to the Shared models and notebooks
page. From this page, you can see the updated model that you shared with the Canvas user under
the Shared by me label.

Use custom models 1078

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html

Amazon SageMaker Developer Guide

Canvas users: Receive model updates from a Studio Classic user

When a Studio Classic user shares an updated or alternate model with the Canvas user, the Canvas
user receives a notification.

In the Canvas app, the notification looks like the following screenshot.

You can choose View update to see the updated model, or you can go to the Models page in the
Canvas application and select the shared model to view it.

Note

Canvas users can’t edit a model that has been shared with them by a Studio Classic user.
Models imported from Studio Classic are view and predict only.

A model on which a Studio Classic user has collaborated looks like the following card on the
Models page.

Use custom models 1079

Amazon SageMaker Developer Guide

The model import from Studio Classic can take up to 20 minutes, during which the model shows as
Importing.

Use custom models 1080

Amazon SageMaker Developer Guide

After importing the model, you can view its metrics and generate predictions with it.

The following screenshot shows the Analyze tab, where you can evaluate the model accuracy
and metrics. For more information, see Evaluate Your Model's Performance in Amazon SageMaker
Canvas.

The following screenshot shows the Predict tab, where you can generate predictions with the
model. For more information on generating predictions in Canvas, see Make predictions for your
data.

Use custom models 1081

Amazon SageMaker Developer Guide

On both the Analyze and Predict tabs, you can see the Shared History panel, which shows you the
model versions and comments shared with you by Studio Classic users.

Bring your own model to SageMaker Canvas

Note

The functionality described on this page only applies to Amazon SageMaker Studio Classic.
Currently, you can only share models to Canvas (or view shared Canvas models) in Studio
Classic. If you’re currently using the latest version of Studio, you must run Studio Classic
from within the latest version of Studio to share models to Canvas or view models shared
from Canvas. For more information about accessing Studio Classic, see the Studio Classic
documentation.

Business analysts can benefit from ML models already built by data scientists to solve business
problems instead of creating a new model in Amazon SageMaker Canvas. However, it might be
difficult to use these models outside the environments in which they are built due to technical
requirements, rigidity of tools, and manual processes to import models. This often forces users to
rebuild ML models, resulting in the duplication of effort and additional time and resources.

Use custom models 1082

https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html

Amazon SageMaker Developer Guide

SageMaker Canvas removes these limitations so you can generate predictions in Canvas with
models that you’ve trained anywhere. You can register ML models in SageMaker Model Registry,
which is a metadata store for ML models, and import them into SageMaker Canvas. Additionally,
you can generate predictions with models that data scientists have trained in Amazon SageMaker
Autopilot or SageMaker JumpStart. Canvas users can then analyze and generate predictions from
any model that has been shared with them.

After you’ve satisfied the Prerequisites, see the following sections for instructions on how to bring
your own models into Canvas and generate predictions. The workflow begins in Studio Classic,
where a Studio Classic user shares a model with a Canvas user. Then, the Canvas user signs in to
their Canvas app to receive the shared model and generate predictions with it.

Note

You can share models trained with tabular, text, and image data to Canvas. You can't share
time series models. Also, Canvas bring your own model (BYOM) only supports CPU-based
models (or models that use CPU instances to make predictions).

Prerequisites

To bring your model into SageMaker Canvas, complete the following prerequisites:

• You must have a Amazon SageMaker Studio Classic user who has onboarded to Amazon
SageMaker domain. The Studio Classic user must be in the same domain as the Canvas user.
Model sharing occurs when a Studio Classic user shares a model with a Canvas user from within
Studio Classic. If you don’t already have a Studio Classic user set up, see the Studio Classic
documentation and Onboard to Amazon SageMaker domain.

• You must have a trained model from SageMaker Autopilot, SageMaker JumpStart, or SageMaker
Model Registry. For any model that you’ve built outside of SageMaker, you must register your
model in Model Registry before importing it into Canvas. For more information, see the Model
Registry documentation.

• The Canvas user with whom you want to share your model must have permission to access the
Amazon S3 bucket in which you store your datasets and model artifacts. For instructions on
how admins can give Canvas users the permissions they need, see Grant Users Permissions to
Collaborate with Studio Classic.

Use custom models 1083

https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html

Amazon SageMaker Developer Guide

• You should also have the user profile name of the Canvas user with whom you want to
collaborate. The Canvas user must be in the same Amazon SageMaker domain as your Studio
Classic user. You can find a user’s profile name by using the following procedure:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation panel, choose Domains.

3. From the list of Domains, choose your domain. This opens the domain details page, where
you can find all of the User profiles for the domain.

Keep the user profile name ready for the first step of the following tutorial.

If your SageMaker Canvas app is running in a private customer VPC, any Autopilot models shared
from Studio Classic must use Autopilot HPO mode to support generating predictions in Canvas. For
more information about HPO mode, see Training modes and algorithm support in the Autopilot
documentation.

Note

If you want feedback from data scientists on a model built inside Canvas, see Collaborate
with data scientists, where a Canvas user shares a model with a Studio Classic user, and the
Studio Classic user shares feedback or model updates.

Studio Classic users: Share a model to SageMaker Canvas

You should have a model trained with tabular data that you’re ready to share with Canvas users.
See the following sections for information on how to share your models from features within
Studio Classic.

Autopilot

You can share a model to Canvas from Amazon SageMaker Autopilot in Studio Classic. Autopilot is
a feature that enables you to train and and deploy your models in SageMaker.

You need to have a Studio Classic user and a trained model ready to share from Autopilot. For
more information on how to set up Studio Classic, see the Studio Classic documentation. For more
information about Autopilot, see the Autopilot documentation.

To share a model from Autopilot to Canvas, use the following procedure.

Use custom models 1084

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html

Amazon SageMaker Developer Guide

1. Open your Amazon SageMaker Studio Classic application.

2. In the side navigation pane, choose the Home icon

().

3. In the side navigation bar of Studio Classic, choose AutoML to open Autopilot.

4. On the Autopilot page, select the Autopilot model that you want to share with the Canvas
user. You can only share one model at a time.

5. From the Autopilot job details page, in the Models tab, select the model version that you want
to share.

6. Choose Share.

7. In the Share model dialog box, do the following:

a. For the Add Canvas users field, enter the Canvas user’s profile name. You can enter up to
23 Canvas users. If a user profile you specify doesn’t have a Canvas app associated with it,
you can't enter the profile name.

b. For the Add a note field, add a description or note for the Canvas user when they receive
the model.

c. Choose Share to share the model.

You have now shared the model with the Canvas user.

JumpStart

You can share a model to Canvas from SageMaker JumpStart in Studio Classic. With JumpStart,
you can access and tune pretrained models before deploying them.

You need to have a Studio Classic user and a successfully completed training job in JumpStart. For
more information about how to set up Studio Classic, see the Studio Classic documentation. For
more information about JumpStart, see the JumpStart documentation.

To share a model from JumpStart to Canvas, use the following procedure.

1. Open your Amazon SageMaker Studio Classic application.

2. In the side navigation pane, choose the Home icon

().

3. In the side navigation bar that opens, choose SageMaker JumpStart.

Use custom models 1085

https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html

Amazon SageMaker Developer Guide

4. Choose Launched JumpStart assets to open the page that lists your JumpStart training jobs,
models, and endpoints.

5. Choose the Training jobs tab to view the list of your model training jobs.

6. From the Training jobs list, select the training job that you want to share with the Canvas user.
You can only share one job at a time. This opens the training job details page.

7. In the header for the training job, choose Share, and select Share to Canvas.

Note

You can only share tabular models to Canvas. Trying to share a model that is not
tabular throws an Unsupported data type error.

8. In the Share to Canvas dialog box, do the following:

a. For the Add Canvas users to share field, enter the Canvas user’s profile name. You can
enter up to 23 Canvas users. If a user profile you specify doesn’t have a Canvas app
associated with it, you can't enter the profile name.

b. For the Add a note field, add a description or note for the Canvas user when they receive
the model.

c. Choose Share to share the model.

You have now shared the model with the Canvas user.

Model Registry

You can share a model to Canvas from SageMaker Model Registry in Studio Classic. With Model
Registry, you can register models that you bring from outside of SageMaker and integrate them
with your ML pipelines.

You need to have a Studio Classic user and a model version saved in the Model Registry. For more
information about how to set up Studio Classic, see the Studio Classic documentation. If you don’t
have a model version in the Model Registry, create a model group and register a version to it. For
more information about Model Registry, see the Model Registry documentation.

To share a model version from Model Registry to Canvas, use the following procedure.

1. Open your Amazon SageMaker Studio Classic application.

Use custom models 1086

https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html

Amazon SageMaker Developer Guide

2. In the side navigation pane, choose the Home icon

().

3. In the side navigation bar that opens, choose Models.

4. Select Model Registry from the dropdown list to open the Model Registry page and show all
of the model groups registered in your account.

5. Choose the model group that has the model version that you want to share.

6. You can share a model version either from the model group page or the model version page.

• To share a model version from the model group page, complete the following steps:

1. Choose Versions, and check the box next to the model version you want to share with
the Canvas user. You can only share one model version at a time.

2. In the Actions dropdown menu, choose Share model artifacts.

• To share a model version from the model version page, complete the following steps:

1. Choose Versions, and select the name of the model version you want to share with the
Canvas user. You can only share one model version at a time.

2. In the Actions dropdown menu, choose Share model artifacts.

7. In the Share model dialog box, do the following:

a. For the Add Canvas users to share field, enter the Canvas user’s profile name. You can
enter up to 23 Canvas users. If a user profile you specify doesn’t have a Canvas app
associated with it, you can't enter the profile name.

b. For Add model details, do the following:

i. For the Training dataset field, enter the Amazon S3 path for your training dataset.

ii. For the Validation dataset field, enter the Amazon S3 path for your validation
dataset.

iii. For Target column, either select Use the first column if the first column in your
dataset is the target, or select Specify the target column name to set the target as a
different column in your dataset.

iv. For Column headers, select one of the following options:

A. Select Use the first row if the first row of your dataset contains the column
headers.

Use custom models 1087

Amazon SageMaker Developer Guide

B. Select Specify a different dataset in S3 for column headers if you have a file
stored in Amazon S3 containing headers that can be mapped to your dataset. The
headers file must have the same number of columns as your dataset.

C. Select Automatically generate if you don’t already have column headers and
would like SageMaker to generate generic column names for your dataset.

v. From the Problem type dropdown list, select your model type.

vi. If you selected the Binary classification or Multi-class problem types, the Configure
model outputs option appears.

If you already have a file stored in Amazon S3 that maps default target column class
names to your desired class names, then turn on Model output names and enter the
Amazon S3 path to the mapping file. If you don't have a mapping file, then turn off
Model output names and manually enter the Numer of model outputs (the number
of target column classes in your data). Then, enter your desired class names to replace
the default class names.

c. (Optional) For the Add a note field, add a description or note for the Canvas user when
they receive the model.

d. Choose Share to share the model version.

You have now shared the model with the Canvas user.

Shared models and notebooks

On the Shared models and notebooks page in Amazon SageMaker Studio Classic, you can view
the models that you've shared and that have been shared with you. This page gives you a central
place to view and manage all of your models in Studio Classic.

You need to have a Studio Classic user and a model ready to share from Autopilot, JumpStart,
or Model Registry. For more information on how to set up Studio Classic, see the Studio Classic
documentation. For more information about the Shared models and notebooks page, see the
Shared models and notebooks documentation.

The following example walks you through sharing an Amazon SageMaker Autopilot model, but you
can use the sharing feature on the Shared models and notebooks page to share models from any
of the other features in the previous sections, such as Jumpstart and Model Registry.

To share an Autopilot model from the Shared models and notebooks page, use the following
procedure.

Use custom models 1088

https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-content-sharing.html

Amazon SageMaker Developer Guide

1. Open your Amazon SageMaker Studio Classic application.

2. In the side navigation pane, choose the Home icon

().

3. In the side navigation bar of Studio Classic, choose Models.

4. In the dropdown list, choose Shared models to open the Shared models and notebooks page.

5. Choose the filter icon, and in the Shared from dropdown list, choose Autopilot.

6. Select the Autopilot model from the list that you want to share with the Canvas user. You can
only share one model at a time. Alternatively, you can select the model to open the model
details page.

7. From either the Autopilot jobs page or the model details page, choose Share.

8. In the Share model dialog box, do the following:

a. For the Add Canvas users to share field, enter the Canvas user’s profile name. You can
enter up to 23 Canvas users. If a user profile you specify doesn’t have a Canvas app
associated with it, you can't enter the profile name.

b. For the Add a note field, add a description or note for the Canvas user when they receive
the model.

c. Choose Share to share the model.

You have now shared the model with the Canvas user.

After you share the model, you receive a notification popup in Studio Classic similar to the
following screenshot.

You can choose View model to open the Shared models and notebooks page in Studio Classic.
You can also view your shared models at any time from the Shared models and notebooks page.

From this page, you can see the models that you’ve shared with the Canvas user under the Shared
by me label, as shown in the following screenshot.

Use custom models 1089

Amazon SageMaker Developer Guide

Models that you’ve shared to Canvas have text on the card similar to the following example:
Shared to: 12 Canvas users.

Canvas users: Receive a shared model in SageMaker Canvas

When a Studio Classic user shares a model with a Canvas user, you receive a notification within the
Canvas application that a Studio Classic user has shared a model with you.

Use custom models 1090

Amazon SageMaker Developer Guide

In the Canvas application, the notification is similar to the following screenshot.

You can choose View update to see the shared model, or you can go to the Models page in the
Canvas application to discover all of the models that have been shared with you.

Note

Canvas users can’t edit a model that has been shared with them by a Studio Classic user.
Models imported from Studio Classic are view and predict only.

A model that has been shared by a Studio Classic user looks like the following card on the Models
page. This is different from Collaborate with data scientists, where a Canvas user shares a model
and a Studio Classic user shares updates or feedback with the Canvas user.

Use custom models 1091

Amazon SageMaker Developer Guide

Use custom models 1092

Amazon SageMaker Developer Guide

The model import from Studio Classic can take up to 20 minutes, during which the model shows as
Importing.

After importing the model, you can view its metrics and generate predictions with it. SageMaker
Canvas uses Amazon SageMaker Serverless Inference resources to generate model analysis and
predictions for shared models. You might see costs associated with Serverless Inference in your
AWS account.

The following screenshot shows the Analyze tab in the Canvas application for a shared model,
where you can evaluate the model accuracy and metrics. For more information, see Evaluate Your
Model's Performance in Amazon SageMaker Canvas.

The following screenshot shows the Predict tab, where you can generate predictions with the
model. For more information on generating predictions in Canvas, see Make predictions for your
data.

Use custom models 1093

https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html

Amazon SageMaker Developer Guide

On both the Analyze and Predict tabs, you can see the Shared History panel, which shows you the
model versions and comments shared with you by Studio Classic users.

Logging out of Amazon SageMaker Canvas

After completing your work in Amazon SageMaker Canvas, you can log out or configure your
application to automatically terminate the workspace instance. A workspace instance is dedicated
for your use every time you launch a Canvas application, and you are billed for as long as the
instance runs. Logging out or terminating the workspace instance stops the workspace instance
billing. For more information, see SageMaker Pricing.

The following sections describe how to log out of your Canvas application and how to configure
your application to automatically shut down on a schedule.

Log out of Canvas

When you log out of Canvas, your models and datasets aren't affected, but SageMaker Canvas
cancels any Quick build tasks. If you log out of SageMaker Canvas while running a Quick build,
your build might be interrupted until you relaunch the application. When you relaunch, SageMaker
Canvas automatically restarts the build. Standard builds continue even if you log out.

Logging out 1094

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

To log out, choose the Log out button

()
on the left panel of the SageMaker Canvas application.

You can also log out from the SageMaker Canvas application by closing your browser tab and then
deleting the application in the console.

After you log out, SageMaker Canvas tells you to relaunch in a different tab. Logging in takes
between 3 minutes and 8 minutes. If you have an administrator who set up SageMaker Canvas
for you, use the instructions they gave you to log back in. If don't have an administrator, see the
procedure for accessing SageMaker Canvas in Prerequisites for setting up Amazon SageMaker
Canvas.

Automatically shut down Canvas

If you’re a Canvas administrator, you might want to regularly shut down applications to reduce
costs. You can either create a schedule to shut down active Canvas applications, or you can create
an automation to shut down Canvas applications as soon as they’re idle (meaning the user hasn’t
been active for 2 hours).

You can create these solutions using AWS Lambda functions that call the DeleteApp API and
delete Canvas applications given certain conditions. For more information about these solutions
and access to AWS CloudFormation templates that you can use, see the blog Optimizing costs for
Amazon SageMaker Canvas with automatic shutdown of idle apps .

Note

You might experience missing Amazon CloudWatch metrics if there was an error when
setting up your idle shut down schedule or a CloudWatch error. We recommend that you
add a CloudWatch alarm that monitors for missing metrics. If you encounter this issue,
reach out to AWS Support for help.

Limitations and troubleshooting

The following section outlines troubleshooting help and limitations that apply when using Amazon
SageMaker Canvas. You can use these this topic to help troubleshoot any issues you encounter.

Limitations and troubleshooting 1095

https://aws.amazon.com/blogs/machine-learning/optimizing-costs-for-amazon-sagemaker-canvas-with-automatic-shutdown-of-idle-apps/
https://aws.amazon.com/blogs/machine-learning/optimizing-costs-for-amazon-sagemaker-canvas-with-automatic-shutdown-of-idle-apps/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon SageMaker Developer Guide

Troubleshooting issues with granting permissions through the SageMaker console

If you’re having trouble granting Canvas base permissions or Ready-to-use models permissions to
your user, your user might have an AWS IAM execution role with more than one trust relationship
to other AWS services. A trust relationship is a policy attached to your role that defines which
principals (users, roles, accounts, or services) can assume the role. For example, you might
encounter an issue granting additional Canvas permissions to your user if their execution role has a
trust relationship to both Amazon SageMaker and Amazon Forecast.

You can fix this problem by choosing one of the following options.

1. Remove all but one trusted service from the role.

This solution requires you to edit the trust relationship for your user profile’s IAM role and remove
all AWS services except SageMaker.

To edit the trust relationship for your IAM execution role, do the following:

1. Go to the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. The console displays the roles for
your account.

3. Choose the name of the role that you want to modify, and select the Trust relationships tab
on the details page.

4. Choose Edit trust policy.

5. In the Edit trust policy editor, paste the following, and then choose Update Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "sagemaker.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Limitations and troubleshooting 1096

https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

You can also update this policy document using the IAM CLI. For more information, see update-
trust in the IAM Command Line Reference.

You can now retry granting the Canvas base permissions or the Ready-to-use models permissions
to your user.

2. Use a different role with one or fewer trusted services.

This solution requires you to specify a different IAM role for your user profile. Use this option if you
already have an IAM role that you can substitute.

To specify a different execution role for your user, do the following:

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain that you want to view a list of user profiles for.

5. On the domain details page, choose the User profiles tab.

6. Choose the user whose permissions you want to edit. On the User details page, choose Edit.

7. On the General settings page, choose the Execution role dropdown list and select the role
that you want to use.

8. Choose Submit to save your changes to the user profile.

Your user should now be using an execution role with only one trusted service (SageMaker).

You can retry granting the Canvas base permissions or the Ready-to-use models permissions to
your user.

3. Manually attach the AWS managed policy to the execution role instead of using the toggle in
the SageMaker domain settings.

Instead of using the toggle in the domain or user profile settings, you can manually attach the AWS
managed policies that grant a user the correct permissions.

To grant a user Canvas base permissions, attach the AmazonSageMakerCanvasFullAccess
policy. To grant a user Ready-to-use models permissions, attach the
AmazonSageMakerCanvasAIServicesAccess policy.

Use the following procedure to attach an AWS managed policy to your role:

Limitations and troubleshooting 1097

https://docs.aws.amazon.com/cli/latest/reference/ds/update-trust.html
https://docs.aws.amazon.com/cli/latest/reference/ds/update-trust.html
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess

Amazon SageMaker Developer Guide

1. Go to the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles.

3. In the search box, search for the user's IAM role by name and select it.

4. On the page for the user's role, under Permissions, choose Add permissions.

5. From the dropdown menu, choose Attach policies.

6. Search for and select the policy or policies that you want to attach to the user’s execution role:

a. To grant the Canvas base permissions, search for and select the
AmazonSageMakerCanvasFullAccess policy.

b. To grant the Ready-to-use models permissions, search for and select the
AmazonSageMakerCanvasAIServicesAccess policy.

7. Choose Add permissions to attach the policy to the role.

After attaching an AWS managed policy to the user’s role through the IAM console, your user
should now have the Canvas base permissions or Ready-to-use models permissions.

Limitations for collaboration

The following general limitations apply when you are collaborating with data scientists in Amazon
SageMaker Studio Classic.

• You can only share successfully trained models from Canvas to Studio Classic. Similarly, you can
only share models that have been successfully trained in Studio Classic back to Canvas.

• You can’t share Quick build models from Canvas to Studio Classic. You can only share Standard
build models.

• You can only share one version of a Standard build model trained in Canvas. You can train
additional versions of your model within Canvas, but you can't share them to Studio Classic.

• From Studio Classic, you can only share feedback or share an updated model with Canvas. You
can’t perform both actions at the same time.

• The length limitation for comments shared from Studio Classic to Canvas and Canvas to Studio
Classic is 1024 characters.

• You can only share your Canvas or Studio Classic models with a different user profile. You can’t
share models between Canvas and Studio Classic within your own user profile.

• You can't share from a Canvas user to a Canvas user, or from a Studio Classic user to a Studio
Classic user.

Limitations and troubleshooting 1098

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate.html

Amazon SageMaker Developer Guide

There are also limitations that apply depending on the type of model you want to share. See the
following sections for limitations on time series forecasting models and numeric and categorical
prediction models.

Limitations for collaborating on time series forecasting models

The following limitations apply when you are collaborating on time series forecasting models
between Canvas and Studio Classic.

• You can’t make predictions with time series forecasting models in Studio Classic through an
automated Share button. However, you can create a Jupyter notebook and write your own code.

• For time series forecasting models, you can’t change the model recipe or data transformations
in Studio Classic. You can only make the following updates to time series forecasting models in
Studio Classic:

• You can update the length of the forecast horizon.

• You can update the item's metadata field, which groups your data by a certain column.

• You can update other dimension fields, such as specifying a holiday schedule.

Limitations for collaborating on numeric and categorical prediction models

The following limitations apply when you are collaborating on numeric and categorical prediction
model types between Canvas and Studio Classic.

• When updating or training models in Studio Classic, if you close the tab with the collaboration
banner at the top, it ends the share model workflow and you lose your progress. In that case, you
must restart the share model workflow from the Shared With Me section on the Shared Models
page. For more information, see Collaborate with data scientists.

• When updating models in Studio Classic, you can’t change the target column if you want to share
the model updates back to Canvas. If you want to change the target column and re-train the
model, train the model and then use the Share button to share to Canvas. For more information
about sharing a new model to Canvas, see Bring your own model to SageMaker Canvas.

• When updating models in the Amazon SageMaker Data Wrangler Recipe interface in Studio
Classic, there are limits to which changes a Studio Classic user can apply that Canvas supports:

• You can only share a model to Canvas that has been trained from the last node in a Data
Wrangler linear data flow.

• Only transformation nodes are supported.

Limitations and troubleshooting 1099

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-time-series.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html

Amazon SageMaker Developer Guide

• You can’t perform operations on the Target column.

• You can’t update the data type of columns.

• You can’t update the data source or add a new data source.

• When sharing an alternative candidate to Canvas from the Studio Classic Autopilot page, you
can’t select the model from the leaderboard. You must choose the shared model from the
banner and then select an alternative from the list. For more information, see Share an alternate
model with the Canvas user in the Canvas documentation.

• Only models that are compatible with SageMaker Neo can be shared back to Canvas successfully.
Compatible models are Autopilot models that use XGBoost or MLP algorithms. Incompatible
models include Autopilot models that use the linear learner algorithm.

• For custom formula transforms using Spark SQL, Canvas only supports Unary operations,
Aggregate functions, the String concatenation operation and the Power operation. Other
operations are not supported.

Limitations for bring your own model (BYOM)

The following general limitations apply when you want to bring your own model to SageMaker
Canvas.

• When a model is shared from Studio Classic to Canvas, the Canvas user cannot update or view
details on the dataset that was used to build the model.

• When a Canvas user wants to run a single prediction on an imported model, there are no data
type restrictions when updating column values. You must manually make sure that when you
update values for single predictions, you match the data type of the existing values.

• When a Canvas user wants to run batch predictions on an imported model, Canvas assumes that
you (the Canvas user) know what the expected input dataset should look like. You should have a
dataset with columns and data types that match the dataset that was used to train the model. If
not, consult with the user who shared the model with you and import a dataset that you can use
for running batch predictions.

• The Canvas application internally uses a serverless endpoint to run predictions and generate
model metrics. The model shared to Canvas must be compatible with serverless endpoints:

• The maximum memory size is 6144 MB.

• When configuring the inference input response keys in your container, use the following
configuration:

Limitations and troubleshooting 1100

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate.html#canvas-collaborate-receive-studio
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-collaborate.html#canvas-collaborate-receive-studio
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-byom.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html

Amazon SageMaker Developer Guide

INFERENCE_INPUT_RESPONSE_KEYS = {
 "BINARY": ["predicted_label", "probability"],
 "MULTI_CLASS": ["predicted_label", "probability", "probabilities", "labels"],
}

• You can choose either a SageMaker-provided inference container or bring your own image
inference container to be used for endpoint. SageMaker provides containers for its built-
in algorithms and prebuilt Docker images for some of the most common machine learning
frameworks. If you are bringing your own container, you must modify it to work with
SageMaker. For more information about bringing your own container, see Adapting Your Own
Inference Container.

• The Feature exclusions for serverless endpoints also apply.

• To share a model from Studio Classic to Canvas successfully, Canvas accepts model inference
outputs in the format below:

TEXT/CSV

• Regression: The model inference response should be a byte string where each of the output
predictions are separated by \n:

b'-0.0007884334772825241\n-0.015136942267417908\n0.050063662230968475\n0.02891816757619381\n'

• Classification: The model inference response should be a byte string where each of
predicted_label, predicted_probability, probabilities, and labels are separated
by \n. The following example is for binary classification:

b'no,0.9967488050460815,"[0.9967488050460815, 0.003251201706007123]","[\'no
\', \'yes\']"\nno,0.9999420642852783,"[0.9999420642852783,
 5.793538366560824e-05]","[\'no\', \'yes
\']"\nno,0.9999846816062927,"[0.9999846816062927, 1.5326571883633733e-05]","[\'no
\', \'yes\']"\nno,0.9999727606773376,"[0.9999727606773376,
 2.7267418772680685e-05]","[\'no\', \'yes\']"\n'

The following example is for multi-class classification:

b'Iris-setosa,1.0,"[1.0, 0.0, 0.0]","[\'Iris-setosa\', \'Iris-versicolor\',
 \'Iris-virginica\']"\nIris-setosa,1.0,"[1.0, 0.0, 0.0]","[\'Iris-setosa\', \'Iris-
versicolor\', \'Iris-virginica\']"\nIris-setosa,1.0,"[1.0, 0.0, 0.0]","[\'Iris-

Limitations and troubleshooting 1101

https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html

Amazon SageMaker Developer Guide

setosa\', \'Iris-versicolor\', \'Iris-virginica\']"\nIris-setosa,1.0,"[1.0, 0.0,
 0.0]","[\'Iris-setosa\', \'Iris-versicolor\', \'Iris-virginica\']"\n'

APPLICATION/JSON

• Regression: The model inference response should be a JSON string which contains the
prediction key, and its value should be the list of output predictions:

let response = {
 "predictions": [
 // First instance prediction.
 1.75
 // Second instance prediction.
 3.25
]
}

• Classification: The model inference response should be a JSON string which contains the
probabilities key, and its value should be the list of probabilities.

The following example is for binary classification:

let response = {
 "probabilities": [
 // First instance prediction.
 [0.9, 0.1]
 // Second instance prediction.
 [0.2, 0.8]
]
}

The following example is for multi-class classification:

let response = {
 "probabilities": [
 // First instance prediction.
 [0.7, 0.2, 0.1]
 // Second instance prediction.
 [0.2, 0.5, 0.3]
]
}

Limitations and troubleshooting 1102

Amazon SageMaker Developer Guide

There are also limitations that apply depending on the type of model you want to bring:

Bring your own model from SageMaker JumpStart

Review the following information and limits when sharing a SageMaker JumpStart model with
Canvas.

• The following are the supported algorithms for which you can import models into Canvas. For
more details, see the SageMaker JumpStart documentation.

• Tabular classification: LightGBM, CatBoost, XGBoost, AutoGluon-Tabular, TabTransformer,
Linear Learner

• Tabular regression: LightGBM, CatBoost, XGBoost, AutoGluon-Tabular, TabTransformer, Linear
Learner

• In SageMaker JumpStart, the Share button is only turned on if the model is ready to share to
Canvas. If your trained model does not have a Share to SageMaker Canvas button, your model is
not supported for BYOM.

• You must provide training and validation datasets when training the SageMaker JumpStart
model. The datasets should be stored in Amazon S3, and your Studio Classic and Canvas users'
execution role must have access to the Amazon S3 location. You can use the same Amazon
S3 URIs to share the training and validation datasets with Canvas, or you can share different
datasets with the same data schema.

Your training or validation data file should look like the following (in CSV format). You should
index your files with the first column as the target.

3 1 22 1 1 0 4 4
0 0 38 0 0 1 3 4
1 0 67 0 1 0 1 6
1 0 67 0 0 2 2 6
0 0 40 0 0 2 6 6
2 0 56 1 0 1 2 6

• By default, SageMaker JumpStart uses the first column of the training and validation datasets
as the target when training a model. The target column (or by default, the first column) of the
datasets is shared to Canvas.

• You must provide the column headers of the training and validation datasets when training the
SageMaker JumpStart model. By default, SageMaker JumpStart only accepts datasets without
column headers, so you must add the column headers as a file while training your model. The

Limitations and troubleshooting 1103

https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-models.html

Amazon SageMaker Developer Guide

Amazon S3 URI for the column headers file is shared to Canvas as well. Your column headers file
should look like the following example (in CSV format). The first column should be the target.

Segmentation EverMarried Age Graduated WorkExperience SpendingScore FamilySize Var1

• The training job in SageMaker JumpStart must be Complete before you can share with Canvas.

• For classification problems (or categorical prediction in Canvas), original class names need to be
provided in the Configure model output section when sharing to Canvas. The order of the class
names must match the indexing used in the model. Your mapping relation file should look like
the following example in CSV format, where index 0 (the first index) is mapped to the class name
A:

A B C D

When the Canvas user views the model metrics in the Canvas application, they can only see the
index of each class (0, 1, 2). However, the user can see the class names when viewing the results
for a single prediction.

Bring your own model from Autopilot

Review the following information and limits when sharing a model from Autopilot to Canvas.

• You can only share models to Canvas that you’ve successfully trained from an AutoML job
with Ensembling, HPO, or Auto mode (for Auto mode, Autopilot chooses Ensembling or HPO
mode based on the training dataset size). The currently supported Autopilot problem types are
Regression, Multi-class classification, Binary classification.

• For each Autopilot job, you can choose any model (the Best model or any other candidates)
to share to Canvas one at a time. You only need to choose the Share model button and then
specify the Canvas users with whom you’d like to share the model and a note.

• AutoGluon-Tabular models that use Data Wrangler transformers for inference cannot be shared
to Canvas. This is because Data Wrangler transformers cause the model to use more than one
container.

• HPO models that aren’t compatible with SageMaker Neo can’t be shared to Canvas successfully.
Compatible models are Autopilot models that use XGBoost or MLP algorithms. Incompatible
models include Autopilot models that use the linear learner algorithm.

Limitations and troubleshooting 1104

https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

Amazon SageMaker Developer Guide

Bring your own model from Model Registry

Review the following information and limits when sharing a model from Model Registry to Canvas.

• Unlike the Share button provided by SageMaker JumpStart, Model Registry doesn’t provide
model validation, so it’s possible that a registered model shared successfully from Studio Classic
can fail while importing to Canvas due to model incompatibility. Review the following tips before
sharing to Canvas from Model Registry:

• Use a single inference container for your model. You can register models with multiple
containers within the AdditionalInferenceSpecifications field, but Canvas is only optimized
for one inference container per model. For example, when you use a inference pipeline
and register multiple containers in the AdditionalInferenceSpecifications field
with multiple data preprocessing containers and an inference container, by default the first
container is selected for model inference in Canvas. Evaluate if this works for your use case if
you're using machine learning pipelines.

• Use a SageMaker built-in tabular algorithm with compatible inference formats. Tested sample
algorithms with compatible inference outputs are Autogluon-Tabular, CatBoost, LightGBM,
TabTransformer and XGBoost. Algorithms like Factorization Machines don't accept CSV as file
input, and the inference output formats for algorithms like Linear Learner and K-NN are not
supported by Canvas.

• You can also bring your own image container and share to Canvas, or modify pre-built
SageMaker containers.

• If you are bringing your own container, you must modify it to work with SageMaker. For
more information about bringing your own container, see Adapting Your Own Inference
Container.

• For detailed formatting for your inference output formats, see Limitations for bring your
own model (BYOM).

• When registering your model in a model package group, remember to provide the following
attributes with your inference container:

• Environment:

"{\"SAGEMAKER_CONTAINER_LOG_LEVEL\": \"20\", \"SAGEMAKER_PROGRAM\": \"inference.py
\", \"SAGEMAKER_REGION\": \"us-west-2\", \"SAGEMAKER_SUBMIT_DIRECTORY\": \"/opt/ml/
model/code\"}"

• Image:

Limitations and troubleshooting 1105

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AdditionalInferenceSpecificationDefinition.html#sagemaker-Type-AdditionalInferenceSpecificationDefinition-Containers
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AdditionalInferenceSpecificationDefinition.html#sagemaker-Type-AdditionalInferenceSpecificationDefinition-Containers
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackage.html#sagemaker-DescribeModelPackage-response-AdditionalInferenceSpecifications
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-tabular.html
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelPackageContainerDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelPackageContainerDefinition.html#sagemaker-Type-ModelPackageContainerDefinition-Environment
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelPackageContainerDefinition.html#sagemaker-Type-ModelPackageContainerDefinition-Image

Amazon SageMaker Developer Guide

"s3://sagemaker-us-west-2-<account-id>/model-regression-
abalone-2022-10-14-23-02-45/model.tar.gz"

• ModelDataUrl

"<account-id>.dkr.ecr.us-west-2.amazonaws.com/sagemaker-xgboost:1.3-1"

• You must provide training and validation datasets when sharing the model from Model Registry
to Canvas. The datasets should be stored in Amazon S3, and the Studio Classic and Canvas users'
execution role must have access to the Amazon S3 location. You can use the same Amazon
S3 URIs to share the training and validation datasets with Canvas, or you can share different
datasets with the same data schema. The datasets must have the exact input formatting that
feeds your model’s inference container.

• You must provide the target column to Canvas, or the first column of your training/validation
dataset is used by default.

• In the Add model details section when sharing to Canvas, you can provide the first row your
training and validation datasets as the headers, or you can specify the headers as a different file.

• For classification problems (or categorical prediction in Canvas), original class names need to be
provided when sharing to SageMaker Canvas through the Configure model outputs option. The
order of the class names must match the indexing used with the shared model. The mapping can
be either a CSV file in Amazon S3, or you can manually input the class names.

Manage billing and cost in SageMaker Canvas

To track the costs associated with your SageMaker Canvas application, you can use the AWS
Billing and Cost Management service. Billing and Cost Management provides tools to help you
gather information related to your cost and usage, analyze your cost drivers and usage trends,
and take action to budget your spending. For more information, see What is AWS Billing and Cost
Management?

Billing in SageMaker Canvas consists of the following components:

• Workspace instance charges – You are charged for the number of hours that you are logged in to
or using SageMaker Canvas. We recommend that you log out or create a schedule to shut down
any Canvas applications that you’re not actively using to reduce costs. For more information, see
Logging out of Amazon SageMaker Canvas.

Manage billing and cost 1106

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelPackageContainerDefinition.html#sagemaker-Type-ModelPackageContainerDefinition-ModelDataUrl
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html

Amazon SageMaker Developer Guide

• AWS service charges – You are charged for building and making predictions with custom models,
or for making predictions with Ready-to-use models:

• Training charges – You are charged for the resources used to build a custom model.

• Prediction charges – You are charged for the resources used to generate predictions,
depending on the type of custom model that you built or the type of Ready-to-use model you
used.

The Ready-to-use models in Canvas leverage other AWS services to generate predictions. When you
use a Ready-to-use model, you are charged by the respective service, and their pricing conditions
apply:

• For sentiment analysis, entities extraction, language detection, and personal information
detection, you’re charged with Amazon Comprehend pricing.

• For object detection in images and text detection in images, you’re charged with Amazon
Rekognition pricing.

• For expense analysis, identity document analysis, and document analysis, you’re charged with
Amazon Textract pricing.

For more information, see SageMaker Canvas pricing.

To help you track your costs in Billing and Cost Management, you can assign custom tags to
your SageMaker Canvas app and users. You can track the costs your apps incur, and by tagging
individual user profiles, you can track costs based on the user profile. For more information about
tags, see Using Cost Allocation Tags.

You can add tags to your SageMaker Canvas app and users by doing the following:

• If you are setting up your Amazon SageMaker domain and SageMaker Canvas for the first time,
follow the Getting Started instructions and add tags when creating your domain or users. You
can add tags either through the General settings in the domain console setup, or through the
APIs (CreateDomain or CreateUserProfile). SageMaker adds the tags specified in your domain or
UserProfile to any SageMaker Canvas apps or users you create after you create the domain.

• If you want to add tags to apps in an existing domain, you must add tags to either the domain or
the UserProfile. You can adds tags through either the console or the AddTags API. If you add tags
through the console, then you must delete and relaunch your SageMaker Canvas app in order for

Manage billing and cost 1107

https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/rekognition/pricing/
https://aws.amazon.com/rekognition/pricing/
https://aws.amazon.com/textract/pricing/
https://aws.amazon.com/sagemaker/canvas/pricing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-getting-started.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html

Amazon SageMaker Developer Guide

the tags to propagate to the app. If you use the API, the tags are added directly to the app. For
more information about deleting and relaunching a SageMaker Canvas app, see Manage apps.

After you add tags to your domain, it might take up to 24 hours for the tags to appear in the AWS
Billing and Cost Management console for activation. After they appear in the console, it takes
another 24 hours for the tags to activate.

On the Cost explorer page, you can group and filter your costs by tags and usage types to separate
your Workspace instance (Session-Hrs) charges from your Training charges. The names of the usage
types are as follows:

• Workspace instance (Session-Hrs) charges: REGION-Canvas:Session-Hrs (Hrs)

• Training charges:

• REGION-Canvas:CreateModelRequest-Tier0 (CreateModelRequest)

• REGION-Canvas:MillionCells-Tier1 (MillionCells)

Amazon SageMaker geospatial capabilities

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. If prior to November 30, 2023 you created
a Amazon SageMaker domain, Studio Classic remains the default experience. domains
created after November 30, 2023 default to the new Studio experience.
Amazon SageMaker geospatial features and resources are only available in Studio Classic.
To learn more about setting up a domain and getting started with Studio, see Getting
started with Amazon SageMaker geospatial .

Amazon SageMaker geospatial capabilities makes it easier for data scientists and machine learning
(ML) engineers to build, train, and deploy ML models faster using geospatial data. You have access
to open-source and third-party data, processing, and visualization tools to make it more efficient
to prepare geospatial data for ML. You can increase your productivity by using purpose-built
algorithms and pre-trained ML models to speed up model building and training, and use built-in
visualization tools to explore prediction outputs on an interactive map and then collaborate across
teams on insights and results.

SageMaker geospatial capabilities 1108

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-manage-apps.html

Amazon SageMaker Developer Guide

Note

Currently, SageMaker geospatial capabilities are only supported in the US West (Oregon)
Region.
If you don't see the SageMaker geospatial UI available in your current Studio Classic
instance check to make sure you are currently in the US West (Oregon) Region.

Why use SageMaker geospatial capabilities?

You can use SageMaker geospatial capabilities to make predictions on geospatial data faster than
do-it-yourself solutions. SageMaker geospatial capabilities make it easier to access geospatial
data from your existing customer data lakes, open-source datasets, and other SageMaker
geospatial data providers. SageMaker geospatial capabilities minimize the need for building
custom infrastructure and data preprocessing functions by offering purpose-built algorithms for
efficient data preparation, model training, and inference. You can also create and share custom
visualizations and data with your company from Amazon SageMaker Studio Classic. SageMaker
geospatial capabilities offer pre-trained models for common uses in agriculture, real estate,
insurance, and financial services.

How can I use SageMaker geospatial capabilities?

You can use SageMaker geospatial capabilities in two ways.

• Through the SageMaker geospatial UI, as a part of Amazon SageMaker Studio Classic UI.

• Through a Studio Classic notebook instance that uses the Geospatial 1.0 image.

SageMaker has the following geospatial capabilities

• Use a purpose built SageMaker geospatial image that supports both CPU and GPU-based
notebook instances, and also includes commonly used open-source libraries found in geospatial
machine learning workflows.

• Use the Amazon SageMaker Processing and the SageMaker geospatial container to run large-
scale workloads with your own datasets, including soil, weather, climate, LiDAR, and commercial
aerial and satellite imagery.

• Run an Earth Observation job for raster data processing.

How can I use SageMaker geospatial capabilities? 1109

https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-eoj.html

Amazon SageMaker Developer Guide

• Run a Vector Enrichment job to convert latitude and longitude into human readable addresses,
and match noisy GPS traces to specific roads.

• Use built-in visualization tools right in Studio Classic to interactively view geospatial data or
model predictions on a map.

You can also use data from a collection of geospatial data providers. Currently, the data collections
available include:

• USGS Landsat

• Sentinel-1

• Sentinel-2

• Copernicus DEM

• National Agriculture Imagery Program

Are you a first-time user of SageMaker geospatial?

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now named
Amazon SageMaker Studio Classic. New domains created after November 30, 2023 default to the
Studio experience. Access to SageMaker geospatial is limited to Studio Classic, to learn more see
Accessing SageMaker geospatial.

If you're a first-time user of AWS or Amazon SageMaker, we recommend that you do the following:

1. Create an AWS account.

To learn about setting up an AWS account and getting started with SageMaker, see Set Up
Amazon SageMaker Prerequisites.

2. Create a user role and execution role that work with SageMaker geospatial.

As a managed service, Amazon SageMaker geospatial capabilities performs operations on your
behalf on the AWS hardware that SageMaker manages. A SageMaker execution role an perform
only the operations that users grant. To work with SageMaker geospatial capabilities, you
must set up a user role and an execution role. For more information, see SageMaker geospatial
capabilities roles.

3. Update your trust policy to include SageMaker geospatial.

First-time user? 1110

https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-vej.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-visualize.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-visualize.html
https://www.usgs.gov/centers/eros/data-citation?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://sentinels.copernicus.eu/documents/247904/690755/Sentinel_Data_Legal_Notice
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://registry.opendata.aws/copernicus-dem/
https://registry.opendata.aws/naip/

Amazon SageMaker Developer Guide

SageMaker geospatial defines an additional service principal. To learn how to create or update
your SageMaker execution role's trust policy, see Adding the SageMaker geospatial service
principal to an existing SageMaker execution role.

4. Set up an Amazon SageMaker domain to access Amazon SageMaker Studio Classic.

To use SageMaker geospatial, a domain is required. For domains created before November
30, 2023 the default experience is Studio Classic. domains created after November 30, 2023
default to the Studio experience. To learn more about accessing Studio Classic from Studio, see
Accessing SageMaker geospatial.

5. Remember, shut down resources.

When you have finished using SageMaker geospatial capabilities, shut down the instance it runs
on to avoid incurring additional charges. For more information, see Shut Down Resources.

Topics

• Getting started with Amazon SageMaker geospatial

• Using a processing jobs for custom geospatial workloads

• Earth Observation Jobs

• Vector Enrichment Jobs

• Visualization Using SageMaker geospatial capabilities

• Amazon SageMaker geospatial Map SDK

• SageMaker geospatial capabilities FAQ

• SageMaker geospatial Security and Permissions

• Types of compute instances

• Data collections

Getting started with Amazon SageMaker geospatial

SageMaker geospatial provides a purpose built Image and Instance type for Amazon SageMaker
Studio Classic notebooks. You can use either CPU or GPU enabled notebooks with the SageMaker
geospatial Image. You can also visualize your geospatial data using a purpose built visualizer.
Furthermore, SageMaker geospatial also provides APIs that allow you to query raster data
collections.You can also use pre-trained models to analyze geospatial data, reverse geocoding, and
map matching.

Getting started 1111

Amazon SageMaker Developer Guide

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. If prior to November 30, 2023 you created
a Amazon SageMaker domain, Studio Classic remains the default experience. domains
created after November 30, 2023 default to the new Studio experience.

To access and get started using Amazon SageMaker geospatial, do the following:

Topics

• Accessing SageMaker geospatial

• Create an Amazon SageMaker Studio Classic notebook using the geospatial image

• Access the Sentinel-2 raster data collection and create an earth observation job to perform land
segmentation

Accessing SageMaker geospatial

Note

Currently, SageMaker geospatial capabilities are only supported in the US West (Oregon)
Region and in Studio Classic.
If you don't see the SageMaker geospatial UI available in your current Studio Classic
instance check to make sure you are currently in the US West (Oregon) Region.

A domain is required to access SageMaker geospatial. If you created a domain prior to November
30, 2023 the default experience is Studio Classic.

If you created a domain after November 30, 2023 or if you have migrated to Studio, then you
can use the following procedure to activate Studio Classic from within Studio to use SageMaker
geospatial features.

To learn more about creating a domain, see Onboard to Amazon SageMaker domain.

To access Studio Classic from Studio

1. Launch Amazon SageMaker Studio.

Getting started 1112

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html

Amazon SageMaker Developer Guide

2. Under Applications, choose Studio Classic.

3. Then, choose Create Studio Classic space.

4. On the Create Studio Classic space page, enter a Name.

5. Disable the Share with my domain option. SageMaker geospatial is not available in shared
domains.

6. Then choose Create space.

When successful the Status changes to Updating. When your Studio Classic application is ready to
be used the status changes to Stopped.

To start your Studio Classic application, choose Run.

Create an Amazon SageMaker Studio Classic notebook using the geospatial image

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Note

Currently, SageMaker geospatial is only supported in the US West (Oregon) Region.
If you don't see SageMaker geospatial available in your current domain or notebook
instance, make sure that you're currently in the US West (Oregon) Region.

Use the following procedure to create Studio Classic notebook with the SageMaker geospatial
image. If your default studio experience is Studio, see Accessing SageMaker geospatial to learn
about starting a Studio Classic application.

To create a Studio Classic notebook with the SageMaker geospatial image

1. Launch Studio Classic

2. Choose Home in the menu bar.

Getting started 1113

Amazon SageMaker Developer Guide

3. Under Quick actions, choose Open Launcher.

4. When the Launcher dialog box opens. Choose Change environment under Notebooks and
compute resources.

5. When, the Change environment dialog box opens. Choose the Image dropdown and choose or
type Geospatial 1.0.

6. Next, choose an Instance type from the dropdown.

SageMaker geospatial supports two types of notebook instances: CPU and GPU. The supported
CPU instance is called ml.geospatial.interactive. Any of the G5-family of GPU instances can be
used with the Geospatial 1.0 image.

Note

If you receive a ResourceLimitExceeded error when attempting to start a GPU based
instance, you need to request a quota increase. To get started on a Service Quotas
quota increase request, see Requesting a quota increase in the Service Quotas User
Guide

7. Choose Select.

Getting started 1114

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon SageMaker Developer Guide

8. Choose Create notebook.

After creating a notebook, to learn more about SageMaker geospatial, try the SageMaker
geospatial tutorial. It shows you how to process Sentinel-2 image data and perform land
segmentation on it using the earth observation jobs API.

Access the Sentinel-2 raster data collection and create an earth observation job to
perform land segmentation

This Python-based tutorial uses the SDK for Python (Boto3) and an Amazon SageMaker Studio
Classic notebook. To complete this demo successfully, make sure that you have the required AWS
Identity and Access Management (IAM) permissions to use SageMaker geospatial and Studio
Classic. SageMaker geospatial requires that you have a user, group, or role which can access Studio
Classic. You must also have a SageMaker execution role that specifies the SageMaker geospatial
service principal, sagemaker-geospatial.amazonaws.com in its trust policy.

To learn more about these requirements, see SageMaker geospatial IAM roles.

This tutorial shows you how to use SageMaker geospatial API to complete the following tasks:

• Find the available raster data collections with list_raster_data_collections.

• Search a specified raster data collection by using search_raster_data_collection.

• Create an earth observation job (EOJ) by using start_earth_observation_job.

Using list_raster_data_collections to find available data collections

SageMaker geospatial supports multiple raster data collections. To learn more about the available
data collections, see Data collections.

This demo uses satellite data that's collected from Sentinel-2 Cloud-Optimized GeoTIFF satellites.
These satellites provide global coverage of Earth's land surface every five days. In addition to
collecting surface images of Earth, the Sentinel-2 satellites also collect data across a variety of
spectralbands.

To search an area of interest (AOI), you need the ARN that's associated with the Sentinel-2 satellite
data. To find the available data collections and their associated ARNs in your AWS Region, use the
list_raster_data_collections API operation.

Getting started 1115

https://registry.opendata.aws/sentinel-2-l2a-cogs/

Amazon SageMaker Developer Guide

Because the response can be paginated, you must use the get_paginator operation to return all
of the relevant data:

import boto3
import sagemaker
import sagemaker_geospatial_map
import json

SageMaker Geospatial is currently only avaialable in US-WEST-2
session = boto3.Session(region_name='us-west-2')
execution_role = sagemaker.get_execution_role()

Creates a SageMaker Geospatial client instance
geospatial_client = session.client(service_name="sagemaker-geospatial")

Creates a resusable Paginator for the list_raster_data_collections API operation
paginator = geospatial_client.get_paginator("list_raster_data_collections")

Create a PageIterator from the paginator class
page_iterator = paginator.paginate()

Use the iterator to iterate throught the results of list_raster_data_collections
results = []
for page in page_iterator:
 results.append(page['RasterDataCollectionSummaries'])

print(results)

This is a sample JSON response from the list_raster_data_collections API operation. It's
truncated to include only the data collection (Sentinel-2) that's used in this code example. For more
details about a specific raster data collection, use get_raster_data_collection:

{
 "Arn": "arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/
public/nmqj48dcu3g7ayw8",
 "Description": "Sentinel-2a and Sentinel-2b imagery, processed to Level 2A (Surface
 Reflectance) and converted to Cloud-Optimized GeoTIFFs",
 "DescriptionPageUrl": "https://registry.opendata.aws/sentinel-2-l2a-cogs",
 "Name": "Sentinel 2 L2A COGs",
 "SupportedFilters": [
 {
 "Maximum": 100,

Getting started 1116

Amazon SageMaker Developer Guide

 "Minimum": 0,
 "Name": "EoCloudCover",
 "Type": "number"
 },
 {
 "Maximum": 90,
 "Minimum": 0,
 "Name": "ViewOffNadir",
 "Type": "number"
 },
 {
 "Name": "Platform",
 "Type": "string"
 }
],
 "Tags": {},
 "Type": "PUBLIC"
}

After running the previous code sample, you get the ARN of the Sentinel-2 raster data collection,
arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/
public/nmqj48dcu3g7ayw8. In the next section, you can query the Sentinel-2 data collection
using the search_raster_data_collection API.

Searching the Sentinel-2 raster data collection using search_raster_data_collection

In the preceding section, you used list_raster_data_collections to get the ARN for the
Sentinel-2 data collection. Now you can use that ARN to search the data collection over a given
area of interest (AOI), time range, properties, and the available UV bands.

To call the search_raster_data_collection API you must pass in a Python dictionary
to the RasterDataCollectionQuery parameter. This example uses AreaOfInterest,
TimeRangeFilter, PropertyFilters, and BandFilter. For ease, you can specify the Python
dictionary using the variable search_rdc_query to hold the search query parameters:

search_rdc_query = {
 "AreaOfInterest": {
 "AreaOfInterestGeometry": {
 "PolygonGeometry": {
 "Coordinates": [
 [
 # coordinates are input as longitute followed by latitude

Getting started 1117

Amazon SageMaker Developer Guide

 [-114.529, 36.142],
 [-114.373, 36.142],
 [-114.373, 36.411],
 [-114.529, 36.411],
 [-114.529, 36.142],
]
]
 }
 }
 },
 "TimeRangeFilter": {
 "StartTime": "2022-01-01T00:00:00Z",
 "EndTime": "2022-07-10T23:59:59Z"
 },
 "PropertyFilters": {
 "Properties": [
 {
 "Property": {
 "EoCloudCover": {
 "LowerBound": 0,
 "UpperBound": 1
 }
 }
 }
],
 "LogicalOperator": "AND"
 },
 "BandFilter": [
 "visual"
]
}

In this example, you query an AreaOfInterest that includes Lake Mead in Utah. Furthermore,
Sentinel-2 supports multiple types of image bands. To measure the change in the surface of the
water, you only need the visual band.

After you create the query parameters, you can use the search_raster_data_collection API
to make the request.

The following code sample implements a search_raster_data_collection API request. This
API does not support pagination using the get_paginator API. To make sure that the full API
response has been gathered the code sample uses a while loop to check that NextToken exists.

Getting started 1118

https://en.wikipedia.org/wiki/Lake_Mead

Amazon SageMaker Developer Guide

The code sample then uses .extend() to append the satellite image URLs and other response
metadata to the items_list.

To learn more about the search_raster_data_collection, see SearchRasterDataCollection in
the Amazon SageMaker API Reference.

search_rdc_response = sm_geo_client.search_raster_data_collection(
 Arn='arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/
public/nmqj48dcu3g7ayw8',
 RasterDataCollectionQuery=search_rdc_query
)

items_list is the response from the API request.
items_list = []

Use the python .get() method to check that the 'NextToken' exists, if null returns
 None breaking the while loop
while search_rdc_response.get('NextToken'):
 items_list.extend(search_rdc_response['Items'])
 search_rdc_response = sm_geo_client.search_raster_data_collection(
 Arn='arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-
collection/public/nmqj48dcu3g7ayw8',
 RasterDataCollectionQuery=search_rdc_query,
 NextToken=search_rdc_response['NextToken']
)

Print the number of observation return based on the query
print (len(items_list))

The following is a JSON response from your query. It has been truncated for clarity. Only the
"BandFilter": ["visual"] specified in the request is returned in the Assets key-value pair:

{
 'Assets': {
 'visual': {
 'Href': 'https://sentinel-cogs.s3.us-west-2.amazonaws.com/sentinel-s2-l2a-
cogs/15/T/UH/2022/6/S2A_15TUH_20220623_0_L2A/TCI.tif'
 }
 },
 'DateTime': datetime.datetime(2022, 6, 23, 17, 22, 5, 926000, tzinfo = tzlocal()),
 'Geometry': {
 'Coordinates': [

Getting started 1119

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_SearchRasterDataCollection.html

Amazon SageMaker Developer Guide

 [
 [-114.529, 36.142],
 [-114.373, 36.142],
 [-114.373, 36.411],
 [-114.529, 36.411],
 [-114.529, 36.142],
]
],
 'Type': 'Polygon'
 },
 'Id': 'S2A_15TUH_20220623_0_L2A',
 'Properties': {
 'EoCloudCover': 0.046519,
 'Platform': 'sentinel-2a'
 }
}

Now that you have your query results, in the next section you can visualize the results by using
matplotlib. This is to verify that results are from the correct geographical region.

Visualizing your search_raster_data_collection using matplotlib

Before you start the earth observation job (EOJ), you can visualize a result from our query
withmatplotlib. The following code sample takes the first item, items_list[0]["Assets"]
["visual"]["Href"], from the items_list variable created in the previous code sample and
prints an image using matplotlib.

Visualize an example image.
import os
from urllib import request
import tifffile
import matplotlib.pyplot as plt

image_dir = "./images/lake_mead"
os.makedirs(image_dir, exist_ok=True)

image_dir = "./images/lake_mead"
os.makedirs(image_dir, exist_ok=True)

image_url = items_list[0]["Assets"]["visual"]["Href"]
img_id = image_url.split("/")[-2]
path_to_image = image_dir + "/" + img_id + "_TCI.tif"
response = request.urlretrieve(image_url, path_to_image)

Getting started 1120

Amazon SageMaker Developer Guide

print("Downloaded image: " + img_id)

tci = tifffile.imread(path_to_image)
plt.figure(figsize=(6, 6))
plt.imshow(tci)
plt.show()

After checking that the results are in the correct geographical region, you can start the Earth
Observation Job (EOJ) in the next step. You use the EOJ to identify the water bodies from the
satellite images by using a process called land segmentation.

Starting an earth observation job (EOJ) that performs land segmentation on a series of
Satellite images

SageMaker geospatial provides multiple pre-trained models that you can use to process geospatial
data from raster data collections. To learn more about the available pre-trained models and
custom operations, see Types of Operations.

To calculate the change in the water surface area, you need to identify which pixels in the images
correspond to water. Land cover segmentation is a semantic segmentation model supported by
the start_earth_observation_job API. Semantic segmentation models associate a label with
every pixel in each image. In the results, each pixel is assigned a label that's based on the class map
for the model. The following is the class map for the land segmentation model:

{
 0: "No_data",
 1: "Saturated_or_defective",
 2: "Dark_area_pixels",
 3: "Cloud_shadows",
 4: "Vegetation",
 5: "Not_vegetated",
 6: "Water",
 7: "Unclassified",
 8: "Cloud_medium_probability",
 9: "Cloud_high_probability",
 10: "Thin_cirrus",
 11: "Snow_ice"
}

To start an earth observation job, use the start_earth_observation_job API. When you
submit your request, you must specify the following:

Getting started 1121

Amazon SageMaker Developer Guide

• InputConfig (dict) – Used to specify the coordinates of the area that you want to search, and
other metadata that's associated with your search.

• JobConfig (dict) – Used to specify the type of EOJ operation that you performed on the data.
This example uses LandCoverSegmentationConfig.

• ExecutionRoleArn (string) – The ARN of the SageMaker execution role with the necessary
permissions to run the job.

• Name (string) –A name for the earth observation job.

The InputConfig is a Python dictionary. Use the following variable eoj_input_config
to hold the search query parameters. Use this variable when you make the
start_earth_observation_job API request. w.

Perform land cover segmentation on images returned from the Sentinel-2 dataset.
eoj_input_config = {
 "RasterDataCollectionQuery": {
 "RasterDataCollectionArn": "arn:aws:sagemaker-geospatial:us-
west-2:378778860802:raster-data-collection/public/nmqj48dcu3g7ayw8",
 "AreaOfInterest": {
 "AreaOfInterestGeometry": {
 "PolygonGeometry": {
 "Coordinates":[
 [
 [-114.529, 36.142],
 [-114.373, 36.142],
 [-114.373, 36.411],
 [-114.529, 36.411],
 [-114.529, 36.142],
]
]
 }
 }
 },
 "TimeRangeFilter": {
 "StartTime": "2021-01-01T00:00:00Z",
 "EndTime": "2022-07-10T23:59:59Z",
 },
 "PropertyFilters": {
 "Properties": [{"Property": {"EoCloudCover": {"LowerBound": 0,
 "UpperBound": 1}}}],
 "LogicalOperator": "AND",

Getting started 1122

Amazon SageMaker Developer Guide

 },
 }
}

The JobConfig is a Python dictionary that is used to specify the EOJ operation that you want
performed on your data:

eoj_config = {"LandCoverSegmentationConfig": {}}

With the dictionary elements now specified, you can submit your
start_earth_observation_job API request using the following code sample:

Gets the execution role arn associated with current notebook instance
execution_role_arn = sagemaker.get_execution_role()

Starts an earth observation job
response = sm_geo_client.start_earth_observation_job(
 Name="lake-mead-landcover",
 InputConfig=eoj_input_config,
 JobConfig=eoj_config,
 ExecutionRoleArn=execution_role_arn,
)

print(response)

The start an earth observation job returns an ARN along with other metadata.

To get a list of all ongoing and current earth observation jobs use the
list_earth_observation_jobs API. To monitor the status of a single earth observation
job use the get_earth_observation_job API. To make this request, use the ARN created
after submitting your EOJ request. To learn more, see GetEarthObservationJob in the Amazon
SageMaker API Reference.

To find the ARNs associated with your EOJs use the list_earth_observation_jobs API
operation. To learn more, see ListEarthObservationJobs in the Amazon SageMaker API Reference.

List all jobs in the account
sg_client.list_earth_observation_jobs()["EarthObservationJobSummaries"]

The following is an example JSON response:

Getting started 1123

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_GetEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListEarthObservationJobs.html

Amazon SageMaker Developer Guide

{
 'Arn': 'arn:aws:sagemaker-geospatial:us-west-2:111122223333:earth-observation-job/
futg3vuq935t',
 'CreationTime': datetime.datetime(2023, 10, 19, 4, 33, 54, 21481, tzinfo =
 tzlocal()),
 'DurationInSeconds': 3493,
 'Name': 'lake-mead-landcover',
 'OperationType': 'LAND_COVER_SEGMENTATION',
 'Status': 'COMPLETED',
 'Tags': {}
}, {
 'Arn': 'arn:aws:sagemaker-geospatial:us-west-2:111122223333:earth-observation-job/
wu8j9x42zw3d',
 'CreationTime': datetime.datetime(2023, 10, 20, 0, 3, 27, 270920, tzinfo =
 tzlocal()),
 'DurationInSeconds': 1,
 'Name': 'mt-shasta-landcover',
 'OperationType': 'LAND_COVER_SEGMENTATION',
 'Status': 'INITIALIZING',
 'Tags': {}
}

After the status of your EOJ job changes to COMPLETED, proceed to the next section to calculate
the change in Lake Mead's surface area.

Calculating the change in the Lake Mead surface area

To calculate the change in Lake Mead's surface area, first export the results of the EOJ to Amazon
S3 by using export_earth_observation_job:

sagemaker_session = sagemaker.Session()
s3_bucket_name = sagemaker_session.default_bucket() # Replace with your own bucket if
 needed
s3_bucket = session.resource("s3").Bucket(s3_bucket_name)
prefix = "export-lake-mead-eoj" # Replace with the S3 prefix desired
export_bucket_and_key = f"s3://{s3_bucket_name}/{prefix}/"

eoj_output_config = {"S3Data": {"S3Uri": export_bucket_and_key}}
export_response = sm_geo_client.export_earth_observation_job(
 Arn="arn:aws:sagemaker-geospatial:us-west-2:111122223333:earth-observation-
job/7xgwzijebynp",
 ExecutionRoleArn=execution_role_arn,
 OutputConfig=eoj_output_config,

Getting started 1124

Amazon SageMaker Developer Guide

 ExportSourceImages=False,
)

To see the status of your export job, use get_earth_observation_job:

export_job_details =
 sm_geo_client.get_earth_observation_job(Arn=export_response["Arn"])

To calculate the changes in Lake Mead's water level, download the land cover masks to the local
SageMaker notebook instance and download the source images from our previous query. In the
class map for the land segmentation model, the water’s class index is 6.

To extract the water mask from a Sentinel-2 image, follow these steps. First, count the number of
pixels marked as water (class index 6) in the image. Second, multiply the count by the area that
each pixel covers. Bands can differ in their spatial resolution. For the land cover segmentation
model all bands are down sampled to a spatial resolution equal to 60 meters.

import os
from glob import glob
import cv2
import numpy as np
import tifffile
import matplotlib.pyplot as plt
from urllib.parse import urlparse
from botocore import UNSIGNED
from botocore.config import Config

Download land cover masks
mask_dir = "./masks/lake_mead"
os.makedirs(mask_dir, exist_ok=True)
image_paths = []
for s3_object in s3_bucket.objects.filter(Prefix=prefix).all():
 path, filename = os.path.split(s3_object.key)
 if "output" in path:
 mask_name = mask_dir + "/" + filename
 s3_bucket.download_file(s3_object.key, mask_name)
 print("Downloaded mask: " + mask_name)

Download source images for visualization
for tci_url in tci_urls:
 url_parts = urlparse(tci_url)
 img_id = url_parts.path.split("/")[-2]

Getting started 1125

Amazon SageMaker Developer Guide

 tci_download_path = image_dir + "/" + img_id + "_TCI.tif"
 cogs_bucket = session.resource(
 "s3", config=Config(signature_version=UNSIGNED, region_name="us-west-2")
).Bucket(url_parts.hostname.split(".")[0])
 cogs_bucket.download_file(url_parts.path[1:], tci_download_path)
 print("Downloaded image: " + img_id)

print("Downloads complete.")

image_files = glob("images/lake_mead/*.tif")
mask_files = glob("masks/lake_mead/*.tif")
image_files.sort(key=lambda x: x.split("SQA_")[1])
mask_files.sort(key=lambda x: x.split("SQA_")[1])
overlay_dir = "./masks/lake_mead_overlay"
os.makedirs(overlay_dir, exist_ok=True)
lake_areas = []
mask_dates = []

for image_file, mask_file in zip(image_files, mask_files):
 image_id = image_file.split("/")[-1].split("_TCI")[0]
 mask_id = mask_file.split("/")[-1].split(".tif")[0]
 mask_date = mask_id.split("_")[2]
 mask_dates.append(mask_date)
 assert image_id == mask_id
 image = tifffile.imread(image_file)
 image_ds = cv2.resize(image, (1830, 1830), interpolation=cv2.INTER_LINEAR)
 mask = tifffile.imread(mask_file)
 water_mask = np.isin(mask, [6]).astype(np.uint8) # water has a class index 6
 lake_mask = water_mask[1000:, :1100]
 lake_area = lake_mask.sum() * 60 * 60 / (1000 * 1000) # calculate the surface area
 lake_areas.append(lake_area)
 contour, _ = cv2.findContours(water_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 combined = cv2.drawContours(image_ds, contour, -1, (255, 0, 0), 4)
 lake_crop = combined[1000:, :1100]
 cv2.putText(lake_crop, f"{mask_date}", (10,50), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,
 0, 0), 3, cv2.LINE_AA)
 cv2.putText(lake_crop, f"{lake_area} [sq km]", (10,100), cv2.FONT_HERSHEY_SIMPLEX,
 1.5, (0, 0, 0), 3, cv2.LINE_AA)
 overlay_file = overlay_dir + '/' + mask_date + '.png'
 cv2.imwrite(overlay_file, cv2.cvtColor(lake_crop, cv2.COLOR_RGB2BGR))

Plot water surface area vs. time.
plt.figure(figsize=(20,10))
plt.title('Lake Mead surface area for the 2021.02 - 2022.07 period.', fontsize=20)

Getting started 1126

Amazon SageMaker Developer Guide

plt.xticks(rotation=45)
plt.ylabel('Water surface area [sq km]', fontsize=14)
plt.plot(mask_dates, lake_areas, marker='o')
plt.grid('on')
plt.ylim(240, 320)
for i, v in enumerate(lake_areas):
 plt.text(i, v+2, "%d" %v, ha='center')
plt.show()

Using matplotlib, you can visualize the results with a graph. The graph shows that the surface
area of Lake Mead decreased from January 2021–July 2022.

Using a processing jobs for custom geospatial workloads

With Amazon SageMaker Processing, you can use a simplified, managed experience on SageMaker
to run your data processing workloads with the purpose-built geospatial container.

The underlying infrastructure for a Amazon SageMaker Processing job is fully managed by
SageMaker. During a processing job, cluster resources are provisioned for the duration of your job,
and cleaned up when a job completes.

Geospatial processing job 1127

Amazon SageMaker Developer Guide

The preceding diagram shows how SageMaker spins up a geospatial processing job. SageMaker
takes your geospatial workload script, copies your geospatial data from Amazon Simple
Storage Service(Amazon S3), and then pulls the specified geospatial container. The underlying
infrastructure for the processing job is fully managed by SageMaker. Cluster resources are
provisioned for the duration of your job, and cleaned up when a job completes. The output of the
processing job is stored in the bucket you specified.

Path naming constraints

The local paths inside a Processing jobs container must begin with /opt/ml/
processing/.

SageMaker geospatial provides a purpose-built container, 081189585635.dkr.ecr.us-
west-2.amazonaws.com/sagemaker-geospatial-v1-0:latest that can be specified when
running a processing job.

Topics

• Overview: Run processing jobs using ScriptProcessor and a SageMaker geospatial container

• Using ScriptProcessor to calculate the Normalized Difference Vegetation Index (NDVI) using
Sentinel-2 satellite data

Geospatial processing job 1128

Amazon SageMaker Developer Guide

Overview: Run processing jobs using ScriptProcessor and a SageMaker
geospatial container

SageMaker geospatial provides a purpose-built processing container,
081189585635.dkr.ecr.us-west-2.amazonaws.com/sagemaker-geospatial-
v1-0:latest. You can use this container when running a job with Amazon SageMaker Processing.
When you create an instance of the ScriptProcessor class that is available through the Amazon
SageMaker Python SDK for Processing, specify this image_uri.

Note

If you receive a ResourceLimitExceeded error when attempting to start a processing job,
you need to request a quota increase. To get started on a Service Quotas quota increase
request, see Requesting a quota increase in the Service Quotas User Guide

Prerequisites for using ScriptProcessor

1. You have created a Python script that specifies your geospatial ML workload.

2. You have granted the SageMaker execution role access to any Amazon S3 buckets that are
needed.

3. Prepare your data for import into the container. Amazon SageMaker Processing jobs support
either setting the s3_data_type equal to "ManifestFile" or to "S3Prefix".

The following procedure show you how to create an instance of ScriptProcessor and submit a
Amazon SageMaker Processing job using the SageMaker geospatial container.

To create a ScriptProcessor instance and submit a Amazon SageMaker Processing job using
a SageMaker geospatial container

1. Instantiate an instance of the ScriptProcessor class using the SageMaker geospatial image:

from sagemaker.processing import ScriptProcessor, ProcessingInput, ProcessingOutput

sm_session = sagemaker.session.Session()
execution_role_arn = sagemaker.get_execution_role()

purpose-built geospatial container

Geospatial processing job 1129

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ScriptProcessor
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon SageMaker Developer Guide

image_uri = '081189585635.dkr.ecr.us-west-2.amazonaws.com/sagemaker-geospatial-
v1-0:latest'

script_processor = ScriptProcessor(
 command=['python3'],
 image_uri=image_uri,
 role=execution_role_arn,
 instance_count=4,
 instance_type='ml.m5.4xlarge',
 sagemaker_session=sm_session
)

Replace execution_role_arn with the ARN of the SageMaker execution role that has access
to the input data stored in Amazon S3 and any other AWS services that you want to call in your
processing job. You can update the instance_count and the instance_type to match the
requirements of your processing job.

2. To start a processing job, use the .run() method:

Can be replaced with any S3 compliant string for the name of the folder.
s3_folder = geospatial-data-analysis

Use .default_bucket() to get the name of the S3 bucket associated with your current
 SageMaker session
s3_bucket = sm_session.default_bucket()

s3_manifest_uri = f's3://{s3_bucket}/{s3_folder}/manifest.json'
s3_prefix_uri = f's3://{s3_bucket}/{s3_folder}/image-prefix

script_processor.run(
 code='preprocessing.py',
 inputs=[
 ProcessingInput(
 source=s3_manifest_uri | s3_prefix_uri ,
 destination='/opt/ml/processing/input_data/',
 s3_data_type= "ManifestFile" | "S3Prefix",
 s3_data_distribution_type= "ShardedByS3Key" | "FullyReplicated"
)
],
 outputs=[
 ProcessingOutput(
 source='/opt/ml/processing/output_data/',
 destination=s3_output_prefix_url

Geospatial processing job 1130

Amazon SageMaker Developer Guide

)
]
)

• Replace preprocessing.py with the name of your own Python data processing script.

• A processing job supports two methods for formatting your input data. You can either
create a manifest file that points to all of the input data for your processing job, or
you can use a common prefix on each individual data input. If you created a manifest
file set s3_manifest_uri equal to "ManifestFile". If you used a file prefix set
s3_manifest_uri equal to "S3Prefix". You specify the path to your data using source.

• You can distribute your processing job data two ways:

• Distribute your data to all processing instances by setting s3_data_distribution_type
equal to FullyReplicated.

• Distribute your data in shards based on the Amazon S3 key by setting
s3_data_distribution_type equal to ShardedByS3Key. When you use
ShardedByS3Key one shard of data is sent to each processing instance.

You can use a script to process SageMaker geospatial data. That script can be found in Step 3:
Writing a script that can calculate the NDVI. To learn more about the .run() API operation, see
run in the Amazon SageMaker Python SDK for Processing.

To monitor the progress of your processing job, the ProcessingJobs class supports a describe
method. This method returns a response from the DescribeProcessingJob API call. To learn
more, see DescribeProcessingJob in the Amazon SageMaker API Reference.

The next topic show you how to create an instance of the ScriptProcessor class using the
SageMaker geospatial container, and then how to use it to calculate the Normalized Difference
Vegetation Index (NDVI) with Sentinel-2 images.

Using ScriptProcessor to calculate the Normalized Difference Vegetation Index
(NDVI) using Sentinel-2 satellite data

The following code samples show you how to calculate the normalized difference vegetation
index of a specific geographical area using the purpose-built geospatial image within a Studio
Classic notebook and run a large-scale workload with Amazon SageMaker Processing using
ScriptProcessor from the SageMaker Python SDK.

Geospatial processing job 1131

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ScriptProcessor.run
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingJob.describe
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ScriptProcessor

Amazon SageMaker Developer Guide

This demo also uses an Amazon SageMaker Studio Classic notebook instance that uses the
geospatial kernel and instance type. To learn how to create a Studio Classic geospatial notebook
instance, see Create an Amazon SageMaker Studio Classic notebook using the geospatial image.

You can follow along with this demo in your own notebook instance by copying and pasting the
following code snippets:

1. Use search_raster_data_collection to query a specific area of interest (AOI) over a given
a time range using a specific raster data collection, Sentinel-2.

2. Create a manifest file that specifies what data will be processed during the processing job.

3. Write a data processing Python script calculating the NDVI.

4. Create a ScriptProcessor instance and start the Amazon SageMaker Processing job.

5. Visualizing the results of your processing job.

Query the Sentinel-2 raster data collection using SearchRasterDataCollection

With search_raster_data_collection you can query supported raster data collections. This
example uses data that's pulled from Sentinel-2 satellites. The area of interest (AreaOfInterest)
specified is rural northern Iowa, and the time range (TimeRangeFilter) is January 1,
2022 to December 30, 2022. To see the available raster data collections in your AWS
Region use list_raster_data_collections. To see a code example using this API, see
ListRasterDataCollections in the Amazon SageMaker Developer Guide.

In following code examples you use the ARN associated with Sentinel-2 raster data collection,
arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/
public/nmqj48dcu3g7ayw8.

A search_raster_data_collection API request requires two parameters:

• You need to specify an Arn parameter that corresponds to the raster data collection that you
want to query.

• You also need to specify a RasterDataCollectionQuery parameter, which takes in a Python
dictionary.

The following code example contains the necessary key-value pairs needed for the
RasterDataCollectionQuery parameter saved to the search_rdc_query variable.

Geospatial processing job 1132

Amazon SageMaker Developer Guide

search_rdc_query = {
 "AreaOfInterest": {
 "AreaOfInterestGeometry": {
 "PolygonGeometry": {
 "Coordinates": [[
 [
 -94.50938680498298,
 43.22487436936203
],
 [
 -94.50938680498298,
 42.843474642037194
],
 [
 -93.86520004156142,
 42.843474642037194
],
 [
 -93.86520004156142,
 43.22487436936203
],
 [
 -94.50938680498298,
 43.22487436936203
]
]]
 }
 }
 },
 "TimeRangeFilter": {"StartTime": "2022-01-01T00:00:00Z", "EndTime":
 "2022-12-30T23:59:59Z"}
}

To make the search_raster_data_collection request, you must specify the ARN
of the Sentinel-2 raster data collection: arn:aws:sagemaker-geospatial:us-
west-2:378778860802:raster-data-collection/public/nmqj48dcu3g7ayw8. You also
must need to pass in the Python dictionary that was defined previously, which specifies query
parameters.

Creates a SageMaker Geospatial client instance
sm_geo_client= session.create_client(service_name="sagemaker-geospatial")

Geospatial processing job 1133

Amazon SageMaker Developer Guide

search_rdc_response1 = sm_geo_client.search_raster_data_collection(
 Arn='arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/
public/nmqj48dcu3g7ayw8',
 RasterDataCollectionQuery=search_rdc_query
)

The results of this API can not be paginated. To collect all the satellite images returned by the
search_raster_data_collection operation, you can implement a while loop. This checks
forNextToken in the API response:

Holds the list of API responses from search_raster_data_collection
items_list = []
while search_rdc_response1.get('NextToken') and search_rdc_response1['NextToken'] !=
 None:
 items_list.extend(search_rdc_response1['Items'])

 search_rdc_response1 = sm_geo_client.search_raster_data_collection(
 Arn='arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/
public/nmqj48dcu3g7ayw8',
 RasterDataCollectionQuery=search_rdc_query,
 NextToken=search_rdc_response1['NextToken']
)

The API response returns a list of URLs under the Assets key corresponding to specific image
bands. The following is a truncated version of the API response. Some of the image bands were
removed for clarity.

{
 'Assets': {
 'aot': {
 'Href': 'https://sentinel-cogs.s3.us-west-2.amazonaws.com/sentinel-s2-l2a-
cogs/15/T/UH/2022/12/S2A_15TUH_20221230_0_L2A/AOT.tif'
 },
 'blue': {
 'Href': 'https://sentinel-cogs.s3.us-west-2.amazonaws.com/sentinel-s2-l2a-
cogs/15/T/UH/2022/12/S2A_15TUH_20221230_0_L2A/B02.tif'
 },
 'swir22-jp2': {
 'Href': 's3://sentinel-s2-l2a/tiles/15/T/UH/2022/12/30/0/B12.jp2'
 },
 'visual-jp2': {
 'Href': 's3://sentinel-s2-l2a/tiles/15/T/UH/2022/12/30/0/TCI.jp2'

Geospatial processing job 1134

Amazon SageMaker Developer Guide

 },
 'wvp-jp2': {
 'Href': 's3://sentinel-s2-l2a/tiles/15/T/UH/2022/12/30/0/WVP.jp2'
 }
 },
 'DateTime': datetime.datetime(2022, 12, 30, 17, 21, 52, 469000, tzinfo =
 tzlocal()),
 'Geometry': {
 'Coordinates': [
 [
 [-95.46676936182894, 43.32623760511659],
 [-94.11293433656887, 43.347431265475954],
 [-94.09532154452742, 42.35884880571144],
 [-95.42776890002203, 42.3383710796791],
 [-95.46676936182894, 43.32623760511659]
]
],
 'Type': 'Polygon'
 },
 'Id': 'S2A_15TUH_20221230_0_L2A',
 'Properties': {
 'EoCloudCover': 62.384969,
 'Platform': 'sentinel-2a'
 }
}

In the next section, you create a manifest file using the 'Id' key from the API response.

Create an input manifest file using the Id key from the search_raster_data_collection
API response

When you run a processing job, you must specify a data input from Amazon S3. The input data
type can either be a manifest file, which then points to the individual data files. You can also add a
prefix to each file that you want processed. The following code example defines the folder where
your manifest files will be generated.

Use SDK for Python (Boto3) to get the default bucket and the ARN of the execution role that is
associated with your Studio Classic notebook instance:

sm_session = sagemaker.session.Session()
s3 = boto3.resource('s3')
Gets the default excution role associated with the notebook

Geospatial processing job 1135

Amazon SageMaker Developer Guide

execution_role_arn = sagemaker.get_execution_role()

Gets the default bucket associated with the notebook
s3_bucket = sm_session.default_bucket()

Can be replaced with any name
s3_folder = "script-processor-input-manifest"

Next, you create a manifest file. It will hold the URLs of the satellite images that you wanted
processed when you run your processing job later in step 4.

Format of a manifest file
manifest_prefix = {}
manifest_prefix['prefix'] = 's3://' + s3_bucket + '/' + s3_folder + '/'
manifest = [manifest_prefix]

print(manifest)

The following code sample returns the S3 URI where your manifest files will be created.

[{'prefix': 's3://sagemaker-us-west-2-111122223333/script-processor-input-manifest/'}]

All the response elements from the search_raster_data_collection response are not needed to run
the processing job.

The following code snippet removes the unnecessary elements 'Properties', 'Geometry',
and 'DateTime'. The 'Id' key-value pair, 'Id': 'S2A_15TUH_20221230_0_L2A', contains
the year and the month. The following code example parses that data to create new keys in the
Python dictionary dict_month_items. The values are the assets that are returned from the
SearchRasterDataCollection query.

For each response get the month and year, and then remove the metadata not related to
 the satelite images.
dict_month_items = {}
for item in items_list:
 # Example ID being split: 'S2A_15TUH_20221230_0_L2A'
 yyyymm = item['Id'].split("_")[2][:6]
 if yyyymm not in dict_month_items:
 dict_month_items[yyyymm] = []

Geospatial processing job 1136

Amazon SageMaker Developer Guide

 # Removes uneeded metadata elements for this demo
 item.pop('Properties', None)
 item.pop('Geometry', None)
 item.pop('DateTime', None)

 # Appends the response from search_raster_data_collection to newly created key
 above
 dict_month_items[yyyymm].append(item)

This code example uploads the dict_month_items to Amazon S3 as a JSON object using the
.upload_file() API operation:

key_ is the yyyymm timestamp formatted above
value_ is the reference to all the satellite images collected via our searchRDC
 query
for key_, value_ in dict_month_items.items():
 filename = f'manifest_{key_}.json'
 with open(filename, 'w') as fp:
 json.dump(value_, fp)
 s3.meta.client.upload_file(filename, s3_bucket, s3_folder + '/' + filename)
 manifest.append(filename)
 os.remove(filename)

This code example uploads a parent manifest.json file that points to all the other manifests
uploaded to Amazon S3. It also saves the path to a local variable: s3_manifest_uri. You'll use
that variable again to specify the source of the input data when you run the processing job in step
4.

with open('manifest.json', 'w') as fp:
 json.dump(manifest, fp)
s3.meta.client.upload_file('manifest.json', s3_bucket, s3_folder + '/' +
 'manifest.json')
os.remove('manifest.json')

s3_manifest_uri = f's3://{s3_bucket}/{s3_folder}/manifest.json'

Now that you created the input manifest files and uploaded them, you can write a script that
processes your data in the processing job. It processes the data from the satellite images, calculates
the NDVI, and then returns the results to a different Amazon S3 location.

Geospatial processing job 1137

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3/client/upload_file.html

Amazon SageMaker Developer Guide

Write a script that calculates the NDVI

Amazon SageMaker Studio Classic supports the use of the %%writefile cell magic command.
After running a cell with this command, its contents will be saved to your local Studio Classic
directory. This is code specific to calculating NDVI. However, the following can be useful when you
write your own script for a processing job:

• In your processing job container, the local paths inside the container must begin with /
opt/ml/processing/. In this example, input_data_path = '/opt/ml/processing/
input_data/' and processed_data_path = '/opt/ml/processing/output_data/'
are specified in that way.

• With Amazon SageMaker Processing, a script that a processing job runs can upload your
processed data directly to Amazon S3. To do so, make sure that the execution role associated
with your ScriptProcessor instance has the necessary requirements to access the S3 bucket.
You can also specify an outputs parameter when you run your processing job. To learn more,
see the .run() API operation in the Amazon SageMaker Python SDK. In this code example, the
results of the data processing are uploaded directly to Amazon S3.

• To manage the size of the Amazon EBScontainer attached to your processing jobuse the
volume_size_in_gb parameter. The containers's default size is 30 GB. You can aslo optionally
use the Python library Garbage Collector to manage storage in your Amazon EBS container.

The following code example loads the arrays into the processing job container. When arrays
build up and fill in the memory, the processing job crashes. To prevent this crash, the following
example contains commands that remove the arrays from the processing job’s container.

%%writefile compute_ndvi.py

import os
import pickle
import sys
import subprocess
import json
import rioxarray

if __name__ == "__main__":
 print("Starting processing")

 input_data_path = '/opt/ml/processing/input_data/'
 input_files = []

Geospatial processing job 1138

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ScriptProcessor.run
https://docs.python.org/3/library/gc.html

Amazon SageMaker Developer Guide

 for current_path, sub_dirs, files in os.walk(input_data_path):
 for file in files:
 if file.endswith(".json"):
 input_files.append(os.path.join(current_path, file))

 print("Received {} input_files: {}".format(len(input_files), input_files))

 items = []
 for input_file in input_files:
 full_file_path = os.path.join(input_data_path, input_file)
 print(full_file_path)
 with open(full_file_path, 'r') as f:
 items.append(json.load(f))

 items = [item for sub_items in items for item in sub_items]

 for item in items:
 red_uri = item["Assets"]["red"]["Href"]
 nir_uri = item["Assets"]["nir"]["Href"]

 red = rioxarray.open_rasterio(red_uri, masked=True)
 nir = rioxarray.open_rasterio(nir_uri, masked=True)

 ndvi = (nir - red)/ (nir + red)

 file_name = 'ndvi_' + item["Id"] + '.tif'
 output_path = '/opt/ml/processing/output_data'
 output_file_path = f"{output_path}/{file_name}"

 ndvi.rio.to_raster(output_file_path)
 print("Written output:", output_file_path)

You now have a script that can calculate the NDVI. Next, you can create an instance of the
ScriptProcessor and run your Processing job.

Creating an instance of the ScriptProcessor class

This demo uses the ScriptProcessor class that is available via the Amazon SageMaker Python SDK.
First, you need to create an instance of the class, and then you can start your Processing job by
using the .run() method.

from sagemaker.processing import ScriptProcessor, ProcessingInput, ProcessingOutput

Geospatial processing job 1139

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ScriptProcessor

Amazon SageMaker Developer Guide

image_uri = '081189585635.dkr.ecr.us-west-2.amazonaws.com/sagemaker-geospatial-
v1-0:latest'

processor = ScriptProcessor(
 command=['python3'],
 image_uri=image_uri,
 role=execution_role_arn,
 instance_count=4,
 instance_type='ml.m5.4xlarge',
 sagemaker_session=sm_session
)

print('Starting processing job.')

When you start your Processing job, you need to specify a ProcessingInput object. In that
object, you specify the following:

• The path to the manifest file that you created in step 2, s3_manifest_uri. This is the source of
the input data to the container.

• The path to where you want the input data to be saved in the container. This must match the
path that you specified in your script.

• Use the s3_data_type parameter to specify the input as "ManifestFile".

s3_output_prefix_url = f"s3://{s3_bucket}/{s3_folder}/output"

processor.run(
 code='compute_ndvi.py',
 inputs=[
 ProcessingInput(
 source=s3_manifest_uri,
 destination='/opt/ml/processing/input_data/',
 s3_data_type="ManifestFile",
 s3_data_distribution_type="ShardedByS3Key"
),
],
 outputs=[
 ProcessingOutput(
 source='/opt/ml/processing/output_data/',
 destination=s3_output_prefix_url,
 s3_upload_mode="Continuous"

Geospatial processing job 1140

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingInput

Amazon SageMaker Developer Guide

)
]
)

The following code example uses the .describe() method to get details of your Processing job.

preprocessing_job_descriptor = processor.jobs[-1].describe()
s3_output_uri = preprocessing_job_descriptor["ProcessingOutputConfig"]["Outputs"][0]
["S3Output"]["S3Uri"]
print(s3_output_uri)

Visualizing your results using matplotlib

With the Matplotlib Python library, you can plot raster data. Before you plot the data, you need to
calculate the NDVI using sample images from the Sentinel-2 satellites. The following code example
opens the image arrays using the .open_rasterio() API operation, and then calculates the NDVI
using the nir and red image bands from the Sentinel-2 satellite data.

Opens the python arrays
import rioxarray

red_uri = items[25]["Assets"]["red"]["Href"]
nir_uri = items[25]["Assets"]["nir"]["Href"]

red = rioxarray.open_rasterio(red_uri, masked=True)
nir = rioxarray.open_rasterio(nir_uri, masked=True)

Calculates the NDVI
ndvi = (nir - red)/ (nir + red)

Common plotting library in Python
import matplotlib.pyplot as plt

f, ax = plt.subplots(figsize=(18, 18))
ndvi.plot(cmap='viridis', ax=ax)
ax.set_title("NDVI for {}".format(items[25]["Id"]))
ax.set_axis_off()
plt.show()

The output of the preceding code example is a satellite image with the NDVI values overlaid on
it. An NDVI value near 1 indicates lots of vegetation is present, and values near 0 indicate no
vegetation is presentation.

Geospatial processing job 1141

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.ProcessingJob.describe
https://matplotlib.org/stable/index.html

Amazon SageMaker Developer Guide

This completes the demo of using ScriptProcessor.

Geospatial processing job 1142

Amazon SageMaker Developer Guide

Earth Observation Jobs

Using an Earth Observation job (EOJ), you can acquire, transform, and visualize geospatial data
to make predictions. You can choose an operation based on your use case from a wide range of
operations and models. You get the flexibility of choosing your area of interest, selecting the
data providers, and setting time-range based and cloud-cover-percentage-based filters. After
SageMaker creates an EOJ for you, you can visualize the inputs and outputs of the job using the
visualization functionality. An EOJ has various use cases that include comparing deforestation over
time and diagnosing plant health. You can create an EOJ by using a SageMaker notebook with a
SageMaker geospatial image. You can also access the SageMaker geospatial UI as a part of Amazon
SageMaker Studio Classic UI to view the list of all your jobs. You can also use the UI to pause or
stop an ongoing job. You can choose a job from the list of available EOJ to view the Job summary,
the Job details as well as visualize the Job output.

Topics

• Create an Earth Observation Job Using a Amazon SageMaker Studio Classic Notebook with a
SageMaker geospatial Image

• Types of Operations

Create an Earth Observation Job Using a Amazon SageMaker Studio Classic
Notebook with a SageMaker geospatial Image

To use a SageMaker Studio Classic notebook with a SageMaker geospatial image:

1. From the Launcher, choose Change environment under Notebooks and compute resources.

2. Next, the Change environment dialog opens.

3. Select the Image dropdown and choose Geospatial 1.0. The Instance type should be
ml.geospatial.interactive. Do not change the default values for other settings.

4. Choose Select.

5. Choose Create notebook.

You can initiate an EOJ using a Amazon SageMaker Studio Classic notebook with a SageMaker
geospatial image using the code provided below.

import boto3
import sagemaker

Earth Observation Jobs 1143

Amazon SageMaker Developer Guide

import sagemaker_geospatial_map

session = boto3.Session()
execution_role = sagemaker.get_execution_role()
sg_client = session.client(service_name="sagemaker-geospatial")

The following is an example showing how to create an EOJ in the in the US West (Oregon) Region.

#Query and Access Data
search_rdc_args = {
 "Arn": "arn:aws:sagemaker-geospatial:us-west-2:378778860802:raster-data-collection/
public/nmqj48dcu3g7ayw8", # sentinel-2 L2A COG
 "RasterDataCollectionQuery": {
 "AreaOfInterest": {
 "AreaOfInterestGeometry": {
 "PolygonGeometry": {
 "Coordinates": [
 [
 [-114.529, 36.142],
 [-114.373, 36.142],
 [-114.373, 36.411],
 [-114.529, 36.411],
 [-114.529, 36.142],
]
]
 }
 }
 },
 "TimeRangeFilter": {
 "StartTime": "2021-01-01T00:00:00Z",
 "EndTime": "2022-07-10T23:59:59Z",
 },
 "PropertyFilters": {
 "Properties": [{"Property": {"EoCloudCover": {"LowerBound": 0,
 "UpperBound": 1}}}],
 "LogicalOperator": "AND",
 },
 "BandFilter": ["visual"],
 },
}

tci_urls = []
data_manifests = []

Earth Observation Jobs 1144

Amazon SageMaker Developer Guide

while search_rdc_args.get("NextToken", True):
 search_result = sg_client.search_raster_data_collection(**search_rdc_args)
 if search_result.get("NextToken"):
 data_manifests.append(search_result)
 for item in search_result["Items"]:
 tci_url = item["Assets"]["visual"]["Href"]
 print(tci_url)
 tci_urls.append(tci_url)

 search_rdc_args["NextToken"] = search_result.get("NextToken")

Perform land cover segmentation on images returned from the sentinel dataset.
eoj_input_config = {
 "RasterDataCollectionQuery": {
 "RasterDataCollectionArn": "arn:aws:sagemaker-geospatial:us-
west-2:378778860802:raster-data-collection/public/nmqj48dcu3g7ayw8",
 "AreaOfInterest": {
 "AreaOfInterestGeometry": {
 "PolygonGeometry": {
 "Coordinates": [
 [
 [-114.529, 36.142],
 [-114.373, 36.142],
 [-114.373, 36.411],
 [-114.529, 36.411],
 [-114.529, 36.142],
]
]
 }
 }
 },
 "TimeRangeFilter": {
 "StartTime": "2021-01-01T00:00:00Z",
 "EndTime": "2022-07-10T23:59:59Z",
 },
 "PropertyFilters": {
 "Properties": [{"Property": {"EoCloudCover": {"LowerBound": 0,
 "UpperBound": 1}}}],
 "LogicalOperator": "AND",
 },
 }
}
eoj_config = {"LandCoverSegmentationConfig": {}}

Earth Observation Jobs 1145

Amazon SageMaker Developer Guide

response = sg_client.start_earth_observation_job(
 Name="lake-mead-landcover",
 InputConfig=eoj_input_config,
 JobConfig=eoj_config,
 ExecutionRoleArn=execution_role,
)

After your EOJ is created, the Arn is returned to you. You use the Arn to identify
a job and perform further operations. To get the status of a job, you can run
sg_client.get_earth_observation_job(Arn = response['Arn']).

The following example shows how to query the status of an EOJ until it is completed.

eoj_arn = response["Arn"]
job_details = sg_client.get_earth_observation_job(Arn=eoj_arn)
{k: v for k, v in job_details.items() if k in ["Arn", "Status", "DurationInSeconds"]}
List all jobs in the account
sg_client.list_earth_observation_jobs()["EarthObservationJobSummaries"]

After the EOJ is completed, you can visualize the EOJ outputs directly in the notebook. The
following example shows you how an interactive map can be rendered.

map = sagemaker_geospatial_map.create_map({
'is_raster': True
})
map.set_sagemaker_geospatial_client(sg_client)
render the map
map.render()

The following example shows how the map can be centered on an area of interest and the input
and output of the EOJ can be rendered as separate layers within the map.

visualize the area of interest
config = {"label": "Lake Mead AOI"}
aoi_layer = map.visualize_eoj_aoi(Arn=eoj_arn, config=config)

Visualize input.
time_range_filter = {
 "start_date": "2022-07-01T00:00:00Z",
 "end_date": "2022-07-10T23:59:59Z",
}

Earth Observation Jobs 1146

Amazon SageMaker Developer Guide

config = {"label": "Input"}

input_layer = map.visualize_eoj_input(
 Arn=eoj_arn, config=config, time_range_filter=time_range_filter
)
Visualize output, EOJ needs to be in completed status.
time_range_filter = {
 "start_date": "2022-07-01T00:00:00Z",
 "end_date": "2022-07-10T23:59:59Z",
}
config = {"preset": "singleBand", "band_name": "mask"}
output_layer = map.visualize_eoj_output(
 Arn=eoj_arn, config=config, time_range_filter=time_range_filter
)

You can use the export_earth_observation_job function to export the EOJ results to
your Amazon S3 bucket. The export function makes it convenient to share results across teams.
SageMaker also simplifies dataset management. We can simply share the EOJ results using the
job ARN, instead of crawling thousands of files in the S3 bucket. Each EOJ becomes an asset in the
data catalog, as results can be grouped by the job ARN. The following example shows how you can
export the results of an EOJ.

sagemaker_session = sagemaker.Session()
s3_bucket_name = sagemaker_session.default_bucket() # Replace with your own bucket if
 needed
s3_bucket = session.resource("s3").Bucket(s3_bucket_name)
prefix = "eoj_lakemead" # Replace with the S3 prefix desired
export_bucket_and_key = f"s3://{s3_bucket_name}/{prefix}/"

eoj_output_config = {"S3Data": {"S3Uri": export_bucket_and_key}}
export_response = sg_client.export_earth_observation_job(
 Arn=eoj_arn,
 ExecutionRoleArn=execution_role,
 OutputConfig=eoj_output_config,
 ExportSourceImages=False,
)

You can monitor the status of your export job using the following snippet.

Monitor the export job status
export_job_details = sg_client.get_earth_observation_job(Arn=export_response["Arn"])

Earth Observation Jobs 1147

Amazon SageMaker Developer Guide

{k: v for k, v in export_job_details.items() if k in ["Arn", "Status",
 "DurationInSeconds"]}

You are not charged the storage fees after you delete the EOJ.

For an example that showcases how to run an EOJ, see this blog post.

For more example notebooks on SageMaker geospatial capabilities, see this GitHub repository.

Types of Operations

When you create an EOJ, you select an operation based on your use case. Amazon SageMaker
geospatial capabilities provide a combination of purpose-built operations and pre-trained models.
You can use these operations to understand the impact of environmental changes and human
activities over time or identify cloud and cloud-free pixels.

Cloud Masking

Identify clouds in satellite images is an essential pre-processing step in producing high-quality
geospatial data. Ignoring cloud pixels can lead to errors in analysis, and over-detection of cloud
pixels can decrease the number of valid observations. Cloud masking has the ability to identify
cloudy and cloud-free pixels in satellite images. An accurate cloud mask helps get satellite images
for processing and improves data generation. The following is the class map for cloud masking.

{
0: "No_cloud",
1: "cloud"
}

Cloud Removal

Cloud removal for Sentinel-2 data uses an ML-based semantic segmentation model to identify
clouds in the image. Cloudy pixels can be replaced by with pixels from other timestamps. USGS
Landsat data contains landsat metadata that is used for cloud removal.

Temporal Statistics

Temporal statistics calculate statistics for geospatial data through time. The temporal statistics
currently supported include mean, median, and standard deviation. You can calculate these

Earth Observation Jobs 1148

https://aws.amazon.com/blogs/machine-learning/monitoring-lake-mead-drought-using-the-new-amazon-sagemaker-geospatial-capabilities/
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-geospatial

Amazon SageMaker Developer Guide

statistics by using GROUPBY and set it to either all or yearly. You can also mention the
TargetBands.

Zonal Statistics

Zonal statistics performs statistical operations over a specified area on the image.

Resampling

Resampling is used to upscale and downscale the resolution of a geospatial image. The value
attribute in resampling represents the length of a side of the pixel.

Geomosaic

Geomosaic allows you to stitch smaller images into a large image.

Band Stacking

Band stacking takes more than one image band as input and stacks them into a single GeoTIFF.
The OutputResolution attribute determines the resolution of the output image. Based on the
resolutions of the input images, you can set it to lowest, highest or average.

Band Math

Band Math, also known as Spectral Index, is a process of transforming the observations from
multiple spectral bands to a single band, indicating the relative abundance of features of interests.
For instance, Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)
are helpful for observing the presence of green vegetation features.

Land Cover Segmentation

Land Cover segmentation is a semantic segmentation model that has the capability to identify
the physical material, such as vegetation, water, and bare ground, at the earth surface. Having an
accurate way to map the land cover patterns helps you understand the impact of environmental
change and human activities over time. Land Cover segmentation is often used for region planning,
disaster response, ecological management, and environmental impact assessment. The following is
the class map for Land Cover segmentation.

{
0: "No_data",
1: "Saturated_or_defective",

Earth Observation Jobs 1149

Amazon SageMaker Developer Guide

2: "Dark_area_pixels",
3: "Cloud_shadows",
4: "Vegetation",
5: "Not_vegetated",
6: "Water",
7: "Unclassified",
8: "Cloud_medium_probability",
9: "Cloud_high_probability",
10: "Thin_cirrus",
11: "Snow_ice"
}

Availability of EOJ Operations

The availability of operations depends on whether you are using the SageMaker geospatial UI or
the Amazon SageMaker Studio Classic notebooks with a SageMaker geospatial image. Currently,
notebooks support all functionalities. To summarize, the following geospatial operations are
supported by SageMaker:

Operations Description Availability

Cloud Masking Identify cloud and cloud-fre
e pixels to get improved and
accurate satellite imagery.

UI, Notebook

Cloud Removal Remove pixels containing
parts of a cloud from satellite
imagery.

Notebook

Temporal Statistics Calculate statistics through
time for a given GeoTIFF.

Notebook

Zonal Statistics Calculate statistics on user-
defined regions.

Notebook

Resampling Scale images to different
resolutions.

Notebook

Geomosaic Combine multiple images for
greater fidelity.

Notebook

Earth Observation Jobs 1150

Amazon SageMaker Developer Guide

Operations Description Availability

Band Stacking Combine multiple spectral
bands to create a single
image.

Notebook

Band Math / Spectral Index Obtain a combination of
spectral bands that indicate
the abundance of features of
interest.

UI, Notebook

Land Cover Segmentation Identify land cover types such
as vegetation and water in
satellite imagery.

UI, Notebook

Vector Enrichment Jobs

A Vector Enrichment Job (VEJ) performs operations on your vector data. Currently, you can use a
VEJ to do reverse geocoding or map matching.

Reverse Geocoding

With a reverse geocoding VEJ, you can convert geographic coordinates (latitude, longitude) to
human-readable addresses powered by Amazon Location Service. When you upload a CSV file
containing the longitude and latitude coordinates, a it returns the address number, country, label,
municipality, neighborhood, postal code and region of that location. The output file consists of
your input data along with columns containing these the values appended at the end. These jobs
are optimized to accept tens of thousands of GPS traces.

Map Matching

Map matching allows you to snap GPS coordinates to road segments. The input should be a CSV
file containing the trace ID (route), longitude, latitude and the timestamp attributes. There can
be multiple GPS co-ordinates per route. The input can contain multiple routes too. The output
is a GeoJSON file that contains links of the predicted route. It also has the snap points provided
in the input. These jobs are optimized to accept tens of thousands of drives in one request. Map
matching is supported by OpenStreetMap. Map matching fails if the names in the input source
field don't match the ones in MapMatchingConfig. The error message you receive contains

Vector Enrichment Jobs 1151

https://www.openstreetmap.org/

Amazon SageMaker Developer Guide

the the field names present in the input file and the expected field name that is not found in
MapMatchingConfig.

The input CSV file for a VEJ must contain the following:

• A header row

• Latitude and longitude in separate columns

• The ID and Timestamp columns can be in numeric or string format. All other column data must
be in numeric format only

• No miss matching quotes

For the timestamp column, SageMaker geospatial capabilities supports epoch time in seconds and
milliseconds (long integer). The string formats supported are as follows:

• "dd.MM.yyyy HH:mm:ss z"

• "yyyy-MM-dd'T'HH:mm:ss.SSS'Z'"

• "yyyy-MM-dd'T'HH:mm:ss"

• "yyyy-MM-dd hh:mm:ss a"

• "yyyy-MM-dd HH:mm:ss"

• "yyyyMMddHHmmss"

While you need to use an Amazon SageMaker Studio Classic notebook to execute a VEJ, you can
view all the jobs you create using the UI. To use the visualization in the notebook, you first need to
export your output to your S3 bucket. The VEJ actions you can perform are as follows.

• StartVectorEnrichmentJob

• GetVectorEnrichmentJob

• ListVectorEnrichmentJobs

• StopVectorEnrichmentJob

• DeleteVectorEnrichmentJob

Visualization Using SageMaker geospatial capabilities

Using the visualization functionalities provided by Amazon SageMaker geospatial you can visualize
geospatial data, the inputs to your EOJ or VEJ jobs as well as the outputs exported from your

Visualization Using SageMaker geospatial capabilities 1152

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StartVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_GetVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListVectorEnrichmentJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StopVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteVectorEnrichmentJob.html

Amazon SageMaker Developer Guide

Amazon S3 bucket. The visualization tool is powered by Foursquare Studio. The following image
depicts the visualization tool supported by SageMaker geospatial capabilities.

You can use the left navigation panel to add data, layers, filters, and columns. You can also make
modifications to how you interact with the map.

Dataset

The source of data used for visualization is called a Dataset. To add data for visualization, choose
Add Data in the left navigation panel. You can either upload the data from your Amazon S3 bucket
or your local machine. The data formats supported are CSV, JSON and GeoJSON. You can add
multiple datasets to your map. After you upload the dataset, you can see it loaded on the map
screen.

Layers

In the layer panel, a layer is created and populated automatically when you add a dataset. If your
map consists of more than one dataset, you can select which dataset belongs to a layer. You can
create new layers and group them. SageMaker SageMaker geospatial capabilities support various
layer types, including point, arc, icon, and polygon.

You can choose any data point in a layer to have an Outline. You can also further customize the
data points. For example, you can choose the layer type as Point and then Fill Color based on any
column of your dataset. You can also change the radius of the points.

Visualization Using SageMaker geospatial capabilities 1153

https://studio.foursquare.com/home

Amazon SageMaker Developer Guide

The following image shows the layers panel supported by SageMaker geospatial capabilities.

Columns

You can view the columns present in your dataset by using the Columns tab in the left navigation
panel.

Filters

You can use filters to limit the data points that display on the map.

Interactions

In the Interactions panel, you can customize how you interact with the map. For example, you can
choose what metrics to display when you hover the tooltip over a data point.

Base map

Currently, SageMaker only supports the Amazon Dark base map.

Split Map Modes

Visualization Using SageMaker geospatial capabilities 1154

Amazon SageMaker Developer Guide

You can have a Single Map, Dual Maps or Swipe Maps. With Dual Maps, you can compare the
same map side-by-side using different layers. Use Swipe Maps to overlay two maps on each other
and use the sliding separator to compare them. You can choose the split map mode by choosing
the Split Mode button on the top right corner of your map.

Legends for EOJ in the SageMaker geospatial UI

The output visualization of an EOJ depends on the operation you choose to create it. The legend is
based on the default color scale. You can view the legend by choosing the Show legend button on
the top right corner of your map.

Spectral Index

When you visualize the output for an EOJ that uses the spectral index operation, you can map the
category based on the color from the legend as shown.

Cloud Masking

When you visualize the output for an EOJ that uses the cloud masking operation, you can map the
category based on the color from the legend as shown.

Visualization Using SageMaker geospatial capabilities 1155

Amazon SageMaker Developer Guide

Land Cover Segmentation

When you visualize the output for an EOJ that uses the Land Cover Segmentation operation, you
can map the category based on the color from the legend as shown.

Amazon SageMaker geospatial Map SDK

You can use Amazon SageMaker geospatial capabilities to visualize maps within the SageMaker
geospatial UI as well as SageMaker notebooks with a geospatial image. These visualizations are
supported by the map visualization library called Foursquare Studio

You can use the APIs provided by the SageMaker geospatial map SDK to visualize your geospatial
data, including the input, output, and AoI for EOJ.

Topics

Amazon SageMaker geospatial Map SDK 1156

https://studio.foursquare.com/home

Amazon SageMaker Developer Guide

• add_dataset API

• update_dataset API

• add_layer API

• update_layer API

• visualize_eoj_aoi API

• visualize_eoj_input API

• visualize_eoj_output API

add_dataset API

Adds a raster or vector dataset object to the map.

Request syntax

Request =
 add_dataset(
 self,
 dataset: Union[Dataset, Dict, None] = None,
 *,
 auto_create_layers: bool = True,
 center_map: bool = True,
 **kwargs: Any,
) -> Optional[Dataset]

Request parameters

The request accepts the following parameters.

Positional arguments

Argument Type Description

dataset Union[Dataset, Dict, None] Data used to create a dataset,
in CSV, JSON, or GeoJSON
format (for local datasets) or
a UUID string.

Amazon SageMaker geospatial Map SDK 1157

Amazon SageMaker Developer Guide

Keyword arguments

Argument Type Description

auto_create_layers Boolean Whether to attempt to create
new layers when adding
a dataset. Default value is
False.

center_map Boolean Whether to center the map
on the created dataset.
Default value is True.

id String Unique identifier of the
dataset. If you do not provide
it, a random ID is generated.

label String Dataset label which is
displayed.

color Tuple[float, float, float] Color label of the dataset.

metadata Dictionary Object containing tileset
metadata (for tiled datasets).

Response

This API returns the Dataset object that was added to the map.

update_dataset API

Updates an existing dataset's settings.

Request syntax

Request =
 update_dataset(
 self,
 dataset_id: str,
 values: Union[_DatasetUpdateProps, dict, None] = None,

Amazon SageMaker geospatial Map SDK 1158

https://location.foursquare.com/developer/docs/studio-map-sdk-types#dataset

Amazon SageMaker Developer Guide

 **kwargs: Any,
) -> Dataset

Request parameters

The request accepts the following parameters.

Positional arguments

Argument Type Description

dataset_id String The identifier of the dataset
to be updated.

values Union[_DatasetUpdateProps,
dict, None]

The values to update.

Keyword arguments

Argument Type Description

label String Dataset label which is
displayed.

color RGBColor Color label of the dataset.

Response

This API returns the updated dataset object for interactive maps, or None for non-interactive HTML
environments.

add_layer API

Adds a new layer to the map. This function requires at least one valid layer configuration.

Request syntax

Request =

Amazon SageMaker geospatial Map SDK 1159

https://location.foursquare.com/developer/docs/studio-map-sdk-types#datasetupdateprops
https://location.foursquare.com/developer/docs/studio-map-sdk-types#rgbcolor

Amazon SageMaker Developer Guide

 add_layer(
 self,
 layer: Union[LayerCreationProps, dict, None] = None,
 **kwargs: Any
) -> Layer

Request parameters

The request accepts the following parameters.

Arguments

Argument Type Description

layer Union[LayerCreationProps,
dict, None]

A set of properties used to
create a layer.

Response

The layer object that was added to the map.

update_layer API

Update an existing layer with given values.

Request syntax

Request =
 update_layer(
 self,
 layer_id: str,
 values: Union[LayerUpdateProps, dict, None],
 **kwargs: Any
) -> Layer

Request parameters

The request accepts the following parameters.

Arguments

Amazon SageMaker geospatial Map SDK 1160

https://location.foursquare.com/developer/docs/studio-map-sdk-types#layercreationprops

Amazon SageMaker Developer Guide

Positional argument Type Description

layer_id String The ID of the layer to be
updated.

values Union[LayerUpdateProps,
dict, None]

The values to update.

Keyword arguments

Argument Type Description

type LayerType The type of layer.

data_id String Unique identifier of the
dataset this layer visualizes.

fields Dict [string, Optional[string]] Dictionary that maps fields
that the layer requires for
visualization to appropriate
dataset fields.

label String Canonical label of this layer.

is_visible Boolean Whether the layer is visible or
not.

config LayerConfig Layer configuration specific to
its type.

Response

Returns the updated layer object.

visualize_eoj_aoi API

Visualize the AoI of the given job ARN.

Amazon SageMaker geospatial Map SDK 1161

https://location.foursquare.com/developer/docs/studio-map-sdk-types#layerupdateprops
https://location.foursquare.com/developer/docs/studio-map-sdk-types#layertype
https://location.foursquare.com/developer/docs/studio-map-sdk-types#layerconfig

Amazon SageMaker Developer Guide

Request parameters

The request accepts the following parameters.

Arguments

Argument Type Description

Arn String The ARN of the job.

config Dictionary

config = { label: <string>
custom label of the added AoI
layer, default AoI }

An option to pass layer
properties.

Response

Reference of the added input layer object.

visualize_eoj_input API

Visualize the input of the given EOJ ARN.

Request parameters

The request accepts the following parameters.

Arguments

Argument Type Description

Arn String The ARN of the job.

time_range_filter Dictionary

time_range_filter = {

start_date: <string> date in
ISO format

An option to provide the start
and end time. Defaults to the
raster data collection search
start and end date.

Amazon SageMaker geospatial Map SDK 1162

Amazon SageMaker Developer Guide

Argument Type Description

end_date: <string> date in
ISO format

}

config Dictionary

config = { label: <string>
custom label of the added
output layer, default Input }

An option to pass layer
properties.

Response

Reference of the added input layer object.

visualize_eoj_output API

Visualize the output of the given EOJ ARN.

Request parameters

The request accepts the following parameters.

Arguments

Argument Type Description

Arn String The ARN of the job.

time_range_filter Dictionary

time_range_filter = {

start_date: <string> date in
ISO format

end_date: <string> date in
ISO format

An option to provide the start
and end time. Defaults to the
raster data collection search
start and end date.

Amazon SageMaker geospatial Map SDK 1163

Amazon SageMaker Developer Guide

Argument Type Description

}

config Dictionary

config = {

label: <string> custom label
of the added output layer,
default Output

preset: <string> singleBand or
trueColor,

band_name: <string>, only
required for 'singleBand'
preset. Allowed bands for a
EOJ

}

An option to pass layer
properties.

Response

Reference of the added output Layer object.

To learn more about visualizing your geospatial data, refer to Visualization Using Amazon
SageMaker geospatial.

SageMaker geospatial capabilities FAQ

Use the following FAQ items to find answers to commonly asked questions about SageMaker
geospatial capabilities.

1. What regions are Amazon SageMaker geospatial capabilities available in?

Currently, SageMaker geospatial capabilities are only supported in the US West (Oregon)
Region. To view SageMaker geospatial, choose the name of the currently displayed Region in the
navigation bar of the console. Then choose the US West (Oregon) Region.

SageMaker geospatial capabilities FAQ 1164

https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-visualize.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-visualize.html

Amazon SageMaker Developer Guide

2. What AWS Identity and Access Management permissions and policies are required to use
SageMaker geospatial?

To use SageMaker geospatial you need a user, group, or role that can access SageMaker. You also
need to create a SageMaker execution role so that SageMaker geospatial can perform operations
on your behalf. To learn more, see SageMaker geospatial capabilities roles.

3. I have an existing SageMaker execution role. Do I need to update it?

Yes. To use SageMaker geospatial you must specify an additional service principal in your IAM
trust policy: sagemaker-geospatial.amazonaws.com. To learn about specifying a service
principal in a trust relationship, see Adding the SageMaker geospatial service principal to an
existing SageMaker execution role in the Amazon SageMaker Developer Guide.

4. Can I use SageMaker geospatial capabilities through my VPC environment?

Yes, you can use SageMaker geospatial through a VPN. To learn more, see Use Amazon
SageMaker geospatial capabilities in Your Amazon Virtual Private Cloud.

5. Why can't I see the SageMaker geospatial map visualizer, image or instance type when I
navigate to Amazon SageMaker Studio Classic?

Verify that you are launching Amazon SageMaker Studio Classic in the US West (Oregon) Region
and that you are not using a shared space.

6. Why can't I see the SageMaker geospatial image or instance type when I try to create a
notebook instance in Studio Classic?

Verify that you are launching Amazon SageMaker Studio Classic in the US West (Oregon) Region
and that you are not using a shared space. To learn more, see Create an Amazon SageMaker
Studio Classic notebook using the geospatial image.

7. What bands supported for various raster data collections?

Use the GetRasterDataCollection API response and refer to the ImageSourceBands field
to find the bands supported for that particular data collection.

SageMaker geospatial Security and Permissions

Use the topics on this page to learn about SageMaker geospatial capabilities security features.
Additionally, learn how to use SageMaker geospatial capabilities in an Amazon Virtual Private
Cloud as well as protect your data at rest using encryption.

Security and Permissions 1165

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-geospatial-roles.html

Amazon SageMaker Developer Guide

For more information about IAM users and roles, see Identities (Users, Groups, and Roles) in the
IAM User Guide.

To learn more about using IAM with SageMaker, see Identity and Access Management for Amazon
SageMaker.

Topics

• Configuration and Vulnerability Analysis in SageMaker geospatial

• Security Best Practices for SageMaker geospatial capabilities

• Use Amazon SageMaker geospatial capabilities in Your Amazon Virtual Private Cloud

• Use AWS KMS Permissions for Amazon SageMaker geospatial capabilities

Configuration and Vulnerability Analysis in SageMaker geospatial

Configuration and IT controls are a shared responsibility between AWS and you, our customer.
AWS handles basic security tasks like guest operating system (OS) and database patching, firewall
configuration, and disaster recovery. These procedures have been reviewed and certified by the
appropriate third parties. For more details, see the following resources:

• Shared Responsibility Model.

• Amazon Web Services: Overview of Security Processes.

Security Best Practices for SageMaker geospatial capabilities

Amazon SageMaker geospatial capabilities provide a number of security features to consider as
you develop and implement your own security policies. The following best practices are general
guidelines and don't represent a complete security solution. Because these best practices might not
be appropriate or sufficient for your environment, treat them as helpful considerations rather than
prescriptions.

Apply principle of least privilege

Amazon SageMaker geospatial capabilities provide granular access policy for applications using
IAM roles. We recommend that the roles be granted only the minimum set of privileges required
by the job. We also recommend auditing the jobs for permissions on a regular basis and upon any
change to your application.

Role-based access control (RBAC) permissions

Security and Permissions 1166

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon SageMaker Developer Guide

Administrators should strictly control Role-based access control (RBAC) permissions for Amazon
SageMaker geospatial capabilities.

Use temporary credentials whenever possible

Where possible, use temporary credentials instead of long-term credentials, such as access keys.
For scenarios in which you need IAM users with programmatic access and long-term credentials,
we recommend that you rotate access keys. Regularly rotating long-term credentials helps you
familiarize yourself with the process. This is useful in case you are ever in a situation where you
must rotate credentials, such as when an employee leaves your company. We recommend that
you use IAM access last used information to rotate and remove access keys safely. For more
information, see Rotating access keys and Security best practices in IAM.

Use AWS CloudTrail to view and log API calls

AWS CloudTrail tracks anyone making API calls in your AWS account. API calls are logged whenever
anyone uses the Amazon SageMaker geospatial capabilities API, the Amazon SageMaker geospatial
capabilities console or Amazon SageMaker geospatial capabilities AWS CLI commands. Enable
logging and specify an Amazon S3 bucket to store the logs.

Your trust, privacy, and the security of your content are our highest priorities. We implement
responsible and sophisticated technical and physical controls designed to prevent unauthorized
access to, or disclosure of, your content and ensure that our use complies with our commitments to
you. For more information, see AWS Data Privacy FAQ.

Use Amazon SageMaker geospatial capabilities in Your Amazon Virtual Private
Cloud

The following topic gives information on how to use SageMaker notebooks with a SageMaker
geospatial image in a Amazon SageMaker domain with VPC only mode. For more information on
VPCs in Amazon SageMaker Studio Classic see Choose an Amazon VPC.

VPC only communication with the internet

By default, SageMaker domain uses two Amazon VPC. One of the Amazon VPC is managed by
Amazon SageMaker and provides direct internet access. You specify the other Amazon VPC, which
provides encrypted traffic between the domain and your Amazon Elastic File System (Amazon EFS)
volume.

You can change this behavior so that SageMaker sends all traffic over your specified Amazon
VPC. If VPC only has been choosen as the network access mode during the SageMaker domain

Security and Permissions 1167

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_RotateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://aws.amazon.com/compliance/data-privacy-faq/
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-vpc.html

Amazon SageMaker Developer Guide

creation, the following requirements need to be considered to still allow usage of SageMaker
Studio Classic notebooks within the created SageMaker domain.

Requirements to use VPC only mode

Note

In order to use the visualization components of SageMaker geospatial capabilities, the
browser you use to access the SageMaker Studio Classic UI needs to be connected to the
internet.

When you choose VpcOnly, follow these steps:

1. You must use private subnets only. You cannot use public subnets in VpcOnly mode.

2. Ensure your subnets have the required number of IP addresses needed. The expected number
of IP addresses needed per user can vary based on use case. We recommend between 2 and 4
IP addresses per user. The total IP address capacity for a Studio Classic domain is the sum of
available IP addresses for each subnet provided when the domain is created. Ensure that your
estimated IP address usage does not exceed the capacity supported by the number of subnets
you provide. Additionally, using subnets distributed across many availability zones can aid in IP
address availability. For more information, see VPC and subnet sizing for IPv4.

Note

You can configure only subnets with a default tenancy VPC in which your instance
runs on shared hardware. For more information on the tenancy attribute for VPCs, see
Dedicated Instances.

3. Set up one or more security groups with inbound and outbound rules that together allow the
following traffic:

• NFS traffic over TCP on port 2049 between the domain and the Amazon EFS volume.

• TCP traffic within the security group. This is required for connectivity between the
JupyterServer app and the KernelGateway apps. You must allow access to at least ports in
the range 8192-65535.

4. If you want to allow internet access, you must use a NAT gateway with access to the internet,
for example through an internet gateway.

Security and Permissions 1168

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/efs/latest/ug/network-access.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-other-instances
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-working-with
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

Amazon SageMaker Developer Guide

5. If you don't want to allow internet access, create interface VPC endpoints (AWS PrivateLink) to
allow Studio Classic to access the following services with the corresponding service names. You
must also associate the security groups for your VPC with these endpoints.

Note

Currently, SageMaker geospatial capabilities are only supported in the US West
(Oregon) Region.

• SageMaker API : com.amazonaws.us-west-2.sagemaker.api

• SageMaker runtime: com.amazonaws.us-west-2.sagemaker.runtime. This is required
to run Studio Classic notebooks with a SageMaker geospatial image.

• Amazon S3: com.amazonaws.us-west-2.s3.

• To use SageMaker Projects: com.amazonaws.us-west-2.servicecatalog.

• SageMaker geospatial capabilities: com.amazonaws.us-west-2.sagemaker-
geospatial

If you use the SageMaker Python SDK to run remote training jobs, you must also create the
following Amazon VPC endpoints.

• AWS Security Token Service: com.amazonaws.region.sts

• Amazon CloudWatch: com.amazonaws.region.logs. This is required to allow SageMaker
Python SDK to get the remote training job status from Amazon CloudWatch.

Note

For a customer working within VPC mode, company firewalls can cause connection issues
with SageMaker Studio Classic or between JupyterServer and the KernelGateway. Make the
following checks if you encounter one of these issues when using SageMaker Studio Classic
from behind a firewall.

• Check that the Studio Classic URL is in your networks allowlist.

• Check that the websocket connections are not blocked. Jupyter uses websocket under
the hood. If the KernelGateway application is InService, JupyterServer may not be able

Security and Permissions 1169

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://sagemaker.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

to connect to the KernelGateway. You should see this problem when opening System
Terminal as well.

Use AWS KMS Permissions for Amazon SageMaker geospatial capabilities

You can protect your data at rest using encryption for SageMaker geospatial capabilities. By
default, it uses server-side encryption with an Amazon SageMaker geospatial owned key.
SageMaker geospatial capabilities also supports an option for server-side encryption with a
customer managed KMS key.

Server-Side Encryption with Amazon SageMaker geospatial managed key (Default)

SageMaker geospatial capabilities encrypts all your data, including computational results from
your Earth Observation jobs (EOJ) and Vector Enrichment jobs (VEJ) along with all your service
metadata. There is no data that is stored within SageMaker geospatial capabilities unencrypted. It
uses a default AWS owned key to encrypt all your data.

Server-Side Encryption with customer managed KMS key (Optional)

SageMaker geospatial capabilities supports the use of a symmetric customer managed key that
you create, own, and manage to add a second layer of encryption over the existing AWS owned
encryption. Because you have full control of this layer of encryption, you can perform such tasks as:

• Establishing and maintaining key policies

• Establishing and maintaining IAM policies and grants

• Enabling and disabling key policies

• Rotating key cryptographic material

• Adding tags

• Creating key aliases

• Scheduling keys for deletion

For more information, see Customer managed keys in the AWS Key Management Service Developer
Guide.

Security and Permissions 1170

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon SageMaker Developer Guide

How SageMaker geospatial capabilities uses grants in AWS KMS

SageMaker geospatial capabilities requires a grant to use your customer managed key. When
you create an EOJ or an VEJ encrypted with a customer managed key, SageMaker geospatial
capabilities creates a grant on your behalf by sending a CreateGrant request to AWS KMS.
Grants in AWS KMS are used to give SageMaker geospatial capabilities access to a KMS key in
a customer account. You can revoke access to the grant, or remove the service's access to the
customer managed key at any time. If you do, SageMaker geospatial capabilities won't be able to
access any of the data encrypted by the customer managed key, which affects operations that are
dependent on that data.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

To create a symmetric customer managed key

Follow the steps for Creating symmetric encryption KMS keys in the AWS Key Management Service
Developer Guide.

Key policy

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. When you create your customer managed key, you can specify a key policy. For
more information, see Determining access to AWS KMS keys in the AWS Key Management Service
Developer Guide.

To use your customer managed key with your SageMaker geospatial capabilities resources, the
following API operations must be permitted in the key policy. The principal for these operations
should be the Execution Role you provide in the SageMaker geospatial capabilities request.
SageMaker geospatial capabilities assumes the provided Execution Role in the request to perform
these KMS operations.

• kms:CreateGrant

• kms:GenerateDataKey

• kms:Decrypt

• kms:GenerateDataKeyWithoutPlaintext

Security and Permissions 1171

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html

Amazon SageMaker Developer Guide

The following are policy statement examples you can add for SageMaker geospatial capabilities:

CreateGrant

"Statement" : [
 {
 "Sid" : "Allow access to Amazon SageMaker geospatial capabilities",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "<Customer provided Execution Role ARN>"
 },
 "Action" : [
 "kms:CreateGrant",
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource" : "*",
 },
]

For more information about specifying permissions in a policy, see AWS KMS permissions in the
AWS Key Management Service Developer Guide. For more information about troubleshooting, see
Troubleshooting key access in the AWS Key Management Service Developer Guide.

If your key policy does not have your account root as key administrator, you need to add the same
KMS permissions on your execution role ARN. Here is a sample policy you can add to the execution
role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "kms:CreateGrant",
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource": [
 "<KMS key Arn>"
],

Security and Permissions 1172

https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html

Amazon SageMaker Developer Guide

 "Effect": "Allow"
 }
]
}

Monitoring your encryption keys for SageMaker geospatial capabilities

When you use an AWS KMS customer managed key with your SageMaker geospatial capabilities
resources, you can use AWS CloudTrail or Amazon CloudWatch Logs to track requests that
SageMaker geospatial sends to AWS KMS.

Select a tab in the following table to see examples of AWS CloudTrail events to monitor KMS
operations called by SageMaker geospatial capabilities to access data encrypted by your customer
managed key.

CreateGrant

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:SageMaker-Geospatial-StartEOJ-
KMSAccess",
 "arn": "arn:aws:sts::111122223333:assumed-role/
SageMakerGeospatialCustomerRole/SageMaker-Geospatial-StartEOJ-KMSAccess",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAIOSFODNN7EXAMPLE3",
 "arn": "arn:aws:sts::111122223333:assumed-role/
SageMakerGeospatialCustomerRole",
 "accountId": "111122223333",
 "userName": "SageMakerGeospatialCustomerRole"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2023-03-17T18:02:06Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "arn:aws:iam::111122223333:root"

Security and Permissions 1173

Amazon SageMaker Developer Guide

 },
 "eventTime": "2023-03-17T18:02:06Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "retiringPrincipal": "sagemaker-geospatial.us-west-2.amazonaws.com",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "operations": [
 "Decrypt"
],
 "granteePrincipal": "sagemaker-geospatial.us-west-2.amazonaws.com"
 },
 "responseElements": {
 "grantId":
 "0ab0ac0d0b000f00ea00cc0a0e00fc00bce000c000f0000000c0bc0a0000aaafSAMPLE",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

GenerateDataKey

{
 "eventVersion": "1.08",

Security and Permissions 1174

Amazon SageMaker Developer Guide

 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "sagemaker-geospatial.amazonaws.com"
 },
 "eventTime": "2023-03-24T00:29:45Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "sagemaker-geospatial.amazonaws.com",
 "userAgent": "sagemaker-geospatial.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:s3:arn": "arn:aws:s3:::axis-earth-observation-
job-378778860802/111122223333/napy9eintp64/output/
consolidated/32PPR/2022-01-04T09:58:03Z/S2B_32PPR_20220104_0_L2A_msavi.tif"
 },
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "keySpec": "AES_256"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Decrypt

{
 "eventVersion": "1.08",
 "userIdentity": {

Security and Permissions 1175

Amazon SageMaker Developer Guide

 "type": "AWSService",
 "invokedBy": "sagemaker-geospatial.amazonaws.com"
 },
 "eventTime": "2023-03-28T22:04:24Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "sagemaker-geospatial.amazonaws.com",
 "userAgent": "sagemaker-geospatial.amazonaws.com",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "encryptionContext": {
 "aws:s3:arn": "arn:aws:s3:::axis-earth-observation-
job-378778860802/111122223333/napy9eintp64/output/
consolidated/32PPR/2022-01-04T09:58:03Z/S2B_32PPR_20220104_0_L2A_msavi.tif"
 },
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

GenerateDataKeyWithoutPlainText

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:SageMaker-Geospatial-StartEOJ-
KMSAccess",

Security and Permissions 1176

Amazon SageMaker Developer Guide

 "arn": "arn:aws:sts::111122223333:assumed-role/
SageMakerGeospatialCustomerRole/SageMaker-Geospatial-StartEOJ-KMSAccess",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAIOSFODNN7EXAMPLE3",
 "arn": "arn:aws:sts::111122223333:assumed-role/
SageMakerGeospatialCustomerRole",
 "accountId": "111122223333",
 "userName": "SageMakerGeospatialCustomerRole"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2023-03-17T18:02:06Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "arn:aws:iam::111122223333:root"
 },
 "eventTime": "2023-03-28T22:09:16Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "172.12.34.56",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],

Security and Permissions 1177

Amazon SageMaker Developer Guide

 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Types of compute instances

SageMaker geospatial capabilities offer three types of compute instances.

• SageMaker Studio Classic geospatial notebook instances – SageMaker geospatial supports
both CPU and GPU-based notebook instances in Studio Classic. Notebook instances are used to
build, train, and deploy ML models. For a list of available notebook instance types that work with
the geospatial image, see Supported notebook instance types.

• SageMaker geospatial jobs instances – Run processing jobs to transform satellite image data.

• SageMaker geospatial model inference types – Make predictions by using pre-trained ML
models on satellite imagery.

The instance type is determined by the operations that you run.

The following table shows the available SageMaker geospatial specific operations and instance
types that you can use.

Operations Instance

Temporal Statistics ml.geospatial.jobs

Zonal Statistics ml.geospatial.jobs

Resampling ml.geospatial.jobs

Geomosaic ml.geospatial.jobs

Band Stacking ml.geospatial.jobs

Band Math ml.geospatial.jobs

Cloud Removal with Landsat8 ml.geospatial.jobs

Types of compute instances 1178

Amazon SageMaker Developer Guide

Operations Instance

Cloud Removal with Sentinel-2 ml.geospatial.models

Cloud Masking ml.geospatial.models

Land Cover Segmentation ml.geospatial.models

SageMaker geospatial supported notebook instance types

SageMaker geospatial supports both CPU and GPU-based notebook instances in Studio Classic. If
when starting a GPU enabled notebook instance you receive a ResourceLimitExceeded error, you
need to request a quota increase. To get started on a Service Quotas quota increase request, see
Requesting a quota increase in the Service Quotas User Guide.

Supported Studio Classic notebook instance types

Name Instance type

ml.geospatial.interactive CPU

ml.g5.xlarge GPU

ml.g5.2xlarge GPU

ml.g5.4xlarge GPU

ml.g5.8xlarge GPU

ml.g5.16xlarge GPU

ml.g5.12xlarge GPU

ml.g5.24xlarge GPU

ml.g5.48xlarge GPU

You are charged different rates for each type of compute instance that you use. For more
information about pricing, see Geospatial ML with Amazon SageMaker.

Types of compute instances 1179

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://aws.amazon.com/sagemaker/geospatial

Amazon SageMaker Developer Guide

SageMaker geospatial libraries

The SageMaker geospatial specific Instance type, ml.geospatial.interactive contains the
following Python libraries.

Geospatial libraries available on the geospatial instance type

Library name Version available

numpy 1.23.4

scipy 1.11.2

pandas 1.4.4

gdal 3.2.2

fiona 1.8.22

geopandas 0.11.1

shapely 1.8.4

seaborn 0.11.2

notebook 1.8.22

scikit-image 0.11.2

rasterio 6.4.12

scikit-learn 0.19.2

ipyleaflet 1.0.1

rtree 0.17.2

opencv 4.6.0.66

supy 2022.4.7

SNAP toolbox 9.0

Types of compute instances 1180

Amazon SageMaker Developer Guide

Library name Version available

cdsapi 0.6.1

arosics 1.8.1

rasterstats 0.18.0

rioxarray 0.14.1

pyroSAR 0.20.0

eo-learn 1.4.1

deepforest 1.2.7

scrapy 2.8.0

netCDF4 1.6.3

xarray[complete] 0.20.1

Orfeotoolbox OTB-8.1.1

pytorch 2.0.1

pytorch-cuda 11.8

torchvision 0.15.2

torchaudio 2.0.2

pytorch-lightning 2.0.6

tensorflow 2.13.0

Data collections

Amazon SageMaker geospatial supports the following raster data collections. Of the following
data collections, you can use the USGS Landsat and the Sentinel-2 Cloud-Optimized GeoTIFF data

Data collections 1181

Amazon SageMaker Developer Guide

collections when starting an Earth Observation Job (EOJ). To learn more about the EOJs, see Earth
Observation Jobs.

• Copernicus Digital Elevation Model (DEM) – GLO-30

• Copernicus Digital Elevation Model (DEM) – GLO-90

• Sentinel-2 Cloud-Optimized GeoTIFFs

• Sentinel-1

• National Agriculture Imagery Program (NAIP) on AWS

• USGS Landsat 8

To find the list of available raster data collections in your AWS Regions, use
ListRasterDataCollections. In the ListRasterDataCollections response, you get a
RasterDataCollectionMetadata object that contains details about the available raster data
collections.

Example Example – Calling the ListRasterDataCollections API using the AWS SDK for
Python (Boto3)

When you use the SDK for Python (Boto3) and SageMaker geospatial, you must create a
geospatial client, geospatial_client. Use the following Python snippet to make a call to the
list_raster_data_collections API:

import boto3
import sagemaker
import sagemaker_geospatial_map
import json

SageMaker Geospatial Capabilities is currently only avaialable in US-WEST-2
session = boto3.Session(region_name='us-west-2')
execution_role = sagemaker.get_execution_role()

Creates a SageMaker Geospatial client instance
geospatial_client = session.client(service_name="sagemaker-geospatial")

Creates a resusable Paginator for the list_raster_data_collections API operation
paginator = geospatial_client.get_paginator("list_raster_data_collections")

Create a PageIterator from the Paginator
page_iterator = paginator.paginate()

Data collections 1182

https://registry.opendata.aws/copernicus-dem/
https://registry.opendata.aws/copernicus-dem/
https://registry.opendata.aws/sentinel-2-l2a-cogs/
https://registry.opendata.aws/sentinel-1/
https://registry.opendata.aws/naip/
https://registry.opendata.aws/usgs-landsat/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListRasterDataCollections.html#API_geospatial_ListRasterDataCollections_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListRasterDataCollections.html#API_geospatial_ListRasterDataCollections_ResponseSyntax

Amazon SageMaker Developer Guide

Use the iterator to iterate throught the results of list_raster_data_collections
results = []
for page in page_iterator:
 results.append(page['RasterDataCollectionSummaries'])

print (results)

In the JSON response, you will receive the following, which has been truncated for clarity:

{
 "Arn": "arn:aws:sagemaker-geospatial:us-west-2:555555555555:raster-data-collection/
public/dxxbpqwvu9041ny8",
 "Description": "Copernicus DEM is a Digital Surface Model which represents the
 surface of the Earth including buildings, infrastructure, and vegetation. GLO-30 is
 instance of Copernicus DEM that provides limited worldwide coverage at 30 meters.",
 "DescriptionPageUrl": "https://registry.opendata.aws/copernicus-dem/",
 "Name": "Copernicus DEM GLO-30",
 "Tags": {},
 "Type": "PUBLIC"
}

Image band information from the USGS Landsat and Sentinel-2 data collections

Image band information from the USGS Landsat 8 and Sentinel-2 data collections are provided in
the following table.

USGS Landsat

Band name Wave length
range (nm)

Units Valid range Fill value Spatial
resolution

coastal 435 - 451 Unitless 1 - 65455 0 (No Data) 30m

blue 452 - 512 Unitless 1 - 65455 0 (No Data) 30m

green 533 - 590 Unitless 1 - 65455 0 (No Data) 30m

red 636 - 673 Unitless 1 - 65455 0 (No Data) 30m

nir 851 - 879 Unitless 1 - 65455 0 (No Data) 30m

Data collections 1183

Amazon SageMaker Developer Guide

Band name Wave length
range (nm)

Units Valid range Fill value Spatial
resolution

swir16 1566 - 1651 Unitless 1 - 65455 0 (No Data) 30m

swir22 2107 - 2294 Unitless 1 - 65455 0 (No Data) 30m

qa_aerosol NA Bit Index 0 - 255 1 30m

qa_pixel NA Bit Index 1 - 65455 1 (bit 0) 30m

qa_radsat NA Bit Index 1 - 65455 NA 30m

t 10600 -
11190

Scaled Kelvin 1 - 65455 0 (No Data) 30m (scaled
from 100m)

atran NA Unitless 0 - 10000 -9999 (No
Data)

30m

cdist NA Kilometers 0 - 24000 -9999 (No
Data)

30m

drad NA W/(m^2 sr
µm)/DN

0 - 28000 -9999 (No
Data)

30m

urad NA W/(m^2 sr
µm)/DN

0 - 28000 -9999 (No
Data)

30m

trad NA W/(m^2 sr
µm)/DN

0 - 28000 -9999 (No
Data)

30m

emis NA Emissivity
coefficient

1 - 10000 -9999 (No
Data)

30m

emsd NA Emissivity
coefficient

1 - 10000 -9999 (No
Data)

30m

Data collections 1184

Amazon SageMaker Developer Guide

Sentinel-2

Band name Wave length
range (nm)

Scale Valid range Fill value Spatial
resolution

coastal 443 0.0001 NA 0 (No Data) 60m

blue 490 0.0001 NA 0 (No Data) 10m

green 560 0.0001 NA 0 (No Data) 10m

red 665 0.0001 NA 0 (No Data) 10m

rededge1 705 0.0001 NA 0 (No Data) 20m

rededge2 740 0.0001 NA 0 (No Data) 20m

rededge3 783 0.0001 NA 0 (No Data) 20m

nir 842 0.0001 NA 0 (No Data) 10m

nir08 865 0.0001 NA 0 (No Data) 20m

nir08 865 0.0001 NA 0 (No Data) 20m

nir09 940 0.0001 NA 0 (No Data) 60m

swir16 1610 0.0001 NA 0 (No Data) 20m

swir22 2190 0.0001 NA 0 (No Data) 20m

aot Aerosol
optical
thickness

0.001 NA 0 (No Data) 10m

wvp Scene-ave
rage water
 vapor

0.001 NA 0 (No Data) 10m

Data collections 1185

Amazon SageMaker Developer Guide

Band name Wave length
range (nm)

Scale Valid range Fill value Spatial
resolution

scl Scene
classification
data

NA 1 - 11 0 (No Data) 20m

RStudio on Amazon SageMaker

RStudio is an integrated development environment for R, with a console, syntax-highlighting editor
that supports direct code execution, and tools for plotting, history, debugging and workspace
management. Amazon SageMaker supports RStudio as a fully-managed integrated development
environment (IDE) integrated with Amazon SageMaker domain through Posit Workbench. For more
information about Posit Workbench, see the Posit website.

RStudio allows customers to create data science insights using an R environment. With RStudio
integration, you can launch an RStudio environment in the domain to run your RStudio workflows
on SageMaker resources.

SageMaker integrates RStudio through the creation of a RStudioServerPro app.

The following are supported by RStudio on SageMaker.

• R developers use the RStudio IDE interface with popular developer tools from the R ecosystem.
Users can launch new RStudio sessions, write R code, install dependencies from RStudio Package
Manager, and publish Shiny apps using RStudio Connect.

• R developers can quickly scale underlying compute resources to run large scale data processing
and statistical analysis.

• Platform administrators can set up user identities, authorization, networking, storage, and
security for their data science teams through AWS IAM Identity Center and AWS Identity and
Access Management integration. This includes connection to private Amazon Virtual Private
Cloud (Amazon VPC) resources and internet-free mode with AWS PrivateLink.

• Integration with AWS License Manager.

For information on the onboarding steps to create a domain with RStudio enabled, see Amazon
SageMaker domain overview.

RStudio on Amazon SageMaker 1186

https://posit.co/products/enterprise/workbench/

Amazon SageMaker Developer Guide

Region availability

The following table gives information about the AWS Regions that RStudio on SageMaker is
supported in.

Region name Region

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

US West (N. California) us-west-1

US West (Oregon) us-west-2

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

Europe (Frankfurt) eu-central-1

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

Europe (Stockholm) eu-north-1

South America (São Paulo) sa-east-1

Region availability 1187

Amazon SageMaker Developer Guide

RStudio components

• RStudioServerPro: The RStudioServerPro app is a multiuser app that is a shared resource among
all user profiles in the domain. Once an RStudio app is created in a domain, the admin can give
permissions to users in the domain.

• RStudio user: RStudio users are users within the domain that are authorized to use the RStudio
license.

• RStudio admin: An RStudio on Amazon SageMaker admin can access the RStudio administrative
dashboard. RStudio on Amazon SageMaker admins differ from "stock" Posit Workbench admins
because they do not have root access to the instance running the RStudioServerPro app and
can't modify the RStudio configuration file.

• RStudio Server: The RStudio Server instance is responsible for serving the RStudio UI to all
authorized Users. This instance is launched on an Amazon SageMaker instance.

• RSession: An RSession is a browser-based interface to the RStudio IDE running on an Amazon
SageMaker instance. Users can create and interact with their RStudio projects through the
RSession.

• RSessionGateway: The RSessionGateway app is used to support an RSession.

• RStudio administrative dashboard: This dashboard gives information on the RStudio users in the
Amazon SageMaker domain and their sessions. This dashboard can only be accessed by users
that have RStudio admin authorization.

Differences from Posit Workbench

RStudio on Amazon SageMaker has some significant differences from Posit Workbench.

• When using RStudio on SageMaker, users don’t have access to the RStudio configuration files.
Amazon SageMaker manages the configuration file and sets defaults. You can modify the
RStudio Connect and RStudio Package Manager URLs when creating your RStudio-enabled
Amazon SageMaker domain.

• Project sharing, realtime collaboration, and Job Launcher are not currently supported when
using RStudio on Amazon SageMaker.

• When using RStudio on SageMaker, the RStudio IDE runs on Amazon SageMaker instances for
on-demand containerized compute resources.

• RStudio on SageMaker only supports the RStudio IDE and does not support other IDEs supported
by a Posit Workbench installation.

RStudio components 1188

https://posit.co/products/enterprise/workbench/

Amazon SageMaker Developer Guide

• RStudio on SageMaker only supports the RStudio version specified in Upgrade the RStudio
Version.

Manage RStudio on Amazon SageMaker

The following topics give information on managing RStudio on Amazon SageMaker. This includes
information on your RStudio environment configuration, user sessions, and necessary resources.
For information on how to use RStudio on SageMaker, see Use RStudio on Amazon SageMaker.

For information about creating a Amazon SageMaker domain with RStudio enabled, see Amazon
SageMaker domain overview.

For information about the AWS Regions that RStudio on SageMaker is supported in, see Supported
Regions and Quotas.

Topics

• RStudio license

• Upgrade the RStudio Version

• Network and Storage

• RStudioServerPro instance type

• RStudio Connect URL

• RStudio Package Manager

• Create an Amazon SageMaker domain with RStudio using the AWS CLI

• Add RStudio support to an existing domain

• Bring your own image to RStudio on SageMaker

• Manage users

• RStudio administrative dashboard

• Shut down and restart RStudio

• Manage billing and cost

• Diagnose issues and get support

RStudio license

RStudio on Amazon SageMaker is a paid product and requires that each user is appropriately
licensed. Licenses for RStudio on Amazon SageMaker may be obtained from RStudio PBC directly,

Manage RStudio on SageMaker 1189

Amazon SageMaker Developer Guide

or by purchasing a subscription to Posit Workbench on AWS Marketplace. For existing customers of
Posit Workbench Enterprise, licenses are issued at no additional cost.

To use an RStudio license with Amazon SageMaker, you must first have a valid RStudio license
registered with AWS License Manager. Subscriptions to Posit Workbench on AWS Marketplace
automatically trigger license creation with AWS License Manager. For licenses purchased directly
through Rstudio PBC, a licenses grant for your AWS Account must be created. Contact RStudio
for direct license purchases or to enable existing licenses in AWS License Manager. For more
information about registering a license with AWS License Manager, see Seller issued licenses in
AWS License Manager.

The following topics show how to acquire and validate a license granted by RStudio PBC.

Get an RStudio license

1. If you don't have an RStudio license, you may purchase one from the AWS Marketplace or from
RStudio PBC directly.

• To purchase a subscription from the AWS Marketplace, complete the steps in Subscribing to
an AMI product with contract pricing public offer by searching for Posit Workbench.

• To purchase from RStudio PBC directly, navigate to RStudio Pricing or contact
sales@rstudio.com. When buying or updating an RStudio license, you must provide the AWS
Account that will host your Amazon SageMaker domain.

If you have an existing RStudio license, contact your RStudio Sales representative or
sales@rstudio.com to add RStudio on Amazon SageMaker to your existing Posit Workbench
Enterprise license, or to convert your Posit Workbench Standard license. The RStudio Sales
representative will send you the appropriate electronic order form.

2. RStudio grants a Posit Workbench license to your AWS Account through AWS License Manager
in the US East (N. Virginia) Region. Although the RStudio license is granted in the US East (N.
Virginia) Region, your license can be consumed in any AWS Region that RStudio on Amazon
SageMaker is supported in. You can expect the license grant process to complete within three
business days after you share your AWS account ID with RStudio.

3. When this license is granted, you receive an email from your RStudio Sales representative with
instructions to accept your license grant.

Validate your RStudio license to be used with Amazon SageMaker

Manage RStudio on SageMaker 1190

https://docs.aws.amazon.com/license-manager/latest/userguide/seller-issued-licenses.html
https://docs.aws.amazon.com/license-manager/latest/userguide/seller-issued-licenses.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-ami-contracts.html#sub-public-AMI-contract
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-ami-contracts.html#sub-public-AMI-contract
https://www.rstudio.com/pricing/
mailto:sales@rstudio.com
mailto:sales@rstudio.com

Amazon SageMaker Developer Guide

1. Log into the AWS License Manager console in the same region as your Amazon SageMaker
domain. If you are using AWS License Manager for the first time, AWS License Manager
prompts you to grant permission to use AWS License Manager.

2. Select Start using AWS License manager.

3. Select I grant AWS License Manager the required permissions and select Grant
Permissions.

4. Navigate to Granted Licenses on the left panel.

5. Select the license grant with RSW-SageMaker as the Product name and select View.

6. From the license detail page, select Accept & activate license.

RStudio administrative dashboard

You can use the RStudio administrative dashboard to see the number of users on the license
following the steps in RStudio administrative dashboard.

Upgrade the RStudio Version

This guide provides information about the 2023.03.2-547.pro5 version update for RStudio on
SageMaker. Starting February 27, 2024, new domains with RStudio support are created with Posit
Workbench version 2023.03.2-547.pro5. This applies to the RStudioServerPro applications
and default RSessionGateway applications.

The following sections give information about the 2023.03.2-547.pro5 release.

Latest version updates

The patch version 2023.03.2-547.pro5 release includes the following change:

• Fixed intermittent RServer crash when joining an RSession that was started with the job launcher
and is not immediately available.

The latest RStudio version is 2023.03.2-454.pro2. This version includes the following changes:

• Added RTools 4.3 support

• Added support for R 4.3

• Upgraded Quarto to 1.2.335

• Improved session management

Manage RStudio on SageMaker 1191

Amazon SageMaker Developer Guide

For more information about the changes in this release, see https://docs.posit.co/ide/news/.

Note

If you see the following warning, there is a version mismatch between the RSession and
the Posit Workbench version used in RStudio on SageMaker. To resolve this issue, update
the RStudio version for the domain. For information about updating the RStudio version,
see Upgrade to the new version. Despite this warning, versions 2023.03.2-547.pro5 and
2023.03.2-454.pro2 are compatible images.

Session version 2023.03.2+454.pro2 does not match server version
 2023.03.3-547.pro5 - this is an unsupported configuration, and you may
 experience unexpected issues as a result.

Versioning

There are currently two versions of Posit Workbench supported by SageMaker.

• Latest version supported: 2023.03.2-547.pro5

• Previous version supported: 2022.02.2-485.pro2

The default Posit Workbench version that's selected by SageMaker depends on the creation date of
the domain.

• For domains created after February 27, 2024, version 2023.03.2-547.pro5 is the default
selected version.

• For domains created after June 27, 2023 and before February 27, 2024, version
2023.03.2-454.pro2 is the default selected version. You can update your domains to the
latest version (2023.03.2-547.pro5) by setting it as the default version for the domain. For
more information, see Upgrade to the new version.

• For domains created before June 27, 2023, version 2022.02.2-485.pro2 is the default
selected version. You can update your domains to the latest version (2023.03.2-547.pro5) by
setting it as the default version for the domain. For more information, see Upgrade to the new
version.

Manage RStudio on SageMaker 1192

https://docs.posit.co/ide/news/

Amazon SageMaker Developer Guide

Note

The default RSessionGateway application version matches the current version of the
RStudioServerPro application.

The following table lists the image ARNs for both versions for each AWS Region. These ARNs are
passed as part of an update-domain command to set the desired version.

Region 2022.02.2-485.pro2
Image ARN

2023.03.2-547.pro5
Image ARN

us-east-1 arn:aws:sagemaker:us-east-1
:081325390199:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:us-east-1
:081325390199:image/
rstudio-workbench-2023.03

us-east-2 arn:aws:sagemaker:us-east-2
:429704687514:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:us-east-2
:429704687514:image/
rstudio-workbench-2023.03

us-west-1 arn:aws:sagemaker:us-west-1
:742091327244:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:us-west-1
:742091327244:image/
rstudio-workbench-2023.03

us-west-2 arn:aws:sagemaker:us-west-2
:236514542706:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:us-west-2
:236514542706:image/
rstudio-workbench-2023.03

af-south-1 arn:aws:sagemaker:af-south-
1:559312083959:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:af-south-
1:559312083959:image/
rstudio-workbench-2023.03

ap-east-1 arn:aws:sagemaker:ap-east-1
:493642496378:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:ap-east-1
:493642496378:image/
rstudio-workbench-2023.03

Manage RStudio on SageMaker 1193

Amazon SageMaker Developer Guide

ap-south-1 arn:aws:sagemaker:ap-south-
1:394103062818:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:ap-south-
1:394103062818:image/
rstudio-workbench-2023.03

ap-northeast-2 arn:aws:sagemaker:ap-northe
ast-2:806072073708:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:ap-northe
ast-2:806072073708:image/
rstudio-workbench-2023.03

ap-southeast-1 arn:aws:sagemaker:ap-southe
ast-1:492261229750:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:ap-southe
ast-1:492261229750:image/
rstudio-workbench-2023.03

ap-southeast-2 arn:aws:sagemaker:ap-southe
ast-2:452832661640:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:ap-southe
ast-2:452832661640:image/
rstudio-workbench-2023.03

ap-northeast-1 arn:aws:sagemaker:ap-northe
ast-1:102112518831:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:ap-northe
ast-1:102112518831:image/
rstudio-workbench-2023.03

ca-central-1 arn:aws:sagemaker:ca-centra
l-1:310906938811:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:ca-centra
l-1:310906938811:image/
rstudio-workbench-2023.03

eu-central-1 arn:aws:sagemaker:eu-centra
l-1:936697816551:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:eu-centra
l-1:936697816551:image/
rstudio-workbench-2023.03

eu-west-1 arn:aws:sagemaker:eu-west-1
:470317259841:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:eu-west-1
:470317259841:image/
rstudio-workbench-2023.03

eu-west-2 arn:aws:sagemaker:eu-west-2
:712779665605:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:eu-west-2
:712779665605:image/
rstudio-workbench-2023.03

eu-west-3 arn:aws:sagemaker:eu-west-3
:615547856133:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:eu-west-3
:615547856133:image/
rstudio-workbench-2023.03

Manage RStudio on SageMaker 1194

Amazon SageMaker Developer Guide

eu-north-1 arn:aws:sagemaker:eu-north-
1:243637512696:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:eu-north-
1:243637512696:image/
rstudio-workbench-2023.03

eu-south-1 arn:aws:sagemaker:eu-south-
1:592751261982:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:eu-south-
1:592751261982:image/
rstudio-workbench-2023.03

sa-east-1 arn:aws:sagemaker:sa-east-1
:782484402741:image/
rstudio-workbench-2021.08

arn:aws:sagemaker:sa-east-1
:782484402741:image/
rstudio-workbench-2023.03

Upgrade to the new version

Existing domains using version 2022.02.2-485.pro2 or 2023.03.2-454.pro2 can upgrade to
2023.03.2-547.pro5 version in one of two ways:

• Create a new domain from the AWS CLI with RStudio enabled.

• Update an existing domain to use the 2023.03.2-547.pro5 version.

The following procedure shows how to delete the RStudio application for an existing domain, set
the default version to 2023.03.2-547.pro5, and then create an RStudio application.

1. Delete the RStudioServerPro application and all RSessionGateway applications
associated with your existing domain. For information about how to find your domain ID, see
View domains. For more information about deleting applications, see Shut down and restart
RStudio.

aws sagemaker delete-app \
 --region region \
 --domain-id domainId \
 --user-profile-name domain-shared \
 --app-type RStudioServerPro \
 --app-name default

2. If your domain is using RStudio version 2022.02.2-485.pro2, update the
domain to set 2023.03.2-547.pro5 as the default Posit Workbench version. The
SageMakerImageArn value in the following update-domain command specifies the RStudio

Manage RStudio on SageMaker 1195

Amazon SageMaker Developer Guide

2023.03.2-547.pro5 version as the default. This ARN must match the Region that your
domain is in. For a list of all available ARNs, see Versioning.

Pass an execution role ARN for the domain that provides permissions to update the domain.

aws sagemaker update-domain \
 --region region \
 --domain-id domainId \
 --domain-settings-for-update "{\"RStudioServerProDomainSettingsForUpdate\":
{\"DefaultResourceSpec\": {\"SageMakerImageArn\": \"arn-for-2023.03.2-547.pro5-
version\", \"InstanceType\": \"system\"}, \"DomainExecutionRoleArn\": \"execution-
role-arn\"}}"

3. Create a new RStudioServerPro application in the existing domain.

aws sagemaker create-app \
 --region region
 --domain-id domainId \
 --user-profile-name domain-shared \
 --app-type RStudioServerPro \
 --app-name default

Your RStudioServerPro application is now updated to version 2023.03.2-547.pro5. You can
now relaunch your RSessionGateway applications.

Downgrade to the existing version

You can manually downgrade the version of your existing RStudio application to the
2022.02.2-485.pro2 version.

To downgrade to the existing version

1. Delete the RStudioServerPro application that's associated with your existing domain. For
information about how to find your domain ID, see View domains.

aws sagemaker delete-app \
 --domain-id domainId \
 --user-profile-name domain-shared \
 --app-type RStudioServerPro \
 --app-name default

Manage RStudio on SageMaker 1196

Amazon SageMaker Developer Guide

2. Pass the corresponding 2022.02.2-485.pro2 ARN for your Region as part of the update-
domain command. For a list of all available ARNs, see Versioning. You must also pass an
execution role ARN for the domain that provides permissions to update the domain.

aws sagemaker update-domain \
 --region region \
 --domain-id domainId \
 --domain-settings-for-update "{\"RStudioServerProDomainSettingsForUpdate\":
{\"DefaultResourceSpec\": {\"SageMakerImageArn\": \"arn-for-2022.02.2+485.pro2-
version\", \"InstanceType\": \"system\"}, \"DomainExecutionRoleArn\": \"execution-
role-arn\"}}"

3. Create a new RStudioServerPro application in the existing domain. The RStudio version
defaults to 2022.02.2-485.pro2.

aws sagemaker create-app \
 --domain-id domainId \
 --user-profile-name domain-shared \
 --app-type RStudioServerPro \
 --app-name default

Your RStudioServerPro application is now downgraded to version 2022.02.2-485.pro2.

Changes to BYOI Images

If you use a BYOI image with RStudio and update your RStudioServerPro version to
2023.03.2-547.pro5, you must upgrade your custom images to use the 2023.03.2-547.pro5
release and redeploy your existing RSessions. If you attempt to load a non-compatible image in
an RSession of a domain using the 2023.03.2-547.pro5 version, the RSession fails because it
cannot parse parameters that it receives. To prevent failure, update all of the deployed custom
images in your existing RStudioServerPro application.

The RSW_VERSION in the Dockerfile must be consistent with the Posit Workbench version used in
RStudio on SageMaker. You can validate the current version in Posit Workbench. To do so, use the
version name that's located in the lower left corner of the Posit Workbench launcher page.

...
ARG RSW_VERSION=2023.03.3-547.pro5
ENV RSTUDIO_FORCE_NON_ZERO_EXIT_CODE="1"
ARG RSW_NAME=rstudio-workbench

Manage RStudio on SageMaker 1197

Amazon SageMaker Developer Guide

ARG OS_CODE_NAME=bionic
ARG RSW_DOWNLOAD_URL=https://s3.amazonaws.com/rstudio-ide-build/server/${OS_CODE_NAME}/
amd64
RUN RSW_VERSION_URL=`echo -n "${RSW_VERSION}" | sed 's/+/-/g'` \
 && curl -o rstudio-workbench.deb ${RSW_DOWNLOAD_URL}/${RSW_NAME}-
${RSW_VERSION_URL}-amd64.deb \
 && gdebi -n ./rstudio-workbench.deb

Note

If you see the following warning, there is a version mismatch between the RSW_VERSION
and the Posit Workbench version used in RStudio on SageMaker. Despite this warning,
versions 2023.03.2-547.pro5 and 2023.03.2-454.pro2 are compatible images.

Session version 2023.03.2+454.pro2 does not match server version
 2023.03.3-547.pro5 - this is an unsupported configuration, and you may
 experience unexpected issues as a result.

Network and Storage

The following topic describes network access and data storage considerations for your RStudio
instance. For general information about network access and data storage when using Amazon
SageMaker, see Data Protection in Amazon SageMaker.

Amazon EFS volume

RStudio on Amazon SageMaker shares an Amazon EFS volume with the Amazon SageMaker Studio
Classic application in the domain. When the RStudio application is added to a domain, SageMaker
creates a folder named shared in the Amazon EFS directory. If this shared folder is deleted or
changed manually, then the RStudio application may no longer function. For more information
about the Amazon EFS volume, see Manage Your Amazon EFS Storage Volume in SageMaker
Studio Classic.

Installed packages and scripts

Packages that you install from within RStudio are scoped to the user profile level. This means that
the installed package persists through RSession shut down, restarts, and across RSessions for each
user profile that they are installed in. R Scripts that are saved in RSessions behave the same way.
Both packages and R Scripts are saved in the user's Amazon EFS volume.

Manage RStudio on SageMaker 1198

Amazon SageMaker Developer Guide

Encryption

RStudio on Amazon SageMaker supports encryption at rest.

Use RStudio in VPC-only mode

RStudio on Amazon SageMaker supports AWS PrivateLink integration. With this integration, you
can use RStudio on SageMaker in VPC-only mode without direct access to the internet. When you
use RStudio in VPC-only mode, your security groups are automatically managed by the service. This
includes connectivity between your RServer and your RSessions.

The following are required to use RStudio in VPC-only mode. For more information on selecting a
VPC, see Choose an Amazon VPC.

• A private subnet with either access the internet to make a call to Amazon SageMaker & License
Manager, or Amazon Virtual Private Cloud (Amazon VPC) endpoints for both Amazon SageMaker
& License Manager.

• The domain cannot have any more than two associated Security Groups.

• A Security Group ID for use with the domain in domain Settings. This must allow all outbound
access.

• A Security Group ID for use with the Amazon VPC endpoint. This security group must allow
inbound traffic from the domain Security Group ID.

• Amazon VPC Endpoint for sagemaker.api and AWS License Manager. This must be in the same
Amazon VPC as the private subnet.

RStudioServerPro instance type

When deciding which Amazon EC2 instance type to use for your RStudioServerPro app, the main
factor to consider is bandwidth. Bandwidth is important because the RStudioServerPro instance
is responsible for serving the RStudio UI to all users. This includes UI heavy workflows, such as
generating figures, animations, and displaying many data rows. Therefore, there may be some
UI performance degradation depending on the workload across all users. The following are the
available instance types to use for your RStudioServerPro. For pricing information about these
instances, see Amazon SageMaker Pricing.

• ml.t3.medium: This instance type is recommended for Domains with low UI use and is free to
use.

Manage RStudio on SageMaker 1199

https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Note

The system value is translated to ml.t3.medium.

• ml.c5.4xlarge: This instance type is recommended for Domains with moderate UI use.

• ml.c5.9xlarge: This instance type is recommended for Domains with heavy UI use.

Changing RStudio instance type

To change the instance type of your RStudioServerPro, pass the new instance type as part of a call
to the update-domain CLI command. You then need to delete the existing RStudioServerPro app
using the delete-app CLI command and create a new RStudioServerPro app using the create-
app CLI command.

RStudio Connect URL

RStudio Connect is a publishing platform for Shiny applications, R Markdown reports, dashboards,
plots, and more. RStudio Connect makes it easy to surface machine learning and data science
insights by making hosting content simple and scalable. If you have an RStudio Connect server,
then you can set the server as the default place where apps are published. For more information
about RStudio Connect, see RStudio Connect.

When you onboard to RStudio on Amazon SageMaker domain, an RStudio Connect server is not
created. You can create an RStudio Connect server on an Amazon EC2 instance to use Connect
with Amazon SageMaker domain. For information about how to set up your RStudio Connect
server, see Host RStudio Connect and Package Manager for ML development in RStudio on Amazon
SageMaker.

Add an RStudio Connect URL

If you have an RStudio Connect URL, you can update the default URL so that your RStudio Users
can publish to it.

1. Navigate to the domains page.

2. Select the desired domain.

3. Choose domain Settings.

4. Under General Settings, select Edit.

Manage RStudio on SageMaker 1200

https://www.rstudio.com/products/connect/
https://aws.amazon.com/blogs/machine-learning/host-rstudio-connect-and-package-manager-for-ml-development-in-rstudio-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/host-rstudio-connect-and-package-manager-for-ml-development-in-rstudio-on-amazon-sagemaker/

Amazon SageMaker Developer Guide

5. From the new page, select RStudio Settings on the left side.

6. Under RStudio Connect URL, enter the RStudio Connect URL to add.

7. Select Submit.

CLI

You can set a default RStudio Connect URL when you create your domain. The only way to update
your RStudio Connect URL from the AWS CLI is to delete your domain and create a new one with
the updated RStudio Connect URL.

RStudio Package Manager

RStudio Package Manager is a repository management server used to organize and centralize
packages across your organization. For more information on RStudio Package Manager, see
RStudio Package Manager. If you don't supply your own Package Manager URL, Amazon
SageMaker domain uses the default Package Manager repository when you onboard RStudio
following the steps in Amazon SageMaker domain overview. For more information, see Host
RStudio Connect and Package Manager for ML development in RStudio on Amazon SageMaker.

Update Package Manager URL

You can update the Package Manager URL used for your RStudio-enabled domain as follows.

1. Navigate to the domains page.

2. Select the desired domain.

3. Choose domain Settings.

4. Under General Settings, select Edit.

5. From the new page, select RStudio Settings on the left side.

6. Under RStudio Package Manager, enter your RStudio Package Manager URL.

7. Select Submit.

CLI

The only way to update your Package Manager URL from the AWS CLI is to delete your domain and
create a new one with the updated Package Manager URL.

Manage RStudio on SageMaker 1201

https://www.rstudio.com/products/package-manager/
https://aws.amazon.com/blogs/machine-learning/host-rstudio-connect-and-package-manager-for-ml-development-in-rstudio-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/host-rstudio-connect-and-package-manager-for-ml-development-in-rstudio-on-amazon-sagemaker/

Amazon SageMaker Developer Guide

Create an Amazon SageMaker domain with RStudio using the AWS CLI

The following topic shows how to onboard to Amazon SageMaker domain with RStudio enabled
using the AWS CLI. To onboard using the AWS Management Console, see Amazon SageMaker
domain overview.

Prerequisites

• Install and configure AWS CLI version 2

• Configure the AWS CLI with IAM credentials

Create DomainExecution role

To launch the RStudio App, you must provide a DomainExecution role. This role is used to
determine whether RStudio needs to be launched as part of Amazon SageMaker domain creation.
This role is also used by Amazon SageMaker to access the RStudio License and push RStudio logs.

Note

The DomainExecution role should have at least AWS License Manager permissions to
access RStudio License, and CloudWatch permissions to push logs in your account.

The following procedure shows how to create the DomainExecution role with the AWS CLI.

1. Create a file named assume-role-policy.json with the following content.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "sagemaker.amazonaws.com"
]
 }
 }
]

Manage RStudio on SageMaker 1202

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config

Amazon SageMaker Developer Guide

}

2. Create the DomainExecution role. <REGION> should be the AWS Region to launch your
domain in.

aws iam create-role --region <REGION> --role-name DomainExecution --assume-role-
policy-document file://assume-role-policy.json

3. Create a file named domain-setting-policy.json with the following content. This policy
allows the RStudioServerPro app to access necessary resources and allows Amazon SageMaker
to automatically launch an RStudioServerPro app when the existing RStudioServerPro app is in
a Deleted or Failed status.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "license-manager:ExtendLicenseConsumption",
 "license-manager:ListReceivedLicenses",
 "license-manager:GetLicense",
 "license-manager:CheckoutLicense",
 "license-manager:CheckInLicense",
 "logs:CreateLogDelivery",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogDelivery",
 "logs:Describe*",
 "logs:GetLogDelivery",
 "logs:GetLogEvents",
 "logs:ListLogDeliveries",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery",
 "sagemaker:CreateApp"
],
 "Resource": "*"
 }
]
}

Manage RStudio on SageMaker 1203

Amazon SageMaker Developer Guide

4. Create the domain setting policy that is attached to the DomainExecution role. Be aware of
the PolicyArn from the response, you will need to enter that ARN in the following steps.

aws iam create-policy --region <REGION> --policy-name domain-setting-policy --
policy-document file://domain-setting-policy.json

5. Attach domain-setting-policy to the DomainExecution role. Use the PolicyArn
returned in the previous step.

aws iam attach-role-policy --role-name DomainExecution --policy-arn <POLICY_ARN>

Create Amazon SageMaker domain with RStudio App

The RStudioServerPro app is launched automatically when you create a Amazon SageMaker
domain using the create-domain CLI command with the RStudioServerProDomainSettings
parameter specified. When launching the RStudioServerPro App, Amazon SageMaker checks for a
valid RStudio license in the account and fails domain creation if the license is not found.

The creation of a Amazon SageMaker domain differs based on the authentication method and
the network type. These options must be used together, with one authentication method and one
network connection type selected. For more information about the requirements to create a new
domain, see CreateDomain.

The following authentication methods are supported.

• IAM Auth

• SSO Auth

The following network connection types are supported:

• PublicInternet

• VPCOnly

Authentication methods

IAM Auth Mode

Manage RStudio on SageMaker 1204

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html

Amazon SageMaker Developer Guide

The following shows how to create a Amazon SageMaker domain with RStudio enabled and an IAM
Auth Network Type. For more information about AWS Identity and Access Management, see What
is IAM?.

• DomainExecutionRoleArn should be the ARN for the role created in the previous step.

• ExecutionRole is the ARN of the role given to users in the Amazon SageMaker domain.

• vpc-id should be the ID of your Amazon Virtual Private Cloud. subnet-ids should be a space-
separated list of subnet IDs. For information about vpc-id and subnet-ids, see VPCs and
subnets.

• RStudioPackageManagerUrl and RStudioConnectUrl are optional and should be set to the
URLs of your RStudio Package Manager and RStudio Connect server, respectively.

• app-network-access-type should be either PublicInternetOnly or VPCOnly.

aws sagemaker create-domain --region <REGION> --domain-name <DOMAIN_NAME> \
 --auth-mode IAM \
 --default-user-settings ExecutionRole=<DEFAULT_USER_EXECUTIONROLE> \
 --domain-settings
 RStudioServerProDomainSettings={RStudioPackageManagerUrl=<<PACKAGE_MANAGER_URL>,RStudioConnectUrl=<<CONNECT_URL>,DomainExecutionRoleArn=<DOMAINEXECUTION_ROLE_ARN>}
 \
 --vpc-id <VPC_ID> \
 --subnet-ids <SUBNET_IDS> \
 --app-network-access-type <NETWORK_ACCESS_TYPE>

Authentication using IAM Identity Center

The following shows how to create a Amazon SageMaker domain with RStudio enabled and an
SSO Auth Network Type. AWS IAM Identity Center must be enabled for the region that the domain
is launched on. For more information about IAM Identity Center, see What is AWS IAM Identity
Center?.

• DomainExecutionRoleArn should be the ARN for the role created in the previous step.

• ExecutionRole is the ARN of the role given to users in the Amazon SageMaker domain.

• vpc-id should be the ID of your Amazon Virtual Private Cloud. subnet-ids should be a space-
separated list of subnet IDs. For information about vpc-id and subnet-ids, see VPCs and
subnets.

• RStudioPackageManagerUrl and RStudioConnectUrl are optional and should be set to the
URLs of your RStudio Package Manager and RStudio Connect server, respectively.

Manage RStudio on SageMaker 1205

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

Amazon SageMaker Developer Guide

• app-network-access-type should be either PublicInternetOnly or VPCOnly.

aws sagemaker create-domain --region <REGION> --domain-name <DOMAIN_NAME> \
 --auth-mode SSO \
 --default-user-settings ExecutionRole=<DEFAULT_USER_EXECUTIONROLE> \
 --domain-settings
 RStudioServerProDomainSettings={RStudioPackageManagerUrl=<<PACKAGE_MANAGER_URL>,RStudioConnectUrl=<<CONNECT_URL>,DomainExecutionRoleArn=<DOMAINEXECUTION_ROLE_ARN>}
 \
 --vpc-id <VPC_ID> \
 --subnet-ids <SUBNET_IDS> \
 --app-network-access-type <NETWORK_ACCESS_TYPE>

Connection types

PublicInternet/Direct Internet network type

The following shows how to create a Amazon SageMaker domain with RStudio enabled and a
PublicInternet Network Type.

• DomainExecutionRoleArn should be the ARN for the role created in the previous step.

• ExecutionRole is the ARN of the role given to users in the Amazon SageMaker domain.

• vpc-id should be the ID of your Amazon Virtual Private Cloud. subnet-ids should be a space-
separated list of subnet IDs. For information about vpc-id and subnet-ids, see VPCs and
subnets.

• RStudioPackageManagerUrl and RStudioConnectUrl are optional and should be set to the
URLs of your RStudio Package Manager and RStudio Connect server, respectively.

• auth-mode should be either SSO or IAM.

aws sagemaker create-domain --region <REGION> --domain-name <DOMAIN_NAME> \
 --auth-mode <AUTH_MODE> \
 --default-user-settings ExecutionRole=<DEFAULT_USER_EXECUTIONROLE> \
 --domain-settings
 RStudioServerProDomainSettings={RStudioPackageManagerUrl=<<PACKAGE_MANAGER_URL>,RStudioConnectUrl=<<CONNECT_URL>,DomainExecutionRoleArn=<DOMAINEXECUTION_ROLE_ARN>}
 \
 --vpc-id <VPC_ID> \
 --subnet-ids <SUBNET_IDS> \
 --app-network-access-type PublicInternetOnly

Manage RStudio on SageMaker 1206

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

Amazon SageMaker Developer Guide

VPCOnly mode

The following shows how to launch a Amazon SageMaker domain with RStudio enabled and
a VPCOnly Network Type. For more information about using the VPCOnly network access type,
see Connect SageMaker Studio Notebooks in a VPC to External Resources.

• DomainExecutionRoleArn should be the ARN for the role created in the previous step.

• ExecutionRole is the ARN of the role given to users in the Amazon SageMaker domain.

• vpc-id should be the ID of your Amazon Virtual Private Cloud. subnet-ids should be a space-
separated list of subnet IDs. Your private subnet must be able to either access the internet to
make a call to Amazon SageMaker, and AWS License Manager or have Amazon VPC endpoints
for both Amazon SageMaker and AWS License Manager. For information about Amazon VPC
endpoints, see Interface Amazon VPC endpoints For information about vpc-id and subnet-
ids, see VPCs and subnets.

• SecurityGroups must allow outbound access to the Amazon SageMaker and AWS License
Manager endpoints.

• auth-mode should be either SSO or IAM.

Note

When using Amazon Virtual Private Cloud endpoints, the security group attached to your
Amazon Virtual Private Cloud endpoints must allow inbound traffic from the security group
you pass as part of the domain-setting parameter of the create-domain CLI call.

With RStudio, Amazon SageMaker manages security groups for you. This means that Amazon
SageMaker manages security group rules to ensure RSessions can access RStudioServerPro Apps.
Amazon SageMaker creates one security group rule per user profile.

aws sagemaker create-domain --region <REGION> --domain-name <DOMAIN_NAME> \
 --auth-mode <AUTH_MODE> \
 --default-user-settings
 SecurityGroups=<USER_SECURITY_GROUP>,ExecutionRole=<DEFAULT_USER_EXECUTIONROLE> \
 --domain-settings
 SecurityGroupIds=<DOMAIN_SECURITY_GROUP>,RStudioServerProDomainSettings={DomainExecutionRoleArn=<DOMAINEXECUTION_ROLE_ARN>}
 \
 --vpc-id <VPC_ID> \

Manage RStudio on SageMaker 1207

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

Amazon SageMaker Developer Guide

 --subnet-ids "<SUBNET_IDS>" \
 --app-network-access-type VPCOnly --app-security-group-management Service

Note: The RStudioServerPro app is launched by a special user profile named domain-shared. As a
result, this app is not returned as part of list-app API calls by any other user profiles.

You may have to increase the Amazon VPC quota in your account to increase the number of users.
For more information, see Amazon VPC quotas.

Verify domain creation

Use the following command to verify that your domain has been created with a Status
of InService. Your domain-id is appended to the domains ARN. For example,
arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:domain/<DOMAIN_ID>.

aws sagemaker describe-domain --domain-id <DOMAIN_ID> --region <REGION>

Add RStudio support to an existing domain

If you have added an RStudio License through AWS License Manager, you can create a new Amazon
SageMaker domain with support for RStudio on SageMaker. If you have an existing domain that
does not support RStudio, you can add RStudio support to that domain without having to delete
and recreate the domain.

The following topic outlines how to add this support.

Prerequisites

You must complete the following steps before you update your current domain to add support for
RStudio on SageMaker.

• Install and configure AWS CLI version 2

• Configure the AWS CLI with IAM credentials

• Create a domain execution role following the steps in Create a SageMaker Domain with RStudio
using the AWS CLI. This domain-level IAM role is required by the RStudioServerPro app. The
role requires access to AWS License Manager for verifying a valid Posit Workbench license and
Amazon CloudWatch Logs for publishing server logs.

• Bring your RStudio license to AWS License Manager following the steps in RStudio license.

Manage RStudio on SageMaker 1208

https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html#vpc-limits-security-groups
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/sagemaker/latest/dg/rstudio-create-cli.html#rstudio-create-cli-domainexecution
https://docs.aws.amazon.com/sagemaker/latest/dg/rstudio-create-cli.html#rstudio-create-cli-domainexecution
https://docs.aws.amazon.com/sagemaker/latest/dg/rstudio-license.html

Amazon SageMaker Developer Guide

• (Optional) If you want to use RStudio in VPCOnly mode, complete the steps in RStudio in VPC-
Only.

• Ensure that the security groups you have configured for each UserProfile in your domain
meet the account-level quotas. When configuring the default user profile during domain
creation, you can use the DefaultUserSettings parameter of the CreateDomain API to
add SecurityGroups that are inherited by all the user profiles created in the domain. You
can also provide additional security groups for a specific user as part of the UserSettings
parameter of the CreateUserProfile API. If you have added security groups this way, you must
ensure that the total number of security groups per user profile doesn’t exceed the maximum
quota of 2 in VPCOnly mode and 4 in PublicInternetOnly mode. If the resulting total
number of security groups for any user profile exceeds the quota, you can combine multiple
security groups’ rules into one security group.

Add RStudio support to an existing domain

After you have completed the prerequisites, you can add RStudio support to your existing domain.
The following steps outline how to update your existing domain to add support for RStudio.

Step 1: Delete all apps in the domain

To add support for RStudio in your domain, SageMaker must update the underlying security groups
for all existing user profiles. To complete this, you must delete and recreate all existing apps in the
domain. The following procedure shows how to delete all of the apps.

1. List all of the apps in the domain.

aws sagemaker \
 list-apps \
 --domain-id-equals <DOMAIN_ID>

2. Delete each app for each user profile in the domain.

// JupyterServer apps
aws sagemaker \
 delete-app \
 --domain-id <DOMAIN_ID> \
 --user-profile-name <USER_PROFILE> \
 --app-type JupyterServer \
 --app-name <APP_NAME>

Manage RStudio on SageMaker 1209

https://docs.aws.amazon.com/sagemaker/latest/dg/rstudio-network.html
https://docs.aws.amazon.com/sagemaker/latest/dg/rstudio-network.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html

Amazon SageMaker Developer Guide

// KernelGateway apps
aws sagemaker \
 delete-app \
 --domain-id <DOMAIN_ID> \
 --user-profile-name <USER_PROFILE> \
 --app-type KernelGateway \
 --app-name <APP_NAME>

Step 2 - Update all user profiles with the new list of security groups

This is a one-time action that you must complete for all of the existing user profiles in your domain
when you have refactored your existing security groups. This prevents you from hitting the quota
for the maximum number of security groups. The UpdateUserProfile API call fails if the user
has any apps that are in InService status. Delete all apps, then call UpdateUserProfile API to
update the security groups.

Note

The following requirement for VPCOnly mode outlined in Connect Amazon SageMaker
Studio Classic Notebooks in a VPC to External Resources is no longer needed when adding
RStudio support because AppSecurityGroupManagement is managed by the SageMaker
service:
“TCP traffic within the security group. This is required for connectivity between the
JupyterServer app and the KernelGateway apps. You must allow access to at least ports in
the range 8192-65535.”

aws sagemaker \
 update-user-profile \
 --domain-id <DOMAIN_ID>\
 --user-profile-name <USER_PROFILE> \
 --user-settings "{\"SecurityGroups\": [\"<SECURITY_GROUP>\",
 \"<SECURITY_GROUP>\"]}"

Step 3 - Activate RStudio by calling the UpdateDomain API

1. Call the UpdateDomain API to add support for RStudio on SageMaker. The
defaultusersettings parameter is only needed if you have refactored the default security
groups for your user profiles.

Manage RStudio on SageMaker 1210

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeApp.html#sagemaker-DescribeApp-response-Status
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html#studio-notebooks-and-internet-access-vpc
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html#studio-notebooks-and-internet-access-vpc
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-other-instances
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateDomain.html

Amazon SageMaker Developer Guide

• For VPCOnly mode:

aws sagemaker \
 update-domain \
 --domain-id <DOMAIN_ID> \
 --app-security-group-management Service \
 --domain-settings-for-update
 RStudioServerProDomainSettingsForUpdate={DomainExecutionRoleArn=<DOMAIN_EXECUTION_ROLE_ARN>}
 \
 --default-user-settings "{\"SecurityGroups\": [\"<SECURITY_GROUP>\",
 \"<SECURITY_GROUP>\"]}"

• For PublicInternetOnly mode:

aws sagemaker \
 update-domain \
 --domain-id <DOMAIN_ID> \
 --domain-settings-for-update
 RStudioServerProDomainSettingsForUpdate={DomainExecutionRoleArn=<DOMAIN_EXECUTION_ROLE_ARN>} \
 --default-user-settings "{\"SecurityGroups\": [\"<SECURITY_GROUP>\",
 \"<SECURITY_GROUP>\"]}"

2. Verify that the domain status is InService. After the domain status is InService, support
for RStudio on SageMaker is added.

aws sagemaker \
 describe-domain \
 --domain-id <DOMAIN_ID>

3. Verify that the RStudioServerPro app’s status is InService using the following command.

aws sagemaker list-apps --user-profile-name domain-shared

Step 4 - Add RStudio access for existing users

As part of the update in Step 3, SageMaker marks the RStudio AccessStatus of all existing
user profiles in the domain as DISABLED by default. This prevents exceeding the number
of users allowed by your current license. To add access for existing users, there is a one-
time opt-in step. Perform the opt-in by calling the UpdateUserProfile API with the
following RStudioServerProAppSettings:

Manage RStudio on SageMaker 1211

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RStudioServerProAppSettings.html#sagemaker-Type-RStudioServerProAppSettings-AccessStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UserSettings.html#sagemaker-Type-UserSettings-RStudioServerProAppSettings

Amazon SageMaker Developer Guide

• AccessStatus = ENABLED

• Optional - UserGroup = R_STUDIO_USER or R_STUDIO_ADMIN

aws sagemaker \
 update-user-profile \
 --domain-id <DOMAIN_ID>\
 --user-profile-name <USER_PROFILE> \
 --user-settings "{\"RStudioServerProAppSettings\": {\"AccessStatus\": \"ENABLED
\"}}"

Note

By default, the number of users that can have access to RStudio is 60.

Step 5 – Deactivate RStudio access for new users

Unless otherwise specified when calling UpdateDomain, RStudio support is added by default
for all new user profiles created after you have added support for RStudio on SageMaker. To
deactivate access for a new user profile, you must explicitly set the AccessStatus parameter to
DISABLED as part of the CreateUserProfile API call. If the AccessStatus parameter is not
specified as part of the CreateUserProfile API, the default access status is ENABLED.

aws sagemaker \
 create-user-profile \
 --domain-id <DOMAIN_ID>\
 --user-profile-name <USER_PROFILE> \
 --user-settings "{\"RStudioServerProAppSettings\": {\"AccessStatus\": \"DISABLED
\"}}"

Bring your own image to RStudio on SageMaker

A SageMaker image is a file that identifies language packages and other dependencies that
are required to run RStudio on Amazon SageMaker. SageMaker uses these images to create an
environment where you run RStudio. Amazon SageMaker provides a built-in RStudio image for you
to use. If you need different functionality, you can bring your own custom images.

The process to bring your own image to use with RStudio on SageMaker takes three steps:

Manage RStudio on SageMaker 1212

Amazon SageMaker Developer Guide

1. Build a custom image from a Dockerfile and push it to a repository in Amazon Elastic
Container Registry (Amazon ECR).

2. Create a SageMaker image that points to a container image in Amazon ECR and attach it to
your Amazon SageMaker domain.

3. Launch a new session in RStudio with your custom image.

You can create images and image versions, and attach image versions to your domain, using the
SageMaker control panel, the AWS SDK for Python (Boto3), and the AWS Command Line Interface
(AWS CLI). You can also create images and image versions using the SageMaker console, even if you
haven't onboarded to a domain.

The following topics show how to bring your own image to RStudio on SageMaker by creating,
attaching, and launching a custom image.

Key terminology

The following section defines key terms for bringing your own image to use with RStudio on
SageMaker.

• Dockerfile: A Dockerfile is a file that identifies the language packages and other dependencies
for your Docker image.

• Docker image: The Docker image is a built Dockerfile. This image is checked into Amazon ECR
and serves as the basis of the SageMaker image.

• SageMaker image: A SageMaker image is a holder for a set of SageMaker image versions based
on Docker images.

• Image version: An image version of a SageMaker image represents a Docker image that is
compatible with RStudio and stored in an Amazon ECR repository. Each image version is
immutable. These image versions can be attached to a domain and used with RStudio on
SageMaker.

Prerequisites

You must complete the following prerequisites before bringing your own image to use with
RStudio on Amazon SageMaker.

Manage RStudio on SageMaker 1213

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/

Amazon SageMaker Developer Guide

• If you have an existing domain with RStudio that was created before April 7, 2022, you must
delete your RStudioServerPro application and recreate it. For information about how to delete an
application, see Shut down and Update SageMaker Studio Classic.

• Install the Docker application. For information about setting up Docker, see Orientation and
setup.

• Create a local copy of an RStudio-compatible Dockerfile that works with SageMaker. For
information about creating a sample RStudio dockerfile, see Use a custom image to bring your
own development environment to RStudio on Amazon SageMaker.

• Use an AWS Identity and Access Management execution role that has the
AmazonSageMakerFullAccess policy attached. If you have onboarded to domain, you can get the
role from the domain Summary section of the SageMaker control panel.

Add the following permissions to access the Amazon Elastic Container Registry (Amazon ECR)
service to your execution role.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid": "VisualEditor0",
 "Effect":"Allow",
 "Action":[
 "ecr:CreateRepository",
 "ecr:BatchGetImage",
 "ecr:CompleteLayerUpload",
 "ecr:DescribeImages",
 "ecr:DescribeRepositories",
 "ecr:UploadLayerPart",
 "ecr:ListImages",
 "ecr:InitiateLayerUpload",
 "ecr:BatchCheckLayerAvailability",
 "ecr:PutImage"
],
 "Resource": "*"
 }
]
}

• Install and configure AWS CLI with the following (or higher) version. For information about
installing the AWS CLI, see Installing or updating the latest version of the AWS CLI.

Manage RStudio on SageMaker 1214

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://aws.amazon.com/blogs/machine-learning/use-a-custom-image-to-bring-your-own-development-environment-to-rstudio-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/use-a-custom-image-to-bring-your-own-development-environment-to-rstudio-on-amazon-sagemaker/
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon SageMaker Developer Guide

AWS CLI v1 >= 1.23.6
AWS CLI v2 >= 2.6.2

Custom RStudio image specifications

In this guide, you'll learn custom RStudio image specifications to use when you bring your own
image. There are two sets of requirements that you must satisfy with your custom RStudio image
to use it with Amazon SageMaker. These requirements are imposed by RStudio PBC and the
Amazon SageMaker Studio Classic platform. If either of these sets of requirements aren't satisfied,
then your custom image won't function properly.

RStudio PBC requirements

RStudio PBC requirements are laid out in the Using Docker images with RStudio Workbench /
RStudio Server Pro, Launcher, and Kubernetes article. Follow the instructions in this article to
create the base of your custom RStudio image.

For instructions about how to install multiple R versions in your custom image, see Installing
multiple versions of R on Linux.

Amazon SageMaker Studio Classic requirements

Amazon SageMaker Studio Classic imposes the following set of installation requirements for your
RStudio image.

• You must use an RStudio base image of at least 2023.03.2-454.pro2. For more information,
see Upgrade the RStudio Version.

• You must install the following packages:

yum install -y sudo \
openjdk-11-jdk \
libpng-dev \
&& yum clean all \
&& /opt/R/${R_VERSION}/bin/R -e "install.packages('reticulate', repos='https://
packagemanager.rstudio.com/cran/__linux__/centos7/latest')" \
&& /opt/python/${PYTHON_VERSION}/bin/pip install --upgrade \
 'boto3>1.0<2.0' \
 'awscli>1.0<2.0' \
 'sagemaker[local]<3'

Manage RStudio on SageMaker 1215

https://support.rstudio.com/hc/en-us/articles/360019253393-Using-Docker-images-with-RStudio-Server-Pro-Launcher-and-Kubernetes
https://support.rstudio.com/hc/en-us/articles/360019253393-Using-Docker-images-with-RStudio-Server-Pro-Launcher-and-Kubernetes
https://support.rstudio.com/hc/en-us/articles/215488098
https://support.rstudio.com/hc/en-us/articles/215488098

Amazon SageMaker Developer Guide

• You must provide default values for the RSTUDIO_CONNECT_URL and
RSTUDIO_PACKAGE_MANAGER_URL environment values.

ENV RSTUDIO_CONNECT_URL "YOUR_CONNECT_URL"
ENV RSTUDIO_PACKAGE_MANAGER_URL "YOUR_PACKAGE_MANAGER_URL"
ENV RSTUDIO_FORCE_NON_ZERO_EXIT_CODE 1

The following general specifications apply to the image that is represented by an RStudio image
version.

Running the image

ENTRYPOINT and CMD instructions are overridden so that the image is run as an RSession
application.

Stopping the image

The DeleteApp API issues the equivalent of a docker stop command. Other processes in the
container won’t get the SIGKILL/SIGTERM signals.

File system

The /opt/.sagemakerinternal and /opt/ml directories are reserved. Any data in these
directories might not be visible at runtime.

User data

Each user in a SageMaker domain gets a user directory on a shared Amazon Elastic File System
volume in the image. The location of the current user’s directory on the Amazon Elastic File
System volume is /home/sagemaker-user.

Metadata

A metadata file is located at /opt/ml/metadata/resource-metadata.json. No additional
environment variables are added to the variables defined in the image. For more information,
see Get App Metadata.

GPU

On a GPU instance, the image is run with the --gpus option. Only the CUDA toolkit should be
included in the image, not the NVIDIA drivers. For more information, see NVIDIA User Guide.

Manage RStudio on SageMaker 1216

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/user-guide.html

Amazon SageMaker Developer Guide

Metrics and logging

Logs from the RSession process are sent to Amazon CloudWatch in the customer’s account.
The name of the log group is /aws/sagemaker/studio. The name of the log stream is
$domainID/$userProfileName/RSession/$appName.

Image size

Image size is limited to 25 GB. To view the size of your image, run docker image ls.

Create a custom RStudio image

This topic describes how you can create a custom RStudio image using the SageMaker console
and the AWS CLI. If you use the AWS CLI, you must run the steps from your local machine. The
following steps do not work from within Amazon SageMaker Studio Classic.

When you create an image, SageMaker also creates an initial image version. The image version
represents a container image in Amazon Elastic Container Registry (ECR). The container image must
satisfy the requirements to be used in RStudio. For more information, see Custom RStudio image
specifications.

For information about testing your image locally and resolving common issues, see the SageMaker
Studio Custom Image Samples repo.

Topics

• Add a SageMaker-compatible RStudio Docker container image to Amazon ECR

• Create a SageMaker image from the console

• Create an image from the AWS CLI

Add a SageMaker-compatible RStudio Docker container image to Amazon ECR

Use the following steps to add a Docker container image to Amazon ECR:

• Create an Amazon ECR repository.

• Authenticate to Amazon ECR.

• Build a SageMaker-compatible RStudio Docker image.

• Push the image to the Amazon ECR repository.

Manage RStudio on SageMaker 1217

https://console.aws.amazon.com/ecr/
https://github.com/aws-samples/sagemaker-studio-custom-image-samples/blob/main/DEVELOPMENT.md
https://github.com/aws-samples/sagemaker-studio-custom-image-samples/blob/main/DEVELOPMENT.md

Amazon SageMaker Developer Guide

Note

The Amazon ECR repository must be in the same AWS Region as your domain.

To build and add a Docker image to Amazon ECR

1. Create an Amazon ECR repository using the AWS CLI. To create the repository using the
Amazon ECR console, see Creating a repository.

aws ecr create-repository \
 --repository-name rstudio-custom \
 --image-scanning-configuration scanOnPush=true

Response:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-2:acct-id:repository/rstudio-custom",
 "registryId": "acct-id",
 "repositoryName": "rstudio-custom",
 "repositoryUri": "acct-id.dkr.ecr.us-east-2.amazonaws.com/rstudio-custom",
 ...
 }
}

2. Authenticate to Amazon ECR using the repository URI returned as a response from the
create-repository command. Make sure that the Docker application is running. For more
information, see Registry Authentication.

aws ecr get-login-password | \
 docker login --username AWS --password-stdin <repository-uri>

Response:

Login Succeeded

3. Build the Docker image. Run the following command from the directory that includes your
Dockerfile.

Manage RStudio on SageMaker 1218

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth

Amazon SageMaker Developer Guide

docker build .

4. Tag your built image with a unique tag.

docker tag <image-id> "<repository-uri>:<tag>"

5. Push the container image to the Amazon ECR repository. For more information, see ImagePush
and Pushing an image.

docker push <repository-uri>:<tag>

Response:

The push refers to repository [<account-id>.dkr.ecr.us-east-2.amazonaws.com/
rstudio-custom]
r: digest: <digest> size: 3066

Create a SageMaker image from the console

To create an image

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose Images.

4. On the Custom images page, choose Create image.

5. For Image source, enter the registry path to the container image in Amazon ECR. The path is in
the following format:

acct-id.dkr.ecr.region.amazonaws.com/repo-name[:tag] or [@digest]

6. Choose Next.

7. Under Image properties, enter the following:

• Image name – The name must be unique to your account in the current AWS Region.

• (Optional) Image display name – The name displayed in the domain user interface. When not
provided, Image name is displayed.

• (Optional) Description – A description of the image.

Manage RStudio on SageMaker 1219

https://docs.docker.com/engine/api/v1.40/#operation/ImagePush
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

• IAM role – The role must have the AmazonSageMakerFullAccess policy attached. Use the
dropdown menu to choose one of the following options:

• Create a new role – Specify any additional Amazon Simple Storage Service (Amazon S3)
buckets that you want your notebooks users to access. If you don't want to allow access to
additional buckets, choose None.

SageMaker attaches the AmazonSageMakerFullAccess policy to the role. The role
allows your notebook users to access the Amazon S3 buckets listed next to the check
marks.

• Enter a custom IAM role ARN – Enter the Amazon Resource Name (ARN) of your IAM role.

• Use existing role – Choose one of your existing roles from the list.

• (Optional) Image tags – Choose Add new tag. You can add up to 50 tags. Tags are searchable
using the SageMaker console or the SageMaker Search API.

8. Under Image type, select RStudio image.

9. Choose Submit.

The new image is displayed in the Custom images list and briefly highlighted. After the image has
been successfully created, you can choose the image name to view its properties or choose Create
version to create another version.

To create another image version

1. Choose Create version on the same row as the image.

2. For Image source, enter the registry path to the Amazon ECR image. The image shouldn't be
the same image as used in a previous version of the SageMaker image.

To use the custom image in RStudio, you must attach it to your domain. For more information, see
Attach a custom SageMaker image.

Create an image from the AWS CLI

This section shows how to create a custom Amazon SageMaker image using the AWS CLI.

Use the following steps to create a SageMaker image:

• Create an Image.

• Create an ImageVersion.

Manage RStudio on SageMaker 1220

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

• Create a configuration file.

• Create an AppImageConfig.

To create the SageMaker image entities

1. Create a SageMaker image. The role ARN must have at least the
AmazonSageMakerFullAccessPolicy policy attached.

aws sagemaker create-image \
 --image-name rstudio-custom-image \
 --role-arn arn:aws:iam::<acct-id>:role/service-role/<execution-role>

Response:

{
 "ImageArn": "arn:aws:sagemaker:us-east-2:acct-id:image/rstudio-custom-image"
}

2. Create a SageMaker image version from the image. Pass the unique tag value that you chose
when you pushed the image to Amazon ECR.

aws sagemaker create-image-version \
 --image-name rstudio-custom-image \
 --base-image <repository-uri>:<tag>

Response:

{
 "ImageVersionArn": "arn:aws:sagemaker:us-east-2:acct-id:image-version/rstudio-
image/1"
}

3. Check that the image version was successfully created.

aws sagemaker describe-image-version \
 --image-name rstudio-custom-image \
 --version 1

Response:

Manage RStudio on SageMaker 1221

Amazon SageMaker Developer Guide

{
 "ImageVersionArn": "arn:aws:sagemaker:us-east-2:acct-id:image-version/rstudio-
custom-image/1",
 "ImageVersionStatus": "CREATED"
}

Note

If the response is "ImageVersionStatus": "CREATED_FAILED", the response
also includes the failure reason. A permissions issue is a common cause of failure.
You also can check your Amazon CloudWatch Logs. The name of the log group
is /aws/sagemaker/studio. The name of the log stream is $domainID/
$userProfileName/KernelGateway/$appName.

4. Create a configuration file, named app-image-config-input.json. The app image config
is used to configuration for running a SageMaker image as a Kernel Gateway application.

{
 "AppImageConfigName": "rstudio-custom-config"
}

5. Create the AppImageConfig using the file that you created in the previous step.

aws sagemaker create-app-image-config \
 --cli-input-json file://app-image-config-input.json

Response:

{
 "AppImageConfigArn": "arn:aws:sagemaker:us-east-2:acct-id:app-image-config/r-
image-config"
}

Attach a custom SageMaker image

This guide shows how to attach a custom RStudio image to your Amazon SageMaker domain using
the SageMaker console or the AWS Command Line Interface (AWS CLI).

Manage RStudio on SageMaker 1222

Amazon SageMaker Developer Guide

To use a custom SageMaker image, you must attach a custom RStudio image to your domain.
When you attach an image version, it appears in the RStudio Launcher and is available in the Select
image dropdown list. You use the dropdown to change the image used by RStudio.

There is a limit to the number of image versions that you can attach. After you reach the limit, you
must first detach a version so that you can attach a different version of the image.

Topics

• Attach an image version to your domain using the console

• Attach an existing image version to your domain using the AWS CLI

Attach an image version to your domain using the console

You can attach a custom SageMaker image version to your domain using the SageMaker console's
control panel. You can also create a custom SageMaker image, and an image version, and then
attach that version to your domain.

To attach an existing image

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the desired domain.

5. Choose Environment.

6. Under Custom SageMaker Studio Classic images attached to domain, choose Attach image.

7. For Image source, choose Existing image or New image.

If you select Existing image, choose an image from the Amazon SageMaker image store.

If you select New image, provide the Amazon ECR registry path for your Docker image. The
path must be in the same AWS Region as the domain. The Amazon ECR repo must be in the
same account as your domain, or cross-account permissions for SageMaker must be enabled.

8. Choose an existing image from the list.

9. Choose a version of the image from the list.

10. Choose Next.

11. Enter values for Image name, Image display name, and Description.

Manage RStudio on SageMaker 1223

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

12. Choose the IAM role. For more information, see Create a custom RStudio image.

13. (Optional) Add tags for the image.

14. (Optional) Choose Add new tag, then add a configuration tag.

15. For Image type, select RStudio Image.

16. Choose Submit.

Wait for the image version to be attached to the domain. After the version is attached, it appears in
the Custom images list and is briefly highlighted.

Attach an existing image version to your domain using the AWS CLI

Two methods are presented to attach the image version to your domain using the AWS CLI. In the
first method, you create a new domain with the version attached. This method is simpler but you
must specify the Amazon Virtual Private Cloud (Amazon VPC) information and execution role that's
required to create the domain.

If you have already onboarded to the domain, you can use the second method to attach the image
version to your current domain. In this case, you don't need to specify the Amazon VPC information
and execution role. After you attach the version, delete all of the applications in your domain and
relaunch RStudio.

Attach the SageMaker image to a new domain

To use this method, you must specify an execution role that has the AmazonSageMakerFullAccess
policy attached.

Use the following steps to create the domain and attach the custom SageMaker image:

• Get your default VPC ID and subnet IDs.

• Create the configuration file for the domain, which specifies the image.

• Create the domain with the configuration file.

To add the custom SageMaker image to your domain

1. Get your default VPC ID.

aws ec2 describe-vpcs \
 --filters Name=isDefault,Values=true \

Manage RStudio on SageMaker 1224

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

 --query "Vpcs[0].VpcId" --output text

Response:

vpc-xxxxxxxx

2. Get your default subnet IDs using the VPC ID from the previous step.

aws ec2 describe-subnets \
 --filters Name=vpc-id,Values=<vpc-id> \
 --query "Subnets[*].SubnetId" --output json

Response:

[
 "subnet-b55171dd",
 "subnet-8a5f99c6",
 "subnet-e88d1392"
]

3. Create a configuration file named create-domain-input.json. Insert the VPC ID,
subnet IDs, ImageName, and AppImageConfigName from the previous steps. Because
ImageVersionNumber isn't specified, the latest version of the image is used, which is the only
version in this case. Your execution role must satisfy the requirements in Prerequisites.

{
 "DomainName": "domain-with-custom-r-image",
 "VpcId": "<vpc-id>",
 "SubnetIds": [
 "<subnet-ids>"
],
 "DomainSettings": {
 "RStudioServerProDomainSettings": {
 "DomainExecutionRoleArn": "<execution-role>"
 }
 },
 "DefaultUserSettings": {
 "ExecutionRole": "<execution-role>",
 "RSessionAppSettings": {
 "CustomImages": [
 {

Manage RStudio on SageMaker 1225

Amazon SageMaker Developer Guide

 "AppImageConfigName": "rstudio-custom-config",
 "ImageName": "rstudio-custom-image"
 }
]
 }
 },
 "AuthMode": "IAM"
}

4. Create the domain with the attached custom SageMaker image.

aws sagemaker create-domain \
 --cli-input-json file://create-domain-input.json

Response:

{
 "DomainArn": "arn:aws:sagemaker:region:acct-id:domain/domain-id",
 "Url": "https://domain-id.studio.region.sagemaker.aws/..."
}

Attach the SageMaker image to an existing domain

This method assumes that you've already onboarded to domain. For more information, see Amazon
SageMaker domain overview.

Note

You must delete all of the applications in your domain to update the domain with the new
image version. For information about deleting these applications, see Delete an Amazon
SageMaker domain.

Use the following steps to add the SageMaker image to your current domain.

• Get your DomainID from the SageMaker console.

• Use the DomainID to get the DefaultUserSettings for the domain.

• Add the ImageName and AppImageConfig as a CustomImage to the DefaultUserSettings.

• Update your domain to include the custom image.

Manage RStudio on SageMaker 1226

Amazon SageMaker Developer Guide

To add the custom SageMaker image to your domain

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the desired domain.

5. Choose domain settings.

6. Under General Settings, find the domain ID. The ID is in the following format: d-
xxxxxxxxxxxx.

7. Use the domain ID to get the description of the domain.

aws sagemaker describe-domain \
 --domain-id <d-xxxxxxxxxxxx>

Response:

{
 "DomainId": "d-xxxxxxxxxxxx",
 "DefaultUserSettings": {
 "KernelGatewayAppSettings": {
 "CustomImages": [
],
 ...
 }
 }
}

8. Save the DefaultUserSettings section of the response to a file named update-domain-
input.json.

9. Insert the ImageName and AppImageConfigName from the previous steps as a custom image.
Because ImageVersionNumber isn't specified, the latest version of the image is used, which is
the only version in this case.

{
 "DefaultUserSettings": {
 "RSessionAppSettings": {
 "CustomImages": [
 {
 "ImageName": "rstudio-custom-image",

Manage RStudio on SageMaker 1227

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

 "AppImageConfigName": "rstudio-custom-config"
 }
]
 }
 }
}

10. Use the domain ID and default user settings file to update your domain.

aws sagemaker update-domain \
 --domain-id <d-xxxxxxxxxxxx> \
 --cli-input-json file://update-domain-input.json

Response:

{
 "DomainArn": "arn:aws:sagemaker:region:acct-id:domain/domain-id"
}

11. Delete the RStudioServerPro application. You must restart the RStudioServerPro
domain-shared application for the RStudio Launcher UI to pick up the latest changes.

aws sagemaker delete-app \
 --domain-id <d-xxxxxxxxxxxx> --user-profile-name domain-shared \
 --app-type RStudioServerPro --app-name default

12. Create a new RStudioServerPro application. You must create this application using the AWS
CLI.

aws sagemaker create-app \
 --domain-id <d-xxxxxxxxxxxx> --user-profile-name domain-shared \
 --app-type RStudioServerPro --app-name default

Launch a custom SageMaker image in RStudio

You can use your custom image when launching an RStudio applicaton from the console. After you
create your custom SageMaker image and attach it to your domain, the image appears in the image
selector dialog box of the RStudio Launcher. To launch a new RStudio app, follow the steps in Open
RStudio Launcher and launch RSessions and select your custom image as shown in the following
image.

Manage RStudio on SageMaker 1228

Amazon SageMaker Developer Guide

Clean up image resources

This guide shows how to clean up RStudio image resources that you created in the previous
sections. To delete an image, complete the following steps using either the SageMaker console or
the AWS CLI, as shown in this guide.

• Detach the image and image versions from your Amazon SageMaker domain.

• Delete the image, image version, and app image config.

After you've completed these steps, you can delete the container image and repository from
Amazon ECR. For more information about how to delete the container image and repository, see
Deleting a repository.

Manage RStudio on SageMaker 1229

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-delete.html

Amazon SageMaker Developer Guide

Clean up resources from the SageMaker console

When you detach an image from a domain, all versions of the image are detached. When an image
is detached, all users of the domain lose access to the image versions.

To detach an image

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the desired domain.

5. Choose Environment.

6. Under Custom images attached to domain, choose the image and then choose Detach.

7. (Optional) To delete the image and all versions from SageMaker, select Also delete the
selected images This does not delete the associated images from Amazon ECR.

8. Choose Detach.

Clean up resources from the AWS CLI

To clean up resources

1. Detach the image and image versions from your domain by passing an empty custom image
list to the domain. Open the update-domain-input.json file that you created in Attach the
SageMaker image to your current domain.

2. Delete the RSessionAppSettings custom images and then save the file. Do not modify the
KernelGatewayAppSettings custom images.

{
 "DomainId": "d-xxxxxxxxxxxx",
 "DefaultUserSettings": {
 "KernelGatewayAppSettings": {
 "CustomImages": [
],
 ...
 },
 "RSessionAppSettings": {
 "CustomImages": [
],

Manage RStudio on SageMaker 1230

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

 "DefaultResourceSpec": {
 }
 ...
 }
 }
}

3. Use the domain ID and default user settings file to update your domain.

aws sagemaker update-domain \
 --domain-id <d-xxxxxxxxxxxx> \
 --cli-input-json file://update-domain-input.json

Response:

{
 "DomainArn": "arn:aws:sagemaker:us-east-2:acct-id:domain/d-xxxxxxxxxxxx"
}

4. Delete the app image config.

aws sagemaker delete-app-image-config \
 --app-image-config-name rstudio-image-config

5. Delete the SageMaker image, which also deletes all image versions. The container images in
Amazon ECR that are represented by the image versions are not deleted.

aws sagemaker delete-image \
 --image-name rstudio-image

Manage users

After your RStudio-enabled Amazon SageMaker domain is running, you can add user profiles
(UserProfiles) to the domain. The following topics show how to create user profiles that are
authorized to use RStudio, as well as update an existing user profile. For information on how to
delete an RStudio App, UserProfile, or domain, follow the steps in Delete an Amazon SageMaker
domain.

Manage RStudio on SageMaker 1231

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-delete-domain.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-delete-domain.html

Amazon SageMaker Developer Guide

Note

The limit for the total number of UserProfiles in a Amazon SageMaker domain is 60.

There are two types of users:

• Unauthorized: This user cannot access the RStudio app. By default, a new user is Unauthorized
if the domain is enabled for RStudio.

• Authorized: This user can access the RStudio app and use one of the RStudio license seats.

If a user is authorized, they can be given one of the following levels of access to RStudio.

• RStudio User: This is a standard RStudio user and can access RStudio.

• RStudio Admin: The admin of your Amazon SageMaker domain has the ability to create users,
add existing users, and update the permissions of existing users. Admins can also access the
RStudio Administrative dashboard. However, this admin is not able to update parameters that
are managed by Amazon SageMaker.

Methods to create a user

The following topics show how to create a user in your RStudio-enabled Amazon SageMaker
domain.

Create user console

To create a user in your RStudio-enabled Amazon SageMaker domain from the console, complete
the steps in Add user profiles.

Create user CLI

The following command shows how to add users to a Amazon SageMaker domain with IAM
authentication. A User can belong to either the R_STUDIO_USER or R_STUDIO_ADMIN User group.

aws sagemaker create-user-profile --region <REGION> \
 --domain-id <DOMAIN-ID> \
 --user-profile-name <USER_PROFILE_NAME-ID> \
 --user-settings RStudioServerProAppSettings={UserGroup=<USER-GROUP>}

Manage RStudio on SageMaker 1232

Amazon SageMaker Developer Guide

The following command shows how to add users to a Amazon SageMaker domain with
authentication using IAM Identity Center. A user can belong to either the R_STUDIO_USER or
R_STUDIO_ADMIN User group.

aws sagemaker create-user-profile --region <REGION> \
 --domain-id <DOMAIN-ID> \
 --user-profile-name <USER_PROFILE_NAME-ID> \
 --user-settings RStudioServerProAppSettings={UserGroup=<USER-GROUP>} \
 --single-sign-on-user-identifier UserName \
 --single-sign-on-user-value <USER-NAME>

Update existing user

You cannot update the authorization of an existing user. You must delete the existing user and
create a new one with the updated authorization.

Log in to RStudio as another user

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Select the domain containing the user profile.

5. Select a user name from the list of users. This opens a new page with details about the user
profile and the apps that are running.

6. Select Launch.

7. From the dropdown, select RStudio to launch an RStudio instance.

Terminate sessions for another user

1. From the list of running apps, identify the app you want to delete.

2. Click the respective Delete app button for the app you are deleting.

Delete another user

You cannot delete a user if the user is running any apps. Delete all apps before attempting to
delete a user.

1. From the User Profile page, select Edit. This opens a new General settings page.

Manage RStudio on SageMaker 1233

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

2. Under Delete user, select Delete user.

RStudio administrative dashboard

This topic shows how to access and use the RStudio administrative dashboard. With the RStudio
administrative dashboard, admins can manage users and RSessions, as well as view information
about RStudio Server instance utilization and Amazon CloudWatch Logs.

Launch the RStudio administrative dashboard

The R_STUDIO_ADMIN authorization allows the user to access the RStudio administrative
dashboard. An R_STUDIO_ADMIN user can access the RStudio administrative dashboard by
replacing workspaces with admin in their RStudio URL manually. The following shows how to
modify the URL to access the RStudio administrative dashboard.

For example, the following RStudio URL:

https://<DOMAIN-ID>.studio.us-east-2.sagemaker.aws/rstudio/default/s/<SESSION-ID>/
workspaces

Can be converted to:

https://<DOMAIN-ID>.studio.us-east-2.sagemaker.aws/rstudio/default/s/<SESSION-ID>/admin

Dashboard tab

This tab gives an overview of your RStudio Server instance utilization, as well as information on the
number of active RSessions.

Sessions tab

This tab gives information on the active RSessions, such as the user that launched the RSessions,
the time that the RSessions have been running, and their resource utilization.

Users tab

This tab gives information on the RStudio authorized users in the domain, such as the time that the
last RSession was launched and their resource utilization.

Manage RStudio on SageMaker 1234

Amazon SageMaker Developer Guide

Stats tab

This tab gives information on the utilization of your RStudio Server instance.

Logs tab

This tab displays Amazon CloudWatch Logs for the RStudio Server instance. For more information
about logging events with Amazon CloudWatch Logs, see What is Amazon CloudWatch Logs?.

Shut down and restart RStudio

To shut down and restart your Posit Workbench and the associated RStudioServerPro app, you
must first shut down all of your existing RSessions. You can shut down the RSessionGateway apps
from within RStudio. You can then shut down the RStudioServerPro app using the AWS CLI. After
the RStudioServerPro app is shut down, you must reopen RStudio through the SageMaker console.

Any unsaved notebook information is lost in the process. The user data in the Amazon EFS volume
isn't impacted.

Note

If you are using a custom image with RStudio, ensure that your docker image is using an
RStudio version that is compatible with the version of Posit Workbench being used by
SageMaker after you restart your RStudioServerPro app.

The following topics show how to shut down the RSessionGateway and RStudioServerPro apps and
restart them.

Suspend your RSessions

Complete the following procedure to suspend all of your RSessions.

1. From the RStudio Launcher, identify the RSession that you want to suspend.

2. Select Suspend for the session.

3. Repeat this for all RSessions.

Delete your RSessions

Complete the following procedure to shut down all of your RSessions.

Manage RStudio on SageMaker 1235

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Amazon SageMaker Developer Guide

1. From the RStudio Launcher, identify the RSession that you want to delete.

2. Select Quit for the session. This opens a new Quit Session window.

3. From the Quit Session window, select Force Quit, to end all child processes in the session.

4. Select Quit Session to confirm deletion of the session.

5. Repeat this for all RSessions.

Delete your RStudioServerPro app

Run the following commands from the AWS CLI to delete and restart your RStudioServerPro app.

1. Delete the RStudioServerPro application by using your current domain id.

aws sagemaker delete-app \
 --domain-id <domainId> \
 --user-profile-name domain-shared \
 --app-type RStudioServerPro \
 --app-name default

2. Re-create the RStudioServerPro application.

aws sagemaker create-app \
 --domain-id <domainId> \
 --user-profile-name domain-shared \
 --app-type RStudioServerPro \
 --app-name default

Manage billing and cost

To track the costs associated with your RStudio environment, you can use the AWS Billing and
Cost Management service. AWS Billing and Cost Management provides useful tools to help you
gather information related to your cost and usage, analyze your cost drivers and usage trends,
and take action to budget your spending. For more information, see What is AWS Billing and Cost
Management?.

The following describes components required to run RStudio on Amazon SageMaker and how each
component factors into billing for your RStudio instance.

Manage RStudio on SageMaker 1236

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html

Amazon SageMaker Developer Guide

• RStudio License –You must purchase an RStudio license. There is no additional charge for using
your RStudio license with Amazon SageMaker. For more information about your RStudio license,
see RStudio license.

• RSession - These are RStudio working sessions launched by end users. You are charged while the
RSession is running.

• RStudio Server - A multi-tenant server manages all the RSessions. You can choose the instance
type to run RStudio Server on, and pay the related costs. The default instance, "system", is free,
but you can choose to pay for higher tiers. For more information about the available instance
types for your RStudio Server, see RStudioServerPro instance type.

Tracking billing at user level

To track billing at the user level using Cost Allocation Tags, see Using Cost Allocation Tags.

Diagnose issues and get support

The following sections describe how to diagnose issues with RStudio on Amazon SageMaker. To
get support for RStudio on Amazon SageMaker, contact Amazon SageMaker support. For
help with purchasing an RStudio license or modifying the number of license seats, contact
sales@rstudio.com.

Upgrade your version

If you receive a warning that there is a version mismatch between your RSession and
RStudioServerPro apps, then you must upgrade the version of your RStudioServerPro app. For
more information, see Upgrade the RStudio Version.

View Metrics and Logs

You can monitor your workflow performance while using RStudio on Amazon SageMaker. View
data logs and information about metrics with the RStudio administrative dashboard or Amazon
CloudWatch.

View your RStudio logs from the RStudio administrative dashboard

You can view metrics and logs directly from the RStudio administrative dashboard.

1. Log in to your Amazon SageMaker domain.

2. Navigate to the RStudio administrative dashboard following the steps in RStudio
administrative dashboard.

Manage RStudio on SageMaker 1237

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
mailto:sales@rstudio.com

Amazon SageMaker Developer Guide

3. Select the Logs tab.

View your RStudio logs from Amazon CloudWatch Logs

Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS
in real time. You can use Amazon CloudWatch to collect and track metrics, which are variables
that you can measure for your resources and applications. To ensure that your RStudio apps have
permissions for Amazon CloudWatch, you must include the permissions described in Amazon
SageMaker domain overview. You don’t need to do any setup to gather Amazon CloudWatch Logs.

The following steps show how to view Amazon CloudWatch Logs for your RSession.

These logs can be found in the /aws/sagemaker/studio log stream from the AWS CloudWatch
console.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Select Logs from the left side. From the dropdown menu, select Log groups.

3. On the Log groups screen, search for aws/sagemaker/studio. Select the Log group.

4. On the aws/sagemaker/studio Log group screen, navigate to the Log streams tab.

5. To find the logs for your domain, search Log streams using the following format:

<DomainId>/domain-shared/rstudioserverpro/default

Use RStudio on Amazon SageMaker

With RStudio support in Amazon SageMaker, you can put your production workflows in place
and take advantage of SageMaker features. The following topics show how to launch an RStudio
session and complete key workflows. For information about managing RStudio on SageMaker, see
Manage RStudio on Amazon SageMaker.

For information about the onboarding steps to create an Amazon SageMaker domain with RStudio
enabled, see Amazon SageMaker domain overview.

For information about the AWS Regions that RStudio on SageMaker is supported in, see Supported
Regions and Quotas.

Topics

Use RStudio on Amazon SageMaker 1238

https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide

• Collaborate in RStudio

• Base R image

• RSession application colocation

• Open RStudio Launcher and launch RSessions

• Publish to RStudio Connect

• Access Amazon SageMaker features with RStudio on Amazon SageMaker

Collaborate in RStudio

To share your RStudio project, you can connect RStudio to your Git repo. For information on setting
this up, see Version Control with Git and SVN.

Note: Project sharing and realtime collaboration are not currently supported when using RStudio
on Amazon SageMaker.

Base R image

When launching your RStudio instance, the Base R image serves as the basis of your instance. This
image extends the r-session-complete Docker image.

This Base R image includes the following:

• R v4.0 or higher

• awscli, sagemaker, and boto3 Python packages

• Reticulate package for R SDK integration

RSession application colocation

Users can create multiple RSession applications on the same instance. Each instance type supports
up to four colocated RSession applications. This applies to each user independently. For example, if
two users create applications, then SageMaker allocates different underlying instances to each user.
Each of these instances would support 4 RSession applications.

Customers only pay for the instance type used regardless of how many Rsession applications are
running on the instance. If a user creates an RSession with a different associated instance type,
then a new underlying instance is created.

Use RStudio on Amazon SageMaker 1239

https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://hub.docker.com/r/rstudio/r-session-complete
https://rstudio.github.io/reticulate/

Amazon SageMaker Developer Guide

Open RStudio Launcher and launch RSessions

The following topics show how to use the RStudio Launcher to launch RSessions.

Open RStudio Launcher

Open the RStudio launcher using the following set of procedures that matches your environment.

Open RStudio Launcher from the Amazon SageMaker Console

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. From the left navigation, select RStudio.

3. Under Get Started, select the domain and user profile to launch.

4. Choose Launch RStudio.

Open RStudio Launcher from Amazon SageMaker Studio

1. Navigate to Studio following the steps in Launch Amazon SageMaker Studio.

2. Under Applications, select RStudio.

3. From the RStudio landing page, choose Launch application.

Open RStudio Launcher from the AWS CLI

The procedure to open the RStudio Launcher using the AWS CLI differs depending on the method
used to manage your users.

IAM Identity Center

1. Use the AWS access portal to open your Amazon SageMaker domain.

2. Modify the URL path to “/rstudio/default” as follows.

#Studio URL
https://<domain-id>.studio.<region>.sagemaker.aws/jupyter/default/lab

#modified URL
https://<domain-id>.studio.<region>.sagemaker.aws/rstudio/default

IAM

Use RStudio on Amazon SageMaker 1240

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

To open the RStudio Launcher from the AWS CLI in IAM mode, complete the following procedure.

1. Create a presigned URL using the following command.

aws sagemaker create-presigned-domain-url --region <REGION> \
 --domain-id <DOMAIN-ID> \
 --user-profile-name <USER-PROFILE-NAME>

2. Append &redirect=RStudioServerPro to the generated URL.

3. Navigate to the updated URL.

Launch RSessions

After you’ve launched the RStudio Launcher, you can create a new RSession.

1. Select New Session.

2. Enter a Session Name.

3. Select an instance type that your RSession runs on. This defaults to ml.t3.medium.

4. Select an Image that your RSession uses as the kernel.

5. Select Start Session.

6. After your session has been created, you can start it by selecting the name.

Note

If you receive a warning that there is a version mismatch between your RSession and
RStudioServerPro apps, then you must upgrade the version of your RStudioServerPro
app. For more information, see Upgrade the RStudio Version.

Suspend your RSessions

1. From the RStudio Launcher, identify the RSession that you want to suspend.

2. Select Suspend for the session.

Delete your RSessions

1. From the RStudio Launcher, identify the RSession that you want to delete.

Use RStudio on Amazon SageMaker 1241

Amazon SageMaker Developer Guide

2. Select Quit for the session. This opens a new Quit Session window.

3. From the Quit Session window, select Force Quit, to end all child processes in the session.

4. Select Quit Session to confirm deletion of the session.

Publish to RStudio Connect

RStudio Connect enables data scientists to publish insights, dashboard and web applications from
RStudio on Amazon SageMaker. For more information, see Host RStudio Connect and Package
Manager for ML development in RStudio on Amazon SageMaker.

For more information on RStudio Connect, see the RStudio Connect User Guide.

Access Amazon SageMaker features with RStudio on Amazon SageMaker

One of the benefits of using RStudio on Amazon SageMaker is the integration of Amazon
SageMaker features. This includes integration with Amazon SageMaker Studio Classic and
Reticulate.

Use Amazon SageMaker Studio Classic and RStudio on Amazon SageMaker

Your Amazon SageMaker Studio Classic and RStudio instances share the same Amazon EFS file
system. This means that files that you import and create using Studio Classic can be accessed
using RStudio and vice versa. This allows you to work on the same files using both Studio Classic
and RStudio without having to move your files between the two. For more information on this
workflow, see the Announcing Fully Managed RStudio on Amazon SageMaker for Data Scientists
blog.

Use Amazon SageMaker SDK with reticulate

The reticulate package is used as an R interface to Amazon SageMaker Python SDK to make API
calls to Amazon SageMaker. The reticulate package translates between R and Python objects,
and Amazon SageMaker provides a serverless data science environment to train and deploy
Machine Learning (ML) models at scale. For general information about the reticulate package, see
R Interface to Python.

For a blog that outlines how to use the reticulate package with Amazon SageMaker, see Using R
with Amazon SageMaker.

The following examples show how to use reticulate for specific use cases.

Use RStudio on Amazon SageMaker 1242

https://aws.amazon.com/blogs/machine-learning/host-rstudio-connect-and-package-manager-for-ml-development-in-rstudio-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/host-rstudio-connect-and-package-manager-for-ml-development-in-rstudio-on-amazon-sagemaker/
https://docs.rstudio.com/connect/user/
https://aws.amazon.com/blogs/aws/announcing-fully-managed-rstudio-on-amazon-sagemaker-for-data-scientists
https://rstudio.github.io/reticulate
https://sagemaker.readthedocs.io/en/stable/
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://aws.amazon.com/blogs/machine-learning/using-r-with-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/using-r-with-amazon-sagemaker/

Amazon SageMaker Developer Guide

• For a notebook that describes how to use reticulate to do batch transform to make predictions,
see Batch Transform Using R with Amazon SageMaker.

• For a notebook that describes how to use reticulate to conduct hyperparameter tuning and
generate predictions, see Hyperparameter Optimization Using R with Amazon SageMaker.

Get started with Code Editor in Amazon SageMaker Studio

Code Editor, based on Code-OSS, Visual Studio Code - Open Source, helps you write, test, debug,
and run your analytics and machine learning code. Code Editor extends and is fully integrated with
Amazon SageMaker Studio. It also supports integrated development environment (IDE) extensions
available in the Open VSX Registry.

Code Editor has the AWS Toolkit for VS Code extension pre-installed, which enables connections
to AWS services such as Amazon CodeWhisperer, a general purpose, machine learning-powered
code generator that provides code recommendations in real time. For more information about
extensions, see Code Editor Connections and Extensions.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

To launch Code Editor, create a Code Editor private space. The Code Editor space uses a single
Amazon Elastic Compute Cloud (Amazon EC2) instance for your compute and a single Amazon
Elastic Block Store (Amazon EBS) volume for your storage. Everything in your space such as your
code, Git profile, and environment variables are stored on the same Amazon EBS volume. The
volume has 3000 IOPS and a throughput of 125 MBps. Your administrator has configured the
default Amazon EBS storage settings for your space.

The default storage size is 5 GB, but your administrator can increase the amount of space you get.
For more information, see Change the default storage size.

You can scale your compute up or down by changing the Amazon EC2 instance type that runs your
Code Editor application. Before you change the associated instance type, you must first stop your
Code Editor space. For more information, see Code Editor application instances and images.

SageMaker Code Editor 1243

https://sagemaker-examples.readthedocs.io/en/latest/r_examples/r_batch_transform/r_xgboost_batch_transform.html
https://sagemaker-examples.readthedocs.io/en/latest/r_examples/r_xgboost_hpo_batch_transform/r_xgboost_hpo_batch_transform.html
https://github.com/microsoft/vscode#visual-studio-code---open-source-code---oss
https://open-vsx.org/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/codewhisperer.html

Amazon SageMaker Developer Guide

Your administrator might provide you with a lifecycle configuration to customize your
environment. You can specify the lifecycle configuration when you create the space. For more
information, see Code Editor lifecycle configurations.

You can also bring your own file storage system if you have an Amazon EFS volume.

Topics

• Code Editor user guide

• Code Editor adminstrator guide

Code Editor user guide

The topics in this section provide guides for using Code Editor, including how to launch, add
connections to AWS services, shut down resources, and more. After creating a Code Editor space,
you can access your Code Editor session directly through the browser.

Within your Code Editor environment, you can do the following:

• Access all artifacts persisted in your home directory

• Clone your GitHub repositories and commit changes

• Access the SageMaker Python SDK

Code Editor user guide 1244

Amazon SageMaker Developer Guide

You can return to Studio to review any assets created in your Code Editor environment such as
experiments, pipelines, or training jobs.

Topics

• Check the version of Code Editor

• Code Editor application instances and images

• Launch a Code Editor application in Studio

• Launch a Code Editor application using the AWS CLI

• Clone a repository in Code Editor

• Code Editor Connections and Extensions

• Log out and shut down resources

Check the version of Code Editor

The following steps show how to check the version of your Code Editor application.

To check the Code Editor application version

1. Launch and run a Code Editor space and navigate to the Code Editor application UI. For more
information, see Launch a Code Editor application in Studio.

2. In the upper-left corner of the Code Editor UI, choose the menu button

().
Then, choose Help. Then, choose About.

Note

The current release of SageMaker Code Editor is based off of version 1.83.1 of Code-OSS,
Visual Studio Code - Open Source.

Code Editor application instances and images

Only some instances are compatible with Code Editor applications. You can choose the instance
type that is compatible with your use case from the Instance dropdown menu.

Code Editor user guide 1245

https://github.com/microsoft/vscode/releases/tag/1.83.1

Amazon SageMaker Developer Guide

The Fast launch instances start up much faster than the other instances. For more information
about fast launch instance types in Studio, Available Studio Classic Instance Types.

Note

If you use a GPU instance type when configuring your Code Editor application, you must
also use a GPU-based image. The Code Editor space UI automatically selects a compatible
image when you select your instance type.

Within a space, your data is stored in an Amazon EBS volume that persists independently from the
life of an instance. You won't lose your data when you change instances. If your Code Editor space
is Running, you must stop your space before changing instance types.

The following table lists the ARNs of the available Code Editor CPU and GPU images for each
Region.

Region CPU GPU

us-east-1 arn:aws:sagemaker:us-east-1
:885854791233:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:us-east-1
:885854791233:image/
sagemaker-distribution-gpu

us-east-2 arn:aws:sagemaker:us-
east-2:37914896644:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:us-
east-2:37914896644:image/
sagemaker-distribution-gpu

us-west-1 arn:aws:sagemaker:us-west-1
:053634841547:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:us-west-1
:053634841547:image/
sagemaker-distribution-gpu

us-west-2 arn:aws:sagemaker:us-west-2
:542918446943:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:us-west-2
:542918446943:image/
sagemaker-distribution-gpu

af-south-1 arn:aws:sagemaker:af-south-
1:238384257742:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:af-south-
1:238384257742:image/
sagemaker-distribution-gpu

Code Editor user guide 1246

Amazon SageMaker Developer Guide

ap-east-1 arn:aws:sagemaker:ap-east-1
:523751269255:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ap-east-1
:523751269255:image/
sagemaker-distribution-gpu

ap-south-1 arn:aws:sagemaker:ap-south-
1:245090515133:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ap-south-
1:245090515133:image/
sagemaker-distribution-gpu

ap-northeast-2 arn:aws:sagemaker:ap-northe
ast-2:064688005998:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ap-northe
ast-2:064688005998:image/
sagemaker-distribution-gpu

ap-southeast-1 arn:aws:sagemaker:ap-southe
ast-1:022667117163:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ap-southe
ast-1:022667117163:image/
sagemaker-distribution-gpu

ap-southeast-2 arn:aws:sagemaker:ap-southe
ast-2:648430277019:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ap-southe
ast-2:648430277019:image/
sagemaker-distribution-gpu

ap-northeast-1 arn:aws:sagemaker:ap-northe
ast-1:010972774902:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ap-northe
ast-1:010972774902:image/
sagemaker-distribution-gpu

ca-central-1 arn:aws:sagemaker:ca-centra
l-1:481561238223:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ca-centra
l-1:481561238223:image/
sagemaker-distribution-gpu

eu-central-1 arn:aws:sagemaker:eu-centra
l-1:545423591354:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:eu-centra
l-1:545423591354:image/
sagemaker-distribution-gpu

eu-west-1 arn:aws:sagemaker:eu-west-1
:819792524951:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:eu-west-1
:819792524951:image/
sagemaker-distribution-gpu

eu-west-2 arn:aws:sagemaker:eu-west-2
:021081402939:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:eu-west-2
:021081402939:image/
sagemaker-distribution-gpu

Code Editor user guide 1247

Amazon SageMaker Developer Guide

eu-west-3 arn:aws:sagemaker:eu-west-3
:856416204555:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:eu-west-3
:856416204555:image/
sagemaker-distribution-gpu

eu-north-1 arn:aws:sagemaker:eu-north-
1:175620155138:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:eu-north-
1:175620155138:image/
sagemaker-distribution-gpu

eu-south-1 arn:aws:sagemaker:eu-south-
1:810671768855:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:eu-south-
1:810671768855:image/
sagemaker-distribution-gpu

sa-east-1 arn:aws:sagemaker:sa-east-1
:567556641782:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:sa-east-1
:567556641782:image/
sagemaker-distribution-gpu

ap-northeast-3 arn:aws:sagemaker:ap-northe
ast-3:564864627153:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ap-northe
ast-3:564864627153:image/
sagemaker-distribution-gpu

ap-southeast-3 arn:aws:sagemaker:ap-southe
ast-3:370607712162:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:ap-southe
ast-3:370607712162:image/
sagemaker-distribution-gpu

me-south-1 arn:aws:sagemaker:me-south-
1:523774347010:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:me-south-
1:523774347010:image/
sagemaker-distribution-gpu

me-central-1 arn:aws:sagemaker:me-centra
l-1:358593528301:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:me-centra
l-1:358593528301:image/
sagemaker-distribution-gpu

il-central-1 arn:aws:sagemaker:il-centra
l-1:080319125002:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:il-centra
l-1:080319125002:image/
sagemaker-distribution-gpu

cn-north-1 arn:aws:sagemaker:cn-north-
1:674439102856:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:cn-north-
1:674439102856:image/
sagemaker-distribution-gpu

Code Editor user guide 1248

Amazon SageMaker Developer Guide

cn-northwest-1 arn:aws:sagemaker:cn-northw
est-1:651871951035:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:cn-northw
est-1:651871951035:image/
sagemaker-distribution-gpu

us-gov-west-1 arn:aws:sagemaker:us-gov-we
st-1:300992924816:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:us-gov-we
st-1:300992924816:image/
sagemaker-distribution-gpu

us-gov-east-1 arn:aws:sagemaker:us-gov-ea
st-1:300993876623:image/
sagemaker-distribution-cpu

arn:aws:sagemaker:us-gov-ea
st-1:300993876623:image/
sagemaker-distribution-gpu

If you encounter instance limits, contact your administrator. To get more storage and compute for
a user, administrators can request an increase to a user's AWS quotas. For more information about
requesting a quota increase, see Amazon SageMaker endpoints and quotas.

Launch a Code Editor application in Studio

To configure and access your Code Editor integrated development environment through Studio,
you must create a Code Editor space. For more information about spaces in Studio, see Amazon
SageMaker Studio spaces.

Code Editor user guide 1249

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

The following procedure shows how to create and run a Code Editor space.

To create and run a Code Editor space

1. Launch the updated Studio experience. For more information, see Launch Amazon SageMaker
Studio.

2. Do one of the following:

• Within the updated Amazon SageMaker Studio UI, select Code Editor from the
Applications menu.

• Within the updated Amazon SageMaker Studio UI, choose View Code Editor spaces in the
Overview section of the Studio homepage.

3. In the upper-right corner of the Code Editor landing page, choose Create Code Editor space.

4. Enter a name for your Code Editor space. The name must be 1–62 characters in length using
letters, numbers, and dashes only.

5. Choose Create space.

6. After the space is created, you have some options before you choose to run the space:

• You can edit the Storage (GB), Lifecycle Configuration, or Attach custom EFS filesystem
settings. Options for these settings are available based on administrator specification.

Code Editor user guide 1250

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

• From the Instance dropdown menu, you can choose the instance type most compatible
with your use case.

If you use a GPU instance type when configuring your Code Editor application, you must
also use a GPU-based image. Within a space, your data is stored in an Amazon EBS volume
that persists independently from the life of an instance. You won't lose your data when
you change instances.

Note

To update space settings, you must first stop your space. If your Code Editor uses an
instance with NVMe instance stores, any data stored on the NVMe store is deleted
when the space is stopped.

7. After updating your settings, choose Run Space in the space detail page.

8. After the status of the space is Running, choose Open Code Editor to go to your Code Editor
session.

Within the Code Editor Studio landing page, you can filter and manage existing spaces.

Code Editor user guide 1251

Amazon SageMaker Developer Guide

To manage your Code Editor spaces

1. Navigate to the Code Editor Studio landing page and filter your Code Editor spaces by Private
to me or Running.

2. Do one of the following:

• Within the Code Editor Studio landing page, in the row of the space name of your choice,
you can Stop, Start, or Open that space in the Action column.

• Choose the name of a space in the Code Editor Studio landing page. This takes you to the
space detail page where you can also Stop, Start, or Open that space or update the space
settings.

Launch a Code Editor application using the AWS CLI

To configure and access your Code Editor integrated development environment through the AWS
Command Line Interface (AWS CLI), you must create a Code Editor space. Be sure to meet the
Prerequisites before going through the following steps. Use the following procedure to create and
run a Code Editor space.

To create and run a Code Editor space

1. Access a space using AWS Identity and Access Management (IAM) or AWS IAM Identity Center
authentication. For more information about accessing spaces using the AWS CLI, see Accessing
spaces using the AWS Command Line Interface in Amazon SageMaker Studio spaces.

2. Create an application and specify CodeEditor as the app-type using the following
command.

If you use a GPU instance type when creating your Code Editor application, you must also use a
GPU-based image.

aws sagemaker create-app \
--domain-id domain-id \
--space-name space-name \
--app-type CodeEditor \
--app-name default \
--resource-spec "SageMakerImageArn=arn:aws:sagemaker:region:account-
id:image/sagemaker-distribution-cpu"

Code Editor user guide 1252

Amazon SageMaker Developer Guide

For more information about available Code Editor image ARNs, see Code Editor application
instances and images.

3. After the Code Editor application is in service, launch the application using a presigned URL.
You can use the describe-app API to check if your application is in service. Use the create-
presigned-domain-url API to create a presigned URL:

aws sagemaker create-presigned-domain-url \
--domain-id domain-id \
--space-name space-name \
--user-profile-name user-profile-name \
--session-expiration-duration-in-seconds 43200 \
--landing-uri app:CodeEditor:

4. Open the generated URL to start working in your Code Editor application.

Clone a repository in Code Editor

You can navigate through folders and clone a repository in the Explorer window of the Code Editor
application UI.

To clone a repository, go through the following steps:

To clone a repository

1. Open your Code Editor application in the browser, and choose the Exploration button

()
in the left navigation pane.

2. Choose Clone Repository in the Explorer window. Then, provide a repository URL or pick a
repository source in the prompt.

3. Choose a folder to clone your repository into. Note that the default Code Editor folder is /
home/sagemaker-user/. Cloning your repository may take some time.

4. To open the cloned repository, choose either Open in New Window or Open.

5. To return to the Code Editor application UI homepage, choose Cancel.

6. Within the repository, a prompt asks if you trust the authors of the files in your new repository.
You have two choices:

Code Editor user guide 1253

Amazon SageMaker Developer Guide

a. To trust the folder and enable all features, choose Yes, I trust the authors.

b. To browse the repository content in restricted mode, choose No, I don't trust the authors.

In restricted mode, tasks are not allowed to run, debugging is disabled, workspace settings
are not applied, and extensions have limited functionality.

To exit restricted mode, trust the authors of all files in your current folder or its parent
folder, and enable all features, choose Manage in the Restricted Mode banner.

Code Editor Connections and Extensions

Code Editor supports IDE connections to AWS services as well as extensions available in the Open
VSX Registry.

Connections to AWS

Code Editor environments are integrated with the AWS Toolkit for VS Code to add connections to
AWS services. To get started with connections to AWS services, you must have valid AWS Identity
and Access Management (IAM) credentials. For more information, see Authentication and access for
the AWS Toolkit for Visual Studio Code.

Within your Code Editor environment, you can add connections to:

• AWS Explorer – View, modify, and deploy AWS resources in Amazon S3, CloudWatch, and more.

Accessing certain features within AWS Explorer requires certain AWS permissions. For more
information, see Authentication and access for the AWS Toolkit for Visual Studio Code.

• Amazon CodeWhisperer – Build applications faster with AI-powered code suggestions.

To use Amazon CodeWhisperer with Code Editor, you must add the following permissions to your
SageMaker execution role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CodeWhispererPermissions",
 "Effect": "Allow",
 "Action": ["codewhisperer:GenerateRecommendations"],
 "Resource": "*"

Code Editor user guide 1254

https://open-vsx.org/
https://open-vsx.org/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/establish-credentials.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/establish-credentials.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/aws-explorer.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/establish-credentials.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/codewhisperer.html

Amazon SageMaker Developer Guide

 }
]
}

For more information, see Creating IAM policies and Adding and removing IAM identity
permissions in the IAM User Guide.

Extensions

Code Editor supports IDE extensions available in the Open VSX Registry.

To get started with extensions in your Code Editor environment, choose the Extensions icon

()
in the left navigation pane. Here, you can configure connections to AWS by installing the AWS
Toolkit. For more information, see Installing the AWS Toolkit for Visual Studio Code.

In the search bar, you can search directly for additional extensions through the Open VSX Registry,
such as the AWS Toolkit, Jupyter, Python, and more.

Log out and shut down resources

In the upper-left corner of the Code Editor environment, choose the menu icon

().
Then, choose SageMaker: Log out.

Stop your space through Studio

To stop your Code Editor space in Studio use the following steps:

To stop your Code Editor space in Studio

1. Return to the Code Editor landing page by doing one of the following:

a. In the navigation bar in the upper-left corner, choose Code Editor.

b. Alternatively, in the left navigation pane, choose Code Editor in the Applications menu.

2. Find the name of the Code Editor space you created. If the status of your space is Running,
choose Stop in the Action column. You can also stop your space directly in the space detail
page by choosing Stop space. The space may take some time to stop.

Code Editor user guide 1255

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://open-vsx.org/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://open-vsx.org/

Amazon SageMaker Developer Guide

Additional resources such as SageMaker endpoints, Amazon EMR (Amazon EMR) clusters and
Amazon Simple Storage Service (Amazon S3) buckets created from Studio are not automatically
deleted when your space instance shuts down. To stop accruing charges from resources, delete any
additional resources. For more information, see Delete unused resources.

Shut down resources using the AWS CLI

You can delete your Code Editor application and space using the AWS Command Line Interface
(AWS CLI).

• DeleteApp

• DeleteSpace

Code Editor adminstrator guide

You can use Code Editor with an On-Demand Instance for faster startup time, and configurable
storage. You can launch a Code Editor application through Amazon SageMaker Studio or through
the AWS CLI. You can also edit Code Editor default settings within the domain console. For more
information, see View and edit domains.

Topics

• Prerequisites

• Give your users access to private spaces

• Change the default storage size

• Code Editor lifecycle configurations

Code Editor adminstrator guide 1256

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-jl-admin-guide-clean-up.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteApp.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteSpace.html

Amazon SageMaker Developer Guide

Prerequisites

To use Code Editor, based on Code-OSS, Visual Studio Code - Open Source, first onboard to
Amazon SageMaker domain and create a user profile. For more information, see Amazon
SageMaker domain overview.

If you are interacting with your Code Editor application using the AWS CLI, you must also complete
the following prerequisites.

• Update the AWS CLI by following the steps in Installing the current AWS CLI Version.

• From your local machine, run aws configure and provide your AWS credentials. For
information about AWS credentials, see Understanding and getting your AWS credentials.

To get more storage and compute for your application, you can request an increase to your AWS
quotas. For more information about requesting a quota increase, see Amazon SageMaker endpoints
and quotas.

Give your users access to private spaces

This section provides a policy that grants user access to private spaces. You can also use the policy
to restrict private spaces and applications that are associated with them to the owner associated
with the user profile.

You must provide your users with permissions to the following:

• Private spaces

• The user profile required for access to the private spaces

To provide permissions, attach the following policy to the IAM roles of your users.

{
 "Version": "2012-10-17",
 "Statement": [
 {

 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp",
 "sagemaker:DeleteApp"
],

Code Editor adminstrator guide 1257

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html#install-tool-bundled
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:app/*",
 "Condition": {
 "Null": {
 "sagemaker:OwnerUserProfileArn": "true"
 }
 }
 },
 {
 "Sid": "SMStudioCreatePresignedDomainUrlForUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:user-profile/
${sagemaker:DomainId}/${sagemaker:UserProfileName}"
 },
 {
 "Sid": "SMStudioAppPermissionsListAndDescribe",
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListApps",
 "sagemaker:ListDomains",
 "sagemaker:ListUserProfiles",
 "sagemaker:ListSpaces",
 "sagemaker:DescribeApp",
 "sagemaker:DescribeDomain",
 "sagemaker:DescribeUserProfile",
 "sagemaker:DescribeSpace"
],
 "Resource": "*"
 },
 {
 "Sid": "SMStudioAppPermissionsTagOnCreate",
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddTags"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:*/*",
 "Condition": {
 "Null": {
 "sagemaker:TaggingAction": "false"
 }
 }
 },

Code Editor adminstrator guide 1258

Amazon SageMaker Developer Guide

 {
 "Sid": "SMStudioRestrictSharedSpacesWithoutOwners",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateSpace",
 "sagemaker:UpdateSpace",
 "sagemaker:DeleteSpace"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:space/
${sagemaker:DomainId}/*",
 "Condition": {
 "Null": {
 "sagemaker:OwnerUserProfileArn": "true"
 }
 }
 },
 {
 "Sid": "SMStudioRestrictSpacesToOwnerUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateSpace",
 "sagemaker:UpdateSpace",
 "sagemaker:DeleteSpace"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:space/
${sagemaker:DomainId}/*",
 "Condition": {
 "ArnLike": {
 "sagemaker:OwnerUserProfileArn": "arn:aws:sagemaker:$AWS Region:
$111122223333:user-profile/${sagemaker:DomainId}/${sagemaker:UserProfileName}"
 },
 "StringEquals": {
 "sagemaker:SpaceSharingType": [
 "Private",
 "Shared"
]
 }
 }
 },
 {
 "Sid": "SMStudioRestrictCreatePrivateSpaceAppsToOwnerUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp",

Code Editor adminstrator guide 1259

Amazon SageMaker Developer Guide

 "sagemaker:DeleteApp"
],
 "Resource": "arn:aws:sagemaker:{{Region}}:{{AccountId}}:app/
${sagemaker:DomainId}/*",
 "Condition": {
 "ArnLike": {
 "sagemaker:OwnerUserProfileArn": "arn:aws:sagemaker:
${aws:Region}:${aws:PrincipalAccount}:user-profile/${sagemaker:DomainId}/
${sagemaker:UserProfileName}"
 },
 "StringEquals": {
 "sagemaker:SpaceSharingType": [
 "Private"
]
 }
 }
 },
]
}

Change the default storage size

You can change the default storage settings of your users. You can also change the default storage
settings based on your organizational requirements and the needs of your users.

To change the storage size of your users, do the following:

1. Update the Amazon EBS storage settings in the domain.

2. Create a user profile and specify the storage settings within it.

Use the following AWS Command Line Interface (AWS CLI) command to update the domain.

aws --region $REGION sagemaker update-domain \
--domain-id $DOMAIN_ID \
--default-user-settings '{
 "SpaceStorageSettings": {
 "DefaultEbsStorageSettings":{
 "DefaultEbsVolumeSizeInGb":5,
 "MaximumEbsVolumeSizeInGb":100
 }
 }

Code Editor adminstrator guide 1260

Amazon SageMaker Developer Guide

}'

Use the following AWS CLI command to create the user profile and specify the default storage
settings.

aws --region $REGION sagemaker create-user-profile \
--domain-id $DOMAIN_ID \
--user-profile-name $USER_PROFILE_NAME \
--user-settings '{
 "SpaceStorageSettings": {
 "DefaultEbsStorageSettings":{
 "DefaultEbsVolumeSizeInGb":5,
 "MaximumEbsVolumeSizeInGb":100
 }
 }
}'

Use the following AWS CLI commands to update the default storage settings in the user profile.

aws --region $REGION sagemaker update-user-profile \
--domain-id $DOMAIN_ID \
--user-profile-name $USER_PROFILE_NAME \
--user-settings '{
 "SpaceStorageSettings": {
 "DefaultEbsStorageSettings":{
 "DefaultEbsVolumeSizeInGb":25,
 "MaximumEbsVolumeSizeInGb":200
 }
 }
}'

Code Editor lifecycle configurations

You can use Code Editor lifecycle configurations to automate customization for your Studio
environment. This customization includes installing custom packages, configuring extensions,
preloading datasets, and setting up source code repositories.

The following instructions use the AWS Command Line Interface (AWS CLI) to create, attach,
debug, and detach lifecycle configurations for the CodeEditor application type:

• Create and attach lifecycle configurations in Studio

Code Editor adminstrator guide 1261

Amazon SageMaker Developer Guide

• Debug lifecycle configurations in Studio

• Detach lifecycle configurations in Studio

Create and attach lifecycle configurations in Studio

The following section provides AWS CLI commands to create a lifecycle configuration, attach a
lifecycle configuration when creating a new user profile, and attach a lifecycle configuration when
updating a user profile. For prerequisites and general steps on creating and attaching lifecycle
configurations in Studio, see Create and associate a lifecycle configuration.

When creating your Studio lifecycle configuration with the create-studio-lifecycle-config
command, be sure to specify that the studio-lifecycle-config-app-type is CodeEditor.
The following example shows how to create a new Studio lifecycle configuration for your Code
Editor application.

aws sagemaker create-studio-lifecycle-config \
--studio-lifecycle-config-name my-code-editor-lcc \
--studio-lifecycle-config-content $LCC_CONTENT \
--studio-lifecycle-config-app-type CodeEditor

Note the ARN of the newly created lifecycle configuration that is returned. When attaching
a lifecycle configuration, provide this ARN within the LifecycleConfigArns list of
CodeEditorAppSettings.

You can attach a lifecycle configuration when creating a user profile or domain. The following
example shows how to create a new user profile with the lifecycle configuration attached. You
can also create a new domain with a lifecycle configuration attached by using the create-domain
command.

Create a new UserProfile
aws sagemaker create-user-profile \
--domain-id domain-id \
--user-profile-name user-profile-name \
--user-settings '{
"CodeEditorAppSettings": {
 "LifecycleConfigArns":
 [lifecycle-configuration-arn-list]
 }
}'

Code Editor adminstrator guide 1262

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/opensearch/create-domain.html

Amazon SageMaker Developer Guide

You can alternatively attach a lifecycle configuration when updating a user profile or domain. The
following example shows how to update a user profile with the lifecycle configuration attached.
You can also update a new domain with a lifecycle configuration attached by using the update-
domain command.

Update a UserProfile
aws sagemaker update-user-profile \
--domain-id domain-id \
--user-profile-name user-profile-name \
--user-settings '{
"CodeEditorAppSettings": {
 "LifecycleConfigArns":
 [lifecycle-configuration-arn-list]
 }
}'

Debug lifecycle configurations in Studio

For instructions on debugging lifecycle configurations in Studio, see Debug lifecycle configurations.

To find the logs for a specific application, search the log streams using the following format:

domain-id/space-name/CodeEditor/default/LifecycleConfigOnStart

Detach lifecycle configurations in Studio

For steps on detaching lifecycle configurations in Studio, see Detach lifecycle configurations.

To detach a lifecycle configuration using the AWS CLI, remove the desired lifecycle configuration
from the list of lifecycle configurations attached to the resource. Then pass the list as part of the
respective command:

• update-user-profile

• update-domain

For example, the following command removes all lifecycle configurations for the Code Editor
application attached to the domain.

aws sagemaker update-domain --domain-id domain-id \

Code Editor adminstrator guide 1263

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-user-profile.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html

Amazon SageMaker Developer Guide

--default-user-settings '{
"CodeEditorAppSettings": {
 "LifecycleConfigArns":
 []
 }
}'

Create a lifecycle configuration to clone repositories into a Code Editor application

This section shows how to clone a repository and create a Code Editor application with the lifecycle
configuration attached.

1. From your local machine, create a file named my-script.sh with the following content:

#!/bin/bash
set -eux

2. Clone the repository of your choice in your lifecycle configuration script.

export REPOSITORY_URL="https://github.com/aws-samples/sagemaker-studio-lifecycle-
config-examples.git"
git -C /home/sagemaker-user clone $REPOSITORY_URL

3. After finalizing your script, create and attach your lifecycle configuration. For more
information, see Create and attach lifecycle configurations in Studio.

4. Create your Code Editor application with the lifecycle configuration attached.

aws sagemaker create-app \
--domain-id domain-id \
--space-name space-name \
--app-type CodeEditor \
--app-name default \
--resource-spec "SageMakerImageArn=arn:aws:sagemaker:region:image-account-
id:image/sagemaker-distribution-
cpu,LifecycleConfigArn=arn:aws:sagemaker:region:user-account-id:studio-lifecycle-
config/my-code-editor-lcc,InstanceType=ml.t3.large"

For more information about available Code Editor image ARNs, see Code Editor application
instances and images.

Code Editor adminstrator guide 1264

Amazon SageMaker Developer Guide

Create a lifecycle configuration to install Code Editor extensions

This section shows how to create a lifecyctle configuration to install extensions from the Open VSX
Registry in your Code Editor environment.

1. From your local machine, create a file named my-script.sh with the following content:

#!/bin/bash
set -eux

2. Within the script, install the Open VSX Registry extension of your choice:

sagemaker-code-editor --install-extension AmazonEMR.emr-tools --extensions-dir /
opt/amazon/sagemaker/sagemaker-code-editor-server-data/extensions

You can retrieve the extension name from the URL of the extension in the Open VSX
Registry. The extension name to use in the sagemaker-code-editor command should
contain all text that follows https://open-vsx.org/extension/ in the URL. Replace all
instances of a slash (/) with a period (.). For example, AmazonEMR/emr-tools should be
AmazonEMR.emr-tools.

3. After finalizing your script, create and attach your lifecycle configuration. For more
information, see Create and attach lifecycle configurations in Studio.

4. Create your Code Editor application with the lifecycle configuration attached:

Code Editor adminstrator guide 1265

https://open-vsx.org/
https://open-vsx.org/
https://open-vsx.org/
https://open-vsx.org/
https://open-vsx.org/

Amazon SageMaker Developer Guide

aws sagemaker create-app \
--domain-id domain-id \
--space-name space-name \
--app-type CodeEditor \
--app-name default \
--resource-spec "SageMakerImageArn=arn:aws:sagemaker:region:image-account-
id:image/sagemaker-distribution-
cpu,LifecycleConfigArn=arn:aws:sagemaker:region:user-account-id:studio-lifecycle-
config/my-code-editor-lcc,InstanceType=ml.t3.large"

For more information about available Code Editor image ARNs, see Code Editor application
instances and images. For more information about connections and extensions, see Code
Editor Connections and Extensions.

SageMaker HyperPod

SageMaker HyperPod helps you provision resilient clusters for running machine learning (ML)
workloads and developing state-of-the-art models such as large language models (LLMs),
diffusion models, and foundation models (FMs). It accelerates development of FMs by removing
undifferentiated heavy-lifting involved in building and maintaining large-scale compute clusters
powered by thousands of accelerators such as AWS Trainium and NVIDIA A100 and H100 Graphical
Processing Units (GPUs). When accelerators fail, self-healing clusters automatically detect and
replace the faulty hardware on the fly so that you can focus on running ML workloads for weeks
and months without disruption. Additionally, with SageMaker HyperPod, you can customize your
computing environment to best suit your needs and configure it with the Amazon SageMaker
distributed training libraries to achieve optimal performance on AWS.

Operating clusters

You can create, configure, and maintain SageMaker HyperPod clusters graphically through the
console user interface (UI) and programmatically through the AWS command line interface (CLI)
or AWS SDK for Python (Boto3). With Amazon VPC, you can secure the cluster network and also
take advantage of configuring your cluster with resources in your VPC, such as Amazon FSx for
Lustre, which offers the fastest throughput. You can also give different IAM roles to cluster instance
groups, and limit actions that your cluster resources and users can operate. To learn more, see the
section called “Operate SageMaker HyperPod”.

Configuring your ML environment

SageMaker HyperPod 1266

Amazon SageMaker Developer Guide

SageMaker HyperPod runs the section called “SageMaker HyperPod DLAMI”, which sets up an ML
environment on the HyperPod clusters. You can configure additional customizations to the DLAMI
by providing lifecycle scripts to support your use case. To learn more about how to set up lifecycle
scripts, see the section called “Getting started with SageMaker HyperPod” and the section called
“SageMaker HyperPod lifecycle configuration best practices”.

Scheduling jobs

After you successfully create a HyperPod cluster, cluster users can log into the cluster nodes (such
as head or controller node, log-in node, and worker node) and schedule jobs for running machine
learning workloads. To learn more, see the section called “Run jobs on HyperPod clusters”.

Resiliency against hardware failures

SageMaker HyperPod runs health checks on cluster nodes and provides a workload auto-resume
functionality. With the cluster resiliency features of HyperPod, you can resume your workload from
the last checkpoint you saved, after faulty nodes are replaced with healthy ones in clusters with
more than 16 nodes. To learn more, see the section called “Cluster resiliency”.

Logging and managing clusters

You can find SageMaker HyperPod resource utilization metrics and lifecycle logs in Amazon
CloudWatch, and manage SageMaker HyperPod resources by tagging them. Each CreateCluster
API run creates a distinct log stream, named in <cluster-name>-<timestamp> format. In
the log stream, you can check the host names, the name of failed lifecycle scripts, and outputs
from the failed scripts such as stdout and stderr. For more information, see the section called
“Cluster management”.

Compatible with SageMaker tools

Using SageMaker HyperPod, you can configure clusters with AWS optimized collective
communications libraries offered by SageMaker, such as the SageMaker distributed data parallelism
(SMDDP) library. The SMDDP library implements the AllGather operation optimized to the
AWS compute and network infrastructure for the most performant SageMaker machine learning
instances powered by NVIDIA A100 GPUs. To learn more, see the section called “Schedule jobs for
distributed training workloads on SageMaker HyperPod”.

Topics

• SageMaker HyperPod prerequisites

SageMaker HyperPod 1267

Amazon SageMaker Developer Guide

• Getting started with SageMaker HyperPod

• Operate SageMaker HyperPod

• SageMaker HyperPod lifecycle configuration best practices

• Run jobs on SageMaker HyperPod clusters

• SageMaker HyperPod cluster resiliency

• SageMaker HyperPod cluster management

• SageMaker HyperPod references

• SageMaker HyperPod FAQ

• Amazon SageMaker HyperPod release notes

SageMaker HyperPod prerequisites

The following sections walk you through prerequisites you need to prepare before you get started
with SageMaker HyperPod.

Topics

• SageMaker HyperPod quotas

• Set up IAM users and roles for SageMaker HyperPod users and resources

• Set up AWS Systems Manager and Run As for cluster user access control

• (Optional) Set up SageMaker HyperPod with your Amazon VPC

• (Optional) Set up SageMaker HyperPod with Amazon FSx for Lustre

SageMaker HyperPod quotas

You can create SageMaker HyperPod clusters given the quotas for cluster usage in your AWS
account.

Important

To learn more about SageMaker HyperPod pricing, see the section called “SageMaker
HyperPod pricing” and Amazon SageMaker Pricing.

Prerequisites 1268

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

View Amazon SageMaker HyperPod quotas using the AWS Management Console

Look up the default and applied values of a quota, also referred to as a limit, for cluster usage,
which is used for SageMaker HyperPod.

1. Open the Service Quotas console.

2. In the left navigation pane, choose AWS services.

3. From the AWS services list, search for and select Amazon SageMaker.

4. In the Service quotas list, you can see the service quota name, applied value (if it's available),
AWS default quota, and whether the quota value is adjustable.

5. In the search bar, type cluster usage. This shows quotas for cluster usage, applied quotas, and
the default quotas.

To increase Amazon SageMaker HyperPod quotas using the AWS Management Console

Increase your quotas at the account or resource level.

1. To increase the quota of instances for cluster usage, select the quota that you want to increase.

2. If the quota is adjustable, you can request a quota increase at either the account level or
resource level based on the value listed in the Adjustability column.

3. For Increase quota value, enter the new value. The new value must be greater than the current
value.

4. Choose Request.

5. To view any pending or recently resolved requests in the console, navigate to the Request
history tab from the service's details page, or choose Dashboard from the navigation pane. For
pending requests, choose the status of the request to open the request receipt. The initial status
of a request is Pending. After the status changes to Quota requested, you see the case number
with AWS Support. Choose the case number to open the ticket for your request.

To learn more about requesting a quota increase in general, see Requesting a Quota Increase in the
AWS Service Quotas User Guide.

Set up IAM users and roles for SageMaker HyperPod users and resources

There are three main layers of SageMaker HyperPod users: AWS account admin, cluster
administrators (such as cloud architects), and cluster users (such as machine learning scientists).

Prerequisites 1269

https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon SageMaker Developer Guide

The AWS account admin should set up IAM users by attaching the right permissions or policies for
cluster administrators. For cluster administrators, the AWS account admin also should create IAM
roles that the cluster administrators can use for SageMaker HyperPod clusters to assume to run
and communicate with necessary AWS resources, such as Amazon S3, Amazon CloudWatch, and
AWS Systems Manager (SSM). Finally, cluster administrators can grant cluster users permissions to
log into the SageMaker HyperPod clusters through SSM Agent.

Topics

• Set up IAM users for cluster administrators

• Set up IAM users for cluster users

• IAM role for SageMaker HyperPod

Set up IAM users for cluster administrators

Cluster administrators are cloud architects who operate and configure SageMaker HyperPod
clusters, performing the tasks in the section called “Operate SageMaker HyperPod”. The following
policy example includes the minimum set of permissions for cluster administrators to run the
SageMaker HyperPod core APIs and manage any cluster within your AWS account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateCluster",
 "sagemaker:ListClusters"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DeleteCluster",
 "sagemaker:DescribeCluster",
 "sagemaker:DescribeClusterNode",
 "sagemaker:ListClusterNodes",
 "sagemaker:UpdateCluster",
 "sagemaker:UpdateClusterSoftware"
],

Prerequisites 1270

Amazon SageMaker Developer Guide

 "Resource": "arn:aws:sagemaker:region:account-id:cluster/*"
 }
]
}

To grant permissions to access the SageMaker console, use the sample policy provided at
Permissions Required to Use the Amazon SageMaker Console.

To grant permissions to access the SSM console, use the sample policy provided at Using the AWS
Systems Manager console in the AWS Systems Manager User Guide.

You might also consider attaching the AmazonSageMakerFullAccess policy to the IAM users;
however, note that the AmazonSageMakerFullAccess policy grants permissions to the entire
SageMaker API calls, features, and resources.

For guidance on IAM users in general, see IAM users in the AWS Identity and Access Management
User Guide.

Set up IAM users for cluster users

Cluster users are machine learning engineers who log into and run ML workloads on SageMaker
HyperPod cluster nodes provisioned by cluster administrators. For cluster users in your AWS
account, you should grant the permission "ssm:StartSession" to run the SSM start-session
command. The following is a policy example for IAM users.

IAM permissions to all resources

Add the following policy to give an IAM user SSM session permissions to connect to an SSM target
for all resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:StartSession",
 "ssm:TerminateSession"
],
 "Resource": "*"
 }

Prerequisites 1271

https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#console-permissions
https://docs.aws.amazon.com/systems-manager/latest/userguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/systems-manager/latest/userguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

Amazon SageMaker Developer Guide

]
}

IAM role for SageMaker HyperPod

For SageMaker HyperPod clusters to run and communicate with necessary AWS resources, you
need to attach the managed AmazonSageMakerClusterInstanceRolePolicy to the cluster
instance groups. Given this AWS managed policy, SageMaker HyperPod cluster instance groups
assume the role to communicate with Amazon CloudWatch, Amazon S3, and AWS Systems
Manager Agent (SSM Agent). This managed policy is the minimum requirement for SageMaker
HyperPod resources to run properly, so you must provide an IAM role with this policy to all instance
groups. The AmazonSageMakerClusterInstanceRolePolicy has the following permissions:

• logs - Needed to allow SageMaker HyperPod to publish log streams.

• cloudwatch – Needed to allow SageMaker HyperPod to post CloudWatch metrics.

• s3 - Needed to allow SageMaker HyperPod to list and retrieve files from an Amazon S3 bucket in
your account with the prefix sagemaker-.

• ssmmessages - Needed to allow the SSM Agent to communicate with the SSM backend services.
Principals can use SSM Agent for creating and opening control and data channels. SageMaker
starts and manages the SSM Agent when it initiates a cluster instance.

Tip

Depending on your preference on designing the level of permissions for multiple instance
groups, you can also set up multiple IAM roles and attach them to different instance
groups. When you set up your cluster user access to specific SageMaker HyperPod cluster
nodes, the nodes assume the role with the selective permissions you manually attached.
When you, as a AWS account admin or cluster administrator, set up the cluster user access
to specific cluster nodes through AWS Systems Manager (see also the section called “Set
up AWS Systems Manager and Run As for cluster user access control”), the cluster nodes
assume the role with the selective permissions you manually attach.

After you are done with creating IAM roles, make notes of their names and ARNs. You use the roles
when creating a SageMaker HyperPod cluster, granting the correct permissions required for each
instance group to communicate with necessary AWS resources.

Prerequisites 1272

https://aws.amazon.com/systems-manager/

Amazon SageMaker Developer Guide

(Optional) Additional permissions for using SageMaker HyperPod with Amazon Virtual Private
Cloud

If you want to use your own Amazon Virtual Private Cloud (VPC) instead of the default SageMaker
VPC, you should add the following additional permissions to the IAM role for SageMaker HyperPod.

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DetachNetworkInterface"
],
 "Resource": "*"
}
{
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": [
 "arn:aws:ec2:*:*:network-interface/*"
]
}

The following list breaks down which permissions are needed to enable SageMaker HyperPod
cluster functionalities when you configure the cluster with your own Amazon VPC.

• The following ec2 permissions are required to enable configuring a SageMaker HyperPod cluster
with your VPC.

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",

Prerequisites 1273

Amazon SageMaker Developer Guide

 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
}

• The following ec2 permission is required to enable the SageMaker HyperPod auto-resume
functionality.

{
 "Effect": "Allow",
 "Action": [
 "ec2:DetachNetworkInterface"
],
 "Resource": "*"
}

• The following ec2 permission allows SageMaker HyperPod to create tags on the network
interfaces within your account.

{
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": [
 "arn:aws:ec2:*:*:network-interface/*"
]
}

Set up AWS Systems Manager and Run As for cluster user access control

the section called “SageMaker HyperPod DLAMI” comes with AWS Systems Manager (SSM) out
of the box to help you manage access to your SageMaker HyperPod cluster instance groups. This
section describes how to create operating system (OS) users in your SageMaker HyperPod clusters
and associate them with IAM users and roles. This is useful to authenticate SSM sessions using the
credentials of the OS user account.

Prerequisites 1274

https://aws.amazon.com/systems-manager/

Amazon SageMaker Developer Guide

Enable Run As in your AWS account

As an AWS account admin or a cloud administrator, you can manage access to SageMaker
HyperPod clusters at an IAM role or user level by using the Run As feature in SSM. With this
feature, you can start each SSM session using the OS user associated to the IAM role or user.

To enable Run As in your AWS account, follow the steps in Turn on Run As support for Linux
and macOS managed nodes. If you already created OS users in your cluster, make sure that you
associate them with IAM roles or users by tagging them as guided in Option 2 of step 5 under To
turn on Run As support for Linux and macOS managed nodes.

Prepare a script for setting up Linux users

To complete setting up cluster users to access a HyperPod cluster through SSM, you
need to configure a script for adding users while preparing lifecycle configuration scripts
for creating a HyperPod cluster. In the template repository provided in the section
called “Start with base lifecycle scripts provided by HyperPod”, there is a script named
add_users.sh that consumes the user data from shared_users.txt. There's also a template
named shared_users_sample.txt, so refer to the sample text file to fill and create a
shared_users.txt file. Note that you'll need to upload the two files as part of preparing and
uploading lifecycle scripts to an S3 bucket, which you'll learn in the section called “Getting started
with SageMaker HyperPod”.

(Optional) Set up SageMaker HyperPod with your Amazon VPC

If you don't provide a VPC, SageMaker HyperPod uses the default SageMaker VPC. To set up a
SageMaker HyperPod cluster with your Amazon VPC, check the following items.

• If you want to use your own VPC to connect SageMaker HyperPod with AWS resources in your
VPC, you need to provide the VPC name, ID, AWS Region, subnet ID, and security group ID when
you create SageMaker HyperPod. If you want to create a new VPC, see Create a default VPC or
Create a VPC in the Amazon Virtual Private Cloud User Guide.

• It is important that you should create all your resources in the same AWS Region and Availability
Zone, and configure security group rules to allow connection between the resources in your
VPC. For example, assume that you create a VPC in us-west-2. You should create a subnet in
this VPC in Availability Zone us-west-2a, and create a security group that allows all incoming
(inbound) traffic from inside the security group and all outbound traffic.

• You also need to ensure that your VPC has connection to Amazon Simple Storage Service (S3).
If you configure a VPC, SageMaker HyperPod instance groups don't have access to the internet,

Prerequisites 1275

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-preferences-run-as.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-preferences-run-as.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-preferences-run-as.html
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#create-default-vpc
https://docs.aws.amazon.com/vpc/latest/userguide/create-vpc.html

Amazon SageMaker Developer Guide

and therefore can't connect to Amazon S3 for accessing or storing files such as lifecycle scripts,
training data, and model artifacts. To establish connection with Amazon S3 while using VPC,
you should create a VPC endpoint. By creating a VPC endpoint, you can allow the SageMaker
HyperPod instance groups to access the S3 buckets within the same VPC. We recommend that
you also create a custom policy that only allows requests from your private VPC to access your
S3 buckets. For more information, see Endpoints for Amazon S3 in the AWS PrivateLink Guide.

• If you want to create a HyperPod cluster with EFA-enabled instances, make sure that you set up a
security group to allow all inbound and outbound traffic to and from the security group itself. To
learn more, see Step 1: Prepare an EFA-enabled security group in the Amazon EC2 User Guide.

(Optional) Set up SageMaker HyperPod with Amazon FSx for Lustre

To start using SageMaker HyperPod and mapping data paths between the cluster and your FSx
for Lustre file system, select one of the AWS Regions supported by SageMaker HyperPod. After
choosing the AWS Region you prefer, you also should determine which Availability Zone (AZ) to
use. If you use SageMaker HyperPod compute nodes in AZs different from the AZs where your
FSx for Lustre file system is set up within the same AWS Region, there might be communication
and network overhead. We recommend that you to use the same physical AZ as the one for the
SageMaker HyperPod service account to avoid any cross-AZ traffic between SageMaker HyperPod
clusters and your FSx for Lustre file system. Also, make sure that you have configured it with
your VPC. If you want to use Amazon FSx as the main file system for storage, you must configure
SageMaker HyperPod clusters with VPC.

Getting started with SageMaker HyperPod

Get started with creating your first SageMaker HyperPod cluster and learn the cluster operation
functionalities of SageMaker HyperPod.

You can create a SageMaker HyperPod cluster through the SageMaker console UI or the AWS CLI
commands. This tutorial shows how to create a new SageMaker HyperPod cluster with Slurm,
which is a popular workload scheduler software. After you go through this tutorial, you will
know how to log into the cluster nodes using the AWS Systems Manager commands (aws ssm).
After you complete this tutorial, see also the section called “Operate SageMaker HyperPod” to
learn more about the SageMaker HyperPod basic oparations, and the section called “Run jobs on
HyperPod clusters” to learn how to schedule jobs on the provisioned cluster.

Topics

Getting started with SageMaker HyperPod 1276

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security

Amazon SageMaker Developer Guide

• Using the SageMaker HyperPod console UI

• Using the AWS CLI commands for the SageMaker HyperPod APIs

Using the SageMaker HyperPod console UI

Create your first SageMaker HyperPod cluster using the SageMaker HyperPod console UI.

Create your first SageMaker HyperPod cluster with Slurm

The following tutorial demonstrates how to create a new SageMaker HyperPod cluster and set it
up with Slurm through the SageMaker console UI. Following the tutorial, you'll create a HyperPod
cluster with three Slurm nodes, my-controller-group, my-login-group, and worker-
group-1.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose HyperPod Clusters in the left navigation pane.

3. In the SageMaker HyperPod Clusters page, choose Create cluster.

4. In Step 1: Cluster settings, specify a name for the new cluster. Skip the Tags section.

5. In Step 2: Instance groups, add instance groups. Each instance group can be configured
differently, and you can create a heterogeneous cluster that consists of multiple instance
groups with various instance types. For lifecycle configuration scripts to run on the instance
group during cluster creation, you can start with using the sample lifecycle scripts provided in
the Awsome Distributed Training GitHub repository.

a. For Instance group name, specify a name for the instance group. For this tutorial, create
three instance groups named my-controller-group, my-login-group, and worker-
group-1.

b. For Select instance type, choose the instance for the instance group. For this tutorial,
select ml.c5.xlarge for my-controller-group, ml.m5.4xlarge for my-login-
group, and ml.trn1.32xlarge for worker-group-1. If you receive an error due to
resource limit, make sure that you change the instance type to what you already have
in your account or request quotas by following the instructions at the section called
“SageMaker HyperPod quotas”.

c. For Quantity, specify an integer not exceeding the instance quota for cluster usage. For
this tutorial, select 1 for all three groups.

Getting started with SageMaker HyperPod 1277

https://console.aws.amazon.com/sagemaker/
https://github.com/aws-samples/awsome-distributed-training/

Amazon SageMaker Developer Guide

d. For S3 path to lifecycle script files, enter the Amazon S3 path in which your lifecycle
scripts are stored. If you don't have lifecycle scripts, go through the following substeps to
use base lifecycle scripts provided by the SageMaker HyperPod service team.

i. Clone the Awsome Distributed Training GitHub repository.

git clone https://github.com/aws-samples/awsome-distributed-training/

ii. Under 1.architectures/5.sagemaker_hyperpods/LifecycleScripts/
base-config, you can find a set of base lifecycle scripts. To learn more about the
lifecycle scripts, see also the section called “Prepare lifecycle scripts for setting up
Slurm on SageMaker HyperPod”.

iii. Write a Slurm configuration file and save it as provisioning_params.json. In
the file, specify basic Slurm configuration parameters to properly assign Slurm
nodes to the SageMaker HyperPod cluster instance groups. For example, the
provisioning_params.json should be similar to the following based on the
HyperPod cluster instance group configured through the previous steps 5a, 5b, and
5c.

{
 "version": "1.0.0",
 "workload_manager": "slurm",
 "controller_group": "my-controller-group",
 "login_group": "my-login-group",
 "worker_groups": [
 {
 "instance_group_name": "worker-group-1",
 "partition_name": "partition-1"
 }
]
}

iv. Upload the scripts to your Amazon S3 bucket. Create an S3 bucket for which
the path is in the following format: s3://sagemaker-<unique-s3-bucket-
name>/<lifecycle-script-directory>/src. You can create this bucket using
the Amazon S3 console.

Getting started with SageMaker HyperPod 1278

https://github.com/aws-samples/awsome-distributed-training/
https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config
https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config

Amazon SageMaker Developer Guide

Note

You must prefix sagemaker- to the S3 bucket path, because the ??? with
AmazonSageMakerClusterInstanceRolePolicy allows principals to only
access to S3 buckets with this specific prefix.

e. For Directory path to your on-create lifecycle script, enter the file name of the lifecycle
script under S3 path to lifecycle script files.

f. For IAM role, choose the IAM role you created using the
AmazonSageMakerClusterInstanceRolePolicy from the section the section called
“IAM role for SageMaker HyperPod”.

g. For Threads per core under Advanced configuration, specify 1 for disabling multi-
threading and 2 for enabling multi-threading. To find which instance type supports multi-
threading, see the reference table of CPU cores and threads per CPU core per instance
type in the Amazon Elastic Compute Cloud User Guide.

6. In Step 3: Advanced configuration, set up network settings within and in-and-out of the
cluster. Select your own VPC if you already have one that gives SageMaker access to your VPC.
If you don't have one but want to create a new VPC, follow the instructions at Create a VPC
in the Amazon Virtual Private Cloud User Guide. You can leave it as no VPC to use the default
SageMaker VPC.

7. In Step 4: Review and create, review the configuration you've set from step 1 to 3 and finish
submitting the cluster creation request.

8. The new cluster should appear under Clusters in the main pane of the SageMaker HyperPod
console. You can check the status of it displayed under the Status column.

9. After the status of the cluster turns to InService, cluster users can start logging into the
cluster nodes. For more information about accessing the cluster nodes and running ML
workloads, see the section called “Run jobs on HyperPod clusters”.

Delete the cluster and clean resources

After you have successfully tested creating a SageMaker HyperPod cluster, it continues running
in the InService state until you delete the cluster. We recommend that you delete any clusters
created using on-demand SageMaker instances when not in use to avoid incurring continued
service charges based on on-demand pricing. In this tutorial, you have created a cluster that

Getting started with SageMaker HyperPod 1279

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
https://docs.aws.amazon.com/vpc/latest/userguide/create-vpc.html

Amazon SageMaker Developer Guide

consists of two instance groups. One of them uses a C5 instance, so make sure you delete the
cluster by following the instructions at the section called “Delete a SageMaker HyperPod cluster”.

However, if you have created a cluster with reserved compute capacity, the status of the clusters
does not affect service billing.

To clean up the lifecycle scripts from the S3 bucket used for this tutorial, go to the S3 bucket you
used during cluster creation and remove the files entirely.

If you have tested running any workloads on the cluster, make sure if you have uploaded any data
or if your job saved any artifacts to different S3 buckets or file system services such as Amazon FSx
for Lustre and Amazon Elastic File System. To prevent any incurring charges, delete all artifacts and
data from the storage or file system.

Using the AWS CLI commands for the SageMaker HyperPod APIs

Create your first SageMaker HyperPod cluster using the AWS CLI commands for HyperPod.

Create your first SageMaker HyperPod cluster with Slurm

The following tutorial demonstrates how to create a new SageMaker HyperPod cluster and set it up
with Slurm through the AWS CLI commands for SageMaker HyperPod. Following the tutorial, you'll
create a HyperPod cluster with three Slurm nodes, my-controller-group, my-login-group,
and worker-group-1.

1. First, you need to prepare and upload lifecycle scripts to an S3 bucket. During cluster creation,
HyperPod runs them in each instance group. Upload lifecycle scripts to S3 using the following
command.

aws s3 sync \
 ~/local-dir-to-lifecycle-scripts/* \
 s3://sagemaker-<unique-s3-bucket-name>/<lifecycle-script-directory>/src

Note

The S3 bucket path should start with a prefix sagemaker-, because the ??? with
AmazonSageMakerClusterInstanceRolePolicy only allows access to S3 buckets
that starts with the specific prefix.

Getting started with SageMaker HyperPod 1280

Amazon SageMaker Developer Guide

If you are starting from scratch, use sample lifecycle scripts provided in the Awsome
Distributed Training GitHub repository. The following sub-steps show how to download, what
to modify, and how to upload the sample lifecycle scripts to an S3 bucket.

a. Download a copy of the lifecycle script samples to a directory on your local computer.

git clone https://github.com/aws-samples/awsome-distributed-training/

b. Go into the directory 1.architectures/5.sagemaker_hyperpods/
LifecycleScripts/base-config, you can find a set of lifecycle scripts.

cd awsome-distributed-training/1.architectures/5.sagemaker_hyperpods/
LifecycleScripts/base-config

To learn more about the lifecycle script samples, see the section called “Prepare lifecycle
scripts for setting up Slurm on SageMaker HyperPod”.

c. Write a Slurm configuration file and save it as provisioning_params.json. In the
file, specify basic Slurm configuration parameters to properly assign Slurm nodes to the
SageMaker HyperPod cluster instance groups. In this tutorial, set up three Slurm nodes
named my-controller-group, my-login-group, and worker-group-1, as shown in
the following example configuration provisioning_params.json.

{
 "version": "1.0.0",
 "workload_manager": "slurm",
 "controller_group": "my-controller-group",
 "login_group": "my-login-group",
 "worker_groups": [
 {
 "instance_group_name": "worker-group-1",
 "partition_name": "partition-1"
 }
]
}

d. Upload the scripts to s3://sagemaker-<unique-s3-bucket-name>/<lifecycle-
script-directory>/src. You can do so by using the S3 console, or by running the
following AWS CLI S3 command.

Getting started with SageMaker HyperPod 1281

https://github.com/aws-samples/awsome-distributed-training/
https://github.com/aws-samples/awsome-distributed-training/
https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config
https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config

Amazon SageMaker Developer Guide

aws s3 sync \
 ~/local-dir-to-lifecycle-scripts/* \
 s3://sagemaker-<unique-s3-bucket-name>/<lifecycle-script-directory>/src

2. Prepare a CreateCluster request file in JSON format and save as create_cluster.json.
The following request example is based on the Slurm nodes defined in the
provisioning_params.json in step 1c. For ExecutionRole, provide the ARN of the IAM
role you created with the managed AmazonSageMakerClusterInstanceRolePolicy in
the section called “Prerequisites”. If you receive an error due to resource limit, make sure that
you change the instance type to what you already have in your account or request quotas by
following the instructions at the section called “SageMaker HyperPod quotas”.

{
 "ClusterName": "my-hyperpod-cluster",
 "InstanceGroups": [
 {
 "InstanceGroupName": "my-controller-group",
 "InstanceType": "ml.c5.xlarge",
 "InstanceCount": 1,
 "LifeCycleConfig": {
 "SourceS3Uri": "s3://sagemaker-<unique-s3-bucket-name>/<lifecycle-
script-directory>/src",
 "OnCreate": "on_create.sh"
 },
 "ExecutionRole": "${ROLE}",
 "ThreadsPerCore": 1
 },
 {
 "InstanceGroupName": "my-login-group",
 "InstanceType": "ml.m5.4xlarge",
 "InstanceCount": 1,
 "LifeCycleConfig": {
 "SourceS3Uri": "s3://sagemaker-<unique-s3-bucket-name>/<lifecycle-
script-directory>/src",
 "OnCreate": "on_create.sh"
 },
 "ExecutionRole": "${ROLE}",
 "ThreadsPerCore": 1
 },
 {
 "InstanceGroupName": "worker-group-1",

Getting started with SageMaker HyperPod 1282

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCluster.html

Amazon SageMaker Developer Guide

 "InstanceType": "ml.trn1.32xlarge",
 "InstanceCount": 1,
 "LifeCycleConfig": {
 "SourceS3Uri": "s3://sagemaker-<unique-s3-bucket-name>/<lifecycle-
script-directory>/src",
 "OnCreate": "on_create.sh"
 },
 "ExecutionRole": "${ROLE}",
 "ThreadsPerCore": 1
 }
]
}

3. Run the following command to create the cluster.

aws sagemaker create-cluster --cli-input-json file://complete/path/to/
create_cluster.json

This should return the ARN of the created cluster.

4. Run describe-cluster to check the status of the cluster.

aws sagemaker describe-cluster --cluster-name my-hyperpod-cluster

After the status of the cluster turns to InService, proceed to the next step.

5. Run list-cluster-nodes to check the details of the cluster nodes.

aws sagemaker list-cluster-nodes --cluster-name my-hyperpod-cluster

This returns a response, and the InstanceId is what your cluster users need for logging (aws
ssm) into them. For more information about logging into the cluster nodes and running ML
workloads, see the section called “Run jobs on HyperPod clusters”.

Delete the cluster and clean resources

After you have successfully tested creating a SageMaker HyperPod cluster, it continues running
in the InService state until you delete the cluster. We recommend that you delete any clusters
created using on-demand SageMaker capacity when not in use to avoid incurring continued service
charges based on on-demand pricing. In this tutorial, you have created a cluster that consists

Getting started with SageMaker HyperPod 1283

Amazon SageMaker Developer Guide

of two instance groups. One of them uses a C5 instance, so make sure you delete the cluster by
running the following command.

aws sagemaker delete-cluster --cluster-name my-hyperpod-cluster

To clean up the lifecycle scripts from the S3 bucket used for this tutorial, go to the S3 bucket you
used during cluster creation and remove the files entirely.

If you have tested running any workloads on the cluster, make sure if you have uploaded any data
or if your job saved any artifacts to different S3 buckets or file system services such as Amazon FSx
for Lustre and Amazon Elastic File System. To prevent any incurring charges, delete all artifacts and
data from the storage or file system.

Operate SageMaker HyperPod

This section walks you through how to operate SageMaker HyperPod clusters through the console
UI or AWS CLI.

Topics

• Using the SageMaker HyperPod console UI

• Using the AWS CLI

Using the SageMaker HyperPod console UI

The following topics provide guidance on how to operate SageMaker HyperPod through the
console UI.

Topics

• Create a SageMaker HyperPod cluster

• Browse your SageMaker HyperPod clusters

• View details of each SageMaker HyperPod cluster

• Edit a SageMaker HyperPod cluster

• Delete a SageMaker HyperPod cluster

Operate SageMaker HyperPod 1284

Amazon SageMaker Developer Guide

Create a SageMaker HyperPod cluster

See the following instructions on creating a new SageMaker HyperPod cluster through the
SageMaker HyperPod console UI.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose HyperPod Clusters in the left navigation pane.

3. In the SageMaker HyperPod landing page, choose Create cluster.

4. In Step 1: Cluster settings, set up basic information for the cluster.

a. For Cluster name, specify a name for the new cluster.

b. For Tags, add key and value pairs to the new cluster and manage the cluster as an AWS
resource. To learn more, see Tagging your AWS resources.

5. In Step 2: Instance groups, choose Create instance group. Each instance group can be
configured differently, and you can create a heterogeneous cluster that consists of multiple
instance groups with various instance types. In the Create an instance group configuration
pop-up window, fill the instance group configuration information.

a. For Instance group name, specify a name for the instance group.

b. For Select instance type, choose the instance for the instance group.

c. For Quantity, specify an integer not exceeding the instance quota for cluster usage.

d. For Amazon S3 path to lifecycle script files, enter the S3 path in which your lifecycle
scripts are stored.

e. For Directory path to your on-create lifecycle script, enter the file name of the lifecycle
script under S3 path to lifecycle script files.

f. For IAM role, choose the IAM role you have created for SageMaker HyperPod resources,
following the section the section called “Set up IAM users and roles for SageMaker
HyperPod users and resources”.

g. For Advanced configuration, you can set Threads per core, specify 1 for disabling multi-
threading and 2 for enabling multi-threading. To find which instance type supports multi-
threading, see the reference table of CPU cores and threads per CPU core per instance
type in the Amazon EC2 User Guide.

6. In Step 3: Advanced configuration, configure optional network settings within cluster and
in-and-out of the cluster. Select your own VPC if you already have one that gives SageMaker
access to your resources under the VPC. If you want to create a new VPC, see Create a default

Operate SageMaker HyperPod 1285

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#create-default-vpc

Amazon SageMaker Developer Guide

VPC or Create a VPC in the Amazon Virtual Private Cloud User Guide. If you don't make any
selections, it picks up the default VPC of your account.

Note

If you want to use your own VPC, you should add additional permissions to the IAM
role for SageMaker HyperPod clusters. To learn more, see the section called “(Optional)
Set up SageMaker HyperPod with your Amazon VPC”.

7. In Step 4: Review and create, review the configuration you have set from Step 1 to Step 3 and
finish submitting the cluster creation request.

Browse your SageMaker HyperPod clusters

Under Clusters on the SageMaker HyperPod console main page, all created clusters should appear
listed under the Clusters section, which provides a summary view of clusters, their ARNs, status,
and creation time.

View details of each SageMaker HyperPod cluster

Under Clusters on the console main page, the cluster Names are activated as links. Choose the
cluster name link to see details of each cluster.

Edit a SageMaker HyperPod cluster

1. Under Clusters, choose the cluster you want to update.

2. Choose Actions button, and choose Edit cluster.

3. In the Edit <your-cluster> page, you can edit the configurations of existing instance groups, add
more instance groups, and change tags for the cluster. After making changes, choose Submit.
Note that currently you cannot reduce or delete existing instance groups.

a. In the Configure instance groups section, you can add more instance groups by choosing
Create cluster group.

b. In the Configure instance groups section, you can choose one of the instance groups, and
choose Edit to change its configuration.

c. In the Tags section, you can update tags for the cluster.

Operate SageMaker HyperPod 1286

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html#create-default-vpc
https://docs.aws.amazon.com/vpc/latest/userguide/create-vpc.html

Amazon SageMaker Developer Guide

Delete a SageMaker HyperPod cluster

1. Under Clusters, choose the cluster you want to delete.

2. Choose Actions, and choose Delete cluster.

3. In the pop-up window for cluster deletion, review the cluster information carefully to confirm
that you chose the right cluster to delete.

4. After you reviewed the cluster information, choose Yes, delete cluster.

5. In the text field to confirm this deletion, type delete.

6. Choose Delete on the lower right corner of the pop-up window to finish sending the cluster
deletion request.

Using the AWS CLI

The following topics provide guidance on writing SageMaker HyperPod API request files in JSON
format and run them using the AWS CLI commands.

Topics

• Create a new cluster

• Describe a cluster

• List details of cluster nodes

• Describe details of a cluster node

• List clusters

• Update cluster configuration

• Update the SageMaker HyperPod platform software of a cluster

• Delete a cluster

Create a new cluster

1. Prepare lifecycle configuration scripts and upload them to an S3 bucket, such as s3://
sagemaker-<your-s3-bucket>/<lifecycle-script-directory>/src/. The following
step 2 assumes that there’s an entry point script named on_create.sh in the specified S3
bucket.

Operate SageMaker HyperPod 1287

Amazon SageMaker Developer Guide

Important

Make sure that you set the S3 path to start with s3://sagemaker-. The
the section called “IAM role for SageMaker HyperPod” has the managed
AmazonSageMakerClusterInstanceRolePolicy attached, which allows access to
S3 buckets with the specific prefix sagemaker-.

2. Prepare a CreateCluster API request file in JSON format. The following request example
is based on the nodes needed for groups defined in the provisioning_params.json
in Step 1.2. The minimum requirement for Slurm is one controller and one worker group.
For ExecutionRole, provide the ARN of the IAM role you created with the managed
AmazonSageMakerClusterInstanceRolePolicy from the section the section called “IAM
role for SageMaker HyperPod”.

// create_cluster.json
{
 // Required
 "ClusterName": "your-hyperpod-cluster",
 // Required
 "InstanceGroups": [
 {
 "InstanceGroupName": "controller-group",
 "InstanceType": "ml.m5.xlarge",
 "InstanceCount": 1,
 "LifeCycleConfig": {
 "SourceS3Uri": "s3://sagemaker-<your-s3-bucket>/<lifecycle-script-
directory>/src/",
 "OnCreate": "on_create.sh"
 },
 "ExecutionRole": "arn:aws:iam::111122223333:role/iam-role-for-cluster",
 "ThreadsPerCore": 1
 },
 {
 "InstanceGroupName": "worker-group-1",
 "InstanceType": "ml.p4d.xlarge",
 "InstanceCount": 1,
 "LifeCycleConfig": {
 "SourceS3Uri": "s3://sagemaker-<your-s3-bucket>/<lifecycle-script-
directory>/src/",
 "OnCreate": "on_create.sh"

Operate SageMaker HyperPod 1288

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-cluster.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCluster.html

Amazon SageMaker Developer Guide

 },
 "ExecutionRole": "arn:aws:iam::111122223333:role/iam-role-for-cluster",
 "ThreadsPerCore": 1
 }
],
 // Optional
 "Tags": [
 {
 "Key": "string",
 "Value": "string"
 }
],
 // Optional
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
}

Depending on how you designed the cluster structure through your lifecycle scripts, you can
add and configure multiple instance groups under the InstanceGroups request parameter.

For the Tags request parameter, you can add custom tags for managing the SageMaker
HyperPod cluster as an AWS resource. You can add tags to your cluster in the same way you
add them in other AWS services that support tagging. To learn more about tagging AWS
resources in general, see Tagging AWS Resources User Guide.

For the VpcConfig request parameter, specify the information of a VPC you want to use. For
more information, see the section called “(Optional) Set up SageMaker HyperPod with your
Amazon VPC”.

3. Run the following command to submit the CreateCluster API request.

aws sagemaker create-cluster \
 --cli-input-json file://complete/path/to/create_cluster.json

This should return the ARN of the new cluster.

Operate SageMaker HyperPod 1289

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html

Amazon SageMaker Developer Guide

Describe a cluster

Run describe-cluster to check the status of the cluster. You can specify either the name or the
ARN of the cluster.

aws sagemaker describe-cluster --cluster-name your-hyperpod-cluster

After the status of the cluster turns to InService, proceed to the next step. Using this API, you
can also retrieve failure messages from running other HyperPod API operations.

List details of cluster nodes

Run list-cluster-nodes to check the key information of the cluster nodes.

aws sagemaker list-cluster-nodes --cluster-name your-hyperpod-cluster

This returns a response, and the InstanceId is what you need to use for logging (using aws ssm)
into them.

Describe details of a cluster node

Run describe-cluster-node to retrieve details of a cluster node. You can get the cluster node
ID from list-cluster-nodes output. You can specify either the name or the ARN of the cluster.

aws sagemaker describe-cluster-node \
 --cluster-name your-hyperpod-cluster \
 --node-id i-111222333444555aa

List clusters

Run list-clusters to list all clusters in your account.

aws sagemaker list-clusters

You can also add additional flags to filter the list of clusters down. To learn more about what this
command runs at low level and additional flags for filtering, see the ListClusters API reference.

Update cluster configuration

Run update-cluster to update the configuration of a cluster.

Operate SageMaker HyperPod 1290

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListClusters.html

Amazon SageMaker Developer Guide

1. Create an UpdateCluster request file in JSON format. Make sure that you specify the right
cluster name and instance group name to update. You can change the instance type, the number
of instances, the lifecycle configuration entrypoint script, and the path to the script.

a. For ClusterName, specify the name of the cluster you want to update.

b. For InstanceGroupName

i. To update an existing instance group, specify the name of the instance group you want to
update.

ii. To add a new instance group, specify a new name not existing in your cluster.

c. For InstanceType

i. To update an existing instance group, you must match the instance type you initially
specified to the group.

ii. To add a new instance group, specify an instance type you want to configure the group
with.

d. For InstanceCount

i. To update an existing instance group, specify an integer greater than the current number
of instances. Currently, you can only increase the number of instances.

ii. To add a new instance group, specify an integer greater or equal to 1.

e. For LifeCycleConfig, you can change both SourceS3Uri and OnCreat values as you
want to update the instance group.

f. For ExecutionRole

i. For updating an existing instance group, keep using the same IAM role you attached during
cluster creation.

ii. For adding a new instance group, specify an IAM role you want to attach.

g. For TreadsPerCore

i. For updating an existing instance group, keep using the same value you specified during
cluster creation.

ii. For adding a new instance group, you can choose any value from the allowed options per
instance type. For more information, search the instance type and see the Valid treads per
core column in the reference table at CPU cores and threads per CPU core per instance type
in the Amazon EC2 User Guide.

The following code snippet is a JSON request file template you can use. For more information
about the request syntax and parameters of this API, see the UpdateCluster API reference.Operate SageMaker HyperPod 1291

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateCluster.html

Amazon SageMaker Developer Guide

// update_cluster.json
{
 // Required
 "ClusterName": "name-of-cluster-to-update",
 // Required
 "InstanceGroups": [
 {
 "InstanceGroupName": "name-of-instance-group-to-update",
 "InstanceType": "ml.m5.xlarge",
 "InstanceCount": 1,
 "LifeCycleConfig": {
 "SourceS3Uri": "s3://sagemaker-<your-s3-bucket>/<lifecycle-script-
directory>/src/",
 "OnCreate": "on_create.sh"
 },
 "ExecutionRole": "arn:aws:iam::111122223333:role/iam-role-for-cluster",
 "ThreadsPerCore": 1
 },
 // add more blocks of instance groups as needed
 { ... }
]
}

2. Run the following update-cluster command to submit the request.

aws sagemaker update-cluster \
 --cli-input-json file://complete/path/to/update_cluster.json

Update the SageMaker HyperPod platform software of a cluster

Run update-cluster-software to update existing clusters with software and security patches
provided by the SageMaker HyperPod service. For --cluster-name, specify either the name or
the ARN of the cluster to update.

Important

Note that you must back up your work before running this API. The patching process
replaces the root volume with the updated AMI, which means that your previous data
stored in the instance root volume will be lost. Make sure that you back up your data from

Operate SageMaker HyperPod 1292

Amazon SageMaker Developer Guide

the instance root volume to Amazon S3 or Amazon FSx for Lustre. For more information,
see the section called “Use the backup script provided by SageMaker HyperPod”.

aws sagemaker update-cluster-software --cluster-name your-hyperpod-cluster

This command calls the UpdateClusterSoftware API. After the API call, SageMaker HyperPod
updates the cluster instances to use the latest the section called “SageMaker HyperPod DLAMI” and
runs your lifecycle scripts in the S3 bucket that you specified during cluster creation or update. The
SageMaker HyperPod service team regularly rolls out new the section called “SageMaker HyperPod
DLAMI”s for enhancing security and improving user experiences. We recommend that you always
keep updating to the latest SageMaker HyperPod DLAMI. For future SageMaker HyperPod DLAMI
updates for security patching, follow up with the section called “HyperPod release notes”.

Tip

If the security patch fails, you can retrieve failure messages by running the
DescribeCluster API as instructed at the section called “Describe a cluster”.

Note

You can only run this API programatically. The patching functionality is not implemented in
the SageMaker HyperPod console UI.

Use the backup script provided by SageMaker HyperPod

SageMaker HyperPod provides a script to back up and restore your data at
1.architectures/5.sagemaker-hyperpod/patching-backup.sh in the Awsome Distributed
Training GitHub repository. The script provides the following two functions.

To back up data to an S3 bucket before patching

sudo bash patching-backup.sh --create <s3-buckup-bucket-path>

Operate SageMaker HyperPod 1293

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateClusterSoftware.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCluster.html
https://github.com/aws-samples/awsome-distributed-training/blob/main/1.architectures/5.sagemaker-hyperpod/patching-backup.sh

Amazon SageMaker Developer Guide

After you run the command, the script checks squeue if there are queued jobs, stops Slurm if
there's no job in the queue, backs up mariadb, and copies local items on disc defined under
LOCAL_ITEMS. You can add more files and directories to LOCAL_ITEMS.

Define files and directories to back up.
LOCAL_ITEMS=(
 "/var/spool/slurmd"
 "/var/spool/slurmctld"
 "/etc/systemd/system/slurmctld.service"
 "/home/ubuntu/backup_slurm_acct_db.sql"
 # ... Add more items as needed
)

Also, you can add custom code to the provided script to back up any applications for your use case.

To restore data from an S3 bucket after patching

sudo bash patching-backup.sh --restore <s3-buckup-bucket-path>

Delete a cluster

Run delete-cluster to delete a cluster. You can specify either the name or the ARN of the
cluster.

aws sagemaker delete-cluster --cluster-name your-hyperpod-cluster

SageMaker HyperPod lifecycle configuration best practices

SageMaker HyperPod offers always up-and-running compute clusters, which are highly
customizable as you can write lifecycle scripts to tell SageMaker HyperPod how to set up the
cluster resources. The following topics are best practices for preparing lifecycle scripts to set up
SageMaker HyperPod clusters with open source workload manager tools.

Prepare lifecycle scripts for setting up Slurm on SageMaker HyperPod

The following topics discuss how to prepare lifecycle scripts to set up Slurm on SageMaker
HyperPod.

Topics

• High-level overview

SageMaker HyperPod lifecycle configuration best practices 1294

https://slurm.schedmd.com/documentation.html

Amazon SageMaker Developer Guide

• Start with base lifecycle scripts provided by HyperPod

• What particular configurations HyperPod manages in Slurm configuration files

• Mount Amazon FSx for Lustre to your HyperPod cluster

• Validate the JSON configuration files before running create-cluster

• Develop lifecycle scripts interactively on a cluster node

• Update a cluster with new or updated lifecycle scripts

• Considerations

High-level overview

The following procedure is the main flow of provisioning a HyperPod cluster and setting it up with
Slurm. The steps are put in order of a bottom-up approach.

1. Plan how you want to create Slurm nodes on a HyperPod cluster. For example, if you want to
configure two Slurm nodes, you'll need to set up two instance groups in a HyperPod cluster.

2. Prepare a provisioning_params.json file, which is a the section called “Configuration form
for provisioning Slurm nodes on HyperPod”. provisioning_params.json should contain
Slurm node configuration information to be provisioned on the HyperPod cluster. This should
reflect the design of Slurm nodes from step 1.

3. Prepare a set of lifecycle scripts to set up Slurm on HyperPod to install software packages and
set up an environment in the cluster for your use case. You should structure the lifecycle scripts
to collectively run in order in a central Python script (lifecycle_script.py), and write an
entrypoint shell script (on_create.sh) to run the Python script. The entrypoint shell script is
what you need to provide to a HyperPod cluster creation request later in step 5.

Also, note that you should write the scripts to expect resource_config.json that will be
generated by HyperPod during cluster creation. resource_config.json contains HyperPod
cluster resource information such as IP addresses, instance types, and ARNs, and is what you
need to use for configuring Slurm.

4. Collect all the files from the previous steps into a folder.

lifecycle_files // your local folder
 ### provisioning_params.json
 ### on_create.sh
 ### lifecycle_script.py
 ### ... // more setup scrips to be fed into lifecycle_script.py

SageMaker HyperPod lifecycle configuration best practices 1295

Amazon SageMaker Developer Guide

5. Upload all the files to an S3 bucket. Copy and keep the S3 bucket path. Note that
you should create an S3 bucket path starting with sagemaker- because you need
to choose an the section called “IAM role for SageMaker HyperPod” attached with
AmazonSageMakerClusterInstanceRolePolicy which only allows S3 bucket paths starting
with the prefix sagemaker-. The following command is an example command to upload all the
files to S3.

aws s3 cp --recursive ./lifecycle_files s3://sagemaker-hyperpod-lifecycle/src

6. Prepare a HyperPod cluster creation request. If you use AWS CLI, write a cluster creation request
in JSON format (create_cluster.json). If you use the SageMaker console UI, fill the Create
a cluster request form in the HyperPod console UI. At this stage, make sure that you create
instance groups in the same structure that you planned in step 1 and 2. Also, make sure that you
specify the S3 bucket from step 5 in the request forms.

7. Submit the cluster creation request. HyperPod provisions a cluster based on the request, creates
a resource_config.json file in the HyperPod cluster instances, and sets up Slurm on the
cluster running the lifecycle scripts.

The following section walks you through and dives deep into details on how to organize
configuration files and lifecycle scripts to work properly during HyperPod cluster creation.

Start with base lifecycle scripts provided by HyperPod

This section walks you through every component of the basic flow of setting up Slurm on
HyperPod in a top-down approach. It starts from preparing a HyperPod cluster creation request
to run the CreateCluster API, and dives deep into the hierarchical structure down to lifecycle
scripts. Use the sample lifecycle scripts provided in the Awsome Distributed Training GitHub
repository. Clone the repository by running the following command.

git clone https://github.com/aws-samples/awsome-distributed-training/

The base lifecycle scripts for setting up a Slurm cluster on SageMaker HyperPod are available at
1.architectures/5.sagemaker_hyperpods/LifecycleScripts/base-config.

The following flow chart shows a detailed overview of how you should design the base lifecycle
scripts. The descriptions below the diagram and the procedural guide explains how they work
during the HyperPod CreateCluster API call.

SageMaker HyperPod lifecycle configuration best practices 1296

https://github.com/aws-samples/awsome-distributed-training/
https://github.com/aws-samples/awsome-distributed-training/
https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config

Amazon SageMaker Developer Guide

Figure: A detailed flow chart of HyperPod cluster creation and the structure of lifecycle
scripts. (1) The dashed arrows are directed to where the boxes are "called into" and
shows the flow of configuration files and lifecycle scripts preparation. It starts from
preparing provisioning_params.json and lifecycle scripts. These are then coded
in lifecycle_script.py for a collective execution in order. And the execution of the
lifecycle_script.py script is done by the on_create.sh shell script, which to be run in the
HyperPod instance terminal. (2) The solid arrows show the main HyperPod cluster creation flow and
how the boxes are "called into" or "submitted to". on_create.sh is required for cluster creation
request, either in create_cluster.json or the Create a cluster request form in the console
UI. After you submit the request, and HyperPod runs the CreateCluster API based on the given
configuration information from the request and the lifecycle scripts. (3) The dotted arrow indicates
that the HyperPod platform creates resource_config.json in the cluster instances during cluster

SageMaker HyperPod lifecycle configuration best practices 1297

Amazon SageMaker Developer Guide

resource provisioning. resource_config.json contains HyperPod cluster resource information
such as the cluster ARN, instance types, and IP addresses. It is important to note that you should
prepare the lifecycle scripts to expect the resource_config.json file during cluster creation. For
more information, see the procedural guide below.

The following procedural guide explains what happens during HyperPod cluster creation and how
the base lifecycle scripts are designed.

1. create_cluster.json – To submit a HyperPod cluster creation request, you prepare a
CreateCluster request file in JSON format. In this best practices example, we assume that the
request file is named create_cluster.json. Write create_cluster.json to provision a
HyperPod cluster with instance groups. The best practice is to add the same number of instance
groups as the number of Slurm nodes you plan to configure on the HyperPod cluster. Make sure
that you give distinctive names to the instance groups that you'll assign to Slurm nodes you plan
to set up.

Also, you are required to specify an S3 bucket path to store your entire set of configuration files
and lifecycle scripts to the field name InstanceGroups.LifeCycleConfig.SourceS3Uri
in the CreateCluster request form, and specify the file name of an entrypoint shell script
(assume that it's named on_create.sh) to InstanceGroups.LifeCycleConfig.OnCreate.

Note

If you are using the Create a cluster submission form in the HyperPod console UI, the
console manages filling and submitting the CreateCluster request on your behalf,
and runs the CreateCluster API in the backend. In this case, you don't need to
create create_cluster.json; instead, make sure that you specify the correct cluster
configuration information to the Create a cluster submission form.

2. on_create.sh – For each instance group, you need to provide an entrypoint shell script,
on_create.sh, to run commands, run scripts to install software packages, and set up
the HyperPod cluster environment with Slurm. The two things you need to prepare are a
provisioning_params.json required by HyperPod for setting up Slurm and a set of lifecycle
scripts for installing software packages. This script should be written to find and run the
following files as shown in the sample script at on_create.sh.

SageMaker HyperPod lifecycle configuration best practices 1298

https://github.com/aws-samples/awsome-distributed-training/blob/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config/on_create.sh

Amazon SageMaker Developer Guide

Note

Make sure that you upload the entire set of lifecycle scripts to the S3
location you specify in create_cluster.json. You should also place your
provisioning_params.json in the same location.

a. provisioning_params.json – This is a the section called “Configuration form for
provisioning Slurm nodes on HyperPod”. The on_create.sh script finds this JSON file
and defines environment variable for identifying the path to it. Through this JSON file, you
can configure Slurm nodes and storage options such as Amazon FSx for Lustre for Slurm
to communicate with. In provisioning_params.json, make sure that you assign the
HyperPod cluster instance groups using the names you specified in create_cluster.json
to the Slurm nodes appropriately based on how you plan to set them up.

The following diagram shows an example of how the two JSON configuration files
create_cluster.json and provisioning_params.json should be written to assign
HyperPod instance groups to Slurm nodes. In this example, we assume a case of setting
up three Slurm nodes: controller (management) node, log-in node (which is optional), and
compute (worker) node.

SageMaker HyperPod lifecycle configuration best practices 1299

Amazon SageMaker Developer Guide

Figure: Direct comparison between create_cluster.json for HyperPod cluster creation
and provisiong_params.json for Slurm configuration. The number of instance groups in
create_cluster.json should match with the number of nodes you want to configure as
Slurm nodes. In case of the example in the figure, three Slurm nodes will be configured on a
HyperPod cluster of three instance groups. You should assign the HyperPod cluster instance
groups to Slurm nodes by specifying the instance group names accordingly.

b. resource_config.json – During cluster creation, the lifecycle_script.py script
is written to expect a resource_config.json file from HyperPod. This file contains
information about the cluster, such as instance types and IP addresses.

When you run the CreateCluster API, HyperPod creates a resource configuration file at /
opt/ml/config/resource_config.json based on the create_cluster.json file. The
file path is saved to the environment variable named SAGEMAKER_RESOURCE_CONFIG_PATH.

SageMaker HyperPod lifecycle configuration best practices 1300

Amazon SageMaker Developer Guide

Important

The resource_config.json file is auto-generated by the HyperPod platform,
and you DO NOT need to create it. The following code is to show an example of
resource_config.json that would be created from the cluster creation based
on create_cluster.json in the previous step, and to help you understand what
happens in the backend and how an auto-generated resource_config.json would
look.

{
 "ClusterConfig": {
 "ClusterArn": "arn:aws:sagemaker:us-west-2:111122223333:cluster/
abcde01234yz",
 "ClusterName": "your-hyperpod-cluster"
 },
 "InstanceGroups": [
 {
 "Name": "controller-machine",
 "InstanceType": "ml.c5.xlarge",
 "Instances": [
 {
 "InstanceName": "controller-machine-1",
 "AgentIpAddress": "111.222.333.444",
 "CustomerIpAddress": "111.222.333.444",
 "InstanceId": "i-12345abcedfg67890"
 }
]
 },
 {
 "Name": "login-group",
 "InstanceType": "ml.m5.xlarge",
 "Instances": [
 {
 "InstanceName": "login-group-1",
 "AgentIpAddress": "111.222.333.444",
 "CustomerIpAddress": "111.222.333.444",
 "InstanceId": "i-12345abcedfg67890"
 }
]

SageMaker HyperPod lifecycle configuration best practices 1301

Amazon SageMaker Developer Guide

 },
 {
 "Name": "compute-nodes",
 "InstanceType": "ml.trn1.32xlarge",
 "Instances": [
 {
 "InstanceName": "compute-nodes-1",
 "AgentIpAddress": "111.222.333.444",
 "CustomerIpAddress": "111.222.333.444",
 "InstanceId": "i-12345abcedfg67890"
 },
 {
 "InstanceName": "compute-nodes-2",
 "AgentIpAddress": "111.222.333.444",
 "CustomerIpAddress": "111.222.333.444",
 "InstanceId": "i-12345abcedfg67890"
 },
 {
 "InstanceName": "compute-nodes-3",
 "AgentIpAddress": "111.222.333.444",
 "CustomerIpAddress": "111.222.333.444",
 "InstanceId": "i-12345abcedfg67890"
 },
 {
 "InstanceName": "compute-nodes-4",
 "AgentIpAddress": "111.222.333.444",
 "CustomerIpAddress": "111.222.333.444",
 "InstanceId": "i-12345abcedfg67890"
 }
]
 }
]
}

c. lifecycle_script.py – This is the main Python script that collectively runs lifecycle
scripts setting up Slurm on the HyperPod cluster while being provisioned. This script reads
in provisioning_params.json and resource_config.json from the paths that are
specified or identified in on_create.sh, passes the relevant information to each lifecycle
script, and then runs the lifecycle scripts in order.

Lifecycle scripts are a set of scripts that you have a complete flexibility to customize
to install software packages and set up necessary or custom configurations during
cluster creation, such as setting up Slurm, creating users, installing Conda or Docker.

SageMaker HyperPod lifecycle configuration best practices 1302

Amazon SageMaker Developer Guide

The sample lifecycle_script.py script is prepared to run other base lifecycle
scripts in the repository, such as launching Slurm deamons (start_slurm.sh),
mounting Amazon FSx for Lustre (mount_fsx.sh), and setting up MariaDB accounting
(setup_mariadb_accounting.sh) and RDS accounting (setup_rds_accounting.sh).
You can also add more scripts, package them under the same directory, and add code lines
to lifecycle_script.py to let HyperPod run the scripts. For more information about the
base lifecycle scripts, see 3.1 Lifecycle scripts in the README.md file in the Awsome Distributed
Training GitHub repository.

In addition to the default setups, more scripts for installing the following software are
available under the utils folder. The lifecycle_script.py file is already prepared to
include code lines for running the installation scripts, so see the following items to search
those lines and uncomment to activate them.

i. To install Docker and Enroot, search and uncomment the following code lines.

ExecuteBashScript("./utils/install_docker.sh").run()
ExecuteBashScript("./utils/install_enroot_pyxis.sh").run(node_type)

ii. To install DCGM Exporter and EFA node exporter, search and uncomment the following
code lines. This also requires Docker installed.

ExecuteBashScript("./utils/install_dcgm_exporter.sh").run()
ExecuteBashScript("./utils/install_efa_node_exporter.sh").run()

iii. To install Slurm exporter and Prometheus on the controller node, search and uncomment
the following code lines.

ExecuteBashScript("./utils/install_slurm_exporter.sh").run()
ExecuteBashScript("./utils/install_prometheus.sh").run()

To learn more about the base lifecycle scripts and dive deep, see 3.1 Lifecycle scripts in
README.md file under the HyperPod folder in the Awsome Distributed Training GitHub
repository.

3. Maker sure that you upload all configuration files and setup scripts from step 2 to the S3
bucket you provide in the CreateCluster request in step 1. For example, assume that your
create_cluster.json has the following.

"LifeCycleConfig": {

SageMaker HyperPod lifecycle configuration best practices 1303

https://github.com/aws-samples/awsome-distributed-training/blob/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config/lifecycle_script.py
https://github.com/aws-samples/awsome-distributed-training/blob/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config/start_slurm.sh
https://github.com/aws-samples/awsome-distributed-training/blob/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config/mount_fsx.sh
https://github.com/aws-samples/awsome-distributed-training/blob/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config/setup_mariadb_accounting.sh
https://github.com/aws-samples/awsome-distributed-training/blob/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config/setup_rds_accounting.sh
https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod#31-lifecycle-scripts
https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config/utils
https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod#31-lifecycle-scripts

Amazon SageMaker Developer Guide

 "SourceS3URI": "s3://sagemaker-hyperpod-lifecycle/src",
 "OnCreate": "on_create.sh"
}

Then, your "s3://sagemaker-hyperpod-lifecycle/src" should contain on_create.sh,
lifecycle_script.py, provisioning_params.json, and all other setup scripts. Assume
that you have prepared the files in a local folder as follows.

lifecycle_files // your local folder
 ### provisioning_params.json
 ### on_create.sh
 ### lifecycle_script.py
 ### ... // more setup scrips to be fed into lifecycle_script.py

To upload the files, use the S3 command as follows.

aws s3 cp --recursive ./lifecycle_scripts s3://sagemaker-hyperpod-lifecycle/src

What particular configurations HyperPod manages in Slurm configuration files

When you create a Slurm cluster on HyperPod, the HyperPod agent sets up the slurm.conf and
gres.conf files at /opt/slurm/etc/ to manage the Slurm cluster based on your HyperPod
cluster creation request and lifecycle scripts. The following list shows what specific parameters the
HyperPod agent handles and overwrites.

Important

We strongly recommend that you DON’T change these parameters managed by HyperPod.

• In slurm.conf, HyperPod sets up the following basic parameters: ClusterName,
SlurmctldHost, PartitionName, and NodeName.

Also, to enable the the section called “Auto-resume” functionality, HyperPod requires the
TaskPlugin and SchedulerParameters parameters set as follows. The HyperPod agent sets
up these two parameters with the required values by default.

TaskPlugin=task/none

SageMaker HyperPod lifecycle configuration best practices 1304

https://slurm.schedmd.com/slurm.conf.html
https://slurm.schedmd.com/gres.conf.html
https://slurm.schedmd.com/slurm.conf.html

Amazon SageMaker Developer Guide

SchedulerParameters=permit_job_expansion

• In gres.conf, HyperPod manages NodeName for GPU nodes.

Mount Amazon FSx for Lustre to your HyperPod cluster

To mount an Amazon FSx for Lustre shared file system to your HyperPod cluster, set up the
following.

1. Use your Amazon VPC.

a. For HyperPod cluster instances to communicate within your VPC, make sure that you attach
the the section called “(Optional) Additional permissions for using SageMaker HyperPod with
Amazon Virtual Private Cloud” to the IAM role for SageMaker HyperPod.

b. In create_cluster.json, include the following VPC information.

"VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
}

For more tips about setting up Amazon VPC, see the section called “(Optional) Set up
SageMaker HyperPod with your Amazon VPC”.

2. To finish configuring Slurm with Amazon FSx for Lustre, specify the FSx DNS name and FSx
mount name in provisioning_params.json as shown in the figure in the the section
called “Start with base lifecycle scripts provided by HyperPod” section. You can find those FSx
information either from the Amazon FSx for Lustre console in your account or by running the
following AWS CLI command, aws fsx describe-file-systems.

"fsx_dns_name": "fs-12345678a90b01cde.fsx.us-west-2.amazonaws.com",
"fsx_mountname": "1abcdefg"

Validate the JSON configuration files before running create-cluster

Use the configuration validation script validate-config.py. This script parses and compares
your HyperPod cluster configuration JSON file and Slurm configuration JSON file, and identifies
if there's any resource misconfiguration between the two files and also across Amazon EC2,
Amazon VPC, and Amazon FSx. For example, to validate the create_cluster.json and

SageMaker HyperPod lifecycle configuration best practices 1305

https://slurm.schedmd.com/gres.conf.html
https://github.com/aws-samples/awsome-distributed-training/blob/main/1.architectures/5.sagemaker-hyperpod/validate-config.py

Amazon SageMaker Developer Guide

provisioning_params.json files from the the section called “Start with base lifecycle scripts
provided by HyperPod” section, run the validation script as follows.

python3 validate-config.py --cluster-config create_cluster.json --provisioning-
parameters provisioning_params.json

The following is an example output of a successful validation.

Validated instance group name worker-group-1 is correct ...
Validated subnet subnet-012345abcdef67890 ...
Validated security group sg-012345abcdef67890 ingress rules ...
Validated security group sg-012345abcdef67890 egress rules ...
Validated FSx Lustre DNS name fs-012345abcdef67890.fsx.us-east-1.amazonaws.com
Validated FSx Lustre mount name dzfijbev
Cluster Validation succeeded

Develop lifecycle scripts interactively on a cluster node

This section explains how you can interactively develop lifecycle scripts without repeatedly creating
and deleting a HyperPod cluster.

1. Create a HyperPod cluster with the base lifecycle scripts.

2. Log in to a cluster node.

3. Develop a script (configure_xyz.sh) by editing and running it repeatedly on the node.

a. HyperPod runs the lifecycle scripts as root user, so we recommend you to run the
configure_xyz.sh as root user while developing to make sure that the script is tested
under the same condition while run by HyperPod.

4. Integrate the script into lifecycle_script.py by adding a code line similar to the following.

ExecuteBashScript("./utils/configure_xyz.sh").run()

5. Upload the updated lifecycle scripts to the S3 bucket that you initially used for uploading the
base lifecycle scripts.

6. Test the integrated version of lifecycle_script.py by creating a new HyperPod cluster.

Update a cluster with new or updated lifecycle scripts

There are three ways to update the HyperPod software.

SageMaker HyperPod lifecycle configuration best practices 1306

Amazon SageMaker Developer Guide

• The UpdateClusterSoftware API for patching the HyperPod software re-runs the lifecycle
scripts on the entire instance groups.

• The UpdateCluster API only runs them for new instance groups.

• You can also run lifecycle scripts directly in the HyperPod instances.

Considerations

Consider the following when using SageMaker HyperPod.

• HyperPod runs the section called “SageMaker HyperPod DLAMI” on each instance of a cluster,
and the AMI has pre-installed software packages complying compatibilities between them and
HyperPod functionalities. Note that if you reinstall any of the pre-installed packages, you are
responsible for installing compatible packages and note that some HyperPod functionalities
might not work as expected.

Run jobs on SageMaker HyperPod clusters

This section is for cluster users such as machine learning (ML) scientists. It provides examples of
running ML workloads on provisioned SageMaker HyperPod clusters. Depending on how you have
set up the environment on your HyperPod cluster, there are many ways to run ML workloads on
HyperPod clusters. Examples of running ML workloads on HyperPod clusters are provided in the
Awsome Distributed Training GitHub repository. The following topics walk you through how to log
in to the provisioned HyperPod clusters and get you started with running sample ML workloads.

Topics

• Access the SageMaker HyperPod cluster nodes

• Schedule a Slurm job on a SageMaker HyperPod cluster

• Schedule jobs for distributed training workloads on SageMaker HyperPod

Access the SageMaker HyperPod cluster nodes

You can access your InService cluster through AWS Systems Manager (SSM) by running the AWS
CLI command aws ssm start-session with the SageMaker HyperPod cluster host name in
format of sagemaker-cluster:[cluster-id]_[instance-grou-name]-[instance-
id]. You can retrieve the cluster ID and instance ID from the SageMaker HyperPod console
or by running the AWS CLI commands for SageMaker HyperPod. For example, if your cluster

Run jobs on HyperPod clusters 1307

https://github.com/aws-samples/awsome-distributed-training/

Amazon SageMaker Developer Guide

ID is aa11bbbbb222, the cluster node name is controller-group, and the cluster node ID
isi-111222333444555aa, the SSM start-session command should be the following.

Note

If you haven't set up AWS Systems Manager, follow the instructions provided at the section
called “Set up AWS Systems Manager and Run As for cluster user access control”.

aws ssm start-session \
 --target sagemaker-cluster:aa11bbbbb222_controller-group-i-111222333444555aa \
 --region us-west-2

Schedule a Slurm job on a SageMaker HyperPod cluster

You can launch training jobs using the standard Slurm sbatch or srun commands. For example,
to launch an 8-node training job, you can run srun -N 8 --exclusive train.sh SageMaker
HyperPod supports training in a range of environments, including conda, venv, docker, and
enroot. You can configure an ML environment by running lifecycle scripts on your SageMaker
HyperPod clusters. You also have an option to attach a shared file system such as FSx, which can
also be used as a virtual environment.

The following example shows how to run a job for training Llama-2 with the Fully Sharded Data
Parallelism (FSDP) technique on a SageMaker HyperPod cluster with a shared Amazon FSx file
system. You can also find more examples from the Awsome Distributed Training GitHub repository.

Tip

All SageMaker HyperPod examples are available in the 3.test_cases folder of the
Awsome Distributed Training GitHub repository.

1. Clone the Awsome Distributed Training GitHub repository, and copy the training job examples
to your shared Amazon FSx file system.

TRAINING_DIR=/fsx/users/my-user/fsdp
git clone https://github.com/aws-samples/awsome-distributed-training/
cp -R awsome-distributed-training/3.test_cases/10.FSDP $TRAINING_DIR

Run jobs on HyperPod clusters 1308

https://github.com/aws-samples/awsome-distributed-training/
https://github.com/aws-samples/awsome-distributed-training/
https://github.com/aws-samples/awsome-distributed-training/

Amazon SageMaker Developer Guide

2. Create a conda environment on your shared Amazon FSx file system. Make sure that the file
system is accessible to all nodes in the cluster.

#!/usr/bin/env bash
set -ex

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod +x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh -b -f -p ./miniconda3

source ./miniconda3/bin/activate

conda create -y -n pt_fsdp python=3.10

source activate pt_fsdp

Install PyTorch
pip install torch torchvision torchaudio
pip install packaging transformers accelerate ninja tensorboard h5py datasets

create output dir
mkdir tensorboard
mkdir checkpoints

Save this script to a shared volume. This tutorial assumes that it is saved as /fsx/users/
my_user/create_env.sh.

3. Build the virtual environment by launching a single node slurm job.

srun -N 1 /fsx/users/my_user/create_env.sh

4. After the envirnment is built, you can launch a training job by pointing to the environment
path on the shared volume. You can launch both single-node and multi-node training jobs
with the same setup. To launch a job, create a job launcher script (also called an entry point
script) as follows.

#!/usr/bin/env bash
set -ex

ENV_PATH=/fsx/users/my_user/pytorch_env
TORCHRUN=$ENV_PATH/bin/torchrun
TRAINING_SCRIPT=/fsx/users/my_user/pt_train.py

Run jobs on HyperPod clusters 1309

Amazon SageMaker Developer Guide

WORLD_SIZE_JOB=$SLURM_NTASKS
RANK_NODE=$SLURM_NODEID
PROC_PER_NODE=8
MASTER_ADDR=(`scontrol show hostnames \$SLURM_JOB_NODELIST | head -n 1`)
MASTER_PORT=$(expr 10000 + $(echo -n $SLURM_JOBID | tail -c 4))

DIST_ARGS="--nproc_per_node=$PROC_PER_NODE \
 --nnodes=$WORLD_SIZE_JOB \
 --node_rank=$RANK_NODE \
 --master_addr=$MASTER_ADDR \
 --master_port=$MASTER_PORT \
 "

$TORCHRUN $DIST_ARGS $TRAINING_SCRIPT

Tip

If you want to make your training job more resilient against hardware failures by using
the auto-resume capability of SageMaker HyperPod, you need to properly set up the
environment variable MASTER_ADDR in the entrypoint script. To learn more, see the
section called “Auto-resume”.

This tutorial assumes that this script is saved as /fsx/users/my_user/train.sh.

5. With this script in the shared volume at /fsx/users/my_user/train.sh, run the following
srun command to schedule the Slurm job.

cd /fsx/users/my_user/
srun -N 8 train.sh

Schedule jobs for distributed training workloads on SageMaker HyperPod

The SageMaker distributed data parallelism (SMDDP) library is a collective communication library
that improves compute performance of distributed data parallel training. The SMDDP library
addresses communications overhead of the key collective communication operations by offering
the following for SageMaker HyperPod.

Run jobs on HyperPod clusters 1310

Amazon SageMaker Developer Guide

1. The library offers AllGather optimized for AWS. AllGather is a key operation used in sharded
data parallel training, which is a memory-efficient data parallelism technique offered by popular
libraries such as the SageMaker model parallelism (SMP) library, DeepSpeed Zero Redundancy
Optimizer (ZeRO), and PyTorch Fully Sharded Data Parallelism (FSDP).

2. The library performs optimized node-to-node communication by fully utilizing the AWS network
infrastructure and the SageMaker ML instance topology.

Using SMDDP on a SageMaker HyperPod

The following are the training environment requirements for using the SMDDP library on
SageMaker HyperPod.

• libstdc++ runtime version greater than 3.

• PyTorch 2.0.1 with cuda 11.8

• Python 3.10.x

• ml.p4d.24xlarge and ml.p4de.24xlarge, which are supported instance types by the
SMDDP library

• imdsv2 enabled on training host

Depending on where you run the distributed training job, you can use the SMDDP library as
follows.

To install the SMDDP library on SageMaker HyperPod DLAMI

• pip install --no-cache-dir https://smdataparallel.s3.amazonaws.com/
binary/pytorch/2.0.1/cu118/2023-11-17/smdistributed_dataparallel-2.0.2-
cp310-cp310-linux_x86_64.whl

Note

If working in a conda environment, ensure that PyTorch is installed via conda install
rather than pip.

conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-
cuda=11.8 -c pytorch -c nvidia

Run jobs on HyperPod clusters 1311

Amazon SageMaker Developer Guide

To use the SMDDP library on a Docker container

• The SMDDP library is pre-installed on the SageMaker Deep Learning Containers (DLCs). To find
the list of SageMaker framework DLCs for PyTorch with the SMDDP library, see Supported
Frameworks in the SageMaker data parallelism library documentation. You can also bring your
own Docker container with required dependencies installed to use the SMDDP library. To learn
more about setting up a custom Docker container to use the SMDDP library, see also the section
called “Create your own docker container with the library”.

Important

To use the SMDDP library in a Docker container, you must bind mount the /var/log
directory from the host machine onto /var/log in the container. This can be done by
adding the following option when running your container.

docker run <OTHER_OPTIONS> -v /var/log:/var/log ...

Adapt your PyTorch training script to utilize the SMDDP library

Starting from the SageMaker distributed data parallelism (SMDDP) library v1.4.0, you can use the
library as a backend option for the PyTorch distributed package. To use the SMDDP AllReduce
and AllGather collective operations, you only need to import the SMDDP library at the beginning
of your training script and set SMDDP as the the backend of PyTorch distributed modules during
process group initialization. With the single line of backend specification, you can keep all the
native PyTorch distributed modules and the entire training script unchanged. The following code
snippets show how to use the SMDDP library as the backend of PyTorch-based distributed training
packages: PyTorch distributed data parallel (DDP), PyTorch fully sharded data parallelism (FSDP),
DeepSpeed, and Megatron-DeepSpeed.

For PyTorch DDP or FSDP

Initialize the process group as follows.

import torch.distributed as dist
import smdistributed.dataparallel.torch.torch_smddp

dist.init_process_group(backend="smddp")

Run jobs on HyperPod clusters 1312

https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-data-parallel-support.html#distributed-data-parallel-supported-frameworks
https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-data-parallel-support.html#distributed-data-parallel-supported-frameworks
https://pytorch.org/tutorials/beginner/dist_overview.html
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/fsdp.html
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed

Amazon SageMaker Developer Guide

Note

(For PyTorch DDP jobs only) The smddp backend currently does not support creating
subprocess groups with the torch.distributed.new_group() API. You also cannot
use the smddp backend concurrently with other process group backends such as NCCL and
Gloo.

For DeepSpeed or Megatron-DeepSpeed

Initialize the process group as follows.

import deepspeed
import smdistributed.dataparallel.torch.torch_smddp

deepspeed.init_distributed(dist_backend="smddp")

Note

To use SMDDP AllGather with the mpirun-based launchers (smdistributed and
pytorchddp) in the section called “Step 2: Launch a distributed training job”, you also
need to set the following environment variable in your training script.

export SMDATAPARALLEL_OPTIMIZE_SDP=true

For general guidance on writing a PyTorch FSDP training script, see Advanced Model Training with
Fully Sharded Data Parallel (FSDP) in the PyTorch documentation.

For general guidance on writing a PyTorch DDP training script, see Getting started with distributed
data parallel in the PyTorch documentation.

SageMaker HyperPod cluster resiliency

SageMaker HyperPod provides the following cluster resiliency features.

Topics

• Cluster health check

• Auto-resume

Cluster resiliency 1313

https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html
https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Amazon SageMaker Developer Guide

• How to replace a faulty instance outside of SageMaker HyperPod auto-resume

Cluster health check

This section describes the set of health checks that SageMaker HyperPod uses to regularly monitor
cluster instance health for issues with devices such as accelerators (GPU and Trainium cores) and
networking (EFA).

Category Utility name Instance type
compatibility

Description

DCGM policies GPU Each instance in the
cluster continuou
sly monitors all
GPU-related policies
including XID errors
with NVIDIA DCGM.

NVIDIA SMI GPU nvidia-smi utility is
a well-known CLI to
manage and monitor
GPUs. The built-in
health checker parses
the output from
nvidia-smi to
determine the health
of the instance.

Accelerator

Neuron sysfs Trainium For Trainium-
powered instances
, the health of the
Neuron devices
is determined by
reading counters
from Neuron sysfs
propagated directly
by the Neuron driver.

Cluster resiliency 1314

https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/index.html#automate-gpu-management-policies
https://developer.nvidia.com/nvidia-system-management-interface
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html

Amazon SageMaker Developer Guide

Network EFA GPU and Trainium To aid in the
diagnostic of Elastic
Fabric Adaptor (EFA)
devices, the EFA
health checker runs
a series of connectiv
ity tests using all
available EFA cards
within the instance.

DCGM Diagnostic GPU DCGM diagnostics
level 2 is used to
exercise the GPUs in
the system and put
them under pressure
to get a thorough
insight of the health.

Stress

CPU stress GPU and Trainium CPU health is
determined using
the Linux stress tool,
which runs multiple
threads to achieve
100% CPU utilizati
on and perform I/O
operations.

Auto-resume

This section describes how to run a training job with the SageMaker HyperPod auto-resume
functionality, which provides a zero-touch resiliency infrastructure to automatically recover a
training job from the last saved checkpoint in the event of a hardware failure for clusters with more
than 16 nodes.

With the auto-resume functionality, if a job fails due to a hardware failure or any transient issues
in-between training, SageMaker HyperPod auto-resume starts the node replacement workflow and
restarts the job after the faulty nodes are replaced.

Cluster resiliency 1315

https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/dcgm-diagnostics.html
https://linux.die.net/man/1/stress

Amazon SageMaker Developer Guide

Using the SageMaker HyperPod auto-resume functionality with Slurm

When you use SageMaker HyperPod auto-resume with Slurm, you should run the job inside an
exclusive allocation acquired either by using salloc or sbatch. In any case, you need to modify
the entrypoint script to make sure that all setup steps run in a single srun command when
resuming the job. Through the entrypoint script, it is important to set up the environment on
the replaced node to be consistent with the environment that the job step was running before
it was stopped. The following precedure shows how to prepare an entrypoint script to keep the
environment consistent and run it as a single srun command.

Tip

If you use sbatch, you can keep the batch script simple by creating a separate script for
setting up the environment and using a single srun command.

1. Create a script using the following code example and save it as train_auto_resume.sh. This
script deploys training environment setups assuming that there is no manual configuration
previously made to the replaced node. This ensures that the environment is node-agnostic, so
that when a node is replaced, the same environment is provisioned on the node before resuming
the job.

Note

The following code example shows how to discover the Slurm node list associated with
the job. Do not use the $SLURM_JOB_NODELIST environment variable provided by
Slurm, because its value might be outdated after SageMaker HyperPod auto-resumes
the job. The following code example shows how to define a new NODE_LIST variable to
replace SLURM_JOB_NODELIST, and then set up the MASTER_NODE and MASTER_ADDR
variables off of the NODE_LIST variable.

#!/bin/bash

Filename: train_auto_resume.sh
Sample containerized script to launch a training job with a single srun which can
 be auto-resumed.

Cluster resiliency 1316

Amazon SageMaker Developer Guide

Place your training environment setup here.
Example: Install conda, docker, activate virtual env, etc.

Get the list of nodes for a given job
NODE_LIST=$(scontrol show jobid=$SLURM_JOBID | \ # Show details of the SLURM job
 awk -F= '/NodeList=/{print $2}' | \ # Extract NodeList field
 grep -v Exc) # Exclude nodes marked as excluded

Determine the master node from the node list
MASTER_NODE=$(scontrol show hostname $NODE_LIST | \ # Convert node list to hostnames
 head -n 1) # Select the first hostname as
 master node

Get the master node address
MASTER_ADDR=$(scontrol show node=$MASTER_NODE | \ # Show node information
 awk -F= '/NodeAddr=/{print $2}' | \ # Extract NodeAddr
 awk '{print $1}') # Print the first part of NodeAddr

Torchrun command to launch the training job
torchrun_cmd="torchrun --nnodes=$SLURM_NNODES \
 --nproc_per_node=1 \
 --node_rank=$SLURM_NODE \
 --master-addr=$MASTER_ADDR \
 --master_port=1234 \
 <your_training_script.py>"

Execute the torchrun command in the 'pytorch' Conda environment,
streaming output live
/opt/conda/bin/conda run --live-stream -n pytorch $torchrun_cmd

Tip

You can use the preceding script to add more commands for installing any additional
dependencies for your job. However, we recommend that you keep the dependency
installation scripts to the set of lifecycle scripts that are used during cluster creation.
If you use a virtual environment hosted on a shared directory, you can also utilize this
script to activate the virtual environment.

Cluster resiliency 1317

Amazon SageMaker Developer Guide

2. Launch the job with SageMaker HyperPod auto-resume enabled by adding the flag --auto-
resume=1 to indicate that the srun command should be automatically retried in case of
hardware failure.

Note

If you have set up a resource allocation using sbatch or salloc, you can run multiple
srun commands within the allocation. In the event of a failure, the SageMaker
HyperPod auto-resume functionality only operates in the current job step of the srun
command with the flag --auto-resume=1. In other words, activating auto-resume in
an srun command doesn't apply to other srun commands launched within a resource
allocation session.

The following are srun command examples with auto-resume enabled.

Using sbatch

Because most of the logic for setting up the environment is already in
train_auto_resume.sh, the batch script should be simple and similar to the following code
example. Assume that the following batch script is saved as batch.sh.

#!/bin/bash
#SBATCH --nodes 2
#SBATCH --exclusive
srun --auto-resume=1 train_auto_resume.sh

Run the preceding batch script using the following command.

sbatch batch.sh

Using salloc

Start by acquiring an exclusive allocation, and run the srun command with the --auto-resume
flag and the entrypoint script.

salloc -N 2 --exclusive
srun --auto-resume=1 train_auto_resume.sh

Cluster resiliency 1318

https://slurm.schedmd.com/job_launch.html#step_allocation

Amazon SageMaker Developer Guide

How to replace a faulty instance outside of SageMaker HyperPod auto-resume

Node replacement works only with Slurm clusters provisioning by SageMaker HyperPod. In this
case, you might need to request node replacement by putting an unhealthy node in one of the
following states: "Down", "Drained", or "Fail" with a reason "Action:Replace". Slurm users
with administrator privileges can do this by calling the following command.

Warning

Proceed carefully when you run this command. The node becomes unusable until the
replacement is complete.

scontrol update node=<ip-ipv4> state=fail reason="Action:Replace"

In the preceding command example, ip-ipv4 is a Slurm node name you need to specify, which is
equal to the instance host name.

After running this command, your node goes into the specified state (you can monitor the status
using sinfo) and is replaced using the same host name. This process might take a few minutes
depending on the available instances in your Availability Zone and the time it takes to run lifecycle
scripts. While the process is active, avoid changing the state of the node manually or restarting the
Slurm controller; doing so can lead to a failure. If the node does not go back to its original state
(idle) after a long time (more than 1 hour), contact AWS Support.

SageMaker HyperPod cluster management

The following topics discuss logging and managing SageMaker HyperPod clusters.

Logging SageMaker HyperPod events

All events and logs from SageMaker HyperPod are saved to Amazon CloudWatch under the log
group name /aws/sagemaker/Clusters/[ClusterName]/[ClusterID]. Every call to the
CreateCluster API creates a new log group. The following list contains all of the available log
streams collected in each log group.

Log Group Name Log Stream Name

Cluster management 1319

https://console.aws.amazon.com/support/

Amazon SageMaker Developer Guide

/aws/sagemaker/Clusters/[Cl
usterName]/[ClusterID]

LifecycleConfig/[instance-group-
name]/[instance-id]

Logging SageMaker HyperPod at instance level

You can access the LifecycleScript logs published to CloudWatch during cluster instance
configuration. Every instance within the created cluster generates a separate log stream,
distinguishable by the LifecycleConfig/[instance-group-name]/[instance-id] format.

All logs that are written to /var/log/provision/provisioning.log are
uploaded to the preceding CloudWatch stream. Sample LifecycleScripts at
1.architectures/5.sagemaker_hyperpods/LifecycleScripts/base-config redirect
their stdout and stderr to this location. If you are using your custom scripts, write your logs to
the /var/log/provision/provisioning.log location for them to be available in CloudWatch.

Tagging resources

AWS Tagging system helps manage, identify, organize, search for, and filter resources. SageMaker
HyperPod supports tagging, so you can manage the clusters as an AWS resource. During cluster
creation or editing an existing cluster, you can add or edit tags for the cluster. To learn more about
tagging in general, see Tagging your AWS resources.

Using the SageMaker HyperPod console UI

When you are creating a new cluster and editing a cluster, you can add, remove, or edit tags.

Using the SageMaker HyperPod APIs

When you write a CreateCluster or UpdateCluster API request file in JSON format, edit the Tags
section.

Using the AWS CLI tagging commands for SageMaker

To tag a cluster

Use aws sagemaker add-tags as follows.

aws sagemaker add-tags --resource-arn cluster_ARN --tags Key=string,Value=string

To untag a cluster

Cluster management 1320

https://github.com/aws-samples/awsome-distributed-training/tree/main/1.architectures/5.sagemaker-hyperpod/LifecycleScripts/base-config
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateCluster.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/add-tags.html

Amazon SageMaker Developer Guide

Use aws sagemaker delete-tags as follows.

aws sagemaker delete-tags --resource-arn cluster_ARN --tag-keys "tag_key"

To list tags for a resource

Use aws sagemaker list-tags as follows.

aws sagemaker list-tags --resource-arn cluster_ARN

SageMaker HyperPod references

Find more information and references about using SageMaker HyperPod in the following topics.

Topics

• SageMaker HyperPod pricing

• SageMaker HyperPod APIs

• SageMaker HyperPod forms

• SageMaker HyperPod DLAMI

• SageMaker HyperPod API permissions reference

• SageMaker HyperPod commands in AWS CLI

• SageMaker HyperPod Python modules in AWS SDK for Python (Boto3)

SageMaker HyperPod pricing

The following topics provide information about SageMaker HyperPod pricing. To find more details
on price per hour for using SageMaker HyperPod instances, see also Amazon SageMaker Pricing.

Capacity requests

You can allocate on-demand or reserved compute capacity with SageMaker for use on SageMaker
HyperPod. On-demand cluster creation allocates available capacity from the SageMaker on-
demand capacity pool. Alternatively, you can request reserved capacity to ensure access by
submitting a ticket for a quota increase. Inbound capacity requests are prioritized by SageMaker
and you receive an estimated time for capacity allocation.

Service billing

References 1321

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-tags.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/list-tags.html
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

When you provision a compute capacity on SageMaker HyperPod, you are billed for the duration
of the capacity allocation. SageMaker HyperPod billing appears in your anniversary bills with a line
item for the type of capacity allocation (on-demand, reserved), the instance type, and the time
spent on using the instance.

To submit a ticket for a quota increase, see the section called “SageMaker HyperPod quotas”.

SageMaker HyperPod APIs

The following list is a full set of SageMaker HyperPod APIs for submitting action requests in JSON
format to SageMaker through AWS CLI or AWS SDK for Python (Boto3).

• CreateCluster

• DeleteCluster

• DescribeCluster

• DescribeClusterNode

• ListClusterNodes

• ListClusters

• UpdateCluster

• UpdateClusterSoftware

SageMaker HyperPod forms

To configure the Slurm workload manager tool on HyperPod, you should create a Slurm
configuration file required by HyperPod using the provided form.

Configuration form for provisioning Slurm nodes on HyperPod

The following code is the Slurm configuration form you should prepare to properly set up Slurm
nodes on your HyperPod cluster. You should complete this form and upload it as part of a set of
lifecycle scripts during cluster creation. To learn how this form should be prepared throughout
HyperPod cluster creation processes, see the section called “SageMaker HyperPod lifecycle
configuration best practices”.

// Save as provisioning_params.json.
{
 "version": "1.0.0",
 "workload_manager": "slurm",

References 1322

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteCluster.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCluster.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeClusterNode.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListClusterNodes.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListClusters.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateCluster.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateClusterSoftware.html

Amazon SageMaker Developer Guide

 "controller_group": "string",
 "login_group": "string",
 "worker_groups": [
 {
 "instance_group_name": "string",
 "partition_name": "string"
 }
],
 "fsx_dns_name": "string",
 "fsx_mountname": "string"
}

• version – Required. This is the version of the HyperPod provisioning parameter form. Keep it to
1.0.0.

• workload_manager – Required. This is for specifying which workload manager to be configured
on the HyperPod cluster. Keep it to slurm.

• controller_group – Required. This is for specifying the name of the HyperPod cluster
instance group you want to assign to Slurm controller (head) node.

• login_group – Optional. This is for specifying the name of the HyperPod cluster instance group
you want to assign to Slurm login node.

• worker_groups – Required. This is for setting up Slurm worker (compute) nodes on the
HyperPod cluster.

• instance_group_name – Required. This is for specifying the name of the HyperPod instance
group you want to assign to Slurm worker (compute) node.

• partition_name – Required. This is for specifying the partition name to the node.

• fsx_dns_name – Optional. If you want to set up your Slurm nodes on the HyperPod cluster to
communicate with Amazon FSx, specify the FSx DNS name.

• fsx_mountname – Optional. If you want to set up your Slurm nodes on the HyperPod cluster to
communicate with Amazon FSx, specify the FSx mount name.

SageMaker HyperPod DLAMI

The SageMaker HyperPod agent runs a SageMaker HyperPod DLAMI, which is built on top of AWS
Deep Learning Base GPU AMI (Ubuntu 20.04).

The SageMaker HyperPod DLAMI is bundled with additional packages to support open source tools
such as Slurm and dependencies, and SageMaker HyperPod cluster software packages to support

References 1323

https://aws.amazon.com/releasenotes/aws-deep-learning-base-gpu-ami-ubuntu-20-04/
https://aws.amazon.com/releasenotes/aws-deep-learning-base-gpu-ami-ubuntu-20-04/

Amazon SageMaker Developer Guide

features such as cluster health check and auto-resume. To follow up with HyperPod software
updates that the HyperPod service team distributes through the DLAMI, see the section called
“HyperPod release notes”.

SageMaker HyperPod API permissions reference

When you are setting up access control for allowing to run SageMaker HyperPod API operations
and writing a permissions policy that you can attach to IAM users for cloud administrators, use the
following table as a reference.

Amazon SageMaker API
Operations

Required Permissions (API
Actions)

Resources

CreateCluster sagemaker:CreateCl
uster

arn:aws:sagemaker:
region:account-i

d :cluster/ cluster-i
d

DeleteCluster sagemaker:DeleteCl
uster

arn:aws:sagemaker:
region:account-i

d :cluster/ cluster-i
d

DescribeCluster sagemaker:Describe
Cluster

arn:aws:sagemaker:
region:account-i

d :cluster/ cluster-i
d

DescribeClusterNode sagemaker:Describe
ClusterNode

arn:aws:sagemaker:
region:account-i

d :cluster/ cluster-i
d

ListClusterNodes sagemaker:ListClus
terNodes

arn:aws:sagemaker:
region:account-i

d :cluster/ cluster-i
d

References 1324

Amazon SageMaker Developer Guide

ListClusters sagemaker:ListClus
ters

arn:aws:sagemaker:
region:account-i

d :cluster/ cluster-i
d

UpdateCluster sagemaker:UpdateCl
uster

arn:aws:sagemaker:
region:account-i

d :cluster/ cluster-i
d

UpdateClusterSoftware sagemaker:UpdateCl
usterSoftware

arn:aws:sagemaker:
region:account-i

d :cluster/ cluster-i
d

For a complete list of permissions and resource types for SageMaker APIs, see Actions, resources,
and condition keys for Amazon SageMaker in the AWS Service Authorization Reference.

SageMaker HyperPod commands in AWS CLI

The following are the AWS CLI commands for SageMaker HyperPod to run the core HyperPod API
operations.

• create-cluster

• delete-cluster

• describe-cluster

• describe-cluster-node

• list-cluster-nodes

• list-clusters

• update-cluster

• update-cluster-software

SageMaker HyperPod Python modules in AWS SDK for Python (Boto3)

The following are the methods of the AWS SDK for Python (Boto3) client for SageMaker to run the
core HyperPod API operations.

References 1325

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-cluster-node.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/list-cluster-nodes.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/list-clusters.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-cluster-software.html

Amazon SageMaker Developer Guide

• create_cluster

• delete_cluster

• describe_cluster

• describe_cluster_node

• list_cluster_nodes

• list_clusters

• update_cluster

• update_cluster_software

SageMaker HyperPod FAQ

Use the following frequently asked questions to troubleshoot problems with using SageMaker
HyperPod.

Q. Why can I not find log groups of my SageMaker HyperPod cluster in Amazon CloudWatch?

By default, agent logs and instance start-up logs are sent to the HyperPod platform account’s
CloudWatch. In case of user lifecycle scripts, lifecycle configuration logs are sent to your account’s
CloudWatch.

If you use the sample lifecycle scripts provided by the HyperPod service team, you can expect to
find the lifecycle configuration logs written to /var/log/provision/provisioning.log, and
you wouldn’t encounter this problem.

However, if you use custom paths for collecting logs from lifecycle provisioning and can’t find the
log groups appearing in your account's CloudWatch, it might be due to mismatches in the log file
paths specified in your lifecycle scripts and what the CloudWatch agent running on the HyperPod
cluster instances looks for. In this case, it means that you need to properly set up your lifecycle
scripts to send logs to the CloudWatch agent, and also set up the CloudWatch agent configuration
accordingly. To resolve the problem, choose one of the following options.

• Option 1: Update your lifecycle scripts to write logs to /var/log/provision/
provisioning.log.

• Option 2: Update the CloudWatch agent to look for your custom paths for logging lifecycle
provisioning.

1. Each HyperPod cluster instance contains a CloudWatch agent configuration
file in JSON format at /opt/aws/amazon-cloudwatch-agent/

SageMaker HyperPod FAQ 1326

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_cluster.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/delete_cluster.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/describe_cluster.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/describe_cluster_node.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/list_cluster_nodes.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/list_clusters.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/update_cluster.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/update_cluster_software.html

Amazon SageMaker Developer Guide

sagemaker_cwagent_config.json. In the configuration file, find the field name
logs.logs_collected.files.collect_list.file_path. With the default setup
by HyperPod, the key-value pair should be "file_path": "/var/log/provision/
provisioning.log" as documented at the section called “Logging SageMaker HyperPod at
instance level”. The following code snippet shows how the JSON file looks with the HyperPod
default configuration.

"logs": {
 "logs_collected": {
 "files": {
 "collect_list": [
 {
 "file_path": "/var/log/provision/provisioning.log",
 "log_group_name": "/aws/sagemaker/Clusters/[ClusterName]/
[ClusterID]",
 "log_stream_name": "LifecycleConfig/[InstanceGroupName]/
{instance_id}",
 "retention_in_days": -1
 }
]
 }
 },
 "force_flush_interval": 3
}

2. Replace the value for the "file_path" field name with the custom path you use in your
lifecycle scripts. For example, if you have set up your lifecycle scripts to write to /var/log/
custom-provision/custom-provisioning.log, update the value to match with it as
follows.

"file_path": "/var/log/custom-provision/custom-provisioning.log"

3. Restart the CloudWatch agent with the configuration file to finish applying the custom path.
For example, the following CloudWatch command shows how to restart the CloudWatch
agent with the CloudWatch agent configuration file from step 1. For more information, see
also Troubleshooting the CloudWatch agent.

sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl \
 -a fetch-config -m ec2 -s -c \
 file:/opt/aws/amazon-cloudwatch-agent/sagemaker_cwagent_config.json

SageMaker HyperPod FAQ 1327

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/troubleshooting-CloudWatch-Agent.html

Amazon SageMaker Developer Guide

Q. What particular configurations does HyperPod manage in Slurm configuration files such as
slurm.conf and gres.conf?

When you create a Slurm cluster on HyperPod, the HyperPod agent sets up the slurm.conf and
gres.conf files at /opt/slurm/etc/ to manage the Slurm cluster based on your HyperPod
cluster creation request and lifecycle scripts. The following list shows what specific parameters the
HyperPod agent handles and overwrites.

Important

We strongly recommend that you DON’T change these parameters managed by HyperPod.

• In slurm.conf, HyperPod sets up the following basic parameters: ClusterName,
SlurmctldHost, PartitionName, and NodeName.

Also, to enable the the section called “Auto-resume” functionality, HyperPod requires the
TaskPlugin and SchedulerParameters parameters set as follows. The HyperPod agent sets
up these two parameters with the required values by default.

TaskPlugin=task/none
SchedulerParameters=permit_job_expansion

• In gres.conf, HyperPod manages NodeName for GPU nodes.

Amazon SageMaker HyperPod release notes

See the following release notes to track the latest updates for Amazon SageMaker HyperPod.

SageMaker HyperPod release notes: March 14, 2024

HyperPod software patch

The HyperPod service team distributes software patches through the section called “SageMaker
HyperPod DLAMI”. See the following details about the latest HyperPod DLAMI.

• Upgraded Slurm to v23.11.1

• Added OpenPMIx v4.2.6 for enabling Slurm with PMIx.

HyperPod release notes 1328

https://slurm.schedmd.com/slurm.conf.html
https://slurm.schedmd.com/gres.conf.html
https://slurm.schedmd.com/slurm.conf.html
https://slurm.schedmd.com/gres.conf.html
https://slurm.schedmd.com/documentation.html
https://openpmix.github.io/code/getting-the-reference-implementation
https://slurm.schedmd.com/mpi_guide.html#pmix

Amazon SageMaker Developer Guide

• Built upon the AWS Deep Learning Base GPU AMI (Ubuntu 20.04) released on 2023-10-26

• A complete list of pre-installed packages in this HyperPod DLAMI in addition to the base AMI

• Slurm: v23.11.1

• OpenPMIx : v4.2.6

• Munge: v0.5.15

• aws-neuronx-dkms: v2.*

• aws-neuronx-collectives: v2.*

• aws-neuronx-runtime-lib: v2.*

• aws-neuronx-tools: v2.*

• SageMaker HyperPod software packages to support features such as cluster health check and
auto-resume

Upgrade steps

• Run the following command to call the UpdateClusterSoftware API to update your existing
HyperPod clusters with the latest HyperPod DLAMI. To find more instructions, see the section
called “Update the SageMaker HyperPod platform software of a cluster”.

Important

Back up your work before running this API. The patching process replaces the root
volume with the updated AMI, which means that your previous data stored in the
instance root volume will be lost. Make sure that you back up your data from the instance
root volume to Amazon S3 or Amazon FSx for Lustre. For more information, see the
section called “Use the backup script provided by SageMaker HyperPod”.

 aws sagemaker update-cluster-software --cluster-name your-cluster-name

Note

Note that you should run the AWS CLI command to update your HyperPod cluster.
Updating the HyperPod software through SageMaker HyperPod console UI is currently
not available.

HyperPod release notes 1329

https://aws.amazon.com/releasenotes/aws-deep-learning-base-gpu-ami-ubuntu-20-04/
https://slurm.schedmd.com/documentation.html
https://openpmix.github.io/code/getting-the-reference-implementation
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateClusterSoftware.html

Amazon SageMaker Developer Guide

Improvements

• HyperPod now properly supports passing partition names provided through
provisioning_params.json and creates partitions appropriately based on provided inputs.
For more information about provisioning_params.json, see the section called “SageMaker
HyperPod forms” and the section called “SageMaker HyperPod lifecycle configuration best
practices”.

SageMaker HyperPod release notes: February 15, 2024

New features

• Added a new UpdateClusterSoftware API for SageMaker HyperPod security patching.
When security patches become available, we recommend you to update existing SageMaker
HyperPod clusters in your account by running aws sagemaker update-cluster-
software --cluster-name your-cluster-name. To follow up with future security
patches, keep tracking this Amazon SageMaker HyperPod release notes page. To learn how the
UpdateClusterSoftware API works, see the section called “Update the SageMaker HyperPod
platform software of a cluster”.

SageMaker HyperPod release notes: November 29, 2023

New features

• Launched Amazon SageMaker HyperPod at AWS re:Invent 2023.

HyperPod software patch

The HyperPod service team distributes software patches through the section called “SageMaker
HyperPod DLAMI”. See the following details about the latest HyperPod DLAMI.

• Built upon the AWS Deep Learning Base GPU AMI (Ubuntu 20.04) released on 2023-10-18

• A complete list of pre-installed packages in this HyperPod DLAMI in addition to the base AMI

• Slurm: v23.02.3

• Munge: v0.5.15

• aws-neuronx-dkms: v2.*

• aws-neuronx-collectives: v2.*

HyperPod release notes 1330

https://aws.amazon.com/releasenotes/aws-deep-learning-base-gpu-ami-ubuntu-20-04/
https://slurm.schedmd.com/documentation.html

Amazon SageMaker Developer Guide

• aws-neuronx-runtime-lib: v2.*

• aws-neuronx-tools: v2.*

• SageMaker HyperPod software packages to support features such as cluster health check and
auto-resume

Use generative AI in SageMaker notebook environments

Jupyter AI is an open-source extension of JupyterLab integrating generative AI capabilities into
Jupyter notebooks. Through the Jupyter AI chat interface and magic commands, users experiment
with code generated from natural language instructions, explain existing code, ask questions about
their local files, generate entire notebooks, and more. The extension connects Jupyter notebooks
with large language models (LLMs) that users can use to generate text, code, or images, and to
ask questions about their own data. Jupyter AI supports generative model providers such as AI21,
Anthropic, AWS (SageMaker JumpStart and Amazon Bedrock), Cohere, and OpenAI.

The extension's package is included in Amazon SageMaker Distribution version 1.2 and onwards.
Amazon SageMaker Distribution is a Docker environment for data science and scientific computing
used as the default image of JupyterLab notebook instances. Users of different IPython
environments can install Jupyter AI manually.

In this section, we provide an overview of Jupyter AI capabilities and demonstrate how to configure
models provided by SageMaker JumpStart or Amazon Bedrock from JupyterLab or Studio Classic
notebooks. For more in-depth information on the Jupyter AI project, refer to its documentation.
Alternatively, you can refer to the blog post Generative AI in Jupyter for an overview and examples
of key Jupyter AI capabilities.

Before using Jupyter AI and interacting with your LLMs, make sure that you satisfy the following
prerequisites:

• For models hosted by AWS, you should have the ARN of your SageMaker endpoint or have access
to Amazon Bedrock. For other model providers, you should have the API key used to authenticate
and authorize requests to your model. Jupyter AI supports a wide range of model providers and
language models, refer to the list of its supported models to stay updated on the latest available
models. For information on how to deploy a model in SageMaker JumpStart, see Deploy a Model
in the SageMaker JumpStart documentation. You need to request access to Amazon Bedrock to
use it as your model provider.

Use generative AI in SageMaker notebook environments 1331

https://github.com/jupyterlab/jupyter-ai
https://github.com/aws/sagemaker-distribution
https://github.com/aws/sagemaker-distribution/tree/main/build_artifacts/v1
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-jl.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://jupyter-ai.readthedocs.io/en/latest/
https://blog.jupyter.org/generative-ai-in-jupyter-3f7174824862
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#model-providers
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-deploy.html
https://aws.amazon.com/bedrock/

Amazon SageMaker Developer Guide

• Ensure that Jupyter AI libraries are present in your environment. If not, install the required
package by following the instructions in Install Jupyter AI.

• Familiarize yourself with the capabilities of Jupyter AI in Jupyter AI Features.

• Configure the target models you wish to use by following the instructions in Configure your
model provider.

After completing the prerequisite steps, you can proceed to Use Jupyter AI in JupyterLab or Studio
Classic.

Topics

• Install Jupyter AI

• Jupyter AI Features

• Configure your model provider

• Use Jupyter AI in JupyterLab or Studio Classic

Install Jupyter AI

For Amazon SageMaker Distribution users, we recommend selecting the SageMaker Distribution
image version 1.2 or later. No further installation is necessary. Users of JupyterLab in Studio can
choose the version of their Amazon SageMaker Distribution when creating a space.

For users of other IPython environments, the version of the recommended Jupyter AI package
depends on the version of JupyterLab they are using.

The Jupyter AI distribution consists of two packages.

• jupyter_ai: This package provides a JupyterLab extension and a native chat user interface (UI).
It acts as a conversational assistant using the large language model of your choice.

• jupyter_ai_magics: This package provides the IPython %%ai and %ai magic commands with
which you can invoke a large language model (LLM) from your notebook cells.

Note

Installing jupyter_ai also installs jupyter_ai_magics. However, you can install
jupyter_ai_magics independently without JupyterLab or jupyter_ai. The magic

Installation 1332

https://github.com/aws/sagemaker-distribution/tree/main/build_artifacts/v1

Amazon SageMaker Developer Guide

commands %%ai and %ai work in any IPython kernel environment. If you only install
jupyter_ai_magics, you can't use the chat UI.

For users of JupyterLab 3, in particular Studio Classic users, we recommend installing jupyter-
ai version 1.5.x or any later 1.x version. However, we highly recommend using Jupyter AI with
JupyterLab 4. The jupyter-ai version compatible with JupyterLab 3 may not allow users to set
additional model parameters such as temperature, top-k and top-p sampling, max tokens or max
length, or user acceptance license agreements.

For users of JupyterLab 4 environments that do not use SageMaker Distribution, we recommend
installing jupyter-ai version 2.5.x or any later 2.x version.

See the installation instructions in the Installation section of Jupyter AI documentation.

Jupyter AI Features

You can access Jupyter AI capabilities through two distinct methods: using the chat UI or using
magic commands within notebooks.

From the chat user interface AI assistant

The chat interface connects you with Jupyternaut, a conversational agent that uses the language
model of your choice.

After launching a JupyterLab application installed with Jupyter AI, you can access the chat
interface by choosing the chat icon

in the left navigation panel. First-time users are prompted to configure their model. See Configure
your model provider in the chat UI for configuration instructions.

Using the chat UI, you can:

• Answer questions: For instance, you can ask Jupyternaut to create a Python function that adds
CSV files to an Amazon S3 bucket. Subsequently, you can refine your answer with a follow-up
question, such as adding a parameter to the function to choose the path where the files are
written.

Features 1333

https://pypi.org/project/jupyter-ai/#history
https://pypi.org/project/jupyter-ai/#history
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#installation-via-pip

Amazon SageMaker Developer Guide

• Interact with files in JupyterLab: You can include a portion of your notebook in your prompt by
selecting it. Then, you can either replace it with the model's suggested answer or manually copy
the answer to your clipboard.

• Generate entire notebooks from prompts: By starting your prompt with /generate, you trigger
a notebook generation process in the background without interrupting your use of Jupyternaut.
A message containing the link to the new file is displayed upon completion of the process.

• Learn from and ask questions about local files: Using the /learn command, you can teach
an embedding model of your choice about local files and then ask questions about those files
using the /ask command. Jupyter AI stores the embedded content in a local FAISS vector
database, then uses retrieval-augmented generation (RAG) to provide answers based on what
it has learned. To erase all previously learned information from your embedding model, use /
learn -d.

For a complete list of features and detailed instructions on their usage, see the Jupyter AI chat
interface documentation. To learn about how to configure access to a model in Jupyternaut, see
Configure your model provider in the chat UI.

From notebook cells

Using %%ai and %ai magic commands, you can interact with the language model of your choice
from your notebook cells or any IPython command line interface. The %%ai command applies your
instructions to the entire cell, whereas %ai apply them to the specific line.

The following example illustrates an %%ai magic command invoking an Anthropic Claude model to
output an HTML file containing the image of a white square with black borders.

%%ai anthropic:claude-v1.2 -f html
Create a square using SVG with a black border and white fill.

To learn about the syntax of each command, use %ai help. To list the providers and models
supported by the extension, run %ai list.

For a complete list of features and detailed instructions on their usage, see the Jupyter AI magic
commands documentation. In particular, you can customize the output format of your model using
the -f or --format parameter, allow variable interpolation in prompts, including special In and
Out variables, and more.

Features 1334

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#the-chat-interface
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#the-chat-interface
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#the-ai-and-ai-magic-commands
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#the-ai-and-ai-magic-commands

Amazon SageMaker Developer Guide

To learn about how to configure the access to a model, see Configure your model provider in a
notebook.

Configure your model provider

Note

In this section, we assume that the language and embedding models that you plan to use
are already deployed. For models provided by AWS, you should already have the ARN of
your SageMaker endpoint or access to Amazon Bedrock. For other model providers, you
should have the API key used to authenticate and authorize requests to your model.
Jupyter AI supports a wide range of model providers and language models, refer to the list
of its supported models to stay updated on the latest available models. For information
on how to deploy a model provided by SageMaker JumpStart, see Deploy a Model in the
SageMaker JumpStart documentation. You need to request access to Amazon Bedrock to
use it as your model provider.

The configuration of Jupyter AI varies depending on whether you are using the chat UI or magic
commands.

Configure your model provider in the chat UI

Note

You can configure several LLMs and embedding models following the same instructions.
However, you must configure at least one Language model.

To configure your chat UI

1. In JupyterLab, access the chat interface by choosing the chat icon

in the left navigation panel.

2. Choose the configuration icon

in the top right corner of the left pane. This opens the Jupyter AI configuration panel.

Model configuration 1335

https://jupyter-ai.readthedocs.io/en/latest/users/index.html#model-providers
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-deploy.html
https://aws.amazon.com/bedrock/

Amazon SageMaker Developer Guide

3. Fill out the fields related to your service provider.

• For models provided by SageMaker JumpStart or Amazon Bedrock

• In the language model dropdown list, select sagemaker-endpoint for models deployed
with SageMaker JumpStart or bedrock for models managed by Amazon Bedrock.

• The parameters differ based on whether your model is deployed on SageMaker or Amazon
Bedrock.

• For models deployed with SageMaker JumpStart:

• Enter the name of your endpoint in Endpoint name, and then the AWS Region in
which your model is deployed in Region name. To retrieve the ARN of the SageMaker
endpoints, navigate to https://console.aws.amazon.com/sagemaker/ and then choose
Inference and Endpoints in the left menu.

• Paste the JSON of the Request schema tailored to your model, and the corresponding
Response path for parsing the model's output.

Note

You can find the request and response format of various of SageMaker
JumpStart foundation models in the following example notebooks. Each
notebook is named after the model it demonstrates.

• For models managed by Amazon Bedrock: Add the AWS profile storing your AWS
credentials on your system (optional), and then the AWS Region in which your model is
deployed in Region name.

• (Optional) Select an embedding model to which you have access. Embedding models
are used to capture additional information from local documents, enabling the text
generation model to respond to questions within the context of those documents.

• Choose Save Changes and navigate to the left arrow icon

in the top left corner of the left pane. This opens the Jupyter AI chat UI. You can start
interacting with your model.

• For models hosted by third-party providers

• In the language model dropdown list, select your provider ID. You can find the details of
each provider, including their ID, in Jupyter AI list of model providers.

Model configuration 1336

https://console.aws.amazon.com/sagemaker/
https://github.com/aws/amazon-sagemaker-examples/tree/main/introduction_to_amazon_algorithms/jumpstart-foundation-models
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#model-providers

Amazon SageMaker Developer Guide

• (Optional) Select an embedding model to which you have access. Embedding models
are used to capture additional information from local documents, enabling the text
generation model to respond to questions within the context of those documents.

• Insert your models' API keys.

• Choose Save Changes and navigate to the left arrow icon

in the top left corner of the left pane. This opens the Jupyter AI chat UI. You can start
interacting with your model.

The following snapshot is an illustration of the chat UI configuration panel set to invoke a Flan-t5-
small model provided by SageMaker JumpStart and deployed in SageMaker.

Model configuration 1337

Amazon SageMaker Developer Guide

Model configuration 1338

Amazon SageMaker Developer Guide

Pass extra model parameters and custom parameters to your request

Your model may need extra parameters, like a customized attribute for user agreement approval or
adjustments to other model parameters such as temperature or response length. We recommend
configuring these settings as a start up option of your JupyterLab application using a Lifecycle
Configuration. For information on how to create a Lifecycle Configuration and attach it to your
domain, or to a user profile from the SageMaker console, see Create and associate a lifecycle
configuration. You can choose your LCC script when creating a space for your JupyterLab
application.

Use the following JSON schema to configure your extra parameters:

{
 "AiExtension": {
 "model_parameters": {
 "<provider_id>:<model_id>": { Dictionary of model parameters which is unpacked
 and passed as-is to the provider.}
 }
 }
 }
}

The following script is an example of a JSON configuration file that you can use when creating a
JupyterLab application LCC to set the maximum length of an AI21 Labs Jurassic-2 model deployed
on Amazon Bedrock. Increasing the length of the model's generated response can prevent the
systematic truncation of your model's response.

#!/bin/bash
set -eux

mkdir -p /home/sagemaker-user/.jupyter

json='{"AiExtension": {"model_parameters": {"bedrock:ai21.j2-mid-v1": {"model_kwargs":
 {"maxTokens": 200}}}}}'
equivalent to %%ai bedrock:ai21.j2-mid-v1 -m {"model_kwargs":{"maxTokens":200}}

File path
file_path="/home/sagemaker-user/.jupyter/jupyter_jupyter_ai_config.json"

#jupyter --paths

Model configuration 1339

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-jurassic2.html

Amazon SageMaker Developer Guide

Write JSON to file
echo "$json" > "$file_path"

Confirmation message
echo "JSON written to $file_path"

restart-jupyter-server

Waiting for 30 seconds to make sure the Jupyter Server is up and running
sleep 30

The following script is an example of a JSON configuration file for creating a JupyterLab
application LCC used to set additional model parameters for an Anthropic Claude model deployed
on Amazon Bedrock.

#!/bin/bash
set -eux

mkdir -p /home/sagemaker-user/.jupyter

json='{"AiExtension": {"model_parameters": {"bedrock:anthropic.claude-v2":
{"model_kwargs":{"temperature":0.1,"top_p":0.5,"top_k":25
0,"max_tokens_to_sample":2}}}}}'
equivalent to %%ai bedrock:anthropic.claude-v2 -m {"model_kwargs":
{"temperature":0.1,"top_p":0.5,"top_k":250,"max_tokens_to_sample":2000}}

File path
file_path="/home/sagemaker-user/.jupyter/jupyter_jupyter_ai_config.json"

#jupyter --paths

Write JSON to file
echo "$json" > "$file_path"

Confirmation message
echo "JSON written to $file_path"

restart-jupyter-server

Waiting for 30 seconds to make sure the Jupyter Server is up and running
sleep 30

Model configuration 1340

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html

Amazon SageMaker Developer Guide

Once you have attached your LCC to your domain, or user profile, add your LCC to your space when
launching your JupyterLab application. To ensure that your configuration file is updated by the
LCC, run more ~/.jupyter/jupyter_jupyter_ai_config.json in a terminal. The content of
the file should correspond to the content of the JSON file passed to the LCC.

Configure your model provider in a notebook

To invoke a model via Jupyter AI within JupyterLab or Studio Classic notebooks using the %%ai
and %ai magic commands

1. Install the client libraries specific to your model provider in your notebook environment. For
example, when using OpenAI models, you need to install the openai client library. You can
find the list of the client libraries required per provider in the Python package(s) column of the
Jupyter AI Model providers list.

Note

For models hosted by AWS, boto3 is already installed in the SageMaker Distribution
image used by JupyterLab, or any Data Science image used with Studio Classic.

2. • For models hosted by AWS

Ensure that your execution role has the permission to invoke your SageMaker endpoint for
models provided by SageMaker JumpStart or that you have access to Amazon Bedrock.

• For models hosted by third-party providers

Export your provider's API key in your notebook environment using environment variables.
You can use the following magic command. Replace the provider_API_key in the
command by the environment variable found in the Environment variable column of the
Jupyter AI Model providers list for your provider.

%env provider_API_key=your_API_key

Model configuration 1341

https://jupyter-ai.readthedocs.io/en/latest/users/index.html#model-providers
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#model-providers

Amazon SageMaker Developer Guide

Use Jupyter AI in JupyterLab or Studio Classic

Use language models from the chat UI

Compose your message in the chat UI text box to start interacting with your model. To clear the
message history, use the /clear command.

Note

Clearing the message history does not erase the chat context with the model provider.

Use language models from notebook cells

Before using the %%ai and %ai commands to invoke a language model, load the IPython extension
by running the following command in a JupyterLab or Studio Classic notebook cell.

%load_ext jupyter_ai_magics

• For models hosted by AWS:

• To invoke a model deployed in SageMaker, pass the string sagemaker-
endpoint:endpoint-name to the %%ai magic command with the required parameters
below, then add your prompt in the following lines.

The following table lists the required and optional parameters when invoking models hosted
by SageMaker or Amazon Bedrock.

Parameter Name Parameter Short Version Description

Request schema --request-
schema

-q Required: The
JSON object the
endpoint expects,
with the prompt
being substituted
into any value that
matches the string
literal <prompt>.

Use Jupyter AI 1342

Amazon SageMaker Developer Guide

Parameter Name Parameter Short Version Description

Region name --region-name -n Required: The AWS
Region where the
model is deployed.

Response path --response-
path

-p Required: A
JSONPath string
used to extract the
language model's
output from the
JSON response of
the endpoint.

Use Jupyter AI 1343

Amazon SageMaker Developer Guide

Parameter Name Parameter Short Version Description

Extra model
parameters

--model-p
arameters

-m Optional: A JSON
value specifyin
g additional
parameters to
be passed to the
model. The accepted
value is parsed
into a dictionar
y, unpacked, and
directly passed to
the provider class.
This is useful when
the endpoint or
the model requires
custom parameter
s. For example, in
Llama 2 models
when accepting the
End User License
Agreement (EULA)
is necessary, you
can pass the EULA
acceptance to the
endpoint using
-m {"endpoin
t_kwargs"
:{"Custom
Attribute
s":"accep
t_eula=tr
ue"}} . Alternati
vely, you can use
the -m parameter
to pass extra model

Use Jupyter AI 1344

Amazon SageMaker Developer Guide

Parameter Name Parameter Short Version Description

parameters, such
as setting the
maximum number
of tokens for a
model's generated
response. For
example, when
working with
an AI21 Labs
Jurassic model:
-m {"model_k
wargs":{"
maxTokens
":256}} .

Output format --format -f Optional: The
IPython display
used to render the
output. It can be
any of the following
values [code|
html|image|
json|markd
own|math|md|
text], provided
that the invoked
model supports the
specified format.

The following command invokes a Llama2-7b model hosted by SageMaker.

%%ai sagemaker-endpoint:jumpstart-dft-meta-textgeneration-llama-2-7b -q
 {"inputs":"<prompt>","parameters":
{"max_new_tokens":64,"top_p":0.9,"temperature":0.6,"return_full_text":false}}

Use Jupyter AI 1345

https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html

Amazon SageMaker Developer Guide

 -n us-east-2 -p [0].generation -m {"endpoint_kwargs":
{"CustomAttributes":"accept_eula=true"}} -f text
Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche
cheese =>

The following example invokes a Flan-t5-small model hosted by SageMaker.

%%ai sagemaker-endpoint:hf-text2text-flan-t5-small --request-
schema={"inputs":"<prompt>","parameters":{"num_return_sequences":4}} --region-
name=us-west-2 --response-path=[0]["generated_text"] -f text
What is the atomic number of Hydrogen?

• To invoke a model deployed in Amazon Bedrock, pass the string bedrock:model-name to
the %%ai magic command with any optional parameter defined in the list of parameters for
invoking models hosted by SageMaker JumpStart or Amazon Bedrock, then add your prompt
in the following lines.

The following example invokes an AI21 Labs Jurassic-2 model hosted by Amazon Bedrock.

%%ai bedrock:ai21.j2-mid-v1 -m {"model_kwargs":{"maxTokens":256}} -f code
Write a function in python implementing a bubbble sort.

• For models hosted by third-party providers

To invoke a model hosted by third-party providers, pass the string provider-id:model-name
to the %%ai magic command with an optional Output format, then add your prompt in the
following lines. You can find the details of each provider, including their ID, in the Jupyter AI list
of model providers.

The following command asks an Anthropic Claude model to output an HTML file containing the
image of a white square with black borders.

%%ai anthropic:claude-v1.2 -f html
Create a square using SVG with a black border and white fill.

Use Jupyter AI 1346

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-jurassic2.html
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#model-providers
https://jupyter-ai.readthedocs.io/en/latest/users/index.html#model-providers

Amazon SageMaker Developer Guide

Label data with a human-in-the-loop

To train a machine learning model, you need a large, high-quality, labeled dataset. You can label
your data using Amazon SageMaker Ground Truth. Choose from one of the Ground Truth built-
in task types or create your own custom labeling workflow. To improve the accuracy of your data
labels and reduce the total cost of labeling your data, use Ground Truth enhanced data labeling
features like automated data labeling and annotation consolidation.

Topics

• Use Amazon SageMaker Ground Truth to Label Data

• Use Amazon SageMaker Ground Truth Plus to Label Data

• Create and Manage Workforces

• Crowd HTML Elements Reference

• Using Amazon Augmented AI for Human Review

Use Amazon SageMaker Ground Truth to Label Data

To train a machine learning model, you need a large, high-quality, labeled dataset. Ground Truth
helps you build high-quality training datasets for your machine learning models. With Ground
Truth, you can use workers from either Amazon Mechanical Turk, a vendor company that you
choose, or an internal, private workforce along with machine learning to enable you to create
a labeled dataset. You can use the labeled dataset output from Ground Truth to train your own
models. You can also use the output as a training dataset for an Amazon SageMaker model.

Depending on your ML application, you can choose from one of the Ground Truth built-in task
types to have workers generate specific types of labels for your data. You can also build a custom
labeling workflow to provide your own UI and tools to workers labeling your data. To learn more
about the Ground Truth built in task types, see Built-in Task Types. To learn how to create a custom
labeling workflow, see Creating Custom Labeling Workflows.

In order to automate labeling your training dataset, you can optionally use automated data
labeling, a Ground Truth process that uses machine learning to decide which data needs to be
labeled by humans. Automated data labeling may reduce the labeling time and manual effort
required. For more information, see Automate Data Labeling. To create a custom labeling workflow,
see Creating Custom Labeling Workflows.

Ground Truth 1347

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html

Amazon SageMaker Developer Guide

Use either pre-built or custom tools to assign the labeling tasks for your training dataset. A
labeling UI template is a webpage that Ground Truth uses to present tasks and instructions to your
workers. The SageMaker console provides built-in templates for labeling data. You can use these
templates to get started , or you can build your own tasks and instructions by using our HTML 2.0
components. For more information, see Creating Custom Labeling Workflows.

Use the workforce of your choice to label your dataset. You can choose your workforce from:

• The Amazon Mechanical Turk workforce of over 500,000 independent contractors worldwide.

• A private workforce that you create from your employees or contractors for handling data within
your organization.

• A vendor company that you can find in the AWS Marketplace that specializes in data labeling
services.

For more information, see Create and Manage Workforces.

You store your datasets in Amazon S3 buckets. The buckets contain three things: The data to
be labeled, an input manifest file that Ground Truth uses to read the data files, and an output
manifest file. The output file contains the results of the labeling job. For more information, see Use
Input and Output Data.

Events from your labeling jobs appear in Amazon CloudWatch under the /aws/sagemaker/
LabelingJobs group. CloudWatch uses the labeling job name as the name for the log stream.

Are You a First-time User of Ground Truth?

If you are a first-time user of Ground Truth, we recommend that you do the following:

1. Read Getting started—This section walks you through setting up your first Ground Truth
labeling job.

2. Explore other topics—Depending on your needs, do the following:

• Explore built-in task types— Use built-in task types to streamline the process of creating a
labeling job. See Built-in Task Types to learn more about Ground Truth built-in task types.

• Manage your labeling workforce—Create new work teams and manage your existing
workforce. For more information, see Create and Manage Workforces.

• Learn about streaming labeling jobs— Create a streaming labeling job and send new dataset
objects to workers in real time using a perpetually running labeling job. Workers continuously

Are You a First-time User of Ground Truth? 1348

Amazon SageMaker Developer Guide

receive new data objects to label as long as the labeling job is active and new objects are
being sent to it. To learn more, see Ground Truth Streaming Labeling Jobs.

3. See the Reference—This section describes operations to automate Ground Truth operations.

Getting started

This video shows you how to setup and use Amazon SageMaker Ground Truth. (Length: 9:37)

To get started using Amazon SageMaker Ground Truth, follow the instructions in the following
sections. The sections here explain how to use the console to create a labeling job, assign a public
or private workforce, and send the labeling job to your workforce. You can also learn how to
monitor the progress of a labeling job.

If you want to create a custom labeling workflow, see Creating Custom Labeling Workflows for
instructions.

Before you create a labeling job, you must upload your dataset to an Amazon S3 bucket. For more
information, see Use Input and Output Data.

Topics

• Step 1: Before You Begin

• Step 2: Create a Labeling Job

• Step 3: Select Workers

• Step 4: Configure the Bounding Box Tool

• Step 5: Monitoring Your Labeling Job

Step 1: Before You Begin

Before you begin using the SageMaker console to create a labeling job, you must set up the dataset
for use. Do this:

1. Save two images at publicly available HTTP URLs. The images are used when creating
instructions for completing a labeling task. The images should have an aspect ratio of around
2:1. For this exercise, the content of the images is not important.

2. Create an Amazon S3 bucket to hold the input and output files. The bucket must be in the
same Region where you are running Ground Truth. Make a note of the bucket name because
you use it during step 2.

Getting started 1349

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Reference.html

Amazon SageMaker Developer Guide

Ground Truth requires all S3 buckets that contain labeling job input image data have a CORS
policy attached. To learn more about this change, see CORS Permission Requirement.

3. You can create an IAM role or let SageMaker create a role with the
AmazonSageMakerFullAccess IAM policy. Refer to Creating IAM roles and assign the following
permissions policy to the user that is creating the labeling job:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "sagemakergroundtruth",
 "Effect": "Allow",
 "Action": [
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:UpdateUserPool"
],
 "Resource": "*"
 }
]
}

Next

Step 2: Create a Labeling Job

Step 2: Create a Labeling Job

In this step you use the console to create a labeling job. You tell Amazon SageMaker Ground Truth
the Amazon S3 bucket where the manifest file is stored and configure the parameters for the job.
For more information about storing data in an Amazon S3 bucket, see Use Input and Output Data.

Getting started 1350

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

Amazon SageMaker Developer Guide

To create a labeling job

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. From the left navigation, choose Labeling jobs.

3. Choose Create labeling job to start the job creation process.

4. In the Job overview section, provide the following information:

• Job name – Give the labeling job a name that describes the job. This name is shown in your
job list. The name must be unique in your account in an AWS Region.

• Label attribute name – Leave this unchecked as the default value is the best option for this
introductory job.

• Input data setup – Select Automated data setup. This option allows you to automatically
connect to your input data in S3.

• S3 location for input datasets – Enter the S3 location where you added the images in step
1.

• S3 location for output datasets – The location where your output data is written in S3.

• Data type – Use the drop down menu to select Image. Ground Truth will use all images
found in the S3 location for input datasets as input for your labeling job.

• IAM role – Create or choose an IAM role with the AmazonSageMakerFullAccess IAM policy
attached.

5. In the Task type section, for the Task category field, choose Image.

6. In the Task selection choose Bounding box.

7. Choose Next to move on to configuring your labeling job.

Next

Step 3: Select Workers

Step 3: Select Workers

In this step you choose a workforce for labeling your dataset. It is recommended that you create
a private workforce to test Amazon SageMaker Ground Truth. Use email addresses to invite the
members of your workforce. If you create a private workforce in this step you won't be able to
import your Amazon Cognito user pool later. If you want to create a private workforce using
an Amazon Cognito user pool, see Manage a Private Workforce (Amazon Cognito) and use the
Mechanical Turk workforce instead in this tutorial.

Getting started 1351

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Tip

To learn about the other workforce options you can use with Ground Truth, see Create and
Manage Workforces.

To create a private workforce:

1. In the Workers section, choose Private.

2. If this is your first time using a private workforce, in the Email addresses field, enter up to 100
email addresses. The addresses must be separated by a comma. You should include your own
email address so that you are part of the workforce and can see data object labeling tasks.

3. In the Organization name field, enter the name of your organization. This information is used
to customize the email sent to invite a person to your private workforce. You can change the
organization name after the user pool is created through the console.

4. In the Contact email field enter an email address that members of the workforce use to report
problems with the task.

If you add yourself to the private workforce, you will receive an email that looks similar to the
following. Amazon, Inc. is replaced by the organization you enter in step 3 of the preceding
procedure. Select the link in the email to log in using the temporary password provided. If
prompted, change your password. When you successfully log in, you see the worker portal where
your labeling tasks appear.

Getting started 1352

Amazon SageMaker Developer Guide

Tip

You can find the link to your private workforce's worker portal in the Labeling workforces
section of the Ground Truth area of the SageMaker console. To see the link, select the
Private tab. The link is under the Labeling portal sign-in URL header in Private workforce
summary.

If you choose to use the Amazon Mechanical Turk workforce to label the dataset, you are charged
for labeling tasks completed on the dataset.

Getting started 1353

Amazon SageMaker Developer Guide

To use the Amazon Mechanical Turk workforce:

1. In the Workers section, choose Public.

2. Set a Price per task.

3. If applicable, choose The dataset does not contain adult content to acknowledge that the
sample dataset has no adult content. This information enables Amazon SageMaker Ground
Truth to warn external workers on Mechanical Turk that they might encounter potentially
offensive content in your dataset.

4. Choose the check box next to the following statement to acknowledge that the sample
dataset does not contain any personally identifiable information (PII). This is a requirement
to use Mechanical Turk with Ground Truth. If your input data does contain PII, use the private
workforce for this tutorial.

You understand and agree that the Amazon Mechanical Turk workforce consists of
independent contractors located worldwide and that you should not share confidential
information, personal information or protected health information with this workforce.

Next

Step 4: Configure the Bounding Box Tool

Step 4: Configure the Bounding Box Tool

Finally you configure the bounding box tool to give instructions to your workers. You can configure
a task title that describes the task and provides high-level instructions for the workers. You can
provide both quick instructions and full instructions. Quick instructions are displayed next to the
image to be labeled. Full instructions contain detailed instructions for completing the task. In
this example, you only provide quick instructions. You can see an example of full instructions by
choosing Full instructions at the bottom of the section.

To configure the bounding box tool

1. In the Task description field type in brief instructions for the task. For example:

Draw a box around any objects in the image.

Replace objects with the name of an object that appears in your images.

Getting started 1354

Amazon SageMaker Developer Guide

2. In the Labels field, type a category name for the objects that the worker should draw a
bounding box around. For example, if you are asking the worker to draw boxes around football
players, you could use "Football Player" in this field.

3. The Short instructions section enables you to create instructions that are displayed on the
page with the image that your workers are labeling. We suggest that you include an example
of a correctly drawn bounding box and an example of an incorrectly drawn box. To create your
own instructions, use these steps:

a. Select the text between GOOD EXAMPLE and the image placeholder. Replace it with the
following text:

Draw the box around the object with a small border.

b. Select the first image placeholder and delete it.

c. Choose the image button and then enter the HTTPS URL of one of the images that you
created in step 1. It is also possible to embed images directly in the short instructions
section, however this section has a quota of 100 kilobytes (including text). If your images
and text exceed 100 kilobytes, you receive an error.

d. Select the text between BAD EXAMPLE and the image placeholder. Replace it with the
following text:

Don't make the bounding box too large or cut into the object.

e. Select the second image placeholder and delete it.

f. Choose the image button and then enter the HTTPS URL of the other image that you
created in step 1.

4. Select Preview to preview the worker UI. The preview opens in a new tab, and so if your
browser blocks pop ups you may need to manually enable the tab to open. When you add
one or more annotations to the preview and then select Submit you can see a preview of the
output data your annotation would created.

5. After you have configured and verified your instructions, select Create to create the labeling
job.

If you used a private workforce, you can navigate to the worker portal that you logged into in Step
3: Select Workers of this tutorial to see your labeling tasks. The tasks may take a few minutes to
appear.

Getting started 1355

Amazon SageMaker Developer Guide

Next

Step 5: Monitoring Your Labeling Job

Step 5: Monitoring Your Labeling Job

After you create your labeling job, you see a list of all the jobs that you have created. You can use
this list to monitor that status of your labeling jobs. The list has the following fields:

• Name – The name that you assigned the job when you created it.

• Status – The completion status of the job. The status can be one of Complete, Failed, In progress,
or Stopped.

• Labeled objects/total – Shows the total number of objects in the labeling job and how many of
them have been labeled.

• Creation time – The date and time that you created the job.

You can also clone, chain, or stop a job. Select a job and then select one of the following from the
Actions menu:

• Clone – Creates a new labeling job with the configuration copied from the selected job. You can
clone a job when you want to change to the job and run it again. For example, you can clone a
job that was sent to a private workforce so that you can send it to the Amazon Mechanical Turk
workforce. Or you can clone a job to rerun it against a new dataset stored in the same location as
the original job.

• Chain – Creates a new labeling job that can build upon the data and models (if any) of a stopped,
failed, or completed job. For more information about the use cases and how to use it, see
Chaining Labeling Jobs.

• Stop – Stops a running job. You cannot restart a stopped job. You can clone a job to start over or
chain the job to continue from where it left off. Labels for any already labeled objects are written
to the output file location. For more information, see Output Data.

Label Images

Use Ground Truth to label images. Select one of the following built in task types to learn more
about that task type. Each page includes instructions to help you create a labeling job using that
task type.

Label Images 1356

Amazon SageMaker Developer Guide

Tip

To learn more about supported file types and input data quotas, see Input Data.

Topics

• Bounding Box

• Image Semantic Segmentation

• Auto-Segmentation Tool

• Image Classification (Single Label)

• Image Classification (Multi-label)

• Image Label Verification

Bounding Box

The images used to train a machine learning model often contain more than one object. To
classify and localize one or more objects within images, use the Amazon SageMaker Ground Truth
bounding box labeling job task type. In this context, localization means the pixel-location of the
bounding box.

You create a bounding box labeling job using the Ground Truth section of the Amazon SageMaker
console or the CreateLabelingJob operation.

Important

For this task type, if you create your own manifest file, use "source-ref" to identify the
location of each image file in Amazon S3 that you want labeled. For more information, see
Input Data.

Creating a Bounding Box Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) to learn how to create a bounding
box labeling job in the SageMaker console. In Step 10, choose Image from the Task category drop
down menu, and choose Bounding box as the task type.

Label Images 1357

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Ground Truth provides a worker UI similar to the following for labeling tasks. When you create the
labeling job with the console, you specify instructions to help workers complete the job and up to
50 labels that workers can choose from.

Create a Bounding Box Labeling Job (API)

To create a bounding box labeling job, use the SageMaker API operation CreateLabelingJob.
This API defines this operation for all AWS SDKs. To see a list of language-specific SDKs supported
for this operation, review the See Also section of CreateLabelingJob.

Follow the instructions on Create a Labeling Job (API) and do the following while you configure
your request:

• Pre-annotation Lambda functions for this task type end with PRE-BoundingBox. To find the
pre-annotation Lambda ARN for your Region, see PreHumanTaskLambdaArn .

• Annotation-consolidation Lambda functions for this task type end with ACS-
BoundingBox. To find the annotation-consolidation Lambda ARN for your Region, see
AnnotationConsolidationLambdaArn.

Label Images 1358

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region. All parameters in red should be replaced with your specifications and
resources.

response = client.create_labeling_job(
 LabelingJobName='example-bounding-box-labeling-job,
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:region:*:workteam/private-crowd/*',
 'UiConfig': {
 'UiTemplateS3Uri': 's3://bucket/path/worker-task-template.html'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
BoundingBox',
 'TaskKeywords': [
 'Bounding Box',
],
 'TaskTitle': 'Bounding Box task',
 'TaskDescription': 'Draw bounding boxes around objects in an image',
 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,

Label Images 1359

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-BoundingBox'
 }
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Provide a Template for Bounding Box Labeling Jobs

If you create a labeling job using the API, you must supply a worker task template in
UiTemplateS3Uri. Copy and modify the following template. Only modify the short-
instructions, full-instructions, and header. Upload this template to S3, and provide the
S3 URI for this file in UiTemplateS3Uri.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-bounding-box
 name="boundingBox"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="please draw box"
 labels="{{ task.input.labels | to_json | escape }}"
 >

 <full-instructions header="Bounding box instructions">
 Inspect the imageDetermine
 if the specified label is/are visible in the picture.
 Outline each instance of the specified label in the image
 using the provided “Box” tool.
 Boxes should fit tight around each object
 Do not include parts of the object are overlapping or that cannot be seen,
 even though you think you can interpolate the whole shape.
 Avoid including shadows.
 If the target is off screen, draw the box up to the edge of the image.

 </full-instructions>

Label Images 1360

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-full-instructions

Amazon SageMaker Developer Guide

 <short-instructions>
 <h3>Good example</h3>
 <p>Enter description of a correct bounding box label and add images</p>
 <h3>Bad example</h3>
 <p>Enter description of an incorrect bounding box label and add images</p>
 </short-instructions>

 </crowd-bounding-box>
</crowd-form>

Bounding Box Output Data

Once you have created a bounding box labeling job, your output data will be located in the
Amazon S3 bucket specified in the S3OutputPath parameter when using the API or in the Output
dataset location field of the Job overview section of the console.

For example, the output manifest file of a successfully completed single-class bounding box task
will contain the following:

[
 {
 "boundingBox": {
 "boundingBoxes": [
 {
 "height": 2832,
 "label": "bird",
 "left": 681,
 "top": 599,
 "width": 1364
 }
],
 "inputImageProperties": {
 "height": 3726,
 "width": 2662
 }
 }
 }
]

The boundingBoxes parameter identifies the location of the bounding box drawn around
an object identified as a "bird" relative to the top-left corner of the image which is taken to

Label Images 1361

Amazon SageMaker Developer Guide

be the (0,0) pixel-coordinate. In the previous example, left and top identify the location
of the pixel in the top-left corner of the bounding box relative to the top-left corner of the
image. The dimensions of the bounding box are identified with height and width. The
inputImageProperties parameter gives the pixel-dimensions of the original input image.

When you use the bounding box task type, you can create single- and multi-class bounding box
labeling jobs. The output manifest file of a successfully completed multi-class bounding box will
contain the following:

[
 {
 "boundingBox": {
 "boundingBoxes": [
 {
 "height": 938,
 "label": "squirrel",
 "left": 316,
 "top": 218,
 "width": 785
 },
 {
 "height": 825,
 "label": "rabbit",
 "left": 1930,
 "top": 2265,
 "width": 540
 },
 {
 "height": 1174,
 "label": "bird",
 "left": 748,
 "top": 2113,
 "width": 927
 },
 {
 "height": 893,
 "label": "bird",
 "left": 1333,
 "top": 847,
 "width": 736
 }
],
 "inputImageProperties": {

Label Images 1362

Amazon SageMaker Developer Guide

 "height": 3726,
 "width": 2662
 }
 }
 }
]

To learn more about the output manifest file that results from a bounding box labeling job, see
Bounding Box Job Output.

To learn more about the output manifest file generated by Ground Truth and the file structure the
Ground Truth uses to store your output data, see Output Data.

Image Semantic Segmentation

To identify the contents of an image at the pixel level, use an Amazon SageMaker Ground Truth
semantic segmentation labeling task. When assigned a semantic segmentation labeling job,
workers classify pixels in the image into a set of predefined labels or classes. Ground Truth
supports single and multi-class semantic segmentation labeling jobs.

Images that contain large numbers of objects that need to be segmented require more time. To
help workers (from a private or vendor workforce) label these objects in less time and with greater
accuracy, Ground Truth provides an AI-assisted auto-segmentation tool. For information, see Auto-
Segmentation Tool.

You create a semantic segmentation labeling job using the Ground Truth section of the Amazon
SageMaker console or the CreateLabelingJob operation.

Important

For this task type, if you create your own manifest file, use "source-ref" to identify the
location of each image file in Amazon S3 that you want labeled. For more information, see
Input Data.

Creating a Semantic Segmentation Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) to learn how to create a semantic
segmentation labeling job in the SageMaker console. In Step 10, choose Image from the Task
category drop down menu, and choose Semantic segmentation as the task type.

Label Images 1363

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Ground Truth provides a worker UI similar to the following for labeling tasks. When you create the
labeling job with the console, you specify instructions to help workers complete the job and labels
that workers can choose from.

Create a Semantic Segmentation Labeling Job (API)

To create a semantic segmentation labeling job, use the SageMaker API operation
CreateLabelingJob. This API defines this operation for all AWS SDKs. To see a list of language-
specific SDKs supported for this operation, review the See Also section of CreateLabelingJob.

Follow the instructions on Create a Labeling Job (API) and do the following while you configure
your request:

• Pre-annotation Lambda functions for this task type end with PRE-SemanticSegmentation. To
find the pre-annotation Lambda ARN for your Region, see PreHumanTaskLambdaArn .

• Annotation-consolidation Lambda functions for this task type end with ACS-
SemanticSegmentation. To find the annotation-consolidation Lambda ARN for your Region,
see AnnotationConsolidationLambdaArn.

Label Images 1364

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region. All parameters in red should be replaced with your specifications and
resources.

response = client.create_labeling_job(
 LabelingJobName='example-semantic-segmentation-labeling-job,
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:region:*:workteam/private-crowd/*',
 'UiConfig': {
 'UiTemplateS3Uri': 's3://bucket/path/worker-task-template.html'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
SemanticSegmentation,
 'TaskKeywords': [
 'Semantic Segmentation',
],
 'TaskTitle': 'Semantic segmentation task',
 'TaskDescription': 'For each category provided, segment out each relevant
 object using the color associated with that category',
 'NumberOfHumanWorkersPerDataObject': 123,

Label Images 1365

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 'TaskTimeLimitInSeconds': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-SemanticSegmentation'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Provide a Template for Semantic Segmentation Labeling Jobs

If you create a labeling job using the API, you must supply a worker task template in
UiTemplateS3Uri. Copy and modify the following template. Only modify the short-
instructions, full-instructions, and header.

Upload this template to S3, and provide the S3 URI for this file in UiTemplateS3Uri.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-semantic-segmentation
 name="crowd-semantic-segmentation"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="Please segment out all pedestrians."
 labels="{{ task.input.labels | to_json | escape }}"
 >
 <full-instructions header="Segmentation instructions">
 Read the task carefully and inspect the image.
 Read the options and review the examples provided to
 understand more about the labels.
 Choose the appropriate label that best suits an object and
 paint that object using the tools provided.
 </full-instructions>
 <short-instructions>
 <h2>Good example</h2>
 <p>Enter description to explain a correctly done segmentation</p>
 <p>
</p><h2>Bad example</h2>
 <p>Enter description of an incorrectly done segmentation</p>

Label Images 1366

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-full-instructions

Amazon SageMaker Developer Guide

 </short-instructions>
 </crowd-semantic-segmentation>
</crowd-form>

Semantic Segmentation Output Data

Once you have created a semantic segmentation labeling job, your output data will be located in
the Amazon S3 bucket specified in the S3OutputPath parameter when using the API or in the
Output dataset location field of the Job overview section of the console.

To learn more about the output manifest file generated by Ground Truth and the file structure the
Ground Truth uses to store your output data, see Output Data.

To see an example of an output manifest file for a semantic segmentation labeling job, see 3D
Point Cloud Semantic Segmentation Output.

Auto-Segmentation Tool

Image segmentation is the process of dividing an image into multiple segments, or sets of labeled
pixels. In Amazon SageMaker Ground Truth, the process of identifying all pixels that fall under a
given label involves applying a colored filler, or "mask", over those pixels. Some labeling job tasks
contain images with a large numbers of objects that need to be segmented. To help workers label
these objects in less time and with greater accuracy, Ground Truth provides an auto-segmentation
tool for segmentation tasks assigned to private and vendor workforces. This tool uses a machine
learning model to automatically segment individual objects in the image with minimal worker
input. Workers can refine the mask generated by the auto-segmentation tool using other tools
found in the worker console. This helps workers complete image segmentation tasks faster and
more accurately, resulting in lower cost and higher label quality.

Note

The auto-segmentation tool is available for segmentation tasks that are sent to a private
workforce or vendor workforce. It isn't available for tasks sent to the public workforce
(Amazon Mechanical Turk).

Label Images 1367

Amazon SageMaker Developer Guide

Tool Preview

When workers are assigned a labeling job that provides the auto-segmentation tool, they are
provided with detailed instructions on how to use the tool. For example, a worker might see the
following in the worker console:

Workers can use View full instructions to learn how to use the tool. Workers will need to place
a point on four extreme-points (top-most, bottom-most, left-most, and right-most points) of
the object of interest, and the tool will automatically generate a mask for the object. Workers
can further-refine the mask using the other tools provided, or by using the auto-segment tool on
smaller portions of the object that were missed.

Tool Availability

The auto-segmentation tool automatically appears in your workers' consoles if you create a
semantic segmentation labeling job using the Amazon SageMaker console. While creating a
semantic segmentation job in the SageMaker console, you will be able to preview the tool while

Label Images 1368

Amazon SageMaker Developer Guide

creating worker instructions. To learn how to create a semantic segmentation labeling job in the
SageMaker console, see Getting started.

If you are creating a custom instance segmentation labeling job in the SageMaker console or
creating an instance- or semantic-segmentation labeling job using the Ground Truth API, you need
to create a custom task template to design your worker console and instructions. To include the
auto-segmentation tool in your worker console, ensure that the following conditions are met in
your custom task template:

• For semantic segmentation labeling jobs created using the API, the <crowd-semantic-
segmentation> is present in the task template. For custom instance segmentation labeling
jobs, the <crowd-instance-segmentation> tag is present in the task template.

• The task is assigned to a private workforce or vendor workforce.

• The images to be labeled are Amazon Simple Storage Service Amazon S3) objects that have been
pre-signed for the Worker so that they can access it. This is true if the task template includes the
grant_read_access filter. For information about the grant_read_access filter, see Adding
automation with Liquid.

The following is an example of a custom task template for a custom instance segmentation
labeling job, which includes the <crowd-instance-segmentation/> tag and the
grant_read_access Liquid filter.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-instance-segmentation
 name="crowd-instance-segmentation"
 src="{{ task.input.taskObject | grant_read_access }}"
 labels="['Car','Road']"
 <full-instructions header="Segmentation instructions">
 Segment each instance of each class of objects in the image.
 </full-instructions>

 <short-instructions>
 <p>Segment each instance of each class of objects in the image.</p>

 <h3 style="color: green">GOOD EXAMPLES</h3>

 <p>Good because A, B, C.</p>

 <h3 style="color: red">BAD EXAMPLES</h3>

Label Images 1369

Amazon SageMaker Developer Guide

 <p>Bad because X, Y, Z.</p>
 </short-instructions>
 </crowd-instance-segmentation>
</crowd-form>

Image Classification (Single Label)

Use an Amazon SageMaker Ground Truth image classification labeling task when you need workers
to classify images using predefined labels that you specify. Workers are shown images and are
asked to choose one label for each image.

You can create an image classification labeling job using the Ground Truth section of the Amazon
SageMaker console or the CreateLabelingJob operation.

Important

For this task type, if you create your own manifest file, use "source-ref" to identify the
location of each image file in Amazon S3 that you want labeled. For more information, see
Input Data.

Create an Image Classification Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) to learn how to create a image
classification labeling job in the SageMaker console. In Step 10, choose Image from the Task
category drop down menu, and choose Image Classification (Single Label) as the task type.

Ground Truth provides a worker UI similar to the following for labeling tasks. When you create the
labeling job with the console, you specify instructions to help workers complete the job and labels
that workers can choose from.

Label Images 1370

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Create an Image Classification Labeling Job (API)

To create an image classification labeling job, use the SageMaker API operation
CreateLabelingJob. This API defines this operation for all AWS SDKs. To see a list of language-
specific SDKs supported for this operation, review the See Also section of CreateLabelingJob.

Follow the instructions on Create a Labeling Job (API) and do the following while you configure
your request:

• Pre-annotation Lambda functions for this task type end with PRE-ImageMultiClass. To find
the pre-annotation Lambda ARN for your Region, see PreHumanTaskLambdaArn .

Label Images 1371

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn

Amazon SageMaker Developer Guide

• Annotation-consolidation Lambda functions for this task type end with ACS-
ImageMultiClass. To find the annotation-consolidation Lambda ARN for your Region, see
AnnotationConsolidationLambdaArn.

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region. All parameters in red should be replaced with your specifications and
resources.

response = client.create_labeling_job(
 LabelingJobName='example-image-classification-labeling-job',
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:region:*:workteam/private-crowd/*',
 'UiConfig': {
 'UiTemplateS3Uri': 's3://bucket/path/worker-task-template.html'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
ImageMultiClass,
 'TaskKeywords': [
 Image classification',

Label Images 1372

https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

],
 'TaskTitle': Image classification task',
 'TaskDescription': 'Carefully inspect the image and classify it by selecting
 one label from the categories provided.',
 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-ImageMultiClass'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Provide a Template for Image Classification Labeling Jobs

If you create a labeling job using the API, you must supply a worker task template in
UiTemplateS3Uri. Copy and modify the following template. Only modify the short-
instructions, full-instructions, and header.

Upload this template to S3, and provide the S3 URI for this file in UiTemplateS3Uri.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-image-classifier
 name="crowd-image-classifier"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="please classify"
 categories="{{ task.input.labels | to_json | escape }}"
 >
 <full-instructions header="Image classification instructions">
 Read the task carefully and inspect the image.
 Read the options and review the examples provided to
 understand more about the labels.
 Choose the appropriate label that best suits the image.</
li>
 </full-instructions>

Label Images 1373

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-full-instructions

Amazon SageMaker Developer Guide

 <short-instructions>
 <h3>Good example</h3>
 <p>Enter description to explain the correct label to the workers</p>
 <h3>Bad example</h3><p>Enter
 description of an incorrect label</p>
 </short-instructions>
 </crowd-image-classifier>
</crowd-form>

Image Classification Output Data

Once you have created an image classification labeling job, your output data will be located in the
Amazon S3 bucket specified in the S3OutputPath parameter when using the API or in the Output
dataset location field of the Job overview section of the console.

To learn more about the output manifest file generated by Ground Truth and the file structure the
Ground Truth uses to store your output data, see Output Data.

To see an example of an output manifest file from an image classification labeling job, see
Classification Job Output.

Image Classification (Multi-label)

Use an Amazon SageMaker Ground Truth multi-label image classification labeling task when you
need workers to classify multiple objects in an image. For example, the following image features a
dog and a cat. You can use multi-label image classification to associate the labels "dog" and "cat"
with this image.

Label Images 1374

Amazon SageMaker Developer Guide

When working on a multi-label image classification task, workers should choose all applicable
labels, but must choose at least one. When creating a job using this task type, you can provide up
to 50 label-categories.

Label Images 1375

Amazon SageMaker Developer Guide

When creating a labeling job in the console, Ground Truth doesn't provide a "none" category for
when none of the labels applies to an image. To provide this option to workers, include a label
similar to "none" or "other" when you create a multi-label image classification job.

To restrict workers to choosing a single label for each image, use the Image Classification (Single
Label) task type.

Important

For this task type, if you create your own manifest file, use "source-ref" to identify the
location of each image file in Amazon S3 that you want labeled. For more information, see
Input Data.

Create a Multi-Label Image Classification Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) to learn how to create a multi-label
image classification labeling job in the SageMaker console. In Step 10, choose Image from the Task
category drop down menu, and choose Image Classification (Multi-label) as the task type.

Ground Truth provides a worker UI similar to the following for labeling tasks. When you create a
labeling job in the console, you specify instructions to help workers complete the job and labels
that workers can choose from.

Label Images 1376

Amazon SageMaker Developer Guide

Create a Multi-Label Image Classification Labeling Job (API)

To create a multi-label image classification labeling job, use the SageMaker API operation
CreateLabelingJob. This API defines this operation for all AWS SDKs. To see a list of language-
specific SDKs supported for this operation, review the See Also section of CreateLabelingJob.

Follow the instructions on Create a Labeling Job (API) and do the following while you configure
your request:

• Pre-annotation Lambda functions for this task type end with PRE-
ImageMultiClassMultiLabel. To find the pre-annotation Lambda ARN for your Region, see
PreHumanTaskLambdaArn .

• Annotation-consolidation Lambda functions for this task type end with ACS-
ImageMultiClassMultiLabel. To find the annotation-consolidation Lambda ARN for your
Region, see AnnotationConsolidationLambdaArn.

Label Images 1377

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region. All parameters in red should be replaced with your specifications and
resources.

response = client.create_labeling_job(
 LabelingJobName='example-multi-label-image-classification-labeling-job,
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:region:*:workteam/private-crowd/*',
 'UiConfig': {
 'UiTemplateS3Uri': 's3://bucket/path/worker-task-template.html'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
ImageMultiClassMultiLabel',
 'TaskKeywords': [
 'Image Classification',
],
 'TaskTitle': 'Multi-label image classification task',
 'TaskDescription': 'Select all labels that apply to the images shown',
 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,

Label Images 1378

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-ImageMultiClassMultiLabel'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Provide a Template for Multi-label Image Classification

If you create a labeling job using the API, you must supply a worker task template in
UiTemplateS3Uri. Copy and modify the following template. Only modify the short-
instructions, full-instructions, and header.

Upload this template to S3, and provide the S3 URI for this file in UiTemplateS3Uri.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-image-classifier-multi-select
 name="crowd-image-classifier-multi-select"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="Please identify all classes in image"
 categories="{{ task.input.labels | to_json | escape }}"
 >
 <full-instructions header="Multi Label Image classification instructions">
 Read the task carefully and inspect the image.
 Read the options and review the examples provided to
 understand more about the labels.
 Choose the appropriate labels that best suit the image.</
li>
 </full-instructions>
 <short-instructions>
 <h3>Good example</h3>
 <p>Enter description to explain the correct label to the workers</p>
 <h3>Bad example</h3>
 <p>Enter description of an incorrect label</p>
 </short-instructions>

Label Images 1379

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-full-instructions

Amazon SageMaker Developer Guide

 </crowd-image-classifier-multi-select>
</crowd-form>

Multi-label Image Classification Output Data

Once you have created a multi-label image classification labeling job, your output data will be
located in the Amazon S3 bucket specified in the S3OutputPath parameter when using the API or
in the Output dataset location field of the Job overview section of the console.

To learn more about the output manifest file generated by Ground Truth and the file structure the
Ground Truth uses to store your output data, see Output Data.

To see an example of output manifest files for multi-label image classification labeling job, see
Multi-label Classification Job Output.

Image Label Verification

Building a highly accurate training dataset for your machine learning (ML) algorithm is an iterative
process. Typically, you review and continuously adjust your labels until you are satisfied that they
accurately represent the ground truth, or what is directly observable in the real world.

You can use an Amazon SageMaker Ground Truth image label verification task to direct workers
to review a dataset's labels and improve label accuracy. Workers can indicate if the existing labels
are correct or rate label quality. They can also add comments to explain their reasoning. Amazon
SageMaker Ground Truth supports label verification for Bounding Box and Image Semantic
Segmentation labels.

You create an image label verification labeling job using the Ground Truth section of the Amazon
SageMaker console or the CreateLabelingJob operation.

Ground Truth provides a worker console similar to the following for labeling tasks. When you
create the labeling job with the console, you can modify the images and content that are shown.
To learn how to create a labeling job using the Ground Truth console, see Create a Labeling Job
(Console).

Label Images 1380

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

You can create a label verification labeling job using the SageMaker console or API. To learn how
to create a labeling job using the Ground Truth API operation CreateLabelingJob, see Create a
Labeling Job (API).

Use Ground Truth to Label Text

Use Ground Truth to label text. Select one of the following built in task types to learn more about
that task type. Each page includes instructions to help you create a labeling job using that task
type.

Tip

To learn more about supported file types and input data quotas, see Input Data.

Label Text 1381

Amazon SageMaker Developer Guide

Topics

• Named Entity Recognition

• Text Classification (Single Label)

• Text Classification (Multi-label)

Named Entity Recognition

To extract information from unstructured text and classify it into predefined categories, use an
Amazon SageMaker Ground Truth named entity recognition (NER) labeling task. Traditionally, NER
involves sifting through text data to locate noun phrases, called named entities, and categorizing
each with a label, such as "person," "organization," or "brand." You can broaden this task to label
longer spans of text and categorize those sequences with predefined labels that you specify.

When tasked with a named entity recognition labeling job, workers apply your labels to specific
words or phrases within a larger text block. They choose a label, then apply it by using the cursor
to highlight the part of the text to which the label applies. The Ground Truth named entity
recognition tool supports overlapping annotations, in-context label selection, and multi-label
selection for a single highlight. Also, workers can use their keyboards to quickly select labels.

You can create a named entity recognition labeling job using the Ground Truth section of the
Amazon SageMaker console or the CreateLabelingJob operation.

Important

If you manually create an input manifest file, use "source" to identify the text that you
want labeled. For more information, see Input Data.

Create a Named Entity Recognition Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) to learn how to create a named
entity recognition labeling job in the SageMaker console. In Step 10, choose Text from the Task
category drop down menu, and choose Named entity recognition as the task type.

Ground Truth provides a worker UI similar to the following for labeling tasks. When you create the
labeling job with the console, you specify instructions to help workers complete the job and labels
that workers can choose from.

Label Text 1382

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Create a Named Entity Recognition Labeling Job (API)

To create a named entity recognition labeling job, using the SageMaker API operation
CreateLabelingJob. This API defines this operation for all AWS SDKs. To see a list of language-
specific SDKs supported for this operation, review the See Also section of CreateLabelingJob.

Follow the instructions on Create a Labeling Job (API) and do the following while you configure
your request:

• Pre-annotation Lambda functions for this task type end with PRE-NamedEntityRecognition.
To find the pre-annotation Lambda ARN for your Region, see PreHumanTaskLambdaArn .

• Annotation-consolidation Lambda functions for this task type end with ACS-
NamedEntityRecognition. To find the annotation-consolidation Lambda ARN for your
Region, see AnnotationConsolidationLambdaArn.

Label Text 1383

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

• You must provide the following ARN for HumanTaskUiArn:

arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition

Replace aws-region with the AWS Region you use to create the labeling job. For example, use
us-west-1 if you create a labeling job in US West (N. California).

• Provide worker instructions in the label category configuration file using the instructions
parameter. You can use a string, or HTML markup language in the shortInstruction and
fullInstruction fields. For more details, see Provide Worker Instructions in a Label Category
Configuration File.

"instructions": {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>",
 "fullInstruction":"<p>Add additional instructions.</p>"}

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region. All parameters in red should be replaced with your specifications and
resources.

response = client.create_labeling_job(
 LabelingJobName='example-ner-labeling-job',
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*',
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 StoppingConditions={

Label Text 1384

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UiConfig.html#sagemaker-Type-UiConfig-HumanTaskUiArn
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:region:*:workteam/private-crowd/*',
 'UiConfig': {
 'HumanTaskUiArn': 'arn:aws:sagemaker:us-east-1:394669845002:human-task-ui/
NamedEntityRecognition'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
NamedEntityRecognition',
 'TaskKeywords': [
 'Named entity Recognition',
],
 'TaskTitle': 'Named entity Recognition task',
 'TaskDescription': 'Apply the labels provided to specific words or phrases
 within the larger text block.',
 'NumberOfHumanWorkersPerDataObject': 1,
 'TaskTimeLimitInSeconds': 28800,
 'TaskAvailabilityLifetimeInSeconds': 864000,
 'MaxConcurrentTaskCount': 1000,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-NamedEntityRecognition'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Provide Worker Instructions in a Label Category Configuration File

You must provide worker instructions in the label category configuration file you identify with
the LabelCategoryConfigS3Uri parameter in CreateLabelingJob. You can use these
instructions to provide details about the task you want workers to perform and help them use the
tool efficiently.

You provide short and long instructions using shortInstruction and fullInstruction in the
instructions parameter, respectively. To learn more about these instruction types, see Creating
Instruction Pages.

Label Text 1385

Amazon SageMaker Developer Guide

The following is an example of a label category configuration file with instructions that can be
used for a named entity recognition labeling job.

{
 "document-version": "2018-11-28",
 "labels": [
 {
 "label": "label1",
 "shortDisplayName": "L1"
 },
 {
 "label": "label2",
 "shortDisplayName": "L2"
 },
 {
 "label": "label3",
 "shortDisplayName": "L3"
 },
 {
 "label": "label4",
 "shortDisplayName": "L4"
 },
 {
 "label": "label5",
 "shortDisplayName": "L5"
 }
],
 "instructions": {
 "shortInstruction": "<p>Enter description of the labels that workers have
 to choose from</p>
<p>Add examples to help workers
 understand the label</p>",
 "fullInstruction": "
 Read the text carefully.
 Highlight words, phrases, or sections of
 the text.
 Choose the label that best matches what
 you have highlighted.
 To change a label, choose highlighted text
 and select a new label.
 To remove a label from highlighted text,
 choose the X next to the
 abbreviated label name on the highlighted text.

Label Text 1386

Amazon SageMaker Developer Guide

 You can select all of a previously highlighted text, but
 not a portion of it.
 "
 }
}

Named Entity Recognition Output Data

Once you have created a named entity recognition labeling job, your output data will be located
in the Amazon S3 bucket specified in the S3OutputPath parameter when using the API or in the
Output dataset location field of the Job overview section of the console.

To learn more about the output manifest file generated by Ground Truth and the file structure the
Ground Truth uses to store your output data, see Output Data.

Text Classification (Single Label)

To categorize articles and text into predefined categories, use text classification. For example, you
can use text classification to identify the sentiment conveyed in a review or the emotion underlying
a section of text. Use Amazon SageMaker Ground Truth text classification to have workers sort text
into categories that you define.

You create a text classification labeling job using the Ground Truth section of the Amazon
SageMaker console or the CreateLabelingJob operation.

Important

If you manually create an input manifest file, use "source" to identify the text that you
want labeled. For more information, see Input Data.

Create a Text Classification Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) to learn how to create a text
classification labeling job in the SageMaker console. In Step 10, choose Text from the Task
category drop down menu, and choose Text Classification (Single Label) as the task type.

Ground Truth provides a worker UI similar to the following for labeling tasks. When you create the
labeling job with the console, you specify instructions to help workers complete the job and labels
that workers can choose from.

Label Text 1387

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Create a Text Classification Labeling Job (API)

To create a text classification labeling job, use the SageMaker API operation CreateLabelingJob.
This API defines this operation for all AWS SDKs. To see a list of language-specific SDKs supported
for this operation, review the See Also section of CreateLabelingJob.

Follow the instructions on Create a Labeling Job (API) and do the following while you configure
your request:

• Pre-annotation Lambda functions for this task type end with PRE-TextMultiClass. To find the
pre-annotation Lambda ARN for your Region, see PreHumanTaskLambdaArn .

• Annotation-consolidation Lambda functions for this task type end with ACS-
TextMultiClass. To find the annotation-consolidation Lambda ARN for your Region, see
AnnotationConsolidationLambdaArn.

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region. All parameters in red should be replaced with your specifications and
resources.

Label Text 1388

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

response = client.create_labeling_job(
 LabelingJobName='example-text-classification-labeling-job,
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:region:*:workteam/private-crowd/*',
 'UiConfig': {
 'UiTemplateS3Uri': 's3://bucket/path/worker-task-template.html'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
TextMultiClass,
 'TaskKeywords': [
 Text classification',
],
 'TaskTitle': Text classification task',
 'TaskDescription': 'Carefully read and classify this text using the categories
 provided.',
 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {

Label Text 1389

Amazon SageMaker Developer Guide

 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-TextMultiClass'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Provide a Template for Text Classification Labeling Jobs

If you create a labeling job using the API, you must supply a worker task template in
UiTemplateS3Uri. Copy and modify the following template. Only modify the short-
instructions, full-instructions, and header.

Upload this template to S3, and provide the S3 URI for this file in UiTemplateS3Uri.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-classifier
 name="crowd-classifier"
 categories="{{ task.input.labels | to_json | escape }}"
 header="classify text"
 >
 <classification-target style="white-space: pre-wrap">
 {{ task.input.taskObject }}
 </classification-target>
 <full-instructions header="Classifier instructions">
 Read the text carefully.
 Read the examples to understand more about the options.
 Choose the appropriate labels that best suit the text.</
li>
 </full-instructions>
 <short-instructions>
 <p>Enter description of the labels that workers have to choose from</p>
 <p>
</p><p>
</p><p>Add examples to help workers understand the label</p>
 <p>
</p><p>
</p><p>
</p><p>
</p><p>
</p>
 </short-instructions>
 </crowd-classifier>
 </crowd-form>

Label Text 1390

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-full-instructions

Amazon SageMaker Developer Guide

Text Classification Output Data

Once you have created a text classification labeling job, your output data will be located in the
Amazon S3 bucket specified in the S3OutputPath parameter when using the API or in the Output
dataset location field of the Job overview section of the console.

To learn more about the output manifest file generated by Ground Truth and the file structure the
Ground Truth uses to store your output data, see Output Data.

To see an example of an output manifest files from a text classification labeling job, see
Classification Job Output.

Text Classification (Multi-label)

To categorize articles and text into multiple predefined categories, use the multi-label text
classification task type. For example, you can use this task type to identify more than one emotion
conveyed in text.

When working on a multi-label text classification task, workers should choose all applicable labels,
but must choose at least one. When creating a job using this task type, you can provide up to 50
label categories.

Amazon SageMaker Ground Truth doesn't provide a "none" category for when none of the labels
applies. To provide this option to workers, include a label similar to "none" or "other" when you
create a multi-label text classification job.

To restrict workers to choosing a single label for each document or text selection, use the Text
Classification (Single Label) task type.

Important

If you manually create an input manifest file, use "source" to identify the text that you
want labeled. For more information, see Input Data.

Create a Multi-Label Text Classification Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) to learn how to create a multi-label
text classification labeling job in the Amazon SageMaker console. In Step 10, choose Text from the
Task category drop down menu, and choose Text Classification (Multi-label) as the task type.

Label Text 1391

Amazon SageMaker Developer Guide

Ground Truth provides a worker UI similar to the following for labeling tasks. When you create the
labeling job with the console, you specify instructions to help workers complete the job and labels
that workers can choose from.

Create a Multi-Label Text Classification Labeling Job (API)

To create a multi-label text classification labeling job, use the SageMaker API operation
CreateLabelingJob. This API defines this operation for all AWS SDKs. To see a list of language-
specific SDKs supported for this operation, review the See Also section of CreateLabelingJob.

Follow the instructions on Create a Labeling Job (API) and do the following while you configure
your request:

• Pre-annotation Lambda functions for this task type end with PRE-
TextMultiClassMultiLabel. To find the pre-annotation Lambda ARN for your Region, see
PreHumanTaskLambdaArn .

• Annotation-consolidation Lambda functions for this task type end with ACS-
TextMultiClassMultiLabel. To find the annotation-consolidation Lambda ARN for your
Region, see AnnotationConsolidationLambdaArn.

Label Text 1392

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region. All parameters in red should be replaced with your specifications and
resources.

response = client.create_labeling_job(
 LabelingJobName='example-multi-label-text-classification-labeling-job,
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:region:*:workteam/private-crowd/*',
 'UiConfig': {
 'UiTemplateS3Uri': 's3://bucket/path/custom-worker-task-template.html'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda::function:PRE-
TextMultiClassMultiLabel,
 'TaskKeywords': [
 'Text Classification',
],
 'TaskTitle': 'Multi-label text classification task',
 'TaskDescription': 'Select all labels that apply to the text shown',
 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,

Label Text 1393

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-TextMultiClassMultiLabel'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Create a Template for Multi-label Text Classification

If you create a labeling job using the API, you must supply a worker task template in
UiTemplateS3Uri. Copy and modify the following template. Only modify the short-
instructions, full-instructions, and header.

Upload this template to S3, and provide the S3 URI for this file in UiTemplateS3Uri.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-classifier-multi-select
 name="crowd-classifier-multi-select"
 categories="{{ task.input.labels | to_json | escape }}"
 header="Please identify all classes in the below text"
 >
 <classification-target style="white-space: pre-wrap">
 {{ task.input.taskObject }}
 </classification-target>
 <full-instructions header="Classifier instructions">
 Read the text carefully.
 Read the examples to understand more about the options.
 Choose the appropriate labels that best suit the text.</
li>
 </full-instructions>
 <short-instructions>
 <p>Enter description of the labels that workers have to choose from</p>
 <p>
</p>
 <p>
</p><p>Add examples to help workers understand the label</p>
 <p>
</p><p>
</p><p>
</p><p>
</p><p>
</p>

Label Text 1394

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-quick-instructions
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-creating-instruction-pages.html#sms-creating-full-instructions

Amazon SageMaker Developer Guide

 </short-instructions>
 </crowd-classifier-multi-select>
 </crowd-form>

To learn how to create a custom template, see Creating Custom Labeling Workflows.

Multi-label Text Classification Output Data

Once you have created a multi-label text classification labeling job, your output data will be
located in the Amazon S3 bucket specified in the S3OutputPath parameter when using the API or
in the Output dataset location field of the Job overview section of the console.

To learn more about the output manifest file generated by Ground Truth and the file structure the
Ground Truth uses to store your output data, see Output Data.

To see an example of output manifest files for multi-label text classification labeling job, see Multi-
label Classification Job Output.

Label Videos and Video Frames

You can use Ground Truth to classify videos and annotate video frames (still images extracted from
videos) using one of the three built-in video task types. These task types streamline the process
of creating video and video frame labeling jobs using the Amazon SageMaker console, API, and
language-specific SDKs.

• Video clip classification – Enable workers to classify videos into categories you specify. For
example, you can use this task type to have workers categorize videos into topics like sports,
comedy, music, and education. To learn more, see Video Classification.

• Video frame labeling jobs – Enable workers to annotate video frames extracted from a video
using bounding boxes, polylines, polygons or keypoint annotation tools. Ground Truth offers two
built-in task types to label video frames:

• Video frame object detection: Enable workers to identify and locate objects in video frames.

• Video frame object tracking: Enable workers to track the movement of objects across video
frames.

• Video frame adjustment jobs: Have workers adjust labels, label category attributes, and frame
attributes from a previous video frame object detection or object tracking labeling job.

• Video frame verification jobs: Have workers verify labels, label category attributes, and frame
attributes from a previous video frame object detection or object tracking labeling job.

Label Videos and Video Frames 1395

Amazon SageMaker Developer Guide

If you have video files, you can use the Ground Truth automatic frame extraction tool to extract
video frames from your videos. To learn more, see Video Frame Input Data.

Tip

To learn more about supported file types and input data quotas, see Input Data.

Topics

• Video Classification

• Label Video Frames

• Worker Instructions

Video Classification

Use an Amazon SageMaker Ground Truth video classification labeling task when you need workers
to classify videos using predefined labels that you specify. Workers are shown videos and are asked
to choose one label for each video.

You create a video classification labeling job using the Ground Truth section of the Amazon
SageMaker console or the CreateLabelingJob operation.

Your video files must be encoded in a format that is supported by the browser used by the work
team that labels your data. It is recommended that you verify that all video file formats in your
input manifest file display correctly using the worker UI preview. You can communicate supported
browsers to your workers using worker instructions. To see supported file formats, see Supported
Data Formats.

Important

For this task type, if you create your own manifest file, use "source-ref" to identify the
location of each video file in Amazon S3 that you want labeled. For more information, see
Input Data.

Label Videos and Video Frames 1396

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Create a Video Classification Labeling Job (Console)

You can follow the instructions in Create a Labeling Job (Console) to learn how to create a video
classification labeling job in the SageMaker console. In step 10, choose Video from the Task
category dropdown list, and choose Video Classification as the task type.

Ground Truth provides a worker UI similar to the following for labeling tasks. When you create a
labeling job in the console, you specify instructions to help workers complete the job and labels
from which workers can choose.

Create a Video Classification Labeling Job (API)

This section covers details you need to know when you create a labeling job using the SageMaker
API operation CreateLabelingJob. This API defines this operation for all AWS SDKs. To see
a list of language-specific SDKs supported for this operation, review the See Also section of
CreateLabelingJob.

Follow the instructions on Create a Labeling Job (API) and do the following while you configure
your request:

• Use a pre-annotation Lambda function that ends with PRE-VideoClassification. To find the
pre-annotation Lambda ARN for your Region, see PreHumanTaskLambdaArn .

Label Videos and Video Frames 1397

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn

Amazon SageMaker Developer Guide

• Use an annotation-consolidation Lambda function that ends with ACS-
VideoClassification. To find the annotation-consolidation Lambda ARN for your Region, see
AnnotationConsolidationLambdaArn.

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region.

response = client.create_labeling_job(
 LabelingJobName='example-video-classification-labeling-job,
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:region:*:workteam/private-crowd/*',
 'UiConfig': {
 'UiTemplateS3Uri': 's3://bucket/path/worker-task-template.html'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
VideoClassification',
 'TaskKeywords': [
 'Video Classification',
],

Label Videos and Video Frames 1398

https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 'TaskTitle': 'Video classification task',
 'TaskDescription': 'Select a label to classify this video',
 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-VideoClassification'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Provide a Template for Video Classification

If you create a labeling job using the API, you must supply a worker task template in
UiTemplateS3Uri. Copy and modify the following template by modifying the short-
instructions, full-instructions, and header. Upload this template to Amazon S3, and
provide the Amazon S3 URI to this file in UiTemplateS3Uri.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

 <crowd-form>
 <crowd-classifier
 name="crowd-classifier"
 categories="{{ task.input.labels | to_json | escape }}"
 header="Please classify video"
 >
 <classification-target>
 <video width="100%" controls/>
 <source src="{{ task.input.taskObject | grant_read_access }}"
 type="video/mp4"/>
 <source src="{{ task.input.taskObject | grant_read_access }}"
 type="video/webm"/>
 <source src="{{ task.input.taskObject | grant_read_access }}"
 type="video/ogg"/>
 Your browser does not support the video tag.
 </video>

Label Videos and Video Frames 1399

Amazon SageMaker Developer Guide

 </classification-target>
 <full-instructions header="Video classification instructions">
 Read the task carefully and inspect the
 video.
 Read the options and review the examples
 provided to understand more about the labels.
 Choose the appropriate label that best
 suits the video.
 </full-instructions>
 <short-instructions>
 <h3>Good example</h3>
 <p>Enter description to explain the correct label to the
 workers</p>
 <p><img src="https://d7evko5405gb7.cloudfront.net/
fe4fed9b-660c-4477-9294-2c66a15d6bbe/src/images/quick-instructions-example-
placeholder.png" style="max-width:100%"></p>
 <h3>Bad example</
h3>
 <p>Enter description of an incorrect label</p>
 <p><img src="https://d7evko5405gb7.cloudfront.net/
fe4fed9b-660c-4477-9294-2c66a15d6bbe/src/images/quick-instructions-example-
placeholder.png" style="max-width:100%"></p>
 </short-instructions>
 </crowd-classifier>
 </crowd-form>

Video Classification Output Data

Once you have created a video classification labeling job, your output data is located in the
Amazon S3 bucket specified in the S3OutputPath parameter when using the API or in the Output
dataset location field of the Job overview section of the console.

To learn more about the output manifest file generated by Ground Truth and the file structure the
Ground Truth uses to store your output data, see Output Data.

To see an example of output manifest files for video classification labeling jobs, see Classification
Job Output.

Label Videos and Video Frames 1400

Amazon SageMaker Developer Guide

Label Video Frames

You can use Ground Truth built-in video frame task types to have workers annotate video frames
using bounding boxes, polylines, polygons or keypoints. A video frame is a sequence of images that
have been extracted from a video.

If you do not have video frames, you can provide video files (MP4 files) and use the Ground Truth
automated frame extraction tool to extract video frames. To learn more, see Provide Video Files.

You can use the following built-in video task types to create video frame labeling jobs using the
Amazon SageMaker console, API, and language-specific SDKs.

• Video frame object detection – Use this task type when you want workers to identify and locate
objects in sequences of video frames. You provide a list of categories, and workers can select one
category at a time and annotate objects which the category applies to in all frames. For example,
you can use this task to ask workers to identify and localize various objects in a scene, such as
cars, bikes, and pedestrians.

• Video frame object tracking – Use this task type when you want workers to track the movement
of instances of objects across sequences of video frames. When a worker adds an annotation
to a single frame, that annotation is associated with a unique instance ID. The worker adds
annotations associated with the same ID in all other frames to identify the same object or
person. For example, a worker can track the movement of a vehicle across a sequences of video
frames by drawing bounding boxes associated with the same ID around the vehicle in each frame
that it appears.

Use the following topics to learn more about these built-in task types and to how to create a
labeling job using each task type. See Task Types to learn more about the annotations tools
(bounding boxes, polylines, polygons and keypoints) available for these task types.

Before you create a labeling job, we recommend that you review Video Frame Labeling Job
Overview.

Topics

• Video Frame Object Detection

• Video Frame Object Tracking

• Video Frame Labeling Job Overview

Label Videos and Video Frames 1401

Amazon SageMaker Developer Guide

Video Frame Object Detection

You can use the video frame object detection task type to have workers identify and locate objects
in a sequence of video frames (images extracted from a video) using bounding boxes, polylines,
polygons or keypoint annotation tools. The tool you choose defines the video frame task type you
create. For example, you can use a bounding box video frame object detection task type workers to
identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.

You can create a video frame object detection labeling job using the Amazon SageMaker Ground
Truth console, the SageMaker API, and language-specific AWS SDKs. To learn more, see Create a
Video Frame Object Detection Labeling Job and select your preferred method. See Task Types to
learn more about the annotations tools you can choose from when you create a labeling job.

Ground Truth provides a worker UI and tools to complete your labeling job tasks: Preview the
Worker UI.

You can create a job to adjust annotations created in a video object detection labeling job using
the video object detection adjustment task type. To learn more, see Create Video Frame Object
Detection Adjustment or Verification Labeling Job.

Preview the Worker UI

Ground Truth provides workers with a web user interface (UI) to complete your video frame object
detection annotation tasks. You can preview and interact with the worker UI when you create a
labeling job in the console. If you are a new user, we recommend that you create a labeling job
through the console using a small input dataset to preview the worker UI and ensure your video
frames, labels, and label attributes appear as expected.

The UI provides workers with the following assistive labeling tools to complete your object
detection tasks:

• For all tasks, workers can use the Copy to next and Copy to all features to copy an annotation to
the next frame or to all subsequent frames respectively.

• For tasks that include the bounding box tools, workers can use a Predict next feature to draw a
bounding box in a single frame, and then have Ground Truth predict the location of boxes with
the same label in all other frames. Workers can then make adjustments to correct predicted box
locations.

Label Videos and Video Frames 1402

Amazon SageMaker Developer Guide

Create a Video Frame Object Detection Labeling Job

You can create a video frame object detection labeling job using the SageMaker console or the
CreateLabelingJob API operation.

This section assumes that you have reviewed the Video Frame Labeling Job Overview and have
chosen the type of input data and the input dataset connection you are using.

Create a Labeling Job (Console)

You can follow the instructions in Create a Labeling Job (Console) to learn how to create a video
frame object tracking job in the SageMaker console. In step 10, choose Video - Object detection
from the Task category dropdown list. Select the task type you want by selecting one of the cards
in Task selection.

Label Videos and Video Frames 1403

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Create a Labeling Job (API)

You create an object detection labeling job using the SageMaker API operation
CreateLabelingJob. This API defines this operation for all AWS SDKs. To see a list of language-
specific SDKs supported for this operation, review the See Also section of CreateLabelingJob.

Label Videos and Video Frames 1404

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Create a Labeling Job (API) provides an overview of the CreateLabelingJob operation. Follow
these instructions and do the following while you configure your request:

• You must enter an ARN for HumanTaskUiArn. Use
arn:aws:sagemaker:<region>:394669845002:human-task-ui/
VideoObjectDetection. Replace <region> with the AWS Region in which you are creating
the labeling job.

Do not include an entry for the UiTemplateS3Uri parameter.

• Your LabelAttributeName must end in -ref. For example, video-od-labels-ref.

• Your input manifest file must be a video frame sequence manifest file. You can create this
manifest file using the SageMaker console, or create it manually and upload it to Amazon S3. For
more information, see Input Data Setup.

• You can only use private or vendor work teams to create video frame object detection labeling
jobs.

• You specify your labels, label category and frame attributes, the task type, and worker
instructions in a label category configuration file. Specify the task type (bounding boxes,
polylines, polygons or keypoint) using annotationType in your label category configuration
file. For more information, see Create a Labeling Category Configuration File with Label Category
and Frame Attributes to learn how to create this file.

• You need to provide pre-defined ARNs for the pre-annotation and post-annotation (ACS)
Lambda functions. These ARNs are specific to the AWS Region you use to create your labeling
job.

• To find the pre-annotation Lambda ARN, refer to PreHumanTaskLambdaArn. Use the Region
in which you are creating your labeling job to find the correct ARN that ends with PRE-
VideoObjectDetection.

• To find the post-annotation Lambda ARN, refer to AnnotationConsolidationLambdaArn.
Use the Region in which you are creating your labeling job to find the correct ARN that ends
with ACS-VideoObjectDetection.

• The number of workers specified in NumberOfHumanWorkersPerDataObject must be 1.

• Automated data labeling is not supported for video frame labeling jobs. Do not specify values
for parameters in LabelingJobAlgorithmsConfig.

• Video frame object tracking labeling jobs can take multiple hours to complete. You can specify
a longer time limit for these labeling jobs in TaskTimeLimitInSeconds (up to 7 days, or
604,800 seconds).

Label Videos and Video Frames 1405

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AnnotationConsolidationConfig.html#sagemaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelingJobAlgorithmsConfig

Amazon SageMaker Developer Guide

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region.

response = client.create_labeling_job(
 LabelingJobName='example-video-od-labeling-job,
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://DOC-EXAMPLE-BUCKET/path/video-frame-sequence-
input-manifest.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://DOC-EXAMPLE-BUCKET/prefix/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/prefix/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:us-east-1:*:workteam/private-crowd/*',
 'UiConfig': {
 'HumanTaskUiArn: 'arn:aws:sagemaker:us-east-1:394669845002:human-task-ui/
VideoObjectDetection'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
VideoObjectDetection',
 'TaskKeywords': [
 'Video Frame Object Detection',
],
 'TaskTitle': 'Video frame object detection task',
 'TaskDescription': 'Classify and identify the location of objects and people in
 video frames',

Label Videos and Video Frames 1406

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-VideoObjectDetection'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Create Video Frame Object Detection Adjustment or Verification Labeling Job

You can create an adjustment and verification labeling job using the Ground Truth console or
CreateLabelingJob API. To learn more about adjustment and verification labeling jobs, and to
learn how create one, see Verify and Adjust Labels.

Output Data Format

When you create a video frame object detection labeling job, tasks are sent to workers. When these
workers complete their tasks, labels are written to the Amazon S3 output location you specified
when you created the labeling job. To learn about the video frame object detection output data
format, see Video Frame Object Detection Output. If you are a new user of Ground Truth, see
Output Data to learn more about the Ground Truth output data format.

Video Frame Object Tracking

You can use the video frame object tracking task type to have workers track the movement of
objects in a sequence of video frames (images extracted from a video) using bounding boxes,
polylines, polygons or keypoint annotation tools. The tool you choose defines the video frame task
type you create. For example, you can use a bounding box video frame object tracking task type
to ask workers to track the movement of objects, such as cars, bikes, and pedestrians by drawing
boxes around them.

You provide a list of categories, and each annotation that a worker adds to a video frame is
identified as an instance of that category using an instance ID. For example, if you provide the label
category car, the first car that a worker annotates will have the instance ID car:1. The second car

Label Videos and Video Frames 1407

Amazon SageMaker Developer Guide

the worker annotates will have the instance ID car:2. To track an object's movement, the worker
adds annotations associated with the same instance ID around to object in all frames.

You can create a video frame object tracking labeling job using the Amazon SageMaker Ground
Truth console, the SageMaker API, and language-specific AWS SDKs. To learn more, see Create a
Video Frame Object Detection Labeling Job and select your preferred method. See Task Types to
learn more about the annotations tools you can choose from when you create a labeling job.

Ground Truth provides a worker UI and tools to complete your labeling job tasks: Preview the
Worker UI.

You can create a job to adjust annotations created in a video object detection labeling job using
the video object detection adjustment task type. To learn more, see Create Video Frame Object
Detection Adjustment or Verification Labeling Job.

Preview the Worker UI

Ground Truth provides workers with a web user interface (UI) to complete your video frame object
tracking annotation tasks. You can preview and interact with the worker UI when you create a
labeling job in the console. If you are a new user, we recommend that you create a labeling job
through the console using a small input dataset to preview the worker UI and ensure your video
frames, labels, and label attributes appear as expected.

The UI provides workers with the following assistive labeling tools to complete your object tracking
tasks:

• For all tasks, workers can use the Copy to next and Copy to all features to copy an annotation
with the same unique ID to the next frame or to all subsequent frames respectively.

• For tasks that include the bounding box tools, workers can use a Predict next feature to draw a
bounding box in a single frame, and then have Ground Truth predict the location of boxes with
the same unique ID in all other frames. Workers can then make adjustments to correct predicted
box locations.

Create a Video Frame Object Tracking Labeling Job

You can create a video frame object tracking labeling job using the SageMaker console or the
CreateLabelingJob API operation.

This section assumes that you have reviewed the Video Frame Labeling Job Overview and have
chosen the type of input data and the input dataset connection you are using.

Label Videos and Video Frames 1408

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Create a Labeling Job (Console)

You can follow the instructions in Create a Labeling Job (Console) to learn how to create a video
frame object tracking job in the SageMaker console. In step 10, choose Video - Object tracking
from the Task category dropdown list. Select the task type you want by selecting one of the cards
in Task selection.

Label Videos and Video Frames 1409

Amazon SageMaker Developer Guide

Create a Labeling Job (API)

You create an object tracking labeling job using the SageMaker API operation
CreateLabelingJob. This API defines this operation for all AWS SDKs. To see a list of language-
specific SDKs supported for this operation, review the See Also section of CreateLabelingJob.

Create a Labeling Job (API) provides an overview of the CreateLabelingJob operation. Follow
these instructions and do the following while you configure your request:

• You must enter an ARN for HumanTaskUiArn. Use
arn:aws:sagemaker:<region>:394669845002:human-task-ui/
VideoObjectTracking. Replace <region> with the AWS Region in which you are creating the
labeling job.

Do not include an entry for the UiTemplateS3Uri parameter.

• Your LabelAttributeName must end in -ref. For example, ot-labels-ref.

• Your input manifest file must be a video frame sequence manifest file. You can create this
manifest file using the SageMaker console, or create it manually and upload it to Amazon S3.
For more information, see Input Data Setup. If you create a streaming labeling job, the input
manifest file is optional.

• You can only use private or vendor work teams to create video frame object detection labeling
jobs.

• You specify your labels, label category and frame attributes, the task type, and worker
instructions in a label category configuration file. Specify the task type (bounding boxes,
polylines, polygons or keypoint) using annotationType in your label category configuration
file. For more information, see Create a Labeling Category Configuration File with Label Category
and Frame Attributes to learn how to create this file.

• You need to provide pre-defined ARNs for the pre-annotation and post-annotation (ACS)
Lambda functions. These ARNs are specific to the AWS Region you use to create your labeling
job.

• To find the pre-annotation Lambda ARN, refer to PreHumanTaskLambdaArn. Use the Region
in which you are creating your labeling job to find the correct ARN that ends with PRE-
VideoObjectTracking.

• To find the post-annotation Lambda ARN, refer to AnnotationConsolidationLambdaArn.
Use the Region in which you are creating your labeling job to find the correct ARN that ends
with ACS-VideoObjectTracking.

Label Videos and Video Frames 1410

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AnnotationConsolidationConfig.html#sagemaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

• The number of workers specified in NumberOfHumanWorkersPerDataObject must be 1.

• Automated data labeling is not supported for video frame labeling jobs. Do not specify values
for parameters in LabelingJobAlgorithmsConfig.

• Video frame object tracking labeling jobs can take multiple hours to complete. You can specify
a longer time limit for these labeling jobs in TaskTimeLimitInSeconds (up to 7 days, or
604,800 seconds).

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job in the
US East (N. Virginia) Region.

response = client.create_labeling_job(
 LabelingJobName='example-video-ot-labeling-job,
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://DOC-EXAMPLE-BUCKET/path/video-frame-sequence-
input-manifest.json'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://DOC-EXAMPLE-BUCKET/prefix/file-to-store-output-data',
 'KmsKeyId': 'string'
 },
 RoleArn='arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri='s3://bucket/prefix/label-categories.json',
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:us-east-1:*:workteam/private-crowd/*',
 'UiConfig': {
 'HumanTaskUiArn: 'arn:aws:sagemaker:us-east-1:394669845002:human-task-ui/
VideoObjectTracking'

Label Videos and Video Frames 1411

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelingJobAlgorithmsConfig
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-east-1:432418664414:function:PRE-
VideoObjectTracking',
 'TaskKeywords': [
 'Video Frame Object Tracking,
],
 'TaskTitle': 'Video frame object tracking task',
 'TaskDescription': Tracking the location of objects and people across video
 frames',
 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-VideoObjectTracking'
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Create a Video Frame Object Tracking Adjustment or Verification Labeling Job

You can create an adjustment and verification labeling job using the Ground Truth console or
CreateLabelingJob API. To learn more about adjustment and verification labeling jobs, and to
learn how create one, see Verify and Adjust Labels.

Output Data Format

When you create a video frame object tracking labeling job, tasks are sent to workers. When these
workers complete their tasks, labels are written to the Amazon S3 output location you specified
when you created the labeling job. To learn about the video frame object tracking output data
format, see Video Frame Object Tracking Output. If you are a new user of Ground Truth, see Output
Data to learn more about the Ground Truth output data format.

Video Frame Labeling Job Overview

Use this page to learn about the object detection and object tracking video frame labeling jobs.
The information on this page applies to both of these built-in task types.

Label Videos and Video Frames 1412

Amazon SageMaker Developer Guide

The video frame labeling job is unique because of the following:

• You can either provide data objects that are ready to be annotated (video frames), or you can
provide video files and have Ground Truth automatically extract video frames.

• Workers have the ability to save work as they go.

• You cannot use the Amazon Mechanical Turk workforce to complete your labeling tasks.

• Ground Truth provides a worker UI, as well as assistive and basic labeling tools, to help workers
complete your tasks. You do not need to provide a worker task template.

Use the following topics to learn more.

Topics

• Input Data

• Job Completion Times

• Task Types

• Workforces

• Worker User Interface (UI)

• Video Frame Job Permission Requirements

Input Data

The video frame labeling job uses sequences of video frames. A single sequence is a series of
images that have been extracted from a single video. You can either provide your own sequences of
video frames, or have Ground Truth automatically extract video frame sequences from your video
files. To learn more, see Provide Video Files.

Ground Truth uses sequence files to identify all images in a single sequence. All of the sequences
that you want to include in a single labeling job are identified in an input manifest file. Each
sequence is used to create a single worker task. You can automatically create sequence files and an
input manifest file using Ground Truth automatic data setup. To learn more, see Automated Video
Frame Input Data Setup.

To learn how to manually create sequence files and an input manifest file, see Create a Video
Frame Input Manifest File.

Label Videos and Video Frames 1413

Amazon SageMaker Developer Guide

Job Completion Times

Video and video frame labeling jobs can take workers hours to complete. You can set the total
amount of time that workers can work on each task when you create a labeling job. The maximum
time you can set for workers to work on tasks is 7 days. The default value is 3 days.

We strongly recommend that you create tasks that workers can complete within 12 hours. Workers
must keep the worker UI open while working on a task. They can save work as they go and Ground
Truth saves their work every 15 minutes.

When using the SageMaker CreateLabelingJob API operation, set the total time a task is
available to workers in the TaskTimeLimitInSeconds parameter of HumanTaskConfig.

When you create a labeling job in the console, you can specify this time limit when you select your
workforce type and your work team.

Task Types

When you create a video object tracking or video object detection labeling job, you specify the type
of annotation that you want workers to create while working on your labeling task. The annotation
type determines the type of output data Ground Truth returns and defines the task type for your
labeling job.

If you are creating a labeling job using the API operation CreateLabelingJob, you specify the
task type using the label category configuration file parameter annotationType. To learn more,
see Create a Labeling Category Configuration File with Label Category and Frame Attributes.

The following task types are available for both video object tracking or video object detection
labeling jobs:

• Bounding box – Workers are provided with tools to create bounding box annotations. A
bounding box is a box that a worker draws around an objects to identify the pixel-location and
label of that object in the frame.

• Polyline – Workers are provided with tools to create polyline annotations. A polyline is defined
by the series of ordered x, y coordinates. Each point added to the polyline is connected to the
previous point by a line. The polyline does not have to be closed (the start point and end point
do not have to be the same) and there are no restrictions on the angles formed between lines.

• Polygon – Workers are provided with tools to create polygon annotations. A polygon is a
closed shape defined by a series of ordered x, y coordinates. Each point added to the polygon

Label Videos and Video Frames 1414

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

is connected to the previous point by a line and there are no restrictions on the angles formed
between lines. Two lines (sides) of the polygon cannot cross. The start and end point of a
polygon must be the same.

• Keypoint – Workers are provided with tools to create keypoint annotations. A keypoint is a single
point associated with an x, y coordinate in the video frame.

Workforces

When you create a video frame labeling job, you need to specify a work team to complete your
annotation tasks. You can choose a work team from a private workforce of your own workers, or
from a vendor workforce that you select in the AWS Marketplace. You cannot use the Amazon
Mechanical Turk workforce for video frame labeling jobs.

To learn more about vendor workforces, see Managing Vendor Workforces.

To learn how to create and manage a private workforce, see Use a Private Workforce.

Worker User Interface (UI)

Ground Truth provides a worker user interface (UI), tools, and assistive labeling features to help
workers complete your video labeling tasks. You can preview the worker UI when you create a
labeling job in the console.

When you create a labeling job using the API operation CreateLabelingJob, you must provide
an ARN provided by Ground Truth in the parameter HumanTaskUiArn to specify the worker UI
for your task type. You can use HumanTaskUiArn with the SageMaker RenderUiTemplate API
operation to preview the worker UI.

You provide worker instructions, labels, and optionally, attributes that workers can use to provide
more information about labels and video frames. These attributes are referred to as label category
attributes and frame attributes respectively. They are all displayed in the worker UI.

Label Category and Frame Attributes

When you create a video object tracking or video object detection labeling job, you can add one or
more label category attributes and frame attributes:

• Label category attribute – A list of options (strings), a free form text box, or a numeric field
associated with one or more labels. It is used by workers to provide metadata about a label.

Label Videos and Video Frames 1415

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UiConfig.html#sagemaker-Type-UiConfig-UiTemplateS3Uri
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RenderUiTemplate.html

Amazon SageMaker Developer Guide

• Frame attribute – A list of options (strings), a free form text box, or a numeric field that appears
on each video frame a worker is sent to annotate. It is used by workers to provide metadata
about video frames.

Additionally, you can use label and frame attributes to have workers verify labels in a video frame
label verification job.

Use the following sections to learn more about these attributes. To learn how to add label category
and frame attributes to a labeling job, use the Create Labeling Job sections on the task type page
of your choice.

Label Category Attributes

Add label category attributes to labels to give workers the ability to provide more information
about the annotations they create. A label category attribute is added to an individual label, or to
all labels. When a label category attribute is applied to all labels it is referred to as a global label
category attribute.

For example, if you add the label category car, you might also want to capture additional data
about your labeled cars, such as if they are occluded or the size of the car. You can capture this
metadata using label category attributes. In this example, if you added the attribute occluded to
the car label category, you can assign partial, completely, no to the occluded attribute and enable
workers to select one of these options.

When you create a label verification job, you add labels category attributes to each label you want
workers to verify.

Frame level Attributes

Add frame attributes to give workers the ability to provide more information about individual video
frames. Each frame attribute you add appears on all frames.

For example, you can add a number-frame attribute to have workers identify the number of objects
they see in a particular frame.

In another example, you may want to provide a free-form text box to give workers the ability to
provide an answer to a question.

When you create a label verification job, you can add one or more frame attributes to ask workers
to provide feedback on all labels in a video frame.

Label Videos and Video Frames 1416

Amazon SageMaker Developer Guide

Worker Instructions

You can provide worker instructions to help your workers complete your video frame labeling tasks.
You might want to cover the following topics when writing your instructions:

• Best practices and things to avoid when annotating objects.

• The label category attributes provided (for object detection and object tracking tasks) and how
to use them.

• How to save time while labeling by using keyboard shortcuts.

You can add your worker instructions using the SageMaker console while creating a labeling job.
If you create a labeling job using the API operation CreateLabelingJob, you specify worker
instructions in your label category configuration file.

In addition to your instructions, Ground Truth provides a link to help workers navigate and use the
worker portal. View these instructions by selecting the task type on Worker Instructions.

Declining Tasks

Workers are able to decline tasks.

Workers decline a task if the instructions are not clear, input data is not displaying correctly, or
if they encounter some other issue with the task. If the number of workers per dataset object
(NumberOfHumanWorkersPerDataObject) decline the task, the data object is marked as expired
and will not be sent to additional workers.

Video Frame Job Permission Requirements

When you create a video frame labeling job, in addition to the permission requirements found in
Assign IAM Permissions to Use Ground Truth, you must add a CORS policy to your S3 bucket that
contains your input manifest file.

Add a CORS Permission Policy to S3 Bucket

When you create a video frame labeling job, you specify buckets in S3 where your input data and
manifest file are located and where your output data will be stored. These buckets may be the
same. You must attach the following Cross-origin resource sharing (CORS) policy to your input and
output buckets. If you use the Amazon S3 console to add the policy to your bucket, you must use
the JSON format.

Label Videos and Video Frames 1417

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-NumberOfHumanWorkersPerDataObject

Amazon SageMaker Developer Guide

JSON

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",
 "HEAD",
 "PUT"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [
 "Access-Control-Allow-Origin"
],
 "MaxAgeSeconds": 3000
 }
]

XML

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
 <AllowedMethod>HEAD</AllowedMethod>
 <AllowedMethod>PUT</AllowedMethod>
 <MaxAgeSeconds>3000</MaxAgeSeconds>
 <ExposeHeader>Access-Control-Allow-Origin</ExposeHeader>
 <AllowedHeader>*</AllowedHeader>
</CORSRule>
</CORSConfiguration>

To learn how to add a CORS policy to an S3 bucket, see How do I add cross-domain resource
sharing with CORS? in the Amazon Simple Storage Service User Guide.

Label Videos and Video Frames 1418

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html

Amazon SageMaker Developer Guide

Worker Instructions

This topic provides an overview of the Ground Truth worker portal and the tools available to
complete your video frame labeling task. First, select the type of task you are working on from
Topics.

Important

It is recommended that you complete your task using a Google Chrome or Firefox web
browser.

For adjustment jobs, select the original labeling job task type that produced the labels you are
adjusting. Review and adjust the labels in your task as needed.

Topics

• Work on Video Frame Object Tracking Tasks

• Work on Video Frame Object Detection Tasks

Work on Video Frame Object Tracking Tasks

Video frame object tracking tasks require you to track the movement of objects across video
frames. A video frame is a still image from a video scene.

You can use the worker UI to navigate between video frames and use the tools provided to identify
unique objects and track their movement from one from to the next. Use this page to learn how to
navigate your worker UI, use the tools provided, and complete your task.

It is recommended that you complete your task using a Google Chrome or Firefox web browser.

Important

If you see annotations have already been added to one or more video frames when you
open your task, adjust those annotations and add additional annotations as needed.

Topics

• Your Task

Label Videos and Video Frames 1419

Amazon SageMaker Developer Guide

• Navigate the UI

• Bulk Edit Label and Frame Attributes

• Tool Guide

• Icons Guide

• Shortcuts

• Release, Stop and Resume, and Decline Tasks

• Saving Your Work and Submitting

Your Task

When you work on a video frame object tracking task, you need to select a category from the
Label category menu on the right side of your worker portal to start annotating. After you've
chosen a category, use the tools provided to annotate the objects that the category applies to. This
annotation will be associated with a unique label ID that should only be used for that object. Use
this same label ID to create additional annotations for the same object in all of the video frames
that it appears in. Refer to Tool Guide to learn more about the tools provided.

After you've added a label, you may see a downward pointing arrow next to the label in the Labels
menu. Select this arrow and then select one option for each label attribute you see to provide more
information about that label.

You may see frame attributes under the Labels menu. These attributes will appear on each frame
in your task. Use these attribute prompts to enter additional information about each frame.

Label Videos and Video Frames 1420

Amazon SageMaker Developer Guide

After you've added a label, you can quickly add and edit a label category attribute value by using
the downward pointing arrow next to the label in the Labels menu. If you select the pencil icon
next to the label in the Labels menu, the Edit instance menu will appear. You can edit the label ID,
label category, and label category attributes using this menu.

To edit an annotation, select the label of the annotation that you want to edit in the Labels menu
or select the annotation in the frame. When you edit or delete an annotation, the action will only
modify the annotation in a single frame.

If you are working on a task that includes a bounding box tool, use the predict next icon to predict
the location of all bounding boxes that you have drawn in a frame in the next frame. If you select a
single box and then select the predict next icon, only that box will be predicted in the next frame. If
you have not added any boxes to the current frame, you will receive an error. You must add at least
one box to the frame before using this feature.

After you've used the predict next icon, review the location of each box in the next frame and make
adjustments to the box location and size if necessary.

Label Videos and Video Frames 1421

Amazon SageMaker Developer Guide

For all other tools, you can use the Copy to next and Copy to all tools to copy your annotations to
the next or all frames respectively.

Navigate the UI

You can navigate between video frames using the navigation bar in the bottom-left corner of your
UI.

Use the play button to automatically move through the entire sequence of frames.

Use the next frame and previous frame buttons to move forward or back one frame at a time. You
can also input a frame number to navigate to that frame.

You can zoom in to and out of all video frames. Once you have zoomed into a video frame, you can
move around in that frame using the move icon. When you set a new view in a single video frame
by zooming and moving within that frame, all video frames are set to the same view. You can reset
all video frames to their original view using the fit screen icon. For additional view options, see
Icons Guide.

When you are in the worker UI, you see the following menus:

• Instructions – Review these instructions before starting your task. Additionally, select More
instructions and review these instructions.

• Shortcuts – Use this menu to view keyboard shortcuts that you can use to navigate video frames
and use the tools provided.

• Help – Use this option to refer back to this documentation.

Bulk Edit Label and Frame Attributes

You can bulk edit label attributes and frame attributes (attributes).

When you bulk edit an attribute, you specify one or more ranges of frames that you want to apply
the edit to. The attribute you select is edited in all frames in that range, including the start and end
frames you specify. When you bulk edit label attributes, the range you specify must contain the
label that the label attribute is attached to. If you specify frames that do not contain this label, you
will receive an error.

To bulk edit an attribute you must specify the desired value for the attribute first. For example, if
you want to change an attribute from Yes to No, you must select No, and then perform the bulk
edit.

Label Videos and Video Frames 1422

Amazon SageMaker Developer Guide

You can also specify a new value for an attribute that has not been filled in and then use the bulk
edit feature to fill in that value in multiple frames. To do this, select the desired value for the
attribute and complete the following procedure.

To bulk edit a label or attribute:

1. Use your mouse to right click the attribute you want to bulk edit.

2. Specify the range of frames you want to apply the bulk edit to using a dash (-) in the text box.
For example, if you want to apply the edit to frames one through ten, enter 1-10. If you want
to apply the edit to frames two to five, eight to ten and twenty enter 2-5,8-10,20.

3. Select Confirm.

If you get an error message, verify that you entered a valid range and that the label associated with
the label attribute you are editing (if applicable) exists in all frames specified.

You can quickly add a label to all previous or subsequent frames using the Duplicate to previous
frames and Duplicate to next frames options in the Label menu at the top of your screen.

Tool Guide

Your task will include one or more tools. The tool provided dictates the type of annotations you
will create to identify and track objects. Use the following table to learn more about each tool
provided.

Tool Icon Action Description

Bounding box Add a bounding box
annotation.

Choose this icon to
add a bounding box.
Each bounding box
you add is associate
d with the category
you choose from the
Label category drop
down menu. Select
the bounding box or
its associated label to
adjust it.

Label Videos and Video Frames 1423

Amazon SageMaker Developer Guide

Tool Icon Action Description

Bounding box Predict bounding
boxes in the next
frame.

Select a bounding
box, and then choose
this icon to predict
the location of that
box in the next
frame. You can select
the icon multiple
times in a row to
automatically detect
the location of box
in multiple frames.
For example, select
this icon 5 times to
predict the location
of a bounding box in
the next 5 frames.

Keypoint Add a keypoint
annotation.

Choose this icon
to add a keypoint.
Click on an object
the image to place
the keypoint at that
location.

Each keypoint you
add is associated
with the category
you choose from
the Label category
drop down menu.
Select a keypoint or
its associated label to
adjust it.

Label Videos and Video Frames 1424

Amazon SageMaker Developer Guide

Tool Icon Action Description

Polyline Add a polyline
annotation.

Choose this icon
to add a polyline.
To add a polyline,
 continuously click
around the object
of interest to add
new points. To stop
drawing a polyline,
select the last point
that you placed a
second time (this
point will be green),
or press Enter on
your keyboard.

Each point added
to the polyline is
connected to the
previous point by
a line. The polyline
does not have to
be closed (the start
point and end point
do not have to be
the same) and there
are no restrictions on
the angles formed
between lines.

Each polyline you
add is associated
with the category
you choose from the
Label category drop
down menu. Select

Label Videos and Video Frames 1425

Amazon SageMaker Developer Guide

Tool Icon Action Description

the polyline or its
associated label to
adjust it.

Label Videos and Video Frames 1426

Amazon SageMaker Developer Guide

Tool Icon Action Description

Polygon Add a polygon
annotation.

Choose this icon
to add a polygon.
To add a polygon,
continuously click
around the object
of interest to add
new points. To stop
drawing the polygon,
select the start point
(this point will be
green).

A polygon is a closed
shape defined by a
series of points that
you place. Each point
added to the polygon
is connected to the
previous point by a
line and there are
no restrictions on
the angles formed
between lines. The
start and end point
must be the same.

Each polygon you
add is associated
with the category
you choose from the
Label category drop
down menu. Select
the polygon or its
associated label to
adjust it.

Label Videos and Video Frames 1427

Amazon SageMaker Developer Guide

Tool Icon Action Description

Copy to Next Copy annotations to
the next frame.

If one or more
annotations are
selected in the
current frame,
those annotatio
ns are copied to
the next frame.
If no annotations
are selected, all
annotations in the
current frame will be
copied to the next
frame.

Copy to All Copy annotations
to all subsequent
frames.

If one or more
annotations are
selected in the
current frame,
those annotations
are copied to all
subsequent frames.
If no annotations
are selected, all
annotations in the
current frame will
be copied to all
subsequent frames.

Icons Guide

Use this table to learn about the icons you see in your UI. You can automatically select some of
these icons using the keyboard shortcuts found in the Shortcuts menu.

Label Videos and Video Frames 1428

Amazon SageMaker Developer Guide

Icon Action Description

brightness Choose this icon to adjust the brightness of all video
frames.

contrast Choose this icon to adjust the contrast of all video
frames.

zoom in Choose this icon to zoom into all of the video frames.

zoom out Choose this icon to zoom out of all of the video frames.

move screen After you've zoomed into a video frame, choose this
icon to move around in that video frame. You can move
around the video frame using your mouse by clicking
and dragging the frame in the direction you want it to
move. This will change the view in all view frames.

fit screen Reset all video frames to their original position.

undo Undo an action. You can use this icon to remove a
bounding box that you just added, or to undo an
adjustment you made to a bounding box.

redo Redo an action that was undone using the undo icon.

delete label Delete a label. This will delete the bounding box
associated with the label in a single frame.

show or hide
label

Select this icon to show a label that has been hidden. If
this icon has a slash through it, select it to hide the label.

Label Videos and Video Frames 1429

Amazon SageMaker Developer Guide

Icon Action Description

edit label Select this icon to open the Edit instance menu. Use
this menu to edit a label category, ID, and to add or edit
label attributes.

Shortcuts

The keyboard shortcuts listed in the Shortcuts menu can help you quickly select icons, undo
and redo annotations, and use tools to add and edit annotations. For example, once you add a
bounding box, you can use P to quickly predict the location of that box in subsequent frames.

Before you start your task, it is recommended that you review the Shortcuts menu and become
acquainted with these commands.

Release, Stop and Resume, and Decline Tasks

When you open the labeling task, three buttons on the top right allow you to decline the task
(Decline task), release it (Release task), and stop and resume it at a later time (Stop and resume
later). The following list describes what happens when you select one of these options:

• Decline task: You should only decline a task if something is wrong with the task, such as unclear
video frame images or an issue with the UI. If you decline a task, you will not be able to return to
the task.

• Release Task: Use this option to release a task and allow others to work on it. When you
release a task, you loose all work done on that task and other workers on your team can pick
it up. If enough workers pick up the task, you may not be able to return to it. When you select
this button and then select Confirm, you are returned to the worker portal. If the task is still
available, its status will be Available. If other workers pick it up, it will disappear from your
portal.

• Stop and resume later: You can use the Stop and resume later button to stop working and
return to the task at a later time. You should use the Save button to save your work before you
select Stop and resume later. When you select this button and then select Confirm, you are
returned to the worker portal, and the task status is Stopped. You can select the same task to
resume work on it.

Be aware that the person that creates your labeling tasks specifies a time limit in which all
tasks much be completed by. If you do not return to and complete this task within that time

Label Videos and Video Frames 1430

Amazon SageMaker Developer Guide

limit, it will expire and your work will not be submitted. Contact your administrator for more
information.

Saving Your Work and Submitting

You should periodically save your work using the Save button. Ground Truth will automatically save
your work ever 15 minutes.

When you open a task, you must complete your work on it before pressing Submit.

Work on Video Frame Object Detection Tasks

Video frame object detection tasks required you to classify and identify the location of objects in
video frames using annotations. A video frame is a still image from a video scene.

You can use the worker UI to navigate between video frames and create annotations to identify
objects of interest. Use the sections on this page to learn how to navigate your worker UI, use the
tools provided, and complete your task.

It is recommended that you complete your task using a Google Chrome web browser.

Important

If you see annotations have already been added to one or more video frames when you
open your task, adjust those annotations and add additional annotations as needed.

Topics

• Your Task

• Navigate the UI

• Bulk Edit Label and Frame Attributes

• Tool Guide

• UI Icon Guide

• Shortcuts

• Release, Stop and Resume, and Decline Tasks

• Saving Your Work and Submitting

Label Videos and Video Frames 1431

Amazon SageMaker Developer Guide

Your Task

When you work on a video frame object detection task, you need to select a category from the
Label category menu on the right side of your worker portal to start annotating. After you've
chosen a category, draw annotations around objects that this category applies to. To learn more
about the tools you see in your worker UI, refer to the Tool Guide.

After you've added a label, you may see a downward pointing arrow next to the label in the Labels
menu. Select this arrow and then select one option for each label attribute you see to provide more
information about that label.

You may see frame attributes under the Labels menu. These attributes will appear on each frame
in your task. Use these attribute prompts to enter additional information about each frame.

To edit an annotation, select the label of the annotation that you want to edit in the Labels menu
or select the annotation in the frame. When you edit or delete an annotation, the action will only
modify the annotation in a single frame.

Label Videos and Video Frames 1432

Amazon SageMaker Developer Guide

If you are working on a task that includes a bounding box tool, use the predict next icon to predict
the location of all bounding boxes that you have drawn in a frame in the next frame. If you select a
single box and then select the predict next icon, only that box will be predicted in the next frame. If
you have not added any boxes to the current frame, you will receive an error. You must add at least
one box to the frame before using this feature.

Note

The predict next feature will not overwrite manually created annotations. It will only add
annotations. If you use predict next and as a result have more than one bounding box
around a single object, delete all but one box. Each object should only be identified with a
single box.

After you've used the predict next icon, review the location of each box in the next frame and make
adjustments to the box location and size if necessary.

For all other tools, you can use the Copy to next and Copy to all tools to copy your annotations to
the next or all frames respectively.

Navigate the UI

You can navigate between video frames using the navigation bar in the bottom-left corner of your
UI.

Use the play button to automatically play through multiple frames.

Use the next frame and previous frame buttons to move forward or back one frame at a time. You
can also input a frame number to navigate to that frame.

You can zoom in to and out of all video frames. Once you have zoomed into a video frame, you can
move around in that frame using the move icon. When you navigate to a new view in a single video
frame by zooming and moving within that frame, all video frames are set to the same view. You
can reset all video frames to their original view using the fit screen icon. To learn more, see UI Icon
Guide.

When you are in the worker UI, you see the following menus:

• Instructions – Review these instructions before starting your task. Additionally, select More
instructions and review these instructions.

Label Videos and Video Frames 1433

Amazon SageMaker Developer Guide

• Shortcuts – Use this menu to view keyboard shortcuts that you can use to navigate video frames
and use the annotation tools provided.

• Help – Use this option to refer back to this documentation.

If you

Bulk Edit Label and Frame Attributes

You can bulk edit label attributes and frame attributes (attributes).

When you bulk edit an attribute, you specify one or more ranges of frames that you want to apply
the edit to. The attribute you select is edited in all frames in that range, including the start and end
frames you specify. When you bulk edit label attributes, the range you specify must contain the
label that the label attribute is attached to. If you specify frames that do not contain this label, you
will receive an error.

To bulk edit an attribute you must specify the desired value for the attribute first. For example, if
you want to change an attribute from Yes to No, you must select No, and then perform the bulk
edit.

You can also specify a new value for an attribute that has not been filled in and then use the bulk
edit feature to fill in that value in multiple frames. To do this, select the desired value for the
attribute and complete the following procedure.

To bulk edit a label or attribute:

1. Use your mouse to right click the attribute you want to bulk edit.

2. Specify the range of frames you want to apply the bulk edit to using a dash (-) in the text box.
For example, if you want to apply the edit to frames one through ten, enter 1-10. If you want
to apply the edit to frames two to five, eight to ten and twenty enter 2-5,8-10,20.

3. Select Confirm.

If you get an error message, verify that you entered a valid range and that the label associated with
the label attribute you are editing (if applicable) exists in all frames specified.

You can quickly add a label to all previous or subsequent frames using the Duplicate to previous
frames and Duplicate to next frames options in the Label menu at the top of your screen.

Label Videos and Video Frames 1434

Amazon SageMaker Developer Guide

Tool Guide

Your task will include one or more tools. The tool provided dictates the type of annotations you
will create to identify and label objects. Use the following table to learn more about the tool or
tools you may see in your worker UI.

Tool Icon Action Description

Bounding box Add a bounding box
annotation.

Choose this icon to
add a bounding box.
Each bounding box
you add is associate
d with the category
you choose from the
Label category drop
down menu. Select
the bounding box or
its associated label to
adjust it.

Predict next Predict bounding
boxes in the next
frame.

Select a bounding
box, and then choose
this icon to predict
the location of that
box in the next
frame. You can select
the icon multiple
times in a row to
automatically detect
the location of box
in multiple frames.
For example, select
this icon 5 times to
predict the location
of a bounding box in
the next 5 frames.

Label Videos and Video Frames 1435

Amazon SageMaker Developer Guide

Tool Icon Action Description

Keypoint Add a keypoint
annotation.

Choose this icon
to add a keypoint.
Click on an object
the image to place
the keypoint at that
location.

Each keypoint you
add is associated
with the category
you choose from
the Label category
drop down menu.
Select a keypoint or
its associated label to
adjust it.

Label Videos and Video Frames 1436

Amazon SageMaker Developer Guide

Tool Icon Action Description

Polyline Add a polyline
annotation.

Choose this icon
to add a polyline.
To add a polyline,
 continuously click
around the object
of interest to add
new points. To stop
drawing a polyline,
select the last point
that you placed a
second time (this
point will be green),
or press Enter on
your keyboard.

Each point added
to the polyline is
connected to the
previous point by
a line. The polyline
does not have to
be closed (the start
point and end point
do not have to be
the same) and there
are no restrictions on
the angles formed
between lines.

Each polyline you
add is associated
with the category
you choose from the
Label category drop
down menu. Select

Label Videos and Video Frames 1437

Amazon SageMaker Developer Guide

Tool Icon Action Description

the polyline or its
associated label to
adjust it.

Label Videos and Video Frames 1438

Amazon SageMaker Developer Guide

Tool Icon Action Description

Polygon Add a polygon
annotation.

Choose this icon
to add a polygon.
To add a polygon,
continuously click
around the object
of interest to add
new points. To stop
drawing the polygon,
select the start point
(this point will be
green).

A polygon is a closed
shape defined by a
series of points that
you place. Each point
added to the polygon
is connected to the
previous point by a
line and there are
no restrictions on
the angles formed
between lines. Two
lines (sides) of the
polygon cannot cross.
A line will become
red if it violates this
condition. The start
and end point must
be the same.

Each polygon you
add is associated
with the category
you choose from the

Label Videos and Video Frames 1439

Amazon SageMaker Developer Guide

Tool Icon Action Description

Label category drop
down menu. Select
the polygon or its
associated label to
adjust it.

Copy to Next Copy annotations to
the next frame.

If one or more
annotations are
selected in the
current frame,
those annotatio
ns are copied to
the next frame.
If no annotations
are selected, all
annotations in the
current frame will be
copied to the next
frame.

Copy to All Copy annotations
to all subsequent
frames.

If one or more
annotations are
selected in the
current frame,
those annotations
are copied to all
subsequent frames.
If no annotations
are selected, all
annotations in the
current frame will
be copied to all
subsequent frames.

Label Videos and Video Frames 1440

Amazon SageMaker Developer Guide

UI Icon Guide

Use this table to learn about the icons you see in your worker task portal. You can automatically
select these icons using the keyboard shortcuts found in the Shortcuts menu.

Icon Description

brightness Choose this icon to adjust the brightness of all video
frames.

contrast Choose this icon to adjust the contrast of all video
frames.

zoom in Choose this icon to zoom into all of the video frames.

zoom out Choose this icon to zoom out of all of the video frames.

move screen After you've zoomed into a video frame, choose this
icon to move around in that video frame. You can move
around in the video frame using your mouse by clicking
and dragging the frame in the direction you want it to
move. This will change the view in all view frames.

fit screen Reset all video frames to their original position.

undo Undo an action. You can use this icon to remove a
bounding box that you just added, or to undo an
adjustment you made to a bounding box.

redo Redo an action that was undone using the undo icon.

Label Videos and Video Frames 1441

Amazon SageMaker Developer Guide

Icon Description

delete label Delete a label. This will delete the bounding box
associated with the label in a single frame.

show or hide
label

Select this icon to show a label that has been hidden. If
this icon has a slash through it, select it to hide the label.

Shortcuts

The keyboard shortcuts listed in the Shortcuts menu can help you quickly select icons, undo
and redo annotations, and use tools to add and edit annotations. For example, once you add a
bounding box, you can use P to quickly predict the location of that box in subsequent frames.

Before you start your task, it is recommended that you review the Shortcuts menu and become
acquainted with these commands.

Release, Stop and Resume, and Decline Tasks

When you open the labeling task, three buttons on the top right allow you to decline the task
(Decline task), release it (Release task), and stop and resume it at a later time (Stop and resume
later). The following list describes what happens when you select one of these options:

• Decline task: You should only decline a task if something is wrong with the task, such as unclear
video frame images or an issue with the UI. If you decline a task, you will not be able to return to
the task.

• Release Task: Use this option to release a task and allow others to work on it. When you
release a task, you loose all work done on that task and other workers on your team can pick
it up. If enough workers pick up the task, you may not be able to return to it. When you select
this button and then select Confirm, you are returned to the worker portal. If the task is still
available, its status will be Available. If other workers pick it up, it will disappear from your
portal.

• Stop and resume later: You can use the Stop and resume later button to stop working and
return to the task at a later time. You should use the Save button to save your work before you
select Stop and resume later. When you select this button and then select Confirm, you are
returned to the worker portal, and the task status is Stopped. You can select the same task to
resume work on it.

Label Videos and Video Frames 1442

Amazon SageMaker Developer Guide

Be aware that the person that creates your labeling tasks specifies a time limit in which all
tasks much be completed by. If you do not return to and complete this task within that time
limit, it will expire and your work will not be submitted. Contact your administrator for more
information.

Saving Your Work and Submitting

You should periodically save your work. Ground Truth automatically saves your work every 15
minutes.

When you open a task, you must complete your work before pressing Submit.

Use Ground Truth to Label 3D Point Clouds

Create a 3D point cloud labeling job to have workers label objects in 3D point clouds generated
from 3D sensors like Light Detection and Ranging (LiDAR) sensors and depth cameras, or generated
from 3D reconstruction by stitching images captured by an agent like a drone.

3D Point Clouds

Point clouds are made up of three-dimensional (3D) visual data that consists of points. Each
point is described using three coordinates, typically x, y, and z. To add color or variations in point
intensity to the point cloud, points may be described with additional attributes, such as i for
intensity or values for the red (r), green (g), and blue (b) 8-bit color channels. When you create
a Ground Truth 3D point cloud labeling job, you can provide point cloud and, optionally, sensor
fusion data.

The following image shows a single, 3D point cloud scene rendered by Ground Truth and displayed
in the semantic segmentation worker UI.

Label 3D Point Clouds 1443

Amazon SageMaker Developer Guide

LiDAR

A Light Detection and Ranging (LiDAR) sensor is a common type of sensor used to collect
measurements that are used to generate point cloud data. LiDAR is a remote sensing method that
uses light in the form of a pulsed laser to measure the distances of objects from the sensor. You
can provide 3D point cloud data generated from a LiDAR sensor for a Ground Truth 3D point cloud
labeling job using the raw data formats described in Accepted Raw 3D Data Formats.

Sensor Fusion

Ground Truth 3D point cloud labeling jobs include a sensor fusion feature that supports video
camera sensor fusion for all task types. Some sensors come with multiple LiDAR devices and video
cameras that capture images and associate them with a LiDAR frame. To help annotators visually
complete your tasks with high confidence, you can use the Ground Truth sensor fusion feature to
project annotations (labels) from a 3D point cloud to 2D camera images and vice versa using 3D
scanner (such as LiDAR) extrinsic matrix and camera extrinsic and intrinsic matrices. To learn more,
see Sensor Fusion.

Label 3D Point Clouds

Ground Truth provides a user interface (UI) and tools that workers use to label or annotate 3D
point clouds. When you use the object detection or semantic segmentation task types, workers can

Label 3D Point Clouds 1444

Amazon SageMaker Developer Guide

annotate a single point cloud frame. When you use object tracking, workers annotate a sequence of
frames. You can use object tracking to track object movement across all frames in a sequence.

The following demonstrates how a worker would use the Ground Truth worker portal and tools to
annotate a 3D point cloud for an object detection task. For similar visual examples of other task
types, see 3D Point Cloud Task types.

Assistive Labeling Tools for Point Cloud Annotation

Ground Truth offers assistive labeling tools to help workers complete your point cloud annotation
tasks faster and with more accuracy. For details about assistive labeling tools that are included
in the worker UI for each task type, select a task type and refer to the View the Worker Task
Interface section of that page.

Next Steps

You can create six types of tasks when you use Ground Truth 3D point cloud labeling jobs. Use the
topics in 3D Point Cloud Task types to learn more about these task types and to learn how to create
a labeling job using the task type of your choice.

The 3D point cloud labeling job is different from other Ground Truth labeling modalities. Before
creating a labeling job, we recommend that you read 3D Point Cloud Labeling Jobs Overview.
Additionally, review input data quotas in 3D Point Cloud and Video Frame Labeling Job Quotas.

Label 3D Point Clouds 1445

Amazon SageMaker Developer Guide

For an end-to-end demo using the SageMaker API and AWS Python SDK (boto 3) to create a 3D
point cloud labeling job, see create-3D-pointcloud-labeling-job.ipynb in the SageMaker Examples
notebook tab.

Important

If you use a notebook instance created before June 5th, 2020 to run this notebook, you
must stop and restart that notebook instance for the notebook to work.

Topics

• 3D Point Cloud Task types

• 3D Point Cloud Labeling Jobs Overview

• Worker Instructions

3D Point Cloud Task types

You can use Ground Truth 3D point cloud labeling modality for a variety of use cases. The following
list briefly describes each 3D point cloud task type. For additional details and instructions on how
to create a labeling job using a specific task type, select the task type name to see its task type
page.

• 3D point cloud object detection – Use this task type when you want workers to locate and
classify objects in a 3D point cloud by adding and fitting 3D cuboids around objects.

• 3D point cloud object tracking – Use this task type when you want workers to add and fit 3D
cuboids around objects to track their movement across a sequence of 3D point cloud frames.
For example, you can use this task type to ask workers to track the movement of vehicles across
multiple point cloud frames.

• 3D point cloud semantic segmentation – Use this task type when you want workers to create a
point-level semantic segmentation mask by painting objects in a 3D point cloud using different
colors where each color is assigned to one of the classes you specify.

• 3D point cloud adjustment task types – Each of the task types above has an associated
adjustment task type that you can use to audit and adjust annotations generated from a 3D
point cloud labeling job. Refer to the task type page of the associated type to learn how to
create an adjustment labeling job for that task.

Label 3D Point Clouds 1446

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/ground_truth_labeling_jobs/3d_point_cloud_demo/create-3D-pointcloud-labeling-job.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-object-detection.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-object-tracking.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-semantic-segmentation.html

Amazon SageMaker Developer Guide

3D Point Cloud Object Detection

Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D
cuboids around objects. For example, you can use this task type to ask workers to identify different
types of objects in a point cloud, such as cars, bikes, and pedestrians.

For this task type, the data object that workers label is a single point cloud frame. Ground Truth
renders a 3D point cloud using point cloud data you provide. You can also provide camera data
to give workers more visual information about scenes in the frame, and to help workers draw 3D
cuboids around objects.

Ground Truth providers workers with tools to annotate objects with 9 degrees of freedom
(x,y,z,rx,ry,rz,l,w,h) in three dimensions in both 3D scene and projected side views (top, side, and
back). If you provide sensor fusion information (like camera data), when a worker adds a cuboid
to identify an object in the 3D point cloud, the cuboid shows up and can be modified in the 2D
images. After a cuboid has been added, all edits made to that cuboid in the 2D or 3D scene are
projected into the other view.

You can create a job to adjust annotations created in a 3D point cloud object detection labeling job
using the 3D point cloud object detection adjustment task type.

If you are a new user of the Ground Truth 3D point cloud labeling modality, we recommend you
review 3D Point Cloud Labeling Jobs Overview. This labeling modality is different from other
Ground Truth task types, and this page provides an overview of important details you should be
aware of when creating a 3D point cloud labeling job.

Topics

• View the Worker Task Interface

• Create a 3D Point Cloud Object Detection Labeling Job

• Create a 3D Point Cloud Object Detection Adjustment or Verification Labeling Job

• Output Data Format

View the Worker Task Interface

Ground Truth provides workers with a web portal and tools to complete your 3D point cloud object
detection annotation tasks. When you create the labeling job, you provide the Amazon Resource
Name (ARN) for a pre-built Ground Truth worker UI in the HumanTaskUiArn parameter. When you

Label 3D Point Clouds 1447

Amazon SageMaker Developer Guide

create a labeling job using this task type in the console, this worker UI is automatically used. You
can preview and interact with the worker UI when you create a labeling job in the console. If you
are a new user, it is recommended that you create a labeling job using the console to ensure your
label attributes, point cloud frames, and if applicable, images, appear as expected.

The following is a GIF of the 3D point cloud object detection worker task interface. If you provide
camera data for sensor fusion in the world coordinate system, images are matched up with scenes
in the point cloud frame. These images appear in the worker portal as shown in the following GIF.

Worker can navigate in the 3D scene using their keyboard and mouse. They can:

• Double click on specific objects in the point cloud to zoom into them.

• Use a mouse-scroller or trackpad to zoom in and out of the point cloud.

• Use both keyboard arrow keys and Q, E, A, and D keys to move Up, Down, Left, Right. Use
keyboard keys W and S to zoom in and out.

Once a worker places a cuboid in the 3D scene, a side-view will appear with the three projected side
views: top, side, and back. These side-views show points in and around the placed cuboid and help
workers refine cuboid boundaries in that area. Workers can zoom in and out of each of those side-
views using their mouse.

The following video demonstrates movements around the 3D point cloud and in the side-view.

Label 3D Point Clouds 1448

Amazon SageMaker Developer Guide

Additional view options and features are available in the View menu in the worker UI. See the
worker instruction page for a comprehensive overview of the Worker UI.

Assistive Labeling Tools

Ground Truth helps workers annotate 3D point clouds faster and more accurately using machine
learning and computer vision powered assistive labeling tools for 3D point cloud object tracking
tasks. The following assistive labeling tools are available for this task type:

• Snapping – Workers can add a cuboid around an object and use a keyboard shortcut or menu
option to have Ground Truth's autofit tool snap the cuboid tightly around the object.

• Set to ground – After a worker adds a cuboid to the 3D scene, the worker can automatically snap
the cuboid to the ground. For example, the worker can use this feature to snap a cuboid to the
road or sidewalk in the scene.

• Multi-view labeling – After a worker adds a 3D cuboid to the 3D scene, a side panel displays
front, side, and top perspectives to help the worker adjust the cuboid tightly around the object.
In all of these views, the cuboid includes an arrow that indicates the orientation, or heading of
the object. When the worker adjusts the cuboid, the adjustment will appear in real time on all of
the views (that is, 3D, top, side, and front).

Label 3D Point Clouds 1449

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-worker-instructions-object-detection

Amazon SageMaker Developer Guide

• Sensor fusion – If you provide data for sensor fusion, workers can adjust annotations in the 3D
scenes and in 2D images, and the annotations will be projected into the other view in real time.
Additionally, workers will have the option to view the direction the camera is facing and the
camera frustum.

• View options – Enables workers to easily hide or view cuboids, label text, a ground mesh, and
additional point attributes like color or intensity. Workers can also choose between perspective
and orthogonal projections.

Create a 3D Point Cloud Object Detection Labeling Job

You can create a 3D point cloud labeling job using the SageMaker console or API operation,
CreateLabelingJob. To create a labeling job for this task type you need the following:

• A single-frame input manifest file. To learn how to create this type of manifest file, see Create
a Point Cloud Frame Input Manifest File. If you are a new user of Ground Truth 3D point cloud
labeling modalities, you may also want to review Accepted Raw 3D Data Formats.

• A work team from a private or vendor workforce. You cannot use Amazon Mechanical Turk for
video frame labeling jobs. To learn how to create workforces and work teams, see Create and
Manage Workforces.

Additionally, make sure that you have reviewed and satisfied the Assign IAM Permissions to Use
Ground Truth.

Use one of the following sections to learn how to create a labeling job using the console or an API.

Create a Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) in order to learn how to create a
3D point cloud object detection labeling job in the SageMaker console. While you are creating your
labeling job, be aware of the following:

• Your input manifest file must be a single-frame manifest file. For more information, see Create a
Point Cloud Frame Input Manifest File.

• Optionally, you can provide label category and frame attributes. Workers can assign one or more
of these attributes to annotations to provide more information about that object. For example,
you might want to use the attribute occluded to have workers identify when an object is partially
obstructed.

Label 3D Point Clouds 1450

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

• Automated data labeling and annotation consolidation are not supported for 3D point cloud
labeling tasks.

• 3D point cloud object detection labeling jobs can take multiple hours to complete. You can
specify a longer time limit for these labeling jobs when you select your work team (up to 7 days,
or 604800 seconds).

Create a Labeling Job (API)

This section covers details you need to know when you create a labeling job using the SageMaker
API operation CreateLabelingJob. This API defines this operation for all AWS SDKs. To see
a list of language-specific SDKs supported for this operation, review the See Also section of
CreateLabelingJob.

Create a Labeling Job (API), provides an overview of the CreateLabelingJob operation. Follow
these instructions and do the following while you configure your request:

• You must enter an ARN for HumanTaskUiArn. Use
arn:aws:sagemaker:<region>:394669845002:human-task-ui/
PointCloudObjectDetection. Replace <region> with the AWS Region you are creating the
labeling job in.

There should not be an entry for the UiTemplateS3Uri parameter.

• Your input manifest file must be a single-frame manifest file. For more information, see Create a
Point Cloud Frame Input Manifest File.

• You specify your labels, label category and frame attributes, and worker instructions in a label
category configuration file. To learn how to create this file, see Create a Labeling Category
Configuration File with Label Category and Frame Attributes.

• You need to provide pre-defined ARNs for the pre-annotation and post-annotation (ACS)
Lambda functions. These ARNs are specific to the AWS Region you use to create your labeling
job.

• To find the pre-annotation Lambda ARN, refer to PreHumanTaskLambdaArn. Use the
Region you are creating your labeling job in to find the correct ARN. For example, if
you are creating your labeling job in us-east-1, the ARN will be arn:aws:lambda:us-
east-1:432418664414:function:PRE-3DPointCloudObjectDetection.

• To find the post-annotation Lambda ARN, refer to AnnotationConsolidationLambdaArn.
Use the Region you are creating your labeling job in to find the correct ARN. For example,

Label 3D Point Clouds 1451

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AnnotationConsolidationConfig.html#sagemaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

if you are creating your labeling job in us-east-1, the ARN will be arn:aws:lambda:us-
east-1:432418664414:function:ACS-3DPointCloudObjectDetection.

• The number of workers specified in NumberOfHumanWorkersPerDataObject must be 1.

• Automated data labeling is not supported for 3D point cloud labeling jobs. You should not
specify values for parameters in LabelingJobAlgorithmsConfig.

• 3D point cloud object detection labeling jobs can take multiple hours to complete. You can
specify a longer time limit for these labeling jobs in TaskTimeLimitInSeconds (up to 7 days,
or 604,800 seconds).

Create a 3D Point Cloud Object Detection Adjustment or Verification Labeling Job

You can create an adjustment or verification labeling job using the Ground Truth console or
CreateLabelingJob API. To learn more about adjustment and verification labeling jobs, and to
learn how create one, see Verify and Adjust Labels.

When you create an adjustment labeling job, your input data to the labeling job can include labels,
and yaw, pitch, and roll measurements from a previous labeling job or external source. In the
adjustment job, pitch, and roll will be visualized in the worker UI, but cannot be modified. Yaw is
adjustable.

Ground Truth uses Tait-Bryan angles with the following intrinsic rotations to visualize yaw, pitch
and roll in the worker UI. First, rotation is applied to the vehicle according to the z-axis (yaw). Next,
the rotated vehicle is rotated according to the intrinsic y'-axis (pitch). Finally, the vehicle is rotated
according to the intrinsic x''-axis (roll).

Output Data Format

When you create a 3D point cloud object detection labeling job, tasks are sent to workers. When
these workers complete their tasks, labels are written to the Amazon S3 bucket you specified when
you created the labeling job. The output data format determines what you see in your Amazon S3
bucket when your labeling job status (LabelingJobStatus) is Completed.

If you are a new user of Ground Truth, see Output Data to learn more about the Ground Truth
output data format. To learn about the 3D point cloud object detection output data format, see 3D
Point Cloud Object Detection Output.

3D Point Cloud Object Tracking

Label 3D Point Clouds 1452

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelingJobAlgorithmsConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeLabelingJob.html#API_DescribeLabelingJob_ResponseSyntax

Amazon SageMaker Developer Guide

Use this task type when you want workers to add and fit 3D cuboids around objects to track their
movement across 3D point cloud frames. For example, you can use this task type to ask workers to
track the movement of vehicles across multiple point cloud frames.

For this task type, the data object that workers label is a sequence of point cloud frames. A
sequence is defined as a temporal series of point cloud frames. Ground Truth renders a series of 3D
point cloud visualizations using a sequence you provide and workers can switch between these 3D
point cloud frames in the worker task interface.

Ground Truth providers workers with tools to annotate objects with 9 degrees of freedom:
(x,y,z,rx,ry,rz,l,w,h) in three dimensions in both 3D scene and projected side views (top, side, and
back). When a worker draws a cuboid around an object, that cuboid is given a unique ID, for
example Car:1 for one car in the sequence and Car:2 for another. Workers use that ID to label
the same object in multiple frames.

You can also provide camera data to give workers more visual information about scenes in the
frame, and to help workers draw 3D cuboids around objects. When a worker adds a 3D cuboid to
identify an object in either the 2D image or the 3D point cloud, and the cuboid shows up in the
other view.

You can adjust annotations created in a 3D point cloud object detection labeling job using the 3D
point cloud object tracking adjustment task type.

If you are a new user of the Ground Truth 3D point cloud labeling modality, we recommend you
review 3D Point Cloud Labeling Jobs Overview. This labeling modality is different from other
Ground Truth task types, and this page provides an overview of important details you should be
aware of when creating a 3D point cloud labeling job.

Topics

• View the Worker Task Interface

• Create a 3D Point Cloud Object Tracking Labeling Job

• Create a 3D Point Cloud Object Tracking Adjustment or Verification Labeling Job

• Output Data Format

View the Worker Task Interface

Ground Truth provides workers with a web portal and tools to complete your 3D point cloud object
tracking annotation tasks. When you create the labeling job, you provide the Amazon Resource

Label 3D Point Clouds 1453

Amazon SageMaker Developer Guide

Name (ARN) for a pre-built Ground Truth UI in the HumanTaskUiArn parameter. When you create
a labeling job using this task type in the console, this UI is automatically used. You can preview and
interact with the worker UI when you create a labeling job in the console. If you are a new use, it
is recommended that you create a labeling job using the console to ensure your label attributes,
point cloud frames, and if applicable, images, appear as expected.

The following is a GIF of the 3D point cloud object tracking worker task interface and demonstrates
how the worker can navigate the point cloud frames in the sequence. The annotating tools are a
part of the worker task interface. They are not available for the preview interface.

Once workers add a single cuboid, that cuboid is replicated in all frames of the sequence with
the same ID. Once workers adjust the cuboid in another frame, Ground Truth will interpolate
the movement of that object and adjust all cuboids between the manually adjusted frames. The
following GIF demonstrates this interpolation feature. In the navigation bar on the bottom-left,
red-areas indicate manually adjusted frames.

Label 3D Point Clouds 1454

Amazon SageMaker Developer Guide

If you provide camera data for sensor fusion, images are matched up with scenes in point cloud
frames. These images appear in the worker portal as shown in the following GIF.

Worker can navigate in the 3D scene using their keyboard and mouse. They can:

• Double click on specific objects in the point cloud to zoom into them.

• Use a mouse-scroller or trackpad to zoom in and out of the point cloud.

• Use both keyboard arrow keys and Q, E, A, and D keys to move Up, Down, Left, Right. Use
keyboard keys W and S to zoom in and out.

Once a worker places a cuboids in the 3D scene, a side-view will appear with the three projected
side views: top, side, and back. These side-views show points in and around the placed cuboid and
help workers refine cuboid boundaries in that area. Workers can zoom in and out of each of those
side-views using their mouse.

The following video demonstrates movements around the 3D point cloud and in the side-view.

Label 3D Point Clouds 1455

Amazon SageMaker Developer Guide

Additional view options and features are available. See the worker instruction page for a
comprehensive overview of the Worker UI.

Worker Tools

Workers can navigate through the 3D point cloud by zooming in and out, and moving in all
directions around the cloud using the mouse and keyboard shortcuts. If workers click on a point
in the point cloud, the UI will automatically zoom into that area. Workers can use various tools to
draw 3D cuboid around objects. For more information, see Assistive Labeling Tools.

After workers have placed a 3D cuboid in the point cloud, they can adjust these cuboids to fit
tightly around cars using a variety of views: directly in the 3D cuboid, in a side-view featuring three
zoomed-in perspectives of the point cloud around the box, and if you include images for sensor
fusion, directly in the 2D image.

View options that enable workers to easily hide or view label text, a ground mesh, and additional
point attributes. Workers can also choose between perspective and orthogonal projections.

Assistive Labeling Tools

Label 3D Point Clouds 1456

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-worker-instructions-object-tracking.html

Amazon SageMaker Developer Guide

Ground Truth helps workers annotate 3D point clouds faster and more accurately using UX,
machine learning and computer vision powered assistive labeling tools for 3D point cloud object
tracking tasks. The following assistive labeling tools are available for this task type:

• Label autofill – When a worker adds a cuboid to a frame, a cuboid with the same dimensions and
orientation is automatically added to all frames in the sequence.

• Label interpolation – After a worker has labeled a single object in two frames, Ground Truth
uses those annotations to interpolate the movement of that object between those two frames.
Label interpolation can be turned on and off.

• Bulk label and attribute management – Workers can add, delete, and rename annotations, label
category attributes, and frame attributes in bulk.

• Workers can manually delete annotations for a given object before or after a frame. For
example, a worker can delete all labels for an object after frame 10 if that object is no longer
located in the scene after that frame.

• If a worker accidentally bulk deletes all annotations for a object, they can add them back. For
example, if a worker deletes all annotations for an object before frame 100, they can bulk add
them to those frames.

• Workers can rename a label in one frame and all 3D cuboids assigned that label are updated
with the new name across all frames.

• Workers can use bulk editing to add or edit label category attributes and frame attributes in
multiple frames.

• Snapping – Workers can add a cuboid around an object and use a keyboard shortcut or
menu option to have Ground Truth's autofit tool snap the cuboid tightly around the object's
boundaries.

• Fit to ground – After a worker adds a cuboid to the 3D scene, the worker can automatically snap
the cuboid to the ground. For example, the worker can use this feature to snap a cuboid to the
road or sidewalk in the scene.

• Multi-view labeling – After a worker adds a 3D cuboid to the 3D scene, a side -panel displays
front and two side perspectives to help the worker adjust the cuboid tightly around the object.
Workers can annotation the 3D point cloud, the side panel and the adjustments appear in the
other views in real time.

• Sensor fusion – If you provide data for sensor fusion, workers can adjust annotations in the 3D
scenes and in 2D images, and the annotations will be projected into the other view in real time.

• Auto-merge cuboids – Workers can automatically merge two cuboids across all frames if they
determine that cuboids with different labels actually represent a single object.

Label 3D Point Clouds 1457

Amazon SageMaker Developer Guide

• View options – Enables workers to easily hide or view label text, a ground mesh, and additional
point attributes like color or intensity. Workers can also choose between perspective and
orthogonal projections.

Create a 3D Point Cloud Object Tracking Labeling Job

You can create a 3D point cloud labeling job using the SageMaker console or API operation,
CreateLabelingJob. To create a labeling job for this task type you need the following:

• A sequence input manifest file. To learn how to create this type of manifest file, see Create a
Point Cloud Sequence Input Manifest. If you are a new user of Ground Truth 3D point cloud
labeling modalities, we recommend that you review Accepted Raw 3D Data Formats.

• A work team from a private or vendor workforce. You cannot use Amazon Mechanical Turk for
3D point cloud labeling jobs. To learn how to create workforces and work teams, see Create and
Manage Workforces.

Additionally, make sure that you have reviewed and satisfied the Assign IAM Permissions to Use
Ground Truth.

To learn how to create a labeling job using the console or an API, see the following sections.

Create a Labeling Job (API)

This section covers details you need to know when you create a labeling job using the SageMaker
API operation CreateLabelingJob. This API defines this operation for all AWS SDKs. To see
a list of language-specific SDKs supported for this operation, review the See Also section of
CreateLabelingJob.

Create a Labeling Job (API) provides an overview of the CreateLabelingJob operation. Follow
these instructions and do the following while you configure your request:

• You must enter an ARN for HumanTaskUiArn. Use
arn:aws:sagemaker:<region>:394669845002:human-task-ui/
PointCloudObjectTracking. Replace <region> with the AWS Region you are creating the
labeling job in.

There should not be an entry for the UiTemplateS3Uri parameter.

• Your LabelAttributeName must end in -ref. For example, ot-labels-ref.

Label 3D Point Clouds 1458

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName

Amazon SageMaker Developer Guide

• Your input manifest file must be a point cloud frame sequence manifest file. For more
information, see Create a Point Cloud Sequence Input Manifest.

• You specify your labels, label category and frame attributes, and worker instructions in a label
category configuration file. For more information, see Create a Labeling Category Configuration
File with Label Category and Frame Attributes to learn how to create this file.

• You need to provide pre-defined ARNs for the pre-annotation and post-annotation (ACS)
Lambda functions. These ARNs are specific to the AWS Region you use to create your labeling
job.

• To find the pre-annotation Lambda ARN, refer to PreHumanTaskLambdaArn. Use the
Region you are creating your labeling job in to find the correct ARN that ends with
PRE-3DPointCloudObjectTracking.

• To find the post-annotation Lambda ARN, refer to AnnotationConsolidationLambdaArn.
Use the Region you are creating your labeling job in to find the correct ARN that ends with
ACS-3DPointCloudObjectTracking.

• The number of workers specified in NumberOfHumanWorkersPerDataObject should be 1.

• Automated data labeling is not supported for 3D point cloud labeling jobs. You should not
specify values for parameters in LabelingJobAlgorithmsConfig.

• 3D point cloud object tracking labeling jobs can take multiple hours to complete. You can specify
a longer time limit for these labeling jobs in TaskTimeLimitInSeconds (up to 7 days, or
604,800 seconds).

Create a Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) in order to learn how to create a
3D point cloud object tracking labeling job in the SageMaker console. While you are creating your
labeling job, be aware of the following:

• Your input manifest file must be a sequence manifest file. For more information, see Create a
Point Cloud Sequence Input Manifest.

• Optionally, you can provide label category attributes. Workers can assign one or more of these
attributes to annotations to provide more information about that object. For example, you
might want to use the attribute occluded to have workers identify when an object is partially
obstructed.

• Automated data labeling and annotation consolidation are not supported for 3D point cloud
labeling tasks.

Label 3D Point Clouds 1459

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AnnotationConsolidationConfig.html#sagemaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelingJobAlgorithmsConfig

Amazon SageMaker Developer Guide

• 3D point cloud object tracking labeling jobs can take multiple hours to complete. You can specify
a longer time limit for these labeling jobs when you select your work team (up to 7 days, or
604800 seconds).

Create a 3D Point Cloud Object Tracking Adjustment or Verification Labeling Job

You can create an adjustment and verification labeling job using the Ground Truth console or
CreateLabelingJob API. To learn more about adjustment and verification labeling jobs, and to
learn how create one, see Verify and Adjust Labels.

When you create an adjustment labeling job, your input data to the labeling job can include labels,
and yaw, pitch, and roll measurements from a previous labeling job or external source. In the
adjustment job, pitch, and roll will be visualized in the worker UI, but cannot be modified. Yaw is
adjustable.

Ground Truth uses Tait-Bryan angles with the following intrinsic rotations to visualize yaw, pitch
and roll in the worker UI. First, rotation is applied to the vehicle according to the z-axis (yaw). Next,
the rotated vehicle is rotated according to the intrinsic y'-axis (pitch). Finally, the vehicle is rotated
according to the intrinsic x''-axis (roll).

Output Data Format

When you create a 3D point cloud object tracking labeling job, tasks are sent to workers. When
these workers complete their tasks, their annotations are written to the Amazon S3 bucket you
specified when you created the labeling job. The output data format determines what you see in
your Amazon S3 bucket when your labeling job status (LabelingJobStatus) is Completed.

If you are a new user of Ground Truth, see Output Data to learn more about the Ground Truth
output data format. To learn about the 3D point cloud object tracking output data format, see 3D
Point Cloud Object Tracking Output.

3D Point Cloud Semantic Segmentation

Semantic segmentation involves classifying individual points of a 3D point cloud into pre-
specified categories. Use this task type when you want workers to create a point-level semantic
segmentation mask for 3D point clouds. For example, if you specify the classes car, pedestrian,
and bike, workers select one class at a time, and color all of the points that this class applies to
the same color in the point cloud.

Label 3D Point Clouds 1460

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeLabelingJob.html#API_DescribeLabelingJob_ResponseSyntax

Amazon SageMaker Developer Guide

For this task type, the data object that workers label is a single point cloud frame. Ground Truth
generates a 3D point cloud visualization using point cloud data you provide. You can also provide
camera data to give workers more visual information about scenes in the frame, and to help
workers paint objects. When a worker paints an object in either the 2D image or the 3D point
cloud, the paint shows up in the other view.

You can adjust annotations created in a 3D point cloud object detection labeling job using the 3D
point cloud semantic segmentation adjustment task type.

If you are a new user of the Ground Truth 3D point cloud labeling modality, we recommend you
review 3D Point Cloud Labeling Jobs Overview. This labeling modality is different from other
Ground Truth task types, and this topic provides an overview of important details you should be
aware of when creating a 3D point cloud labeling job.

Topics

• View the Worker Task Interface

• Create a 3D Point Cloud Semantic Segmentation Labeling Job

• Create a 3D Point Cloud Semantic Segmentation Adjustment or Verification Labeling Job

• Output Data Format

View the Worker Task Interface

Ground Truth provides workers with a web portal and tools to complete your 3D point cloud
semantic segmentation annotation tasks. When you create the labeling job, you provide the
Amazon Resource Name (ARN) for a pre-built Ground Truth UI in the HumanTaskUiArn parameter.
When you create a labeling job using this task type in the console, this UI is automatically used.
You can preview and interact with the worker UI when you create a labeling job in the console. If
you are a new use, it is recommended that you create a labeling job using the console to ensure
your label attributes, point cloud frames, and if applicable, images, appear as expected.

The following is a GIF of the 3D point cloud semantic segmentation worker task interface. If you
provide camera data for sensor fusion, images are matched with scenes in the point cloud frame.
Workers can paint objects in either the 3D point cloud or the 2D image, and the paint appears
in the corresponding location in the other medium. These images appear in the worker portal as
shown in the following GIF.

Label 3D Point Clouds 1461

Amazon SageMaker Developer Guide

Worker can navigate in the 3D scene using their keyboard and mouse. They can:

• Double click on specific objects in the point cloud to zoom into them.

• Use a mouse-scroller or trackpad to zoom in and out of the point cloud.

• Use both keyboard arrow keys and Q, E, A, and D keys to move Up, Down, Left, Right. Use
keyboard keys W and S to zoom in and out.

The following video demonstrates movements around the 3D point cloud. Workers can hide and
re-expand all side views and menus. In this GIF, the side-views and menus have been collapsed.

Label 3D Point Clouds 1462

Amazon SageMaker Developer Guide

The following GIF demonstrates how a worker can label multiple objects quickly, refine painted
objects using the Unpaint option and then view only points that have been painted.

Label 3D Point Clouds 1463

Amazon SageMaker Developer Guide

Additional view options and features are available. See the worker instruction page for a
comprehensive overview of the Worker UI.

Worker Tools

Workers can navigate through the 3D point cloud by zooming in and out, and moving in all
directions around the cloud using the mouse and keyboard shortcuts. When you create a semantic
segmentation job, workers have the following tools available to them:

• A paint brush to paint and unpaint objects. Workers paint objects by selecting a label category
and then painting in the 3D point cloud. Workers unpaint objects by selecting the Unpaint option
from the label category menu and using the paint brush to erase paint.

• A polygon tool that workers can use to select and paint an area in the point cloud.

• A background paint tool, which enables workers to paint behind objects they have already
annotated without altering the original annotations. For example, workers might use this tool to
paint the road after painting all of the cars on the road.

• View options that enable workers to easily hide or view label text, a ground mesh, and additional
point attributes like color or intensity. Workers can also choose between perspective and
orthogonal projections.

Create a 3D Point Cloud Semantic Segmentation Labeling Job

You can create a 3D point cloud labeling job using the SageMaker console or API operation,
CreateLabelingJob. To create a labeling job for this task type you need the following:

• A single-frame input manifest file. To learn how to create this type of manifest file, see Create
a Point Cloud Frame Input Manifest File. If you are a new user of Ground Truth 3D point cloud
labeling modalities, we recommend that you review Accepted Raw 3D Data Formats.

• A work team from a private or vendor workforce. You cannot use Amazon Mechanical Turk
workers for 3D point cloud labeling jobs. To learn how to create workforces and work teams, see
Create and Manage Workforces.

• A label category configuration file. For more information, see Create a Labeling Category
Configuration File with Label Category and Frame Attributes.

Additionally, make sure that you have reviewed and satisfied the Assign IAM Permissions to Use
Ground Truth.

Label 3D Point Clouds 1464

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-worker-instructions-semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Use one of the following sections to learn how to create a labeling job using the console or an API.

Create a Labeling Job (Console)

You can follow the instructions Create a Labeling Job (Console) in order to learn how to create a 3D
point cloud semantic segmentation labeling job in the SageMaker console. While you are creating
your labeling job, be aware of the following:

• Your input manifest file must be a single-frame manifest file. For more information, see Create a
Point Cloud Frame Input Manifest File.

• Automated data labeling and annotation consolidation are not supported for 3D point cloud
labeling tasks.

• 3D point cloud semantic segmentation labeling jobs can take multiple hours to complete. You
can specify a longer time limit for these labeling jobs when you select your work team (up to 7
days, or 604800 seconds).

Create a Labeling Job (API)

This section covers details you need to know when you create a labeling job using the SageMaker
API operation CreateLabelingJob. This API defines this operation for all AWS SDKs. To see
a list of language-specific SDKs supported for this operation, review the See Also section of
CreateLabelingJob.

The page, Create a Labeling Job (API), provides an overview of the CreateLabelingJob
operation. Follow these instructions and do the following while you configure your request:

• You must enter an ARN for HumanTaskUiArn. Use
arn:aws:sagemaker:<region>:394669845002:human-task-ui/
PointCloudSemanticSegmentation. Replace <region> with the AWS Region you are
creating the labeling job in.

There should not be an entry for the UiTemplateS3Uri parameter.

• Your LabelAttributeName must end in -ref. For example, ss-labels-ref.

• Your input manifest file must be a single-frame manifest file. For more information, see Create a
Point Cloud Frame Input Manifest File.

• You specify your labels and worker instructions in a label category configuration file. See Create
a Labeling Category Configuration File with Label Category and Frame Attributes to learn how to
create this file.

Label 3D Point Clouds 1465

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName

Amazon SageMaker Developer Guide

• You need to provide a pre-defined ARNs for the pre-annotation and post-annotation (ACS)
Lambda functions. These ARNs are specific to the AWS Region you use to create your labeling
job.

• To find the pre-annotation Lambda ARN, refer to PreHumanTaskLambdaArn. Use the
Region you are creating your labeling job in to find the correct ARN. For example, if
you are creating your labeling job in us-east-1, the ARN will be arn:aws:lambda:us-
east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation.

• To find the post-annotation Lambda ARN, refer to AnnotationConsolidationLambdaArn.
Use the Region you are creating your labeling job in to find the correct ARN. For example,
if you are creating your labeling job in us-east-1, the ARN will be arn:aws:lambda:us-
east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation.

• The number of workers specified in NumberOfHumanWorkersPerDataObject should be 1.

• Automated data labeling is not supported for 3D point cloud labeling jobs. You should not
specify values for parameters in LabelingJobAlgorithmsConfig.

• 3D point cloud semantic segmentation labeling jobs can take multiple hours to complete. You
can specify a longer time limit for these labeling jobs in TaskTimeLimitInSeconds (up to 7
days, or 604800 seconds).

Create a 3D Point Cloud Semantic Segmentation Adjustment or Verification Labeling Job

You can create an adjustment and verification labeling job using the Ground Truth console or
CreateLabelingJob API. To learn more about adjustment and verification labeling jobs, and to
learn how create one, see Verify and Adjust Labels.

Output Data Format

When you create a 3D point cloud semantic segmentation labeling job, tasks are sent to workers.
When these workers complete their tasks, their annotations are written to the Amazon S3 bucket
you specified when you created the labeling job. The output data format determines what you see
in your Amazon S3 bucket when your labeling job status (LabelingJobStatus) is Completed.

If you are a new user of Ground Truth, see Output Data to learn more about the Ground Truth
output data format. To learn about the 3D point cloud object detection output data format, see 3D
Point Cloud Semantic Segmentation Output.

Label 3D Point Clouds 1466

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AnnotationConsolidationConfig.html#sagemaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelingJobAlgorithmsConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeLabelingJob.html#API_DescribeLabelingJob_ResponseSyntax

Amazon SageMaker Developer Guide

3D-2D Point Cloud Object Tracking

Use this task type when you want workers to link 3D point cloud annotations with 2D images
annotations and also link 2D image annotations among various cameras. Currently, Ground Truth
supports cuboids for annotation in a 3D point cloud and bounding boxes for annotation in 2D
videos. For example, you can use this task type to ask workers to link the movement of a vehicle
in 3D point cloud with its 2D video. Using 3D-2D linking, you can easily correlate point cloud data
(like the distance of a cuboid) to video data (bounding box) for up to 8 cameras.

Ground Truth provides workers with tools to annotate cuboids in a 3D point cloud and bounding
boxes in up to 8 cameras using the same annotation UI. Workers can also link various bounding
boxes for the same object across different cameras. For example, a bounding box in camera1
can be linked to a bounding box in camera2. This lets you to correlate an object across multiple
cameras using a unique ID.

Note

Currently, SageMaker does not support creating a 3D-2D linking job using the console. To
create a 3D-2D linking job using the SageMaker API, see Create a Labeling Job (API).

Topics

• View the Worker Task Interface

• Input Data Format

• Create a 3D-2D Point Cloud Object Tracking Labeling Job

• Output Data

View the Worker Task Interface

Ground Truth provides workers with a web portal and tools to complete your 3D-2D object tracking
annotation tasks. When you create the labeling job, you provide the Amazon Resource Name (ARN)
for a pre-built Ground Truth UI in the HumanTaskUiArn parameter. To use the UI when you create
a labeling job for this task type using the API, you need to provide the HumanTaskUiArn. You
can preview and interact with the worker UI when you create a labeling job through the API. The
annotating tools are a part of the worker task interface. They are not available for the preview
interface. The following image demonstrates the worker task interface used for the 3D-2D point
cloud object tracking annotation task.

Label 3D Point Clouds 1467

Amazon SageMaker Developer Guide

When interpolation is enabled by default. After a worker adds a single cuboid, that cuboid is
replicated in all frames of the sequence with the same ID. If the worker adjusts the cuboid in
another frame, Ground Truth interpolates the movement of that object and adjust all cuboids
between the manually adjusted frames. Additionally, using the camera view section, a cuboid
can be shown with a projection (using to B button for "toggle labels" in the camera view) that
provides the worker with a reference from the camera images. The accuracy of the cuboid to image
projection is based on accuracy of calibrations captured in the extrinsic and intrinsinc data.

If you provide camera data for sensor fusion, images are matched up with scenes in point cloud
frames. Note that the camera data should be time synchronized with the point cloud data to
ensure an accurate depiction of point cloud to imagery over each frame in the sequence as shown
in the following image.

Label 3D Point Clouds 1468

Amazon SageMaker Developer Guide

The manifest file holds the extrinsic and intrinsic data and the pose to allow the cuboid projection
on the camera image to be shown by using the P button.

Worker can navigate in the 3D scene using their keyboard and mouse. They can:

• Double click on specific objects in the point cloud to zoom into them.

• Use a mouse-scroller or trackpad to zoom in and out of the point cloud.

• Use both keyboard arrow keys and Q, E, A, and D keys to move Up, Down, Left, Right. Use
keyboard keys W and S to zoom in and out.

Once a worker places a cuboids in the 3D scene, a side-view appears with the three projected side
views: top, side, and front. These side-views show points in and around the placed cuboid and help
workers refine cuboid boundaries in that area. Workers can zoom in and out of each of those side-
views using their mouse.

The worker should first select the cuboid to draw a corresponding bounding box on any of the
camera views. This links the cuboid and the bounding box with a common name and unique ID.

The worker can also first draw a bounding box, select it and draw the corresponding cuboid to link
them.

Additional view options and features are available. See the worker instruction page for a
comprehensive overview of the Worker UI.

Label 3D Point Clouds 1469

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-worker-instructions-object-tracking.html

Amazon SageMaker Developer Guide

Worker Tools

Workers can navigate through the 3D point cloud by zooming in and out, and moving in all
directions around the cloud using the mouse and keyboard shortcuts. If workers click on a point in
the point cloud, the UI automatically zooms into that area. Workers can use various tools to draw
3D cuboid around objects. For more information, see Assistive Labeling Tools in the following
discussion.

After workers have placed a 3D cuboid in the point cloud, they can adjust these cuboids to fit
tightly around cars using a variety of views: directly in the 3D point cloud, in a side-view featuring
three zoomed-in perspectives of the point cloud around the box, and if you include images for
sensor fusion, directly in the 2D image.

Additional view options enable workers to easily hide or view label text, a ground mesh, and
additional point attributes. Workers can also choose between perspective and orthogonal
projections.

Assistive Labeling Tools

Ground Truth helps workers annotate 3D point clouds faster and more accurately using UX,
machine learning and computer vision powered assistive labeling tools for 3D point cloud object
tracking tasks. The following assistive labeling tools are available for this task type:

• Label autofill – When a worker adds a cuboid to a frame, a cuboid with the same dimensions,
orientation and xyz position is automatically added to all frames in the sequence.

• Label interpolation – After a worker has labeled a single object in two frames, Ground Truth
uses those annotations to interpolate the movement of that object between all the frames.
Label interpolation can be turned on and off. It is on by default. For example, if a worker working
with 5 frames adds a cuboid in frame 2, it is copied to all the 5 frames. If the worker then makes
adjustments in frame 4, frame 2 and 4 now act as two points, through which a line is fit. The
cuboid is then interpolated in frames 1,3 and 5.

• Bulk label and attribute management – Workers can add, delete, and rename annotations, label
category attributes, and frame attributes in bulk.

• Workers can manually delete annotations for a given object before and after a frame, or in all
frames. For example, a worker can delete all labels for an object after frame 10 if that object is
no longer located in the scene after that frame.

Label 3D Point Clouds 1470

Amazon SageMaker Developer Guide

• If a worker accidentally bulk deletes all annotations for a object, they can add them back. For
example, if a worker deletes all annotations for an object before frame 100, they can bulk add
them to those frames.

• Workers can rename a label in one frame and all 3D cuboids assigned that label are updated
with the new name across all frames.

• Workers can use bulk editing to add or edit label category attributes and frame attributes in
multiple frames.

• Snapping – Workers can add a cuboid around an object and use a keyboard shortcut or
menu option to have Ground Truth's autofit tool snap the cuboid tightly around the object's
boundaries.

• Fit to ground – After a worker adds a cuboid to the 3D scene, the worker can automatically snap
the cuboid to the ground. For example, the worker can use this feature to snap a cuboid to the
road or sidewalk in the scene.

• Multi-view labeling – After a worker adds a 3D cuboid to the 3D scene, a side-panel displays
front and two side perspectives to help the worker adjust the cuboid tightly around the object.
Workers can annotation the 3D point cloud, the side panel and the adjustments appear in the
other views in real time.

• Sensor fusion – If you provide data for sensor fusion, workers can adjust annotations in the 3D
scenes and in 2D images, and the annotations are projected into the other view in real time. To
learn more about the data for sensor fusion, see Understand Coordinate Systems and Sensor
Fusion.

• Auto-merge cuboids – Workers can automatically merge two cuboids across all frames if they
determine that cuboids with different labels actually represent a single object.

• View options – Enables workers to easily hide or view label text, a ground mesh, and additional
point attributes like color or intensity. Workers can also choose between perspective and
orthogonal projections.

Input Data Format

You can create a 3D-2D object tracking job using the SageMaker API operation,
CreateLabelingJob. To create a labeling job for this task type you need the following:

• A sequence input manifest file. To learn how to create this type of manifest file, see Create a
Point Cloud Sequence Input Manifest. If you are a new user of Ground Truth 3D point cloud
labeling modalities, we recommend that you review Accepted Raw 3D Data Formats.

Label 3D Point Clouds 1471

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-sensor-fusion-details.html#sms-point-cloud-sensor-fusion
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-sensor-fusion-details.html#sms-point-cloud-sensor-fusion
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

• You specify your labels, label category and frame attributes, and worker instructions in a label
category configuration file. For more information, see Create a Labeling Category Configuration
File with Label Category and Frame Attributes to learn how to create this file. The following is an
example showing a label category configuration file for creating a 3D-2D object tracking job.

{
 "document-version": "2020-03-01",
 "categoryGlobalAttributes": [
 {
 "name": "Occlusion",
 "description": "global attribute that applies to all label categories",
 "type": "string",
 "enum":[
 "Partial",
 "Full"
]
 }
],
 "labels":[
 {
 "label": "Car",
 "attributes": [
 {
 "name": "Type",
 "type": "string",
 "enum": [
 "SUV",
 "Sedan"
]
 }
]
 },
 {
 "label": "Bus",
 "attributes": [
 {
 "name": "Size",
 "type": "string",
 "enum": [
 "Large",
 "Medium",
 "Small"
]

Label 3D Point Clouds 1472

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-cat-config-attributes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-cat-config-attributes.html

Amazon SageMaker Developer Guide

 }
]
 }
],
 "instructions": {
 "shortIntroduction": "Draw a tight cuboid around objects after you select a
 category.",
 "fullIntroduction": "<p>Use this area to add more detailed worker
 instructions.</p>"
 },
 "annotationType": [
 {
 "type": "BoundingBox"
 },
 {
 "type": "Cuboid"
 }
]
}

Note

You need to provide BoundingBox and Cuboid as annotationType in the label category
configuration file to create a 3D-2D object tracking job.

Create a 3D-2D Point Cloud Object Tracking Labeling Job

You can create a 3D-2D point cloud labeling job using the SageMaker API operation,
CreateLabelingJob. To create a labeling job for this task type you need the following:

• A work team from a private or vendor workforce. You cannot use Amazon Mechanical Turk for
3D point cloud labeling jobs. To learn how to create workforces and work teams, see Create and
Manage Workforces.

• Add a CORS policy to an S3 bucket that contains input data in the Amazon S3 console. To set
the required CORS headers on the S3 bucket that contains your input images in the S3 console,
follow the directions detailed in CORS Permission Requirement.

• Additionally, make sure that you have reviewed and satisfied the Assign IAM Permissions to Use
Ground Truth.

Label 3D Point Clouds 1473

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-cors-update.html

Amazon SageMaker Developer Guide

To learn how to create a labeling job using the API, see the following sections.

Create a Labeling Job (API)

This section covers details you need to know when you create a 3D-2D object tracking labeling job
using the SageMaker API operation CreateLabelingJob. This API defines this operation for all
AWS SDKs. To see a list of language-specific SDKs supported for this operation, review the See Also
section of CreateLabelingJob.

Create a Labeling Job (API) provides an overview of the CreateLabelingJob operation. Follow
these instructions and do the following while you configure your request:

• You must enter an ARN for HumanTaskUiArn. Use
arn:aws:sagemaker:<region>:394669845002:human-task-ui/
PointCloudObjectTracking. Replace <region> with the AWS Region you are creating the
labeling job in.

There should not be an entry for the UiTemplateS3Uri parameter.

• Your LabelAttributeName must end in -ref. For example, ot-labels-ref.

• Your input manifest file must be a point cloud frame sequence manifest file. For more
information, see Create a Point Cloud Sequence Input Manifest. You also need to provide a label
category configuration file as mentioned above.

• You need to provide pre-defined ARNs for the pre-annotation and post-annotation (ACS)
Lambda functions. These ARNs are specific to the AWS Region you use to create your labeling
job.

• To find the pre-annotation Lambda ARN, refer to PreHumanTaskLambdaArn. Use the
Region you are creating your labeling job in to find the correct ARN that ends with
PRE-3DPointCloudObjectTracking.

• To find the post-annotation Lambda ARN, refer to AnnotationConsolidationLambdaArn.
Use the Region you are creating your labeling job in to find the correct ARN that ends with
ACS-3DPointCloudObjectTracking.

• The number of workers specified in NumberOfHumanWorkersPerDataObject should be 1.

• Automated data labeling is not supported for 3D point cloud labeling jobs. You should not
specify values for parameters in LabelingJobAlgorithmsConfig.

• 3D-2D object tracking labeling jobs can take multiple hours to complete. You can specify
a longer time limit for these labeling jobs in TaskTimeLimitInSeconds (up to 7 days, or
604,800 seconds).

Label 3D Point Clouds 1474

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AnnotationConsolidationConfig.html#sagemaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelingJobAlgorithmsConfig

Amazon SageMaker Developer Guide

Note

After you have successfully created a 3D-2D object tracking job, it shows up on the console
under labeling jobs. The task type for the job is displayed as Point Cloud Object Tracking.

Output Data

When you create a 3D-2D object tracking labeling job, tasks are sent to workers. When these
workers complete their tasks, their annotations are written to the Amazon S3 bucket you specified
when you created the labeling job. The output data format determines what you see in your
Amazon S3 bucket when your labeling job status (LabelingJobStatus) is Completed.

If you are a new user of Ground Truth, see Output Data to learn more about the Ground Truth
output data format. To learn about the 3D-2D point cloud object tracking output data format, see
3D-2D Object Tracking Point Cloud Object Tracking Output.

3D Point Cloud Labeling Jobs Overview

This topic provides an overview of the unique features of a Ground Truth 3D point cloud labeling
job. You can use the 3D point cloud labeling jobs to have workers label objects in a 3D point cloud
generated from a 3D sensors like LiDAR and depth cameras or generated from 3D reconstruction
by stitching images captured by an agent like a drone.

Job Pre-processing Time

When you create a 3D point cloud labeling job, you need to provide an input manifest file. The
input manifest file can be:

• A frame input manifest file that has a single point cloud frame on each line.

• A sequence input manifest file that has a single sequence on each line. A sequence is defined as a
temporal series of point cloud frames.

For both types of manifest files, job pre-processing time (that is, the time before Ground Truth
starts sending tasks to your workers) depends on the total number and size of point cloud frames
you provide in your input manifest file. For frame input manifest files, this is the number of lines
in your manifest file. For sequence manifest files, this is the number of frames in each sequence
multiplied by the total number of sequences, or lines, in your manifest file.

Label 3D Point Clouds 1475

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeLabelingJob.html#API_DescribeLabelingJob_ResponseSyntax

Amazon SageMaker Developer Guide

Additionally, the number of points per point cloud and the number of fused sensor data objects
(like images) factor into job pre-processing times. On average, Ground Truth can pre-process 200
point cloud frames in approximately 5 minutes. If you create a 3D point cloud labeling job with
a large number of point cloud frames, you might experience longer job pre-processing times.
For example, if you create a sequence input manifest file with 4 point cloud sequences, and each
sequence contains 200 point clouds, Ground Truth pre-processes 800 point clouds and so your
job pre-processing time might be around 20 minutes. During this time, your labeling job status is
InProgress.

While your 3D point cloud labeling job is pre-processing, you receive CloudWatch
messages notifying you of the status of your job. To identify these messages, search for
3D_POINT_CLOUD_PROCESSING_STATUS in your labeling job logs.

For frame input manifest files, your CloudWatch logs will have a message similar to the following:

{
 "labeling-job-name": "example-point-cloud-labeling-job",
 "event-name": "3D_POINT_CLOUD_PROCESSING_STATUS",
 "event-log-message": "datasetObjectId from: 0 to 10, status: IN_PROGRESS"
}

The event log message, datasetObjectId from: 0 to 10, status: IN_PROGRESS
identifies the number of frames from your input manifest that have been processed. You receive
a new message every time a frame has been processed. For example, after a single frame has
processed, you receive another message that says datasetObjectId from: 1 to 10,
status: IN_PROGRESS.

For sequence input manifest files, your CloudWatch logs will have a message similar to the
following:

{
 "labeling-job-name": "example-point-cloud-labeling-job",
 "event-name": "3D_POINT_CLOUD_PROCESSING_STATUS",
 "event-log-message": "datasetObjectId: 0, status: IN_PROGRESS"
}

The event log message, datasetObjectId from: 0, status: IN_PROGRESS identifies
the number of sequences from your input manifest that have been processed. You receive a
new message every time a sequence has been processed. For example, after a single sequence

Label 3D Point Clouds 1476

Amazon SageMaker Developer Guide

has processed, you receive a message that says datasetObjectId from: 1, status:
IN_PROGRESS as the next sequence begins processing.

Job Completion Times

3D point cloud labeling jobs can take workers hours to complete. You can set the total amount of
time that workers can work on each task when you create a labeling job. The maximum time you
can set for workers to work on tasks is 7 days. The default value is 3 days.

It is strongly recommended that you create tasks that workers can complete within 12 hours.
Workers must keep the worker UI open while working on a task. They can save work as they go and
Ground Truth will save their work every 15 minutes.

When using the SageMaker CreateLabelingJob API operation, set the total time a task is
available to workers in the TaskTimeLimitInSeconds parameter of HumanTaskConfig.

When you create a labeling job in the console, you can specify this time limit when you select your
workforce type and your work team.

Workforces

When you create a 3D point cloud labeling job, you need to specify a work team that will complete
your point cloud annotation tasks. You can choose a work team from a private workforce of your
own workers, or from a vendor workforce that you select in the AWS Marketplace. You cannot use
the Amazon Mechanical Turk workforce for 3D point cloud labeling jobs.

To learn more about vendor workforce, see Managing Vendor Workforces.

To learn how to create and manage a private workforce, see Use a Private Workforce.

Worker User Interface (UI)

Ground Truth provides a worker user interface (UI), tools, and assistive labeling features to help
workers complete your 3D point cloud labeling tasks.

You can preview the worker UI when you create a labeling job in the console.

When you create a labeling job using the API operation CreateLabelingJob, you must provide
an ARN provided by Ground Truth in the parameter HumanTaskUiArn to specify the worker UI
for your task type. You can use HumanTaskUiArn with the SageMaker RenderUiTemplate API
operation to preview the worker UI.

Label 3D Point Clouds 1477

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UiConfig.html#sagemaker-Type-UiConfig-UiTemplateS3Uri
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RenderUiTemplate.html

Amazon SageMaker Developer Guide

You provide worker instructions, labels, and optionally, label category attributes that are displayed
in the worker UI.

Label Category Attributes

When you create a 3D point cloud object tracking or object detection labeling job, you can add one
or more label category attributes. You can add frame attributes to all 3D point cloud task types:

• Label category attribute – A list of options (strings), a free form text box, or a numeric field
associated with one or more labels. It is used by workers to to provide metadata about a label.

• Frame attribute – A list of options (strings), a free form text box, or a numeric field that appears
on each point cloud frame a worker is sent to annotate. It is used by workers to provide metadata
about frames.

Additionally, you can use label and frame attributes to have workers verify labels in a 3D point
cloud label verification job.

Use the following sections to learn more about these attributes. To learn how to add label category
and frame attributes to a labeling job, use the Create Labeling Job section on the task type page
of your choice.

Label Category Attributes

Add label category attributes to labels to give workers the ability to provide more information
about the annotations they create. A label category attribute is added to an individual label, or to
all labels. When a label category attribute is applied to all labels it is referred to as a global label
category attribute.

For example, if you add the label category car, you might also want to capture additional data
about your labeled cars, such as if they are occluded or the size of the car. You can capture this
metadata using label category attributes. In this example, if you added the attribute occluded to
the car label category, you can assign partial, completely, no to the occluded attribute and enable
workers to select one of these options.

When you create a label verification job, you add labels category attributes to each label you want
workers to verify.

Label 3D Point Clouds 1478

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types

Amazon SageMaker Developer Guide

Frame Attributes

Add frame attributes to give workers the ability to provide more information about individual point
cloud frames. You can specify up to 10 frame attributes, and these attributes will appear on all
frames.

For example, you can add a frame attribute that allows workers to enter a number. You may want
to use this attribute to have workers identify the number of objects they see in a particular frame.

In another example, you may want to provide a free-form text box to give workers the ability to
provide a free form answer to a question.

When you create a label verification job, you can add one or more frame attributes to ask workers
to provide feedback on all labels in a point cloud frame.

Worker Instructions

You can provide worker instructions to help your workers complete your point cloud labeling tasks.
You might want to use these instructions to do the following:

• Best practices and things to avoid when annotating objects.

• Explanation of the label category attributes provided (for object detection and object tracking
tasks), and how to use them.

• Advice on how to save time while labeling by using keyboard shortcuts.

You can add your worker instructions using the SageMaker console while creating a labeling job.
If you create a labeling job using the API operation CreateLabelingJob, you specify worker
instructions in your label category configuration file.

In addition to your instructions, Ground Truth provides a link to help workers navigate and use the
worker portal. View these instructions by selecting the task type on Worker Instructions.

Declining Tasks

Workers are able to decline tasks.

Workers decline a task if the instructions are not clear, input data is not displaying correctly, or
if they encounter some other issue with the task. If the number of workers per dataset object
(NumberOfHumanWorkersPerDataObject) decline the task, the data object is marked as expired
and will not be sent to additional workers.

Label 3D Point Clouds 1479

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-NumberOfHumanWorkersPerDataObject

Amazon SageMaker Developer Guide

3D Point Cloud Labeling Job Permission Requirements

When you create a 3D point cloud labeling job, in addition to the permission requirements found
in Assign IAM Permissions to Use Ground Truth, you must add a CORS policy to your S3 bucket that
contains your input manifest file.

Add a CORS Permission Policy to S3 Bucket

When you create a 3D point cloud labeling job, you specify buckets in S3 where your input data
and manifest file are located and where your output data will be stored. These buckets may be the
same. You must attach the following Cross-origin resource sharing (CORS) policy to your input and
output buckets. If you use the Amazon S3 console to add the policy to your bucket, you must use
the JSON format.

JSON

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",
 "HEAD",
 "PUT"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [
 "Access-Control-Allow-Origin"
],
 "MaxAgeSeconds": 3000
 }
]

XML

<?xml version="1.0" encoding="UTF-8"?>
 <CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>

Label 3D Point Clouds 1480

Amazon SageMaker Developer Guide

 <AllowedMethod>GET</AllowedMethod>
 <AllowedMethod>HEAD</AllowedMethod>
 <AllowedMethod>PUT</AllowedMethod>
 <MaxAgeSeconds>3000</MaxAgeSeconds>
 <ExposeHeader>Access-Control-Allow-Origin</ExposeHeader>
 <AllowedHeader>*</AllowedHeader>
 </CORSRule>
 </CORSConfiguration>

To learn how to add a CORS policy to an S3 bucket, see How do I add cross-domain resource
sharing with CORS? in the Amazon Simple Storage Service User Guide.

Worker Instructions

This topic provides an overview of the Ground Truth worker portal and the tools available to
complete your 3D Point Cloud labeling task. First, select the type of task you are working on from
Topics.

For adjustment jobs, select the original labeling job task type that produced the labels you are
adjusting. Review and adjust the labels in your task as needed.

Important

It is recommended that you complete your task using a Google Chrome or Firefox web
browser.

Topics

• 3D Point Cloud Semantic Segmentation

• 3D Point Cloud Object Detection

• 3D Point Cloud Object Tracking

3D Point Cloud Semantic Segmentation

Use this page to become familiarize with the user interface and tools available to complete your 3D
point cloud semantic segmentation task.

Topics

Label 3D Point Clouds 1481

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html

Amazon SageMaker Developer Guide

• Your Task

• Navigate the UI

• Icon Guide

• Shortcuts

• Release, Stop and Resume, and Decline Tasks

• Saving Your Work and Submitting

Your Task

When you work on a 3D point cloud semantic segmentation task, you need to select a category
from the Annotations menu on the right side of your worker portal using the drop down menu
Label Categories. After you've selected a category, use the paint brush and polygon tools to paint
each object in the 3D point cloud that this category applies to. For example, if you select the
category Car, you would use these tools to paint all of the cars in the point cloud. The following
video demonstrates how to use the paint brush tool to paint an object.

If you see one or more images in your worker portal, you can paint in the images or paint in the 3D
point cloud and the paint will show up in the other medium.

You may see frame attributes under the Labels menu. Use these attribute prompts to enter
additional information about the point cloud.

Label 3D Point Clouds 1482

Amazon SageMaker Developer Guide

Important

If you see that objects have already been painted when you open the task, adjust those
annotations.

The following video includes an image that can be annotated. You may not see an image in your
task.

Label 3D Point Clouds 1483

Amazon SageMaker Developer Guide

After you've painted one or more objects using a label category, you can select that category from
the Label Category menu on the right to only view points painted for that category.

Label 3D Point Clouds 1484

Amazon SageMaker Developer Guide

Navigate the UI

You can navigate in the 3D scene using their keyboard and mouse. You can:

• Double click on specific objects in the point cloud to zoom into them.

• Use a mouse-scroller or trackpad to zoom in and out of the point cloud.

• Use both keyboard arrow keys and Q, E, A, and D keys to move Up, Down, Left, Right. Use
keyboard keys W and S to zoom in and out.

The following video demonstrates movements around the 3D point cloud and in the side-view.
You can hide and re-expand all side views using the full screen icon. In this GIF, the side-views and
menus have been collapsed.

When you are in the worker UI, you see the following menus:

• Instructions – Review these instructions before starting your task.

• Shortcuts – Use this menu to view keyboard shortcuts that you can use to navigate the point
cloud and use the annotation tools provided.

• View – Use this menu to toggle different view options on and off. For example, you can use this
menu to add a ground mesh to the point cloud, and to choose the projection of the point cloud.

Label 3D Point Clouds 1485

Amazon SageMaker Developer Guide

• 3D Point Cloud – Use this menu to add additional attributes to the points in the point cloud,
such as color, and pixel intensity. Note that some or all of these options may not be available.

• Paint – Use this menu to modify the functionality of the paint brush.

When you open a task, the move scene icon is on, and you can move around the point cloud using
your mouse and the navigation buttons in the point cloud area of the screen. To return to the
original view you see when you first opened the task, choose the reset scene icon.

After you select the paint icon, you can add paint to the point cloud and images (if included). You
must select the move scene icon again to move to another area in the 3D point cloud or image.

To collapse all panels on the right and make the 3D point cloud full screen, select the full screen
icon.

For the camera images and side-panels, you have the following view options:

• C – View the camera angle on point cloud view.

• F – View the frustum, or field of view, of the camera used to capture that image on point cloud
view.

• P – View the point cloud overlaid on the image.

Icon Guide

Use this table to learn about the icons available in your worker task portal.

Icon Name Description

brush Choose this icon to turn on the brush tool. To use with
this tool, choose and move over the objects that you
want to paint with your mouse. After you choose it,
everything you paint be associated with the category
you chose.

polygon Choose this icon to use the polygon paint tool. Use this
tool to draw polygons around objects that you want
to paint. After you choose it, everything you draw a
polygon around will be associated with the category you
have chosen.

Label 3D Point Clouds 1486

Amazon SageMaker Developer Guide

Icon Name Description

reset scene Choose this icon to reset the view of the point cloud,
side panels, and if applicable, all images to their original
position when the task was first opened.

move scene Choose this icon to move the scene. By default, this icon
will be selected when you first start a task.

full screen Choose this icon to make the 3D point cloud visualiza
tion full screen, and to collapse all side panels.

Label 3D Point Clouds 1487

Amazon SageMaker Developer Guide

Icon Name Description

ruler Use this icon to measure distances, in meters, in the
point cloud. You may want to use this tool if your
instructions ask you to annotate all objects in a given
distance from the center of the cuboid or the object
used to capture data.

When you select this icon, you can place the starting
point (first marker) anywhere in the point cloud by
selecting it with your mouse. The tool will automatically
use interpolation to place a marker on the closest point
within threshold distance to the location you select,
otherwise the marker will be placed on ground. If you
place a starting point by mistake, you can use the Escape
key to revert marker placement.

After you place the first marker, you see a dotted line
and a dynamic label that indicates the distance you have
moved away from the first marker. Click somewhere else
on the point cloud to place a second marker. When you
place the second marker, the dotted line becomes solid,
and the distance is set.

After you set a distance, you can edit it by selecting
either marker. You can delete a ruler by selecting
anywhere on the ruler and using the Delete key on your
keyboard.

Shortcuts

The shortcuts listed in the Shortcuts menu can help you navigate the 3D point cloud and use the
paint tool.

Before you start your task, it is recommended that you review the Shortcuts menu and become
acquainted with these commands.

Label 3D Point Clouds 1488

Amazon SageMaker Developer Guide

Release, Stop and Resume, and Decline Tasks

When you open the labeling task, three buttons on the top right allow you to decline the task
(Decline task), release it (Release task), and stop and resume it at a later time (Stop and resume
later). The following list describes what happens when you select one of these options:

• Decline task: You should only decline a task if something is wrong with the task, such as an issue
with the 3D point cloud, images or the UI. If you decline a task, you will not be able to return to
the task.

• Release Task: If you release a task, you loose all work done on that task. When the task is
released, other workers on your team can pick it up. If enough workers pick up the task, you
may not be able to return to it. When you select this button and then select Confirm, you are
returned to the worker portal. If the task is still available, its status will be Available. If other
workers pick it up, it will disappear from your portal.

• Stop and resume later: You can use the Stop and resume later button to stop working and
return to the task at a later time. You should use the Save button to save your work before you
select Stop and resume later. When you select this button and then select Confirm, you are
returned to the worker portal, and the task status is Stopped. You can select the same task to
resume work on it.

Be aware that the person that creates your labeling tasks specifies a time limit in which all
tasks much be completed by. If you do not return to and complete this task within that time
limit, it will expire and your work will not be submitted. Contact your administrator for more
information.

Saving Your Work and Submitting

You should periodically save your work. Ground Truth will automatically save your work ever 15
minutes.

When you open a task, you must complete your work on it before pressing Submit.

3D Point Cloud Object Detection

Use this page to become familiarize with the user interface and tools available to complete your 3D
point cloud object detection task.

Topics

• Your Task

Label 3D Point Clouds 1489

Amazon SageMaker Developer Guide

• Navigate the UI

• Icon Guide

• Shortcuts

• Release, Stop and Resume, and Decline Tasks

• Saving Your Work and Submitting

Your Task

When you work on a 3D point cloud object detection task, you need to select a category from the
Annotations menu on the right side of your worker portal using the Label Categories menu. After
you've chosen a category, use the add cuboid and fit cuboid tools to fit a cuboid around objects
in the 3D point cloud that this category applies to. After you place a cuboid, you can modify its
dimensions, location, and orientation directly in the point cloud, and the three panels shown on
the right.

If you see one or more images in your worker portal, you can also modify cuboids in the images or
in the 3D point cloud and the edits will show up in the other medium.

If you see cuboids have already been added to the 3D point cloud when you open your task, adjust
those cuboids and add additional cuboids as needed.

To edit a cuboid, including moving, re-orienting, and changing cuboid dimensions, you must
use shortcut keys. You can see a full list of shortcut keys in the Shortcuts menu in your UI. The
following are important key-combinations that you should become familiar with before starting
your labeling task.

Mac Command Windows Command Action

Cmd + Drag Ctrl + Drag Modify the dimensions of the
cuboid.

Option + Drag Alt + Drag Move the cuboid.

Shift + Drag Shift + Drag Rotate the cuboid.

Option + O Alt + O Fit the cuboid tightly around
the points it has been drawn
around. Before using the

Label 3D Point Clouds 1490

Amazon SageMaker Developer Guide

Mac Command Windows Command Action

option, make sure the cuboid
fully-surrounds the object of
interest.

Option + G Alt + G Set the cuboid to the ground.

Individual labels may have one or more label attributes. If a label has a label attribute associated
with it, it will appear when you select the downward pointing arrow next to the label from the
Label Id menu. Fill in required values for all label attributes.

You may see frame attributes under the Labels menu. Use these attribute prompts to enter
additional information about each frame.

Navigate the UI

You can navigate in the 3D scene using your keyboard and mouse. You can:

Label 3D Point Clouds 1491

Amazon SageMaker Developer Guide

• Double click on specific objects in the point cloud to zoom into them.

• You can use the [and] keys on your keyboard to zoom into and move from one label to the next.
If no label is selected, when you select [or], the UI will zoom into the first label in the Lable Id
list.

• Use a mouse-scroller or trackpad to zoom in and out of the point cloud.

• Use both keyboard arrow keys and Q, E, A, and D keys to move Up, Down, Left, Right. Use
keyboard keys W and S to zoom in and out.

Once you place a cuboids in the 3D scene, a side-view will appear with three projected views: top,
side, and back. These side-views show points in and around the placed cuboid and help workers
refine cuboid boundaries in that area. Workers can zoom in and out of each of those side-views
using their mouse.

The following video demonstrates movements around the 3D point cloud and in the side-view.

When you are in the worker UI, you see the following menus:

• Instructions – Review these instructions before starting your task.

• Shortcuts – Use this menu to view keyboard shortcuts that you can use to navigate the point
cloud and use the annotation tools provided.

Label 3D Point Clouds 1492

Amazon SageMaker Developer Guide

• Label – Use this menu to modify a cuboid. First, select a cuboid, and then choose an option from
this menu. This menu includes assistive labeling tools like setting a cuboid to the ground and
automatically fitting the cuboid to the object's boundaries.

• View – Use this menu to toggle different view options on and off. For example, you can use this
menu to add a ground mesh to the point cloud, and to choose the projection of the point cloud.

• 3D Point Cloud – Use this menu to add additional attributes to the points in the point cloud,
such as color, and pixel intensity. Note that these options may not be available.

When you open a task, the move scene icon is on, and you can move around the point cloud using
your mouse and the navigation buttons in the point cloud area of the screen. To return to the
original view you see when you first opened the task, choose the reset scene icon. Resetting the
view will not modify your annotations.

After you select the add cuboid icon, you can add cuboids to the 3D point cloud visualization. Once
you've added a cuboid, you can adjust it in the three views (top, side, and front) and in the images
(if included).

You must choose the move scene icon again to move to another area in the 3D point cloud or
image.

To collapse all panels on the right and make the 3D point cloud full-screen, choose the full screen
icon.

Label 3D Point Clouds 1493

Amazon SageMaker Developer Guide

If camera images are included, you may have the following view options:

• C – View the camera angle on point cloud view.

• F – View the frustum, or field of view, of the camera used to capture that image on point cloud
view.

• P – View the point cloud overlaid on the image.

• B – View cuboids in the image.

The following video demonstrates how to use these view options. The F option is used to view the
field of view of the camera (the gray area), the C options shows the direction the camera is facing
and angle of the camera (blue lines), and the B option is used to view the cuboid.

Icon Guide

Use this table to learn about the icons you see in your worker task portal.

Icon Description

add cuboid Choose this icon to add a cuboid. Each cuboid you add is
associated with the category you chose.

edit cuboid Choose this icon to edit a cuboid. After you have added
a cuboid, you can edit its dimensions, location, and

Label 3D Point Clouds 1494

Amazon SageMaker Developer Guide

Icon Description

orientation. After a cuboid is added, it automatically
switches to edit cuboid mode.

ruler Use this icon to measure distances, in meters, in the
point cloud. You may want to use this tool if your
instructions ask you to annotate all objects in a given
distance from the center of the cuboid or the object
used to capture data.

When you select this icon, you can place the starting
point (first marker) anywhere in the point cloud by
selecting it with your mouse. The tool will automatically
use interpolation to place a marker on the closest point
within threshold distance to the location you select,
otherwise the marker will be placed on ground. If you
place a starting point by mistake, you can use the Escape
key to revert marker placement.

After you place the first marker, you see a dotted line
and a dynamic label that indicates the distance you have
moved away from the first marker. Click somewhere else
on the point cloud to place a second marker. When you
place the second marker, the dotted line becomes solid,
and the distance is set.

After you set a distance, you can edit it by selecting
either marker. You can delete a ruler by selecting
anywhere on the ruler and using the Delete key on your
keyboard.

reset scene Choose this icon to reset the view of the point cloud,
side panels, and if applicable, all images to their original
position when the task was first opened.

move scene Choose this icon to move the scene. By default, this icon
is chosen when you first start a task.

Label 3D Point Clouds 1495

Amazon SageMaker Developer Guide

Icon Description

full screen Choose this icon to make the 3D point cloud visualiza
tion full screen, and to collapse all side panels.

show labels Show labels in the 3D point cloud visualization, and if
applicable, in images.

hide labels Hide labels in the 3D point cloud visualization, and if
applicable, in images.

delete labels Delete a label.

Shortcuts

The shortcuts listed in the Shortcuts menu can help you navigate the 3D point cloud and use tools
to add and edit cuboids.

Before you start your task, it is recommended that you review the Shortcuts menu and become
acquainted with these commands. You need to use some of the 3D cuboid controls to edit your
cuboid.

Release, Stop and Resume, and Decline Tasks

When you open the labeling task, three buttons on the top right allow you to decline the task
(Decline task), release it (Release task), and stop and resume it at a later time (Stop and resume
later). The following list describes what happens when you select one of these options:

• Decline task: You should only decline a task if something is wrong with the task, such as an issue
with the 3D point cloud, images or the UI. If you decline a task, you will not be able to return to
the task.

• Release Task: If you release a task, you loose all work done on that task. When the task is
released, other workers on your team can pick it up. If enough workers pick up the task, you
may not be able to return to it. When you select this button and then select Confirm, you are
returned to the worker portal. If the task is still available, its status will be Available. If other
workers pick it up, it will disappear from your portal.

Label 3D Point Clouds 1496

Amazon SageMaker Developer Guide

• Stop and resume later: You can use the Stop and resume later button to stop working and
return to the task at a later time. You should use the Save button to save your work before you
select Stop and resume later. When you select this button and then select Confirm, you are
returned to the worker portal, and the task status is Stopped. You can select the same task to
resume work on it.

Be aware that the person that creates your labeling tasks specifies a time limit in which all
tasks much be completed by. If you do not return to and complete this task within that time
limit, it will expire and your work will not be submitted. Contact your administrator for more
information.

Saving Your Work and Submitting

You should periodically save your work. Ground Truth will automatically save your work ever 15
minutes.

When you open a task, you must complete your work on it before pressing Submit.

3D Point Cloud Object Tracking

Use this page to become familiarize with the user interface and tools available to complete your 3D
point cloud object detection task.

Topics

• Your Task

• Navigate the UI

• Bulk Edit Label Category and Frame Attributes

• Icon Guide

• Shortcuts

• Release, Stop and Resume, and Decline Tasks

• Saving Your Work and Submitting

Your Task

When you work on a 3D point cloud object tracking task, you need to select a category from the
Annotations menu on the right side of your worker portal using the Label Categories menu. After
you've selected a category, use the add cuboid and fit cuboid tools to fit a cuboid around objects

Label 3D Point Clouds 1497

Amazon SageMaker Developer Guide

in the 3D point cloud that this category applies to. After you place a cuboid, you can modify its
location, dimensions, and orientation directly in the point cloud, and the three panels shown on
the right. If you see one or more images in your worker portal, you can also modify cuboids in the
images or in the 3D point cloud and the edits will show up in the other medium.

Important

If you see cuboids have already been added to the 3D point cloud frames when you open
your task, adjust those cuboids and add additional cuboids as needed.

To edit a cuboid, including moving, re-orienting, and changing cuboid dimensions, you must
use shortcut keys. You can see a full list of shortcut keys in the Shortcuts menu in your UI. The
following are important key-combinations that you should become familiar with before starting
your labeling task.

Mac Command Windows Command Action

Cmd + Drag Ctrl + Drag Modify the dimensions of the
cuboid.

Option + Drag Alt + Drag Move the cuboid.

Shift + Drag Shift + Drag Rotate the cuboid.

Option + O Alt + O Fit the cuboid tightly around
the points it has been drawn
around. Before using the
option, make sure the cuboid
fully-surrounds the object of
interest.

Option + G Alt + G Set the cuboid to the ground.

When you open your task, two frames will be loaded. If your task includes more than two frames,
you need to use the navigation bar in the lower-left corner, or the load frames icon to load
additional frames. You should annotate and adjust labels in all frames before submitting.

Label 3D Point Clouds 1498

Amazon SageMaker Developer Guide

After you fit a cuboid tightly around the boundaries of an object, navigate to another frame using
the navigation bar in the lower-left corner of the UI. If that same object has moved to a new
location, add another cuboid and fit it tightly around the boundaries of the object. Each time you
manually add a cuboid, you see the frame sequence bar in the lower-left corner of the screen turn
red where that frame is located temporally in the sequence.

Your UI automatically infers the location of that object in all other frames after you've placed a
cuboid. This is called interpolation. You can see the movement of that object, and the inferred
and manually created cuboids using the arrows. Adjust inferred cuboids as needed. The following
video demonstrates how to navigate between frames. The following video shows how, if you add a
cuboid in one frame, and then adjust it in another, your UI will automatically infer the location of
the cuboid in all of the frames in-between.

Tip

You can turn off the automatic cuboid interpolation across frames using the 3D Point
Cloud menu item. Select 3D Point Cloud from the top-menu, and then select Interpolate
Cuboids Across Frames. This will uncheck this option and stop cuboid interpolation. You
can reselect this item to turn cuboid interpolation back on.
Turning cuboid interpolation off will not impact cuboids that have already been
interpolated across frames.

Label 3D Point Clouds 1499

Amazon SageMaker Developer Guide

Individual labels may have one or more label attributes. If a label has a label attribute associated
with it, it will appear when you select the downward pointing arrow next to the label from the
Label Id menu. Fill in required values for all label attributes.

You may see frame attributes under the Label Id menu. These attributes will appear on each frame
in your task. Use these attribute prompts to enter additional information about each frame.

Navigate the UI

You can navigate in the 3D scene using your keyboard and mouse. You can:

• Double click on specific objects in the point cloud to zoom into them.

• You can use the [and] keys on your keyboard to zoom into and move from one label to the next.
If no label is selected, when you select [or], the UI will zoom into the first label in the Label Id
list.

• Use a mouse-scroller or trackpad to zoom in and out of the point cloud.

Label 3D Point Clouds 1500

Amazon SageMaker Developer Guide

• Use both keyboard arrow keys and Q, E, A, and D keys to move Up, Down, Left, Right. Use
keyboard keys W and S to zoom in and out.

Once you place a cuboids in the 3D scene, a side-view will appear with three projected views: top,
side, and back. These side-views show points in and around the placed cuboid and help workers
refine cuboid boundaries in that area. Workers can zoom in and out of each of those side-views
using their mouse.

The following video demonstrates movements around the 3D point cloud and in the side-view.

When you are in the worker UI, you see the following menus:

• Instructions – Review these instructions before starting your task.

• Shortcuts – Use this menu to view keyboard shortcuts that you can use to navigate the point
cloud and use the annotation tools provided.

• Label – Use this menu to modify a cuboid. First, select a cuboid, and then choose an option from
this menu. This menu includes assistive labeling tools like setting a cuboid to the ground and
automatically fitting the cuboid to the object's boundaries.

• View – Use this menu to toggle different view options on and off. For example, you can use this
menu to add a ground mesh to the point cloud, and to choose the projection of the point cloud.

• 3D Point Cloud – Use this menu to add additional attributes to the points in the point cloud,
such as color, and pixel intensity. Note that these options may not be available.

Label 3D Point Clouds 1501

Amazon SageMaker Developer Guide

When you open a task, the move scene icon is on, and you can move around the point cloud using
your mouse and the navigation buttons in the point cloud area of the screen. To return to the
original view you see when you first opened the task, choose the reset scene icon.

After you select the add cuboid icon, you can add cuboids to the point cloud and images (if
included). You must select the move scene icon again to move to another area in the 3D point
cloud or image.

To collapse all panels on the right and make the 3D point cloud full-screen, choose the full screen
icon.

If camera images are included, you may have the following view options:

• C – View the camera angle on point cloud view.

• F – View the frustum, or field of view, of the camera used to capture that image on point cloud
view.

• P – View the point cloud overlaid on the image.

• B – View cuboids in the image.

The following video demonstrates how to use these view options. The F option is used to view the
field of view of the camera (the gray area), the C options shows the direction the camera is facing
and angle of the camera (blue lines), and the B option is used to view the cuboid.

Label 3D Point Clouds 1502

Amazon SageMaker Developer Guide

Delete Cuboids

You can select a cuboid or label ID and:

• Delete an individual cuboid in the current frame you are viewing.

• Delete all cuboids with that label ID before or after the frame you are viewing.

• Delete all cuboids with that label ID in all frames.

A common use-case for cuboid deletion is if the object leaves the scene.

You can use one or more of these options to delete both manually placed and interpolated cuboids
with the same label ID.

• To delete all cuboids before or after the frame you are currently on, select the cuboid, select the
Label menu item at the top of the UI and then select one of Delete in previous frames or Delete
in next frames. Use the Shortcuts menu to see the shortcut keys you can use for these options.

• To delete a label in all frames, select Delete in all frames from the Labels menu, or use the
shortcut Shift + Delete on your keyboard.

• To delete an individual cuboid from a single frame, select the cuboid and either select the
trashcan icon

()
next to that label ID in the Label ID sidebar on the right or use the Delete key on your keyboard
to delete that cuboid.

If you have manually placed more than one cuboid with the same label in different frames, when
you delete one of the manually placed cuboids, all interpolated cuboids adjust. This adjustment
happens because the UI uses manually placed cuboids as anchor points when calculating the
location of interpolated cuboid. When you remove one of these anchor points, the UI must
recalculate the position of interpolated cuboids.

If you delete a cuboid from a frame, but later decide that you want to get it back, you can use the
Duplicate to previous frames or Duplicate to next frames options in the Label menu to copy the
cuboid into all the previous or all of the following frames, respectively.

Label 3D Point Clouds 1503

Amazon SageMaker Developer Guide

Bulk Edit Label Category and Frame Attributes

You can bulk edit label attributes and frame attributes.

When you bulk edit an attribute, you specify one or more ranges of frames that you want to apply
the edit to. The attribute you select is edited in all frames in that range, including the start and end
frames you specify. When you bulk edit label attributes, the range you specify must contain the
label that the label attribute is attached to. If you specify frames that do not contain this label, you
will receive an error.

To bulk edit an attribute you must specify the desired value for the attribute first. For example, if
you want to change an attribute from Yes to No, you must select No, and then perform the bulk
edit.

You can also specify a new value for an attribute that has not been filled in and then use the bulk
edit feature to fill in that value in multiple frames. To do this, select the desired value for the
attribute and complete the following procedure.

To bulk edit a label or attribute:

1. Use your mouse to right click the attribute you want to bulk edit.

2. Specify the range of frames you want to apply the bulk edit to using a dash (-) in the text box.
For example, if you want to apply the edit to frames one through ten, enter 1-10. If you want
to apply the edit to frames two to five, eight to ten and twenty enter 2-5,8-10,20.

3. Select Confirm.

If you get an error message, verify that you entered a valid range and that the label associated with
the label attribute you are editing (if applicable) exists in all frames specified.

You can quickly add a label to all previous or subsequent frames using the Duplicate to previous
frames and Duplicate to next frames options in the Label menu at the top of your screen.

Icon Guide

Use this table to learn about the icons you see in your worker task portal.

Label 3D Point Clouds 1504

Amazon SageMaker Developer Guide

Icon Description

add cuboid Choose this icon to add a cuboid. Each cuboid you add is
associated with the category you chose.

edit cuboid Choose this icon to edit a cuboid. After you add a
cuboid, you can edit its dimensions, location, and
orientation. After a cuboid is added, it automatically
switches to edit cuboid mode.

ruler Use this icon to measure distances, in meters, in the
point cloud. You may want to use this tool if your
instructions ask you to annotate all objects in a given
distance from the center of the cuboid or the object
used to capture data.

When you select this icon, you can place the starting
point (first marker) anywhere in the point cloud by
selecting it with your mouse. The tool will automatically
use interpolation to place a marker on the closest point
within threshold distance to the location you select,
otherwise the marker will be placed on ground. If you
place a starting point by mistake, you can use the Escape
key to revert marker placement.

After you place the first marker, you see a dotted line
and a dynamic label that indicates the distance you have
moved away from the first marker. Click somewhere else
on the point cloud to place a second marker. When you
place the second marker, the dotted line becomes solid,
and the distance is set.

After you set a distance, you can edit it by selecting
either marker. You can delete a ruler by selecting
anywhere on the ruler and using the Delete key on your
keyboard.

Label 3D Point Clouds 1505

Amazon SageMaker Developer Guide

Icon Description

reset scene Choose this icon to reset the view of the point cloud,
side panels, and if applicable, all images to their original
position when the task was first opened.

move scene Choose this icon to move the scene. By default, this icon
is chosen when you first start a task.

full screen Choose this icon to make the 3D point cloud visualiza
tion full screen and to collapse all side panels.

load frames Choose this icon to load additional frames.

hide labels Hide labels in the 3D point cloud visualization, and if
applicable, in images.

show labels Show labels in the 3D point cloud visualization, and if
applicable, in images.

delete labels Delete a label. This option can only be used to delete
labels you have manually created or adjusted.

Shortcuts

The shortcuts listed in the Shortcuts menu can help you navigate the 3D point cloud and use tools
to add and edit cuboids.

Before you start your task, it is recommended that you review the Shortcuts menu and become
acquainted with these commands. You need to use some of the 3D cuboid controls to edit your
cuboid.

Label 3D Point Clouds 1506

Amazon SageMaker Developer Guide

Release, Stop and Resume, and Decline Tasks

When you open the labeling task, three buttons on the top right allow you to decline the task
(Decline task), release it (Release task), and stop and resume it at a later time (Stop and resume
later). The following list describes what happens when you select one of these options:

• Decline task: You should only decline a task if something is wrong with the task, such as an issue
with the 3D point clouds, images or the UI. If you decline a task, you will not be able to return to
the task.

• Release Task: Use this option to release a task and allow others to work on it. When you
release a task, you loose all work done on that task and other workers on your team can pick
it up. If enough workers pick up the task, you may not be able to return to it. When you select
this button and then select Confirm, you are returned to the worker portal. If the task is still
available, its status will be Available. If other workers pick it up, it will disappear from your
portal.

• Stop and resume later: You can use the Stop and resume later button to stop working and
return to the task at a later time. You should use the Save button to save your work before you
select Stop and resume later. When you select this button and then select Confirm, you are
returned to the worker portal, and the task status is Stopped. You can select the same task to
resume work on it.

Be aware that the person that creates your labeling tasks specifies a time limit in which all
tasks much be completed by. If you do not return to and complete this task within that time
limit, it will expire and your work will not be submitted. Contact your administrator for more
information.

Saving Your Work and Submitting

You should periodically save your work. Ground Truth will automatically save your work ever 15
minutes.

When you open a task, you must complete your work on it before pressing Submit.

Verify and Adjust Labels

When the labels on a dataset need to be validated, Amazon SageMaker Ground Truth provides
functionality to have workers verify that labels are correct or to adjust previous labels.

These types of jobs fall into two distinct categories:

Verify and Adjust Labels 1507

Amazon SageMaker Developer Guide

• Label verification — Workers indicate if the existing labels are correct, or rate their quality, and
can add comments to explain their reasoning. Workers will not be able to modify or adjust labels.

If you create a 3D point cloud or video frame label adjustment or verification job, you can choose
to make label category attributes (not supported for 3D point cloud semantic segmentation) and
frame attributes editable by workers.

• Label adjustment — Workers adjust prior annotations and, if applicable, label category and frame
attributes to correct them.

The following Ground Truth built-in task types support adjustment and verification labeling jobs:

• Bounding box

• Semantic segmentation

• 3D point cloud object detection, 3D point cloud object tracking, and 3D point cloud semantic
segmentation

• All video frame object detection and video frame object tracking task types — bounding box,
polyline, polygon and keypoint

Tip

For 3D point cloud and video frame labeling verification jobs, it is recommended that you
add new label category attributes or frame attributes to the labeling job. Workers can
use these attribute to verify individual labels or the entire frame. To learn more about
label category and frame attributes, see Worker User Interface (UI) for 3D point cloud and
Worker User Interface (UI) for video frame.

You can start a label verification and adjustment jobs using the SageMaker console or the API.

Topics

• Requirements to Create Verification and Adjustment Labeling Jobs

• Create a Label Verification Job (Console)

• Create a Label Adjustment Job (Console)

• Start a Label Verification or Adjustment Job (API)

• Label Verification and Adjustment Data in the Output Manifest

Verify and Adjust Labels 1508

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html

Amazon SageMaker Developer Guide

• Cautions and Considerations

Requirements to Create Verification and Adjustment Labeling Jobs

To create a label verification or adjustment job, the following criteria must be satisfied.

• For non streaming labeling jobs: The input manifest file you use must contain the label attribute
name (LabelAttributeName) of the labels that you want adjusted. When you chain a
successfully completed labeling job, the output manifest file is used as the input manifest file for
the new, chained job. To learn more about the format of the output manifest file Ground Truth
produces for each task type, see Output Data.

For streaming labeling jobs: The Amazon SNS message you sent to the Amazon SNS input topic
of the adjustment or verification labeling job must contain the label attribute name of the
labels you want adjusted or verified. To see an example of how you can create an adjustment
or verification labeling job with streaming labeling jobs, see this Jupyter Notebook example in
GitHub.

• The task type of the verification or adjustment labeling job must be the same as the task type
of the original job unless you are using the Image Label Verification task type to verify bounding
box or semantic segmentation image labels. See the next bullet point for more details about the
video frame task type requirements.

• For video frame annotation verification and adjustment jobs, you must use the same annotation
task type used to create the annotations from the previous labeling job. For example, if you
create a video frame object detection job to have workers draw bounding boxes around objects,
and then you create a video object detection adjustment job, you must specify bounding boxes as
the annotation task type. To learn more video frame annotation task types, see Task Types.

• The task type you select for the adjustment or verification labeling job must support an audit
workflow. The following Ground Truth built-in task types support adjustment and verification
labeling jobs: bounding box, semantic segmentation, 3D point cloud object detection, 3D point
cloud object tracking, and 3D point cloud semantic segmentation, and all video frame object
detection and video frame object tracking task types — bounding box, polyline, polygon and
keypoint.

Verify and Adjust Labels 1509

https://github.com/aws/amazon-sagemaker-examples/blob/master/ground_truth_labeling_jobs/ground_truth_streaming_labeling_jobs/ground_truth_create_chained_streaming_labeling_job.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html

Amazon SageMaker Developer Guide

Create a Label Verification Job (Console)

Bounding box and semantic segmentation labeling jobs are created by choosing the Label
verification task type in the console. To create a verification job for 3D point cloud and video frame
task types, you must choose the same task type as the original labeling job and choose to display
existing labels. Use one of the following sections to create a label verification job for your task
type.

Topics

• Create an Image Label Verification Job (Console)

• Create a Point Cloud or Video Frame Label Verification Job (Console)

Create an Image Label Verification Job (Console)

Use the following procedure to create a bounding box or semantic segmentation verification
job using the console. This procedure assumes that you have already created a bounding box or
semantic segmentation labeling job and its status is Complete. This the labeling job that produces
the labels you want verified.

To create an image label verification job:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/ and choose
Labeling jobs.

2. Start a new labeling job by chaining a prior job or start from scratch, specifying an input
manifest that contains labeled data objects.

3. In the Task type pane, select Label verification.

4. Choose Next.

5. In the Workers section, choose the type of workforce you would like to use. For more details
about your workforce options see Create and Manage Workforces.

6. (Optional) After you've selected your workforce, specify the Task timeout and Task expiration
time.

7. In the Existing-labels display options pane, the system shows the available label attribute
names in your manifest. Choose the label attribute name that identifies the labels that you
want workers to verify. Ground Truth tries to detect and populate these values by analyzing
the manifest, but you might need to set the correct value.

Verify and Adjust Labels 1510

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

8. Use the instructions areas of the tool designer to provide context about what the previous
labelers were asked to do and what the current verifiers need to check.

You can add new labels that workers choose from to verify labels. For example, you can ask
workers to verify the image quality, and provide the labels Clear and Blurry. Workers will also
have the option to add a comment to explain their selection.

9. Choose See preview to check that the tool is displaying the prior labels correctly and presents
the label verification task clearly.

10. Select Create. This will create and start your labeling job.

Create a Point Cloud or Video Frame Label Verification Job (Console)

Use the following procedure to create a 3D point cloud or video frame verification job using the
console. This procedure assumes that you have already created a labeling job using the task type
that produces the types of labels you want to be verified and its status is Complete.

To create an image label verification job:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/ and choose
Labeling jobs.

2. Start a new labeling job by chaining a prior job or start from scratch, specifying an input
manifest that contains labeled data objects.

3. In the Task type pane, select the same task type as the labeling job that you chained. For
example, if the original labeling job was a video frame object detection keypoint labeling job,
select that task type.

4. Choose Next.

5. In the Workers section, choose the type of workforce you would like to use. For more details
about your workforce options see Create and Manage Workforces.

6. (Optional) After you've selected your workforce, specify the Task timeout and Task expiration
time.

7. Toggle on the switch next to Display existing labels.

8. Select Verification.

9. For Label attribute name, choose the name from your manifest that corresponds to the labels
that you want to display for verification. You will only see label attribute names for labels that
match the task type you selected on the previous screen. Ground Truth tries to detect and
populate these values by analyzing the manifest, but you might need to set the correct value.

Verify and Adjust Labels 1511

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

10. Use the instructions areas of the tool designer to provide context about what the previous
labelers were asked to do and what the current verifiers need to check.

You cannot modify or add new labels. You can remove, modify and add new label category
attributes or frame attributes. It is recommended that you add new label category attributes
or frame attributes to the labeling job. Workers can use these attribute to verify individual
labels or the entire frame.

By default, preexisting label category attributes and frame attributes will not be editable by
workers. If you want to make a label category or frame attribute editable, select the Allow
workers to edit this attribute check box for that attribute.

To learn more about label category and frame attributes, see Worker User Interface (UI) for 3D
point cloud and Worker User Interface (UI) for video frame.

11. Choose See preview to check that the tool is displaying the prior labels correctly and presents
the label verification task clearly.

12. Select Create. This will create and start your labeling job.

Create a Label Adjustment Job (Console)

Use one of the following sections to create a label verification job for your task type.

Topics

• Create an Image Label Adjustment Job (Console)

• Create a Point Cloud or Video Frame Label Adjustment Job (Console)

Create an Image Label Adjustment Job (Console)

Use the following procedure to create a bounding box or semantic segmentation adjustment
labeling job using the console. This procedure assumes that you have already created a bounding
box or semantic segmentation labeling job and its status is Complete. This the labeling job that
produces the labels you want adjusted.

To create an image label adjustment job (console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/ and choose
Labeling jobs.

Verify and Adjust Labels 1512

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

2. Start a new labeling job by chaining a prior job or start from scratch, specifying an input
manifest that contains labeled data objects.

3. Choose the same task type as the original labeling job.

4. Choose Next.

5. In the Workers section, choose the type of workforce you would like to use. For more details
about your workforce options see Create and Manage Workforces.

6. (Optional) After you've selected your workforce, specify the Task timeout and Task expiration
time.

7. Expand Existing-labels display options by selecting the arrow next to the title.

8. Check the box next to I want to display existing labels from the dataset for this job.

9. For Label attribute name, choose the name from your manifest that corresponds to the labels
that you want to display for adjustment. You will only see label attribute names for labels that
match the task type you selected on the previous screen. Ground Truth tries to detect and
populate these values by analyzing the manifest, but you might need to set the correct value.

10. Use the instructions areas of the tool designer to provide context about what the previous
labelers were tasked with doing and what the current verifiers need to check and adjust.

11. Choose See preview to check that the tool shows the prior labels correctly and presents the
task clearly.

12. Select Create. This will create and start your labeling job.

Create a Point Cloud or Video Frame Label Adjustment Job (Console)

Use the following procedure to create a 3D point cloud or video frame adjustment job using the
console. This procedure assumes that you have already created a labeling job using the task type
that produces the types of labels you want to be verified and its status is Complete.

To create a 3D point cloud or video frame label adjustment job (console)

1. Open the SageMaker console: https://console.aws.amazon.com/sagemaker/ and choose
Labeling jobs.

2. Start a new labeling job by chaining a prior job or start from scratch, specifying an input
manifest that contains labeled data objects.

3. Choose the same task type as the original labeling job.

4. Toggle on the switch next to Display existing labels.

Verify and Adjust Labels 1513

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

5. Select Adjustment.

6. For Label attribute name, choose the name from your manifest that corresponds to the labels
that you want to display for adjustment. You will only see label attribute names for labels that
match the task type you selected on the previous screen. Ground Truth tries to detect and
populate these values by analyzing the manifest, but you might need to set the correct value.

7. Use the instructions areas of the tool designer to provide context about what the previous
labelers were asked to do and what the current adjusters need to check.

You cannot remove or modify existing labels but you can add new labels. You can remove,
modify and add new label category attributes or frame attributes.

Be default, preexisting label category attributes and frame attributes will be editable by
workers. If you want to make a label category or frame attribute uneditable, deselect the
Allow workers to edit this attribute check box for that attribute.

To learn more about label category and frame attributes, see Worker User Interface (UI) for 3D
point cloud and Worker User Interface (UI) for video frame.

8. Choose See preview to check that the tool shows the prior labels correctly and presents the
task clearly.

9. Select Create. This will create and start your labeling job.

Start a Label Verification or Adjustment Job (API)

Start a label verification or adjustment job by chaining a successfully completed job or starting
a new job from scratch using the CreateLabelingJob operation. The procedure is almost the
same as setting up a new labeling job with CreateLabelingJob, with a few modifications. Use
the following sections to learn what modifications are required to chain a labeling job to create an
adjustment or verification labeling job.

When you create an adjustment or verification labeling job using the Ground Truth API, you must
use a different LabelAttributeName than the original labeling job. The original labeling job is
the job used to create the labels you want adjusted or verified.

Important

The label category configuration file you identify for an adjustment or verification job in
LabelCategoryConfigS3Uri of CreateLabelingJob must contain the same labels

Verify and Adjust Labels 1514

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#SageMaker-CreateLabelingJob-request-LabelCategoryConfigS3Uri

Amazon SageMaker Developer Guide

used in the original labeling job. You can add new labels. For 3D point cloud and video
frame jobs, you can add new label category and frame attributes to the label category
configuration file.

Bounding Box and Semantic Segmentation

To create a bounding box or semantic segmentation label verification or adjustment job, use the
following guidelines to specify API attributes for the CreateLabelingJob operation.

• Use the LabelAttributeName parameter to specify the output label name that you want to
use for verified or adjusted labels. You must use a different LabelAttributeName than the one
used for the original labeling job.

• If you are chaining the job, the labels from the previous labeling job to be adjusted or verified
will be specified in the custom UI template. To learn how to create a custom template, see Create
Custom Worker Task Templates.

Identify the location of the UI template in the UiTemplateS3Uri parameter. SageMaker
provides widgets that you can use in your custom template to display old labels. Use the
initial-value attribute in one of the following crowd elements to extract the labels that
need verification or adjustment and include them in your task template:

• crowd-semantic-segmentation—Use this crowd element in your custom UI task template to
specify semantic segmentation labels that need to be verified or adjusted.

• crowd-bounding-box—Use this crowd element in your custom UI task template to specify
bounding box labels that need to be verified or adjusted.

• The LabelCategoryConfigS3Uri parameter must contain the same label categories as the
previous labeling job.

• Use the bounding box or semantic segmentation adjustment or verification lambda ARNs for
PreHumanTaskLambdaArn and AnnotationConsolidationLambdaArn:

• For bounding box, the adjustment labeling job lambda function ARNs end with
AdjustmentBoundingBox and the verification lambda function ARNs end with
VerificationBoundingBox.

• For semantic segmentation, the adjustment labeling job lambda function ARNs end with
AdjustmentSemanticSegmentation and the verification lambda function ARNs end with
VerificationSemanticSegmentation.

Verify and Adjust Labels 1515

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#SageMaker-CreateLabelingJob-request-LabelAttributeName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UiConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#SageMaker-CreateLabelingJob-request-LabelCategoryConfigS3Uri
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AnnotationConsolidationConfig.html#sagemaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

3D Point Cloud and Video Frame

• Use the LabelAttributeName parameter to specify the output label name that you want to
use for verified or adjusted labels. You must use a different LabelAttributeName than the one
used for the original labeling job.

• You must use the human task UI Amazon Resource Name (ARN) (HumanTaskUiArn) used for the
original labeling job. To see supported ARNs, see HumanTaskUiArn.

• In the label category configuration file, you must specify the label attribute name
(LabelAttributeName) of the previous labeling job that you use to create the adjustment or
verification labeling job in the auditLabelAttributeName parameter.

• You specify whether your labeling job is a verification or adjustment labeling job using
the editsAllowed parameter in your label category configuration file identified by the
LabelCategoryConfigS3Uri parameter.

• For verification labeling jobs, you must use the editsAllowed parameter to specify that all
labels cannot be modified. editsAllowed must be set to "none" in each entry in labels.
Optionally, you can specify whether or not label categories attributes and frame attributes can
be adjusted by workers.

• Optionally, for adjustment labeling jobs, you can use the editsAllowed parameter to specify
labels, label category attributes, and frame attributes that can or cannot be modified by
workers. If you do not use this parameter, all labels, label category attributes, and frame
attributes will be adjustable.

To learn more about the editsAllowed parameter and configuring your label category
configuration file, see Label Category Configuration File Schema.

• Use the 3D point cloud or video frame adjustment lambda ARNs for PreHumanTaskLambdaArn
and AnnotationConsolidationLambdaArn for both adjustment and verification labeling
jobs:

• For 3D point clouds, the adjustment and verification labeling job lambda
function ARNs end with Adjustment3DPointCloudSemanticSegmentation,
Adjustment3DPointCloudObjectTracking, and
Adjustment3DPointCloudObjectDetection for 3D point cloud semantic segmentation,
object detection, and object tracking respectively.

• For video frames, the adjustment and verification labeling job lambda function ARNs end with
AdjustmentVideoObjectDetection and AdjustmentVideoObjectTracking for video
frame object detection and object tracking respectively.

Verify and Adjust Labels 1516

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#SageMaker-CreateLabelingJob-request-LabelAttributeName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UiConfig.html#sagemaker-Type-UiConfig-HumanTaskUiArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#SageMaker-CreateLabelingJob-request-LabelAttributeName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#SageMaker-CreateLabelingJob-request-LabelCategoryConfigS3Uri
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AnnotationConsolidationConfig.html#sagemaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

Ground Truth stores the output data from a label verification or adjustment job in the S3 bucket
that you specified in the S3OutputPath parameter of the CreateLabelingJob operation. For
more information about the output data from a label verification or adjustment labeling job, see
Label Verification and Adjustment Data in the Output Manifest.

Label Verification and Adjustment Data in the Output Manifest

Amazon SageMaker Ground Truth writes label verification data to the output manifest within the
metadata for the label. It adds two properties to the metadata:

• A type property, with a value of "groundtruth/label-verification.

• A worker-feedback property, with an array of comment values. This property is added when
the worker enters comments. If there are no comments, the field doesn't appear.

The following example output manifest shows how label verification data appears:

{
 "source-ref":"S3 bucket location",
 "verify-bounding-box":"1",
 "verify-bounding-box-metadata":
 {
 "class-name": "bad",
 "confidence": 0.93,
 "type": "groundtruth/label-verification",
 "job-name": "verify-bounding-boxes",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "worker-feedback": [
 {"comment": "The bounding box on the bird is too wide on the right side."},
 {"comment": "The bird on the upper right is not labeled."}
]
 }
}

The worker output of adjustment tasks resembles the worker output of the original task, except
that it contains the adjusted values and an adjustment-status property with the value of
adjusted or unadjusted to indicate whether an adjustment was made.

For more examples of the output of different tasks, see Output Data.

Verify and Adjust Labels 1517

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobOutputConfig.html#SageMaker-Type-LabelingJobOutputConfig-S3OutputPath
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Cautions and Considerations

To get expected behavior when creating a label verification or adjustment job, carefully verify your
input data.

• If you are using image data, verify that your manifest file contains hexadecimal RGB color
information.

• To save money on processing costs, filter your data to ensure you are not including unwanted
objects in your labeling job input manifest.

• Add required Amazon S3 permissions to ensure your input data is processed correctly.

When you create an adjustment or verification labeling job using the Ground Truth API, you must
use a different LabelAttributeName than the original labeling job.

Color Information Requirements for Semantic Segmentation Jobs

To properly reproduce color information in verification or adjustment tasks, the tool requires
hexadecimal RGB color information in the manifest (for example, #FFFFFF for white). When you
set up a Semantic Segmentation verification or adjustment job, the tool examines the manifest to
determine if this information is present. If it can't find it,Amazon SageMaker Ground Truth displays
an error message and the ends job setup.

In prior iterations of the Semantic Segmentation tool, category color information wasn't output
in hexadecimal RGB format to the output manifest. That feature was introduced to the output
manifest at the same time the verification and adjustment workflows were introduced. Therefore,
older output manifests aren't compatible with this new workflow.

Filter Your Data Before Starting the Job

Amazon SageMaker Ground Truth processes all objects in your input manifest. If you have a
partially labeled data set, you might want to create a custom manifest using an Amazon S3 Select
query on your input manifest. Unlabeled objects individually fail, but they don't cause the job to
fail, and they might incur processing costs. Filtering out objects you don't want verified reduces
your costs.

If you create a verification job using the console, you can use the filtering tools provided there. If
you create jobs using the API, make filtering your data part of your workflow where needed.

Verify and Adjust Labels 1518

https://docs.aws.amazon.com/AmazonS3/latest/dev/selecting-content-from-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/selecting-content-from-objects.html

Amazon SageMaker Developer Guide

Creating Custom Labeling Workflows

This document guides you through the process of setting up a workflow with a custom labeling
template. To learn more about starting a labeling job, see Getting started. In that section, when
you choose the Task type, select Custom labeling task, and then follow this section's instructions
to configure it.

Topics

• Step 1: Setting up your workforce

• Step 2: Creating your custom worker task template

• Step 3: Processing with AWS Lambda

• Demo Template: Annotation of Images with crowd-bounding-box

• Demo Template: Labeling Intents with crowd-classifier

• Custom Workflows via the API

For more information about creating custom labeling workflows, see Build a custom data labeling
workflow with Amazon SageMaker Ground Truth.

Step 1: Setting up your workforce

In this step you use the console to establish which worker type to use and make the necessary sub-
selections for the worker type. It assumes you have already completed the steps up to this point in
the Getting started section and have chosen the Custom labeling task as the Task type.

To configure your workforce.

1. First choose an option from the Worker types. There are three types currently available:

• Public uses an on-demand workforce of independent contractors, powered by Amazon
Mechanical Turk. They are paid on a per-task basis.

• Private uses your employees or contractors for handling data that needs to stay within your
organization.

• Vendor uses third party vendors that specialize in providing data labeling services, available
via the AWS Marketplace.

2. If you choose the Public option, you are asked to set the number of workers per dataset
object. Having more than one worker perform the same task on the same object can help

Creating Custom Labeling Workflows 1519

https://aws.amazon.com/blogs/machine-learning/build-a-custom-data-labeling-workflow-with-amazon-sagemaker-ground-truth/
https://aws.amazon.com/blogs/machine-learning/build-a-custom-data-labeling-workflow-with-amazon-sagemaker-ground-truth/

Amazon SageMaker Developer Guide

increase the accuracy of your results. The default is three. You can raise or lower that
depending on the accuracy you need.

You are also asked to set a price per task by using a drop-down menu. The menu recommends
price points based on how long it will take to complete the task.

The recommended method to determine this is to first run a short test of your task with
a private workforce. The test provides a realistic estimate of how long the task takes to
complete. You can then select the range your estimate falls within on the Price per task menu.
If your average time is more than 5 minutes, consider breaking your task into smaller units.

Next

Step 2: Creating your custom worker task template

Step 2: Creating your custom worker task template

A worker task template is a file used by Ground Truth to customize the worker user interface (UI),
or human task UI. You can create a worker task template using HTML, CSS, JavaScript, Liquid
template language, and Crowd HTML Elements. Liquid is used to automate the template, and
Crowd HTML Elements can be used to include common annotation tools and provide the logic to
submit to Ground Truth.

Use the following topics to learn how you can create a worker task template. You can see a
repository of example Ground Truth worker task templates on GitHub.

Topics

• Starting with a base template

• Developing templates locally

• Using External Assets

• Track your variables

• A simple sample

• Adding automation with Liquid

• End-to-end demos

Creating Custom Labeling Workflows 1520

https://shopify.github.io/liquid/
https://shopify.github.io/liquid/
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-ui-template-reference.html
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis

Amazon SageMaker Developer Guide

Starting with a base template

You can use a template editor in the Ground Truth console to start creating a template. This editor
includes a number of pre-designed base templates and an HTML and Crowd HTML Element autofill
feature.

To access the Ground Truth custom template editor:

1. Following the instructions in Create a Labeling Job (Console) and select Custom for the
labeling job Task type.

2. When you select Next, you will be able to access the template editor and base templates in the
Custom labeling task setup section.

3. (Optional) Select a base template from the drop-down menu under Templates. If you prefer
to create a template from scratch, choose Custom from the drop down-menu for a minimal
template skeleton.

Developing templates locally

While you need to be in the console to test how your template will process incoming data, you can
test the look and feel of your template's HTML and custom elements in your browser by adding
this code to the top of your HTML file.

Example

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

This loads the necessary code to render the custom HTML elements. Use this if you want to
develop your template's look and feel in your preferred editor rather than in the console.

Remember, though, this will not parse your variables. You may want to replace them with sample
content while developing locally.

Using External Assets

Amazon SageMaker Ground Truth custom templates allow external scripts and style sheets to be
embedded. For example, the following code block demonstrates how you would add a style sheet
located at https://www.example.com/my-enhancement-styles.css to your template.

Creating Custom Labeling Workflows 1521

Amazon SageMaker Developer Guide

Example

<script src="https://www.example.com/my-enhancment-script.js"></script>
<link rel="stylesheet" type="text/css" href="https://www.example.com/my-enhancement-
styles.css">

If you encounter errors, ensure that your originating server is sending the correct MIME type and
encoding headers with the assets.

For example, the MIME and encoding types for remote scripts are: application/
javascript;CHARSET=UTF-8.

The MIME and encoding type for remote stylesheets are: text/css;CHARSET=UTF-8.

Track your variables

In the process of building the sample below, there will be a step that adds variables to it to
represent the pieces of data that may change from task to task, worker to worker. If you're starting
with one of the sample templates, you will need to make sure you're aware of the variables it
already uses. When you create your pre-annotation AWS Lambda script, its output will need to
contain values for any of those variables you choose to keep.

The values you use for the variables can come from your manifest file. All the key-value pairs in
your data object are provided to your pre-annotation Lambda. If it's a simple pass-through script,
matching keys for values in your data object to variable names in your template is the easiest way
to pass those values through to the tasks forms your workers see.

A simple sample

All tasks begin and end with the <crowd-form> </crowd-form> elements. Like standard HTML
<form> elements, all of your form code should go between them.

For a simple tweet-analysis task, use the <crowd-classifier> element. It requires the following
attributes:

• name - the variable name to use for the result in the form output.

• categories - a JSON formatted array of the possible answers.

• header - a title for the annotation tool

As children of the <crowd-classifier> element, you must have three regions.

Creating Custom Labeling Workflows 1522

Amazon SageMaker Developer Guide

• <classification-target> - the text the worker will classify based on the options specified in the
categories attribute above.

• <full-instructions> - instructions that are available from the "View full instructions" link in the
tool. This can be left blank, but it is recommended that you give good instructions to get better
results.

• <short-instructions> - a more brief description of the task that appears in the tool's sidebar. This
can be left blank, but it is recommended that you give good instructions to get better results.

A simple version of this tool would look like this.

Example of using crowd-classifier

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-classifier
 name="tweetFeeling"
 categories="['positive','negative','neutral', 'unclear']"
 header="Which term best describes this tweet?"
 >
 <classification-target>
 My favorite football team won today!
 Bring on the division finals!
 </classification-target>

 <full-instructions header="Sentiment Analysis Instructions">
 Try to determine the sentiment the author
 of the tweet is trying to express.
 If none seem to match, choose "cannot determine."
 </full-instructions>

 <short-instructions>
 Pick the term best describing the sentiment
 of the tweet.
 </short-instructions>

 </crowd-classifier>
</crowd-form>

You can copy and paste the code into the editor in the Ground Truth labeling job creation workflow
to preview the tool, or try out a demo of this code on CodePen.

Creating Custom Labeling Workflows 1523

https://codepen.io/MTGT/full/OqBvJw

Amazon SageMaker Developer Guide

Adding automation with Liquid

Our custom template system uses Liquid for automation. It is an open source inline markup
language. In Liquid, the text between single curly braces and percent symbols is an instruction or
tag that performs an operation like control flow or iteration. Text between double curly braces is a
variable or object that outputs its value.

The most common use of Liquid will be to parse the data coming from your pre-annotation
Lambda and pull out the relevant variables to create the task. The taskInput object returned by
your Pre-annotation Lambda will be available as the task.input object in your templates.

The properties in your manifest's data objects are passed into your Pre-annotation Lambda as the
event.dataObject. A simple pass-through script simply returns that object as the taskInput
object. You would represent values from your manifest as variables as follows.

Example Manifest data object

{
 "source": "This is a sample text for classification",
 "labels": ["angry" , "sad" , "happy" , "inconclusive"],
 "header": "What emotion is the speaker feeling?"
}

Example Sample HTML using variables

<crowd-classifier
 name='tweetFeeling'

Creating Custom Labeling Workflows 1524

https://codepen.io/MTGT/full/OqBvJw
https://shopify.github.io/liquid/

Amazon SageMaker Developer Guide

 categories='{{ task.input.labels | to_json }}'
 header='{{ task.input.header }}' >
<classification-target>
 {{ task.input.source }}
</classification-target>

Note the addition of " | to_json" to the labels property above. That's a filter to turn the array
into a JSON representation of the array. Variable filters are explained in the next section.

The following list includes two types of Liquid tags that you may find useful to automate template
input data processing. If you select one of the following tag-types, you will be redirected to the
Liquid documentation.

• Control flow: Includes programming logic operators like if/else, unless, and case/when.

• Iteration: Enables you to run blocks of code repeatedly using statements like for loops.

For an example of an HTML template that uses Liquid elements to create a for loop, see
translation-review-and-correction.liquid.html in GitHub.

For more information and documentation, visit the Liquid homepage.

Variable filters

In addition to the standard Liquid filters and actions, Ground Truth offers a few additional filters.
Filters are applied by placing a pipe (|) character after the variable name, then specifying a filter
name. Filters can be chained in the form of:

Example

{{ <content> | <filter> | <filter> }}

Autoescape and explicit escape

By default, inputs will be HTML escaped to prevent confusion between your variable text and
HTML. You can explicitly add the escape filter to make it more obvious to someone reading the
source of your template that the escaping is being done.

escape_once

escape_once ensures that if you've already escaped your code, it doesn't get re-escaped on top of
that. For example, so that & doesn't become &amp;.

Creating Custom Labeling Workflows 1525

https://shopify.github.io/liquid/tags/control-flow/
https://shopify.github.io/liquid/tags/iteration/
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis/blob/8ae02533ea5a91087561b1daecd0bc22a37ca393/text/translation-review-and-correction.liquid.html
https://shopify.github.io/liquid/
https://shopify.github.io/liquid/filters/abs/

Amazon SageMaker Developer Guide

skip_autoescape

skip_autoescape is useful when your content is meant to be used as HTML. For example, you
might have a few paragraphs of text and some images in the full instructions for a bounding box.

Use skip_autoescape sparingly

The best practice in templates is to avoid passing in functional code or markup with
skip_autoescape unless you are absolutely sure you have strict control over what's being
passed. If you're passing user input, you could be opening your workers up to a Cross Site
Scripting attack.

to_json

to_json will encode what you feed it to JSON (JavaScript Object Notation). If you feed it an
object, it will serialize it.

grant_read_access

grant_read_access takes an S3 URI and encodes it into an HTTPS URL with a short-lived access
token for that resource. This makes it possible to display to workers photo, audio, or video objects
stored in S3 buckets that are not otherwise publicly accessible.

Example of the filters

Input

auto-escape: {{ "Have you read 'James & the Giant Peach'?" }}
explicit escape: {{ "Have you read 'James & the Giant Peach'?" | escape }}
explicit escape_once: {{ "Have you read 'James & the Giant Peach'?" |
 escape_once }}
skip_autoescape: {{ "Have you read 'James & the Giant Peach'?" | skip_autoescape }}
to_json: {{ jsObject | to_json }}
grant_read_access: {{ "s3://mybucket/myphoto.png" | grant_read_access }}

Example

Output

auto-escape: Have you read 'James & the Giant Peach'?
explicit escape: Have you read 'James & the Giant Peach'?

Creating Custom Labeling Workflows 1526

Amazon SageMaker Developer Guide

explicit escape_once: Have you read 'James & the Giant Peach'?
skip_autoescape: Have you read 'James & the Giant Peach'?
to_json: { "point_number": 8, "coords": [59, 76] }
grant_read_access: https://s3.amazonaws.com/mybucket/myphoto.png?<access token and
 other params>

Example of an automated classification template.

To automate the simple text classification sample, replace the tweet text with a variable.

The text classification template is below with automation added. The changes/additions are
highlighted in bold.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-classifier
 name="tweetFeeling"
 categories="['positive', 'negative', 'neutral', 'cannot determine']"
 header="Which term best describes this tweet?"
 >
 <classification-target>
 {{ task.input.source }}
 </classification-target>

 <full-instructions header="Analyzing a sentiment">
 Try to determine the feeling the author
 of the tweet is trying to express.
 If none seem to match, choose "other."
 </full-instructions>

 <short-instructions>
 Pick the term best describing the sentiment
 of the tweet.
 </short-instructions>

 </crowd-classifier>
</crowd-form>

The tweet text that was in the prior sample is now replaced with an object. The entry.taskInput
object uses source (or another name you specify in your pre-annotation Lambda) as the property
name for the text and it is inserted directly in the HTML by virtue of being between double curly
braces.

Creating Custom Labeling Workflows 1527

Amazon SageMaker Developer Guide

End-to-end demos

You can view the following end-to-end demos which include sample Lambda function:

• Demo Template: Annotation of Images with crowd-bounding-box

• Demo Template: Labeling Intents with crowd-classifier

Step 3: Processing with AWS Lambda

In this step, you learn how to create and specify the two types of AWS Lambda functions that are
required to create a custom labeling workflow:

• Pre-annotation Lambda: This function initiates for and pre-processes each data object sent to
your labeling job prior to sending it to workers.

• Post-annotation Lambda: This function processes the results once workers submit a task. If
you specify multiple workers per data object, this function may include logic to consolidate
annotations.

If you are a new user of Lambda and Ground Truth, we recommend that you use the pages in this
section as follows:

1. First, review Pre-annotation and Post-annotation Lambda Function Requirements.

2. Then, use the page Required Permissions To Use AWS Lambda With Ground Truth to learn about
security and permission requirements to use your pre-annotation and post-annotation Lambda
functions in a Ground Truth custom labeling job.

3. Next, you need to visit the Lambda console or use Lambda's APIs to create your functions. Use
the section Create Lambda Functions for a Custom Labeling Workflow to learn how to create
Lambda functions.

4. To learn how to test your Lambda functions, see Test Pre-Annotation and Post-Annotation
Lambda Functions.

5. After you create pre-processing and post-processing Lambda functions, select them from the
Lambda functions section that comes after the code editor for your custom HTML in the Ground
Truth console. To learn how to use these functions in a CreateLabelingJob API request, see
Create a Labeling Job (API).

Creating Custom Labeling Workflows 1528

https://aws.amazon.com/lambda/

Amazon SageMaker Developer Guide

For a custom labeling workflow tutorial that includes example pre-annotation and post-annotation
Lambda functions, in the "Demo Template: Annotation of Images with crowd-bounding-box"
document.

Topics

• Pre-annotation and Post-annotation Lambda Function Requirements

• Required Permissions To Use AWS Lambda With Ground Truth

• Create Lambda Functions for a Custom Labeling Workflow

• Test Pre-Annotation and Post-Annotation Lambda Functions

Pre-annotation and Post-annotation Lambda Function Requirements

Use this section to learn about the syntax of the requests sent to pre-annotation and post-
annotation Lambda functions, and the response syntax that Ground Truth requires to run a custom
labeling workflow.

Topics

• Pre-annotation Lambda

• Post-annotation Lambda

Pre-annotation Lambda

Before a labeling task is sent to the worker, your pre-annotation Lambda function is invoked.

Ground Truth sends your Lambda function a JSON-formatted request to provide details about the
labeling job and the data object. The following table contains the pre-annotation request schemas.
Each parameter is described below.

Data object identified with "source-ref"

{
 "version": "2018-10-16",
 "labelingJobArn": <labelingJobArn>
 "dataObject" : {
 "source-ref": <s3Uri>
 }
}

Creating Custom Labeling Workflows 1529

Amazon SageMaker Developer Guide

Data object identified with "source"

{
 "version": "2018-10-16",
 "labelingJobArn": <labelingJobArn>
 "dataObject" : {
 "source": <string>
 }
}

• version (string): This is a version number used internally by Ground Truth.

• labelingJobArn (string): This is the Amazon Resource Name, or ARN, of your labeling job. This
ARN can be used to reference the labeling job when using Ground Truth API operations such as
DescribeLabelingJob.

• The dataObject (JSON object): The key contains a single JSON line, either from your input
manifest file or sent from Amazon SNS. The JSON line objects in your manifest can be up to
100 kilobytes in size and contain a variety of data. For a very basic image annotation job, the
dataObject JSON may just contain a source-ref key, identifying the image to be annotated.
If the data object (for example, a line of text) is included directly in the input manifest file, the
data object is identified with source. If you create a verification or adjustment job, this line may
contain label data and metadata from the previous labeling job.

The following table includes code block examples of a pre-annotation request. Each parameter in
these example requests is explained below the tabbed table.

Data object identified with "source-ref"

{
 "version": "2018-10-16",
 "labelingJobArn": "arn:aws:sagemaker:<aws_region>:<aws_account_number>:labeling-
job/<labeling_job_name>"
 "dataObject" : {
 "source-ref": "s3://<input-data-bucket>/<data-object-file-name>"
 }
}

Creating Custom Labeling Workflows 1530

Amazon SageMaker Developer Guide

Data object identified with "source"

{
 "version": "2018-10-16",
 "labelingJobArn": "arn:aws:sagemaker:<aws_region>:<aws_account_number>:labeling-
job/<labeling_job_name>"
 "dataObject" : {
 "source": "Sue purchased 10 shares of the stock on April 10th, 2020"
 }
}

In return, Ground Truth requires a response formatted like the following:

Example of expected return data

{
 "taskInput": <json object>,
 "isHumanAnnotationRequired": <boolean> # Optional
}

In the previous example, the <json object> needs to contain all the data your custom worker
task template needs. If you're doing a bounding box task where the instructions stay the same all
the time, it may just be the HTTP(S) or Amazon S3 resource for your image file. If it's a sentiment
analysis task and different objects may have different choices, it is the object reference as a string
and the choices as an array of strings.

Implications of isHumanAnnotationRequired

This value is optional because it defaults to true. The primary use case for explicitly
setting it is when you want to exclude this data object from being labeled by human
workers.

If you have a mix of objects in your manifest, with some requiring human annotation and some
not needing it, you can include a isHumanAnnotationRequired value in each data object.
You can add logic to your pre-annotation Lambda to dynamically determine if an object requires
annotation, and set this boolean value accordingly.

Creating Custom Labeling Workflows 1531

Amazon SageMaker Developer Guide

Examples of Pre-annotation Lambda Functions

The following, basic pre-annotation Lambda function accesses the JSON object in dataObject
from the initial request, and returns it in the taskInput parameter.

import json

def lambda_handler(event, context):
 return {
 "taskInput": event['dataObject']
 }

Assuming the input manifest file uses "source-ref" to identify data objects, the worker task
template used in the same labeling job as this pre-annotation Lambda must include a Liquid
element like the following to ingest dataObject:

{{ task.input.source-ref | grant_read_access }}

If the input manifest file used source to identify the data object, the work task template can
ingest dataObject with the following:

{{ task.input.source }}

The following pre-annotation Lambda example includes logic to identify the key used in
dataObject, and to point to that data object using taskObject in the Lambda's return
statement.

import json

def lambda_handler(event, context):

 # Event received
 print("Received event: " + json.dumps(event, indent=2))

 # Get source if specified
 source = event['dataObject']['source'] if "source" in event['dataObject'] else None

 # Get source-ref if specified
 source_ref = event['dataObject']['source-ref'] if "source-ref" in
 event['dataObject'] else None

Creating Custom Labeling Workflows 1532

Amazon SageMaker Developer Guide

 # if source field present, take that otherwise take source-ref
 task_object = source if source is not None else source_ref

 # Build response object
 output = {
 "taskInput": {
 "taskObject": task_object
 },
 "humanAnnotationRequired": "true"
 }

 print(output)
 # If neither source nor source-ref specified, mark the annotation failed
 if task_object is None:
 print(" Failed to pre-process {} !".format(event["labelingJobArn"]))
 output["humanAnnotationRequired"] = "false"

 return output

Post-annotation Lambda

When all workers have annotated the data object or when
TaskAvailabilityLifetimeInSeconds has been reached, whichever comes first, Ground
Truth sends those annotations to your post-annotation Lambda. This Lambda is generally used for
Consolidate Annotations.

Tip

To see an example of a post-consolidation Lambda function, see
annotation_consolidation_lambda.py in the aws-sagemaker-ground-truth-recipe GitHub
repository.

The following code block contains the post-annotation request schema. Each parameter is
described in the following bulleted list.

{
 "version": "2018-10-16",
 "labelingJobArn": <string>,
 "labelCategories": [<string>],

Creating Custom Labeling Workflows 1533

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanLoopConfig.html#SageMaker-Type-HumanLoopConfig-TaskAvailabilityLifetimeInSeconds
https://github.com/aws-samples/aws-sagemaker-ground-truth-recipe/blob/master/aws_sagemaker_ground_truth_sample_lambda/annotation_consolidation_lambda.py
https://github.com/aws-samples/aws-sagemaker-ground-truth-recipe

Amazon SageMaker Developer Guide

 "labelAttributeName": <string>,
 "roleArn" : <string>,
 "payload": {
 "s3Uri": <string>
 }
 }

• version (string): A version number used internally by Ground Truth.

• labelingJobArn (string): The Amazon Resource Name, or ARN, of your labeling job. This
ARN can be used to reference the labeling job when using Ground Truth API operations such as
DescribeLabelingJob.

• labelCategories (list of strings): Includes the label categories and other attributes you either
specified in the console, or that you include in the label category configuration file.

• labelAttributeName (string): Either the name of your labeling job, or the label attribute name
you specify when you create the labeling job.

• roleArn (string): The Amazon Resource Name (ARN) of the IAM execution role you specify when
you create the labeling job.

• payload (JSON object): A JSON that includes an s3Uri key, which identifies the location of
the annotation data for that data object in Amazon S3. The second code block below shows an
example of this annotation file.

The following code block contains an example of a post-annotation request. Each parameter in this
example request is explained below the code block.

Example of an post-annotation Lambda request

{
 "version": "2018-10-16",
 "labelingJobArn": "arn:aws:sagemaker:us-west-2:111122223333:labeling-job/labeling-
job-name",
 "labelCategories": ["Ex Category1","Ex Category2", "Ex Category3"],
 "labelAttributeName": "labeling-job-attribute-name",
 "roleArn" : "arn:aws:iam::111122223333:role/role-name",
 "payload": {
 "s3Uri": "s3://DOC-EXAMPLE-BUCKET/annotations.json"
 }
 }

Creating Custom Labeling Workflows 1534

Amazon SageMaker Developer Guide

Note

If no worker works on the data object and TaskAvailabilityLifetimeInSeconds
has been reached, the data object is marked as failed and not included as part of post-
annotation Lambda invocation.

The following code block contains the payload schema. This is the file that is indicated by the
s3Uri parameter in the post-annotation Lambda request payload JSON object. For example, if
the previous code block is the post-annotation Lambda request, the following annotation file is
located at s3://DOC-EXAMPLE-BUCKET/annotations.json.

Each parameter is described in the following bulleted list.

Example of an annotation file

[
 {
 "datasetObjectId": <string>,
 "dataObject": {
 "s3Uri": <string>,
 "content": <string>
 },
 "annotations": [{
 "workerId": <string>,
 "annotationData": {
 "content": <string>,
 "s3Uri": <string>
 }
 }]
 }
]

• datasetObjectId (string): Identifies a unique ID that Ground Truth assigns to each data object
you send to the labeling job.

• dataObject (JSON object): The data object that was labeled. If the data object is included in
the input manifest file and identified using the source key (for example, a string), dataObject
includes a content key, which identifies the data object. Otherwise, the location of the data
object (for example, a link or S3 URI) is identified with s3Uri.

Creating Custom Labeling Workflows 1535

Amazon SageMaker Developer Guide

• annotations (list of JSON objects): This list contains a single JSON object for each annotation
submitted by workers for that dataObject. A single JSON object contains a unique workerId
that can be used to identify the worker that submitted that annotation. The annotationData
key contains one of the following:

• content (string): Contains the annotation data.

• s3Uri (string): Contains an S3 URI that identifies the location of the annotation data.

The following table contains examples of the content that you may find in payload for different
types of annotation.

Named Entity Recognition Payload

[
 {
 "datasetObjectId": "1",
 "dataObject": {
 "content": "Sift 3 cups of flour into the bowl."
 },
 "annotations": [
 {
 "workerId": "private.us-west-2.ef7294f850a3d9d1",
 "annotationData": {
 "content": "{\"crowd-entity-annotation\":{\"entities\":[{\"endOffset
\":4,\"label\":\"verb\",\"startOffset\":0},{\"endOffset\":6,\"label\":\"number
\",\"startOffset\":5},{\"endOffset\":20,\"label\":\"object\",\"startOffset\":15},
{\"endOffset\":34,\"label\":\"object\",\"startOffset\":30}]}}"
 }
 }
]
 }
]

Semantic Segmentation Payload

[
 {
 "datasetObjectId": "2",
 "dataObject": {
 "s3Uri": "s3://DOC-EXAMPLE-BUCKET/gt-input-data/images/bird3.jpg"
 },
 "annotations": [

Creating Custom Labeling Workflows 1536

Amazon SageMaker Developer Guide

 {
 "workerId": "private.us-west-2.ab1234c5678a919d0",
 "annotationData": {
 "content": "{\"crowd-semantic-segmentation\":{\"inputImageProperties\":
{\"height\":2000,\"width\":3020},\"labelMappings\":{\"Bird\":{\"color\":\"#2ca02c
\"}},\"labeledImage\":{\"pngImageData\":\"iVBOR...\"}}}"
 }
 }
]
 }
]

Bounding Box Payload

[
 {
 "datasetObjectId": "0",
 "dataObject": {
 "s3Uri": "s3://DOC-EXAMPLE-BUCKET/gt-input-data/images/bird1.jpg"
 },
 "annotations": [
 {
 "workerId": "private.us-west-2.ab1234c5678a919d0",
 "annotationData": {
 "content": "{\"boundingBox\":{\"boundingBoxes\":[{\"height\":2052,
\"label\":\"Bird\",\"left\":583,\"top\":302,\"width\":1375}],\"inputImageProperties
\":{\"height\":2497,\"width\":3745}}}"
 }
 }
]
 }
]

Your post-annotation Lambda function may contain logic similar to the following to
loop through and access all annotations contained in the request. For a full example, see
annotation_consolidation_lambda.py in the aws-sagemaker-ground-truth-recipe GitHub
repository. In this GitHub example, you must add your own annotation consolidation logic.

for i in range(len(annotations)):
 worker_id = annotations[i]["workerId"]
 annotation_content = annotations[i]['annotationData'].get('content')

Creating Custom Labeling Workflows 1537

https://github.com/aws-samples/aws-sagemaker-ground-truth-recipe/blob/master/aws_sagemaker_ground_truth_sample_lambda/annotation_consolidation_lambda.py
https://github.com/aws-samples/aws-sagemaker-ground-truth-recipe

Amazon SageMaker Developer Guide

 annotation_s3_uri = annotations[i]['annotationData'].get('s3uri')
 annotation = annotation_content if annotation_s3_uri is None else
 s3_client.get_object_from_s3(
 annotation_s3_uri)
 annotation_from_single_worker = json.loads(annotation)

 print("{} Received Annotations from worker [{}] is [{}]"
 .format(log_prefix, worker_id, annotation_from_single_worker))

Tip

When you run consolidation algorithms on the data, you can use an AWS database service
to store results, or you can pass the processed results back to Ground Truth. The data you
return to Ground Truth is stored in consolidated annotation manifests in the S3 bucket
specified for output during the configuration of the labeling job.

In return, Ground Truth requires a response formatted like the following:

Example of expected return data

[
 {
 "datasetObjectId": <string>,
 "consolidatedAnnotation": {
 "content": {
 "<labelattributename>": {
 # ... label content
 }
 }
 }
 },
 {
 "datasetObjectId": <string>,
 "consolidatedAnnotation": {
 "content": {
 "<labelattributename>": {
 # ... label content
 }
 }
 }
 }

Creating Custom Labeling Workflows 1538

Amazon SageMaker Developer Guide

 .
 .
 .
]

At this point, all the data you're sending to your S3 bucket, other than the datasetObjectId, is in
the content object.

When you return annotations in content, this results in an entry in your job's output manifest like
the following:

Example of label format in output manifest

{ "source-ref"/"source" : "<s3uri or content>",
 "<labelAttributeName>": {
 # ... label content from you
 },
 "<labelAttributeName>-metadata": { # This will be added by Ground Truth
 "job_name": <labelingJobName>,
 "type": "groundTruth/custom",
 "human-annotated": "yes",
 "creation_date": <date> # Timestamp of when received from Post-labeling Lambda
 }
}

Because of the potentially complex nature of a custom template and the data it collects, Ground
Truth does not offer further processing of the data.

Required Permissions To Use AWS Lambda With Ground Truth

You may need to configure some or all the following to create and use AWS Lambda with Ground
Truth.

• You need to grant an IAM role or user (collectively, an IAM entity) permission to create the pre-
annotation and post-annotation Lambda functions using AWS Lambda, and to choose them
when creating the labeling job.

• The IAM execution role specified when the labeling job is configured needs permission to invoke
the pre-annotation and post-annotation Lambda functions.

• The post-annotation Lambda functions may need permission to access Amazon S3.

Creating Custom Labeling Workflows 1539

Amazon SageMaker Developer Guide

Use the following sections to learn how to create the IAM entities and grant permissions described
above.

Topics

• Grant Permission to Create and Select an AWS Lambda Function

• Grant IAM Execution Role Permission to Invoke AWS Lambda Functions

• Grant Post-Annotation Lambda Permissions to Access Annotation

Grant Permission to Create and Select an AWS Lambda Function

If you do not require granular permissions to develop pre-annotation and post-annotation Lambda
functions, you can attach the AWS managed policy AWSLambda_FullAccess to a user or role.
This policy grants broad permissions to use all Lambda features, as well as permission to perform
actions in other AWS services with which Lambda interacts.

To create a more granular policy for security-sensitive use cases, refer to the documentation
Identity-based IAM policies for Lambda in the to AWS Lambda Developer Guide to learn how to
create an IAM policy that fits your use case.

Policies to Use the Lambda Console

If you want to grant an IAM entity permission to use the Lambda console, see Using the Lambda
console in the AWS Lambda Developer Guide.

Additionally, if you want the user to be able to access and deploy the Ground Truth starter pre-
annotation and post-annotation functions using the AWS Serverless Application Repository in the
Lambda console, you must specify the <aws-region> where you want to deploy the functions
(this should be the same AWS Region used to create the labeling job), and add the following policy
to the IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "serverlessrepo:ListApplicationVersions",
 "serverlessrepo:GetApplication",

Creating Custom Labeling Workflows 1540

https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html
https://docs.aws.amazon.com/lambda/latest/dg/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/lambda/latest/dg/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console

Amazon SageMaker Developer Guide

 "serverlessrepo:CreateCloudFormationTemplate"
],
 "Resource": "arn:aws:serverlessrepo:<aws-region>:838997950401:applications/
aws-sagemaker-ground-truth-recipe"
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": "serverlessrepo:SearchApplications",
 "Resource": "*"
 }
]
}

Policies to See Lambda Functions in the Ground Truth Console

To grant an IAM entity permission to view Lambda functions in the Ground Truth console when
the user is creating a custom labeling job, the entity must have the permissions described in Grant
IAM Permission to Use the Amazon SageMaker Ground Truth Console, including the permissions
described in the section Custom Labeling Workflow Permissions.

Grant IAM Execution Role Permission to Invoke AWS Lambda Functions

If you add the IAM managed policy AmazonSageMakerGroundTruthExecution to the IAM execution
role used to create the labeling job, this role has permission to list and invoke Lambda functions
with one of the following strings in the function name: GtRecipe, SageMaker, Sagemaker,
sagemaker, or LabelingFunction.

If the pre-annotation or post-annotation Lambda function names do not include one of the
terms in the preceding paragraph, or if you require more granular permission than those in the
AmazonSageMakerGroundTruthExecution managed policy, you can add a policy similar to
the following to give the execution role permission to invoke pre-annotation and post-annotation
functions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action":
 "lambda:InvokeFunction",
 "Resource": [

Creating Custom Labeling Workflows 1541

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerGroundTruthExecution

Amazon SageMaker Developer Guide

 "arn:aws:lambda:<region>:<account-id>:function:<pre-annotation-lambda-
name>",
 "arn:aws:lambda:<region>:<account-id>:function:<post-annotation-lambda-
name>"
]
 }
]
}

Grant Post-Annotation Lambda Permissions to Access Annotation

As described in Post-annotation Lambda, the post-annotation Lambda request includes the
location of the annotation data in Amazon S3. This location is identified by the s3Uri string in
the payload object. To process the annotations as they come in, even for a simple pass through
function, you need to assign the necessary permissions to the post-annotation Lambda execution
role to read files from the Amazon S3.

There are many ways that you can configure your Lambda to access annotation data in Amazon S3.
Two common ways are:

• Allow the Lambda execution role to assume the SageMaker execution role identified in roleArn
in the post-annotation Lambda request. This SageMaker execution role is the one used to create
the labeling job, and has access to the Amazon S3 output bucket where the annotation data is
stored.

• Grant the Lambda execution role permission to access the Amazon S3 output bucket directly.

Use the following sections to learn how to configure these options.

Grant Lambda Permission to Assume SageMaker Execution Role

To allow a Lambda function to assume a SageMaker execution role, you must attach a policy to the
Lambda function's execution role, and modify the trust relationship of the SageMaker execution
role to allow Lambda to assume it.

1. Attach the following IAM policy to your Lambda function's execution role to assume the
SageMaker execution role identified in Resource. Replace 222222222222 with an AWS account
ID. Replace sm-execution-role with the name of the assumed role.

{
 "Version": "2012-10-17",

Creating Custom Labeling Workflows 1542

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

Amazon SageMaker Developer Guide

 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::222222222222:role/sm-execution-role"
 }
}

2. Modify the trust policy of the SageMaker execution role to include the following Statement.
Replace 222222222222 with an AWS account ID. Replace my-lambda-execution-role with
the name of the assumed role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::222222222222:role/my-lambda-execution-role"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Grant Lambda Execution Role Permission to Access S3

You can add a policy similar to the following to the post-annotation Lambda function execution
role to give it S3 read permissions. Replace DOC-EXAMPLE-BUCKET with the name of the output
bucket you specify when you create a labeling job.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
 }
]

Creating Custom Labeling Workflows 1543

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

Amazon SageMaker Developer Guide

}

To add S3 read permissions to a Lambda execution role in the Lambda console, use the following
procedure.

Add S3 read permissions to post-annotation Lambda:

1. Open the Functions page in the Lambda console.

2. Choose the name of the post-annotation function.

3. Choose Configuration and then choose Permissions.

4. Select the Role name and the summary page for that role opens in the IAM console in a new
tab.

5. Select Attach policies.

6. Do one of the following:

• Search for and select AmazonS3ReadOnlyAccess to give the function permission to read
all buckets and objects in the account.

• If you require more granular permissions, select Create policy and use the policy example in
the preceding section to create a policy. Note that you must navigate back to the execution
role summary page after you create the policy.

7. If you used the AmazonS3ReadOnlyAccess managed policy, select Attach policy.

If you created a new policy, navigate back to the Lambda execution role summary page and
attach the policy you just created.

Create Lambda Functions for a Custom Labeling Workflow

You can create a Lambda function using the Lambda console, the AWS CLI, or an AWS SDK in a
supported programming language of your choice. Use the AWS Lambda Developer Guide to learn
more about each of these options:

• To learn how to create a Lambda function using the console, see Create a Lambda function with
the console.

• To learn how to create a Lambda function using the AWS CLI, see Using AWS Lambda with the
AWS Command Line Interface.

Creating Custom Labeling Workflows 1544

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html

Amazon SageMaker Developer Guide

• Select the relevant section in the table of contents to learn more about working with Lambda in
the language of your choice. For example, select Working with Python to learn more about using
Lambda with the AWS SDK for Python (Boto3).

Ground Truth provides pre-annotation and post-annotation templates through an AWS Serverless
Application Repository (SAR) recipe. Use the following procedure to select the Ground Truth recipe
in the Lambda console.

Use the Ground Truth SAR recipe to create pre-annotation and post-annotation Lambda
functions:

1. Open the Functions page on the Lambda console.

2. Select Create function.

3. Select Browse serverless app repository.

4. In the search text box, enter aws-sagemaker-ground-truth-recipe and select that app.

5. Select Deploy. The app may take a couple of minutes to deploy.

Once the app deploys, two functions appear in the Functions section of the Lambda
console: serverlessrepo-aws-sagema-GtRecipePreHumanTaskFunc-<id> and
serverlessrepo-aws-sagema-GtRecipeAnnotationConsol-<id>.

6. Select one of these functions and add your custom logic in the Code section.

7. When you are finished making changes, select Deploy to deploy them.

Test Pre-Annotation and Post-Annotation Lambda Functions

You can test your pre-annotation and post annotation Lambda functions in the Lambda console.
If you are a new user of Lambda, you can learn how to test, or invoke, your Lambda functions in
the console using the Create a Lambda function tutorial with the console in the AWS Lambda
Developer Guide.

You can use the sections on this page to learn how to test the Ground Truth pre-annotation and
post-annotation templates provided through an AWS Serverless Application Repository (SAR).

Topics

• Prerequisites

• Test the Pre-annotation Lambda Function

Creating Custom Labeling Workflows 1545

https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html#gettingstarted-zip-function

Amazon SageMaker Developer Guide

• Test the Post-Annotation Lambda Function

Prerequisites

You must do the following to use the tests described on this page.

• You need access to the Lambda console, and you need permission to create and invoke Lambda
functions. To learn how to set up these permissions, see Grant Permission to Create and Select
an AWS Lambda Function.

• If you have not deployed the Ground Truth SAR recipe, use the procedure in Create Lambda
Functions for a Custom Labeling Workflow to do so.

• To test the post-annotation Lambda function, you must have a data file in Amazon S3 with
sample annotation data. For a simple test, you can copy and paste the following code into a file
and save it as sample-annotations.json and upload this file to Amazon S3. Note the S3 URI
of this file—you need this information to configure the post-annotation Lambda test.

[{"datasetObjectId":"0","dataObject":{"content":"To train a machine learning model,
 you need a large, high-quality, labeled dataset. Ground Truth helps you build
 high-quality training datasets for your machine learning models."},"annotations":
[{"workerId":"private.us-west-2.0123456789","annotationData":{"content":"{\"crowd-
entity-annotation\":{\"entities\":[{\"endOffset\":8,\"label\":\"verb\",\"startOffset
\":3},{\"endOffset\":27,\"label\":\"adjective\",\"startOffset\":11},{\"endOffset
\":33,\"label\":\"object\",\"startOffset\":28},{\"endOffset\":51,\"label\":
\"adjective\",\"startOffset\":46},{\"endOffset\":65,\"label\":\"adjective\",
\"startOffset\":53},{\"endOffset\":74,\"label\":\"adjective\",\"startOffset\":67},
{\"endOffset\":82,\"label\":\"adjective\",\"startOffset\":75},{\"endOffset\":102,
\"label\":\"verb\",\"startOffset\":97},{\"endOffset\":112,\"label\":\"verb\",
\"startOffset\":107},{\"endOffset\":125,\"label\":\"adjective\",\"startOffset
\":113},{\"endOffset\":134,\"label\":\"adjective\",\"startOffset\":126},{\"endOffset
\":143,\"label\":\"object\",\"startOffset\":135},{\"endOffset\":169,\"label
\":\"adjective\",\"startOffset\":153},{\"endOffset\":176,\"label\":\"object\",
\"startOffset\":170}]}}"}}]},{"datasetObjectId":"1","dataObject":{"content":"Sift
 3 cups of flour into the bowl."},"annotations":[{"workerId":"private.us-
west-2.0123456789","annotationData":{"content":"{\"crowd-entity-annotation\":
{\"entities\":[{\"endOffset\":4,\"label\":\"verb\",\"startOffset\":0},{\"endOffset
\":6,\"label\":\"number\",\"startOffset\":5},{\"endOffset\":20,\"label\":\"object
\",\"startOffset\":15},{\"endOffset\":34,\"label\":\"object\",\"startOffset
\":30}]}}"}}]},{"datasetObjectId":"2","dataObject":{"content":"Jen purchased 10
 shares of the stock on Janurary 1st, 2020."},"annotations":[{"workerId":"private.us-
west-2.0123456789","annotationData":{"content":"{\"crowd-entity-annotation
\":{\"entities\":[{\"endOffset\":3,\"label\":\"person\",\"startOffset\":0},

Creating Custom Labeling Workflows 1546

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Amazon SageMaker Developer Guide

{\"endOffset\":13,\"label\":\"verb\",\"startOffset\":4},{\"endOffset\":16,\"label
\":\"number\",\"startOffset\":14},{\"endOffset\":58,\"label\":\"date\",\"startOffset
\":40}]}}"}}]},{"datasetObjectId":"3","dataObject":{"content":"The narrative
 was interesting, however the character development was weak."},"annotations":
[{"workerId":"private.us-west-2.0123456789","annotationData":{"content":"{\"crowd-
entity-annotation\":{\"entities\":[{\"endOffset\":29,\"label\":\"adjective\",
\"startOffset\":18},{\"endOffset\":73,\"label\":\"adjective\",\"startOffset
\":69}]}}"}}]}]

• You must use the directions in Grant Post-Annotation Lambda Permissions to Access Annotation
to give your post-annotation Lambda function's execution role permission to assume the
SageMaker execution role you use to create the labeling job. The post-annotation Lambda
function uses the SageMaker execution role to access the annotation data file, sample-
annotations.json, in S3.

Test the Pre-annotation Lambda Function

Use the following procedure to test the pre-annotation Lambda function created when you
deployed the Ground Truth AWS Serverless Application Repository (SAR) recipe.

Test the Ground Truth SAR recipe pre-annotation Lambda function

1. Open the Functions page in the Lambda console.

2. Select the pre-annotation function that was deployed from the Ground Truth SAR
recipe. The name of this function is similar to serverlessrepo-aws-sagema-
GtRecipePreHumanTaskFunc-<id>.

3. In the Code source section, select the arrow next to Test.

4. Select Configure test event.

5. Keep the Create new test event option selected.

6. Under Event template, select SageMaker Ground Truth PreHumanTask.

7. Give your test an Event name.

8. Select Create.

9. Select the arrow next to Test again and you should see that the test you created is selected,
which is indicated with a dot by the event name. If it is not selected, select it.

10. Select Test to run the test.

Creating Custom Labeling Workflows 1547

https://console.aws.amazon.com/lambda/home#/functions

Amazon SageMaker Developer Guide

After you run the test, you can see the Execution results. In the Function logs, you should see a
response similar to the following:

START RequestId: cd117d38-8365-4e1a-bffb-0dcd631a878f Version: $LATEST
Received event: {
 "version": "2018-10-16",
 "labelingJobArn": "arn:aws:sagemaker:us-east-2:123456789012:labeling-job/example-
job",
 "dataObject": {
 "source-ref": "s3://sagemakerexample/object_to_annotate.jpg"
 }
}
{'taskInput': {'taskObject': 's3://sagemakerexample/object_to_annotate.jpg'},
 'isHumanAnnotationRequired': 'true'}
END RequestId: cd117d38-8365-4e1a-bffb-0dcd631a878f
REPORT RequestId: cd117d38-8365-4e1a-bffb-0dcd631a878f Duration: 0.42 ms Billed
 Duration: 1 ms Memory Size: 128 MB Max Memory Used: 43 MB

In this response, we can see the Lambda function's output matches the required pre-annotation
response syntax:

{'taskInput': {'taskObject': 's3://sagemakerexample/object_to_annotate.jpg'},
 'isHumanAnnotationRequired': 'true'}

Test the Post-Annotation Lambda Function

Use the following procedure to test the post-annotation Lambda function created when you
deployed the Ground Truth AWS Serverless Application Repository (SAR) recipe.

Test the Ground Truth SAR recipe post-annotation Lambda

1. Open the Functions page in the Lambda console.

2. Select the post-annotation function that was deployed from the Ground Truth SAR
recipe. The name of this function is similar to serverlessrepo-aws-sagema-
GtRecipeAnnotationConsol-<id>.

3. In the Code source section, select the arrow next to Test.

4. Select Configure test event.

5. Keep the Create new test event option selected.

6. Under Event template, select SageMaker Ground Truth AnnotationConsolidation.

Creating Custom Labeling Workflows 1548

https://console.aws.amazon.com/lambda/home#/functions

Amazon SageMaker Developer Guide

7. Give your test an Event name.

8. Modify the template code provided as follows:

• Replace the Amazon Resource Name (ARN) in roleArn with the ARN of the SageMaker
execution role you used to create the labeling job.

• Replace the S3 URI in s3Uri with the URI of the sample-annotations.json file you
added to Amazon S3.

After you make these modifications, your test should look similar to the following:

{
 "version": "2018-10-16",
 "labelingJobArn": "arn:aws:sagemaker:us-east-2:123456789012:labeling-job/example-
job",
 "labelAttributeName": "example-attribute",
 "roleArn": "arn:aws:iam::222222222222:role/sm-execution-role",
 "payload": {
 "s3Uri": "s3://your-bucket/sample-annotations.json"
 }
}

9. Select Create.

10. Select the arrow next to Test again and you should see that the test you created is selected,
which is indicated with a dot by the event name. If it is not selected, select it.

11. Select the Test to run the test.

After you run the test, you should see a -- Consolidated Output -- section in the Function
Logs, which contains a list of all annotations included in sample-annotations.json.

Demo Template: Annotation of Images with crowd-bounding-box

When you chose to use a custom template as your task type in the Amazon SageMaker Ground
Truth console, you reach the Custom labeling task panel. There you can choose from multiple
base templates. The templates represent some of the most common tasks and provide a sample
to work from as you create your customized labeling task's template. If you are not using the
console, or as an additional recourse, see Amazon SageMaker Ground Truth Sample Task UIs for a
repository of demo templates for a variety of labeling job task types.

Creating Custom Labeling Workflows 1549

https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis

Amazon SageMaker Developer Guide

This demonstration works with the BoundingBox template. The demonstration also works with
the AWS Lambda functions needed for processing your data before and after the task. In the
Github repository above, to find templates that work with AWS Lambda functions, look for
{{ task.input.<property name> }} in the template.

Topics

• Starter Bounding Box custom template

• Your own Bounding Box custom template

• Your manifest file

• Your pre-annotation Lambda function

• Your post-annotation Lambda function

• The output of your labeling job

Starter Bounding Box custom template

This is the starter bounding box template that is provided.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-bounding-box
 name="boundingBox"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="{{ task.input.header }}"
 labels="{{ task.input.labels | to_json | escape }}"
 >

 <!-- The <full-instructions> tag is where you will define the full instructions of
 your task. -->
 <full-instructions header="Bounding Box Instructions" >
 <p>Use the bounding box tool to draw boxes around the requested target of
 interest:</p>

 Draw a rectangle using your mouse over each instance of the target.
 Make sure the box does not cut into the target, leave a 2 - 3 pixel
 margin

 When targets are overlapping, draw a box around each object,
 include all contiguous parts of the target in the box.

Creating Custom Labeling Workflows 1550

Amazon SageMaker Developer Guide

 Do not include parts that are completely overlapped by another object.

 Do not include parts of the target that cannot be seen,
 even though you think you can interpolate the whole shape of the target.

 Avoid shadows, they're not considered as a part of the target.
 If the target goes off the screen, label up to the edge of the image.

 </full-instructions>

 <!-- The <short-instructions> tag allows you to specify instructions that are
 displayed in the left hand side of the task interface.
 It is a best practice to provide good and bad examples in this section for quick
 reference. -->
 <short-instructions>
 Use the bounding box tool to draw boxes around the requested target of interest.
 </short-instructions>
 </crowd-bounding-box>
</crowd-form>

The custom templates use the Liquid template language, and each of the items between double
curly braces is a variable. The pre-annotation AWS Lambda function should provide an object
named taskInput and that object's properties can be accessed as {{ task.input.<property
name> }} in your template.

Your own Bounding Box custom template

As an example, assume you have a large collection of animal photos in which you know the kind
of animal in an image from a prior image-classification job. Now you want to have a bounding box
drawn around it.

In the starter sample, there are three variables: taskObject, header, and labels.

Each of these would be represented in different parts of the bounding box.

• taskObject is an HTTP(S) URL or S3 URI for the photo to be annotated. The added |
grant_read_access is a filter that will convert an S3 URI to an HTTPS URL with short-lived
access to that resource. If you're using an HTTP(S) URL, it's not needed.

• header is the text above the photo to be labeled, something like "Draw a box around the bird in
the photo."

Creating Custom Labeling Workflows 1551

https://shopify.github.io/liquid/

Amazon SageMaker Developer Guide

• labels is an array, represented as ['item1', 'item2', ...]. These are labels that can be
assigned by the worker to the different boxes they draw. You can have one or many.

Each of the variable names come from the JSON object in the response from your pre-annotation
Lambda, The names above are merely suggested, Use whatever variable names make sense to you
and will promote code readability among your team.

Only use variables when necessary

If a field will not change, you can remove that variable from the template and replace it
with that text, otherwise you have to repeat that text as a value in each object in your
manifest or code it into your pre-annotation Lambda function.

Example : Final Customized Bounding Box Template

To keep things simple, this template will have one variable, one label, and very basic instructions.
Assuming your manifest has an "animal" property in each data object, that value can be re-used in
two parts of the template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-bounding-box
 name="boundingBox"
 labels="['{{ task.input.animal }}']"
 src="{{ task.input.source-ref | grant_read_access }}"
 header="Draw a box around the {{ task.input.animal }}."
 >
 <full-instructions header="Bounding Box Instructions" >
 <p>Draw a bounding box around the {{ task.input.animal }} in the image. If
 there is more than one {{ task.input.animal }} per image, draw a bounding
 box around the largest one.</p>
 <p>The box should be tight around the {{ task.input.animal }} with
 no more than a couple of pixels of buffer around the
 edges.</p>
 <p>If the image does not contain a {{ task.input.animal }}, check the
 Nothing to label box.
 </full-instructions>
 <short-instructions>
 <p>Draw a bounding box around the {{ task.input.animal }} in each image. If
 there is more than one {{ task.input.animal }} per image, draw a bounding

Creating Custom Labeling Workflows 1552

Amazon SageMaker Developer Guide

 box around the largest one.</p>
 </short-instructions>
 </crowd-bounding-box>
</crowd-form>

Note the re-use of {{ task.input.animal }} throughout the template. If your manifest had
all of the animal names beginning with a capital letter, you could use {{ task.input.animal
| downcase }}, incorporating one of Liquid's built-in filters in sentences where it needed to be
presented lowercase.

Your manifest file

Your manifest file should provide the variable values you're using in your template. You can do
some transformation of your manifest data in your pre-annotation Lambda, but if you don't need
to, you maintain a lower risk of errors and your Lambda will run faster. Here's a sample manifest
file for the template.

{"source-ref": "<S3 image URI>", "animal": "horse"}
{"source-ref": "<S3 image URI>", "animal" : "bird"}
{"source-ref": "<S3 image URI>", "animal" : "dog"}
{"source-ref": "<S3 image URI>", "animal" : "cat"}

Your pre-annotation Lambda function

As part of the job set-up, provide the ARN of an AWS Lambda function that can be called to
process your manifest entries and pass them to the template engine.

Naming your Lambda function

The best practice in naming your function is to use one of the following four strings as part
of the function name: SageMaker, Sagemaker, sagemaker, or LabelingFunction. This
applies to both your pre-annotation and post-annotation functions.

When you're using the console, if you have AWS Lambda functions that are owned by your account,
a drop-down list of functions meeting the naming requirements will be provided to choose one.

In this very basic example, you're just passing through the information from the manifest without
doing any additional processing on it. This sample pre-annotation function is written for Python
3.7.

Creating Custom Labeling Workflows 1553

Amazon SageMaker Developer Guide

import json

def lambda_handler(event, context):
 return {
 "taskInput": event['dataObject']
 }

The JSON object from your manifest will be provided as a child of the event object. The properties
inside the taskInput object will be available as variables to your template, so simply setting the
value of taskInput to event['dataObject'] will pass all the values from your manifest object
to your template without having to copy them individually. If you wish to send more values to the
template, you can add them to the taskInput object.

Your post-annotation Lambda function

As part of the job set-up, provide the ARN of an AWS Lambda function that can be called to
process the form data when a worker completes a task. This can be as simple or complex as you
want. If you want to do answer consolidation and scoring as it comes in, you can apply the scoring
and/or consolidation algorithms of your choice. If you want to store the raw data for offline
processing, that is an option.

Provide permissions to your post-annotation Lambda

The annotation data will be in a file designated by the s3Uri string in the payload object.
To process the annotations as they come in, even for a simple pass through function, you
need to assign S3ReadOnly access to your Lambda so it can read the annotation files.
In the Console page for creating your Lambda, scroll to the Execution role panel. Select
Create a new role from one or more templates. Give the role a name. From the Policy
templates drop-down, choose Amazon S3 object read-only permissions. Save the Lambda
and the role will be saved and selected.

The following sample is in Python 2.7.

import json
import boto3
from urlparse import urlparse

def lambda_handler(event, context):

Creating Custom Labeling Workflows 1554

Amazon SageMaker Developer Guide

 consolidated_labels = []

 parsed_url = urlparse(event['payload']['s3Uri']);
 s3 = boto3.client('s3')
 textFile = s3.get_object(Bucket = parsed_url.netloc, Key = parsed_url.path[1:])
 filecont = textFile['Body'].read()
 annotations = json.loads(filecont);

 for dataset in annotations:
 for annotation in dataset['annotations']:
 new_annotation = json.loads(annotation['annotationData']['content'])
 label = {
 'datasetObjectId': dataset['datasetObjectId'],
 'consolidatedAnnotation' : {
 'content': {
 event['labelAttributeName']: {
 'workerId': annotation['workerId'],
 'boxesInfo': new_annotation,
 'imageSource': dataset['dataObject']
 }
 }
 }
 }
 consolidated_labels.append(label)

 return consolidated_labels

The post-annotation Lambda will often receive batches of task results in the event object. That
batch will be the payload object the Lambda should iterate through. What you send back will be
an object meeting the API contract.

The output of your labeling job

You'll find the output of the job in a folder named after your labeling job in the target S3 bucket
you specified. It will be in a subfolder named manifests.

For a bounding box task, the output you find in the output manifest will look a bit like the demo
below. The example has been cleaned up for printing. The actual output will be a single line per
record.

Example : JSON in your output manifest

{

Creating Custom Labeling Workflows 1555

Amazon SageMaker Developer Guide

 "source-ref":"<URL>",
 "<label attribute name>":
 {
 "workerId":"<URL>",
 "imageSource":"<image URL>",
 "boxesInfo":"{\"boundingBox\":{\"boundingBoxes\":[{\"height\":878, \"label\":
\"bird\", \"left\":208, \"top\":6, \"width\":809}], \"inputImageProperties\":{\"height
\":924, \"width\":1280}}}"},
 "<label attribute name>-metadata":
 {
 "type":"groundTruth/custom",
 "job_name":"<Labeling job name>",
 "human-annotated":"yes"
 },
 "animal" : "bird"
}

Note how the additional animal attribute from your original manifest is passed to the output
manifest on the same level as the source-ref and labeling data. Any properties from your input
manifest, whether they were used in your template or not, will be passed to the output manifest.

Demo Template: Labeling Intents with crowd-classifier

If you choose a custom template, you'll reach the Custom labeling task panel. There you can
select from multiple starter templates that represent some of the more common tasks. The
templates provide a starting point to work from in building your customized labeling task's
template.

In this demonstration, you work with the Intent Detection template, which uses the crowd-
classifier element, and the AWS Lambda functions needed for processing your data before and
after the task.

Topics

• Starter Intent Detection custom template

• Your Intent Detection custom template

• Your pre-annotation Lambda function

• Your post-annotation Lambda function

• Your labeling job output

Creating Custom Labeling Workflows 1556

Amazon SageMaker Developer Guide

Starter Intent Detection custom template

This is the intent detection template that is provided as a starting point.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-classifier
 name="intent"
 categories="{{ task.input.labels | to_json | escape }}"
 header="Pick the most relevant intention expressed by the below text"
 >
 <classification-target>
 {{ task.input.utterance }}
 </classification-target>

 <full-instructions header="Intent Detection Instructions">
 <p>Select the most relevant intention expressed by the text.</p>
 <div>
 <p>Example: I would like to return a pair of shoes</p>
 <p>Intent: Return</p>
 </div>
 </full-instructions>

 <short-instructions>
 Pick the most relevant intention expressed by the text
 </short-instructions>
 </crowd-classifier>
</crowd-form>

The custom templates use the Liquid template language, and each of the items between double
curly braces is a variable. The pre-annotation AWS Lambda function should provide an object
named taskInput and that object's properties can be accessed as {{ task.input.<property
name> }} in your template.

Your Intent Detection custom template

In the starter template, there are two variables: the task.input.labels property in the crowd-
classifier element opening tag and the task.input.utterance in the classification-
target region's content.

Unless you need to offer different sets of labels with different utterances, avoiding a variable and
just using text will save processing time and creates less possibility of error. The template used in

Creating Custom Labeling Workflows 1557

https://shopify.github.io/liquid/

Amazon SageMaker Developer Guide

this demonstration will remove that variable, but variables and filters like to_json are explained
in more detail in the crowd-bounding-box demonstration article.

Styling Your Elements

Two parts of these custom elements that sometimes get overlooked are the <full-
instructions> and <short-instructions> regions. Good instructions generate good results.

In the elements that include these regions, the <short-instructions> appear automatically in
the "Instructions" pane on the left of the worker's screen. The <full-instructions> are linked
from the "View full instructions" link near the top of that pane. Clicking the link opens a modal
pane with more detailed instructions.

You can not only use HTML, CSS, and JavaScript in these sections, you are encouraged to if you
believe you can provide a strong set of instructions and examples that will help workers complete
your tasks with better speed and accuracy.

Example Try out a sample with JSFiddle

Try out an example <crowd-classifier> task. The example is rendered by JSFiddle, therefore all
the template variables are replaced with hard-coded values. Click the "View full instructions" link to
see a set of examples with extended CSS styling. You can fork the project to experiment with your
own changes to the CSS, adding sample images, or adding extended JavaScript functionality.

Example : Final Customized Intent Detection Template

This uses the example <crowd-classifier> task, but with a variable for the
<classification-target>. If you are trying to keep a consistent CSS design among a series of

Creating Custom Labeling Workflows 1558

https://jsfiddle.net/MTGT_Fiddle_Manager/bjc0y1vd/35/
https://jsfiddle.net/MTGT_Fiddle_Manager/bjc0y1vd/35/
https://jsfiddle.net/MTGT_Fiddle_Manager/bjc0y1vd/35/

Amazon SageMaker Developer Guide

different labeling jobs, you can include an external stylesheet using a <link rel...> element
the same way you'd do in any other HTML document.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-classifier
 name="intent"
 categories="['buy', 'eat', 'watch', 'browse', 'leave']"
 header="Pick the most relevant intent expressed by the text below"
 >
 <classification-target>
 {{ task.input.source }}
 </classification-target>

 <full-instructions header="Emotion Classification Instructions">
 <p>In the statements and questions provided in this exercise, what category of
 action is the speaker interested in doing?</p>
 <table>
 <tr>
 <th>Example Utterance</th>
 <th>Good Choice</th>
 </tr>
 <tr>
 <td>When is the Seahawks game on?</td>
 <td>
 eat

 <greenbg>watch</greenbg>
 <botchoice>browse</botchoice>
 </td>
 </tr>
 <tr>
 <th>Example Utterance</th>
 <th>Bad Choice</th>
 </tr>
 <tr>
 <td>When is the Seahawks game on?</td>
 <td>
 buy

 <greenbg>eat</greenbg>
 <botchoice>watch</botchoice>
 </td>
 </tr>

Creating Custom Labeling Workflows 1559

Amazon SageMaker Developer Guide

 </table>
 </full-instructions>

 <short-instructions>
 What is the speaker expressing they would like to do next?
 </short-instructions>
 </crowd-classifier>
</crowd-form>
<style>
 greenbg {
 background: #feee23;
 display: block;
 }

 table {
 border-collapse: collapse; / IE7 and lower */
 border-spacing: 0;
 }

 th, tfoot, .fakehead {
 background-color: #8888ee;
 color: #f3f3f3;
 font-weight: 700;
 }

 th, td, tfoot {
 border: 1px solid blue;
 }

 th:first-child {
 border-radius: 6px 0 0 0;
 }

 th:last-child {
 border-radius: 0 6px 0 0;
 }

 th:only-child{
 border-radius: 6px 6px 0 0;
 }

 tfoot:first-child {
 border-radius: 0 0 6px 0;
 }

Creating Custom Labeling Workflows 1560

Amazon SageMaker Developer Guide

 tfoot:last-child {
 border-radius: 0 0 0 6px;
 }

 tfoot:only-child{
 border-radius: 6px 6px;
 }

 td {
 padding-left: 15px ;
 padding-right: 15px ;
 }

 botchoice {
 display: block;
 height: 17px;
 width: 490px;
 overflow: hidden;
 position: relative;
 background: #fff;
 padding-bottom: 20px;
 }

 botchoice:after {
 position: absolute;
 bottom: 0;
 left: 0;
 height: 100%;
 width: 100%;
 content: "";
 background: linear-gradient(to top,
 rgba(255,255,255, 1) 55%,
 rgba(255,255,255, 0) 100%
);
 pointer-events: none; /* so the text is still selectable */
 }
</style>

Example : Your manifest file

If you are preparing your manifest file manually for a text-classification task like this, have your
data formatted in the following manner.

Creating Custom Labeling Workflows 1561

Amazon SageMaker Developer Guide

{"source": "Roses are red"}
{"source": "Violets are Blue"}
{"source": "Ground Truth is the best"}
{"source": "And so are you"}

This differs from the manifest file used for the "Demo Template: Annotation of Images with
crowd-bounding-box" demonstration in that source-ref was used as the property name
instead of source. The use of source-ref designates S3 URIs for images or other files that must
be converted to HTTP. Otherwise, source should be used like it is with the text strings above.

Your pre-annotation Lambda function

As part of the job set-up, provide the ARN of an AWS Lambda that can be called to process your
manifest entries and pass them to the template engine.

This Lambda function is required to have one of the following four strings as part of the function
name: SageMaker, Sagemaker, sagemaker, or LabelingFunction.

This applies to both your pre-annotation and post-annotation Lambdas.

When you're using the console, if you have Lambdas that are owned by your account, a drop-down
list of functions meeting the naming requirements will be provided to choose one.

In this very basic sample, where you have only one variable, it's primarily a pass-through function.
Here's a sample pre-labeling Lambda using Python 3.7.

import json

def lambda_handler(event, context):
 return {
 "taskInput": event['dataObject']
 }

The dataObject property of the event contains the properties from a data object in your
manifest.

In this demonstration, which is a simple pass through, you just pass that straight through as
the taskInput value. If you add properties with those values to the event['dataObject']
object, they will be available to your HTML template as Liquid variables with the format
{{ task.input.<property name> }}.

Creating Custom Labeling Workflows 1562

Amazon SageMaker Developer Guide

Your post-annotation Lambda function

As part of the job set up, provide the ARN of an Lambda function that can be called to process
the form data when a worker completes a task. This can be as simple or complex as you want. If
you want to do answer-consolidation and scoring as data comes in, you can apply the scoring or
consolidation algorithms of your choice. If you want to store the raw data for offline processing,
that is an option.

Set permissions for your post-annotation Lambda function

The annotation data will be in a file designated by the s3Uri string in the payload object.
To process the annotations as they come in, even for a simple pass through function, you
need to assign S3ReadOnly access to your Lambda so it can read the annotation files.
In the Console page for creating your Lambda, scroll to the Execution role panel. Select
Create a new role from one or more templates. Give the role a name. From the Policy
templates drop-down, choose Amazon S3 object read-only permissions. Save the Lambda
and the role will be saved and selected.

The following sample is for Python 3.7.

import json
import boto3
from urllib.parse import urlparse

def lambda_handler(event, context):
 consolidated_labels = []

 parsed_url = urlparse(event['payload']['s3Uri']);
 s3 = boto3.client('s3')
 textFile = s3.get_object(Bucket = parsed_url.netloc, Key = parsed_url.path[1:])
 filecont = textFile['Body'].read()
 annotations = json.loads(filecont);

 for dataset in annotations:
 for annotation in dataset['annotations']:
 new_annotation = json.loads(annotation['annotationData']['content'])
 label = {
 'datasetObjectId': dataset['datasetObjectId'],
 'consolidatedAnnotation' : {
 'content': {

Creating Custom Labeling Workflows 1563

Amazon SageMaker Developer Guide

 event['labelAttributeName']: {
 'workerId': annotation['workerId'],
 'result': new_annotation,
 'labeledContent': dataset['dataObject']
 }
 }
 }
 }
 consolidated_labels.append(label)

 return consolidated_labels

Your labeling job output

The post-annotation Lambda will often receive batches of task results in the event object. That
batch will be the payload object the Lambda should iterate through.

You'll find the output of the job in a folder named after your labeling job in the target S3 bucket
you specified. It will be in a subfolder named manifests.

For an intent detection task, the output in the output manifest will look a bit like the demo below.
The example has been cleaned up and spaced out to be easier for humans to read. The actual
output will be more compressed for machine reading.

Example : JSON in your output manifest

[
 {
 "datasetObjectId":"<Number representing item's place in the manifest>",
 "consolidatedAnnotation":
 {
 "content":
 {
 "<name of labeling job>":
 {
 "workerId":"private.us-east-1.XXXXXXXXXXXXXXXXXXXXXX",
 "result":
 {
 "intent":
 {
 "label":"<label chosen by worker>"
 }
 },

Creating Custom Labeling Workflows 1564

Amazon SageMaker Developer Guide

 "labeledContent":
 {
 "content":"<text content that was labeled>"
 }
 }
 }
 }
 },
 "datasetObjectId":"<Number representing item's place in the manifest>",
 "consolidatedAnnotation":
 {
 "content":
 {
 "<name of labeling job>":
 {
 "workerId":"private.us-east-1.6UDLPKQZHYWJQSCA4MBJBB7FWE",
 "result":
 {
 "intent":
 {
 "label": "<label chosen by worker>"
 }
 },
 "labeledContent":
 {
 "content": "<text content that was labeled>"
 }
 }
 }
 }
 },
 ...
 ...
 ...
]

This should help you create and use your own custom template.

Custom Workflows via the API

When you have created your custom UI template (Step 2) and processing Lambda functions
(Step 3), you should place the template in an Amazon S3 bucket with a file name format of:
<FileName>.liquid.html.

Creating Custom Labeling Workflows 1565

Amazon SageMaker Developer Guide

Use the CreateLabelingJob action to configure your task. You'll use the location
of a custom template (Step 2: Creating your custom worker task template) stored in a
<filename>.liquid.html file on S3 as the value for the UiTemplateS3Uri field in the
UiConfig object within the HumanTaskConfig object.

For the AWS Lambda tasks described in Step 3: Processing with AWS Lambda, the post-annotation
task's ARN will be used as the value for the AnnotationConsolidationLambdaArn field, and
the pre-annotation task will be used as the value for the PreHumanTaskLambdaArn.

Create a Labeling Job

You can create a labeling job in the Amazon SageMaker console and by using an AWS SDK in your
preferred language to run CreateLabelingJob. After a labeling job has been created, you can
track worker metrics (for private workforces) and your labeling job status using CloudWatch.

Before you create a labeling job it is recommended that you review the following pages, as
applicable:

• You can specify your input data using an automatic data setup in the console, or an input
manifest file in either the console or when using CreateLabelingJob API. For automated data
setup, see Automated Data Setup. To learn how to create an input manifest file, see Use an Input
Manifest File.

• Review labeling job input data quotas: Input Data Quotas.

After you have chosen your task type, use the topics on this page to learn how to create a labeling
job.

If you are a new Ground Truth user, we recommend that you start by walking through the demo in
Getting started.

Important

Ground Truth requires all S3 buckets that contain labeling job input image data to have a
CORS policy attached. To learn more, see CORS Permission Requirement.

Topics

• Built-in Task Types

Create a Labeling Job 1566

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UiConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-monitor-cloud-watch.html

Amazon SageMaker Developer Guide

• Creating Instruction Pages

• Create a Labeling Job (Console)

• Create a Labeling Job (API)

• Create a Streaming Labeling Job

• Create a Labeling Category Configuration File with Label Category and Frame Attributes

Built-in Task Types

Amazon SageMaker Ground Truth has several built-in task types. Ground Truth provides a worker
task template for built-in task types. Additionally, some built in task types support Automate Data
Labeling. The following topics describe each built-in task type and demo the worker task templates
that are provided by Ground Truth in the console. To learn how to create a labeling job in the
console using one of these task types, select the task type page.

Label Images Label Text Label Videos and
Video Frames

Label 3D Point
Clouds

• Bounding Box

• Image Classific
ation (Single Label)

• Image Classific
ation (Multi-label)

• Image Semantic
Segmentation

• Verify and Adjust
Labels

• Named Entity
Recognition

• Text Classification
(Single Label)

• Text Classification
(Multi-label)

• Video Classification

• Video Frame Object
Detection

• Video Frame Object
Tracking

• 3D Point Cloud
Object Detection

• 3D Point Cloud
Object Tracking

• 3D Point Cloud
Semantic
Segmentation

Note

Each of the video frame and 3D point cloud task types has an adjustment task type that
you use to verify and adjust labels from a previous labeling job. Select a video frame or 3D
point cloud task type page above to learn how to adjust labels created using that task type.

Create a Labeling Job 1567

Amazon SageMaker Developer Guide

Creating Instruction Pages

Create custom instructions for labeling jobs to improve your worker's accuracy in completing
their task. You can modify the default instructions that are provided in the console or you can
create your own. The instructions are shown to the worker on the page where they complete their
labeling task.

There are two kinds of instructions:

• Short instructions—instructions that are shown on the same webpage where the worker
completes their task. These instructions should provide an easy reference to show the worker the
correct way to label an object.

• Full instructions—instructions that are shown on a dialog box that overlays the page where
the worker completes their task. We recommend that you provide detailed instructions for
completing the task with multiple examples showing edge cases and other difficult situations for
labeling objects.

Create instructions in the console when you are creating your labeling job. Start with the existing
instructions for the task and use the editor to modify them to suit your labeling job.

Note

Once you create your labeling job, it will automatically start and you will not be able to
modify your worker instructions. If you need to change your worker instructions, stop the
labeling job that you created, clone it, and modify your worker instructions before creating
a new job.
You can clone a labeling job in the console by selecting the labeling job and then selecting
Clone in the Actions menu.
To clone a labeling job using the Amazon SageMaker API or your preferred Amazon
SageMaker SDK, make a new request to the CreateLabelingJob operation with the same
specifications as your original job after modifying your worker instructions.

Short Instructions

Short instructions appear on the same web page that workers use to label your data object. For
example, the following is the editing page for a bounding box task. The short instructions panel is
on the left.

Create a Labeling Job 1568

Amazon SageMaker Developer Guide

Keep in mind that a worker will only spend seconds looking at the short instructions. Workers must
be able to scan and understand your information quickly. In all cases it should take less time to
understand the instructions than it takes to complete the task. Keep these points in mind:

• Your instructions should be clear and simple.

• Pictures are better than words. Create a simple illustration of your task that your workers can
immediately understand.

• If you must use words, use short, concise examples.

• Your short instructions are more important than your full instructions.

Create a Labeling Job 1569

Amazon SageMaker Developer Guide

The Amazon SageMaker Ground Truth console provides an editor so that you can create your short
instructions. Replace the placeholder text and images with instructions for your task. Preview the
worker's task page by choosing Preview. The preview will open in a new window, be sure to turn off
pop-up blocking so that the window will show.

Full Instructions

You can provide additional instructions for your workers in a dialog box that overlays the page
where workers label your data objects. Use full instructions to explain more complex tasks and to
show workers the proper way to label edge cases or other difficult objects.

You can create full instructions using an editor in the Ground Truth console. As with quick
instructions, keep the following in mind:

• Workers will want detailed instruction the first few times that the complete your task. Any
information that they must have should be in the quick instructions.

• Pictures are more important than words.

• Text should be concise.

• Full instructions should supplement the short instructions. Don't repeat information that appears
in the short instructions.

The Ground Truth console provides an editor so that you can create your full instructions. Replace
the placeholder text and images with instructions for your task. Preview the full instruction page
by choosing Preview. The preview will open in a new window, be sure to turn off pop-up blocking
so that the window will show.

Add example images to your instructions

Images provide useful examples for your workers. To add a publicly accessible image to your
instructions:

• Place the cursor where the image should go in the instructions editor.

• Click the image icon in the editor toolbar.

• Enter the URL of your image.

If your instruction image in Amazon S3 is not publicly accessible:

Create a Labeling Job 1570

Amazon SageMaker Developer Guide

• As the image URL, enter: {{ 'https://s3.amazonaws.com/your-bucket-name/image-
file-name' | grant_read_access }}.

• This renders the image URL with a short-lived, one-time access code appended so the worker's
browser can display it. A broken image icon is displayed in the instructions editor, but previewing
the tool displays the image in the rendered preview.

Create a Labeling Job (Console)

You can use the Amazon SageMaker console to create a labeling job for all of the Ground Truth
built-in task types and custom labeling workflows. For built-in task types, we recommend that you
use this page alongside the page for your task type. Each task type page includes specific details on
creating a labeling job using that task type.

You need to provide the following to create a labeling job in the SageMaker console:

• An input manifest file in Amazon S3. You can place your input dataset in Amazon S3 and
automatically generate a manifest file using the Ground Truth console (not supported for 3D
point cloud labeling jobs).

Alternatively, you can manually create an input manifest file. To learn how, see Input Data.

• An Amazon S3 bucket to store your output data.

• An IAM role with permission to access your resources in Amazon S3 and with a SageMaker
execution policy attached. For a general solution, you can attach the managed policy,
AmazonSageMakerFullAccess, to an IAM role and include sagemaker in your bucket name.

For more granular policies, see the section called “IAM Permissions”.

3D point cloud task types have additional security considerations. Learn more.

• A work team. You create a work team from a workforce made up of Amazon Mechanical Turk
workers, vendors, or your own private workers.To lean more, see Create and Manage Workforces.

You cannot use the Mechanical Turk workforce for 3D point cloud or video frame labeling jobs.

• If you are using a custom labeling workflow, you must save a worker task template in Amazon
S3 and provide an Amazon S3 URI for that template. For more information, see Step 2: Creating
your custom worker task template.

• (Optional) An AWS KMS key ARN if you want SageMaker to encrypt the output of your labeling
job using your own AWS KMS encryption key instead of the default Amazon S3 service key.

Create a Labeling Job 1571

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-general-information.html#sms-security-permission-3d-point-cloud

Amazon SageMaker Developer Guide

• (Optional) Existing labels for the dataset you use for your labeling job. Use this option if you
want workers to adjust, or approve and reject labels.

• If you want to create an adjustment or verification labeling job, you must have an output
manifest file in Amazon S3 that contains the labels you want adjusted or verified. This option is
only supported for bounding box and semantic segmentation image labeling jobs and 3D point
cloud and video frame labeling jobs. It is recommended that you use the instructions on Verify
and Adjust Labels to create a verification or adjustment labeling job.

Important

Your work team, input manifest file, output bucket, and other resources in Amazon S3 must
be in the same AWS Region you use to create your labeling job.

When you create a labeling job using the SageMaker console, you add worker instructions and
labels to the worker UI that Ground Truth provides. You can preview and interact with the worker
UI while creating your labeling job in the console. You can also see a preview of the worker UI on
your built-in task type page.

To create a labeling job (console)

1. Sign in to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Labeling jobs.

3. On the Labeling jobs page, choose Create labeling job.

4. For Job name, enter a name for your labeling job.

5. (Optional) If you want to identify your labels with a key, select I want to specify a label
attribute name different from the labeling job name. If you do not select this option, the
labeling job name you specified in the previous step will be used to identify your labels in your
output manifest file.

6. Choose a data setup to create a connection between your input dataset and Ground Truth.

• For Automated data setup:

• Follow the instructions in Automated Data Setup for image, text, and video clip labeling
jobs.

• Follow the instructions in Automated Video Frame Input Data Setup for video frame
labeling jobs.

Create a Labeling Job 1572

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

• For Manual data setup:

• For Input dataset location, provide the location in Amazon S3 in which your input
manifest file is located. For example, if your input manifest file, manifest.json, is located in
example-bucket, enter s3://example-bucket/manifest.json.

• For Output dataset location, provide the location in Amazon S3 where you want Ground
Truth to store the output data from your labeling job.

7. For IAM Role, choose an existing IAM role or create an IAM role with permission to access your
resources in Amazon S3, to write to the output Amazon S3 bucket specified above, and with a
SageMaker execution policy attached.

8. (Optional) For Additional configuration, you can specify how much of your dataset you want
workers to label, and if you want SageMaker to encrypt the output data for your labeling job
using an AWS KMS encryption key. To encrypt your output data, you must have the required
AWS KMS permissions attached to the IAM role you provided in the previous step. For more
details, see the section called “IAM Permissions”.

9. In the Task type section, under Task category, use the dropdown list to select your task
category.

10. In Task selection, choose your task type.

11. (Optional) Provide tags for your labeling job to make it easier to find in the console later.

12. Choose Next.

13. In the Workers section, choose the type of workforce you would like to use. For more details
about your workforce options see Create and Manage Workforces.

14. (Optional) After you've selected your workforce, specify the Task timeout. This is the
maximum amount of time a worker has to work on a task.

For 3D point cloud annotation tasks, the default task timeout is 3 days. The default timeout
for text and image classification and label verification labeling jobs is 5 minutes. The default
timeout for all other labeling jobs is 60 minutes.

15. (Optional) For bounding box, semantic segmentation, video frame, and 3D point cloud task
types, you can select Display existing labels if you want to display labels for your input data
set for workers to verify or adjust.

For bounding box and semantic segmentation labeling jobs, this will create an adjustment
labeling job.

For 3D point cloud and video frame labeling jobs:

Create a Labeling Job 1573

Amazon SageMaker Developer Guide

• Select Adjustment to create an adjustment labeling job. When you select this option, you
can add new labels but you cannot remove or edit existing labels from the previous job.
Optionally, you can choose label category attributes and frame attributes that you want
workers to edit. To make an attribute editable, select the check box Allow workers to edit
this attribute for that attribute.

Optionally, you can add new label category and frame attributes.

• Select Verification to create an adjustment labeling job. When you select this option, you
cannot add, modify, or remove existing labels from the previous job. Optionally, you can
choose label category attributes and frame attributes that you want workers to edit. To
make an attribute editable, select the check box Allow workers to edit this attribute for
that attribute.

We recommend that you can add new label category attributes to the labels that you want
workers to verify, or add one or more frame attributes to have workers provide information
about the entire frame.

For more information, see Verify and Adjust Labels.

16. Configure your workers' UI:

• If you are using a built-in task type, specify workers instructions and labels.

• For image classification and text classification (single and multi-label) you must specify at
least two label categories. For all other built-in task types, you must specify at least one
label category.

• (Optional) If you are creating a 3D point cloud or video frame labeling job, you can specify
label category attributes (not supported for 3D point cloud semantic segmentation) and
frame attributes. Label category attributes can be assigned to one or more labels. Frame
attributes will appear on each point cloud or video frame workers label. To learn more,
see Worker User Interface (UI) for 3D point cloud and Worker User Interface (UI) for video
frame.

• (Optional) Add Additional instructions to help your worker complete your task.

• If you are creating a custom labeling workflow you must :

• Enter a custom template in the code box. Custom templates can be created using a
combination of HTML, the Liquid templating language and our pre-built web components.
Optionally, you can choose a base-template from the drop-down menu to get started.

Create a Labeling Job 1574

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html

Amazon SageMaker Developer Guide

• Specify pre-annotation and post-annotation lambda functions. To learn how to create
these functions, see Step 3: Processing with AWS Lambda.

17. (Optional) You can select See preview to preview your worker instructions, labels, and interact
with the worker UI. Make sure the pop-up blocker of the browser is disabled before generating
the preview.

18. Choose Create.

After you've successfully created your labeling job, you are redirected to the Labeling jobs page.
The status of the labeling job you just created is In progress. This status progressively updates
as workers complete your tasks. When all tasks are successfully completed, the status changes to
Completed.

If an issue occurs while creating the labeling job, its status changes to Failed.

To view more details about the job, choose the labeling job name.

Next Steps

After your labeling job status changes to Completed, you can view your output data in the Amazon
S3 bucket that you specified while creating that labeling job. For details about the format of your
output data, see Output Data.

Create a Labeling Job (API)

To create a labeling job using the Amazon SageMaker API, you use the CreateLabelingJob
operation. For specific instructions on creating a labeling job for a built-in task type, see that
task type page. To learn how to create a streaming labeling job, which is a labeling job that runs
perpetually, see Create a Streaming Labeling Job.

To use the CreateLabelingJob operation, you need the following:

• A worker task template (UiTemplateS3Uri) or human task UI ARN (HumanTaskUiArn) in
Amazon S3.

• For 3D point cloud jobs, video object detection and tracking jobs, and NER jobs, use the ARN
listed in HumanTaskUiArn for your task type.

• If you are using a built-in task type other than 3D point cloud tasks, you can add your worker
instructions to one of the pre-built templates and save the template (using a .html or .liquid
extension) in your S3 bucket. Find the pre-build templates on your task type page.

Create a Labeling Job 1575

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UiConfig.html#sagemaker-Type-UiConfig-HumanTaskUiArn
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html

Amazon SageMaker Developer Guide

• If you are using a custom labeling workflow, you can create a custom template and save the
template in your S3 bucket. To learn how to built a custom worker template, see Step 2:
Creating your custom worker task template. For custom HTML elements that you can use to
customize your template, see Crowd HTML Elements Reference. For a repository of demo
templates for a variety of labeling tasks, see Amazon SageMaker Ground Truth Sample Task
UIs .

• An input manifest file that specifies your input data in Amazon S3. Specify the location of your
input manifest file in ManifestS3Uri. For information about creating an input manifest, see
Input Data. If you create a streaming labeling job, this is optional. To learn how to create a
streaming labeling job, see Create a Streaming Labeling Job.

• An Amazon S3 bucket to store your output data. You specify this bucket, and optionally, a prefix
in S3OutputPath.

• A label category configuration file. Each label category name must be unique. Specify the
location of this file in Amazon S3 using the LabelCategoryConfigS3Uri parameter. The
format and label categories for this file depend on the task type you use:

• For image classification and text classification (single and multi-label) you must specify at
least two label categories. For all other task types, the minimum number of label categories
required is one.

• For named entity recognition tasks, you must provide worker instructions in this file. See
Provide Worker Instructions in a Label Category Configuration File for details and an example.

• For 3D point cloud and video frame task type, use the format in Create a Labeling Category
Configuration File with Label Category and Frame Attributes.

• For all other built-in task types and custom tasks, your label category configuration file
must be a JSON file in the following format. Identify the labels you want to use by replacing
label_1, label_2,...,label_n with your label categories.

{
 "document-version": "2018-11-28"
 "labels": [
 {"label": "label_1"},
 {"label": "label_2"},
 ...
 {"label": "label_n"}
]
}

Create a Labeling Job 1576

https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis

Amazon SageMaker Developer Guide

• An AWS Identity and Access Management (IAM) role with the
AmazonSageMakerGroundTruthExecution managed IAM policy attached and with permissions
to access your S3 buckets. Specify this role in RoleArn. To learn more about this policy, see
Use IAM Managed Policies with Ground Truth. If you require more granular permissions, see the
section called “IAM Permissions”.

If your input or output bucket name does not contain sagemaker, you can attach a policy similar
to the following to the role that is passed to the CreateLabelingJob operation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::my_input_bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::my_output_bucket/*"
]
 }
]
}

• A pre-annotation and post-annotation (or annotation-consolidation) AWS Lambda function
Amazon Resource Name (ARN) to process your input and output data.

• Lambda functions are predefined in each AWS Region for built-in task types. To find
the pre-annotation Lambda ARN for your Region, see PreHumanTaskLambdaArn.
To find the annotation-consolidation Lambda ARN for your Region, see
AnnotationConsolidationLambdaArn.

Create a Labeling Job 1577

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerGroundTruthExecution
https://docs.aws.amazon.com/sagemaker/latest/dg/API_HumanTaskConfig.html#SageMaker-Type-HumanTaskConfig-PreHumanTaskLambdaArn
https://docs.aws.amazon.com/sagemaker/latest/dg/API_AnnotationConsolidationConfig.html#SageMaker-Type-AnnotationConsolidationConfig-AnnotationConsolidationLambdaArn

Amazon SageMaker Developer Guide

• For custom labeling workflows, you must provide a custom pre- and post-annotation Lambda
ARN. To learn how to create these Lambda functions, see Step 3: Processing with AWS
Lambda.

• A work team ARN that you specify in WorkteamArn. You receive a work team ARN when you
subscribe to a vendor workforce or create a private workteam. If you are creating a labeling
job for a video frame or point cloud task type, you cannot use the Amazon Mechanical Turk
workforce. For all other task types, to use the Mechanical Turk workforce, use the following ARN.
Replace region with the AWS Region you are using to create the labeling job.

arn:aws:sagemaker:region:394669845002:workteam/public-crowd/default

If you use the Amazon Mechanical Turk workforce, use the ContentClassifiers parameter
in DataAttributes of InputConfig to declare that your content is free of personally
identifiable information and adult content.

Ground Truth requires that your input data is free of personally identifiable information (PII) if
you use the Mechanical Turk workforce. If you use Mechanical Turk and do not specify that your
input data is free of PII using the FreeOfPersonallyIdentifiableInformation flag, your
labeling job will fail. Use the FreeOfAdultContent flag to declare that your input data is free
of adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view
your task if it contains adult content.

To learn more about work teams and workforces, see Create and Manage Workforces.

• If you use the Mechanical Turk workforce, you must specify the price you'll pay workers for
performing a single task in PublicWorkforceTaskPrice.

• To configure the task, you must provide a task description and title using TaskDescription
and TaskTitle respectively. Optionally, you can provide time limits that control how long the
workers have to work on an individual task (TaskTimeLimitInSeconds) and how long tasks
remain in the worker portal, available to workers (TaskAvailabilityLifetimeInSeconds).

• (Optional) For some task types, you can have multiple workers label a single data object by
inputting a number greater than one for the NumberOfHumanWorkersPerDataObject
parameter. For more information about annotation consolidation, see Consolidate Annotations.

• (Optional) To create an automated data labeling job, specify one of the ARNs listed
in LabelingJobAlgorithmSpecificationArn in LabelingJobAlgorithmsConfig. This
ARN identifies the algorithm used in the automated data labeling job. The task type
associated with this ARN must match the task type of the PreHumanTaskLambdaArn and

Create a Labeling Job 1578

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-public.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobAlgorithmsConfig.html

Amazon SageMaker Developer Guide

AnnotationConsolidationLambdaArn you specify. Automated data labeling is supported for
the following task types: image classification, bounding box, semantic segmentation, and text
classification. The minimum number of objects allowed for automated data labeling is 1,250,
and we strongly suggest providing a minimum of 5,000 objects. To learn more about automated
data labeling jobs, see Automate Data Labeling.

• (Optional) You can provide StoppingConditions that cause the labeling job to stop if one the
conditions is met. You can use stopping conditions to control the cost of the labeling job.

Examples

The following code examples demonstrate how to create a labeling job using
CreateLabelingJob. For additional examples, we recommend you use one of the Ground Truth
Labeling Jobs Jupyter notebooks in the SageMaker Examples section of a SageMaker notebook
instance. To learn how to use a notebook example from the SageMaker Examples, see Example
Notebooks. You can also see these example notebooks on GitHub in the SageMaker Examples
repository.

AWS SDK for Python (Boto3)

The following is an example of an AWS Python SDK (Boto3) request to create a labeling job
for a built-in task type in the US East (N. Virginia) Region using a private workforce. Replace all
red-italized text with your labeling job resources and specifications.

response = client.create_labeling_job(
 LabelingJobName="example-labeling-job",
 LabelAttributeName="label",
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': "s3://bucket/path/manifest-with-input-data.json"
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 "FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent",
]
 }
 },
 OutputConfig={
 'S3OutputPath': "s3://bucket/path/file-to-store-output-data",

Create a Labeling Job 1579

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestSyntax
https://github.com/aws/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
https://github.com/aws/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job

Amazon SageMaker Developer Guide

 'KmsKeyId': "string"
 },
 RoleArn="arn:aws:iam::*:role/*",
 LabelCategoryConfigS3Uri="s3://bucket/path/label-categories.json",
 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': "arn:aws:sagemaker:region:*:workteam/private-crowd/*",
 'UiConfig': {
 'UiTemplateS3Uri': "s3://bucket/path/custom-worker-task-template.html"
 },
 'PreHumanTaskLambdaArn': "arn:aws:lambda:us-
east-1:432418664414:function:PRE-tasktype",
 'TaskKeywords': [
 "Images",
 "Classification",
 "Multi-label"
],
 'TaskTitle': "Multi-label image classification task",
 'TaskDescription': "Select all labels that apply to the images shown",
 'NumberOfHumanWorkersPerDataObject': 1,
 'TaskTimeLimitInSeconds': 3600,
 'TaskAvailabilityLifetimeInSeconds': 21600,
 'MaxConcurrentTaskCount': 1000,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': "arn:aws:lambda:us-
east-1:432418664414:function:ACS-"
 },
 Tags=[
 {
 'Key': "string",
 'Value': "string"
 },
]
)

AWS CLI

The following is an example of an AWS CLI request to create a labeling job for a built-in task
type in the US East (N. Virginia) Region using the Amazon Mechanical Turk workforce. For

Create a Labeling Job 1580

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-public.html

Amazon SageMaker Developer Guide

more information, see start-human-loop in the AWS CLI Command Reference. Replace all red-
italized text with your labeling job resources and specifications.

$ aws --region us-east-1 sagemaker create-labeling-job \
--labeling-job-name "example-labeling-job" \
--label-attribute-name "label" \
--role-arn "arn:aws:iam::account-id:role/role-name" \
--input-config '{
 "DataAttributes": {
 "ContentClassifiers": [
 "FreeOfPersonallyIdentifiableInformation",
 "FreeOfAdultContent"
]
 },
 "DataSource": {
 "S3DataSource": {
 "ManifestS3Uri": "s3://bucket/path/manifest-with-input-data.json"
 }
 }
 }' \
--output-config '{
 "KmsKeyId": "",
 "S3OutputPath": "s3://bucket/path/file-to-store-output-data"
 }' \
--human-task-config '{
 "AnnotationConsolidationConfig": {
 "AnnotationConsolidationLambdaArn": "arn:aws:lambda:us-
east-1:432418664414:function:ACS-"
 },
 "TaskAvailabilityLifetimeInSeconds": 21600,
 "TaskTimeLimitInSeconds": 3600,
 "NumberOfHumanWorkersPerDataObject": 1,
 "PreHumanTaskLambdaArn": "arn:aws:lambda:us-
east-1:432418664414:function:PRE-tasktype",
 "WorkteamArn": "arn:aws:sagemaker:us-east-1:394669845002:workteam/public-
crowd/default",
 "PublicWorkforceTaskPrice": {
 "AmountInUsd": {
 "Dollars": 0,
 "TenthFractionsOfACent": 6,
 "Cents": 3
 }
 },

Create a Labeling Job 1581

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-labeling-job.html
https://docs.aws.amazon.com/cli/latest/reference/

Amazon SageMaker Developer Guide

 "TaskDescription": "Select all labels that apply to the images shown",
 "MaxConcurrentTaskCount": 1000,
 "TaskTitle": "Multi-label image classification task",,
 "TaskKeywords": [
 "Images",
 "Classification",
 "Multi-label"
],
 "UiConfig": {
 "UiTemplateS3Uri": "s3://bucket/path/custom-worker-task-template.html"
 }
 }'

For more information about this operation, see CreateLabelingJob. For information about how to
use other language-specific SDKs, see See Also in the CreateLabelingJobs topic.

Create a Streaming Labeling Job

Streaming labeling jobs enable you to send individual data objects in real time to a perpetually
running, streaming labeling job. To create a streaming labeling job, you must create an Amazon
SNS input topic and specify this topic in CreateLabelingJob parameters InputConfig of
SnsDataSource. Optionally, you can also create an Amazon SNS output topic and specify it in
OutputConfigif you want to receive label data in real time.

Important

If you are a new user of Ground Truth streaming labeling jobs, it is recommended that you
review Ground Truth Streaming Labeling Jobs before creating a streaming labeling job.

Use the following sections to create the resources that you need and can use to create a streaming
labeling job:

• Learn how to create SNS topics with the permissions required for Ground Truth streaming
labeling jobs by following the steps in Create Amazon SNS Input and Output Topics. Your SNS
topics must be created in the same AWS Region as your labeling job.

• See Subscribe an Endpoint to Your Amazon SNS Output Topic to learn how to set up an
endpoint to receive labeling task output data at a specified endpoint each time a labeling task is
completed.

Create a Labeling Job 1582

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_SeeAlso
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

• To learn how to configure your Amazon S3 bucket to send notifications to your Amazon SNS
input topic, see Set up Amazon S3 Bucket Event Notifications.

• Optionally, add data objects that you want to have labeled as soon as the labeling job starts to
your input manifest. For more information, see Create a Manifest File (Optional).

• There are other resources required to create a labeling job, such as an IAM role, Amazon S3
bucket, a worker task template and label categories. These are described in the Ground Truth
documentation on creating a labeling job. For more information, see Create a Labeling Job.

Important

When you create a labeling job you must provide an IAM execution role. Attach the AWS
managed policy AmazonSageMakerGroundTruthExecution to this role to ensure it has
required permissions to execute your labeling job.

When you submit a request to create a streaming labeling job, the state of your labeling job
is Initializing. Once the labeling job is active, the state changes to InProgress. Do not
send new data objects to your labeling job or attempt to stop your labeling job while it is in the
Initializing state. Once the state changes to InProgress, you can start sending new data
objects using Amazon SNS and the Amazon S3 configuration.

Topics

• Create Amazon SNS Input and Output Topics

• Set up Amazon S3 Bucket Event Notifications

• Create a Manifest File (Optional)

• Example: Use SageMaker API To Create Streaming Labeling Job

• Stop a Streaming Labeling Job

Create Amazon SNS Input and Output Topics

You need to create an Amazon SNS input to create a streaming labeling job. Optionally, you may
provide an Amazon SNS output topic.

When you create an Amazon SNS topic to use in your streaming labeling job, note down the topic
Amazon Resource Name (ARN). The ARN will be the input values for the parameter SnsTopicArn
in InputConfig and OutputConfig when you create a labeling job.

Create a Labeling Job 1583

Amazon SageMaker Developer Guide

Create an Input Topic

Your input topic is used to send new data objects to Ground Truth. To create an input topic, follow
the instructions in Creating an Amazon SNS topic in the Amazon Simple Notification Service
Developer Guide.

Note down your input topic ARN and use it as input for the CreateLabelingJob parameter
SnsTopicArn in InputConfig.

Create an Output Topic

If you provide an output topic, it is used to send notifications when a data object is labeled. When
you create a topic, you have the option to add an encryption key. Use this option to add a AWS
Key Management Service customer managed key to your topic to encrypt the output data of your
labeling job before it is published to your output topic.

To create an output topic, follow the instructions in Creating an Amazon SNS topic in the Amazon
Simple Notification Service Developer Guide.

If you add encryption, you must attach additional permission to the topic. See Add Encryption to
Your Output Topic (Optional). for more information.

Important

To add a customer managed key to your output topic while creating a topic in the console,
do not use the (Default) alias/aws/sns option. Select a customer managed key that you
created.

Note down your input topic ARN and use it in your CreateLabelingJob request in the parameter
SnsTopicArn in OutputConfig.

Add Encryption to Your Output Topic (Optional)

To encrypt messages published to your output topic, you need to provide an AWS KMS customer
managed key to your topic. Modify the following policy and add it to your customer managed key
to give Ground Truth permission to encrypt output data before publishing it to your output topic.

Replace <account_id> with the ID of the account that you are using to create your topic. To learn
how to find your AWS account ID, see Finding Your AWS Account ID.

Create a Labeling Job 1584

https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html#FindingYourAWSId

Amazon SageMaker Developer Guide

{
 "Id": "key-console-policy",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::<account_id>:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::<account_id>:role/Admin"
 },
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
 }
]
}

Additionally, you must modify and add the following policy to the execution role that you use to
create your labeling job (the input value for RoleArn).

Create a Labeling Job 1585

Amazon SageMaker Developer Guide

Replace <account_id> with the ID of the account that you are using to create your topic. Replace
<region> with the AWS Region you are using to create your labeling job. Replace <key_id> with
your customer managed key ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "sid1",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:<region>:<account_id>:key/<key_id>"
 }
]
}

For more information on creating and securing keys, see Creating Keys and Using Key Policies in
the AWS Key Management Service Developer Guide.

Subscribe an Endpoint to Your Amazon SNS Output Topic

When a worker completes a labeling job task from a Ground Truth streaming labeling job, Ground
Truth uses your output topic to publish output data to one or more endpoints that you specify. To
receive notifications when a worker finishes a labeling task, you must subscribe an endpoint to your
Amazon SNS output topic.

To learn how to add endpoints to your output topic, see Subscribing to an Amazon SNS topic in
the Amazon Simple Notification Service Developer Guide.

To learn more about the output data format that is published to these endpoints, see Output Data.

Important

If you do not subscribe an endpoint to your Amazon SNS output topic, you will not receive
notifications when new data objects are labeled.

Create a Labeling Job 1586

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/sns/latest/dg/sns-create-subscribe-endpoint-to-topic.html

Amazon SageMaker Developer Guide

Set up Amazon S3 Bucket Event Notifications

You can add an event notification to your Amazon S3 bucket using the Amazon S3 console,
API, and language specific AWS SDKs, or the AWS Command Line Interface. Set up this event to
send notifications to the same Amazon SNS input topic that you specify using SnsTopicArn in
InputConfig when you create a labeling job. Do not set up event notifications using the same
Amazon S3 location that you specified for S3OutputPath in OutputConfig – doing so may result
in unwanted data objects being processed by Ground Truth for labeling.

You decide the types of events that you want to send to your Amazon SNS topic. Ground Truth
creates a labeling job when you send object creation events.

The event structure sent to your Amazon SNS input topic must be a JSON message formatted
using the same structure found in Event message structure.

To see examples of how you can set up an event notification for your Amazon S3 bucket using
the Amazon S3 console, AWS SDK for .NET, and AWS SDK for Java, follow this walkthrough,
Walkthrough: Configure a bucket for notifications (SNS topic or SQS queue) in the Amazon Simple
Storage Service User Guide.

Create a Manifest File (Optional)

When you create a streaming labeling job, you have the one time option to add objects
(such as images or text) to an input manifest file that you specify in ManifestS3Uri of
CreateLabelingJob. When the streaming labeling job starts, these objects are sent
to workers or added to the Amazon SQS queue if the total number of objects exceed
MaxConcurrentTaskCount. The results are added to the Amazon S3 path that you specify when
creating the labeling job periodically as workers complete labeling tasks. Output data is sent to any
endpoint that you subscribe to your output topic.

If you want to provide initial objects to be labeled, create a manifest file that identifies these
objects and place it in Amazon S3. Specify the S3 URI of this manifest file in ManifestS3Uri
within InputConfig.

To learn how to format your manifest file, see Input Data. To use the SageMaker console to
automatically generate a manifest file (not supported for 3D point cloud task types), see
Automated Data Setup.

Create a Labeling Job 1587

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html#enable-event-notifications-types
https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ways-to-add-notification-config-to-bucket.html

Amazon SageMaker Developer Guide

Example: Use SageMaker API To Create Streaming Labeling Job

The following is an example of an AWS Python SDK (Boto3) request that you can use to start a
streaming labeling job for a built-in task type in the US East (N. Virginia) Region. For more details
about each parameter below see CreateLabelingJob. To learn how you can create a labeling job
using this API and associated language specific SDKs, see Create a Labeling Job (API).

In this example, note the following parameters:

• SnsDataSource – This parameter appears in InputConfig and OutputConfig and is used to
identify your input and output Amazon SNS topics respectively. To create a streaming labeling
job, you are required to provide an Amazon SNS input topic. Optionally, you can also provide an
Amazon SNS output topic.

• S3DataSource – This parameter is optional. Use this parameter if you want to include an input
manifest file of data objects that you want labeled as soon as the labeling job starts.

• StoppingConditions – This parameter is ignored when you create a streaming labeling job. To
learn more about stopping a streaming labeling job, see Stop a Streaming Labeling Job.

• Streaming labeling jobs do not support automated data labeling. Do not include the
LabelingJobAlgorithmsConfig parameter.

response = client.create_labeling_job(
 LabelingJobName= 'example-labeling-job',
 LabelAttributeName='label',
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': 's3://bucket/path/manifest-with-input-data.json'
 },
 'SnsDataSource': {
 'SnsTopicArn': 'arn:aws:sns:us-east-1:123456789012:your-sns-input-
topic'
 }
 },
 'DataAttributes': {
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
 },
 OutputConfig={

Create a Labeling Job 1588

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-api.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-StoppingConditions

Amazon SageMaker Developer Guide

 'S3OutputPath': 's3://bucket/path/file-to-store-output-data',
 'KmsKeyId': 'string',
 'SnsTopicArn': 'arn:aws:sns:us-east-1:123456789012:your-sns-output-topic'
 },
 RoleArn='arn:aws:iam::*:role/*',
 LabelCategoryConfigS3Uri='s3://bucket/path/label-categories.json',
 HumanTaskConfig={
 'WorkteamArn': 'arn:aws:sagemaker:us-east-1:*:workteam/private-crowd/*',
 'UiConfig': {
 'UiTemplateS3Uri': 's3://bucket/path/custom-worker-task-template.html'
 },
 'PreHumanTaskLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:PRE-tasktype',
 'TaskKeywords': [
 'Example key word',
],
 'TaskTitle': 'Multi-label image classification task',
 'TaskDescription': 'Select all labels that apply to the images shown',
 'NumberOfHumanWorkersPerDataObject': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'MaxConcurrentTaskCount': 123,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': 'arn:aws:lambda:us-
east-1:432418664414:function:ACS-tasktype'
 }
 },
 Tags=[
 {
 'Key': 'string',
 'Value': 'string'
 },
]
)

Stop a Streaming Labeling Job

You can manually stop your streaming labeling job using the operation StopLabelingJob.

If your labeling job remains idle for over 10 days, it is automatically stopped by Ground Truth.
In this context, a labeling job is considered idle if no objects are sent to the Amazon SNS input
topic and no objects remain in your Amazon SQS queue, waiting to be labeled. For example, if no
data objects are fed to the Amazon SNS input topic and all the objects fed to the labeling job are

Create a Labeling Job 1589

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopLabelingJob.html

Amazon SageMaker Developer Guide

already labeled, Ground Truth starts a timer. After the timer starts, if no items are received within a
10 day period, the labeling job is stopped.

When a labeling job is stopped, its status is STOPPING while Ground Truth cleans up labeling job
resources and unsubscribes your Amazon SNS topic from your Amazon SQS queue. The Amazon
SQS is not deleted by Ground Truth because this queue may contain unprocessed data objects. You
should manually delete the queue if you want to avoid incurring additional charges from Amazon
SQS. To learn more, see Amazon SQS pricing .

Create a Labeling Category Configuration File with Label Category and Frame
Attributes

When you create a 3D point cloud or video frame labeling job using the Amazon SageMaker API
operation CreateLabelingJob, you use a label category configuration file to specify your labels
and worker instructions. Optionally, you can also provide the following in your label category
attribute file:

• You can provide label category attributes for video frame and 3D point cloud object tracking and
object detection task types. Workers can use one or more attributes to give more information
about an object. For example, you may want to use the attribute occluded to have workers
identify when an object is partially obstructed. You can either specify a label category attribute
for a single label using the categoryAttributes parameter, or for all labels using the
categoryGlobalAttributes parameter.

• You can provide frame attributes for video frame and 3D point cloud object tracking and
object detection task types using frameAttributes. When you create a frame attribute, it
appears on each frame or point cloud in the worker task. In video frame labeling jobs, these are
attributes that workers assign to an entire video frame. For 3D point cloud labeling jobs, these
attributes are applied to a single point cloud. Use frame attributes to have workers provide more
information about the scene in a specific frame or point cloud.

• For video frame labeling jobs, you use the label category configuration file to specify the task
type (bounding box, polyline, polygon, or keypoint) sent to workers.

For workers, specifying values for label category attributes and frame attributes will be optional.

Important

You should only provide a label attribute name in auditLabelAttributeName if
you are running an audit job to verify or adjust labels. Use this parameter to input the

Create a Labeling Job 1590

https://aws.amazon.com/sqs/pricing/

Amazon SageMaker Developer Guide

LabelAttributeName used in the labeling job that generated the annotations you want your
worker to adjust. When you create a labeling job in the console, if you did not specify a
label attribute name, the Name of your job is used as the LabelAttributeName.

Topics

• Label Category Configuration File Schema

• Example: Label Category Configuration Files for 3D Point Cloud Labeling Jobs

• Example: Label Category Configuration Files for Video Frame Labeling Jobs

• Creating Worker Instructions

Label Category Configuration File Schema

The following table lists elements you can and must include in your label category configuration
file.

Note

The parameter annotationType is only supported for video frame labeling jobs.

Parameter Required Accepted Values Description

frameAttributes No A list of JSON objects.

Required Parameters in each
JSON Object:

name, type, description

minimum and maximum are
required if type is "number"

Optional Parameters in each
JSON Object:

Use this parameter
to create a frame
attribute that is
applied to all frames
or 3D point clouds in
your labeling job.
See the third table in
this section for more
information.

Create a Labeling Job 1591

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

enum, editsAllowed ,
isRequired

categoryG
lobalAttr
ibutes

No A list of JSON objects.

Required Parameters in each
JSON Object:

name, type

minimum and maximum are
required if type is "number"

Optional Parameters in each
JSON Object:

description , enum,
editsAllowed , isRequired

Use this parameter to
create label category
attributes that
are applied to all
labels you specify in
labels.
See the third table in
this section for more
information.

Create a Labeling Job 1592

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

labels Yes A list of up to 30 JSON objects

Required Parameters in each
JSON Object:

label

Optional Parameters in each
JSON Object:

categoryAttributes ,
editsAllowed

Use this parameter to
specify your labels,
or classes. Add one
label for each class.

To add a label
category attribute
to a label, add
categoryA
ttributes to
that label.

Use editsAllowed
to specify whether
or not a label can
be edited in an
adjustment labeling
job. Set editsAllo
wed to "none" for
verification labeling
jobs.

See the following
table for more
information.

Create a Labeling Job 1593

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

annotationType
(only supported for
video frame labeling
jobs)

No String

Accepted Parameters:

BoundingBox , Polyline,
Polygon, Keypoint

Default:

BoundingBox

Use this to specify
the task type for
your video frame
labeling jobs. For
example, for a
polygon video frame
object detection task,
choose Polygon.

If you do not specify
an annotatio
nType when
you create a video
frame labeling job,
Ground Truth will use
BoundingBox by
default.

Create a Labeling Job 1594

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

instructions No A JSON object
Required Parameters in each
JSON Object:

"shortInstruction" ,
"fullInstruction"

Use this parameter to
add worker instructi
ons to help your
workers complete
their tasks. For more
information about
worker instructions,
see Worker Instructi
ons.

Short instructions
must be under 255
characters and long
instruction must
be under 2,048
characters.

For more informati
on, see Creating
Worker Instructions.

Create a Labeling Job 1595

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

auditLabe
lAttributeName

Required
for
adjustmen
t and
verificat
ion task
types

String Enter the LabelAttr
ibuteName used
in the labeling job
you want to adjust
annotations of.

Only use this
parameter if you
are creating an
adjustment job for
video frame and 3D
point cloud object
detection, object
tracking, or 3D point
cloud semantic
segmentation.

The following table describes the parameters that you can and must use to create a list of Labels.
Each parameter should be included in a JSON object.

Parameter Required Accepted Values Description

label Yes String The name of the
label category that is
displayed to workers.
Each label category
name must be
unique.

categoryA
ttributes

No A list of JSON
objects.

Required Parameters
in each JSON Object:

Use this parameter
to add label category
attributes to specific
labels you specify in
labels.

Create a Labeling Job 1596

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

name, type

minimum and
maximum required if
type is "number"

Optional Parameters
in each JSON Object:

description ,
enum, editsAllo
wed , isRequired

To add one or more
label category
attributes to a
label, include
the categoryA
ttributes JSON
object in the same
labels JSON object
as that label.
See the following
table for more
information.

Create a Labeling Job 1597

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

editsAllowed No String

Supported Values:

"none": no modificat
ions are not allowed.

or

"any" (Default): all
modifications are
allowed.

Specifies whether or
not a label can be
edited by workers.

For video frame
or 3D point cloud
adjustment labeling
jobs, add this
parameter to one or
more JSON objects
in the labels list to
specify whether or
not a worker can edit
a label.

For 3D point cloud
and video frame
verification labeling
jobs, add this
parameter with the
value "none" to each
JSON object in the
labels list. This
will make all labels
uneditable.

The following table describes the parameters that you can and must use to create
a frame attributes using frameAttributes and label category attribute using the
categoryGlobalAttributes and categoryAttributes parameters.

Parameter Required Accepted Values Description

name Yes String Use this parameter
to assign a name to
your label category

Create a Labeling Job 1598

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

or frame attribute.
This is the attribute
name that workers
see.

Each label category
attribute name in
your label category
configuration file
must be unique.
Global label category
attributes and
label specific label
category attributes
cannot have the same
name.

Create a Labeling Job 1599

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

type Yes String

Required Values:

"string" or
"number"

Use this parameter
to define the label
category or frame
attribute type.

If you specify
"string" for type
and provide an
enum value for this
attribute, workers
will be able to choose
from one of the
choices you provide.

If you specify
"string" for type
and do not provide
an enum value,
workers can enter
free form text.

If you specify
number for type,
worker can enter a
number between
the minimum and
maximum numbers
you specify.

Create a Labeling Job 1600

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

enum No List of strings Use this parameter to
define options that
workers can choose
from for this label
category or frame
attribute. Workers
can choose one value
specified in enum.
For example, if you
specify ["foo",
"buzz", "bar"] for
enum, workers can
choose one of foo,
buzz, or bar.

You must specify
"string" for type
to use an enum list.

description frameAttributes :
Yes

categoryA
ttributes
or categoryG
lobalAttr
ibutes : No

String Use this parameter
to add a description
of the label category
or frame attribute.
You can use this field
to give workers more
information about
the attribute.

This field is only
required for frame
attributes.

Create a Labeling Job 1601

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

minimum and
maximum

Required if attribute
type is "number"

Integers Use these parameter
s to specify minimum
and maximum
(inclusive) values
workers can enter
for numeric label
category or frame
attributes.

You must specify
"number" for type
to use minimum and
maximum.

editsAllowed No String

Required Values:

"none": no modificat
ions are not allowed.

or

"any" (Default): all
modifications are
allowed.

Specifies whether or
not a label category
or frame attribute
can be edited by
workers.

For video frame
or 3D point cloud
adjustment and
verification labeling
jobs, add this
parameter to label
category and frame
attribute JSON
objects to specify
whether or not a
worker can edit an
attribute.

Create a Labeling Job 1602

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

isRequired No Boolean Specifies whether
workers are required
to annotate an
attribute. Workers
cannot submit
the job until all
required attributes
are annotated.

Label and label category attribute quotas

You can specify up to 10 label category attributes per class. This 10-attribute quotas includes
global label category attributes. For example, if you create four global label category attributes,
and then assign three label category attributes to label X, that label will have 4+3=7 label category
attributes in total. For all label category and label category attribute limits, refer to the following
table.

Type Min Max

Labels (Labels) 1 30

Label name character quota 1 16

Label category attributes per
label (sum of categoryA
ttributes and
categoryGlobalAttr
ibutes)

0 10

Free form text entry label
category attributes per
label (sum of categoryA
ttributes and
categoryGlobalAttr
ibutes).

0 5

Create a Labeling Job 1603

Amazon SageMaker Developer Guide

Type Min Max

Frame attributes 0 10

Free form text entry attribute
s in frameAttributes .

0 5

Attribute name character
quota (name)

1 16

Attribute description
character quota (descripti
on)

0 128

Attribute type characters
quota (type)

1 16

Allowed values in the enum
list for a string attribute

1 10

Character quota for a value in
enum list

1 16

Maximum characters in
free form text response for
free form text frameAttr
ibutes

0 1000

Maximum characters in
free form text response for
free form text categoryA
ttributes and
categoryGlobalAttr
ibutes

0 80

Create a Labeling Job 1604

Amazon SageMaker Developer Guide

Example: Label Category Configuration Files for 3D Point Cloud Labeling Jobs

Select a tab in the following tables to see examples of 3D point cloud label category configuration
files for object detection, object tracking, semantic segmentation, adjustment, and verification
labeling jobs.

3D Point Cloud Object Tracking and Object Detection

The following is an example of a label category configuration file that includes label category
attributes for a 3D point cloud object detection or object tracking labeling job. This example
includes a two frame attributes, which will be added to all point clouds submitted to the
labeling job. The Car label will include four label category attributes—X, Y, Z, and the global
attribute, W.

{
 "documentVersion": "2020-03-01",
 "frameAttributes": [
 {
 "name":"count players",
 "description":"How many players to you see in the scene?",
 "type":"number"
 },
 {
 "name":"select one",
 "description":"describe the scene",
 "type":"string",
 "enum":["clear","blurry"],
 "isRequired":true
 },
],
 "categoryGlobalAttributes": [
 {
 "name":"W",
 "description":"label-attributes-for-all-labels",
 "type":"string",
 "enum": ["foo", "buzz", "biz"]
 }
],
 "labels": [
 {
 "label": "Car",
 "categoryAttributes": [
 {

Create a Labeling Job 1605

Amazon SageMaker Developer Guide

 "name":"X",
 "description":"enter a number",
 "type":"number",
 },
 {
 "name":"Y",
 "description":"select an option",
 "type":"string",
 "enum":["y1", "y2"]
 },
 {
 "name":"Z",
 "description":"submit a free-form response",
 "type":"string",
 }
]
 },
 {
 "label": "Pedestrian",
 "categoryAttributes": [...]
 }
],
 "instructions": {"shortInstruction":"Draw a tight Cuboid",
 "fullInstruction":"<html markup>"}
}

3D Point Cloud Semantic Segmentation

The following is an example of a label category configuration file for a 3D point cloud semantic
segmentation labeling job.

Label category attributes are not supported for 3D point cloud semantic segmentation task
types. Frame attributes are supported. If you provide label category attributes for a semantic
segmentation labeling job, they will be ignored.

{
 "documentVersion": "2020-03-01",
 "frameAttributes": [
 {
 "name":"count players",
 "description":"How many players to you see in the scene?",
 "type":"number"
 },

Create a Labeling Job 1606

Amazon SageMaker Developer Guide

 {
 "name":"select one",
 "description":"describe the scene",
 "type":"string",
 "enum":["clear","blurry"]
 },
],
 "labels": [
 {
 "label": "Car",
 },
 {
 "label": "Pedestrian",
 },
 {
 "label": "Cyclist",
 }
],
 "instructions": {"shortInstruction":"Select the appropriate label and
 paint all objects in the point cloud that it applies to the same color",
 "fullInstruction":"<html markup>"}
}

Select a tab in the following table to see an example of a label category configuration file for 3D
point cloud verification or adjustment labeling jobs.

3D Point Cloud Adjustment

The following is an example of a label category configuration file for a 3D point cloud object
detection or object tracking adjustment labeling job. For 3D point cloud semantic segmentation
adjustment labeling jobs, categoryGlobalAttributes and categoryAttributes are not
supported.

You must include auditLabelAttributeName to specify the label attribute name of the
previous labeling job that you use to create the adjustment labeling job. Optionally, you can
use the editsAllowed parameter to specify whether or not a label or frame attribute can be
edited.

{
 "documentVersion": "2020-03-01",
 "frameAttributes": [

Create a Labeling Job 1607

Amazon SageMaker Developer Guide

 {
 "name":"count players",
 "description":"How many players to you see in the scene?",
 "type":"number"
 },
 {
 "name":"select one",
 "editsAllowed":"none",
 "description":"describe the scene",
 "type":"string",
 "enum":["clear","blurry"]
 },
],
 "categoryGlobalAttributes": [
 {
 "name":"W",
 "editsAllowed":"any",
 "description":"label-attributes-for-all-labels",
 "type":"string",
 "enum": ["foo", "buzz", "biz"]
 }
],
 "labels": [
 {
 "label": "Car",
 "editsAllowed":"any",
 "categoryAttributes": [
 {
 "name":"X",
 "description":"enter a number",
 "type":"number"
 },
 {
 "name":"Y",
 "description":"select an option",
 "type":"string",
 "enum":["y1", "y2"],
 "editsAllowed":"any"
 },
 {
 "name":"Z",
 "description":"submit a free-form response",
 "type":"string",
 "editsAllowed":"none"

Create a Labeling Job 1608

Amazon SageMaker Developer Guide

 }
]
 },
 {
 "label": "Pedestrian",
 "categoryAttributes": [...]
 }
],
 "instructions": {"shortInstruction":"Draw a tight Cuboid",
 "fullInstruction":"<html markup>"},
 // include auditLabelAttributeName for label adjustment jobs
 "auditLabelAttributeName": "myPrevJobLabelAttributeName"
}

3D Point Cloud Verification

The following is an example of a label category configuration file you may use for a 3D
point cloud object detection or object tracking verification labeling job. For a 3D point
cloud semantic segmentation verification labeling job, categoryGlobalAttributes and
categoryAttributes are not supported.

You must include auditLabelAttributeName to specify the label attribute name of the
previous labeling job that you use to create the verification labeling job. Additionally, you must
use the editsAllowed parameter to specify that no labels can be edited.

{
 "documentVersion": "2020-03-01",
 "frameAttributes": [
 {
 "name":"count players",
 "editsAllowed":"any",
 "description":"How many players to you see in the scene?",
 "type":"number"
 },
 {
 "name":"select one",
 "editsAllowed":"any",
 "description":"describe the scene",
 "type":"string",
 "enum":["clear","blurry"]
 },
],
 "categoryGlobalAttributes": [

Create a Labeling Job 1609

Amazon SageMaker Developer Guide

 {
 "name":"W",
 "editsAllowed":"none",
 "description":"label-attributes-for-all-labels",
 "type":"string",
 "enum": ["foo", "buzz", "biz"]
 }
],
 "labels": [
 {
 "label": "Car",
 "editsAllowed":"none",
 "categoryAttributes": [
 {
 "name":"X",
 "description":"enter a number",
 "type":"number",
 "editsAllowed":"none"
 },
 {
 "name":"Y",
 "description":"select an option",
 "type":"string",
 "enum":["y1", "y2"],
 "editsAllowed":"any"
 },
 {
 "name":"Z",
 "description":"submit a free-form response",
 "type":"string",
 "editsAllowed":"none"
 }
]
 },
 {
 "label": "Pedestrian",
 "editsAllowed":"none",
 "categoryAttributes": [...]
 }
],
 "instructions": {"shortInstruction":"Draw a tight Cuboid",
 "fullInstruction":"<html markup>"},
 // include auditLabelAttributeName for label verification jobs
 "auditLabelAttributeName": "myPrevJobLabelAttributeName"

Create a Labeling Job 1610

Amazon SageMaker Developer Guide

}

Example: Label Category Configuration Files for Video Frame Labeling Jobs

The annotation tools available to your worker and task type used depends on the value you
specify for annotationType. For example, if you want workers to use key points to track changes
in the pose of specific objects across multiple frames, you would specify Keypoint for the
annotationType. If you do not specify an annotation type, BoundingBox will be used by default.

The following is an example of a video frame keypoint label category configuration file with label
category attributes. This example includes two frame attributes, which will be added to all frames
submitted to the labeling job. The Car label will include four label category attributes—X, Y, Z, and
the global attribute, W.

{
 "documentVersion": "2020-03-01",
 "frameAttributes": [
 {
 "name":"count players",
 "description":"How many players to you see in the scene?",
 "type":"number"
 },
 {
 "name":"select one",
 "description":"describe the scene",
 "type":"string",
 "enum":["clear","blurry"]
 },
],
 "categoryGlobalAttributes": [
 {
 "name":"W",
 "description":"label-attributes-for-all-labels",
 "type":"string",
 "enum": ["foo", "buz", "buz2"]
 }
],
 "labels": [
 {
 "label": "Car",
 "categoryAttributes": [

Create a Labeling Job 1611

Amazon SageMaker Developer Guide

 {
 "name":"X",
 "description":"enter a number",
 "type":"number",
 },
 {
 "name":"Y",
 "description":"select an option",
 "type":"string",
 "enum": ["y1", "y2"]
 },
 {
 "name":"Z",
 "description":"submit a free-form response",
 "type":"string",
 }
]
 },
 {
 "label": "Pedestrian",
 "categoryAttributes": [...]
 }
],
 "annotationType":"Keypoint",
 "instructions": {"shortInstruction":"add example short instructions here",
 "fullInstruction":"<html markup>"}
}

Select a tab from the following table to see examples of label category configuration files for video
frame adjustment and verification labeling jobs.

Video Frame Adjustment

The following is an example of a label category configuration file you may use for a video frame
adjustment labeling job.

You must include auditLabelAttributeName to specify the label attribute name of the
previous labeling job that you use to create the verification labeling job. Optionally, you can use
the editsAllowed parameter to specify whether or not labels, label category attributes, or
frame attributes can be edited.

{
 "documentVersion": "2020-03-01",

Create a Labeling Job 1612

Amazon SageMaker Developer Guide

 "frameAttributes": [
 {
 "name":"count players",
 "editsAllowed":"none",
 "description":"How many players to you see in the scene?",
 "type":"number"
 },
 {
 "name":"select one",
 "description":"describe the scene",
 "type":"string",
 "enum":["clear","blurry"]
 },
],
 "categoryGlobalAttributes": [
 {
 "name":"W",
 "editsAllowed":"any",
 "description":"label-attributes-for-all-labels",
 "type":"string",
 "enum": ["foo", "buz", "buz2"]
 }
],
 "labels": [
 {
 "label": "Car",
 "editsAllowed":"any",
 "categoryAttributes": [
 {
 "name":"X",
 "description":"enter a number",
 "type":"number",
 "editsAllowed":"any"
 },
 {
 "name":"Y",
 "description":"select an option",
 "type":"string",
 "enum": ["y1", "y2"],
 "editsAllowed":"any"
 },
 {
 "name":"Z",
 "description":"submit a free-form response",

Create a Labeling Job 1613

Amazon SageMaker Developer Guide

 "type":"string",
 "editsAllowed":"none"
 }
]
 },
 {
 "label": "Pedestrian",
 "editsAllowed":"none",
 "categoryAttributes": [...]
 }
],
 "annotationType":"Keypoint",
 "instructions": {"shortInstruction":"add example short instructions here",
 "fullInstruction":"<html markup>"},
 // include auditLabelAttributeName for label adjustment jobs
 "auditLabelAttributeName": "myPrevJobLabelAttributeName"
}

Video Frame Verification

The following is an example of a label category configuration file for a video frame labeling job.

You must include auditLabelAttributeName to specify the label attribute name of the
previous labeling job that you use to create the verification labeling job. Additionally, you must
use the editsAllowed parameter to specify that no labels can be edited.

{
 "documentVersion": "2020-03-01",
 "frameAttributes": [
 {
 "name":"count players",
 "editsAllowed":"none",
 "description":"How many players to you see in the scene?",
 "type":"number"
 },
 {
 "name":"select one",
 "editsAllowed":"any",
 "description":"describe the scene",
 "type":"string",
 "enum":["clear","blurry"]
 },
],

Create a Labeling Job 1614

Amazon SageMaker Developer Guide

 "categoryGlobalAttributes": [
 {
 "name":"W",
 "editsAllowed":"none",
 "description":"label-attributes-for-all-labels",
 "type":"string",
 "enum": ["foo", "buz", "buz2"]
 }
],
 "labels": [
 {
 "label": "Car",
 "editsAllowed":"none",
 "categoryAttributes": [
 {
 "name":"X",
 "description":"enter a number",
 "type":"number",
 "editsAllowed":"any"
 },
 {
 "name":"Y",
 "description":"select an option",
 "type":"string",
 "enum": ["y1", "y2"],
 "editsAllowed":"any"
 },
 {
 "name":"Z",
 "description":"submit a free-form response",
 "type":"string",
 "editsAllowed":"none"
 }
]
 },
 {
 "label": "Pedestrian",
 "editsAllowed":"none",
 "categoryAttributes": [...]
 }
],
 "annotationType":"Keypoint",
 "instructions": {"shortInstruction":"add example short instructions here",
 "fullInstruction":"<html markup>"},

Create a Labeling Job 1615

Amazon SageMaker Developer Guide

 // include auditLabelAttributeName for label adjustment jobs
 "auditLabelAttributeName": "myPrevJobLabelAttributeName"
}

Creating Worker Instructions

Create custom instructions for labeling jobs to improve your worker's accuracy in completing their
task. Your instructions are accessible when workers select the Instructions menu option in the
worker UI. Short instructions must be under 255 characters and long instruction must be under
2,048 characters.

There are two kinds of instructions:

• Short instructions – These instructions are shown to works when they select Instructions in the
worker UI menu. They should provide an easy reference to show the worker the correct way to
label an object.

• Full instructions – These instructions are shown when workers select More Instructions in
instructions the pop-up window. We recommend that you provide detailed instructions for
completing the task with multiple examples showing edge cases and other difficult situations for
labeling objects.

For 3D point cloud and video frame labeling jobs, you can add worker instructions to your label
category configuration file. You can use a single string to create instructions or you can add HTML
mark up to customize the appearance of your instructions and add images. Make sure that any
images you include in your instructions are publicly available, or if your instructions are in Amazon
S3, that your workers have read-access so that they can view them.

Use Input and Output Data

The input data that you provide to Amazon SageMaker Ground Truth is sent to your workers for
labeling. You choose the data to send to your workers by creating a single manifest file that defines
all of the data that requires labeling or by sending input data objects to an ongoing, streaming
labeling job to be labeled in real time.

The output data is the result of your labeling job. The output data file, or augmented manifest
file, contains label data for each object you send to the labeling job and metadata about the label
assigned to data objects.

Use Input and Output Data 1616

Amazon SageMaker Developer Guide

When you use image classification (single and multi-label), text classification (single and multi-
label), object detection, and semantic segmentation built in task types to create a labeling job,
you can use the resulting augmented manifest file to launch a SageMaker training job. For a
demonstration of how to use an augmented manifest to train an object detection machine learning
model with Amazon SageMaker, see object_detection_augmented_manifest_training.ipynb. For
more information, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.

Topics

• Input Data

• 3D Point Cloud Input Data

• Video Frame Input Data

• Output Data

Input Data

The input data are the data objects that you send to your workforce to be labeled. There are two
ways to send data objects to Ground Truth for labeling:

• Send a list of data objects that require labeling using an input manifest file.

• Send individual data objects in real time to a perpetually running, streaming labeling job.

If you have a dataset that needs to be labeled one time, and you do not require an ongoing
labeling job, create a standard labeling job using an input manifest file.

If you want to regularly send new data objects to your labeling job after it has started, create a
streaming labeling job. When you create a streaming labeling job, you can optionally use an input
manifest file to specify a group of data that you want labeled immediately when the job starts. You
can continuously send new data objects to a streaming labeling job as long as it is active.

Note

Streaming labeling jobs are only supported through the SageMaker API. You cannot create
a streaming labeling job using the SageMaker console.

The following task types have special input data requirements and options:

Use Input and Output Data 1617

https://sagemaker-examples.readthedocs.io/en/latest/ground_truth_labeling_jobs/object_detection_augmented_manifest_training/object_detection_augmented_manifest_training.html

Amazon SageMaker Developer Guide

• For 3D point cloud labeling job input data requirements, see 3D Point Cloud Input Data.

• For video frame labeling job input data requirements, see Video Frame Input Data.

Topics

• Use an Input Manifest File

• Automated Data Setup

• Supported Data Formats

• Ground Truth Streaming Labeling Jobs

• Input Data Quotas

• Filter and Select Data for Labeling

Use an Input Manifest File

Each line in an input manifest file is an entry containing an object, or a reference to an object,
to label. An entry can also contain labels from previous jobs and for some task types, additional
information.

Input data and the manifest file must be stored in Amazon Simple Storage Service (Amazon S3).
Each has specific storage and access requirements, as follows:

• The Amazon S3 bucket that contains the input data must be in the same AWS Region in which
you are running Amazon SageMaker Ground Truth. You must give Amazon SageMaker access
to the data stored in the Amazon S3 bucket so that it can read it. For more information about
Amazon S3 buckets, see Working with Amazon S3 buckets.

• The manifest file must be in the same AWS Region as the data files, but it doesn't need to be in
the same location as the data files. It can be stored in any Amazon S3 bucket that is accessible
to the AWS Identity and Access Management (IAM) role that you assigned to Ground Truth when
you created the labeling job.

Note

3D point cloud and video frame task types have different input manifest requirements and
attributes.
For 3D point cloud task types, refer to Create an Input Manifest File for a 3D Point Cloud
Labeling Job.

Use Input and Output Data 1618

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video-task-types.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html

Amazon SageMaker Developer Guide

For video frame task types, refer to Create a Video Frame Input Manifest File.

The manifest is a UTF-8 encoded file in which each line is a complete and valid JSON object. Each
line is delimited by a standard line break, \n or \r\n. Because each line must be a valid JSON object,
you can't have unescaped line break characters. For more information about data format, see JSON
Lines.

Each JSON object in the manifest file can be no larger than 100,000 characters. No single attribute
within an object can be larger than 20,000 characters. Attribute names can't begin with $ (dollar
sign).

Each JSON object in the manifest file must contain one of the following keys: source-ref or
source. The value of the keys are interpreted as follows:

• source-ref – The source of the object is the Amazon S3 object specified in the value. Use this
value when the object is a binary object, such as an image.

• source – The source of the object is the value. Use this value when the object is a text value.

The following is an example of a manifest file for files stored in an Amazon S3 bucket:

{"source-ref": "S3 bucket location 1"}
{"source-ref": "S3 bucket location 2"}
 ...
{"source-ref": "S3 bucket location n"}

Use the source-ref key for image files for bounding box, image classification (single and multi-
label), semantic segmentation, and video clips for video classification labeling jobs. 3D point
cloud and video frame labeling jobs also use the source-ref key but these labeling jobs require
additional information in the input manifest file. For more information see 3D Point Cloud Input
Data and Video Frame Input Data.

The following is an example of a manifest file with the input data stored in the manifest:

{"source": "Lorem ipsum dolor sit amet"}
{"source": "consectetur adipiscing elit"}
 ...
{"source": "mollit anim id est laborum"}

Use Input and Output Data 1619

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video-task-types.html
http://jsonlines.org/
http://jsonlines.org/

Amazon SageMaker Developer Guide

Use the source key for single and multi-label text classification and named entity recognition
labeling jobs.

You can include other key-value pairs in the manifest file. These pairs are passed to the output file
unchanged. This is useful when you want to pass information between your applications. For more
information, see Output Data.

Automated Data Setup

You can use the automated data setup to create manifest files for your labeling jobs in the Ground
Truth console using images, videos, video frames, text (.txt) files, and comma-separated value (.csv)
files stored in Amazon S3. When you use automated data setup, you specify an Amazon S3 location
where your input data is stored and the input data type, and Ground Truth looks for the files that
match that type in the location you specify.

Note

Ground Truth does not use an AWS KMS key to access your input data or write the input
manifest file in the Amazon S3 location that you specify. The user or role that creates the
labeling job must have permissions to access your input data objects in Amazon S3.

Before using the following procedure, ensure that your input images or files are correctly
formatted:

• Image files – Image files must comply with the size and resolution limits listed in the tables
found in Input File Size Quota.

• Text files – Text data can be stored in one or more .txt files. Each item that you want labeled
must be separated by a standard line break.

• CSV files – Text data can be stored in one or more .csv files. Each item that you want labeled
must be in a separate row.

• Videos – Video files can be any of the following formats: .mp4, .ogg, and .webm. If you want to
extract video frames from your video files for object detection or object tracking, see Provide
Video Files.

• Video frames – Video frames are images extracted from a videos. All images extracted from
a single video are referred to as a sequence of video frames. Each sequence of video frames
must have unique prefix keys in Amazon S3. See Provide Video Frames. For this data type, see
Automated Video Frame Input Data Setup

Use Input and Output Data 1620

Amazon SageMaker Developer Guide

Important

For video frame object detection and video frame object tracking labeling jobs, see
Automated Video Frame Input Data Setup to learn how to use the automated data setup.

Use these instructions to automatically set up your input dataset connection with Ground Truth.

Automatically connect your data in Amazon S3 with Ground Truth

1. Navigate to the Create labeling job page in the Amazon SageMaker console at https://
console.aws.amazon.com/sagemaker/.

This link puts you in the North Virginia (us-east-1) AWS Region. If your input data is in an
Amazon S3 bucket in another Region, switch to that Region. To change your AWS Region, on
the navigation bar, choose the name of the currently displayed Region.

2. Select Create labeling job.

3. Enter a Job name.

4. In the section Input data setup, select Automated data setup.

5. Enter an Amazon S3 URI for S3 location for input datasets.

6. Specify your S3 location for output datasets. This is where your output data is stored.

7. Choose your Data type using the dropdown list.

8. Use the drop down menu under IAM Role to select an execution role. If you select Create a
new role, specify the Amazon S3 buckets that you want grant this role permission to access.
This role must have permission to access the S3 buckets you specified in Steps 5 and 6.

9. Select Complete data setup.

The following GIF demonstrates how to use the automated data setup for image data. This
example will create a file, dataset-YYMMDDTHHMMSS.manifest in the Amazon S3 bucket
example-groundtruth-images where YYMMDDTHHmmSS indicates the year (YY), month (MM), day
(DD) and time in hours (HH), minutes (mm) and seconds (ss), that the input manifest file was created.

Supported Data Formats

When you create an input manifest file for a built-in task types manually, your input data must
be in one of the following support file formats for the respective input data type. To learn about
automated data setup, see Automated Data Setup.

Use Input and Output Data 1621

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html#select-region
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html

Amazon SageMaker Developer Guide

Tip

When you use the automated data setup, additional data formats can be used to generate
an input manifest file for video frame and text based task types.

Task Types Input Data Type Support Formats Example Input
Manifest Line

Bounding Box,
Semantic Segmentat
ion, Image Classific
ation (Single Label
and Multi-label),
Verify and Adjust
Labels

Image .jpg, .jpeg, .png {"source-ref":
 "s3://DOC-
EXAMPLE-BUCKET
1 /example-
image.png "}

Named Entity
Recognition, Text
Classification (Single
and Multi-Label)

Text Raw text {"source":
 "Lorem ipsum
 dolor sit amet"}

Video Classification Video clips .mp4, .ogg,
and .webm

{"source-ref":
 "s3:///example-
video.mp4 "}

Video Frame Object
Detection, Video
Frame Object
Tracking (bounding
boxes, polylines,
polygons or keypoint)

Video frames and
video frame sequence
files (for Object
Tracking)

Video
frames: .jpg, .jpeg, .png

Sequence files: .json

Refer to Create a
Video Frame Input
Manifest File.

3D Point Cloud
Semantic Segmentat
ion, 3D Point Cloud
Object Detection, 3D

Point clouds and
point cloud sequence
files (for Object
Tracking)

Point clouds: Binary
pack format and
ASCII. For more
information see

Refer to Create an
Input Manifest File
for a 3D Point Cloud
Labeling Job.

Use Input and Output Data 1622

Amazon SageMaker Developer Guide

Task Types Input Data Type Support Formats Example Input
Manifest Line

Point Cloud Object
Tracking

Accepted Raw 3D
Data Formats.

Sequence files: .json

Ground Truth Streaming Labeling Jobs

If you want to perpetually send new data objects to Amazon SageMaker Ground Truth to be
labeled, use a streaming labeling job. Streaming labeling jobs allow you to:

• Send new dataset objects to workers in real time using a perpetually running labeling job.
Workers continuously receive new data objects to label as long as the labeling job is active and
new objects are being sent to it.

• Gain visibility into the number of objects that have been queued and are waiting to be labeled.
Use this information to control the flow of data objects sent to your labeling job.

• Receive label data for individual data objects in real time as workers finish labeling them.

Ground Truth streaming labeling jobs remain active until they are manually stopped or have been
idle for more than 10 days. You can intermittently send new data objects to workers while the
labeling job is active.

If you are a new user of Ground Truth streaming labeling jobs, it is recommended that you review
How It Works.

Use Create a Streaming Labeling Job to learn how to create a streaming labeling job.

Note

Ground Truth streaming labeling jobs are only supported through the SageMaker API.

Topics

• How It Works

• Send Data to a Streaming Labeling Job

Use Input and Output Data 1623

Amazon SageMaker Developer Guide

• Manage Labeling Requests with an Amazon SQS Queue

• Receive Output Data from a Streaming Labeling Job

• Duplicate Message Handling

How It Works

When you create a Ground Truth streaming labeling job, the job remains active until it is manually
stopped, remains idle for more than 10 days, or is unable to access input data sources. You can
intermittently send new data objects to workers while it is active. A worker can continue to receive
new data objects in real time as long as the total number of tasks currently available to the worker
is less than the value in MaxConcurrentTaskCount. Otherwise, the data object is sent to a queue
that Ground Truth creates on your behalf in Amazon Simple Queue Service (Amazon SQS) for later
processing. These tasks are sent to workers as soon as the total number of tasks currently available
to a worker falls below MaxConcurrentTaskCount. If a data object is not sent to a worker after
14 days, it expires. You can view the number of tasks pending in the queue and adjust the number
of objects you send to the labeling job. For example, you may decrease the speed at which you
send objects to the labeling job if the backlog of pending objects moves above a threshold.

Send Data to a Streaming Labeling Job

You can optionally submit input data to a streaming labeling job one time when you create
the labeling job using an input manifest file. Once the labeling job has started and the state is
InProgress, you can submit new data objects to your labeling job in real time using your Amazon
SNS input topic and Amazon S3 event notifications.

Submit Data Objects When you Start the Labeling Job (One Time):

• Use an Input Manifest File – You can optionally specify an input manifest file Amazon S3 URI
in ManifestS3Uri when you create the streaming labeling job. Ground Truth sends each data
object in the manifest file to workers for labeling as soon as the labeling job starts. To learn
more, see Create a Manifest File (Optional).

After you submit a request to create the streaming labeling job, its status will be
Initializing. Once the labeling job is active, the state changes to InProgress and you can
start using the real-time options to submit additional data objects for labeling.

Submit Data Objects in Real Time:

Use Input and Output Data 1624

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-MaxConcurrentTaskCount
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

Amazon SageMaker Developer Guide

• Send data objects using Amazon SNS messages – You can send Ground Truth new data objects
to label by sending an Amazon SNS message. You will send this message to an Amazon SNS
input topic that you create and specify when you create your streaming labeling job. For more
information, see Send Data Objects Using Amazon SNS.

• Send data objects by placing them in an Amazon S3 bucket – Each time you add a new data
object to an Amazon S3 bucket, you can prompt Ground Truth to process that object for labeling.
To do this, you add an event notification to the bucket so that it notifies your Amazon SNS input
topic each time a new object is added to (or created in) that bucket. For more information, see
Send Data Objects using Amazon S3. This option is not available for text-based labeling jobs
such as text classification and named entity recognition.

Important

If you use the Amazon S3 configuration, do not use the same Amazon S3 location for
your input data configuration and your output data. You specify the S3 prefix for your
output data when you create a labeling job.

Send Data Objects Using Amazon SNS

You can send data objects to your streaming labeling job using Amazon Simple Notification
Service (Amazon SNS). Amazon SNS is a web service that coordinates and manages the
delivery of messages to and from endpoints (for example, an email address or AWS Lambda
function). An Amazon SNS topic acts as a communication channel between two or more
endpoints. You use Amazon SNS to send, or publish, new data objects to the topic specified in the
CreateLabelingJob parameter SnsTopicArn in InputConfig. The format of these messages
is the same as a single line from an input manifest file.

For example, you may send a piece of text to an active text classification labeling job by publishing
it to your input topic. The message that you publish may look similar to the following:

{"source": "Lorem ipsum dolor sit amet"}

To send a new image object to an image classification labeling job, your message may look similar
to the following:

{"source-ref": "s3://awsexamplebucket/example-image.jpg"}

Use Input and Output Data 1625

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-input.html

Amazon SageMaker Developer Guide

Note

You can also include custom deduplication IDs and deduplication keys in your Amazon SNS
messages. To learn more, see Duplicate Message Handling.

When Ground Truth creates your streaming labeling job, it subscribes to your Amazon SNS input
topic.

Send Data Objects using Amazon S3

You can send one or more new data objects to a streaming labeling job by placing them in an
Amazon S3 bucket that is configured with an Amazon SNS event notification. You can set up an
event to notify your Amazon SNS input topic anytime a new object is created in your bucket.
You must specify this same Amazon SNS input topic in the CreateLabelingJob parameter
SnsTopicArn in InputConfig.

Anytime you configure an Amazon S3 bucket to send notifications to Amazon SNS, Ground Truth
will publish a test event, "s3:TestEvent", to ensure that the topic exists and that the owner of
the Amazon S3 bucket specified has permission to publish to the specified topic. It is recommended
that you set up your Amazon S3 connection with Amazon SNS before starting a streaming labeling
job. If you do not, this test event may register as a data object and be sent to Ground Truth for
labeling.

Important

If you use the Amazon S3 configuration, do not use the same Amazon S3 location for your
input data configuration and your output data. You specify the S3 prefix for your output
data when you create a labeling job.
For image-based labeling jobs, Ground Truth requires all S3 buckets to have a CORS policy
attached. To learn more, see CORS Permission Requirement.

Once you have configured your Amazon S3 bucket and created your labeling job, you can add
objects to your bucket and Ground Truth either sends that object to workers or places it on your
Amazon SQS queue.

To learn more, see Set up Amazon S3 Bucket Event Notifications.

Use Input and Output Data 1626

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Important

This option is not available for text-based labeling jobs such as text classification and
named entity recognition.

Manage Labeling Requests with an Amazon SQS Queue

When Ground Truth creates your streaming labeling job, it creates an Amazon
SQS queue in the AWS account used to create the labeling job. The queue name is
GroundTruth-labeling_job_name where labeling_job_name is the name of your labeling
job, in lowercase letters. When you send data objects to your labeling job, Ground Truth either
sends the data objects directly to workers or places the task in your queue to be processed at a
later time. If a data object is not sent to a worker after 14 days, it expires and is removed from
the queue. You can setup an alarm in Amazon SQS to detect when objects expire and use this
mechanism to control the volume of objects you send to your labeling job.

Important

Modifying, deleting, or sending objects directly to the Amazon SQS queue associated with
your streaming labeling job may lead to job failures.

Receive Output Data from a Streaming Labeling Job

Your Amazon S3 output bucket is periodically updated with new output data from your streaming
labeling job.

Optionally, you can specify an Amazon SNS output topic. Each time a worker submits a labeled
object, a notification with the output data is sent to that topic. You can subscribe an endpoint to
your SNS output topic to receive notifications or trigger events when you receive output data from
a labeling task. Use an Amazon SNS output topic if you want to do real time chaining to another
streaming job and receive an Amazon SNS notifications each time a data object is submitted by a
worker.

To learn more, see Subscribe an Endpoint to Your Amazon SNS Output Topic.

Use Input and Output Data 1627

Amazon SageMaker Developer Guide

Duplicate Message Handling

For data objects sent in real time, Ground Truth guarantees idempotency by ensuring each unique
object is only sent for labeling once, even if the input message referring to that object is received
multiple times (duplicate messages). To do this, each data object sent to a streaming labeling job is
assigned a deduplication ID, which is identified with a deduplication key.

If you send your requests to label data objects directly through your Amazon SNS input topic using
Amazon SNS messages, you can optionally choose a custom deduplication key and deduplication
IDs for your objects. For more information, see Specify A Deduplication Key and ID in an Amazon
SNS Message.

If you do not provide your own deduplication key, or if you use the Amazon S3 configuration
to send data objects to your labeling job, Ground Truth uses one of the following for the
deduplication ID:

• For messages sent directly to your Amazon SNS input topic, Ground Truth uses the SNS message
ID.

• For messages that come from an Amazon S3 configuration, Ground Truth creates a deduplication
ID by combining the Amazon S3 URI of the object with the sequencer token in the message.

Specify A Deduplication Key and ID in an Amazon SNS Message

When you send a data object to your streaming labeling job using an Amazon SNS message, you
have the option to specify your deduplication key and deduplication ID in one of the following
ways. In all of these scenarios, identify your deduplication key with dataset-objectid-
attribute-name.

Bring Your Own Deduplication Key and ID

Create your own deduplication key and deduplication ID by configuring your Amazon SNS message
as follows. Replace byo-key with your key and UniqueId with the deduplication ID for that data
object.

{
 "source-ref":"s3://bucket/prefix/object1",
 "dataset-objectid-attribute-name":"byo-key",
 "byo-key":"UniqueId"
}

Use Input and Output Data 1628

https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html

Amazon SageMaker Developer Guide

Your deduplication key can be up to 140 characters. Supported patterns include: "^[$a-zA-
Z0-9](-*[a-zA-Z0-9])*".

Your deduplication ID can be up to 1,024 characters. Supported patterns include: ^(https|
s3)://([^/]+)/?(.*)$.

Use an Existing Key for your Deduplication Key

You can use an existing key in your message as the deduplication key. When you do this, the value
associated with that key is used for the deduplication ID.

For example, you can specify use the source-ref key as your deduplication key by formatting
your message as follows:

{
 "source-ref":"s3://bucket/prefix/object1",
 "dataset-objectid-attribute-name":"source-ref"
}

In this example, Ground Truth uses "s3://bucket/prefix/object1" for the deduplication id.

Find Deduplication Key and ID in Your Output Data

You can see the deduplication key and ID in your output data. The deduplication key is identified by
dataset-objectid-attribute-name.

When you use your own custom deduplication key, your output contains something similar to the
following:

"dataset-objectid-attribute-name": "byo-key",
"byo-key": "UniqueId",

When you do not specify a key, you can find the deduplication ID that Ground Truth assigned to
your data object as follows. The $label-attribute-name-object-id parameter identifies your
deduplication ID.

{
 "source-ref":"s3://bucket/prefix/object1",
 "dataset-objectid-attribute-name":"$label-attribute-name-object-id"

Use Input and Output Data 1629

Amazon SageMaker Developer Guide

 "label-attribute-name" :0,
 "label-attribute-name-metadata": {...},
 "$label-attribute-name-object-id":"<service-generated-key>"
}

For <service-generated-key>, if the data object came through an Amazon S3 configuration,
Ground Truth adds a unique value used by the service and emits a new field keyed by $sequencer
which shows the Amazon S3 sequencer used. If object was fed to SNS directly, Ground Truth use
the SNS message ID.

Note

Do not use the $ character in your label attribute name.

Input Data Quotas

Input datasets used in semantic segmentation labeling jobs have a quota of 20,000 items. For all
other labeling job types, the dataset size quota is 100,000 items. To request an increase to the
quota for labeling jobs other than semantic segmentation jobs, review the procedures in AWS
Service Quotas to request a quota increase.

Input image data for active and non-active learning labeling jobs must not exceed size and
resolution quotas. Active learning refers to labeling job that use automated data labeling. Non-
active learning refers to labeling jobs that don't use automated data labeling.

Additional quotas apply for label categories for all task types, and for input data and labeling
category attributes for 3D point cloud and video frame task types.

Input File Size Quota

Input files can't exceed the following size- quotas for both active and non-active learning labeling
jobs. There is no input file size quota for videos used in video classification labeling jobs.

Labeling Job Task Type Input File Size Quota

Image classification 40 MB

Bounding box (Object detection) 40 MB

Use Input and Output Data 1630

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video-classification.html

Amazon SageMaker Developer Guide

Labeling Job Task Type Input File Size Quota

Semantic segmentation 40 MB

Bounding box (Object detection) label
adjustment

40 MB

Semantic segmentation label adjustment 40 MB

Bounding box (Object detection) label verificat
ion

40 MB

Semantic segmentation label verification 40 MB

Input Image Resolution Quotas

Image file resolution refers to the number of pixels in an image, and determines the amount of
detail an image holds. Image resolution quotas differ depending on the labeling job type and the
SageMaker built-in algorithm used. The following table lists the resolution quotas for images used
in active and non-active learning labeling jobs.

Labeling Job Task Type Resolution Quota - Non
Active Learning

Resolution Quota - Active
Learning

Image classification 100 million pixels 3840 x 2160 pixels (4 K)

Bounding box (Object
detection)

100 million pixels 3840 x 2160 pixels (4 K)

Semantic segmentation 100 million pixels 1920 x 1080 pixels (1080 p)

Object detection label
adjustment

100 million pixels 3840 x 2160 pixels (4 K)

Semantic segmentation label
adjustment

100 million pixels 1920 x 1080 pixels (1080 p)

Object detection label
verification

100 million pixels Not available

Use Input and Output Data 1631

Amazon SageMaker Developer Guide

Labeling Job Task Type Resolution Quota - Non
Active Learning

Resolution Quota - Active
Learning

Semantic segmentation label
verification

100 million pixels Not available

Label Category Quotas

Each labeling job task type has a quota for the number of label categories you can specify. Workers
select label categories to create annotations. For example, you may specify label categories car,
pedestrian, and biker when creating a bounding box labeling job and workers will select the car
category before drawing bounding boxes around cars.

Important

Label category names cannot exceed 256 characters.
All label categories must be unique. You cannot specify duplicate label categories.

The following label category limits apply to labeling jobs. Quotas for label categories depend on
whether you use the SageMaker API operation CreateLabelingJob or the console to create a
labeling job.

Labeling Job Task Type Label Category Quota - API Label Category Quota -
Console

Image classification (Multi-la
bel)

50 50

Image classification (Single
label)

Unlimited 30

Bounding box (Object
detection)

50 50

Label verification Unlimited 30

Use Input and Output Data 1632

Amazon SageMaker Developer Guide

Labeling Job Task Type Label Category Quota - API Label Category Quota -
Console

Semantic segmentation (with
active learning)

20 10

Semantic segmentation
(without active learning)

Unlimited 10

Named entity recognition Unlimited 30

Text classification (Multi-la
bel)

50 50

Text classification (Single
label)

Unlimited 30

Video classification 30 30

Video frame object detection 30 30

Video frame object tracking 30 30

3D point cloud object
detection

30 30

3D point cloud object
tracking

30 30

3D point cloud semantic
segmentation

30 30

3D Point Cloud and Video Frame Labeling Job Quotas

The following quotas apply for 3D point cloud and video frame labeling job input data.

Labeling Job Task Type Input Data Quota

Video frame object detection 2,000 video frames (images) per sequence

Use Input and Output Data 1633

Amazon SageMaker Developer Guide

Labeling Job Task Type Input Data Quota

Video frame object detection 10 video frame sequences per manifest file

Video frame object tracking 2,000 video frames (images) per sequence

Video frame object tracking 10 video frame sequences per manifest file

3D point cloud object detection 100,000 point cloud frames per labeling job

3D point cloud object tracking 100,000 point cloud frame sequences per
labeling job

3D point cloud object tracking 500 point cloud frames in each sequence file

When you create a video frame or 3D point cloud labeling job, you can add one or more label
category attributes to each label category that you specify to have workers provide more
information about an annotation.

Each label category attribute has a single label category attribute name, and a list of one or more
options (values) to choose from. To learn more, see Worker User Interface (UI) for 3D point cloud
labeling jobs and Worker User Interface (UI) for video frame labeling jobs.

The following quotas apply to the number of label category attributes names and values you can
specify for labeling jobs.

Labeling Job Task Type Label Category Attribute
(name) Quota

Label Category Attribute
Values Quota

Video frame object detection 10 10

Video frame object tracking 10 10

3D point cloud object
detection

10 10

3D point cloud object
tracking

10 10

Use Input and Output Data 1634

Amazon SageMaker Developer Guide

Labeling Job Task Type Label Category Attribute
(name) Quota

Label Category Attribute
Values Quota

3D point cloud semantic
segmentation

10 10

Filter and Select Data for Labeling

You can use the Amazon SageMaker console to select a portion of your dataset for labeling. The
data must be stored in an Amazon S3 bucket. You have three options:

• Use the full dataset.

• Choose a randomly selected sample of the dataset.

• Specify a subset of the dataset using a query.

The following options are available in the Labeling jobs section of the SageMaker console after
selecting Create labeling job. To learn how to create a labeling job in the console, see Getting
started. To configure the dataset that you use for labeling, in the Job overview section, choose
Additional configuration.

Use the Full Dataset

When you choose to use the Full dataset, you must provide a manifest file for your data objects.
You can provide the path of the Amazon S3 bucket that contains the manifest file or use the
SageMaker console to create the file. To learn how to create a manifest file using the console, see
Automated Data Setup.

Choose a Random Sample

When you want to label a random subset of your data, select Random sample. The dataset is
stored in the Amazon S3 bucket specified in the Input dataset location field.

After you have specified the percentage of data objects that you want to include in the sample,
choose Create subset. SageMaker randomly picks the data objects for your labeling job. After the
objects are selected, choose Use this subset.

SageMaker creates a manifest file for the selected data objects. It also modifies the value in the
Input dataset location field to point to the new manifest file.

Use Input and Output Data 1635

https://console.aws.amazon.com/sagemaker/groundtruth

Amazon SageMaker Developer Guide

Specify a Subset

You can specify a subset of your data objects using an Amazon S3 SELECT query on the object file
names.

The SELECT statement of the SQL query is defined for you. You provide the WHERE clause to
specify which data objects should be returned.

For more information about the Amazon S3 SELECT statement, see Selecting Content from
Objects.

Choose Create subset to start the selection, and then choose Use this subset to use the selected
data.

SageMaker creates a manifest file for the selected data objects. It also updates the value in the
Input dataset location field to point to the new manifest file.

3D Point Cloud Input Data

To create a 3D point cloud labeling job, you must create an input manifest file. Use this topic to
learn the formatting requirements of the input manifest file for each task type. To learn about
the raw input data formats Ground Truth accepts for 3D point cloud labeling jobs, see the section
Accepted Raw 3D Data Formats.

Use your labeling job task type to choose a topics on Create an Input Manifest File for a 3D Point
Cloud Labeling Job to learn about the formatting requirements for each line of your input manifest
file.

Topics

• Accepted Raw 3D Data Formats

• Create an Input Manifest File for a 3D Point Cloud Labeling Job

• Understand Coordinate Systems and Sensor Fusion

Accepted Raw 3D Data Formats

Ground Truth uses your 3D point cloud data to render a 3D scenes that workers annotate. This
section describes the raw data formats that are accepted for point cloud data and sensor fusion
data for a point cloud frame. To learn how to create an input manifest file to connect your raw
input data files with Ground Truth, see Create an Input Manifest File for a 3D Point Cloud Labeling
Job.

Use Input and Output Data 1636

https://docs.aws.amazon.com/AmazonS3/latest/dev/selecting-content-from-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/selecting-content-from-objects.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html

Amazon SageMaker Developer Guide

For each frame, Ground Truth supports Compact Binary Pack Format (.bin) and ASCII (.txt) files.
These files contain information about the location (x, y, and z coordinates) of all points that make
up that frame, and, optionally, information about the pixel color of each point for colored point
clouds. When you create a 3D point cloud labeling job input manifest file, you can specify the
format of your raw data in the format parameter.

The following table lists elements that Ground Truth supports in point cloud frame files to describe
individual points.

Symbol Value

x The x coordinate of the point.

y The y coordinate of the point.

z The z coordinate of the point.

i The intensity of the point.

r The red color channel component. An 8-bit
value (0-255).

g The green color channel component. An 8-bit
value (0-255)

b The blue color channel component. An 8-bit
value (0-255)

Ground Truth assumes the following about your input data:

• All of the positional coordinates (x, y, z) are in meters.

• All the pose headings (qx, qy, qz, qw) are measured in Spatial Quaternions .

Compact Binary Pack Format

The Compact Binary Pack Format represents a point cloud as an ordered set of a stream of points.
Each point in the stream is an ordered binary pack of 4-byte float values in some variant of the

Use Input and Output Data 1637

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

Amazon SageMaker Developer Guide

form xyzirgb. The x, y, and z elements are required and additional information about that pixel
can be included in a variety of ways using i, r, g, and b.

To use a binary file to input point cloud frame data to a Ground Truth 3D point cloud labeling job,
enter binary/ in the format parameter for your input manifest file and replace with the order
of elements in each binary pack. For example, you may enter one of the following for the format
parameter.

• binary/xyzi – When you use this format, your point element stream would be in the following
order: x1y1z1i1x2y2z2i2...

• binary/xyzrgb – When you use this format, your point element stream would be in the
following order: x1y1z1r1g1b1x2y2z2r2g2b2...

• binary/xyzirgb – When you use this format, your point element stream would be in the
following order: x1y1z1i1r1g1b1x2y2z2i2r2g2b2...

When you use a binary file for your point cloud frame data, if you do not enter a value for format,
the default pack format binary/xyzi is used.

ASCII Format

The ASCII format uses a text file to represent a point cloud, where each line in the ASCII point cloud
file represents a single point. Each point is a line the text file and contains white space separated
values, each of which is a 4-byte float ASCII values. The x, y, and z elements are required for each
point and additional information about that point can be included in a variety of ways using i, r, g,
and b.

To use a text file to input point cloud frame data to a Ground Truth 3D point cloud labeling job,
enter text/ in the format parameter for your input manifest file and replace with the order of
point elements on each line.

For example, if you enter text/xyzi for format, your text file for each point cloud frame should
look similar to the following:

x1 y1 z1 i1
x2 y2 z2 i2
...
...

If you enter text/xyzrgb, your text file should look similar to the following:

Use Input and Output Data 1638

Amazon SageMaker Developer Guide

x1 y1 z1 r1 g1 b1
x2 y2 z2 r2 g2 b1
...
...

When you use a text file for your point cloud frame data, if you do not enter a value for format,
the default format text/xyzi will be used.

Point Cloud Resolution Limits

Ground Truth does not have a resolution limit for 3D point cloud frames. However, we recommend
that you limit each point cloud frame to 500K points for optimal performance. When Ground Truth
renders the 3D point cloud visualization, it must be viewable on your workers' computers, which
depends on workers' computer hardware. Point cloud frames that are larger than 1 million points
may not render on standard machines, or may take too long to load.

Create an Input Manifest File for a 3D Point Cloud Labeling Job

When you create a labeling job, you provide an input manifest file where each line of the manifest
describes a unit of task to be completed by annotators. The format of your input manifest file
depends on your task type.

• If you are creating a 3D point cloud object detection or semantic segmentation labeling job,
each line in your input manifest file contains information about a single 3D point cloud frame.
This is called a point cloud frame input manifest. To learn more, see Create a Point Cloud Frame
Input Manifest File.

• If you are creating a 3D point cloud object tracking labeling job, each line of your input manifest
file contains a sequence of 3D point cloud frames and associated data. This is called a point cloud
sequence input manifest. To learn more, see Create a Point Cloud Sequence Input Manifest.

Create a Point Cloud Frame Input Manifest File

The manifest is a UTF-8 encoded file in which each line is a complete and valid JSON object. Each
line is delimited by a standard line break, \n or \r\n. Because each line must be a valid JSON object,
you can't have unescaped line break characters. In the single-frame input manifest file, each line
in the manifest contains data for a single point cloud frame. The point cloud frame data can either
be stored in binary or ASCII format (see Accepted Raw 3D Data Formats). This is the manifest file
formatting required for 3D point cloud object detection and semantic segmentation. Optionally,
you can also provide camera sensor fusion data for each point cloud frame.

Use Input and Output Data 1639

Amazon SageMaker Developer Guide

Ground Truth supports point cloud and video camera sensor fusion in the world coordinate system
for all modalities. If you can obtain your 3D sensor extrinsic (like a LiDAR extrinsic), we recommend
that you transform 3D point cloud frames into the world coordinate system using the extrinsic. For
more information, see Sensor Fusion.

However, if you cannot obtain a point cloud in world coordinate system, you can provide
coordinates in the original coordinate system that the data was captured in. If you are providing
camera data for sensor fusion, it is recommended that you provide LiDAR sensor and camera pose
in the world coordinate system.

To create a single-frame input manifest file, you will identify the location of each point cloud
frame that you want workers to label using the source-ref key. Additionally, you must use the
source-ref-metadata key to identify the format of your dataset, a timestamp for that frame,
and, optionally, sensor fusion data and video camera images.

The following example demonstrates the syntax used for an input manifest file for a single-frame
point cloud labeling job. The example includes two point cloud frames. For details about each
parameter, see the table following this example.

Important

Each line in your input manifest file must be in JSON Lines format. The following code
block shows an input manifest file with two JSON objects. Each JSON object is used to
point to and provide details about a single point cloud frame. The JSON objects have been
expanded for readability, but you must minimize each JSON object to fit on a single line
when creating an input manifest file. An example is provided under this code block.

{
 "source-ref": "s3://awsexamplebucket/examplefolder/frame1.bin",
 "source-ref-metadata":{
 "format": "binary/xyzi",
 "unix-timestamp": 1566861644.759115,
 "ego-vehicle-pose":{
 "position": {
 "x": -2.7161461413869947,
 "y": 116.25822288149078,
 "z": 1.8348751887989483
 },
 "heading": {

Use Input and Output Data 1640

http://jsonlines.org/

Amazon SageMaker Developer Guide

 "qx": -0.02111296123795955,
 "qy": -0.006495469416730261,
 "qz": -0.008024565904865688,
 "qw": 0.9997181192298087
 }
 },
 "prefix": "s3://awsexamplebucket/lidar_singleframe_dataset/someprefix/",
 "images": [
 {
 "image-path": "images/frame300.bin_camera0.jpg",
 "unix-timestamp": 1566861644.759115,
 "fx": 847.7962624528487,
 "fy": 850.0340893791985,
 "cx": 576.2129134707038,
 "cy": 317.2423573573745,
 "k1": 0,
 "k2": 0,
 "k3": 0,
 "k4": 0,
 "p1": 0,
 "p2": 0,
 "skew": 0,
 "position": {
 "x": -2.2722515189268138,
 "y": 116.86003310568965,
 "z": 1.454614668542299
 },
 "heading": {
 "qx": 0.7594754093069037,
 "qy": 0.02181790885672969,
 "qz": -0.02461725233103356,
 "qw": -0.6496916273040025
 },
 "camera-model": "pinhole"
 }]
 }
}
{
 "source-ref": "s3://awsexamplebucket/examplefolder/frame2.bin",
 "source-ref-metadata":{
 "format": "binary/xyzi",
 "unix-timestamp": 1566861632.759133,
 "ego-vehicle-pose":{
 "position": {

Use Input and Output Data 1641

Amazon SageMaker Developer Guide

 "x": -2.7161461413869947,
 "y": 116.25822288149078,
 "z": 1.8348751887989483
 },
 "heading": {
 "qx": -0.02111296123795955,
 "qy": -0.006495469416730261,
 "qz": -0.008024565904865688,
 "qw": 0.9997181192298087
 }
 },
 "prefix": "s3://awsexamplebucket/lidar_singleframe_dataset/someprefix/",
 "images": [
 {
 "image-path": "images/frame300.bin_camera0.jpg",
 "unix-timestamp": 1566861644.759115,
 "fx": 847.7962624528487,
 "fy": 850.0340893791985,
 "cx": 576.2129134707038,
 "cy": 317.2423573573745,
 "k1": 0,
 "k2": 0,
 "k3": 0,
 "k4": 0,
 "p1": 0,
 "p2": 0,
 "skew": 0,
 "position": {
 "x": -2.2722515189268138,
 "y": 116.86003310568965,
 "z": 1.454614668542299
 },
 "heading": {
 "qx": 0.7594754093069037,
 "qy": 0.02181790885672969,
 "qz": -0.02461725233103356,
 "qw": -0.6496916273040025
 },
 "camera-model": "pinhole"
 }]
 }
}

Use Input and Output Data 1642

Amazon SageMaker Developer Guide

When you create an input manifest file, you must collapse your JSON objects to fit on a single line.
For example, the code block above would appear as follows in an input manifest file:

{"source-ref":"s3://awsexamplebucket/examplefolder/frame1.bin","source-ref-metadata":
{"format":"binary/xyzi","unix-timestamp":1566861644.759115,"ego-vehicle-pose":
{"position":
{"x":-2.7161461413869947,"y":116.25822288149078,"z":1.8348751887989483},"heading":
{"qx":-0.02111296123795955,"qy":-0.006495469416730261,"qz":-0.008024565904865688,"qw":0.9997181192298087}},"prefix":"s3://
awsexamplebucket/lidar_singleframe_dataset/someprefix/","images":
[{"image-path":"images/frame300.bin_camera0.jpg","unix-
timestamp":1566861644.759115,"fx":847.7962624528487,"fy":850.0340893791985,"cx":576.2129134707038,"cy":317.2423573573745,"k1":0,"k2":0,"k3":0,"k4":0,"p1":0,"p2":0,"skew":0,"position":
{"x":-2.2722515189268138,"y":116.86003310568965,"z":1.454614668542299},"heading":
{"qx":0.7594754093069037,"qy":0.02181790885672969,"qz":-0.02461725233103356,"qw":-0.6496916273040025},"camera-
model":"pinhole"}]}}
{"source-ref":"s3://awsexamplebucket/examplefolder/frame2.bin","source-ref-metadata":
{"format":"binary/xyzi","unix-timestamp":1566861632.759133,"ego-vehicle-pose":
{"position":
{"x":-2.7161461413869947,"y":116.25822288149078,"z":1.8348751887989483},"heading":
{"qx":-0.02111296123795955,"qy":-0.006495469416730261,"qz":-0.008024565904865688,"qw":0.9997181192298087}},"prefix":"s3://
awsexamplebucket/lidar_singleframe_dataset/someprefix/","images":
[{"image-path":"images/frame300.bin_camera0.jpg","unix-
timestamp":1566861644.759115,"fx":847.7962624528487,"fy":850.0340893791985,"cx":576.2129134707038,"cy":317.2423573573745,"k1":0,"k2":0,"k3":0,"k4":0,"p1":0,"p2":0,"skew":0,"position":
{"x":-2.2722515189268138,"y":116.86003310568965,"z":1.454614668542299},"heading":
{"qx":0.7594754093069037,"qy":0.02181790885672969,"qz":-0.02461725233103356,"qw":-0.6496916273040025},"camera-
model":"pinhole"}]}}

The following table shows the parameters you can include in your input manifest file:

Parameter Required Accepted Values Description

source-ref Yes String

Accepted string
value format:

s3://<bucket-n
ame> /<folder-n
ame> /point-clo
ud-frame-file

The Amazon S3
location of a single
point cloud frame.

Use Input and Output Data 1643

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

source-ref-
metadata

Yes JSON object

Accepted parameter
s:

format, unix-
timestamp , ego-
vehicle-pose ,
position, prefix,
images

Use this parameter
to include additiona
l information about
the point cloud in
source-ref , and
to provide camera
data for sensor
fusion.

Use Input and Output Data 1644

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

format No String

Accepted string
values: "binary/x
yz" , "binary/x
yzi" , "binary/x
yzrgb" , "binary/
xyzirgb" , "text/
xyz" , "text/xyz
i" , "text/xyz
rgb" , "text/xyz
irgb"

Default Values:

When the file
identified in source-
ref has a .bin
extension, binary/
xyzi

When the file
identified in source-
ref has a .txt
extension, text/
xyzi

Use this parameter
to specify the format
of your point cloud
data. For more
information, see
Accepted Raw 3D
Data Formats.

unix-timestamp Yes Number

A unix timestamp.

The unix timestamp
is the number of
seconds since January
1st, 1970 until the
UTC time that the
data was collected by
a sensor.

Use Input and Output Data 1645

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

ego-vehicle-
pose

No JSON object The pose of the
device used to collect
the point cloud data.
For more information
about this parameter
, see Include Vehicle
Pose Information in
Your Input Manifest.

prefix No String

Accepted string
value format:

s3://<bucket-n
ame> /<folder-n
ame>/

The location in
Amazon S3 where
your metadata, such
as camera images, is
stored for this frame.

The prefix must end
with a forward slash:
/.

images No List A list of parameter
s describing color
camera images used
for sensor fusion. You
can include up to 8
images in this list.
For more information
about the parameter
s required for each
image, see Include
Camera Data in Your
Input Manifest.

Use Input and Output Data 1646

Amazon SageMaker Developer Guide

Include Vehicle Pose Information in Your Input Manifest

Use the ego-vehicle location to provide information about the location of the vehicle used to
capture point cloud data. Ground Truth use this information to compute LiDAR extrinsic matrix.

Ground Truth uses extrinsic matrices to project labels to and from the 3D scene and 2D images. For
more information, see Sensor Fusion.

The following table provides more information about the position and orientation (heading)
parameters that are required when you provide ego-vehicle information.

Parameter Required Accepted Values Description

position Yes JSON object

Required Parameter
s:

x, y, and z. Enter
numbers for these
parameters.

The translation
vector of the ego
vehicle in the world
coordinate system.

heading Yes JSON Object

Required Parameter
s:

qx, qy, qz, and qw.
Enter numbers for
these parameters.

The orientation
of the frame of
reference of the
device or sensor
mounted on the
vehicle sensing
the surroundi
ng, measured in
quaternions, (qx,
qy, qz, qw) in the a
coordinate system.

Include Camera Data in Your Input Manifest

If you want to include video camera data with a frame, use the following parameters to provide
information about each image. The Required column below applies when the images parameter is

Use Input and Output Data 1647

https://en.wikipedia.org/wiki/Quaternion

Amazon SageMaker Developer Guide

included in the input manifest file under source-ref-metadata. You are not required to include
images in your input manifest file.

If you include camera images, you must include information about the camera position and
heading used the capture the images in the world coordinate system.

If your images are distorted, Ground Truth can automatically undistort them using information you
provide about the image in your input manifest file, including distortion coefficients (k1, k2, k3,
k4, p1, p1), the camera model and the camera intrinsic matrix. The intrinsic matrix is made up of
focal length (fx, fy), and the principal point (cx, cy). See Intrinsic Matrix to learn how Ground
Truth uses the camera intrinsic. If distortion coefficients are not included, Ground Truth will not
undistort an image.

Parameter Required Accepted Values Description

image-path Yes String

Example of format:

<folder-n
ame> /<imagefil
e.png>

The relative location,
in Amazon S3 of
your image file. This
relative path will
be appended to the
path you specify in
prefix.

unix-timestamp Yes Number The unix timestamp
is the number of
seconds since January
1st, 1970 until the
UTC time that the
data was collected by
a camera.

camera-model No String:

Accepted Values:

"pinhole" ,
"fisheye"

Default:

The model of the
camera used to
capture the image.
This information is
used to undistort
camera images.

Use Input and Output Data 1648

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

"pinhole"

fx, fy Yes Numbers The focal length of
the camera, in the
x (fx) and y (fy)
directions.

cx, cy Yes Numbers The x (cx) and y (cy)
coordinates of the
principal point.

k1, k2, k3, k4 No Number Radial distortio
n coefficients.
Supported for both
fisheye and pinhole
camera models.

p1, p2 No Number Tangential distortio
n coefficients.
Supported for
pinhole camera
models.

skew No Number A parameter to
measure the skew of
an image.

position Yes JSON object

Required Parameter
s:

x, y, and z. Enter
numbers for these
parameters.

The location or
origin of the frame
of reference of the
camera mounted on
the vehicle capturing
images.

Use Input and Output Data 1649

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

heading Yes JSON Object

Required Parameter
s:

qx, qy, qz, and qw.
Enter numbers for
these parameters.

The orientation
of the frame of
reference of the
camera mounted on
the vehicle capturing
images, measured
using quaternions,
(qx, qy, qz, qw), in
the world coordinate
system.

Point Cloud Frame Limits

You can include up to 100,000 point cloud frames in your input manifest file. 3D point cloud
labeling job have longer pre-processing times than other Ground Truth task types. For more
information, see Job Pre-processing Time.

Create a Point Cloud Sequence Input Manifest

The manifest is a UTF-8 encoded file in which each line is a complete and valid JSON object. Each
line is delimited by a standard line break, \n or \r\n. Because each line must be a valid JSON object,
you can't have unescaped line break characters. In the point cloud sequence input manifest file,
each line in the manifest contains a sequence of point cloud frames. The point cloud data for each
frame in the sequence can either be stored in binary or ASCII format. For more information, see
Accepted Raw 3D Data Formats. This is the manifest file formatting required for 3D point cloud
object tracking. Optionally, you can also provide point attribute and camera sensor fusion data for
each point cloud frame. When you create a sequence input manifest file, you must provide LiDAR
and video camera sensor fusion data in a world coordinate system.

The following example demonstrates the syntax used for an input manifest file when each line in
the manifest is a sequence file. Each line in your input manifest file must be in JSON Lines format.

{"source-ref": "s3://awsexamplebucket/example-folder/seq1.json"}
{"source-ref": "s3://awsexamplebucket/example-folder/seq2.json"}

Use Input and Output Data 1650

https://en.wikipedia.org/wiki/Quaternion
http://jsonlines.org/

Amazon SageMaker Developer Guide

The data for each sequence of point cloud frames needs to be stored in a JSON data object. The
following is an example of the format you use for a sequence file. Information about each frame
is included as a JSON object and is listed in the frames list. This is an example of a sequence file
with two point cloud frame files, frame300.bin and frame303.bin. The ... is used to indicated
where you should include information for additional frames. Add a JSON object for each frame in
the sequence.

The following code block includes a JSON object for a single sequence file. The JSON object has
been expanded for readability.

{
 "seq-no": 1,
 "prefix": "s3://awsexamplebucket/example_lidar_sequence_dataset/seq1/",
 "number-of-frames": 100,
 "frames":[
 {
 "frame-no": 300,
 "unix-timestamp": 1566861644.759115,
 "frame": "example_lidar_frames/frame300.bin",
 "format": "binary/xyzi",
 "ego-vehicle-pose":{
 "position": {
 "x": -2.7161461413869947,
 "y": 116.25822288149078,
 "z": 1.8348751887989483
 },
 "heading": {
 "qx": -0.02111296123795955,
 "qy": -0.006495469416730261,
 "qz": -0.008024565904865688,
 "qw": 0.9997181192298087
 }
 },
 "images": [
 {
 "image-path": "example_images/frame300.bin_camera0.jpg",
 "unix-timestamp": 1566861644.759115,
 "fx": 847.7962624528487,
 "fy": 850.0340893791985,
 "cx": 576.2129134707038,
 "cy": 317.2423573573745,
 "k1": 0,
 "k2": 0,

Use Input and Output Data 1651

Amazon SageMaker Developer Guide

 "k3": 0,
 "k4": 0,
 "p1": 0,
 "p2": 0,
 "skew": 0,
 "position": {
 "x": -2.2722515189268138,
 "y": 116.86003310568965,
 "z": 1.454614668542299
 },
 "heading": {
 "qx": 0.7594754093069037,
 "qy": 0.02181790885672969,
 "qz": -0.02461725233103356,
 "qw": -0.6496916273040025
 },
 "camera-model": "pinhole"
 }]
 },
 {
 "frame-no": 303,
 "unix-timestamp": 1566861644.759115,
 "frame": "example_lidar_frames/frame303.bin",
 "format": "text/xyzi",
 "ego-vehicle-pose":{...},
 "images":[{...}]
 },
 ...
]
}

The following table provides details about the top-level parameters of a sequence file. For
detailed information about the parameters required for individual frames in the sequence file, see
Parameters for Individual Point Cloud Frames.

Parameter Required Accepted Values Description

seq-no Yes Integer The ordered number
of the sequence.

prefix Yes String The Amazon S3
location where the

Use Input and Output Data 1652

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

Accepted Values:

s3://<bucket-n
ame> /<prefix>/

sequence files are
located.

The prefix must end
with a forward slash:
/.

number-of-
frames

Yes Integer The total number
of frames included
in the sequence file.
This number must
match the total
number of frames
listed in the frames
parameter in the next
row.

frames Yes List of JSON objects A list of frame data.
The length of the list
must equal number-
of-frames . In the
worker UI, frames in a
sequence will be the
same as the order of
frames in this array.

For details about
the format of each
frame, see Parameter
s for Individual Point
Cloud Frames.

Parameters for Individual Point Cloud Frames

The following table shows the parameters you can include in your input manifest file.

Use Input and Output Data 1653

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

frame-no No Integer A frame number.
This is an optional
identifier specified
by the customer to
identify the frame
within a sequence. It
is not used by Ground
Truth.

unix-timestamp Yes Number The unix timestamp
is the number of
seconds since January
1st, 1970 until the
UTC time that the
data was collected by
a sensor.

The timestamp for
each frame must
be different and
timestamps must be
sequential because
they are used for
cuboid interpola
tion. Ideally, this
should be the real
timestamp when the
data was collected. If
this is not available
, you must use an
incremental sequence
of timestamps, where
the first frame in
your sequence file
corresponds to the

Use Input and Output Data 1654

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

first timestamp in the
sequence.

frame Yes String

Example of format

<folder-n
ame> /<sequence
-file.json>

The relative location,
in Amazon S3 of your
sequence file. This
relative path will
be appended to the
path you specify in
prefix.

Use Input and Output Data 1655

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

format No String

Accepted string
values: "binary/x
yz" , "binary/x
yzi" , "binary/x
yzrgb" , "binary/
xyzirgb" , "text/
xyz" , "text/xyz
i" , "text/xyz
rgb" , "text/xyz
irgb"

Default Values:

When the file
identified in source-
ref has a .bin
extension, binary/
xyzi

When the file
identified in source-
ref has a .txt
extension, text/
xyzi

Use this parameter
to specify the format
of your point cloud
data. For more
information, see
Accepted Raw 3D
Data Formats.

ego-vehicle-
pose

No JSON object The pose of the
device used to collect
the point cloud data.
For more information
about this parameter
, see Include Vehicle
Pose Information in
Your Input Manifest.

Use Input and Output Data 1656

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

prefix No String

Accepted string
value format:

s3://<bucket-n
ame> /<folder-n
ame>/

The location in
Amazon S3 where
your metadata, such
as camera images, is
stored for this frame.

The prefix must end
with a forward slash:
/.

images No List A list parameter
s describing color
camera images used
for sensor fusion. You
can include up to 8
images in this list.
For more information
about the parameter
s required for each
image, see Include
Camera Data in Your
Input Manifest.

Include Vehicle Pose Information in Your Input Manifest

Use the ego-vehicle location to provide information about the pose of the vehicle used to capture
point cloud data. Ground Truth use this information to compute LiDAR extrinsic matrices.

Ground Truth uses extrinsic matrices to project labels to and from the 3D scene and 2D images. For
more information, see Sensor Fusion.

The following table provides more information about the position and orientation (heading)
parameters that are required when you provide ego-vehicle information.

Use Input and Output Data 1657

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

position Yes JSON object

Required Parameter
s:

x, y, and z. Enter
numbers for these
parameters.

The translation
vector of the ego
vehicle in the world
coordinate system.

heading Yes JSON Object

Required Parameter
s:

qx, qy, qz, and qw.
Enter numbers for
these parameters.

The orientation
of the frame of
reference of the
device or sensor
mounted on the
vehicle sensing
the surroundi
ng, measured in
quaternions, (qx,
qy, qz, qw) in the a
coordinate system.

Include Camera Data in Your Input Manifest

If you want to include color camera data with a frame, use the following parameters to provide
information about each image. The Required column in the following table applies when the
images parameter is included in the input manifest file. You are not required to include images in
your input manifest file.

If you include camera images, you must include information about the position and orientation
(heading) of the camera used the capture the images.

If your images are distorted, Ground Truth can automatically undistort them using information
you provide about the image in your input manifest file, including distortion coefficients (k1, k2,
k3, k4, p1, p1), camera model and focal length (fx, fy), and the principal point (cx, cy). To learn
more about these coefficients and undistorting images, see Camera calibration With OpenCV. If
distortion coefficients are not included, Ground Truth will not undistort an image.

Use Input and Output Data 1658

https://en.wikipedia.org/wiki/Quaternion
https://docs.opencv.org/2.4.13.7/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

image-path Yes String

Example of format:

<folder-n
ame> /<imagefil
e.png>

The relative location,
in Amazon S3 of
your image file. This
relative path will
be appended to the
path you specify in
prefix.

unix-timestamp Yes Number The timestamp of the
image.

camera-model No String:

Accepted Values:

"pinhole" ,
"fisheye"

Default:

"pinhole"

The model of the
camera used to
capture the image.
This information is
used to undistort
camera images.

fx, fy Yes Numbers The focal length of
the camera, in the
x (fx) and y (fy)
directions.

cx, cy Yes Numbers The x (cx) and y (cy)
coordinates of the
principal point.

k1, k2, k3, k4 No Number Radial distortio
n coefficients.
Supported for both
fisheye and pinhole
camera models.

Use Input and Output Data 1659

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

p1, p2 No Number Tangential distortio
n coefficients.
Supported for
pinhole camera
models.

skew No Number A parameter to
measure any known
skew in the image.

position Yes JSON object

Required Parameter
s:

x, y, and z. Enter
numbers for these
parameters.

The location or
origin of the frame
of reference of the
camera mounted on
the vehicle capturing
images.

heading Yes JSON Object

Required Parameter
s:

qx, qy, qz, and qw.
Enter numbers for
these parameters.

The orientation
of the frame of
reference of the
camera mounted on
the vehicle capturing
images, measured
using quaternions,
(qx, qy, qz, qw).

Sequence File and Point Cloud Frame Limits

You can include up to 100,000 point cloud frame sequences in your input manifest file. You can
include up to 500 point cloud frames in each sequence file.

Keep in mind that 3D point cloud labeling job have longer pre-processing times than other Ground
Truth task types. For more information, see Job Pre-processing Time.

Use Input and Output Data 1660

https://en.wikipedia.org/wiki/Quaternion

Amazon SageMaker Developer Guide

Understand Coordinate Systems and Sensor Fusion

Point cloud data is always located in a coordinate system. This coordinate system may be local to
the vehicle or the device sensing the surroundings, or it may be a world coordinate system. When
you use Ground Truth 3D point cloud labeling jobs, all the annotations are generated using the
coordinate system of your input data. For some labeling job task types and features, you must
provide data in a world coordinate system.

In this topic, you'll learn the following:

• When you are required to provide input data in a world coordinate system or global frame of
reference.

• What a world coordinate is and how you can convert point cloud data to a world coordinate
system.

• How you can use your sensor and camera extrinsic matrices to provide pose data when using
sensor fusion.

Coordinate System Requirements for Labeling Jobs

If your point cloud data was collected in a local coordinate system, you can use an extrinsic matrix
of the sensor used to collect the data to convert it to a world coordinate system or a global frame
of reference. If you cannot obtain an extrinsic for your point cloud data and, as a result, cannot
obtain point clouds in a world coordinate system, you can provide point cloud data in a local
coordinate system for 3D point cloud object detection and semantic segmentation task types.

For object tracking, you must provide point cloud data in a world coordinate system. This is
because when you are tracking objects across multiple frames, the ego vehicle itself is moving in
the world and so all of the frames need a point of reference.

If you include camera data for sensor fusion, it is recommended that you provide camera poses in
the same world coordinate system as the 3D sensor (such as a LiDAR sensor).

Using Point Cloud Data in a World Coordinate System

This section explains what a world coordinate system (WCS), also referred to as a global frame of
reference, is and explains how you can provide point cloud data in a world coordinate system.

Use Input and Output Data 1661

Amazon SageMaker Developer Guide

What is a World Coordinate System?

A WCS or global frame of reference is a fixed universal coordinate system in which vehicle and
sensor coordinate systems are placed. For example, if multiple point cloud frames are located in
different coordinate systems because they were collected from two sensors, a WCS can be used
to translate all of the coordinates in these point cloud frames into a single coordinate system,
where all frames have the same origin, (0,0,0). This transformation is done by translating the origin
of each frame to the origin of the WCS using a translation vector, and rotating the three axes
(typically x, y, and z) to the right orientation using a rotation matrix. This rigid body transformation
is called a homogeneous transformation.

A world coordinate system is important in global path planning, localization, mapping, and driving
scenario simulations. Ground Truth uses the right-handed Cartesian world coordinate system such
as the one defined in ISO 8855, where the x axis is forward toward the car’s movement, y axis is
left, and the z axis points up from the ground.

The global frame of reference depends on the data. Some datasets use the LiDAR position in the
first frame as the origin. In this scenario, all the frames use the first frame as a reference and device
heading and position will be near the origin in the first frame. For example, KITTI datasets have
the first frame as a reference for world coordinates. Other datasets use a device position that is
different from the origin.

Note that this is not the GPS/IMU coordinate system, which is typically rotated by 90 degrees
along the z-axis. If your point cloud data is in a GPS/IMU coordinate system (such as OxTS in
the open source AV KITTI dataset), then you need to transform the origin to a world coordinate
system (typically the vehicle's reference coordinate system). You apply this transformation by
multiplying your data with transformation metrics (the rotation matrix and translation vector). This
will transform the data from its original coordinate system to a global reference coordinate system.
Learn more about this transformation in the next section.

Convert 3D Point Cloud Data to a WCS

Ground Truth assumes that your point cloud data has already been transformed into a reference
coordinate system of your choice. For example, you can choose the reference coordinate system
of the sensor (such as LiDAR) as your global reference coordinate system. You can also take point
clouds from various sensors and transform them from the sensor's view to the vehicle's reference
coordinate system view. You use the a sensor's extrinsic matrix, made up of a rotation matrix and
translation vector, to convert your point cloud data to a WCS or global frame of reference.

Use Input and Output Data 1662

https://www.iso.org/standard/51180.html

Amazon SageMaker Developer Guide

Collectively, the translation vector and rotation matrix can be used to make up an extrinsic matrix,
which can be used to convert data from a local coordinate system to a WCS. For example, your
LiDAR extrinsic matrix may be composed as follows, where R is the rotation matrix and T is the
translation vector:

LiDAR_extrinsic = [R T;0 0 0 1]

For example, the autonomous driving KITTI dataset includes a rotation matrix and translation
vector for the LiDAR extrinsic transformation matrix for each frame. The pykitti python module
can be used for loading the KITTI data, and in the dataset dataset.oxts[i].T_w_imu gives
the LiDAR extrinsic transform for the ith frame with can be multiplied with points in that frame
to convert them to a world frame - np.matmul(lidar_transform_matrix, points).
Multiplying a point in LiDAR frame with a LiDAR extrinsic matrix transforms it into world
coordinates. Multiplying a point in the world frame with the camera extrinsic matrix gives the point
coordinates in the camera's frame of reference.

The following code example demonstrates how you can convert point cloud frames from the KITTI
dataset into a WCS.

import pykitti
import numpy as np

basedir = '/Users/nameofuser/kitti-data'
date = '2011_09_26'
drive = '0079'

The 'frames' argument is optional - default: None, which loads the whole dataset.
Calibration, timestamps, and IMU data are read automatically.
Camera and velodyne data are available via properties that create generators
when accessed, or through getter methods that provide random access.
data = pykitti.raw(basedir, date, drive, frames=range(0, 50, 5))

i is frame number
i = 0

lidar extrinsic for the ith frame
lidar_extrinsic_matrix = data.oxts[i].T_w_imu

velodyne raw point cloud in lidar scanners own coordinate system
points = data.get_velo(i)

Use Input and Output Data 1663

https://github.com/utiasSTARS/pykitti

Amazon SageMaker Developer Guide

transform points from lidar to global frame using lidar_extrinsic_matrix
def generate_transformed_pcd_from_point_cloud(points, lidar_extrinsic_matrix):
 tps = []
 for point in points:
 transformed_points = np.matmul(lidar_extrinsic_matrix, np.array([point[0],
 point[1], point[2], 1], dtype=np.float32).reshape(4,1)).tolist()
 if len(point) > 3 and point[3] is not None:
 tps.append([transformed_points[0][0], transformed_points[1][0],
 transformed_points[2][0], point[3]])

 return tps

customer transforms points from lidar to global frame using lidar_extrinsic_matrix
transformed_pcl = generate_transformed_pcd_from_point_cloud(points,
 lidar_extrinsic_matrix)

Sensor Fusion

Ground Truth supports sensor fusion of point cloud data with up to 8 video camera inputs.
This feature allows human labellers to view the 3D point cloud frame side-by-side with the
synchronized video frame. In addition to providing more visual context for labeling, sensor fusion
allows workers to adjust annotations in the 3D scene and in 2D images and the adjustment are
projected into the other view. The following video demonstrates a 3D point cloud labeling job with
LiDAR and camera sensor fusion.

Use Input and Output Data 1664

Amazon SageMaker Developer Guide

For best results, when using sensor fusion, your point cloud should be in a WCS. Ground Truth uses
your sensor (such as LiDAR), camera, and ego vehicle pose information to compute extrinsic and
intrinsic matrices for sensor fusion.

Extrinsic Matrix

Ground Truth uses sensor (such as LiDAR) extrinsic and camera extrinsic and intrinsic matrices to
project objects to and from the point cloud data's frame of reference to the camera's frame of
reference.

For example, in order to project a label from the 3D point cloud to camera image plane, Ground
Truth transforms 3D points from LiDAR’s own coordinate system to the camera's coordinate
system. This is typically done by first transforming 3D points from LiDAR’s own coordinate system
to a world coordinate system (or a global reference frame) using the LiDAR extrinsic matrix.
Ground Truth then uses the camera inverse extrinsic (which converts points from a global frame
of reference to the camera's frame of reference) to transform the 3D points from world coordinate
system obtained in previous step into the camera image plane. The LiDAR extrinsic matrix can
also be used to transform 3D data into a world coordinate system. If your 3D data is already
transformed into world coordinate system then the first transformation doesn’t have any impact
on label translation, and label translation only depends on the camera inverse extrinsic. A view
matrix is used to visualize projected labels. To learn more about these transformations and the
view matrix, see Ground Truth Sensor Fusion Transformations.

Ground Truth computes these extrinsic matrices by using LiDAR and camera pose data that you
provide: heading (in quaternions: qx, qy, qz, and qw) and position (x, y, z). For the vehicle,
typically the heading and position are described in vehicle's reference frame in a world coordinate
system and are called a ego vehicle pose. For each camera extrinsic, you can add pose information
for that camera. For more information, see Pose.

Intrinsic Matrix

Ground Truth use the camera extrinsic and intrinsic matrices to compute view metrics to transform
labels to and from the 3D scene to camera images. Ground Truth computes the camera intrinsic
matrix using camera focal length (fx, fy) and optical center coordinates (cx,cy) that you provide.
For more information, see Intrinsic and Distortion.

Image Distortion

Image distortion can occur for a variety of reasons. For example, images may be distorted due to
barrel or fish-eye effects. Ground Truth uses intrinsic parameters along with distortion co-efficient

Use Input and Output Data 1665

Amazon SageMaker Developer Guide

to undistort images you provide when creating 3D point cloud labeling jobs. If a camera image is
already been undistorted, all distortion coefficients should be set to 0.

For more information about the transformations Ground Truth performs to undistort images, see
Camera Calibrations: Extrinsic, Intrinsic and Distortion.

Ego Vehicle

To collect data for autonomous driving applications, the measurements used to generate point
cloud data and are taken from sensors mounted on a vehicle, or the ego vehicle. To project label
adjustments to and from the 3D scene and 2D images, Ground Truth needs your ego vehicle pose
in a world coordinate system. The ego vehicle pose is comprised of position coordinates and
orientation quaternion.

Ground Truth uses your ego vehicle pose to compute rotation and transformations matrices.
Rotations in 3 dimensions can be represented by a sequence of 3 rotations around a sequence of
axes. In theory, any three axes spanning the 3D Euclidean space are enough. In practice, the axes
of rotation are chosen to be the basis vectors. The three rotations are expected to be in a global
frame of reference (extrinsic). Ground Truth does not a support body centered frame of reference
(intrinsic) which is attached to, and moves with, the object under rotation. To track objects, Ground
Truth needs to measure from a global reference where all vehicles are moving. When using Ground
Truth 3D point cloud labeling jobs, z specifies the axis of rotation (extrinsic rotation) and yaw Euler
angles are in radians (rotation angle).

Pose

Ground Truth uses pose information for 3D visualizations and sensor fusion. Pose information
you input through your manifest file is used to compute extrinsic matrices. If you already have an
extrinsic matrix, you can use it to extract sensor and camera pose data.

For example in the autonomous driving KITTI dataset, the pykitti python module can be used for
loading the KITTI data. In the dataset dataset.oxts[i].T_w_imu gives the LiDAR extrinsic
transform for the ith frame and it can be multiplied with the points to get them in a world
frame - matmul(lidar_transform_matrix, points). This transform can be converted
into position (translation vector) and heading (in quaternion) of LiDAR for the input manifest
file JSON format. Camera extrinsic transform for cam0 in ith frame can be calculated by
inv(matmul(dataset.calib.T_cam0_velo, inv(dataset.oxts[i].T_w_imu))) and this
can be converted into heading and position for cam0.

import numpy

Use Input and Output Data 1666

https://github.com/utiasSTARS/pykitti

Amazon SageMaker Developer Guide

rotation = [[9.96714314e-01, -8.09890350e-02, 1.16333982e-03],
 [8.09967396e-02, 9.96661051e-01, -1.03090934e-02],
 [-3.24531964e-04, 1.03694477e-02, 9.99946183e-01]]

origin= [1.71104606e+00,
 5.80000039e-01,
 9.43144935e-01]

from scipy.spatial.transform import Rotation as R

position is the origin
position = origin
r = R.from_matrix(np.asarray(rotation))

heading in WCS using scipy
heading = r.as_quat()
print(f"pose:{position}\nheading: {heading}")

Position

In the input manifest file, position refers to the position of the sensor with respect to a world
frame. If you are unable to put the device position in a world coordinate system, you can use LiDAR
data with local coordinates. Similarly, for mounted video cameras you can specify the position and
heading in a world coordinate system. For camera, if you do not have position information, please
use (0, 0, 0).

The following are the fields in the position object:

1. x (float) – x coordinate of ego vehicle, sensor, or camera position in meters.

2. y (float) – y coordinate of ego vehicle, sensor, or camera position in meters.

3. z (float) – z coordinate of ego vehicle, sensor, or camera position in meters.

The following is an example of a position JSON object:

{
 "position": {
 "y": -152.77584902657554,
 "x": 311.21505956090624,
 "z": -10.854137529636024

Use Input and Output Data 1667

Amazon SageMaker Developer Guide

 }
}

Heading

In the input manifest file, heading is an object that represents the orientation of a device with
respect to world frame. Heading values should be in quaternion. A quaternion is a representation
of the orientation consistent with geodesic spherical properties. If you are unable to put the sensor
heading in world coordinates, please use the identity quaternion (qx = 0, qy = 0, qz = 0,
qw = 1). Similarly, for cameras, specify the heading in quaternions. If you are unable to obtain
extrinsic camera calibration parameters, please also use the identity quaternion.

Fields in heading object are as follows:

1. qx (float) - x component of ego vehicle, sensor, or camera orientation.

2. qy (float) - y component of ego vehicle, sensor, or camera orientation.

3. qz (float) - z component of ego vehicle, sensor, or camera orientation.

4. qw (float) - w component of ego vehicle, sensor, or camera orientation.

The following is an example of a heading JSON object:

{
 "heading": {
 "qy": -0.7046155108831117,
 "qx": 0.034278837280808494,
 "qz": 0.7070617895701465,
 "qw": -0.04904659893885366
 }
}

To learn more, see Compute Orientation Quaternions and Position.

Compute Orientation Quaternions and Position

Ground Truth requires that all orientation, or heading, data be given in quaternions. A quaternions
is a representation of the orientation consistent with geodesic spherical properties that can be used
to approximate of rotation. Compared to Euler angles they are simpler to compose and avoid the
problem of gimbal lock. Compared to rotation matrices they are more compact, more numerically
stable, and more efficient.

Use Input and Output Data 1668

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Gimbal_lock

Amazon SageMaker Developer Guide

You can compute quaternions from a rotation matrix or a transformation matrix.

If you have a rotation matrix (made up of the axis rotations) and translation vector (or origin)
in world coordinate system instead of a single 4x4 rigid transformation matrix, then you can
directly use the rotation matrix and translation vector to compute quaternions. Libraries like scipy
and pyqaternion can help. The following code-block shows an example using these libraries to
compute quaternion from a rotation matrix.

import numpy

rotation = [[9.96714314e-01, -8.09890350e-02, 1.16333982e-03],
 [8.09967396e-02, 9.96661051e-01, -1.03090934e-02],
 [-3.24531964e-04, 1.03694477e-02, 9.99946183e-01]]

origin = [1.71104606e+00,
 5.80000039e-01,
 9.43144935e-01]

from scipy.spatial.transform import Rotation as R
position is the origin
position = origin
r = R.from_matrix(np.asarray(rotation))
heading in WCS using scipy
heading = r.as_quat()
print(f"position:{position}\nheading: {heading}")

A UI tool like 3D Rotation Converter can also be useful.

If you have a 4x4 extrinsic transformation matrix, note that the transformation matrix is in the
form [R T; 0 0 0 1] where R is the rotation matrix and T is the origin translation vector. That
means you can extract rotation matrix and translation vector from the transformation matrix as
follows.

import numpy as np

transformation
= [[9.96714314e-01, -8.09890350e-02, 1.16333982e-03, 1.71104606e+00],
 [8.09967396e-02, 9.96661051e-01, -1.03090934e-02, 5.80000039e-01],
 [-3.24531964e-04, 1.03694477e-02, 9.99946183e-01, 9.43144935e-01],
 [0, 0, 0, 1]]

Use Input and Output Data 1669

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html
http://kieranwynn.github.io/pyquaternion/#explicitly-by-rotation-or-transformation-matrix
https://www.andre-gaschler.com/rotationconverter/

Amazon SageMaker Developer Guide

transformation = np.array(transformation)
rotation = transformation[0:3][0:3]
translation= transformation[0:3][3]

from scipy.spatial.transform import Rotation as R
position is the origin translation
position = translation
r = R.from_matrix(np.asarray(rotation))
heading in WCS using scipy
heading = r.as_quat()
print(f"position:{position}\nheading: {heading}")

With your own setup, you can compute an extrinsic transformation matrix using the GPS/IMU
position and orientation (latitude, longitude, altitude and roll, pitch, yaw) with respect to the LiDAR
sensor on the ego vehicle. For example, you can compute pose from KITTI raw data using pose =
convertOxtsToPose(oxts) to transform the oxts data into a local euclidean poses, specified
by 4x4 rigid transformation matrices. You can then transform this pose transformation matrix to a
global reference frame using the reference frames transformation matrix in the world coordinate
system.

struct Quaternion
{
 double w, x, y, z;
};

Quaternion ToQuaternion(double yaw, double pitch, double roll) // yaw (Z), pitch (Y),
 roll (X)
{
 // Abbreviations for the various angular functions
 double cy = cos(yaw * 0.5);
 double sy = sin(yaw * 0.5);
 double cp = cos(pitch * 0.5);
 double sp = sin(pitch * 0.5);
 double cr = cos(roll * 0.5);
 double sr = sin(roll * 0.5);

 Quaternion q;
 q.w = cr * cp * cy + sr * sp * sy;
 q.x = sr * cp * cy - cr * sp * sy;
 q.y = cr * sp * cy + sr * cp * sy;
 q.z = cr * cp * sy - sr * sp * cy;

Use Input and Output Data 1670

Amazon SageMaker Developer Guide

 return q;
}

Ground Truth Sensor Fusion Transformations

The following sections go into greater detail about the Ground Truth sensor fusion transformations
that are performed using the pose data you provide.

LiDAR Extrinsic

In order to project to and from a 3D LiDAR scene to a 2D camera image, Ground Truth computes
the rigid transformation projection metrics using the ego vehicle pose and heading. Ground Truth
computes rotation and translation of a world coordinates into the 3D plane by doing a simple
sequence of rotations and translation.

Ground Truth computes rotation metrics using the heading quaternions as follows:

Here, [x, y, z, w] corresponds to parameters in the heading JSON object, [qx, qy, qz,
qw]. Ground Truth computes the translation column vector as T = [poseX, poseY, poseZ].
Then the extrinsic metrics is simply as follows:

LiDAR_extrinsic = [R T;0 0 0 1]

Camera Calibrations: Extrinsic, Intrinsic and Distortion

Geometric camera calibration, also referred to as camera resectioning, estimates the parameters
of a lens and image sensor of an image or video camera. You can use these parameters to correct
for lens distortion, measure the size of an object in world units, or determine the location of the
camera in the scene. Camera parameters include intrinsics and distortion coefficients.

Camera Extrinsic

If the camera pose is given, then Ground Truth computes the camera extrinsic based on a rigid
transformation from the 3D plane into the camera plane. The calculation is the same as the one

Use Input and Output Data 1671

Amazon SageMaker Developer Guide

used for the LiDAR Extrinsic, except that Ground Truth uses camera pose (position and heading)
and computes the inverse extrinsic.

 camera_inverse_extrinsic = inv([Rc Tc;0 0 0 1]) #where Rc and Tc are camera pose
 components

Intrinsic and Distortion

Some cameras, such as pinhole or fisheye cameras, may introduce significant distortion in photos.
This distortion can be corrected using distortion coefficients and the camera focal length. To learn
more, see Camera calibration With OpenCV in the OpenCV documentation.

There are two types of distortion Ground Truth can correct for: radial distortion and tangential
distortion.

Radial distortion occurs when light rays bend more near the edges of a lens than they do at its
optical center. The smaller the lens, the greater the distortion. The presence of the radial distortion
manifests in form of the barrel or fish-eye effect and Ground Truth uses Formula 1 to undistort it.

Formula 1:

Tangential distortion occurs because the lenses used to take the images are not perfectly parallel to
the imaging plane. This can be corrected with Formula 2.

Formula 2:

In the input manifest file, you can provide distortion coefficients and Ground Truth will undistort
your images. All distortion coefficients are floats.

Use Input and Output Data 1672

https://docs.opencv.org/2.4.13.7/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

Amazon SageMaker Developer Guide

• k1, k2, k3, k4 – Radial distortion coefficients. Supported for both fisheye and pinhole camera
models.

• p1 ,p2 – Tangential distortion coefficients. Supported for pinhole camera models.

If images are already undistorted, all distortion coefficients should be 0 in your input manifest.

In order to correctly reconstruct the corrected image, Ground Truth does a unit conversion of the
images based on focal lengths. If a common focal length is used with a given aspect ratio for both
axes, such as 1, in the upper formula we will have a single focal length. The matrix containing these
four parameters is referred to as the in camera intrinsic calibration matrix.

While the distortion coefficients are the same regardless of the camera resolutions used, these
should be scaled with the current resolution from the calibrated resolution.

The following are float values.

• fx - focal length in x direction.

• fy - focal length in y direction.

• cx - x coordinate of principal point.

• cy - y coordinate of principal point.

Ground Truth use the camera extrinsic and camera intrinsic to compute view metrics as shown in
the following code block to transform labels between the 3D scene and 2D images.

def generate_view_matrix(intrinsic_matrix, extrinsic_matrix):
 intrinsic_matrix = np.c_[intrinsic_matrix, np.zeros(3)]

Use Input and Output Data 1673

Amazon SageMaker Developer Guide

 view_matrix = np.matmul(intrinsic_matrix, extrinsic_matrix)
 view_matrix = np.insert(view_matrix, 2, np.array((0, 0, 0, 1)), 0)
 return view_matrix

Video Frame Input Data

When you create a video frame object detection or object tracking labeling job, you can choose
video files (MP4 files) or video frames for input data. All worker tasks are created using video
frames, so if you choose video files, use the Ground Truth frame extraction tool to extract video
frames (images) from your video files.

For both of these options, you can use the Automated data setup option in the Ground Truth
section of the Amazon SageMaker console to set up a connection between Ground Truth and your
input data in Amazon S3 so that Ground Truth knows where to look for your input data when
creating your labeling tasks. This creates and stores an input manifest file in your Amazon S3 input
dataset location. To learn more, see Automated Video Frame Input Data Setup.

Alternatively, you can manually create sequence files for each sequence of video frames that you
want labeled and provide the Amazon S3 location of an input manifest file that references each of
these sequences files using the source-ref key. To learn more, see Create a Video Frame Input
Manifest File.

Topics

• Choose Video Files or Video Frames for Input Data

• Input Data Setup

Choose Video Files or Video Frames for Input Data

When you create a video frame object detection or object tracking labeling job, you can provide a
sequence of video frames (images) or you can use the Amazon SageMaker console to have Ground
Truth automatically extract video frames from your video files. Use the following sections to learn
more about these options.

Provide Video Frames

Video frames are sequences of images extracted from a video file. You can create a Ground Truth
labeling job to have workers label multiple sequences of video frames. Each sequence is made up
of images extracted from a single video.

Use Input and Output Data 1674

Amazon SageMaker Developer Guide

To create a labeling job using video frame sequences, you must store each sequence using a unique
key name prefix in Amazon S3. In the Amazon S3 console, key name prefixes are folders. So in the
Amazon S3 console, each sequence of video frames must be located in its own folder in Amazon
S3.

For example, if you have two sequences of video frames, you might use the key name prefixes
sequence1/ and sequence2/ to identify your sequences. In this example, your sequences may
be located in s3://DOC-EXAMPLE-BUCKET/video-frames/sequence1/ and s3://DOC-
EXAMPLE-BUCKET/video-frames/sequence2/.

If you are using the Ground Truth console to create an input manifest file, all of the sequence
key name prefixes should be in the same location in Amazon S3. For example, in the Amazon S3
console, each sequence could be in a folder in s3://DOC-EXAMPLE-BUCKET/video-frames/.
In this example, your first sequence of video frames (images) may be located in s3://DOC-
EXAMPLE-BUCKET/video-frames/sequence1/ and your second sequence may be located in
s3://DOC-EXAMPLE-BUCKET/video-frames/sequence2/.

Important

Even if you only have a single sequence of video frames that you want workers to label,
that sequence must have a key name prefix in Amazon S3. If you are using the Amazon S3
console, this means that your sequence is located in a folder. It cannot be located in the
root of your S3 bucket.

When creating worker tasks using sequences of video frames, Ground Truth uses one sequence per
task. In each task, Ground Truth orders your video frames using UTF-8 binary order.

For example, video frames might be in the following order in Amazon S3:

[0001.jpg, 0002.jpg, 0003.jpg, ..., 0011.jpg]

They are arranged in the same order in the worker’s task: 0001.jpg, 0002.jpg,
0003.jpg, ..., 0011.jpg.

Frames might also be ordered using a naming convention like the following:

[frame1.jpg, frame2.jpg, ..., frame11.jpg]

Use Input and Output Data 1675

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html#object-keys
https://en.wikipedia.org/wiki/UTF-8

Amazon SageMaker Developer Guide

In this case, frame10.jpg and frame11.jpg come before frame2.jpg in the worker task.
Your worker sees your video frames in the following order: frame1.jpg, frame10.jpg,
frame11.jpg, frame2.jpg, ..., frame9.jpg.

Provide Video Files

You can use the Ground Truth frame splitting feature when creating a new labeling job in the
console to extract video frames from video files (MP4 files). A series of video frames extracted from
a single video file is referred to as a sequence of video frames.

You can either have Ground Truth automatically extract all frames, up to 2,000, from the video, or
you can specify a frequency for frame extraction. For example, you can have Ground Truth extract
every 10th frame from your videos.

You can provide up to 50 videos when you use automated data setup to extract frames, however
your input manifest file cannot reference more than 10 video frame sequence files when you
create a video frame object tracking and video frame object detection labeling job. If you use the
automated data setup console tool to extract video frames from more than 10 video files, you will
need to modify the manifest file the tool generates or create a new one to include 10 video frame
sequence files or less. To learn more about these quotas, see 3D Point Cloud and Video Frame
Labeling Job Quotas.

To use the video frame extraction tool, see Automated Video Frame Input Data Setup.

When all of your video frames have been successfully extracted from your videos, you will see the
following in your S3 input dataset location:

• A key name prefix (a folder in the Amazon S3 console) named after each video. Each of these
prefixes leads to:

• A sequence of video frames extracted from the video used to name that prefix.

• A sequence file used to identify all of the images that make up that sequence.

• An input manifest file with a .manifest extension. This identifies all of the sequence files that will
be used to create your labeling job.

All of the frames extracted from a single video file are used for a labeling task. If you extract video
frames from multiple video files, multiple tasks are created for your labeling job, one for each
sequence of video frames.

Use Input and Output Data 1676

Amazon SageMaker Developer Guide

Ground Truth stores each sequence of video frames that it extracts in your Amazon S3 location for
input datasets using a unique key name prefix. In the Amazon S3 console, key name prefixes are
folders.

Input Data Setup

When you create a video frame labeling job, you need to let Ground Truth know where to look for
your input data. You can do this in one of two ways:

• You can store your input data in Amazon S3 and have Ground Truth automatically detect the
input dataset used for your labeling job. See Automated Video Frame Input Data Setup to learn
more about this option.

• You can create an input manifest file and sequence files and upload them to Amazon S3. See
Manual Input Data Setup to learn more about this option.

Topics

• Automated Video Frame Input Data Setup

• Manual Input Data Setup

Automated Video Frame Input Data Setup

You can use the Ground Truth automated data setup to automatically detect video files in your
Amazon S3 bucket and extract video frames from those files. To learn how, see Provide Video Files.

If you already have video frames in Amazon S3, you can use the automated data setup to use these
video frames in your labeling job. For this option, all video frames from a single video must be
stored using a unique prefix. To learn about the requirements to use this option, see Provide Video
Frames.

Select one of the following sections to learn how to set up your automatic input dataset
connection with Ground Truth.

Provide Video Files and Extract Frames

Use the following procedure to connect your video files with Ground Truth and automatically
extract video frames from those files for video frame object detection and object tracking labeling
jobs.

Use Input and Output Data 1677

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html#object-keys

Amazon SageMaker Developer Guide

Note

If you use the automated data setup console tool to extract video frames from more than
10 video files, you will need to modify the manifest file the tool generates or create a new
one to include 10 video frame sequence files or less. To learn more, see Provide Video Files.

Make sure your video files are stored in an Amazon S3 bucket in the same AWS Region that you
perform the automated data setup in.

Automatically connect your video files in Amazon S3 with Ground Truth and extract video
frames:

1. Navigate to the Create labeling job page in the Amazon SageMaker console: https://
console.aws.amazon.com/sagemaker/groundtruth.

Your input and output S3 buckets must be located in the same AWS Region that you create
your labeling job in. This link puts you in the North Virginia (us-east-1) AWS Region. If your
input data is in an Amazon S3 bucket in another Region, switch to that Region. To change your
AWS Region, on the navigation bar, choose the name of the currently displayed Region.

2. Select Create labeling job.

3. Enter a Job name.

4. In the section Input data setup, select Automated data setup.

5. Enter an Amazon S3 URI for S3 location for input datasets. An S3 URI looks like the following:
s3://DOC-EXAMPLE-BUCKET/path-to-files/. This URI should point to the Amazon S3
location where your video files are stored.

6. Specify your S3 location for output datasets. This is where your output data is stored. You
can choose to store your output data in the Same location as input dataset or Specify a new
location and entering the S3 URI of the location that you want to store your output data.

7. Choose Video Files for your Data type using the dropdown list.

8. Choose Yes, extract frames for object tracking and detection tasks.

9. Choose a method of Frame extraction.

• When you choose Use all frames extracted from the video to create a labeling task,
Ground Truth extracts all frames from each video in your S3 location for input datasets, up

Use Input and Output Data 1678

https://console.aws.amazon.com/sagemaker/groundtruth
https://console.aws.amazon.com/sagemaker/groundtruth
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html#select-region

Amazon SageMaker Developer Guide

to 2,000 frames. If a video in your input dataset contains more than 2,000 frames, the first
2,000 are extracted and used for that labeling task.

• When you choose Use every x frame from a video to create a labeling task, Ground Truth
extracts every xth frame from each video in your S3 location for input datasets.

For example, if your video is 2 seconds long, and has a frame rate of 30 frames per second,
there are 60 frames in your video. If you specify 10 here, Ground Truth extracts every 10th

frame from your video. This means the 1st, 10th, 20th, 30th, 40th, 50th, and 60th frames are
extracted.

10. Choose or create an IAM execution role. Make sure that this role has permission to access your
Amazon S3 locations for input and output data specified in steps 5 and 6.

11. Select Complete data setup.

Provide Video Frames

Use the following procedure to connect your sequences of video frames with Ground Truth for
video frame object detection and object tracking labeling jobs.

Make sure your video frames are stored in an Amazon S3 bucket in the same AWS Region that you
perform the automated data setup in. Each sequence of video frames should have a unique prefix.
For example, if you have two sequences stored in s3://DOC-EXAMPLE-BUCKET/video-frames/
sequences/, each should have a unique prefix like sequence1 and sequence2 and should both
be located directly under the /sequences/ prefix. In the example above, the locations of these
two sequences is: s3://DOC-EXAMPLE-BUCKET/video-frames/sequences/sequence1/ and
s3://DOC-EXAMPLE-BUCKET/video-frames/sequences/sequence2/.

Automatically connect your video frame in Amazon S3 with Ground Truth:

1. Navigate to the Create labeling job page in the Amazon SageMaker console: https://
console.aws.amazon.com/sagemaker/groundtruth.

Your input and output S3 buckets must be located in the same AWS Region that you create
your labeling job in. This link puts you in the North Virginia (us-east-1) AWS Region. If your
input data is in an Amazon S3 bucket in another Region, switch to that Region. To change your
AWS Region, on the navigation bar, choose the name of the currently displayed Region.

2. Select Create labeling job.

3. Enter a Job name.

Use Input and Output Data 1679

https://en.wikipedia.org/wiki/Frame_rate
https://console.aws.amazon.com/sagemaker/groundtruth
https://console.aws.amazon.com/sagemaker/groundtruth
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html#select-region

Amazon SageMaker Developer Guide

4. In the section Input data setup, select Automated data setup.

5. Enter an Amazon S3 URI for S3 location for input datasets.

This should be the Amazon S3 location where your sequences are stored. For example, if you
have two sequences stored in s3://DOC-EXAMPLE-BUCKET/video-frames/sequences/
sequence1/, s3://DOC-EXAMPLE-BUCKET/video-frames/sequences/sequence2/,
enter s3://DOC-EXAMPLE-BUCKET/video-frames/sequences/ here.

6. Specify your S3 location for output datasets. This is where your output data is stored. You
can choose to store your output data in the Same location as input dataset or Specify a new
location and entering the S3 URI of the location that you want to store your output data.

7. Choose Video frames for your Data type using the dropdown list.

8. Choose or create an IAM execution role. Make sure that this role has permission to access your
Amazon S3 locations for input and output data specified in steps 5 and 6.

9. Select Complete data setup.

These procedures will create an input manifest in the Amazon S3 location for input datasets that
you specified in step 5. If you are creating a labeling job using the SageMaker API or, AWS CLI,
or an AWS SDK, use the Amazon S3 URI for this input manifest file as input to the parameter
ManifestS3Uri.

Manual Input Data Setup

Choose the manual data setup option if you have created sequence files for each of your video
frame sequences, and a manifest file listing references to those sequences files.

Create a Video Frame Input Manifest File

Ground Truth uses the input manifest file to identify the location of your input dataset when
creating labeling tasks. For video frame object detection and object tracking labeling jobs, each
line in the input manifest file identifies the location of a video frame sequence file. Each sequence
file identifies the images included in a single sequence of video frames.

Use this page to learn how to create a video frame sequence file and an input manifest file for
video frame object tracking and object detection labeling jobs.

If you want Ground Truth to automatically generate your sequence files and input manifest file, see
Automated Video Frame Input Data Setup.

Use Input and Output Data 1680

Amazon SageMaker Developer Guide

Create a Video Frame Sequence Input Manifest

In the video frame sequence input manifest file, each line in the manifest is a JSON object, with a
"source-ref" key that references a sequence file. Each sequence file identifies the location of a
sequence of video frames. This is the manifest file formatting required for all video frame labeling
jobs.

The following example demonstrates the syntax used for an input manifest file:

{"source-ref": "s3://DOC-EXAMPLE-BUCKET/example-folder/seq1.json"}
{"source-ref": "s3://DOC-EXAMPLE-BUCKET/example-folder/seq2.json"}

Create a Video Frame Sequence File

The data for each sequence of video frames needs to be stored in a JSON data object. The
following is an example of the format you use for a sequence file. Information about each frame is
included as a JSON object and is listed in the frames list. The following JSON has been expanded
for readability.

{
 "seq-no": 1,
 "prefix": "s3://mybucket/prefix/video1/",
 "number-of-frames": 3,
 "frames":[
 {"frame-no": 1, "unix-timestamp": 1566861644, "frame": "frame0001.jpg" },
 {"frame-no": 2, "unix-timestamp": 1566861644, "frame": "frame0002.jpg" },
 {"frame-no": 3, "unix-timestamp": 1566861644, "frame": "frame0003.jpg" }
]
}

The following table provides details about the parameters shown in the this code example.

Parameter Required Accepted Values Description

seq-no Yes Integer The ordered number
of the sequence.

prefix Yes String

Accepted Values:

The Amazon S3
location where the

Use Input and Output Data 1681

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

s3://<bucket-n
ame> /<prefix>/

sequence files are
located.

The prefix must end
with a forward slash:
/.

number-of-
frames

Yes Integer The total number
of frames included
in the sequence file.
This number must
match the total
number of frames
listed in the frames
parameter in the next
row.

frames Yes List of JSON objects

Required:

frame-no, frame

Optional:

unix-timestamp

A list of frame data.
The length of the list
must equal number-
of-frames . In the
worker UI, frames in a
sequence are ordered
in UTF-8 binary
order. To learn more
about this ordering,
see Provide Video
Frames.

frame-no Yes Integer The frame order
number. This will
determine the order
of a frame in the
sequence.

Use Input and Output Data 1682

https://en.wikipedia.org/wiki/UTF-8

Amazon SageMaker Developer Guide

Parameter Required Accepted Values Description

unix-timestamp No Integer The unix timestamp
of a frame. The
number of seconds
since January 1st,
1970 until the UTC
time when the frame
was captured.

frame Yes String The name of a video
frame image file.

Output Data

The output from a labeling job is placed in the Amazon S3 location that you specified in the
console or in the call to the CreateLabelingJob operation. Output data appears in this location
when the workers have submitted one or more tasks, or when tasks expire. Note that it may take a
few minutes for output data to appear in Amazon S3 after the worker submits the task or the task
expires.

Each line in the output data file is identical to the manifest file with the addition of an attribute
and value for the label assigned to the input object. The attribute name for the value is defined in
the console or in the call to the CreateLabelingJob operation. You can't use -metadata in the
label attribute name. If you are running an image semantic segmentation, 3D point cloud semantic
segmentation, or 3D point cloud object tracking job, the label attribute must end with -ref. For
any other type of job, the attribute name can't end with -ref.

The output of the labeling job is the value of the key-value pair with the label. The label and the
value overwrites any existing JSON data in the input file with the new value.

For example, the following is the output from an image classification labeling job where the input
data files were stored in an Amazon S3 AWSDOC-EXAMPLE-BUCKET and the label attribute name
was defined as sport. In this example the JSON object is formatted for readability, in the actual
output file the JSON object is on a single line. For more information about the data format, see
JSON Lines.

{

Use Input and Output Data 1683

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
http://jsonlines.org/

Amazon SageMaker Developer Guide

 "source-ref": "s3://AWSDOC-EXAMPLE-BUCKET/image_example.png",
 "sport":0,
 "sport-metadata":
 {
 "class-name": "football",
 "confidence": 0.00,
 "type":"groundtruth/image-classification",
 "job-name": "identify-sport",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256"
 }
}

The value of the label can be any valid JSON. In this case the label's value is the index of the class
in the classification list. Other job types, such as bounding box, have more complex values.

Any key-value pair in the input manifest file other than the label attribute is unchanged in the
output file. You can use this to pass data to your application.

The output from a labeling job can be used as the input to another labeling job. You can use this
when you are chaining together labeling jobs. For example, you can send one labeling job to
determine the sport that is being played. Then you send another using the same data to determine
if the sport is being played indoors or outdoors. By using the output data from the first job as the
manifest for the second job, you can consolidate the results of the two jobs into one output file for
easier processing by your applications.

The output data file is written to the output location periodically while the job is in progress. These
intermediate files contain one line for each line in the manifest file. If an object is labeled, the label
is included. If the object hasn't been labeled, it is written to the intermediate output file identically
to the manifest file.

Output Directories

Ground Truth creates several directories in your Amazon S3 output path. These directories contain
the results of your labeling job and other artifacts of the job. The top-level directory for a labeling
job is given the same name as your labeling job; the output directories are placed beneath it. For
example, if you named your labeling job find-people, your output would be in the following
directories:

s3://AWSDOC-EXAMPLE-BUCKET/find-people/activelearning

Use Input and Output Data 1684

Amazon SageMaker Developer Guide

s3://AWSDOC-EXAMPLE-BUCKET/find-people/annotations
s3://AWSDOC-EXAMPLE-BUCKET/find-people/inference
s3://AWSDOC-EXAMPLE-BUCKET/find-people/manifests
s3://AWSDOC-EXAMPLE-BUCKET/find-people/training

Each directory contains the following output:

Active Learning Directory

The activelearning directory is only present when you are using automated data labeling. It
contains the input and output validation set for automated data labeling, and the input and output
folder for automatically labeled data.

Annotations Directory

The annotations directory contains all of the annotations made by the workforce. These are the
responses from individual workers that have not been consolidated into a single label for the data
object.

There are three subdirectories in the annotations directory.

• The first, worker-response, contains the responses from individual workers. This contains
a subdirectory for each iteration, which in turn contains a subdirectory for each data object in
that iteration. The worker response data for each data object is stored in a timestamped JSON
file that contains the answers submitted by each worker for that data object, and if you use
a private workforce, metadata about those workers. To learn more about this metadata, see
Worker Metadata.

• The second, consolidated-annotation, contains information required to consolidate the
annotations in the current batch into labels for your data objects.

• The third, intermediate, contains the output manifest for the current batch with any
completed labels. This file is updated as the label for each data object is completed.

Note

We recommend that you do not use files that are not mentioned in the documentation.

Use Input and Output Data 1685

Amazon SageMaker Developer Guide

Inference Directory

The inference directory is only present when you are using automated data labeling. This
directory contains the input and output files for the SageMaker batch transform used while
labeling data objects.

Manifest Directory

The manifest directory contains the output manifest from your labeling job. There is one
subdirectory in the manifest directory, output. The output directory contains the output
manifest file for your labeling job. The file is named output.manifest.

Training Directory

The training directory is only present when you are using automated data labeling. This
directory contains the input and output files used to train the automated data labeling model.

Confidence Score

When you have more than one worker annotate a single task, your label results from annotation
consolidation. Ground Truth calculates a confidence score for each label. A confidence score is a
number between 0 and 1 that indicates how confident Ground Truth is in the label. You can use the
confidence score to compare labeled data objects to each other, and to identify the least or most
confident labels.

You should not interpret the value of a confidence score as an absolute value, or compare
confidence scores across labeling jobs. For example, if all of the confidence scores are between
0.98 and 0.998, you should only compare the data objects with each other and not rely on the high
confidence scores.

You should not compare the confidence scores of human-labeled data objects and auto-labeled
data objects. The confidence scores for humans are calculated using the annotation consolidation
function for the task, while the confidence scores for automated labeling are calculated using
a model that incorporates object features. The two models generally have different scales and
average confidence.

For a bounding box labeling job, Ground Truth calculates a confidence score per box. You can
compare confidence scores within one image or across images for the same labeling type (human
or auto). You can't compare confidence scores across labeling jobs.

Use Input and Output Data 1686

Amazon SageMaker Developer Guide

If a single worker annotates a task (NumberOfHumanWorkersPerDataObject is set to 1 or in
the console, you enter 1 for Number of workers per dataset object), the confidence score is set to
0.00.

Worker Metadata

Ground Truth provides information that you can use to track individual workers in task output
data. The following data is located in the directories under the worker-response located in the
Annotations Directory:

• The acceptanceTime is the time that the worker accepted the task. The format of this date and
time stamp is YYYY-MM-DDTHH:MM:SS.mmmZ for the year (YYYY), month (MM), day (DD), hour
(HH), minute (MM), second (SS) and millisecond (mmm). The date and time are separated by a T.

• The submissionTime is the time that the worker submitted their annotations using the Submit
button. The format of this date and time stamp is YYYY-MM-DDTHH:MM:SS.mmmZ for the year
(YYYY), month (MM), day (DD), hour (HH), minute (MM), second (SS) and millisecond (mmm). The date
and time are separated by a T.

• timeSpentInSeconds reports the total time, in seconds, that a worker actively worked on that
task. This metric does not include time when a worker paused or took a break.

• The workerId is unique to each worker.

• If you use a private workforce, in workerMetadata, you see the following.

• The identityProviderType is the service used to manage the private workforce.

• The issuer is the Cognito user pool or OIDC Identity Provider (IdP) issuer associated with the
work team assigned to this human review task.

• A unique sub identifier refers to the worker. If you create a workforce using Amazon Cognito,
you can retrieve details about this worker (such as the name or user name) using this ID using
Amazon Cognito. To learn how, see Managing and Searching for User Accounts in Amazon
Cognito Developer Guide.

The following is an example of the output you may see if you use Amazon Cognito to create a
private workforce. This is identified in the identityProviderType.

"submissionTime": "2020-12-28T18:59:58.321Z",
"acceptanceTime": "2020-12-28T18:59:15.191Z",
"timeSpentInSeconds": 40.543,
"workerId": "a12b3cdefg4h5i67",
"workerMetadata": {

Use Input and Output Data 1687

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private.html
https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-manage-user-accounts.html#manage-user-accounts-searching-user-attributes
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/

Amazon SageMaker Developer Guide

 "identityData": {
 "identityProviderType": "Cognito",
 "issuer": "https://cognito-idp.aws-region.amazonaws.com/aws-region_123456789",
 "sub": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee"
 }
}

The following is an example of the workerMetadata you may see if you use your own OIDC IdP to
create a private workforce:

"workerMetadata": {
 "identityData": {
 "identityProviderType": "Oidc",
 "issuer": "https://example-oidc-ipd.com/adfs",
 "sub": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee"
 }
}

To learn more about using private workforces, see Use a Private Workforce.

Output Metadata

The output from each job contains metadata about the label assigned to data objects. These
elements are the same for all jobs with minor variations. The following example shows the
metadata elements:

 "confidence": 0.00,
 "type": "groundtruth/image-classification",
 "job-name": "identify-animal-species",
 "human-annotated": "yes",
 "creation-date": "2020-10-18T22:18:13.527256"

The elements have the following meaning:

• confidence – The confidence that Ground Truth has that the label is correct. For more
information, see Confidence Score.

• type – The type of classification job. For job types, see Built-in Task Types.

• job-name – The name assigned to the job when it was created.

• human-annotated – Whether the data object was labeled by a human or by automated data
labeling. For more information, see Automate Data Labeling.

Use Input and Output Data 1688

Amazon SageMaker Developer Guide

• creation-date – The date and time that the label was created.

Classification Job Output

The following are sample outputs (output manifest files) from an image classification job and a
text classification job. They include the label that Ground Truth assigned to the data object, the
value for the label, and metadata that describes the label.

In addition to the standard metadata elements, the metadata for a classification job includes the
text value of the label's class. For more information, see Image Classification - MXNet.

The red, italicized text in the examples below depends on labeling job specifications and output
data.

{
 "source-ref":"s3://AWSDOC-EXAMPLE-BUCKET/example_image.jpg",
 "species":"0",
 "species-metadata":
 {
 "class-name": "dog",
 "confidence": 0.00,
 "type": "groundtruth/image-classification",
 "job-name": "identify-animal-species",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256"
 }
}

{
 "source":"The food was delicious",
 "mood":"1",
 "mood-metadata":
 {
 "class-name": "positive",
 "confidence": 0.8,
 "type": "groundtruth/text-classification",
 "job-name": "label-sentiment",
 "human-annotated": "yes",
 "creation-date": "2020-10-18T22:18:13.527256"
 }
}

Use Input and Output Data 1689

Amazon SageMaker Developer Guide

Multi-label Classification Job Output

The following are example output manifest files from a multi-label image classification job and a
multi-label text classification job. They include the labels that Ground Truth assigned to the data
object (for example, the image or piece of text) and metadata that describes the labels the worker
saw when completing the labeling task.

The label attribute name parameter (for example, image-label-attribute-name) contains
an array of all of the labels selected by at least one of the workers who completed this task.
This array contains integer keys (for example, [1,0,8]) that correspond to the labels found in
class-map. In the multi-label image classification example, bicycle, person, and clothing
were selected by at least one of the workers who completed the labeling task for the image,
exampleimage.jpg.

The confidence-map shows the confidence score that Ground Truth assigned to each label
selected by a worker. To learn more about Ground Truth confidence scores, see Confidence Score.

The red, italicized text in the examples below depends on labeling job specifications and output
data.

The following is an example of a multi-label image classification output manifest file.

{
 "source-ref": "s3://AWSDOC-EXAMPLE-BUCKET/example_image.jpg",
 "image-label-attribute-name":[1,0,8],
 "image-label-attribute-name-metadata":
 {
 "job-name":"labeling-job/image-label-attribute-name",
 "class-map":
 {
 "1":"bicycle","0":"person","8":"clothing"
 },
 "human-annotated":"yes",
 "creation-date":"2020-02-27T21:36:25.000201",
 "confidence-map":
 {
 "1":0.95,"0":0.77,"8":0.2
 },
 "type":"groundtruth/image-classification-multilabel"
 }
}

Use Input and Output Data 1690

Amazon SageMaker Developer Guide

The following is an example of a multi-label text classification output manifest file. In this example,
approving, sad and critical were selected by at least one of the workers who completed the
labeling task for the object exampletext.txt found in AWSDOC-EXAMPLE-BUCKET.

{
 "source-ref": "AWSDOC-EXAMPLE-BUCKET/text_file.txt",
 "text-label-attribute-name":[1,0,4],
 "text-label-attribute-name-metadata":
 {
 "job-name":"labeling-job/text-label-attribute-name",
 "class-map":
 {
 "1":"approving","0":"sad","4":"critical"
 },
 "human-annotated":"yes",
 "creation-date":"2020-02-20T21:36:25.000201",
 "confidence-map":
 {
 "1":0.95,"0":0.77,"4":0.2
 },
 "type":"groundtruth/text-classification-multilabel"
 }
}

Bounding Box Job Output

The following is sample output (output manifest file) from a bounding box job. For this task, three
bounding boxes are returned. The label value contains information about the size of the image,
and the location of the bounding boxes.

The class_id element is the index of the box's class in the list of available classes for the task.
The class-map metadata element contains the text of the class.

The metadata has a separate confidence score for each bounding box. The metadata also includes
the class-map element that maps the class_id to the text value of the class. For more
information, see Object Detection - MXNet.

The red, italicized text in the examples below depends on labeling job specifications and output
data.

{
 "source-ref": "s3://AWSDOC-EXAMPLE-BUCKET/example_image.png",

Use Input and Output Data 1691

Amazon SageMaker Developer Guide

 "bounding-box-attribute-name":
 {
 "image_size": [{ "width": 500, "height": 400, "depth":3}],
 "annotations":
 [
 {"class_id": 0, "left": 111, "top": 134,
 "width": 61, "height": 128},
 {"class_id": 5, "left": 161, "top": 250,
 "width": 30, "height": 30},
 {"class_id": 5, "left": 20, "top": 20,
 "width": 30, "height": 30}
]
 },
 "bounding-box-attribute-name-metadata":
 {
 "objects":
 [
 {"confidence": 0.8},
 {"confidence": 0.9},
 {"confidence": 0.9}
],
 "class-map":
 {
 "0": "dog",
 "5": "bone"
 },
 "type": "groundtruth/object-detection",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "job-name": "identify-dogs-and-toys"
 }
 }

The output of a bounding box adjustment job looks like the following JSON. Note that the original
JSON is kept intact and two new jobs are listed, each with “adjust-” prepended to the original
attribute’s name.

{
 "source-ref": "S3 bucket location",
 "bounding-box-attribute-name":
 {
 "image_size": [{ "width": 500, "height": 400, "depth":3}],
 "annotations":

Use Input and Output Data 1692

Amazon SageMaker Developer Guide

 [
 {"class_id": 0, "left": 111, "top": 134,
 "width": 61, "height": 128},
 {"class_id": 5, "left": 161, "top": 250,
 "width": 30, "height": 30},
 {"class_id": 5, "left": 20, "top": 20,
 "width": 30, "height": 30}
]
 },
 "bounding-box-attribute-name-metadata":
 {
 "objects":
 [
 {"confidence": 0.8},
 {"confidence": 0.9},
 {"confidence": 0.9}
],
 "class-map":
 {
 "0": "dog",
 "5": "bone"
 },
 "type": "groundtruth/object-detection",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "job-name": "identify-dogs-and-toys"
 },
 "adjusted-bounding-box":
 {
 "image_size": [{ "width": 500, "height": 400, "depth":3}],
 "annotations":
 [
 {"class_id": 0, "left": 110, "top": 135,
 "width": 61, "height": 128},
 {"class_id": 5, "left": 161, "top": 250,
 "width": 30, "height": 30},
 {"class_id": 5, "left": 10, "top": 10,
 "width": 30, "height": 30}
]
 },
 "adjusted-bounding-box-metadata":
 {
 "objects":
 [

Use Input and Output Data 1693

Amazon SageMaker Developer Guide

 {"confidence": 0.8},
 {"confidence": 0.9},
 {"confidence": 0.9}
],
 "class-map":
 {
 "0": "dog",
 "5": "bone"
 },
 "type": "groundtruth/object-detection",
 "human-annotated": "yes",
 "creation-date": "2018-11-20T22:18:13.527256",
 "job-name": "adjust-bounding-boxes-on-dogs-and-toys",
 "adjustment-status": "adjusted"
 }
}

In this output, the job's type doesn't change, but an adjustment-status field is added. This
field has the value of adjusted or unadjusted. If multiple workers have reviewed the object and
at least one adjusted the label, the status is adjusted.

Named Entity Recognition

The following is an example output manifest file from a named entity recognition (NER) labeling
task. For this task, seven entities are returned.

In the output manifest, the JSON object, annotations, includes a list of the labels (label
categories) that you provided.

Worker responses are in a list named entities. Each entity in this list is a JSON object that
contains a label value that matches one in the labels list, an integer startOffset value for
labeled span's starting Unicode offset, and an integer endOffset value for the ending Unicode
offset.

The metadata has a separate confidence score for each entity. If a single worker labeled each data
object, the confidence value for each entity will be zero.

The red, italicized text in the examples below depends on labeling job inputs and worker responses.

{
 "source": "Amazon SageMaker is a cloud machine-learning platform that was launched
 in November 2017. SageMaker enables developers to create, train, and deploy machine-

Use Input and Output Data 1694

Amazon SageMaker Developer Guide

learning (ML) models in the cloud. SageMaker also enables developers to deploy ML
 models on embedded systems and edge-devices",
 "ner-labeling-job-attribute-name": {
 "annotations": {
 "labels": [
 {
 "label": "Date",
 "shortDisplayName": "dt"
 },
 {
 "label": "Verb",
 "shortDisplayName": "vb"
 },
 {
 "label": "Thing",
 "shortDisplayName": "tng"
 },
 {
 "label": "People",
 "shortDisplayName": "ppl"
 }
],
 "entities": [
 {
 "label": "Thing",
 "startOffset": 22,
 "endOffset": 53
 },
 {
 "label": "Thing",
 "startOffset": 269,
 "endOffset": 281
 },
 {
 "label": "Verb",
 "startOffset": 63,
 "endOffset": 71
 },
 {
 "label": "Verb",
 "startOffset": 228,
 "endOffset": 234
 },
 {

Use Input and Output Data 1695

Amazon SageMaker Developer Guide

 "label": "Date",
 "startOffset": 75,
 "endOffset": 88
 },
 {
 "label": "People",
 "startOffset": 108,
 "endOffset": 118
 },
 {
 "label": "People",
 "startOffset": 214,
 "endOffset": 224
 }
]
 }
 },
 "ner-labeling-job-attribute-name-metadata": {
 "job-name": "labeling-job/example-ner-labeling-job",
 "type": "groundtruth/text-span",
 "creation-date": "2020-10-29T00:40:39.398470",
 "human-annotated": "yes",
 "entities": [
 {
 "confidence": 0
 },
 {
 "confidence": 0
 },
 {
 "confidence": 0
 },
 {
 "confidence": 0
 },
 {
 "confidence": 0
 },
 {
 "confidence": 0
 },
 {
 "confidence": 0
 }

Use Input and Output Data 1696

Amazon SageMaker Developer Guide

]
 }
}

Label Verification Job Output

The output (output manifest file) of a bounding box verification job looks different than the output
of a bounding box annotation job. That's because the workers have a different type of task. They're
not labeling objects, but evaluating the accuracy of prior labeling, making a judgment, and then
providing that judgment and perhaps some comments.

If human workers are verifying or adjusting prior bounding box labels, the output of a verification
job would look like the following JSON. The red, italicized text in the examples below depends on
labeling job specifications and output data.

{
 "source-ref":"s3://AWSDOC-EXAMPLE-BUCKET/image_example.png",
 "bounding-box-attribute-name":
 {
 "image_size": [{ "width": 500, "height": 400, "depth":3}],
 "annotations":
 [
 {"class_id": 0, "left": 111, "top": 134,
 "width": 61, "height": 128},
 {"class_id": 5, "left": 161, "top": 250,
 "width": 30, "height": 30},
 {"class_id": 5, "left": 20, "top": 20,
 "width": 30, "height": 30}
]
 },
 "bounding-box-attribute-name-metadata":
 {
 "objects":
 [
 {"confidence": 0.8},
 {"confidence": 0.9},
 {"confidence": 0.9}
],
 "class-map":
 {
 "0": "dog",
 "5": "bone"
 },

Use Input and Output Data 1697

Amazon SageMaker Developer Guide

 "type": "groundtruth/object-detection",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "job-name": "identify-dogs-and-toys"
 },
 "verify-bounding-box-attribute-name":"1",
 "verify-bounding-box-attribute-name-metadata":
 {
 "class-name": "bad",
 "confidence": 0.93,
 "type": "groundtruth/label-verification",
 "job-name": "verify-bounding-boxes",
 "human-annotated": "yes",
 "creation-date": "2018-11-20T22:18:13.527256",
 "worker-feedback": [
 {"comment": "The bounding box on the bird is too wide on the right side."},
 {"comment": "The bird on the upper right is not labeled."}
]
 }
}

Although the type on the original bounding box output was groundtruth/object-detection,
the new type is groundtruth/label-verification. Also note that the worker-feedback
array provides worker comments. If the worker doesn't provide comments, the empty fields are
excluded during consolidation.

Semantic Segmentation Job Output

The following is the output manifest file from a semantic segmentation labeling job. The value of
the label for this job is a reference to a PNG file in an Amazon S3 bucket.

In addition to the standard elements, the metadata for the label includes a color map that defines
which color is used to label the image, the class name associated with the color, and the confidence
score for each color. For more information, see Semantic Segmentation Algorithm.

The red, italicized text in the examples below depends on labeling job specifications and output
data.

{
 "source-ref": "s3://AWSDOC-EXAMPLE-BUCKET/example_city_image.png",
 "city-streets-ref": "S3 bucket location",
 "city-streets-ref-metadata": {
 "internal-color-map": {

Use Input and Output Data 1698

Amazon SageMaker Developer Guide

 "0": {
 "class-name": "BACKGROUND",
 "confidence": 0.9,
 "hex-color": "#ffffff"
 },
 "1": {
 "class-name": "buildings",
 "confidence": 0.9,
 "hex-color": "#2acf59"
 },
 "2": {
 "class-name": "road",
 "confidence": 0.9,
 "hex-color": "#f28333"
 }
 },
 "type": "groundtruth/semantic-segmentation",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "job-name": "label-city-streets",
 },
 "verify-city-streets-ref":"1",
 "verify-city-streets-ref-metadata":
 {
 "class-name": "bad",
 "confidence": 0.93,
 "type": "groundtruth/label-verification",
 "job-name": "verify-city-streets",
 "human-annotated": "yes",
 "creation-date": "2018-11-20T22:18:13.527256",
 "worker-feedback": [
 {"comment": "The mask on the leftmost building is assigned the wrong side
 of the road."},
 {"comment": "The curb of the road is not labeled but the instructions say
 otherwise."}
]
 }
}

Confidence is scored on a per-image basis. Confidence scores are the same across all classes within
an image.

The output of a semantic segmentation adjustment job looks similar to the following JSON.

Use Input and Output Data 1699

Amazon SageMaker Developer Guide

{
 "source-ref": "s3://AWSDOC-EXAMPLE-BUCKET/example_city_image.png",
 "city-streets-ref": "S3 bucket location",
 "city-streets-ref-metadata": {
 "internal-color-map": {
 "0": {
 "class-name": "BACKGROUND",
 "confidence": 0.9,
 "hex-color": "#ffffff"
 },
 "1": {
 "class-name": "buildings",
 "confidence": 0.9,
 "hex-color": "#2acf59"
 },
 "2": {
 "class-name": "road",
 "confidence": 0.9,
 "hex-color": "#f28333"
 }
 },
 "type": "groundtruth/semantic-segmentation",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "job-name": "label-city-streets",
 },
 "adjusted-city-streets-ref": "s3://AWSDOC-EXAMPLE-BUCKET/example_city_image.png",
 "adjusted-city-streets-ref-metadata": {
 "internal-color-map": {
 "0": {
 "class-name": "BACKGROUND",
 "confidence": 0.9,
 "hex-color": "#ffffff"
 },
 "1": {
 "class-name": "buildings",
 "confidence": 0.9,
 "hex-color": "#2acf59"
 },
 "2": {
 "class-name": "road",
 "confidence": 0.9,
 "hex-color": "#f28333"

Use Input and Output Data 1700

Amazon SageMaker Developer Guide

 }
 },
 "type": "groundtruth/semantic-segmentation",
 "human-annotated": "yes",
 "creation-date": "2018-11-20T22:18:13.527256",
 "job-name": "adjust-label-city-streets",
 }
}

Video Frame Object Detection Output

The following is the output manifest file from a video frame object detection labeling job. The
red, italicized text in the examples below depends on labeling job specifications and
output data.

In addition to the standard elements, the metadata includes a class map that lists each class
that has at least one label in the sequence. The metadata also includes job-name which is the
name you assigned to the labeling job. For adjustment tasks, If one or more bounding boxes were
modified, there is an adjustment-status parameter in the metadata for audit workflows that is
set to adjusted.

{
 "source-ref": "s3://DOC-EXAMPLE-BUCKET/example-path/input-manifest.json",
 "CarObjectDetection-ref": "s3://AWSDOC-EXAMPLE-BUCKET/output/labeling-job-name/
annotations/consolidated-annotation/output/0/SeqLabel.json",
 "CarObjectDetection-ref-metadata": {
 "class-map": {
 "0": "car",
 "1": "bus"
 },
 "job-name": "labeling-job/labeling-job-name",
 "human-annotated": "yes",
 "creation-date": "2021-09-29T05:50:35.566000",
 "type": "groundtruth/video-object-detection"
 }
}

Ground Truth creates one output sequence file for each sequence of video frames that was labeled.
Each output sequence file contains the following:

Use Input and Output Data 1701

Amazon SageMaker Developer Guide

• All annotations for all frames in a sequence in the detection-annotations list of JSON
objects.

• For each frame that was annotated by a worker, the frame file name (frame), number (frame-
no), a list of JSON objects containing annotations (annotations), and if applicable, frame-
attributes. The name of this list is defined by the task type you use: polylines, polygons,
keypoints, and for bounding boxes, annotations.

Each JSON object contains information about a single annotation and associated label. The
following table outlines the parameters you'll see for each video frame task type.

Task Type Parameters

Bounding Box Box dimensions: height and width

Box top, left corner pixel location: top and
left

Keypoint Keypoint vertices: { "x": int, "y":
int }

Polygon A list of polygon vertices: vertices
Polygon vertices: { "x": int, "y":
int }

A polygon is a closed shape and so the first
point will also represent the last point.

Polyline A list of polyline vertices: vertices
Polyline vertices: { "x": int, "y":
int }

In addition to task type specific values, you will see the following in each JSON object:

• Values of any label-category-attributes that were specified for that label.

• The class-id of the box. Use the class-map in the output manifest file to see which label
category this ID maps to.

Use Input and Output Data 1702

Amazon SageMaker Developer Guide

The following is an example of a SeqLabel.json file from a bounding box video frame object
detection labeling job. This file will be located under s3://your-output-bucket/output-
prefix/annotations/consolidated-annotation/output/annotation-number/

{
 "detection-annotations": [
 {
 "annotations": [
 {
 "height": 41,
 "width": 53,
 "top": 152,
 "left": 339,
 "class-id": "1",
 "label-category-attributes": {
 "occluded": "no",
 "size": "medium"
 }
 },
 {
 "height": 24,
 "width": 37,
 "top": 148,
 "left": 183,
 "class-id": "0",
 "label-category-attributes": {
 "occluded": "no",
 }
 }
],
 "frame-no": 0,
 "frame": "frame_0000.jpeg",
 "frame-attributes": {name: value, name: value}
 },
 {
 "annotations": [
 {
 "height": 41,
 "width": 53,
 "top": 152,
 "left": 341,
 "class-id": "0",
 "label-category-attributes": {}

Use Input and Output Data 1703

Amazon SageMaker Developer Guide

 },
 {
 "height": 24,
 "width": 37,
 "top": 141,
 "left": 177,
 "class-id": "0",
 "label-category-attributes": {
 "occluded": "no",
 }
 }
],
 "frame-no": 1,
 "frame": "frame_0001.jpeg",
 "frame-attributes": {name: value, name: value}
 }
]
}

Video Frame Object Tracking Output

The following is the output manifest file from a video frame object tracking labeling job. The red,
italicized text in the examples below depends on labeling job specifications and output data.

In addition to the standard elements, the metadata includes a class map that lists each class that
has at least one label in the sequence of frames. The metadata also includes job-name which is
the name you assigned to the labeling job. For adjustment tasks, If one or more bounding boxes
were modified, there is an adjustment-status parameter in the metadata for audit workflows
that is set to adjusted.

{
 "source-ref": "s3://DOC-EXAMPLE-BUCKET/example-path/input-manifest.json",
 "CarObjectTracking-ref": "s3://AWSDOC-EXAMPLE-BUCKET/output/labeling-job-name/
annotations/consolidated-annotation/output/0/SeqLabel.json",
 "CarObjectTracking-ref-metadata": {
 "class-map": {
 "0": "car",
 "1": "bus"
 },
 "job-name": "labeling-job/labeling-job-name",
 "human-annotated": "yes",
 "creation-date": "2021-09-29T05:50:35.566000",
 "type": "groundtruth/video-object-tracking"

Use Input and Output Data 1704

Amazon SageMaker Developer Guide

 }
 }

Ground Truth creates one output sequence file for each sequence of video frames that was labeled.
Each output sequence file contains the following:

• All annotations for all frames in a sequence in the tracking-annotations list of JSON
objects.

• For each frame that was annotated by a worker, the frame (frame), number (frame-no), a list
of JSON objects containing annotations (annotations), and if applicable, frame attributes
(frame-attributes). The name of this list is defined by the task type you use: polylines,
polygons, keypoints, and for bounding boxes, annotations.

Each JSON object contains information about a single annotation and associated label. The
following table outlines the parameters you'll see for each video frame task type.

Task Type Parameters

Bounding Box Box dimensions: height and width

Box top, left corner pixel location: top and
left

Keypoint Keypoint vertices: { "x": int, "y":
int }

Polygon A list of polygon vertices: vertices
Polygon vertices: { "x": int, "y":
int }

A polygon is a closed shape and so the first
point will also represent the last point.

Polyline A list of polyline vertices: vertices
Polyline vertices: { "x": int, "y":
int }

In addition to task type specific values, you will see the following in each JSON object:

Use Input and Output Data 1705

Amazon SageMaker Developer Guide

• Values of any label-category-attributes that were specified for that label.

• The class-id of the box. Use the class-map in the output manifest file to see which label
category this ID maps to.

• An object-id which identifies an instance of a label. This ID will be the same across frames
if a worker identified the same instance of an object in multiple frames. For example, if a car
appeared in multiple frames, all bounding boxes uses to identify that car would have the same
object-id.

• The object-name which is the instance ID of that annotation.

The following is an example of a SeqLabel.json file from a bounding box video frame object
tracking labeling job. This file will be located under s3://your-output-bucket/output-
prefix/annotations/consolidated-annotation/output/annotation-number/

{
 "tracking-annotations": [
 {
 "annotations": [
 {
 "height": 36,
 "width": 46,
 "top": 178,
 "left": 315,
 "class-id": "0",
 "label-category-attributes": {
 "occluded": "no"
 },
 "object-id": "480dc450-c0ca-11ea-961f-a9b1c5c97972",
 "object-name": "car:1"
 }
],
 "frame-no": 0,
 "frame": "frame_0001.jpeg",
 "frame-attributes": {}
 },
 {
 "annotations": [
 {
 "height": 30,
 "width": 47,
 "top": 163,

Use Input and Output Data 1706

Amazon SageMaker Developer Guide

 "left": 344,
 "class-id": "1",
 "label-category-attributes": {
 "occluded": "no",
 "size": "medium"
 },
 "object-id": "98f2b0b0-c0ca-11ea-961f-a9b1c5c97972",
 "object-name": "bus:1"
 },
 {
 "height": 28,
 "width": 33,
 "top": 150,
 "left": 192,
 "class-id": "0",
 "label-category-attributes": {
 "occluded": "partially"
 },
 "object-id": "480dc450-c0ca-11ea-961f-a9b1c5c97972",
 "object-name": "car:1"
 }
],
 "frame-no": 1,
 "frame": "frame_0002.jpeg",
 "frame-attributes": {name: value, name: value}
 }
]
}

3D Point Cloud Semantic Segmentation Output

The following is the output manifest file from a 3D point cloud semantic segmentation labeling
job.

In addition to the standard elements, the metadata for the label includes a color map that defines
which color is used to label the image, the class name associated with the color, and the confidence
score for each color. Additionally, there is an adjustment-status parameter in the metadata for
audit workflows that is set to adjusted if the color mask is modified. If you added one or more
frameAttributes to your label category configuration file, worker responses for frame attributes
are in the JSON object, dataset-object-attributes.

Use Input and Output Data 1707

Amazon SageMaker Developer Guide

The your-label-attribute-ref parameter contains the location of a compressed file with
a .zlib extension. When you uncompress this file, it contains an array. Each index in the array
corresponds to the index of an annotated point in the input point cloud. The value of the array at a
given index gives the class of the point at the same index in the point cloud, based on the semantic
color map found in the color-map parameter of the metadata.

You can use Python code similar to the following to decompress a .zlib file:

import zlib
from array import array

read the label file
compressed_binary_file = open(zlib_file_path/file.zlib, 'rb').read()

uncompress the label file
binary_content = zlib.decompress(compressed_binary_file)

load labels to an array
my_int_array_data = array('B', binary_content);

print(my_int_array_data)

The code block above will produce an output similar to the following. Each element of the
printed array contains the class of a point at the that index in the point cloud. For example,
my_int_array_data[0] = 1 means point[0] in the input point cloud has a class 1. In the
following output manifest file example, class 0 corresponds with "Background", 1 with Car, and
2 with Pedestrian.

>> array('B', [1,
 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

The following is an example of a semantic segmentation 3D point cloud labeling job output
manifest file. The red, italicized text in the examples below depends on labeling job specifications
and output data.

{
 "source-ref": "s3://AWSDOC-EXAMPLE-BUCKET/examplefolder/frame1.bin",
 "source-ref-metadata":{
 "format": "binary/xyzi",
 "unix-timestamp": 1566861644.759115,
 "ego-vehicle-pose":{...},

Use Input and Output Data 1708

Amazon SageMaker Developer Guide

 "prefix": "s3://AWSDOC-EXAMPLE-BUCKET/lidar_singleframe_dataset/prefix",
 "images": [{...}]
 },
 "lidar-ss-label-attribute-ref": "s3://your-output-bucket/labeling-job-name/
annotations/consolidated-annotation/output/dataset-object-id/filename.zlib",
 "lidar-ss-label-attribute-ref-metadata": {
 'color-map': {
 "0": {
 "class-name": "Background",
 "hex-color": "#ffffff",
 "confidence": 0.00
 },
 "1": {
 "class-name": "Car",
 "hex-color": "#2ca02c",
 "confidence": 0.00
 },
 "2": {
 "class-name": "Pedestrian",
 "hex-color": "#1f77b4",
 "confidence": 0.00
 },
 "3": {
 "class-name": "Tree",
 "hex-color": "#ff7f0e",
 "confidence": 0.00
 }
 },
 'type': 'groundtruth/point_cloud_single_frame_semantic_segmentation',
 'human-annotated': 'yes',
 'creation-date': '2019-11-12T01:18:14.271944',
 'job-name': 'labeling-job-name',
 //only present for adjustment audit workflow
 "adjustment-status": "adjusted", // "adjusted" means the label was adjusted
 "dataset-object-attributes": {name: value, name: value}
 }
}

3D Point Cloud Object Detection Output

The following is sample output from a 3D point cloud objected detection job. For this task type,
the data about 3D cuboids is returned in the 3d-bounding-box parameter, in a list named
annotations. In this list, each 3D cuboid is described using the following information.

Use Input and Output Data 1709

Amazon SageMaker Developer Guide

• Each class, or label category, that you specify in your input manifest is associated with a class-
id. Use the class-map to identify the class associated with each class ID.

• These classes are used to give each 3D cuboid an object-name in the format
<class>:<integer> where integer is a unique number to identify that cuboid in the frame.

• center-x, center-y, and center-z are the coordinates of the center of the cuboid, in the
same coordinate system as the 3D point cloud input data used in your labeling job.

• length, width, and height describe the dimensions of the cuboid.

• yaw is used to describe the orientation (heading) of the cuboid in radians.

Note

yaw is now in the right-handed Cartesian system. Since this feature was added on
September 02, 2022 19:02:17 UTC, you can convert the yaw measurement in the output
data prior to that using the following (all units are in radians):

old_yaw_in_output = pi - yaw

• In our definition, +x is to the right, +y is to the forward, and +z is up from the ground plane.
The rotation order is x - y - z. The roll, pitch and yaw are represented in the right-handed
Cartesian system. In 3D space, roll is along the x-axis, pitch is along the y-axis and yaw is
along the z-axis. All three are counterclockwise.

• If you included label attributes in your input manifest file for a given class, a label-category-
attributes parameter is included for all cuboids for which workers selected label attributes.

If one or more cuboids were modified, there is an adjustment-status parameter in
the metadata for audit workflows that is set to adjusted. If you added one or more
frameAttributes to your label category configuration file, worker responses for frame attributes
are in the JSON object, dataset-object-attributes.

The red, italicized text in the examples below depends on labeling job specifications and
output data. The ellipses (...) denote a continuation of that list, where additional objects with the
same format as the proceeding object can appear.

{
 "source-ref": "s3://AWSDOC-EXAMPLE-BUCKET/examplefolder/frame1.txt",
 "source-ref-metadata":{

Use Input and Output Data 1710

Amazon SageMaker Developer Guide

 "format": "text/xyzi",
 "unix-timestamp": 1566861644.759115,
 "prefix": "s3://AWSDOC-EXAMPLE-BUCKET/lidar_singleframe_dataset/prefix",
 "ego-vehicle-pose": {
 "heading": {
 "qx": -0.02111296123795955,
 "qy": -0.006495469416730261,
 "qz": -0.008024565904865688,
 "qw": 0.9997181192298087
 },
 "position": {
 "x": -2.7161461413869947,
 "y": 116.25822288149078,
 "z": 1.8348751887989483
 }
 },
 "images": [
 {
 "fx": 847.7962624528487,
 "fy": 850.0340893791985,
 "cx": 576.2129134707038,
 "cy": 317.2423573573745,
 "k1": 0,
 "k2": 0,
 "k3": 0,
 "k4": 0,
 "p1": 0,
 "p2": 0,
 "skew": 0,
 "unix-timestamp": 1566861644.759115,
 "image-path": "images/frame_0_camera_0.jpg",
 "position": {
 "x": -2.2722515189268138,
 "y": 116.86003310568965,
 "z": 1.454614668542299
 },
 "heading": {
 "qx": 0.7594754093069037,
 "qy": 0.02181790885672969,
 "qz": -0.02461725233103356,
 "qw": -0.6496916273040025
 },
 "camera_model": "pinhole"
 }

Use Input and Output Data 1711

Amazon SageMaker Developer Guide

]
 },
 "3d-bounding-box":
 {
 "annotations": [
 {
 "label-category-attributes": {
 "Occlusion": "Partial",
 "Type": "Sedan"
 },
 "object-name": "Car:1",
 "class-id": 0,
 "center-x": -2.616382013657516,
 "center-y": 125.04149850484193,
 "center-z": 0.311272296465834,
 "length": 2.993000265181146,
 "width": 1.8355260519692056,
 "height": 1.3233490884304047,
 "roll": 0,
 "pitch": 0,
 "yaw": 1.6479308313703527
 },
 {
 "label-category-attributes": {
 "Occlusion": "Partial",
 "Type": "Sedan"
 },
 "object-name": "Car:2",
 "class-id": 0,
 "center-x": -5.188984560617168,
 "center-y": 99.7954483288783,
 "center-z": 0.2226435567445657,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 1.6243170732068055
 }
]
 },
 "3d-bounding-box-metadata":
 {
 "objects": [],

Use Input and Output Data 1712

Amazon SageMaker Developer Guide

 "class_map":
 {
 "0": "Car",
 },
 "type": "groundtruth/point_cloud_object_detection",
 "human-annotated": "yes",
 "creation-date": "2018-10-18T22:18:13.527256",
 "job-name": "identify-3d-objects",
 "adjustment-status": "adjusted",
 "dataset-object-attributes": {name: value, name: value}
 }
}

3D Point Cloud Object Tracking Output

The following is an example of an output manifest file from a 3D point cloud object tracking
labeling job. The red, italicized text in the examples below depends on labeling job
specifications and output data. The ellipses (...) denote a continuation of that list, where
additional objects with the same format as the proceeding object can appear.

In addition to the standard elements, the metadata includes a class map that lists each class
that has at least one label in the sequence. If one or more cuboids were modified, there is an
adjustment-status parameter in the metadata for audit workflows that is set to adjusted.

{
 "source-ref": "s3://AWSDOC-EXAMPLE-BUCKET/myfolder/seq1.json",
 "lidar-label-attribute-ref": "s3://<CustomerOutputLocation>/<labelingJobName>/
annotations/consolidated-annotation/output/<datasetObjectId>/SeqLabel.json",
 "lidar-label-attribute-ref-metadata": {
 "objects":
 [
 {
 "frame-no": 300,
 "confidence": []
 },
 {
 "frame-no": 301,
 "confidence": []
 },
 ...
],
 'class-map': {'0': 'Car', '1': 'Person'},
 'type': 'groundtruth/point_cloud_object_tracking',

Use Input and Output Data 1713

Amazon SageMaker Developer Guide

 'human-annotated': 'yes',
 'creation-date': '2019-11-12T01:18:14.271944',
 'job-name': 'identify-3d-objects',
 "adjustment-status": "adjusted"
 }
}

In the above example, the cuboid data for each frame in seq1.json is in SeqLabel.json
in the Amazon S3 location, s3://<customerOutputLocation>/<labelingJobName>/
annotations/consolidated-annotation/output/<datasetObjectId>/SeqLabel.json.
The following is an example of this label sequence file.

For each frame in the sequence, you see the frame-number, frame-name, if applicable, frame-
attributes, and a list of annotations. This list contains 3D cubiods that were drawn for that
frame. Each annotation includes the following information:

• An object-name in the format <class>:<integer> where class identifies the label
category and integer is a unique ID across the dataset.

• When workers draw a cuboid, it is associated with a unique object-id which is associated with
all cuboids that identify the same object across multiple frames.

• Each class, or label category, that you specified in your input manifest is associated with a
class-id. Use the class-map to identify the class associated with each class ID.

• center-x, center-y, and center-z are the coordinates of the center of the cuboid, in the
same coordinate system as the 3D point cloud input data used in your labeling job.

• length, width, and height describe the dimensions of the cuboid.

• yaw is used to describe the orientation (heading) of the cuboid in radians.

Note

yaw is now in the right-handed Cartesian system. Since this feature was added on
September 02, 2022 19:02:17 UTC, you can convert the yaw measurement in the output
data prior to that using the following (all units are in radians):

old_yaw_in_output = pi - yaw

• In our definition, +x is to the right, +y is to the forward, and +z is up from the ground plane.
The rotation order is x - y - z. The roll, pitch and yaw are represented in the right-handed

Use Input and Output Data 1714

Amazon SageMaker Developer Guide

Cartesian system. In 3D space, roll is along the x-axis, pitch is along the y-axis and yaw is
along the z-axis. All three are counterclockwise.

• If you included label attributes in your input manifest file for a given class, a label-category-
attributes parameter is included for all cuboids for which workers selected label attributes.

{
 "tracking-annotations": [
 {
 "frame-number": 0,
 "frame-name": "0.txt.pcd",
 "frame-attributes": {name: value, name: value},
 "annotations": [
 {
 "label-category-attributes": {},
 "object-name": "Car:4",
 "class-id": 0,
 "center-x": -2.2906369208300674,
 "center-y": 103.73924823843463,
 "center-z": 0.37634114027023313,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 1.5827222214406014,
 "object-id": "ae5dc770-a782-11ea-b57d-67c51a0561a1"
 },
 {
 "label-category-attributes": {
 "Occlusion": "Partial",
 "Type": "Sedan"
 },
 "object-name": "Car:1",
 "class-id": 0,
 "center-x": -2.6451293634707413,
 "center-y": 124.9534455706848,
 "center-z": 0.5020834081743839,
 "length": 4,
 "width": 2,
 "height": 2.080488827301309,
 "roll": 0,
 "pitch": 0,

Use Input and Output Data 1715

Amazon SageMaker Developer Guide

 "yaw": -1.5963335581398077,
 "object-id": "06efb020-a782-11ea-b57d-67c51a0561a1"
 },
 {
 "label-category-attributes": {
 "Occlusion": "Partial",
 "Type": "Sedan"
 },
 "object-name": "Car:2",
 "class-id": 0,
 "center-x": -5.205611313118477,
 "center-y": 99.91731932137061,
 "center-z": 0.22917217081212138,
 "length": 3.8747142207671956,
 "width": 1.9999999999999918,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 1.5672228760316775,
 "object-id": "26fad020-a782-11ea-b57d-67c51a0561a1"
 }
]
 },
 {
 "frame-number": 1,
 "frame-name": "1.txt.pcd",
 "frame-attributes": {},
 "annotations": [
 {
 "label-category-attributes": {},
 "object-name": "Car:4",
 "class-id": 0,
 "center-x": -2.2906369208300674,
 "center-y": 103.73924823843463,
 "center-z": 0.37634114027023313,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 1.5827222214406014,
 "object-id": "ae5dc770-a782-11ea-b57d-67c51a0561a1"
 },
 {

Use Input and Output Data 1716

Amazon SageMaker Developer Guide

 "label-category-attributes": {
 "Occlusion": "Partial",
 "Type": "Sedan"
 },
 "object-name": "Car:1",
 "class-id": 0,
 "center-x": -2.6451293634707413,
 "center-y": 124.9534455706848,
 "center-z": 0.5020834081743839,
 "length": 4,
 "width": 2,
 "height": 2.080488827301309,
 "roll": 0,
 "pitch": 0,
 "yaw": -1.5963335581398077,
 "object-id": "06efb020-a782-11ea-b57d-67c51a0561a1"
 },
 {
 "label-category-attributes": {
 "Occlusion": "Partial",
 "Type": "Sedan"
 },
 "object-name": "Car:2",
 "class-id": 0,
 "center-x": -5.221311072916759,
 "center-y": 100.4639841045424,
 "center-z": 0.22917217081212138,
 "length": 3.8747142207671956,
 "width": 1.9999999999999918,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 1.5672228760316775,
 "object-id": "26fad020-a782-11ea-b57d-67c51a0561a1"
 }
]
 }
]
}

Use Input and Output Data 1717

Amazon SageMaker Developer Guide

3D-2D Object Tracking Point Cloud Object Tracking Output

The following is an example of an output manifest file from a 3D point cloud object tracking
labeling job. The red, italicized text in the examples below depends on labeling job
specifications and output data. The ellipses (...) denote a continuation of that list, where
additional objects with the same format as the proceeding object can appear.

In addition to the standard elements, the metadata includes a class map that lists each class
that has at least one label in the sequence. If one or more cuboids were modified, there is an
adjustment-status parameter in the metadata for audit workflows that is set to adjusted.

{
 "source-ref": "s3://iad-groundtruth-lidar-test-bucket/artifacts/gt-point-cloud-demos/
sequences/seq2.json",
 "source-ref-metadata": {
 "json-paths": [
 "number-of-frames",
 "prefix",
 "frames{frame-no, frame}"
]
 },
 "3D2D-linking-ref": "s3://iad-groundtruth-lidar-test-bucket/xyz/3D2D-linking/
annotations/consolidated-annotation/output/0/SeqLabel.json",
 "3D2D-linking-ref-metadata": {
 "objects": [
 {
 "frame-no": 0,
 "confidence": []
 },
 {
 "frame-no": 1,
 "confidence": []
 },
 {
 "frame-no": 2,
 "confidence": []
 },
 {
 "frame-no": 3,
 "confidence": []
 },
 {
 "frame-no": 4,

Use Input and Output Data 1718

Amazon SageMaker Developer Guide

 "confidence": []
 },
 {
 "frame-no": 5,
 "confidence": []
 },
 {
 "frame-no": 6,
 "confidence": []
 },
 {
 "frame-no": 7,
 "confidence": []
 },
 {
 "frame-no": 8,
 "confidence": []
 },
 {
 "frame-no": 9,
 "confidence": []
 }
],
 "class-map": {
 "0": "Car"
 },
 "type": "groundtruth/point_cloud_object_tracking",
 "human-annotated": "yes",
 "creation-date": "2023-01-19T02:55:10.206508",
 "job-name": "mcm-linking"
 },
 "3D2D-linking-chain-ref": "s3://iad-groundtruth-lidar-test-bucket/xyz/3D2D-linking-
chain/annotations/consolidated-annotation/output/0/SeqLabel.json",
 "3D2D-linking-chain-ref-metadata": {
 "objects": [
 {
 "frame-no": 0,
 "confidence": []
 },
 {
 "frame-no": 1,
 "confidence": []
 },
 {

Use Input and Output Data 1719

Amazon SageMaker Developer Guide

 "frame-no": 2,
 "confidence": []
 },
 {
 "frame-no": 3,
 "confidence": []
 },
 {
 "frame-no": 4,
 "confidence": []
 },
 {
 "frame-no": 5,
 "confidence": []
 },
 {
 "frame-no": 6,
 "confidence": []
 },
 {
 "frame-no": 7,
 "confidence": []
 },
 {
 "frame-no": 8,
 "confidence": []
 },
 {
 "frame-no": 9,
 "confidence": []
 }
],
 "class-map": {
 "0": "Car"
 },
 "type": "groundtruth/point_cloud_object_tracking",
 "human-annotated": "yes",
 "creation-date": "2023-01-19T03:29:49.149935",
 "job-name": "3d2d-linking-chain"
 }
}

Use Input and Output Data 1720

Amazon SageMaker Developer Guide

In the above example, the cuboid data for each frame in seq2.json is in SeqLabel.json
in the Amazon S3 location, s3://<customerOutputLocation>/<labelingJobName>/
annotations/consolidated-annotation/output/<datasetObjectId>/SeqLabel.json.
The following is an example of this label sequence file.

For each frame in the sequence, you see the frame-number, frame-name, if applicable, frame-
attributes, and a list of annotations. This list contains 3D cubiods that were drawn for that
frame. Each annotation includes the following information:

• An object-name in the format <class>:<integer> where class identifies the label
category and integer is a unique ID across the dataset.

• When workers draw a cuboid, it is associated with a unique object-id which is associated with
all cuboids that identify the same object across multiple frames.

• Each class, or label category, that you specified in your input manifest is associated with a
class-id. Use the class-map to identify the class associated with each class ID.

• center-x, center-y, and center-z are the coordinates of the center of the cuboid, in the
same coordinate system as the 3D point cloud input data used in your labeling job.

• length, width, and height describe the dimensions of the cuboid.

• yaw is used to describe the orientation (heading) of the cuboid in radians.

Note

yaw is now in the right-handed Cartesian system. Since this feature was added on
September 02, 2022 19:02:17 UTC, you can convert the yaw measurement in the output
data prior to that using the following (all units are in radians):

old_yaw_in_output = pi - yaw

• In our definition, +x is to the right, +y is to the forward, and +z is up from the ground plane.
The rotation order is x - y - z. The roll, pitch and yaw are represented in the right-handed
Cartesian system. In 3D space, roll is along the x-axis, pitch is along the y-axis and yaw is
along the z-axis. All three are counterclockwise.

• If you included label attributes in your input manifest file for a given class, a label-category-
attributes parameter is included for all cuboids for which workers selected label attributes.

Use Input and Output Data 1721

Amazon SageMaker Developer Guide

{
 "lidar": {
 "tracking-annotations": [
 {
 "frame-number": 0,
 "frame-name": "0.txt.pcd",
 "annotations": [
 {
 "label-category-attributes": {
 "Type": "Sedan"
 },
 "object-name": "Car:1",
 "class-id": 0,
 "center-x": 12.172361721602815,
 "center-y": 120.23067521992364,
 "center-z": 1.590525771183712,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 0,
 "object-id": "505b39e0-97a4-11ed-8903-dd5b8b903715"
 },
 {
 "label-category-attributes": {},
 "object-name": "Car:4",
 "class-id": 0,
 "center-x": 17.192725195301094,
 "center-y": 114.55705365827872,
 "center-z": 1.590525771183712,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 0,
 "object-id": "1afcb670-97a9-11ed-9a84-ff627d099e16"
 }
],
 "frame-attributes": {}
 },
 {

Use Input and Output Data 1722

Amazon SageMaker Developer Guide

 "frame-number": 1,
 "frame-name": "1.txt.pcd",
 "annotations": [
 {
 "label-category-attributes": {
 "Type": "Sedan"
 },
 "object-name": "Car:1",
 "class-id": 0,
 "center-x": -1.6841480600695489,
 "center-y": 126.20198882749516,
 "center-z": 1.590525771183712,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 0,
 "object-id": "505b39e0-97a4-11ed-8903-dd5b8b903715"
 },
 {
 "label-category-attributes": {},
 "object-name": "Car:4",
 "class-id": 0,
 "center-x": 17.192725195301094,
 "center-y": 114.55705365827872,
 "center-z": 1.590525771183712,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 0,
 "object-id": "1afcb670-97a9-11ed-9a84-ff627d099e16"
 }
],
 "frame-attributes": {}
 },
 {
 "frame-number": 2,
 "frame-name": "2.txt.pcd",
 "annotations": [
 {
 "label-category-attributes": {

Use Input and Output Data 1723

Amazon SageMaker Developer Guide

 "Type": "Sedan"
 },
 "object-name": "Car:1",
 "class-id": 0,
 "center-x": -1.6841480600695489,
 "center-y": 126.20198882749516,
 "center-z": 1.590525771183712,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 0,
 "object-id": "505b39e0-97a4-11ed-8903-dd5b8b903715"
 },
 {
 "label-category-attributes": {},
 "object-name": "Car:4",
 "class-id": 0,
 "center-x": 17.192725195301094,
 "center-y": 114.55705365827872,
 "center-z": 1.590525771183712,
 "length": 4,
 "width": 2,
 "height": 2,
 "roll": 0,
 "pitch": 0,
 "yaw": 0,
 "object-id": "1afcb670-97a9-11ed-9a84-ff627d099e16"
 }
],
 "frame-attributes": {}
 }
]
 },
 "camera-0": {
 "tracking-annotations": [
 {
 "frame-no": 0,
 "frame": "0.txt.pcd",
 "annotations": [
 {
 "label-category-attributes": {
 "Occlusion": "Partial"

Use Input and Output Data 1724

Amazon SageMaker Developer Guide

 },
 "object-name": "Car:2",
 "class-id": 0,
 "width": 223,
 "height": 164,
 "top": 225,
 "left": 486,
 "object-id": "5229df60-97a4-11ed-8903-dd5b8b903715"
 }
],
 "frame-attributes": {}
 },
 {
 "frame-no": 1,
 "frame": "1.txt.pcd",
 "annotations": [
 {
 "label-category-attributes": {},
 "object-name": "Car:4",
 "class-id": 0,
 "width": 252,
 "height": 246,
 "top": 237,
 "left": 473,
 "object-id": "1afcb670-97a9-11ed-9a84-ff627d099e16"
 }
],
 "frame-attributes": {}
 }
]
 }
}

The cuboid and bounding box for an object are linked through a common object-id.

Enhanced Data Labeling

Amazon SageMaker Ground Truth manages sending your data objects to workers to be labeled.
Labeling each data object is a task. Workers complete each task until the entire labeling job is
complete. Ground Truth divides the total number of tasks into smaller batches that are sent to
workers. A new batch is sent to workers when the previous one is finished.

Enhanced Data Labeling 1725

Amazon SageMaker Developer Guide

Ground Truth provides two features that help improve the accuracy of your data labels and reduce
the total cost of labeling your data:

• Annotation consolidation helps to improve the accuracy of your data object labels. It combines
the results of multiple workers' annotation tasks into one high-fidelity label.

• Automated data labeling uses machine learning to label portions of your data automatically
without having to send them to human workers.

Topics

• Control the Flow of Data Objects Sent to Workers

• Consolidate Annotations

• Automate Data Labeling

• Chaining Labeling Jobs

Control the Flow of Data Objects Sent to Workers

Depending on the type of labeling job you create, Amazon SageMaker Ground Truth sends data
objects to workers in batches or in a streaming fashion. You can control the flow of data objects to
workers in the following ways:

• For both types of labeling jobs, you can use MaxConcurrentTaskCount to control the total
number of data objects available to all workers at a given point in time when the labeling job is
running.

• For streaming labeling jobs, you can control the flow of data objects to workers by monitoring
and controlling the number of data objects sent to the Amazon SQS associated with your
labeling job.

Use the following sections to learn more about these options. To learn more about streaming
labeling jobs, see Ground Truth Streaming Labeling Jobs.

Topics

• Use MaxConcurrentTaskCount to Control the Flow of Data Objects

• Use Amazon SQS to Control the Flow of Data Objects to Streaming Labeling Jobs

Enhanced Data Labeling 1726

Amazon SageMaker Developer Guide

Use MaxConcurrentTaskCount to Control the Flow of Data Objects

MaxConcurrentTaskCount defines the maximum number of data objects that can be labeled by
human workers at the same time. If you use the console, this parameter is set to 1,000. If you use
CreateLabelingJob, you can set this parameter to any integer between 1 and 1,000, inclusive.

When you start a labeling job using an input manifest file, Ground Truth does the following:

1. For each data object listed in your input manifest file, one or more tasks are created, depending
on the value you specify for NumberOfHumanWorkersPerDataObject. For example, if you set
the number of workers per data object to 3, 3 tasks will be created for each dataset object. To be
marked as successfully labeled, at least one worker must label the object. Alternatively, the tasks
can expire or be declined.

2. If you are using the Mechanical Turk workforce, Ground Truth first sends a batch of 10 dataset
objects to your workers. It uses this small batch to set up the labeling job and to make sure that
the job is correctly configured.

3. Next, Ground Truth sends MaxConcurrentTaskCount number of dataset objects to workers.
For example, if you have 2,000 input data objects in your input manifest file and have set the
number of workers per data object to 3 and set MaxConcurrentTaskCount to 900, the first
900 data objects in your input manifest are sent to workers, corresponding to 2,700 tasks (900 x
3). This is the first full-sized set of objects sent to workers.

4. What happens next depends on the type of labeling job you create. This step assumes one or
more dataset objects in your input manifest file, or sent using an Amazon SNS input data source
(in a streaming labeling job) were not include in the set sent to workers in step 3.

• Streaming labeling job: As long as the total number of objects available to workers is equal
to MaxConcurrentTaskCount, all remaining dataset objects on your input manifest file and
that you send in real time using Amazon SNS are placed on an Amazon SQS queue. When
the total number of objects available to workers falls below MaxConcurrentTaskCount
minus NumberOfHumanWorkersPerDataObject, a new data object from the queue is used
to create NumberOfHumanWorkersPerDataObject-tasks, which are sent to workers in real
time.

• Non-streaming labeling job: As workers finish labeling one set of objects, up to
MaxConcurrentTaskCount times NumberOfHumanWorkersPerDataObject number of
new tasks will be sent to workers. This process is repeated until all data objects in the input
manifest file are labeled.

Enhanced Data Labeling 1727

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-MaxConcurrentTaskCount

Amazon SageMaker Developer Guide

Use Amazon SQS to Control the Flow of Data Objects to Streaming Labeling Jobs

When you create a streaming labeling job, an Amazon SQS queue is automatically created in your
account. Data objects are only added to the Amazon SQS queue when the total number of objects
sent to workers is above MaxConcurrentTaskCount. Otherwise, objects are sent directly to
workers.

You can use this queue to manage the flow of data objects to your labeling job. To learn more, see
Manage Labeling Requests with an Amazon SQS Queue .

Consolidate Annotations

An annotation is the result of a single worker's labeling task. Annotation consolidation combines
the annotations of two or more workers into a single label for your data objects. A label, which is
assigned to each object in the dataset, is a probabilistic estimate of what the true label should be.
Each object in the dataset typically has multiple annotations, but only one label or set of labels.

You decide how many workers annotate each object in your dataset. Using more workers can
increase the accuracy of your labels, but also increases the cost of labeling. To learn more about
Ground Truth pricing, see Amazon SageMaker Ground Truth pricing .

If you use the Amazon SageMaker console to create a labeling job, the following are the defaults
for the number of workers who can annotate objects:

• Text classification—3 workers

• Image classification—3 workers

• Bounding boxes—5 workers

• Semantic segmentation—3 workers

• Named entity recognition—3 workers

When you use the CreateLabelingJob operation, you set the number of workers to annotate
each data object with the NumberOfHumanWorkersPerDataObject parameter. You can
override the default number of workers that annotate a data object using the console or the
CreateLabelingJob operation.

Ground Truth provides an annotation consolidation function for each of its predefined labeling
tasks: bounding box, image classification, name entity recognition, semantic segmentation, and
text classification. These are the functions:

Enhanced Data Labeling 1728

https://aws.amazon.com/sagemaker/groundtruth/pricing/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

• Multi-class annotation consolidation for image and text classification uses a variant of the
Expectation Maximization approach to annotations. It estimates parameters for each worker and
uses Bayesian inference to estimate the true class based on the class annotations from individual
workers.

• Bounding box annotation consolidates bounding boxes from multiple workers. This function
finds the most similar boxes from different workers based on the Jaccard index, or intersection
over union, of the boxes and averages them.

• Semantic segmentation annotation consolidation treats each pixel in a single image as a multi-
class classification. This function treats the pixel annotations from workers as "votes," with more
information from surrounding pixels incorporated by applying a smoothing function to the
image.

• Named entity recognition clusters text selections by Jaccard similarity and calculates selection
boundaries based on the mode, or the median if the mode isn't clear. The label resolves to the
most assigned entity label in the cluster, breaking ties by random selection.

You can use other algorithms to consolidate annotations. For information, see Create Your Own
Annotation Consolidation Function.

Create Your Own Annotation Consolidation Function

You can choose to use your own annotation consolidation function to determine the final labels for
your labeled objects. There are many possible approaches for writing a function and the approach
that you take depends on the nature of the annotations to consolidate. Broadly, consolidation
functions look at the annotations from workers, measure the similarity between them, and then
use some form of probabilistic judgment to determine what the most probable label should be.

If you want to use other algorithms to create annotation consolidations functions, you can find
the worker responses in the [project-name]/annotations/worker-response folder of the
Amazon S3 bucket where you direct the job output.

Assess Similarity

To assess the similarity between labels, you can use one of the following strategies, or you can use
one that meets your data labeling needs:

• For label spaces that consist of discrete, mutually exclusive categories, such as multi-class
classification, assessing similarity can be straightforward. Discrete labels either match or do not
match.

Enhanced Data Labeling 1729

https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/Jaccard_index

Amazon SageMaker Developer Guide

• For label spaces that don't have discrete values, such as bounding box annotations, find a broad
measure of similarity. For bounding boxes, one such measure is the Jaccard index. This measures
the ratio of the intersection of two boxes with the union of the boxes to assess how similar they
are. For example, if there are three annotations, then there can be a function that determines
which annotations represent the same object and should be consolidated.

Assess the Most Probable Label

With one of the strategies detailed in the previous sections in mind, make some sort of
probabilistic judgment on what the consolidated label should be. In the case of discrete, mutually
exclusive categories, this can be straightforward. One of the most common ways to do this is to
take the results of a majority vote between the annotations. This weights the annotations equally.

Some approaches attempt to estimate the accuracy of different annotators and weight their
annotations in proportion to the probability of correctness. An example of this is the Expectation
Maximization method, which is used in the default Ground Truth consolidation function for multi-
class annotations.

For more information about creating an annotation consolidation function, see Step 3: Processing
with AWS Lambda.

Automate Data Labeling

If you choose, Amazon SageMaker Ground Truth can use active learning to automate the labeling
of your input data for certain built-in task types. Active learning is a machine learning technique
that identifies data that should be labeled by your workers. In Ground Truth, this functionality is
called automated data labeling. Automated data labeling helps to reduce the cost and time that it
takes to label your dataset compared to using only humans. When you use automated labeling, you
incur SageMaker training and inference costs.

We recommend using automated data labeling on large datasets because the neural networks
used with active learning require a significant amount of data for every new dataset. Typically,
as you provide more data, the potential for high accuracy predictions goes up. Data will only be
auto-labeled if the neural network used in the auto-labeling model can achieve an acceptably high
level of accuracy. Therefore, with larger datasets, there is more potential to automatically label the
data because the neural network can achieve high enough accuracy for auto-labeling. Automated
data labeling is most appropriate when you have thousands of data objects. The minimum number
of objects allowed for automated data labeling is 1,250, but we strongly suggest providing a
minimum of 5,000 objects.

Enhanced Data Labeling 1730

Amazon SageMaker Developer Guide

Automated data labeling is available only for the following Ground Truth built-in task types:

• Image Classification (Single Label)

• Image Semantic Segmentation

• Object detection (Bounding Box)

• Text Classification (Single Label)

Streaming labeling jobs do not support automated data labeling.

To learn how to create a custom active learning workflow using your own model, see Set up an
active learning workflow with your own model.

Input data quotas apply for automated data labeling jobs. See Input Data Quotas for information
about dataset size, input data size and resolution limits.

Note

Before you use an the automated-labeling model in production, you need to fine-tune
or test it, or both. You might fine-tune the model (or create and tune another supervised
model of your choice) on the dataset produced by your labeling job to optimize the model’s
architecture and hyperparameters. If you decide to use the model for inference without
fine-tuning it, we strongly recommend making sure that you evaluate its accuracy on a
representative (for example, randomly selected) subset of the dataset labeled with Ground
Truth and that it matches your expectations.

How it Works

You enable automated data labeling when you create a labeling job. This is how it works:

1. When Ground Truth starts an automated data labeling job, it selects a random sample of input
data objects and sends them to human workers. If more than 10% of these data objects fail, the
labeling job will fail. If the labeling job fails, in addition to reviewing any error message Ground
Truth returns, check that your input data is displaying correctly in the worker UI, instructions are
clear, and that you have given workers enough time to complete tasks.

2. When the labeled data is returned, it is used to create a training set and a validation set. Ground
Truth uses these datasets to train and validate the model used for auto-labeling.

Enhanced Data Labeling 1731

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html

Amazon SageMaker Developer Guide

3. Ground Truth runs a batch transform job, using the validated model for inference on the
validation data. Batch inference produces a confidence score and quality metric for each object
in the validation data.

4. The auto labeling component will use these quality metrics and confidence scores to create a
confidence score threshold that ensures quality labels.

5. Ground Truth runs a batch transform job on the unlabeled data in the dataset, using the same
validated model for inference. This produces a confidence score for each object.

6. The Ground Truth auto labeling component determines if the confidence score produced in step
5 for each object meets the required threshold determined in step 4. If the confidence score
meets the threshold, the expected quality of automatically labeling exceeds the requested level
of accuracy and that object is considered auto-labeled.

7. Step 6 produces a dataset of unlabeled data with confidence scores. Ground Truth selects data
points with low confidence scores from this dataset and sends them to human workers.

8. Ground Truth uses the existing human-labeled data and this additional labeled data from
human workers to update the model.

9. The process is repeated until the dataset is fully labeled or until another stopping condition is
met. For example, auto-labeling stops if your human annotation budget is reached.

The preceding steps happen in iterations. Select each tab in the following table to see an example
of the processes that happen in each iteration for an object detection automated labeling job. The
number of data objects used in a given step in these images (for example, 200) is specific to this
example. If there are fewer than 5,000 objects to label, the validation set size is 20% of the whole
dataset. If there are more than 5,000 objects in your input dataset, the validation set size is 10%
of the whole dataset. You can control the number of human labels collected per active learning
iteration by changing the value for MaxConcurrentTaskCount when using the API operation
CreateLabelingJob. This value is set to 1,000 when you create a labeling job using the console.
In the active learning flow illustrated under the Active Learning tab, this value is set to 200.

Enhanced Data Labeling 1732

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-MaxConcurrentTaskCount
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

Model Training

Enhanced Data Labeling 1733

Amazon SageMaker Developer Guide

Automated Labeling

Active Learning

Enhanced Data Labeling 1734

Amazon SageMaker Developer Guide

Accuracy of Automated Labels

The definition of accuracy depends on the built-in task type that you use with automated labeling.
For all task types, these accuracy requirements are pre-determined by Ground Truth and cannot be
manually configured.

• For image classification and text classification, Ground Truth uses logic to find a label-prediction
confidence level that corresponds to at least 95% label accuracy. This means Ground Truth
expects the accuracy of the automated labels to be at least 95% when compared to the labels
that human labelers would provide for those examples.

• For bounding boxes, the expected mean Intersection Over Union (IoU) of the auto-labeled
images is 0.6. To find the mean IoU, Ground Truth calculates the mean IoU of all the predicted
and missed boxes on the image for every class, and then averages these values across classes.

• For semantic segmentation, the expected mean IoU of the auto-labeled images is 0.7. To find
the mean IoU, Ground Truth takes the mean of the IoU values of all the classes in the image
(excluding the background).

At every iteration of Active Learning (steps 3-6 in the list above), the confidence threshold is found
using the human-annotated validation set so that the expected accuracy of the auto-labeled
objects satisfies certain predefined accuracy requirements.

Create an Automated Data Labeling Job (Console)

To create a labeling job that uses automated labeling in the SageMaker console, use the following
procedure.

To create an automated data labeling job (console)

1. Open the Ground Truth Labeling jobs section of the SageMaker console: https://
console.aws.amazon.com/sagemaker/groundtruth.

2. Using Create a Labeling Job (Console) as a guide, complete the Job overview and Task type
sections. Note that auto labeling is not supported for custom task types.

3. Under Workers, choose your workforce type.

4. In the same section, choose Enable automated data labeling.

5. Using Step 4: Configure the Bounding Box Tool as a guide, create worker instructions in the
section Task Type labeling tool. For example, if you chose Semantic segmentation as your
labeling job type, this section is called Semantic segmentation labeling tool.

Enhanced Data Labeling 1735

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://console.aws.amazon.com/sagemaker/groundtruth
https://console.aws.amazon.com/sagemaker/groundtruth

Amazon SageMaker Developer Guide

6. To preview your worker instructions and dashboard, choose Preview.

7. Choose Create. This creates and starts your labeling job and the auto labeling process.

You can see your labeling job appear in the Labeling jobs section of the SageMaker console. Your
output data appears in the Amazon S3 bucket that you specified when creating the labeling job.
For more information about the format and file structure of your labeling job output data, see
Output Data.

Create an Automated Data Labeling Job (API)

To create an automated data labeling job using the SageMaker API, use the
LabelingJobAlgorithmsConfig parameter of the CreateLabelingJob operation. To learn
how to start a labeling job using the CreateLabelingJob operation, see Create a Labeling Job
(API).

Specify the Amazon Resource Name (ARN) of the algorithm that you are using for automated data
labeling in the LabelingJobAlgorithmSpecificationArn parameter. Choose from one of the four
Ground Truth built-in algorithms that are supported with automated labeling:

• Image Classification (Single Label)

• Image Semantic Segmentation

• Object detection (Bounding Box)

• Text Classification (Single Label)

When an automated data labeling job finishes, Ground Truth returns the ARN of the model it used
for the automated data labeling job. Use this model as the starting model for similar auto-labeling
job types by providing the ARN, in string format, in the InitialActiveLearningModelArn parameter.
To retrieve the model's ARN, use an AWS Command Line Interface (AWS CLI) command similar to
the following.

Fetch the mARN of the model trained in the final iteration of the previous labeling
 job.Ground Truth
pretrained_model_arn = sagemaker_client.describe_labeling_job(LabelingJobName=job_name)
['LabelingJobOutput']['FinalActiveLearningModelArn']

To encrypt data on the storage volume attached to the ML compute instance(s) that are
used in automated labeling, include an AWS Key Management Service (AWS KMS) key in the

Enhanced Data Labeling 1736

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobAlgorithmsConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobAlgorithmsConfig.html#SageMaker-Type-LabelingJobAlgorithmsConfig-LabelingJobAlgorithmSpecificationArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobAlgorithmsConfig.html#SageMaker-Type-LabelingJobAlgorithmsConfig-InitialActiveLearningModelArn

Amazon SageMaker Developer Guide

VolumeKmsKeyId parameter. For information about AWS KMS keys, see What is AWS Key
Management Service? in the AWS Key Management Service Developer Guide.

For an example that uses the CreateLabelingJob operation to create an automated data
labeling job, see the object_detection_tutorial example in the SageMaker Examples, Ground
Truth Labeling Jobs section of a SageMaker notebook instance. To learn how to create and open
a notebook instance, see Create a Notebook Instance. To learn how to access SageMaker example
notebooks, see Example Notebooks.

Amazon EC2 Instances Required for Automated Data Labeling

The following table lists the Amazon Elastic Compute Cloud (Amazon EC2) instances that you need
to run automated data labeling for training and batch inference jobs.

Automated Data Labeling
Job Type

Training Instance Type Inference Instance Type

Image classification ml.p3.2xlarge* ml.c5.xlarge

Object detection (bounding
box)

ml.p3.2xlarge* ml.c5.4xlarge

Text classification ml.c5.2xlarge ml.m4.xlarge

Semantic segmentation ml.p3.2xlarge* ml.p3.2xlarge*

* In the Asia Pacific (Mumbai) Region (ap-south-1) use ml.p2.8xlarge instead.

Ground Truth manages the instances that you use for automated data labeling jobs. It creates,
configures, and terminates the instances as needed to perform your job. These instances don't
appear in your Amazon EC2 instance dashboard.

Set up an active learning workflow with your own model

You can create an active learning workflow with your own algorithm to run
training and inferences in that workflow to auto-label your data. The notebook
bring_your_own_model_for_sagemaker_labeling_workflows_with_active_learning.ipynb
demonstrates this using the SageMaker built-in algorithm, BlazingText. This notebook provides an
AWS CloudFormation stack that you can use to execute this workflow using AWS Step Functions.
You can find the notebook and supporting files in this GitHub repository.

Enhanced Data Labeling 1737

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs/bring_your_own_model_for_sagemaker_labeling_workflows_with_active_learning

Amazon SageMaker Developer Guide

You can also find this notebook in the SageMaker Examples repository. See Use Example
Notebooks to learn how to find an Amazon SageMaker example notebook.

Chaining Labeling Jobs

Amazon SageMaker Ground Truth can reuse datasets from prior jobs in two ways: cloning and
chaining.

Cloning copies the setup of a prior labeling job and allows you to make additional changes before
setting it to run.

Chaining uses not only the setup of the prior job, but also the results. This allows you to continue
an incomplete job and add labels or data objects to a completed job. Chaining is a more complex
operation.

For data processing:

• Cloning uses the prior job's input manifest, with optional modifications, as the new job's input
manifest.

• Chaining uses the prior job's output manifest as the new job's input manifest.

Chaining is useful when you need to:

• Continue a labeling job that was manually stopped.

• Continue a labeling job that failed mid-job, after fixing issues.

• Switch to automated data labeling after manually labeling part of a job (or the other way
around).

• Add more data objects to a completed job and start the job from there.

• Add another annotation to a completed job. For example, you have a collection of phrases
labeled for topic, then want to run the set again, categorizing them by the topic's implied
audience.

In Amazon SageMaker Ground Truth you can configure a chained labeling job with either the
console or the API.

Enhanced Data Labeling 1738

https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html

Amazon SageMaker Developer Guide

Key Term: Label Attribute Name

The label attribute name (LabelAttributeName in the API) is a string used as the key for the key-
value pair formed with the label that a worker assigns to the data object.

The following rules apply for the label attribute name:

• It can't end with -metadata.

• The names source and source-ref are reserved and can't be used.

• For semantic segmentation labeling jobs, , it must end with -ref. For all other labeling jobs, it
can't end with -ref. If you use the console to create the job, Amazon SageMaker Ground Truth
automatically appends -ref to all label attribute names except for semantic segmentation jobs.

• For a chained labeling job, if you're using the same label attribute name from the originating job
and you configure the chained job to use auto-labeling, then if it had been in auto-labeling mode
at any point, Ground Truth uses the model from the originating job.

In an output manifest, the label attribute name appears similar to the following.

 "source-ref": "<S3 URI>",
 "<label attribute name>": {
 "annotations": [{
 "class_id": 0,
 "width": 99,
 "top": 87,
 "height": 62,
 "left": 175
 }],
 "image_size": [{
 "width": 344,
 "depth": 3,
 "height": 234
 }]
 },
 "<label attribute name>-metadata": {
 "job-name": "<job name>",
 "class-map": {
 "0": "<label attribute name>"
 },
 "human-annotated": "yes",
 "objects": [{
 "confidence": 0.09

Enhanced Data Labeling 1739

Amazon SageMaker Developer Guide

 }],
 "creation-date": "<timestamp>",
 "type": "groundtruth/object-detection"
 }

If you're creating a job in the console and don't explicitly set the label attribute name value,
Ground Truth uses the job name as the label attribute name for the job.

Start a Chained Job (Console)

Choose a stopped, failed, or completed labeling job from the list of your existing jobs. This enables
the Actions menu.

From the Actions menu, choose Chain.

Job Overview Panel

In the Job overview panel, a new Job name is set based on the title of the job from which you are
chaining this one. You can change it.

You may also specify a label attribute name different from the labeling job name.

If you're chaining from a completed job, the label attribute name uses the name of the new job
you're configuring. To change the name, select the check box.

If you're chaining from a stopped or failed job, the label attribute name uses to the name of the
job from which you're chaining. It's easy to see and edit the value because the name check box is
checked.

Attribute label naming considerations

• The default uses the label attribute name Ground Truth has selected. All data objects
without data connected to that label attribute name are labeled.

• Using a label attribute name not present in the manifest causes the job to process all
the objects in the dataset.

The input dataset location in this case is automatically selected as the output manifest of the
chained job. The input field is not available, so you cannot change it.

Enhanced Data Labeling 1740

Amazon SageMaker Developer Guide

Adding data objects to a labeling job

You cannot specify an alternate manifest file. Manually edit the output manifest from the
previous job to add new items before starting a chained job. The Amazon S3 URI helps
you locate where you are storing the manifest in your Amazon S3 bucket. Download the
manifest file from there, edit it locally on your computer, and then upload the new version
to replace it. Make sure you are not introducing errors during editing. We recommend you
use JSON linter to check your JSON. Many popular text editors and IDEs have linter plugins
available.

Start a Chained Job (API)

The procedure is almost the same as setting up a new labeling job with CreateLabelingJob,
except for two primary differences:

• Manifest location: Rather than use your original manifest from the prior job, the value for the
ManifestS3Uri in the DataSource should point to the Amazon S3 URI of the output manifest
from the prior labeling job.

• Label attribute name: Setting the correct LabelAttributeName value is important here. This
is the key portion of a key-value pair where labeling data is the value. Sample use cases include:

• Adding new or more specific labels to a completed job — Set a new label attribute name.

• Labeling the unlabeled items from a prior job — Use the label attribute name from the prior
job.

Use a Partially Labeled Dataset

You can get some chaining benefits if you use an augmented manifest that has already been
partially labeled. Check the Label attribute name check box and set the name so that it matches
the name in your manifest.

If you're using the API, the instructions are the same as those for starting a chained job. However,
be sure to upload your manifest to an Amazon S3 bucket and use it instead of using the output
manifest from a prior job.

The Label attribute name value in the manifest has to conform to the naming considerations
discussed earlier.

Enhanced Data Labeling 1741

Amazon SageMaker Developer Guide

Ground Truth Security and Permissions

Use the topics on this page to learn about Ground Truth security features and how to configure
AWS Identity and Access Management (IAM) permissions to allow a user or role to create a labeling
job. Additionally, learn how to create an execution role. An execution role is the role that you
specify when you create a labeling job. This role is used to start your labeling job.

If you are a new user and want to get started quickly, or if you do not require granular permissions,
see Use IAM Managed Policies with Ground Truth.

For more information about IAM users and roles, see Identities (Users, Groups, and Roles) in the
IAM User Guide.

To learn more about using IAM with SageMaker, see Identity and Access Management for Amazon
SageMaker.

Topics

• CORS Permission Requirement

• Assign IAM Permissions to Use Ground Truth

• Using Amazon SageMaker Ground Truth in an Amazon Virtual Private Cloud

• Output Data and Storage Volume Encryption

• Workforce Authentication and Restrictions

CORS Permission Requirement

Earlier in 2020, widely used browsers like Chrome and Firefox changed their default behavior for
rotating images based on image metadata, referred to as EXIF data. Previously, browsers would
always display images in exactly the manner in which they are stored on disk, which is typically
unrotated. After the change, images now rotate according to a piece of image metadata called
orientation value. This has important implications for the entire machine learning (ML) community.
For example, if applications that annotate images do not consider the EXIF orientation, they may
display images in unexpected orientations, resulting in incorrect labels.

Starting with Chrome 89, AWS can no longer automatically prevent the rotation of images because
the web standards group W3C has decided that the ability to control rotation of images violates
the web’s Same-origin Policy. Therefore, to ensure human workers annotate your input images in
a predictable orientation when you submit requests to create a labeling job, you must add a CORS
header policy to the Amazon S3 buckets that contain your input images.

Security and Permissions 1742

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://en.wikipedia.org/wiki/Exif

Amazon SageMaker Developer Guide

Important

If you do not add a CORS configuration to the Amazon S3 buckets that contain your input
data, labeling tasks for those input data objects will fail.

If you create a job through the Ground Truth console, CORS is enabled by default. If all of your
input data is not located in the same Amazon S3 bucket as your input manifest file, you must
add a CORS configuration to all Amazon S3 buckets that contain input data using the following
instructions.

If you are using the CreateLabelingJob API to create a Ground Truth labeling job, you can add a
CORS policy to an Amazon S3 bucket that contains input data in the S3 console. To set the required
CORS headers on the Amazon S3 bucket that contain your input images in the Amazon S3 console,
follow the directions detailed in How do I add cross-domain resource sharing with CORS?. Use the
following CORS configuration code for the buckets that host your images. If you use the Amazon
S3 console to add the policy to your bucket, you must use the JSON format.

Important

If you create a 3D point cloud or video frame labeling job, you must add additional rules
to your CORS configuration. To learn more, see 3D Point Cloud Labeling Job Permission
Requirements and Video Frame Job Permission Requirements respectively.

JSON

[{
 "AllowedHeaders": [],
 "AllowedMethods": ["GET"],
 "AllowedOrigins": ["*"],
 "ExposeHeaders": ["Access-Control-Allow-Origin"]
}]

XML

<CORSConfiguration>
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>

Security and Permissions 1743

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html

Amazon SageMaker Developer Guide

 <ExposeHeader>Access-Control-Allow-Origin</ExposeHeader>
 </CORSRule>
</CORSConfiguration>

Assign IAM Permissions to Use Ground Truth

Use the topics in this section to learn how to use AWS Identity and Access Management (IAM)
managed and custom policies to manage access to Ground Truth and associated resources.

You can use the sections on this page to learn the following:

• How to create IAM policies that grant a user or role permission to create a labeling job.
Administrators can use IAM policies to restrict access to Amazon SageMaker and other AWS
services that are specific to Ground Truth.

• How to create a SageMaker execution role. An execution role is the role that you specify when
you create a labeling job. The role is used to start and manage your labeling job.

The following is an overview of the topics you'll find on this page:

• If you are getting started using Ground Truth, or you do not require granular permissions for
your use case, it is recommended that you use the IAM managed policies described in Use IAM
Managed Policies with Ground Truth.

• Learn about the permissions required to use the Ground Truth console in Grant IAM Permission
to Use the Amazon SageMaker Ground Truth Console. This section includes policy examples that
grant an IAM entity permission to create and modify private work teams, subscribe to vendor
work teams, and create custom labeling workflows.

• When you create a labeling job, you must provide an execution role. Use Create a SageMaker
Execution Role for a Ground Truth Labeling Job to learn about the permissions required for this
role.

Use IAM Managed Policies with Ground Truth

SageMaker and Ground Truth provide AWS managed policies that you can use to create a labeling
job. If you are getting started using Ground Truth and you do not require granular permissions for
your use case, it is recommended that you use the following policies:

• AmazonSageMakerFullAccess – Use this policy to give a user or role permission to create a
labeling job. This is a broad policy that grants a entity permission to use SageMaker features,

Security and Permissions 1744

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

as well as features of necessary AWS services through the console and API. This policy gives the
entity permission to create a labeling job and to create and manage workforces using Amazon
Cognito. To learn more, see AmazonSageMakerFullAccess Policy.

• AmazonSageMakerGroundTruthExecution – To create an execution role, you can attach the
policy AmazonSageMakerGroundTruthExecution to a role. An execution role is the role that
you specify when you create a labeling job and it is used to start your labeling job. This policy
allows you to create both streaming and non-streaming labeling jobs, and to create a labeling
job using any task type. Note the following limits of this managed policy.

• Amazon S3 permissions: This policy grants an execution role permission to access Amazon S3
buckets with the following strings in the name: GroundTruth, Groundtruth, groundtruth,
SageMaker, Sagemaker, and sagemaker or a bucket with an object tag that includes
SageMaker in the name (case insensitive). Make sure your input and output bucket names
include these strings, or add additional permissions to your execution role to grant it
permission to access your Amazon S3 buckets. You must give this role permission to perform
the following actions on your Amazon S3 buckets: AbortMultipartUpload, GetObject,
and PutObject.

• Custom Workflows: When you create a custom labeling workflow, this execution role is
restricted to invoking AWS Lambda functions with one of the following strings as part of the
function name: GtRecipe, SageMaker, Sagemaker, sagemaker, or LabelingFunction.
This applies to both your pre-annotation and post-annotation Lambda functions. If you choose
to use names without those strings, you must explicitly provide lambda:InvokeFunction
permission to the execution role used to create the labeling job.

To learn how to attach an AWS managed policy to a user or role, refer to Adding and removing IAM
identity permissions in the IAM User Guide.

Grant IAM Permission to Use the Amazon SageMaker Ground Truth Console

To use the Ground Truth area of the SageMaker console, you need to grant permission to an
entity to access SageMaker and other AWS services that Ground Truth interacts with. Required
permissions to access other AWS services depends on your use-case:

• Amazon S3 permissions are required for all use cases. These permissions must grant access to the
Amazon S3 buckets that contain input and output data.

• AWS Marketplace permissions are required to use a vendor workforce.

• Amazon Cognito permission are required for private work team setup.

Security and Permissions 1745

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerGroundTruthExecution
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerGroundTruthExecution
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-tagging.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_s3_rw-bucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_s3_rw-bucket.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

Amazon SageMaker Developer Guide

• AWS KMS permissions are required to view available AWS KMS keys that can be used for output
data encryption.

• IAM permissions are required to either list pre-existing execution roles, or to create a new one.
Additionally, you must use add a PassRole permission to allow SageMaker to use the execution
role chosen to start the labeling job.

The following sections list policies you may want to grant to a role to use one or more functions of
Ground Truth.

Topics

• Ground Truth Console Permissions

• Custom Labeling Workflow Permissions

• Private Workforce Permissions

• Vendor Workforce Permissions

Ground Truth Console Permissions

To grant permission to a user or role to use the Ground Truth area of the SageMaker console to
create a labeling job, attach the following policy to the user or role. The following policy will give
an IAM role permission to create a labeling job using a built-in task type task type. If you want to
create a custom labeling workflow, add the policy in Custom Labeling Workflow Permissions to
the following policy. Each Statement included in the following policy is described below this code
block.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SageMakerApis",
 "Effect": "Allow",
 "Action": [
 "sagemaker:*"
],
 "Resource": "*"
 },
 {
 "Sid": "KmsKeysForCreateForms",
 "Effect": "Allow",

Security and Permissions 1746

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html

Amazon SageMaker Developer Guide

 "Action": [
 "kms:DescribeKey",
 "kms:ListAliases"
],
 "Resource": "*"
 },
 {
 "Sid": "AccessAwsMarketplaceSubscriptions",
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:ViewSubscriptions"
],
 "Resource": "*"
 },
 {
 "Sid": "SecretsManager",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 },
 {
 "Sid": "ListAndCreateExecutionRoles",
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles",
 "iam:CreateRole",
 "iam:CreatePolicy",
 "iam:AttachRolePolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "PassRoleForExecutionRoles",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {

Security and Permissions 1747

Amazon SageMaker Developer Guide

 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },
 {
 "Sid": "GroundTruthConsole",
 "Effect": "Allow",
 "Action": [
 "groundtruthlabeling:*",
 "lambda:InvokeFunction",
 "lambda:ListFunctions",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "s3:GetBucketCors",
 "s3:PutBucketCors",
 "s3:ListAllMyBuckets",
 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:AdminDeleteUser",
 "cognito-idp:AdminDisableUser",
 "cognito-idp:AdminEnableUser",
 "cognito-idp:AdminRemoveUserFromGroup",
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:ListGroups",
 "cognito-idp:ListIdentityProviders",
 "cognito-idp:ListUsers",
 "cognito-idp:ListUsersInGroup",
 "cognito-idp:ListUserPoolClients",
 "cognito-idp:ListUserPools",
 "cognito-idp:UpdateUserPool",
 "cognito-idp:UpdateUserPoolClient"
],
 "Resource": "*"
 }
]
}

Security and Permissions 1748

Amazon SageMaker Developer Guide

This policy includes the following statements. You can scope down any of these statements by
adding specific resourses to the Resource list for that statement.

SageMakerApis

This statement includes sagemaker:*, which allows the user to perform all SageMaker API
actions. You can reduce the scope of this policy by restricting users from performing actions that
are not used to create and monitoring a labeling job.

KmsKeysForCreateForms

You only need to include this statement if you want to grant a user permission to list and select
AWS KMS keys in the Ground Truth console to use for output data encryption. The policy above
grants a user permission to list and select any key in the account in AWS KMS. To restrict the keys
that a user can list and select, specify those key ARNs in Resource.

SecretsManager

This statement gives the user permission to describe, list, and create resources in AWS Secrets
Manager required to create the labeling job.

ListAndCreateExecutionRoles

This statement gives a user permission to list (ListRoles) and create (CreateRole) IAM roles
in your account. It also grants the user permission to create (CreatePolicy) policies and attach
(AttachRolePolicy) policies to entities. These are required to list, select, and if required, create
an execution role in the console.

If you have already created an execution role, and want to narrow the scope of this statement so
that users can only select that role in the console, specify the ARNs of the roles you want the user
to have permission to view in Resource and remove the actions CreateRole, CreatePolicy,
and AttachRolePolicy.

AccessAwsMarketplaceSubscriptions

These permissions are required to view and choose vendor work teams that you are already
subscribed to when creating a labeling job. To give the user permission to subscribe to vendor work
teams, add the statement in Vendor Workforce Permissions to the policy above

PassRoleForExecutionRoles

Security and Permissions 1749

sagemaker/latest/APIReference/API_Operations.html
sagemaker/latest/APIReference/API_Operations.html

Amazon SageMaker Developer Guide

This is required to give the labeling job creator permission to preview the worker UI and verify that
input data, labels, and instructions display correctly. This statement gives an entity permissions to
pass the IAM execution role used to create the labeling job to SageMaker to render and preview the
worker UI. To narrow the scope of this policy, add the role ARN of the execution role used to create
the labeling job under Resource.

GroundTruthConsole

• groundtruthlabeling – This allows a user to perform actions required to use
certain features of the Ground Truth console. These include permissions to describe
the labeling job status (DescribeConsoleJob), list all dataset objects in the input
manifest file (ListDatasetObjects), filter the dataset if dataset sampling is selected
(RunFilterOrSampleDatasetJob), and to generate input manifest files if automated data
labeling is used (RunGenerateManifestByCrawlingJob). These actions are only available
when using the Ground Truth console and cannot be called directly using an API.

• lambda:InvokeFunction and lambda:ListFunctions – these actions give users permission
to list and invoke Lambda functions that are used to run a custom labeling workflow.

• s3:* – All Amazon S3 permissions included in this statement are used to view Amazon S3
buckets for automated data setup (ListAllMyBuckets), access input data in Amazon S3
(ListBucket, GetObject), check for and create a CORS policy in Amazon S3 if needed
(GetBucketCors and PutBucketCors), and write labeling job output files to S3 (PutObject).

• cognito-idp – These permissions are used to create, view and manage and private workforce
using Amazon Cognito. To learn more about these actions, refer to the Amazon Cognito API
References.

Custom Labeling Workflow Permissions

Add the following statement to a policy similar to the one in Ground Truth Console Permissions to
give a user permission to select pre-existing pre-annotation and post-annotation Lambda functions
while creating a custom labeling workflow.

{
 "Sid": "GroundTruthConsoleCustomWorkflow",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:ListFunctions"
],

Security and Permissions 1750

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-console-create-manifest-file.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-reference.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-reference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html

Amazon SageMaker Developer Guide

 "Resource": "*"
}

To learn how to give an entity permission to create and test pre-annotation and post-annotation
Lambda functions, see Required Permissions To Use Lambda With Ground Truth.

Private Workforce Permissions

When added to a permissions policy, the following permission grants access to create and manage
a private workforce and work team using Amazon Cognito. These permissions are not required to
use an OIDC IdP workforce.

{
 "Effect": "Allow",
 "Action": [
 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:AdminDeleteUser",
 "cognito-idp:AdminDisableUser",
 "cognito-idp:AdminEnableUser",
 "cognito-idp:AdminRemoveUserFromGroup",
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:ListGroups",
 "cognito-idp:ListIdentityProviders",
 "cognito-idp:ListUsers",
 "cognito-idp:ListUsersInGroup",
 "cognito-idp:ListUserPoolClients",
 "cognito-idp:ListUserPools",
 "cognito-idp:UpdateUserPool",
 "cognito-idp:UpdateUserPoolClient"
],
 "Resource": "*"
}

To learn more about creating private workforce using Amazon Cognito, see Create and Manage
Amazon Cognito Workforce.

Security and Permissions 1751

http://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3-lambda-permissions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private-oidc.html#sms-workforce-create-private-oidc-next-steps

Amazon SageMaker Developer Guide

Vendor Workforce Permissions

You can add the following statement to the policy in Grant IAM Permission to Use the Amazon
SageMaker Ground Truth Console to grant an entity permission to subscribe to a vendor workforce.

{
 "Sid": "AccessAwsMarketplaceSubscriptions",
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:Subscribe",
 "aws-marketplace:Unsubscribe",
 "aws-marketplace:ViewSubscriptions"
],
 "Resource": "*"
}

Create a SageMaker Execution Role for a Ground Truth Labeling Job

When you configure your labeling job, you need to provide an execution role, which is a role that
SageMaker has permission to assume to start and run your labeling job.

This role must give Ground Truth permission to access the following:

• Amazon S3 to retrieve your input data and write output data to an Amazon S3 bucket. You can
either grant permission for an IAM role to access an entire bucket by providing the bucket ARN,
or you can grant access to the role to access specific resources in a bucket. For example, the
ARN for a bucket may look similar to arn:aws:s3:::awsexamplebucket1 and the ARN of a
resource in an Amazon S3 bucket may look similar to arn:aws:s3:::awsexamplebucket1/
prefix/file-name.png. To apply an action to all resources in an Amazon S3 bucket, you can
use the wild card: *. For example, arn:aws:s3:::awsexamplebucket1/prefix/*. For more
information, see Amazon Amazon S3 Resources in the Amazon Simple Storage Service User
Guide.

• CloudWatch to log worker metrics and labeling job statuses.

• AWS KMS for data encryption. (Optional)

• AWS Lambda for processing input and output data when you create a custom workflow.

Additionally, if you create a streaming labeling job, this role must have permission to access:

• Amazon SQS to create an interact with an SQS queue used to manage labeling requests.

Security and Permissions 1752

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-vendor.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-arn-format.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-sqs

Amazon SageMaker Developer Guide

• Amazon SNS to subscribe to and retrieve messages from your Amazon SNS input topic and to
send messages to your Amazon SNS output topic.

All of these permissions can be granted with the AmazonSageMakerGroundTruthExecution
managed policy except:

• Data and storage volume encryption of your Amazon S3 buckets. To learn how to configure
these permissions, see Encrypt Output Data and Storage Volume with AWS KMS.

• Permission to select and invoke Lambda functions that do not include GtRecipe, SageMaker,
Sagemaker, sagemaker, or LabelingFunction in the function name.

• Amazon S3 buckets that do not include either GroundTruth, Groundtruth, groundtruth,
SageMaker, Sagemaker, and sagemaker in the prefix or bucket name or an object tag that
includes SageMaker in the name (case insensitive).

If you require more granular permissions than the ones provided in
AmazonSageMakerGroundTruthExecution, use the following policy examples to create an
execution role that fits your specific use case.

Topics

• Built-In Task Types (Non-streaming) Execution Role Requirements

• Built-In Task Types (Streaming) Execution Role Requirements

• Execution Role Requirements for Custom Task Types

• Automated Data Labeling Permission Requirements

Built-In Task Types (Non-streaming) Execution Role Requirements

The following policy grants permission to create a labeling job for a built-in task type. This
execution policy does not include permissions for AWS KMS data encryption or decryption. Replace
each red, italicized ARN with your own Amazon S3 ARNs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3ViewBuckets",
 "Effect": "Allow",

Security and Permissions 1753

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerGroundTruthExecution
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-tagging.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html

Amazon SageMaker Developer Guide

 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::<input-bucket-name>",
 "arn:aws:s3:::<output-bucket-name>"
]
 },
 {
 "Sid": "S3GetPutObjects",
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::<input-bucket-name>/*",
 "arn:aws:s3:::<output-bucket-name>/*"
]
 },
 {
 "Sid": "CloudWatch",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Built-In Task Types (Streaming) Execution Role Requirements

If you create a streaming labeling job, you must add a policy similar to the following to the
execution role you use to create the labeling job. To narrow the scope of the policy, replace the *
in Resource with specific AWS resources that you want to grant the IAM role permission to access
and use.

Security and Permissions 1754

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::<input-bucket-name>/*",
 "arn:aws:s3:::<output-bucket-name>/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "s3:ExistingObjectTag/SageMaker": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::<input-bucket-name>",
 "arn:aws:s3:::<output-bucket-name>"
]
 },
 {
 "Sid": "CloudWatch",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",

Security and Permissions 1755

Amazon SageMaker Developer Guide

 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "*"
 },
 {
 "Sid": "StreamingQueue",
 "Effect": "Allow",
 "Action": [
 "sqs:CreateQueue",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl",
 "sqs:ReceiveMessage",
 "sqs:SendMessage",
 "sqs:SendMessageBatch",
 "sqs:SetQueueAttributes"
],
 "Resource": "arn:aws:sqs:*:*:*GroundTruth*"
 },
 {
 "Sid": "StreamingTopicSubscribe",
 "Effect": "Allow",
 "Action": "sns:Subscribe",
 "Resource": [
 "arn:aws:sns:<aws-region>:<aws-account-number>:<input-topic-name>",
 "arn:aws:sns:<aws-region>:<aws-account-number>:<output-topic-name>"
],
 "Condition": {
 "StringEquals": {
 "sns:Protocol": "sqs"
 },
 "StringLike": {
 "sns:Endpoint": "arn:aws:sns:<aws-region>:<aws-account-
number>:*GroundTruth*"
 }
 }
 },
 {
 "Sid": "StreamingTopic",
 "Effect": "Allow",
 "Action": [

Security and Permissions 1756

Amazon SageMaker Developer Guide

 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:<aws-region>:<aws-account-number>:<input-topic-name>",
 "arn:aws:sns:<aws-region>:<aws-account-number>:<output-topic-name>"
]
 },
 {
 "Sid": "StreamingTopicUnsubscribe",
 "Effect": "Allow",
 "Action": [
 "sns:Unsubscribe"
],
 "Resource": [
 "arn:aws:sns:<aws-region>:<aws-account-number>:<input-topic-name>",
 "arn:aws:sns:<aws-region>:<aws-account-number>:<output-topic-name>"
]
 }
]
}

Execution Role Requirements for Custom Task Types

If you want to create a custom labeling workflow, add the following statement to an execution role
policy like the ones found in Built-In Task Types (Non-streaming) Execution Role Requirements or
Built-In Task Types (Streaming) Execution Role Requirements.

This policy gives the execution role permission to Invoke your pre-annotation and post-
annotation Lambda functions.

{
 "Sid": "LambdaFunctions",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:<region>:<account-id>:function:<pre-annotation-lambda-name>",
 "arn:aws:lambda:<region>:<account-id>:function:<post-annotation-lambda-name>"
]
}

Security and Permissions 1757

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html

Amazon SageMaker Developer Guide

Automated Data Labeling Permission Requirements

If you want to create a labeling job with automated data labeling enabled, you must 1) add one
policy to the IAM policy attached to the execution role and 2) update the trust policy of the
execution role.

The following statement allows the IAM execution role to be passed to SageMaker so that it can be
used to run the training and inference jobs used for active learning and automated data labeling
respectively. Add this statement to an execution role policy like the ones found in Built-In Task
Types (Non-streaming) Execution Role Requirements or Built-In Task Types (Streaming) Execution
Role Requirements. Replace arn:aws:iam::<account-number>:role/<role-name> with the
execution role ARN. You can find your IAM role ARN in the IAM console under Roles.

{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::<account-number>:role/<execution-role-name>",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "sagemaker.amazonaws.com"
]
 }
 }
}

The following statement allows SageMaker to assume the execution role to create and manage the
SageMaker training and inference jobs. This policy must be added to the trust relationship of the
execution role. To learn how to add or modify an IAM role trust policy, see Modifying a role in the
IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "sagemaker.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

Security and Permissions 1758

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon SageMaker Developer Guide

Encrypt Output Data and Storage Volume with AWS KMS

You can use AWS Key Management Service (AWS KMS) to encrypt output data from a labeling
job by specifying a customer managed key when you create the labeling job. If you use the API
operation CreateLabelingJob to create a labeling job that uses automated data labeling, you
can also use a customer managed key to encrypt the storage volume attached to the ML compute
instances to run the training and inference jobs.

This section describes the IAM policies you must attach to your customer managed key to enable
output data encryption and the policies you must attach to your customer managed key and
execution role to use storage volume encryption. To learn more about these options, see Output
Data and Storage Volume Encryption.

Encrypt Output Data using KMS

If you specify an AWS KMS customer managed key to encrypt output data, you must add an IAM
policy similar to the following to that key. This policy gives the IAM execution role that you use to
create your labeling job permission to use this key to perform all of the actions listed in "Action".
To learn more about these actions, see AWS KMS permissions in the AWS Key Management Service
Developer Guide.

To use this policy, replace the IAM service-role ARN in "Principal" with the ARN of the execution
role you use to create the labeling job. When you create a labeling job in the console, this is the
role you specify for IAM Role under the Job overview section. When you create a labeling job using
CreateLabelingJob, this is ARN you specify for RoleArn.

{
 "Sid": "AllowUseOfKmsKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/service-role/example-role"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"

Security and Permissions 1759

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-RoleArn

Amazon SageMaker Developer Guide

}

Encrypt Automated Data Labeling ML Compute Instance Storage Volume

If you specify a VolumeKmsKeyId to encrypt the storage volume attached to the ML compute
instance used for automated data labeling training and inference, you must do the following:

• Attach permissions described in Encrypt Output Data using KMS to the customer managed key.

• Attach a policy similar to the following to the IAM execution role you use to create your labeling
job. This is the IAM role you specify for RoleArn in CreateLabelingJob. To learn more about
the "kms:CreateGrant" action that this policy permits, see CreateGrant in the AWS Key
Management Service API Reference.

{
"Version": "2012-10-17",
"Statement":
 [
 {
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
],
 "Resource": "*"
 }
]
}

To learn more about Ground Truth storage volume encryption, see Use Your KMS Key to Encrypt
Automated Data Labeling Storage Volume (API Only).

Using Amazon SageMaker Ground Truth in an Amazon Virtual Private Cloud

Amazon Virtual Private Cloud (Amazon VPC) is a service with which you can launch AWS resources
in a logically isolated virtual network that you define. You can create and run a Ground Truth
labeling job inside of an Amazon VPC instead of connecting over the internet. When you launch a
labeling job in an Amazon VPC, communication between your VPC and Ground Truth is conducted
entirely and securely within the AWS network.

A Ground Truth labeling job in Amazon VPC follows the same behavior as PrivateLink Endpoints.
For more information, see Shared subnets.

Security and Permissions 1760

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobResourceConfig.html#sagemaker-Type-LabelingJobResourceConfig-VolumeKmsKeyId
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-RoleArn
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#interface-endpoint-shared-subnets

Amazon SageMaker Developer Guide

This guide shows how you can use Ground Truth in an Amazon VPC in the following ways:

1. Run an Amazon SageMaker Ground Truth Labeling Job in an Amazon Virtual Private Cloud

2. Use Amazon VPC Mode from a Private Worker Portal

Run an Amazon SageMaker Ground Truth Labeling Job in an Amazon Virtual Private Cloud

Amazon SageMaker Ground Truth supports the following functionalities.

• You can use Amazon S3 bucket policies to control access to buckets from specific Amazon VPC
endpoints, or specific VPCs. If you launch a labeling job and your input data is located in an
Amazon S3 bucket with access restricted to users in your VPC, you can add a bucket policy to also
grant a Ground Truth endpoint permission to access the bucket. To learn more, see Allow Ground
Truth to Access VPC Restricted Amazon S3 Buckets.

• You can launch an automated data labeling job in your VPC. You use a VPC configuration to
specify VPC subnets and security groups. SageMaker uses this configuration to launch the
training and inference jobs used for automated data labeling in your VPC. To learn more, see
Create an Automated Data Labeling Job in a VPC.

You may want to use these options in any of the following ways.

• You can use both of these methods to launch a labeling job using a VPC-protected Amazon S3
bucket with automated data labeling enabled.

• You can launch a labeling job using any built-in task type using a VPC-protected bucket.

• You can launch a custom labeling workflow using a VPC-protected bucket. Ground Truth
interacts with your pre-annotation and post-annotation Lambda functions using an AWS
PrivateLink endpoint.

We recommend that you review Prerequisites to Run a Ground Truth Labeling Job in a VPC before
you create a labeling job in an Amazon VPC.

Prerequisites to Run a Ground Truth Labeling Job in a VPC

Review the following prerequisites before you create a Ground Truth labeling job in an Amazon
VPC.

Security and Permissions 1761

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
https://docs.aws.amazon.com/vpc/latest/privatelink/endpoint-services-overview.html
https://docs.aws.amazon.com/vpc/latest/privatelink/endpoint-services-overview.html

Amazon SageMaker Developer Guide

• If you are a new user of Ground Truth, review Getting started to learn how to create a labeling
job.

• If your input data is located in a VPC-protected Amazon S3 bucket, your workers must access the
worker portal from your VPC.

Note

When you launch a labeling job in your VPC, you must use a private work team. To learn
more about creating a private work team, see Use a Private Workforce.

• If you want to launch an automated data labeling job in your VPC, review the following
prerequisites.

• Use the instructions in Create an Amazon S3 VPC Endpoint. Training and inference containers
used in the automated data labeling workflow use this endpoint to communicate with your
buckets in Amazon S3.

• Review Automate Data Labeling to learn more about this feature. Note that automated data
labeling is supported for the following built-in task types: Image Classification (Single Label),
Image Semantic Segmentation, Bounding Box, and Text Classification (Single Label). Streaming
labeling jobs do not support automated data labeling.

• Review the Ground Truth Security and Permissions section and ensure that you have met the
following conditions.

• The user creating the labeling job has all necessary permissions

• You have created an IAM execution role with required permissions. If you do not require
fine-tuned permissions for your use case, we recommend you use the IAM managed policies
described in Grant General Permissions To Get Started Using Ground Truth.

• Allow your VPC to have access to the sagemaker-labeling-data-region and sm-
bxcb-region-saved-task-states S3 buckets. These are system owned regionalized S3
buckets that are accessed from worker portal when worker is working on a task. We use these
buckets to interact with system managed data.

Allow Ground Truth to Access VPC Restricted Amazon S3 Buckets

The following sections provide details about the permissions Ground Truth requires to launch
labeling jobs using Amazon S3 buckets that have access restricted to your VPC and VPC endpoints.
To learn how to restrict access to an Amazon S3 bucket to a VPC, see Controlling access from VPC

Security and Permissions 1762

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-getting-started.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html#train-vpc-s3
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-image-classification.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-bounding-box.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-text-classification.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-general.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-permissions-get-started
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies-vpc-endpoint.html

Amazon SageMaker Developer Guide

endpoints with bucket policies in the Amazon Simple Storage Service User Guide guide. To learn
how to add a policy to an S3 bucket, see Adding a bucket policy using the Amazon S3 console.

Note

Modifying policies on existing buckets can cause IN_PROGRESS Ground Truth jobs to fail.
We recommend you start new jobs using a new bucket. If you want to continue using the
same bucket, you can do one of the following.

• Wait for an IN_PROGRESS job to finish.

• Terminate the job using the console or the AWS CLI.

You can restrict Amazon S3 bucket access to users in your VPC using an AWS PrivateLink endpoint.
For example, the following S3 bucket policy allows access to a specific bucket, <bucket-name>,
from <vpc> and the endpoint <vpc-endpoint> only. When you modify this policy, you must
replace all red-italized text with your resources and specifications.

Note

The following policy denies all entities other than users within a VPC to perform the actions
listed in Action. If you do not include actions in this list, they are still accessible to any
entity that has access to this bucket and permission to perform those actions. For example,
if a user has permission to perform GetBucketLocation on your Amazon S3 bucket, the
policy below does not restrict the user from performing this action outside of your VPC.

{
 "Version": "2012-10-17",
 "Id": "Policy1415115909152",
 "Statement": [
 {
 "Sid": "Access-to-specific-VPCE-only",
 "Principal": "*",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Deny",

Security and Permissions 1763

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies-vpc-endpoint.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/add-bucket-policy.html
https://aws.amazon.com/privatelink/

Amazon SageMaker Developer Guide

 "Resource": [
 "arn:aws:s3:::<bucket-name>",
 "arn:aws:s3:::<bucket-name>/*"
],
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": [
 "<vpc-endpoint>",
 "<vpc>"
]
 }
 }
 }
]
}

Ground Truth must be able to perform the following Amazon S3 actions on the S3 buckets you use
to configure the labeling job.

"s3:AbortMultipartUpload",
"s3:GetObject",
"s3:PutObject",
"s3:ListBucket",
"s3:GetBucketLocation"

You can do this by adding a Ground Truth endpoint to the bucket policy like the one previously
mentioned. The following table includes Ground Truth service endpoints for each AWS Region. Add
an endpoint in the same AWS Region you use to run your labeling job to your bucket policy.

AWS Region Ground Truth endpoint

us-east-2 vpce-02569ba1c40aad0bc

us-east-1 vpce-08408e335ebf95b40

us-west-2 vpce-0ea07aa498eb78469

ca-central-1 vpce-0d46ea4c9ff55e1b7

eu-central-1 vpce-0865e7194a099183d

Security and Permissions 1764

https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon SageMaker Developer Guide

AWS Region Ground Truth endpoint

eu-west-2 vpce-0bccd56798f4c5df0

eu-west-1 vpce-0788e7ed8628e595d

ap-south-1 vpce-0d7fcda14e1783f11

ap-southeast-2 vpce-0b7609e6f305a77d4

ap-southeast-1 vpce-0e7e67b32e9efed27

ap-northeast-2 vpce-007893f89e05f2bbf

ap-northeast-1 vpce-0247996a1a1807dbd

For example, the following policy restricts GetObject and PutObject actions on:

• An Amazon S3 bucket to users in a VPC (<vpc>)

• A VPC endpoint (<vpc-endpoint>)

• A Ground Truth service endpoint (<ground-truth-endpoint>)

{
 "Version": "2012-10-17",
 "Id": "1",
 "Statement": [
 {
 "Sid": "DenyAccessFromNonGTandCustomerVPC",
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::<bucket-name>",
 "arn:aws:s3:::<bucket-name>/*"
],
 "Condition": {
 "ForAllValues:StringNotEquals": {

Security and Permissions 1765

Amazon SageMaker Developer Guide

 "aws:sourceVpce": [
 "<vpc-endpoint>",
 "<ground-truth-endpoint>"
],
 "aws:SourceVpc": "<vpc>"
 }
 }
 }
]
}

If you want a user to have permission to launch a labeling job using the Ground Truth console, you
must also add the user's ARN to the bucket policy using the aws:PrincipalArn condition. This
user must also have permission to perform the following Amazon S3 actions on the bucket you use
to launch the labeling job.

"s3:GetObject",
"s3:PutObject",
"s3:ListBucket",
"s3:GetBucketCors",
"s3:PutBucketCors",
"s3:ListAllMyBuckets",

The following code is an example of a bucket policy that restricts permission to perform the
actions listed in Action on the S3 bucket <bucket-name> to the following.

• <role-name>

• The VPC endpoints listed in aws:sourceVpce

• Users within the VPC named <vpc>

{
 "Version": "2012-10-17",
 "Id": "1",
 "Statement": [
 {
 "Sid": "DenyAccessFromNonGTandCustomerVPC",
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "s3:GetObject",

Security and Permissions 1766

Amazon SageMaker Developer Guide

 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::<bucket-name>/*",
 "arn:aws:s3:::<bucket-name>"
],
 "Condition": {
 "ForAllValues:StringNotEquals": {
 "aws:sourceVpce": [
 "<vpc-endpoint>",
 "<ground-truth-endpoint>"
],
 "aws:PrincipalArn": "arn:aws:iam::<aws-account-id>:role/<role-
name>",
 "aws:SourceVpc": "<vpc>"
 }
 }
 }
]
}

Note

The Amazon VPC interface endpoints and the protected Amazon S3 buckets you use for
input and output data must be located in the same AWS Region that you use to create the
labeling job.

After you have granted Ground Truth permission to access your Amazon S3 buckets, you can use
one of the topics in Create a Labeling Job to launch a labeling job. Specify the VPC-restricted
Amazon S3 buckets for your input and output data buckets.

Create an Automated Data Labeling Job in a VPC

To create an automated data labeling job using an Amazon VPC, you provide a VPC configuration
using the Ground Truth console or CreateLabelingJob API operation. SageMaker uses the
subnets and security groups you provide to launch the training and inferences jobs used for
automated labeling.

Security and Permissions 1767

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job.html

Amazon SageMaker Developer Guide

Important

Before you launch an automated data labeling job with a VPC configuration, make sure you
have created an Amazon S3 VPC endpoint using the VPC you want to use for the labeling
job. To learn how, see Create an Amazon S3 VPC Endpoint.
Additionally, if you create an automated data labeling job using a VPC-restricted Amazon
S3 bucket, you must follow the instructions in Allow Ground Truth to Access VPC Restricted
Amazon S3 Buckets to give Ground Truth permission to access the bucket.

Use the following procedures to learn how to add a VPC configuration to your labeling job request.

Add a VPC configuration to an automated data labeling job (console):

1. Follow the instructions in Create a Labeling Job (Console) and complete each step in the
procedure, up to step 15.

2. In the Workers section, select the checkbox next to Enable automated data labeling.

3. Maximize the VPC configuration section of the console by selecting the arrow.

4. Specify the Virtual private cloud (VPC) that you want to use for your automated data labeling
job.

5. Choose the dropdown list under Subnets and select one or more subnets.

6. Choose the dropdown list under Security groups and select one or more groups.

7. Complete all remaining steps of the procedure in Create a Labeling Job (Console).

Add a VPC configuration to an automated data labeling job (API):

To configure a labeling job using the Ground Truth API operation, CreateLabelingJob, follow
the instructions in Create an Automated Data Labeling Job (API) to configure your request. In
addition to the parameters described in this documentation, you must include a VpcConfig
parameter in LabelingJobResourceConfig to specify one or more subnets and security groups
using the following schema.

"LabelingJobAlgorithmsConfig": {
 "InitialActiveLearningModelArn": "string",
 "LabelingJobAlgorithmSpecificationArn": "string",
 "LabelingJobResourceConfig": {

Security and Permissions 1768

https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html#train-vpc-s3
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-console.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-console.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html#sms-create-automated-labeling-api

Amazon SageMaker Developer Guide

 "VolumeKmsKeyId": "string",
 "VpcConfig": {
 "SecurityGroupIds": ["string"],
 "Subnets": ["string"]
 }
 }
}

The following is an example of an AWS Python SDK (Boto3) request to create an automated
data labeling job in the US East (N. Virginia) Region using a private workforce. Replace all
red-italicized text with your labeling job resources and specifications. To learn more
about the CreateLabelingJob operation, see the Create a Labeling Job (API) tutorial and
CreateLabelingJob API documentation.

import boto3
client = boto3.client(service_name='sagemaker')

response = client.create_labeling_job(
 LabelingJobName="example-labeling-job",
 LabelAttributeName="label",
 InputConfig={
 'DataSource': {
 'S3DataSource': {
 'ManifestS3Uri': "s3://bucket/path/manifest-with-input-data.json"
 }
 }
 },
 "LabelingJobAlgorithmsConfig": {
 "LabelingJobAlgorithmSpecificationArn": "arn:aws:sagemaker:us-
east-1:027400017018:labeling-job-algorithm-specification/tasktype",
 "LabelingJobResourceConfig": {
 "VpcConfig": {
 "SecurityGroupIds": ["sg-01233456789", "sg-987654321"],
 "Subnets": ["subnet-e0123456", "subnet-e7891011"]
 }
 }
 },
 OutputConfig={
 'S3OutputPath': "s3://bucket/path/file-to-store-output-data",
 'KmsKeyId': "string"
 },
 RoleArn="arn:aws:iam::*:role/*,
 LabelCategoryConfigS3Uri="s3://bucket/path/label-categories.json",

Security and Permissions 1769

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_labeling_job
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-api.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

 StoppingConditions={
 'MaxHumanLabeledObjectCount': 123,
 'MaxPercentageOfInputDatasetLabeled': 123
 },
 HumanTaskConfig={
 'WorkteamArn': "arn:aws:sagemaker:region:*:workteam/private-crowd/*",
 'UiConfig': {
 'UiTemplateS3Uri': "s3://bucket/path/custom-worker-task-template.html"
 },
 'PreHumanTaskLambdaArn': "arn:aws:lambda:us-
east-1:432418664414:function:PRE-tasktype",
 'TaskKeywords': [
 "Images",
 "Classification",
 "Multi-label"
],
 'TaskTitle': "Add task title here",
 'TaskDescription': "Add description of task here for workers",
 'NumberOfHumanWorkersPerDataObject': 1,
 'TaskTimeLimitInSeconds': 3600,
 'TaskAvailabilityLifetimeInSeconds': 21600,
 'MaxConcurrentTaskCount': 1000,
 'AnnotationConsolidationConfig': {
 'AnnotationConsolidationLambdaArn': "arn:aws:lambda:us-
east-1:432418664414:function:ACS-tasktype"
 },
 Tags=[
 {
 'Key': "string",
 'Value': "string"
 },
]
)

Use Amazon VPC Mode from a Private Worker Portal

To restrict worker portal access to labelers working inside of your Amazon VPC, you can add a
VPC configuration when you create a Ground Truth private workforce. You can also add a VPC
configuration to an existing private workforce. Ground Truth automatically creates VPC interface
endpoints in your VPC and sets up AWS PrivateLink between your VPC endpoint and the Ground
Truth services. The worker portal URL associated with the workforce can be accessed from your
VPC. The worker portal URL can also be accessed from public internet until you set the restriction

Security and Permissions 1770

Amazon SageMaker Developer Guide

on the public internet. When you delete the workforce or remove the VPC configuration from your
workforce, Ground Truth automatically deletes the VPC endpoints associated with the workforce.

Note

There can be only one VPC supported for a workforce.

Point Cloud and video tasks do not support loading through a VPC.

The guide demonstrates how to complete the necessary steps to add and delete an Amazon VPC
configuration to your workforce, and satisfy the prerequisites.

Prerequisites

To run a Ground Truth labeling job in Amazon VPC, review the following prerequisites.

• You have an Amazon VPC configured that you can use. If you have not configured a VPC, follow
these instructions for creating a VPC.

• Depending on how a Worker Task Template is written, labeling data stored in an Amazon S3
bucket may be accessed directly from Amazon S3 during labeling tasks. In these cases, the VPC
network must be configured to allow traffic from the device used by the human labeler to the S3
bucket containing labeling data.

• Follow View and update DNS attributes for your VPC to enable DNS hostnames and DNS
resolution for your VPC.

Note

There are two ways to configure your VPC for your workforce. You can do this through the
console or the AWS SageMaker CLI.

Using the SageMaker console to manage a VPC config

You can use the SageMaker console to add or remove a VPC configuration. You can also delete an
existing workforce.

Security and Permissions 1771

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#interface-endpoint-shared-subnets
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-instructions-overview.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://console.aws.amazon.com/sagemaker
https://aws.amazon.com/cli/
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

Adding a VPC configuration to your workforce

Create a private workforce

• Create a private workforce using Amazon Cognito

• Create a private workforce using OpenID Connect (OIDC) Identity Provider(IdP).

After you have created your private workforce, add a VPC configuration to it.

1. Navigate to Amazon SageMaker Runtime in your console.

2. Select Labeling workforces in the left panel.

3. Select Private to access your private workforce. After your Workforce status is Active, select
Add next to VPC.

4. When you are prompted to configure your VPC, provide the following:

a. Your VPC

b. Subnets

i. Ensure that your VPC has an existing subnet

c. Security groups

i.
Note

You cannot select more than 5 security groups.

d. After filling in this information, choose Confirm.

5. After you choose Confirm, you are redirected back to the Private page under Labeling
workforces. You should see a green banner at the top that reads Your private workforce
update with VPC configuration was successfully initialized. The workforce status is Updating.
Next to the Delete workforce button is the Refresh button, which can be used to retrieve the
latest Workforce status. After the workforce status has changed to Active, the VPC endpoint ID
is updated as well.

Removing a VPC configuration from your workforce

Use the following information to remove a VPC configuration from your workforce using the
console.

1. Navigate to Amazon SageMaker Runtime in your console.

Security and Permissions 1772

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private-use-cognito.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private-use-oidc.html
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

2. Select Labeling workforces in the left panel.

3. Find and select your workforce.

4. Under Private workforce summary, find VPC and choose Remove next to it.

5. Select Remove.

Deleting a workforce through the console

If you delete a workforce, you should not have any teams associated with it. You can delete a
workforce only if the workforce status is Active or Failed.

Use the following information to delete a workforce using the console.

1. Navigate to Amazon SageMaker Runtime in your console.

2. Select Labeling workforces in the left panel.

3. Find and select your workforce.

4. Choose Delete workforce.

5. Choose Delete.

Using the SageMaker AWS API to manage a VPC config

Download the following files to use a new VpcConfig parameter into to the SageMaker workforce
CLI:

sagemaker-2017-07-24.normal.json

sagemaker-2017-07-24.paginators.json

sagemaker-2017-07-24.waiters-2.json

After downloading the files, run the following commands in your CLI:

aws configure add-model --service-model file://./sagemaker-2017-07-24.normal.json --
service-name sagemaker

cp ./sagemaker-2017-07-24.paginators.json ~/.aws/models/sagemaker/2017-07-24/
paginators.json

Security and Permissions 1773

https://console.aws.amazon.com/sagemaker
https://s3.amazonaws.com/sagemaker-sample-files/templates/groundtruth/sagemaker-2017-07-24.normal.json
https://s3.amazonaws.com/sagemaker-sample-files/templates/groundtruth/sagemaker-2017-07-24.paginators.json
https://s3.amazonaws.com/sagemaker-sample-files/templates/groundtruth/sagemaker-2017-07-24.waiters-2.json

Amazon SageMaker Developer Guide

cp ./sagemaker-2017-07-24.waiters-2.json ~/.aws/models/sagemaker/2017-07-24/
waiters-2.json

You can now test your API changes using AWS CLI. You can either create a new workforce with
a VPC configuration or update an existing workforce to add a VPC configuration. You can also
remove a VPC configuration from an existing workforce.

Create a workforce with a VPC configuration

If the account already has a workforce, then you must delete it first. You can also update the
workforce with VPC configuration.

aws sagemaker create-workforce --cognito-config '{"ClientId": "app-client-
id","UserPool": "Pool_ID",}' --workforce-vpc-config \
" {\"VpcId\": \"vpc-id\", \"SecurityGroupIds\": [\"sg-0123456789abcdef0\"], \"Subnets
\": [\"subnet-0123456789abcdef0\"]}" --workforce-name workforce-name
{
 "WorkforceArn": "arn:aws:sagemaker:us-west-2:xxxxxxxxx:workforce/workforce-name"
}

Describe the workforce and make sure the status is Initializing.

aws sagemaker describe-workforce --workforce-name workforce-name
{
 "Workforce": {
 "WorkforceName": "workforce-name",
 "WorkforceArn": "arn:aws:sagemaker:us-west-2:xxxxxxxxx:workforce/workforce-
name",
 "LastUpdatedDate": 1622151252.451,
 "SourceIpConfig": {
 "Cidrs": []
 },
 "SubDomain": "subdomain.us-west-2.sagamaker.aws.com",
 "CognitoConfig": {
 "UserPool": "Pool_ID",
 "ClientId": "app-client-id"
 },
 "CreateDate": 1622151252.451,
 "WorkforceVpcConfig": {

Security and Permissions 1774

Amazon SageMaker Developer Guide

 "VpcId": "vpc-id",
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
],
 "Subnets": [
 "subnet-0123456789abcdef0"
]
 },
 "Status": "Initializing"
 }
}

Navigate to the Amazon VPC console. Select Endpoints from the left panel. There should be two
VPC endpoints created in your account.

Adding a VPC configuration your workforce

Update a non-VPC private workforce with a VPC configuration using the following command.

aws sagemaker update-workforce --workforce-name workforce-name\
--workforce-vpc-config "{\"VpcId\": \"vpc-id\", \"SecurityGroupIds\":
 [\"sg-0123456789abcdef0\"], \"Subnets\": [\"subnet-0123456789abcdef0\"]}"

Describe the workforce and make sure the status is Updating.

aws sagemaker describe-workforce --workforce-name workforce-name
{
 "Workforce": {
 "WorkforceName": "workforce-name",
 "WorkforceArn": "arn:aws:sagemaker:us-west-2:xxxxxxxxx:workforce/workforce-
name",
 "LastUpdatedDate": 1622151252.451,
 "SourceIpConfig": {
 "Cidrs": []
 },
 "SubDomain": "subdomain.us-west-2.sagamaker.aws.com",
 "CognitoConfig": {
 "UserPool": "Pool_ID",
 "ClientId": "app-client-id"

Security and Permissions 1775

Amazon SageMaker Developer Guide

 },
 "CreateDate": 1622151252.451,
 "WorkforceVpcConfig": {
 "VpcId": "vpc-id",
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
],
 "Subnets": [
 "subnet-0123456789abcdef0"
]
 },
 "Status": "Updating"
 }
}

Navigate to your Amazon VPC console. Select Endpoints from the left panel. There should be two
VPC endpoints created in your account.

Removing a VPC configuration from your workforce

Update a VPC private workforce with an empty VPC configuration to remove VPC resources.

aws sagemaker update-workforce --workforce-name workforce-name\
--workforce-vpc-config "{}"

Describe the workforce and make sure the status is Updating.

aws sagemaker describe-workforce --workforce-name workforce-name
{
 "Workforce": {
 "WorkforceName": "workforce-name",
 "WorkforceArn": "arn:aws:sagemaker:us-west-2:xxxxxxxxx:workforce/workforce-
name",
 "LastUpdatedDate": 1622151252.451,
 "SourceIpConfig": {
 "Cidrs": []
 },
 "SubDomain": "subdomain.us-west-2.sagamaker.aws.com",
 "CognitoConfig": {

Security and Permissions 1776

Amazon SageMaker Developer Guide

 "UserPool": "Pool_ID",
 "ClientId": "app-client-id"
 },
 "CreateDate": 1622151252.451,
 "Status": "Updating"
 }
}

Naviagate to your Amazon VPC console. Select Endpoints from the left panel. The two VPC
endpoints should be deleted.

Restrict public access to the worker portal while maintaining access through a VPC

The workers in a VPC or non-VPC worker portal are be able to see the labeling job tasks assigned
to them. The assignment comes from assigning workers in a work team through OIDC groups. It
is the customer’s responsibility to restrict the access to their public worker portal by setting the
sourceIpConfig in their workforce.

Note

You can restrict access to the worker portal only through the SageMaker API. This cannot
be done through the console.

Use the following command to restrict public access to the worker portal.

aws sagemaker update-workforce --region us-west-2 \
--workforce-name workforce-demo --source-ip-config '{"Cidrs":["10.0.0.0/16"]}'

After the sourceIpConfig is set on the workforce, the workers can access the worker portal in
VPC but not through public internet.

Note

You can not set the sourceIP restriction for worker portal in VPC.

Security and Permissions 1777

Amazon SageMaker Developer Guide

Output Data and Storage Volume Encryption

With Amazon SageMaker Ground Truth, you can label highly sensitive data, stay in control of your
data, and employ security best practices. While your labeling job is running, Ground Truth encrypts
data in transit and at rest. Additionally, you can use AWS Key Management Service (AWS KMS) with
Ground Truth to do the following:

• Use a customer managed key to encrypt your output data.

• Use AWS KMS customer managed key with your automated data labeling job to encrypt the
storage volume attached to the compute instance used for model training and inference.

Use the topics on this page to learn more about these Ground Truth security features.

Use Your KMS Key to Encrypt Output Data

Optionally, you can provide an AWS KMS customer managed key when you create a labeling job,
which Ground Truth uses to encrypt your output data.

If you don't provide a customer managed key, Amazon SageMaker uses the default AWS managed
key for Amazon S3 for your role's account to encrypt your output data.

If you provide a customer managed key, you must add the required permissions to the key
described in Encrypt Output Data and Storage Volume with AWS KMS. When you use the API
operation CreateLabelingJob, you can specify your customer managed key ID using the
parameter KmsKeyId. See the following procedure to learn how to add a customer managed key
when you create a labeling job using the console.

To add an AWS KMS key to encrypt output data (console):

1. Complete the first 7 steps in Create a Labeling Job (Console).

2. In step 8, select the arrow next to Additional configuration to expand this section.

3. For Encryption key, select the AWS KMS key that you want to use to encrypt output data.

4. Complete the rest of steps in Create a Labeling Job (Console) to create a labeling job.

Use Your KMS Key to Encrypt Automated Data Labeling Storage Volume (API Only)

When you create a labeling job with automated data labeling using the CreateLabelingJob
API operation, you have the option to encrypt the storage volume attached to the ML compute
instances that run the training and inference jobs. To add encryption to your storage volume,

Security and Permissions 1778

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobOutputConfig.html#sagemaker-Type-LabelingJobOutputConfig-KmsKeyId

Amazon SageMaker Developer Guide

use the parameter VolumeKmsKeyId to input an AWS KMS customer managed key. For more
information about this parameter, see LabelingJobResourceConfig.

If you specify a key ID or ARN for VolumeKmsKeyId, your SageMaker execution role must include
permissions to call kms:CreateGrant. To learn how to add this permission to an execution role,
see Create a SageMaker Execution Role for a Ground Truth Labeling Job.

Note

If you specify an AWS KMS customer managed key when you create a labeling job in the
console, that key is only used to encrypt your output data. It is not used to encrypt the
storage volume attached to the ML compute instances used for automated data labeling.

Workforce Authentication and Restrictions

Ground Truth enables you to use your own private workforce to work on labeling jobs. A private
workforce is an abstract concept which refers to a set of people who work for you. Each labeling
job is created using a work team, composed of workers in your workforce. Ground Truth supports
private workforce creation using Amazon Cognito.

A Ground Truth workforce maps to a Amazon Cognito user pool. A Ground Truth work team maps
to a Amazon Cognito user group. Amazon Cognito manages the worker authentication. Amazon
Cognito supports Open ID connection (OIDC) and customers can set up Amazon Cognito federation
with their own identity provider (IdP).

Ground Truth only allows one workforce per account per AWS Region. Each workforce has a
dedicated Ground Truth work portal login URL.

You can also restrict workers to a Classless Inter-Domain Routing (CIDR) block/IP address range.
This means annotators must be on a specific network to access the annotation site. You can add
up to ten CIDR blocks for one workforce. To learn more, see Manage Private Workforce Using the
Amazon SageMaker API.

To learn how you can create a private workforce, see Create a Private Workforce (Amazon Cognito).

Restrict Access to Workforce Types

Amazon SageMaker Ground Truth work teams fall into one of three workforce types: public (with
Amazon Mechanical Turk), private, and vendor. To restrict user access to a specific work team
using one of these types or the work team ARN, use the sagemaker:WorkteamType and/or the

Security and Permissions 1779

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobResourceConfig.html#sagemaker-Type-LabelingJobResourceConfig-VolumeKmsKeyId
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html

Amazon SageMaker Developer Guide

sagemaker:WorkteamArn condition keys. For the sagemaker:WorkteamType condition key, use
string condition operators. For the sagemaker:WorkteamArn condition key, use Amazon Resource
Name (ARN) condition operators. If the user attempts to create a labeling job with a restricted work
team, SageMaker returns an access denied error.

The policies below demonstrate different ways to use the sagemaker:WorkteamType and
sagemaker:WorkteamArn condition keys with appropriate condition operators and valid
condition values.

The following example uses the sagemaker:WorkteamType condition key with the
StringEquals condition operator to restrict access to a public work team. It accepts condition
values in the following format: workforcetype-crowd, where workforcetype can equal
public, private, or vendor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RestrictWorkteamType",
 "Effect": "Deny",
 "Action": "sagemaker:CreateLabelingJob",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:WorkteamType": "public-crowd"
 }
 }
 }
]
}

The following policies show how to restrict access to a public work team using the
sagemaker:WorkteamArn condition key. The first shows how to use it with a valid IAM regex-
variant of the work team ARN and the ArnLike condition operator. The second shows how to use
it with the ArnEquals condition operator and the work team ARN.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RestrictWorkteamType",

Security and Permissions 1780

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN

Amazon SageMaker Developer Guide

 "Effect": "Deny",
 "Action": "sagemaker:CreateLabelingJob",
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "sagemaker:WorkteamArn": "arn:aws:sagemaker:*:*:workteam/public-
crowd/*"
 }
 }
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RestrictWorkteamType",
 "Effect": "Deny",
 "Action": "sagemaker:CreateLabelingJob",
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "sagemaker:WorkteamArn": "arn:aws:sagemaker:us-
west-2:394669845002:workteam/public-crowd/default"
 }
 }
 }
]
}

Monitor Labeling Job Status

To monitor the status of your labeling jobs, you can set up an Amazon CloudWatch Events
(CloudWatch Events) rule for Amazon SageMaker Ground Truth (Ground Truth) to send an event
to CloudWatch Events when a labeling job status changes to Completed, Failed, or Stopped or
when a worker accepts, declines, submits, or returns a task.

Once you create a rule, you can add a target to it. CloudWatch Events uses this target to invoke
another AWS service to process the event. For example, you can create a target using a Amazon
Simple Notification Service (Amazon SNS) topic to send a notification to your email when a
labeling job status changes.

Monitor Labeling Job Status 1781

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-ground-truth

Amazon SageMaker Developer Guide

Prerequisites:

To create a CloudWatch Events rule, you will need an AWS Identity and Access Management (IAM)
role with an events.amazonaws.com trust policy attached. The following is an example of an
events.amazonaws.com trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Topics

• Send Events to CloudWatch Events

• Set Up a Target to Process Events

• Labeling Job Expiration

• Declining Tasks

Send Events to CloudWatch Events

To configure a CloudWatch Events rule to get status updates, or events, for your Ground Truth
labeling jobs, use the AWS Command Line Interface (AWS CLI) put-rule command. You can filter
events that are sent to your rule by status change. For example, you can create a rule that notifies
you only if a labeling job status changes to Completed. When using the put-rule command,
specify the following to receive labeling job statuses:

• \"source\":[\"aws.sagemaker\"]

• \"detail-type\":[\"SageMaker Ground Truth Labeling Job State Change\"]

Monitor Labeling Job Status 1782

https://docs.aws.amazon.com/cli/latest/reference/events/put-rule.html

Amazon SageMaker Developer Guide

To configure a CloudWatch Events rule to watch for all status changes, use the following command
and replace the placeholder text. For example, replace "GTLabelingJobStateChanges"
with a unique CloudWatch Events rule name and "arn:aws:iam::111122223333:role/
MyRoleForThisRule" with the Amazon Resource Number (ARN) of an IAM role with an
events.amazonaws.com trust policy attached.

aws events put-rule --name "GTLabelingJobStateChanges"
 --event-pattern "{\"source\":[\"aws.sagemaker\"],\"detail-type\":[\"SageMaker
 Ground Truth Labeling Job State Change\"]}"
 --role-arn "arn:aws:iam::111122223333:role/MyRoleForThisRule"
 --region "region"

To filter by job status, use the \"detail\":{\"LabelingJobStatus\":[\"Status\"]}}"
syntax. Valid values for Status are Completed, Failed, and Stopped.

The following example creates a CloudWatch Events rule that notifies you when a labeling job in
us-west-2 (Oregon) changes to Completed.

aws events put-rule --name "LabelingJobCompleted"
 --event-pattern "{\"source\":[\"aws.sagemaker\"],\"detail-type\":[\"SageMaker
 Ground Truth Labeling Job State Change\"], \"detail\":{\"LabelingJobStatus\":
[\"Completed\"]}}"
 --role-arn "arn:aws:iam::111122223333:role/MyRoleForThisRule"
 --region us-west-2

The following example creates a CloudWatch Events rule that notifies you when a labeling job in
us-east-1 (Virginia) changes to Completed or Failed.

aws events put-rule --name "LabelingJobCompletedOrFailed"
 --event-pattern "{\"source\":[\"aws.sagemaker\"],\"detail-type\":[\"SageMaker
 Ground Truth Labeling Job State Change\"], \"detail\":{\"LabelingJobStatus\":
[\"Completed\", \"Failed\"]}}"
 --role-arn "arn:aws:iam::111122223333:role/MyRoleForThisRule"
 --region us-east-1

To learn more about the put-rule request, see Event Patterns in CloudWatch Events in the
Amazon CloudWatch Events User Guide.

Monitor Labeling Job Status 1783

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html

Amazon SageMaker Developer Guide

Set Up a Target to Process Events

After you have created a rule, events similar to the following are sent to CloudWatch Events. In this
example, the labeling job test-labeling-job's status changed to Completed.

{
 "version": "0",
 "id": "111e1111-11d1-111f-b111-1111b11dcb11",
 "detail-type": "SageMaker Ground Truth Labeling Job State Change",
 "source": "aws.sagemaker",
 "account": "111122223333",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:sagemaker:us-east-1:111122223333:labeling-job/test-labeling-job"
],
 "detail": {
 "LabelingJobStatus": "Completed"
 }
}

To process events, you need to set up a target. For example, if you want to receive an email when
your labeling job status changes, use a procedure in Setting Up Amazon SNS Notifications in the
Amazon CloudWatch User Guide to set up an Amazon SNS topic and subscribe your email to it.
Once you have create a topic, you can use it to create a target.

To add a target to your CloudWatch Events rule

1. Open the CloudWatch console: https://console.aws.amazon.com/cloudwatch/home

2. In the navigation pane, choose Rules.

3. Choose the rule that you want to add a target to.

4. Choose Actions, and then choose Edit.

5. Under Targets, choose Add Target and choose the AWS service you want to act when a
labeling job status change event is detected.

6. Configure your target. For instructions, see the topic for configuring a target in the AWS
documentation for that service.

7. Choose Configure details.

8. For Name, enter a name and, optionally, provide details about the purpose of the rule in
Description.

Monitor Labeling Job Status 1784

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html
https://console.aws.amazon.com/cloudwatch/home
https://docs.aws.amazon.com/index.html
https://docs.aws.amazon.com/index.html

Amazon SageMaker Developer Guide

9. Make sure that the check box next to State is selected so that your rule is listed as Enabled.

10. Choose Update rule.

Labeling Job Expiration

If your labeling job is not completed after 30 days, it will expire. If your labeling job expires, you
can chain the job to create a new labeling job that will only send unlabeled data to workers. For
more information, and to learn how to create a labeling job using chaining, see Chaining Labeling
Jobs.

Declining Tasks

Workers are able to decline tasks.

Workers decline a task if the instructions are not clear, input data is not displaying correctly, or
if they encounter some other issue with the task. If the number of workers per dataset object
(NumberOfHumanWorkersPerDataObject) decline the task, the data object is marked as expired
and will not be sent to additional workers.

Use Amazon SageMaker Ground Truth Plus to Label Data

Amazon SageMaker Ground Truth Plus is a turnkey data labeling service that uses an expert
workforce to deliver high-quality annotations quickly and reduces costs by up to 40%. Using
SageMaker Ground Truth Plus, data scientists and business managers, such as data operations
managers and program managers, can create high-quality training datasets without having to
build labeling applications and manage labeling workforces on their own. You can get started with
Amazon SageMaker Ground Truth Plus by uploading data along with the labeling requirements in
Amazon S3.

Why use SageMaker Ground Truth Plus?

To train a machine learning (ML) model, data scientists need large, high-quality, labeled datasets.
As ML adoption grows, labeling needs increase. This forces data scientists to spend weeks on
building data labeling workflows and managing a data labeling workforce. Unfortunately, this
slows down innovation and increases cost. To ensure data scientists can spend their time building,
training, and deploying ML models, data scientists typically task other in-house teams consisting
of data operations managers and program managers to produce high-quality training datasets.

Ground Truth Plus 1785

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-NumberOfHumanWorkersPerDataObject

Amazon SageMaker Developer Guide

However, these teams typically don't have access to skills required to deliver high-quality training
datasets, which affects ML results. As a result, you look for a data labeling partner that can help
them create high-quality training datasets at scale without consuming their in-house resources.

When you upload the data, SageMaker Ground Truth Plus sets up the data labeling workflows and
operates them on your behalf. From there, an expert workforce trained on a varierty of machine
learning (ML) tasks performs data labeling. SageMaker Ground Truth Plus currently offers two
types of expert workforce: an Amazon employed workforce and a curated list of third-party
vendors. SageMaker Ground Truth Plus provides you with the flexibility to choose the labeling
workforce. AWS experts select the best labeling workforce based on your project requirements.
For example, if you need people proficient in labeling audio files, specify that in the guidelines
provided to SageMaker Ground Truth Plus, and the service automatically selects labelers with those
skills.

Important

SageMaker Ground Truth Plus does not support PHI, PCI or FedRAMP certified data, and
you should not provide this data to SageMaker Ground Truth Plus.

How does SageMaker Ground Truth Plus work?

There are five main components to a workflow.

• Requesting a project

• Creating a project team

• Accessing the project portal to monitor progress of training datasets and review labeled data

• Creating a batch

• Receiving the labeled data

How do I use SageMaker Ground Truth Plus?

If you are a first-time user of SageMaker Ground Truth Plus, use Getting Started with Amazon
SageMaker Ground Truth Plus. get started. To access SageMaker Ground Truth Plus using the
SageMaker console, you must be in US East (N. Virginia) (us-east-1).

Ground Truth Plus 1786

Amazon SageMaker Developer Guide

Getting Started with Amazon SageMaker Ground Truth Plus.

The guide demonstrates how to complete the necessary steps to start an Amazon SageMaker
Ground Truth Plus project, review labels, and satisfy SageMaker Ground Truth Plus prerequisites.

To get started using SageMaker Ground Truth Plus, review Set Up Amazon SageMaker Ground
Truth Plus Prerequisites and Core Components of Amazon SageMaker Ground Truth Plus.

Set Up Amazon SageMaker Ground Truth Plus Prerequisites

Use the following information to sign up for an AWS account. If you already have an AWS account,
skip this step.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Getting Started with Amazon SageMaker Ground Truth Plus. 1787

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

Amazon SageMaker Developer Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Core Components of Amazon SageMaker Ground Truth Plus

The following terms are key to understanding the capabilities of SageMaker Ground Truth Plus:

• Project: Each qualified engagement with an AWS expert results in a SageMaker Ground Truth
Plus project. A project can be in the pilot or production stage.

Getting Started with Amazon SageMaker Ground Truth Plus. 1788

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon SageMaker Developer Guide

• Batch: A batch is a collection of similar recurring data objects such as images, video frames and
text to be labeled. A project can have multiple batches.

• Metrics: Metrics are data about your SageMaker Ground Truth Plus project for a specific date or
over a date range.

• Task type: SageMaker Ground Truth Plus supports five task types for data labeling. You can also
have a custom task type. These include text, image, video, audio, and 3D point cloud.

• Data objects: Individual items that are to be labeled.

Request a Project

To use Amazon SageMaker Ground Truth Plus, get started by requesting a project.

1. Under the Ground Truth tab of Amazon SageMaker, choose Plus.

2. On the SageMaker Ground Truth Plus page, choose Request project.

3. A page titled Request a project opens. The page includes fields for General information and
Project overview. Enter the following information

a. Under General information, enter your First name, Last name and Business email
address. An AWS expert uses this information for contacting you to discuss the project
after you submit the request.

b. Under Project overview, enter your Project name and Project description. Choose the
Task type based on your data and use case. You can also indicate if your data contains
personally identifiable information (PII).

c. Create or select an IAM role that grants SageMaker Ground Truth Plus permissions to
perform a labeling job by choosing one of the options below.

i. You can Create an IAM role that provides access to any S3 bucket you specify.

ii. You can Enter a custom IAM role ARN.

iii. You can choose an existing role.

iv. If you use an existing role or a custom IAM role ARN, make sure you have the
following IAM role and trust policy.

IAM role

{
 "Version": "2012-10-17",

Request a Project 1789

Amazon SageMaker Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::your-bucket-name",
 "arn:aws:s3:::your-bucket-name/*"
 //Ex: "arn:aws:s3:::input-data-to-label/*"
]
 }
]
}

Trust policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker-ground-truth-plus.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

4. Choose Request a project.

Once you create a project, you can find it on the SageMaker Ground Truth Plus page, under the
Projects section. The project status should be Review in-progress

Note

You cannot have more than 5 projects with the Review in progress status.

Request a Project 1790

Amazon SageMaker Developer Guide

Create a Project Team

A project team provides access to the members from your organization or team to track projects,
view metrics, and review annotations. You can create a SageMaker Ground Truth Plus project team
once you have shared your data in an Amazon S3 bucket.

To add team members using Amazon Cognito, you have two options:

1. Create a new Amazon Cognito user group

a. Enter an Amazon Cognito user group name. This name cannot be changed.

b. Enter the email addresses of up to 50 team members in the Email addresses field. The
addresses must be separated by a comma.

c. Choose Create project team.

Create a Project Team 1791

Amazon SageMaker Developer Guide

d. Your team members receive an email inviting them to join the SageMaker Ground Truth
Plus project team as shown in the following image.

Create a Project Team 1792

Amazon SageMaker Developer Guide

2. Import team members from existing Amazon Cognito user groups.

a. Choose a user pool that you have created. User pools require a domain and an existing
user group. If you get an error that the domain is missing, set it in the Domain name
options on the App integration page of the Amazon Cognito console for your group.

b. Choose an app client. We recommend using a client generated by Amazon SageMaker.

c. Choose a user group from your pool to import its members.

d. Choose Create project team.

You can view and manage the list of team members through the AWS console.

To add team members after creating the project team:

1. Choose Invite new members in the Members section.

Create a Project Team 1793

Amazon SageMaker Developer Guide

2. Enter the email addresses of up to 50 team members in the Email addresses field. The
addresses must be separated by a comma.

3. Choose Invite new members

To delete existing team members:

1. Choose the team member to be deleted in the Members section.

2. Choose Delete.

Once you have added members to your project team, you can open the project portal to access
your projects.

Open the Project Portal

Once you have successfully submitted the intake form and created a project team, you can access
the SageMaker Ground Truth Plus project by choosing the Open project portal on the AWS
console.

Each project consists of one or more batches. A batch is a collection of recurring similar data
objects (text, image, video frame, and point cloud) to be labeled. The project portal provides you
with transparency into the data labeling process. You can stay updated about a project, create
batches within a project, review the progress of the datasets across multiple projects, and analyze
project metrics. The project portal also allows you to review a subset of the labeled data and
provide feedback. You can configure the columns displayed in your project and batch table.

You can use the SageMaker Ground Truth Plus project portal to track the following details about
your project.

Project name: Each project is identified using a unique name.

Status: A SageMaker Ground Truth Plus project has one of the following status types:

Open the Project Portal 1794

Amazon SageMaker Developer Guide

1. Review in progress: You have successfully submitted the project request form. An AWS expert is
currently reviewing your request.

2. Request approved: Your project request is approved. You can now share your data by creating a
new batch from the project portal.

3. Workflow design and setup progress: An AWS expert is setting up your project.

4. Pilot in-progress: Object labeling for the project in the pilot stage is currently in progress.

5. Pilot complete: Object labeling is complete and the labeled data is stored in your Amazon S3
bucket.

6. Pricing complete: An AWS expert shares the pricing for the production project with you.

7. Contract executed: The contract is complete.

8. Production in-progress: Labeling for the project in the production stage is in progress.

9. Production complete: Object labeling is complete and the labeled data is stored in your Amazon
S3 bucket.

10.Paused: Project is currently paused at your request.

Task type: SageMaker Ground Truth Plus lets you label five types of tasks that include text, image,
video, audio, and point cloud.

Batches: Total number of batches within a project.

Project creation date: Starting date of a project.

Total objects: Total number of objects to be labeled across all batches.

Objects completed: Number of labeled objects.

Remaining objects: Number of objects left to be labeled.

Failed objects: Number of objects that cannot be labeled due to an issue with the input data.

Create a Batch

You can use the project portal to create batches for a project after the project status is changed to
Request approved.

Create a Batch 1795

Amazon SageMaker Developer Guide

To create a batch, do the following.

1. Select a project by choosing the project name.

2. A page titled with the project name opens. Under the Batches section, choose Create batch.

3. Enter the Batch name, Batch description, S3 location for input datasets, and S3 location for
output datasets.

4. Choose Submit.

Create a Batch 1796

Amazon SageMaker Developer Guide

To create a batch successfully, make sure you meet the following criteria:

• Your data is in the US East (N. Virginia) Region.

• The maximum size for each file is no more than 2 gigabytes.

• The maximum number of files in a batch is 10,000.

• The total size of a batch is less than 100 gigabytes.

• You have no more than 5 batches with the Data transfer in-progress status.

Note

You cannot create a batch before the project status changes to Request approved.

Review Metrics

Metrics are data about your SageMaker Ground Truth Plus project for a specific date or over a date
range.

You can review metrics for all batches or choose a batch of your choice as shown in the following
image.

Review Metrics 1797

Amazon SageMaker Developer Guide

You can review the following metrics about the batch:

Total objects: Total number of objects in a batch or across all batches.

Objects completed by day: Total numbers of objects labeled on a specific date or over a date
range.

Labels completed by day: Total numbers of labels completed on a specific date or over a date
range. An object can have more than one label.

Review Metrics 1798

Amazon SageMaker Developer Guide

Review Batches

Every Amazon SageMaker Ground Truth Plus project consists of one or more batches. Each batch
is made up of data objects to be labeled. You can view all the batches for your project using the
project portal as shown in the following image.

You can use the SageMaker Ground Truth Plus project portal to track the following details about
every batch:

Batch name: Each batch is identified with a unique batch name.

Status: A SageMaker Ground Truth Plus batch has one of the following status types:

1. Request submitted: You have successfully submitted a new batch.

2. Data transfer failed: Data transfer failed with errors. Check the error reason and create a new
batch after fixing the error.

3. Data received: We have received your unlabeled input data.

4. In-progress: Data labeling is in progress.

5. Ready for review: Data labeling is completed. A subset of labeled objects from the batch are
ready for you to review. This is an optional step.

6. Review submission in-progress: Review feedback is currently being processed.

7. Review complete: You have successfully reviewed the batch. Next, you have to accept or reject
it. This action can not be undone.

Review Batches 1799

Amazon SageMaker Developer Guide

8. Accepted: You have accepted the labeled data and will receive it in your Amazon S3 bucket
shortly.

9. Rejected: Labeled data needs to be reworked.

10.Sent for rework: Labeled data is sent for rework. You can review the batch after its status
changes to Ready for review.

11.Ready for delivery: Labeled data is ready to be transferred to your Amazon S3 bucket.

12.Data delivered: Object labeling is complete and the labeled data is stored in your Amazon S3
bucket.

13.Paused: Batch is paused at your request.

Task type: SageMaker Ground Truth Plus lets you label five types of tasks that include text, image,
video, audio, and point cloud.

Batch creation date: Date when the batch was created.

Total objects: Total number of objects to be labeled across a batch.

Completed objects: Number of labeled objects.

Remaining objects: Number of objects left to be labeled.

Failed objects: Number of objects that cannot be labeled due to an issue with the input data.

Objects to review: Number of objects that are ready for your review.

Objects with feedback: Number of objects that have gotten feedback from the team members.

SageMaker Ground Truth Plus lets you review a sample set of your labeled data (determined during
the initial consultation call) through the review UI shown in the following image.

Review Batches 1800

Amazon SageMaker Developer Guide

The portal allows your project team members and you to review a small sample set of the labeled
objects for each batch. You can provide feedback for each labeled object within that subset
through this UI. The review UI allows you to navigate across the subset of labeled objects and
provide feedback for those labeled objects.

You can perform the following actions using the review UI.

• Use the arrow controls on the bottom left to navigate through the data objects.

• You can provide feedback for each object. The Feedback section is in the right panel. Choose
Submit to submit feedback for all images.

• Use the image controls in the bottom tray to zoom, pan, and control contrast.

• If you plan on returning to finish up your review, choose Stop and resume later on the top right.

• Choose Save to save your progress. Your progress is also autosaved every 15 minutes.

• To exit the review UI, choose Close on the upper right corner of the review UI.

• You can verify the Label attributes and Frame attributes on each frame using the panel on the
right. You cannot create new objects or modify existing objects in this task.

Review Batches 1801

Amazon SageMaker Developer Guide

Accept or Reject Batches

After you have reviewed a batch, you must choose to accept or reject it.

If you accept a batch, the output from that labeling job is placed in the Amazon S3 bucket that
you specify. Once the data is delivered to your S3 bucket, the status of your batch changes from
Accepted to Data delivered.

If you reject a batch, you can provide feedback and explain your reasons for rejecting the batch.

SageMaker Ground Truth Plus allows you to provide feedback at the data object level as well as
the batch level. You can provide feedback for data objects through the review UI. You can use the
project portal to provide feedback for each batch. When you reject a batch, an AWS expert contacts
you to determine the rework process and the next steps for the batch.

Note

Accepting or rejecting a batch is a one-time action and cannot be undone. It is necessary to
either accept or reject every batch of the project.

Create and Manage Workforces

A workforce is the group of workers that you have selected to label your dataset. You can choose
either the Amazon Mechanical Turk workforce, a vendor-managed workforce, or you can create
your own private workforce to label or review your dataset. Whichever workforce type you choose,
Amazon SageMaker takes care of sending tasks to workers.

When you use a private workforce, you also create work teams, a group of workers from your
workforce that are assigned to specific jobs— Amazon SageMaker Ground Truth labeling jobs or
Amazon Augmented AI human review tasks. You can have multiple work teams and can assign one
or more work teams to each job.

You can use Amazon Cognito or your own private OpenID Connect (OIDC) Identity Provider (IdP)
to manage your private workforce and work teams. For more information about the permissions
required to manage your workforce this way, see Permissions Required to Use the Amazon
SageMaker Ground Truth Console.

Topics

• Using the Amazon Mechanical Turk Workforce

Accept or Reject Batches 1802

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-use-augmented-ai-a2i-human-review-loops.html

Amazon SageMaker Developer Guide

• Managing Vendor Workforces

• Use a Private Workforce

Using the Amazon Mechanical Turk Workforce

The Amazon Mechanical Turk (Mechanical Turk) workforce provides the most workers for your
Amazon SageMaker Ground Truth labeling job and Amazon Augmented AI human review task. The
Amazon Mechanical Turk workforce is a world-wide resource. Workers are available 24 hours a day,
7 days a week. You typically get the fastest turnaround for your human review tasks and labeling
jobs when you use the Amazon Mechanical Turk workforce.

Any Amazon Mechanical Turk workforce billing is handled as part of your Ground Truth or Amazon
Augmented AI billing. You do not need to create a separate Mechanical Turk account to use the
Amazon Mechanical Turk workforce.

Important

You should not share confidential information, personal information, or protected
health information with this workforce. You should not use the Amazon Mechanical Turk
workforce when you use Amazon A2I in conjunction with AWS HIPAA-eligible services, such
as Amazon Textract and Amazon Rekognition, for workloads containing protected health
information.

You can choose Mechanical Turk as your workforce when you create a Ground Truth labeling job or
Amazon A2I human review workflow (flow definition). You can create a labeling job and a human
review workflow using the SageMaker console and API.

When you use an API operation to create a labeling job or human review workflow, you use the
following ARN for the Amazon Mechanical Turk workforce for your WorkteamArn. Replace region
with the AWS Region you are using to create the labeling job or human loops. For example, if you
create a labeling job in US West (Oregon), replace region with us-west-2.

• arn:aws:sagemaker:region:394669845002:workteam/public-crowd/default

Ground Truth and Amazon A2I require that your input data is free of personally identifiable
information (PII) when you use Mechanical Turk. If you use the Mechanical Turk workforce and do

Using the Amazon Mechanical Turk Workforce 1803

https://docs.aws.amazon.com/sagemaker/latest/dg/a2i.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-use-augmented-ai-a2i-human-review-loops.html

Amazon SageMaker Developer Guide

not specify that your input data is free of PII, your Ground Truth labeling jobs and Augmented
AI tasks will fail. You specify that your input data is free of PII when you create a Ground Truth
labeling job and when you create a Amazon A2I human loop using a built-in integration or the
StartHumanLoop operation.

Use the following sections to learn how to use Mechanical Turk with these services.

Topics

• Use Mechanical Turk with Ground Truth

• Use Mechanical Turk with Amazon A2I

• When is Mechanical Turk Not Supported?

Use Mechanical Turk with Ground Truth

You can use Mechanical Turk with Ground Truth when you create a labeling job using the console,
or the CreateLabelingJob operation.

When you create a labeling job, we recommend you adjust the number of workers that annotate
each data object based on the complexity of the job and the quality that you need. Amazon
SageMaker Ground Truth uses annotation consolidation to improve the quality of the labels. More
workers can make a difference in the quality of the labels for more complex labeling jobs, but
might not make a difference for simpler jobs. For more information, see Consolidate Annotations.
Note that annotation consolidation is not supported for Amazon A2I human review workflows.

To use Mechanical Turk when you create a labeling job (console):

1. Use the following to create a labeling job using the Ground Truth area of the SageMaker
console: Create a Labeling Job (Console).

2. When you are selecting Worker types in the Workers section, select Amazon Mechanical Turk.

3. Specify the total amount of time workers have to complete a task using Task timeout.

4. Specify the total amount of time a task remains available to workers in Task expiration. This is
how long workers have to pick up a task before it fails.

5. Select the Price per task using the dropdown list. This is the amount of money a worker
receives for completing a single task.

6. (Optional) If applicable, select The dataset does not contain adult content. SageMaker may
restrict the Mechanical Turk workers that can view your task if it contains adult content.

Using the Amazon Mechanical Turk Workforce 1804

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html

Amazon SageMaker Developer Guide

7. You must read and confirm the following statement by selecting the check box to use the
Mechanical Turk workforce. If your input data contains confidential information, personal
information, or protected health information, you must select another workforce.

You understand and agree that the Mechanical Turk workforce consists of independent
contractors located worldwide and that you should not share confidential information,
personal information, or protected health information with this workforce.

8. (Optional) Select the check box next to Enable automated data labeling if you want to enable
automated data labeling. To learn more about this feature, see Automate Data Labeling.

9. You can specify the Number of workers per dataset object under Additional configuration.
For example, if you enter 3 in this field, each data object will be labeled by 3 workers.

When you create your labeling job by selecting Create, your labeling tasks are sent to Mechanical
Turk workers.

To use Mechanical Turk when you create a labeling job (API):

1. Use the following to create a labeling job using the CreateLabelingJob operation: Create a
Labeling Job (API).

2. Use the following for the WorkteamArn. Replace region with the AWS Region you are using
to create the labeling job.

arn:aws:sagemaker:region:394669845002:workteam/public-crowd/default

3. Use TaskTimeLimitInSeconds to specify the total amount of time workers have to
complete a task.

4. Use TaskAvailabilityLifetimeInSeconds to specify the total amount of time a task
remains available to workers. This is how long workers have to pick up a task before it fails.

5. Use NumberOfHumanWorkersPerDataObject to specify the number of workers per dataset
object.

6. Use PublicWorkforceTaskPrice to set the price per task. This is the amount of money a
worker receives for completing a single task.

7. Use DataAttributes to specify that your input data is free of confidential information,
personal information, or protected health information.

Ground Truth requires that your input data is free of personally identifiable information (PII)
if you use the Mechanical Turk workforce. If you use Mechanical Turk and do not specify that

Using the Amazon Mechanical Turk Workforce 1805

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-WorkteamArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-TaskTimeLimitInSeconds
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-TaskAvailabilityLifetimeInSeconds
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PublicWorkforceTaskPrice
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LabelingJobInputConfig.html#sagemaker-Type-LabelingJobInputConfig-DataAttributes

Amazon SageMaker Developer Guide

your input data is free of PII using the FreeOfPersonallyIdentifiableInformation flag,
your labeling job will fail.

Use the FreeOfAdultContent flag to declare that your input data is free of adult
content. SageMaker may restrict the Mechanical Turk workers that can view your task if it
contains adult content.

You can see examples of how to use this API in the following notebooks, found on GitHub: Ground
Truth Jupyter Notebook Examples. You can access these notebooks under the SageMaker Example
Notebooks in a notebook instance.

Use Mechanical Turk with Amazon A2I

You can specify that you want to use Mechanical Turk with Amazon A2I when you create
a human review workflow, also referred to as a flow definition, in the console, or with the
CreateFlowDefinition API operation. When you use this human review workflow to configure
human loops, you must specify that your input data is free of PII.

To use Mechanical Turk when you create a human review workflow (console):

1. Use the following to create a human review workflow in the Augmented AI section of the
SageMaker console: Create a Human Review Workflow (Console).

2. When you are selecting Worker types in the Workers section, select Amazon Mechanical Turk.

3. Select the Price per task using the dropdown list. This is the amount of money a worker
receives for completing a single task.

4. (Optional) You can specify the Number of workers per dataset object under Additional
configuration. For example, if you enter 3 in this field, each data object will be labeled by 3
workers.

5. (Optional) Specify the total amount of time workers have to complete a task using Task
timeout.

6. (Optional) Specify the total amount of time a task remains available to workers in Task
expiration. This is how long workers have to pick up a task before it fails.

7. Once you have created your human review workflow, you can use it to configure a human loop
by providing its Amazon Resource Name (ARN) in the parameter FlowDefinitionArn. You
configure a human loop using one of the API operations of a built-in task type, or the Amazon
A2I runtime API operation, StartHumanLoop. To learn more, see Create and Start a Human
Loop.

Using the Amazon Mechanical Turk Workforce 1806

https://github.com/aws/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
https://github.com/aws/amazon-sagemaker-examples/tree/master/ground_truth_labeling_jobs
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html

Amazon SageMaker Developer Guide

When you configure your human loop, you must specify that your
input data is free of personally identifiable information (PII) using the
FreeOfPersonallyIdentifiableInformation content classifier in DataAttributes.
If you use Mechanical Turk and do not specify that your input data is free of PII, your human
review tasks will fail.

Use the FreeOfAdultContent flag to declare that your input data is free of adult
content. SageMaker may restrict the Mechanical Turk workers that can view your task if it
contains adult content.

To use Mechanical Turk when you create a human review workflow (API):

1. Use the following to create a human review workflow using the CreateFlowDefinition
operation: Create a Human Review Workflow (API).

2. Use the following for the WorkteamArn. Replace region with the AWS Region you are using
to create the labeling job.

arn:aws:sagemaker:region:394669845002:workteam/public-crowd/default

3. Use TaskTimeLimitInSeconds to specify the total amount of time workers have to
complete a task.

4. Use TaskAvailabilityLifetimeInSeconds to specify the total amount of time a task
remains available to workers. This is how long workers have to pick up a task before it fails.

5. Use TaskCount to specify the number of workers per dataset object. For example, if you
specify 3 for this parameter, each data object will be labeled by 3 workers.

6. Use PublicWorkforceTaskPrice to set the price per task. This is the amount of money a
worker receives for completing a single task.

7. Once you have created your human review workflow, you can use it to configure a human loop
by providing its Amazon Resource Name (ARN) in the parameter FlowDefinitionArn. You
configure a human loop using one of the API operations of a built-in task type, or the Amazon
A2I runtime API operation, StartHumanLoop. To learn more, see Create and Start a Human
Loop.

When you configure your human loop, you must specify that your
input data is free of personally identifiable information (PII) using the
FreeOfPersonallyIdentifiableInformation content classifier in DataAttributes.

Using the Amazon Mechanical Turk Workforce 1807

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-WorkteamArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-TaskTimeLimitInSeconds
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-TaskAvailabilityLifetimeInSeconds
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanLoopConfig.html#sagemaker-Type-HumanLoopConfig-TaskCount
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanTaskConfig.html#sagemaker-Type-HumanTaskConfig-PublicWorkforceTaskPrice

Amazon SageMaker Developer Guide

If you use Mechanical Turk and do not specify that your input data is free of PII, your human
review tasks will fail.

Use the FreeOfAdultContent flag to declare that your input data is free of adult
content. SageMaker may restrict the Mechanical Turk workers that can view your task if it
contains adult content.

You can see examples of how to use this API in the following notebooks, found on GitHub: Amazon
A2I Jupyter Notebook Examples.

When is Mechanical Turk Not Supported?

This workforce is not supported under the following scenarios. In each scenario, you must use a
private or vendor workforce.

• This workforce is not supported for Ground Truth video frame labeling jobs and 3D point cloud
labeling jobs.

• You cannot use this workforce if your input data contains personally identifiable information
(PII).

• Mechanical Turk is not available in some of the AWS special regions. If applicable, refer to the
documentation for your special region for more information.

Managing Vendor Workforces

You can use a vendor-managed workforce to label your data using Amazon SageMaker Ground
Truth (Ground Truth) and Amazon Augmented AI (Amazon A2I). Vendors have extensive experience
in providing data labeling services for the purpose of machine learning. Vendor workforces for
these two services must be created and managed seperately through the Amazon SageMaker
console.

Vendors make their services available via the AWS Marketplace. You can find details of the vendor's
services on their detail page, such as the number of workers and the hours that they work. You can
use these details to make estimates of how much the labeling job will cost and the amount of time
that you can expect the job to take. Once you have chosen a vendor you subscribe to their services
using the AWS Marketplace.

Managing Vendor Workforces 1808

https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-vendor.html

Amazon SageMaker Developer Guide

A subscription is an agreement between you and the vendor. The agreement spells out the details
of the agreement, such as price, schedule, or refund policy. You work directly with the vendor if
there are any issues with your labeling job.

You can subscribe to any number of vendors to meet your data annotation needs. When you create
a labeling job or human review worklow you can specify that the job be routed to a specific vendor.

Important

Before you send sensitive data to a vendor, check the vendor's security and compliance
practices on their detail page and review the end user license agreement (EULA) that is
part of your subscription agreement. You are responsible for ensuring that the vendor
meets your compliance requirements for personal or confidential information. Do not share
protected health information with this workforce.

You must use the console to subscribe to a vendor workforce. Once you have a subscription, you
can use the ListSubscribedWorkteams operation to list your subscribed vendors.

To subscribe to a vendor workforce

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose the appropriate page in the SageMaker console.

• For Ground Truth labeling jobs, choose Labeling workforces, choose Vendor, and then
choose Find data labeling services.

• For Amazon A2I human review workflows, choose Human review workforces, choose
Vendor, and then choose Find human review services.

3. The console opens the AWS Marketplace with:

• data labeling services category selected for Ground Truth

• human review services category selected for Amazon A2I

Here you see a list of the vendor services available for this service.

4. Choose a vendor. The AWS Marketplace shows detailed information about the data labeling
or human review service. Use this information to determine if the vendor meets your
requirements for your task.

Managing Vendor Workforces 1809

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListSubscribedWorkteams.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

5. If the vendor meets your requirements, choose Continue to subscribe.

6. Review the details of the subscription. If you agree to the terms, choose Subscribe to complete
your subscription to the service.

Use a Private Workforce

A private workforce is a group of workers that you choose. These can be employees of your
company or a group of subject matter experts from your industry. For example, if the task is to
label medical images, you could create a private workforce of people knowledgeable about the
images in question.

Each AWS account has access to a single private workforce per region, and the owner has the ability
to create multiple private work teams within that workforce. A single private work team is used
to complete a labeling job or human review task, or a job. You can assign each work team to a
separate job or use a single team for multiple jobs. A single worker can be in more than one work
team.

Your private workforce can either be created and managed using Amazon Cognito or your own
private OpenID Connect (OIDC) Identity Provider (IdP).

If you are a new user of Amazon SageMaker Ground Truth or Amazon Augmented AI and do not
require your workers to be managed with your own IdP, it is recommended that you use Amazon
Cognito to create and manage your private workforce.

After you create a workforce, in addition to creating and managing work teams, you can do the
following:

• Track worker performance

• Create and manage Amazon SNS topics to notify workers when labeling tasks are available

• Manage Private Workforce Access to Tasks Using IP Addresses

Note

Your private workforce is shared between Ground Truth and Amazon A2I. To create and
manage private work teams used by Augmented AI, use the Ground Truth section of the
SageMaker console.

Use a Private Workforce 1810

https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-use-augmented-ai-a2i-human-review-loops.html
https://docs.aws.amazon.com/sagemaker/latest/dg/workteam-private-tracking.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-private-sns.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-private-api.html

Amazon SageMaker Developer Guide

Topics

• Create and Manage Amazon Cognito Workforce

• Create and Manage OIDC IdP Workforce

• Manage Private Workforce Using the Amazon SageMaker API

• Track Worker Performance

• Create and manage Amazon SNS topics for your work teams

Create and Manage Amazon Cognito Workforce

Create and manage your private workforce using Amazon Cognito when you want to create your
workforce using the Amazon SageMaker console or you don't want the overhead of managing
worker credentials and authentication. When you create a private workforce with Amazon Cognito,
it provides authentication, authorization, and user management for your private workers.

Topics

• Create a Private Workforce (Amazon Cognito)

• Manage a Private Workforce (Amazon Cognito)

Create a Private Workforce (Amazon Cognito)

When you use Amazon Cognito, you can create a private workforce in one of the following ways:

• Create a new workforce while you are creating your labeling job. To learn how, see Create an
Amazon Cognito Workforce When Creating a Labeling Job.

• Create a new workforce before you create your labeling job. To learn how, see Create an Amazon
Cognito Workforce Using the Labeling Workforces Page.

• Import an existing workforce after creating a user pool in the Amazon Cognito console. To learn
how, see Create a Private Workforce (Amazon Cognito Console).

Once you create a private workforce, that workforce and all work teams and workers associated
with it are available to use for all Ground Truth labeling job tasks and Amazon Augmented AI
human review workflows tasks.

If you are new to Amazon SageMaker and want to test Ground Truth or Amazon A2I, we suggest
that you create a private work team consisting of people from your organization using the console.

Use a Private Workforce 1811

Amazon SageMaker Developer Guide

Use this work team when creating labeling or human review workflows (flow definitions) to test
your worker UI and job workflow.

Topics

• Create a Private Workforce (Amazon SageMaker Console)

• Create a Private Workforce (Amazon Cognito Console)

Create a Private Workforce (Amazon SageMaker Console)

You can create a private workforce in the Amazon SageMaker console in one of two ways:

• When creating a labeling job in the Labeling jobs page of the Amazon SageMaker Ground Truth
section.

• Using the Labeling workforces page of the Amazon SageMaker Ground Truth section. If you are
creating a private workforce for an Amazon A2I human review workflow, use this method.

Both of these methods also create a default work team containing all of the members of
the workforce. This private workforce is available to use for both Ground Truth and Amazon
Augmented AI jobs.

When you create a private workforce using the console, SageMaker uses Amazon Cognito as an
identity provider for your workforce. If you want to use your own OpenID Connect (OIDC) Identity
Provider (IdP) to create and manage your private workforce, you must create a workforce using the
SageMaker API operation CreateWorkforce. To learn more, see Create a Private Workforce (OIDC
IdP).

Create an Amazon Cognito Workforce When Creating a Labeling Job

If you haven't created a private workforce when you create your labeling job and you choose to use
private workers, you are prompted to create a work team. This will create a private workforce using
Amazon Cognito.

To create a workforce while creating a labeling job (console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Labeling jobs and fill in all required fields. For instructions on
how to start a labeling job, see Getting started. Choose Next.

3. Choose Private for the workforce type.

Use a Private Workforce 1812

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. In the Workers section, enter:

a. The Team name.

b. Email addresses for up to 100 workforce members. Email addresses are case sensitive.
Your workers must log in using the same case used when the address was initially entered.
You can add additional workforce members after the job has been created.

c. The name of your organization. SageMaker uses this to customize the email sent to the
workers.

d. A contact email address for workers to report issues related to the task.

When you create the labeling job, an email is sent to each worker inviting them to join the
workforce. After creating the workforce, you can add, delete, and disable workers using the
SageMaker console or the Amazon Cognito console.

Create an Amazon Cognito Workforce Using the Labeling Workforces Page

To create and manage your private workforce using Amazon Cognito, you can use the Labeling
workforces page. When following the instructions below, you have the option to create a private
workforce by entering worker emails importing a pre-existing workforce from an Amazon Cognito
user pool. To import a workforce, see Create a Private Workforce (Amazon Cognito Console).

To create a private workforce using worker emails

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Labeling workforces.

3. Choose Private, then choose Create private team.

4. Choose Invite new workers by email.

5. Paste or type a list of up to 50 email addresses, separated by commas, into the email
addresses box.

6. Enter an organization name and contact email.

7. Optionally, choose an SNS topic to which to subscribe the team so workers are notified by
email when new Ground Truth labeling jobs become available. Amazon SNS notifications are
supported by Ground Truth and are not supported by Augmented AI. If you subscribe workers
to receive SNS notifications, they only receive notifications about Ground Truth labeling jobs.
They do not receive notifications about Augmented AI tasks.

8. Click the Create private team button.

Use a Private Workforce 1813

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

After you import your private workforce, refresh the page. On the Private workforce summary
page, you can see information about the Amazon Cognito user pool for your workforce, a list of
work teams for your workforce, and a list of all of the members of your private workforce.

Note

If you delete all of your private work teams, you have to repeat this process to use a private
workforce in that region.

Create a Private Workforce (Amazon Cognito Console)

Amazon Cognito is used to define and manage your private workforce and your work teams. It is a
service that you can use to create identities for your workers and authenticate these identities with
identity providers. A private workforce corresponds to a single Amazon Cognito user pool. Private
work teams correspond to Amazon Cognito user groups within that user pool.

Example identity providers supported by Amazon Cognito:

• Social sign-in providers such as Facebook and Google

• OpenID Connect (OIDC) providers

• Security Assertion Markup Language (SAML) providers such as Active Directory

• The Amazon Cognito built-in identity provider

For more information, see What Is Amazon Cognito?.

To create a private workforce using Amazon Cognito, you must have an existing Amazon Cognito
user pool containing at least one user group. See Tutorial: Creating a User Pool to learn how to
create a user pool. See Adding Groups to a User Pool to learn how to add a user group to a pool.

Once your user pool has been created, follow the steps below to create a private workforce by
importing that user pool into Amazon SageMaker.

To create a private workforce by importing a Amazon Cognito user pool

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Labeling workforces.

3. Choose Private.

Use a Private Workforce 1814

https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/cognito/latest/developerguide/tutorial-create-user-pool.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. Choose Create private team. This creates a private workforce and a work team.

5. Choose Import workers from existing Amazon Cognito user groups.

6. Choose a user pool that you have created. User pools require a domain and an existing user
group. If you get an error that the domain is missing, set it in the Domain name options on the
App integration page of the Amazon Cognito console for your group.

7. Choose an app client. We recommend using a client generated by SageMaker.

8. Choose a user group from your pool to import its members.

9. Optionally choose an Amazon Simple Notification Service (Amazon SNS) topic to which to
subscribe the team so that workers are notified by email when new labeling jobs become
available. Amazon SNS notifications are supported by Ground Truth and are not supported
by Augmented AI. If you subscribe workers to receive SNS notifications, they only receive
notifications about Ground Truth labeling jobs. They do not receive notifications about
Augmented AI tasks.

10. Choose Create private team.

Important

After you create a workforce using an Amazon Cognito user pool, it should not be deleted
without first deleting all work teams associated with that pool in the SageMaker console.

After you import your private workforce, refresh the page to see the Private workforce
summary page. On this page, you can see information about the Amazon Cognito user pool for
your workforce, a list of work teams for your workforce, and a list of all of the members of your
private workforce. This workforce is now available to use in both Amazon Augmented AI and
Amazon SageMaker Ground Truth for human review tasks and data labeling jobs respectively.

Manage a Private Workforce (Amazon Cognito)

After you have created a private workforce using Amazon Cognito, you can create and manage
work teams using the Amazon SageMaker console and API operations.

You can do the following using either the SageMaker console or Amazon Cognito console.

• Add and delete work teams.

• Add workers to your workforce and one or more work teams.

Use a Private Workforce 1815

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-private-console.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-private-cognito.html

Amazon SageMaker Developer Guide

• Disable or remove workers from your workforce and one or more workteams. If you add workers
to a workforce using the Amazon Cognito console, you must use the same console to remove the
worker from the workforce.

You can restrict access to tasks to workers at specific IP addresses using the SageMaker API. For
more information, see Manage Private Workforce Using the Amazon SageMaker API.

Topics

• Manage a Workforce (Amazon SageMaker Console)

• Manage a Private Workforce (Amazon Cognito Console)

Manage a Workforce (Amazon SageMaker Console)

You can use the Amazon SageMaker console to create and manage the work teams and individual
workers that make up a private workforce.

Use a work team to assign members of your private workforce to a labeling or human review
job. When you create your workforce using the SageMaker console, there is a work team called
Everyone-in-private-workforce that enables you to assign your entire workforce to a job. Because
an imported Amazon Cognito user pool may contain members that you don't want to include in
your work teams, a similar work team is not created for Amazon Cognito user pools.

You have two choices to create a new work team:

• You can create a work team in the SageMaker console and add members from your workforce to
the team.

• You can create a user group by using the Amazon Cognito console and then create a work team
by importing the user group. You can import more than one user group into each work team.
You manage the members of the work team by updating the user group in the Amazon Cognito
console. See Manage a Private Workforce (Amazon Cognito Console) for more information.

Create a Work Team Using the SageMaker Console

You can create a new Amazon Cognito user group or import an existing user group using the
SageMaker console, on the Labeling workforces page. For more information on creating a user
group in the Amazon Cognito console, see Manage a Private Workforce (Amazon Cognito Console).

Use a Private Workforce 1816

Amazon SageMaker Developer Guide

To create a work team using the SageMaker console

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Labeling workforces from the left menu.

3. Under Private, choose Create private team.

4. Under Team details, enter a Team name. The name must be unique in your account in an AWS
Region.

5. Under Add workers, choose a method to add workers to the team using a user group.

• If you chose Create a team by adding workers to a new Amazon Cognito user group, select
the workers to add to the team.

• If you chose Create a team by importing existing Amazon Cognito user groups, choose the
user groups that are part of the new team.

6. If you select an SNS topic, all workers added to the team are subscribed to the Amazon SNS
topic and notified when new work items are available to the team. Select from a list of your
existing Ground Truth related Amazon SNS topics or select Create new topic to open a topic-
creation dialog.

Amazon SNS notifications are supported by Ground Truth and are not supported by
Augmented AI. If you subscribe workers to receive SNS notifications, they only receive
notifications about Ground Truth labeling jobs. They do not receive notifications about
Augmented AI tasks.

Workers in a workteam subscribed to a topic receive notifications when a new Ground Truth
labeling job for that team becomes available and when one is about to expire.

Read Create and manage Amazon SNS topics for your work teams for more information about
using Amazon SNS topic.

Subscriptions

After you have created a work team, you can see more information about the team and change
or set the Amazon SNS topic to which its members are subscribed by visiting the Amazon Cognito
console. If you added any team members before you subscribed the team to a topic, you need to
manually subscribe those members to that topic. Read Create and manage Amazon SNS topics for
your work teams for more information on creating and managing the Amazon SNS topic.

Use a Private Workforce 1817

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-private-sns.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-private-sns.html

Amazon SageMaker Developer Guide

Add or Remove Workers

A work team is a group of workers within your workforce to whom you can assign jobs. A worker
can be added to more than one work team. Once a worker has been added to a work team, that
worker can be disabled or removed.

Add Workers to the Workforce

Adding a worker to the workforce enables you to add that worker to any work team within that
work force.

To add workers using the private workforce summary page

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Labeling workforces to navigate to your private workforce summary page.

3. Choose Private.

4. Choose Invite new workers.

5. Paste or type a list of email addresses, separated by commas, into the email addresses box.
You can have up to 50 email addresses in this list.

Add a Worker to a Work Team

A worker must be added to the workforce before being added to a work team. To add a worker to a
work team, first navigate to the Private workforce summary page using the steps above.

To add a worker to a work team from the private workforce summary page

1. In the Private teams section, choose the team to which you want to add the workers.

2. Choose the Workers tab.

3. Choose Add workers to team and choose the boxes next to the workers that you want to add.

4. Click Add workers to team.

Disable and Remove a Worker from the Workforce

Disabling a worker stops the worker from receiving a job. This action does not remove the worker
from the workforce, or from any work team with which the worker is associated. To disable or
remove a worker from a work team, first navigate to the private workforce summary page using
the steps above.

Use a Private Workforce 1818

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

To deactivate a worker using the private workforce summary page

1. In the Workers section, choose the worker that you would like to disable.

2. Choose Disable.

If desired, you can subsequently Enable a worker after they have been disabled.

You can remove workers from your private workforce directly in the SageMaker console if that
worker was added in this console. If you added the worker (user) in the Amazon Cognito console,
see Manage a Private Workforce (Amazon Cognito Console) to learn how to remove the worker in
the Amazon Cognito console.

To remove a worker using the private workforce summary page

1. In the Workers section, choose the worker that you would like to delete.

2. If the worker has not been disabled, choose Disable.

3. Select the worker and choose Delete.

Manage a Private Workforce (Amazon Cognito Console)

A private workforce corresponds to a single Amazon Cognito user pool. Private work teams
correspond to Amazon Cognito user groups within that user pool. Workers correspond to Amazon
Cognito users within those groups.

After your workforce has been created, you can add work teams and individual workers through
the Amazon Cognito console. You can also delete workers from your private workforce or remove
them from individual teams in the Amazon Cognito console.

Important

You can't delete work teams from the Amazon Cognito console. Deleting a Amazon Cognito
user group that is associated with an Amazon SageMaker work team will result in an error.
To remove work teams, use the SageMaker console.

Use a Private Workforce 1819

Amazon SageMaker Developer Guide

Create Work Teams (Amazon Cognito Console)

You can create a new work team to complete a job by adding a Amazon Cognito user group to
the user pool associated with your private workforce. To add a Amazon Cognito user group to an
existing worker pool, see Adding groups to a User Pool.

To create a work team using an existing Amazon Cognito user group

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Workforces.

3. For Private teams, choose Create private team.

4. Under Team details, give the team a name. The name must be unique in your account in an
AWS Region.

5. For Add workers, choose Import existing Amazon Cognito user groups, and choose one or
more user groups that are part of the new team.

6. If you choose an SNS topic, all workers added to the team are subscribed to the Amazon
Simple Notification Service (Amazon SNS) topic and notified when new work items are
available to the team. Choose from a list of your existing SNS topics related to SageMaker
Ground Truth or Amazon Augmented AI or choose Create new topic to create one.

Note

Amazon SNS notifications are supported by Ground Truth and are not supported by
Augmented AI. If you subscribe workers to receive SNS notifications, they only receive
notifications about Ground Truth labeling jobs. They do not receive notifications about
Augmented AI tasks.

Subscriptions

After you have created a work team, you can see more information about the team and change
or set the SNS topic to which its members are subscribed using the Amazon Cognito console. If
you added any team members before you subscribed the team to a topic, you need to manually
subscribe those members to that topic. For more information, see Create and manage Amazon SNS
topics for your work teams.

Use a Private Workforce 1820

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Add and Remove Workers (Amazon Cognito Console)

When using the Amazon Cognito console to add workers to a work team, you must add a user to
the user pool associated with the workforce before adding that user to a user group. Users can be
added to a user pool in various ways. For more information, see Signing Up and Confirming User
Accounts.

Add a Worker to a Work Team

After a user has been added to a pool, the user can be associated with user groups inside of that
pool. After a user has been added to a user group, that user becomes a worker on any work team
created using that user group.

To add a user to a user group

1. Open the Amazon Cognito console: https://console.aws.amazon.com/cognito/.

2. Choose Manage User Pools.

3. Choose the user pool associated with your SageMaker workforce.

4. Under General Settings, choose Users and Groups and do one of the following:

• Choose Groups, choose the group that you want to add the user to, and choose Add
users. Choose the users that you want to add by choosing the plus-icon to the right of the
user's name.

• Choose Users, choose the user that you want to add to the user group, and choose Add to
group. From the dropdown menu, choose the group and choose Add to group.

Disable and Remove a Worker From a Work Team

Disabling a worker stops the worker from receiving jobs. This action doesn't remove the worker
from the workforce, or from any work team the worker is associated with. To remove a user from
a work team in Amazon Cognito, you remove the user from the user group associated with that
team.

To deactivate a worker (Amazon Cognito console)

1. Open the Amazon Cognito console: https://console.aws.amazon.com/cognito/.

2. Choose Manage User Pools.

3. Choose the user pool associated with your SageMaker workforce.

Use a Private Workforce 1821

https://docs.aws.amazon.com/cognito/latest/developerguide/signing-up-users-in-your-app.html
https://docs.aws.amazon.com/cognito/latest/developerguide/signing-up-users-in-your-app.html
https://console.aws.amazon.com/cognito
https://console.aws.amazon.com/cognito

Amazon SageMaker Developer Guide

4. Under General Settings, choose Users and Groups.

5. Choose the user that you want to disable.

6. Choose Disable User.

You can enable a disabled user by choosing Enable User.

To remove a user from a user group (Amazon Cognito console)

1. Open the Amazon Cognito console: https://console.aws.amazon.com/cognito/.

2. Choose Manage User Pools.

3. Choose the user pool associated with your SageMaker workforce.

4. Under General Settings, choose Users and Groups.

5. For User tab, choose the X icon to the right of the group from which you want to remove the
user.

Create and Manage OIDC IdP Workforce

Create a private workforce using an OpenID Connect (OIDC) Identity Provider (IdP) when you want
to manage and authenticate your workers using your own OIDC IdP. Individual worker credentials
and other data will be kept private. Ground Truth and Amazon A2I will only have visibility into
worker information you provide through the claims that you send to these services. To create a
workforce using an OIDC IdP, your IdP must support groups because Ground Truth and Amazon
A2I map one or more groups in your IdP to a work team. To learn more, see Send Required and
Optional Claims to Ground Truth and Amazon A2I.

If you are a new user of Ground Truth or Amazon A2I, you can test your worker UI and job workflow
by creating a private work team and adding yourself as a worker. Use this work team when
you create a labeling job or human review workflow. First, create a private OIDC IdP workforce
using the instructions in Create a Private Workforce (OIDC IdP). Next, refer to Manage a Private
Workforce (OIDC IdP) to learn how to create a work team.

Topics

• Create a Private Workforce (OIDC IdP)

• Manage a Private Workforce (OIDC IdP)

Use a Private Workforce 1822

https://console.aws.amazon.com/cognito

Amazon SageMaker Developer Guide

Create a Private Workforce (OIDC IdP)

Create a private workforce using an OpenID Connect (OIDC) Identity Provider (IdP) when you want
to authenticate and manage workers using your own identity provider. Use this page to learn how
to configure your IdP to communicate with Amazon SageMaker Ground Truth (Ground Truth) or
Amazon Augmented AI (Amazon A2I) and to learn how to create a workforce using your own IdP.

To create a workforce using an OIDC IdP, your IdP must support groups because Ground Truth and
Amazon A2I use one or more groups that you specify to create work teams. You use work teams to
specify workers for your labeling jobs and human review tasks. Because groups are not a standard
claim, your IdP may have a different naming convention for a group of users (workers). Therefore,
you must identify one or more user groups to which a worker belongs using the custom claim
sagemaker:groups that is sent to Ground Truth or Amazon A2I from your IdP. To learn more, see
Send Required and Optional Claims to Ground Truth and Amazon A2I.

You create an OIDC IdP workforce using the SageMaker API operation CreateWorkforce. Once
you create a private workforce, that workforce and all work teams and workers associated with
it are available to use for all Ground Truth labeling job tasks and Amazon A2I human review
workflows tasks. To learn more, see Create an OIDC IdP Workforce.

Send Required and Optional Claims to Ground Truth and Amazon A2I

When you use your own IdP, Ground Truth and Amazon A2I use your Issuer, ClientId,
and ClientSecret to authenticate workers by obtaining an authentication CODE from your
AuthorizationEndpoint.

Ground Truth and Amazon A2I will use this CODE to obtain a custom claim from either your IdP's
TokenEndpoint or UserInfoEndpoint. You can either configure TokenEndpoint to return a
JSON web token (JWT) or UserInfoEndpoint to return a JSON object. The JWT or JSON object
must contain required and optional claims that you specify. A claim is a key-value pair that contains
information about a worker or metadata about the OIDC service. The following table lists the
claims that must be included, and that can optionally be included in the JWT or JSON object that
your IdP returns.

Note

Some of the parameters in the following table can be specified using a : or a -. For
example, you can specify the groups a worker belongs to using sagemaker:groups or
sagemaker-groups in your claim.

Use a Private Workforce 1823

https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkforce.html
https://openid.net/specs/openid-connect-core-1_0.html#Terminology

Amazon SageMaker Developer Guide

Name Required Accepted Format
and Values

Description Example

sagemaker
:groups or
sagemaker-
groups

Yes Data type:

If a worker belongs
to a single group,
identify the group
using a string.

If a worker belongs
to multiple groups,
use a list of up to
10 strings.

Allowable
characters:

Regex: [\p{L}\p{
M}\p{S}\p{N}\p{P}]
+

Quotas:

10 groups per
worker

63 characters per
group name

Assigns a worker to
one or more groups.
Groups are used to
map the worker into
work teams.

Example of worker
that belongs to
a single group:
"work_team1"

Example of a
worker that
belongs to more
than one groups:
["work_team1",
"work_team2"]

sagemaker
:sub or
sagemaker-
sub

Yes Data type:

String

This is mandatory
to track a worker
identity inside
the Ground Truth
platform for
auditing and to
identify tasks
worked on by that
worker.

"11101110
1-1234567
89-368705
6437-1111"

Use a Private Workforce 1824

Amazon SageMaker Developer Guide

Name Required Accepted Format
and Values

Description Example

For ADFS: Customers
must use the
Primary Security
Identifier (SID).

sagemaker
:client_id
or sagemaker
-client_id

Yes Data type:

String

Allowable
characters:

Regex: [\w+-]+

Quotes:

128 characters

A client ID. All
tokens must be
issued for this client
ID.

"00b600bb
-1f00-05d
0-bd00-00
be00fbd0e0"

sagemaker
:name or
sagemaker-
name

Yes Data type:

String

The worker name to
be displayed in the
worker portal.

"Jane Doe"

Use a Private Workforce 1825

Amazon SageMaker Developer Guide

Name Required Accepted Format
and Values

Description Example

email No Data type:

String

The worker email.
Ground Truth uses
this email to notify
workers that they
have been invited
to work on labeling
tasks. Ground Truth
will also use this
email to notify
your workers when
labeling tasks
become available
if you set up an
Amazon SNS topic
for a work team that
this worker is on.

"example-
email@dom
ain.com"

email_ver
ified

No Data type:

Bool

Accepted Values:

True, False

Indicates if the user
email was verified or
not.

True

The following an example of the JSON object syntax your UserInfoEndpoint can return.

{
 "sub":"122",
 "exp":"10000",
 "sagemaker-groups":["group1","group2"]
 "sagemaker-name":"name",
 "sagemaker-sub":"122",
 "sagemaker-client_id":"123456"
}

Use a Private Workforce 1826

Amazon SageMaker Developer Guide

Ground Truth or Amazon A2I compares the groups listed in sagemaker:groups or sagemaker-
groups to verify that your worker belongs to the work team specified in the labeling job or human
review task. After the work team has been verified, labeling or human review tasks are sent to that
worker.

Create an OIDC IdP Workforce

You can create a workforce using the SageMaker API operation CreateWorkforce and associated
language-specific SDKs. Specify a WorkforceName and information about your OIDC IDP in the
parameter OidcConfig. It is recommended that you configure your OIDC with a place-holder
redirect URI, and then update the URI with the worker portal URL after you create the workforce.
To learn more, see Configure your OIDC IdP.

The following shows an example of the request. See CreateWorkforce to learn more about each
parameter in this request.

CreateWorkforceRequest: {
 #required fields
 WorkforceName: "example-oidc-workforce",
 OidcConfig: {
 ClientId: "clientId",
 ClientSecret: "secret",
 Issuer: "https://example-oidc-idp.com/adfs",
 AuthorizationEndpoint: "https://example-oidc-idp.com/adfs/oauth2/authorize",
 TokenEndpoint: "https://example-oidc-idp.com/adfs/oauth2/token",
 UserInfoEndpoint: "https://example-oidc-idp.com/adfs/oauth2/userInfo",
 LogoutEndpoint: "https://example-oidc-idp.com/adfs/oauth2/log-out",
 JwksUri: "https://example-oidc-idp.com/adfs/discovery/keys"
 },
 SourceIpConfig: {
 Cidrs: ["string", "string"]
 }
}

Configure your OIDC IdP

How you configure your OIDC IdP depends on the IdP you use, and your business requirements.

When you configure your IdP, you must to specify a callback or redirect URI. After Ground Truth or
Amazon A2I authenticates a worker, this URI will redirect the worker to the worker portal where
the workers can access labeling or human review tasks. To create a worker portal URL, you need

Use a Private Workforce 1827

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkforce.html

Amazon SageMaker Developer Guide

to create a workforce with your OIDC IdP details using the CreateWorkforce API operation.
Specifically, you must configure your OIDC IdP with required custom sagemaker claims (see the
next section for more details). Therefore, it is recommended that you configure your OIDC with a
place-holder redirect URI, and then update the URI after you create the workforce. See Create an
OIDC IdP Workforce to learn how to create a workforce using this API.

You can view your worker portal URL in the SageMaker Ground Truth console, or using the
SageMaker API operation, DescribeWorkforce. The worker portal URL is in the SubDomain
parameter in the response.

Important

Make sure you add the workforce subdomain to your OIDC IdP allow list. When you add the
subdomain to your allow list, it must end with /oauth2/idpresponse.

To view your worker portal URL after creating a private workforce (Console):

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Labeling workforces.

3. Select the Private tab.

4. In Private workforce summary you will see Labeling portal sign-in URL. This is your worker
portal URL.

To view your worker portal URL after creating a private workforce (API):

When you create a private workforce using CreateWorkforce, you specify a WorkforceName.
Use this name to call DescribeWorkforce. The following table includes examples of requests
using the AWS CLI and AWS SDK for Python (Boto3).

SDK for Python (Boto3)

response = client.describe_workforce(WorkforceName='string')
print(f'The workforce subdomain is: {response['SubDomain']}')

AWS CLI

$ C:\> describe-workforce --workforce-name 'string'

Use a Private Workforce 1828

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Workforce.html#sagemaker-Type-Workforce-SubDomain
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeWorkforce.html

Amazon SageMaker Developer Guide

Validate Your OIDC IdP Workforce Authentication Response

After you have created your OIDC IdP workforce, you can use the following procedure to validate
its authentication workflow using cURL. This procedure assumes you have access to a terminal, and
that you have cURL installed.

To validate your OIDC IdP authorization response:

1. Get an authorization code using a URI configured as follows:

{AUTHORIZE ENDPOINT}?client_id={CLIENT ID}&redirect_uri={REDIRECT
 URI}&scope={SCOPE}&response_type=code

a. Replace {AUTHORIZE ENDPOINT} with the authorize endpoint for your OIDC IdP.

b. Replace {CLIENT ID} with the Client ID from your OAuth client.

c. Replace {REDIRECT URI} with the worker portal URL. If it is not already present, you
must add /oauth2/idpresponse to the end of the URL.

d. If you have a custom scope, use it to replace {SCOPE}. If you do not have a custom scope,
replace {SCOPE} with openid.

The following is an example of a URI after the modifications above are made:

https://example.com/authorize?
client_id=f490a907-9bf1-4471-97aa-6bfd159f81ac&redirect_uri=https%3A%2F%2F
%2Fexample.labeling.sagemaker.aws
%2Foauth2%2Fidpresponse&response_type=code&scope=openid

2. Copy and paste the modified URI from step 1 into your browser and press Enter on your
keyboard.

3. Authenticate using your IdP.

4. Copy the authentication code query parameter in the URI. This parameter beings with code=.
The following is an example of what the response might look like. In this example, copy
code=MCNYDB... and everything thereafter.

https://example.labeling.sagemaker.aws/oauth2/idpresponse?code=MCNYDB....

5. Open a terminal and enter the following command after making required modifications listed
below:

Use a Private Workforce 1829

Amazon SageMaker Developer Guide

curl --request POST \
 --url '{TOKEN ENDPOINT}' \
 --header 'content-type: application/x-www-form-urlencoded' \
 --data grant_type=authorization_code \
 --data 'client_id={CLIENT ID}' \
 --data client_secret={CLIENT SECRET} \
 --data code={CODE} \
 --data 'redirect_uri={REDIRECT URI}'

a. Replace {TOKEN ENDPOINT} with the token endpoint for your OIDC IdP.

b. Replace {CLIENT ID} with the Client ID from your OAuth client.

c. Replace {CLIENT SECRET} with the Client Secret from your OAuth client.

d. Replace {CODE} with the authentication code query parameter you copied in step 4.

e. Replace {REDIRECT URI} with the worker portal URL.

The following is an example of the cURL request after making the modifications described
above:

curl --request POST \
 --url 'https://example.com/token' \
 --header 'content-type: application/x-www-form-urlencoded' \
 --data grant_type=authorization_code \
 --data 'client_id=f490a907-9bf1-4471-97aa-6bfd159f81ac' \
 --data client_secret=client-secret \
 --data code=MCNYDB... \
 --data 'redirect_uri=https://example.labeling.sagemaker.aws/oauth2/idpresponse'

6. This step depends on the type of access_token your IdP returns, a plain text access token or
a JWT access token.

• If your IdP does not support JWT access tokens, access_token may be plain text (for
example, a UUID). The response you see may look similar to the following. In this case, move
to step 7.

{
 "access_token":"179c144b-fccb-4d96-a28f-eea060f39c13",
 "token_type":"Bearer",
 "expires_in":3600,

Use a Private Workforce 1830

Amazon SageMaker Developer Guide

 "refresh_token":"ef43e52e-9b4f-410c-8d4c-d5c5ee57631a",
 "scope":"openid"
}

• If your IdP supports JWT access tokens, step 5 should generate an access token in JWT
format. For example, the response may look similar to the following:

{
 "access_token":"eyJh...JV_adQssw5c",
 "refresh_token":"i6mapTIAVSp2oJkgUnCACKKfZxt_H5MBLiqcybBBd04",
 "refresh_token_expires_in":6327,
 "scope":"openid",
 "id_token":"eyJ0eXAiOiJK9...-rDaQzUHl6cQQWNiDpWOl_lxXjQEvQ"
}

Copy the JWT and decode it. You can use python script or a third party website to decode it.
For example, you can go to the website https://jwt.io/ and paste the JWT into the Encoded
box to decode it.

Make sure the decoded response contains the following:

• The Required SageMaker claims in the table found in Send Required and Optional Claims
to Ground Truth and Amazon A2I. If it does not, you must reconfigure your OIDC IdP to
contain these claims.

• The Issuer you specified when you set up the IdP workforce.

7. In a terminal and enter the following command after making required modifications listed
below:

curl -X POST -H 'Authorization: Bearer {ACCESS TOKEN}' -d '' -k -v {USERINFO
 ENDPOINT}

a. Replace {USERINFO ENDPOINT} with the user info endpoint for your OIDC IdP.

b. Replace {ACCESS TOKEN} with the access token in the response you received in step 7.
This is the entry for the "access_token" parameter.

The following is an example of the cURL request after making the modifications described
above:

Use a Private Workforce 1831

https://jwt.io/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OidcConfig.html#sagemaker-Type-OidcConfig-Issuer

Amazon SageMaker Developer Guide

 curl -X POST -H 'Authorization: Bearer eyJ0eX...' -d '' -k -v https://example.com/
userinfo

8. The response to the final step in the procedure above may look similar to the following code
block.

If the access_token returned in step 6 was plain text, you must verify that this response
contains required information. In this case, the response must contain the Required
SageMaker claims in the table found in Send Required and Optional Claims to Ground Truth
and Amazon A2I. For example, sagemaker-groups, sagamaker-name.

{
 "sub":"122",
 "exp":"10000",
 "sagemaker-groups":["group1","group2"]
 "sagemaker-name":"name",
 "sagemaker-sub":"122",
 "sagemaker-client_id":"123456"
}

Next Steps

Once you've created a private workforce using your IdP and verified your IdP authentication
response, you can create work teams using your IdP groups. To learn more, see Manage a Private
Workforce (OIDC IdP).

You can restrict worker access to tasks to specific IP addresses, and update or delete your workforce
using the SageMaker API. To learn more, see Manage Private Workforce Using the Amazon
SageMaker API.

Manage a Private Workforce (OIDC IdP)

Once you've created a private workforce using your OpenID Connect (OIDC) Identity Provider
(IdP), you can manage your workers using your IdP. For example, you can add, remove, and group
workers directly through your IdP.

To add workers to an Amazon SageMaker Ground Truth (Ground Truth) labeling job or Amazon
Augmented AI (Amazon A2I) human review task, you create work teams using 1-10 IdP groups and
assign that work team to the job or task. You assign a work team to a job or task by specifing that

Use a Private Workforce 1832

Amazon SageMaker Developer Guide

work team when you create a labeling job (Ground Truth) or a human review workflow (Amazon
A2I).

You can only assign one team to each labeling job or human review workflow. You can use the
same team to create multiple labeling jobs or human review tasks. You can also create multiple
work teams to work on different labeling jobs or human review tasks.

Prerequisites

To create and manage private work teams using your OIDC IdP groups, first you must create a
workforce using the SageMaker API operation CreateWorkforce. To learn more, see Create a
Private Workforce (OIDC IdP).

Add work teams

You can use the SageMaker console to create a private work team using your OIDC IdP workforce
on the Labeling workforces page under Ground Truth. If you are creating a Ground Truth labeling
job, you can also create a private work team while creating a labeling job.

Note

You create and manage work teams for Amazon A2I in the Ground Truth area of the
SageMaker console.

You can also use the SageMaker API and associated language-specific SDKs to create a private work
team.

Use the following procedures to learn how to create a private work team using the SageMaker
console and API.

To create a private work team on the Labeling workforces page (console)

1. Go to the Ground Truth area of the SageMaker console: https://console.aws.amazon.com/
sagemaker/groundtruth.

2. Select Labeling workforces.

3. Select Private.

4. In the Private teams section, select Create private team.

Use a Private Workforce 1833

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkforce.html
https://console.aws.amazon.com/sagemaker/groundtruth
https://console.aws.amazon.com/sagemaker/groundtruth

Amazon SageMaker Developer Guide

5. In the Team details section, enter a Team name.

6. In the Add workers section, enter the name of a single user group. All workers associated with
this group in your IdP are added to this work team.

7. To add more than one user group, select Add new user group and enter the names of the user
groups you want to add to this work team. Enter one user group per line.

8. (Optional) For Ground Truth labeling jobs, if you provide an email for workers in your JWT,
Ground Truth notifies workers when a new labeling task is available if you select an SNS topic.

9. Select Create private team.

To create a private work team while creating a Ground Truth labeling job (console)

1. Go to the Ground Truth area of the SageMaker console: https://console.aws.amazon.com/
sagemaker/groundtruth.

2. Select Labeling jobs.

3. Use the instructions in Create a Labeling Job (Console) to create a labeling job. Stop when you
get to the Workers section on the second page.

4. Select Private for your worker type.

5. Enter a Team name.

6. In the Add workers section, enter the name of a single user group under User groups. All
workers associated with this group in your IdP are added to this work team.

Important

The group names you specify for User groups must match the group names specified
in your OIDC IdP.

7. To add more than one user group, select Add new user group and enter the names of the user
groups you want to add to this work team. Enter one user group per line.

8. Complete all remaining steps to create your labeling job.

The private team that you create is used for this labeling job, and is listed in the Labeling
workforces section of the SageMaker console.

To create a private work team using the SageMaker API

Use a Private Workforce 1834

https://console.aws.amazon.com/sagemaker/groundtruth
https://console.aws.amazon.com/sagemaker/groundtruth

Amazon SageMaker Developer Guide

You can create a private work team using the SageMaker API operation CreateWorkteam.

When you use this operation, list all user groups that you want included in the work team in the
OidcMemberDefinition parameter Groups.

Important

The group names you specify for Groups must match the group names specified in your
OIDC IdP.

For example, if your user group names are group1, group2, and group3 in your OIDC IdP,
configure OidcMemberDefinition as follows:

 "OidcMemberDefinition": {
 "Groups": ["group1", "group2", "group3"]
 }

Additionally, you must give the work team a name using the WorkteamName parameter.

Add or remove IdP groups from work teams

After you've created a work team, you can use the SageMaker API to manage that work team. Use
the UpdateWorkteam operation to update the IdP user groups included in that work team.

• Use the WorkteamName parameter to identify the work team that you want to update.

• When you use this operation, list all user groups that you want included in the work team in the
OidcMemberDefinition parameter Groups. If a user group is associated with a work team and
you do not include it in this list, that user group is no longer associated with this work team.

Delete a work team

You can delete a work team using the SageMaker console and SageMaker API.

To delete a private work team in the SageMaker console

1. Go to the Ground Truth area of the SageMaker console: https://console.aws.amazon.com/
sagemaker/groundtruth.

2. Select Labeling workforces.

Use a Private Workforce 1835

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OidcMemberDefinition.html
https://console.aws.amazon.com/sagemaker/groundtruth
https://console.aws.amazon.com/sagemaker/groundtruth

Amazon SageMaker Developer Guide

3. Select Private.

4. In the Private teams section, select the work team that you want to delete.

5. Select Delete.

To delete a private work team (API)

You can delete a private work team using the SageMaker API operation DeleteWorkteam.

Manage Individual Workers

When you create a workforce using your own OIDC IdP, you cannot use Ground Truth or Amazon
A2I to manage individual workers.

• To add a worker to a work team, add that worker to a group associated with that work team.

• To remove a worker from a work team, remove that worker from all user groups associated with
that work team.

Update, Delete, and Describe Your Workforce

You can update, delete, and describe your OIDC IdP workforce using the SageMaker API. The
following is a list of API operations that you can use to manage your workforce. For additional
details, including how you can locate your workforce name, see Manage Private Workforce Using
the Amazon SageMaker API.

• UpdateWorkforce – You may want to update a workforce created using your own OIDC IdP
to specify a different authorization endpoint, token endpoint, or issuer. You can update any
parameter found in OidcConfig using this operation.

You can only update your OIDC IdP configuration when there are no work teams associated with
your workforce. To learn how to delete work teams, see Delete a work team.

• DeleteWorkforce – Use this operation to delete your private workforce. If you have any work
teams associated with your workforce, you must delete those work teams before you delete your
work force. For more information, see Delete a work team.

• DescribeWorkforce – Use this operation to list private workforce information, including
workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges
(CIDRs).

Use a Private Workforce 1836

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OidcConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeWorkforce.html

Amazon SageMaker Developer Guide

Manage Private Workforce Using the Amazon SageMaker API

You can use Amazon SageMaker API operations to manage, update, and delete your private
workforce. For each API operation linked on this page, you can find a list of supported language-
specific SDKs and their documentation in the See Also section of the API documentation.

Find Your Workforce Name

Some of the SageMaker workforce-related API operations require your workforce name as input.
You can see your Amazon Cognito or OIDC IdP private and vendor workforce names in an AWS
Region using the ListWorkforces API operation in that AWS Region.

If you created your workforce using your own OIDC IdP, you can find your workforce name in the
Ground Truth area of the SageMaker console.

To find your workforce name in the SageMaker console

1. Go to the Ground Truth area of the SageMaker console: https://console.aws.amazon.com/
sagemaker/groundtruth.

2. Select Labeling workforces.

3. Select Private.

4. In the Private workforce summary section, locate your workforce ARN. Your workforce name
is located at the end of this ARN. For example, if the ARN is arn:aws:sagemaker:us-
east-2:111122223333:workforce/example-workforce, the workforce name is
example-workforce.

Restrict Worker Access to Tasks to Allowable IP Addresses

By default, a workforce isn't restricted to specific IP addresses. You can use the UpdateWorkforce
operation to require that workers use a specific range of IP addresses (CIDRs) to access tasks. If
you specify one or more CIDRs, workers who attempt to access tasks using any IP address outside
the specified ranges are denied and will get a HTTP 204 No Content error message on the worker
portal. You can specify up to 10 CIDR values using UpdateWorkforce.

After you have restricted your workforce to one or more CIDRs, the output of UpdateWorkforce
lists all allowable CIDRs. You can also use the DescribeWorkforce operation to view all
allowable CIDRs for a workforce.

Use a Private Workforce 1837

https://console.aws.amazon.com/sagemaker/groundtruth
https://console.aws.amazon.com/sagemaker/groundtruth
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkforce.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeWorkforce.html

Amazon SageMaker Developer Guide

Update OIDC Identity Provider Workforce Configuration

You may want to update a workforce created using your own OIDC IdP to specify a different
authorization endpoint, token endpoint, or issuer. You can update any parameter found in
OidcConfig using the UpdateWorkforce operation.

Important

You can only update your OIDC IdP configuration when there are no work teams associated
with your workforce. You can delete a private work team using the DeleteWorkteam
operation.

Delete a Private Workforce

You can only have one private workforce in each AWS Region. You may want to delete your private
workforce in an AWS Region when:

• You want to create a workforce using a new Amazon Cognito user pool.

• You have already created a private workforce using Amazon Cognito and you want to create a
workforce using your own OpenID Connect (OIDC) Identity Provider (IdP).

To delete a private workforce, use the DeleteWorkforce API operation. If you have any work
teams associated with your workforce, you must delete those work teams before you delete your
workforce. You can delete a private work team using the DeleteWorkteam operation.

Track Worker Performance

Amazon SageMaker Ground Truth logs worker events to Amazon CloudWatch, such as when a
worker starts or submits a task. Use Amazon CloudWatch metrics to measure and track throughput
across a team or for individual workers.

Important

Worker event tracking is not available for Amazon Augmented AI human review workflows.

Use a Private Workforce 1838

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OidcConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkteam.html

Amazon SageMaker Developer Guide

Enable Tracking

During the set-up process for a new work team, the permissions for Amazon CloudWatch logging
of worker events are created. Since this feature was added in August 2019, work teams created
prior to that may not have the correct permissions. If all of your work teams were created before
August 2019, create a new work team. It does not need any members and may be deleted after
creation, but by creating it, you establish the permissions and apply them to all of your work
teams, regardless of when they were created.

Examine Logs

After tracking is enabled, the activity of your workers is logged. Open the Amazon CloudWatch
console and choose Logs in the navigation pane. You should see a log group named /aws/
sagemaker/groundtruth/WorkerActivity.

Each completed task is represented by a log entry, which contains information about the worker,
their team, the job, when the task was accepted, and when it was submitted.

Example Log entry

{
 "worker_id": "cd449a289e129409",
 "cognito_user_pool_id": "us-east-2_IpicJXXXX",
 "cognito_sub_id": "d6947aeb-0650-447a-ab5d-894db61017fd",
 "task_accepted_time": "Wed Aug 14 16:00:59 UTC 2019",
 "task_submitted_time": "Wed Aug 14 16:01:04 UTC 2019",
 "task_returned_time": "",
 "task_declined_time": "",
 "workteam_arn": "arn:aws:sagemaker:us-east-2:############:workteam/private-crowd/
Sample-labeling-team",
 "labeling_job_arn": "arn:aws:sagemaker:us-east-2:############:labeling-job/metrics-
demo",
 "work_requester_account_id": "############",
 "job_reference_code": "############",
 "job_type": "Private",
 "event_type": "TasksSubmitted",
 "event_timestamp": "1565798464"
}

A useful data point in each event is the cognito_sub_id. You can match that to an individual
worker.

Use a Private Workforce 1839

Amazon SageMaker Developer Guide

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Under the Ground Truth section, choose Workforces.

3. Choose Private.

4. Choose the name of a team in the Private teams section.

5. In the Team summary section, choose the user group identified under Amazon Cognito user
group. That will take you to the group in the Amazon Cognito console.

6. The Group page lists the users in the group. Choose any user's link in the Username column to
see more information about the user, including a unique sub ID.

To get information about all of the team's members, use the ListUsers action (examples) in the
Amazon Cognito API.

Use Log Metrics

If you don't want to write your own scripts to process and visualize the raw log information,
Amazon CloudWatch metrics provide insights into worker activity for you.

To view metrics

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. Choose the AWS/SageMaker/Workteam name space, then explore the available metrics. For
example, selecting the Workteam and Workforce metrics lets you calculate the average time
per submitted task for a specific labeling job.

For more information, see Using Amazon CloudWatch Metrics.

Create and manage Amazon SNS topics for your work teams

Use the procedures in this topic when you want to:

• Create a topic to which you want an existing work team to subscribe.

• Create a topic before you've created a work team.

• Create or modify the work team with an API call, and specify a topic Amazon Resource Name
(ARN).

Use a Private Workforce 1840

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-manage-user-accounts.html#cognito-user-pools-searching-for-users-listusers-api-examples
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Amazon SageMaker Developer Guide

If you create a work team using the console, the console provides an option to create a new topic
for the team so that you don't have to perform these steps.

Important

The Amazon SNS feature is not supported by Amazon A2I. If you subscribe your work
team to an Amazon SNS topic, workers will only receive notifications about Ground Truth
labeling jobs. Workers will not receive notifications about new Amazon A2I human review
tasks.

Create the Amazon SNS topic

The steps for creating Amazon SNS topics for work team notifications are similar to the steps in
Getting Started in the Amazon SNS Developer Guide, with one significant addition—you must add
an access policy so that Amazon SageMaker can publish messages to the topic on your behalf.

To add the policy when you create the topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In Create topic, enter the name of your topic and then choose Next steps.

3. In Access policy, choose Advanced.

4. In the JSON editor, find the Resource property, which displays the topic's ARN.

5. Copy the Resource ARN value.

6. Before the final closing brace (]), add the following policy.

 , {
 "Sid": "AwsSagemaker_SnsAccessPolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sns:Publish",
 "Resource": "arn:partition:sns:region:111122223333:MyTopic", # ARN of the
 topic you copied in the previous step
 "Condition": {
 "ArnLike": {
 "aws:SourceArn":
 "arn:partition:sagemaker:region:111122223333:workteam/*" # Workteam ARN

Use a Private Workforce 1841

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://console.aws.amazon.com/sns/v3/home

Amazon SageMaker Developer Guide

 },
 "StringEquals": {
 "aws:SourceAccount": "111122223333" # SNS topic account
 }
 }
 }

7. Create the topic.

After you create the topic, it appears in your Topics summary screen. For more information about
creating topics, see Creating a Topic in the Amazon SNS Developer Guide.

Manage worker subscriptions

If you subscribe a work team to a topic after you've already created the work team, the individual
work team members who were added to the team when the work team was created are not
automatically subscribed to the topic. For information about subscribing workers' email addresses
to the topic, see Subscribing an Endpoint to an Amazon SNS Topic in the Amazon SNS Developer
Guide.

The only situation in which workers are automatically subscribed to your topic is when you create
or import an Amazon Cognito user group at the time that you create a work team and you set
up the topic subscription when you create that work team. For more information about creating
and managing your workteams with Amazon Cognito, see Create Work Teams (Amazon Cognito
Console).

Crowd HTML Elements Reference

Crowd HTML Elements are web components, a web standard that abstracts HTML markup,
CSS, and JavaScript functionality into an HTML tag or set of tags. Amazon SageMaker provides
customers with the ability to design their own custom task templates in HTML.

As a starting point, you can use a template built using Crowd HTML Elements from one of the
following GitHub repositories:

• Example task UIs for Amazon SageMaker Ground Truth

• Over 60 example task UIs for Amazon Augmented AI (A2I)

Crowd HTML Elements Reference 1842

https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-subscribe-endpoint-to-topic.html
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis
https://github.com/aws-samples/amazon-a2i-sample-task-uis

Amazon SageMaker Developer Guide

These repositories include templates designed for audio, image, text, video, and other types of
data labeling and annotation tasks.

For more information about how to implement custom templates in Amazon SageMaker Ground
Truth, see Creating Custom Labeling Workflows. To learn more about custom templates in Amazon
Augmented AI, see Create Custom Worker Task Templates.

SageMaker Crowd HTML Elements

The following is a list of Crowd HTML Elements that make building a custom template easier and
provide a familiar UI for workers. These elements are supported in Ground Truth, Augmented AI,
and Mechanical Turk.

Topics

• crowd-alert

• crowd-badge

• crowd-button

• crowd-bounding-box

• crowd-card

• crowd-checkbox

• crowd-classifier

• crowd-classifier-multi-select

• crowd-entity-annotation

• crowd-fab

• crowd-form

• crowd-icon-button

• crowd-image-classifier

• crowd-image-classifier-multi-select

• crowd-input

• crowd-instance-segmentation

• crowd-instructions

• crowd-keypoint

• crowd-line

• crowd-modal

SageMaker Crowd HTML Elements 1843

Amazon SageMaker Developer Guide

• crowd-polygon

• crowd-polyline

• crowd-radio-button

• crowd-radio-group

• crowd-semantic-segmentation

• crowd-slider

• crowd-tab

• crowd-tabs

• crowd-text-area

• crowd-toast

• crowd-toggle-button

crowd-alert

A message that alerts the worker to a current situation.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that uses the <crowd-alert> element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <div id="errorBox"></div>

 <crowd-keypoint
 src="{{ task.input.taskObject | grant_read_access }}"
 labels="['Item A', 'Item B', 'Item C']"
 header="Please locate the centers of each item."
 name="annotatedResult">
 <short-instructions>
 Describe your task briefly here and give examples
 </short-instructions>
 <full-instructions>
 Give additional instructions and good/bad examples here
 </full-instructions>

SageMaker Crowd HTML Elements 1844

https://codepen.io/sagemaker_crowd_html_elements/pen/YzNPdGd

Amazon SageMaker Developer Guide

 </crowd-keypoint>
</crowd-form>

<script>
 var num_obj = 1;

 document.querySelector('crowd-form').onsubmit = function(e) {
 const keypoints = document.querySelector('crowd-keypoint').value.keypoints ||
 document.querySelector('crowd-keypoint')._submittableValue.keypoints;
 const labels = keypoints.map(function(p) {
 return p.label;
 });

 // 1. Make sure total number of keypoints is correct.
 var original_num_labels = document.getElementsByTagName("crowd-keypoint")
[0].getAttribute("labels");

 original_num_labels = original_num_labels.substring(2, original_num_labels.length -
 2).split("\",\"");
 var goalNumKeypoints = num_obj*original_num_labels.length;
 if (keypoints.length != goalNumKeypoints) {
 e.preventDefault();
 errorBox.innerHTML = '<crowd-alert type="error" dismissible>You must add all
 keypoint annotations and use each label only once.</crowd-alert>';
 errorBox.scrollIntoView();
 return;
 }

 // 2. Make sure all labels are unique.
 labelCounts = {};
 for (var i = 0; i < labels.length; i++) {
 if (!labelCounts[labels[i]]) {
 labelCounts[labels[i]] = 0;
 }
 labelCounts[labels[i]]++;
 }
 const goalNumSingleLabel = num_obj;

 const numLabels = Object.keys(labelCounts).length;

 Object.entries(labelCounts).forEach(entry => {
 if (entry[1] != goalNumSingleLabel) {
 e.preventDefault();

SageMaker Crowd HTML Elements 1845

Amazon SageMaker Developer Guide

 errorBox.innerHTML = '<crowd-alert type="error" dismissible>You must use each
 label only once.</crowd-alert>';
 errorBox.scrollIntoView();
 }
 })
 };
</script>

Attributes

The following attributes are supported by this element.

dismissible

A Boolean switch that, if present, allows the message to be closed by the worker.

type

A string that specifies the type of message to be displayed. The possible values are "info" (the
default), "success", "error", and "warning".

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-badge

An icon that floats over the top right corner of another element to which it is attached.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

SageMaker Crowd HTML Elements 1846

https://codepen.io/sagemaker_crowd_html_elements/pen/WNRbPwZ

Amazon SageMaker Developer Guide

The following is an example of a template that uses the <crowd-badge> element. Copy the
following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-image-classifier
 name="crowd-image-classifier"
 src="https://unsplash.com/photos/NLUkAA-nDdE"
 header="Choose the correct category for this image."
 categories="['Person', 'Umbrella', 'Chair', 'Dolphin']"
 >
 <full-instructions header="Classification Instructions">
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 </full-instructions>

 <short-instructions id="short-instructions">
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 <crowd-badge icon="star" for="short-instructions"/>
 </short-instructions>
 </crowd-image-classifier>
</crowd-form>

Attributes

The following attributes are supported by this element.

for

A string that specifies the ID of the element to which the badge is attached.

icon

A string that specifies the icon to be displayed in the badge. The string must be either the name of
an icon from the open-source iron-icons set, which is pre-loaded, or the URL to a custom icon.

This attribute overrides the label attribute.

SageMaker Crowd HTML Elements 1847

https://github.com/PolymerElements/iron-icons

Amazon SageMaker Developer Guide

The following is an example of the syntax that you can use to add an iron-icon to a <crowd-
badge> HTML element. Replace icon-name with the name of the icon you'd like to use from this
Icons set.

<crowd-badge icon="icon-name" for="short-instructions"/>

label

The text to display in the badge. Three characters or less is recommended because text that is too
large will overflow the badge area. An icon can be displayed instead of text by setting the icon
attribute.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-button

A styled button that represents some action.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a template that uses the <crowd-button> element. Copy the
following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>

SageMaker Crowd HTML Elements 1848

https://www.webcomponents.org/element/@polymer/iron-icons/demo/demo/index.html
https://codepen.io/sagemaker_crowd_html_elements/pen/RwKNvgG

Amazon SageMaker Developer Guide

 <crowd-image-classifier
 name="crowd-image-classifier"
 src="https://unsplash.com/photos/NLUkAA-nDdE"
 header="Please select the correct category for this image"
 categories="['Person', 'Umbrella', 'Chair', 'Dolphin']"
 >
 <full-instructions header="Classification Instructions">
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 </full-instructions>
 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 <crowd-button>
 <iron-icon icon="question-answer"/>
 </crowd-button>
 </short-instructions>
 </crowd-image-classifier>
</crowd-form>

Attributes

The following attributes are supported by this element.

disabled

A Boolean switch that, if present, displays the button as disabled and prevents clicks.

form-action

A switch that either submits its parent crowd-form element, if set to "submit", or resets its parent
<crowd-form> element, if set to "reset".

href

The URL to an online resource. Use this property if you need a link styled as a button.

icon

A string that specifies the icon to be displayed next to the button's text. The string must be the
name of an icon from the open-source iron-icons set, which is pre-loaded. For example, to insert
the search iron-icon, use the following:

<crowd-button>

SageMaker Crowd HTML Elements 1849

https://github.com/PolymerElements/iron-icons
https://www.webcomponents.org/element/@polymer/iron-icons/demo/demo/index.html

Amazon SageMaker Developer Guide

 <iron-icon icon="search"/>
</crowd-button>

The icon is positioned to either the left or the right of the text, as specified by the icon-align
attribute.

To use a custom icon see icon-url.

icon-align

The left or right position of the icon relative to the button's text. The default is "left".

icon-url

A URL to a custom image for the icon. A custom image can be used in place of a standard icon that
is specified by the icon attribute.

loading

A Boolean switch that, if present, displays the button as being in a loading state. This attribute has
precedence over the disabled attribute if both attributes are present.

target

When you use the href attribute to make the button act as a hyperlink to a specific URL, the
target attribute optionally targets a frame or window where the linked URL should load.

variant

The general style of the button. Use "primary" for primary buttons, "normal" for secondary
buttons, "link" for tertiary buttons, or "icon" to display only the icon without text.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

See Also

For more information, see the following.

SageMaker Crowd HTML Elements 1850

Amazon SageMaker Developer Guide

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-bounding-box

A widget for drawing rectangles on an image and assigning a label to the portion of the image that
is enclosed in each rectangle.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that uses the <crowd-bounding-box> element.
Copy the following code and save it in a file with the extension .html. Open the file in any browser
to preview and interact with this template. For more examples, see this GitHub repository.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-bounding-box
 name="annotatedResult"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="Draw bounding boxes around all the cats and dogs in this image"
 labels="['Cat', 'Dog']"
 >
 <full-instructions header="Bounding Box Instructions" >
 <p>Use the bounding box tool to draw boxes around the requested target of
 interest:</p>

 Draw a rectangle using your mouse over each instance of the target.
 Make sure the box does not cut into the target, leave a 2 - 3 pixel
 margin

 When targets are overlapping, draw a box around each object,
 include all contiguous parts of the target in the box.
 Do not include parts that are completely overlapped by another object.

 Do not include parts of the target that cannot be seen,
 even though you think you can interpolate the whole shape of the target.

 Avoid shadows, they're not considered as a part of the target.
 If the target goes off the screen, label up to the edge of the image.

SageMaker Crowd HTML Elements 1851

https://codepen.io/sagemaker_crowd_html_elements/pen/XWpJGad
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis/tree/master/images

Amazon SageMaker Developer Guide

 </full-instructions>

 <short-instructions>
 Draw boxes around the requested target of interest.
 </short-instructions>
 </crowd-bounding-box>
</crowd-form>

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the
worker.

initial-value

An array of JSON objects, each of which sets a bounding box when the component is loaded. Each
JSON object in the array contains the following properties. Bounding boxes set via the initial-
value property can be adjusted and whether or not a worker answer was adjusted is tracked via an
initialValueModified boolean in the worker answer output.

• height – The height of the box in pixels.

• label – The text assigned to the box as part of the labeling task. This text must match one of the
labels defined in the labels attribute of the <crowd-bounding-box> element.

• left – Distance of the top-left corner of the box from the left side of the image, measured in
pixels.

• top – Distance of the top-left corner of the box from the top of the image, measured in pixels.

• width – The width of the box in pixels.

You can extract the bounding box initial value from a manifest file of a previous job in a custom
template using the Liquid templating language:

initial-value="[
 {% for box in task.input.manifestLine.label-attribute-name-from-prior-
job.annotations %}
 {% capture class_id %}{{ box.class_id }}{% endcapture %}
 {% assign label = task.input.manifestLine.label-attribute-name-from-prior-job-
metadata.class-map[class_id] %}

SageMaker Crowd HTML Elements 1852

Amazon SageMaker Developer Guide

 {
 label: {{label | to_json}},
 left: {{box.left}},
 top: {{box.top}},
 width: {{box.width}},
 height: {{box.height}},
 },
 {% endfor %}
]"

labels

A JSON formatted array of strings, each of which is a label that a worker can assign to the image
portion enclosed by a rectangle. Limit: 10 labels.

name

The name of this widget. It's used as a key for the widget's input in the form output.

src

The URL of the image on which to draw bounding boxes.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: full-instructions, short-instructions

Regions

The following regions are required by this element.

full-instructions

General instructions about how to draw bounding boxes.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

SageMaker Crowd HTML Elements 1853

Amazon SageMaker Developer Guide

Output

The following output is supported by this element.

boundingBoxes

An array of JSON objects, each of which specifies a bounding box that has been created by the
worker. Each JSON object in the array contains the following properties.

• height – The height of the box in pixels.

• label – The text assigned to the box as part of the labeling task. This text must match one of the
labels defined in the labels attribute of the <crowd-bounding-box> element.

• left – Distance of the top-left corner of the box from the left side of the image, measured in
pixels.

• top – Distance of the top-left corner of the box from the top of the image, measured in pixels.

• width – The width of the box in pixels.

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker.
This object contains the following properties.

• height – The height, in pixels, of the image.

• width – The width, in pixels, of the image.

Example : Sample Element Outputs

The following are samples of outputs from common use scenarios for this element.

Single Label, Single Box / Multiple Label, Single Box

[
 {
 "annotatedResult": {
 "boundingBoxes": [
 {
 "height": 401,
 "label": "Dog",

SageMaker Crowd HTML Elements 1854

Amazon SageMaker Developer Guide

 "left": 243,
 "top": 117,
 "width": 187
 }
],
 "inputImageProperties": {
 "height": 533,
 "width": 800
 }
 }
 }
]

Single Label, Multiple Box

[
 {
 "annotatedResult": {
 "boundingBoxes": [
 {
 "height": 401,
 "label": "Dog",
 "left": 243,
 "top": 117,
 "width": 187
 },
 {
 "height": 283,
 "label": "Dog",
 "left": 684,
 "top": 120,
 "width": 116
 }
],
 "inputImageProperties": {
 "height": 533,
 "width": 800
 }
 }
 }
]

Multiple Label, Multiple Box

SageMaker Crowd HTML Elements 1855

Amazon SageMaker Developer Guide

[
 {
 "annotatedResult": {
 "boundingBoxes": [
 {
 "height": 395,
 "label": "Dog",
 "left": 241,
 "top": 125,
 "width": 158
 },
 {
 "height": 298,
 "label": "Cat",
 "left": 699,
 "top": 116,
 "width": 101
 }
],
 "inputImageProperties": {
 "height": 533,
 "width": 800
 }
 }
 }
]

You could have many labels available, but only the ones that are used appear in the output.

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-card

A box with an elevated appearance for displaying information.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

SageMaker Crowd HTML Elements 1856

https://codepen.io/sagemaker_crowd_html_elements/pen/QWdwoxe

Amazon SageMaker Developer Guide

The following is an example of a template designed for sentiment analysis tasks that uses the
<crowd-card> element. Copy the following code and save it in a file with the extension .html.
Open the file in any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<style>
 h3 {
 margin-top: 0;
 }

 crowd-card {
 width: 100%;
 }

 .card {
 margin: 10px;
 }

 .left {
 width: 70%;
 margin-right: 10px;
 display: inline-block;
 height: 200px;
 }

 .right {
 width: 20%;
 height: 200px;
 display: inline-block;
 }
</style>

<crowd-form>
 <short-instructions>
 Your short instructions here.
 </short-instructions>

 <full-instructions>
 Your full instructions here.
 </full-instructions>

 <div class="left">

SageMaker Crowd HTML Elements 1857

Amazon SageMaker Developer Guide

 <h3>What sentiment does this text convey?</h3>
 <crowd-card>
 <div class="card">
 Nothing is great.
 </div>
 </crowd-card>
 </div>

 <div class="right">
 <h3>Select an option</h3>

 <select name="sentiment1" style="font-size: large" required>
 <option value="">(Please select)</option>
 <option>Negative</option>
 <option>Neutral</option>
 <option>Positive</option>
 <option>Text is empty</option>
 </select>
 </div>

 <div class="left">
 <h3>What sentiment does this text convey?</h3>
 <crowd-card>
 <div class="card">
 Everything is great!
 </div>
 </crowd-card>
 </div>

 <div class="right">
 <h3>Select an option</h3>

 <select name="sentiment2" style="font-size: large" required>
 <option value="">(Please select)</option>
 <option>Negative</option>
 <option>Neutral</option>
 <option>Positive</option>
 <option>Text is empty</option>
 </select>
 </div>
</crowd-form>

SageMaker Crowd HTML Elements 1858

Amazon SageMaker Developer Guide

Attributes

The following attributes are supported by this element.

heading

The text displayed at the top of the box.

image

A URL to an image to be displayed within the box.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-checkbox

A UI component that can be checked or unchecked allowing a user to select multiple options from
a set.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that uses the <crowd-checkbox> element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>

SageMaker Crowd HTML Elements 1859

https://codepen.io/sagemaker_crowd_html_elements/pen/YzNPgOL

Amazon SageMaker Developer Guide

 <p>Find the official website for: {{ task.input.company }}</p>
 <p>Do not give Yelp pages, LinkedIn pages, etc.</p>
 <p>Include the http:// prefix from the website</p>
 <crowd-input name="website" placeholder="http://example.com"></crowd-input>

 <crowd-checkbox name="website-found">Website Found</crowd-checkbox>

</crowd-form>

Attributes

The following attributes are supported by this element.

checked

A Boolean switch that, if present, displays the check box as checked.

The following is an example of the syntx used to check a checkbox by default.

 <crowd-checkbox name="checkedBox" value="checked" checked>This box is checked</crowd-
checkbox>

disabled

A Boolean switch that, if present, displays the check box as disabled and prevents it from being
checked.

The following is an example of the syntax used to disable a checkbox.

 <crowd-checkbox name="disabledCheckBox" value="Disabled" disabled>Cannot be
 selected</crowd-checkbox>

name

A string that is used to identify the answer submitted by the worker. This value will match a key in
the JSON object that specifies the answer.

required

A Boolean switch that, if present, requires the worker to provide input.

SageMaker Crowd HTML Elements 1860

Amazon SageMaker Developer Guide

The following is an example of the syntax used to require a checkbox be selected.

 <crowd-checkbox name="work_verified" required>Instructions were clear</crowd-
checkbox>

value

A string used as the name for the check box state in the output. Defaults to "on" if not specified.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

Output

Provides a JSON object. The name string is the object name and the valuestring is the property
name for a Boolean value based on the check box state; true if checked, false if not checked.

Example : Sample Element Outputs

Using the same name value for multiple boxes.

<!-- INPUT -->
<div><crowd-checkbox name="image_attributes" value="blurry"> Blurry </crowd-checkbox></
div>
<div><crowd-checkbox name="image_attributes" value="dim"> Too Dim </crowd-checkbox></
div>
<div><crowd-checkbox name="image_attributes" value="exposed"> Too Bright </crowd-
checkbox></div>

//Output with "blurry" and "dim" checked
[
 {
 "image_attributes": {
 "blurry": true,
 "dim": true,
 "exposed": false

SageMaker Crowd HTML Elements 1861

Amazon SageMaker Developer Guide

 }
 }
]

Note that all three color values are properties of a single object.

Using different name values for each box.

<!-- INPUT -->
<div><crowd-checkbox name="Stop" value="Red"> Red </crowd-checkbox></div>
<div><crowd-checkbox name="Slow" value="Yellow"> Yellow </crowd-checkbox></div>
<div><crowd-checkbox name="Go" value="Green"> Green </crowd-checkbox></div>

//Output with "Red" checked
[
 {
 "Go": {
 "Green": false
 },
 "Slow": {
 "Yellow": false
 },
 "Stop": {
 "Red": true
 }
 }
]

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-classifier

A widget for classifying non-image content, such as audio, video, or text.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

SageMaker Crowd HTML Elements 1862

https://codepen.io/sagemaker_crowd_html_elements/pen/KKawYBm

Amazon SageMaker Developer Guide

The following is an example of an HTML worker task template built using crowd-classifier.
This example uses the Liquid template language to automate:

• Label categories in the categories parameter

• The objects that are being classified in the classification-target parameter.

Copy the following code and save it in a file with the extension .html. Open the file in any browser
to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-classifier
 name="category"
 categories="{{ task.input.labels | to_json | escape }}"
 header="What type of a document is this?"
 >
 <classification-target>
 <iframe style="width: 100%; height: 600px;" src="{{ task.input.taskObject |
 grant_read_access }}" type="application/pdf"></iframe>
 </classification-target>

 <full-instructions header="Document Classification Instructions">
 <p>Read the task carefully and inspect the document.</p>
 <p>Choose the appropriate label that best suits the document.</p>
 </full-instructions>

 <short-instructions>
 Please choose the correct category for the document
 </short-instructions>
 </crowd-classifier>
</crowd-form>

Attributes

The following attributes are supported by this element.

categories

A JSON formatted array of strings, each of which is a category that a worker can assign to the
text. You should include "other" as a category, otherwise the worker my not be able to provide an
answer.

SageMaker Crowd HTML Elements 1863

https://shopify.github.io/liquid/basics/introduction/

Amazon SageMaker Developer Guide

header

The text to display above the image. This is typically a question or simple instruction for the
worker.

name

The name of this widget. It is used as a key for the widget's input in the form output.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: classification-target, full-instructions, short-instructions

Regions

The following regions are supported by this element.

classification-target

The content to be classified by the worker. This can be plain text or HTML. Examples of how the
HTML can be used include but are not limited to embedding a video or audio player, embedding a
PDF, or performing a comparison of two or more images.

full-instructions

General instructions about how to do text classification.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The output of this element is an object using the specified name value as a property name, and a
string from the categories as the property's value.

Example : Sample Element Outputs

The following is a sample of output from this element.

[

SageMaker Crowd HTML Elements 1864

Amazon SageMaker Developer Guide

 {
 "<name>": {
 "label": "<value>"
 }
 }
]

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-classifier-multi-select

A widget for classifying various forms of content—such as audio, video, or text—into one or more
categories. The content to classify is referred to as an object.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of an HTML worker task template built using this element. Copy the
following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-classifier-multi-select
 name="category"
 categories="['Positive', 'Negative', 'Neutral']"
 header="Select the relevant categories"
 exclusion-category="{ text: 'None of the above' }"
 >
 <classification-target>
 {{ task.input.taskObject }}
 </classification-target>

 <full-instructions header="Text Categorization Instructions">
 <p>Positive sentiment include: joy, excitement, delight</p>
 <p>Negative sentiment include: anger, sarcasm, anxiety</p>

SageMaker Crowd HTML Elements 1865

https://codepen.io/sagemaker_crowd_html_elements/pen/ExZaMOm

Amazon SageMaker Developer Guide

 <p>Neutral: neither positive or negative, such as stating a
 fact</p>
 <p>N/A: when the text cannot be understood</p>
 <p>When the sentiment is mixed, such as both joy and sadness, choose both
 labels.</p>
 </full-instructions>

 <short-instructions>
 Choose all categories that are expressed by the text.
 </short-instructions>
 </crowd-classifier-multi-select>
</crowd-form>

Attributes

The following attributes are supported by the crowd-classifier-multi-select element. Each
attribute accepts a string value or string values.

categories

Required. A JSON-formatted array of strings, each of which is a category that a worker can assign
to the object.

header

Required. The text to display above the image. This is typically a question or simple instruction for
workers.

name

Required. The name of this widget. In the form output, the name is used as a key for the widget's
input.

exclusion-category

Optional. A JSON-formatted string with the following format: "{ text: 'default-value' }".
This attribute sets a default value that workers can choose if none of the labels applies to the
object shown in the worker UI.

Element Hierarchy

This element has the following parent and child elements:

• Parent elements: crowd-form

SageMaker Crowd HTML Elements 1866

Amazon SageMaker Developer Guide

• Child elements: classification-target, full-instructions, short-instructions

Regions

This element uses the following regions.

classification-target

The content to be classified by the worker. Content can be plain text or an object that you specify
in the template using HTML. For example, you can use HTML elements to include a video or audio
player, embedding a PDF file, or include a comparison of two or more images.

full-instructions

General instructions about how to classify text.

short-instructions

Important task-specific instructions. These instructions are displayed prominently.

Output

The output of this element is an object that uses the specified name value as a property name, and
a string from categories as the property's value.

Example : Sample Element Outputs

The following is a sample of output from this element.

[
 {
 "<name>": {
 labels: ["label_a", "label_b"]
 }
 }
]

See Also

For more information, see the following:

• Text Classification (Multi-label)

• Use Amazon SageMaker Ground Truth to Label Data

SageMaker Crowd HTML Elements 1867

Amazon SageMaker Developer Guide

• Crowd HTML Elements Reference

crowd-entity-annotation

A widget for labeling words, phrases, or character strings within a longer text. Workers select a
label, and highlight the text that the label applies to.

Important: Self-contained Widget

Do not use <crowd-entity-annotation> element with the <crowd-form> element. It
contains its own form submission logic and Submit button.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a template that uses the <crowd-entity-annotation> element.
Copy the following code and save it in a file with the extension .html. Open the file in any browser
to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-entity-annotation
 name="crowd-entity-annotation"
 header="Highlight parts of the text below"
 labels="[{'label': 'person', 'shortDisplayName': 'per', 'fullDisplayName': 'Person'},
 {'label': 'date', 'shortDisplayName': 'dat', 'fullDisplayName': 'Date'}, {'label':
 'company', 'shortDisplayName': 'com', 'fullDisplayName': 'Company'}]"
 text="Amazon SageMaker Ground Truth helps you build highly accurate training datasets
 for machine learning quickly."
>
 <full-instructions header="Named entity recognition instructions">

 Read the text carefully.
 Highlight words, phrases, or sections of the text.
 Choose the label that best matches what you have
 highlighted.
 To change a label, choose highlighted text and select a new
 label.
 To remove a label from highlighted text, choose the X next
 to the abbreviated label name on the highlighted text.

SageMaker Crowd HTML Elements 1868

https://codepen.io/sagemaker_crowd_html_elements/pen/XWpJQrR

Amazon SageMaker Developer Guide

 You can select all of a previously highlighted text, but not a portion of
 it.

 </full-instructions>

 <short-instructions>
 Apply labels to words or phrases.
 </short-instructions>

 <div id="additionalQuestions" style="margin-top: 20px">
 <h3>
 What is the overall subject of this text?
 </h3>
 <crowd-radio-group>
 <crowd-radio-button name="tech" value="tech">Technology</crowd-radio-button>
 <crowd-radio-button name="politics" value="politics">Politics</crowd-radio-
button>
 </crowd-radio-group>
 </div>
</crowd-entity-annotation>

<script>
 document.addEventListener('all-crowd-elements-ready', () => {
 document
 .querySelector('crowd-entity-annotation')
 .shadowRoot
 .querySelector('crowd-form')
 .form
 .appendChild(additionalQuestions);
 });
</script>

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the
worker.

SageMaker Crowd HTML Elements 1869

Amazon SageMaker Developer Guide

initial-value

A JSON formatted array of objects, each of which defines an annotation to apply to the text at
initialization. Objects contain a label value that matches one in the labels attribute, an integer
startOffset value for labeled span's starting unicode offset, and an integer endOffset value
for the ending unicode offset.

Example

[
 {
 label: 'person',
 startOffset: 0,
 endOffset: 16
 },
 ...
]

labels

A JSON formatted array of objects, each of which contains:

• label (required): The name used to identify entities.

• fullDisplayName (optional): Used for the label list in the task widget. Defaults to the label
value if not specified.

• shortDisplayName (optional): An abbreviation of 3-4 letters to display above selected entities.
Defaults to the label value if not specified.

shortDisplayName is highly recommended

Values displayed above the selections can overlap and create difficulty managing labeled
entities in the workspace. Providing a 3-4 character shortDisplayName for each label
is highly recommended to prevent overlap and keep the workspace manageable for your
workers.

Example

[
 {

SageMaker Crowd HTML Elements 1870

Amazon SageMaker Developer Guide

 label: 'person',
 shortDisplayName: 'per',
 fullDisplayName: 'person'
 }
]

name

Serves as the widget's name in the DOM. It is also used as the label attribute name in form output
and the output manifest.

text

The text to be annotated. The templating system escapes quotes and HTML strings by default.
If your code is already escaped or partially escaped, see Variable filters for more ways to control
escaping.

Element Hierarchy

This element has the following parent and child elements.

• Child elements: full-instructions, short-instructions

Regions

The following regions are supported by this element.

full-instructions

General instructions about how to work with the widget.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

entities

A JSON object that specifies the start, end, and label of an annotation. This object contains the
following properties.

SageMaker Crowd HTML Elements 1871

Amazon SageMaker Developer Guide

• label – The assigned label.

• startOffset – The Unicode offset of the beginning of the selected text.

• endOffset – The Unicode offset of the first character after the selection.

Example : Sample Element Outputs

The following is a sample of the output from this element.

{
 "myAnnotatedResult": {
 "entities": [
 {
 "endOffset": 54,
 "label": "person",
 "startOffset": 47
 },
 {
 "endOffset": 97,
 "label": "event",
 "startOffset": 93
 },
 {
 "endOffset": 219,
 "label": "date",
 "startOffset": 212
 },
 {
 "endOffset": 271,
 "label": "location",
 "startOffset": 260
 }
]
 }
}

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

SageMaker Crowd HTML Elements 1872

Amazon SageMaker Developer Guide

crowd-fab

A floating button with an image in its center.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template designed for image classification that uses the
<crowd-fab> element. This template uses JavaScript to enable workers to report issues with the
worker UI. Copy the following code and save it in a file with the extension .html. Open the file in
any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-image-classifier
 src="${image_url}"
 categories="['Cat', 'Dog', 'Bird', 'None of the Above']"
 header="Choose the correct category for the image"
 name="category">

 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 <p>If there is an issue with the image or tools, please select
 None of the Above, describe the issue in the text box and click
 the
 button below.</p>
 <crowd-input label="Report an Issue" name="template-issues"></crowd-input>
 <crowd-fab id="button1" icon="report-problem" title="Issue"/>
 </short-instructions>

 <full-instructions header="Classification Instructions">
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.
 Use the None of the Above option if none of the other labels suit
 the image.</p>
 </full-instructions>

 </crowd-image-classifier>
</crowd-form>

<script>
 [

SageMaker Crowd HTML Elements 1873

https://codepen.io/sagemaker_crowd_html_elements/pen/ExZaJaw

Amazon SageMaker Developer Guide

 button1,
].forEach(function(button) {
 button.addEventListener('click', function() {
 document.querySelector('crowd-form').submit();
 });
 });
</script>

Attributes

The following attributes are supported by this element.

disabled

A Boolean switch that, if present, displays the floating button as disabled and prevents clicks.

icon

A string that specifies the icon to be displayed in the center of the button. The string must be
either the name of an icon from the open-source iron-icons set, which is pre-loaded, or the URL to a
custom icon.

The following is an example of the syntax that you can use to add an iron-icon to a <crowd-fab>
HTML element. Replace icon-name with the name of the icon you'd like to use from this Icons set.

<crowd-fab "id="button1" icon="icon-name" title="Issue"/>

label

A string consisting of a single character that can be used instead of an icon. Emojis or multiple
characters may result in the button displaying an ellipsis instead.

title

A string that will display as a tool tip when the mouse hovers over the button.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

SageMaker Crowd HTML Elements 1874

https://github.com/PolymerElements/iron-icons
https://www.webcomponents.org/element/@polymer/iron-icons/demo/demo/index.html

Amazon SageMaker Developer Guide

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-form

The form wrapper for all custom tasks. Sets and implements important actions for the proper
submission of your form data.

If a crowd-button of type "submit" is not included inside the <crowd-form> element, it will
automatically be appended within the <crowd-form> element.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of an image classification template that uses the <crowd-form>
element. Copy the following code and save it in a file with the extension .html. Open the file in
any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-image-classifier
 src="${image_url}"
 categories="['Cat', 'Dog', 'Bird', 'None of the Above']"
 header="Choose the correct category for the image"
 name="category">

 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 </short-instructions>

 <full-instructions header="Classification Instructions">

SageMaker Crowd HTML Elements 1875

https://codepen.io/sagemaker_crowd_html_elements/pen/oNBgOWa

Amazon SageMaker Developer Guide

 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.
 Use the None of the Above option if none of the other labels suit
 the image.</p>
 </full-instructions>

 </crowd-image-classifier>
</crowd-form>

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: none

• Child elements: Any of the UI Template elements

Element Events

The crowd-form element extends the standard HTML form element and inherits its events, such
as onclick and onsubmit.

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-icon-button

A button with an image placed in the center. When the user touches the button, a ripple effect
emanates from the center of the button.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template designed for image classification that uses the
<crowd-icon-button> element. This template uses JavaScript to enable workers to report issues
with the worker UI. Copy the following code and save it in a file with the extension .html. Open
the file in any browser to preview and interact with this template.

SageMaker Crowd HTML Elements 1876

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://codepen.io/sagemaker_crowd_html_elements/pen/ExZaJXE

Amazon SageMaker Developer Guide

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-image-classifier
 src="${image_url}"
 categories="['Cat', 'Dog', 'Bird', 'None of the Above']"
 header="Choose the correct category for the image"
 name="category">

 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 <p>If there is an issue with the image or tools, please select
 None of the Above, describe the issue in the text box and click
 the
 button below.</p>
 <crowd-input label="Report an Issue" name="template-issues"/></crowd-input>
 <crowd-icon-button id="button1" icon="report-problem" title="Issue"/>
 </short-instructions>

 <full-instructions header="Classification Instructions">
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.
 Use the None of the Above option if none of the other labels suit
 the image.</p>
 </full-instructions>

 </crowd-image-classifier>
</crowd-form>

<script>
 [
 button1,
].forEach(function(button) {
 button.addEventListener('click', function() {
 document.querySelector('crowd-form').submit();
 });
 });
</script>

Attributes

The following attributes are supported by this element.

SageMaker Crowd HTML Elements 1877

Amazon SageMaker Developer Guide

disabled

A Boolean switch that, if present, displays the button as disabled and prevents clicks.

icon

A string that specifies the icon to be displayed in the center of the button. The string must be
either the name of an icon from the open-source iron-icons set, which is pre-loaded, or the URL to a
custom icon.

The following is an example of the syntax that you can use to add an iron-icon to a <crowd-icon-
button> HTML element. Replace icon-name with the name of the icon you'd like to use from this
Icons set.

<crowd-icon-button id="button1" icon="icon-name" title="Issue"/>

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-image-classifier

A widget for classifying an image. Use one of the following supported image formats: APNG, BMP,
GIF, ICO, JPEG, PNG, SVG. Images do not have a size limit.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of an image classification template that uses the <crowd-image-
classifier> element. Copy the following code and save it in a file with the extension .html.
Open the file in any browser to preview and interact with this template.

SageMaker Crowd HTML Elements 1878

https://github.com/PolymerElements/iron-icons
https://www.webcomponents.org/element/@polymer/iron-icons/demo/demo/index.html
https://codepen.io/sagemaker_crowd_html_elements/pen/vYgEvWw

Amazon SageMaker Developer Guide

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-image-classifier
 src="${image_url}"
 categories="['Cat', 'Dog', 'Bird', 'None of the Above']"
 header="Choose the correct category for the image"
 name="category">

 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 </short-instructions>

 <full-instructions header="Classification Instructions">
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.
 Use the None of the Above option if none of the other labels suit
 the image.</p>
 </full-instructions>

 </crowd-image-classifier>
</crowd-form>

Attributes

The following attributes are required by this element.

categories

A JSON formatted array of strings, each of which is a category that a worker can assign to the
image. You should include "other" as a category, so that the worker can provide an answer. You can
specify up to 10 categories.

header

The text to display above the image. This is typically a question or simple instruction for the
worker.

name

The name of this widget. It is used as a key for the widget's input in the form output.

SageMaker Crowd HTML Elements 1879

Amazon SageMaker Developer Guide

overlay

Information to be overlaid on the source image. This is for verification workflows of bounding-box,
semantic-segmentation, and instance-segmentation tasks.

It is a JSON object containing an object with the name of the task-type in camelCase as the key.
That key's value is an object that contains the labels and other necessary information from the
previous task.

An example of a crowd-image-classifier element with attributes for verifying a bounding-
box task follows:

<crowd-image-classifier
 name="boundingBoxClassification"
 header="Rate the quality of the annotations based on the background section
 in the instructions on the left hand side."
 src="https://i.imgur.com/CIPKVJo.jpg"
 categories="['good', 'bad', 'okay']"
 overlay='{
 "boundingBox": {
 labels: ["bird", "cat"],
 value: [
 {
 height: 284,
 label: "bird",
 left: 230,
 top: 974,
 width: 223
 },
 {
 height: 69,
 label: "bird",
 left: 79,
 top: 889,
 width: 247
 }
]
 },
 }'
> ... </crowd-image-classifier>

A semantic segmentation verification task would use the overlay value as follows:

SageMaker Crowd HTML Elements 1880

Amazon SageMaker Developer Guide

<crowd-image-classifier
 name='crowd-image-classifier'
 categories='["good", "bad"]'
 src='URL of image to be classified'
 header='Please classify'
 overlay='{
 "semanticSegmentation": {
 "labels": ["Cat", "Dog", "Bird", "Cow"],
 "labelMappings": {
 "Bird": {
 "color": "#ff7f0e"
 },
 "Cat": {
 "color": "#2ca02c"
 },
 "Cow": {
 "color": "#d62728"
 },
 "Dog": {
 "color": "#2acf59"
 }
 },
 "src": "URL of overlay image",
 }
 }'
> ... </crowd-image-classifier>

An instance-segmentation task would use the overlay value as follows:

<crowd-image-classifier
 name='crowd-image-classifier'
 categories='["good", "bad"]'
 src='URL of image to be classified'
 header='Please classify instances of each category'
 overlay='{
 "instanceSegmentation": {
 "labels": ["Cat", "Dog", "Bird", "Cow"],
 "instances": [
 {
 "color": "#2ca02c",
 "label": "Cat"
 },
 {

SageMaker Crowd HTML Elements 1881

Amazon SageMaker Developer Guide

 "color": "#1f77b4",
 "label": "Cat"
 },
 {
 "color": "#d62728",
 "label": "Dog"
 }
],
 "src": "URL of overlay image",
 }
 }'
> ... </crowd-image-classifier>

src

The URL of the image to be classified.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: full-instructions, short-instructions, worker-comment

Regions

The following regions are used by this element.

full-instructions

General instructions for the worker on how to classify an image.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

worker-comment

Use this in verification workflows when you need workers to explain why they made the choice
they did. Use the text between the opening and closing tags to provide instructions for workers on
what information should be included in the comment.

It uses the following attributes:

SageMaker Crowd HTML Elements 1882

Amazon SageMaker Developer Guide

header

A phrase with a call to action for leaving a comment. Used as the title text for a modal window
where the comment is added.

Optional. Defaults to "Add a comment."

link-text

This text appears below the categories in the widget. When clicked, it opens a modal window
where the worker may add a comment.

Optional. Defaults to "Add a comment."

placeholder

An example text in the comment text area that is overwritten when worker begins to type. This
does not appear in output if the worker leaves the field blank.

Optional. Defaults to blank.

Output

The output of this element is a string that specifies one of the values defined in the categories
attribute of the <crowd-image-classifier> element.

Example : Sample Element Outputs

The following is a sample of output from this element.

[
 {
 "<name>": {
 "label": "<value>"
 "workerComment": "Comment - if no comment is provided, this field will not be
 present"
 }
 }
]

See Also

For more information, see the following.

SageMaker Crowd HTML Elements 1883

Amazon SageMaker Developer Guide

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-image-classifier-multi-select

A widget for classifying an image into one or more categories. Use one of the following supported
image formats: APNG, BMP, GIF, ICO, JPEG, PNG, SVG. Images do not have a size limit.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of an HTML worker task template built using this crowd element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-image-classifier-multi-select
 name="animals"
 categories="['Cat', 'Dog', 'Horse', 'Pig', 'Bird']"
 src="https://images.unsplash.com/photo-1509205477838-a534e43a849f?
ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=1998&q=80"
 header="Please identify the animals in this image"
 exclusion-category="{ text: 'None of the above' }"
 >
 <full-instructions header="Classification Instructions">
 <p>If more than one label applies to the image, select multiple labels.</p>
 <p>If no labels apply, select None of the above</p>
 </full-instructions>

 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label(s) that best suit the image.</p>
 </short-instructions>
 </crowd-image-classifier-multi-select>
</crowd-form>

Attributes

The following attributes are supported by the crowd-image-classifier-multi-select
element. Each attribute accepts a string value or string values.

SageMaker Crowd HTML Elements 1884

https://codepen.io/sagemaker_crowd_html_elements/pen/WNRbWgR

Amazon SageMaker Developer Guide

categories

Required. A JSON-formatted array of strings, each of which is a category that a worker can assign
to the image. A worker must choose at least one category and can choose all categories.

header

Required. The text to display above the image. This is typically a question or simple instruction for
workers.

name

Required. The name of this widget. In the form output, the name is used as a key for the widget's
input.

src

Required. The URL of the image to be classified.

exclusion-category

Optional. A JSON-formatted string with the following format: "{ text: 'default-value' }".
This attribute sets a default value that workers can choose if none of the labels applies to the
image shown in the worker UI.

Element Hierarchy

This element has the following parent and child elements:

• Parent elements: crowd-form

• Child elements: full-instructions, short-instructions, worker-comment

Regions

This element uses the following regions

full-instructions

General instructions for the worker on how to classify an image.

short-instructions

Important task-specific instructions. These instructions are displayed prominently.

SageMaker Crowd HTML Elements 1885

Amazon SageMaker Developer Guide

Output

The output of this element is a string that specifies one or more of the values defined in the
categories attribute of the <crowd-image-classifier-multi-select> element.

Example : Sample Element Outputs

The following is a sample of output from this element.

[
 {
 "<name>": {
 labels: ["label_a", "label_b"]
 }
 }
]

See Also

For more information, see the following:

• Image Classification (Multi-label)

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-input

A box that accepts input data.

Cannot be self-closing

Unlike the input element in the HTML standard, this element cannot be self-closed
by putting a slash before the ending bracket, e.g. <crowd-input ... />. It must be
followed with a </crowd-input> to close the element.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that uses the <crowd-input> element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

SageMaker Crowd HTML Elements 1886

https://codepen.io/sagemaker_crowd_html_elements/pen/wvgBZYW

Amazon SageMaker Developer Guide

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <img style="max-width: 35vw; max-height: 50vh" src="{{ task.input.taskObject |
 grant_read_access }}">
 <crowd-input name="tag1" label="Word/phrase 1" required></crowd-input>
 <crowd-input name="tag2" label="Word/phrase 2" required></crowd-input>
 <crowd-input name="tag3" label="Word/phrase 3" required></crowd-input>

 <short-instructions>
 Your custom quick instructions and examples
 </short-instructions>

 <full-instructions>
 Your custom detailed instracutions and more examples
 </full-instructions>
</crowd-form>

Attributes

The following attributes are supported by this element.

allowed-pattern

A regular expression that is used with the auto-validate attribute to ignore non-matching
characters as the worker types.

auto-focus

When the value is set to true, the browser places focus inside the input area after loading. This way,
the worker can start typing without having to select it first.

auto-validate

A Boolean switch that, if present, turns on input validation. The behavior of the validator can be
modified by the error-message and allowed-pattern attributes.

disabled

A Boolean switch that, if present, displays the input area as disabled.

error-message

The text to be displayed below the input field, on the left side, if validation fails.

SageMaker Crowd HTML Elements 1887

Amazon SageMaker Developer Guide

label

A string that is displayed inside a text field.

This text shrinks and rises up above a text field when the worker starts typing in the field or when
the value attribute is set.

max-length

A maximum number of characters the input will accept. Input beyond this limit is ignored.

min-length

A minimum length for the input in the field

name

Sets the name of the input to be used in the DOM and the output of the form.

placeholder

A string value that is used as placeholder text, displayed until the worker starts entering data into
the input, It is not used as a default value.

required

A Boolean switch that, if present, requires the worker to provide input.

type

Takes a string to set the HTML5 input-type behavior for the input. Examples include file and
date.

value

A preset that becomes the default if the worker does not provide input. The preset appears in a
text field.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

SageMaker Crowd HTML Elements 1888

Amazon SageMaker Developer Guide

Output

Provides a name string as the property name, and the text that was entered in the field as its value.

Example : Sample JSON Output

The values for multiple elements are output in the same object, with their name attribute value as
their property name. Elements with no input do not appear in the output. For example, let's use
three inputs:

<crowd-input name="tag1" label="Word/phrase 1"></crowd-input>
<crowd-input name="tag2" label="Word/phrase 2"></crowd-input>
<crowd-input name="tag3" label="Word/phrase 3"></crowd-input>

This is the output if only two have input:

[
 {
 "tag1": "blue",
 "tag2": "red"
 }
]

This means any code built to parse these results should be able to handle the presence or absence
of each input in the answers.

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-instance-segmentation

A widget for identifying individual instances of specific objects within an image and creating a
colored overlay for each labeled instance.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

SageMaker Crowd HTML Elements 1889

https://codepen.io/sagemaker_crowd_html_elements/pen/PoWwvwG

Amazon SageMaker Developer Guide

The following is an example of a Liquid template that uses the <crowd-instance-
segmentation>. Copy the following code and save it in a file with the extension .html. Open the
file in any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-instance-segmentation
 name="annotatedResult"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="Please label each of the requested objects in this image"
 labels="['Cat', 'Dog', 'Bird']"
 >
 <full-instructions header="Segmentation Instructions">

 Read the task carefully and inspect the image.
 Read the options and review the examples provided to
 understand more about the labels.
 Choose the appropriate label that best suits the
 image.

 </full-instructions>

 <short-instructions>
 <p>Use the tools to label all instances of the requested items in the image</p>
 </short-instructions>
 </crowd-instance-segmentation>
</crowd-form>

Use a template similar to the following to allow workers to add their own categories (labels).

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-instance-segmentation
 id="annotator"
 name="myTexts"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="Click Instructions to add new labels."
 labels="['placeholder']"
 >
 <short-instructions>
 <h3>Add a label to describe each type of object in this image.</h3>
 <h3>Cover each instance of each object with a segmentation mask.</h3>

SageMaker Crowd HTML Elements 1890

Amazon SageMaker Developer Guide

 <h3>
 Add new label
 </h3>
 <crowd-input name="_customLabel" id="customLabel"></crowd-input>
 <crowd-button id="addLabel">Add</crowd-button>

 <h3>
 Manage labels
 </h3>
 <div id="labelsSection"></div>
 </short-instructions>

 <full-instructions>
 Describe your task in more detail here.
 </full-instructions>
 </crowd-instance-segmentation>
</crowd-form>

<script>
 document.addEventListener('all-crowd-elements-ready', function(event) {
 document.querySelector('crowd-instance-segmentation').labels = [];
 });

 function populateLabelsSection() {
 labelsSection.innerHTML = '';
 annotator.labels.forEach(function(label) {
 const labelContainer = document.createElement('div');
 labelContainer.innerHTML = label + ' (Delete)';
 labelContainer.querySelector('a').onclick = function() {
 annotator.labels = annotator.labels.filter(function(l) {
 return l !== label;
 });
 populateLabelsSection();
 };
 labelsSection.appendChild(labelContainer);
 });
 }

 addLabel.onclick = function() {
 annotator.labels = annotator.labels.concat([customLabel.value]);
 customLabel.value = null;

SageMaker Crowd HTML Elements 1891

Amazon SageMaker Developer Guide

 populateLabelsSection();
 };
</script>

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the
worker.

labels

A JSON formatted array of strings, each of which is a label that a worker can assign to an instance
of an object in the image. Workers can generate different overlay colors for each relevant instance
by selecting "add instance" under the label in the tool.

name

The name of this widget. It is used as a key for the labeling data in the form output.

src

The URL of the image that is to be labeled.

initial-value

A JSON object containing the color mappings of a prior instance segmentation job and a link to the
overlay image output by the prior job. Include this when you want a human worker to verify the
results of a prior labeling job and adjust it if necessary.

The attribute will appear as follows:

 initial-value="{
 "instances": [
 {
 "color": "#2ca02c",
 "label": "Cat"
 },
 {

SageMaker Crowd HTML Elements 1892

Amazon SageMaker Developer Guide

 "color": "#1f77b4",
 "label": "Cat"
 },
 {
 "color": "#d62728",
 "label": "Dog"
 }
],
 "src": {{ "S3 file URL for image" | grant_read_access }}
 }"

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: full-instructions, short-instructions

Regions

The following regions are supported by this element.

full-instructions

General instructions about how to do image segmentation.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

labeledImage

A JSON Object containing a Base64 encoded PNG of the labels.

instances

A JSON Array containing objects with the instance labels and colors.

SageMaker Crowd HTML Elements 1893

Amazon SageMaker Developer Guide

• color – The hexadecimal value of the label's RGB color in the labeledImage PNG.

• label – The label given to overlay(s) using that color. This value may repeat, because the different
instances of the label are identified by their unique color.

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker.
This object contains the following properties.

• height – The height, in pixels, of the image.

• width – The width, in pixels, of the image.

Example : Sample Element Outputs

The following is an example of output from this element.

[
 {
 "annotatedResult": {
 "inputImageProperties": {
 "height": 533,
 "width": 800
 },
 "instances": [
 {
 "color": "#1f77b4",
 "label": "<Label 1>":
 },
 {
 "color": "#2ca02c",
 "label": "<Label 1>":
 },
 {
 "color": "#ff7f0e",
 "label": "<Label 3>":
 },
],
 "labeledImage": {
 "pngImageData": "<Base-64 Encoded Data>"
 }
 }

SageMaker Crowd HTML Elements 1894

Amazon SageMaker Developer Guide

 }
]

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-instructions

An element that displays instructions on three tabbed pages, Summary, Detailed Instructions, and
Examples, when the worker clicks on a link or button.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that used the <crowd-instructions> element.
Copy the following code and save it in a file with the extension .html. Open the file in any browser
to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-instructions link-text="View instructions" link-type="button">
 <short-summary>
 <p>Given an image, write three words or short phrases that summarize its
 contents.</p>
 </short-summary>
 <detailed-instructions>
 <p>Imagine that you are describing an image to a friend or tagging it for a news
 website. Provide three specific words or short phrases that describe it.</p>
 </detailed-instructions>
 <positive-example>
 <p></p>
 <p>

 Highway
 Cars
 Gas station

 </p>

SageMaker Crowd HTML Elements 1895

https://codepen.io/sagemaker_crowd_html_elements/pen/XWpJwbx

Amazon SageMaker Developer Guide

 </positive-example>
 <negative-example>
 <p></p>
 <p>
 These are not specific enough:

 Trees
 Outside
 Daytime

 </p>
 </negative-example>
 </crowd-instructions>
 <p>Instructions: Given an image, write three words or short
 phrases that summarize its contents.</p>
 <p>If someone were to see these three words or phrases, they should understand the
 subject and context of the image, as well as any important actions.</p>
 <p>View the instructions for detailed instructions and examples.</p>
 <p><img style="max-width: 100%; max-height: 100%" src="{{ task.input.taskObject |
 grant_read_access }}"></p>
 <crowd-input name="tag1" label="Word/phrase 1" required></crowd-input>
 <crowd-input name="tag2" label="Word/phrase 2" required></crowd-input>
 <crowd-input name="tag3" label="Word/phrase 3" required></crowd-input>
</crowd-form>

Attributes

The following attributes are supported by this element.

link-text

The text to display for opening the instructions. The default is Click for instructions.

link-type

A string that specifies the type of trigger for the instructions. The possible values are
"link" (default) and "button".

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

SageMaker Crowd HTML Elements 1896

Amazon SageMaker Developer Guide

Regions

The following regions are supported by this element.

detailed-instructions

Content that provides specific instructions for a task. This appears on the page of the "Detailed
Instructions" tab.

negative-example

Content that provides examples of inadequate task completion. This appears on the page of the
"Examples" tab. More than one example may be provided within this element.

positive-example

Content that provides examples of proper task completion. This appears on the page of the
"Examples" tab.

short-summary

A brief statement that summarizes the task to be completed. This appears on the page of the
"Summary" tab. More than one example may be provided within this element.

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-keypoint

Generates a tool to select and annotate key points on an image.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of an Liquid template that uses the <crowd-keypoint> element.
Copy the following code and save it in a file with the extension .html. Open the file in any browser
to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

SageMaker Crowd HTML Elements 1897

https://codepen.io/sagemaker_crowd_html_elements/pen/GRrgaWN

Amazon SageMaker Developer Guide

<crowd-form>
 <div id="errorBox"></div>

 <crowd-keypoint
 src="{{ task.input.taskObject | grant_read_access }}"
 labels="['Item A', 'Item B', 'Item C']"
 header="Please locate the centers of each item."
 name="annotatedResult">
 <short-instructions>
 Describe your task briefly here and give examples
 </short-instructions>
 <full-instructions>
 Give additional instructions and good/bad examples here
 </full-instructions>
 </crowd-keypoint>
</crowd-form>

<script>
 var num_obj = 1;

 document.querySelector('crowd-form').onsubmit = function(e) {
 const keypoints = document.querySelector('crowd-keypoint').value.keypoints ||
 document.querySelector('crowd-keypoint')._submittableValue.keypoints;
 const labels = keypoints.map(function(p) {
 return p.label;
 });

 // 1. Make sure total number of keypoints is correct.
 var original_num_labels = document.getElementsByTagName("crowd-keypoint")
[0].getAttribute("labels");

 original_num_labels = original_num_labels.substring(2, original_num_labels.length -
 2).split("\",\"");
 var goalNumKeypoints = num_obj*original_num_labels.length;
 if (keypoints.length != goalNumKeypoints) {
 e.preventDefault();
 errorBox.innerHTML = '<crowd-alert type="error" dismissible>You must add all
 keypoint annotations and use each label only once.</crowd-alert>';
 errorBox.scrollIntoView();
 return;
 }

 // 2. Make sure all labels are unique.
 labelCounts = {};

SageMaker Crowd HTML Elements 1898

Amazon SageMaker Developer Guide

 for (var i = 0; i < labels.length; i++) {
 if (!labelCounts[labels[i]]) {
 labelCounts[labels[i]] = 0;
 }
 labelCounts[labels[i]]++;
 }
 const goalNumSingleLabel = num_obj;

 const numLabels = Object.keys(labelCounts).length;

 Object.entries(labelCounts).forEach(entry => {
 if (entry[1] != goalNumSingleLabel) {
 e.preventDefault();
 errorBox.innerHTML = '<crowd-alert type="error" dismissible>You must use each
 label only once.</crowd-alert>';
 errorBox.scrollIntoView();
 }
 })
 };
</script>

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the
worker.

initial-value

An array, in JSON format, of keypoints to be applied to the image on start. For example:

initial-value="[
 {
 'label': 'Left Eye',
 'x': 1022,
 'y': 429
 },
 {
 'label': 'Beak',
 'x': 941,

SageMaker Crowd HTML Elements 1899

Amazon SageMaker Developer Guide

 'y': 403
 }
]

Note

Please note that label values used in this attribute must have a matching value in the
labels attribute or the point will not be rendered.

labels

An array, in JSON format, of strings to be used as keypoint annotation labels.

name

A string used to identify the answer submitted by the worker. This value will match a key in the
JSON object that specifies the answer.

src

The source URI of the image to be annotated.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: full-instructions, short-instructions

Regions

The following regions are required by this element.

full-instructions

General instructions about how to annotate the image.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

SageMaker Crowd HTML Elements 1900

Amazon SageMaker Developer Guide

Output

The following output is supported by this element.

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker.
This object contains the following properties.

• height – The height, in pixels, of the image.

• width – The width, in pixels, of the image.

keypoints

An array of JSON objects containing the coordinates and label of a keypoint. Each object contains
the following properties.

• label – The assigned label for the keypoint.

• x – The X coordinate, in pixels, of the keypoint on the image.

• y – The Y coordinate, in pixels, of the keypoint on the image.

Note

X and Y coordinates are based on 0,0 being the top left corner of the image.

Example : Sample Element Outputs

The following is a sample output from using this element.

[
 {
 "crowdKeypoint": {
 "inputImageProperties": {
 "height": 1314,
 "width": 962
 },
 "keypoints": [
 {

SageMaker Crowd HTML Elements 1901

Amazon SageMaker Developer Guide

 "label": "dog",
 "x": 155,
 "y": 275
 },
 {
 "label": "cat",
 "x": 341,
 "y": 447
 },
 {
 "label": "cat",
 "x": 491,
 "y": 513
 },
 {
 "label": "dog",
 "x": 714,
 "y": 578
 },
 {
 "label": "cat",
 "x": 712,
 "y": 763
 },
 {
 "label": "cat",
 "x": 397,
 "y": 814
 }
]
 }
 }
]

You may have many labels available, but only the ones that are used appear in the output.

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

SageMaker Crowd HTML Elements 1902

Amazon SageMaker Developer Guide

crowd-line

A widget for drawing lines on an image. Each line is associated with a label, and output data will
report the starting and ending points of each line.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that uses the <crowd-line> element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template. For more examples, see this GitHub repository.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-line
 name="crowdLine"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="Add header here to describe the task"
 labels="['car','pedestrian','street car']"
 >
 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 <p>Draw a line on each objects that the label applies to.</p>
 </short-instructions>

 <full-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.
 <p>Draw a line along each object that the image applies to.
 Make sure that the line does not extend beyond the boundaries
 of the object.
 </p>
 <p>Each line is defined by a starting and ending point. Carefully
 place the starting and ending points on the boundaries of the object.</p>
 </full-instructions>

 </crowd-line>
</crowd-form>

Attributes

The following attributes are supported by this element.

SageMaker Crowd HTML Elements 1903

https://codepen.io/sagemaker_crowd_html_elements/pen/NWdPVgw
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis/tree/master/images

Amazon SageMaker Developer Guide

header

Optional. The text to display above the image. This is typically a question or simple instruction for
the worker.

initial-value

Optional. An array of JSON objects, each of which sets a line when the component is loaded. Each
JSON object in the array contains the following properties:

• label – The text assigned to the line as part of the labeling task. This text must match one of the
labels defined in the labels attribute of the <crowd-line> element.

• vertices – the x and y pixel corrdinates of the start point and end point of the line, relative to the
top-left corner of the image.

initial-value="{
 lines: [
 {
 label: 'sideline', // label of this line annotation
 vertices:[// an array of vertices which decide the position of the
 line
 {
 x: 84,
 y: 110
 },
 {
 x: 60,
 y: 100
 }
]
 },
 {
 label: 'yardline',
 vertices:[
 {
 x: 651,
 y: 498
 },
 {
 x: 862,
 y: 869
 }

SageMaker Crowd HTML Elements 1904

Amazon SageMaker Developer Guide

]
 }
]
}"

Lines set via the initial-value property can be adjusted. Whether or not a worker answer was
adjusted is tracked via an initialValueModified boolean in the worker answer output.

labels

Required. A JSON formatted array of strings, each of which is a label that a worker can assign to
the line.

Limit: 10 labels

label-colors

Optional. An array of strings. Each string is a hexadecimal (hex) code for a label.

name

Required. The name of this widget. It's used as a key for the widget's input in the form output.

src

Required. The URL of the image on which to draw lines.

Regions

The following regions are required by this element.

full-instructions

General instructions about how to draw lines.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: short-instructions, full-instructions

SageMaker Crowd HTML Elements 1905

Amazon SageMaker Developer Guide

Output

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker.
This object contains the following properties.

• height – The height, in pixels, of the image.

• width – The width, in pixels, of the image.

lines

A JSON Array containing objects with the line labels and vertices.

• label – The label given to a line.

• vertices – the x and y pixel corrdinates of the start point and end point of the line, relative to the
top-left corner of the image.

Example : Sample Element Outputs

The following is an example of output from this element.

{
 "crowdLine": { //This is the name you set for the crowd-line
 "inputImageProperties": {
 "height": 1254,
 "width": 2048
 },
 "lines": [
 {
 "label": "yardline",
 "vertices": [
 {
 "x": 58,
 "y": 295
 },
 {
 "x": 1342,
 "y": 398
 }
]

SageMaker Crowd HTML Elements 1906

Amazon SageMaker Developer Guide

 },
 {
 "label": "sideline",
 "vertices": [
 {
 "x": 472,
 "y": 910
 },
 {
 "x": 1480,
 "y": 600
 }
]
 }
]
 }
 }

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-modal

A small window that pops up on the display when it is opened.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of the syntax that you can use with the <crowd-modal> element.
Copy the following code and save it in a file with the extension .html. Open the file in any browser
to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-modal
link-text = "See Examples"
link-type = "button">
Example Modal Text</crowd-modal>

SageMaker Crowd HTML Elements 1907

https://codepen.io/sagemaker_crowd_html_elements/pen/RwKNmyK

Amazon SageMaker Developer Guide

Attributes

The following attributes are supported by this element.

link-text

The text to display for opening the modal. The default is "Click to open modal".

link-type

A string that specifies the type of trigger for the modal. The possible values are "link" (default) and
"button".

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-polygon

A widget for drawing polygons on an image and assigning a label to the portion of the image that
is enclosed in each polygon.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that uses the <crowd-polygon> element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>

SageMaker Crowd HTML Elements 1908

https://codepen.io/sagemaker_crowd_html_elements/pen/eYgmajo

Amazon SageMaker Developer Guide

 <crowd-polygon
 name="annotatedResult"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="Draw a polygon around each of the requested target(s) of interest"
 labels="['Cat', 'Dog', 'Bird']"
 >
 <full-instructions header="Polygon instructions">

 Make the polygon tight around the object
 You need to select a label before starting a polygon
 You will need to select a label again after completing a polygon
 To select a polygon, you can click on its borders
 You can start drawing a polygon from inside another polygon
 You can undo and redo while you're drawing a polygon to go back and forth
 between points you've placed
 You are prevented from drawing lines that overlap other lines from the same
 polygon

 </full-instructions>

 <short-instructions>
 <p>Draw a polygon around each of the requested target(s) of interest</p>
 <p>Make the polygon tight around the object</p>
 </short-instructions>
 </crowd-polygon>
</crowd-form>

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the
worker.

labels

A JSON formatted array of strings, each of which is a label that a worker can assign to the image
portion enclosed by a polygon.

name

The name of this widget. It's used as a key for the widget's input in the form output.

SageMaker Crowd HTML Elements 1909

Amazon SageMaker Developer Guide

src

The URL of the image on which to draw polygons.

initial-value

An array of JSON objects, each of which defines a polygon to be drawn when the component is
loaded. Each JSON object in the array contains the following properties.

• label – The text assigned to the polygon as part of the labeling task. This text must match one of
the labels defined in the labels attribute of the <crowd-polygon> element.

• vertices – An array of JSON objects. Each object contains an x and y coordinate value for a point
in the polygon.

Example

An initial-value attribute might look something like this.

initial-value =
 '[
 {
 "label": "dog",
 "vertices":
 [
 {
 "x": 570,
 "y": 239
 },
 ...
 {
 "x": 759,
 "y": 281
 }
]
 }
]'

Because this will be within an HTML element, the JSON array must be enclosed in single or double
quotes. The example above uses single quotes to encapsulate the JSON and double quotes within
the JSON itself. If you must mix single and double quotes inside your JSON, replace them with their
HTML entity codes (" for double quote, ' for single) to safely escape them.

SageMaker Crowd HTML Elements 1910

Amazon SageMaker Developer Guide

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: full-instructions, short-instructions

Regions

The following regions are required.

full-instructions

General instructions about how to draw polygons.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

polygons

An array of JSON objects, each of which describes a polygon that has been created by the worker.
Each JSON object in the array contains the following properties.

• label – The text assigned to the polygon as part of the labeling task.

• vertices – An array of JSON objects. Each object contains an x and y coordinate value for a point
in the polygon. The top left corner of the image is 0,0.

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker.
This object contains the following properties.

• height – The height, in pixels, of the image.

• width – The width, in pixels, of the image.

SageMaker Crowd HTML Elements 1911

Amazon SageMaker Developer Guide

Example : Sample Element Outputs

The following are samples of outputs from common use scenarios for this element.

Single Label, Single Polygon

{
 "annotatedResult":
 {
 "inputImageProperties": {
 "height": 853,
 "width": 1280
 },
 "polygons":
 [
 {
 "label": "dog",
 "vertices":
 [
 {
 "x": 570,
 "y": 239
 },
 {
 "x": 603,
 "y": 513
 },
 {
 "x": 823,
 "y": 645
 },
 {
 "x": 901,
 "y": 417
 },
 {
 "x": 759,
 "y": 281
 }
]
 }
]
 }
 }

SageMaker Crowd HTML Elements 1912

Amazon SageMaker Developer Guide

]

Single Label, Multiple Polygons

[
 {
 "annotatedResult": {
 "inputImageProperties": {
 "height": 853,
 "width": 1280
 },
 "polygons": [
 {
 "label": "dog",
 "vertices": [
 {
 "x": 570,
 "y": 239
 },
 {
 "x": 603,
 "y": 513
 },
 {
 "x": 823,
 "y": 645
 },
 {
 "x": 901,
 "y": 417
 },
 {
 "x": 759,
 "y": 281
 }
]
 },
 {
 "label": "dog",
 "vertices": [
 {
 "x": 870,
 "y": 278

SageMaker Crowd HTML Elements 1913

Amazon SageMaker Developer Guide

 },
 {
 "x": 908,
 "y": 446
 },
 {
 "x": 1009,
 "y": 602
 },
 {
 "x": 1116,
 "y": 519
 },
 {
 "x": 1174,
 "y": 498
 },
 {
 "x": 1227,
 "y": 479
 },
 {
 "x": 1179,
 "y": 405
 },
 {
 "x": 1179,
 "y": 337
 }
]
 }
]
 }
 }
]

Multiple Labels, Multiple Polygons

[
 {
 "annotatedResult": {
 "inputImageProperties": {
 "height": 853,

SageMaker Crowd HTML Elements 1914

Amazon SageMaker Developer Guide

 "width": 1280
 },
 "polygons": [
 {
 "label": "dog",
 "vertices": [
 {
 "x": 570,
 "y": 239
 },
 {
 "x": 603,
 "y": 513
 },
 {
 "x": 823,
 "y": 645
 },
 {
 "x": 901,
 "y": 417
 },
 {
 "x": 759,
 "y": 281
 }
]
 },
 {
 "label": "cat",
 "vertices": [
 {
 "x": 870,
 "y": 278
 },
 {
 "x": 908,
 "y": 446
 },
 {
 "x": 1009,
 "y": 602
 },
 {

SageMaker Crowd HTML Elements 1915

Amazon SageMaker Developer Guide

 "x": 1116,
 "y": 519
 },
 {
 "x": 1174,
 "y": 498
 },
 {
 "x": 1227,
 "y": 479
 },
 {
 "x": 1179,
 "y": 405
 },
 {
 "x": 1179,
 "y": 337
 }
]
 }
]
 }
 }
]

You could have many labels available, but only the ones that are used appear in the output.

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-polyline

A widget for drawing polylines or lines on an image. Each polyline is associated with a label and
can include two or more vertices. A polyline can intersect itself and its starting and ending points
can be placed anywhere on the image.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

SageMaker Crowd HTML Elements 1916

https://codepen.io/sagemaker_crowd_html_elements/pen/PoWwvyJ

Amazon SageMaker Developer Guide

The following is an example of a Liquid template that uses the <crowd-polyline> element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template. For more examples, see this GitHub repository.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-polyline
 name="crowdPolyline"
 src="{{ task.input.taskObject | grant_read_access }}"
 header="Add header here to describe the task"
 labels="['car','pedestrian','street car']"
 >
 <full-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 <p>Draw a polyline around the boundaries of all objects
 that the label applies to.</p>
 <p>Use the Enter key to complete a polyline.</p>
 <p>Make sure that the polyline fits tightly around the boundary
 of the object.</p>
 </full-instructions>

 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Review the tool guide to learn how to use the polyline tool.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 <p>To draw a polyline, select a label that applies to an object of interest
 and add a single point to the photo by clicking on that point. Continue to
 draw the polyline around the object by adding additional points
 around the object boundary.</p>
 <p>After you place the final point on the polyline, press Enter on your
 keyboard to complete the polyline.</p>

 </short-instructions>
 </crowd-polyline>
</crowd-form>

Attributes

The following attributes are supported by this element.

SageMaker Crowd HTML Elements 1917

https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis/tree/master/images

Amazon SageMaker Developer Guide

header

Optional. The text to display above the image. This is typically a question or simple instruction for
the worker.

initial-value

Optional. An array of JSON objects, each of which sets a polyline when the component is loaded.
Each JSON object in the array contains the following properties:

• label – The text assigned to the polyline as part of the labeling task. This text must match one of
the labels defined in the labels attribute of the <crowd-polyline> element.

• vertices – the x and y pixel corrdinates of the vertices of a polyline, relative to the top-left corner
of the image.

 initial-value= "{
 polylines: [
 {
 label: 'sideline', // label of this line annotation
 vertices:[// an array of vertices which decide the position of the
 line
 {
 x: 84,
 y: 110
 },
 {
 x: 60,
 y: 100
 }
]
 },
 {
 label: 'yardline',
 vertices:[
 {
 x: 651,
 y: 498
 },
 {
 x: 862,
 y: 869
 },

SageMaker Crowd HTML Elements 1918

Amazon SageMaker Developer Guide

 {
 x: 1000,
 y: 869
 }
]
 }
]
}"

Polylines set via the initial-value property can be adjusted. Whether or not a worker answer
was adjusted is tracked via an initialValueModified boolean in the worker answer output.

labels

Required. A JSON formatted array of strings, each of which is a label that a worker can assign to
the line.

Limit: 10 labels

label-colors

Optional. An array of strings. Each string is a hexadecimal (hex) code for a label.

name

Required. The name of this widget. It's used as a key for the widget's input in the form output.

src

Required. The URL of the image on which to draw polylines.

Regions

The following regions are required by this element.

full-instructions

General instructions about how to draw polylines.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

SageMaker Crowd HTML Elements 1919

Amazon SageMaker Developer Guide

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: short-instructions, full-instructions

Output

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker.
This object contains the following properties.

• height – The height, in pixels, of the image.

• width – The width, in pixels, of the image.

polylines

A JSON Array containing objects with polylines' labels and vertices.

• label – The label given to a line.

• vertices – the x and y pixel corrdinates of the vertices of a polyline, relative to the top-left corner
of the image.

Example : Sample Element Outputs

The following is an example of output from this element.

 {
 "crowdPolyline": { //This is the name you set for the crowd-polyline
 "inputImageProperties": {
 "height": 1254,
 "width": 2048
 },
 "polylines": [
 {
 "label": "sideline",

SageMaker Crowd HTML Elements 1920

Amazon SageMaker Developer Guide

 "vertices": [
 {
 "x": 651,
 "y": 498
 },
 {
 "x": 862,
 "y": 869
 },
 {
 "x": 1449,
 "y": 611
 }
]
 },
 {
 "label": "yardline",
 "vertices": [
 {
 "x": 1148,
 "y": 322
 },
 {
 "x": 1705,
 "y": 474
 },
 ,
 {
 "x": 1755,
 "y": 474
 }
]
 }
]
 }
 }

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

SageMaker Crowd HTML Elements 1921

Amazon SageMaker Developer Guide

crowd-radio-button

A button that can be either checked or unchecked. When radio buttons are inside a radio group,
exactly one radio button in the group can be checked at any time. The following is an example of
how to configure a crowd-radio-button element inside of a crowd-radio-group element.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of the syntax that you can use with the <crowd-radio-button>
element. Copy the following code and save it in a file with the extension .html. Open the file in
any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
<crowd-radio-group>
 <crowd-radio-button name="tech" value="tech">Technology</crowd-radio-button>
 <crowd-radio-button name="politics" value="politics">Politics</crowd-radio-button>
</crowd-radio-group>
</crowd-form>

The previous example can be seen in a custom worker task template in this GitHub example: entity
recognition labeling job custom template.

Crowd HTML Element radio buttons do not support the HTML tag, required. To make a radio
button selection required, use <input type="radio"> elements to create radio buttons and add
the required tag. The name attribute for all <input> elements that belong to the same group of
radio buttons must be the same. For example, the following template requires the user to select a
radio button in the animal-type group before submitting.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <p>Select an animal type:</p>
<img src="https://images.unsplash.com/photo-1537151608828-ea2b11777ee8?
ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=1539&q=80"
 style="height: 500; width: 400;"/>

<div>
 <input type="radio" id="cat" name="animal-type" value="cat" required>
 <label for="cat">Cat</label>
</div>
<div>

SageMaker Crowd HTML Elements 1922

https://codepen.io/sagemaker_crowd_html_elements/pen/yLgyWGZ
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis/blob/master/text/named-entity-recognition-with-additional-classification.liquid.html
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis/blob/master/text/named-entity-recognition-with-additional-classification.liquid.html

Amazon SageMaker Developer Guide

 <input type="radio" id="dog" name="animal-type" value="dog">
 <label for="dog">Dog</label>
</div>
<div>
 <input type="radio" id="unknown" name="animal-type" value="unknown">
 <label for="unknown">Unknown</label>
</div>
 <full-instructions header="Classification Instructions">
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 </full-instructions>
 <short-instructions>
 <p>Read the task carefully and inspect the image.</p>
 <p>Choose the appropriate label that best suits the image.</p>
 </short-instructions>
</crowd-form>

Attributes

The following attributes are supported by this element.

checked

A Boolean switch that, if present, displays the radio button as checked.

disabled

A Boolean switch that, if present, displays the button as disabled and prevents it from being
checked.

name

A string that is used to identify the answer submitted by the worker. This value will match a key in
the JSON object that specifies the answer.

Note

If you use the buttons outside of a crowd-radio-group element, but with the same name
string and different value strings, the name object in the output will contain a Boolean
value for each value string. To ensure that only one button in a group is selected, make
them children of a crowd-radio-group element and use different name values.

SageMaker Crowd HTML Elements 1923

Amazon SageMaker Developer Guide

value

A property name for the element's boolean value. If not specified, it uses "on" as the default, e.g.
{ "<name>": { "<value>": <true or false> } }.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-radio-group

• Child elements: none

Output

Outputs an object with the following pattern: { "<name>": { "<value>": <true or
false> } }. If you use the buttons outside of a crowd-radio-group element, but with the same
name string and different value strings, the name object will contain a Boolean value for each
value string. To ensure that only one in a group of buttons is selected, make them children of a
crowd-radio-group element and use different name values.

Example Sample output of this element

[
 {
 "btn1": {
 "yes": true
 },
 "btn2": {
 "no": false
 }
 }
]

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

SageMaker Crowd HTML Elements 1924

Amazon SageMaker Developer Guide

crowd-radio-group

A group of radio buttons. Only one radio button within the group can be selected. Choosing one
radio button clears any previously chosen radio button within the same group. For an example
of a custom UI template that uses the crowd-radio-group element, see this entity recognition
labeling job custom template.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of the syntax that you can use with the <crowd-radio-group>
element. Copy the following code and save it in a file with the extension .html. Open the file in
any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<style>
 body {
 padding-left: 20px;
 margin-bottom: 20px;
 }
 #outer-container {
 display: flex;
 justify-content: space-around;
 max-width: 900px;
 margin-left: 100px;
 }
 .left-container {
 margin-right: auto;
 padding-right: 50px;
 }
 .right-container {
 margin-left: auto;
 padding-left: 50px;
 }
 #vertical-separator {
 border: solid 1px #d5dbdb;
 }
</style>

<crowd-form>
 <div>
 <h1>Instructions</h1>

SageMaker Crowd HTML Elements 1925

https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis/blob/master/text/named-entity-recognition-with-additional-classification.liquid.html
https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis/blob/master/text/named-entity-recognition-with-additional-classification.liquid.html
https://codepen.io/sagemaker_crowd_html_elements/pen/KKawjPJ

Amazon SageMaker Developer Guide

 Lorem ipsum...
 </div>
 <div>
 <h2>Background</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
 exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
 </div>
 <div id="outer-container">

 <h2>Option 1</h2>
 <p>Nulla facilisi morbi tempus iaculis urna. Orci dapibus ultrices in iaculis nunc
 sed augue lacus.</p>

 <h2>Option 2</h2>
 <p>Ultrices vitae auctor eu augue ut. Pellentesque massa placerat duis ultricies
 lacus sed turpis tincidunt id.</p>

 </div>
 <div>
 <h2>Question</h2>
 <p>Which do you agree with?</p>
 <crowd-radio-group>
 <crowd-radio-button name="option1" value="Option 1">Option 1</crowd-radio-button>
 <crowd-radio-button name="option2" value="Option 2">Option 2</crowd-radio-button>
 </crowd-radio-group>

 <p>Why did you choose this answer?</p>
 <crowd-text-area name="explanation" placeholder="Explain how you reached your
 conclusion..."></crowd-text-area>
 </div>
</crowd-form>

Attributes

No special attributes are supported by this element.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

SageMaker Crowd HTML Elements 1926

Amazon SageMaker Developer Guide

• Child elements: crowd-radio-button

Output

Outputs an array of objects representing the crowd-radio-button elements within it.

Example Sample of Element Output

[
 {
 "btn1": {
 "yes": true
 },
 "btn2": {
 "no": false
 }
 }
]

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-semantic-segmentation

A widget for segmenting an image and assigning a label to each image segment.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that uses the <crowd-semantic-
segmentation> element. Copy the following code and save it in a file with the extension .html.
Open the file in any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-semantic-segmentation
 name="annotatedResult"

SageMaker Crowd HTML Elements 1927

https://codepen.io/sagemaker_crowd_html_elements/pen/LYxEKEb

Amazon SageMaker Developer Guide

 src="{{ task.input.taskObject | grant_read_access }}"
 header="Please label each of the requested objects in this image"
 labels="['Cat', 'Dog', 'Bird']"
 >
 <full-instructions header="Segmentation Instructions">

 Read the task carefully and inspect the image.
 Read the options and review the examples provided to
 understand more about the labels.
 Choose the appropriate label that best suits the
 image.

 </full-instructions>

 <short-instructions>
 <p>Use the tools to label the requested items in the image</p>
 </short-instructions>
 </crowd-semantic-segmentation>
</crowd-form>

Attributes

The following attributes are supported by this element.

header

The text to display above the image. This is typically a question or simple instruction for the
worker.

initial-value

A JSON object containing the color mappings of a prior semantic segmentation job and a link to
the overlay image output by the prior job. Include this when you want a human worker to verify
the results of a prior labeling job and adjust it if necessary.

The attribute would appear as follows:

 initial-value='{
 "labelMappings": {
 "Bird": {
 "color": "#ff7f0e"
 },
 "Cat": {

SageMaker Crowd HTML Elements 1928

Amazon SageMaker Developer Guide

 "color": "#2ca02c"
 },
 "Cow": {
 "color": "#d62728"
 },
 "Dog": {
 "color": "#1f77b4"
 }
 },
 "src": {{ "S3 file URL for image" | grant_read_access }}
 }'

When using Ground Truth built in task types with annotation consolidation (where more than one
worker labels a single image), label mappings are included in individual worker output records,
however the overall result is represented as the internal-color-map in the consolidated results.

You can convert the internal-color-map to label-mappings in a custom template using the
Liquid templating language:

initial-value="{
 'src' : '{{ task.input.manifestLine.label-attribute-name-from-prior-job|
 grant_read_access }}',
 'labelMappings': {
 {% for box in task.input.manifestLine.label-attribute-name-from-prior-job-
metadata.internal-color-map %}
 {% if box[1]['class-name'] != 'BACKGROUND' %}
 {{ box[1]['class-name'] | to_json }}: {
 'color': {{ box[1]['hex-color'] | to_json }}
 },
 {% endif %}
 {% endfor %}
 }
}"

labels

A JSON formatted array of strings, each of which is a label that a worker can assign to a segment of
the image.

name

The name of this widget. It is used as a key for the widget's input in the form output.

SageMaker Crowd HTML Elements 1929

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html

Amazon SageMaker Developer Guide

src

The URL of the image that is to be segmented.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: full-instructions, short-instructions

Regions

The following regions are supported by this element.

full-instructions

General instructions about how to do image segmentation.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Output

The following output is supported by this element.

labeledImage

A JSON Object containing a Base64 encoded PNG of the labels.

labelMappings

A JSON Object containing objects with named with the segmentation labels.

• color – The hexadecimal value of the label's RGB color in the labeledImage PNG.

initialValueModified

A boolean representing whether the initial values have been modified. This is only included when
the output is from an adjustment task.

SageMaker Crowd HTML Elements 1930

Amazon SageMaker Developer Guide

inputImageProperties

A JSON object that specifies the dimensions of the image that is being annotated by the worker.
This object contains the following properties.

• height – The height, in pixels, of the image.

• width – The width, in pixels, of the image.

Example : Sample Element Outputs

The following is a sample of output from this element.

[
 {
 "annotatedResult": {
 "inputImageProperties": {
 "height": 533,
 "width": 800
 },
 "labelMappings": {
 "<Label 2>": {
 "color": "#ff7f0e"
 },
 "<label 3>": {
 "color": "#2ca02c"
 },
 "<label 1>": {
 "color": "#1f77b4"
 }
 },
 "labeledImage": {
 "pngImageData": "<Base-64 Encoded Data>"
 }
 }
 }
]

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

SageMaker Crowd HTML Elements 1931

Amazon SageMaker Developer Guide

• Crowd HTML Elements Reference

crowd-slider

A bar with a sliding knob that allows a worker to select a value from a range of values by moving
the knob. The slider makes it a great choice for settings that reflect intensity levels, such as
volume, brightness, or color saturation.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a survey template that uses the <crowd-slider> element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
<crowd-instructions link-text="View instructions" link-type="button">
 <short-summary>
 <p>Provide a brief instruction here</p>
 </short-summary>

 <detailed-instructions>
 <h3>Provide more detailed instructions here</h3>
 <p>Include additional information</p>
 </detailed-instructions>

 <positive-example>
 <p>Provide an example of a good answer here</p>
 <p>Explain why it's a good answer</p>
 </positive-example>

 <negative-example>
 <p>Provide an example of a bad answer here</p>
 <p>Explain why it's a bad answer</p>
 </negative-example>
</crowd-instructions>

<div>
 <p>What is your favorite color for a bird?</p>
 <crowd-input name="favoriteColor" placeholder="example: pink" required></crowd-input>

SageMaker Crowd HTML Elements 1932

https://codepen.io/sagemaker_crowd_html_elements/pen/RwKNzWL

Amazon SageMaker Developer Guide

</div>

<div>
 <p>Check this box if you like birds</p>
 <crowd-checkbox name="likeBirds" checked="true" required></crowd-checkbox>
</div>

<div>
 <p>On a scale of 1-10, how much do you like birds?</p>
 <crowd-slider name="howMuch" min="1" max="10" step="1" pin="true" required></crowd-
slider>
</div>

<div>
 <p>Write a short essay describing your favorite bird</p>
 <crowd-text-area name="essay" rows="4" placeholder="Lorem ipsum..." required></crowd-
text-area>
</div>
</crowd-form>

Attributes

The following attributes are supported by this element.

disabled

A Boolean switch that, if present, displays the slider as disabled.

editable

A Boolean switch that, if present, displays an up/down button that can be chosen to select the
value.

Selecting the value via the up/down button is an alternative to selecting the value by moving
the knob on the slider. The knob on the slider will move synchronously with the up/down button
choices.

max

A number that specifies the maximum value on the slider.

min

A number that specifies the minimum value on the slider.

SageMaker Crowd HTML Elements 1933

Amazon SageMaker Developer Guide

name

A string that is used to identify the answer submitted by the worker. This value will match a key in
the JSON object that specifies the answer.

pin

A Boolean switch that, if present, displays the current value above the knob as the knob is moved.

required

A Boolean switch that, if present, requires the worker to provide input.

secondary-progress

When used with a crowd-slider-secondary-color CSS attribute, the progress bar is colored
to the point represented by the secondary-progress. For example, if this was representing
the progress on a streaming video, the value would represent where the viewer was in the video
timeline. The secondary-progress value would represent the point on the timeline to which the
video had buffered.

step

A number that specifies the difference between selectable values on the slider.

value

A preset that becomes the default if the worker does not provide input.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

SageMaker Crowd HTML Elements 1934

Amazon SageMaker Developer Guide

crowd-tab

A component styled to look like a tab with information below.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example template that uses the <crowd-tab> element. Copy the following
code and save it in a file with the extension .html. Open the file in any browser to preview and
interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-tabs>
 <crowd-tab header="Tab 1">
 <h2>Image</h2>

 <img
 src="https://images.unsplash.com/photo-1478382188900-5bb598fe27d3?
ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=1351&q=80"
 style="max-width: 40%"
 >

 <h2>Text</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua.
 </p>
 <p>
 Sed risus ultricies tristique nulla aliquet enim tortor at auctor. Tempus egestas
 sed sed risus.
 </p>
 </crowd-tab>

 <crowd-tab header="Tab 2">
 <h2>Description</h2>
 <p>
 Sed risus ultricies tristique nulla aliquet enim tortor at auctor. Tempus egestas
 sed sed risus.
 </p>
 </crowd-tab>

 <crowd-tab header="Tab 3">

SageMaker Crowd HTML Elements 1935

https://codepen.io/sagemaker_crowd_html_elements/pen/dyNPBGW

Amazon SageMaker Developer Guide

 <div style="width: 40%; display: inline-block">
 <img
 src="https://images.unsplash.com/photo-1472747459646-91fd6f13995f?
ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=1350&q=80"
 style="max-width: 80%"
 >
 <crowd-input label="Input inside tab" name="inputInsideTab"></crowd-input>
 <input type="checkbox" name="checkbox" value="foo">Foo
 <input type="checkbox" name="checkbox" value="bar">Bar
 <crowd-button>Some button</crowd-button>
 </div>

 <div style="width: 40%; display: inline-block; vertical-align: top">
 Lorem ipsum dolor sit amet, lorem a wisi nibh, in pulvinar, consequat praesent
 vestibulum tellus ante felis auctor, vitae lobortis dictumst mauris.
 Pellentesque nulla ipsum ante quisque quam augue.
 Class lacus id euismod, blandit tempor mauris quisque tortor mauris,
 urna gravida nullam pede libero, ut suscipit orci faucibus lacus varius ornare,
 pellentesque ipsum.
 At etiam suspendisse est elementum luctus netus, vel sem nulla sodales, potenti
 magna enim ipsum diam tortor rutrum,
 quam donec massa elit ac, nam adipiscing sed at leo ipsum consectetuer.
 Ac turpis amet wisi, porttitor sint lacus ante, turpis accusantium, ac maecenas
 deleniti,
 nisl leo sem integer ac dignissim. Lobortis etiam luctus lectus odio auctor.
 Justo vitae, felis integer id, bibendum accumsan turpis eu est mus eros, ante id
 eros.
 </div>
 </crowd-tab>

 </crowd-tabs>

 <crowd-input label="Input outside tabs" name="inputOutsideTab"></crowd-input>

 <short-instructions>
 <p>Sed risus ultricies tristique nulla aliquet enim tortor at auctor. Tempus
 egestas sed sed risus.</p>
</short-instructions>

<full-instructions header="Classification Instructions">
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua.</p>
 <p> Tempus egestas sed sed risus.</p>
</full-instructions>

SageMaker Crowd HTML Elements 1936

Amazon SageMaker Developer Guide

</crowd-form>

Attributes

The following attributes are supported by this element.

header

The text appearing on the tab. This is usually some short descriptive name indicative of the
information contained below the tab.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-tabs

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-tabs

A container for tabbed information.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example template that uses the <crowd-tabs> element. Copy the following
code and save it in a file with the extension .html. Open the file in any browser to preview and
interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-tabs>
 <crowd-tab header="Tab 1">
 <h2>Image</h2>

SageMaker Crowd HTML Elements 1937

https://codepen.io/sagemaker_crowd_html_elements/pen/ZELYdWz

Amazon SageMaker Developer Guide

 <img
 src="https://images.unsplash.com/photo-1478382188900-5bb598fe27d3?
ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=1351&q=80"
 style="max-width: 40%"
 >

 <h2>Text</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua.
 </p>
 <p>
 Sed risus ultricies tristique nulla aliquet enim tortor at auctor. Tempus egestas
 sed sed risus.
 </p>
 </crowd-tab>

 <crowd-tab header="Tab 2">
 <h2>Description</h2>
 <p>
 Sed risus ultricies tristique nulla aliquet enim tortor at auctor. Tempus egestas
 sed sed risus.
 </p>
 </crowd-tab>

 <crowd-tab header="Tab 3">
 <div style="width: 40%; display: inline-block">
 <img
 src="https://images.unsplash.com/photo-1472747459646-91fd6f13995f?
ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=1350&q=80"
 style="max-width: 80%"
 >
 <crowd-input label="Input inside tab" name="inputInsideTab"></crowd-input>
 <input type="checkbox" name="checkbox" value="foo">Foo
 <input type="checkbox" name="checkbox" value="bar">Bar
 <crowd-button>Some button</crowd-button>
 </div>

 <div style="width: 40%; display: inline-block; vertical-align: top">
 Lorem ipsum dolor sit amet, lorem a wisi nibh, in pulvinar, consequat praesent
 vestibulum tellus ante felis auctor, vitae lobortis dictumst mauris.
 Pellentesque nulla ipsum ante quisque quam augue.

SageMaker Crowd HTML Elements 1938

Amazon SageMaker Developer Guide

 Class lacus id euismod, blandit tempor mauris quisque tortor mauris,
 urna gravida nullam pede libero, ut suscipit orci faucibus lacus varius ornare,
 pellentesque ipsum.
 At etiam suspendisse est elementum luctus netus, vel sem nulla sodales, potenti
 magna enim ipsum diam tortor rutrum,
 quam donec massa elit ac, nam adipiscing sed at leo ipsum consectetuer.
 Ac turpis amet wisi, porttitor sint lacus ante, turpis accusantium, ac maecenas
 deleniti,
 nisl leo sem integer ac dignissim. Lobortis etiam luctus lectus odio auctor.
 Justo vitae, felis integer id, bibendum accumsan turpis eu est mus eros, ante id
 eros.
 </div>
 </crowd-tab>

 </crowd-tabs>

 <crowd-input label="Input outside tabs" name="inputOutsideTab"></crowd-input>

 <short-instructions>
 <p>Sed risus ultricies tristique nulla aliquet enim tortor at auctor. Tempus
 egestas sed sed risus.</p>
</short-instructions>

<full-instructions header="Classification Instructions">
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua.</p>
 <p> Tempus egestas sed sed risus.</p>
</full-instructions>

</crowd-form>

Attributes

This element has no attributes.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: crowd-tab

SageMaker Crowd HTML Elements 1939

Amazon SageMaker Developer Guide

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-text-area

A field for text input.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template designed to transcribe audio clips that uses the
<crowd-text-area> element. Copy the following code and save it in a file with the extension
.html. Open the file in any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <audio controls>
 <source src="{{ task.input.taskObject | grant_read_access }}" type="audio/mpeg">
 Your browser does not support the audio element.
 </audio>
 <h3>Instructions</h3>
 <p>Transcribe the audio</p>
 <p>Ignore "umms", "hmms", "uhs" and other non-textual phrases</p>
 <crowd-text-area name="transcription" rows="4"></crowd-text-area>
</crowd-form>

Attributes

The following attributes are supported by this element.

allowed-pattern

A regular expression that is used with the auto-validate attribute to ignore non-matching
characters as the worker types.

SageMaker Crowd HTML Elements 1940

https://codepen.io/sagemaker_crowd_html_elements/pen/ZELYdOz

Amazon SageMaker Developer Guide

auto-focus

A Boolean switch that, if present, puts the cursor in this element on-load so that users can
immediately begin typing without having to click inside the element.

auto-validate

A Boolean switch that, if present, turns on input validation. The behavior of the validator can be
modified by the error-message and allowed-pattern attributes.

char-counter

A Boolean switch that, if present, puts a small text field beneath the lower-right corner of the
element, displaying the number of characters inside the element.

disabled

A Boolean switch that, if present, displays the input area as disabled.

error-message

The text to be displayed below the input field, on the left side, if validation fails.

label

A string that is displayed inside a text field.

This text shrinks and rises up above a text field when the worker starts typing in the field or when
the value attribute is set.

max-length

An integer that specifies the maximum number of characters allowed by the element. Characters
typed or pasted beyond the maximum are ignored.

max-rows

An integer that specifies the maximum number of rows of text that are allowed within a crowd-
text-area. Normally the element expands to accommodate new rows. If this is set, after the number
of rows exceeds it, content scrolls upward out of view and a scrollbar control appears.

name

A string used to represent the element's data in the output.

SageMaker Crowd HTML Elements 1941

Amazon SageMaker Developer Guide

placeholder

A string presented to the user as placeholder text. It disappears after the user puts something in
the input area.

rows

An integer that specifies the height of the element in rows of text.

value

A preset that becomes the default if the worker does not provide input. The preset appears in a
text field.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

Output

This element outputs the name as a property name and the element's text contents as the value.
Carriage returns in the text are represented as \n.

Example Sample output for this element

[
 {
 "textInput1": "This is the text; the text that\nmakes the crowd go wild."
 }
]

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

SageMaker Crowd HTML Elements 1942

Amazon SageMaker Developer Guide

crowd-toast

A subtle notification that temporarily appears on the display. Only one crowd-toast is visible.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following is an example of a Liquid template that uses the <crowd-toast> element. Copy
the following code and save it in a file with the extension .html. Open the file in any browser to
preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <p>Find the official website for: {{ task.input.company }}</p>
 <p>Do not give Yelp pages, LinkedIn pages, etc.</p>
 <p>Include the http:// prefix from the website</p>
 <crowd-input name="website" placeholder="http://example.com"></crowd-input>

 <crowd-toast duration="10000" opened>
 This is a message that you want users to see when opening the template. This
 message will disappear in 10 seconds.
 </crowd-toast>

</crowd-form>

Attributes

The following attributes are supported by this element.

duration

A number that specifies the duration, in milliseconds, that the notification appears on the screen.

text

The text to display in the notification.

Element Hierarchy

This element has the following parent and child elements.

SageMaker Crowd HTML Elements 1943

https://codepen.io/sagemaker_crowd_html_elements/pen/ExZaBgK

Amazon SageMaker Developer Guide

• Parent elements: crowd-form

• Child elements: none

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

crowd-toggle-button

A button that acts as an ON/OFF switch, toggling a state.

See an interactive example of an HTML template that uses this Crowd HTML Element in CodePen.

The following example shows different ways you can use to use the <crowd-toggle-button>
HTML element. Copy the following code and save it in a file with the extension .html. Open the
file in any browser to preview and interact with this template.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <!--Toggle button without value-->
 <crowd-toggle-button name="toggleButtonWithoutValue"></crowd-toggle-button>

 <!--Toggle button with value-->
 <crowd-toggle-button name="toggleButtonWithValue" value="someValue"></crowd-toggle-
button>

 <!--Toggle button disabled-->
 <crowd-toggle-button name="toggleButtonDisabled" disabled></crowd-toggle-button>

 <!--Toggle button marked invalid-->
 <crowd-toggle-button name="toggleButtonInvalid" invalid></crowd-toggle-button>

 <!--Toggle button marked required-->
 <crowd-toggle-button name="toggleButtonRequired" required></crowd-toggle-button>
</crowd-form>

SageMaker Crowd HTML Elements 1944

https://codepen.io/sagemaker_crowd_html_elements/pen/XWpJLNm

Amazon SageMaker Developer Guide

Attributes

The following attributes are supported by this element.

checked

A Boolean switch that, if present, displays the button switched to the ON position.

disabled

A Boolean switch that, if present, displays the button as disabled and prevents toggling.

invalid

When in an off position, a button using this attribute, will display in an alert color. The standard
is red, but may be changed in CSS. When toggled on, the button will display in the same color as
other buttons in the on position.

name

A string that is used to identify the answer submitted by the worker. This value matches a key in
the JSON object that specifies the answer.

required

A Boolean switch that, if present, requires the worker to provide input.

value

A value used in the output as the property name for the element's Boolean state. Defaults to "on" if
not provided.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements: crowd-form

• Child elements: none

Output

This element outputs the name as the name of an object, containing the value as a property name
and the element's state as Boolean value for the property. If no value for the element is specified,
the property name defaults to "on."

SageMaker Crowd HTML Elements 1945

Amazon SageMaker Developer Guide

Example Sample output for this element

[
 {
 "theToggler": {
 "on": true
 }
 }
]

See Also

For more information, see the following.

• Use Amazon SageMaker Ground Truth to Label Data

• Crowd HTML Elements Reference

Augmented AI Crowd HTML Elements

The following Crowd HTML Elements are only available for Amazon Augmented AI human
workflow tasks.

Topics

• crowd-textract-analyze-document

• crowd-rekognition-detect-moderation-labels

crowd-textract-analyze-document

A widget to enable human review of a Amazon Textract document analysis result.

Attributes

The following attributes are supported by this element.

header

This is the text that is displayed as the header.

src

This is a link to the image to be analyzed by the worker.

Augmented AI Crowd HTML Elements 1946

Amazon SageMaker Developer Guide

initialValue

This sets initial values for attributes found in the worker UI.

The following is an example of an initialValue input:

[
 {
 "blockType": "KEY_VALUE_SET",
 "confidence": 38.43309020996094,
 "geometry": {
 "boundingBox": {
 "width": 0.32613086700439453,
 "weight": 0.0942094624042511,
 "left": 0.4833833575248718,
 "top": 0.5227988958358765
 },
 "polygon": [
 {"x": 0.123, "y": 0.345}, ...
]
 }
 "id": "8c97b240-0969-4678-834a-646c95da9cf4",
 "relationships": [
 {
 "type": "CHILD",
 "ids": [
 "7ee7b7da-ee1b-428d-a567-55a3e3affa56",
 "4d6da730-ba43-467c-a9a5-c6137ba0c472"
]
 },
 {
 "type": "VALUE",
 "ids": [
 "6ee7b7da-ee1b-428d-a567-55a3e3affa54"
]
 }
],
 "entityTypes": [
 "KEY"
],
 "text": "Foo bar"
 },
]

Augmented AI Crowd HTML Elements 1947

Amazon SageMaker Developer Guide

blockTypes

This determines the kind of analysis the workers can do. Only KEY_VALUE_SET is currently
supported.

keys

This specifies new keys and the associated text value the worker can add. The input values for keys
can include the following elements:

• importantFormKey accepts strings, and is used to specify a single key.

• importantFormKeyAliases can be used to specify aliases that are acceptable alternatives to
the keys supplied. Use this element to identify alternative spellings or presentations of your keys.
This parameter accepts a list of one or more strings.

The following is an example of an input for keys.

[
 {
 importantFormKey: 'Address',
 importantFormKeyAliases: [
 'address',
 'Addr.',
 'Add.',
]
 },
 {
 importantFormKey: 'Last name',
 importantFormKeyAliases: ['Surname']
 }
]

no-key-edit

This prevents the workers from editing the keys of annotations passed through initialValue.
This prevents workers from editing the keys that have been detected on your documents. This is
required.

Augmented AI Crowd HTML Elements 1948

Amazon SageMaker Developer Guide

no-geometry-edit

This prevents workers from editing the polygons of annotations passed through initialValue.
For example, this would prevent the worker from editing the bounding box around a given key. This
is required.

Element Hierarchy

This element has the following parent and child elements.

• Parent elements – crowd-form

• Child elements – full-instructions, short-instructions

Regions

The following regions are supported by this element. You can use custom HTML and CSS code
within these regions to format your instructions to workers. For example, use the short-
instructions section to provide good and bad examples of how to complete a task.

full-instructions

General instructions about how to work with the widget.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Example of a Worker Template Using the crowd Element

An example of a worker template using this crowd element would look like the following.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
{% capture s3_uri %}http://s3.amazonaws.com/
{{ task.input.aiServiceRequest.document.s3Object.bucket }}/
{{ task.input.aiServiceRequest.document.s3Object.name }}{% endcapture %}

<crowd-form>
 <crowd-textract-analyze-document
 src="{{ s3_uri | grant_read_access }}"
 initial-value="{{ task.input.selectedAiServiceResponse.blocks }}"
 header="Review the key-value pairs listed on the right and correct them if they
 don't match the following document."
 no-key-edit

Augmented AI Crowd HTML Elements 1949

Amazon SageMaker Developer Guide

 no-geometry-edit
 keys="{{ task.input.humanLoopContext.importantFormKeys }}"
 block-types="['KEY_VALUE_SET']"
 >
 <short-instructions header="Instructions">
 <style>
 .instructions {
 white-space: pre-wrap;
 }
 .instructionsImage {
 display: inline-block;
 max-width: 100%;
 }
 </style>
 <p class='instructions'>Click on a key-value block to highlight the corresponding
 key-value pair in the document.

If it is a valid key-value pair, review the content for the value. If the content is
 incorrect, correct it.

The text of the value is incorrect, correct it.
<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/
correct-value-text.png" />

A wrong value is identified, correct it.
<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/
correct-value.png" />

If it is not a valid key-value relationship, choose No.
<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/not-a-
key-value-pair.png" />

If you can’t find the key in the document, choose Key not found.
<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/key-is-
not-found.png" />

If the content of a field is empty, choose Value is blank.
<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/value-
is-blank.png" />

Examples
Key and value are often displayed next or below to each other.

Key and value displayed in one line.

Augmented AI Crowd HTML Elements 1950

Amazon SageMaker Developer Guide

<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/sample-
key-value-pair-1.png" />

Key and value displayed in two lines.
<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/sample-
key-value-pair-2.png" />

If the content of the value has multiple lines, enter all the text without line break.
 Include all value text even if it extends beyond the highlight box.
<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/
multiple-lines.png" /></p>
 </short-instructions>

 <full-instructions header="Instructions"></full-instructions>
 </crowd-textract-analyze-document>
</crowd-form>

Output

The following is a sample of the output from this element. You can find a detailed explanation of
this output in the Amazon Textract AnalyzeDocument API documentation.

{
 "AWS/Textract/AnalyzeDocument/Forms/V1": {
 blocks: [
 {
 "blockType": "KEY_VALUE_SET",
 "id": "8c97b240-0969-4678-834a-646c95da9cf4",
 "relationships": [
 {
 "type": "CHILD",
 "ids": ["7ee7b7da-ee1b-428d-a567-55a3e3affa56", "4d6da730-ba43-467c-a9a5-
c6137ba0c472"]
 },
 {
 "type": "VALUE",
 "ids": ["6ee7b7da-ee1b-428d-a567-55a3e3affa54"]
 }
],
 "entityTypes": ["KEY"],
 "text": "Foo bar baz"
 }
]

Augmented AI Crowd HTML Elements 1951

https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeDocument.html

Amazon SageMaker Developer Guide

 }
}

crowd-rekognition-detect-moderation-labels

A widget to enable human review of an Amazon Rekognition image moderation result.

Attributes

The following attributes are supported by this element.

header

This is the text that is displayed as the header.

src

This is a link to the image to be analyzed by the worker.

categories

This supports categories as an array of strings or an array of objects where each object has a
name field.

If the categories come in as objects, the following applies:

• The displayed categories are the value of the name field.

• The returned answer contains the full objects of any selected categories.

If the categories come in as strings, the following applies:

• The returned answer is an array of all the strings that were selected.

exclusion-category

By setting this attribute you create a button underneath the categories in the UI.

• When a user chooses the button, all categories are deselected and disabled.

• Choosing the button again re-enables the categories so that users can choose them.

• If you submit after choosing the button, it returns an empty array.

Augmented AI Crowd HTML Elements 1952

Amazon SageMaker Developer Guide

Element Hierarchy

This element has the following parent and child elements.

• Parent elements – crowd-form

• Child elements – full-instructions, short-instructions

AWS Regions

The following AWS Regions are supported by this element. You can use custom HTML and CSS
code within these Regions to format your instructions to workers. For example, use the short-
instructions section to provide good and bad examples of how to complete a task.

full-instructions

General instructions about how to work with the widget.

short-instructions

Important task-specific instructions that are displayed in a prominent place.

Example Worker Template with the crowd Element

An example of a worker template using the crowd element would look like the following.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
{% capture s3_uri %}http://s3.amazonaws.com/
{{ task.input.aiServiceRequest.image.s3Object.bucket }}/
{{ task.input.aiServiceRequest.image.s3Object.name }}{% endcapture %}

<crowd-form>
 <crowd-rekognition-detect-moderation-labels
 categories='[
 {% for label in task.input.selectedAiServiceResponse.moderationLabels %}
 {
 name: "{{ label.name }}",
 parentName: "{{ label.parentName }}",
 },
 {% endfor %}
]'
 src="{{ s3_uri | grant_read_access }}"
 header="Review the image and choose all applicable categories."
 >

Augmented AI Crowd HTML Elements 1953

Amazon SageMaker Developer Guide

 <short-instructions header="Instructions">
 <style>
 .instructions {
 white-space: pre-wrap;
 }
 </style>
 <p class='instructions'>Review the image and choose all applicable categories.
If no categories apply, choose None.

Nudity
Visuals depicting nude male or female person or persons

Graphic Male Nudity
Visuals depicting full frontal male nudity, often close ups

Graphic Female Nudity
Visuals depicting full frontal female nudity, often close ups

Sexual Activity
Visuals depicting various types of explicit sexual activities and pornography

Illustrated Nudity or Sexual Activity
Visuals depicting animated or drawn sexual activity, nudity or pornography

Adult Toys
Visuals depicting adult toys, often in a marketing context

Female Swimwear or Underwear
Visuals depicting female person wearing only swimwear or underwear

Male Swimwear Or Underwear
Visuals depicting male person wearing only swimwear or underwear

Partial Nudity
Visuals depicting covered up nudity, for example using hands or pose

Revealing Clothes
Visuals depicting revealing clothes and poses, such as deep cut dresses

Graphic Violence or Gore
Visuals depicting prominent blood or bloody injuries

Physical Violence
Visuals depicting violent physical assault, such as kicking or punching

Augmented AI Crowd HTML Elements 1954

Amazon SageMaker Developer Guide

Weapon Violence
Visuals depicting violence using weapons like firearms or blades, such as shooting

Weapons
Visuals depicting weapons like firearms and blades

Self Injury
Visuals depicting self-inflicted cutting on the body, typically in distinctive patterns
 using sharp objects

Emaciated Bodies
Visuals depicting extremely malnourished human bodies

Corpses
Visuals depicting human dead bodies

Hanging
Visuals depicting death by hanging</p>
 </short-instructions>

 <full-instructions header="Instructions"></full-instructions>
 </crowd-rekognition-detect-moderation-labels>
</crowd-form>

Output

The following is a sample of the output from this element. For details about this output, see
Amazon Rekognition DetectModerationLabels API documentation.

{
 "AWS/Rekognition/DetectModerationLabels/Image/V3": {
 "ModerationLabels": [
 { name: 'Gore', parentName: 'Violence' },
 { name: 'Corpses', parentName: 'Violence' },
]
 }
}

Augmented AI Crowd HTML Elements 1955

https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectModerationLabels.html

Amazon SageMaker Developer Guide

Using Amazon Augmented AI for Human Review

When you use AI applications such as Amazon Rekognition, Amazon Textract, or your custom
machine learning (ML) models, you can use Amazon Augmented AI to get human review of low-
confidence predictions or random prediction samples.

What is Amazon Augmented AI?

Amazon Augmented AI (Amazon A2I) is a service that brings human review of ML predictions to
all developers by removing the heavy lifting associated with building human review systems or
managing large numbers of human reviewers.

Many ML applications require humans to review low-confidence predictions to ensure the results
are correct. For example, extracting information from scanned mortgage application forms can
require human review due to low-quality scans or poor handwriting. Building human review
systems can be time-consuming and expensive because it involves implementing complex
processes or workflows, writing custom software to manage review tasks and results, and
managing large groups of reviewers.

Amazon A2I streamlines building and managing human reviews for ML applications. Amazon A2I
provides built-in human review workflows for common ML use cases, such as content moderation
and text extraction from documents. You can also create your own workflows for ML models built
on SageMaker or any other tools. Using Amazon A2I, you can allow human reviewers to step in
when a model is unable to make a high-confidence prediction or to audit its predictions on an
ongoing basis.

Amazon A2I Use Case Examples

The following examples demonstrate how you can use Amazon A2I to integrate a human review
loop into your ML application. For each of these examples, you can find a Jupyter Notebook that
demonstrates that workflow in Use Cases and Examples Using Amazon A2I.

• Use Amazon A2I with Amazon Textract – Have humans review important key-value pairs in
single-page documents or have Amazon Textract randomly sample and send documents from
your dataset to humans for review.

• Use Amazon A2I with Amazon Rekognition – Have humans review unsafe images for explicit
adult or violent content if Amazon Rekognition returns a low-confidence score, or have Amazon
Rekognition randomly sample and send images from your dataset to humans for review.

Augmented AI 1956

Amazon SageMaker Developer Guide

• Use Amazon A2I to review real-time ML inferences – Use Amazon A2I to review real-time,
low-confidence inferences made by a model deployed to a SageMaker hosted endpoint and
incrementally train your model using Amazon A2I output data.

• Use Amazon A2I with Amazon Comprehend – Have humans review Amazon Comprehend
inferences about text data such as sentiment analysis, text syntax, and entity detection.

• Use Amazon A2I with Amazon Transcribe – Have humans review Amazon Transcribe
transcriptions of video or audio files. Use the results of transcription human review loops to
create a custom vocabulary and improve future transcriptions of similar video or audio content.

• Use Amazon A2I with Amazon Translate – Have humans review low-confidence translations
returned from Amazon Translate.

• Use Amazon A2I to review tabular data – Use Amazon A2I to integrate a human review loop
into an ML application that uses tabular data.

Topics

• Get Started with Amazon Augmented AI

• Use Cases and Examples Using Amazon A2I

• Create a Human Review Workflow

• Delete a Human Review Workflow

• Create and Start a Human Loop

• Delete a Human Loop

• Create and Manage Worker Task Templates

• Monitor and Manage Your Human Loop

Augmented AI 1957

Amazon SageMaker Developer Guide

• Amazon A2I Output Data

• Permissions and Security in Amazon Augmented AI

• Use Amazon CloudWatch Events in Amazon Augmented AI

• Use APIs in Amazon Augmented AI

Get Started with Amazon Augmented AI

To get started using Amazon Augmented AI, review the Core Components of Amazon A2I and
Prerequisites to Using Augmented AI. Then, use the following documentation to learn how to use
the Amazon A2I console and API.

• Tutorial: Get Started in the Amazon A2I Console

• Tutorial: Get Started Using the Amazon A2I API

You can also get stared using the Amazon A2I API by following a Jupyter Notebook tutorial. See
Use Cases and Examples Using Amazon A2I for a list of notebooks and use cases.

Core Components of Amazon A2I

Review the following terms to familiarize yourself with the core components of Amazon A2I.

Task Types

The AI/ML workflow into which you integrate Amazon A2I defines an Amazon A2I task type.

Amazon A2I supports:

• Two built-in task types: Amazon Textract key-value pair extraction and Amazon Rekognition
image moderation.

• A custom task type: Use a custom task type to integrate a human review loop into any machine
learning workflow. You can use a custom task type to integrate Amazon A2I with other AWS
services like Amazon Comprehend, Amazon Transcribe, and Amazon Translate, as well as your
own custom machine learning workflows. To learn more, see Use Cases and Examples Using
Amazon A2I.

Get Started with Amazon Augmented AI 1958

https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-textract-task-type.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-rekognition-task-type.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-rekognition-task-type.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-task-types-custom.html

Amazon SageMaker Developer Guide

Select a tab in the following table to see diagrams that illustrate how Amazon A2I works with each
task type. Select the task type page using the links in the preceding list to learn more about that
task type.

Amazon Textract – Key-value pair extraction

This image depicts the Amazon A2I built-in workflow with Amazon Textract. On the left, the
resources that are required to create an Amazon Textract human review workflow are depicted:
an Amazon S3 bucket, activation conditions, a worker task template, and a work team. These
resources are used to create a human review workflow, or flow definition. An arrow points
right to the next step in the workflow: using Amazon Textract to configure a human loop with
the human review workflow. A second arrow points right from this step to the step in which
activation conditions specified in the human review workflow are met. This initiates the creation
of a human loop. On the right of the image, the human loop is depicted in three steps: 1) the
worker UI and tools are generated and the task is made available to workers, 2) workers review
input data, and finally, 3) results are saved in Amazon S3.

Amazon Rekognition – Image moderation

This image depicts the Amazon A2I built-in workflow with Amazon Rekognition. On the left,
the resources that are required to create an Amazon Rekognition human review workflow are
depicted: an Amazon S3 bucket, activation conditions, a worker task template, and a work team.
These resources are used to create a human review workflow, or flow definition. An arrow points
right to the next step in the workflow: using Amazon Rekognition to configure a human loop

Get Started with Amazon Augmented AI 1959

Amazon SageMaker Developer Guide

with the human review workflow. A second arrow points right from this step to the step in
which activation conditions specified in the human review workflow are met. This initiates the
creation of a human loop. On the right of the image, the human loop is depicted in three steps:
1) the worker UI and tools are generated and the task is made available to workers, 2) workers
review input data, and finally, 3) results are saved in Amazon S3.

Custom Task Type

The following image depicts the Amazon A2I custom workflow. A custom ML model is used to
generate predictions. The client application filters these predictions using user-defined criteria
and determines if a human review is required. If so, these predictions are sent to Amazon
A2I for human review. Amazon A2I collects the results of human review in Amazon S3, which
can access by the client application. If the filter determines that no human review is needed,
predictions can be fed directly to the client application.

Get Started with Amazon Augmented AI 1960

Amazon SageMaker Developer Guide

Human Review Workflow (Flow Definition)

You use a human review workflow to specify your human work team, to set up your worker UI using
a worker task template, and to provide information about how workers should complete the review
task.

For built-in task types, you also use the human review workflow to identify the conditions under
which a human loop is initiated. For example, Amazon Rekognition can perform image content
moderation using machine learning. You can use the human review workflow to specify that an
image is sent to a human for content moderation review if Amazon Rekognition's confidence is too
low.

You can use a human review workflow to create multiple human loops.

You can create a flow definition in the SageMaker console or with the SageMaker API. To learn
more about both of these options, see Create a Human Review Workflow.

Work Team

A work team is a group of human workers to whom you send your human review tasks.

When you create a human review workflow, you specify a single work team.

Your work team can come from the Amazon Mechanical Turk workforce, a vendor-managed
workforce, or your own private workforce. When you use the private workforce, you can create

Get Started with Amazon Augmented AI 1961

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-public.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-vendor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-vendor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private.html

Amazon SageMaker Developer Guide

multiple work teams. Each work team can be used in multiple human review workflows. To learn
how to create a workforce and work teams, see Create and Manage Workforces.

Worker Task Template and Human Task UI

You use a worker task template to create a worker UI (a human task UI) for your human review
tasks.

The human task UI displays your input data, such as documents or images, and instructions to
workers. It also provides interactive tools that the worker uses to complete your tasks.

For built-in task types, you must use the Amazon A2I worker task template provided for that task
type.

Human Loops

A human loop is used to create a single human review job. For each human review job, you can
choose the number of workers that are sent a task to review a single data object. For example,
if you set the number of workers per object to 3 for an image classification labeling job, three
workers classify each input image. Increasing the number of workers per object can improve label
accuracy.

A human loop is created using a human review workflow as follows:

• For built-in task types, the conditions specified in the human review workflow determine when
the human loop is created.

• Human review tasks are sent to the work team specified in the human review workflow.

• The worker task template specified in the human review workflow is used to render the human
task UI.

When do human loops get created?

When you use one of the built-in task types, the corresponding AWS service creates and starts a
human loop on your behalf when the conditions specified in your human review workflow are
met. For example:

• When you use Augmented AI with Amazon Textract, you can integrate Amazon A2I into a
document review task using the API operation AnalyzeDocument. A human loop is created
every time Amazon Textract returns inferences about key-value pairs that meet the conditions
you specify in your human review workflow.

Get Started with Amazon Augmented AI 1962

Amazon SageMaker Developer Guide

• When you use Augmented AI with Amazon Rekognition, you can integrate Amazon A2I into an
image moderation task using the API operation DetectModerationLabels. A human loop is
created every time Amazon Rekognition returns inferences about image content that meet the
conditions you specify in your human review workflow.

When using a custom task type, you start a human loop using the Amazon Augmented AI Runtime
API. When you call StartHumanLoop in your custom application, a task is sent to human
reviewers.

To learn how to create and start a human loop, see Create and Start a Human Loop.

To generate these resources and create a human review workflow, Amazon A2I integrates
multiple APIs, including the Amazon Augmented AI Runtime Model, the SageMaker APIs, and APIs
associated with your task type. To learn more, see Use APIs in Amazon Augmented AI.

Note

AWS Region availability may differ when you use Augmented AI with other AWS services,
such as Amazon Textract. Create Augmented AI resources in the same AWS Region that you
use to interact with those AWS services. For AWS Region availability for all services, see the
Region Table.

Prerequisites to Using Augmented AI

Amazon A2I uses resources in IAM, SageMaker, and Amazon S3 to create and run your human
review workflows. You can create some of these resources in the Amazon A2I console when
you create a human review workflow. To learn how, see Tutorial: Get Started in the Amazon A2I
Console.

To use Amazon A2I, you need the following resources:

• One or more Amazon S3 buckets in the same AWS Region as the workflow for your input and
output data. To create a bucket, follow the instructions in Create a Bucket in the Amazon Simple
Storage Service Console User Guide.

• An IAM role with required permissions to create a human review workflow and an IAM user
or role with permission to access Augmented AI. For more information, see Permissions and
Security in Amazon Augmented AI.

Get Started with Amazon Augmented AI 1963

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon SageMaker Developer Guide

• A public, private, or vendor workforce for your human review workflows. If you plan to use
a private workforce, you need to set one up ahead of time in the same AWS Region as your
Amazon A2I workflow. To learn more about these workforce types, see Create and Manage
Workforces.

Important

To learn about the compliance programs that cover Amazon Augmented AI at this time,
see AWS Services in Scope by Compliance Program. If you use Amazon Augmented AI in
conjunction with other AWS services (such as Amazon Rekognition and Amazon Textract),
note that Amazon Augmented AI may not be in scope for the same compliance programs
as those other services. You are responsible for how you use Amazon Augmented AI,
including understanding how the service processes or stores customer data and any
impact on the compliance of your data environment. You should discuss your workload
objectives and goals with your AWS account team; they can help you evaluate whether
the service is a good fit for your proposed use case and architecture.

Tutorial: Get Started in the Amazon A2I Console

The following tutorial shows you how to get started using Amazon A2I in the Amazon A2I console.

The tutorial gives you the option to use Augmented AI with Amazon Textract for document review
or Amazon Rekognition for image content review.

Prerequisites

To get started using Amazon A2I, complete the following prerequisites.

• Create an Amazon S3 bucket in the same AWS Region as the workflow for your input and output
data. For example, if you are using Amazon A2I with Amazon Textract in us-east-1, create your
bucket in us-east-1. To create a bucket, follow the instructions in Create a Bucket in the Amazon
Simple Storage Service Console User Guide.

• Do one of the following:

• If you want to complete the tutorial using Amazon Textract, download this sample document
and place it in your Amazon S3 bucket.

• If you want to complete the tutorial using Amazon Rekognition, download this image and
place it in your Amazon S3 bucket.

Get Started with Amazon Augmented AI 1964

https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://d2908q01vomqb2.cloudfront.net/f1f836cb4ea6efb2a0b1b99f41ad8b103eff4b59/2020/04/17/sample-document-final.png
https://dhei5unw3vrsx.cloudfront.net/images/yoga_swimwear_resized.jpg

Amazon SageMaker Developer Guide

Note

The Amazon A2I console is embedded in the SageMaker console.

Step 1: Create a Work Team

First, create a work team in the Amazon A2I console and add yourself as a worker so that you can
preview the worker review task.

Important

This tutorial uses a private work team. The Amazon A2I private workforce is configured in
the Ground Truth area of the SageMaker console and is shared between Amazon A2I and
Ground Truth.

To create a private workforce using worker emails

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Labeling workforces under Ground Truth.

3. Choose Private, then choose Create private team.

4. Choose Invite new workers by email.

5. For this tutorial, enter your email and any others that you want to be able to preview the
human task UI. You can paste or type a list of up to 50 email addresses, separated by commas,
into the email addresses box.

6. Enter an organization name and contact email.

7. Optionally, choose an Amazon SNS topic to which to subscribe the team so workers are
notified by email when new Ground Truth labeling jobs become available. Amazon SNS
notifications are supported by Ground Truth and are not supported by Augmented AI. If you
subscribe workers to Amazon SNS notifications, they only receive notifications about Ground
Truth labeling jobs. They do not receive notifications about Augmented AI tasks.

8. Choose Create private team.

If you add yourself to a private work team, you receive an email from no-
reply@verificationemail.com with login information. Use the link in this email to reset your

Get Started with Amazon Augmented AI 1965

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

password and log in to your worker portal. This is where your human review tasks appear when you
create a human loop.

Step 2: Create a Human Review Workflow

In this step, you create a human review workflow. Each human review workflow is created for
a specific task type. This tutorial allows you to choose between the built-in task types: Amazon
Rekognition and Amazon Textract.

To create a human review workflow:

1. Open the Augmented AI console at https://console.aws.amazon.com/a2i to access the Human
review workflows page.

2. Select Create human review workflow.

3. In Workflow settings, enter a workflow Name, S3 bucket, and the IAM role that you created
for this tutorial, with the AWS managed policy AmazonAugmentedAIIntegratedAPIAccess
attached.

4. For Task type, select Textract – Key-value pair extraction or Rekognition – Image
moderation.

5. Select the task type that you chose from the following table for instructions for that task type.

Amazon Textract – Key-value pair extraction

1. Select Trigger a human review for specific form keys based on the form key
confidence score or when specific form keys are missing.

2. For Key name, enter Mail Address.

3. Set the identification confidence threshold between 0 and 99.

4. Set the qualification confidence threshold between 0 and 99.

5. Select Trigger a human review for all form keys identified by Amazon Textract with
confidence scores in a specific range.

6. Set the identification confidence threshold between 0 and 90.

7. Set the qualification confidence threshold between 0 and 90.

Get Started with Amazon Augmented AI 1966

https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-task-types-general.html
https://console.aws.amazon.com/a2i/

Amazon SageMaker Developer Guide

This initiates a human review if Amazon Textract returns a confidence score that is less than
99 for Mail Address and its key, or if it returns a confidence score less than 90 for any
key value pair detected in the document.

The following image shows the Amazon Textract form extraction - Conditions for invoking
human review section of the Amazon A2I console. In the image, the check boxes for
the two types of triggers explained in the proceeding paragraph are checked, and Mail
Address is used as a Key name for the first trigger. The identification confidence threshold
is defined using confidence scores for key-value pairs detect within the form and is set
between 0 and 99. The qualification confidence threshold is defined using confidence
scores for text contained within keys and values in a form and is set between 0 and 99.

Get Started with Amazon Augmented AI 1967

Amazon SageMaker Developer Guide

Amazon Rekognition – Image moderation

1. Select Trigger human review for labels identified by Amazon Rekognition based on
label confidence score.

2. Set the Threshold between 0 and 98.

This initiates a human review if Amazon Rekognition returns a confidence score that is less
than 98 for an image moderation job.

Get Started with Amazon Augmented AI 1968

Amazon SageMaker Developer Guide

The following image shows how you can select the Trigger human review for labels
identified by Amazon Rekognition based on label confidence score option and enter a
Threshold between 0 and 98 in the Amazon A2I console.

6. Under Worker task template creation, select Create from a default template.

7. Enter a Template name.

8. In Task description field, enter the following text:

Read the instructions carefully and complete the task.

9. Under Workers, select Private.

10. Select the private team that you created.

11. Choose Create.

Once your human review workflow is created, it appears in the table on the Human review
workflows page. When the Status is Active, copy and save the Workflow ARN. You need it for the
next step.

Step 3: Start a Human Loop

You must use an API operation to start a human loop. There are a variety of language-specific SDKs
that you can use to interact with these API operations. To see documentation for each of these
SDKs, refer to the See Also section in the API documentation, as shown in the following image.

Get Started with Amazon Augmented AI 1969

Amazon SageMaker Developer Guide

For this tutorial, you use one of the following APIs:

• If you chose the Amazon Textract task type, you use the AnalyzeDocument operation.

• If you chose the Amazon Rekognition task type, you use the DetectModerationLabels
operation.

You can interact with these APIs using a SageMaker notebook instance (recommended for new
users) or the AWS Command Line Interface (AWS CLI). Choose one of the following to learn more
about these options:

• To learn more about and set up a notebook instance, see Amazon SageMaker Notebook
Instances.

• To learn more about and get started using the AWS CLI, see What Is the AWS Command Line
Interface? in the AWS Command Line Interface User Guide.

Get Started with Amazon Augmented AI 1970

https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeDocument.html
https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectModerationLabels.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Amazon SageMaker Developer Guide

Select your task type in the following table to see example requests for Amazon Textract and
Amazon Rekognition using the AWS SDK for Python (Boto3).

Amazon Textract – Key-value pair extraction

The following example uses the AWS SDK for Python (Boto3) to call analyze_document in
us-west-2. Replace the italicized red text with your resources. Include the DataAttributes
parameter if you are using the Amazon Mechanical Turk workforce. For more information, see
the analyze_document documention in the AWS SDK for Python (Boto) API Reference.

 response = client.analyze_document(
 Document={
 "S3Object": {
 "Bucket": "AWSDOC-EXAMPLE-BUCKET",
 "Name": "document-name.pdf"
 }
 },
 HumanLoopConfig={
 "FlowDefinitionArn":"arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "HumanLoopName":"human-loop-name",
 "DataAttributes" : {
 "ContentClassifiers":
["FreeOfPersonallyIdentifiableInformation","FreeOfAdultContent"]
 }
 },
 FeatureTypes=["TABLES", "FORMS"])

Amazon Rekognition – Image moderation

The following example uses the AWS SDK for Python (Boto3) to call
detect_moderation_labels in us-west-2. Replace the italicized red text with your resources.
Include the DataAttributes parameter if you are using the Amazon Mechanical Turk
workforce. For more information, see the detect_moderation_labels documentation in the
AWS SDK for Python (Boto) API Reference.

 response = client.detect_moderation_labels(
 Image={
 "S3Object":{

Get Started with Amazon Augmented AI 1971

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_HumanLoopDataAttributes.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/textract.html#Textract.Client.analyze_document
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_HumanLoopDataAttributes.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rekognition.html#Rekognition.Client.detect_moderation_labels

Amazon SageMaker Developer Guide

 "Bucket": "AWSDOC-EXAMPLE-BUCKET",
 "Name": "image-name.png"
 }
 },
 HumanLoopConfig={
 "FlowDefinitionArn":"arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "HumanLoopName":"human-loop-name",
 "DataAttributes":{
 ContentClassifiers:
["FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent"]
 }
 })

Step 4: View Human Loop Status in Console

When you start a human loop, you can view its status in the Amazon A2I console.

To view your human loop status

1. Open the Augmented AI console at https://console.aws.amazon.com/a2i to access the Human
review workflows page.

2. Select the human review workflow that you used to start your human loop.

3. In the Human loops section, you can see your human loop. View its status in the Status
column.

Step 5: Download Output Data

Your output data is stored in the Amazon S3 bucket you specified when you created a human
review workflow.

To view your Amazon A2I output data

1. Open the Amazon S3 console.

2. Select the Amazon S3 bucket you specified when you created your human review workflow in
step 2 of this example.

3. Starting with the folder that is named after your human review workflow, navigate to your
output data by selecting the folder with the following naming convention:

Get Started with Amazon Augmented AI 1972

https://console.aws.amazon.com/a2i/
https://console.aws.amazon.com/s3/

Amazon SageMaker Developer Guide

s3://output-bucket-specified-in-human-review-workflow/human-review-workflow-
name/YYYY/MM/DD/hh/mm/ss/human-loop-name/output.json

4. Select output.json and choose Download.

Tutorial: Get Started Using the Amazon A2I API

This tutorial explains the API operations you can use to get started using Amazon A2I.

To use a Jupyter Notebook to run these operations, select a Jupyter Notebook from Use Cases and
Examples Using Amazon A2I and use Use SageMaker Notebook Instance with Amazon A2I Jupyter
Notebook to learn how to use it in a SageMaker notebook instance.

To learn more about the API operations you can use with Amazon A2I, see Use APIs in Amazon
Augmented AI.

Create a Private Work Team

You can create a private work team and add yourself as a worker so that you can preview Amazon
A2I.

If you are not familiar with Amazon Cognito, we recommend that you use the SageMaker console
to create a private workforce and add yourself as a private worker. For instructions, see Step 1:
Create a Work Team.

If you are familiar with Amazon Cognito, you can use the following instructions to create a private
work team using the SageMaker API. After you create a work team, note the work team ARN
(WorkteamArn).

To learn more about the private workforce and other available configurations, see Use a Private
Workforce.

Create a private workforce

If you have not created a private workforce, you can do so using an Amazon Cognito user pool.
Make sure that you have added yourself to this user pool. You can create a private work team using
the AWS SDK for Python (Boto3) create_workforce function. For other language-specific SDKs,
refer to the list in CreateWorkforce.

Get Started with Amazon Augmented AI 1973

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_workforce
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkforce.html#API_CreateWorkforce_SeeAlso

Amazon SageMaker Developer Guide

 response = client.create_workforce(
 CognitoConfig={
 "UserPool": "Pool_ID",
 "ClientId": "app-client-id"
 },
 WorkforceName="workforce-name"
)

Create a private work team

After you have created a private workforce in the AWS Region to configure and start
your human loop, you can create a private work team using the AWS SDK for Python
(Boto3) create_workteam function. For other language-specific SDKs, refer to the list in
CreateWorkteam.

 response = client.create_workteam(
 WorkteamName="work-team-name",
 WorkforceName= "workforce-name",
 MemberDefinitions=[
 {
 "CognitoMemberDefinition": {
 "UserPool": "<aws-region>_ID",
 "UserGroup": "user-group",
 "ClientId": "app-client-id"
 },
 }
]
)

Access your work team ARN as follows:

 workteamArn = response["WorkteamArn"]

List private work teams in your account

If you have already created a private work team, you can list all work teams in a given AWS Region
in your account using the AWS SDK for Python (Boto3) list_workteams function. For other
language-specific SDKs, refer to the list in ListWorkteams.

Get Started with Amazon Augmented AI 1974

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_workteam
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkteam.html#API_CreateWorkteam_SeeAlso
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.list_workteams
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListWorkteams.html#API_ListWorkteams_SeeAlso

Amazon SageMaker Developer Guide

 response = client.list_workteams()

If you have numerous work teams in your account, you may want to use MaxResults, SortBy, and
NameContains to filter your results.

Create a Human Review Workflow

You can create a human review workflow using the Amazon A2I CreateFlowDefinition
operation. Before you create your human review workflow, you need to create a human task UI.
You can do this with the CreateHumanTaskUi operation.

If you are using Amazon A2I with the Amazon Textract or Amazon Rekognition integrations, you
can specify activation conditions using a JSON.

Create a Human Task UI

If you are creating a human review workflow to be used with Amazon Textract or Amazon
Rekognition integrations, you need to use and modify pre-made worker task template. For all
custom integrations, you can use your own custom worker task template. Use the following
table to learn how to create a human task UI using a worker task template for the two built-in
integrations. Replace the template with your own to customize this request.

Amazon Textract – Key-value pair extraction

To learn more about this template, see Custom Template Example for Amazon Textract.

template = r"""
<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
{% capture s3_uri %}http://s3.amazonaws.com/
{{ task.input.aiServiceRequest.document.s3Object.bucket }}/
{{ task.input.aiServiceRequest.document.s3Object.name }}{% endcapture %}
<crowd-form>
 <crowd-textract-analyze-document
 src="{{ s3_uri | grant_read_access }}"
 initial-value="{{ task.input.selectedAiServiceResponse.blocks }}"
 header="Review the key-value pairs listed on the right and correct them if
 they don"t match the following document."
 no-key-edit=""
 no-geometry-edit=""
 keys="{{ task.input.humanLoopContext.importantFormKeys }}"
 block-types='["KEY_VALUE_SET"]'>
 <short-instructions header="Instructions">

Get Started with Amazon Augmented AI 1975

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html

Amazon SageMaker Developer Guide

 <p>Click on a key-value block to highlight the corresponding key-value pair
 in the document.
 </p><p>
</p>
 <p>If it is a valid key-value pair, review the content for the value. If the
 content is incorrect, correct it.
 </p><p>
</p>
 <p>The text of the value is incorrect, correct it.</p>
 <p><img src="https://assets.crowd.aws/images/a2i-console/correct-value-
text.png">
 </p><p>
</p>
 <p>A wrong value is identified, correct it.</p>
 <p>
 </p><p>
</p>
 <p>If it is not a valid key-value relationship, choose No.</p>
 <p><img src="https://assets.crowd.aws/images/a2i-console/not-a-key-value-
pair.png">
 </p><p>
</p>
 <p>If you can’t find the key in the document, choose Key not found.</p>
 <p><img src="https://assets.crowd.aws/images/a2i-console/key-is-not-
found.png">
 </p><p>
</p>
 <p>If the content of a field is empty, choose Value is blank.</p>
 <p><img src="https://assets.crowd.aws/images/a2i-console/value-is-
blank.png">
 </p><p>
</p>
 <p>Examples</p>
 <p>Key and value are often displayed next or below to each other.
 </p><p>
</p>
 <p>Key and value displayed in one line.</p>
 <p><img src="https://assets.crowd.aws/images/a2i-console/sample-key-value-
pair-1.png">
 </p><p>
</p>
 <p>Key and value displayed in two lines.</p>
 <p><img src="https://assets.crowd.aws/images/a2i-console/sample-key-value-
pair-2.png">
 </p><p>
</p>
 <p>If the content of the value has multiple lines, enter all the text
 without line break.
 Include all value text even if it extends beyond the highlight box.</p>
 <p><img src="https://assets.crowd.aws/images/a2i-console/multiple-
lines.png"></p>
 </short-instructions>
 <full-instructions header="Instructions"></full-instructions>
 </crowd-textract-analyze-document>

Get Started with Amazon Augmented AI 1976

Amazon SageMaker Developer Guide

</crowd-form>
"""

Amazon Rekognition – Image moderation

To learn more about this template, see Custom Template Example for Amazon Rekognition.

template = r"""
<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
{% capture s3_uri %}http://s3.amazonaws.com/
{{ task.input.aiServiceRequest.image.s3Object.bucket }}/
{{ task.input.aiServiceRequest.image.s3Object.name }}{% endcapture %}

<crowd-form>
 <crowd-rekognition-detect-moderation-labels
 categories='[
 {% for label in task.input.selectedAiServiceResponse.moderationLabels %}
 {
 name: "{{ label.name }}",
 parentName: "{{ label.parentName }}",
 },
 {% endfor %}
]'
 src="{{ s3_uri | grant_read_access }}"
 header="Review the image and choose all applicable categories."
 >
 <short-instructions header="Instructions">
 <style>
 .instructions {
 white-space: pre-wrap;
 }
 </style>
 <p class="instructions">Review the image and choose all applicable categories.
If no categories apply, choose None.

Nudity
Visuals depicting nude male or female person or persons

Partial Nudity
Visuals depicting covered up nudity, for example using hands or pose

Revealing Clothes
Visuals depicting revealing clothes and poses

Get Started with Amazon Augmented AI 1977

Amazon SageMaker Developer Guide

Physical Violence
Visuals depicting violent physical assault, such as kicking or punching

Weapon Violence
Visuals depicting violence using weapons like firearms or blades, such as shooting

Weapons
Visuals depicting weapons like firearms and blades
 </short-instructions>

 <full-instructions header="Instructions"></full-instructions>
 </crowd-rekognition-detect-moderation-labels>
</crowd-form>"""

Custom Integration

The following is an example template that can be used in a custom integration. This template is
used in this notebook, demonstrating a custom integration with Amazon Comprehend.

template = r"""
<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

<crowd-form>
 <crowd-classifier
 name="sentiment"
 categories='["Positive", "Negative", "Neutral", "Mixed"]'
 initial-value="{{ task.input.initialValue }}"
 header="What sentiment does this text convey?"
 >
 <classification-target>
 {{ task.input.taskObject }}
 </classification-target>

 <full-instructions header="Sentiment Analysis Instructions">
 <p>Positive sentiment include: joy, excitement, delight</p>
 <p>Negative sentiment include: anger, sarcasm, anxiety</p>
 <p>Neutral: neither positive or negative, such as stating a
 fact</p>
 <p>Mixed: when the sentiment is mixed</p>
 </full-instructions>

 <short-instructions>
 Choose the primary sentiment that is expressed by the text.

Get Started with Amazon Augmented AI 1978

https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Comprehend%20DetectSentiment.ipynb

Amazon SageMaker Developer Guide

 </short-instructions>
 </crowd-classifier>
</crowd-form>
"""

Using the template specified above, you can create a template using the AWS SDK for Python
(Boto3) create_human_task_ui function. For other language-specific SDKs, refer to the list in
CreateHumanTaskUi.

 response = client.create_human_task_ui(
 HumanTaskUiName="human-task-ui-name",
 UiTemplate={
 "Content": template
 }
)

This response element contains the human task UI ARN. Save this as follows:

 humanTaskUiArn = response["HumanTaskUiArn"]

Create JSON to specify activation conditions

For Amazon Textract and Amazon Rekognition built-in integrations, you can save activation
conditions in a JSON object and use this in your CreateFlowDefinition request.

Next, select a tab to see example activation conditions you can use for these built-in integrations.
For additional information about activation condition options, see JSON Schema for Human Loop
Activation Conditions in Amazon Augmented AI.

Amazon Textract – Key-value pair extraction

This example specifies conditions for specific keys (such as Mail address) in the document. If
Amazon Textract's confidence falls outside of the thresholds set here, the document is sent to a
human for review, with the specific keys that initiated the human loop prompted to the worker.

 import json

 humanLoopActivationConditions = json.dumps(

Get Started with Amazon Augmented AI 1979

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_human_task_ui
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html#API_CreateHumanTaskUi_SeeAlso

Amazon SageMaker Developer Guide

 {
 "Conditions": [
 {
 "Or": [

 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Mail address",
 "ImportantFormKeyAliases": ["Mail Address:","Mail
 address:", "Mailing Add:","Mailing Addresses"],
 "KeyValueBlockConfidenceLessThan": 100,
 "WordBlockConfidenceLessThan": 100
 }
 },
 {
 "ConditionType": "MissingImportantFormKey",
 "ConditionParameters": {
 "ImportantFormKey": "Mail address",
 "ImportantFormKeyAliases": ["Mail Address:","Mail
 address:","Mailing Add:","Mailing Addresses"]
 }
 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Phone Number",
 "ImportantFormKeyAliases": ["Phone number:", "Phone
 No.:", "Number:"],
 "KeyValueBlockConfidenceLessThan": 100,
 "WordBlockConfidenceLessThan": 100
 }
 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "*",
 "KeyValueBlockConfidenceLessThan": 100,
 "WordBlockConfidenceLessThan": 100
 }
 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {

Get Started with Amazon Augmented AI 1980

Amazon SageMaker Developer Guide

 "ImportantFormKey": "*",
 "KeyValueBlockConfidenceGreaterThan": 0,
 "WordBlockConfidenceGreaterThan": 0
 }
 }
]
 }
]
 }
)

Amazon Rekognition – Image moderation

The human loop activation conditions used here are tailored towards Amazon Rekognition
content moderation; they are based on the confidence thresholds for the Suggestive and
Female Swimwear Or Underwear moderation labels.

 import json

 humanLoopActivationConditions = json.dumps(
 {
 "Conditions": [
 {
 "Or": [
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Suggestive",
 "ConfidenceLessThan": 98
 }
 },
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Female Swimwear Or Underwear",
 "ConfidenceGreaterThan": 98
 }
 }
]
 }
]
 }

Get Started with Amazon Augmented AI 1981

Amazon SageMaker Developer Guide

)

Create a human review workflow

This section gives an example of the CreateFlowDefinition AWS SDK for Python (Boto3)
request using the resources created in the previous sections. For other language-specific SDKs,
refer to the list in CreateFlowDefinition. Use the tabs in the following table to see the requests
to create a human review workflow for Amazon Textract and Amazon Rekognition built-in
integrations.

Amazon Textract – Key-value pair extraction

If you use the built-in integration with Amazon Textract, you must specify "AWS/Textract/
AnalyzeDocument/Forms/V1" for "AwsManagedHumanLoopRequestSource" in
HumanLoopRequestSource.

 response = client.create_flow_definition(
 FlowDefinitionName="human-review-workflow-name",
 HumanLoopRequestSource={
 "AwsManagedHumanLoopRequestSource": "AWS/Textract/AnalyzeDocument/Forms/
V1"
 },
 HumanLoopActivationConfig={
 "HumanLoopActivationConditionsConfig": {
 "HumanLoopActivationConditions": humanLoopActivationConditions
 }
 },
 HumanLoopConfig={
 "WorkteamArn": workteamArn,
 "HumanTaskUiArn": humanTaskUiArn,
 "TaskTitle": "Document entry review",
 "TaskDescription": "Review the document and instructions. Complete the
 task",
 "TaskCount": 1,
 "TaskAvailabilityLifetimeInSeconds": 43200,
 "TaskTimeLimitInSeconds": 3600,
 "TaskKeywords": [
 "document review",
],
 },

Get Started with Amazon Augmented AI 1982

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html#API_CreateFlowDefinition_SeeAlso

Amazon SageMaker Developer Guide

 OutputConfig={
 "S3OutputPath": "s3://DOC-EXAMPLE-BUCKET/prefix/",
 },
 RoleArn="arn:aws:iam::<account-number>:role/<role-name>",
 Tags=[
 {
 "Key": "string",
 "Value": "string"
 },
]
)

Amazon Rekognition – Image moderation

If you use the built-in integration with Amazon Rekognition, you must
specify "AWS/Rekognition/DetectModerationLabels/Image/V3" for
"AwsManagedHumanLoopRequestSource" in HumanLoopRequestSource.

 response = client.create_flow_definition(
 FlowDefinitionName="human-review-workflow-name",
 HumanLoopRequestSource={
 "AwsManagedHumanLoopRequestSource": "AWS/Rekognition/
DetectModerationLabels/Image/V3"
 },
 HumanLoopActivationConfig={
 "HumanLoopActivationConditionsConfig": {
 "HumanLoopActivationConditions": humanLoopActivationConditions
 }
 },
 HumanLoopConfig={
 "WorkteamArn": workteamArn,
 "HumanTaskUiArn": humanTaskUiArn,
 "TaskTitle": "Image content moderation",
 "TaskDescription": "Review the image and instructions. Complete the
 task",
 "TaskCount": 1,
 "TaskAvailabilityLifetimeInSeconds": 43200,
 "TaskTimeLimitInSeconds": 3600,
 "TaskKeywords": [
 "content moderation",
],
 },

Get Started with Amazon Augmented AI 1983

Amazon SageMaker Developer Guide

 OutputConfig={
 "S3OutputPath": "s3://DOC-EXAMPLE-BUCKET/prefix/",
 },
 RoleArn="arn:aws:iam::<account-number>:role/<role-name>",
 Tags=[
 {
 "Key": "string",
 "Value": "string"
 },
]
)

Custom Integration

If you use a custom integration, exclude the following parameters:
HumanLoopRequestSource, HumanLoopActivationConfig.

 response = client.create_flow_definition(
 FlowDefinitionName="human-review-workflow-name",
 HumanLoopConfig={
 "WorkteamArn": workteamArn,
 "HumanTaskUiArn": humanTaskUiArn,
 "TaskTitle": "Image content moderation",
 "TaskDescription": "Review the image and instructions. Complete the
 task",
 "TaskCount": 1,
 "TaskAvailabilityLifetimeInSeconds": 43200,
 "TaskTimeLimitInSeconds": 3600,
 "TaskKeywords": [
 "content moderation",
],
 },
 OutputConfig={
 "S3OutputPath": "s3://DOC-EXAMPLE-BUCKET/prefix/",
 },
 RoleArn="arn:aws:iam::<account-number>:role/<role-name>",
 Tags=[
 {
 "Key": "string",
 "Value": "string"
 },
]

Get Started with Amazon Augmented AI 1984

Amazon SageMaker Developer Guide

)

After you create a human review workflow, you can retrieve the flow definition ARN from the
response:

 humanReviewWorkflowArn = response["FlowDefinitionArn"]

Create a Human Loop

The API operation you use to start a human loop depends on the Amazon A2I integration you use.

• If you use the Amazon Textract built-in integration, you use the AnalyzeDocument operation.

• If you use the Amazon Rekognition built-in integration, you use the DetectModerationLabels
operation.

• If you use a custom integration, you use the StartHumanLoop operation.

Select your task type in the following table to see example requests for Amazon Textract and
Amazon Rekognition using the AWS SDK for Python (Boto3).

Amazon Textract – Key-value pair extraction

The following example uses the AWS SDK for Python (Boto3) to call analyze_document in
us-west-2. Replace the italicized red text with your resources. Include the DataAttributes
parameter if you are using the Amazon Mechanical Turk workforce. For more information, see
the analyze_document documention in the AWS SDK for Python (Boto) API Reference.

 response = client.analyze_document(
 Document={"S3Object": {"Bucket": "AWSDOC-EXAMPLE-BUCKET", "Name":
 "document-name.pdf"},
 HumanLoopConfig={
 "FlowDefinitionArn":"arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "HumanLoopName":"human-loop-name",
 "DataAttributes" : {ContentClassifiers:
["FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent"]}
 }
 FeatureTypes=["FORMS"]

Get Started with Amazon Augmented AI 1985

https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeDocument.html
https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectModerationLabels.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_StartHumanLoop.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_HumanLoopDataAttributes.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/textract.html#Textract.Client.analyze_document

Amazon SageMaker Developer Guide

)

Human loops are only created if Amazon Textract's confidence for document analysis task
meets the activation conditions you specified in your human review workflow. You can check
the response element to determine if a human loop has been created. To see everything
included in this response, see HumanLoopActivationOutput.

 if "HumanLoopArn" in analyzeDocumentResponse["HumanLoopActivationOutput"]:
 # A human loop has been started!
 print(f"A human loop has been started with ARN:
 {analyzeDocumentResponse["HumanLoopActivationOutput"]["HumanLoopArn"]}"

Amazon Rekognition – Image moderation

The following example uses the AWS SDK for Python (Boto3) to call
detect_moderation_labels in us-west-2. Replace the italicized red text with your resources.
Include the DataAttributes parameter if you are using the Amazon Mechanical Turk
workforce. For more information, see the detect_moderation_labels documention in the AWS
SDK for Python (Boto) API Reference.

 response = client.detect_moderation_labels(
 Image={"S3Object":{"Bucket": "AWSDOC-EXAMPLE-BUCKET", "Name": "image-
name.png"}},
 HumanLoopConfig={
 "FlowDefinitionArn":"arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "HumanLoopName":"human-loop-name",
 "DataAttributes":{ContentClassifiers:
["FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent"]}
 }
)

Human loops are only created if Amazon Rekognition's confidence for an image moderation
task meets the activation conditions you specified in your human review workflow. You can
check the response element to determine if a human loop has been created. To see everything
included in this response, see HumanLoopActivationOutput.

Get Started with Amazon Augmented AI 1986

https://docs.aws.amazon.com/textract/latest/dg/API_HumanLoopActivationOutput.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_HumanLoopDataAttributes.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rekognition.html#Rekognition.Client.detect_moderation_labels
https://docs.aws.amazon.com/rekognition/latest/dg/API_HumanLoopActivationOutput.html

Amazon SageMaker Developer Guide

 if "HumanLoopArn" in response["HumanLoopActivationOutput"]:
 # A human loop has been started!
 print(f"A human loop has been started with ARN:
 {response["HumanLoopActivationOutput"]["HumanLoopArn"]}")

Custom Integration

The following example uses the AWS SDK for Python (Boto3) to call start_human_loop in
us-west-2. Replace the italicized red text with your resources. Include the DataAttributes
parameter if you are using the Amazon Mechanical Turk workforce. For more information, see
the start_human_loop documention in the AWS SDK for Python (Boto) API Reference.

 response = client.start_human_loop(
 HumanLoopName= "human-loop-name",
 FlowDefinitionArn= "arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 HumanLoopInput={"InputContent": inputContentJson},
 DataAttributes={"ContentClassifiers":
["FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent"]}
)

This example stores input content in the variable inputContentJson. Assume that the input
content contains two elements: a text blurb and sentiment (such as Positive, Negative, or
Neutral), and it is formatted as follows:

 inputContent = {
 "initialValue": sentiment,
 "taskObject": blurb
 }

The keys initialValue and taskObject must correspond to the keys used in the liquid
elements of the worker task template. Refer to the custom template in Create a Human Task UI
to see an example.

To create inputContentJson, do the following:

 import json

Get Started with Amazon Augmented AI 1987

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_HumanLoopDataAttributes.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-a2i-runtime.html#AugmentedAIRuntime.Client.start_human_loop

Amazon SageMaker Developer Guide

 inputContentJson = json.dumps(inputContent)

A human loop starts each time you call start_human_loop. To check the status of your
human loop, use describe_human_loop:

 human_loop_info = a2i.describe_human_loop(HumanLoopName="human_loop_name")
 print(f"HumanLoop Status: {resp["HumanLoopStatus"]}")
 print(f"HumanLoop Output Destination: {resp["HumanLoopOutput"]}")

Use Cases and Examples Using Amazon A2I

You can use Amazon Augmented AI to incorporate a human review into your workflow for built-
in task types, Amazon Textract and Amazon Rekognition, or your own custom tasks using a custom
task type.

When you create a human review workflow using one of the built-in task types, you can specify
conditions, such as confidence thresholds, that initiate a human review. The service (Amazon
Rekognition or Amazon Textract) creates a human loop on your behalf when these conditions are
met and supplies your input data directly to Amazon A2I to send to human reviewers. To learn
more about the built-in task types, use the following:

• Use Amazon Augmented AI with Amazon Textract

• Use Amazon Augmented AI with Amazon Rekognition

When you use a custom task type, you create and start a human loop using the Amazon A2I
Runtime API. Use the custom task type to incorporate a human review workflow with other AWS
services or your own custom ML application.

• For more details, see Use Amazon Augmented AI with Custom Task Types

The following table outlines a variety of Amazon A2I use cases that you can explore using
SageMaker Jupyter Notebooks. To get started with a Jupyter Notebook, use the instructions in Use
SageMaker Notebook Instance with Amazon A2I Jupyter Notebook. For more examples, see this
GitHub repository.

Use Cases and Examples 1988

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-a2i-runtime.html#AugmentedAIRuntime.Client.describe_human_loop
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks

Amazon SageMaker Developer Guide

Use Case Description Task Type

Use Amazon A2I with Amazon
Textract

Have humans review single-
page documents to review
important form key-value
pairs, or have Amazon
Textract randomly sample
and send documents from
your dataset to humans for
review.

Built-in

Use Amazon A2I with Amazon
Rekognition

Have humans review unsafe
images for explicit adult or
violent content if Amazon
Rekognition returns a
low confidence score, or
have Amazon Rekognition
randomly sample and send
images from your dataset to
humans for review.

Built-in

Use Amazon A2I with Amazon
Comprehend

Have humans review Amazon
Comprehend inferences about
text data such as sentiment
 analysis, text syntax, and
entity detection.

Custom

Use Amazon A2I with Amazon
Transcribe

Have humans review Amazon
Transcribe transcriptions
of video or audio files. Use
the results of transcription
human review loops to create
a custom vocabulary and
improve future transcrip
tions of similar video or audio
content.

Custom

Use Cases and Examples 1989

https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Textract%20AnalyzeDocument.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Textract%20AnalyzeDocument.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Rekognition%20DetectModerationLabels.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Rekognition%20DetectModerationLabels.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Comprehend%20DetectSentiment.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Comprehend%20DetectSentiment.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/A2I-Video-Transcription-with-Amazon-Transcribe.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/A2I-Video-Transcription-with-Amazon-Transcribe.ipynb

Amazon SageMaker Developer Guide

Use Case Description Task Type

Use Amazon A2I with Amazon
Translate

Have humans review low-
confidence translations
returned from Amazon
Translate.

Custom

Use Amazon A2I to review
real time ML inferences

Use Amazon A2I to review
real-time, low-confidence
inferences made by a model
deployed to a SageMaker
hosted endpoint and
incrementally train your
model using Amazon A2I
output data.

Custom

Use Amazon A2I to review
tabular data

Use Amazon A2I to integrate
a human review loop into
an ML application that uses
tabular data.

Custom

Topics

• Use SageMaker Notebook Instance with Amazon A2I Jupyter Notebook

• Use Amazon Augmented AI with Amazon Textract

• Use Amazon Augmented AI with Amazon Rekognition

• Use Amazon Augmented AI with Custom Task Types

Use SageMaker Notebook Instance with Amazon A2I Jupyter Notebook

For an end-to-end example that demonstrates how to integrate an Amazon A2I human review loop
into a machine learning workflow, you can use a Jupyter Notebook from this GitHub Repository in
a SageMaker notebook instance.

Use Cases and Examples 1990

https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Amazon%20Translate.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Amazon%20Translate.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20A2I%20with%20Amazon%20SageMaker%20for%20object%20detection%20and%20model%20retraining.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20A2I%20with%20Amazon%20SageMaker%20for%20object%20detection%20and%20model%20retraining.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(Amazon%20A2I)%20Integration%20with%20tabular%20data.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(Amazon%20A2I)%20Integration%20with%20tabular%20data.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks

Amazon SageMaker Developer Guide

To use an Amazon A2I custom task type sample notebook in an Amazon SageMaker notebook
instance:

1. If you do not have an active SageMaker notebook instance, create one by following the
instructions in Step 1: Create an Amazon SageMaker Notebook Instance.

2. When your notebook instance is active, choose Open JupyterLab to the right of the notebook
instance's name. It may take a few moments for JupyterLab to load.

3. Choose the

icon to clone a GitHub repository into your workspace.

4. Enter the amazon-a2i-sample-jupyter-notebooks repository HTTPS URL.

5. Choose CLONE.

6. Open the notebook that you would like to run.

7. Follow the instructions in the notebook to configure your human review workflow and human
loop and run the cells.

8. To avoid incurring unnecessary charges, when you are done with the demo, stop and delete
your notebook instance in addition to any Amazon S3 buckets, IAM roles, and CloudWatch
Events resources created during the walkthrough.

Use Amazon Augmented AI with Amazon Textract

Amazon Textract enables you to add document text detection and analysis to your
applications. Amazon Augmented AI (Amazon A2I) directly integrates with Amazon Textract's
AnalyzeDocument API operation. You can use AnalyzeDocument to analyze a document for
relationships between detected items. When you add an Amazon A2I human review loop to an
AnalyzeDocument request, Amazon A2I monitors the Amazon Textract results and sends a
document to one or more human workers for review when the conditions specified in your flow
definition are met. For example, if you want a human to review a specific key like Full name: and
their associated input values, you can create an activation condition that starts a human review any
time the Full name: key is detected or when the inference confidence for that key falls within a
range that you specify.

The following image depicts the Amazon A2I built-in workflow with Amazon Textract. On the
left, the resources that are required to create an Amazon Textract human review workflow are
depicted: and Amazon S3 bucket, activation conditions, a worker task template, and a work team.

Use Cases and Examples 1991

https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks

Amazon SageMaker Developer Guide

These resources are used to create a human review workflow, or flow definition. An arrow points
right to the next step in the workflow: using Amazon Textract to configure a human loop with the
human review workflow. A second arrow points right from this step to the step in which activation
conditions specified in the human review workflow are met. This initiates the creation of a human
loop. On the right of the image, the human loop is depicted in three steps: 1) the worker UI and
tools are generated and the task is made available to workers,2) workers review input data, and
finally, 3) results are saved in Amazon S3.

You can specify when Amazon Textract sends a task to a human worker for review when creating a
human review workflow or flow definition by specifying activation conditions.

You can set the following activation conditions when using the Amazon Textract task type:

• Initiate a human review for specific form keys based on the form key confidence score.

• Initiate a human review when specific form keys are missing.

• Initiate human review for all form keys identified by Amazon Textract with confidence scores in a
specified range.

• Randomly send a sample of forms to humans for review.

When your activation condition depends on form key confidence scores, you can use two types of
prediction confidence to initiate human loops:

• Identification confidence – The confidence score for key-value pairs detected within a form.

Use Cases and Examples 1992

Amazon SageMaker Developer Guide

• Qualification confidence – The confidence score for text contained within key and value in a
form.

In the image in the following section, Full Name: Jane Doe is the key-value pair, Full Name is the
key, and Jane Doe is the value.

You can set these activation conditions using the Amazon SageMaker console when you create a
human review workflow, or by creating a JSON for human loop activation conditions and specifying
this as input in the HumanLoopActivationConditions parameter of CreateFlowDefinition
API operation. To learn how specify activation conditions in JSON format, see JSON Schema for
Human Loop Activation Conditions in Amazon Augmented AI and Use Human Loop Activation
Conditions JSON Schema with Amazon Textract.

Note

When using Augmented AI with Amazon Textract, create Augmented AI resources in the
same AWS Region you use to call AnalyzeDocument.

Get Started: Integrate a Human Review into an Amazon Textract Analyze Document Job

To integrate a human review into an Amazon Textract text detection and analysis job, you need
to create a flow definition, and then use the Amazon Textract API to integrate that flow definition
into your workflow. To learn how to create a flow definition using the SageMaker console or
Augmented AI API, see the following topics:

• Create a Human Review Workflow (Console)

• Create a Human Review Workflow (API)

After you've created your flow definition, see Using Augmented AI with Amazon Textract to learn
how to integrate your flow definition into your Amazon Textract task.

End-to-End Example Using Amazon Textract and Amazon A2I

For an end-to-end example that demonstrates how to use Amazon Textract with Amazon A2I using
the console, see Tutorial: Get Started in the Amazon A2I Console.

To learn how to use the Amazon A2I API to create and start a human review, you can use Amazon
Augmented AI (Amazon A2I) integration with Amazon Textract's Analyze Document [Example] in a

Use Cases and Examples 1993

https://docs.aws.amazon.com/textract/latest/dg/a2i-textract.html
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Textract%20AnalyzeDocument.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Textract%20AnalyzeDocument.ipynb

Amazon SageMaker Developer Guide

SageMaker Notebook instance. To get started, see Use SageMaker Notebook Instance with Amazon
A2I Jupyter Notebook.

A2I Textract Worker Console Preview

When they're assigned a review task in an Amazon Textract workflow, workers might see a user
interface similar to the following:

You can customize this interface in the SageMaker console when you create your human review
definition, or by creating and using a custom template. To learn more, see Create and Manage
Worker Task Templates.

Use Amazon Augmented AI with Amazon Rekognition

Amazon Rekognition makes it easy to add image analysis to your applications. The Amazon
Rekognition DetectModerationLabels API operation is directly integrated with Amazon A2I
so that you can easily create a human loop to review unsafe images, such as explicit adult or
violent content. You can use DetectModerationLabels to configure a human loop using a flow
definition ARN. This enables Amazon A2I to analyze predictions made by Amazon Rekognition and
send results to a human for review to ensure they meet the conditions set in your flow definition.

The following image depicts the Amazon A2I built-in workflow with Amazon Rekognition. On the
left, the resources that are required to create an Amazon Rekognition human review workflow

Use Cases and Examples 1994

Amazon SageMaker Developer Guide

are depicted: and Amazon S3 bucket, activation conditions, a worker task template, and a work
team. These resources are used to create a human review workflow, or flow definition. An arrow
points right to the next step in the workflow: using Amazon Rekognition to configure a human loop
with the human review workflow. A second arrow points right from this step to the step in which
activation conditions specified in the human review workflow are met. This initiates the creation of
a human loop. On the right of the image, the human loop is depicted in three steps: 1) the worker
UI and tools are generated and the task is made available to workers, 2) workers review input data,
and finally, 3) results are saved in Amazon S3.

You can set the following activation conditions when using the Amazon Rekognition task type:

• Initiate human review for labels identified by Amazon Rekognition based on the label confidence
score.

• Randomly send a sample of images to humans for review.

You can set these activation conditions using the Amazon SageMaker console when you
create a human review workflow, or by creating a JSON for human loop activation conditions
and specifying this as input in the HumanLoopActivationConditions parameter of the
CreateFlowDefinition API operation. To learn how specify activation conditions in JSON
format, see JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI and
Use Human Loop Activation Conditions JSON Schema with Amazon Rekognition.

Use Cases and Examples 1995

Amazon SageMaker Developer Guide

Note

When using Augmented AI with Amazon Rekognition, create Augmented AI resources in the
same AWS Region you use to call DetectModerationLabels.

Get Started: Integrate a Human Review into an Amazon Rekognition Image Moderation Job

To integrate a human review into an Amazon Rekognition, see the following topics:

• Create a Human Review Workflow (Console)

• Create a Human Review Workflow (API)

After you've created your flow definition, see Using Augmented AI with Amazon Rekognition to
learn how to integrate your flow definition into your Amazon Rekognition task.

End-to-end Demo Using Amazon Rekognition and Amazon A2I

For an end-to-end example that demonstrates how to use Amazon Rekognition with Amazon A2I
using the console, see Tutorial: Get Started in the Amazon A2I Console.

To learn how to use the Amazon A2I API to create and start a human review, you can use Amazon
Augmented AI (Amazon A2I) integration with Amazon Rekognition [Example] in a SageMaker
notebook instance. To get started, see Use SageMaker Notebook Instance with Amazon A2I Jupyter
Notebook.

A2I Rekognition Worker Console Preview

When they're assigned a review task in an Amazon Rekognition workflow, workers might see a user
interface similar to the following:

Use Cases and Examples 1996

https://docs.aws.amazon.com/rekognition/latest/dg/a2i-rekognition.html
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Rekognition%20DetectModerationLabels.ipynb
https://github.com/aws-samples/amazon-a2i-sample-jupyter-notebooks/blob/master/Amazon%20Augmented%20AI%20(A2I)%20and%20Rekognition%20DetectModerationLabels.ipynb

Amazon SageMaker Developer Guide

You can customize this interface in the SageMaker console when you create your human review
definition, or by creating and using a custom template. To learn more, see Create and Manage
Worker Task Templates.

Use Amazon Augmented AI with Custom Task Types

You can use Amazon Augmented AI (Amazon A2I) to incorporate a human review (human loop)
into any machine learning workflow using the custom task type. This options gives you the most
flexibility to customize the conditions under which your data objects are sent to humans for review,
as well as the look and feel of your worker user interface.

When you use a custom task type, you create a custom human review workflow and specify the
conditions under which a data object is sent for human review directly in your application.

The following image depicts the Amazon A2I custom workflow. A custom ML model is used to
generate predictions. The client application filters these predictions using user-defined criteria and
determines if a human review is required. If so, these predictions are sent to Amazon A2I for human
review. Amazon A2I collects the results of human review in Amazon S3, which can access by the
client application. If the filter determines that no human review is needed, predictions can be fed
directly to the client application.

Use Cases and Examples 1997

Amazon SageMaker Developer Guide

Use the procedures on this page to learn how to integrate Amazon A2I into any machine learning
workflow using the custom task type.

Create a human loop using a flow definition, integrate it into your application, and monitor the
results

1. Complete the Amazon A2I Prerequisites to Using Augmented AI. Note the following:

• The path to the Amazon Simple Storage Service (Amazon S3) bucket or buckets where you
store your input and output data.

• The Amazon Resource Name (ARN) of an AWS Identity and Access Management (IAM) role
with required permissions attached.

• (Optional) The ARN of your private workforce, if you plan to use one.

2. Using HTML elements, create a custom worker template which Amazon A2I uses to generate
your worker task UI. To learn how to create a custom template, see Create Custom Worker Task
Templates.

3. Use the custom worker template from step 2 to generate a worker task template in the
Amazon SageMaker console. To learn how, see Create a Worker Task Template.

In the next step, you create a flow definition:

Use Cases and Examples 1998

Amazon SageMaker Developer Guide

• If you want to create a flow definition using the SageMaker API, note the ARN of this worker
task template for the next step.

• If you are creating a flow definition using the console, your template automatically appears
in Worker task template section when you choose Create human review workflow.

4. When creating your flow definition, provide the path to your S3 buckets, your IAM role ARN,
and your worker template.

• To learn how to create a flow definition using the SageMaker CreateFlowDefinition API,
see Create a Human Review Workflow (API).

• To learn how to create a flow definition using the SageMaker console, see Create a Human
Review Workflow (Console).

5. Configure your human loop using the Amazon A2I Runtime API. To learn how, see Create and
Start a Human Loop.

6. To control when human reviews are initiated in your application, specify conditions under
which StartHumanLoop is called in your application. Human loop activation conditions, such
as confidence thresholds that initiate the human loop, are not available when using Amazon
A2I with custom task types. Every StartHumanLoop invocation results in a human review.

Once you have started a human loop, you can manage and monitor your loops using the Amazon
Augmented AI Runtime API and Amazon EventBridge (also known as Amazon CloudWatch Events).
To learn more, see Monitor and Manage Your Human Loop.

End-to-end Tutorial Using Amazon A2I Custom Task Types

For an end-to-end examples that demonstrates how to integrate Amazon A2I into a variety of ML
workflows, see the table in Use Cases and Examples Using Amazon A2I. To get started using one of
these notebooks, see Use SageMaker Notebook Instance with Amazon A2I Jupyter Notebook.

Create a Human Review Workflow

Use an Amazon Augmented AI (Amazon A2I) human review workflow, or flow definition, to specify
the following:

• For the Amazon Textract and Amazon Rekognition built-in task types, the conditions under which
your human loop is called

• The workforce to which your tasks are sent

Create a Human Review Workflow 1999

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html

Amazon SageMaker Developer Guide

• The set of instructions that your workforce receives, which is called a worker task template

• The configuration of your worker tasks, including the number of workers that receive a task and
time limits to complete tasks

• Where your output data is stored

You can create a human review workflow in the SageMaker console or using the SageMaker
CreateFlowDefinition operation. You can build a worker task template using the console for
Amazon Textract and Amazon Rekognition task types while creating your flow definition.

Important

Human loop activation conditions, which initiate the human loop—for example,
confidence thresholds—aren't available for Amazon A2I custom task types. When using
the console to create a flow definition for a custom task type, you can't specify activation
conditions. When using the Amazon A2I API to create a flow definition for a custom
task type, you can't set the HumanLoopActivationConditions attribute of the
HumanLoopActivationConditionsConfig parameter. To control when human reviews
are initiated, specify conditions under which StartHumanLoop is called in your custom
application. In this case, every StartHumanLoop invocation results in a human review. For
more information, see Use Amazon Augmented AI with Custom Task Types.

Prerequisites

To create a human review workflow definition, you must have completed the prerequisites
described in Prerequisites to Using Augmented AI.

If you use the API to create a flow definition for any task type, or if you use a custom task type
when creating a flow definition in the console, first create a worker task template. For more
information, see Create and Manage Worker Task Templates.

If you want to preview your worker task template while creating a flow definition for a built-in
task type in the console, ensure that you grant the role that you use to create the flow definition
permission to access the Amazon S3 bucket that contains your template artifacts using a policy like
the one described in Enable Worker Task Template Previews .

Topics

Create a Human Review Workflow 2000

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html

Amazon SageMaker Developer Guide

• Create a Human Review Workflow (Console)

• Create a Human Review Workflow (API)

• JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI

Create a Human Review Workflow (Console)

Use this procedure to create a Amazon Augmented AI (Amazon A2I) human review workflow using
the SageMaker console. If you are new to Amazon A2I, we recommend that you create a private
work team using people in your organization, and use this work team's ARN when creating your
flow definition. To learn how to set up a private workforce and create a work team, see Create a
Private Workforce (Amazon SageMaker Console). If you have already set up a private workforce,
see Create a Work Team Using the SageMaker Console to learn how to add a work team to that
workforce.

If you are using Amazon A2I with one of the built-in task types, you can create worker instructions
using a default worker task template provided by Augmented AI while creating a human review
workflow in the console. To see samples of the default templates provided by Augmented AI, see
the built-in task types in Use Cases and Examples Using Amazon A2I.

To create flow definition (console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, under the Augmented AI section, choose Human review workflows
and then choose Create human review workflow.

3. In Overview, do the following:

a. For Name, enter a unique workflow name. The name must be lowercase, unique within the
AWS Region in your account, and can have up to 63 characters. Valid characters include: a-
z, 0-9, and - (hyphen).

b. For S3 location for output, enter the S3 bucket where you want to store the human
review results. The bucket must be located in the same AWS Region as the workflow.

c. For IAM role, choose the role that has the required permissions. If you choose a built-in
task type and want to preview your worker template in the console, provide a role with
the type of policy described in Enable Worker Task Template Previews attached.

4. For Task type, choose the task type that you want the human worker to perform.

Create a Human Review Workflow 2001

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

5. If you chose the Amazon Rekognition or Amazon Textract task type, specify the conditions that
invoke human review.

• For Amazon Rekognition image moderation tasks, choose an inference confidence score
threshold interval that initiates human review.

• For Amazon Textract tasks, you can initiate a human review when specific form keys are
missing or when form key detection confidence is low. You can also initiate a human review
if, after evaluating all of the form keys in the text, confidence is lower than your required
threshold for any form key. Two variables specify your confidence thresholds: Identification
confidence and Qualification confidence. To learn more about these variables, see Use
Amazon Augmented AI with Amazon Textract.

• For both task types, you can randomly send a percentage of data objects (images or forms)
and their labels to humans for review.

6. Configure and specify your worker task template:

a. If you are using the Amazon Rekognition or Amazon Textract task type:

• In the Create template section:

• To create instructions for your workers using the Amazon A2I default template for
Amazon Rekognition and Amazon Textract task types, choose Build from a default
template.

• If you choose Build from a default template, create your instructions under
Worker task design:

• Provide a Template name that is unique in the AWS Region you are in.

• In the Instructions section, provide detailed instructions on how to complete
your task. To help workers achieve greater accuracy, provide good and bad
examples.

• (Optional) In Additional instructions, provide your workers with additional
information and instructions.

For information on creating effective instructions, see Creating Good Worker
Instructions.

• To select a custom template that you've created, choose it from the Template
menu and provide a Task description to briefly describe the task for your workers.
To learn how to create a custom template, see Create a Worker Task Template.

Create a Human Review Workflow 2002

Amazon SageMaker Developer Guide

b. If you are using the custom task type:

• In the Worker task template section, select your template from the list. All of the
templates that you have created in the SageMaker console appear in this list. To learn
how to create a template for custom task types, see Create and Manage Worker Task
Templates.

7. (Optional) Preview your worker template:

For Amazon Rekognition and Amazon Textract task types, you have the option to choose See a
sample worker task to preview your worker task UI.

If you are creating a flow definition for a custom task type, you can preview your worker task
UI using the RenderUiTemplate operation. For more information, see Preview a Worker Task
Template.

8. For Workers, choose a workforce type.

9. Choose Create.

Next Steps

After you've created a human review workflow, it appears in the console under Human review
workflows. To see your flow definition's Amazon Resource Name (ARN) and configuration details,
choose the workflow by selecting its name.

If you are using a built-in task type, you can use the flow definition ARN to start a human loop
using that AWS service's API (for example, the Amazon Textract API). For custom task types, you
can use the ARN to start a human loop using the Amazon Augmented AI Runtime API. To learn
more about both options, see Create and Start a Human Loop.

Create a Human Review Workflow (API)

To create a flow definition using the SageMaker API, you use the CreateFlowDefinition
operation. After you complete the Prerequisites to Using Augmented AI, use the following
procedure to learn how to use this API operation.

For an overview of the CreateFlowDefinition operation, and details about each parameter, see
CreateFlowDefinition.

Create a Human Review Workflow 2003

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html

Amazon SageMaker Developer Guide

To create a flow definition (API)

1. For FlowDe#nitionName, enter a unique name. The name must be unique within the AWS
Region in your account, and can have up to 63 characters. Valid characters include: a-z, 0-9,
and - (hyphen).

2. For RoleArn, enter the ARN of the role that you configured to grant access to your data
sources.

3. For HumanLoopConfig, enter information about the workers and what they should see. For
information about each parameter in HumanLoopConfig, see HumanLoopConfig.

4. (Optional) If you are using a built-in task type, provide conditions that initiate a human
loop in HumanLoopActivationCon#g. To learn how to create the input required for the
HumanLoopActivationCon#g parameter, see JSON Schema for Human Loop Activation
Conditions in Amazon Augmented AI. If you do not specify conditions here, when you provide
a flow definition to the AWS service associated with a built-in task type (for example, Amazon
Textract or Amazon Rekognition), that service sends every task to a human worker for review.

If you are using a custom task type, HumanLoopActivationConfig is disabled. To learn how
to control when tasks are sent to human workers using a custom task type, see Use Amazon
Augmented AI with Custom Task Types.

5. (Optional) If you are using a built-in task type, specify the integration source (for example,
Amazon Rekognition or Amazon Textract) in the HumanLoopRequestSource parameter.

6. For OutputConfig, indicate where in Amazon Simple Storage Service (Amazon S3) to store
the output of the human loop.

7. (Optional) Use Tags to enter key-value pairs to help you categorize and organize a flow
definition. Each tag consists of a key and a value, both of which you define.

Amazon Textract – Key-value pair extraction

The following is an example of a request to create an Amazon Textract human review workflow
(flow definition) using the AWS SDK for Python (Boto3). You must use 'AWS/Textract/
AnalyzeDocument/Forms/V1' to create a Amazon Textract human loop. Only include
PublicWorkforceTaskPrice if you are using the Mechanical Turk workforce.

sagemaker_client = boto3.client('sagemaker', aws_region)

response = sagemaker_client.create_flow_definition(
 FlowDefinitionName='ExampleFlowDefinition',

Create a Human Review Workflow 2004

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html#sagemaker-CreateFlowDefinition-request-HumanLoopActivationConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanLoopRequestSource.html

Amazon SageMaker Developer Guide

 HumanLoopRequestSource={
 'AwsManagedHumanLoopRequestSource': 'AWS/Textract/AnalyzeDocument/Forms/V1'
 },
 HumanLoopActivationConfig={
 'HumanLoopActivationConditionsConfig': {
 'HumanLoopActivationConditions': '{...}'
 }
 },
 HumanLoopConfig={
 'WorkteamArn': 'arn:aws:sagemaker:aws_region:aws_account_number:workteam/
private-crowd/workteam_name',
 'HumanTaskUiArn': 'arn:aws:sagemaker:aws_region:aws_account_number:human-
task-ui/template_name',
 'TaskTitle': 'Example task title',
 'TaskDescription': 'Example task description.',
 'TaskCount': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskKeywords': [
 'Keyword1','Keyword2'
],
 'PublicWorkforceTaskPrice': {
 'AmountInUsd': {
 'Dollars': 123,
 'Cents': 123,
 'TenthFractionsOfACent': 123
 }
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/',
 'KmsKeyId': '1234abcd-12ab-34cd-56ef-1234567890ab'
 },
 RoleArn='arn:aws:iam::aws_account_number:role/role_name',
 Tags=[
 {
 'Key': 'KeyName',
 'Value': 'ValueName'
 },
]
)

Create a Human Review Workflow 2005

Amazon SageMaker Developer Guide

Amazon Rekognition – Image moderation

The following is an example of a request to create an Amazon Rekognition human review
workflow (flow definition) using the AWS SDK for Python (Boto3). You must use 'AWS/
Rekognition/DetectModerationLabels/Image/V3' to create an Amazon Rekognition
flow definition. Only include PublicWorkforceTaskPrice if you are using the Mechanical
Turk workforce.

sagemaker_client = boto3.client('sagemaker', aws_region)

response = sagemaker_client.create_flow_definition(
 FlowDefinitionName='ExampleFlowDefinition',
 HumanLoopRequestSource={
 'AwsManagedHumanLoopRequestSource': 'AWS/Rekognition/
DetectModerationLabels/Image/V3'
 },
 HumanLoopActivationConfig={
 'HumanLoopActivationConditionsConfig': {
 'HumanLoopActivationConditions': '{...}'
 }
 },
 HumanLoopConfig={
 'WorkteamArn': 'arn:aws:sagemaker:aws_region:aws_account_number:workteam/
private-crowd/workteam_name',
 'HumanTaskUiArn': 'arn:aws:sagemaker:aws_region:aws_account_number:human-
task-ui/template_name',
 'TaskTitle': 'Example task title',
 'TaskDescription': 'Example task description.',
 'TaskCount': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskKeywords': [
 'Keyword1','Keyword2'
],
 'PublicWorkforceTaskPrice': {
 'AmountInUsd': {
 'Dollars': 123,
 'Cents': 123,
 'TenthFractionsOfACent': 123
 }
 }
 },
 OutputConfig={

Create a Human Review Workflow 2006

Amazon SageMaker Developer Guide

 'S3OutputPath': 's3://bucket/path/',
 'KmsKeyId': '1234abcd-12ab-34cd-56ef-1234567890ab'
 },
 RoleArn='arn:aws:iam::aws_account_number:role/role_name',
 Tags=[
 {
 'Key': 'KeyName',
 'Value': 'ValueName'
 },
]
)

Custom Workflow

The following is an example of a request to create a human review workflow (flow
definition) for a custom integration. To create this type of human review workflow, omit
HumanLoopRequestSource from the flow definition request. You only need to include
PublicWorkforceTaskPrice if you are using the Mechanical Turk workforce.

sagemaker_client = boto3.client('sagemaker', aws_region)

response = sagemaker_client.create_flow_definition(
 FlowDefinitionName='ExampleFlowDefinition',
 HumanLoopActivationConfig={
 'HumanLoopActivationConditionsConfig': {
 'HumanLoopActivationConditions': '{...}'
 }
 },
 HumanLoopConfig={
 'WorkteamArn': 'arn:aws:sagemaker:aws_region:aws_account_number:workteam/
private-crowd/workteam_name',
 'HumanTaskUiArn': 'arn:aws:sagemaker:aws_region:aws_acount_number:human-
task-ui/template_name',
 'TaskTitle': 'Example task title',
 'TaskDescription': 'Example task description.',
 'TaskCount': 123,
 'TaskAvailabilityLifetimeInSeconds': 123,
 'TaskTimeLimitInSeconds': 123,
 'TaskKeywords': [
 'Keyword1','Keyword2'
],
 'PublicWorkforceTaskPrice': {
 'AmountInUsd': {

Create a Human Review Workflow 2007

Amazon SageMaker Developer Guide

 'Dollars': 123,
 'Cents': 123,
 'TenthFractionsOfACent': 123
 }
 }
 },
 OutputConfig={
 'S3OutputPath': 's3://bucket/path/',
 'KmsKeyId': '1234abcd-12ab-34cd-56ef-1234567890ab'
 },
 RoleArn='arn:aws:iam::account_number:role/role_name',
 Tags=[
 {
 'Key': 'KeyName',
 'Value': 'ValueName'
 },
]
)

Next Steps

The return value of a successful call of the CreateFlowDefinition API operation is a flow
definition Amazon Resource Name (ARN).

If you are using a built-in task type, you can use the flow definition ARN to start a human loop
using that AWS service's API (i.e. the Amazon Textract API). For custom task types, you can use the
ARN to start a human loop using the Amazon Augmented AI Runtime API. To learn more about
both of these options, see Create and Start a Human Loop.

JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI

The HumanLoopActivationConditions is an input parameter of the CreateFlowDefinition
API. This parameter is a JSON-formatted string. The JSON models the conditions under
which a human loop is created when those conditions are evaluated against the response
from an integrating AI service API (such as Rekognition.DetectModerationLabels or
Textract.AnalyzeDocument). This response is referred to as an inference. For example, Amazon
Rekognition sends an inference of a moderation label with an associated confidence score. In this
example, the inference is the model's best estimate of the appropriate label for an image. For
Amazon Textract, inference is made on the association between blocks of text (key-value pairs),

Create a Human Review Workflow 2008

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html

Amazon SageMaker Developer Guide

such as the association between Name: and Sue in a form as well as content within a block of text,
or word block, such as 'Name'.

The following is the schema for the JSON. At the top level, the
HumanLoopActivationConditions has a JSON array, Conditions. Each member of this array
is an independent condition that, if evaluated to true, results in Amazon A2I creating a human
loop. Each such independent condition can be a simple condition or a complex condition. A simple
condition has the following attributes:

• ConditionType: This attribute identifies the type of condition. Each AWS AI service API that
integrates with Amazon A2I defines its own set of allowed ConditionTypes.

• Rekognition DetectModerationLabels – This API supports the
ModerationLabelConfidenceCheck and Sampling ConditionType values.

• Textract AnalyzeDocument – This API supports the ImportantFormKeyConfidenceCheck,
MissingImportantFormKey, and Sampling ConditionType values.

• ConditionParameters – This is a JSON object that parameterizes the condition. The set
of allowed attributes of this object is dependent on the value of the ConditionType. Each
ConditionType defines its own set of ConditionParameters.

A member of the Conditions array can model a complex condition. This is accomplished by
logically connecting simple conditions using the And and Or logical operators and nesting the
underlying simple conditions. Up to two levels of nesting are supported.

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "definitions": {
 "Condition": {
 "type": "object",
 "properties": {
 "ConditionType": {
 "type": "string"
 },
 "ConditionParameters": {
 "type": "object"
 }
 },
 "required": [
 "ConditionType"
]

Create a Human Review Workflow 2009

Amazon SageMaker Developer Guide

 },
 "OrConditionArray": {
 "type": "object",
 "properties": {
 "Or": {
 "type": "array",
 "minItems": 2,
 "items": {
 "$ref": "#/definitions/ComplexCondition"
 }
 }
 }
 },
 "AndConditionArray": {
 "type": "object",
 "properties": {
 "And": {
 "type": "array",
 "minItems": 2,
 "items": {
 "$ref": "#/definitions/ComplexCondition"
 }
 }
 }
 },
 "ComplexCondition": {
 "anyOf": [
 {
 "$ref": "#/definitions/Condition"
 },
 {
 "$ref": "#/definitions/OrConditionArray"
 },
 {
 "$ref": "#/definitions/AndConditionArray"
 }
]
 }
 },
 "type": "object",
 "properties": {
 "Conditions": {
 "type": "array",
 "items": {

Create a Human Review Workflow 2010

Amazon SageMaker Developer Guide

 "$ref": "#/definitions/ComplexCondition"
 }
 }
 }
}

Note

Human loop activation conditions aren't available for human review workflows that are
integrated with custom task types. The HumanLoopActivationConditions parameter is
disabled for custom task types.

Topics

• Use Human Loop Activation Conditions JSON Schema with Amazon Textract

• Use Human Loop Activation Conditions JSON Schema with Amazon Rekognition

Use Human Loop Activation Conditions JSON Schema with Amazon Textract

When used with Amazon A2I, the AnalyzeDocument operation supports the following inputs in
the ConditionType parameter:

• ImportantFormKeyConfidenceCheck – Use this condition to create a human loop when
inference confidence is within a specified range for document form keys and word blocks. A
form key is any word in a document that is associated with an input. The input is called a value.
Together, form keys and values are referred to as key-value pairs. A word block refers to the
words that Amazon Textract recognizes inside of a detected block of text. To learn more about
Amazon Textract document blocks, see Documents and Block Objects in the Amazon Textract
Developer Guide.

• MissingImportantFormKey – Use this condition to create a human loop when Amazon
Textract did not identify the key or its associated aliases within the document.

• Sampling – Use this condition to specify a percentage of forms to send to humans for review,
regardless of inference confidence scores. Use this condition to do the following:

• Audit your ML model by randomly sampling all forms analyzed by your model and sending a
specified percentage to humans for review.

Create a Human Review Workflow 2011

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-document-layout.html

Amazon SageMaker Developer Guide

• Using the ImportantFormKeyConfidenceCheck condition, randomly sample a percentage
of the inferences that met the conditions specified in ImportantFormKeyConfidenceCheck
to start a human loop and send only the specified percentage to humans for review.

Note

If you send the same request to AnalyzeDocument multiple times, the result of
Sampling does not change for the inference of that input. For example, if you make
an AnalyzeDocument request once, and Sampling doesn't initiate a human loop,
subsequent requests to AnalyzeDocument with the same configuration do not initiate a
human loop.

ImportantFormKeyConfidenceCheck Inputs and Results

The ImportantFormKeyConfidenceCheck ConditionType supports the following
ConditionParameters:

• ImportantFormKey – A string representing a key in a key-value pair detected by Amazon
Textract that needs to be reviewed by human workers. If the value of this parameter is the
special catch-all value (*), then all keys are considered to be matched to the condition. You can
use this to model the case where any key-value pair satisfying certain confidence thresholds
needs human review.

• ImportantFormKeyAliases – An array that represents alternate spellings or logical
equivalents for the important form key.

• KeyValueBlockConfidenceEquals

• KeyValueBlockConfidenceLessThan

• KeyValueBlockConfidenceLessThanEquals

• KeyValueBlockConfidenceGreaterThan

• KeyValueBlockConfidenceGreaterThanEquals

• WordBlockConfidenceEquals

• WordBlockConfidenceLessThan

• WordBlockConfidenceLessThanEquals

• WordBlockConfidenceGreaterThan

Create a Human Review Workflow 2012

Amazon SageMaker Developer Guide

• WordBlockConfidenceGreaterThanEquals

When you use the ImportantFormKeyConfidenceCheck ConditionType, Amazon A2I sends
the key-value block and word block inferences of the key-value blocks and associated aliases that
you specified in ImportantFormKey and ImportantFormKeyAliases for human review.

When creating a flow definition, if you use the default worker task template that is provided
in the Human review workflows section of the Amazon SageMaker console, key-value
and block inferences sent for human review by this activation condition are included
in the worker UI. If you use a custom worker task template, you need to include the
{{ task.input.selectedAiServiceResponse.blocks }} element to include initial-value
input data (inferences) from Amazon Textract. For an example of a custom template that uses this
input element, see Custom Template Example for Amazon Textract.

MissingImportantFormKey Inputs and Results

The MissingImportantFormKey ConditionType supports the following
ConditionParameters:

• ImportantFormKey – A string representing a key in a key-value pair detected by Amazon
Textract that needs to be reviewed by human workers.

• ImportantFormKeyAliases – An array that represents alternate spellings or logical
equivalents for the important form key.

When you use the MissingImportantFormKey ConditionType, if the key in
ImportantFormKey or aliases in ImportantFormKeyAliases are not included in the Amazon
Textract inference, that form is sent to human for review and no predicted key-value pairs are
included. For example, if Amazon Textract only identified Address and Phone in a form, but was
missing the ImportantFormKey Name (in the MissingImportantFormKey condition type) that
form would be sent to humans for review without any of the form keys detected (Address and
Phone).

If you use the default worker task template that is provided in the SageMaker console, a task is
created asking workers to identify the key in ImportantFormKey and associated value. If you use
a custom worker task template, you need to include the <task.input.humanLoopContext>
custom HTML element to configure this task.

Create a Human Review Workflow 2013

Amazon SageMaker Developer Guide

Sampling Inputs and Results

The Sampling ConditionType supports the RandomSamplingPercentage
ConditionParameters. The input for RandomSamplingPercentage must be real number
between 0.01 and 100. This number represents the percentage of data that qualifies for a
human review and is sent to humans for review. If you use the Sampling condition without any
other conditions, this number represents the percentage of all resulting inferences made by the
AnalyzeDocument operation from a single request that is sent to humans for review.

If you specify the Sampling condition without any other condition type, all key-value and block
inferences are sent to workers for review.

When creating a flow definition, if you use the default worker task template that is
provided in the Human review workflows section of the SageMaker console, all key-
value and block inferences sent for human review by this activation condition are included
in the worker UI. If you use a custom worker task template, you need to include the
{{ task.input.selectedAiServiceResponse.blocks }} element to include initial-value
input data (inferences) from Amazon Textract. For an example of a custom template that uses this
input element, see Custom Template Example for Amazon Textract.

Examples

While only one condition needs to evaluate to true to initiate a human loop, Amazon A2I
evaluates all conditions for each object analyzed by Amazon Textract. The human reviewers are
asked to review the important form keys for all the conditions that evaluated to true.

Example 1: Detect important form keys with confidence scores in a specified range that initiate
a human loop

The following example shows a HumanLoopActivationConditions JSON that initiates a human
loop if any one of the following three conditions is met:

• The Amazon Textract AnalyzeDocument API returns a key-value pair whose key is one of
Employee Name, Name, or EmployeeName, with the confidence of the key-value block being
less than 60 and the confidences of each of the word blocks making up the key and value being
less than 85.

• The Amazon Textract AnalyzeDocument API returns a key-value pair whose key is one of Pay
Date, PayDate, DateOfPay, or pay-date, with the confidence of the key-value block being
less than 65 and the confidences of each of the word blocks making up the key and value being
less than 85.

Create a Human Review Workflow 2014

Amazon SageMaker Developer Guide

• The Amazon Textract AnalyzeDocument API returns a key-value pair whose key is one of Gross
Pay, GrossPay, or GrossAmount, with the confidence of the key-value block being less than 60
and the confidences of each of the word blocks making up the key and value being less than 85.

{
 "Conditions": [
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Employee Name",
 "ImportantFormKeyAliases": [
 "Name",
 "EmployeeName"
],
 "KeyValueBlockConfidenceLessThan": 60,
 "WordBlockConfidenceLessThan": 85
 }
 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Pay Date",
 "ImportantFormKeyAliases": [
 "PayDate",
 "DateOfPay",
 "pay-date"
],
 "KeyValueBlockConfidenceLessThan": 65,
 "WordBlockConfidenceLessThan": 85
 }
 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Gross Pay",
 "ImportantFormKeyAliases": [
 "GrossPay",
 "GrossAmount"
],
 "KeyValueBlockConfidenceLessThan": 60,
 "WordBlockConfidenceLessThan": 85
 }

Create a Human Review Workflow 2015

Amazon SageMaker Developer Guide

 }
]
}

Example 2: Use ImportantFormKeyConfidenceCheck

In the following example, if Amazon Textract detects a key-value pair whose confidence for the
key-value block is less than 60 and is less than 90 for any underlying word blocks, it creates a
human loop. The human reviewers are asked to review all the form key-value pairs that matched
the confidence value comparisons.

{
 "Conditions": [
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "*",
 "KeyValueBlockConfidenceLessThan": 60,
 "WordBlockConfidenceLessThan": 90
 }
 }
]
}

Example 3: Use Sampling

In the following example, 5% of inferences resulting from an Amazon Textract AnalyzeDocument
request are sent to human workers for review. All detected key-value pairs returned by Amazon
Textract are sent to workers for review.

{
 "Conditions": [
 {
 "ConditionType": "Sampling",
 "ConditionParameters": {
 "RandomSamplingPercentage": 5
 }
 }
]
}

Example 4: Use MissingImportantFormKey

Create a Human Review Workflow 2016

Amazon SageMaker Developer Guide

In the following example, if Mailing Address or its alias, Mailing Address:, is missing from
keys detected by Amazon Textract, a human review is initiated. When using the default worker
task template, the worker UI asks workers to identify the key Mailing Address or Mailing
Address: and its associated value.

{
 "ConditionType": "MissingImportantFormKey",
 "ConditionParameters": {
 "ImportantFormKey": "Mailing Address",
 "ImportantFormKeyAliases": ["Mailing Address:"]
 }
}

Example 5: Use Sampling and ImportantFormKeyConfidenceCheck with the And operator

In this example, 5% of key-value pairs detected by Amazon Textract whose key is one of Pay
Date, PayDate, DateOfPay, or pay-date, with the confidence of the key-value block less than
65 and the confidences of each of the word blocks making up the key and value less than 85, are
sent to workers for review.

{
 "Conditions": [
 {
 "And": [
 {
 "ConditionType": "Sampling",
 "ConditionParameters": {
 "RandomSamplingPercentage": 5
 }
 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Pay Date",
 "ImportantFormKeyAliases": [
 "PayDate",
 "DateOfPay",
 "pay-date"
],
 "KeyValueBlockConfidenceLessThan": 65,
 "WordBlockConfidenceLessThan": 85
 }

Create a Human Review Workflow 2017

Amazon SageMaker Developer Guide

 }
]
 }
]
}

Example 6: Use Sampling and ImportantFormKeyConfidenceCheck with the And operator

Use this example to configure your human review workflow to always send low confidence
inferences of a specified key-value pair for human review and sample high confidence inference of
a key-value pair at a specified rate.

In the following example, a human review is initiated in one of the following ways:

• Key-value pairs detected whose key is one of Pay Date, PayDate, DateOfPay, or pay-date,
with key-value and word block confidences less than 60, are sent for human review. Only the Pay
Date form key (and its aliases) and associated values are sent to workers to review.

• 5% of key-value pairs detected whose key is one of Pay Date, PayDate, DateOfPay, or pay-
date, with key-value and word block confidences greater than 90, are sent for human review.
Only the Pay Date form key (and its aliases) and associated values are sent to workers to
review.

{
 "Conditions": [
 {
 "Or": [
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Pay Date",
 "ImportantFormKeyAliases": [
 "PayDate",
 "DateOfPay",
 "pay-date"
],
 "KeyValueBlockConfidenceLessThan": 60,
 "WordBlockConfidenceLessThan": 60
 }
 },
 {
 "And": [

Create a Human Review Workflow 2018

Amazon SageMaker Developer Guide

 {
 "ConditionType": "Sampling",
 "ConditionParameters": {
 "RandomSamplingPercentage": 5
 }
 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Pay Date",
 "ImportantFormKeyAliases": [
 "PayDate",
 "DateOfPay",
 "pay-date"
],
 "KeyValueBlockConfidenceLessThan": 90
 "WordBlockConfidenceGreaterThan": 90
 }
 }
]
 }
]
 }
]
}

Example 7: Use Sampling and ImportantFormKeyConfidenceCheck with the Or operator

In the following example, the Amazon Textract AnalyzeDocument operation returns a key-value
pair whose key is one of Pay Date, PayDate, DateOfPay, or pay-date, with the confidence of
the key-value block less than 65 and the confidences of each of the word blocks making up the key
and value less than 85. Additionally, 5% of all other forms initiate a human loop. For each form
randomly chosen, all key-value pairs detected for that form are sent to humans for review.

{
 "Conditions": [
 {
 "Or": [
 {
 "ConditionType": "Sampling",
 "ConditionParameters": {
 "RandomSamplingPercentage": 5
 }

Create a Human Review Workflow 2019

Amazon SageMaker Developer Guide

 },
 {
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "ConditionParameters": {
 "ImportantFormKey": "Pay Date",
 "ImportantFormKeyAliases": [
 "PayDate",
 "DateOfPay",
 "pay-date"
],
 "KeyValueBlockConfidenceLessThan": 65,
 "WordBlockConfidenceLessThan": 85
 }
 }
 }
]
 }
]
}

Use Human Loop Activation Conditions JSON Schema with Amazon Rekognition

When used with Amazon A2I, the Amazon Rekognition DetectModerationLabels operation
supports the following inputs in the ConditionType parameters:

• ModerationLabelConfidenceCheck – Use this condition type to create a human loop when
inference confidence is low for one or more specified labels.

• Sampling – Use this condition to specify a percentage of all inferences to send to humans for
review. Use this condition to do the following:

• Audit your ML model by randomly sampling all of your model's inferences and sending a
specified percentage to humans for review.

• Using the ModerationLabelConfidenceCheck condition, randomly sample a percentage of
the inferences that met the conditions specified in ModerationLabelConfidenceCheck to
start a human loop and send only the specified percentage to humans for review.

Note

If you send the same request to DetectModerationLabels multiple times, the result
of Sampling does not change for the inference of that input. For example, if you make a

Create a Human Review Workflow 2020

Amazon SageMaker Developer Guide

DetectModerationLabels request once, and Sampling does not initiate a human loop,
subsequent requests to DetectModerationLabels with the same configuration don't
initiate a human loop.

When creating a flow definition, if you use the default worker task template that is provided
in the Human review workflows section of the Amazon SageMaker console, inferences
sent for human review by these activation conditions are included in the worker UI when a
worker opens your task. If you use a custom worker task template, you need to include the
<task.input.selectedAiServiceResponse.blocks> custom HTML element to access
these inferences. For an example of a custom template that uses this HTML element, see Custom
Template Example for Amazon Rekognition.

ModerationLabelConfidenceCheck Inputs

For the ModerationLabelConfidenceCheck ConditionType, the following
ConditionParameters are supported:

• ModerationLabelName – The exact (case-sensitive) name of a ModerationLabel detected by
the Amazon Rekognition DetectModerationLabels operation. You can specify the special
catch-all value (*) to denote any moderation label.

• ConfidenceEquals

• ConfidenceLessThan

• ConfidenceLessThanEquals

• ConfidenceGreaterThan

• ConfidenceGreaterThanEquals

When you use the ModerationLabelConfidenceCheck ConditionType, Amazon A2I sends
label inferences for the labels that you specified in ModerationLabelName for human review.

Sampling Inputs

The Sampling ConditionType supports the RandomSamplingPercentage
ConditionParameters. The input for the RandomSamplingPercentage prameter should be
real number between 0.01 and 100. This number represents the percentage of inferences that
qualifies for a human review that are sent to humans for review. If you use the Sampling condition

Create a Human Review Workflow 2021

https://docs.aws.amazon.com/rekognition/latest/dg/API_ModerationLabel.html

Amazon SageMaker Developer Guide

without any other conditions, this number represents the percentage of all inferences that result
from a single DetectModerationLabel request that are sent to humans for review.

Examples

Example 1: Use ModerationLabelConfidenceCheck with the And operator

The following example of a HumanLoopActivationConditions condition initiates a human loop
when one or more of the following conditions are met:

• Amazon Rekognition detects the Graphic Male Nudity moderation label with a confidence
between 90 and 99.

• Amazon Rekognition detects the Graphic Female Nudity moderation label with a confidence
between 80 and 99.

Note the use of the Or and And logical operators to model this logic.

Although only one of the two conditions under the Or operator needs to evaluate to true for a
human loop to be created, Amazon Augmented AI evaluates all conditions. Human reviewers are
asked to review the moderation labels for all the conditions that evaluated to true.

{
 "Conditions": [{
 "Or": [{
 "And": [{
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Graphic Male Nudity",
 "ConfidenceLessThanEquals": 99
 }
 },
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Graphic Male Nudity",
 "ConfidenceGreaterThanEquals": 90
 }
 }
]
 },
 {

Create a Human Review Workflow 2022

Amazon SageMaker Developer Guide

 "And": [{
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Graphic Female Nudity",
 "ConfidenceLessThanEquals": 99
 }
 },
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Graphic Female Nudity",
 "ConfidenceGreaterThanEquals": 80
 }
 }
]
 }
]
 }]
}

Example 2: Use ModerationLabelConfidenceCheck with the catch-all value (*)

In the following example, if any moderation label with a confidence greater than or equal to 75
is detected, a human loop is initiated. Human reviewers are asked to review all moderation labels
with confidence scores greater than or equal to 75.

{
 "Conditions": [
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "*",
 "ConfidenceGreaterThanEquals": 75
 }
 }
]
}

Example 3: Use Sampling

In the following example, 5% of Amazon Rekognition inferences from a
DetectModerationLabels request are sent to human workers. When using the default worker

Create a Human Review Workflow 2023

Amazon SageMaker Developer Guide

task template provided in the SageMaker console, all moderation labels returned by Amazon
Rekognition are sent to workers for review.

{
 "Conditions": [
 {
 "ConditionType": "Sampling",
 "ConditionParameters": {
 "RandomSamplingPercentage": 5
 }
 }
]
}

Example 4: Use Sampling and ModerationLabelConfidenceCheck with the And operator

In this example, 5% of Amazon Rekognition inferences of the Graphic Male Nudity moderation
label with a confidence greater than 50 are sent workers for review. When using the default worker
task template provided in the SageMaker console, only the inferences of the Graphic Male
Nudity label are sent to workers for review.

{
 "Conditions": [
 {
 "And": [
 {
 "ConditionType": "Sampling",
 "ConditionParameters": {
 "RandomSamplingPercentage": 5
 }
 },
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Graphic Male Nudity",
 "ConfidenceGreaterThan": 50
 }
 }
]
 }
]
}

Create a Human Review Workflow 2024

Amazon SageMaker Developer Guide

Example 5: Use Sampling and ModerationLabelConfidenceCheck with the And operator

Use this example to configure your human review workflow to always send low-confidence
inferences of a specified label for human review and sample high-confidence inferences of a label
at a specified rate.

In the following example, a human review is initiated in one of the following ways:

• Inferences for the Graphic Male Nudity moderation label the with confidence scores less
than 60 are always sent for human review. Only the Graphic Male Nudity label is sent to
workers to review.

• 5% of all inferences for the Graphic Male Nudity moderation label the with confidence
scores greater than 90 are sent for human review. Only the Graphic Male Nudity label is sent
to workers to review.

{
 "Conditions": [
 {
 "Or": [
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Graphic Male Nudity",
 "ConfidenceLessThan": 60
 }
 },
 {
 "And": [
 {
 "ConditionType": "Sampling",
 "ConditionParameters": {
 "RandomSamplingPercentage": 5
 }
 },
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Graphic Male Nudity",
 "ConfidenceGreaterThan": 90
 }
 }

Create a Human Review Workflow 2025

Amazon SageMaker Developer Guide

]
 }
]
 }
]
}

Example 6: Use Sampling and ModerationLabelConfidenceCheck with the Or operator

In the following example, a human loop is created if the Amazon Rekognition inference response
contains the 'Graphic Male Nudity' label with inference confidence greater than 50. Additionally,
5% of all other inferences initiate a human loop.

{
 "Conditions": [
 {
 "Or": [
 {
 "ConditionType": "Sampling",
 "ConditionParameters": {
 "RandomSamplingPercentage": 5
 }
 },
 {
 "ConditionType": "ModerationLabelConfidenceCheck",
 "ConditionParameters": {
 "ModerationLabelName": "Graphic Male Nudity",
 "ConfidenceGreaterThan": 50
 }
 }
]
 }
]
}

Delete a Human Review Workflow

When you delete a human review workflow or you delete your AWS account while a human loop is
in process, your human review workflow status changes to Deleting. Amazon A2I automatically
stops and deletes all associated human loops if workers have not started tasks created by those
human loops. If human workers are already working on a task, that task continues to be available

Delete a Human Review Workflow 2026

Amazon SageMaker Developer Guide

until it is completed or expires. As long as workers are still working on a task, your human review
workflow's status is Deleting. If these tasks are completed, the results are stored in the Amazon
S3 bucket specified in your flow definition.

Deleting a flow definition does not remove any worker answers from your S3 bucket. If the tasks
are completed, but you deleted your AWS account, the results are stored in the Augmented AI
service bucket for 30 days and then permanently deleted.

After all human loops have been deleted, the human review workflow is permanently deleted.
When a human review workflow has been deleted, you can reuse its name to create a new human
review workflow.

You might want to delete a human review workflow for any of the following reasons:

• You have sent data to a set of human reviewers and you want to delete all non-started human
loops because you do not want those workers to work on those tasks any longer.

• The worker task template used to generate your worker UI does not render correctly or is not
functioning as expected.

After you delete a human review workflow, the following changes occur:

• The human review workflow no longer appears on the Human review workflows page in the
Augmented AI area of the Amazon SageMaker console.

• When you use the human review workflow name as input to the API operations
DescribeFlowDefinition or DeleteFlowDefinition, Augmented AI returns a
ResourceNotFound error.

• When you use ListFlowDefinitions, deleted human review workflows aren't included in the
results.

• When you use the human review workflow ARN as input to the Augmented AI Runtime API
operation ListHumanLoops, Augmented AI returns a ResourceNotFoundException.

Delete a Flow Definition Using the Console or the SageMaker API

You can delete a human review workflow on the Human review workflows page in the Augmented
AI area of the SageMaker console or by using the SageMaker API.

Flow definitions can only be deleted if their status is Active.

Delete a Human Review Workflow 2027

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListFlowDefinitions.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_ListHumanLoops.html

Amazon SageMaker Developer Guide

Delete a human review workflow (console)

1. Navigate to the Augmented AI console at https://console.aws.amazon.com/a2i/.

2. In the navigation pane, under the Augmented AI section, choose Human review workflows.

3. Select the hyperlinked name of the human review workflow that you want to delete.

4. On the Summary page of your human review workflow, choose Delete.

5. In the dialog box asking you to confirm that you want to delete your human review workflow,
choose Delete.

You're automatically redirected to the Human review workflows page. While your human review
workflow is being deleted, the status Deleting appears in the status column for that workflow.
After it's deleted, it doesn't appear in the list of workflows on this page.

Delete a human review workflow (API)

You can delete a human review workflow (flow definition) using the SageMaker
DeleteFlowDefinition API operation. This API operation is supported through the AWS CLI and
a variety of language specific SDKs. The following table shows example requests using SDK
for Python (Boto3) and the AWS CLI to delete the human review workflow, example-flow-
definition.

AWS SDK for Python (Boto3)

The following request example uses the SDK for Python (Boto3) to delete the human review
workflow. For more information, see delete_flow_definition in the AWS SDK for Python (Boto)
API Reference.

import boto3

sagemaker_client = boto3.client('sagemaker')
response = sagemaker_client.delete_flow_definition(FlowDefinitionName='example-flow-
definition')

AWS CLI

The following request example uses the AWS CLI to delete the human review workflow. For
more information, see delete-flow-definition in the AWS CLI Command Reference.

Delete a Human Review Workflow 2028

https://console.aws.amazon.com/a2i
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteFlowDefinition.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-flow-definition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteFlowDefinition.html#API_DeleteFlowDefinition_SeeAlso
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.delete_flow_definition
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-flow-definition.html
https://docs.aws.amazon.com/cli/latest/reference/

Amazon SageMaker Developer Guide

$ aws sagemaker delete-flow-definition --flow-definition-name 'example-flow-
definition'

If the action is successful, Augmented AI sends back an HTTP 200 response with an empty HTTP
body.

Create and Start a Human Loop

A human loop starts your human review workflow and sends data review tasks to human workers.
When you use one of the Amazon A2I built-in task types, the corresponding AWS service creates
and starts a human loop on your behalf when the conditions specified in your flow definition
are met. If no conditions are specified in your flow definition, a human loop is created for each
object. When using Amazon A2I for a custom task, a human loop starts when your application calls
StartHumanLoop.

Use the following instructions to configure a human loop with Amazon Rekognition or Amazon
Textract built-in task types and custom task types.

Prerequisites

To create and start a human loop, you must attach the AmazonAugmentedAIFullAccess
policy to the AWS Identity and Access Management (IAM) user or role that configures or
starts the human loop. This is the identity that you use to configure the human loop using
HumanLoopConfig for built-in task types. For custom task types, this is the identity that you use
to call StartHumanLoop.

Additionally, when using a built-in task type, your user or role must have permission to
invoke API operations of the AWS service associated with your task type. For example, if you
are using Amazon Rekognition with Augmented AI, you must attach permissions required
to call DetectModerationLabels. For examples of identity-based policies you can use
to grant these permissions, see Amazon Rekognition Identity-Based Policy Examples and
Amazon Textract Identity-Based Policy Examples. You can also use the more general policy
AmazonAugmentedAIIntegratedAPIAccess to grant these permissions. For more information,
see Create a User With Permissions to Invoke Amazon A2I, Amazon Textract, and Amazon
Rekognition API Operations.

To create and start a human loop, you need a flow definition ARN. To learn how to create a flow
definition (or human review workflow), see Create a Human Review Workflow.

Create and Start a Human Loop 2029

https://docs.aws.amazon.com/rekognition/latest/dg/security_iam_id-based-policy-examples.html
https://docs.aws.amazon.com/textract/latest/dg/security_iam_id-based-policy-examples.html

Amazon SageMaker Developer Guide

Important

Amazon A2I requires all S3 buckets that contain human loop input image data to have a
CORS policy attached. To learn more about this change, see CORS Permission Requirement.

Create and Start a Human Loop for a Built-in Task Type

To start a human loop using a built-in task type, use the corresponding service's API to provide your
input data and to configure the human loop. For Amazon Textract, you use the AnalyzeDocument
API operation. For Amazon Rekognition, you use the DetectModerationLabels API operation.
You can use the AWS CLI or a language-specific SDK to create requests using these API operations.

Important

When you create a human loop using a built-in task type, you can use DataAttributes
to specify a set of ContentClassifiers related to the input provided to the
StartHumanLoop operation. Use content classifiers to declare that your content is free of
personally identifiable information or adult content.
To use Amazon Mechanical Turk, ensure your data is free of personally identifiable
information, including protected health information under HIPAA. Include the
FreeOfPersonallyIdentifiableInformation content classifier. If you do not use this
content classifier, SageMaker does not send your task to Mechanical Turk. If your data is
free of adult content, also include the 'FreeOfAdultContent' classifier. If you do not
use these content classifiers, SageMaker may restrict the Mechanical Turk workers that can
view your task.

After you start your ML job using your built-in task type's AWS service API, Amazon A2I monitors
the inference results of that service. For example, when running a job with Amazon Rekognition,
Amazon A2I checks the inference confidence score for each image and compares it to the
confidence thresholds specified in your flow definition. If the conditions to start a human review
task are satisfied, or if you didn't specify conditions in your flow definition, a human review task is
sent to workers.

Create and Start a Human Loop 2030

Amazon SageMaker Developer Guide

Create an Amazon Textract Human Loop

Amazon A2I integrates with Amazon Textract so that you can configure and start a human loop
using the Amazon Textract API. To send a document file to Amazon Textract for document analysis,
you use the Amazon Textract AnalyzeDocument API operation. To add a human loop to this
document analysis job, you must configure the parameter HumanLoopConfig.

When you configure your human loop, the flow definition you specify in FlowDefinitionArn of
HumanLoopConfig must be located in the same AWS Region as the bucket identified in Bucket of
the Documentparameter.

The following table shows examples of how to use this operation with the AWS CLI and AWS SDK
for Python (Boto3).

AWS SDK for Python (Boto3)

The following request example uses the SDK for Python (Boto3). For more information, see
analyze_document in the AWS SDK for Python (Boto) API Reference.

import boto3

textract = boto3.client('textract', aws_region)

response = textract.analyze_document(
 Document={'S3Object': {'Bucket': bucket_name, 'Name': document_name}},
 FeatureTypes=["TABLES", "FORMS"],
 HumanLoopConfig={
 'FlowDefinitionArn':
 'arn:aws:sagemaker:aws_region:aws_account_number:flow-definition/flow_def_name',
 'HumanLoopName': 'human_loop_name',
 'DataAttributes': {'ContentClassifiers':
 ['FreeOfPersonallyIdentifiableInformation','FreeOfAdultContent']}
 }
)

AWS CLI

The following request example uses the AWS CLI. For more information, see analyze-document
in the AWS CLI Command Reference.

$ aws textract analyze-document \

Create and Start a Human Loop 2031

https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeDocument.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/textract.html#Textract.Client.analyze_document
https://docs.aws.amazon.com/cli/latest/reference/textract/analyze-document.html
https://docs.aws.amazon.com/cli/latest/reference/

Amazon SageMaker Developer Guide

 --document '{"S3Object":{"Bucket":"bucket_name","Name":"document_name"}}' \
 --human-loop-config
 HumanLoopName="human_loop_name",FlowDefinitionArn="arn:aws:sagemaker:aws-
region:aws_account_number:flow-
definition/
flow_def_name",DataAttributes='{ContentClassifiers=["FreeOfPersonallyIdentifiableInformation",
 "FreeOfAdultContent"]}' \
 --feature-types '["TABLES", "FORMS"]'

$ aws textract analyze-document \
 --document '{"S3Object":{"Bucket":"bucket_name","Name":"document_name"}}' \
 --human-loop-config \

 '{"HumanLoopName":"human_loop_name","FlowDefinitionArn":"arn:aws:sagemaker:aws_region:aws_account_number:flow-
definition/flow_def_name","DataAttributes": {"ContentClassifiers":
["FreeOfPersonallyIdentifiableInformation","FreeOfAdultContent"]}}' \
 --feature-types '["TABLES", "FORMS"]'

After you run AnalyzeDocument with a human loop configured, Amazon A2I monitors
the results from AnalyzeDocument and checks it against the flow definition's activation
conditions. If the Amazon Textract inference confidence score for one or more key-value pairs
meets the conditions for review, Amazon A2I starts a human review loop and includes the
HumanLoopActivationOutput object in the AnalyzeDocument response.

Create an Amazon Rekognition Human Loop

Amazon A2I integrates with Amazon Rekognition so that you can configure and start a human
loop using the Amazon Rekognition API. To send images to Amazon Rekognition for content
moderation, you use the Amazon Rekognition DetectModerationLabels API operation.
To configure a human loop, set the HumanLoopConfig parameter when you configure
DetectModerationLabels.

When you configure your human loop, the flow definition you specify in FlowDefinitionArn
of HumanLoopConfig must be located in the same AWS Region as the S3 bucket identified in
Bucket of the Image parameter.

The following table shows examples of how to use this operation with the AWS CLI and AWS SDK
for Python (Boto3).

Create and Start a Human Loop 2032

https://docs.aws.amazon.com/textract/latest/dg/API_HumanLoopActivationOutput.html
https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectModerationLabels.html

Amazon SageMaker Developer Guide

AWS SDK for Python (Boto3)

The following request example uses the SDK for Python (Boto3). For more information, see
detect_moderation_labels in the AWS SDK for Python (Boto) API Reference.

import boto3

rekognition = boto3.client("rekognition", aws_region)

response = rekognition.detect_moderation_labels(\
 Image={'S3Object': {'Bucket': bucket_name, 'Name': image_name}}, \
 HumanLoopConfig={ \
 'HumanLoopName': 'human_loop_name', \
 'FlowDefinitionArn': ,
 "arn:aws:sagemaker:aws_region:aws_account_number:flow-definition/flow_def_name" \
 'DataAttributes': {'ContentClassifiers':
 ['FreeOfPersonallyIdentifiableInformation','FreeOfAdultContent']}
 })

AWS CLI

The following request example uses the AWS CLI. For more information, see detect-moderation-
labels in the AWS CLI Command Reference.

$ aws rekognition detect-moderation-labels \
 --image "S3Object={Bucket='bucket_name',Name='image_name'}" \
 --human-loop-config
 HumanLoopName="human_loop_name",FlowDefinitionArn="arn:aws:sagemaker:aws_region:aws_account_number:flow-
definition/
flow_def_name",DataAttributes='{ContentClassifiers=["FreeOfPersonallyIdentifiableInformation",
 "FreeOfAdultContent"]}'

$ aws rekognition detect-moderation-labels \
 --image "S3Object={Bucket='bucket_name',Name='image_name'}" \
 --human-loop-config \
 '{"HumanLoopName": "human_loop_name", "FlowDefinitionArn":
 "arn:aws:sagemaker:aws_region:aws_account_number:flow-
definition/flow_def_name", "DataAttributes": {"ContentClassifiers":
 ["FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"]}}'

Create and Start a Human Loop 2033

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rekognition.html#Rekognition.Client.detect_moderation_labels
https://docs.aws.amazon.com/cli/latest/reference/rekognition/detect-moderation-labels.html
https://docs.aws.amazon.com/cli/latest/reference/rekognition/detect-moderation-labels.html
https://docs.aws.amazon.com/cli/latest/reference/

Amazon SageMaker Developer Guide

After you run DetectModerationLabels with a human loop configured, Amazon A2I monitors
the results from DetectModerationLabels and checks it against the flow definition's activation
conditions. If the Amazon Rekognition inference confidence score for an image meets the
conditions for review, Amazon A2I starts a human review loop and includes the response element
HumanLoopActivationOutput in the DetectModerationLabels response.

Create and Start a Human Loop for a Custom Task Type

To configure a human loop for a custom human review task, use the StartHumanLoop operation
within your application. This section provides an example of a human loop request using the AWS
SDK for Python (Boto3) and the AWS Command Line Interface (AWS CLI). For documentation
on other language-specific SDKs that support StartHumanLoop, use the See Also section of
StartHumanLoop in the Amazon Augmented AI Runtime API documentation. Refer to Use Cases
and Examples Using Amazon A2I to see examples that demonstrate how to use Amazon A2I with a
custom task type.

Prerequisites

To complete this procedure, you need:

• Input data formatted as a string representation of a JSON-formatted file

• The Amazon Resource Name (ARN) of your flow definition

To configure the human loop

1. For DataAttributes, specify a set of ContentClassifiers related to the input provided
to the StartHumanLoop operation. Use content classifiers to declare that your content is free
of personally identifiable information or adult content.

To use Amazon Mechanical Turk, ensure your data is free of personally identifiable
information, including protected health information under HIPAA, and include the
FreeOfPersonallyIdentifiableInformation content classifier. If you do not use this
content classifier, SageMaker does not send your task to Mechanical Turk. If your data is free
of adult content, also include the 'FreeOfAdultContent' classifier. If you do not use these
content classifiers, SageMaker may restrict the Mechanical Turk workers that can view your
task.

2. For FlowDefinitionArn, enter the Amazon Resource Name (ARN) of your flow definition.

Create and Start a Human Loop 2034

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_StartHumanLoop.html

Amazon SageMaker Developer Guide

3. For HumanLoopInput, enter your input data as a string representation of a JSON-formatted
file. Structure your input data and custom worker task template so that your input data is
properly displayed to human workers when you start your human loop. See Preview a Worker
Task Template to learn how to preview your custom worker task template.

4. For HumanLoopName, enter a name for the human loop. The name must be unique within the
Region in your account and can have up to 63 characters. Valid characters are a-z, 0-9, and -
(hyphen).

To start a human loop

• To start a human loop, submit a request similar to the following examples using your preferred
language-specific SDK.

AWS SDK for Python (Boto3)

The following request example uses the SDK for Python (Boto3). For more information, see
Boto 3 Augmented AI Runtime in the AWS SDK for Python (Boto) API Reference.

import boto3

a2i_runtime_client = boto3.client('sagemaker-a2i-runtime')

response = a2i_runtime_client.start_human_loop(
 HumanLoopName='human_loop_name',
 FlowDefinitionArn='arn:aws:sagemaker:aws-region:xyz:flow-
definition/flow_def_name',
 HumanLoopInput={
 'InputContent': '{"InputContent": {\"prompt\":\"What is the answer?\"}}'
 },
 DataAttributes={
 'ContentClassifiers': [
 'FreeOfPersonallyIdentifiableInformation'|'FreeOfAdultContent',
]
 }
)

AWS CLI

The following request example uses the AWS CLI. For more information, see start-human-loop
in the AWS CLI Command Reference.

Create and Start a Human Loop 2035

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-a2i-runtime.html#AugmentedAIRuntime.Client.start_human_loop
https://docs.aws.amazon.com/cli/latest/reference/sagemaker-a2i-runtime/start-human-loop.html
https://docs.aws.amazon.com/cli/latest/reference/

Amazon SageMaker Developer Guide

$ aws sagemaker-a2i-runtime start-human-loop
 --flow-definition-arn 'arn:aws:sagemaker:aws_region:xyz:flow-
definition/flow_def_name' \
 --human-loop-name 'human_loop_name' \
 --human-loop-input '{"InputContent": "{\"prompt\":\"What is the answer?
\"}"}' \
 --data-attributes
 ContentClassifiers="FreeOfPersonallyIdentifiableInformation","FreeOfAdultContent" \

When you successfully start a human loop by invoking StartHumanLoop directly, the response
includes a HumanLoopARN and a HumanLoopActivationResults object which is set to NULL.
You can use this the human loop name to monitor and manage your human loop.

Next Steps:

After starting a human loop, you can manage and monitor it with the Amazon Augmented AI
Runtime API and Amazon CloudWatch Events. To learn more, see Monitor and Manage Your Human
Loop.

Delete a Human Loop

When you delete a human loop, the status changes to Deleting. When the human loop is deleted,
the associated human review task is no longer available to workers. You might want to delete a
human loop in one of the following circumstances:

• The worker task template used to generate your worker user interface does not render correctly
or is not functioning as expected.

• A single data object was accidentally sent to workers multiple times.

• You no longer need a data object reviewed by a human.

If the status of a human loop is InProgress, you must stop the human loop before deleting it.
When you stop a human loop, the status changes to Stopping while it is being stopped. When the
status changes to Stopped, you can delete the human loop.

If human workers are already working on a task when you stop the associated human loop, that
task continues to be available until it is completed or expires. As long as workers are still working
on a task, your human loop's status is Stopping. If these tasks are completed, the results are
stored in the Amazon S3 bucket URI specified in your human review workflow. If the worker leaves

Delete a Human Loop 2036

Amazon SageMaker Developer Guide

the task without submitting work, it is stopped and the worker can't return to the task. If no worker
has started working on the task, it is stopped immediately.

If you delete the AWS account used to create the human loop, it is stopped and deleted
automatically.

Human Loop Data Retention and Deletion

When a human worker completes a human review task, the results are stored in the Amazon
S3 output bucket you specified in the human review workflow used to create the human loop.
Deleting or stopping a human loop does not remove any worker answers from your S3 bucket.

Additionally, Amazon A2I temporarily stores human loop input and output data internally for the
following reasons:

• If you configure your human loops so that a single data object is sent to multiple workers
for review, Amazon A2I does not write output data to your S3 bucket until all workers have
completed the review task. Amazon A2I stores partial answers—answers from individual workers
—internally so that it can write full results to your S3 bucket.

• If you report a low-quality human review result, Amazon A2I can investigate and respond to your
issue.

• If you lose access to or delete the output S3 bucket specified in the human review workflow used
to create a human loop, and the task has already been sent to one or more workers, Amazon A2I
needs a place to temporarily store human review results.

Amazon A2I deletes this data internally 30 days after a human loop's status changes to one of the
following: Deleted, Stopped, or Completed. In other words, data is deleted 30 days after the
human loop has been completed, stopped, or deleted. Additionally, this data is deleted after 30
days if you close the AWS account used to create associated human loops.

Stop and Delete a Flow Definition Using the Console or the Amazon A2I API

You can stop and delete a human loop in the Augmented AI console or by using the SageMaker API.
When the human loop has been deleted, the status changes to Deleted.

Delete a human loop (console)

1. Navigate to the Augmented AI console at https://console.aws.amazon.com/a2i/.

2. In the navigation pane, under the Augmented AI section, choose Human review workflows.

Delete a Human Loop 2037

https://console.aws.amazon.com/a2i

Amazon SageMaker Developer Guide

3. Choose the hyperlinked name of the human review workflow you used to create the human
loop you want to delete.

4. In the Human loops section at the bottom of the page, select the human loop you want to
stop and delete.

5. If the human loop status is Completed, Stopped, or Failed, select Delete.

If the human loop Status is InProgress, select Stop. When the status changes to Stopped,
select Delete.

Delete a human loop (API)

1. Check the status of your human loop using the Augmented AI Runtime API operation
DescribeHumanLoop. See examples using this operation in the following table.

AWS SDK for Python (Boto3)

The following example uses the SDK for Python (Boto3) to describe the human loop named
example-human-loop. For more information, see describe_human_loop in the AWS SDK
for Python (Boto) API Reference.

import boto3

a2i_runtime_client = boto3.client('sagemaker-a2i-runtime')
response = a2i_runtime_client.describe_human_loop(HumanLoopName='example-human-
loop')
human_loop_status = response['HumanLoopStatus']
print(f'example-human-loop status is: {human_loop_status}')

AWS CLI

The following example uses the AWS CLI to describe the human loop named example-
human-loop. For more information, see describe-human-loop in the AWS CLI Command
Reference.

$ aws sagemaker-a2i-runtime describe-human-loop --human-loop-name 'example-
human-loop'

2. If the flow definition status is Completed, Stopped, or Failed, delete the flow definition
using the Augmented AI Runtime API operation DeleteHumanLoop.

Delete a Human Loop 2038

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_DescribeHumanLoop.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-a2i-runtime.html#AugmentedAIRuntime.Client.describe_human_loop
https://docs.aws.amazon.com/cli/latest/reference/sagemaker-a2i-runtime/describe-human-loop.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_DeleteHumanLoop.html

Amazon SageMaker Developer Guide

AWS SDK for Python (Boto3)

The following example uses the SDK for Python (Boto3) to delete the human loop named
example-human-loop. For more information, see delete_human_loop in the AWS SDK for
Python (Boto) API Reference.

import boto3

a2i_runtime_client = boto3.client('sagemaker-a2i-runtime')
response = a2i_runtime_client.delete_human_loop(HumanLoopName='example-human-
loop')

AWS CLI

The following example uses the AWS CLI to delete the human loop named example-
human-loop. For more information, see delete-human-loop in the AWS CLI Command
Reference.

$ aws sagemaker-a2i-runtime delete-human-loop --human-loop-name 'example-human-
loop'

If the human loop status is InProgress, stop the human loop using StopHumanLoop and
then use DeleteHumanLoop to delete it.

AWS SDK for Python (Boto3)

The following example uses the SDK for Python (Boto3) to describe the human loop named
example-human-loop. For more information, see stop_human_loop in the AWS SDK for
Python (Boto) API Reference.

import boto3

a2i_runtime_client = boto3.client('sagemaker-a2i-runtime')
response = a2i_runtime_client.stop_human_loop(HumanLoopName='example-human-
loop')

Delete a Human Loop 2039

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-a2i-runtime.html#AugmentedAIRuntime.Client.delete_human_loop
https://docs.aws.amazon.com/cli/latest/reference/sagemaker-a2i-runtime/delete-human-loop.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_StopHumanLoop.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-a2i-runtime.html#AugmentedAIRuntime.Client.stop_human_loop

Amazon SageMaker Developer Guide

AWS CLI

The following example uses the AWS CLI to describe the human loop named example-
human-loop. For more information, see stop-human-loop in the AWS CLI Command
Reference.

$ aws sagemaker-a2i-runtime stop-human-loop --human-loop-name 'example-human-
loop'

Create and Manage Worker Task Templates

You can create a task user interface for your workers by creating a worker task template. A worker
task template is an HTML file that is used to display your input data and instructions to help
workers complete your task.

For Amazon Rekognition or Amazon Textract task types, you can customize a pre-made worker
task template using a graphical user interface (GUI) and avoid interacting with HTML code. For
this option, use the instructions in Create a Human Review Workflow (Console) to create a human
review workflow and customize your worker task template in the Amazon SageMaker console.
Once you create a template using these instructions, it appears on the worker task templates page
of the Augmented AI console.

If you are creating a human review workflow for a custom task type, you must create a custom
worker task template using HTML code. For more information, see Create Custom Worker Task
Templates.

If you create your template using HTML, you must use this template to generate an Amazon
A2I human task UI Amazon Resource Name (ARN) in the Amazon A2I console. This ARN has the
following format: arn:aws:sagemaker:<aws-region>:<aws-account-number>:human-
task-ui/<template-name>. This ARN is associated with a worker task template resource that
you can use in one or more human review workflows (flow definitions).

Generate a human task UI ARN using a worker task template by following the instructions found in
Create a Worker Task Template or by using the CreateHumanTaskUi API operation.

Topics

• Create and Delete Worker Task Templates

• Create Custom Worker Task Templates

Create and Manage Worker Task Templates 2040

https://docs.aws.amazon.com/cli/latest/reference/sagemaker-a2i-runtime/stop-human-loop.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/
https://console.aws.amazon.com/a2i
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html

Amazon SageMaker Developer Guide

• Creating Good Worker Instructions

Create and Delete Worker Task Templates

You can use a worker template to customize the interface and instructions that your workers see
when working on your tasks. Use the instructions on this page to create a worker task template
in the Augmented AI area of the Amazon SageMaker console. A starter template is provided for
Amazon Textract and Amazon Rekognition tasks. To learn how to customize your template using
HTML crowd elements, see Create Custom Worker Task Templates.

When you create a worker template in the worker task templates page of the Augmented
AI area of the SageMaker console, a worker task template ARN is generated. Use this ARN
as the input to HumanTaskUiArn when you create a flow definition using the API operation
CreateFlowDefinition. You can choose this template when creating a human review workflow
on the human review workflows page of the console.

If you are creating a worker task template resource for an Amazon Textract or Amazon Rekognition
task type, you can preview the worker UI that is generated from your template on the worker task
templates console page. You must attach the policy described in Enable Worker Task Template
Previews to the IAM role that you use to preview the template.

Create a Worker Task Template

You can create a worker task template using the SageMaker console and using the SageMaker API
operation CreateHumanTaskUi.

Create a worker task template (console)

1. Open the Amazon A2I console at https://console.aws.amazon.com/a2i/.

2. Under Amazon Augmented AI in the left navigation pane, choose Worker task templates.

3. Choose Create template.

4. In Template name, enter a unique name.

5. (Optional) Enter an IAM role that grants Amazon A2I the permissions necessary to call services
on your behalf.

6. In Template type, choose a template type from the dropdown list. If you are creating a
template for a Textract-form extraction or Rekognition-image moderation task, choose the
appropriate option.

Create and Manage Worker Task Templates 2041

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html
https://console.aws.amazon.com/a2i

Amazon SageMaker Developer Guide

7. Enter your custom template elements as follows:

• If you selected the Amazon Textract or Amazon Rekognition task template, the Template
editor autopopulates with a default template that you can customize.

• If you are using a custom template, enter your predefined template in the editor.

8. (Optional) To complete this step, you must provide an IAM role ARN with permission to read
Amazon S3 objects that get rendered on your user interface in Step 5.

You can only preview your template if you are creating templates for Amazon Textract or
Amazon Rekognition.

Choose See preview to preview the interface and instructions that workers see. This is an
interactive preview. After you complete the sample task and choose Submit, you see the
resulting output from the task that you just performed.

If you are creating a worker task template for a custom task type, you can preview your
worker task UI using RenderUiTemplate. For more information, see Preview a Worker Task
Template.

9. When you're satisfied with your template, choose Create.

After you've created your template, you can select that template when you create a human review
workflow in the console. Your template also appears in the Amazon Augmented AI section of the
SageMaker console under Worker task templates. Choose your template to view its ARN. Use this
ARN when using the CreateFlowDefinition API operation .

Create a worker task template using a worker task template (API)

To generate a worker task template using the SageMaker API operation CreateHumanTaskUi,
specify a name for your UI in HumanTaskUiName and input your HTML template in Content under
UiTemplate. Find documentation on language-specific SDKs that support this API operation in
the See Also section of the CreateHumanTaskUi.

Delete a Worker Task Template

Once you have created a worker task template, you can delete it using the SageMaker console or
the SageMaker API operation DeleteHumanTaskUi.

When you delete a worker task template, you are not able to use human review workflows (flow
definitions) created using that template to start human loops. Any human loops that have already

Create and Manage Worker Task Templates 2042

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteHumanTaskUi.html

Amazon SageMaker Developer Guide

been created using the worker task template that you delete continue to be processed until
completion and are not impacted.

Delete a worker task template (console)

1. Open the Amazon A2I console at https://console.aws.amazon.com/a2i/.

2. Under Amazon Augmented AI in the left navigation pane, choose Worker task templates.

3. Select the template that you want to delete.

4. Selete Delete.

5. A modal appears to confirm your choice. Select Delete.

Delete a worker task template (API)

To delete a worker task template using the SageMaker API operation DeleteHumanTaskUi,
specify a name of your UI in HumanTaskUiName.

Create Custom Worker Task Templates

Crowd HTML Elements are web components that provide a number of task widgets and design
elements that you can tailor to the question you want to ask. You can use these crowd elements
to create a custom worker template and integrate it with an Amazon Augmented AI (Amazon A2I)
human review workflow to customize the worker console and instructions.

For a list of all HTML crowd elements available to Amazon A2I users, see Crowd HTML Elements
Reference. For examples of templates, see the AWS GitHub repository, which contains over 60
sample custom task templates.

Develop Templates Locally

When in the console to test how your template processes incoming data, you can test the look and
feel of your template's HTML and custom elements in your browser by adding the following code
to the top of your HTML file.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>

This loads the necessary code to render the custom HTML elements. Use this code if you want to
develop your template's look and feel in your preferred editor instead of in the console.

Create and Manage Worker Task Templates 2043

https://console.aws.amazon.com/a2i
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteHumanTaskUi.html
https://github.com/aws-samples/amazon-a2i-sample-task-uis

Amazon SageMaker Developer Guide

This code won't parse your variables. You might want to replace them with sample content while
developing locally.

Use External Assets

Amazon Augmented AI custom templates enable you to embed external scripts and style sheets.
For example, the following header embeds a text/css style sheet name stylesheet located at
https://www.example.com/my-enhancement-styles.css into the custom template.

Example

<script src="https://www.example.com/my-enhancment-script.js"></script>
<link rel="stylesheet" type="text/css" href="https://www.example.com/my-enhancement-
styles.css">

If you encounter errors, ensure that your originating server is sending the correct MIME type and
encoding headers with the assets.

For example, the MIME and encoding type for remote scripts is application/
javascript;CHARSET=UTF-8.

The MIME and encoding type for remote stylesheets is text/css;CHARSET=UTF-8.

Track Your Variables

When building a custom template, you must add variables to it to represent the pieces of data
that might change from task to task, or worker to worker. If you're starting with one of the sample
templates, you need to make sure you're aware of the variables it already uses.

For example, for a custom template that integrates an Augmented
AI human review loop with a Amazon Textract text review task,
{{ task.input.selectedAiServiceResponse.blocks }} is used for initial-value
input data. For Amazon Augmented AI (Amazon A2I) integration with Amazon Rekognition ,
{{ task.input.selectedAiServiceResponse.moderationLabels }} is used.
For a custom task type, you need to determine the input parameter for your task type.
Use {{ task.input.customInputValuesForStartHumanLoop}} where you specify
customInputValuesForStartHumanLoop.

Custom Template Example for Amazon Textract

All custom templates begin and end with the <crowd-form> </crowd-form> elements. Like
standard HTML <form> elements, all of your form code should go between these elements.

Create and Manage Worker Task Templates 2044

Amazon SageMaker Developer Guide

For an Amazon Textract document analysis task, use the <crowd-textract-analyze-
document> element. It uses the following attributes:

• src – Specifies the URL of the image file to be annotated.

• initialValue – Sets initial values for attributes found in the worker UI.

• blockTypes (required) – Determines the kind of analysis that the workers can do. Only
KEY_VALUE_SET is currently supported.

• keys (required) – Specifies new keys and the associated text value that the worker can add.

• no-key-edit (required) – Prevents the workers from editing the keys of annotations passed
through initialValue.

• no-geometry-edit – Prevents workers from editing the polygons of annotations passed
through initialValue.

For children of the <crowd-textract-analyze-document> element, you must have two
Regions. You can use arbitrary HTML and CSS elements in these Regions.

• <full-instructions> – Instructions that are available from the View full instructions link in
the tool. You can leave this blank, but we recommend that you provide complete instructions to
get better results.

• <short-instructions> – A brief description of the task that appears in the tool's sidebar. You
can leave this blank, but we recommend that you provide complete instructions to get better
results.

An Amazon Textract template would look similar to the following.

Example

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
{% capture s3_uri %}http://s3.amazonaws.com/
{{ task.input.aiServiceRequest.document.s3Object.bucket }}/
{{ task.input.aiServiceRequest.document.s3Object.name }}{% endcapture %}

<crowd-form>
 <crowd-textract-analyze-document
 src="{{ s3_uri | grant_read_access }}"
 initial-value="{{ task.input.selectedAiServiceResponse.blocks }}"

Create and Manage Worker Task Templates 2045

Amazon SageMaker Developer Guide

 header="Review the key-value pairs listed on the right and correct them if they
 don't match the following document."
 no-key-edit
 no-geometry-edit
 keys="{{ task.input.humanLoopContext.importantFormKeys }}"
 block-types="['KEY_VALUE_SET']"
 >
 <short-instructions header="Instructions">
 <style>
 .instructions {
 white-space: pre-wrap;
 }
 .instructionsImage {
 display: inline-block;
 max-width: 100%;
 }
 </style>
 <p class='instructions'>Choose a key-value block to highlight the corresponding
 key-value pair in the document.

If it is a valid key-value pair, review the content for the value. If the content is
 incorrect, correct it.

The text of the value is incorrect, correct it.

A wrong value is identified, correct it.

If it is not a valid key-value relationship, choose No.

If you can’t find the key in the document, choose Key not found.

If the content of a field is empty, choose Value is blank.

Examples
Key and value are often displayed next to or below to each other.

Key and value displayed in one line.
<img class='instructionsImage' src="https://example-site/sample-key-value-pair-1.png" /
>

Create and Manage Worker Task Templates 2046

Amazon SageMaker Developer Guide

Key and value displayed in two lines.
<img class='instructionsImage' src="https://example-site/sample-key-value-pair-2.png" /
>

If the content of the value has multiple lines, enter all the text without a line
 break. Include all value text even if it extends beyond the highlight box.
<img class='instructionsImage' src="https://assets.crowd.aws/images/a2i-console/
multiple-lines.png" /></p>
 </short-instructions>

 <full-instructions header="Instructions"></full-instructions>
 </crowd-textract-analyze-document>
</crowd-form>

Custom Template Example for Amazon Rekognition

All custom templates begin and end with the <crowd-form> </crowd-form> elements. Like
standard HTML <form> elements, all of your form code should go between these elements.
For an Amazon Rekognition custom task template, use the <crowd-rekognition-detect-
moderation-labels> element. This element supports the following attributes:

• categories – An array of strings or an array of objects where each object has a name field.

• If the categories come in as objects, the following applies:

• The displayed categories are the value of the name field.

• The returned answer contains the full objects of any selected categories.

• If the categories come in as strings, the following applies:

• The returned answer is an array of all the strings that were selected.

• exclusion-category – By setting this attribute, you create a button underneath the
categories in the UI. When a user selects the button, all categories are deselected and disabled.
If the worker selects the button again, you re-enable users to choose categories. If the worker
submits the task by selecting Submit after you select the button, that task returns an empty
array.

For children of the <crowd-rekognition-detect-moderation-labels> element, you must
have two Regions.

Create and Manage Worker Task Templates 2047

Amazon SageMaker Developer Guide

• <full-instructions> – Instructions that are available from the View full instructions link in
the tool. You can leave this blank, but we recommend that you provide complete instructions to
get better results.

• <short-instructions> – Brief description of the task that appears in the tool's sidebar. You
can leave this blank, but we recommend that you provide complete instructions to get better
results.

A template using these elements would look similar to the following.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
{% capture s3_uri %}http://s3.amazonaws.com/
{{ task.input.aiServiceRequest.image.s3Object.bucket }}/
{{ task.input.aiServiceRequest.image.s3Object.name }}{% endcapture %}

<crowd-form>
 <crowd-rekognition-detect-moderation-labels
 categories='[
 {% for label in task.input.selectedAiServiceResponse.moderationLabels %}
 {
 name: "{{ label.name }}",
 parentName: "{{ label.parentName }}",
 },
 {% endfor %}
]'
 src="{{ s3_uri | grant_read_access }}"
 header="Review the image and choose all applicable categories."
 >
 <short-instructions header="Instructions">
 <style>
 .instructions {
 white-space: pre-wrap;
 }
 </style>
 <p class='instructions'>Review the image and choose all applicable categories.
If no categories apply, choose None.

Nudity
Visuals depicting nude male or female person or persons

Graphic Male Nudity
Visuals depicting full frontal male nudity, often close ups

Create and Manage Worker Task Templates 2048

Amazon SageMaker Developer Guide

Graphic Female Nudity
Visuals depicting full frontal female nudity, often close ups

Sexual Activity
Visuals depicting various types of explicit sexual activities and pornography

Illustrated Nudity or Sexual Activity
Visuals depicting animated or drawn sexual activity, nudity, or pornography

Adult Toys
Visuals depicting adult toys, often in a marketing context

Female Swimwear or Underwear
Visuals depicting female person wearing only swimwear or underwear

Male Swimwear Or Underwear
Visuals depicting male person wearing only swimwear or underwear

Partial Nudity
Visuals depicting covered up nudity, for example using hands or pose

Revealing Clothes
Visuals depicting revealing clothes and poses, such as deep cut dresses

Graphic Violence or Gore
Visuals depicting prominent blood or bloody injuries

Physical Violence
Visuals depicting violent physical assault, such as kicking or punching

Weapon Violence
Visuals depicting violence using weapons like firearms or blades, such as shooting

Weapons
Visuals depicting weapons like firearms and blades

Self Injury
Visuals depicting self-inflicted cutting on the body, typically in distinctive patterns
 using sharp objects

Emaciated Bodies
Visuals depicting extremely malnourished human bodies

Corpses

Create and Manage Worker Task Templates 2049

Amazon SageMaker Developer Guide

Visuals depicting human dead bodies

Hanging
Visuals depicting death by hanging</p>
 </short-instructions>

 <full-instructions header="Instructions"></full-instructions>
 </crowd-rekognition-detect-moderation-labels>
</crowd-form>

Add Automation with Liquid

The custom template system uses Liquid for automation. Liquid is an open-source inline markup
language. For more information and documentation, see the Liquid homepage.

In Liquid, the text between single curly braces and percent symbols is an instruction or tag that
performs an operation like control flow or iteration. Text between double curly braces is a variable
or object that outputs its value. The following list includes two types of liquid tags that you may
find useful to automate template input data processing. If you select one of the following tag-
types, you are redirected to the Liquid documentation.

• Control flow: Includes programming logic operators like if/else, unless, and case/when.

• Iteration: Enables you to run blocks of code repeatedly using statements like for loops.

For example, the following code example demonstrates how you can use the Liquid for tag to
create a for loop. This example loops through the moderationLabels returned from Amazon
Rekognition and displays the moderationLabels attributes name and parentName for workers
to review:

 {% for label in task.input.selectedAiServiceResponse.moderationLabels %}
 {
 name: "{{ label.name }}",
 parentName: "{{ label.parentName }}",
 },
 {% endfor %}

Create and Manage Worker Task Templates 2050

https://shopify.github.io/liquid/
https://shopify.github.io/liquid/
https://shopify.github.io/liquid/tags/control-flow/
https://shopify.github.io/liquid/tags/iteration/
https://docs.aws.amazon.com/rekognition/latest/dg/API_ModerationLabel.html

Amazon SageMaker Developer Guide

Use Variable Filters

In addition to the standard Liquid filters and actions, Amazon Augmented AI (Amazon A2I) offers
additional filters. You apply filters by placing a pipe (|) character after the variable name, and then
specifying a filter name. To chain filters, use the following format.

Example

{{ <content> | <filter> | <filter> }}

Autoescape and Explicit Escape

By default, inputs are HTML-escaped to prevent confusion between your variable text and HTML.
You can explicitly add the escape filter to make it more obvious to someone reading the source of
your template that escaping is being done.

escape_once

escape_once ensures that if you've already escaped your code, it doesn't get re-escaped again.
For example, it ensures that & doesn't become &amp;.

skip_autoescape

skip_autoescape is useful when your content is meant to be used as HTML. For example, you
might have a few paragraphs of text and some images in the full instructions for a bounding box.

Note

Use skip_autoescape sparingly. As a best practice for templates, avoid passing in
functional code or markup with skip_autoescape unless you are absolutely sure that
you have strict control over what's being passed. If you're passing user input, you could be
opening your workers up to a cross-site scripting attack.

to_json

to_json encodes data that you provide to JavaScript Object Notation (JSON). If you provide an
object, it serializes it.

Create and Manage Worker Task Templates 2051

https://shopify.github.io/liquid/filters/abs/

Amazon SageMaker Developer Guide

grant_read_access

grant_read_access takes an Amazon Simple Storage Service (Amazon S3) URI and encodes
it into an HTTPS URL with a short-lived access token for that resource. This makes it possible
to display photo, audio, or video objects stored in S3 buckets that are not otherwise publicly
accessible to workers.

Example Example of the to_json and grant_read_access filters

Input

auto-escape: {{ "Have you read 'James & the Giant Peach'?" }}
explicit escape: {{ "Have you read 'James & the Giant Peach'?" | escape }}
explicit escape_once: {{ "Have you read 'James & the Giant Peach'?" |
 escape_once }}
skip_autoescape: {{ "Have you read 'James & the Giant Peach'?" | skip_autoescape }}
to_json: {{ jsObject | to_json }}
grant_read_access: {{ "s3://examplebucket/myphoto.png" | grant_read_access }}

Example

Output

auto-escape: Have you read 'James & the Giant Peach'?
explicit escape: Have you read 'James & the Giant Peach'?
explicit escape_once: Have you read 'James & the Giant Peach'?
skip_autoescape: Have you read 'James & the Giant Peach'?
to_json: { "point_number": 8, "coords": [59, 76] }
grant_read_access: https://s3.amazonaws.com/examplebucket/myphoto.png?<access token and
 other params>

Example Example of an automated classification template.

To automate this simple text classification sample, include the Liquid tag
{{ task.input.source }}. This example uses the crowd-classifier element.

<script src="https://assets.crowd.aws/crowd-html-elements.js"></script>
<crowd-form>
 <crowd-classifier
 name="tweetFeeling"
 categories="['positive', 'negative', 'neutral', 'cannot determine']"
 header="Which term best describes this tweet?"
 >

Create and Manage Worker Task Templates 2052

Amazon SageMaker Developer Guide

 <classification-target>
 {{ task.input.source }}
 </classification-target>

 <full-instructions header="Analyzing a sentiment">
 Try to determine the feeling the author
 of the tweet is trying to express.
 If none seems to match, choose "other."
 </full-instructions>

 <short-instructions>
 Pick the term that best describes the sentiment
 of the tweet.
 </short-instructions>

 </crowd-classifier>
</crowd-form>

Preview a Worker Task Template

To preview a custom worker task template, use the SageMaker RenderUiTemplate operation.
You can use the RenderUiTemplate operation with the AWS CLI or your preferred AWS SDK. For
documentation on the supported language specific SDKs for this API operation, see the See Also
section of the RenderUiTemplate.

Prerequisites

To preview your worker task template, the AWS Identity and Access Management (IAM) role
Amazon Resource Name (ARN), or RoleArn, that you use must have permission to access to the
S3 objects that are used by the template. To learn how to configure your role or user see Enable
Worker Task Template Previews .

To preview your worker task template using the RenderUiTemplate operation:

1. Provide a RoleArn of the role with required policies attached to preview your custom
template.

2. In the Input parameter of Task, provide a JSON object that contains values for the
variables defined in the template. These are the variables that are substituted for the
task.input.source variable. For example, if you define a task.input.text variable in your
template, you can supply the variable in the JSON object as text: sample text.

3. In the Content parameter of UiTemplate, insert your template.

Create and Manage Worker Task Templates 2053

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RenderUiTemplate.html#API_RenderUiTemplate_SeeAlso
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RenderUiTemplate.html

Amazon SageMaker Developer Guide

Once you've configured RenderUiTemplate, use your preferred SDK or the AWS CLI to
submit a request to render your template. If your request was successful, the response includes
RenderedContent, a Liquid template that renders the HTML for the worker UI.

Important

To preview your template, you need an IAM role with permissions to read Amazon S3
objects that get rendered on your user interface. For a sample policy that you can attach to
your IAM role to grant these permissions, see Enable Worker Task Template Previews .

Creating Good Worker Instructions

Creating good instructions for your human review jobs improves your worker's accuracy in
completing their task. You can modify the default instructions that are provided in the console
when creating a human review workflow, or you can use the console to create a custom worker
template and include your instructions in this template. The instructions are shown to the worker
on the UI page where they complete their labeling task.

Create Good Worker Instructions

There are three kinds of instructions in the Amazon Augmented AI console:

• Task Description – The description should provide a succinct explanation of the task.

• Instructions – These instructions are shown on the same webpage where workers complete a
task. These instructions should provide an easy reference to show the worker the correct way to
complete the task.

• Additional Instructions – These instructions are shown in a dialog box that appears when a
worker chooses View full instructions. We recommend that you provide detailed instructions
for completing the task, and include several examples showing edge cases and other difficult
situations for labeling objects.

Add Example Images to Your Instructions

Images provide useful examples for your workers. To add a publicly accessible image to your
instructions, do the following:

1. Place the cursor where the image should go in the instructions editor.

Create and Manage Worker Task Templates 2054

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RenderUiTemplate.html#API_RenderUiTemplate_ResponseSyntax

Amazon SageMaker Developer Guide

2. Choose the image icon in the editor toolbar.

3. Enter the URL of your image.

If your instruction image is in an S3 bucket that isn't publicly accessible, do the following:

• For the image URL, enter: {{ 'https://s3.amazonaws.com/your-bucket-name/image-
file-name' | grant_read_access }}.

This renders the image URL with a short-lived, one-time access code that's appended so the
worker's browser can display it. A broken image icon is displayed in the instructions editor, but
previewing the tool displays the image in the rendered preview. See grant_read_access for more
information about the grand_read_access element.

Monitor and Manage Your Human Loop

Once you've started a human review loop, you can check the results of tasks sent to the loop and
manage it using the Amazon Augmented AI Runtime API. Additionally, Amazon A2I integrates
with Amazon EventBridge (also known as Amazon CloudWatch Events) to alert you when a human
review loop status changes to Completed, Failed, or Stopped. This event delivery is guaranteed
at least once, which means all events created when human loops finish are successfully delivered to
EventBridge.

Use the procedures below to learn how to use the Amazon A2I Runtime API to monitor and
manage your human loops. See Use Amazon CloudWatch Events in Amazon Augmented AI to learn
how Amazon A2I integrates with Amazon EventBridge.

To check your output data:

1. Check the results of your human loop by calling the DescribeHumanLoop operation. The
result of this API operation contains information about the reason for and outcome of the loop
activation.

2. Check the output data from your human loop in Amazon Simple Storage Service (Amazon S3).
In the path to the data, YYYY/MM/DD/hh/mm/ss represents the human loop creation date
with year (YYYY), month (MM), and day (DD), and the creation time with hour (hh), minute (mm),
and second (ss).

Monitor and Manage Your Human Loop 2055

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_DescribeHumanLoop.html

Amazon SageMaker Developer Guide

s3://customer-output-bucket-specified-in-flow-definition/flow-definition-
name/YYYY/MM/DD/hh/mm/ss/human-loop-name/output.json

You can integrate this structure with AWS Glue or Amazon Athena to partition and analyze your
output data. For more information, see Managing Partitions for ETL Output in AWS Glue.

To learn more about Amazon A2I output data format, see Amazon A2I Output Data.

To stop and delete your human loop:

1. Once a human loop has been started, you can stop your human loop by calling the
StopHumanLoop operation using the HumanLoopName. If a human loop was successfully
stopped, the server sends back an HTTP 200 response.

2. To delete a human loop for which the status equals Failed, Completed, or Stopped, use the
DeleteHumanLoop operation.

To list human loops:

1. You can list all active human loops by calling the ListHumanLoops operation. You can
filter human loops by the creation date of the loop using the CreationTimeAfter and
CreateTimeBefore parameters.

2. If successful, ListHumanLoops returns HumanLoopSummaries and NextToken objects in the
response element. HumanLoopSummaries contains information about a single human loop.
For example, it lists a loop's status and, if applicable, its failure reason.

Use the string returned in NextToken as an input in a subsequent call to ListHumanLoops to
see the next page of human loops.

Amazon A2I Output Data

When your machine learning workflow sends Amazon A2I a data object, a human loop is created
and human reviewers receive a task to review that data object. The output data from each human
review task is stored in the Amazon Simple Storage Service (Amazon S3) output bucket you specify
in your human review workflow. In the path to the data, YYYY/MM/DD/hh/mm/ss represents the
human loop creation date with year (YYYY), month (MM), and day (DD), and the creation time with
hour (hh), minute (mm), and second (ss).

Output Data 2056

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_StopHumanLoop.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_DeleteHumanLoop.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_ListHumanLoops.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_HumanLoopSummary.html

Amazon SageMaker Developer Guide

s3://customer-output-bucket-specified-in-flow-definition/flow-definition-
name/YYYY/MM/DD/hh/mm/ss/human-loop-name/output.json

The content of your output data depends on the type of task type (built-in or custom) and the
type of workforce you use. Your output data always includes the response from the human worker.
Additionally, output data may include metadata about the human loop, the human reviewer
(worker), and the data object.

Use the following sections to learn more about Amazon A2I output data format for different task
types and workforces.

Output Data From Built-In Task Types

Amazon A2I built-in task types include Amazon Textract and Amazon Rekognition. In addition to
human responses, the output data from one of these tasks includes details about the reason the
human loop was created and information about the integrated service used to create the human
loop. Use the following table to learn more about the output data schema for all built-in task
types. The value for each of these parameters depends on the service you use with Amazon A2I.
Refer to the second table in this section for more information about these service-specific values.

Parameter Value Type Example Values Description

awsManage
dHumanLoo
pRequestSource

String AWS/Rekog
nition/De
tectModer
ationLabels/
Image/V3 or AWS/
Textract/Analy
zeDocument/
Forms/V1

The API operation
and associated
AWS services that
requested that
Amazon A2I create
the a human loop.
This is the API
operation you use
to configure your
Amazon A2I human
loop.

flowDefin
itionArn

String arn:aws:s
agemaker:
us-west-2
: 111122223

The Amazon
Resource Number
(ARN) of the human
review workflow

Output Data 2057

https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-task-types-general.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html

Amazon SageMaker Developer Guide

Parameter Value Type Example Values Description

333 :flow-def
inition/ flow-
definition-na
me

(flow definition) used
to create the human
loop.

humanAnswers List of JSON objects {
"answerContent":
 {
 "AWS/Reko
gnition/D
etectMode
rationLabels/
Image/V3": {
 "moderati
onLabels":
 [...]
 }
},

or

{
 "answerCo
ntent": {
 "AWS/
Textract/Anal
yzeDocument/
Forms/V1": {

 "blocks": [...]
 }
},

A list of JSON
objects that contain
worker responses in
answerContent .

This object also
contains submissio
n details and, if a
private workforce
was used, worker
metadata. To learn
more, see Track
Worker Activity.

For human loop
output data
produced from
Amazon Rekogniti
on DetectMod
erationLabel
review tasks, this
parameter only
contains positive
responses. For
example, if workers
select No content,
this response is not
included.

humanLoopName String 'human-loop-
name'

The name of the
human loop.

Output Data 2058

Amazon SageMaker Developer Guide

Parameter Value Type Example Values Description

inputContent JSON object {
 "aiServic
eRequest":
 {...},
 "aiServic
eResponse":
 {...},
 "humanTas
kActivati
onConditi
onResults":
 {...},
 "selected
AiService
Response":
 {...}
}

The input content the
AWS service sent to
Amazon A2I when it
requested a human
loop be created.

aiService
Request

JSON object {
 "document":
 {...},
 "featureT
ypes": [...],
 "humanLoo
pConfig": { ...}
}

or

{
 "image":
 {...},
 "humanLoo
pConfig": { ...}
}

The original request
sent to the AWS
service integrated
with Amazon A2I. For
example, if you use
Amazon Rekognition
with Amazon A2I, this
includes the request
made through
the API operation
 DetectMod
erationLabels .
For Amazon Textract
integrations, this
includes the request
made through
AnalyzeDocument .

Output Data 2059

Amazon SageMaker Developer Guide

Parameter Value Type Example Values Description

aiService
Response

JSON object {
 "moderati
onLabels":
 [...],
 "moderati
onModelVe
rsion": "3.0"
}

or

{
 "blocks":
 [...],
 "document
Metadata": {}
}

The full response
from the AWS service.
This is the data that
is used to determine
if a human review
is required. This
object may contain
metadata about
the data object that
is not shared with
human reviewers.

Output Data 2060

Amazon SageMaker Developer Guide

Parameter Value Type Example Values Description

selectedA
iServiceR
esponse

JSON object {
 "moderati
onLabels":
 [...],
 "moderati
onModelVe
rsion": "3.0"
}

or

{
 "blocks":
 [...],
 "document
Metadata": {}
}

The subset of
the aiService
Response that
matches the
activation condition
s in Activatio
nConditions .

All data objects
listed in aiService
Response are
listed in selectedA
iServiceR
esponse when
inferences are
randomly sampled,
or all inferences
initiated activation
conditions.

Output Data 2061

Amazon SageMaker Developer Guide

Parameter Value Type Example Values Description

humanTask
Activatio
nConditio
nResults

JSON object {
 "Conditio
ns": [...]
}

A JSON object in
inputContent
that contains the
reason a human loop
was created. This
includes a list of the
activation condition
s (Conditions)
included in your
human review
workflow (flow
definition), and the
evaluation result
for each condition–
this result is either
true or false.
To learn more
about activation
conditions, see JSON
Schema for Human
Loop Activation
Conditions in Amazon
Augmented AI.

Select a tab on the following table to learn about the task type–specific parameters and see an
example output-data code block for each of the built-in task types.

Amazon Textract Task Type Output Data

When you use the Amazon Textract built-in integration, you see 'AWS/Textract/
AnalyzeDocument/Forms/V1' as the value for awsManagedHumanLoopRequestSource in
your output data.

The answerContent parameter contains a Block object that includes human responses for all
blocks sent to Amazon A2I.

Output Data 2062

Amazon SageMaker Developer Guide

The aiServiceResponse parameter also includes a Block object with Amazon Textract's
response to the original request sent using to AnalyzeDocument.

To learn more about the parameters you see in the block object, refer to Block in the Amazon
Textract Developer Guide.

The following is an example of the output data from an Amazon A2I human review of Amazon
Textract document analysis inferences.

{
 "awsManagedHumanLoopRequestSource": "AWS/Textract/AnalyzeDocument/Forms/V1",
 "flowDefinitionArn": "arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "humanAnswers": [
 {
 "answerContent": {
 "AWS/Textract/AnalyzeDocument/Forms/V1": {
 "blocks": [...]
 }
 },
 "submissionTime": "2020-09-28T19:17:59.880Z",
 "workerId": "111122223333",
 "workerMetadata": {
 "identityData": {
 "identityProviderType": "Cognito",
 "issuer": "https://cognito-idp.us-west-2.amazonaws.com/us-
west-2_111111",
 "sub": "c6aa8eb7-9944-42e9-a6b9-111122223333"
 }
 }
 }
],
 "humanLoopName": "humnan-loop-name",
 "inputContent": {
 "aiServiceRequest": {
 "document": {
 "s3Object": {
 "bucket": "DOC-EXAMPLE-BUCKET1",
 "name": "document-demo.jpg"
 }
 },
 "featureTypes": [
 "TABLES",

Output Data 2063

https://docs.aws.amazon.com/textract/latest/dg/API_Block.html

Amazon SageMaker Developer Guide

 "FORMS"
],
 "humanLoopConfig": {
 "dataAttributes": {
 "contentClassifiers": [
 "FreeOfPersonallyIdentifiableInformation"
]
 },
 "flowDefinitionArn": "arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "humanLoopName": "humnan-loop-name"
 }
 },
 "aiServiceResponse": {
 "blocks": [...],
 "documentMetadata": {
 "pages": 1
 }
 },
 "humanTaskActivationConditionResults": {
 "Conditions": [
 {
 "EvaluationResult": true,
 "Or": [
 {
 "ConditionParameters": {
 "ImportantFormKey": "Mail address",
 "ImportantFormKeyAliases": [
 "Mail Address:",
 "Mail address:",
 "Mailing Add:",
 "Mailing Addresses"
],
 "KeyValueBlockConfidenceLessThan": 100,
 "WordBlockConfidenceLessThan": 100
 },
 "ConditionType": "ImportantFormKeyConfidenceCheck",
 "EvaluationResult": true
 },
 {
 "ConditionParameters": {
 "ImportantFormKey": "Mail address",
 "ImportantFormKeyAliases": [
 "Mail Address:",

Output Data 2064

Amazon SageMaker Developer Guide

 "Mail address:",
 "Mailing Add:",
 "Mailing Addresses"
]
 },
 "ConditionType": "MissingImportantFormKey",
 "EvaluationResult": false
 }
]
 }
]
 },
 "selectedAiServiceResponse": {
 "blocks": [...]
 }
 }
}

Amazon Rekognition Task Type Output Data

When you use the Amazon Textract built-in integration, you see the string 'AWS/
Rekognition/DetectModerationLabels/Image/V3' as the value for
awsManagedHumanLoopRequestSource in your output data.

The answerContent parameter contains a moderationLabels object that contains human
responses for all moderation labels sent to Amazon A2I.

The aiServiceResponse parameter also includes a moderationLabels object with Amazon
Rekognition's response to the original request sent to DetectModerationLabels.

To learn more about the parameters you see in the block object, refer to ModerationLabel in the
Amazon Rekognition Developer Guide.

The following is an example of the output data from an Amazon A2I human review of Amazon
Rekognition image moderation inferences.

{
 "awsManagedHumanLoopRequestSource": "AWS/Rekognition/DetectModerationLabels/
Image/V3",
 "flowDefinitionArn": "arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "humanAnswers": [
 {

Output Data 2065

https://docs.aws.amazon.com/rekognition/latest/dg/API_ModerationLabel.html

Amazon SageMaker Developer Guide

 "answerContent": {
 "AWS/Rekognition/DetectModerationLabels/Image/V3": {
 "moderationLabels": [...]
 }
 },
 "submissionTime": "2020-09-28T19:22:35.508Z",
 "workerId": "ef7294f850a3d9d1",
 "workerMetadata": {
 "identityData": {
 "identityProviderType": "Cognito",
 "issuer": "https://cognito-idp.us-west-2.amazonaws.com/us-
west-2_111111",
 "sub": "c6aa8eb7-9944-42e9-a6b9-111122223333"
 }
 }
 }
],
 "humanLoopName": "humnan-loop-name",
 "inputContent": {
 "aiServiceRequest": {
 "humanLoopConfig": {
 "flowDefinitionArn": "arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "humanLoopName": "humnan-loop-name"
 },
 "image": {
 "s3Object": {
 "bucket": "DOC-EXAMPLE-BUCKET1",
 "name": "example-image.jpg"
 }
 }
 },
 "aiServiceResponse": {
 "moderationLabels": [...],
 "moderationModelVersion": "3.0"
 },
 "humanTaskActivationConditionResults": {
 "Conditions": [
 {
 "EvaluationResult": true,
 "Or": [
 {
 "ConditionParameters": {
 "ConfidenceLessThan": 98,

Output Data 2066

Amazon SageMaker Developer Guide

 "ModerationLabelName": "Suggestive"
 },
 "ConditionType": "ModerationLabelConfidenceCheck",
 "EvaluationResult": true
 },
 {
 "ConditionParameters": {
 "ConfidenceGreaterThan": 98,
 "ModerationLabelName": "Female Swimwear Or
 Underwear"
 },
 "ConditionType": "ModerationLabelConfidenceCheck",
 "EvaluationResult": false
 }
]
 }
]
 },
 "selectedAiServiceResponse": {
 "moderationLabels": [
 {
 "confidence": 96.7122802734375,
 "name": "Suggestive",
 "parentName": ""
 }
],
 "moderationModelVersion": "3.0"
 }
 }
}

Output Data From Custom Task Types

When you add Amazon A2I to a custom human review workflow, you see the following parameters
in the output data returned from human review tasks.

Parameter Value Type Description

flowDefinitionArn String The Amazon Resource
Number (ARN) of the human
review workflow (flow

Output Data 2067

Amazon SageMaker Developer Guide

Parameter Value Type Description

definition) used to create the
human loop.

humanAnswers List of JSON objects A list of JSON objects that
contain worker responses in
answerContent . The value
in this parameter is determine
d by the output received from
your worker task template.

If you are using a private
workforce, worker metadata
is included. To learn more, see
Track Worker Activity.

humanLoopName String The name of the human loop.

inputContent JSON Object The input content sent to
Amazon A2I in the request to
StartHumanLoop .

The following is an example of output data from a custom integration with Amazon A2I and
Amazon Transcribe. In this example, the inputContent consists of:

• A path to an .mp4 file in Amazon S3 and the video title

• The transcription returned from Amazon Transcribe (parsed from Amazon Transcribe output
data)

• A start and end time used by the worker task template to clip the .mp4 file and show workers a
relevant portion of the video

{
 "flowDefinitionArn": "arn:aws:sagemaker:us-west-2:111122223333:flow-
definition/flow-definition-name",
 "humanAnswers": [
 {

Output Data 2068

https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-instructions-overview.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_StartHumanLoop.html

Amazon SageMaker Developer Guide

 "answerContent": {
 "transcription": "use lambda to turn your notebook"
 },
 "submissionTime": "2020-06-18T17:08:26.246Z",
 "workerId": "ef7294f850a3d9d1",
 "workerMetadata": {
 "identityData": {
 "identityProviderType": "Cognito",
 "issuer": "https://cognito-idp.us-west-2.amazonaws.com/us-
west-2_111111",
 "sub": "c6aa8eb7-9944-42e9-a6b9-111122223333"
 }
 }

 }
],
 "humanLoopName": "human-loop-name",
 "inputContent": {
 "audioPath": "s3://DOC-EXAMPLE-BUCKET1/a2i_transcribe_demo/Fully-Managed
 Notebook Instances with Amazon SageMaker - a Deep Dive.mp4",
 "end_time": 950.27,
 "original_words": "but definitely use Lambda to turn your ",
 "start_time": 948.51,
 "video_title": "Fully-Managed Notebook Instances with Amazon SageMaker - a Deep
 Dive.mp4"
 }
}

Track Worker Activity

Amazon A2I provides information that you can use to track individual workers in task output data.
To identify the worker that worked on the human review task, use the following from the output
data in Amazon S3:

• The acceptanceTime is the time that the worker accepted the task. The format of this date and
time stamp is YYYY-MM-DDTHH:MM:SS.mmmZ for the year (YYYY), month (MM), day (DD), hour
(HH), minute (MM), second (SS), and millisecond (mmm). The date and time are separated by a T.

• The submissionTime is the time that the worker submitted their annotations using the Submit
button. The format of this date and time stamp is YYYY-MM-DDTHH:MM:SS.mmmZ for the year
(YYYY), month (MM), day (DD), hour (HH), minute (MM), second (SS), and millisecond (mmm). The date
and time are separated by a T.

Output Data 2069

Amazon SageMaker Developer Guide

• timeSpentInSeconds reports the total time, in seconds, that a worker actively worked on that
task. This metric does not include time when a worker paused or took a break.

• The workerId is unique to each worker.

• If you use a private workforce, in workerMetadata, you see the following.

• The identityProviderType is the service used to manage the private workforce.

• The issuer is the Amazon Cognito user pool or OpenID Connect (OIDC) Identity Provider (IdP)
issuer associated with the work team assigned to this human review task.

• A unique sub identifier refers to the worker. If you create a workforce using Amazon Cognito,
you can retrieve details about this worker (such as the name or user name) associated with
this ID using Amazon Cognito. To learn how, see Managing and Searching for User Accounts in
Amazon Cognito Developer Guide.

The following is an example of the output you may see if you use Amazon Cognito to create a
private workforce. This is identified in the identityProviderType.

"submissionTime": "2020-12-28T18:59:58.321Z",
"acceptanceTime": "2020-12-28T18:59:15.191Z",
"timeSpentInSeconds": 40.543,
"workerId": "a12b3cdefg4h5i67",
"workerMetadata": {
 "identityData": {
 "identityProviderType": "Cognito",
 "issuer": "https://cognito-idp.aws-region.amazonaws.com/aws-region_123456789",
 "sub": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee"
 }
}

The following is an example of the output you may see if you use your own OIDC IdP to create a
private workforce:

"workerMetadata": {
 "identityData": {
 "identityProviderType": "Oidc",
 "issuer": "https://example-oidc-ipd.com/adfs",
 "sub": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee"
 }
}

Output Data 2070

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-private.html
https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-manage-user-accounts.html#manage-user-accounts-searching-user-attributes
https://docs.aws.amazon.com/cognito/latest/developerguide/

Amazon SageMaker Developer Guide

To learn more about using private workforces, see Use a Private Workforce.

Permissions and Security in Amazon Augmented AI

When using Amazon Augmented AI (Amazon A2I) to create a human review workflow for your
ML/AI application, you create and configure resources in Amazon SageMaker such as a human
workforce and worker task templates. To configure and start a human loop, you either integrate
Amazon A2I with other AWS services such as Amazon Textract or Amazon Rekognition, or use the
Amazon Augmented AI Runtime API. To create a human review workflow and start a human loop,
you must attach certain policies to your AWS Identity and Access Management (IAM) role or user.
Specifically:

• When you start a human loop using image input data on or after January 12th, 2020, you must
add a CORS header policy to the Amazon S3 bucket that contains your input data. See CORS
Permission Requirement to learn more.

• When you create a flow definition, you need to provide a role that grants Amazon A2I permission
to access Amazon S3 both for reading objects that are rendered in a human task UI and for
writing the results of the human review.

This role must also have a trust policy attached to give SageMaker permission to assume the role.
This allows Amazon A2I to perform actions in accordance with permissions that you attach to the
role.

See Add Permissions to the IAM Role Used to Create a Flow Definition for example policies that
you can modify and attach to the role you use to create a flow definition. These are the policies
that are attached to the IAM role that is created in the Human review workflows section of the
Amazon A2I area of the SageMaker console.

• To create and start human loops, you either use an API operation from a built-in task type
(such as DetectModerationLabel or AnalyzeDocument) or the Amazon A2I Runtime
API operation StartHumanLoop in a custom ML application. You need to attach the
AmazonAugmentedAIFullAccess managed policy to the user that invokes these API
operations to grant permission to these services to use Amazon A2I operations. To learn how, see
Create a User That Can Invoke Amazon A2I API Operations.

This policy does not grant permission to invoke the API operations of the AWS service associated
with built-in task types. For example, AmazonAugmentedAIFullAccess does not grant
permission to call the Amazon Rekognition DetectModerationLabel API operation or
Amazon Textract AnalyzeDocument API operation. You can use the more general policy,

Permissions and Security 2071

Amazon SageMaker Developer Guide

AmazonAugmentedAIIntegratedAPIAccess, to grant these permissions. For more
information, see Create a User With Permissions to Invoke Amazon A2I, Amazon Textract, and
Amazon Rekognition API Operations. This is a good option when you want to grant a user broad
permissions to use Amazon A2I and integrated AWS services' API operations.

If you want to configure more granular permissions, see Amazon Rekognition Identity-Based
Policy Examples and Amazon Textract Identity-Based Policy Examples for identity-based policies
you can use to grant permission to use these individual services.

• To preview your custom worker task UI template, you need an IAM role with permissions to read
Amazon S3 objects that get rendered on your user interface. See a policy example in Enable
Worker Task Template Previews .

Topics

• CORS Permission Requirement

• Add Permissions to the IAM Role Used to Create a Flow Definition

• Create a User That Can Invoke Amazon A2I API Operations

• Create a User With Permissions to Invoke Amazon A2I, Amazon Textract, and Amazon
Rekognition API Operations

• Enable Worker Task Template Previews

• Using Amazon A2I with AWS KMS Encrypted Buckets

• Additional Permissions and Security Resources

CORS Permission Requirement

Earlier in 2020, widely used browsers like Chrome and Firefox changed their default behavior for
rotating images based on image metadata, referred to as EXIF data. Previously, images would
always display in browsers exactly how they are stored on disk, which is typically unrotated. After
the change, images now rotate according to a piece of image metadata called orientation value.
This has important implications for the entire machine learning (ML) community. For example, if
the EXIF orientation is not considered, applications that are used to annotate images may display
images in unexpected orientations and result in incorrect labels.

Starting with Chrome 89, AWS can no longer automatically prevent the rotation of images because
the web standards group W3C has decided that the ability to control rotation of images violates
the web’s Same-Origin Policy. Therefore, to ensure human workers annotate your input images in

Permissions and Security 2072

https://docs.aws.amazon.com/rekognition/latest/dg/security_iam_id-based-policy-examples.html
https://docs.aws.amazon.com/rekognition/latest/dg/security_iam_id-based-policy-examples.html
https://docs.aws.amazon.com/textract/latest/dg/security_iam_id-based-policy-examples.html
https://en.wikipedia.org/wiki/Exif

Amazon SageMaker Developer Guide

a predictable orientation when you submit requests to create a human loop, you must add a CORS
header policy to the S3 buckets that contain your input images.

Important

If you do not add a CORS configuration to the S3 buckets that contains your input data,
human review tasks for those input data objects fail.

You can add a CORS policy to an S3 bucket that contains input data in the Amazon S3 console. To
set the required CORS headers on the S3 bucket that contains your input images in the S3 console,
follow the directions detailed in How do I add cross-domain resource sharing with CORS?. Use the
following CORS configuration code for the buckets that host your images. If you use the Amazon
S3 console to add the policy to your bucket, you must use the JSON format.

JSON

[{
 "AllowedHeaders": [],
 "AllowedMethods": ["GET"],
 "AllowedOrigins": ["*"],
 "ExposeHeaders": []
}]

XML

<CORSConfiguration>
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
 </CORSRule>
</CORSConfiguration>

Add Permissions to the IAM Role Used to Create a Flow Definition

To create a flow definition, attach the policies in this section to the role that you use when creating
a human review workflow in the SageMaker console, or when using the CreateFlowDefinition
API operation.

Permissions and Security 2073

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html

Amazon SageMaker Developer Guide

• If you are using the console to create a human review workflow, enter the role Amazon Resource
Name (ARN) in the IAM role field when creating a human review workflow in the console.

• When creating a flow definition using the API, attach these policies to the role that is passed to
the RoleArn parameter of the CreateFlowDefinition operation.

When you create a human review workflow (flow definition), Amazon A2I invokes Amazon S3
to complete your task. To grant Amazon A2I permission to retrieve and store your files in your
Amazon S3 bucket, create the following policy and attach it to your role. For example, if the
images, documents, and other files that you are sending for human review are stored in an S3
bucket named my_input_bucket, and if you want the human reviews to be stored in a bucket
named my_output_bucket, create the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::my_input_bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::my_output_bucket/*"
]
 }
]
}

In addition, the IAM role must have the following trust policy to give SageMaker permission to
assume the role. To learn more about IAM trust policies, see Resource-Based Policies section of
Policies and Permissions in the AWS Identity and Access Management documentation.

Permissions and Security 2074

https://docs.aws.amazon.com/sagemaker/latest/dg/create-human-review-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSageMakerToAssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

For more information about creating and managing IAM roles and policies, see the following topics
in the AWS Identity and Access Management User Guide:

• To create an IAM role, see Creating a Role to Delegate Permissions to an IAM User.

• To learn how to create IAM policies, see Creating IAM Policies.

• To learn how to attach an IAM policy to a role, see Adding and Removing IAM Identity
Permissions.

Create a User That Can Invoke Amazon A2I API Operations

To use Amazon A2I to create and start human loops for Amazon Rekognition, Amazon Textract,
or the Amazon A2I runtime API, you must use a user that has permissions to invoke Amazon A2I
operations. To do this, use the IAM console to attach the AmazonAugmentedAIFullAccess
managed policy to a new or existing user.

This policy grants permission to a user to invoke API operations from the SageMaker API for flow
definition creation and management and the Amazon Augmented AI Runtime API for human loop
creation and management. To learn more about these API operations, see Use APIs in Amazon
Augmented AI.

AmazonAugmentedAIFullAccess does not grant permissions to use Amazon Rekognition or
Amazon Textract API operations.

Permissions and Security 2075

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/iam/home?region=us-east-2#/policies/arn:aws:iam::aws:policy/AmazonAugmentedAIFullAccess$jsonEditor
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-api-references.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-api-references.html

Amazon SageMaker Developer Guide

Note

You can also attach the AmazonAugmentedAIFullAccess policy to an IAM role that is
used to create and start a human loop.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

For more information, see Adding and Removing IAM Identity Permissions in the AWS Identity and
Access Management User Guide.

Create a User With Permissions to Invoke Amazon A2I, Amazon Textract, and
Amazon Rekognition API Operations

To create a user that has permission to invoke the API operations used by the built-in task types
(that is, DetectModerationLables for Amazon Rekognition and AnalyzeDocument for Amazon
Textract) and permission to use all Amazon A2I API operations, attach the IAM managed policy,
AmazonAugmentedAIIntegratedAPIAccess. You may want to use this policy when you want to
grant broad permissions to a user using Amazon A2I with more than one task type. To learn more
about these API operations, see Use APIs in Amazon Augmented AI.

Permissions and Security 2076

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-api-references.html

Amazon SageMaker Developer Guide

Note

You can also attach the AmazonAugmentedAIIntegratedAPIAccess policy to an IAM
role that is used to create and start a human loop.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

For more information, see Adding and Removing IAM Identity Permissions in the AWS Identity and
Access Management User Guide.

Enable Worker Task Template Previews

To customize the interface and instructions that your workers see when working on your tasks,
you create a worker task template. You can create the template using the CreateHumanTaskUi
operation or the SageMaker console.

To preview your template, you need an IAM role with the following permissions to read Amazon S3
objects that get rendered on your user interface.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Permissions and Security 2077

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html

Amazon SageMaker Developer Guide

 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::my_input_bucket/*"
]
 }
]
}

For Amazon Rekognition and Amazon Textract task types, you can preview your template using the
Amazon Augmented AI section of the SageMaker console. For custom task types, you preview your
template by invoking the RenderUiTemplate operation. To preview your template, follow the
instructions for your task type:

• Amazon Rekognition and Amazon Textract task types – In the SageMaker console, use the role's
Amazon Resource Name (ARN) in the procedure documented in Create a Worker Task Template.

• Custom task types – In the RenderUiTemplate operation, use the role's ARN in the RoleArn
parameter.

Using Amazon A2I with AWS KMS Encrypted Buckets

If you specify an AWS Key Management Service (AWS KMS) customer managed key to encrypt
output data in OutputConfig of CreateFlowDefinition, you must add an IAM policy similar
to the following to that key. This policy gives the IAM execution role that you use to create your
human loops permission to use this key to perform all of the actions listed in "Action". To
learn more about these actions, see AWS KMS permissions in the AWS Key Management Service
Developer Guide.

To use this policy, replace the IAM service-role ARN in "Principal" with the ARN of the execution
role you use to create the human review workflow (flow definition). When you create a labeling job
using CreateFlowDefinition, this is the ARN you specify for RoleArn. Note that you cannot
provide a KmsKeyId when you create a flow definition in the console.

{
 "Sid": "AllowUseOfKmsKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/service-role/example-role"

Permissions and Security 2078

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RenderUiTemplate.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-RoleArn

Amazon SageMaker Developer Guide

 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
}

Additional Permissions and Security Resources

• the section called “Control Access to SageMaker Resources by Using Tags”.

• the section called “SageMaker Identity-Based Policies”

• the section called “Control Creation of SageMaker Resources with Condition Keys”

• the section called “Amazon SageMaker API Permissions Reference”

• Configure security in Amazon SageMaker

Use Amazon CloudWatch Events in Amazon Augmented AI

Amazon Augmented AI uses Amazon CloudWatch Events to alert you when a human review
loop status changes to Completed, Failed, or Stopped. This event delivery is guaranteed at
least once, which means all events created when human loops finish are successfully delivered to
CloudWatch Events (Amazon EventBridge). When a review loop changes to one of these states,
Augmented AI sends an event to CloudWatch Events similar to the following.

{
 "version":"0",
 "id":"12345678-1111-2222-3333-12345EXAMPLE",
 "detail-type":"SageMaker A2I HumanLoop Status Change",
 "source":"aws.sagemaker",
 "account":"1111111111111",
 "time":"2019-11-14T17:49:25Z",
 "region":"us-east-1",
 "resources":["arn:aws:sagemaker:us-east-1:111111111111:human-loop/humanloop-
nov-14-1"],
 "detail":{
 "creationTime":"2019-11-14T17:37:36.740Z",
 "failureCode":null,

CloudWatch Events 2079

Amazon SageMaker Developer Guide

 "failureReason":null,
 "flowDefinitionArn":"arn:aws:sagemaker:us-east-1:111111111111:flow-definition/
flowdef-nov-12",
 "humanLoopArn":"arn:aws:sagemaker:us-east-1:111111111111:human-loop/humanloop-
nov-14-1",
 "humanLoopName":"humanloop-nov-14-1",
 "humanLoopOutput":{
 "outputS3Uri":"s3://customer-output-bucket-specified-in-flow-definition/
flowdef-nov-12/2019/11/14/17/37/36/humanloop-nov-14-1/output.json"
 },
 "humanLoopStatus":"Completed"
 }
}

The details in the JSON output include the following:

creationTime

The timestamp when Augmented AI created the human loop.

failureCode

A failure code denoting a specific type of failure.

failureReason

The reason why a human loop has failed. The failure reason is only returned when the human
review loop status is failed.

flowDefinitionArn

The Amazon Resource Name (ARN) of the flow definition, or human review workflow.

humanLoopArn

The Amazon Resource Name (ARN) of the human loop.

humanLoopName

The name of the human loop.

humanLoopOutput

An object containing information about the output of the human loop.

outputS3Uri

The location of the Amazon S3 object where Augmented AI stores your human loop output.

CloudWatch Events 2080

Amazon SageMaker Developer Guide

humanLoopStatus

The status of the human loop.

Send Events from Your Human Loop to CloudWatch Events

To configure a CloudWatch Events rule to get status updates, or events, for your Amazon A2I
human loops, use the AWS Command Line Interface (AWS CLI) put-rule command. When using
the put-rule command, specify the following to receive human loop statuses:

• \"source\":[\"aws.sagemaker\"]

• \"detail-type\":[\"SageMaker A2I HumanLoop Status Change\"]

To configure a CloudWatch Events rule to watch for all status changes, use the following command
and replace the placeholder text. For example, replace "A2IHumanLoopStatusChanges"
with a unique CloudWatch Events rule name and "arn:aws:iam::111122223333:role/
MyRoleForThisRule" with the Amazon Resource Number (ARN) of an IAM role with an
events.amazonaws.com trust policy attached. Replace region with the AWS Region in which you
want to create the rule.

aws events put-rule --name "A2IHumanLoopStatusChanges"
 --event-pattern "{\"source\":[\"aws.sagemaker\"],\"detail-type\":[\"SageMaker A2I
 HumanLoop Status Change\"]}"
 --role-arn "arn:aws:iam::111122223333:role/MyRoleForThisRule"
 --region "region"

To learn more about the put-rule request, see Event Patterns in CloudWatch Events in the
Amazon CloudWatch Events User Guide.

Set Up a Target to Process Events

To process events, you need to set up a target. For example, if you want to receive an email when
a human loop status changes, use a procedure in Setting Up Amazon SNS Notifications in the
Amazon CloudWatch User Guide to set up an Amazon SNS topic and subscribe your email to it.
Once you have created a topic, you can use it to create a target.

To add a target to your CloudWatch Events rule

1. Open the CloudWatch console: https://console.aws.amazon.com/cloudwatch/home

CloudWatch Events 2081

https://docs.aws.amazon.com/cli/latest/reference/events/put-rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html
https://console.aws.amazon.com/cloudwatch/home

Amazon SageMaker Developer Guide

2. In the navigation pane, choose Rules.

3. Choose the rule to which you want to add a target.

4. Choose Actions, and then choose Edit.

5. Under Targets, choose Add Target and choose the AWS service you want to act when a human
loop status change event is detected.

6. Configure your target. For instructions, see the topic for configuring a target in the AWS
documentation for that service.

7. Choose Configure details.

8. For Name, enter a name and, optionally, provide details about the purpose of the rule in
Description.

9. Make sure that the check box next to State is selected so that your rule is listed as Enabled.

10. Choose Update rule.

Use Human Review Output

After you receive human review results, you can analyze the results and compare them to machine
learning predictions. The JSON that is stored in the Amazon S3 bucket contains both the machine
learning predictions and the human review results.

More Information

Automating Amazon SageMaker with Amazon EventBridge

Use APIs in Amazon Augmented AI

You can create a human review workflow or a worker task template programmatically. The
APIs you use depend on whether you are creating a Amazon Rekognition, Amazon Textract, or
custom task type. This topic provides links to API reference documentation for each task type and
programming task.

The following APIs can be used with Augmented AI:

Amazon Augmented AI

Use the Augmented AI API to start, stop, and delete human review loops. You can also list all
human review loops and return information about human review loops in your account.

API References 2082

https://docs.aws.amazon.com/index.html
https://docs.aws.amazon.com/index.html

Amazon SageMaker Developer Guide

Learn more about human review loop APIs in the Amazon Augmented AI Runtime API
Reference.

Amazon Rekognition

Use the HumanLoopConfig parameter of the DetectModerationLabels API to initiate a
human review workflow using Amazon Rekognition.

Amazon SageMaker

Use the Amazon SageMaker API to create a FlowDefinition, also known as a human review
workflow. You can also create a HumanTaskUi or worker task template.

For more information, see the CreateFlowDefinition or the CreateHumanTaskUi API
documentation.

Amazon Textract

Use the HumanLoopConfig parameter of the AnalyzeDocument API to initiate a human review
workflow using Amazon Textract.

Programmatic Tutorials

The following tutorials provide example code and step-by-step instructions for creating human
review workflows and worker task templates programmatically.

• Tutorial: Get Started Using the Amazon A2I API

• Create a Human Review Workflow (API)

• Create and Start a Human Loop

• Using Amazon Augmented AI with Amazon Rekognition in the Amazon Rekognition Developer
Guide

• Using Amazon Augmented AI with Amazon Textract AnalyzeDocument in the Amazon Textract
Developer Guide

API References 2083

https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html
https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectModerationLabels.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html
https://docs.aws.amazon.com/textract/latest/dg/API_AnalyzeDocument.html
https://docs.aws.amazon.com/rekognition/latest/dg/a2i-rekognition.html
https://docs.aws.amazon.com/textract/latest/dg/a2i-textract.html

Amazon SageMaker Developer Guide

Prepare data

Data preparation in machine learning refers to the process of collecting, preprocessing, and
organizing raw data to make it suitable for analysis and modeling. This step ensures that the data
is in a format that machine learning algorithms can effectively learn from. Data preparation tasks
may include handling missing values, removing outliers, scaling features, encoding categorical
variables, assessing potential biases and taking steps to mitigate them, splitting data into training
and testing sets, labeling, and other necessary transformations to optimize the quality and
usability of the data for subsequent machine learning tasks.

Amazon SageMaker provides several built-in features for performing data preparation tasks such as
cleaning, transforming, and labeling datasets before model training.

• For low code data preparation, you can use Amazon SageMaker Data Wrangler to create data
flows that define your ML data pre-processing and feature engineering workflows using little
to no coding. Import data from sources such as Amazon S3, Amazon Redshift, or Snowflake to
engineer features. You can use built-in visualizations and analyses to get insights from your data.
After preparing your data, you can export the finished output to Amazon S3, Amazon SageMaker
Feature Store, or SageMaker Pipelines. Data Wrangler exists within Amazon SageMaker Canvas
and Amazon SageMaker Studio Classic. We recommend using it within SageMaker Canvas for the
latest features. For more information about Data Wrangler within SageMaker Canvas, see the
section called “Prepare data”. For information about Data Wrangler within Studio Classic, see the
section called “Prepare Data with Data Wrangler”.

• For data preparation at scale using open-source frameworks such as Apache Spark, Apache Hive,
or Presto, Amazon SageMaker Studio Classic provides a built-in integration with Amazon EMR.
You can use SageMaker Studio Classic to connect or provision Amazon EMR clusters from your
notebooks for petabyte-scale data processing, interactive analytics, and machine learning. For
more information about using Amazon EMR from SageMaker Studio Classic, see Prepare data
using Amazon EMR.

Alternatively, you can use the Apache Spark-based serverless engine from AWS Glue interactive
sessions to aggregate, transform, and prepare data from multiple sources in SageMaker Studio
Classic. For more information about using AWS Glue interactive sessions within SageMaker
Studio Classic, see Prepare data using AWS Glue Interactive Sessions.

• For feature discovery and storage, the Amazon SageMaker Feature Store has capabilities to
search, discover, and retrieve features for model training and provides a centralized repository to
store feature data in a standardized format. Storing curated features in the Feature Store allows

2084

https://aws.amazon.com/emr/features/spark/
https://aws.amazon.com/emr/features/hive/
https://aws.amazon.com/emr/features/presto/

Amazon SageMaker Developer Guide

reuse of existing features for new ML projects. The Feature Store manages the full lifecycle of
features including tracking lineage, calculating statistics, and maintaining audit trails. For more
information on feature data storage for your ML pipelines, refer to the Create, store, and share
features section in this guide.

• For bias detection, you can use Amazon SageMaker Clarify to analyze your data and detect
potential biases across multiple facets. For example, you can use SageMaker Clarify to detect if
your training data contains imbalanced representations or labeling biases between groups such
as gender, race, or age. SageMaker Clarify can help you identify these biases before training a
model to avoid propagating biases into the model's predictions. For information about using
SageMaker Clarify to uncover biases, refer to the the section called “Detect Pre-training Data
Bias” section in this guide.

• For data labeling, you can use SageMaker Ground Truth to manage the data labeling workflows
of your training datasets. For information about how to use Ground Truth for your labeling tasks,
refer to the Label data with a human-in-the-loop section in this guide.

After performing exploratory data analysis and creating your data transformations steps, you
can productionize your transformation code using SageMaker Processing jobs and automate your
preparation workflow using SageMaker Model Building Pipelines.

For information about the SageMaker Processing API, see Amazon SageMaker processing jobs.

For information about automating your transformation steps, see SageMaker Model Building
Pipelines.

Topics

• Prepare ML Data with Amazon SageMaker Data Wrangler

• Prepare Data at Scale with Studio Classic using Amazon EMR or AWS Glue

Prepare ML Data with Amazon SageMaker Data Wrangler

Important

Amazon SageMaker Data Wrangler has been integrated into Amazon SageMaker Canvas.
Within the new Data Wrangler experience in SageMaker Canvas, you can use a natural
language interface to explore and transform your data in addition to the visual interface.
For more information about Data Wrangler in SageMaker Canvas, see Prepare data.

Prepare Data with Data Wrangler 2085

https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html
https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html

Amazon SageMaker Developer Guide

Amazon SageMaker Data Wrangler (Data Wrangler) is a feature of Amazon SageMaker Studio
Classic that provides an end-to-end solution to import, prepare, transform, featurize, and analyze
data. You can integrate a Data Wrangler data preparation flow into your machine learning (ML)
workflows to simplify and streamline data pre-processing and feature engineering using little to no
coding. You can also add your own Python scripts and transformations to customize workflows.

Data Wrangler provides the following core functionalities to help you analyze and prepare data for
machine learning applications.

• Import – Connect to and import data from Amazon Simple Storage Service (Amazon S3),
Amazon Athena (Athena), Amazon Redshift, Snowflake, and Databricks.

• Data Flow – Create a data flow to define a series of ML data prep steps. You can use a flow to
combine datasets from different data sources, identify the number and types of transformations
you want to apply to datasets, and define a data prep workflow that can be integrated into an
ML pipeline.

• Transform – Clean and transform your dataset using standard transforms like string, vector, and
numeric data formatting tools. Featurize your data using transforms like text and date/time
embedding and categorical encoding.

• Generate Data Insights – Automatically verify data quality and detect abnormalities in your data
with Data Wrangler Data Insights and Quality Report.

• Analyze – Analyze features in your dataset at any point in your flow. Data Wrangler includes
built-in data visualization tools like scatter plots and histograms, as well as data analysis tools
like target leakage analysis and quick modeling to understand feature correlation.

• Export – Export your data preparation workflow to a different location. The following are
example locations:

• Amazon Simple Storage Service (Amazon S3) bucket

• Amazon SageMaker Model Building Pipelines – Use SageMaker Pipelines to automate model
deployment. You can export the data that you've transformed directly to the pipelines.

• Amazon SageMaker Feature Store – Store the features and their data in a centralized store.

• Python script – Store the data and their transformations in a Python script for your custom
workflows.

To start using Data Wrangler, see Get Started with Data Wrangler.

Prepare Data with Data Wrangler 2086

Amazon SageMaker Developer Guide

Important

Data Wrangler no longer supports Jupyter Lab Version 1 (JL1). To access the latest features
and updates, update to Jupyter Lab Version 3. For more information about upgrading, see
View and update the JupyterLab version of an application from the console.

Important

The information and procedures in this guide use the latest version of Amazon SageMaker
Studio Classic. For information about updating Studio Classic to the latest version, see
Amazon SageMaker Studio Classic UI Overview.

You must use Studio Classic version 1.3.0 or later. Use the following procedure to open Amazon
SageMaker Studio Classic and see which version you're running.

To open Studio Classic and check its version, see the following procedure.

1. Use the steps in Prerequisites to access Data Wrangler through Amazon SageMaker Studio
Classic.

2. Next to the user you want to use to launch Studio Classic, select Launch app.

3. Choose Studio.

4. After Studio Classic loads, select File, then New, and then Terminal.

Prepare Data with Data Wrangler 2087

Amazon SageMaker Developer Guide

5. Once you have launched Studio Classic, select File, then New, and then Terminal.

6. Enter cat /opt/conda/share/jupyter/lab/staging/yarn.lock | grep -A 1
"@amzn/sagemaker-ui-data-prep-plugin@" to print the version of your Studio Classic
instance. You must have Studio Classic version 1.3.0 to use Snowflake.

You can update Amazon SageMaker Studio Classic from within the AWS Management Console.
For more information about updating Studio Classic, see Amazon SageMaker Studio Classic UI
Overview.

Topics

• Get Started with Data Wrangler

Prepare Data with Data Wrangler 2088

Amazon SageMaker Developer Guide

• Import

• Create and Use a Data Wrangler Flow

• Get Insights On Data and Data Quality

• Automatically Train Models on Your Data Flow

• Transform Data

• Analyze and Visualize

• Reusing Data Flows for Different Datasets

• Export

• Use an Interactive Data Preparation Widget in an Amazon SageMaker Studio Classic Notebook to
Get Data Insights

• Security and Permissions

• Release Notes

• Troubleshoot

• Increase Amazon EC2 Instance Limit

• Update Data Wrangler

• Shut Down Data Wrangler

Get Started with Data Wrangler

Amazon SageMaker Data Wrangler is a feature in Amazon SageMaker Studio Classic. Use this
section to learn how to access and get started using Data Wrangler. Do the following:

1. Complete each step in Prerequisites.

2. Follow the procedure in Access Data Wrangler to start using Data Wrangler.

Prerequisites

To use Data Wrangler, you must complete the following prerequisites.

1. To use Data Wrangler, you need access to an Amazon Elastic Compute Cloud (Amazon EC2)
instance. For more information about the Amazon EC2 instances that you can use, see
Instances. To learn how to view your quotas and, if necessary, request a quota increase, see
AWS service quotas.

Get Started with Data Wrangler 2089

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon SageMaker Developer Guide

2. Configure the required permissions described in Security and Permissions.

3. If your organization is using a firewall that blocks internet traffic, you must have access to the
following URLs:

• https://ui.prod-1.data-wrangler.sagemaker.aws/

• https://ui.prod-2.data-wrangler.sagemaker.aws/

• https://ui.prod-3.data-wrangler.sagemaker.aws/

• https://ui.prod-4.data-wrangler.sagemaker.aws/

To use Data Wrangler, you need an active Studio Classic instance. To learn how to launch a new
instance, see Amazon SageMaker domain overview. When your Studio Classic instance is Ready,
use the instructions in Access Data Wrangler.

Access Data Wrangler

The following procedure assumes you have completed the Prerequisites.

To access Data Wrangler in Studio Classic, do the following.

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. Choose the Home icon.

6. Choose Data.

7. Choose Data Wrangler.

8. You can also create a Data Wrangler flow by doing the following.

a. In the top navigation bar, select File.

b. Select New.

c. Select Data Wrangler Flow.

Get Started with Data Wrangler 2090

Amazon SageMaker Developer Guide

9. (Optional) Rename the new directory and the .flow file.

10. When you create a new .flow file in Studio Classic, you might see a carousel that introduces
you to Data Wrangler.

This may take a few minutes.

This messaging persists as long as the KernelGateway app on your User Details page is
Pending. To see the status of this app, in the SageMaker console on the Amazon SageMaker
Studio Classic page, select the name of the user you are using to access Studio Classic. On
the User Details page, you see a KernelGateway app under Apps. Wait until this app status is
Ready to start using Data Wrangler. This can take around 5 minutes the first time you launch
Data Wrangler.

Get Started with Data Wrangler 2091

Amazon SageMaker Developer Guide

11. To get started, choose a data source and use it to import a dataset. See Import to learn more.

When you import a dataset, it appears in your data flow. To learn more, see Create and Use a
Data Wrangler Flow.

12. After you import a dataset, Data Wrangler automatically infers the type of data in each
column. Choose + next to the Data types step and select Edit data types.

Important

After you add transforms to the Data types step, you cannot bulk-update column
types using Update types.

13. Use the data flow to add transforms and analyses. To learn more see Transform Data and
Analyze and Visualize.

14. To export a complete data flow, choose Export and choose an export option. To learn more,
see Export.

15. Finally, choose the Components and registries icon, and select Data Wrangler from the
dropdown list to see all the .flow files that you've created. You can use this menu to find and
move between data flows.

After you have launched Data Wrangler, you can use the following section to walk through how
you might use Data Wrangler to create an ML data prep flow.

Get Started with Data Wrangler 2092

Amazon SageMaker Developer Guide

Update Data Wrangler

We recommend that you periodically update the Data Wrangler Studio Classic app to access the
latest features and updates. The Data Wrangler app name starts with sagemaker-data-wrang. To
learn how to update a Studio Classic app, see Shut down and Update Studio Classic Apps.

Demo: Data Wrangler Titanic Dataset Walkthrough

The following sections provide a walkthrough to help you get started using Data Wrangler. This
walkthrough assumes that you have already followed the steps in Access Data Wrangler and have
a new data flow file open that you intend to use for the demo. You may want to rename this .flow
file to something similar to titanic-demo.flow.

This walkthrough uses the Titanic dataset. It's a modified version of the Titanic dataset that you
can import into your Data Wrangler flow more easily. This data set contains the survival status, age,
gender, and class (which serves as a proxy for economic status) of passengers aboard the maiden
voyage of the RMS Titanic in 1912.

In this tutorial, you perform the following steps.

1. Do one of the following:

• Open your Data Wrangler flow and choose Use Sample Dataset.

• Upload the Titanic dataset to Amazon Simple Storage Service (Amazon S3), and then import
this dataset into Data Wrangler.

2. Analyze this dataset using Data Wrangler analyses.

3. Define a data flow using Data Wrangler data transforms.

4. Export your flow to a Jupyter Notebook that you can use to create a Data Wrangler job.

5. Process your data, and kick off a SageMaker training job to train a XGBoost Binary Classifier.

Upload Dataset to S3 and Import

To get started, you can use one of the following methods to import the Titanic dataset into Data
Wrangler:

• Importing the dataset directly from the Data Wrangler flow

• Uploading the dataset to Amazon S3 and then importing it into Data Wrangler

To import the dataset directly into Data Wrangler, open the flow and choose Use Sample Dataset.

Get Started with Data Wrangler 2093

https://s3.us-west-2.amazonaws.com/amazon-sagemaker-data-wrangler-documentation-artifacts/walkthrough_titanic.csv
https://www.openml.org/d/40945
https://s3.us-west-2.amazonaws.com/amazon-sagemaker-data-wrangler-documentation-artifacts/walkthrough_titanic.csv

Amazon SageMaker Developer Guide

Uploading the dataset to Amazon S3 and importing it into Data Wrangler is closer to the
experience you have importing your own data. The following information tells you how to upload
your dataset and import it.

Before you start importing the data into Data Wrangler, download the Titanic dataset and upload it
to an Amazon S3 (Amazon S3) bucket in the AWS Region in which you want to complete this demo.

If you are a new user of Amazon S3, you can do this using drag and drop in the Amazon S3 console.
To learn how, see Uploading Files and Folders by Using Drag and Drop in the Amazon Simple
Storage Service User Guide.

Important

Upload your dataset to an S3 bucket in the same AWS Region you want to use to complete
this demo.

When your dataset has been successfully uploaded to Amazon S3, you can import it into Data
Wrangler.

Import the Titanic dataset to Data Wrangler

1. Choose the Import data button in your Data flow tab or choose the Import tab.

2. Select Amazon S3.

3. Use the Import a dataset from S3 table to find the bucket to which you added the Titanic
dataset. Choose the Titanic dataset CSV file to open the Details pane.

4. Under Details, the File type should be CSV. Check First row is header to specify that the first
row of the dataset is a header. You can also name the dataset something more friendly, such as
Titanic-train.

5. Choose the Import button.

When your dataset is imported into Data Wrangler, it appears in your Data Flow tab. You can
double click on a node to enter the node detail view, which allows you to add transformations or
analysis. You can use the plus icon for a quick access to the navigation. In the next section, you use
this data flow to add analysis and transform steps.

Get Started with Data Wrangler 2094

https://s3.us-west-2.amazonaws.com/amazon-sagemaker-data-wrangler-documentation-artifacts/walkthrough_titanic.csv
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html#upload-objects-by-drag-and-drop

Amazon SageMaker Developer Guide

Data Flow

In the data flow section, the only steps in the data flow are your recently imported dataset and a
Data type step. After applying transformations, you can come back to this tab and see what the
data flow looks like. Now, add some basic transformations under the Prepare and Analyze tabs.

Prepare and Visualize

Data Wrangler has built-in transformations and visualizations that you can use to analyze, clean,
and transform your data.

The Data tab of the node detail view lists all built-in transformations in the right panel, which also
contains an area in which you can add custom transformations. The following use case showcases
how to use these transformations.

To get information that might help you with data exploration and feature engineering, create a
data quality and insights report. The information from the report can help you clean and process
your data. It gives you information such as the number of missing values and the number of
outliers. If you have issues with your data, such as target leakage or imbalance, the insights report
can bring those issues to your attention. For more information about creating a report, see Get
Insights On Data and Data Quality.

Data Exploration

First, create a table summary of the data using an analysis. Do the following:

1. Choose the + next to the Data type step in your data flow and select Add analysis.

2. In the Analysis area, select Table summary from the dropdown list.

3. Give the table summary a Name.

4. Select Preview to preview the table that will be created.

5. Choose Save to save it to your data flow. It appears under All Analyses.

Using the statistics you see, you can make observations similar to the following about this dataset:

• Fare average (mean) is around $33, while the max is over $500. This column likely has outliers.

• This dataset uses ? to indicate missing values. A number of columns have missing values: cabin,
embarked, and home.dest

• The age category is missing over 250 values.

Get Started with Data Wrangler 2095

Amazon SageMaker Developer Guide

Next, clean your data using the insights gained from these stats.

Drop Unused Columns

Using the analysis from the previous section, clean up the dataset to prepare it for training. To
add a new transform to your data flow, choose + next to the Data type step in your data flow and
choose Add transform.

First, drop columns that you don't want to use for training. You can use pandas data analysis library
to do this, or you can use one of the built-in transforms.

Use the following procedure to drop the unused columns.

To drop the unused columns.

1. Open the Data Wrangler flow.

2. There are two nodes in your Data Wrangler flow. Choose the + to the right of the Data types
node.

3. Choose Add transform.

4. In the All steps column, choose Add step.

5. In the Standard transform list, choose Manage Columns. The standard transformations are
ready-made, built-in transformations. Make sure that Drop column is selected.

6. Under Columns to drop, check the following column names:

• cabin

• ticket

• name

• sibsp

• parch

• home.dest

• boat

• body

7. Choose Preview.

8. Verify that the columns have been dropped, then choose Add.

To do this using pandas, follow these steps.

Get Started with Data Wrangler 2096

https://pandas.pydata.org/

Amazon SageMaker Developer Guide

1. In the All steps column, choose Add step.

2. In the Custom transform list, choose Custom transform.

3. Provide a name for your transformation, and choose Python (Pandas) from the dropdown list.

4. Enter the following Python script in the code box.

cols = ['name', 'ticket', 'cabin', 'sibsp', 'parch', 'home.dest','boat', 'body']
df = df.drop(cols, axis=1)

5. Choose Preview to preview the change, and then choose Add to add the transformation.

Clean up Missing Values

Now, clean up missing values. You can do this with the Handling missing values transform group.

A number of columns have missing values. Of the remaining columns, age and fare contain missing
values. Inspect this using a Custom Transform.

Using the Python (Pandas) option, use the following to quickly review the number of entries in
each column:

df.info()

Get Started with Data Wrangler 2097

Amazon SageMaker Developer Guide

To drop rows with missing values in the age category, do the following:

1. Choose Handle missing.

2. Choose Drop missing for the Transformer.

3. Choose age for the Input column.

4. Choose Preview to see the new data frame, and then choose Add to add the transform to your
flow.

5. Repeat the same process for fare.

You can use df.info() in the Custom transform section to confirm that all rows now have 1,045
values.

Custom Pandas: Encode

Try flat encoding using Pandas. Encoding categorical data is the process of creating a numerical
representation for categories. For example, if your categories are Dog and Cat, you may encode
this information into two vectors: [1,0] to represent Dog, and [0,1] to represent Cat.

1. In the Custom Transform section, choose Python (Pandas) from the dropdown list.

Get Started with Data Wrangler 2098

Amazon SageMaker Developer Guide

2. Enter the following in the code box.

import pandas as pd

dummies = []
cols = ['pclass','sex','embarked']
for col in cols:
 dummies.append(pd.get_dummies(df[col]))

encoded = pd.concat(dummies, axis=1)

df = pd.concat((df, encoded),axis=1)

3. Choose Preview to preview the change. The encoded version of each column is added to the
dataset.

4. Choose Add to add the transformation.

Custom SQL: SELECT Columns

Now, select the columns you want to keep using SQL. For this demo, select the columns listed in
the following SELECT statement. Because survived is your target column for training, put that
column first.

1. In the Custom Transform section, select SQL (PySpark SQL) from the dropdown list.

2. Enter the following in the code box.

SELECT survived, age, fare, 1, 2, 3, female, male, C, Q, S FROM df;

3. Choose Preview to preview the change. The columns listed in your SELECT statement are the
only remaining columns.

4. Choose Add to add the transformation.

Export to a Data Wrangler Notebook

When you've finished creating a data flow, you have a number of export options. The following
section explains how to export to a Data Wrangler job notebook. A Data Wrangler job is used to
process your data using the steps defined in your data flow. To learn more about all export options,
see Export.

Get Started with Data Wrangler 2099

Amazon SageMaker Developer Guide

Export to Data Wrangler Job Notebook

When you export your data flow using a Data Wrangler job, the process automatically creates
a Jupyter Notebook. This notebook automatically opens in your Studio Classic instance and is
configured to run a SageMaker processing job to run your Data Wrangler data flow, which is
referred to as a Data Wrangler job.

1. Save your data flow. Select File and then select Save Data Wrangler Flow.

2. Back to the Data Flow tab, select the last step in your data flow (SQL), then choose the + to
open the navigation.

3. Choose Export, and Amazon S3 (via Jupyter Notebook). This opens a Jupyter Notebook.

4. Choose any Python 3 (Data Science) kernel for the Kernel.

5. When the kernel starts, run the cells in the notebook book until Kick off SageMaker Training
Job (Optional).

6. Optionally, you can run the cells in Kick off SageMaker Training Job (Optional) if you want
to create a SageMaker training job to train an XGBoost classifier. You can find the cost to run a
SageMaker training job in Amazon SageMaker Pricing.

Alternatively, you can add the code blocks found in Training XGBoost Classifier to the
notebook and run them to use the XGBoost open source library to train an XGBoost classifier.

7. Uncomment and run the cell under Cleanup and run it to revert the SageMaker Python SDK to
its original version.

You can monitor your Data Wrangler job status in the SageMaker console in the Processing tab.
Additionally, you can monitor your Data Wrangler job using Amazon CloudWatch. For additional
information, see Monitor Amazon SageMaker Processing Jobs with CloudWatch Logs and Metrics.

Get Started with Data Wrangler 2100

https://aws.amazon.com/sagemaker/pricing/
https://xgboost.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html#processing-job-cloudwatch

Amazon SageMaker Developer Guide

If you kicked off a training job, you can monitor its status using the SageMaker console under
Training jobs in the Training section.

Training XGBoost Classifier

You can train an XGBoost Binary Classifier using either a Jupyter notebook or a Amazon SageMaker
Autopilot. You can use Autopilot to automatically train and tune models on the data that
you've transformed directly from your Data Wrangler flow. For information about Autopilot, see
Automatically Train Models on Your Data Flow.

In the same notebook that kicked off the Data Wrangler job, you can pull the data and train an
XGBoost Binary Classifier using the prepared data with minimal data preparation.

1. First, upgrade necessary modules using pip and remove the _SUCCESS file (this last file is
problematic when using awswrangler).

! pip install --upgrade awscli awswrangler boto sklearn
! aws s3 rm {output_path} --recursive --exclude "*" --include "*_SUCCESS*"

2. Read the data from Amazon S3. You can use awswrangler to recursively read all the CSV files
in the S3 prefix. The data is then split into features and labels. The label is the first column of
the dataframe.

import awswrangler as wr

df = wr.s3.read_csv(path=output_path, dataset=True)
X, y = df.iloc[:,:-1],df.iloc[:,-1]

• Finally, create DMatrices (the XGBoost primitive structure for data) and do cross-validation
using the XGBoost binary classification.

import xgboost as xgb

dmatrix = xgb.DMatrix(data=X, label=y)

params = {"objective":"binary:logistic",'learning_rate': 0.1, 'max_depth': 5,
 'alpha': 10}

xgb.cv(
 dtrain=dmatrix,
 params=params,

Get Started with Data Wrangler 2101

Amazon SageMaker Developer Guide

 nfold=3,
 num_boost_round=50,
 early_stopping_rounds=10,
 metrics="rmse",
 as_pandas=True,
 seed=123)

Shut down Data Wrangler

When you are finished using Data Wrangler, we recommend that you shut down the instance it runs
on to avoid incurring additional charges. To learn how to shut down the Data Wrangler app and
associated instance, see Shut Down Data Wrangler.

Import

You can use Amazon SageMaker Data Wrangler to import data from the following data sources:
Amazon Simple Storage Service (Amazon S3), Amazon Athena, Amazon Redshift, and Snowflake.
The dataset that you import can include up to 1000 columns.

Topics

• Import data from Amazon S3

• Import data from Athena

• Import data from Amazon Redshift

• Import data from Amazon EMR

• Import data from Databricks (JDBC)

• Import data from Salesforce Data Cloud

• Import data from Snowflake

• Import Data From Software as a Service (SaaS) Platforms

• Imported Data Storage

Some data sources allow you to add multiple data connections:

• You can connect to multiple Amazon Redshift clusters. Each cluster becomes a data source.

• You can query any Athena database in your account to import data from that database.

Import 2102

Amazon SageMaker Developer Guide

When you import a dataset from a data source, it appears in your data flow. Data Wrangler
automatically infers the data type of each column in your dataset. To modify these types, select
the Data types step and select Edit data types.

When you import data from Athena or Amazon Redshift, the imported data is automatically stored
in the default SageMaker S3 bucket for the AWS Region in which you are using Studio Classic.
Additionally, Athena stores data you preview in Data Wrangler in this bucket. To learn more, see
Imported Data Storage.

Important

The default Amazon S3 bucket may not have the least permissive security settings, such
as bucket policy and server-side encryption (SSE). We strongly recommend that you Add a
Bucket Policy To Restrict Access to Datasets Imported to Data Wrangler.

Important

In addition, if you use the managed policy for SageMaker, we strongly recommend that you
scope it down to the most restrictive policy that allows you to perform your use case. For
more information, see Grant an IAM Role Permission to Use Data Wrangler.

All data sources except for Amazon Simple Storage Service (Amazon S3) require you to specify a
SQL query to import your data. For each query, you must specify the following:

• Data catalog

• Database

• Table

You can specify the name of the database or the data catalog in either the drop down menus or
within the query. The following are example queries:

• select * from example-data-catalog-name.example-database-name.example-
table-name – The query doesn't use anything specified in the dropdown menus of the user-
interface (UI) to run. It queries example-table-name within example-database-name within
example-data-catalog-name.

Import 2103

https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-security.html#data-wrangler-security-bucket-policy
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-security.html#data-wrangler-security-bucket-policy

Amazon SageMaker Developer Guide

• select * from example-database-name.example-table-name – The query uses
the data catalog that you've specified in the Data catalog dropdown menu to run. It queries
example-table-name within example-database-name within the data catalog that you've
specified.

• select * from example-table-name – The query requires you to select fields for both the
Data catalog and Database name dropdown menus. It queries example-table-name within
the data catalog within the database and data catalog that you've specified.

The link between Data Wrangler and the data source is a connection. You use the connection to
import data from your data source.

There are the following types of connections:

• Direct

• Cataloged

Data Wrangler always has access to the most recent data in a direct connection. If the data in the
data source has been updated, you can use the connection to import the data. For example, if
someone adds a file to one of your Amazon S3 buckets, you can import the file.

A cataloged connection is the result of a data transfer. The data in the cataloged connection
doesn't necessarily have the most recent data. For example, you might set up a data transfer
between Salesforce and Amazon S3. If there's an update to the Salesforce data, you must transfer
the data again. You can automate the process of transferring data. For more information about
data transfers, see Import Data From Software as a Service (SaaS) Platforms.

Import data from Amazon S3

You can use Amazon Simple Storage Service (Amazon S3) to store and retrieve any amount of
data, at any time, from anywhere on the web. You can accomplish these tasks using the AWS
Management Console, which is a simple and intuitive web interface, and the Amazon S3 API. If
you've stored your dataset locally, we recommend that you add it to an S3 bucket for import into
Data Wrangler. To learn how, see Uploading an object to a bucket in the Amazon Simple Storage
Service User Guide.

Data Wrangler uses S3 Select to allow you to preview your Amazon S3 files in Data Wrangler. You
incur standard charges for each file preview. To learn more about pricing, see the Requests & data
retrievals tab on Amazon S3 pricing.

Import 2104

https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
https://aws.amazon.com/s3/features/#s3-select
https://aws.amazon.com/s3/pricing/

Amazon SageMaker Developer Guide

Important

If you plan to export a data flow and launch a Data Wrangler job, ingest data into a
SageMaker feature store, or create a SageMaker pipeline, be aware that these integrations
require Amazon S3 input data to be located in the same AWS region.

Important

If you're importing a CSV file, make sure it meets the following requirements:

• A record in your dataset can't be longer than one line.

• A backslash, \, is the only valid escape character.

• Your dataset must use one of the following delimiters:

• Comma – ,

• Colon – :

• Semicolon – ;

• Pipe – |

• Tab – [TAB]

To save space, you can import compressed CSV files.

Data Wrangler gives you the ability to either import the entire dataset or sample a portion of it. For
Amazon S3, it provides the following sampling options:

• None – Import the entire dataset.

• First K – Sample the first K rows of the dataset, where K is an integer that you specify.

• Randomized – Takes a random sample of a size that you specify.

• Stratified – Takes a stratified random sample. A stratified sample preserves the ratio of values in
a column.

After you've imported your data, you can also use the sampling transformer to take one or more
samples from your entire dataset. For more information about the sampling transformer, see
Sampling.

Import 2105

Amazon SageMaker Developer Guide

You can use one of the following resource identifiers to import your data:

• An Amazon S3 URI that uses an Amazon S3 bucket or Amazon S3 access point

• An Amazon S3 access point alias

• An Amazon Resource Name (ARN) that uses an Amazon S3 access point or Amazon S3 bucket

Amazon S3 access points are named network endpoints that are attached to the buckets. Each
access point has distinct permissions and network controls that you can configure. For more
information about access points, see Managing data access with Amazon S3 access points.

Important

If you're using an Amazon Resource Name (ARN) to import your data, it must be for a
resource located in the same AWS Region that you're using to access Amazon SageMaker
Studio Classic.

You can import either a single file or multiple files as a dataset. You can use the multifile import
operation when you have a dataset that is partitioned into separate files. It takes all of the files
from an Amazon S3 directory and imports them as a single dataset. For information on the types
of files that you can import and how to import them, see the following sections.

Single File Import

You can import single files in the following formats:

• Comma Separated Values (CSV)

• Parquet

• Javascript Object Notation (JSON)

• Optimized Row Columnar (ORC)

• Image – Data Wrangler uses OpenCV to import images. For more information about
supported image formats, see Image file reading and writing.

For files formatted in JSON, Data Wrangler supports both JSON lines (.jsonl) and JSON
documents (.json). When you preview your data, it automatically shows the JSON in tabular
format. For nested JSON documents that are larger than 5 MB, Data Wrangler shows the
schema for the structure and the arrays as values in the dataset. Use the Flatten structured and

Import 2106

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-points.html
https://docs.opencv.org/3.4/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56

Amazon SageMaker Developer Guide

Explode array operators to display the nested values in tabular format. For more information,
see Unnest JSON Data and Explode Array.

When you choose a dataset, you can rename it, specify the file type, and identify the first row as
a header.

You can import a dataset that you've partitioned into multiple files in an Amazon S3 bucket in a
single import step.

To import a dataset into Data Wrangler from a single file that you've stored in Amazon S3:

1. If you are not currently on the Import tab, choose Import.

2. Under Available, choose Amazon S3.

3. From the Import tabular, image, or time-series data from S3, do one of the following:

• Choose an Amazon S3 bucket from the tabular view and navigate to the file that you're
importing.

• For S3 source, specify an Amazon S3 bucket or an Amazon S3 URI and select Go. The
Amazon S3 URIs can be in one of the following formats:

• s3://DOC-EXAMPLE-BUCKET/example-prefix/example-file

• example-access-point-aqfqprnstn7aefdfbarligizwgyfouse1a-s3alias/
datasets/example-file

• s3://arn:aws:s3:AWS-Region:111122223333:accesspoint/example-
prefix/example-file

4. Choose the dataset to open the Import settings pane.

5. If your CSV file has a header, select the checkbox next to Add header to table.

6. Use the Preview table to preview your dataset. This table shows up to 100 rows.

7. In the Details pane, verify or change the Name and File Type for your dataset. If you add a
Name that contains spaces, these spaces are replaced with underscores when your dataset
is imported.

8. Specify the sampling configuration that you'd like to use.

9. Choose Import.

Multifile Import

The following are the requirements for importing multiple files:

Import 2107

Amazon SageMaker Developer Guide

• The files must be in the same folder of your Amazon S3 bucket.

• The files must either share the same header or have no header.

Each file must be in one of the following formats:

• CSV

• Parquet

• Optimized Row Columnar (ORC)

• Image – Data Wrangler uses OpenCV to import images. For more information about
supported image formats, see Image file reading and writing.

Use the following procedure to import multiple files.

To import a dataset into Data Wrangler from multiple files that you've stored in an Amazon
S3 directory

1. If you are not currently on the Import tab, choose Import.

2. Under Available, choose Amazon S3.

3. From the Import tabular, image, or time-series data from S3, do one of the following:

• Choose an Amazon S3 bucket from the tabular view and navigate to the folder
containing the files that you're importing.

• For S3 source, specify the Amazon S3 bucket or an Amazon S3 URI with your files and
select Go. The following are valid URIs:

• s3://DOC-EXAMPLE-BUCKET/example-prefix/example-prefix

• example-access-point-aqfqprnstn7aefdfbarligizwgyfouse1a-
s3alias/example-prefix/

• s3://arn:aws:s3:AWS-Region:111122223333:accesspoint/example-
prefix

4. Select the folder containing the files that you want to import. Each file must be in one of
the supported formats. Your files must be the same data type.

5. If your folder contains CSV files with headers, select the checkbox next to First row is
header.

Import 2108

https://docs.opencv.org/3.4/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56

Amazon SageMaker Developer Guide

6. If your files are nested within other folders, select the checkbox next to Include nested
directories.

7. (Optional) Choose Add filename column add a column to the dataset that shows the
filename for each observation.

8. (Optional) By default, Data Wrangler doesn't show you a preview of a folder. You can
activate previewing by choosing the blue Preview off button. A preview shows the first 10
rows of the first 10 files in the folder.

9. In the Details pane, verify or change the Name and File Type for your dataset. If you add a
Name that contains spaces, these spaces are replaced with underscores when your dataset
is imported.

10. Specify the sampling configuration that you'd like to use.

11. Choose Import dataset.

You can also use parameters to import a subset of files that match a pattern. Parameters help
you more selectively pick the files that you're importing. To start using parameters, edit the data
source and apply them to the path that you're using to import the data. For more information, see
Reusing Data Flows for Different Datasets.

Import data from Athena

Use Amazon Athena to import your data from Amazon Simple Storage Service (Amazon S3) into
Data Wrangler. In Athena, you write standard SQL queries to select the data that you're importing
from Amazon S3. For more information, see What is Amazon Athena?

You can use the AWS Management Console to set up Amazon Athena. You must create at least one
database in Athena before you start running queries. For more information about getting started
with Athena, see Getting started.

Athena is directly integrated with Data Wrangler. You can write Athena queries without having to
leave the Data Wrangler UI.

In addition to writing simple Athena queries in Data Wrangler, you can also use:

• Athena workgroups for query result management. For more information about workgroups, see
Managing query results.

• Lifecycle configurations for setting data retention periods. For more information about data
retention, see Setting data retention periods.

Import 2109

https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://docs.aws.amazon.com/athena/latest/ug/getting-started.html

Amazon SageMaker Developer Guide

Query Athena within Data Wrangler

Note

Data Wrangler does not support federated queries.

If you use AWS Lake Formation with Athena, make sure your Lake Formation IAM permissions do
not override IAM permissions for the database sagemaker_data_wrangler.

Data Wrangler gives you the ability to either import the entire dataset or sample a portion of it. For
Athena, it provides the following sampling options:

• None – Import the entire dataset.

• First K – Sample the first K rows of the dataset, where K is an integer that you specify.

• Randomized – Takes a random sample of a size that you specify.

• Stratified – Takes a stratified random sample. A stratified sample preserves the ratio of values in
a column.

The following procedure shows how to import a dataset from Athena into Data Wrangler.

To import a dataset into Data Wrangler from Athena

1. Sign into Amazon SageMaker Console.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. Choose the Home icon.

6. Choose Data.

7. Choose Data Wrangler.

8. Choose Import data.

9. Under Available, choose Amazon Athena.

10. For Data Catalog, choose a data catalog.

11. Use the Database dropdown list to select the database that you want to query. When you
select a database, you can preview all tables in your database using the Tables listed under
Details.

Import 2110

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

12. (Optional) Choose Advanced configuration.

a. Choose a Workgroup.

b. If your workgroup hasn't enforced the Amazon S3 output location or if you don't use a
workgroup, specify a value for Amazon S3 location of query results.

c. (Optional) For Data retention period, select the checkbox to set a data retention period
and specify the number of days to store the data before it's deleted.

d. (Optional) By default, Data Wrangler saves the connection. You can choose to deselect the
checkbox and not save the connection.

13. For Sampling, choose a sampling method. Choose None to turn off sampling.

14. Enter your query in the query editor and use the Run button to run the query. After a
successful query, you can preview your result under the editor.

Note

Salesforce data uses the timestamptz type. If you're querying the timestamp column
that you've imported to Athena from Salesforce, cast the data in the column to the
timestamp type. The following query casts the timestamp column to the correct type.

cast column timestamptz_col as timestamp type, and name it as
 timestamp_col
select cast(timestamptz_col as timestamp) as timestamp_col from table

15. To import the results of your query, select Import.

After you complete the preceding procedure, the dataset that you've queried and imported appears
in the Data Wrangler flow.

By default, Data Wrangler saves the connection settings as a new connection. When you import
your data, the query that you've already specified appears as a new connection. The saved
connections store information about the Athena workgroups and Amazon S3 buckets that you're
using. When you're connecting to the data source again, you can choose the saved connection.

Import 2111

Amazon SageMaker Developer Guide

Managing query results

Data Wrangler supports using Athena workgroups to manage the query results within an AWS
account. You can specify an Amazon S3 output location for each workgroup. You can also specify
whether the output of the query can go to different Amazon S3 locations. For more information,
see Using Workgroups to Control Query Access and Costs.

Your workgroup might be configured to enforce the Amazon S3 query output location. You can't
change the output location of the query results for those workgroups.

If you don't use a workgroup or specify an output location for your queries, Data Wrangler uses the
default Amazon S3 bucket in the same AWS Region in which your Studio Classic instance is located
to store Athena query results. It creates temporary tables in this database to move the query
output to this Amazon S3 bucket. It deletes these tables after data has been imported; however
the database, sagemaker_data_wrangler, persists. To learn more, see Imported Data Storage.

To use Athena workgroups, set up the IAM policy that gives access to workgroups. If you're
using a SageMaker-Execution-Role, we recommend adding the policy to the role. For more
information about IAM policies for workgroups, see IAM policies for accessing workgroups. For
example workgroup policies, see Workgroup example policies.

Setting data retention periods

Data Wrangler automatically sets a data retention period for the query results. The results are
deleted after the length of the retention period. For example, the default retention period is five
days. The results of the query are deleted after five days. This configuration is designed to help you
clean up data that you're no longer using. Cleaning up your data prevents unauthorized users from
gaining access. It also helps control the costs of storing your data on Amazon S3.

If you don't set a retention period, the Amazon S3 lifecycle configuration determines the duration
that the objects are stored. The data retention policy that you've specified for the lifecycle
configuration removes any query results that are older than the lifecycle configuration that you've
specified. For more information, see Setting lifecycle configuration on a bucket.

Data Wrangler uses Amazon S3 lifecycle configurations to manage data retention and expiration.
You must give your Amazon SageMaker Studio Classic IAM execution role permissions to manage
bucket lifecycle configurations. Use the following procedure to give permissions.

To give permissions to manage the lifecycle configuration do the following.

Import 2112

https://docs.aws.amazon.com/athena/latest/ug/manage-queries-control-costs-with-workgroups.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-policy.html
https://docs.aws.amazon.com/athena/latest/ug/example-policies-workgroup.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-set-lifecycle-configuration-intro.html

Amazon SageMaker Developer Guide

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles.

3. In the search bar, specify the Amazon SageMaker execution role that Amazon SageMaker
Studio Classic is using.

4. Choose the role.

5. Choose Add permissions.

6. Choose Create inline policy.

7. For Service, specify S3 and choose it.

8. Under the Read section, choose GetLifecycleConfiguration.

9. Under the Write section, choose PutLifecycleConfiguration.

10. For Resources, choose Specific.

11. For Actions, select the arrow icon next to Permissions management.

12. Choose PutResourcePolicy.

13. For Resources, choose Specific.

14. Choose the checkbox next to Any in this account.

15. Choose Review policy.

16. For Name, specify a name.

17. Choose Create policy.

Import data from Amazon Redshift

Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. The first
step to create a data warehouse is to launch a set of nodes, called an Amazon Redshift cluster.
After you provision your cluster, you can upload your dataset and then perform data analysis
queries.

You can connect to and query one or more Amazon Redshift clusters in Data Wrangler. To use this
import option, you must create at least one cluster in Amazon Redshift. To learn how, see Getting
started with Amazon Redshift.

You can output the results of your Amazon Redshift query in one of the following locations:

• The default Amazon S3 bucket

Import 2113

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/redshift/latest/gsg/getting-started.html
https://docs.aws.amazon.com/redshift/latest/gsg/getting-started.html

Amazon SageMaker Developer Guide

• An Amazon S3 output location that you specify

You can either import the entire dataset or sample a portion of it. For Amazon Redshift, it provides
the following sampling options:

• None – Import the entire dataset.

• First K – Sample the first K rows of the dataset, where K is an integer that you specify.

• Randomized – Takes a random sample of a size that you specify.

• Stratified – Takes a stratified random sample. A stratified sample preserves the ratio of values in
a column.

The default Amazon S3 bucket is in the same AWS Region in which your Studio Classic instance is
located to store Amazon Redshift query results. For more information, see Imported Data Storage.

For either the default Amazon S3 bucket or the bucket that you specify, you have the following
encryption options:

• The default AWS service-side encryption with an Amazon S3 managed key (SSE-S3)

• An AWS Key Management Service (AWS KMS) key that you specify

An AWS KMS key is an encryption key that you create and manage. For more information on KMS
keys, see AWS Key Management Service.

You can specify an AWS KMS key using either the key ARN or the ARN of your AWS account.

If you use the IAM managed policy, AmazonSageMakerFullAccess, to grant a role permission
to use Data Wrangler in Studio Classic, your Database User name must have the prefix
sagemaker_access.

Use the following procedures to learn how to add a new cluster.

Note

Data Wrangler uses the Amazon Redshift Data API with temporary credentials. To learn
more about this API, refer to Using the Amazon Redshift Data API in the Amazon Redshift
Management Guide.

Import 2114

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html

Amazon SageMaker Developer Guide

To connect to a Amazon Redshift cluster

1. Sign into Amazon SageMaker Console.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. Choose the Home icon.

6. Choose Data.

7. Choose Data Wrangler.

8. Choose Import data.

9. Under Available, choose Amazon Athena.

10. Choose Amazon Redshift.

11. Choose Temporary credentials (IAM) for Type.

12. Enter a Connection Name. This is a name used by Data Wrangler to identify this connection.

13. Enter the Cluster Identifier to specify to which cluster you want to connect. Note: Enter only
the cluster identifier and not the full endpoint of the Amazon Redshift cluster.

14. Enter the Database Name of the database to which you want to connect.

15. Enter a Database User to identify the user you want to use to connect to the database.

16. For UNLOAD IAM Role, enter the IAM role ARN of the role that the Amazon Redshift cluster
should assume to move and write data to Amazon S3. For more information about this role,
see Authorizing Amazon Redshift to access other AWS services on your behalf in the Amazon
Redshift Management Guide.

17. Choose Connect.

18. (Optional) For Amazon S3 output location, specify the S3 URI to store the query results.

19. (Optional) For KMS key ID, specify the ARN of the AWS KMS key or alias. The following image
shows you where you can find either key in the AWS Management Console.

Import 2115

https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html

Amazon SageMaker Developer Guide

The following image shows all the fields from the preceding procedure.

Import 2116

Amazon SageMaker Developer Guide

After your connection is successfully established, it appears as a data source under Data Import.
Select this data source to query your database and import data.

To query and import data from Amazon Redshift

1. Select the connection that you want to query from Data Sources.

Import 2117

Amazon SageMaker Developer Guide

2. Select a Schema. To learn more about Amazon Redshift Schemas, see Schemas in the Amazon
Redshift Database Developer Guide.

3. (Optional) Under Advanced configuration, specify the Sampling method that you'd like to
use.

4. Enter your query in the query editor and choose Run to run the query. After a successful query,
you can preview your result under the editor.

5. Select Import dataset to import the dataset that has been queried.

6. Enter a Dataset name. If you add a Dataset name that contains spaces, these spaces are
replaced with underscores when your dataset is imported.

7. Choose Add.

To edit a dataset, do the following.

1. Navigate to your Data Wrangler flow.

2. Choose the + next to Source - Sampled.

3. Change the data that you're importing.

4. Choose Apply

Import data from Amazon EMR

You can use Amazon EMR as a data source for your Amazon SageMaker Data Wrangler flow.
Amazon EMR is a managed cluster platform that you can use process and analyze large amounts
of data. For more information about Amazon EMR, see What is Amazon EMR?. To import a dataset
from EMR, you connect to it and query it.

Important

You must meet the following prerequisites to connect to an Amazon EMR cluster:

Prerequisites

• Network configurations

• You have an Amazon VPC in the Region that you're using to launch Amazon SageMaker
Studio Classic and Amazon EMR.

Import 2118

https://docs.aws.amazon.com/redshift/latest/dg/r_Schemas_and_tables.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html

Amazon SageMaker Developer Guide

• Both Amazon EMR and Amazon SageMaker Studio Classic must be launched in private
subnets. They can be in the same subnet or in different ones.

• Amazon SageMaker Studio Classic must be in VPC-only mode.

For more information about creating a VPC, see Create a VPC.

For more information about creating a VPC, see Connect SageMaker Studio Classic
Notebooks in a VPC to External Resources.

• The Amazon EMR clusters that you're running must be in the same Amazon VPC.

• The Amazon EMR clusters and the Amazon VPC must be in the same AWS account.

• Your Amazon EMR clusters are running Hive or Presto.

• Hive clusters must allow inbound traffic from Studio Classic security groups on port
10000.

• Presto clusters must allow inbound traffic from Studio Classic security groups on
port 8889.

Note

The port number is different for Amazon EMR clusters using IAM roles.
Navigate to the end of the prerequisites section for more information.

• SageMaker Studio Classic

• Amazon SageMaker Studio Classic must run Jupyter Lab Version 3. For information
about updating the Jupyter Lab Version, see View and update the JupyterLab version
of an application from the console.

• Amazon SageMaker Studio Classic has an IAM role that controls user access. The
default IAM role that you're using to run Amazon SageMaker Studio Classic doesn't
have policies that can give you access to Amazon EMR clusters. You must attach the
policy granting permissions to the IAM role. For more information, see Configure the
discoverability of Amazon EMR clusters (for administrators).

• The IAM role must also have the following policy attached
secretsmanager:PutResourcePolicy.

• If you're using a Studio Classic domain that you've already created, make sure that
its AppNetworkAccessType is in VPC-only mode. For information about updating a
domain to use VPC-only mode, see Shut down and Update SageMaker Studio Classic.

Import 2119

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#Create-VPC
https://docs.aws.amazon.com/vpc/latest/userguide/studio-notebooks-and-internet-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/studio-notebooks-and-internet-access.html

Amazon SageMaker Developer Guide

• Amazon EMR clusters

• You must have Hive or Presto installed on your cluster.

• The Amazon EMR release must be version 5.5.0 or later.

Note

Amazon EMR supports auto termination. Auto termination stops idle clusters
from running and prevents you from incurring costs. The following are the
releases that support auto termination:

• For 6.x releases, version 6.1.0 or later.

• For 5.x releases, version 5.30.0 or later.

• Amazon EMR clusters using IAM runtime roles

• Use the following pages to set up IAM runtime roles for the Amazon EMR cluster. You
must enable in-transit encryption when you're using runtime roles:

• Prerequisites for launching an Amazon EMR cluster with a runtime role

• Launch an Amazon EMR cluster with role-based access control

• You must Lake Formation as a governance tool for the data within your databases. You
must also use external data filtering for access control.

• For more information about Lake Formation, see What is AWS Lake Formation?

• For more information about integrating Lake Formation into Amazon EMR, see
Integrating third-party services with Lake Formation.

• The version of your cluster must be 6.9.0 or later.

• Access to AWS Secrets Manager. For more information about Secrets Manager see
What is AWS Secrets Manager?

• Hive clusters must allow inbound traffic from Studio Classic security groups on port
10000.

An Amazon VPC is a virtual network that is logically isolated from other networks on the AWS
cloud. Amazon SageMaker Studio Classic and your Amazon EMR cluster only exist within the
Amazon VPC.

Use the following procedure to launch Amazon SageMaker Studio Classic in an Amazon VPC.Import 2120

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-steps-runtime-roles.html#emr-steps-runtime-roles-configure
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-steps-runtime-roles.html#emr-steps-runtime-roles-launch
https://docs.aws.amazon.com/lake-formation/latest/dg/what-is-lake-formation.html
https://docs.aws.amazon.com/lake-formation/latest/dg/Integrating-with-LakeFormation.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

Amazon SageMaker Developer Guide

To launch Studio Classic within a VPC, do the following.

1. Navigate to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Launch SageMaker Studio Classic.

3. Choose Standard setup.

4. For Default execution role, choose the IAM role to set up Studio Classic.

5. Choose the VPC where you've launched the Amazon EMR clusters.

6. For Subnet, choose a private subnet.

7. For Security group(s), specify the security groups that you're using to control between your
VPC.

8. Choose VPC Only.

9. (Optional) AWS uses a default encryption key. You can specify an AWS Key Management
Service key to encrypt your data.

10. Choose Next.

11. Under Studio settings, choose the configurations that are best suited to you.

12. Choose Next to skip the SageMaker Canvas settings.

13. Choose Next to skip the RStudio settings.

If you don't have an Amazon EMR cluster ready, you can use the following procedure to create one.
For more information about Amazon EMR, see What is Amazon EMR?

To create a cluster, do the following.

1. Navigate to the AWS Management Console.

2. In the search bar, specify Amazon EMR.

3. Choose Create cluster.

4. For Cluster name, specify the name of your cluster.

5. For Release, select the release version of the cluster.

Note

Amazon EMR supports auto termination for the following releases:

• For 6.x releases, releases 6.1.0 or later

Import 2121

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html

Amazon SageMaker Developer Guide

• For 5.x releases, releases 5.30.0 or later

Auto termination stops idle clusters from running and prevents you from incurring
costs.

6. (Optional) For Applications, choose Presto.

7. Choose the application that you're running on the cluster.

8. Under Networking, for Hardware configuration, specify the hardware configuration settings.

Important

For Networking, choose the VPC that is running Amazon SageMaker Studio Classic and
choose a private subnet.

9. Under Security and access, specify the security settings.

10. Choose Create.

For a tutorial about creating an Amazon EMR cluster, see Getting started with Amazon EMR. For
information about best practices for configuring a cluster, see Considerations and best practices.

Note

For security best practices, Data Wrangler can only connect to VPCs on private subnets. You
can't connect to the master node unless you use AWS Systems Manager for your Amazon
EMR instances. For more information, see Securing access to EMR clusters using AWS
Systems Manager.

You can currently use the following methods to access an Amazon EMR cluster:

• No authentication

• Lightweight Directory Access Protocol (LDAP)

• IAM (Runtime role)

Not using authentication or using LDAP can require you to create multiple clusters and Amazon
EC2 instance profiles. If you’re an administrator, you might need to provide groups of users with

Import 2122

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-ha-considerations.html
https://aws.amazon.com/blogs/big-data/securing-access-to-emr-clusters-using-aws-systems-manager/
https://aws.amazon.com/blogs/big-data/securing-access-to-emr-clusters-using-aws-systems-manager/

Amazon SageMaker Developer Guide

different levels of access to the data. These methods can result in administrative overhead that
makes it more difficult to manage your users.

We recommend using an IAM runtime role that gives multiple users the ability to connect to
the same Amazon EMR cluster. A runtime role is an IAM role that you can assign to a user who is
connecting to an Amazon EMR cluster. You can configure the runtime IAM role to have permissions
that are specific to each group of users.

Use the following sections to create a Presto or Hive Amazon EMR cluster with LDAP activated.

Presto

Important

To use AWS Glue as a metastore for Presto tables, select Use for Presto table metadata
to store the results of your Amazon EMR queries in a AWS Glue data catalog when
you're launching an EMR cluster. Storing the query results in a AWS Glue data catalog
can save you from incurring charges.
To query large datasets on Amazon EMR clusters, you must add the following properties
to the Presto configuration file on your Amazon EMR clusters:

[{"classification":"presto-config","properties":{
"http-server.max-request-header-size":"5MB",
"http-server.max-response-header-size":"5MB"}}]

You can also modify the configuration settings when you launch the Amazon EMR
cluster.
The configuration file for your Amazon EMR cluster is located under the following path:
/etc/presto/conf/config.properties.

Use the following procedure to create a Presto cluster with LDAP activated.

To create a cluster, do the following.

1. Navigate to the AWS Management Console.

2. In the search bar, specify Amazon EMR.

Import 2123

Amazon SageMaker Developer Guide

3. Choose Create cluster.

4. For Cluster name, specify the name of your cluster.

5. For Release, select the release version of the cluster.

Note

Amazon EMR supports auto termination for the following releases:

• For 6.x releases, releases 6.1.0 or later

• For 5.x releases, releases 5.30.0 or later

Auto termination stops idle clusters from running and prevent you from incurring
costs.

6. Choose the application that you're running on the cluster.

7. Under Networking, for Hardware configuration, specify the hardware configuration
settings.

Important

For Networking, choose the VPC that is running Amazon SageMaker Studio Classic
and choose a private subnet.

8. Under Security and access, specify the security settings.

9. Choose Create.

Hive

Important

To use AWS Glue as a metastore for Hive tables, select Use for Hive table metadata to
store the results of your Amazon EMR queries in a AWS Glue data catalog when you're
launching an EMR cluster. Storing the query results in a AWS Glue data catalog can save
you from incurring charges.
To be able to query large datasets on Amazon EMR clusters, add the following
properties to Hive configuration file on your Amazon EMR clusters:

Import 2124

Amazon SageMaker Developer Guide

[{"classification":"hive-site", "properties"
:{"hive.resultset.use.unique.column.names":"false"}}]

You can also modify the configuration settings when you launch the Amazon EMR
cluster.
The configuration file for your Amazon EMR cluster is located under the following
path: /etc/hive/conf/hive-site.xml. You can specify the following property and
restart the cluster:

<property>
 <name>hive.resultset.use.unique.column.names</name>
 <value>false</value>
</property>

Use the following procedure to create a Hive cluster with LDAP activated.

To create a Hive cluster with LDAP activated, do the following.

1. Navigate to the AWS Management Console.

2. In the search bar, specify Amazon EMR.

3. Choose Create cluster.

4. Choose Go to advanced options.

5. For Release, select an Amazon EMR release version.

6. The Hive configuration option is selected by default. Make sure the Hive option has a
checkbox next to it.

7. (Optional) You can also select Presto as a configuration option to activate both Hive and
Presto on your cluster.

8. (Optional) Select Use for Hive table metadata to store the results of your Amazon EMR
queries in a AWS Glue data catalog. Storing the query results in a AWS Glue catalog can
save you from incurring charges. For more information, see Using the AWS Glue Data
Catalog as the metastore for Hive.

Import 2125

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html

Amazon SageMaker Developer Guide

Note

Storing the query results in a data catalog requires Amazon EMR version 5.8.0 or
later.

9. Under Enter configuration, specify the following JSON:

[
 {
 "classification": "hive-site",
 "properties": {
 "hive.server2.authentication.ldap.baseDN": "dc=example,dc=org",
 "hive.server2.authentication": "LDAP",
 "hive.server2.authentication.ldap.url": "ldap://ldap-server-dns-name:389"
 }
 }
]

Note

As a security best practice, we recommend enabling SSL for HiveServer by adding
a few properties in the preceding hive-site JSON. For more information, see Enable
SSL on HiveServer2.

10. Specify the remaining cluster settings and create a cluster.

Use the following sections to use LDAP authentication for Amazon EMR clusters that you've already
created.

LDAP for Presto

Using LDAP on a cluster running Presto requires access to the Presto coordinator through
HTTPS. Do the following to provide access:

• Activate access on port 636

• Enable SSL for the Presto coordinator

Import 2126

https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.0.1/configuring-wire-encryption/content/enable_ssl_on_hiveserver2.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.0.1/configuring-wire-encryption/content/enable_ssl_on_hiveserver2.html

Amazon SageMaker Developer Guide

Use the following template to configure Presto:

- Classification: presto-config
 ConfigurationProperties:
 http-server.authentication.type: 'PASSWORD'
 http-server.https.enabled: 'true'
 http-server.https.port: '8889'
 http-server.http.port: '8899'
 node-scheduler.include-coordinator: 'true'
 http-server.https.keystore.path: '/path/to/keystore/path/for/presto'
 http-server.https.keystore.key: 'keystore-key-password'
 discovery.uri: 'http://master-node-dns-name:8899'
- Classification: presto-password-authenticator
 ConfigurationProperties:
 password-authenticator.name: 'ldap'
 ldap.url: !Sub 'ldaps://ldap-server-dns-name:636'
 ldap.user-bind-pattern: "uid=${USER},dc=example,dc=org"
 internal-communication.authentication.ldap.user: "ldap-user-name"
 internal-communication.authentication.ldap.password: "ldap-password"

For information about setting up LDAP in Presto, see the following resources:

• LDAP Authentication

• Using LDAP Authentication for Presto on Amazon EMR

Note

As a security best practice, we recommend enabling SSL for Presto. For more
information, see Secure Internal Communication.

LDAP for Hive

To use LDAP for Hive for a cluster that you've created, use the following procedure Reconfigure
an instance group in the console.

You're specifying the name of the cluster to which you're connecting.

Import 2127

https://prestodb.io/docs/current/security/ldap.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-presto-ldap.html
https://prestodb.io/docs/current/security/internal-communication.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps-running-cluster.html#emr-configure-apps-running-cluster-considerations
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps-running-cluster.html#emr-configure-apps-running-cluster-considerations

Amazon SageMaker Developer Guide

[
 {
 "classification": "hive-site",
 "properties": {
 "hive.server2.authentication.ldap.baseDN": "dc=example,dc=org",
 "hive.server2.authentication": "LDAP",
 "hive.server2.authentication.ldap.url": "ldap://ldap-server-dns-name:389"
 }
 }
]

Use the following procedure to import data from a cluster.

To import data from a cluster, do the following.

1. Open a Data Wrangler flow.

2. Choose Create Connection.

3. Choose Amazon EMR.

4. Do one of the following.

• (Optional) For Secrets ARN, specify the Amazon Resource Number (ARN) of the database
within the cluster. Secrets provide additional security. For more information about secrets,
see What is AWS Secrets Manager? For information about creating a secret for your
cluster, see Creating a AWS Secrets Manager secret for your cluster.

Important

You must specify a secret if you're using an IAM runtime role for authentication.

• From the dropdown table, choose a cluster.

5. Choose Next.

6. For Select an endpoint for example-cluster-name cluster, choose a query engine.

7. (Optional) Select Save connection.

8. Choose Next, select login and choose one of the following:

• No authentication

Import 2128

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

Amazon SageMaker Developer Guide

• LDAP

• IAM

9. For Login into example-cluster-name cluster, specify the Username and Password for the
cluster.

10. Choose Connect.

11. In the query editor specify a SQL query.

12. Choose Run.

13. Choose Import.

Creating a AWS Secrets Manager secret for your cluster

If you're using an IAM runtime role to access your Amazon EMR cluster, you must store the
credentials that you're using to access the Amazon EMR as a Secrets Manager secret. You store all
the credentials that you use to access the cluster within the secret.

You must store the following information in the secret:

• JDBC endpoint – jdbc:hive2://

• DNS name – The DNS name of your Amazon EMR cluster. It's either the endpoint for the primary
node or the hostname.

• Port – 8446

You can also store the following additional information within the secret:

• IAM role – The IAM role that you're using to access the cluster. Data Wrangler uses your
SageMaker execution role by default.

• Truststore path – By default, Data Wrangler creates a truststore path for you. You can also use
your own truststore path. For more information about truststore paths, see In-transit encryption
in HiveServer2.

• Truststore password – By default, Data Wrangler creates a truststore password for you. You can
also use your own truststore path. For more information about truststore paths, see In-transit
encryption in HiveServer2.

Use the following procedure to store the credentials within a Secrets Manager secret.

Import 2129

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/hs2-encryption-intransit.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/hs2-encryption-intransit.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/hs2-encryption-intransit.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/hs2-encryption-intransit.html

Amazon SageMaker Developer Guide

To store your credentials as a secret, do the following.

1. Navigate to the AWS Management Console.

2. In the search bar, specify Secrets Manager.

3. Choose AWS Secrets Manager.

4. Choose Store a new secret.

5. For Secret type, choose Other type of secret.

6. Under Key/value pairs, select Plaintext.

7. For clusters running Hive, you can use the following template for IAM authentication.

{"jdbcURL": ""
 "iam_auth": {"endpoint": "jdbc:hive2://", #required
 "dns": "ip-xx-x-xxx-xxx.ec2.internal", #required
 "port": "10000", #required
 "cluster_id": "j-xxxxxxxxx", #required
 "iam_role": "arn:aws:iam::xxxxxxxx:role/xxxxxxxxxxxx", #optional
 "truststore_path": "/etc/alternatives/jre/lib/security/cacerts",
 #optional
 "truststore_password": "changeit" #optional

 }}

Note

After you import your data, you apply transformations to them. You then export the
data that you've transformed to a specific location. If you're using a Jupyter notebook
to export your transformed data to Amazon S3, you must use the truststore path
specified in the preceding example.

A Secrets Manager secret stores the JDBC URL of the Amazon EMR cluster as a secret. Using a
secret is more secure than directly entering in your credentials.

Use the following procedure to store the JDBC URL as a secret.

To store the JDBC URL as a secret, do the following.

Import 2130

Amazon SageMaker Developer Guide

1. Navigate to the AWS Management Console.

2. In the search bar, specify Secrets Manager.

3. Choose AWS Secrets Manager.

4. Choose Store a new secret.

5. For Secret type, choose Other type of secret.

6. For Key/value pairs, specify jdbcURL as the key and a valid JDBC URL as the value.

The format of a valid JDBC URL depends on whether you use authentication and whether you
use Hive or Presto as the query engine. The following list shows the valid JBDC URL formats
for the different possible configurations.

• Hive, no authentication – jdbc:hive2://emr-cluster-master-public-dns:10000/;

• Hive, LDAP authentication – jdbc:hive2://emr-cluster-master-public-dns-
name:10000/;AuthMech=3;UID=david;PWD=welcome123;

• For Hive with SSL enabled, the JDBC URL format depends on whether you use a Java
Keystore File for the TLS configuration. The Java Keystore File helps verify the identity of
the master node of the Amazon EMR cluster. To use a Java Keystore File, generate it on an
EMR cluster and upload it to Data Wrangler. To generate a file, use the following command
on the Amazon EMR cluster, keytool -genkey -alias hive -keyalg RSA -keysize
1024 -keystore hive.jks. For information about running commands on an Amazon
EMR cluster, see Securing access to EMR clusters using AWS Systems Manager. To upload a
file, choose the upward arrow on the left-hand navigation of the Data Wrangler UI.

The following are the valid JDBC URL formats for Hive with SSL enabled:

• Without a Java Keystore File – jdbc:hive2://emr-cluster-
master-public-dns:10000/;AuthMech=3;UID=user-
name;PWD=password;SSL=1;AllowSelfSignedCerts=1;

• With a Java Keystore File – jdbc:hive2://emr-cluster-master-public-
dns:10000/;AuthMech=3;UID=user-name;PWD=password;SSL=1;SSLKeyStore=/
home/sagemaker-user/data/Java-keystore-file-
name;SSLKeyStorePwd=Java-keystore-file-passsword;

• Presto, no authentication – jdbc:presto://emr-cluster-master-public-dns:8889/;

• For Presto with LDAP authentication and SSL enabled, the JDBC URL format depends on
whether you use a Java Keystore File for the TLS configuration. The Java Keystore File helps
verify the identity of the master node of the Amazon EMR cluster. To use a Java Keystore

Import 2131

https://aws.amazon.com/blogs/big-data/securing-access-to-emr-clusters-using-aws-systems-manager/

Amazon SageMaker Developer Guide

File, generate it on an EMR cluster and upload it to Data Wrangler. To upload a file, choose
the upward arrow on the left-hand navigation of the Data Wrangler UI. For information
about creating a Java Keystore File for Presto, see Java Keystore File for TLS. For information
about running commands on an Amazon EMR cluster, see Securing access to EMR clusters
using AWS Systems Manager.

• Without a Java Keystore File – jdbc:presto://emr-cluster-master-public-
dns:8889/;SSL=1;AuthenticationType=LDAP Authentication;UID=user-
name;PWD=password;AllowSelfSignedServerCert=1;AllowHostNameCNMismatch=1;

• With a Java Keystore File – jdbc:presto://emr-cluster-
master-public-dns:8889/;SSL=1;AuthenticationType=LDAP
Authentication;SSLTrustStorePath=/home/sagemaker-user/data/Java-
keystore-file-name;SSLTrustStorePwd=Java-keystore-file-
passsword;UID=user-name;PWD=password;

Throughout the process of importing data from an Amazon EMR cluster, you might run into issues.
For information about troubleshooting them, see Troubleshooting issues with Amazon EMR.

Import data from Databricks (JDBC)

You can use Databricks as a data source for your Amazon SageMaker Data Wrangler flow. To import
a dataset from Databricks, use the JDBC (Java Database Connectivity) import functionality to
access to your Databricks database. After you access the database, specify a SQL query to get the
data and import it.

We assume that you have a running Databricks cluster and that you've configured your JDBC driver
to it. For more information, see the following Databricks documentation pages:

• JDBC driver

• JDBC configuration and connection parameters

• Authentication parameters

Data Wrangler stores your JDBC URL in AWS Secrets Manager. You must give your Amazon
SageMaker Studio Classic IAM execution role permissions to use Secrets Manager. Use the following
procedure to give permissions.

To give permissions to Secrets Manager, do the following.

Import 2132

https://prestodb.io/docs/current/security/tls.html#server-java-keystore
https://aws.amazon.com/blogs/big-data/securing-access-to-emr-clusters-using-aws-systems-manager/
https://aws.amazon.com/blogs/big-data/securing-access-to-emr-clusters-using-aws-systems-manager/
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#jdbc-driver
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#jdbc-configuration-and-connection-parameters
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#authentication-parameters

Amazon SageMaker Developer Guide

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles.

3. In the search bar, specify the Amazon SageMaker execution role that Amazon SageMaker
Studio Classic is using.

4. Choose the role.

5. Choose Add permissions.

6. Choose Create inline policy.

7. For Service, specify Secrets Manager and choose it.

8. For Actions, select the arrow icon next to Permissions management.

9. Choose PutResourcePolicy.

10. For Resources, choose Specific.

11. Choose the checkbox next to Any in this account.

12. Choose Review policy.

13. For Name, specify a name.

14. Choose Create policy.

You can use partitions to import your data more quickly. Partitions give Data Wrangler the ability
to process the data in parallel. By default, Data Wrangler uses 2 partitions. For most use cases, 2
partitions give you near-optimal data processing speeds.

If you choose to specify more than 2 partitions, you can also specify a column to partition the data.
The type of the values in the column must be numeric or date.

We recommend using partitions only if you understand the structure of the data and how it's
processed.

You can either import the entire dataset or sample a portion of it. For a Databricks database, it
provides the following sampling options:

• None – Import the entire dataset.

• First K – Sample the first K rows of the dataset, where K is an integer that you specify.

• Randomized – Takes a random sample of a size that you specify.

• Stratified – Takes a stratified random sample. A stratified sample preserves the ratio of values in
a column.

Import 2133

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

Use the following procedure to import your data from a Databricks database.

To import data from Databricks, do the following.

1. Sign into Amazon SageMaker Console.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. From the Import data tab of your Data Wrangler flow, choose Databricks.

6. Specify the following fields:

• Dataset name – A name that you want to use for the dataset in your Data Wrangler flow.

• Driver – com.simba.spark.jdbc.Driver.

• JDBC URL – The URL of the Databricks database. The URL formatting can
vary between Databricks instances. For information about finding the URL
and the specifying the parameters within it, see JDBC configuration and
connection parameters. The following is an example of how a URL can be
formatted: jdbc:spark://aws-sagemaker-datawrangler.cloud.databricks.com:443/
default;transportMode=http;ssl=1;httpPath=sql/protocolv1/
o/3122619508517275/0909-200301-cut318;AuthMech=3;UID=token;PWD=personal-
access-token.

Note

You can specify a secret ARN that contains the JDBC URL instead of specifying the
JDBC URL itself. The secret must contain a key-value pair with the following format:
jdbcURL:JDBC-URL. For more information, see What is Secrets Manager?.

7. Specify a SQL SELECT statement.

Note

Data Wrangler doesn't support Common Table Expressions (CTE) or temporary tables
within a query.

8. For Sampling, choose a sampling method.

9. Choose Run.

Import 2134

https://console.aws.amazon.com/sagemaker
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#jdbc-configuration-and-connection-parameters
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#jdbc-configuration-and-connection-parameters
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

Amazon SageMaker Developer Guide

10. (Optional) For the PREVIEW, choose the gear to open the Partition settings.
The gear for the additional settings is located to the far right of the PREVIEW title.

• Specify the number of partitions. You can partition by column if you specify the number
of partitions:

• Enter number of partitions – Specify a value greater than 2.

• (Optional) Partition by column – Specify the following fields. You can only partition by
a column if you've specified a value for Enter number of partitions.

• Select column – Select the column that you're using for the data partition. The data
type of the column must be numeric or date.

• Upper bound – From the values in the column that you've specified, the upper bound
is the value that you're using in the partition. The value that you specify doesn't
change the data that you're importing. It only affects the speed of the import. For the
best performance, specify an upper bound that's close to the column's maximum.

• Lower bound – From the values in the column that you've specified, the lower bound
is the value that you're using in the partition. The value that you specify doesn't
change the data that you're importing. It only affects the speed of the import. For the
best performance, specify a lower bound that's close to the column's minimum.

11. Choose Import.

Import data from Salesforce Data Cloud

You can use Salesforce Data Cloud as a data source in Amazon SageMaker Data Wrangler to
prepare the data in your Salesforce Data Cloud for machine learning.

With Salesforce Data Cloud as a data source in Data Wrangler, you can quickly connect to your
Salesforce data without writing a single line of code. You can join your Salesforce data with data
from any other data source in Data Wrangler.

After you connect to the data cloud, you can do the following:

• Visualize your data with built-in visualizations

• Understand data and identify potential errors and extreme values

• Transform data with more than 300 built-in transformations

• Export the data that you've transformed

Import 2135

Amazon SageMaker Developer Guide

Topics

• Administrator setup

• Data Scientist Guide

Administrator setup

Important

Before you get started, make sure that your users are running Amazon SageMaker Studio
Classic version 1.3.0 or later. For information about checking the version of Studio Classic
and updating it, see Prepare ML Data with Amazon SageMaker Data Wrangler.

When you're setting up access to Salesforce Data Cloud, you must complete the following tasks:

• Getting your Salesforce Domain URL. Salesforce also refers to the Domain URL as your org's URL.

• Getting OAuth credentials from Salesforce.

• Getting the authorization URL and token URL for your Salesforce Domain.

• Creating a AWS Secrets Manager secret with the OAuth configuration.

• Creating a lifecycle configuration that Data Wrangler uses to read the credentials from the
secret.

• Giving Data Wrangler permissions to read the secret.

After you perform the preceding tasks, your users can log into the Salesforce Data Cloud using
OAuth.

Note

Your users might run into issues after you've set everything up. For information about
troubleshooting, see Troubleshooting with Salesforce.

Use the following procedure to get the Domain URL.

1. Navigate to the Salesforce login page.

Import 2136

login.salesforce.com

Amazon SageMaker Developer Guide

2. For Quick find, specify My Domain.

3. Copy the value of Current My Domain URL to a text file.

4. Add https:// to the beginning of the URL.

After you get the Salesforce Domain URL, you can use the following procedure to get the login
credentials from Salesforce and allow Data Wrangler to access your Salesforce data.

To get the log in credentials from Salesforce and provide access to Data Wrangler, do the following.

1. Navigate to your Salesforce Domain URL and log into your account.

2. Choose the gear icon.

3. In the search bar that appears, specify App Manager.

4. Select New Connected App.

5. Specify the following fields:

• Connected App Name – You can specify any name, but we recommend choosing a name that
includes Data Wrangler. For example, you can specify Salesforce Data Cloud Data Wrangler
Integration.

• API name – Use the default value.

• Contact Email – Specify your email address.

• Under API heading (Enable OAuth Settings), select the checkbox to activate OAuth
settings.

• For Callback URL specify the Amazon SageMaker Studio Classic URL. To get the URL for
Studio Classic, access it from the AWS Management Console and copy the URL.

6. Under Selected OAuth Scopes, move the following from the Available OAuth Scopes to
Selected OAuth Scopes:

• Manage user data via APIs (api)

• Perform requests at any time (refresh_token, offline_access)

• Perform ANSI SQL queries on Salesforce Data Cloud data (cdp_query_api)

• Manage Salesforce Customer Data Platform profile data (cdp_profile_api)

7. Choose Save. After you save your changes, Salesforce opens a new page.

8. Choose Continue

9. Navigate to Consumer Key and Secret.

Import 2137

Amazon SageMaker Developer Guide

10. Choose Manage Consumer Details. Salesforce redirects you to a new page where you might
have to pass two-factor authentication.

11.
Important

Copy the Consumer Key and Consumer Secret to a text editor. You need this
information to connect the data cloud to Data Wrangler.

12. Navigate back to Manage Connected Apps.

13. Navigate to Connected App Name and the name of your application.

14. Choose Manage.

a. Select Edit Policies.

b. Change IP Relaxation to Relax IP restrictions.

c. Choose Save.

After you provide access to your Salesforce Data Cloud, you need to provide permissions for your
users. Use the following procedure to provide them with permissions.

To provide your users with permissions, do the following.

1. Navigate to the setup home page.

2. On the left-hand navigation, search for Users and choose the Users menu item.

3. Choose the hyperlink with your user name.

4. Navigate to Permission Set Assignments.

5. Choose Edit Assignments.

6. Add the following permissions:

• Customer Data Platform Admin

• Customer Data Platform Data Aware Specialist

7. Choose Save.

After you get the information for your Salesforce Domain, you must get the authorization URL and
the token URL for the AWS Secrets Manager secret that you're creating.

Use the following procedure to get the authorization URL and the token URL.

Import 2138

Amazon SageMaker Developer Guide

To get the authorization URL and token URL

1. Navigate to your Salesforce Domain URL.

2. Use one of the following methods to get the URLs. If you are on a Linux distribution with curl
and jq installed, we recommend using the method that only works on Linux.

• (Linux only) Specify the following command in your terminal.

curl salesforce-domain-URL/.well-known/openid-configuration | \
jq '. | { authorization_url: .authorization_endpoint,
 token_url: .token_endpoint }' | \
jq '. += { identity_provider: "SALESFORCE", client_id: "example-client-id",
 client_secret: "example-client-secret" }'

• a. Navigate to example-org-URL/.well-known/openid-configuration in your
browser.

b. Copy the authorization_endpoint and token_endpoint to a text editor.

c. Create the following JSON object:

{
 "identity_provider": "SALESFORCE",
 "authorization_url": "example-authorization-endpoint",
 "token_url": "example-token-endpoint",
 "client_id": "example-consumer-key",
 "client_secret": "example-consumer-secret"
}

After you create the OAuth configuration object, you can create a AWS Secrets Manager secret that
stores it. Use the following procedure to create the secret.

To create a secret, do the following.

1. Navigate to the AWS Secrets Manager console.

2. Choose Store a secret.

3. Select Other type of secret.

4. Under Key/value pairs select Plaintext.

Import 2139

https://console.aws.amazon.com/secretsmanager/

Amazon SageMaker Developer Guide

5. Replace the empty JSON with the following configuration settings.

{
 "identity_provider": "SALESFORCE",
 "authorization_url": "example-authorization-endpoint",
 "token_url": "example-token-endpoint",
 "client_id": "example-consumer-key",
 "client_secret": "example-consumer-secret"
}

6. Choose Next.

7. For Secret Name, specify the name of the secret.

8. Under Tags, choose Add.

• For the Key, specify sagemaker:partner. For Value, we recommend specifying a value that
might be useful for your use case. However, you can specify anything.

Important

You must create the key. You can't import your data from Salesforce if you don't create
it.

9. Choose Next.

10. Choose Store.

11. Choose the secret you've created.

12. Make a note of the following fields:

• The Amazon Resource Number (ARN) of the secret

• The name of the secret

After you've created the secret, you must add permissions for Data Wrangler to read the secret. Use
the following procedure to add permissions.

To add read permissions for Data Wrangler, do the following.

1. Navigate to the Amazon SageMaker console.

2. Choose domains.

Import 2140

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

3. Choose the domain that you're using to access Data Wrangler.

4. Choose your User Profile.

5. Under Details, find the Execution role. Its ARN is in the following format:
arn:aws:iam::111122223333:role/example-role. Make a note of the SageMaker
execution role. Within the ARN, it's everything after role/.

6. Navigate to the IAM console.

7. In the Search IAM search bar, specify the name of the SageMaker execution role.

8. Choose the role.

9. Choose Add permissions.

10. Choose Create inline policy.

11. Choose the JSON tab.

12. Specify the following policy within the editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:*",
 "Condition": {
 "ForAnyValue:StringLike": {
 "aws:ResourceTag/sagemaker:partner": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:UpdateSecret"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:AmazonSageMaker-*"
 }
]
}

Import 2141

https://console.aws.amazon.com/iam

Amazon SageMaker Developer Guide

13. Choose Review Policy.

14. For Name, specify a name.

15. Choose Create policy.

After you've given Data Wrangler permissions to read the secret, you must add a Lifecycle
Configuration that uses your Secrets Manager secret to your Amazon SageMaker Studio Classic user
profile.

Use the following procedure to create a lifecycle configuration and add it to the Studio Classic
profile.

To create a lifecycle configuration and add it to the Studio Classic profile, do the following.

1. Navigate to the Amazon SageMaker console.

2. Choose domains.

3. Choose the domain that you're using to access Data Wrangler.

4. Choose your User Profile.

5. If you see the following applications, delete them:

• KernelGateway

• JupyterKernel

Note

Deleting the applications updates Studio Classic. It can take a while for the updates to
happen.

6. While you're waiting for updates to happen, choose Lifecycle configurations.

7. Make sure the page you're on says Studio Classic Lifecycle configurations.

8. Choose Create configuration.

9. Make sure Jupyter server app has been selected.

10. Choose Next.

11. For Name, specify a name for the configuration.

Import 2142

console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

12. For Scripts, specify the following script:

#!/bin/bash
set -eux

cat > ~/.sfgenie_identity_provider_oauth_config <<EOL
{
 "secret_arn": "secrets-arn-containing-salesforce-credentials"
}
EOL

13. Choose Submit.

14. On the left hand navigation, choose domains.

15. Choose your domain.

16. Choose Environment.

17. Under Lifecycle configurations for personal Studio Classic apps, choose Attach.

18. Select Existing configuration.

19. Under Studio Classic Lifecycle configurations select the lifecycle configuration that you've
created.

20. Choose Attach to domain.

21. Select the checkbox next to the lifecycle configuration that you've attached.

22. Select Set as default.

You might run into issues when you set up your lifecycle configuration. For information about
debugging them, see Debug lifecycle configurations.

Data Scientist Guide

Use the following to connect Salesforce Data Cloud and access your data in Data Wrangler.

Import 2143

Amazon SageMaker Developer Guide

Important

Your administrator needs to use the information in the preceding sections to set up
Salesforce Data Cloud. If you're running into issues, contact them for troubleshooting help.

To open Studio Classic and check its version, see the following procedure.

1. Use the steps in Prerequisites to access Data Wrangler through Amazon SageMaker Studio
Classic.

2. Next to the user you want to use to launch Studio Classic, select Launch app.

3. Choose Studio.

To create a dataset in Data Wrangler with data from the Salesforce Data Cloud

1. Sign into Amazon SageMaker Console.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. Choose the Home icon.

6. Choose Data.

7. Choose Data Wrangler.

8. Choose Import data.

9. Under Available, choose Salesforce Data Cloud.

10. For Connection name, specify a name for your connection to the Salesforce Data Cloud.

11. For Org URL, specify the organization URL in your Salesforce account. You can get the URL
from your administrator.s

12. Choose Connect.

13. Specify your credentials to log into Salesforce.

You can begin creating a dataset using data from Salesforce Data Cloud after you've connected to
it.

Import 2144

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

After you select a table, you can write queries and run them. The output of your query shows under
Query results.

After you have settled on the output of your query, you can then import the output of your query
into a Data Wrangler flow to perform data transformations.

After you've created a dataset, navigate to the Data flow screen to start transforming your data.

Import data from Snowflake

You can use Snowflake as a data source in SageMaker Data Wrangler to prepare data in Snowflake
for machine learning.

With Snowflake as a data source in Data Wrangler, you can quickly connect to Snowflake without
writing a single line of code. You can join your data in Snowflake with data from any other data
source in Data Wrangler.

Once connected, you can interactively query data stored in Snowflake, transform data with more
than 300 preconfigured data transformations, understand data and identify potential errors
and extreme values with a set of robust preconfigured visualization templates, quickly identify
inconsistencies in your data preparation workflow, and diagnose issues before models are deployed
into production. Finally, you can export your data preparation workflow to Amazon S3 for use with
other SageMaker features such as Amazon SageMaker Autopilot, Amazon SageMaker Feature Store
and Amazon SageMaker Model Building Pipelines.

You can encrypt the output of your queries using an AWS Key Management Service key that you've
created. For more information about AWS KMS, see AWS Key Management Service.

Topics

• Administrator Guide

• Data Scientist Guide

Administrator Guide

Important

To learn more about granular access control and best practices, see Security Access Control.

Import 2145

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.snowflake.com/en/user-guide/security-access-control.html

Amazon SageMaker Developer Guide

This section is for Snowflake administrators who are setting up access to Snowflake from within
SageMaker Data Wrangler.

Important

You are responsible for managing and monitoring the access control within Snowflake.
Data Wrangler does not add a layer of access control with respect to Snowflake.
Access control includes the following:

• The data that a user accesses

• (Optional) The storage integration that provides Snowflake the ability to write query
results to an Amazon S3 bucket

• The queries that a user can run

(Optional) Configure Snowflake Data Import Permissions

By default, Data Wrangler queries the data in Snowflake without creating a copy of it in an
Amazon S3 location. Use the following information if you're configuring a storage integration with
Snowflake. Your users can use a storage integration to store their query results in an Amazon S3
location.

Your users might have different levels of access of sensitive data. For optimal data security, provide
each user with their own storage integration. Each storage integration should have its own data
governance policy.

This feature is currently not available in the opt-in Regions.

Snowflake requires the following permissions on an S3 bucket and directory to be able to access
files in the directory:

• s3:GetObject

• s3:GetObjectVersion

• s3:ListBucket

• s3:ListObjects

• s3:GetBucketLocation

Create an IAM policy

Import 2146

Amazon SageMaker Developer Guide

You must create an IAM policy to configure access permissions for Snowflake to load and unload
data from an Amazon S3 bucket.

The following is the JSON policy document that you use to create the policy:

Example policy for S3 write access
This needs to be updated
{
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource": "arn:aws:s3:::bucket/prefix/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::bucket/",
 "Condition": {
 "StringLike": {
 "s3:prefix": ["prefix/*"]
 }
 }
 }
]
}

For information and procedures about creating policies with policy documents, see Creating IAM
policies.

For documentation that provides an overview of using IAM permissions with Snowflake, see the
following resources:

• What is IAM?

Import 2147

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon SageMaker Developer Guide

• Create the IAM Role in AWS

• Create a Cloud Storage Integration in Snowflake

• Retrieve the AWS IAM User for your Snowflake Account

• Grant the IAM User Permissions to Access Bucket.

To grant the data scientist's Snowflake role usage permission to the storage integration, you must
run GRANT USAGE ON INTEGRATION integration_name TO snowflake_role;.

• integration_name is the name of your storage integration.

• snowflake_role is the name of the default Snowflake role given to the data scientist user.

Setting up Snowflake OAuth Access

Instead of having your users directly enter their credentials into Data Wrangler, you can have
them use an identity provider to access Snowflake. The following are links to the Snowflake
documentation for the identity providers that Data Wrangler supports.

• Azure AD

• Okta

• Ping Federate

Use the documentation from the preceding links to set up access to your identity provider.
The information and procedures in this section help you understand how to properly use the
documentation to access Snowflake within Data Wrangler.

Your identity provider needs to recognize Data Wrangler as an application. Use the following
procedure to register Data Wrangler as an application within the identity provider:

1. Select the configuration that starts the process of registering Data Wrangler as an application.

2. Provide the users within the identity provider access to Data Wrangler.

3. Turn on OAuth client authentication by storing the client credentials as an AWS Secrets
Manager secret.

4. Specify a redirect URL using the following format: https://domain-ID.studio.AWS
Region.sagemaker.aws/jupyter/default/lab

Import 2148

https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration.html#step-2-create-the-iam-role-in-aws
https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration.html#step-3-create-a-cloud-storage-integration-in-snowflake
https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration.html#step-4-retrieve-the-aws-iam-user-for-your-snowflake-account
https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration.html#step-5-grant-the-iam-user-permissions-to-access-bucket-objects
https://docs.snowflake.com/en/user-guide/security-access-control-overview.html#roles
https://docs.snowflake.com/en/user-guide/oauth-azure.html
https://docs.snowflake.com/en/user-guide/oauth-okta.html
https://docs.snowflake.com/en/user-guide/oauth-pingfed.html

Amazon SageMaker Developer Guide

Important

You're specifying the Amazon SageMaker domain ID and AWS Region that you're using
to run Data Wrangler.

Important

You must register a URL for each Amazon SageMaker domain and AWS Region where
you're running Data Wrangler. Users from a domain and AWS Region that don't have
redirect URLs set up for them won't be able to authenticate with the identity provider
to access the Snowflake connection.

5. Make sure that the authorization code and refresh token grant types are allowed for the Data
Wrangler application.

Within your identity provider, you must set up a server that sends OAuth tokens to Data Wrangler
at the user level. The server sends the tokens with Snowflake as the audience.

Snowflake uses the concept of roles that are distinct role the IAM roles used in AWS. You must
configure the identity provider to use any role to use the default role associated with the
Snowflake account. For example, if a user has systems administrator as the default role
in their Snowflake profile, the connection from Data Wrangler to Snowflake uses systems
administrator as the role.

Use the following procedure to set up the server.

To set up the server, do the following. You're working within Snowflake for all steps except the last
one.

1. Start setting up the server or API.

2. Configure the authorization server to use the authorization code and refresh token grant
types.

3. Specify the lifetime of the access token.

4. Set the refresh token idle timeout. The idle timeout is the time that the refresh token expires if
it's not used.

Import 2149

Amazon SageMaker Developer Guide

Note

If you're scheduling jobs in Data Wrangler, we recommend making the idle timeout
time greater than the frequency of the processing job. Otherwise, some processing
jobs might fail because the refresh token expired before they could run. When the
refresh token expires, the user must re-authenticate by accessing the connection that
they've made to Snowflake through Data Wrangler.

5. Specify session:role-any as the new scope.

Note

For Azure AD, copy the unique identifier for the scope. Data Wrangler requires you to
provide it with the identifier.

6.
Important

Within the External OAuth Security Integration for Snowflake, enable
external_oauth_any_role_mode.

Important

Data Wrangler doesn't support rotating refresh tokens. Using rotating refresh tokens might
result in access failures or users needing to log in frequently.

Important

If the refresh token expires, your users must reauthenticate by accessing the connection
that they've made to Snowflake through Data Wrangler.

After you've set up the OAuth provider, you provide Data Wrangler with the information it needs to
connect to the provider. You can use the documentation from your identity provider to get values
for the following fields:

Import 2150

Amazon SageMaker Developer Guide

• Token URL – The URL of the token that the identity provider sends to Data Wrangler.

• Authorization URL – The URL of the authorization server of the identity provider.

• Client ID – The ID of the identity provider.

• Client secret – The secret that only the authorization server or API recognizes.

• (Azure AD only) The OAuth scope credentials that you've copied.

You store the fields and values in a AWS Secrets Manager secret and add it to the Amazon
SageMaker Studio Classic lifecycle configuration that you're using for Data Wrangler. A Lifecycle
Configuration is a shell script. Use it to make the Amazon Resource Name (ARN) of the secret
accessible to Data Wrangler. For information about creating secrets see Move hardcoded secrets to
AWS Secrets Manager. For information about using lifecycle configurations in Studio Classic, see
Use lifecycle configurations with Amazon SageMaker Studio Classic.

Important

Before you create a Secrets Manager secret, make sure that the SageMaker execution role
that you're using for Amazon SageMaker Studio Classic has permissions to create and
update secrets in Secrets Manager. For more information about adding permissions, see
Example: Permission to create secrets.

For Okta and Ping Federate, the following is the format of the secret:

{
 "token_url":"https://identityprovider.com/oauth2/example-portion-of-URL-path/v2/
token",
 "client_id":"example-client-id",
 "client_secret":"example-client-secret",
 "identity_provider":"OKTA"|"PING_FEDERATE",
 "authorization_url":"https://identityprovider.com/oauth2/example-portion-of-URL-
path/v2/authorize"
}

For Azure AD, the following is the format of the secret:

Import 2151

https://docs.aws.amazon.com/secretsmanager/latest/userguide/hardcoded.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/hardcoded.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_create

Amazon SageMaker Developer Guide

{
 "token_url":"https://identityprovider.com/oauth2/example-portion-of-URL-path/v2/
token",
 "client_id":"example-client-id",
 "client_secret":"example-client-secret",
 "identity_provider":"AZURE_AD",
 "authorization_url":"https://identityprovider.com/oauth2/example-portion-of-URL-
path/v2/authorize",
 "datasource_oauth_scope":"api://appuri/session:role-any)"
}

You must have a lifecycle configuration that uses the Secrets Manager secret that you've created.
You can either create the lifecycle configuration or modify one that has already been created. The
configuration must use the following script.

#!/bin/bash

set -eux

Script Body

cat > ~/.snowflake_identity_provider_oauth_config <<EOL
{
 "secret_arn": "example-secret-arn"
}
EOL

For information about setting up lifecycle configurations, see Create and associate a lifecycle
configuration. When you're going through the process of setting up, do the following:

• Set the application type of the configuration to Jupyter Server.

• Attach the configuration to the Amazon SageMaker domain that has your users.

• Have the configuration run by default. It must run every time a user logs into Studio Classic.
Otherwise, the credentials saved in the configuration won't be available to your users when
they're using Data Wrangler.

• The lifecycle configuration creates a file with the name,
snowflake_identity_provider_oauth_config in the user's home folder. The file contains

Import 2152

Amazon SageMaker Developer Guide

the Secrets Manager secret. Make sure that it's in the user's home folder every time the Jupyter
Server's instance is initialized.

Private Connectivity between Data Wrangler and Snowflake via AWS PrivateLink

This section explains how to use AWS PrivateLink to establish a private connection between Data
Wrangler and Snowflake. The steps are explained in the following sections.

Create a VPC

If you do not have a VPC set up, then follow the Create a new VPC instructions to create one.

Once you have a chosen VPC you would like to use for establishing a private connection, provide
the following credentials to your Snowflake Administrator to enable AWS PrivateLink:

• VPC ID

• AWS Account ID

• Your corresponding account URL you use to access Snowflake

Important

As described in Snowflake's documentation, enabling your Snowflake account can take up
to two business days.

Set up Snowflake AWS PrivateLink Integration

After AWS PrivateLink is activated, retrieve the AWS PrivateLink configuration for your Region by
running the following command in a Snowflake worksheet. Log into your Snowflake console and
enter the following under Worksheets: select SYSTEM$GET_PRIVATELINK_CONFIG();

1. Retrieve the values for the following: privatelink-account-name, privatelink_ocsp-
url, privatelink-account-url, and privatelink_ocsp-url from the resulting JSON
object. Examples of each value are shown in the following snippet. Store these values for later
use.

privatelink-account-name: xxxxxxxx.region.privatelink
privatelink-vpce-id: com.amazonaws.vpce.region.vpce-svc-xxxxxxxxxxxxxxxxx

Import 2153

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/gsg_create_vpc.html#create_vpc

Amazon SageMaker Developer Guide

privatelink-account-url: xxxxxxxx.region.privatelink.snowflakecomputing.com
privatelink_ocsp-url: ocsp.xxxxxxxx.region.privatelink.snowflakecomputing.com

2. Switch to your AWS Console and navigate to the VPC menu.

3. From the left side panel, choose the Endpoints link to navigate to the VPC Endpoints setup.

Once there, choose Create Endpoint.

4. Select the radio button for Find service by name, as shown in the following screenshot.

5. In the Service Name field, paste in the value for privatelink-vpce-id that you retrieved in
the preceding step and choose Verify.

If the connection is successful, a green alert saying Service name found appears on your screen
and the VPC and Subnet options automatically expand, as shown in the following screenshot.
Depending on your targeted Region, your resulting screen may show another AWS Region name.

Import 2154

Amazon SageMaker Developer Guide

6. Select the same VPC ID that you sent to Snowflake from the VPC dropdown list.

7. If you have not yet created a subnet, then perform the following set of instructions on creating a
subnet.

8. Select Subnets from the VPC dropdown list. Then select Create subnet and follow the prompts
to create a subset in your VPC. Ensure you select the VPC ID you sent Snowflake.

9. Under Security Group Configuration, select Create New Security Group to open the default
Security Group screen in a new tab. In this new tab, select tCreate Security Group.

10.Provide a name for the new security group (such as datawrangler-doc-snowflake-
privatelink-connection) and a description. Be sure to select the VPC ID you have used in
previous steps.

11.Add two rules to allow traffic from within your VPC to this VPC endpoint.

Navigate to your VPC under Your VPCs in a separate tab, and retrieve your CIDR block for your
VPC. Then choose Add Rule in the Inbound Rules section. Select HTTPS for the type, leave the
Source as Custom in the form, and paste in the value retrieved from the preceding describe-
vpcs call (such as 10.0.0.0/16).

12.Choose Create Security Group. Retrieve the Security Group ID from the newly created security
group (such as sg-xxxxxxxxxxxxxxxxx).

Import 2155

Amazon SageMaker Developer Guide

13.In the VPC Endpoint configuration screen, remove the default security group. Paste in the
security group ID in the search field and select the checkbox.

14.Select Create Endpoint.

15.If the endpoint creation is successful, you see a page that has a link to your VPC endpoint
configuration, specified by the VPC ID. Select the link to view the configuration in full.

Retrieve the topmost record in the DNS names list. This can be differentiated from other DNS
names because it only includes the Region name (such as us-west-2), and no Availability Zone
letter notation (such as us-west-2a). Store this information for later use.

Configure DNS for Snowflake Endpoints in your VPC

This section explains how to configure DNS for Snowflake endpoints in your VPC. This allows your
VPC to resolve requests to the Snowflake AWS PrivateLink endpoint.

1. Navigate to the Route 53 menu within your AWS console.

2. Select the Hosted Zones option (if necessary, expand the left-hand menu to find this option).

3. Choose Create Hosted Zone.

Import 2156

https://console.aws.amazon.com/route53

Amazon SageMaker Developer Guide

a. In the Domain name field, reference the value that was stored for privatelink-
account-url in the preceding steps. In this field, your Snowflake account ID is
removed from the DNS name and only uses the value starting with the Region
identifier. A Resource Record Set is also created later for the subdomain, such as,
region.privatelink.snowflakecomputing.com.

b. Select the radio button for Private Hosted Zone in the Type section. Your Region code may
not be us-west-2. Reference the DNS name returned to you by Snowflake.

c. In the VPCs to associate with the hosted zone section, select the Region in which your VPC is
located and the VPC ID used in previous steps.

Import 2157

Amazon SageMaker Developer Guide

d. Choose Create hosted zone.

4. Next, create two records, one for privatelink-account-url and one for
privatelink_ocsp-url.

• In the Hosted Zone menu, choose Create Record Set.

a. Under Record name, enter your Snowflake Account ID only (the first 8 characters in
privatelink-account-url).

b. Under Record type, select CNAME.

c. Under Value, enter the DNS name for the regional VPC endpoint you retrieved in the last
step of the Set up the Snowflake AWS PrivateLink Integration section.

Import 2158

Amazon SageMaker Developer Guide

d. Choose Create records.

e. Repeat the preceding steps for the OCSP record we notated as privatelink-ocsp-url,
starting with ocsp through the 8-character Snowflake ID for the record name (such as
ocsp.xxxxxxxx).

Configure Route 53 Resolver Inbound Endpoint for your VPC

This section explains how to configure Route 53 resolvers inbound endpoints for your VPC.

1. Navigate to the Route 53 menu within your AWS console.

• In the left hand panel in the Security section, select the Security Groups option.

2. Choose Create Security Group.

• Provide a name for your security group (such as datawranger-doc-route53-resolver-
sg) and a description.

• Select the VPC ID used in previous steps.

• Create rules that allow for DNS over UDP and TCP from within the VPC CIDR block.

Import 2159

https://console.aws.amazon.com/route53

Amazon SageMaker Developer Guide

• Choose Create Security Group. Note the Security Group ID because adds a rule to allow
traffic to the VPC endpoint security group.

3. Navigate to the Route 53 menu within your AWS console.

• In the Resolver section, select the Inbound Endpoint option.

4. Choose Create Inbound Endpoint.

• Provide an endpoint name.

• From the VPC in the Region dropdown list, select the VPC ID you have used in all previous
steps.

• In the Security group for this endpoint dropdown list, select the security group ID from Step
2 in this section.

• In the IP Address section, select an Availability Zones, select a subnet, and leave the radio
selector for Use an IP address that is selected automatically selected for each IP address.

Import 2160

https://console.aws.amazon.com/route53

Amazon SageMaker Developer Guide

• Choose Submit.

5. Select the Inbound endpoint after it has been created.

6. Once the inbound endpoint is created, note the two IP addresses for the resolvers.

Import 2161

Amazon SageMaker Developer Guide

SageMaker VPC Endpoints

This section explains how to create VPC endpoints for the following: Amazon SageMaker Studio
Classic, SageMaker Notebooks, the SageMaker API, SageMaker Runtime Runtime, and Amazon
SageMaker Feature Store Runtime.

Create a security group that is applied to all endpoints.

1. Navigate to the EC2 menu in the AWS Console.

2. In the Network & Security section, select the Security groups option.

3. Choose Create security group.

4. Provide a security group name and description (such as datawrangler-doc-sagemaker-
vpce-sg). A rule is added later to allow traffic over HTTPS from SageMaker to this group.

Creating the endpoints

1. Navigate to the VPC menu in the AWS console.

2. Select the Endpoints option.

3. Choose Create Endpoint.

4. Search for the service by entering its name in the Search field.

5. From the VPC dropdown list, select the VPC in which your Snowflake AWS PrivateLink
connection exists.

6. In the Subnets section, select the subnets which have access to the Snowflake PrivateLink
connection.

7. Leave the Enable DNS Name checkbox selected.

8. In the Security Groups section, select the security group you created in the preceding section.

9. Choose Create Endpoint.

Import 2162

https://console.aws.amazon.com/ec2
https://console.aws.amazon.com/vpc

Amazon SageMaker Developer Guide

Configure Studio Classic and Data Wrangler

This section explains how to configure Studio Classic and Data Wrangler.

1. Configure the security group.

a. Navigate to the Amazon EC2 menu in the AWS Console.

b. Select the Security Groups option in the Network & Security section.

c. Choose Create Security Group.

d. Provide a name and description for your security group (such as datawrangler-doc-
sagemaker-studio).

e. Create the following inbound rules.

• The HTTPS connection to the security group you provisioned for the Snowflake PrivateLink
connection you created in the Set up the Snowflake PrivateLink Integration step.

• The HTTP connection to the security group you provisioned for the Snowflake PrivateLink
connection you created in the Set up the Snowflake PrivateLink Integration step.

• The UDP and TCP for DNS (port 53) to Route 53 Resolver Inbound Endpoint security group
you create in step 2 of Configure Route 53 Resolver Inbound Endpoint for your VPC.

f. Choose Create Security Group button in the lower right hand corner.

2. Configure Studio Classic.

• Navigate to the SageMaker menu in the AWS console.

• From the left hand console, Select the SageMaker Studio Classic option.

• If you do not have any domains configured, the Get Started menu is present.

• Select the Standard Setup option from the Get Started menu.

• Under Authentication method, select AWS Identity and Access Management (IAM).

• From the Permissions menu, you can create a new role or use a pre-existing role, depending
on your use case.

• If you choose Create a new role, you are presented the option to provide an S3 bucket
name, and a policy is generated for you.

• If you already have a role created with permissions for the S3 buckets to which you
require access, select the role from the dropdown list. This role should have the
AmazonSageMakerFullAccess policy attached to it.

• Select the Network and Storage dropdown list to configure the VPC, security, and subnets
SageMaker uses.

Import 2163

Amazon SageMaker Developer Guide

• Under VPC, select the VPC in which your Snowflake PrivateLink connection exists.

• Under Subnet(s), select the subnets which have access to the Snowflake PrivateLink
connection.

• Under Network Access for Studio Classic, select VPC Only.

• Under Security Group(s), select the security group you created in step 1.

• Choose Submit.

3. Edit the SageMaker security group.

• Create the following inbound rules:

• Port 2049 to the inbound and outbound NFS Security Groups created automatically by
SageMaker in step 2 (the security group names contain the Studio Classic domain ID).

• Access to all TCP ports to itself (required for SageMaker for VPC Only).

4. Edit the VPC Endpoint Security Groups:

• Navigate to the Amazon EC2 menu in the AWS console.

• Locate the security group you created in a preceding step.

• Add an inbound rule allowing for HTTPS traffic from the security group created in step 1.

5. Create a user profile.

• From the SageMaker Studio Classic Control Panel , choose Add User.

• Provide a user name.

• For the Execution Role, choose to create a new role or to use a pre-existing role.

• If you choose Create a new role, you are presented the option to provide an Amazon S3
bucket name, and a policy is generated for you.

• If you already have a role created with permissions to the Amazon S3 buckets to which
you require access, select the role from the dropdown list. This role should have the
AmazonSageMakerFullAccess policy attached to it.

• Choose Submit.

6. Create a data flow (follow the data scientist guide outlined in a preceding section).

• When adding a Snowflake connection, enter the value of privatelink-account-name
(from the Set up Snowflake PrivateLink Integration step) into the Snowflake account name
(alphanumeric) field, instead of the plain Snowflake account name. Everything else is left
unchanged.

Import 2164

Amazon SageMaker Developer Guide

Provide information to the data scientist

Provide the data scientist with the information that they need to access Snowflake from Amazon
SageMaker Data Wrangler.

Important

Your users need to run Amazon SageMaker Studio Classic version 1.3.0 or later. For
information about checking the version of Studio Classic and updating it, see Prepare ML
Data with Amazon SageMaker Data Wrangler.

1. To allow your data scientist to access Snowflake from SageMaker Data Wrangler, provide them
with one of the following:

• For Basic Authentication, a Snowflake account name, user name, and password.

• For OAuth, a user name and password in the identity provider.

• For ARN, the Secrets Manager secret Amazon Resource Name (ARN).

• A secret created with AWS Secrets Manager and the ARN of the secret. Use the following
procedure below to create the secret for Snowflake if you choose this option.

Important

If your data scientists use the Snowflake Credentials (User name and Password)
option to connect to Snowflake, you can use Secrets Manager to store the
credentials in a secret. Secrets Manager rotates secrets as part of a best practice
security plan. The secret created in Secrets Manager is only accessible with the
Studio Classic role configured when you set up a Studio Classic user profile. This
requires you to add this permission, secretsmanager:PutResourcePolicy, to
the policy that is attached to your Studio Classic role.
We strongly recommend that you scope the role policy to use different roles for
different groups of Studio Classic users. You can add additional resource-based
permissions for the Secrets Manager secrets. See Manage Secret Policy for condition
keys you can use.
For information about creating a secret, see Create a secret. You're charged for the
secrets that you create.

Import 2165

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_secret-policy.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon SageMaker Developer Guide

2. (Optional) Provide the data scientist with the name of the storage integration that you created
using the following procedure Create a Cloud Storage Integration in Snowflake. This is the
name of the new integration and is called integration_name in the CREATE INTEGRATION
SQL command you ran, which is shown in the following snippet:

 CREATE STORAGE INTEGRATION integration_name
 TYPE = EXTERNAL_STAGE
 STORAGE_PROVIDER = S3
 ENABLED = TRUE
 STORAGE_AWS_ROLE_ARN = 'iam_role'
 [STORAGE_AWS_OBJECT_ACL = 'bucket-owner-full-control']
 STORAGE_ALLOWED_LOCATIONS = ('s3://bucket/path/', 's3://bucket/path/')
 [STORAGE_BLOCKED_LOCATIONS = ('s3://bucket/path/', 's3://bucket/path/')]

Data Scientist Guide

Use the following to connect Snowflake and access your data in Data Wrangler.

Important

Your administrator needs to use the information in the preceding sections to set up
Snowflake. If you're running into issues, contact them for troubleshooting help.

You can connect to Snowflake in one of the following ways:

• Specifying your Snowflake credentials (account name, user name, and password) in Data
Wrangler.

• Providing an Amazon Resource Name (ARN) of a secret containing the credentials.

• Using an open standard for access delegation (OAuth) provider that connects to Snowflake. Your
administrator can give you access to one of the following OAuth providers:

• Azure AD

• Okta

• Ping Federate

Import 2166

https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration.html#step-3-create-a-cloud-storage-integration-in-snowflake
https://docs.snowflake.com/en/user-guide/oauth-azure.html
https://docs.snowflake.com/en/user-guide/oauth-okta.html
https://docs.snowflake.com/en/user-guide/oauth-pingfed.html

Amazon SageMaker Developer Guide

Talk to your administrator about the method that you need to use to connect to Snowflake.

The following sections have information about how you can connect to Snowflake using the
preceding methods.

Specifying your Snowflake Credentials

To import a dataset into Data Wrangler from Snowflake using your credentials

1. Sign into Amazon SageMaker Console.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. Choose the Home icon.

6. Choose Data.

7. Choose Data Wrangler.

8. Choose Import data.

9. Under Available, choose Snowflake.

10. For Connection name, specify a name that uniquely identifies the connection.

11. For Authentication method, choose Basic Username-Password.

12. For Snowflake account name (alphanumeric), specify the full name of the Snowflake
account.

13. For Username, specify the username that you use to access the Snowflake account.

14. For Password, specify the password associated with the username.

15. (Optional) For Advanced settings. specify the following:

• Role – A role within Snowflake. Some roles have access to different datasets. If you don't
specify a role, Data Wrangler uses the default role in your Snowflake account.

• Storage integration – When you specify and run a query, Data Wrangler creates a
temporary copy of the query results in memory. To store a permanent copy of the query
results, specify the Amazon S3 location for the storage integration. Your administrator
provided you with the S3 URI.

• KMS key ID – A KMS key that you've created. You can specify its ARN to encrypt the
output of the Snowflake query. Otherwise, Data Wrangler uses the default encryption.

16. Choose Connect.

Import 2167

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

Providing an Amazon Resource Name (ARN)

To import a dataset into Data Wrangler from Snowflake using an ARN

1. Sign into Amazon SageMaker Console.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. Choose the Home icon.

6. Choose Data.

7. Choose Data Wrangler.

8. Choose Import data.

9. Under Available, choose Snowflake.

10. For Connection name, specify a name that uniquely identifies the connection.

11. For Authentication method, choose ARN.

12. Secrets Manager ARN – The ARN of the AWS Secrets Manager secret used to store the
credentials used to connect to Snowflake.

13. (Optional) For Advanced settings. specify the following:

• Role – A role within Snowflake. Some roles have access to different datasets. If you don't
specify a role, Data Wrangler uses the default role in your Snowflake account.

• Storage integration – When you specify and run a query, Data Wrangler creates a
temporary copy of the query results in memory. To store a permanent copy of the query
results, specify the Amazon S3 location for the storage integration. Your administrator
provided you with the S3 URI.

• KMS key ID – A KMS key that you've created. You can specify its ARN to encrypt the
output of the Snowflake query. Otherwise, Data Wrangler uses the default encryption.

14. Choose Connect.

Import 2168

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

Using an OAuth Connection

Important

Your administrator customized your Studio Classic environment to provide the
functionality you're using to use an OAuth connection. You might need to restart the
Jupyter server application to use the functionality.
Use the following procedure to update the Jupyter server application.

1. Within Studio Classic, choose File

2. Choose Shut down.

3. Choose Shut down server.

4. Close the tab or window that you're using to access Studio Classic.

5. From the Amazon SageMaker console, open Studio Classic.

To import a dataset into Data Wrangler from Snowflake using your credentials

1. Sign into Amazon SageMaker Console.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. Choose the Home icon.

6. Choose Data.

7. Choose Data Wrangler.

8. Choose Import data.

9. Under Available, choose Snowflake.

10. For Connection name, specify a name that uniquely identifies the connection.

11. For Authentication method, choose OAuth.

12. (Optional) For Advanced settings. specify the following:

• Role – A role within Snowflake. Some roles have access to different datasets. If you don't
specify a role, Data Wrangler uses the default role in your Snowflake account.

• Storage integration – When you specify and run a query, Data Wrangler creates a
temporary copy of the query results in memory. To store a permanent copy of the query

Import 2169

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

results, specify the Amazon S3 location for the storage integration. Your administrator
provided you with the S3 URI.

• KMS key ID – A KMS key that you've created. You can specify its ARN to encrypt the
output of the Snowflake query. Otherwise, Data Wrangler uses the default encryption.

13. Choose Connect.

You can begin the process of importing your data from Snowflake after you've connected to it.

Within Data Wrangler, you can view your data warehouses, databases, and schemas, along with
the eye icon with which you can preview your table. After you select the Preview Table icon, the
schema preview of that table is generated. You must select a warehouse before you can preview a
table.

Important

If you're importing a dataset with columns of type TIMESTAMP_TZ or TIMESTAMP_LTZ,
add ::string to the column names of your query. For more information, see How To:
Unload TIMESTAMP_TZ and TIMESTAMP_LTZ data to a Parquet file.

After you select a data warehouse, database and schema, you can now write queries and run them.
The output of your query shows under Query results.

After you have settled on the output of your query, you can then import the output of your query
into a Data Wrangler flow to perform data transformations.

After you've imported your data, navigate to your Data Wrangler flow and start adding
transformations to it. For a list of available transforms, see Transform Data.

Import Data From Software as a Service (SaaS) Platforms

You can use Data Wrangler to import data from more than forty software as a service (SaaS)
platforms. To import your data from your SaaS platform, you or your administrator must use
Amazon AppFlow to transfer the data from the platform to Amazon S3 or Amazon Redshift. For
more information about Amazon AppFlow, see What is Amazon AppFlow? If you don't need to use
Amazon Redshift, we recommend transferring the data to Amazon S3 for a simpler process.

Data Wrangler supports transferring data from the following SaaS platforms:

Import 2170

https://community.snowflake.com/s/article/How-To-Unload-Timestamp-data-in-a-Parquet-file
https://community.snowflake.com/s/article/How-To-Unload-Timestamp-data-in-a-Parquet-file
https://docs.aws.amazon.com/appflow/latest/userguide/what-is-appflow.html

Amazon SageMaker Developer Guide

• Amplitude

• Asana

• Braintree

• CircleCI

• DocuSign Monitor

• Delighted

• Domo

• Datadog

• Dynatrace

• Facebook Ads

• Facebook Page Insights

• Google Ads

• Google Analytics 4

• Google Calendar

• Google Search Console

• GitHub

• GitLab

• Infor Nexus

• Instagram Ads

• Intercom

• JDBC (Sync)

• Jira Cloud

• LinkedIn Ads

• Mailchimp

• Marketo

• Microsoft Dynamics 365

• Microsoft Teams

• Mixpanel

• Okta

• Oracle HCM

Import 2171

https://docs.aws.amazon.com/appflow/latest/userguide/amplitude.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-asana.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-braintree.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-circleci.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-docusign-monitor.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-delighted.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-domo.html
https://docs.aws.amazon.com/appflow/latest/userguide/datadog.html
https://docs.aws.amazon.com/appflow/latest/userguide/dynatrace.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-facebook-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-facebook-page-insights.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-google-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-google-analytics-4.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-google-calendar.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-google-search-console.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-github.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-gitlab.html
https://docs.aws.amazon.com/appflow/latest/userguide/infor-nexus.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-instagram-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-intercom.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-jdbc.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-jira-cloud.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-linkedin-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-mailchimp.html
https://docs.aws.amazon.com/appflow/latest/userguide/marketo.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-microsoft-dynamics-365.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-microsoft-teams.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-mixpanel.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-okta.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-oracle-hcm.html

Amazon SageMaker Developer Guide

• Paypal Checkout

• Pendo

• Salesforce

• Salesforce Marketing Cloud

• Salesforce Pardot

• SAP OData

• SendGrid

• ServiceNow

• Singular

• Slack

• Smartsheet

• Snapchat Ads

• Stripe

• Trend Micro

• Typeform

• Veeva

• WooCommerce

• Zendesk

• Zendesk Chat

• Zendesk Sell

• Zendesk Sunshine

• Zoho CRM

• Zoom Meetings

The preceding list has links to more information about setting up your data source. You or your
administrator can refer to the preceding links after you've read the following information.

When you navigate to the Import tab of your Data Wrangler flow, you see data sources under the
following sections:

• Available

• Set up data sources

Import 2172

https://docs.aws.amazon.com/appflow/latest/userguide/connectors-paypal.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-pendo.html
https://docs.aws.amazon.com/appflow/latest/userguide/salesforce.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-salesforce-marketing-cloud.html
https://docs.aws.amazon.com/appflow/latest/userguide/pardot.html
https://docs.aws.amazon.com/appflow/latest/userguide/sapodata.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-sendgrid.html
https://docs.aws.amazon.com/appflow/latest/userguide/servicenow.html
https://docs.aws.amazon.com/appflow/latest/userguide/singular.html
https://docs.aws.amazon.com/appflow/latest/userguide/slack.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-smartsheet.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-snapchat-ads.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-stripe.html
https://docs.aws.amazon.com/appflow/latest/userguide/trend-micro.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-typeform.html
https://docs.aws.amazon.com/appflow/latest/userguide/veeva.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-woocommerce.html
https://docs.aws.amazon.com/appflow/latest/userguide/slack.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zendesk-chat.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zendesk-sell.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zendesk-sunshine.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zoho-crm.html
https://docs.aws.amazon.com/appflow/latest/userguide/connectors-zoom-meetings.html

Amazon SageMaker Developer Guide

You can connect to data sources under Available without needing additional configuration. You
can choose the data source and import your data.

Data sources under Set up data sources, require you or your administrator to use Amazon AppFlow
to transfer the data from the SaaS platform to Amazon S3 or Amazon Redshift. For information
about performing a transfer, see Using Amazon AppFlow to transfer your data.

After you perform the data transfer, the SaaS platform appears as a data source under Available.
You can choose it and import the data that you've transferred into Data Wrangler. The data that
you've transferred appears as tables that you can query.

Using Amazon AppFlow to transfer your data

Amazon AppFlow is a platform that you can use to transfer data from your SaaS platform to
Amazon S3 or Amazon Redshift without having to write any code. To perform a data transfer, you
use the AWS Management Console.

Important

You must make sure you've set up the permissions to perform a data transfer. For more
information, see Amazon AppFlow Permissions.

After you've added permissions, you can transfer the data. Within Amazon AppFlow, you create
a flow to transfer the data. A flow is a series of configurations. You can use it to specify whether
you're running the data transfer on a schedule or whether you're partitioning the data into
separate files. After you've configured the flow, you run it to transfer the data.

For information about creating a flow, see Creating flows in Amazon AppFlow. For information
about running a flow, see Activate an Amazon AppFlow flow.

After the data has been transferred, use the following procedure to access the data in Data
Wrangler.

Important

Before you try to access your data, make sure your IAM role has the following policy:

Import 2173

https://docs.aws.amazon.com/appflow/latest/userguide/create-flow.html
https://docs.aws.amazon.com/appflow/latest/userguide/run-flow.html

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "glue:SearchTables",
 "Resource": [
 "arn:aws:glue:*:*:table/*/*",
 "arn:aws:glue:*:*:database/*",
 "arn:aws:glue:*:*:catalog"
]
 }
]
}

By default, the IAM role that you use to access Data Wrangler is the
SageMakerExecutionRole. For more information about adding policies, see Adding IAM
identity permissions (console).

To connect to a data source, do the following.

1. Sign into Amazon SageMaker Console.

2. Choose Studio.

3. Choose Launch app.

4. From the dropdown list, select Studio.

5. Choose the Home icon.

6. Choose Data.

7. Choose Data Wrangler.

8. Choose Import data.

9. Under Available, choose the data source.

10. For the Name field, specify the name of the connection.

11. (Optional) Choose Advanced configuration.

a. Choose a Workgroup.

b. If your workgroup hasn't enforced the Amazon S3 output location or if you don't use a
workgroup, specify a value for Amazon S3 location of query results.

Import 2174

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

c. (Optional) For Data retention period, select the checkbox to set a data retention period
and specify the number of days to store the data before it's deleted.

d. (Optional) By default, Data Wrangler saves the connection. You can choose to deselect the
checkbox and not save the connection.

12. Choose Connect.

13. Specify a query.

Note

To help you specify a query, you can choose a table on the left-hand navigation panel.
Data Wrangler shows the table name and a preview of the table. Choose the icon next
to the table name to copy the name. You can use the table name in the query.

14. Choose Run.

15. Choose Import query.

16. For Dataset name, specify the name of the dataset.

17. Choose Add.

When you navigate to the Import data screen, you can see the connection that you've created. You
can use the connection to import more data.

Imported Data Storage

Important

We strongly recommend that you follow the best practices around protecting your Amazon
S3 bucket by following Security best practices.

When you query data from Amazon Athena or Amazon Redshift, the queried dataset is
automatically stored in Amazon S3. Data is stored in the default SageMaker S3 bucket for the AWS
Region in which you are using Studio Classic.

Default S3 buckets have the following naming convention: sagemaker-region-account
number. For example, if your account number is 111122223333 and you are using Studio Classic in
us-east-1, your imported datasets are stored in sagemaker-us-east-1-111122223333.

Import 2175

https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html

Amazon SageMaker Developer Guide

Data Wrangler flows depend on this Amazon S3 dataset location, so you should not modify this
dataset in Amazon S3 while you are using a dependent flow. If you do modify this S3 location, and
you want to continue using your data flow, you must remove all objects in trained_parameters
in your .flow file. To do this, download the .flow file from Studio Classic and for each instance of
trained_parameters, delete all entries. When you are done, trained_parameters should be
an empty JSON object:

"trained_parameters": {}

When you export and use your data flow to process your data, the .flow file you export refers to
this dataset in Amazon S3. Use the following sections to learn more.

Amazon Redshift Import Storage

Data Wrangler stores the datasets that result from your query in a Parquet file in your default
SageMaker S3 bucket.

This file is stored under the following prefix (directory): redshift/uuid/data/, where uuid is a
unique identifier that gets created for each query.

For example, if your default bucket is sagemaker-us-east-1-111122223333, a single
dataset queried from Amazon Redshift is located in s3://sagemaker-us-east-1-111122223333/
redshift/uuid/data/.

Amazon Athena Import Storage

When you query an Athena database and import a dataset, Data Wrangler stores the dataset, as
well as a subset of that dataset, or preview files, in Amazon S3.

The dataset you import by selecting Import dataset is stored in Parquet format in Amazon S3.

Preview files are written in CSV format when you select Run on the Athena import screen, and
contain up to 100 rows from your queried dataset.

The dataset you query is located under the prefix (directory): athena/uuid/data/, where uuid is a
unique identifier that gets created for each query.

For example, if your default bucket is sagemaker-us-east-1-111122223333, a single dataset
queried from Athena is located in s3://sagemaker-us-east-1-111122223333/athena/uuid/
data/example_dataset.parquet.

Import 2176

Amazon SageMaker Developer Guide

The subset of the dataset that is stored to preview dataframes in Data Wrangler is stored under the
prefix: athena/.

Create and Use a Data Wrangler Flow

Use an Amazon SageMaker Data Wrangler flow, or a data flow, to create and modify a data
preparation pipeline. The data flow connects the datasets, transformations, and analyses, or steps,
you create and can be used to define your pipeline.

Instances

When you create a Data Wrangler flow in Amazon SageMaker Studio Classic, Data Wrangler uses
an Amazon EC2 instance to run the analyses and transformations in your flow. By default, Data
Wrangler uses the m5.4xlarge instance. m5 instances are general purpose instances that provide
a balance between compute and memory. You can use m5 instances for a variety of compute
workloads.

Data Wrangler also gives you the option of using r5 instances. r5 instances are designed to deliver
fast performance that processes large datasets in memory.

We recommend that you choose an instance that is best optimized around your workloads. For
example, the r5.8xlarge might have a higher price than the m5.4xlarge, but the r5.8xlarge might be
better optimized for your workloads. With better optimized instances, you can run your data flows
in less time at lower cost.

The following table shows the instances that you can use to run your Data Wrangler flow.

Standard Instances vCPU Memory

ml.m5.4xlarge 16 64 GiB

ml.m5.8xlarge 32 128 GiB

ml.m5.16xlarge 64 256 GiB

ml.m5.24xlarge 96 384 GiB

r5.4xlarge 16 128 GiB

r5.8xlarge 32 256 GiB

Create and Use a Data Wrangler Flow 2177

Amazon SageMaker Developer Guide

Standard Instances vCPU Memory

r5.24xlarge 96 768 GiB

For more information about r5 instances, see Amazon EC2 R5 Instances. For more information
about m5 instances, see Amazon EC2 M5 Instances.

Each Data Wrangler flow has an Amazon EC2 instance associated with it. You might have multiple
flows that are associated with a single instance.

For each flow file, you can seamlessly switch the instance type. If you switch the instance type, the
instance that you used to run the flow continues to run.

To switch the instance type of your flow, do the following.

1. Choose the home icon,

.

2. Navigate to the instance that you're using and choose it.

3. Choose the instance type that you want to use.

Create and Use a Data Wrangler Flow 2178

https://aws.amazon.com/ec2/instance-types/r5/
https://aws.amazon.com/ec2/instance-types/m5/

Amazon SageMaker Developer Guide

4. Choose Save.

You are charged for all running instances. To avoid incurring additional charges, shut down
the instances that you aren't using manually. To shut down an instance that is running, use the
following procedure.

To shut down a running instance.

1. Choose the instance icon. The following image shows you where to select the RUNNING
INSTANCES icon.

2. Choose Shut down next to the instance that you want to shut down.

If you shut down an instance used to run a flow, you temporarily can't access the flow. If you get an
error while attempting to open the flow running an instance you previously shut down, wait for 5
minutes and try opening it again.

When you export your data flow to a location such as Amazon Simple Storage Service or Amazon
SageMaker Feature Store, Data Wrangler runs an Amazon SageMaker processing job. You can use
one of the following instances for the processing job. For more information on exporting your data,
see Export.

Standard Instances vCPU Memory

ml.m5.4xlarge 16 64 GiB

ml.m5.12xlarge 48 192 GiB

ml.m5.24xlarge 96 384 GiB

Create and Use a Data Wrangler Flow 2179

Amazon SageMaker Developer Guide

For more information about the cost per hour for using the available instance types, see SageMaker
Pricing.

The Data Flow UI

When you import a dataset, the original dataset appears on the data flow and is named Source. If
you turned on sampling when you imported your data, this dataset is named Source - sampled.
Data Wrangler automatically infers the types of each column in your dataset and creates a new
dataframe named Data types. You can select this frame to update the inferred data types. You see
results similar to those shown in the following image after you upload a single dataset:

Each time you add a transform step, you create a new dataframe. When multiple transform steps
(other than Join or Concatenate) are added to the same dataset, they are stacked.

Join and Concatenate create standalone steps that contain the new joined or concatenated
dataset.

The following diagram shows a data flow with a join between two datasets, as well as two stacks
of steps. The first stack (Steps (2)) adds two transforms to the type inferred in the Data types
dataset. The downstream stack, or the stack to the right, adds transforms to the dataset resulting
from a join named demo-join.

Create and Use a Data Wrangler Flow 2180

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

The small, gray box in the bottom right corner of the data flow provides an overview
of number of stacks and steps in the flow and the layout of the flow. The lighter box
inside the gray box indicates the steps that are within the UI view. You can use this box
to see sections of your data flow that fall outside of the UI view. Use the fit screen icon

()
to fit all steps and datasets into your UI view.

The bottom left navigation bar includes icons that you can use to zoom in

()
and out
()
of your data flow and resize the data flow to fit the screen

() .
Use the lock icon

()
to lock and unlock the location of each step on the screen.

Create and Use a Data Wrangler Flow 2181

Amazon SageMaker Developer Guide

Add a Step to Your Data Flow

Select + next to any dataset or previously added step and then select one of the following options:

• Edit data types (For a Data types step only): If you have not added any transforms to a Data
types step, you can select Edit data types to update the data types Data Wrangler inferred when
importing your dataset.

• Add transform: Adds a new transform step. See Transform Data to learn more about the data
transformations you can add.

• Add analysis: Adds an analysis. You can use this option to analyze your data at any
point in the data flow. When you add one or more analyses to a step, an analysis icon

()
appears on that step. See Analyze and Visualize to learn more about the analyses you can add.

• Join: Joins two datasets and adds the resulting dataset to the data flow. To learn more, see Join
Datasets.

• Concatenate: Concatenates two datasets and adds the resulting dataset to the data flow. To
learn more, see Concatenate Datasets.

Delete a Step from Your Data Flow

To delete a step, select the step and select Delete. If the node is a node that has a single input, you
delete only the step that you select. Deleting a step that has a single input doesn't delete the steps
that follow it. If you're deleting a step for a source, join, or concatenate node, all the steps that
follow it are also deleted.

To delete a step from a stack of steps, select the stack and then select the step you want to delete.

You can use one of the following procedures to delete a step without deleting the downstream
steps.

Delete a step in the Data Wrangler flow

You can delete an individual step for nodes in your data flow that have a single input. You can't
delete individual steps for source, join, and concatenate nodes.

Use the following procedure to delete a step in the Data Wrangler flow.

Create and Use a Data Wrangler Flow 2182

Amazon SageMaker Developer Guide

1. Choose the group of steps that has the step that you're deleting.

2. Choose the icon next to the step.

3. Choose Delete step.

Delete a step in the table view

Use the following procedure to delete a step in the table view.

You can delete an individual step for nodes in your data flow that have a single input. You can't
delete individual steps for source, join, and concatenate nodes.

1. Choose the step and open the table view for the step.

2. Move your cursor over the step so the ellipsis icon appears.

3. Choose the icon next to the step.

4. Choose Delete.

Create and Use a Data Wrangler Flow 2183

Amazon SageMaker Developer Guide

Edit a Step in Your Data Wrangler Flow

You can edit each step that you've added in your Data Wrangler flow. By editing steps, you can
change the transformations or the data types of the columns. You can edit the steps to make
changes with which you can perform better analyses.

There are many ways that you can edit a step. Some examples include changing the imputation
method or changing the threshold for considering a value to be an outlier.

Use the following procedure to edit a step.

To edit a step, do the following.

1. Choose a step in the Data Wrangler flow to open the table view.

Create and Use a Data Wrangler Flow 2184

Amazon SageMaker Developer Guide

2. Choose a step in the data flow.

3. Edit the step.

The following image shows an example of editing a step.

Note

You can use the shared spaces within your Amazon SageMaker domain to work
collaboratively on your Data Wrangler flows. Within a shared space, you and your

Create and Use a Data Wrangler Flow 2185

Amazon SageMaker Developer Guide

collaborators can edit a flow file in real-time. However, neither you nor your collaborators
can see the changes in real-time. When anyone makes a change to the Data Wrangler flow,
they must save it immediately. When someone saves a file, a collaborator won’t be able to
see it unless the close the file and reopen it. Any changes that aren’t saved by one person
are overwritten by the person who saved their changes.

Get Insights On Data and Data Quality

Use the Data Quality and Insights Report to perform an analysis of the data that you've imported
into Data Wrangler. We recommend that you create the report after you import your dataset. You
can use the report to help you clean and process your data. It gives you information such as the
number of missing values and the number of outliers. If you have issues with your data, such as
target leakage or imbalance, the insights report can bring those issues to your attention.

Use the following procedure to create a Data Quality and Insights report. It assumes that you've
already imported a dataset into your Data Wrangler flow.

To create a Data Quality and Insights report

1. Choose a + next to a node in your Data Wrangler flow.

2. Select Get data insights.

3. For Analysis name, specify a name for the insights report.

4. (Optional) For Target column, specify the target column.

5. For Problem type, specify Regression or Classification.

6. For Data size, specify one of the following:

• 50 K – Uses the first 50000 rows of the dataset that you've imported to create the report.

• Entire dataset – Uses the entire dataset that you've imported to create the report.

Note

Creating a Data Quality and Insights report on the entire dataset uses an Amazon
SageMaker processing job. A SageMaker processing job provisions the additional
compute resources required to get insights for all of your data. For more information
about SageMaker processing jobs, see Process data.

Get Insights On Data and Data Quality 2186

Amazon SageMaker Developer Guide

7. Choose Create.

The following topics show the sections of the report:

Topics

• Summary

• Target column

• Quick model

• Feature summary

• Samples

• Definitions

You can either download the report or view it online. To download the report, choose the
download button at the top right corner of the screen. The following image shows the button.

Summary

The insights report has a brief summary of the data that includes general information such as
missing values, invalid values, feature types, outlier counts, and more. It can also include high
severity warnings that point to probable issues with the data. We recommend that you investigate
the warnings.

The following is an example of a report summary.

Get Insights On Data and Data Quality 2187

Amazon SageMaker Developer Guide

Target column

When you create the data quality and insights report, Data Wrangler gives you the option to select
a target column. A target column is a column that you're trying to predict. When you choose a
target column, Data Wrangler automatically creates a target column analysis. It also ranks the
features in the order of their predictive power. When you select a target column, you must specify
whether you’re trying to solve a regression or a classification problem.

For classification, Data Wrangler shows a table and a histogram of the most common classes. A
class is a category. It also presents observations, or rows, with a missing or invalid target value.

The following image shows an example target column analysis for a classification problem.

Get Insights On Data and Data Quality 2188

Amazon SageMaker Developer Guide

For regression, Data Wrangler shows a histogram of all the values in the target column. It also
presents observations, or rows, with a missing, invalid, or outlier target value.

The following image shows an example target column analysis for a regression problem.

Get Insights On Data and Data Quality 2189

Amazon SageMaker Developer Guide

Quick model

The Quick model provides an estimate of the expected predicted quality of a model that you train
on your data.

Data Wrangler splits your data into training and validation folds. It uses 80% of the samples for
training and 20% of the values for validation. For classification, the sample is stratified split. For
a stratified split, each data partition has the same ratio of labels. For classification problems, it's
important to have the same ratio of labels between the training and classification folds. Data
Wrangler trains the XGBoost model with the default hyperparameters. It applies early stopping on
the validation data and performs minimal feature preprocessing.

For classification models, Data Wrangler returns both a model summary and a confusion matrix.

The following is an example of a classification model summary. To learn more about the
information that it returns, see Definitions.

Get Insights On Data and Data Quality 2190

Amazon SageMaker Developer Guide

The following is an example of a confusion matrix that the quick model returns.

A confusion matrix gives you the following information:

• The number of times the predicted label matches the true label.

• The number of times the predicted label doesn't match the true label.

Get Insights On Data and Data Quality 2191

Amazon SageMaker Developer Guide

The true label represents an actual observation in your data. For example, if you're using a model
to detect fraudulent transactions, the true label represents a transaction that is actually fraudulent
or non-fraudulent. The predicted label represents the label that your model assigns to the data.

You can use the confusion matrix to see how well the model predicts the presence or the absence
of a condition. If you're predicting fraudulent transactions, you can use the confusion matrix to
get a sense of both the sensitivity and the specificity of the model. The sensitivity refers to the
model's ability to detect fraudulent transactions. The specificity refers to the model's ability to
avoid detecting non-fraudulent transactions as fraudulent.

The following is an example of the quick model outputs for a regression problem.

Feature summary

When you specify a target column, Data Wrangler orders the features by their prediction power.
Prediction power is measured on the data after it was split into 80% training and 20% validation
folds. Data Wrangler fits a model for each feature separately on the training fold. It applies
minimal feature preprocessing and measures prediction performance on the validation data.

It normalizes the scores to the range [0,1]. Higher prediction scores indicate columns that are more
useful for predicting the target on their own. Lower scores point to columns that aren’t predictive
of the target column.

It’s uncommon for a column that isn’t predictive on its own to be predictive when it’s used in
tandem with other columns. You can confidently use the prediction scores to determine whether a
feature in your dataset is predictive.

Get Insights On Data and Data Quality 2192

Amazon SageMaker Developer Guide

A low score usually indicates the feature is redundant. A score of 1 implies perfect predictive
abilities, which often indicates target leakage. Target leakage usually happens when the dataset
contains a column that isn’t available at the prediction time. For example, it could be a duplicate of
the target column.

The following are examples of the table and the histogram that show the prediction value of each
feature.

Get Insights On Data and Data Quality 2193

Amazon SageMaker Developer Guide

Samples

Data Wrangler provides information about whether your samples are anomalous or if there are
duplicates in your dataset.

Data Wrangler detects anomalous samples using the isolation forest algorithm. The isolation forest
associates an anomaly score with each sample (row) of the dataset. Low anomaly scores indicate
anomalous samples. High scores are associated with non-anomalous samples. Samples with a
negative anomaly score are usually considered anomalous and samples with positive anomaly score
are considered non-anomalous.

When you look at a sample that might be anomalous, we recommend that you pay attention to
unusual values. For example, you might have anomalous values that result from errors in gathering
and processing the data. The following is an example of the most anomalous samples according
to the Data Wrangler’s implementation of the isolation forest algorithm. We recommend using
domain knowledge and business logic when you examine the anomalous samples.

Data Wrangler detects duplicate rows and calculates the ratio of duplicate rows in your data. Some
data sources could include valid duplicates. Other data sources could have duplicates that point
to problems in data collection. Duplicate samples that result from faulty data collection could
interfere with machine learning processes that rely on splitting the data into independent training
and validation folds.

Get Insights On Data and Data Quality 2194

Amazon SageMaker Developer Guide

The following are elements of the insights report that can be impacted by duplicated samples:

• Quick model

• Prediction power estimation

• Automatic hyperparameter tuning

You can remove duplicate samples from the dataset using the Drop duplicates transform under
Manage rows. Data Wrangler shows you the most frequently duplicated rows.

Definitions

The following are definitions for the technical terms that are used in the data insights report.

Feature types

The following are the definitions for each of the feature types:

• Numeric – Numeric values can be either floats or integers, such as age or income. The
machine learning models assume that numeric values are ordered and a distance is defined
over them. For example, 3 is closer to 4 than to 10 and 3 < 4 < 10.

• Categorical – The column entries belong to a set of unique values, which is usually much
smaller than the number of entries in the column. For example, a column of length 100
could contain the unique values Dog, Cat, and Mouse. The values could be numeric, text, or a
combination of both. Horse, House, 8, Love, and 3.1 would all be valid values and could be
found in the same categorical column. The machine learning model does not assume order or
distance on the values of categorical features, as opposed to numeric features, even when all
the values are numbers.

• Binary – Binary features are a special categorical feature type in which the cardinality of the
set of unique values is 2.

• Text – A text column contains many non-numeric unique values. In extreme cases, all the
elements of the column are unique. In an extreme case, no two entries are the same.

• Datetime – A datetime column contains information about the date or time. It can have
information about both the date and time.

Feature statistics

The following are definitions for each of the feature statistics:

Get Insights On Data and Data Quality 2195

Amazon SageMaker Developer Guide

• Prediction power – Prediction power measures how useful the column is in predicting the
target.

• Outliers (in numeric columns) – Data Wrangler detects outliers using two statistics that are
robust to outliers: median and robust standard deviation (RSTD). RSTD is derived by clipping
the feature values to the range [5 percentile, 95 percentile] and calculating the standard
deviation of the clipped vector. All values larger than median + 5 * RSTD or smaller than
median - 5 * RSTD are considered to be outliers.

• Skew (in numeric columns) – Skew measures the symmetry of the distribution and is defined
as the third moment of the distribution divided by the third power of the standard deviation.
The skewness of the normal distribution or any other symmetric distribution is zero. Positive
values imply that the right tail of the distribution is longer than the left tail. Negative values
imply that the left tail of the distribution is longer than the right tail. As a rule of thumb, a
distribution is considered skewed when the absolute value of the skew is larger than 3.

• Kurtosis (in numeric columns) – Pearson's kurtosis measures the heaviness of the tail of the
distribution. It's defined as the fourth moment of the distribution divided by the square of
the second moment. The kurtosis of the normal distribution is 3. Kurtosis values lower than 3
imply that the distribution is concentrated around the mean and the tails are lighter than the
tails of the normal distribution. Kurtosis values higher than 3 imply heavier tails or outliers.

• Missing values – Null-like objects, empty strings and strings composed of only white spaces
are considered missing.

• Valid values for numeric features or regression target – All values that you can cast to finite
floats are valid. Missing values are not valid.

• Valid values for categorical, binary, or text features, or for classification target – All values
that are not missing are valid.

• Datetime features – All values that you can cast to a datetime object are valid. Missing values
are not valid.

• Invalid values – Values that are either missing or you can't properly cast. For example, in a
numeric column, you can't cast the string "six" or a null value.

Quick model metrics for regression

The following are the definitions for the quick model metrics:

• R2 or coefficient of determination) – R2 is the proportion of the variation in the target that
is predicted by the model. R2 is in the range of [-infty, 1]. 1 is the score of the model that

Get Insights On Data and Data Quality 2196

Amazon SageMaker Developer Guide

predicts the target perfectly and 0 is the score of the trivial model that always predicts the
target mean.

• MSE or mean squared error – MSE is in the range [0, infty]. 0 is the score of the model that
predicts the target perfectly.

• MAE or mean absolute error – MAE is in the range [0, infty] where 0 is the score of the model
that predicts the target perfectly.

• RMSE or root mean square error – RMSE is in the range [0, infty] where 0 is the score of the
model that predicts the target perfectly.

• Max error – The maximum absolute value of the error over the dataset. Max error is in the
range [0, infty]. 0 is the score of the model that predicts the target perfectly.

• Median absolute error – Median absolute error is in the range [0, infty]. 0 is the score of the
model that predicts the target perfectly.

Quick model metrics for classification

The following are the definitions for the quick model metrics:

• Accuracy – Accuracy is the ratio of samples that are predicted accurately. Accuracy is in the
range [0, 1]. 0 is the score of the model that predicts all samples incorrectly and 1 is the score
of the perfect model.

• Balanced accuracy – Balanced accuracy is the ratio of samples that are predicted accurately
when the class weights are adjusted to balance the data. All classes are given the same
importance, regardless of their frequency. Balanced accuracy is in the range [0, 1]. 0 is the
score of the model that predicts all samples wrong. 1 is the score of the perfect model.

• AUC (binary classification) – This is the area under the receiver operating characteristic
curve. AUC is in the range [0, 1] where a random model returns a score of 0.5 and the perfect
model returns a score of 1.

• AUC (OVR) – For multiclass classification, this is the area under the receiver operating
characteristic curve calculated separately for each label using one versus rest. Data Wrangler
reports the average of the areas. AUC is in the range [0, 1] where a random model returns a
score of 0.5 and the perfect model returns a score of 1.

• Precision – Precision is defined for a specific class. Precision is the fraction of true positives
out of all the instances that the model classified as that class. Precision is in the range [0, 1].
1 is the score of the model that has no false positives for the class. For binary classification,
Data Wrangler reports the precision of the positive class.

Get Insights On Data and Data Quality 2197

Amazon SageMaker Developer Guide

• Recall – Recall is defined for a specific class. Recall is the fraction of the relevant class
instances that are successfully retrieved. Recall is in the range [0, 1]. 1 is the score of the
model that classifies all the instances of the class correctly. For binary classification, Data
Wrangler reports the recall of the positive class.

• F1 – F1 is defined for a specific class. It's the harmonic mean of the precision and recall. F1 is
in the range [0, 1]. 1 is the score of the perfect model. For binary classification, Data Wrangler
reports the F1 for classes with positive values.

Textual patterns

Patterns describe the textual format of a string using an easy to read format. The following are
examples of textual patterns:

• "{digits:4-7}" describes a sequence of digits that have a length between 4 and 7.

• "{alnum:5}" describes an alpha-numeric string with a length of exactly 5.

Data Wrangler infers the patterns by looking at samples of non-empty strings from your data.
It can describe many of the commonly used patterns. The confidence expressed as a percentage
indicates how much of the data is estimated to match the pattern. Using the textual pattern,
you can see which rows in your data you need to correct or drop.

The following describes the patterns that Data Wrangler can recognize:

Pattern Textual Format

{alnum} Alphanumeric strings

{any} Any string of word characters

{digits} A sequence of digits

{lower} A lowercase word

{mixed} A mixed-case word

{name} A word beginning with a capital letter

{upper} An uppercase word

Get Insights On Data and Data Quality 2198

Amazon SageMaker Developer Guide

Pattern Textual Format

{whitespace} whitespace characters

A word character is either an underscore or a character that might appear in a word in any
language. For example, the strings 'Hello_word' and 'écoute' both consist of word characters. 'H'
and 'é' are both examples of word characters.

Automatically Train Models on Your Data Flow

You can use Amazon SageMaker Autopilot to automatically train, tune, and deploy models on
the data that you've transformed in your data flow. Amazon SageMaker Autopilot can go through
several algorithms and use the one that works best with your data. For more information about
Amazon SageMaker Autopilot, see SageMaker Autopilot.

When you train and tune a model, Data Wrangler exports your data to an Amazon S3 location
where Amazon SageMaker Autopilot can access it.

You can prepare and deploy a model by choosing a node in your Data Wrangler flow and choosing
Export and Train in the data preview. You can use this method to view your dataset before you
choose to train a model on it.

You can also train and deploy a model directly from your data flow.

The following procedure prepares and deploys a model from the data flow. For Data Wrangler
flows with multi-row transforms, you can't use the transforms from the Data Wrangler flow when
you're deploying the model. You can use the following procedure to process the data before you
use it to perform inference.

To train and deploy a model directly from your data flow, do the following.

1. Choose the + next to the node containing the training data.

2. Choose Train model.

3. (Optional) Specify a AWS KMS key or ID. For more information about creating and controlling
cryptographic keys to protect your data, see AWS Key Management Service.

4. Choose Export and train.

Automatically Train Models on Your Data Flow 2199

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

5. After Amazon SageMaker Autopilot trains the model on the data that Data Wrangler exported,
specify a name for Experiment name.

6. Under Input data, choose Preview to verify that Data Wrangler properly exported your data to
Amazon SageMaker Autopilot.

7. For Target, choose the target column.

8. (Optional) For S3 location under Output data, specify an Amazon S3 location other than the
default location.

9. Choose Next: Training method.

10. Choose a training method. For more information, see Training modes.

11. (Optional) For Auto deploy endpoint, specify a name for the endpoint.

12. For Deployment option, choose a deployment method. You can choose to deploy with or
without the transformations that you've made to your data.

Important

You can't deploy an Amazon SageMaker Autopilot model with the transformations
that you've made in your Data Wrangler flow. For more information about those
transformations, see Export to an Inference Endpoint.

13. Choose Next: Review and create.

14. Choose Create experiment.

For more information about model training and deployment, see Create a regression or
classification job for tabular data using the AutoML API. Autopilot shows you analyses about the
best model's performance. For more information about model performance, see View an Autopilot
Model Performance Report.

Transform Data

Amazon SageMaker Data Wrangler provides numerous ML data transforms to streamline cleaning,
transforming, and featurizing your data. When you add a transform, it adds a step to the data flow.
Each transform you add modifies your dataset and produces a new dataframe. All subsequent
transforms apply to the resulting dataframe.

Data Wrangler includes built-in transforms, which you can use to transform columns without any
code. You can also add custom transformations using PySpark, Python (User-Defined Function),

Transform Data 2200

Amazon SageMaker Developer Guide

pandas, and PySpark SQL. Some transforms operate in place, while others create a new output
column in your dataset.

You can apply transforms to multiple columns at once. For example, you can delete multiple
columns in a single step.

You can apply the Process numeric and Handle missing transforms only to a single column.

Use this page to learn more about these built-in and custom transforms.

Transform UI

Most of the built-in transforms are located in the Prepare tab of the Data Wrangler UI. You can
access the join and concatenate transforms through the data flow view. Use the following table to
preview these two views.

Transform

You can add a transform to any step in your data flow. Use the following procedure to add a
transform to your data flow.

To add a step to your data flow, do the following.

1. Choose the + next to the step in the data flow.

2. Choose Add transform.

3. Choose Add step.

Transform Data 2201

Amazon SageMaker Developer Guide

4. Choose a transform.

5. (Optional) You can search for the transform that you want to use. Data Wrangler highlights
the query in the results.

Transform Data 2202

Amazon SageMaker Developer Guide

Join View

To join two datasets, select the first dataset in your data flow and choose Join. When you
choose Join, you see results similar to those shown in the following image. Your left and right
datasets are displayed in the left panel. The main panel displays your data flow, with the newly
joined dataset added.

Transform Data 2203

Amazon SageMaker Developer Guide

When you choose Configure to configure your join, you see results similar to those shown in the
following image. Your join configuration is displayed in the left panel. You can use this panel to
choose the joined dataset name, join type, and columns to join. The main panel displays three
tables. The top two tables display the left and right datasets on the left and right respectively.
Under this table, you can preview the joined dataset.

Transform Data 2204

Amazon SageMaker Developer Guide

See Join Datasets to learn more.

Concatenate View

To concatenate two datasets, you select the first dataset in your data flow and choose
Concatenate. When you select Concatenate, you see results similar to those shown in the
following image. Your left and right datasets are displayed in the left panel. The main panel
displays your data flow, with the newly concatenated dataset added.

Transform Data 2205

Amazon SageMaker Developer Guide

When you choose Configure to configure your concatenation, you see results similar to those
shown in the following image. Your concatenate configuration displays in the left panel.
You can use this panel to choose the concatenated dataset's name, and choose to remove
duplicates after concatenation and add columns to indicate the source dataframe. The main
panel displays three tables. The top two tables display the left and right datasets on the left
and right respectively. Under this table, you can preview the concatenated dataset.

Transform Data 2206

Amazon SageMaker Developer Guide

See Concatenate Datasets to learn more.

Join Datasets

You join dataframes directly in your data flow. When you join two datasets, the resulting joined
dataset appears in your flow. The following join types are supported by Data Wrangler.

• Left Outer – Include all rows from the left table. If the value for the column joined on a left table
row does not match any right table row values, that row contains null values for all right table
columns in the joined table.

• Left Anti – Include rows from the left table that do not contain values in the right table for the
joined column.

• Left semi – Include a single row from the left table for all identical rows that satisfy the criteria
in the join statement. This excludes duplicate rows from the left table that match the criteria of
the join.

Transform Data 2207

Amazon SageMaker Developer Guide

• Right Outer – Include all rows from the right table. If the value for the joined column in a right
table row does not match any left table row values, that row contains null values for all left table
columns in the joined table.

• Inner – Include rows from left and right tables that contain matching values in the joined
column.

• Full Outer – Include all rows from the left and right tables. If the row value for the joined column
in either table does not match, separate rows are created in the joined table. If a row doesn’t
contain a value for a column in the joined table, null is inserted for that column.

• Cartesian Cross – Include rows which combine each row from the first table with each row from
the second table. This is a Cartesian product of rows from tables in the join. The result of this
product is the size of the left table times the size of the right table. Therefore, we recommend
caution in using this join between very large datasets.

Use the following procedure to join two dataframes.

1. Select + next to the left dataframe that you want to join. The first dataframe you select is
always the left table in your join.

2. Choose Join.

3. Select the right dataframe. The second dataframe you select is always the right table in your
join.

4. Choose Configure to configure your join.

5. Give your joined dataset a name using the Name field.

6. Select a Join type.

7. Select a column from the left and right tables to join.

8. Choose Apply to preview the joined dataset on the right.

9. To add the joined table to your data flow, choose Add.

Concatenate Datasets

Concatenate two datasets:

1. Choose + next to the left dataframe that you want to concatenate. The first dataframe you
select is always the left table in your concatenate.

2. Choose Concatenate.

Transform Data 2208

https://en.wikipedia.org/wiki/Cartesian_product

Amazon SageMaker Developer Guide

3. Select the right dataframe. The second dataframe you select is always the right table in your
concatenate.

4. Choose Configure to configure your concatenate.

5. Give your concatenated dataset a name using the Name field.

6. (Optional) Select the checkbox next to Remove duplicates after concatenation to remove
duplicate columns.

7. (Optional) Select the checkbox next to Add column to indicate source dataframe if, for each
column in the new dataset, you want to add an indicator of the column's source.

8. Choose Apply to preview the new dataset.

9. Choose Add to add the new dataset to your data flow.

Balance Data

You can balance the data for datasets with an underrepresented category. Balancing a dataset can
help you create better models for binary classification.

Note

You can't balance datasets containing column vectors.

You can use the Balance data operation to balance your data using one of the following operators:

• Random oversampling – Randomly duplicates samples in the minority category. For example,
if you're trying to detect fraud, you might only have cases of fraud in 10% of your data. For an
equal proportion of fraudulent and non-fraudulent cases, this operator randomly duplicates
fraud cases within the dataset 8 times.

• Random undersampling – Roughly equivalent to random oversampling. Randomly removes
samples from the overrepresented category to get the proportion of samples that you desire.

• Synthetic Minority Oversampling Technique (SMOTE) – Uses samples from the underrepresented
category to interpolate new synthetic minority samples. For more information about SMOTE, see
the following description.

You can use all transforms for datasets containing both numeric and non-numeric features. SMOTE
interpolates values by using neighboring samples. Data Wrangler uses the R-squared distance

Transform Data 2209

Amazon SageMaker Developer Guide

to determine the neighborhood to interpolate the additional samples. Data Wrangler only uses
numeric features to calculate the distances between samples in the underrepresented group.

For two real samples in the underrepresented group, Data Wrangler interpolates the numeric
features by using a weighted average. It randomly assigns weights to those samples in the range of
[0, 1]. For numeric features, Data Wrangler interpolates samples using a weighted average of the
samples. For samples A and B, Data Wrangler could randomly assign a weight of 0.7 to A and 0.3 to
B. The interpolated sample has a value of 0.7A + 0.3B.

Data Wrangler interpolates non-numeric features by copying from either of the interpolated real
samples. It copies the samples with a probability that it randomly assigns to each sample. For
samples A and B, it can assign probabilities 0.8 to A and 0.2 to B. For the probabilities it assigned, it
copies A 80% of the time.

Custom Transforms

The Custom Transforms group allows you to use Python (User-Defined Function), PySpark, pandas,
or PySpark (SQL) to define custom transformations. For all three options, you use the variable df
to access the dataframe to which you want to apply the transform. To apply your custom code
to your dataframe, assign the dataframe with the transformations that you've made to the df
variable. If you're not using Python (User-Defined Function), you don't need to include a return
statement. Choose Preview to preview the result of the custom transform. Choose Add to add the
custom transform to your list of Previous steps.

You can import the popular libraries with an import statement in the custom transform code
block, such as the following:

• NumPy version 1.19.0

• scikit-learn version 0.23.2

• SciPy version 1.5.4

• pandas version 1.0.3

• PySpark version 3.0.0

Important

Custom transform doesn't support columns with spaces or special characters in the name.
We recommend that you specify column names that only have alphanumeric characters
and underscores. You can use the Rename column transform in the Manage columns

Transform Data 2210

Amazon SageMaker Developer Guide

transform group to remove spaces from a column's name. You can also add a Python
(Pandas) Custom transform similar to the following to remove spaces from multiple
columns in a single step. This example changes columns named A column and B column
to A_column and B_column respectively.

df.rename(columns={"A column": "A_column", "B column": "B_column"})

If you include print statements in the code block, the result appears when you select Preview. You
can resize the custom code transformer panel. Resizing the panel provides more space to write
code. The following image shows the resizing of the panel.

The following sections provide additional context and examples for writing custom transform code.

Python (User-Defined Function)

The Python function gives you the ability to write custom transformations without needing to
know Apache Spark or pandas. Data Wrangler is optimized to run your custom code quickly. You
get similar performance using custom Python code and an Apache Spark plugin.

To use the Python (User-Defined Function) code block, you specify the following:

Transform Data 2211

Amazon SageMaker Developer Guide

• Input column – The input column where you're applying the transform.

• Mode – The scripting mode, either pandas or Python.

• Return type – The data type of the value that you're returning.

Using the pandas mode gives better performance. The Python mode makes it easier for you to
write transformations by using pure Python functions.

The following video shows an example of how to use custom code to create a transformation. It
uses the Titanic dataset to create a column with the person's salutation.

PySpark

The following example extracts date and time from a timestamp.

from pyspark.sql.functions import from_unixtime, to_date, date_format
df = df.withColumn('DATE_TIME', from_unixtime('TIMESTAMP'))
df = df.withColumn('EVENT_DATE', to_date('DATE_TIME')).withColumn(
'EVENT_TIME', date_format('DATE_TIME', 'HH:mm:ss'))

pandas

Transform Data 2212

https://s3.us-west-2.amazonaws.com/amazon-sagemaker-data-wrangler-documentation-artifacts/walkthrough_titanic.csv

Amazon SageMaker Developer Guide

The following example provides an overview of the dataframe to which you are adding transforms.

df.info()

PySpark (SQL)

The following example creates a new dataframe with four columns: name, fare, pclass, survived.

SELECT name, fare, pclass, survived FROM df

If you don’t know how to use PySpark, you can use custom code snippets to help you get started.

Data Wrangler has a searchable collection of code snippets. You can use to code snippets to
perform tasks such as dropping columns, grouping by columns, or modelling.

To use a code snippet, choose Search example snippets and specify a query in the search bar. The
text you specify in the query doesn’t have to match the name of the code snippet exactly.

The following example shows a Drop duplicate rows code snippet that can delete rows with similar
data in your dataset. You can find the code snippet by searching for one of the following:

• Duplicates

• Identical

• Remove

The following snippet has comments to help you understand the changes that you need to make.
For most snippets, you must specify the column names of your dataset in the code.

Specify the subset of columns
all rows having identical values in these columns will be dropped

subset = ["col1", "col2", "col3"]
df = df.dropDuplicates(subset)

to drop the full-duplicate rows run
df = df.dropDuplicates()

Transform Data 2213

Amazon SageMaker Developer Guide

To use a snippet, copy and paste its content into the Custom transform field. You can copy and
paste multiple code snippets into the custom transform field.

Custom Formula

Use Custom formula to define a new column using a Spark SQL expression to query data in the
current dataframe. The query must use the conventions of Spark SQL expressions.

Important

Custom formula doesn't support columns with spaces or special characters in the name.
We recommend that you specify column names that only have alphanumeric characters
and underscores. You can use the Rename column transform in the Manage columns
transform group to remove spaces from a column's name. You can also add a Python
(Pandas) Custom transform similar to the following to remove spaces from multiple
columns in a single step. This example changes columns named A column and B column
to A_column and B_column respectively.

df.rename(columns={"A column": "A_column", "B column": "B_column"})

You can use this transform to perform operations on columns, referencing the columns by name.
For example, assuming the current dataframe contains columns named col_a and col_b, you
can use the following operation to produce an Output column that is the product of these two
columns with the following code:

col_a * col_b

Other common operations include the following, assuming a dataframe contains col_a and col_b
columns:

• Concatenate two columns: concat(col_a, col_b)

• Add two columns: col_a + col_b

• Subtract two columns: col_a - col_b

• Divide two columns: col_a / col_b

• Take the absolute value of a column: abs(col_a)

Transform Data 2214

Amazon SageMaker Developer Guide

For more information, see the Spark documentation on selecting data.

Reduce Dimensionality within a Dataset

Reduce the dimensionality in your data by using Principal Component Analysis (PCA). The
dimensionality of your dataset corresponds to the number of features. When you use
dimensionality reduction in Data Wrangler, you get a new set of features called components. Each
component accounts for some variability in the data.

The first component accounts for the largest amount of variation in the data. The second
component accounts for the second largest amount of variation in the data, and so on.

You can use dimensionality reduction to reduce the size of the data sets that you use to train
models. Instead of using the features in your dataset, you can use the principal components
instead.

To perform PCA, Data Wrangler creates axes for your data. An axis is an affine combination of
columns in your dataset. The first principal component is the value on the axis that has the largest
amount of variance. The second principal component is the value on the axis that has the second
largest amount of variance. The nth principal component is the value on the axis that has the nth
largest amount of variance.

You can configure the number of principal components that Data Wrangler returns. You can either
specify the number of principal components directly or you can specify the variance threshold
percentage. Each principal component explains an amount of variance in the data. For example,
you might have a principal component with a value of 0.5. The component would explain 50% of
the variation in the data. When you specify a variance threshold percentage, Data Wrangler returns
the smallest number of components that meet the percentage that you specify.

The following are example principal components with the amount of variance that they explain in
the data.

• Component 1 – 0.5

• Component 2 – 0.45

• Component 3 – 0.05

If you specify a variance threshold percentage of 94 or 95, Data Wrangler returns Component 1
and Component 2. If you specify a variance threshold percentage of 96, Data Wrangler returns all
three principal components.

Transform Data 2215

http://spark.apache.org/docs/latest/api/python

Amazon SageMaker Developer Guide

You can use the following procedure to run PCA on your dataset.

To run PCA on your dataset, do the following.

1. Open your Data Wrangler data flow.

2. Choose the +, and select Add transform.

3. Choose Add step.

4. Choose Dimensionality Reduction.

5. For Input Columns, choose the features that you're reducing into the principal components.

6. (Optional) For Number of principal components, choose the number of principal components
that Data Wrangler returns in your dataset. If specify a value for the field, you can't specify a
value for Variance threshold percentage.

7. (Optional) For Variance threshold percentage, specify the percentage of variation in the
data that you want explained by the principal components. Data Wrangler uses the default
value of 95 if you don't specify a value for the variance threshold. You can't specify a variance
threshold percentage if you've specified a value for Number of principal components.

8. (Optional) Deselect Center to not use the mean of the columns as the center of the data. By
default, Data Wrangler centers the data with the mean before scaling.

9. (Optional) Deselect Scale to not scale the data with the unit standard deviation.

10. (Optional) Choose Columns to output the components to separate columns. Choose Vector to
output the components as a single vector.

11. (Optional) For Output column, specify a name for an output column. If you're outputting the
components to separate columns, the name that you specify is a prefix. If you're outputting
the components to a vector, the name that you specify is the name of the vector column.

12. (Optional) Select Keep input columns. We don't recommend selecting this option if you plan
on only using the principal components to train your model.

13. Choose Preview.

14. Choose Add.

Encode Categorical

Categorical data is usually composed of a finite number of categories, where each category
is represented with a string. For example, if you have a table of customer data, a column that
indicates the country a person lives in is categorical. The categories would be Afghanistan, Albania,

Transform Data 2216

Amazon SageMaker Developer Guide

Algeria, and so on. Categorical data can be nominal or ordinal. Ordinal categories have an inherent
order, and nominal categories do not. The highest degree obtained (High school, Bachelors,
Masters, and so on) is an example of ordinal categories.

Encoding categorical data is the process of creating a numerical representation for categories. For
example, if your categories are Dog and Cat, you may encode this information into two vectors,
[1,0] to represent Dog, and [0,1] to represent Cat.

When you encode ordinal categories, you may need to translate the natural order of categories
into your encoding. For example, you can represent the highest degree obtained with the following
map: {"High school": 1, "Bachelors": 2, "Masters":3}.

Use categorical encoding to encode categorical data that is in string format into arrays of integers.

The Data Wrangler categorical encoders create encodings for all categories that exist in a column at
the time the step is defined. If new categories have been added to a column when you start a Data
Wrangler job to process your dataset at time t, and this column was the input for a Data Wrangler
categorical encoding transform at time t-1, these new categories are considered missing in the
Data Wrangler job. The option you select for Invalid handling strategy is applied to these missing
values. Examples of when this can occur are:

• When you use a .flow file to create a Data Wrangler job to process a dataset that was updated
after the creation of the data flow. For example, you may use a data flow to regularly process
sales data each month. If that sales data is updated weekly, new categories may be introduced
into columns for which an encode categorical step is defined.

• When you select Sampling when you import your dataset, some categories may be left out of
the sample.

In these situations, these new categories are considered missing values in the Data Wrangler job.

You can choose from and configure an ordinal and a one-hot encode. Use the following sections to
learn more about these options.

Both transforms create a new column named Output column name. You specify the output format
of this column with Output style:

• Select Vector to produce a single column with a sparse vector.

• Select Columns to create a column for every category with an indicator variable for whether the
text in the original column contains a value that is equal to that category.

Transform Data 2217

Amazon SageMaker Developer Guide

Ordinal Encode

Select Ordinal encode to encode categories into an integer between 0 and the total number of
categories in the Input column you select.

Invalid handing strategy: Select a method to handle invalid or missing values.

• Choose Skip if you want to omit the rows with missing values.

• Choose Keep to retain missing values as the last category.

• Choose Error if you want Data Wrangler to throw an error if missing values are encountered in
the Input column.

• Choose Replace with NaN to replace missing with NaN. This option is recommended if your ML
algorithm can handle missing values. Otherwise, the first three options in this list may produce
better results.

One-Hot Encode

Select One-hot encode for Transform to use one-hot encoding. Configure this transform using the
following:

• Drop last category: If True, the last category does not have a corresponding index in the one-
hot encoding. When missing values are possible, a missing category is always the last one and
setting this to True means that a missing value results in an all zero vector.

• Invalid handing strategy: Select a method to handle invalid or missing values.

• Choose Skip if you want to omit the rows with missing values.

• Choose Keep to retain missing values as the last category.

• Choose Error if you want Data Wrangler to throw an error if missing values are encountered in
the Input column.

• Is input ordinal encoded: Select this option if the input vector contains ordinal encoded data.
This option requires that input data contain non-negative integers. If True, input i is encoded as a
vector with a non-zero in the ith location.

Similarity encode

Use similarity encoding when you have the following:

• A large number of categorical variables

Transform Data 2218

Amazon SageMaker Developer Guide

• Noisy data

The similarity encoder creates embeddings for columns with categorical data. An embedding is a
mapping of discrete objects, such as words, to vectors of real numbers. It encodes similar strings to
vectors containing similar values. For example, it creates very similar encodings for "California" and
"Calfornia".

Data Wrangler converts each category in your dataset into a set of tokens using a 3-gram
tokenizer. It converts the tokens into an embedding using min-hash encoding.

The following example shows how the similarity encoder creates vectors from strings.

Transform Data 2219

Amazon SageMaker Developer Guide

The similarity encodings that Data Wrangler creates:

• Have low dimensionality

• Are scalable to a large number of categories

• Are robust and resistant to noise

For the preceding reasons, similarity encoding is more versatile than one-hot encoding.

To add the similarity encoding transform to your dataset, use the following procedure.

To use similarity encoding, do the following.

1. Sign in to the Amazon SageMaker Console.

2. Choose Open Studio Classic.

3. Choose Launch app.

4. Choose Studio.

5. Specify your data flow.

6. Choose a step with a transformation.

7. Choose Add step.

8. Choose Encode categorical.

9. Specify the following:

Transform Data 2220

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

• Transform – Similarity encode

• Input column – The column containing the categorical data that you're encoding.

• Target dimension – (Optional) The dimension of the categorical embedding vector. The
default value is 30. We recommend using a larger target dimension if you have a large
dataset with many categories.

• Output style – Choose Vector for a single vector with all of the encoded values. Choose
Column to have the encoded values in separate columns.

• Output column – (Optional) The name of the output column for a vector encoded output.
For a column-encoded output, this is the prefix of the column names followed by listed
number.

Featurize Text

Use the Featurize Text transform group to inspect string-typed columns and use text embedding
to featurize these columns.

This feature group contains two features, Character statistics and Vectorize. Use the following
sections to learn more about these transforms. For both options, the Input column must contain
text data (string type).

Character Statistics

Use Character statistics to generate statistics for each row in a column containing text data.

This transform computes the following ratios and counts for each row, and creates a new column
to report the result. The new column is named using the input column name as a prefix and a suffix
that is specific to the ratio or count.

• Number of words: The total number of words in that row. The suffix for this output column is -
stats_word_count.

• Number of characters: The total number of characters in that row. The suffix for this output
column is -stats_char_count.

• Ratio of upper: The number of uppercase characters, from A to Z, divided by all characters in the
column. The suffix for this output column is -stats_capital_ratio.

• Ratio of lower: The number of lowercase characters, from a to z, divided by all characters in the
column. The suffix for this output column is -stats_lower_ratio.

Transform Data 2221

Amazon SageMaker Developer Guide

• Ratio of digits: The ratio of digits in a single row over the sum of digits in the input column. The
suffix for this output column is -stats_digit_ratio.

• Special characters ratio: The ratio of non-alphanumeric (characters like #$&%:@) characters
to over the sum of all characters in the input column. The suffix for this output column is -
stats_special_ratio.

Vectorize

Text embedding involves mapping words or phrases from a vocabulary to vectors of real numbers.
Use the Data Wrangler text embedding transform to tokenize and vectorize text data into term
frequency–inverse document frequency (TF-IDF) vectors.

When TF-IDF is calculated for a column of text data, each word in each sentence is converted to
a real number that represents its semantic importance. Higher numbers are associated with less
frequent words, which tend to be more meaningful.

When you define a Vectorize transform step, Data Wrangler uses the data in your dataset to define
the count vectorizer and TF-IDF methods . Running a Data Wrangler job uses these same methods.

You configure this transform using the following:

• Output column name: This transform creates a new column with the text embedding. Use this
field to specify a name for this output column.

• Tokenizer: A tokenizer converts the sentence into a list of words, or tokens.

Choose Standard to use a tokenizer that splits by white space and converts each word to
lowercase. For example, "Good dog" is tokenized to ["good","dog"].

Choose Custom to use a customized tokenizer. If you choose Custom, you can use the following
fields to configure the tokenizer:

• Minimum token length: The minimum length, in characters, for a token to be valid. Defaults
to 1. For example, if you specify 3 for minimum token length, words like a, at, in are
dropped from the tokenized sentence.

• Should regex split on gaps: If selected, regex splits on gaps. Otherwise, it matches tokens.
Defaults to True.

• Regex pattern: Regex pattern that defines the tokenization process. Defaults to ' \\ s+'.

• To lowercase: If chosen, Data Wrangler converts all characters to lowercase before
tokenization. Defaults to True.

Transform Data 2222

Amazon SageMaker Developer Guide

To learn more, see the Spark documentation on Tokenizer.

• Vectorizer: The vectorizer converts the list of tokens into a sparse numeric vector. Each token
corresponds to an index in the vector and a non-zero indicates the existence of the token in the
input sentence. You can choose from two vectorizer options, Count and Hashing.

• Count vectorize allows customizations that filter infrequent or too common tokens. Count
vectorize parameters include the following:

• Minimum term frequency: In each row, terms (tokens) with smaller frequency are filtered.
If you specify an integer, this is an absolute threshold (inclusive). If you specify a fraction
between 0 (inclusive) and 1, the threshold is relative to the total term count. Defaults to 1.

• Minimum document frequency: Minimum number of rows in which a term (token) must
appear to be included. If you specify an integer, this is an absolute threshold (inclusive). If
you specify a fraction between 0 (inclusive) and 1, the threshold is relative to the total term
count. Defaults to 1.

• Maximum document frequency: Maximum number of documents (rows) in which a term
(token) can appear to be included. If you specify an integer, this is an absolute threshold
(inclusive). If you specify a fraction between 0 (inclusive) and 1, the threshold is relative to
the total term count. Defaults to 0.999.

• Maximum vocabulary size: Maximum size of the vocabulary. The vocabulary is made up of
all terms (tokens) in all rows of the column. Defaults to 262144.

• Binary outputs: If selected, the vector outputs do not include the number of appearances of
a term in a document, but rather are a binary indicator of its appearance. Defaults to False.

To learn more about this option, see the Spark documentation on CountVectorizer.

• Hashing is computationally faster. Hash vectorize parameters includes the following:

• Number of features during hashing: A hash vectorizer maps tokens to a vector index
according to their hash value. This feature determines the number of possible hash values.
Large values result in fewer collisions between hash values but a higher dimension output
vector.

To learn more about this option, see the Spark documentation on FeatureHasher

• Apply IDF applies an IDF transformation, which multiplies the term frequency with the standard
inverse document frequency used for TF-IDF embedding. IDF parameters include the following:

• Minimum document frequency : Minimum number of documents (rows) in which a
term (token) must appear to be included. If count_vectorize is the chosen vectorizer, we

Transform Data 2223

https://spark.apache.org/docs/3.0.0/ml-features#tokenizer
https://spark.apache.org/docs/3.0.0/ml-features#countvectorizer
https://spark.apache.org/docs/3.0.0/ml-features#featurehasher

Amazon SageMaker Developer Guide

recommend that you keep the default value and only modify the min_doc_freq field in Count
vectorize parameters. Defaults to 5.

• Output format:The output format of each row.

• Select Vector to produce a single column with a sparse vector.

• Select Flattened to create a column for every category with an indicator variable for whether
the text in the original column contains a value that is equal to that category. You can only
choose flattened when Vectorizer is set as Count vectorizer.

Transform Time Series

In Data Wrangler, you can transform time series data. The values in a time series dataset are
indexed to specific time. For example, a dataset that shows the number of customers in a store for
each hour in a day is a time series dataset. The following table shows an example of a time series
dataset.

Hourly number of customers in a store

Number of customers Time (hour)

4 09:00

10 10:00

14 11:00

25 12:00

20 13:00

18 14:00

For the preceding table, the Number of Customers column contains the time series data. The time
series data is indexed on the hourly data in the Time (hour) column.

You might need to perform a series of transformations on your data to get it in a format that you
can use for your analysis. Use the Time series transform group to transform your time series data.
For more information about the transformations that you can perform, see the following sections.

Topics

Transform Data 2224

Amazon SageMaker Developer Guide

• Group by a Time Series

• Resample Time Series Data

• Handle Missing Time Series Data

• Validate the Timestamp of Your Time Series Data

• Standardizing the Length of the Time Series

• Extract Features from Your Time Series Data

• Use Lagged Features from Your Time Series Data

• Create a Datetime Range In Your Time Series

• Use a Rolling Window In Your Time Series

Group by a Time Series

You can use the group by operation to group time series data for specific values in a column.

For example, you have the following table that tracks the average daily electricity usage in a
household.

Average daily household electricity usage

Household ID Daily timestamp Electricity usage
(kWh)

Number of
household occupants

household_0 1/1/2020 30 2

household_0 1/2/2020 40 2

household_0 1/4/2020 35 3

household_1 1/2/2020 45 3

household_1 1/3/2020 55 4

If you choose to group by ID, you get the following table.

Transform Data 2225

Amazon SageMaker Developer Guide

Electricity usage grouped by household ID

Household ID Electricity usage series
(kWh)

Number of household
occupants series

household_0 [30, 40, 35] [2, 2, 3]

household_1 [45, 55] [3, 4]

Each entry in the time series sequence is ordered by the corresponding timestamp. The first
element of the sequence corresponds to the first timestamp of the series. For household_0, 30 is
the first value of the Electricity Usage Series. The value of 30 corresponds to the first timestamp
of 1/1/2020.

You can include the starting timestamp and ending timestamp. The following table shows how
that information appears.

Electricity usage grouped by household ID

Household ID Electricity
usage series
(kWh)

Number of
household
occupants series

Start_time End_time

household_0 [30, 40, 35] [2, 2, 3] 1/1/2020 1/4/2020

household_1 [45, 55] [3, 4] 1/2/2020 1/3/2020

You can use the following procedure to group by a time series column.

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Time Series.

6. Under Transform, choose Group by.

7. Specify a column in Group by this column.

8. For Apply to columns, specify a value.

Transform Data 2226

Amazon SageMaker Developer Guide

9. Choose Preview to generate a preview of the transform.

10. Choose Add to add the transform to the Data Wrangler data flow.

Resample Time Series Data

Time series data usually has observations that aren't taken at regular intervals. For example, a
dataset could have some observations that are recorded hourly and other observations that are
recorded every two hours.

Many analyses, such as forecasting algorithms, require the observations to be taken at regular
intervals. Resampling gives you the ability to establish regular intervals for the observations in
your dataset.

You can either upsample or downsample a time series. Downsampling increases the interval
between observations in the dataset. For example, if you downsample observations that are taken
either every hour or every two hours, each observation in your dataset is taken every two hours.
The hourly observations are aggregated into a single value using an aggregation method such as
the mean or median.

Upsampling reduces the interval between observations in the dataset. For example, if you
upsample observations that are taken every two hours into hourly observations, you can use an
interpolation method to infer hourly observations from the ones that have been taken every two
hours. For information on interpolation methods, see pandas.DataFrame.interpolate.

You can resample both numeric and non-numeric data.

Use the Resample operation to resample your time series data. If you have multiple time series in
your dataset, Data Wrangler standardizes the time interval for each time series.

The following table shows an example of downsampling time series data by using the mean as the
aggregation method. The data is downsampled from every two hours to every hour.

Hourly temperature readings over a day before downsampling

Timestamp Temperature (Celsius)

12:00 30

1:00 32

Transform Data 2227

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html

Amazon SageMaker Developer Guide

Timestamp Temperature (Celsius)

2:00 35

3:00 32

4:00 30

Temperature readings downsampled to every two hours

Timestamp Temperature (Celsius)

12:00 30

2:00 33.5

4:00 35

You can use the following procedure to resample time series data.

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Resample.

6. For Timestamp, choose the timestamp column.

7. For Frequency unit, specify the frequency that you're resampling.

8. (Optional) Specify a value for Frequency quantity.

9. Configure the transform by specifying the remaining fields.

10. Choose Preview to generate a preview of the transform.

11. Choose Add to add the transform to the Data Wrangler data flow.

Handle Missing Time Series Data

If you have missing values in your dataset, you can do one of the following:

Transform Data 2228

Amazon SageMaker Developer Guide

• For datasets that have multiple time series, drop the time series that have missing values that are
greater than a threshold that you specify.

• Impute the missing values in a time series by using other values in the time series.

Imputing a missing value involves replacing the data by either specifying a value or by using an
inferential method. The following are the methods that you can use for imputation:

• Constant value – Replace all the missing data in your dataset with a value that you specify.

• Most common value – Replace all the missing data with the value that has the highest frequency
in the dataset.

• Forward fill – Use a forward fill to replace the missing values with the non-missing value that
precedes the missing values. For the sequence: [2, 4, 7, NaN, NaN, NaN, 8], all of the missing
values are replaced with 7. The sequence that results from using a forward fill is [2, 4, 7, 7, 7, 7,
8].

• Backward fill – Use a backward fill to replace the missing values with the non-missing value that
follows the missing values. For the sequence: [2, 4, 7, NaN, NaN, NaN, 8], all of the missing values
are replaced with 8. The sequence that results from using a backward fill is [2, 4, 7, 8, 8, 8, 8].

• Interpolate – Uses an interpolation function to impute the missing values. For more information
on the functions that you can use for interpolation, see pandas.DataFrame.interpolate.

Some of the imputation methods might not be able to impute of all the missing value in your
dataset. For example, a Forward fill can't impute a missing value that appears at the beginning of
the time series. You can impute the values by using either a forward fill or a backward fill.

You can either impute missing values within a cell or within a column.

The following example shows how values are imputed within a cell.

Electricity usage with missing values

Household ID Electricity usage series (kWh)

household_0 [30, 40, 35, NaN, NaN]

household_1 [45, NaN, 55]

Transform Data 2229

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html

Amazon SageMaker Developer Guide

Electricity usage with values imputed using a forward fill

Household ID Electricity usage series (kWh)

household_0 [30, 40, 35, 35, 35]

household_1 [45, 45, 55]

The following example shows how values are imputed within a column.

Average daily household electricity usage with missing values

Household ID Electricity usage (kWh)

household_0 30

household_0 40

household_0 NaN

household_1 NaN

household_1 NaN

Average daily household electricity usage with values imputed using a forward fill

Household ID Electricity usage (kWh)

household_0 30

household_0 40

household_0 40

household_1 40

household_1 40

You can use the following procedure to handle missing values.

Transform Data 2230

Amazon SageMaker Developer Guide

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Handle missing.

6. For Time series input type, choose whether you want to handle missing values inside of a cell
or along a column.

7. For Impute missing values for this column, specify the column that has the missing values.

8. For Method for imputing values, select a method.

9. Configure the transform by specifying the remaining fields.

10. Choose Preview to generate a preview of the transform.

11. If you have missing values, you can specify a method for imputing them under Method for
imputing values.

12. Choose Add to add the transform to the Data Wrangler data flow.

Validate the Timestamp of Your Time Series Data

You might have time stamp data that is invalid. You can use the Validate time stamp function to
determine whether the timestamps in your dataset are valid. Your timestamp can be invalid for one
or more of the following reasons:

• Your timestamp column has missing values.

• The values in your timestamp column are not formatted correctly.

If you have invalid timestamps in your dataset, you can't perform your analysis successfully. You
can use Data Wrangler to identify invalid timestamps and understand where you need to clean
your data.

The time series validation works in one of the two ways:

You can configure Data Wrangler to do one of the following if it encounters missing values in your
dataset:

• Drop the rows that have the missing or invalid values.

Transform Data 2231

Amazon SageMaker Developer Guide

• Identify the rows that have the missing or invalid values.

• Throw an error if it finds any missing or invalid values in your dataset.

You can validate the timestamps on columns that either have the timestamp type or the string
type. If the column has the string type, Data Wrangler converts the type of the column to
timestamp and performs the validation.

You can use the following procedure to validate the timestamps in your dataset.

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Validate timestamps.

6. For Timestamp Column, choose the timestamp column.

7. For Policy, choose whether you want to handle missing timestamps.

8. (Optional) For Output column, specify a name for the output column.

9. If the date time column is formatted for the string type, choose Cast to datetime.

10. Choose Preview to generate a preview of the transform.

11. Choose Add to add the transform to the Data Wrangler data flow.

Standardizing the Length of the Time Series

If you have time series data stored as arrays, you can standardize each time series to the same
length. Standardizing the length of the time series array might make it easier for you to perform
your analysis on the data.

You can standardize your time series for data transformations that require the length of your data
to be fixed.

Many ML algorithms require you to flatten your time series data before you use them. Flattening
time series data is separating each value of the time series into its own column in a dataset.
The number of columns in a dataset can't change, so the lengths of the time series need to be
standardized between you flatten each array into a set of features.

Transform Data 2232

Amazon SageMaker Developer Guide

Each time series is set to the length that you specify as a quantile or percentile of the time series
set. For example, you can have three sequences that have the following lengths:

• 3

• 4

• 5

You can set the length of all of the sequences as the length of the sequence that has the 50th
percentile length.

Time series arrays that are shorter than the length you've specified have missing values added. The
following is an example format of standardizing the time series to a longer length: [2, 4, 5, NaN,
NaN, NaN].

You can use different approaches to handle the missing values. For information on those
approaches, see Handle Missing Time Series Data.

The time series arrays that are longer than the length that you specify are truncated.

You can use the following procedure to standardize the length of the time series.

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Standardize length.

6. For Standardize the time series length for the column, choose a column.

7. (Optional) For Output column, specify a name for the output column. If you don't specify a
name, the transform is done in place.

8. If the datetime column is formatted for the string type, choose Cast to datetime.

9. Choose Cutoff quantile and specify a quantile to set the length of the sequence.

10. Choose Flatten the output to output the values of the time series into separate columns.

11. Choose Preview to generate a preview of the transform.

12. Choose Add to add the transform to the Data Wrangler data flow.

Transform Data 2233

Amazon SageMaker Developer Guide

Extract Features from Your Time Series Data

If you're running a classification or a regression algorithm on your time series data, we recommend
extracting features from the time series before running the algorithm. Extracting features might
improve the performance of your algorithm.

Use the following options to choose how you want to extract features from your data:

• Use Minimal subset to specify extracting 8 features that you know are useful in downstream
analyses. You can use a minimal subset when you need to perform computations quickly. You can
also use it when your ML algorithm has a high risk of overfitting and you want to provide it with
fewer features.

• Use Efficient subset to specify extracting the most features possible without extracting features
that are computationally intensive in your analyses.

• Use All features to specify extracting all features from the tune series.

• Use Manual subset to choose a list of features that you think explain the variation in your data
well.

Use the following the procedure to extract features from your time series data.

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Extract features.

6. For Extract features for this column, choose a column.

7. (Optional) Select Flatten to output the features into separate columns.

8. For Strategy, choose a strategy to extract the features.

9. Choose Preview to generate a preview of the transform.

10. Choose Add to add the transform to the Data Wrangler data flow.

Use Lagged Features from Your Time Series Data

For many use cases, the best way to predict the future behavior of your time series is to use its
most recent behavior.

Transform Data 2234

Amazon SageMaker Developer Guide

The most common uses of lagged features are the following:

• Collecting a handful of past values. For example, for time, t + 1, you collect t, t - 1, t - 2, and t - 3.

• Collecting values that correspond to seasonal behavior in the data. For example, to predict the
occupancy in a restaurant at 1:00 PM, you might want to use the features from 1:00 PM on the
previous day. Using the features from 12:00 PM or 11:00 AM on the same day might not be as
predictive as using the features from previous days.

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Lag features.

6. For Generate lag features for this column, choose a column.

7. For Timestamp Column, choose the column containing the timestamps.

8. For Lag, specify the duration of the lag.

9. (Optional) Configure the output using one of the following options:

• Include the entire lag window

• Flatten the output

• Drop rows without history

10. Choose Preview to generate a preview of the transform.

11. Choose Add to add the transform to the Data Wrangler data flow.

Create a Datetime Range In Your Time Series

You might have time series data that don't have timestamps. If you know that the observations
were taken at regular intervals, you can generate timestamps for the time series in a separate
column. To generate timestamps, you specify the value for the start timestamp and the frequency
of the timestamps.

For example, you might have the following time series data for the number of customers at a
restaurant.

Transform Data 2235

Amazon SageMaker Developer Guide

Time series data on the number of customers at a restaurant

Number of customers

10

14

24

40

30

20

If you know that the restaurant opened at 5:00 PM and that the observations are taken hourly, you
can add a timestamp column that corresponds to the time series data. You can see the timestamp
column in the following table.

Time series data on the number of customers at a restaurant

Number of customers Timestamp

10 1:00 PM

14 2:00 PM

24 3:00 PM

40 4:00 PM

30 5:00 PM

20 6:00 PM

Use the following procedure to add a datetime range to your data.

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

Transform Data 2236

Amazon SageMaker Developer Guide

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Datetime range.

6. For Frequency type, choose the unit used to measure the frequency of the timestamps.

7. For Starting timestamp, specify the start timestamp.

8. For Output column, specify a name for the output column.

9. (Optional) Configure the output using the remaining fields.

10. Choose Preview to generate a preview of the transform.

11. Choose Add to add the transform to the Data Wrangler data flow.

Use a Rolling Window In Your Time Series

You can extract features over a time period. For example, for time, t, and a time window length
of 3, and for the row that indicates the tth timestamp, we append the features that are extracted
from the time series at times t - 3, t -2, and t - 1. For information on extracting features, see
Extract Features from Your Time Series Data.

You can use the following procedure to extract features over a time period.

1. Open your Data Wrangler data flow.

2. If you haven't imported your dataset, import it under the Import data tab.

3. In your data flow, under Data types, choose the +, and select Add transform.

4. Choose Add step.

5. Choose Rolling window features.

6. For Generate rolling window features for this column, choose a column.

7. For Timestamp Column, choose the column containing the timestamps.

8. (Optional) For Output Column, specify the name of the output column.

9. For Window size, specify the window size.

10. For Strategy, choose the extraction strategy.

11. Choose Preview to generate a preview of the transform.

12. Choose Add to add the transform to the Data Wrangler data flow.

Transform Data 2237

Amazon SageMaker Developer Guide

Featurize Datetime

Use Featurize date/time to create a vector embedding representing a datetime field. To use this
transform, your datetime data must be in one of the following formats:

• Strings describing datetime: For example, "January 1st, 2020, 12:44pm".

• A Unix timestamp: A Unix timestamp describes the number of seconds, milliseconds,
microseconds, or nanoseconds from 1/1/1970.

You can choose to Infer datetime format and provide a Datetime format. If you provide a
datetime format, you must use the codes described in the Python documentation. The options you
select for these two configurations have implications for the speed of the operation and the final
results.

• The most manual and computationally fastest option is to specify a Datetime format and select
No for Infer datetime format.

• To reduce manual labor, you can choose Infer datetime format and not specify a datetime
format. It is also a computationally fast operation; however, the first datetime format
encountered in the input column is assumed to be the format for the entire column. If there are
other formats in the column, these values are NaN in the final output. Inferring the datetime
format can give you unparsed strings.

• If you don't specify a format and select No for Infer datetime format, you get the most robust
results. All the valid datetime strings are parsed. However, this operation can be an order of
magnitude slower than the first two options in this list.

When you use this transform, you specify an Input column which contains datetime data in one of
the formats listed above. The transform creates an output column named Output column name.
The format of the output column depends on your configuration using the following:

• Vector: Outputs a single column as a vector.

• Columns: Creates a new column for every feature. For example, if the output contains a year,
month, and day, three separate columns are created for year, month, and day.

Additionally, you must choose an Embedding mode. For linear models and deep networks, we
recommend choosing cyclic. For tree-based algorithms, we recommend choosing ordinal.

Transform Data 2238

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

Amazon SageMaker Developer Guide

Format String

The Format string transforms contain standard string formatting operations. For example, you
can use these operations to remove special characters, normalize string lengths, and update string
casing.

This feature group contains the following transforms. All transforms return copies of the strings in
the Input column and add the result to a new, output column.

Name Function

Left pad Left-pad the string with a given Fill character
 to the given width. If the string is longer than
width, the return value is shortened to width
characters.

Right pad Right-pad the string with a given Fill
character to the given width. If the string
is longer than width, the return value is
shortened to width characters.

Center (pad on either side) Center-pad the string (add padding on both
sides of the string) with a given Fill character
 to the given width. If the string is longer than
width, the return value is shortened to width
characters.

Prepend zeros Left-fill a numeric string with zeros, up to
a given width. If the string is longer than
width, the return value is shortened to width
characters.

Strip left and right Returns a copy of the string with the leading
and trailing characters removed.

Strip characters from left Returns a copy of the string with leading
characters removed.

Transform Data 2239

Amazon SageMaker Developer Guide

Name Function

Strip characters from right Returns a copy of the string with trailing
characters removed.

Lower case Convert all letters in text to lowercase.

Upper case Convert all letters in text to uppercase.

Capitalize Capitalize the first letter in each sentence.

Swap case Converts all uppercase characters to lowercase
and all lowercase characters to uppercase
characters of the given string, and returns it.

Add prefix or suffix Adds a prefix and a suffix the string column.
You must specify at least one of Prefix and
Suffix.

Remove symbols Removes given symbols from a string. All
listed characters are removed. Defaults to
white space.

Handle Outliers

Machine learning models are sensitive to the distribution and range of your feature values.
Outliers, or rare values, can negatively impact model accuracy and lead to longer training times.
Use this feature group to detect and update outliers in your dataset.

When you define a Handle outliers transform step, the statistics used to detect outliers are
generated on the data available in Data Wrangler when defining this step. These same statistics are
used when running a Data Wrangler job.

Use the following sections to learn more about the transforms this group contains. You specify an
Output name and each of these transforms produces an output column with the resulting data.

Robust standard deviation numeric outliers

This transform detects and fixes outliers in numeric features using statistics that are robust to
outliers.

Transform Data 2240

Amazon SageMaker Developer Guide

You must define an Upper quantile and a Lower quantile for the statistics used to calculate
outliers. You must also specify the number of Standard deviations from which a value must vary
from the mean to be considered an outlier. For example, if you specify 3 for Standard deviations, a
value must fall more than 3 standard deviations from the mean to be considered an outlier.

The Fix method is the method used to handle outliers when they are detected. You can choose
from the following:

• Clip: Use this option to clip the outliers to the corresponding outlier detection bound.

• Remove: Use this option to remove rows with outliers from the dataframe.

• Invalidate: Use this option to replace outliers with invalid values.

Standard Deviation Numeric Outliers

This transform detects and fixes outliers in numeric features using the mean and standard
deviation.

You specify the number of Standard deviations a value must vary from the mean to be considered
an outlier. For example, if you specify 3 for Standard deviations, a value must fall more than 3
standard deviations from the mean to be considered an outlier.

The Fix method is the method used to handle outliers when they are detected. You can choose
from the following:

• Clip: Use this option to clip the outliers to the corresponding outlier detection bound.

• Remove: Use this option to remove rows with outliers from the dataframe.

• Invalidate: Use this option to replace outliers with invalid values.

Quantile Numeric Outliers

Use this transform to detect and fix outliers in numeric features using quantiles. You can define an
Upper quantile and a Lower quantile. All values that fall above the upper quantile or below the
lower quantile are considered outliers.

The Fix method is the method used to handle outliers when they are detected. You can choose
from the following:

• Clip: Use this option to clip the outliers to the corresponding outlier detection bound.

Transform Data 2241

Amazon SageMaker Developer Guide

• Remove: Use this option to remove rows with outliers from the dataframe.

• Invalidate: Use this option to replace outliers with invalid values.

Min-Max Numeric Outliers

This transform detects and fixes outliers in numeric features using upper and lower thresholds. Use
this method if you know threshold values that demark outliers.

You specify a Upper threshold and a Lower threshold, and if values fall above or below those
thresholds respectively, they are considered outliers.

The Fix method is the method used to handle outliers when they are detected. You can choose
from the following:

• Clip: Use this option to clip the outliers to the corresponding outlier detection bound.

• Remove: Use this option to remove rows with outliers from the dataframe.

• Invalidate: Use this option to replace outliers with invalid values.

Replace Rare

When you use the Replace rare transform, you specify a threshold and Data Wrangler finds all
values that meet that threshold and replaces them with a string that you specify. For example, you
may want to use this transform to categorize all outliers in a column into an "Others" category.

• Replacement string: The string with which to replace outliers.

• Absolute threshold: A category is rare if the number of instances is less than or equal to this
absolute threshold.

• Fraction threshold: A category is rare if the number of instances is less than or equal to this
fraction threshold multiplied by the number of rows.

• Max common categories: Maximum not-rare categories that remain after the operation. If the
threshold does not filter enough categories, those with the top number of appearances are
classified as not rare. If set to 0 (default), there is no hard limit to the number of categories.

Handle Missing Values

Missing values are a common occurrence in machine learning datasets. In some situations, it is
appropriate to impute missing data with a calculated value, such as an average or categorically

Transform Data 2242

Amazon SageMaker Developer Guide

common value. You can process missing values using the Handle missing values transform group.
This group contains the following transforms.

Fill Missing

Use the Fill missing transform to replace missing values with a Fill value you define.

Impute Missing

Use the Impute missing transform to create a new column that contains imputed values where
missing values were found in input categorical and numerical data. The configuration depends on
your data type.

For numeric data, choose an imputing strategy, the strategy used to determine the new value to
impute. You can choose to impute the mean or the median over the values that are present in your
dataset. Data Wrangler uses the value that it computes to impute the missing values.

For categorical data, Data Wrangler imputes missing values using the most frequent value in the
column. To impute a custom string, use the Fill missing transform instead.

Add Indicator for Missing

Use the Add indicator for missing transform to create a new indicator column, which contains a
Boolean "false" if a row contains a value, and "true" if a row contains a missing value.

Drop Missing

Use the Drop missing option to drop rows that contain missing values from the Input column.

Manage Columns

You can use the following transforms to quickly update and manage columns in your dataset:

Name Function

Drop Column Delete a column.

Duplicate Column Duplicate a column.

Rename Column Rename a column.

Move Column Move a column's location in the dataset.
Choose to move your column to the start or

Transform Data 2243

Amazon SageMaker Developer Guide

Name Function

end of the dataset, before or after a reference
column, or to a specific index.

Manage Rows

Use this transform group to quickly perform sort and shuffle operations on rows. This group
contains the following:

• Sort: Sort the entire dataframe by a given column. Select the check box next to Ascending order
for this option; otherwise, deselect the check box and descending order is used for the sort.

• Shuffle: Randomly shuffle all rows in the dataset.

Manage Vectors

Use this transform group to combine or flatten vector columns. This group contains the following
transforms.

• Assemble: Use this transform to combine Spark vectors and numeric data into a single column.
For example, you can combine three columns: two containing numeric data and one containing
vectors. Add all the columns you want to combine in Input columns and specify a Output
column name for the combined data.

• Flatten: Use this transform to flatten a single column containing vector data. The input column
must contain PySpark vectors or array-like objects. You can control the number of columns
created by specifying a Method to detect number of outputs. For example, if you select Length
of first vector, the number of elements in the first valid vector or array found in the column
determines the number of output columns that are created. All other input vectors with too
many items are truncated. Inputs with too few items are filled with NaNs.

You also specify an Output prefix, which is used as the prefix for each output column.

Process Numeric

Use the Process Numeric feature group to process numeric data. Each scalar in this group is
defined using the Spark library. The following scalars are supported:

Transform Data 2244

Amazon SageMaker Developer Guide

• Standard Scaler: Standardize the input column by subtracting the mean from each value and
scaling to unit variance. To learn more, see the Spark documentation for StandardScaler.

• Robust Scaler: Scale the input column using statistics that are robust to outliers. To learn more,
see the Spark documentation for RobustScaler.

• Min Max Scaler: Transform the input column by scaling each feature to a given range. To learn
more, see the Spark documentation for MinMaxScaler.

• Max Absolute Scaler: Scale the input column by dividing each value by the maximum absolute
value. To learn more, see the Spark documentation for MaxAbsScaler.

Sampling

After you've imported your data, you can use the Sampling transformer to take one or more
samples of it. When you use the sampling transformer, Data Wrangler samples your original
dataset.

You can choose one of the following sample methods:

• Limit: Samples the dataset starting from the first row up to the limit that you specify.

• Randomized: Takes a random sample of a size that you specify.

• Stratified: Takes a stratified random sample.

You can stratify a randomized sample to make sure that it represents the original distribution of
the dataset.

You might be performing data preparation for multiple use cases. For each use case, you can take a
different sample and apply a different set of transformations.

The following procedure describes the process of creating a random sample.

To take a random sample from your data.

1. Choose the + to the right of the dataset that you've imported. The name of your dataset is
located below the +.

2. Choose Add transform.

3. Choose Sampling.

4. For Sampling method, choose the sampling method.

Transform Data 2245

https://spark.apache.org/docs/3.0.0/ml-features#standardscaler
https://spark.apache.org/docs/3.0.0/ml-features#robustscaler
https://spark.apache.org/docs/3.0.0/ml-features#minmaxscaler
https://spark.apache.org/docs/3.0.0/ml-features#maxabsscaler

Amazon SageMaker Developer Guide

5. For Approximate sample size, choose the approximate number of observations that you want
in your sample.

6. (Optional) Specify an integer for Random seed to create a reproducible sample.

The following procedure describes the process of creating a stratified sample.

To take a stratified sample from your data.

1. Choose the + to the right of the dataset that you've imported. The name of your dataset is
located below the +.

2. Choose Add transform.

3. Choose Sampling.

4. For Sampling method, choose the sampling method.

5. For Approximate sample size, choose the approximate number of observations that you want
in your sample.

6. For Stratify column, specify the name of the column that you want to stratify on.

7. (Optional) Specify an integer for Random seed to create a reproducible sample.

Search and Edit

Use this section to search for and edit specific patterns within strings. For example, you can find
and update strings within sentences or documents, split strings by delimiters, and find occurrences
of specific strings.

The following transforms are supported under Search and edit. All transforms return copies of the
strings in the Input column and add the result to a new output column.

Name Function

Find substring Returns the index of the first occurrence of
the Substring for which you searched , You
can start and end the search at Start and End
respectively.

Find substring (from right) Returns the index of the last occurrence of
the Substring for which you searched. You

Transform Data 2246

Amazon SageMaker Developer Guide

Name Function

can start and end the search at Start and End
respectively.

Matches prefix Returns a Boolean value if the string contains
a given Pattern. A pattern can be a character
 sequence or regular expression. Optionally,
you can make the pattern case sensitive.

Find all occurrences Returns an array with all occurrences of a
given pattern. A pattern can be a character
sequence or regular expression.

Extract using regex Returns a string that matches a given Regex
pattern.

Extract between delimiters Returns a string with all characters found
between Left delimiter and Right delimiter.

Extract from position Returns a string, starting from Start position
in the input string, that contains all characters
up to the start position plus Length.

Find and replace substring Returns a string with all matches of a given
Pattern (regular expression) replaced by
Replacement string.

Replace between delimiters Returns a string with the substring found
between the first appearance of a Left
delimiter and the last appearance of a Right
delimiter replaced by Replacement string. If
no match is found, nothing is replaced.

Transform Data 2247

Amazon SageMaker Developer Guide

Name Function

Replace from position Returns a string with the substring between
Start position and Start position plus Length
replaced by Replacement string. If Start
position plus Length is greater than the
length of the replacement string, the output
contains ….

Convert regex to missing Converts a string to None if invalid and returns
the result. Validity is defined with a regular
expression in Pattern.

Split string by delimiter Returns an array of strings from the input
string, split by Delimiter, with up to Max
number of splits (optional). The delimiter
defaults to white space.

Split data

Use the Split data transform to split your dataset into two or three datasets. For example, you can
split your dataset into a dataset used to train your model and a dataset used to test it. You can
determine the proportion of the dataset that goes into each split. For example, if you’re splitting
one dataset into two datasets, the training dataset can have 80% of the data while the testing
dataset has 20%.

Splitting your data into three datasets gives you the ability to create training, validation, and test
datasets. You can see how well the model performs on the test dataset by dropping the target
column.

Your use case determines how much of the original dataset each of your datasets get and the
method you use to split the data. For example, you might want to use a stratified split to make sure
that the distribution of the observations in the target column are the same across datasets. You
can use the following split transforms:

• Randomized split — Each split is a random, non-overlapping sample of the original dataset. For
larger datasets, using a randomized split might be computationally expensive and take longer
than an ordered split.

Transform Data 2248

Amazon SageMaker Developer Guide

• Ordered split – Splits the dataset based on the sequential order of the observations. For
example, for an 80/20 train-test split, the first observations that make up 80% of the dataset
go to the training dataset. The last 20% of the observations go to the testing dataset. Ordered
splits are effective in keeping the existing order of the data between splits.

• Stratified split – Splits the dataset to make sure that the number of observations in the input
column have proportional representation. For an input column that has the observations 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, an 80/20 split on the column would mean that
approximately 80% of the 1s, 80% of the 2s, and 80% of the 3s go to the training set. About
20% of each type of observation go to the testing set.

• Split by key – Avoids data with the same key occurring in more than one split. For example, if you
have a dataset with the column 'customer_id' and you're using it as a key, no customer id is in
more than one split.

After you split the data, you can apply additional transformations to each dataset. For most use
cases, they aren't necessary.

Data Wrangler calculates the proportions of the splits for performance. You can choose an error
threshold to set the accuracy of the splits. Lower error thresholds more accurately reflect the
proportions that you specify for the splits. If you set a higher error threshold, you get better
performance, but lower accuracy.

For perfectly split data, set the error threshold to 0. You can specify a threshold between 0 and 1
for better performance. If you specify a value greater than 1, Data Wrangler interprets that value
as 1.

If you have 10000 rows in your dataset and you specify an 80/20 split with an error of 0.001, you
would get observations approximating one of the following results:

• 8010 observations in the training set and 1990 in the testing set

• 7990 observations in the training set and 2010 in the testing set

The number of observations for the testing set in the preceding example is in the interval between
8010 and 7990.

By default, Data Wrangler uses a random seed to make the splits reproducible. You can specify a
different value for the seed to create a different reproducible split.

Transform Data 2249

Amazon SageMaker Developer Guide

Randomized split

Use the following procedure to perform a randomized split on your dataset.

To split your dataset randomly, do the following

1. Choose the + next to the node containing the dataset that you're splitting.

2. Choose Add transform.

3. Choose Split data.

4. (Optional) For Splits, specify the names and proportions of each split. The proportions
must sum to 1.

5. (Optional) Choose the + to create an additional split.

• Specify the names and proportions of all the splits. The proportions must sum to 1.

6. (Optional) Specify a value for Error threshold other than the default value.

7. (Optional) Specify a value for Random seed.

8. Choose Preview.

9. Choose Add.

Ordered split

Use the following procedure to perform an ordered split on your dataset.

To make an ordered split in your dataset, do the following.

1. Choose the + next to the node containing the dataset that you're splitting.

2. Choose Add transform.

3. For Transform, choose Ordered split.

4. Choose Split data.

5. (Optional) For Splits, specify the names and proportions of each split. The proportions
must sum to 1.

6. (Optional) Choose the + to create an additional split.

• Specify the names and proportions of all the splits. The proportions must sum to 1.

7. (Optional) Specify a value for Error threshold other than the default value.

Transform Data 2250

Amazon SageMaker Developer Guide

8. (Optional) For Input column, specify a column with numeric values. Uses the values of the
columns to infer which records are in each split. The smaller values are in one split with the
larger values in the other splits.

9. (Optional) Select Handle duplicates to add noise to duplicate values and create a dataset
of entirely unique values.

10. (Optional) Specify a value for Random seed.

11. Choose Preview.

12. Choose Add.

Stratified split

Use the following procedure to perform a stratified split on your dataset.

To make a stratified split in your dataset, do the following.

1. Choose the + next to the node containing the dataset that you're splitting.

2. Choose Add transform.

3. Choose Split data.

4. For Transform, choose Stratified split.

5. (Optional) For Splits, specify the names and proportions of each split. The proportions
must sum to 1.

6. (Optional) Choose the + to create an additional split.

• Specify the names and proportions of all the splits. The proportions must sum to 1.

7. For Input column, specify a column with up to 100 unique values. Data Wrangler can't
stratify a column with more than 100 unique values.

8. (Optional) Specify a value for Error threshold other than the default value.

9. (Optional) Specify a value for Random seed to specify a different seed.

10. Choose Preview.

11. Choose Add.

Split by column keys

Use the following procedure to split by the column keys in your dataset.

Transform Data 2251

Amazon SageMaker Developer Guide

To split by the column keys in your dataset, do the following.

1. Choose the + next to the node containing the dataset that you're splitting.

2. Choose Add transform.

3. Choose Split data.

4. For Transform, choose Split by key.

5. (Optional) For Splits, specify the names and proportions of each split. The proportions
must sum to 1.

6. (Optional) Choose the + to create an additional split.

• Specify the names and proportions of all the splits. The proportions must sum to 1.

7. For Key columns, specify the columns with values that you don't want to appear in both
datasets.

8. (Optional) Specify a value for Error threshold other than the default value.

9. Choose Preview.

10. Choose Add.

Parse Value as Type

Use this transform to cast a column to a new type. The supported Data Wrangler data types are:

• Long

• Float

• Boolean

• Date, in the format dd-MM-yyyy, representing day, month, and year respectively.

• String

Validate String

Use the Validate string transforms to create a new column that indicates that a row of text data
meets a specified condition. For example, you can use a Validate string transform to verify that a
string only contains lowercase characters. The following transforms are supported under Validate
string.

Transform Data 2252

Amazon SageMaker Developer Guide

The following transforms are included in this transform group. If a transform outputs a Boolean
value, True is represented with a 1 and False is represented with a 0.

Name Function

String length Returns True if a string length equals
specified length. Otherwise, returns False.

Starts with Returns True if a string starts will a specified
 prefix. Otherwise, returns False.

Ends with Returns True if a string length equals
specified length. Otherwise, returns False.

Is alphanumeric Returns True if a string only contains
numbers and letters. Otherwise, returns
False.

Is alpha (letters) Returns True if a string only contains letters.
Otherwise, returns False.

Is digit Returns True if a string only contains digits.
Otherwise, returns False.

Is space Returns True if a string only contains
numbers and letters. Otherwise, returns
False.

Is title Returns True if a string contains any white
spaces. Otherwise, returns False.

Is lowercase Returns True if a string only contains lower
case letters. Otherwise, returns False.

Is uppercase Returns True if a string only contains upper
case letters. Otherwise, returns False.

Is numeric Returns True if a string only contains
numbers. Otherwise, returns False.

Transform Data 2253

Amazon SageMaker Developer Guide

Name Function

Is decimal Returns True if a string only contains decimal
numbers. Otherwise, returns False.

Unnest JSON Data

If you have a .csv file, you might have values in your dataset that are JSON strings. Similarly, you
might have nested data in columns of either a Parquet file or a JSON document.

Use the Flatten structured operator to separate the first level keys into separate columns. A first
level key is a key that isn't nested within a value.

For example, you might have a dataset that has a person column with demographic information on
each person stored as JSON strings. A JSON string might look like the following.

 "{"seq": 1,"name": {"first": "Nathaniel","last": "Ferguson"},"age": 59,"city":
 "Posbotno","state": "WV"}"

The Flatten structured operator converts the following first level keys into additional columns in
your dataset:

• seq

• name

• age

• city

• state

Data Wrangler puts the values of the keys as values under the columns. The following shows the
column names and values of the JSON.

seq, name, age, city, state
1, {"first": "Nathaniel","last": "Ferguson"}, 59, Posbotno, WV

Transform Data 2254

Amazon SageMaker Developer Guide

For each value in your dataset containing JSON, the Flatten structured operator creates columns
for the first-level keys. To create columns for nested keys, call the operator again. For the preceding
example, calling the operator creates the columns:

• name_first

• name_last

The following example shows the dataset that results from calling the operation again.

seq, name, age, city, state, name_first, name_last
1, {"first": "Nathaniel","last": "Ferguson"}, 59, Posbotno, WV, Nathaniel, Ferguson

Choose Keys to flatten on to specify the first-level keys that want to extract as separate columns.
If you don't specify any keys, Data Wrangler extracts all the keys by default.

Explode Array

Use Explode array to expand the values of the array into separate output rows. For example, the
operation can take each value in the array, [[1, 2, 3,], [4, 5, 6], [7, 8, 9]] and create a new column
with the following rows:

 [1, 2, 3]
 [4, 5, 6]
 [7, 8, 9]

Data Wrangler names the new column, input_column_name_flatten.

You can call the Explode array operation multiple times to get the nested values of the array into
separate output columns. The following example shows the result of calling the operation multiple
times on a dataset with a nested array.

Transform Data 2255

Amazon SageMaker Developer Guide

Putting the values of a nested array into separate columns

id array id array_items id array_ite
ms_items

1 [[cat, dog],
[bat, frog]]

1 [cat, dog] 1 cat

2 [[rose,
petunia], [lily,
daisy]]

1 [bat, frog] 1 dog

 2 [rose,
petunia]

1 bat

 2 [lily, daisy] 1 frog

 2 2 rose

 2 2 petunia

 2 2 lily

 2 2 daisy

Transform Image Data

Use Data Wrangler to import and transform the images that you're using for your machine learning
(ML) pipelines. After you've prepared your image data, you can export it from your Data Wrangler
flow to your ML pipeline.

You can use the information provided here to familiarize yourself with importing and transforming
image data in Data Wrangler. Data Wrangler uses OpenCV to import images. For more information
about supported image formats, see Image file reading and writing.

After you've familiarized yourself with the concepts of transforming your image data, go through
the following tutorial, Prepare image data with Amazon SageMaker Data Wrangler.

The following industries and use cases are examples where applying machine learning to
transformed image data can be useful:

Transform Data 2256

https://docs.opencv.org/3.4/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
https://aws.amazon.com/blogs/machine-learning/prepare-image-data-with-amazon-sagemaker-data-wrangler/

Amazon SageMaker Developer Guide

• Manufacturing – Identifying defects in items from the assembly line

• Food – Identifying spoiled or rotten food

• Medicine – Identifying lesions in tissues

When you work with image data in Data Wrangler, you go through the following process:

1. Import – Select the images by choosing the directory containing them in your Amazon S3
bucket.

2. Transform – Use the built-in transformations to prepare the images for your machine learning
pipeline.

3. Export – Export the images that you’ve transformed to a location that can be accessed from the
pipeline.

Use the following procedure to import your image data.

To import your image data

1. Navigate to the Create connection page.

2. Choose Amazon S3.

3. Specify the Amazon S3 file path that contains the image data.

4. For File type, choose Image.

5. (Optional) Choose Import nested directories to import images from multiple Amazon S3
paths.

6. Choose Import.

Data Wrangler uses the open-source imgaug library for its built-in image transformations. You can
use the following built-in transformations:

• ResizeImage

• EnhanceImage

• CorruptImage

• SplitImage

• DropCorruptedImages

Transform Data 2257

https://imgaug.readthedocs.io/en/latest/

Amazon SageMaker Developer Guide

• DropImageDuplicates

• Brightness

• ColorChannels

• Grayscale

• Rotate

Use the following procedure to transform your images without writing code.

To transform the image data without writing code

1. From your Data Wrangler flow, choose the + next to the node representing the images that
you've imported.

2. Choose Add transform.

3. Choose Add step.

4. Choose the transform and configure it.

5. Choose Preview.

6. Choose Add.

In addition to using the transformations that Data Wrangler provides, you can also use your own
custom code snippets. For more information about using custom code snippets, see Custom
Transforms. You can import the OpenCV and imgaug libraries within your code snippets and use
the transforms associated with them. The following is an example of a code snippet that detects
edges within the images.

A table with your image data is stored in the `df` variable
import cv2
import numpy as np
from pyspark.sql.functions import column

from sagemaker_dataprep.compute.operators.transforms.image.constants import
 DEFAULT_IMAGE_COLUMN, IMAGE_COLUMN_TYPE
from sagemaker_dataprep.compute.operators.transforms.image.decorators import
 BasicImageOperationDecorator, PandasUDFOperationDecorator

@BasicImageOperationDecorator

Transform Data 2258

Amazon SageMaker Developer Guide

def my_transform(image: np.ndarray) -> np.ndarray:
 # To use the code snippet on your image data, modify the following lines within the
 function
 HYST_THRLD_1, HYST_THRLD_2 = 100, 200
 edges = cv2.Canny(image,HYST_THRLD_1,HYST_THRLD_2)
 return edges

@PandasUDFOperationDecorator(IMAGE_COLUMN_TYPE)
def custom_image_udf(image_row):
 return my_transform(image_row)

df = df.withColumn(DEFAULT_IMAGE_COLUMN,
 custom_image_udf(column(DEFAULT_IMAGE_COLUMN)))

When apply transformations in your Data Wrangler flow, Data Wrangler only applies them to
a sample of the images in your dataset. To optimize your experience with the application, Data
Wrangler doesn't apply the transforms to all of your images.

To apply the transformations to all of your images, export your Data Wrangler flow to an Amazon
S3 location. You can use the images that you've exported in your training or inference pipelines.
Use a destination node or a Jupyter Notebook to export your data. You can access either method
for exporting your data from the Data Wrangler flow. For information about using these methods,
see Export to Amazon S3.

Filter data

Use Data Wrangler to filter the data in your columns. When you filter the data in a column, you
specify the following fields:

• Column name – The name of the column that you're using to filter the data.

• Condition – The type of filter that you're applying to values in the column.

• Value – The value or category in the column to which you're applying the filter.

You can filter on the following conditions:

• = – Returns values that match the value or category that you specify.

• != – Returns values that don't match the value or category that you specify.

Transform Data 2259

Amazon SageMaker Developer Guide

• >= – For Long or Float data, filters for values that are greater than or equal to the value that you
specify.

• <= – For Long or Float data, filters for values that are less than or equal to the value that you
specify.

• > – For Long or Float data, filters for values that are greater than the value that you specify.

• < – For Long or Float data, filters for values that are less than the value that you specify.

For a column that has the categories, male and female, you can filter out all the male values. You
could also filter for all the female values. Because there are only male and female values in the
column, the filter returns a column that only has female values.

You can also add multiple filters. The filters can be applied across multiple columns or the same
column. For example, if you're creating a column that only has values within a certain range, you
add two different filters. One filter specifies that the column must have values greater than the
value that you provide. The other filter specifies that the column must have values less than the
value that you provide.

Use the following procedure to add the filter transform to your data.

To filter your data

1. From your Data Wrangler flow, choose the + next to the node with the data that you're
filtering.

2. Choose Add transform.

3. Choose Add step.

4. Choose Filter data.

5. Specify the following fields:

• Column name – The column that you're filtering.

• Condition – The condition of the filter.

• Value – The value or category in the column to which you're applying the filter.

6. (Optional) Choose + following the filter that you've created.

7. Configure the filter.

8. Choose Preview.

9. Choose Add.

Transform Data 2260

Amazon SageMaker Developer Guide

Map Columns for Amazon Personalize

Data Wrangler integrates with Amazon Personalize, a fully managed machine learning service that
generates item recommendations and user segments. You can use the Map columns for Amazon
Personalize transform to get your data into a format that Amazon Personalize can interpret. For
more information about the transforms specific to Amazon Personalize, see Importing data using
Amazon SageMaker Data Wrangler. For more information about Amazon Personalize see What is
Amazon Personalize?

Analyze and Visualize

Amazon SageMaker Data Wrangler includes built-in analyses that help you generate visualizations
and data analyses in a few clicks. You can also create custom analyses using your own code.

You add an analysis to a dataframe by selecting a step in your data flow, and then choosing Add
analysis. To access an analysis you've created, select the step that contains the analysis, and select
the analysis.

All analyses are generated using 100,000 rows of your dataset.

You can add the following analysis to a dataframe:

• Data visualizations, including histograms and scatter plots.

• A quick summary of your dataset, including number of entries, minimum and maximum values
(for numeric data), and most and least frequent categories (for categorical data).

• A quick model of the dataset, which can be used to generate an importance score for each
feature.

• A target leakage report, which you can use to determine if one or more features are strongly
correlated with your target feature.

• A custom visualization using your own code.

Use the following sections to learn more about these options.

Histogram

Use histograms to see the counts of feature values for a specific feature. You can inspect the
relationships between features using the Color by option. For example, the following histogram

Analyze and Visualize 2261

https://docs.aws.amazon.com/personalize/latest/dg/preparing-importing-with-data-wrangler.html#dw-transform-data
https://docs.aws.amazon.com/personalize/latest/dg/preparing-importing-with-data-wrangler.html#dw-transform-data
https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html
https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html

Amazon SageMaker Developer Guide

charts the distribution of user ratings of the best-selling books on Amazon from 2009–2019,
colored by genre.

You can use the Facet by feature to create histograms of one column, for each value in another
column. For example, the following diagram shows histograms of user reviews of best-selling
books on Amazon if faceted by year.

Analyze and Visualize 2262

Amazon SageMaker Developer Guide

Scatter Plot

Use the Scatter Plot feature to inspect the relationship between features. To create a scatter plot,
select a feature to plot on the X axis and the Y axis. Both of these columns must be numeric typed
columns.

You can color scatter plots by an additional column. For example, the following example shows a
scatter plot comparing the number of reviews against user ratings of top-selling books on Amazon
between 2009 and 2019. The scatter plot is colored by book genre.

Analyze and Visualize 2263

Amazon SageMaker Developer Guide

Additionally, you can facet scatter plots by features. For example, the following image shows an
example of the same review versus user rating scatter plot, faceted by year.

Analyze and Visualize 2264

Amazon SageMaker Developer Guide

Table Summary

Use the Table Summary analysis to quickly summarize your data.

For columns with numerical data, including log and float data, a table summary reports the
number of entries (count), minimum (min), maximum (max), mean, and standard deviation (stddev)
for each column.

For columns with non-numerical data, including columns with string, Boolean, or date/time data,
a table summary reports the number of entries (count), least frequent value (min), and most
frequent value (max).

Quick Model

Use the Quick Model visualization to quickly evaluate your data and produce importance scores
for each feature. A feature importance score score indicates how useful a feature is at predicting
a target label. The feature importance score is between [0, 1] and a higher number indicates that
the feature is more important to the whole dataset. On the top of the quick model chart, there is a
model score. A classification problem shows an F1 score. A regression problem has a mean squared
error (MSE) score.

When you create a quick model chart, you select a dataset you want evaluated, and a target label
against which you want feature importance to be compared. Data Wrangler does the following:

• Infers the data types for the target label and each feature in the dataset selected.

• Determines the problem type. Based on the number of distinct values in the label column, Data
Wrangler determines if this is a regression or classification problem type. Data Wrangler sets
a categorical threshold to 100. If there are more than 100 distinct values in the label column,
Data Wrangler classifies it as a regression problem; otherwise, it is classified as a classification
problem.

• Pre-processes features and label data for training. The algorithm used requires encoding features
to vector type and encoding labels to double type.

• Trains a random forest algorithm with 70% of data. Spark’s RandomForestRegressor is used to
train a model for regression problems. The RandomForestClassifier is used to train a model for
classification problems.

• Evaluates a random forest model with the remaining 30% of data. Data Wrangler evaluates
classification models using an F1 score and evaluates regression models using an MSE score.

• Calculates feature importance for each feature using the Gini importance method.

Analyze and Visualize 2265

http://spark.apache.org/docs/2.1.0/api/python/pyspark.ml.html#pyspark.ml.classification.DecisionTreeClassificationModel.featureImportances
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier

Amazon SageMaker Developer Guide

The following image shows the user interface for the quick model feature.

Target Leakage

Target leakage occurs when there is data in a machine learning training dataset that is strongly
correlated with the target label, but is not available in real-world data. For example, you may
have a column in your dataset that serves as a proxy for the column you want to predict with your
model.

When you use the Target Leakage analysis, you specify the following:

• Target: This is the feature about which you want your ML model to be able to make predictions.

• Problem type: This is the ML problem type on which you are working. Problem type can either
be classification or regression.

• (Optional) Max features: This is the maximum number of features to present in the visualization,
which shows features ranked by their risk of being target leakage.

For classification, the target leakage analysis uses the area under the receiver operating
characteristic, or AUC - ROC curve for each column, up to Max features. For regression, it uses a
coefficient of determination, or R2 metric.

Analyze and Visualize 2266

Amazon SageMaker Developer Guide

The AUC - ROC curve provides a predictive metric, computed individually for each column using
cross-validation, on a sample of up to around 1000 rows. A score of 1 indicates perfect predictive
abilities, which often indicates target leakage. A score of 0.5 or lower indicates that the information
on the column could not provide, on its own, any useful information towards predicting the target.
Although it can happen that a column is uninformative on its own but is useful in predicting
the target when used in tandem with other features, a low score could indicate the feature is
redundant.

For example, the following image shows a target leakage report for a diabetes classification
problem, that is, predicting if a person has diabetes or not. An AUC - ROC curve is used to calculate
the predictive ability of five features, and all are determined to be safe from target leakage.

Multicollinearity

Multicollinearity is a circumstance where two or more predictor variables are related to each
other. The predictor variables are the features in your dataset that you're using to predict a target
variable. When you have multicollinearity, the predictor variables are not only predictive of the
target variable, but also predictive of each other.

Analyze and Visualize 2267

Amazon SageMaker Developer Guide

You can use the Variance Inflation Factor (VIF), Principal Component Analysis (PCA), or Lasso
feature selection as measures for the multicollinearity in your data. For more information, see the
following.

Variance Inflation Factor (VIF)

The Variance Inflation Factor (VIF) is a measure of collinearity among variable pairs. Data
Wrangler returns a VIF score as a measure of how closely the variables are related to each other.
A VIF score is a positive number that is greater than or equal to 1.

A score of 1 means that the variable is uncorrelated with the other variables. Scores greater
than 1 indicate higher correlation.

Theoretically, you can have a VIF score with a value of infinity. Data Wrangler clips high scores
to 50. If you have a VIF score greater than 50, Data Wrangler sets the score to 50.

You can use the following guidelines to interpret your VIF scores:

• A VIF score less than or equal to 5 indicates that the variables are moderately correlated with
the other variables.

• A VIF score greater than or equal to 5 indicates that the variables are highly correlated with
the other variables.

Principle Component Analysis (PCA)

Principal Component Analysis (PCA) measures the variance of the data along different
directions in the feature space. The feature space consists of all the predictor variables that you
use to predict the target variable in your dataset.

For example, if you're trying to predict who survived on the RMS Titanic after it hit an iceberg,
your feature space can include the passengers' age, gender, and the fare that they paid.

From the feature space, PCA generates an ordered list of variances. These variances are also
known as singular values. The values in the list of variances are greater than or equal to 0. We
can use them to determine how much multicollinearity there is in our data.

When the numbers are roughly uniform, the data has very few instances of multicollinearity.
When there is a lot of variability among the values, we have many instances of multicollinearity.
Before it performs PCA, Data Wrangler normalizes each feature to have a mean of 0 and a
standard deviation of 1.

Analyze and Visualize 2268

Amazon SageMaker Developer Guide

Note

PCA in this circumstance can also be referred to as Singular Value Decomposition (SVD).

Lasso feature selection

Lasso feature selection uses the L1 regularization technique to only include the most predictive
features in your dataset.

For both classification and regression, the regularization technique generates a coefficient for
each feature. The absolute value of the coefficient provides an importance score for the feature.
A higher importance score indicates that it is more predictive of the target variable. A common
feature selection method is to use all the features that have a non-zero lasso coefficient.

Detect Anomalies In Time Series Data

You can use the anomaly detection visualization to see outliers in your time series data. To
understand what determines an anomaly, you need to understand that we decompose the time
series into a predicted term and an error term. We treat the seasonality and trend of the time series
as the predicted term. We treat the residuals as the error term.

For the error term, you specify a threshold as the number of standard of deviations the residual
can be away from the mean for it to be considered an anomaly. For example, you can specify a
threshold as being 3 standard deviations. Any residual greater than 3 standard deviations away
from the mean is an anomaly.

You can use the following procedure to perform an Anomaly detection analysis.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add analysis.

3. For Analysis type, choose Time Series.

4. For Visualization, choose Anomaly detection.

5. For Anomaly threshold, choose the threshold that a value is considered an anomaly.

6. Choose Preview to generate a preview of the analysis.

7. Choose Add to add the transform to the Data Wrangler data flow.

Analyze and Visualize 2269

Amazon SageMaker Developer Guide

Seasonal Trend Decomposition In Time Series Data

You can determine whether there's seasonality in your time series data by using the Seasonal Trend
Decomposition visualization. We use the STL (Seasonal Trend decomposition using LOESS) method
to perform the decomposition. We decompose the time series into its seasonal, trend, and residual
components. The trend reflects the long term progression of the series. The seasonal component is
a signal that recurs in a time period. After removing the trend and the seasonal components from
the time series, you have the residual.

You can use the following procedure to perform a Seasonal-Trend decomposition analysis.

1. Open your Data Wrangler data flow.

2. In your data flow, under Data types, choose the +, and select Add analysis.

3. For Analysis type, choose Time Series.

4. For Visualization, choose Seasonal-Trend decomposition.

5. For Anomaly threshold, choose the threshold that a value is considered an anomaly.

6. Choose Preview to generate a preview of the analysis.

7. Choose Add to add the transform to the Data Wrangler data flow.

Bias Report

You can use the bias report in Data Wrangler to uncover potential biases in your data. To generate
a bias report, you must specify the target column, or Label, that you want to predict and a Facet,
or the column that you want to inspect for biases.

Label: The feature about which you want a model to make predictions. For example, if you are
predicting customer conversion, you may select a column containing data on whether or not a
customer has placed an order. You must also specify whether this feature is a label or a threshold.
If you specify a label, you must specify what a positive outcome looks like in your data. In the
customer conversion example, a positive outcome may be a 1 in the orders column, representing
the positive outcome of a customer placing an order within the last three months. If you specify
a threshold, you must specify a lower bound defining a positive outcome. For example, if your
customer orders columns contains the number of orders placed in the last year, you may want to
specify 1.

Facet: The column that you want to inspect for biases. For example, if you are trying to predict
customer conversion, your facet may be the age of the customer. You may choose this facet

Analyze and Visualize 2270

Amazon SageMaker Developer Guide

because you believe that your data is biased toward a certain age group. You must identify whether
the facet is measured as a value or threshold. For example, if you wanted to inspect one or more
specific ages, you select Value and specify those ages. If you want to look at an age group, you
select Threshold and specify the threshold of ages you want to inspect.

After you select your feature and label, you select the types of bias metrics you want to calculate.

To learn more, see Generate reports for bias in pre-training data.

Create Custom Visualizations

You can add an analysis to your Data Wrangler flow to create a custom visualization. Your dataset,
with all the transformations you've applied, is available as a Pandas DataFrame. Data Wrangler uses
the df variable to store the dataframe. You access the dataframe by calling the variable.

You must provide the output variable, chart, to store an Altair output chart. For example, you can
use the following code block to create a custom histogram using the Titanic dataset.

import altair as alt
df = df.iloc[:30]
df = df.rename(columns={"Age": "value"})
df = df.assign(count=df.groupby('value').value.transform('count'))
df = df[["value", "count"]]
base = alt.Chart(df)
bar = base.mark_bar().encode(x=alt.X('value', bin=True, axis=None), y=alt.Y('count'))
rule = base.mark_rule(color='red').encode(
 x='mean(value):Q',
 size=alt.value(5))
chart = bar + rule

To create a custom visualization:

1. Next to the node containing the transformation that you'd like to visualize, choose the +.

2. Choose Add analysis.

3. For Analysis type, choose Custom Visualization.

4. For Analysis name, specify a name.

5. Enter your code in the code box.

6. Choose Preview to preview your visualization.

7. Choose Save to add your visualization.

Analyze and Visualize 2271

https://docs.aws.amazon.com/sagemaker/latest/dg/data-bias-reports.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://altair-viz.github.io/

Amazon SageMaker Developer Guide

If you don’t know how to use the Altair visualization package in Python, you can use custom code
snippets to help you get started.

Data Wrangler has a searchable collection of visualization snippets. To use a visualization snippet,
choose Search example snippets and specify a query in the search bar.

The following example uses the Binned scatterplot code snippet. It plots a histogram for 2
dimensions.

The snippets have comments to help you understand the changes that you need to make to the
code. You usually need to specify the column names of your dataset in the code.

import altair as alt

Specify the number of top rows for plotting

Analyze and Visualize 2272

Amazon SageMaker Developer Guide

rows_number = 1000
df = df.head(rows_number)
You can also choose bottom rows or randomly sampled rows
df = df.tail(rows_number)
df = df.sample(rows_number)

chart = (
 alt.Chart(df)
 .mark_circle()
 .encode(
 # Specify the column names for binning and number of bins for X and Y axis
 x=alt.X("col1:Q", bin=alt.Bin(maxbins=20)),
 y=alt.Y("col2:Q", bin=alt.Bin(maxbins=20)),
 size="count()",
)
)

:Q specifies that label column has quantitative type.
For more details on Altair typing refer to
https://altair-viz.github.io/user_guide/encoding.html#encoding-data-types

Reusing Data Flows for Different Datasets

For Amazon Simple Storage Service (Amazon S3) data sources, you can create and use parameters.
A parameter is a variable that you've saved in your Data Wrangler flow. Its value can be any portion
of the data source's Amazon S3 path. Use parameters to quickly change the data that you're
importing into a Data Wrangler flow or exporting to a processing job. You can also use parameters
to select and import a specific subset of your data.

After you created a Data Wrangler flow, you might have trained a model on the data that you've
transformed. For datasets that have the same schema, you can use parameters to apply the same
transformations on a different dataset and train a different model. You can use the new datasets to
perform inference with your model or you could be using them to retrain your model.

In general, parameters have the following attributes:

• Name – The name you specify for the parameter

• Type – The type of value that the parameter represents

• Default value – The value of the parameter when you don't specify a new value

Reusing Data Flows for Different Datasets 2273

Amazon SageMaker Developer Guide

Note

Datetime parameters have a time range attribute that they use as the default value.

Data Wrangler uses curly braces, {{}}, to indicate that a parameter is being used in
the Amazon S3 path. For example, you can have a URL such as s3://DOC-EXAMPLE-
BUCKET1/{{example_parameter_name}}/example-dataset.csv.

You create a parameter when you're editing the Amazon S3 data source that you've imported. You
can set any portion of the file path to a parameter value. You can set the parameter value to either
a value or a pattern. The following are the available parameter value types in the Data Wrangler
flow:

• Number

• String

• Pattern

• Datetime

Note

You can't create a pattern parameter or a datetime parameter for the name of the bucket in
the Amazon S3 path.

You must set a number as the default value of a number parameter. You can change the value of
the parameter to a different number when you're editing a parameter or when you're launching a
processing job. For example, in the S3 path, s3://DOC-EXAMPLE-BUCKET/example-prefix/
example-file-1.csv, you can create a number parameter named number_parameter in
the place of 1. Your S3 path now appears as s3://DOC-EXAMPLE-BUCKET/example-prefix/
example-file-{{number_parameter}}.csv. The path continues to point to the example-
file-1.csv dataset until you change the value of the parameter. If you change the value of
number_parameter to 2 the path is now s3://DOC-EXAMPLE-BUCKET/example-prefix/
example-file-2.csv. You can import example-file-2.csv into Data Wrangler if you've
uploaded the file to that Amazon S3 location.

Reusing Data Flows for Different Datasets 2274

Amazon SageMaker Developer Guide

A string parameter stores a string as its default value. For example, in the S3 path, s3://DOC-
EXAMPLE-BUCKET/example-prefix/example-file-1.csv, you can create a string parameter
named string_parameter in the place of the filename, example-file-1.csv. The path now
appears as s3://DOC-EXAMPLE-BUCKET/example-prefix/{{string_parameter}}. It
continues to match s3://DOC-EXAMPLE-BUCKET/example-prefix/example-file-1.csv,
until you change the value of the parameter.

Instead of specifying the filename as a string parameter, you can create a string parameter using
the entire Amazon S3 path. You can specify a dataset from any Amazon S3 location in the string
parameter.

A pattern parameter stores a regular expression (Python REGEX) string as its default value. You
can use a pattern parameter to import multiple data files at the same time. To import more than
one object at a time, specify a parameter value that matches the Amazon S3 objects that you're
importing.

You can also create a pattern parameter for the following datasets:

• s3://DOC-EXAMPLE-BUCKET1/example-prefix/example-file-1.csv

• s3://DOC-EXAMPLE-BUCKET1/example-prefix/example-file-2.csv

• s3://DOC-EXAMPLE-BUCKET1/example-prefix/example-file-10.csv

• s3://DOC-EXAMPLE-BUCKET/example-prefix/example-file-0123.csv

For s3://DOC-EXAMPLE-BUCKET1/example-prefix/example-file-1.csv, you can create
a pattern parameter in the place of 1, and set the default value of the parameter to \d+. The \d
+ REGEX string matches any one or more decimal digits. If you create a pattern parameter named
pattern_parameter, your S3 path appears as s3://DOC-EXAMPLE-BUCKET1/example-
prefix/example-file-{{pattern_parameter}}.csv.

You can also use pattern parameters to match all CSV objects within your bucket. To match all
objects in a bucket, create a pattern parameter with the default value of .* and set the path to
s3://DOC-EXAMPLE-BUCKET/{{pattern_parameter}}.csv. The .* character matches any
string character in the path.

The s3://DOC-EXAMPLE-BUCKET/{{pattern_parameter}}.csv path can match the following
datasets.

• example-file-1.csv

Reusing Data Flows for Different Datasets 2275

Amazon SageMaker Developer Guide

• other-example-file.csv

• example-file-a.csv

A datetime parameter stores the format with the following information:

• A format for parsing strings inside an Amazon S3 path.

• A relative time range to limit the datetime values that match

For example, in the Amazon S3 file path, s3://DOC-EXAMPLE-BUCKET/2020/01/01/example-
dataset.csv, 2020/01/01 represents a datetime in the format of year/month/day. You can set
the parameter’s time range to an interval such as 1 years or 24 hours. An interval of 1 years
matches all S3 paths with datetimes that fall between the current time and the time exactly a year
before the current time. The current time is the time when you start exporting the transformations
that you've made to the data. For more information about exporting data, see Export. If the current
date is 2022/01/01 and the time range is 1 years, the S3 path matches datasets such as the
following:

• s3://DOC-EXAMPLE-BUCKET/2021/01/01/example-dataset.csv

• s3://DOC-EXAMPLE-BUCKET/2021/06/30/example-dataset.csv

• s3://DOC-EXAMPLE-BUCKET/2021/12/31/example-dataset.csv

The datetime values within a relative time range change as time passes. The S3 paths that fall
within the relative time range might also differ.

For the Amazon S3 file path, s3://DOC-EXAMPLE-BUCKET1/20200101/example-
dataset.csv, 20220101 is an example of a path that can become a datetime parameter.

To view a table of all parameters that you've created in Data Wrangler flow, choose the `{{}}` to
the right of the text box containing the Amazon S3 path. If you no longer need a parameter that
you've created, you can edit or delete. To edit or delete a parameter, choose icons to the right of
the parameter.

Important

Before you delete a parameter, make sure that you haven't used it anywhere in your Data
Wrangler flow. Deleted parameters that are still within the flow cause errors.

Reusing Data Flows for Different Datasets 2276

Amazon SageMaker Developer Guide

You can create parameters for any step of your Data Wrangler flow. You can edit or delete any
parameter that you create. If you're applying transformations to data that is no longer relevant to
your use case, you can modify the values of parameters. Modifying the values of the parameters
changes the data that you're importing.

The following sections provide additional examples and general guidance on using parameters. You
can use the sections to understand the parameters that work best for you.

Note

The following sections contain procedures that use the Data Wrangler interface to override
the parameters and create a processing job.
You can also override the parameters by using the following procedures.

To export your Data Wrangler flow and override the value of a parameter, do the following.

1. Choose the + next to the node that you want to export.

2. Choose Export to.

3. Choose the location where you're exporting the data.

4. Under parameter_overrides, specify different values for the parameters that
you've created.

5. Run the Jupyter Notebook.

Applying a Data Wrangler flow to files using patterns

You can use parameters to apply transformations in your Data Wrangler flow to different files
that match a pattern in the Amazon S3 URI path. This helps you specify the files in your S3 bucket
that you want to transform with high specificity. For example, you might have a dataset with the
path s3://DOC-EXAMPLE-BUCKET1/example-prefix-0/example-prefix-1/example-
prefix-2/example-dataset.csv. Different datasets named example-dataset.csv are
stored under many different example prefixes. The prefixes might also be numbered sequentially.
You can create patterns for the numbers in the Amazon S3 URI. Pattern parameters use REGEX
to select any number of files that match the pattern of the expression. The following are REGEX
patterns that might be useful:

• .* – Matches zero or more of any character, except newline characters

• .+ – Matches one or more of any character, excluding newline characters

Reusing Data Flows for Different Datasets 2277

Amazon SageMaker Developer Guide

• \d+ – Matches one or more of any decimal digit

• \w+ – Matches one or more of any alphanumeric character

• [abc-_]{2,4} – Matches a string two, three, or four characters composed of the set of
characters provided within a set of brackets

• abc|def – Matches one string or another. For example, the operation matches either abc or def

You can replace each number in the following paths with a single parameter that has a value of \d
+.

• s3://DOC-EXAMPLE-BUCKET1/example-prefix-3/example-prefix-4/example-
prefix-5/example-dataset.csv

• s3://DOC-EXAMPLE-BUCKET1/example-prefix-8/example-prefix-12/example-
prefix-13/example-dataset.csv

• s3://DOC-EXAMPLE-BUCKET1/example-prefix-4/example-prefix-9/example-
prefix-137/example-dataset.csv

The following procedure creates a pattern parameter for a dataset with the path s3://DOC-
EXAMPLE-BUCKET1/example-prefix-0/example-prefix-1/example-prefix-2/example-
dataset.csv.

To create a pattern parameter, do the following.

1. Next to the dataset that you've imported, choose Edit dataset.

2. Highlight the 0 in example-prefix-0.

3. Specify values for the following fields:

• Name – A name for parameter

• Type – Pattern

• Value – \d+ a regular expression that corresponds to one or more digits

4. Choose Create.

5. Replace the 1 and the 2 in S3 URI path with the parameter. The path should
have the following format: s3://DOC-EXAMPLE-BUCKET1/example-prefix-
{{example_parameter_name}}/example-prefix-{{example_parameter_name}}/
example-prefix-{{example_parameter_name}}/example-dataset.csv

Reusing Data Flows for Different Datasets 2278

Amazon SageMaker Developer Guide

The following is a general procedure for creating a pattern parameter.

1. Navigate to your Data Wrangler flow.

2. Next to the dataset that you've imported, choose Edit dataset.

3. Highlight the portion of the URI that you're using as the value of the pattern parameter.

4. Choose Create custom parameter.

5. Specify values for the following fields:

• Name – A name for parameter

• Type – Pattern

• Value – A regular expression containing the pattern that you'd like to store.

6. Choose Create.

Applying a Data Wrangler flow to files using numeric values

You can use parameters to apply transformations in your Data Wrangler flow to different files
that have similar paths. For example, you might have a dataset with the path s3://DOC-
EXAMPLE-BUCKET1/example-prefix-0/example-prefix-1/example-prefix-2/example-
dataset.csv.

You might have the transformations from your Data Wrangler flow that you've applied to datasets
under example-prefix-1. You might want to apply the same transformations to example-
dataset.csv that falls under example-prefix-10 or example-prefix-20.

You can create a parameter that stores the value 1. If you want to apply the transformations to
different datasets, you can create processing jobs that replace the value of the parameter with a
different value. The parameter acts as a placeholder for you to change when you want to apply
the transformations from your Data Wrangler flow to new data. You can override the value of the
parameter when you create a Data Wrangler processing job to apply the transformations in your
Data Wrangler flow to different datasets.

Use the following procedure to create numeric parameters for s3://DOC-EXAMPLE-BUCKET1/
example-prefix-0/example-prefix-1/example-prefix-2/example-dataset.csv.

To create parameters for the preceding S3 URI path, do the following.

1. Navigate to your Data Wrangler flow.

2. Next to the dataset that you've imported, choose Edit dataset.

Reusing Data Flows for Different Datasets 2279

Amazon SageMaker Developer Guide

3. Highlight the number in an example prefix of example-prefix-number.

4. Choose Create custom parameter.

5. For Name, specify a name for the parameter.

6. For Type, choose Integer.

7. For Value, specify the number.

8. Create parameters for the remaining numbers by repeating the procedure.

After you've created the parameters, apply the transforms to your dataset and create a destination
node for them. For more information about destination nodes, see Export.

Use the following procedure to apply the transformations from your Data Wrangler flow to a
different time range. It assumes that you've created a destination node for the transformations in
your flow.

To change the value of a numeric parameter in a Data Wrangler processing job, do the following.

1. From your Data Wrangler flow, choose Create job

2. Select only the destination node that contains the transformations to the dataset containing
the datetime parameters.

3. Choose Configure job.

4. Choose Parameters.

5. Choose the name of a parameter that you've created.

6. Change the value of the parameter.

7. Repeat the procedure for the other parameters.

8. Choose Run.

Applying a Data Wrangler flow to files using strings

You can use parameters to apply transformations in your Data Wrangler flow to different files that
have similar paths. For example, you might have a dataset with the path s3://DOC-EXAMPLE-
BUCKET1/example-prefix/example-dataset.csv.

You might have transformations from your Data Wrangler flow that you've applied to datasets
under example-prefix. You might want to apply the same transformations to example-
dataset.csv under another-example-prefix or example-prefix-20.

Reusing Data Flows for Different Datasets 2280

Amazon SageMaker Developer Guide

You can create a parameter that stores the value example-prefix. If you want to apply the
transformations to different datasets, you can create processing jobs that replace the value of
the parameter with a different value. The parameter acts as a placeholder for you to change
when you want to apply the transformations from your Data Wrangler flow to new data. You can
override the value of the parameter when you create a Data Wrangler processing job to apply the
transformations in your Data Wrangler flow to different datasets.

Use the following procedure to create a string parameter for s3://DOC-EXAMPLE-BUCKET1/
example-prefix/example-dataset.csv.

To create a parameter for the preceding S3 URI path, do the following.

1. Navigate to your Data Wrangler flow.

2. Next to the dataset that you've imported, choose Edit dataset.

3. Highlight the example prefix, example-prefix.

4. Choose Create custom parameter.

5. For Name, specify a name for the parameter.

6. For Type, choose String.

7. For Value, specify the prefix.

After you've created the parameter, apply the transforms to your dataset and create a destination
node for them. For more information about destination nodes, see Export.

Use the following procedure to apply the transformations from your Data Wrangler flow to a
different time range. It assumes that you've created a destination node for the transformations in
your flow.

To change the value of a numeric parameter in a Data Wrangler processing job, do the following:

1. From your Data Wrangler flow, choose Create job

2. Select only the destination node that contains the transformations to the dataset containing
the datetime parameters.

3. Choose Configure job.

4. Choose Parameters.

5. Choose the name of a parameter that you've created.

6. Change the value of the parameter.

Reusing Data Flows for Different Datasets 2281

Amazon SageMaker Developer Guide

7. Repeat the procedure for the other parameters.

8. Choose Run.

Applying a Data Wrangler flow to different datetime ranges

Use datetime parameters to apply transformations in your Data Wrangler flow to different time
ranges. Highlight the portion of the Amazon S3 URI that has a timestamp and create a parameter
for it. When you create a parameter, you specify a time range from the current time to a time in
the past. For example, you might have an Amazon S3 URI that looks like the following: s3://DOC-
EXAMPLE-BUCKET1/example-prefix/2022/05/15/example-dataset.csv. You can save
2022/05/15 as a datetime parameter. If you specify a year as the time range, the time range
includes the moment that you run the processing job containing the datetime parameter and the
time exactly one year ago. If the moment you're running the processing job is September 6th, 2022
or 2022/09/06, the time ranges can include the following:

• s3://DOC-EXAMPLE-BUCKET1/example-prefix/2022/03/15/example-dataset.csv

• s3://DOC-EXAMPLE-BUCKET1/example-prefix/2022/01/08/example-dataset.csv

• s3://DOC-EXAMPLE-BUCKET1/example-prefix/2022/07/31/example-dataset.csv

• s3://DOC-EXAMPLE-BUCKET1/example-prefix/2021/09/07/example-dataset.csv

The transformations in the Data Wrangler flow apply to all of the preceding prefixes. Changing
the value of the parameter in the processing job doesn't change the value of the parameter in the
Data Wrangler flow. To apply the transformations to datasets within a different time range, do the
following:

1. Create a destination node containing all the transformations that you'd like to use.

2. Create a Data Wrangler job.

3. Configure the job to use a different time range for the parameter. Changing the value of the
parameter in the processing job doesn't change the value of the parameter in the Data Wrangler
flow.

For more information about destination nodes and Data Wrangler jobs, see Export.

The following procedure creates a datetime parameter for the Amazon S3 path: s3://DOC-
EXAMPLE-BUCKET1/example-prefix/2022/05/15/example-dataset.csv.

Reusing Data Flows for Different Datasets 2282

Amazon SageMaker Developer Guide

To create a datetime parameter for the preceding S3 URI path, do the following.

1. Navigate to your Data Wrangler flow.

2. Next to the dataset that you've imported, choose Edit dataset.

3. Highlight the portion of the URI that you're using as the value of the datetime parameter.

4. Choose Create custom parameter.

5. For Name, specify a name for the parameter.

6. For Type, choose Datetime.

Note

By default, Data Wrangler selects Predefined, which provides a dropdown menu for
you to select a date format. However, the timestamp format that you're using might
not be available. Instead of using Predefined as the default option, you can choose
Custom and specify the timestamp format manually.

7. For Date format, open the dropdown menu following Predefined and choose yyyy/MM/dd.
The format, yyyy/MM/dd, corresponds to the year/month/day of the timestamp.

8. For Timezone, choose a time zone.

Note

The data that you're analyzing might have time stamps taken in a different time zone
from your time zone. Make sure that the time zone that you select matches the time
zone of the data.

9. For Time range, specify the time range for the parameter.

10. (Optional) Enter a description to describe how you're using the parameter.

11. Choose Create.

After you've created the datetime parameters, apply the transforms to your dataset and create a
destination node for them. For more information about destination nodes, see Export.

Use the following procedure to apply the transformations from your Data Wrangler flow to a
different time range. It assumes that you've created a destination node for the transformations in
your flow.

Reusing Data Flows for Different Datasets 2283

Amazon SageMaker Developer Guide

To change the value of a datetime parameter in a Data Wrangler processing job, do the following:

1. From your Data Wrangler flow, choose Create job

2. Select only the destination node that contains the transformations to the dataset containing
the datetime parameters.

3. Choose Configure job.

4. Choose Parameters.

5. Choose the name of the datetime parameter that you've created.

6. For Time range, change the time range for the datasets.

7. Choose Run.

Export

In your Data Wrangler flow, you can export some or all of the transformations that you've made to
your data processing pipelines.

A Data Wrangler flow is the series of data preparation steps that you've performed on your data. In
your data preparation, you perform one or more transformations to your data. Each transformation
is done using a transform step. The flow has a series of nodes that represent the import of your
data and the transformations that you've performed. For an example of nodes, see the following
image.

Export 2284

Amazon SageMaker Developer Guide

The preceding image shows a Data Wrangler flow with two nodes. The Source - sampled node
shows the data source from which you've imported your data. The Data types node indicates that
Data Wrangler has performed a transformation to convert the dataset into a usable format.

Each transformation that you add to the Data Wrangler flow appears as an additional node. For
information on the transforms that you can add, see Transform Data. The following image shows a
Data Wrangler flow that has a Rename-column node to change the name of a column in a dataset.

You can export your data transformations to the following:

• Amazon S3

• SageMaker Pipelines

• Amazon SageMaker Feature Store

• Python Code

Export 2285

Amazon SageMaker Developer Guide

Important

We recommend that you use the IAM AmazonSageMakerFullAccess managed policy
to grant AWS permission to use Data Wrangler. If you don't use the managed policy, you
can use an IAM policy that gives Data Wrangler access to an Amazon S3 bucket. For more
information on the policy, see Security and Permissions.

When you export your data flow, you're charged for the AWS resources that you use. You can use
cost allocation tags to organize and manage the costs of those resources. You create these tags for
your user-profile and Data Wrangler automatically applies them to the resources used to export
the data flow. For more information, see Using Cost Allocation Tags.

Export to Amazon S3

Data Wrangler gives you the ability to export your data to a location within an Amazon S3 bucket.
You can specify the location using one of the following methods:

• Destination node – Where Data Wrangler stores the data after it has processed it.

• Export to – Exports the data resulting from a transformation to Amazon S3.

• Export data – For small datasets, can quickly export the data that you've transformed.

Use the following sections to learn more about each of these methods.

Destination Node

If you want to output a series of data processing steps that you've performed to Amazon S3,
you create a destination node. A destination node tells Data Wrangler where to store the data
after you've processed it. After you create a destination node, you create a processing job to
output the data. A processing job is an Amazon SageMaker processing job. When you're using
a destination node, it runs the computational resources needed to output the data that you've
transformed to Amazon S3.

You can use a destination node to export some of the transformations or all of the
transformations that you've made in your Data Wrangler flow.

You can use multiple destination nodes to export different transformations or sets of
transformations. The following example shows two destination nodes in a single Data Wrangler
flow.

Export 2286

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon SageMaker Developer Guide

You can use the following procedure to create destination nodes and export them to an
Amazon S3 bucket.

To export your data flow, you create destination nodes and a Data Wrangler job to export the
data. Creating a Data Wrangler job starts a SageMaker processing job to export your flow. You
can choose the destination nodes that you want to export after you've created them.

Note

You can choose Create job in the Data Wrangler flow to view the instructions to use a
processing job.

Use the following procedure to create destination nodes.

1. Choose the + next to the nodes that represent the transformations that you want to export.

Export 2287

Amazon SageMaker Developer Guide

2. Choose Add destination.

3. Choose Amazon S3.

Export 2288

Amazon SageMaker Developer Guide

4. Specify the following fields.

• Dataset name – The name that you specify for the dataset that you're exporting.

• File type – The format of the file that you're exporting.

• Delimiter (CSV and Parquet files only) – The value used to separate other values.

• Compression (CSV and Parquet files only) – The compression method used to reduce the
file size. You can use the following compression methods:

• bzip2

• deflate

• gzip

• (Optional) Amazon S3 location – The S3 location that you're using to output the files.

• (Optional) Number of partitions – The number of datasets that you're writing as the
output of the processing job.

Export 2289

Amazon SageMaker Developer Guide

• (Optional) Partition by column – Writes all data with the same unique value from the
column.

• (Optional) Inference Parameters – Selecting Generate inference artifact applies all of
the transformations you've used in the Data Wrangler flow to data coming into your
inference pipeline. The model in your pipeline makes predictions on the transformed
data.

5. Choose Add destination.

Use the following procedure to create a processing job.

Create a job from the Data flow page and choose the destination nodes that you want to
export.

Note

You can choose Create job in the Data Wrangler flow to view the instructions for
creating a processing job.

1. Choose Create job. The following image shows the pane that appears after you select
Create job.

Export 2290

Amazon SageMaker Developer Guide

2. For Job name, specify the name of the export job.

3. Choose the destination nodes that you want to export.

4. (Optional) Specify a AWS KMS key ARN. A AWS KMS key is a cryptographic key that you
can use to protect your data. For more information about AWS KMS keys, see AWS Key
Management Service.

5. (Optional) Under Trained parameters. choose Refit if you've done the following:

• Sampled your dataset

• Applied a transform that uses your data to create a new column in the dataset

For more information about refitting the transformations you've made to an entire dataset,
see Refit Transforms to The Entire Dataset and Export Them.

Export 2291

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

Note

For image data, Data Wrangler exports the transformations that you've made to all
of the images. Refitting the transformations isn't applicable to your use case.

6. Choose Configure job. The following image shows the Configure job page.

7. (Optional) Configure the Data Wrangler job. You can make the following configurations:

• Job configuration

• Spark memory configuration

• Network configuration

• Tags

• Parameters

Export 2292

Amazon SageMaker Developer Guide

• Associate Schedules

8. Choose Run.

Export to

As an alternative to using a destination node, you can use the Export to option to export your
Data Wrangler flow to Amazon S3 using a Jupyter notebook. You can choose any data node in
your Data Wrangler flow and export it. Exporting the data node exports the transformation that
the node represents and the transformations that precede it.

Use the following procedure to generate a Jupyter notebook and run it to export your Data
Wrangler flow to Amazon S3.

1. Choose the + next to the node that you want to export.

2. Choose Export to.

3. Choose Amazon S3 (via Jupyter Notebook).

4. Run the Jupyter notebook.

When you run the notebook, it exports your data flow (.flow file) in the same AWS Region as the
Data Wrangler flow.

Export 2293

Amazon SageMaker Developer Guide

The notebook provides options that you can use to configure the processing job and the data
that it outputs.

Important

We provide you with job configurations to configure the output of your data. For the
partitioning and driver memory options, we strongly recommend that you don't specify
a configuration unless you already have knowledge about them.

Under Job Configurations, you can configure the following:

• output_content_type – The content type of the output file. Uses CSV as the default
format, but you can specify Parquet.

• delimiter – The character used to separate values in the dataset when writing to a CSV file.

• compression – If set, compresses the output file. Uses gzip as the default compression
format.

• num_partitions – The number of partitions or files that Data Wrangler writes as the
output.

• partition_by – The names of the columns that you use to partition the output.

To change the output file format from CSV to Parquet, change the value from "CSV" to
"Parquet". For the rest of the preceding fields, uncomment the lines containing the fields that
you want to specify.

Under (Optional) Configure Spark Cluster Driver Memory you can configure Spark properties
for the job, such as the Spark driver memory, in the config dictionary.

The following shows the config dictionary.

config = json.dumps({
 "Classification": "spark-defaults",
 "Properties": {
 "spark.driver.memory": f"{driver_memory_in_mb}m",
 }
})

Export 2294

Amazon SageMaker Developer Guide

To apply the configuration to the processing job, uncomment the following lines:

data_sources.append(ProcessingInput(
source=config_s3_uri,
destination="/opt/ml/processing/input/conf",
input_name="spark-config",
s3_data_type="S3Prefix",
s3_input_mode="File",
s3_data_distribution_type="FullyReplicated"
))

Export data

If you have a transformation on a small dataset that you want to export quickly, you can use the
Export data method. When you start choose Export data, Data Wrangler works synchronously
to export the data that you've transformed to Amazon S3. You can't use Data Wrangler until
either it finishes exporting your data or you cancel the operation.

For information on using the Export data method in your Data Wrangler flow, see the following
procedure.

To use the Export data method:

1. Choose a node in your Data Wrangler flow by opening (double-clicking on) it.

Export 2295

Amazon SageMaker Developer Guide

2. Configure how you want to export the data.

3. Choose Export data.

When you export your data flow to an Amazon S3 bucket, Data Wrangler stores a copy of the
flow file in the S3 bucket. It stores the flow file under the data_wrangler_flows prefix. If you use
the default Amazon S3 bucket to store your flow files, it uses the following naming convention:
sagemaker-region-account number. For example, if your account number is 111122223333
and you are using Studio Classic in us-east-1, your imported datasets are stored in sagemaker-
us-east-1-111122223333. In this example, your .flow files created in us-east-1 are stored in
s3://sagemaker-region-account number/data_wrangler_flows/.

Export to SageMaker Pipelines

When you want to build and deploy large-scale machine learning (ML) workflows, you can
use SageMaker Pipelines to create workflows that manage and deploy SageMaker jobs. With
SageMaker Pipelines, you can build workflows that manage your SageMaker data preparation,
model training, and model deployment jobs. You can use the first-party algorithms that SageMaker
offers by using SageMaker Pipelines. For more information on SageMaker Pipelines, see SageMaker
Pipelines.

When you export one or more steps from your data flow to SageMaker Pipelines, Data Wrangler
creates a Jupyter notebook that you can use to define, instantiate, run, and manage a pipeline.

Export 2296

https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html

Amazon SageMaker Developer Guide

Use a Jupyter Notebook to Create a Pipeline

Use the following procedure to create a Jupyter notebook to export your Data Wrangler flow to
SageMaker Pipelines.

Use the following procedure to generate a Jupyter notebook and run it to export your Data
Wrangler flow to SageMaker Pipelines.

1. Choose the + next to the node that you want to export.

2. Choose Export to.

3. Choose SageMaker Pipelines (via Jupyter Notebook).

4. Run the Jupyter notebook.

You can use the Jupyter notebook that Data Wrangler produces to define a pipeline. The pipeline
includes the data processing steps that are defined by your Data Wrangler flow.

You can add additional steps to your pipeline by adding steps to the steps list in the following
code in the notebook:

pipeline = Pipeline(

Export 2297

Amazon SageMaker Developer Guide

 name=pipeline_name,
 parameters=[instance_type, instance_count],
 steps=[step_process], #Add more steps to this list to run in your Pipeline
)

For more information on defining pipelines, see Define SageMaker Pipeline.

Export to an Inference Endpoint

Use your Data Wrangler flow to process data at the time of inference by creating a SageMaker
serial inference pipeline from your Data Wrangler flow. An inference pipeline is a series of steps
that results in a trained model making predictions on new data. A serial inference pipeline within
Data Wrangler transforms the raw data and provides it to the machine learning model for a
prediction. You create, run, and manage the inference pipeline from a Jupyter notebook within
Studio Classic. For more information about accessing the notebook, see Use a Jupyter Notebook to
create an inference endpoint.

Within the notebook, you can either train a machine learning model or specify one that you've
already trained. You can either use Amazon SageMaker Autopilot or XGBoost to train the model
using the data that you've transformed in your Data Wrangler flow.

The pipeline provides the ability to perform either batch or real-time inference. You can also add
the Data Wrangler flow to SageMaker Model Registry. For more information about hosting models,
see Host multiple models in one container behind one endpoint.

Important

You can't export your Data Wrangler flow to an inference endpoint if it has the following
transformations:

• Join

• Concatenate

• Group by

If you must use the preceding transforms to prepare your data, use the following
procedure.

To prepare your data for inference with unsupported transforms

1. Create a Data Wrangler flow.

Export 2298

https://docs.aws.amazon.com/sagemaker/latest/dg/define-pipeline.html

Amazon SageMaker Developer Guide

2. Apply the preceding transforms that aren't supported.

3. Export the data to an Amazon S3 bucket.

4. Create a separate Data Wrangler flow.

5. Import the data that you've exported from the preceding flow.

6. Apply the remaining transforms.

7. Create a serial inference pipeline using the Jupyter notebook that we provide.

For information about exporting your data to an Amazon S3 bucket see Export to Amazon
S3. For information about opening the Jupyter notebook used to create the serial inference
pipeline, see Use a Jupyter Notebook to create an inference endpoint.

Data Wrangler ignores transforms that remove data at the time of inference. For example, Data
Wrangler ignores the Handle Missing Values transform if you use the Drop missing configuration.

If you've refit transforms to your entire dataset, the transforms carry over to your inference
pipeline. For example, if you used the median value to impute missing values, the median
value from refitting the transform is applied to your inference requests. You can either refit the
transforms from your Data Wrangler flow when you're using the Jupyter notebook or when you're
exporting your data to an inference pipeline. For information about refitting transforms, see Refit
Transforms to The Entire Dataset and Export Them.

The serial inference pipeline supports the following data types for the input and output strings.
Each data type has a set of requirements.

Supported datatypes

• text/csv – the datatype for CSV strings

• The string can't have a header.

• Features used for the inference pipeline must be in the same order as features in the training
dataset.

• There must be a comma delimiter between features.

• Records must be delimited by a newline character.

The following is an example of a validly formatted CSV string that you can provide in an
inference request.

Export 2299

Amazon SageMaker Developer Guide

abc,0.0,"Doe, John",12345\ndef,1.1,"Doe, Jane",67890

• application/json – the datatype for JSON strings

• The features used in the dataset for the inference pipeline must be in the same order as the
features in the training dataset.

• The data must have a specific schema. You define schema as a single instances object that
has a set of features. Each features object represents an observation.

The following is an example of a validly formatted JSON string that you can provide in an
inference request.

{
 "instances": [
 {
 "features": ["abc", 0.0, "Doe, John", 12345]
 },
 {
 "features": ["def", 1.1, "Doe, Jane", 67890]
 }
]
}

Use a Jupyter Notebook to create an inference endpoint

Use the following procedure to export your Data Wrangler flow to create an inference pipeline.

To create an inference pipeline using a Jupyter notebook, do the following.

1. Choose the + next to the node that you want to export.

2. Choose Export to.

3. Choose SageMaker Inference Pipeline (via Jupyter Notebook).

4. Run the Jupyter notebook.

Export 2300

Amazon SageMaker Developer Guide

When you run the Jupyter notebook, it creates an inference flow artifact. An inference flow artifact
is a Data Wrangler flow file with additional metadata used to create the serial inference pipeline.
The node that you're exporting encompasses all of the transforms from the preceding nodes.

Important

Data Wrangler needs the inference flow artifact to run the inference pipeline. You can't use
your own flow file as the artifact. You must create it by using the preceding procedure.

Export to Python Code

To export all steps in your data flow to a Python file that you can manually integrate into any data
processing workflow, use the following procedure.

Use the following procedure to generate a Jupyter notebook and run it to export your Data
Wrangler flow to Python Code.

1. Choose the + next to the node that you want to export.

2. Choose Export to.

3. Choose Python Code.

4. Run the Jupyter notebook.

Export 2301

Amazon SageMaker Developer Guide

You might need to configure the Python script to make it run in your pipeline. For example,
if you're running a Spark environment, make sure that you are running the script from an
environment that has permission to access AWS resources.

Export to Amazon SageMaker Feature Store

You can use Data Wrangler to export features you've created to Amazon SageMaker Feature Store.
A feature is a column in your dataset. Feature Store is a centralized store for features and their
associated metadata. You can use Feature Store to create, share, and manage curated data for
machine learning (ML) development. Centralized stores make your data more discoverable and
reusable. For more information about Feature Store, see Amazon SageMaker Feature Store.

A core concept in Feature Store is a feature group. A feature group is a collection of features, their
records (observations), and associated metadata. It's similar to a table in a database.

You can use Data Wrangler to do one of the following:

• Update an existing feature group with new records. A record is an observation in the dataset.

• Create a new feature group from a node in your Data Wrangler flow. Data Wrangler adds the
observations from your datasets as records in your feature group.

Export 2302

https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html

Amazon SageMaker Developer Guide

If you're updating an existing feature group, your dataset's schema must match the schema of
the feature group. All the records in the feature group are replaced with the observations in your
dataset.

You can use either a Jupyter notebook or a destination node to update your feature group with the
observations in the dataset.

If your feature groups with the Iceberg table format have a custom offline store encryption
key, make sure you grant the IAM that you're using for the Amazon SageMaker Processing job
permissions to use it. At a minimum, you must grant it permissions to encrypt the data that
you're writing to Amazon S3. To grant the permissions, give the IAM role the ability to use the
GenerateDataKey. For more information about granting IAM roles permissions to use AWS KMS
keys see https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Destination Node

If you want to output a series of data processing steps that you've performed to a feature
group, you can create a destination node. When you create and run a destination node, Data
Wrangler updates a feature group with your data. You can also create a new feature group from
the destination node UI. After you create a destination node, you create a processing job to
output the data. A processing job is an Amazon SageMaker processing job. When you're using
a destination node, it runs the computational resources needed to output the data that you've
transformed to the feature group.

You can use a destination node to export some of the transformations or all of the
transformations that you've made in your Data Wrangler flow.

Use the following procedure to create a destination node to update a feature group with the
observations from your dataset.

To update a feature group using a destination node, do the following.

Note

You can choose Create job in the Data Wrangler flow to view the instructions for using a
processing job to update the feature group.

1. Choose the + symbol next to the node containing the dataset that you'd like to export.

2. Under Add destination, choose SageMaker Feature Store.

Export 2303

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon SageMaker Developer Guide

3. Choose (double-click) the feature group. Data Wrangler checks whether the schema of
the feature group matches the schema of the data that you're using to update the feature
group.

4. (Optional) Select Export to offline store only for feature groups that have both an online
store and an offline store. This option only updates the offline store with observations from
your dataset.

5. After Data Wrangler validates the schema of your dataset, choose Add.

Use the following procedure to create a new feature group with data from your dataset.

You can store your feature group in one of the following ways:

• Online – Low-latency, high-availability cache for a feature group that provides real-time
lookup of records. The online store allows quick access to the latest value for a record in a
feature group.

• Offline – Stores data for your feature group in an Amazon S3 bucket. You can store your data
offline when you don't need low-latency (sub-second) reads. You can use an offline store for
features used in data exploration, model training, and batch inference.

• Both online and offline – Stores your data in both an online store and an offline store.

To create a feature group using a destination node, do the following.

Export 2304

Amazon SageMaker Developer Guide

1. Choose the + symbol next to the node containing the dataset that you'd like to export.

2. Under Add destination, choose SageMaker Feature Store.

3. Choose Create Feature Group.

4. In the following dialog box, if your dataset doesn't have an event time column, select
Create "EventTime" column.

5. Choose Next.

6. Choose Copy JSON Schema. When you create a feature group, you paste the schema into
the feature definitions.

7. Choose Create.

8. For Feature group name, specify a name for your feature group.

9. For Description (optional), specify a description to make your feature group more
discoverable.

10. To create a feature group for an online store, do the following.

a. Select Enable storage online.

b. For Online store encryption key, specify an AWS managed encryption key or an
encryption key of your own.

11. To create a feature group for an offline store, do the following.

a. Select Enable storage offline. Specify values for the following fields:

• S3 bucket name – The name of the Amazon S3 bucket that stores the feature group.

• (Optional) Dataset directory name – The Amazon S3 prefix that you're using to store
the feature group.

• IAM Role ARN – The IAM role that has access to Feature Store.

• Table Format – Table format of your offline store. You can specify Glue or Iceberg.
Glue is the default format.

• Offline store encryption key – By default, Feature Store uses an AWS Key
Management Service managed key, but you can use the field to specify a key of your
own.

b. Specify values for the following fields:

• S3 bucket name – The name of the bucket storing the feature group.

Export 2305

Amazon SageMaker Developer Guide

• (Optional) Dataset directory name – The Amazon S3 prefix that you're using to
store the feature group.

• IAM Role ARN – The IAM role that has access to feature store.

• Offline store encryption key – By default, Feature Store uses an AWS managed key,
but you can use the field to specify a key of your own.

12. Choose Continue.

13. Choose JSON.

14. Remove the placeholder brackets in the window.

15. Paste the JSON text from Step 6.

16. Choose Continue.

17. For RECORD IDENTIFIER FEATURE NAME, choose the column in your dataset that has
unique identifiers for each record in your dataset.

18. For EVENT TIME FEATURE NAME, choose the column with the timestamp values.

19. Choose Continue.

20. (Optional) Add tags to make your feature group more discoverable.

21. Choose Continue.

22. Choose Create feature group.

23. Navigate back to your Data Wrangler flow and choose the refresh icon next to the Feature
Group search bar.

Note

If you've already created a destination node for a feature group within a flow, you can't
create another destination node for the same feature group. If you want to create
another destination node for the same feature group, you must create another flow file.

Use the following procedure to create a Data Wrangler job.

Create a job from the Data flow page and choose the destination nodes that you want to
export.

1. Choose Create job. The following image shows the pane that appears after you select
Create job.

Export 2306

Amazon SageMaker Developer Guide

2. For Job name, specify the name of the export job.

3. Choose the destination nodes that you want to export.

4. (Optional) For Output KMS Key, specify an ARN, ID, or alias of an AWS KMS key. A KMS key
is a cryptographic key. You can use the key to encrypt the output data from the job. For
more information about AWS KMS keys, see AWS Key Management Service.

5. The following image shows the Configure job page with the Job configuration tab open.

(Optional) Under Trained parameters. choose Refit if you've done the following:

• Sampled your dataset

• Applied a transform that uses your data to create a new column in the dataset

For more information about refitting the transformations you've made to an entire dataset,
see Refit Transforms to The Entire Dataset and Export Them.

Export 2307

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

6. Choose Configure job.

7. (Optional) Configure the Data Wrangler job. You can make the following configurations:

• Job configuration

• Spark memory configuration

• Network configuration

• Tags

• Parameters

• Associate Schedules

8. Choose Run.

Jupyter notebook

Use the following procedure to a Jupyter notebook to export to Amazon SageMaker Feature
Store.

Use the following procedure to generate a Jupyter notebook and run it to export your Data
Wrangler flow to Feature Store.

1. Choose the + next to the node that you want to export.

2. Choose Export to.

3. Choose Amazon SageMaker Feature Store (via Jupyter Notebook).

4. Run the Jupyter notebook.

Export 2308

Amazon SageMaker Developer Guide

Running a Jupyter notebook runs a Data Wrangler job. Running a Data Wrangler job starts a
SageMaker processing job. The processing job ingests the flow into an online and offline feature
store.

Important

The IAM role you use to run this notebook must have the following
AWS managed policies attached: AmazonSageMakerFullAccess and
AmazonSageMakerFeatureStoreAccess.

You only need to enable one online or offline feature store when you create a feature group.
You can also enable both. To disable online store creation, set EnableOnlineStore to False:

Online Store Configuration
online_store_config = {
 "EnableOnlineStore": False
}

Export 2309

Amazon SageMaker Developer Guide

The notebook uses the column names and types of the dataframe you export to create a
feature group schema, which is used to create a feature group. A feature group is a group of
features defined in the feature store to describe a record. The feature group defines the schema
and features contained in the feature group. A feature group definition is composed of a list of
features, a record identifier feature name, an event time feature name, and configurations for
its online store and offline store.

Each feature in a feature group can have one of the following types: String, Fractional, or
Integral. If a column in your exported dataframe is not one of these types, it defaults to
String.

The following is an example of a feature group schema.

column_schema = [
 {
 "name": "Height",
 "type": "long"
 },
 {
 "name": "Input",
 "type": "string"
 },
 {
 "name": "Output",
 "type": "string"
 },
 {
 "name": "Sum",
 "type": "string"
 },
 {
 "name": "Time",
 "type": "string"
 }
]

Additionally, you must specify a record identifier name and event time feature name:

• The record identifier name is the name of the feature whose value uniquely identifies a record
defined in the feature store. Only the latest record per identifier value is stored in the online
store. The record identifier feature name must be one of feature definitions' names.

Export 2310

Amazon SageMaker Developer Guide

• The event time feature name is the name of the feature that stores the EventTime of a
record in a feature group. An EventTime is a point in time when a new event occurs that
corresponds to the creation or update of a record in a feature. All records in the feature group
must have a corresponding EventTime.

The notebook uses these configurations to create a feature group, process your data at scale,
and then ingest the processed data into your online and offline feature stores. To learn more,
see Data Sources and Ingestion.

The notebook uses these configurations to create a feature group, process your data at scale, and
then ingest the processed data into your online and offline feature stores. To learn more, see Data
Sources and Ingestion.

Refit Transforms to The Entire Dataset and Export Them

When you import data, Data Wrangler uses a sample of the data to apply the encodings. By
default, Data Wrangler uses the first 50,000 rows as a sample, but you can import the entire
dataset or use a different sampling method. For more information, see Import.

The following transformations use your data to create a column in the dataset:

• Encode Categorical

• Featurize Text

• Handle Outliers

• Handle Missing Values

If you used sampling to import your data, the preceding transforms only use the data from the
sample to create the column. The transform might not have used all of the relevant data. For
example, if you use the Encode Categorical transform, there might have been a category in the
entire dataset that wasn't present in the sample.

You can either use a destination node or a Jupyter notebook to refit the transformations to the
entire dataset. When Data Wrangler exports the transformations in the flow, it creates a SageMaker
processing job. When the processing job finishes, Data Wrangler saves the following files in either
the default Amazon S3 location or an S3 location that you specify:

• The Data Wrangler flow file that specifies the transformations that are refit to the dataset

Export 2311

https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-ingest-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-ingest-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-ingest-data.html

Amazon SageMaker Developer Guide

• The dataset with the refit transformations applied to it

You can open a Data Wrangler flow file within Data Wrangler and apply the transformations to
a different dataset. For example, if you've applied the transformations to a training dataset, you
can open and use the Data Wrangler flow file to apply the transformations to a dataset used for
inference.

For a information about using destination nodes to refit transforms and export see the following
pages:

• Export to Amazon S3

• Export to Amazon SageMaker Feature Store

Use the following procedure to run a Jupyter notebook to refit the transformations and export the
data.

To run a Jupyter notebook and to refit the transformations and export your Data Wrangler flow, do
the following.

1. Choose the + next to the node that you want to export.

2. Choose Export to.

3. Choose the location to which you're exporting the data.

4. For the refit_trained_params object, set refit to True.

5. For the output_flow field, specify the name of the output flow file with the refit
transformations.

6. Run the Jupyter notebook.

Create a Schedule to Automatically Process New Data

If you're processing data periodically, you can create a schedule to run the processing job
automatically. For example, you can create a schedule that runs a processing job automatically
when you get new data. For more information about processing jobs, see Export to Amazon S3 and
Export to Amazon SageMaker Feature Store.

When you create a job you must specify an IAM role that has permissions to create the job. By
default, the IAM role that you use to access Data Wrangler is the SageMakerExecutionRole.

Export 2312

Amazon SageMaker Developer Guide

The following permissions allow Data Wrangler to access EventBridge and allow EventBridge to run
processing jobs:

• Add the following AWS Managed policy to the Amazon SageMaker Studio Classic execution role
that provides Data Wrangler with permissions to use EventBridge:

arn:aws:iam::aws:policy/AmazonEventBridgeFullAccess

For more information about the policy, see AWS managed policies for EventBridge.

• Add the following policy to the IAM role that you specify when you create a job in Data Wrangler:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sagemaker:StartPipelineExecution",
 "Resource": "arn:aws:sagemaker:Region:AWS-account-id:pipeline/data-
wrangler-*"
 }
]
}

If you're using the default IAM role, you add the preceding policy to the Amazon SageMaker
Studio Classic execution role.

Add the following trust policy to the role to allow EventBridge to assume it.

{
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
}

Export 2313

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-use-identity-based.html#eb-full-access-policy

Amazon SageMaker Developer Guide

Important

When you create a schedule, Data Wrangler creates an eventRule in EventBridge. You
incur charges for both the event rules that you create and the instances used to run the
processing job.
For information about EventBridge pricing, see Amazon EventBridge pricing. For
information about processing job pricing, see Amazon SageMaker Pricing.

You can set a schedule using one of the following methods:

• CRON expressions

Note

Data Wrangler doesn't support the following expressions:

• LW#

• Abbreviations for days

• Abbreviations for months

• RATE expressions

• Recurring – Set an hourly or daily interval to run the job.

• Specific time – Set specific days and times to run the job.

The following sections provide procedures on creating jobs.

CRON

Use the following procedure to create a schedule with a CRON expression.

To specify a schedule with a CRON expression, do the following.

1. Open your Data Wrangler flow.

2. Choose Create job.

Export 2314

https://aws.amazon.com/eventbridge/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html#eb-rate-expressions

Amazon SageMaker Developer Guide

3. (Optional) For Output KMS key, specify an AWS KMS key to configure the output of the
job.

4. Choose Next, 2. Configure job.

5. Select Associate Schedules.

6. Choose Create a new schedule.

7. For Schedule Name, specify the name of the schedule.

8. For Run Frequency, choose CRON.

9. Specify a valid CRON expression.

10. Choose Create.

11. (Optional) Choose Add another schedule to run the job on an additional schedule.

Note

You can associate a maximum of two schedules. The schedules are independent and
don't affect each other unless the times overlap.

12. Choose one of the following:

• Schedule and run now – Data Wrangler the job runs immediately and subsequently runs
on the schedules.

• Schedule only – Data Wrangler the job only runs on the schedules that you specify.

13. Choose Run

RATE

Use the following procedure to create a schedule with a RATE expression.

To specify a schedule with a RATE expression, do the following.

1. Open your Data Wrangler flow.

2. Choose Create job.

3. (Optional) For Output KMS key, specify an AWS KMS key to configure the output of the
job.

4. Choose Next, 2. Configure job.

5. Select Associate Schedules.

Export 2315

Amazon SageMaker Developer Guide

6. Choose Create a new schedule.

7. For Schedule Name, specify the name of the schedule.

8. For Run Frequency, choose Rate.

9. For Value, specify an integer.

10. For Unit, select one of the following:

• Minutes

• Hours

• Days

11. Choose Create.

12. (Optional) Choose Add another schedule to run the job on an additional schedule.

Note

You can associate a maximum of two schedules. The schedules are independent and
don't affect each other unless the times overlap.

13. Choose one of the following:

• Schedule and run now – Data Wrangler the job runs immediately and subsequently runs
on the schedules.

• Schedule only – Data Wrangler the job only runs on the schedules that you specify.

14. Choose Run

Recurring

Use the following procedure to create a schedule that runs a job on a recurring basis.

To specify a schedule with a CRON expression, do the following.

1. Open your Data Wrangler flow.

2. Choose Create job.

3. (Optional) For Output KMS key, specify an AWS KMS key to configure the output of the
job.

4. Choose Next, 2. Configure job.

5. Select Associate Schedules.

Export 2316

Amazon SageMaker Developer Guide

6. Choose Create a new schedule.

7. For Schedule Name, specify the name of the schedule.

8. For Run Frequency, make sure Recurring is selected by default.

9. For Every x hours, specify the hourly frequency that the job runs during the day. Valid
values are integers in the inclusive range of 1 and 23.

10. For On days, select one of the following options:

• Every Day

• Weekends

• Weekdays

• Select Days

• (Optional) If you've selected Select Days, choose the days of the week to run the job.

Note

The schedule resets every day. If you schedule a job to run every five hours, it runs
at the following times during the day:

• 00:00

• 05:00

• 10:00

• 15:00

• 20:00

11. Choose Create.

12. (Optional) Choose Add another schedule to run the job on an additional schedule.

Note

You can associate a maximum of two schedules. The schedules are independent and
don't affect each other unless the times overlap.

13. Choose one of the following:
Export 2317

Amazon SageMaker Developer Guide

• Schedule and run now – Data Wrangler the job runs immediately and subsequently runs
on the schedules.

• Schedule only – Data Wrangler the job only runs on the schedules that you specify.

14. Choose Run

Specific time

Use the following procedure to create a schedule that runs a job at specific times.

To specify a schedule with a CRON expression, do the following.

1. Open your Data Wrangler flow.

2. Choose Create job.

3. (Optional) For Output KMS key, specify an AWS KMS key to configure the output of the
job.

4. Choose Next, 2. Configure job.

5. Select Associate Schedules.

6. Choose Create a new schedule.

7. For Schedule Name, specify the name of the schedule.

8. Choose Create.

9. (Optional) Choose Add another schedule to run the job on an additional schedule.

Note

You can associate a maximum of two schedules. The schedules are independent and
don't affect each other unless the times overlap.

10. Choose one of the following:

• Schedule and run now – Data Wrangler the job runs immediately and subsequently runs
on the schedules.

• Schedule only – Data Wrangler the job only runs on the schedules that you specify.

11. Choose Run

Export 2318

Amazon SageMaker Developer Guide

You can use Amazon SageMaker Studio Classic view the jobs that are scheduled to run. Your
processing jobs run within SageMaker Pipelines. Each processing job has its own pipeline. It runs
as a processing step within the pipeline. You can view the schedules that you've created within a
pipeline. For information about viewing a pipeline, see View a Pipeline.

Use the following procedure to view the jobs that you've scheduled.

To view the jobs you've scheduled, do the following.

1. Open Amazon SageMaker Studio Classic.

2. Open SageMaker Pipelines

3. View the pipelines for the jobs that you've created.

The pipeline running the job uses the job name as a prefix. For example, if you've created
a job named housing-data-feature-enginnering, the name of the pipeline is data-
wrangler-housing-data-feature-engineering.

4. Choose the pipeline containing your job.

5. View the status of the pipelines. Pipelines with a Status of Succeeded have run the processing
job successfully.

To stop the processing job from running, do the following:

To stop a processing job from running, delete the event rule that specifies the schedule. Deleting
an event rule stops all the jobs associated with the schedule from running. For information about
deleting a rule, see Disabling or deleting an Amazon EventBridge rule.

You can stop and delete the pipelines associated with the schedules as well. For information about
stopping a pipeline, see StopPipelineExecution. For information about deleting a pipeline, see
DeletePipeline.

Use an Interactive Data Preparation Widget in an Amazon SageMaker
Studio Classic Notebook to Get Data Insights

Use the Data Wrangler data preparation widget to interact with your data, get visualizations,
explore actionable insights, and fix data quality issues.

Use Data Preparation in a Studio Classic Notebook to Get Data Insights 2319

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-delete-rule.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeletePipeline.html#API_DeletePipeline_RequestSyntax

Amazon SageMaker Developer Guide

You can access the data preparation widget from an Amazon SageMaker Studio Classic notebook.
For each column, the widget creates a visualization that helps you better understand its
distribution. If a column has data quality issues, a warning appears in its header.

To see the data quality issues, select the column header showing the warning. You can use the
information that you get from the insights and the visualizations to apply the widget's built-in
transformations to help you fix the issues.

For example, the widget might detect that you have a column that only has one unique value and
show you a warning. The warning provides the option to drop the column from the dataset.

Getting started with running the widget

Use the following information to help you get started with running a notebook.

Open a notebook in Amazon SageMaker Studio Classic. For information about opening a notebook,
see Create or Open an Amazon SageMaker Studio Classic Notebook.

Important

To run the widget, the notebook must use one of the following images:

• Python 3 (Data Science) with Python 3.7

• Python 3 (Data Science 2.0) with Python 3.8

• Python 3 (Data Science 3.0) with Python 3.10

• SparkAnalytics 1.0

• SparkAnalytics 2.0

For more information about images, see Available Amazon SageMaker Images.

Use the following code to import the data preparation widget and pandas. The widget uses pandas
dataframes to analyze your data.

import pandas as pd
import sagemaker_datawrangler

The following example code loads a file into the dataframe called df.

Use Data Preparation in a Studio Classic Notebook to Get Data Insights 2320

Amazon SageMaker Developer Guide

df = pd.read_csv("example-dataset.csv")

You can use a dataset in any format that you can load as a pandas dataframe object. For more
information about pandas formats, see IO tools (text, CSV, HDF5, …).

The following cell runs the df variable to start the widget.

df

The top of the dataframe has the following options:

• View the Pandas table – Switches between the interactive visualization and a pandas table.

• Use all of the rows in your dataset to compute the insights. Using the entire dataset might
increase the time it takes to generate the insights. – If you don't select the option, Data
Wrangler computes the insights for the first 10,000 rows of the dataset.

The dataframe shows the first 1000 rows of the dataset. Each column header has a stacked bar
chart that shows the column's characteristics. It shows the proportion of valid values, invalid
values, and missing values. You can hover over the different portions of the stacked bar chart to
get the calculated percentages.

Each column has a visualization in the header. The following shows the types of visualizations the
columns can have:

• Categorical – Bar chart

• Numeric – Histogram

• Datetime – Bar chart

• Text – Bar chart

For each visualization, the data preparation widget highlights outliers in orange.

When you choose a column, it opens a side panel. The side panel shows you the Insights tab. The
pane provides a count for the following types of values:

• Invalid values – Values whose type doesn’t match the column type.

• Missing values – Values that are missing, such as NaN or None.

• Valid values – Values that are neither missing nor invalid.

Use Data Preparation in a Studio Classic Notebook to Get Data Insights 2321

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Amazon SageMaker Developer Guide

For numeric columns, the Insights tab shows the following summary statistics:

• Minimum – The smallest value.

• Maximum – The largest value.

• Mean – The mean of the values.

• Mode – The value that appears most frequently.

• Standard deviation – The standard deviation of the values.

For categorical columns, the Insights tab shows the following summary statistics:

• Unique values – The number of unique values in the column.

• Top – The value that appears most frequently.

The columns that have warning icons in their headers have data quality issues. Choosing a column
opens a Data quality tab that you can use to find transforms to help you fix the issue. A warning
has one of the following severity levels:

• Low – Issues that might not affect your analysis, but can be useful to fix.

• Medium – Issues that are likely to affect your analysis, but are likely not critical to fix.

• High – Severe issues that we strongly recommend fixing.

Note

The widget sorts the column to show the values that have data quality issues at the top
of the dataframe. It also highlights the values that are causing the issues. The color of the
highlighting corresponds to the severity level.

Under SUGGESTED TRANSFORMS, you can choose a transform to fix the data quality issue. The
widget can offer multiple transforms that can fix the issue. It can offer recommendations for the
transforms that are best suited to the problem. You can move your cursor over the transform to get
more information about it.

To apply a transform to the dataset, choose Apply and export code. The transform modifies the
dataset and updates the visualization with modified values. The code for the transform appears in

Use Data Preparation in a Studio Classic Notebook to Get Data Insights 2322

Amazon SageMaker Developer Guide

the following cell of the notebook. If you apply additional transforms to the dataset, the widget
appends the transforms to the cell. You can use the code that the widget generates to do the
following:

• Customize it to better fit your needs.

• Use it in your own workflows.

You can reproduce all the transforms you've made by rerunning all of the cells in the notebook.

The widget can provide insights and warnings for the target column. The target column is the
column that you're trying to predict. Use the following procedure to get target column insights.

To get target column insights, do the following.

1. Choose the column that you're using as the target column.

2. Choose Select as target column.

3. Choose the problem type. The widget's insights and warnings are tailored to the problem
types. The following are the problem types:

• Classification – The target column has categorical data.

• Regression – The target column has numeric data.

4. Choose Run.

5. (Optional) Under Target Column Insights, choose one of the suggested transforms.

Reference for the insights and transforms in the widget

For feature columns (columns that aren't the target column), you can get the following insights to
warn you about issues with your dataset.

• Missing values – The column has missing values such as None, NaN (not a number), or NaT (not
a timestamp). Many machine learning algorithms don’t support missing values in the input data.
Filling them in or dropping the rows with missing data is therefore a crucial data preparation
step. If you see the missing values warning, you can use one of the following transforms to
correct the issue.

• Drop missing – Drops rows with missing values. We recommend dropping rows when
the percentage of rows with missing data is small and imputing the missing values isn't
appropriate.

Use Data Preparation in a Studio Classic Notebook to Get Data Insights 2323

Amazon SageMaker Developer Guide

• Replace with new value – Replaces textual missing values with Other. You can change Other
to a different value in the output code. Replaces numeric missing values with 0.

• Replace with mean – Replaces missing values with the mean of the column.

• Replace with median – Replaces missing values with the median of the column.

• Drop column – Drops the column with missing values from the dataset. We recommend
dropping the entire column when there's a high percentage of rows with missing data.

• Disguised missing values – The column has disguised missing values. A disguised missing value
is a value that isn't explicitly encoded as a missing value. For example, instead of using a NaN
to indicate a missing value, the value could be Placeholder. You can use one of the following
transforms to handle the missing values:

• Drop missing – Drops rows with missing values

• Replace with new value – Replaces textual missing values with Other. You can change Other
to a different value in the output code. Replaces numeric missing values with 0.

• Constant column – The column only has one value. It therefore has no predictive power. We
strongly recommend using the Drop column transform to drop the column from the dataset.

• ID column – The column has no repeating values. All of the values in the column are unique.
They might be either IDs or database keys. Without additional information, the column has no
predictive power. We strongly recommend using the Drop column transform to drop the column
from the dataset.

• High cardinality – The column has a high percentage of unique values. High cardinality limits
the predictive power of categorical columns. Examine the importance of the column in your
analysis and consider using the Drop column transform to drop it.

For the target column, you can get the following insights to warn you about issues with your
dataset. You can use the suggested transformation provided with the warning to correct the issue.

• Mixed data types in target (Regression) – There are some non-numeric values in the target
column. There might be data entry errors. We recommend removing the rows that have the
values that can't be converted.

• Frequent label – Certain values in the target column appear more frequently than what would
be normal in the context of regression. There might be an error in data collection or processing.
A frequently appearing category might indicate that either the value is used as a default value
or that it’s a placeholder for missing values. We recommend using the Replace with new value
transform to replace the missing values with Other.

Use Data Preparation in a Studio Classic Notebook to Get Data Insights 2324

Amazon SageMaker Developer Guide

• Too few instances per class – The target column has categories that appear rarely. Some of the
categories don't have enough rows for the target column to be useful. You can use one of the
following transforms:

• Drop rare target – Drops unique values with fewer than ten observations. For example, drops
the value cat if it appears nine times in the column.

• Replace rare target – Replaces categories that appear rarely in the dataset with the value
Other.

• Classes too imbalanced (multi-class classification) – There are categories in the dataset that
appear much more frequently than the other categories. The class imbalance might affect
prediction accuracy. For the most accurate predictions possible, we recommend updating the
dataset with rows that have the categories that currently appear less frequently.

• Large amount of classes/too many classes – There's a large number of classes in the target
column. Having many classes might result in longer training times or poor predictive quality. We
recommend doing one of the following:

• Grouping some of the categories into their own category. For example, if six categories are
closely related, we recommend using a single category for them.

• Using an ML algorithm that's resilient to multiple categories.

Security and Permissions

When you query data from Athena or Amazon Redshift, the queried dataset is automatically
stored in the default SageMaker S3 bucket for the AWS Region in which you are using Studio
Classic. Additionally, when you export a Jupyter Notebook from Amazon SageMaker Data Wrangler
and run it, your data flows, or .flow files, are saved to the same default bucket, under the prefix
data_wrangler_flows.

For high-level security needs, you can configure a bucket policy that restricts the AWS roles that
have access to this default SageMaker S3 bucket. Use the following section to add this type
of policy to an S3 bucket. To follow the instructions on this page, use the AWS Command Line
Interface (AWS CLI). To learn how, see Configuring the AWS CLI in the IAM User Guide.

Additionally, you need to grant each IAM role that uses Data Wrangler permissions to access
required resources. If you do not require granular permissions for the IAM role you use to access
Data Wrangler, you can add the IAM managed policy, AmazonSageMakerFullAccess, to an IAM
role that you use to create your Studio Classic user. This policy grants you full permission to use

Security and Permissions 2325

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

Data Wrangler. If you require more granular permissions, refer to the section, Grant an IAM Role
Permission to Use Data Wrangler.

Add a Bucket Policy To Restrict Access to Datasets Imported to Data Wrangler

You can add a policy to the S3 bucket that contains your Data Wrangler resources using an Amazon
S3 bucket policy. Resources that Data Wrangler uploads to your default SageMaker S3 bucket in
the AWS Region you are using Studio Classic in include the following:

• Queried Amazon Redshift results. These are stored under the redshift/ prefix.

• Queried Athena results. These are stored under the athena/ prefix.

• The .flow files uploaded to Amazon S3 when you run an exported Jupyter Notebook Data
Wrangler produces. These are stored under the data_wrangler_flows/ prefix.

Use the following procedure to create an S3 bucket policy that you can add to restrict IAM role
access to that bucket. To learn how to add a policy to an S3 bucket, see How do I add an S3 Bucket
policy?.

To set up a bucket policy on the S3 bucket that stores your Data Wrangler resources:

1. Configure one or more IAM roles that you want to be able to access Data Wrangler.

2. Open a command prompt or shell. For each role that you create, replace role-name with the
name of the role and run the following:

$ aws iam get-role --role-name role-name

In the response, you see a RoleId string which begins with AROA. Copy this string.

3. Add the following policy to the SageMaker default bucket in the AWS Region in which you are
using Data Wrangler. Replace region with the AWS Region in which the bucket is located, and
account-id with your AWS account ID. Replace userIds starting with AROAEXAMPLEID with
the IDs of an AWS roles to which you want to grant permission to use Data Wrangler.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": "*",

Security and Permissions 2326

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html

Amazon SageMaker Developer Guide

 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::sagemaker-region-account-id/data_wrangler_flows/",
 "arn:aws:s3:::sagemaker-region-account-id/data_wrangler_flows/*",
 "arn:aws:s3:::sagemaker-region-account-id/athena",
 "arn:aws:s3:::sagemaker-region-account-id/athena/*",
 "arn:aws:s3:::sagemaker-region-account-id/redshift",
 "arn:aws:s3:::sagemaker-region-account-id/redshift/*"

],
 "Condition": {
 "StringNotLike": {
 "aws:userId": [
 "AROAEXAMPLEID_1:*",
 "AROAEXAMPLEID_2:*"
]
 }
 }
 }
]
}

Create an Allowlist for Data Wrangler

Whenever a user starts running Data Wrangler from the Amazon SageMaker Studio Classic user
interface, they make call to the SageMaker application programming interface (API) to create a
Data Wrangler application.

Your organization might not provide your users with permissions to make those API calls by
default. To provide permissions, you must create and attach a policy to the user's IAM roles using
the following policy template: Data Wrangler Allow List Example.

Note

The preceding policy example only gives your users access to the Data Wrangler
application.

For information about creating a policy, see Creating policies on the JSON tab. When you're
creating a policy, copy and paste the JSON policy from Data Wrangler Allow List Example in the
JSON tab.

Security and Permissions 2327

https://s3.us-west-2.amazonaws.com/amazon-sagemaker-data-wrangler-documentation-artifacts/DataWranglerAllowListExample.txt
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://s3.us-west-2.amazonaws.com/amazon-sagemaker-data-wrangler-documentation-artifacts/DataWranglerAllowListExample.txt

Amazon SageMaker Developer Guide

Important

Delete any IAM policies that prevent users from running the following operations:

• CreateApp

• DescribeApp

If you don't delete the policies, your users could still be affected by them.

After you've creating the policy using the template, attach it to the IAM roles of your users. For
information about attaching a policy, see Adding IAM identity permissions (console).

Grant an IAM Role Permission to Use Data Wrangler

You can grant an IAM role permission to use Data Wrangler with the general IAM managed policy,
AmazonSageMakerFullAccess. This is a general policy that includes permissions required to
use all SageMaker services. This policy grants an IAM role full access to Data Wrangler. You should
be aware of the following when using AmazonSageMakerFullAccess to grant access to Data
Wrangler:

• If you import data from Amazon Redshift, the Database User name must have the prefix
sagemaker_access.

• This managed policy only grants permission to access buckets with one of the following in the
name: SageMaker, SageMaker, sagemaker, or aws-glue. If want to use Data Wrangler to
import from an S3 bucket without these phrases in the name, refer to the last section on this
page to learn how to grant permission to an IAM entity to access your S3 buckets.

If you have high-security needs, you can attach the policies in this section to an IAM entity to grant
permissions required to use Data Wrangler.

If you have datasets in Amazon Redshift or Athena that an IAM role needs to import from Data
Wrangler, you must add a policy to that entity to access these resources. The following policies
are the most restrictive policies you can use to give an IAM role permission to import data from
Amazon Redshift and Athena.

To learn how to attach a custom policy to an IAM role, refer to Managing IAM policies in the IAM
User Guide.

Security and Permissions 2328

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateApp.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeApp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html#create-managed-policy-console

Amazon SageMaker Developer Guide

Policy example to grant access to an Athena dataset import

The following policy assumes that the IAM role has permission to access the underlying S3 bucket
where data is stored through a separate IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "athena:ListDataCatalogs",
 "athena:ListDatabases",
 "athena:ListTableMetadata",
 "athena:GetQueryExecution",
 "athena:GetQueryResults",
 "athena:StartQueryExecution",
 "athena:StopQueryExecution"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateTable"
],
 "Resource": [
 "arn:aws:glue:*:*:table/*/sagemaker_tmp_*",
 "arn:aws:glue:*:*:table/sagemaker_featurestore/*",
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:DeleteTable"
],
 "Resource": [
 "arn:aws:glue:*:*:table/*/sagemaker_tmp_*",
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/*"

Security and Permissions 2329

Amazon SageMaker Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabases",
 "glue:GetTable",
 "glue:GetTables"
],
 "Resource": [
 "arn:aws:glue:*:*:table/*",
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase"
],
 "Resource": [
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/sagemaker_featurestore",
 "arn:aws:glue:*:*:database/sagemaker_processing",
 "arn:aws:glue:*:*:database/default",
 "arn:aws:glue:*:*:database/sagemaker_data_wrangler"
]
 }
]
}

Policy example to grant access to an Amazon Redshift dataset import

The following policy grants permission to set up an Amazon Redshift connection to Data Wrangler
using database users that have the prefix sagemaker_access in the name. To grant permission
to connect using additional database users, add additional entries under "Resources" in the
following policy. The following policy assumes that the IAM role has permission to access the
underlying S3 bucket where data is stored through a separate IAM policy, if applicable.

{
 "Version": "2012-10-17",
 "Statement": [

Security and Permissions 2330

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "redshift-data:ExecuteStatement",
 "redshift-data:DescribeStatement",
 "redshift-data:CancelStatement",
 "redshift-data:GetStatementResult",
 "redshift-data:ListSchemas",
 "redshift-data:ListTables"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "redshift:GetClusterCredentials"
],
 "Resource": [
 "arn:aws:redshift:*:*:dbuser:*/sagemaker_access*",
 "arn:aws:redshift:*:*:dbname:*"
]
 }
]
}

Policy to grant access to an S3 bucket

If your dataset is stored in Amazon S3, you can grant an IAM role permission to access this bucket
with a policy similar to the following. This example grants programmatic read-write access to the
bucket named test.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::test"]
 },
 {
 "Effect": "Allow",

Security and Permissions 2331

Amazon SageMaker Developer Guide

 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource": ["arn:aws:s3:::test/*"]
 }
]
}

To import data from Athena and Amazon Redshift, you must grant an IAM role permission to
access the following prefixes under the default Amazon S3 bucket in the AWS Region Data
Wrangler in which is being used: athena/, redshift/. If a default Amazon S3 bucket does not
already exist in the AWS Region, you must also give the IAM role permission to create a bucket in
this region.

Additionally, if you want the IAM role to be able to use the Amazon SageMaker Feature Store,
SageMaker Pipelines, and Data Wrangler job export options, you must grant access to the prefix
data_wrangler_flows/ in this bucket.

Data Wrangler uses the athena/ and redshift/ prefixes to store preview files and imported
datasets. To learn more, see Imported Data Storage.

Data Wrangler uses the data_wrangler_flows/ prefix to store .flow files when you run a Jupyter
Notebook exported from Data Wrangler. To learn more, see Export.

Use a policy similar to the following to grant the permissions described in the preceding
paragraphs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::sagemaker-region-account-id/data_wrangler_flows/",
 "arn:aws:s3:::sagemaker-region-account-id/data_wrangler_flows/*",
 "arn:aws:s3:::sagemaker-region-account-id/athena",

Security and Permissions 2332

Amazon SageMaker Developer Guide

 "arn:aws:s3:::sagemaker-region-account-id/athena/*",
 "arn:aws:s3:::sagemaker-region-account-id/redshift",
 "arn:aws:s3:::sagemaker-region-account-id/redshift/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::sagemaker-region-account-id"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

You can also access data in your Amazon S3 bucket from another AWS account by specifying the
Amazon S3 bucket URI. To do this, the IAM policy that grants access to the Amazon S3 bucket in
the other account should use a policy similar to the following example, where BucketFolder is
the specific directory in the user's bucket UserBucket. This policy should be added to the user
granting access to their bucket for another user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": "arn:aws:s3:::UserBucket/BucketFolder/*"
 },
 {

Security and Permissions 2333

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::UserBucket",
 "Condition": {
 "StringLike": {
 "s3:prefix": [
 "BucketFolder/*"
]
 }
 }
 }
]
}

The user that is accessing the bucket (not the bucket owner) must add a policy similar to the
following example to their user. Note that AccountX and TestUser below refers to the bucket
owner and their user respectively.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountX:user/TestUser"
 },
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::UserBucket/BucketFolder/*"
]
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountX:user/TestUser"
 },
 "Action": [

Security and Permissions 2334

Amazon SageMaker Developer Guide

 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::UserBucket"
]
 }
]
}

Policy example to grant access to use SageMaker Studio

Use a policy like to the following to create an IAM execution role that can be used to set up a
Studio Classic instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:DescribeDomain",
 "sagemaker:ListDomains",
 "sagemaker:DescribeUserProfile",
 "sagemaker:ListUserProfiles",
 "sagemaker:*App",
 "sagemaker:ListApps"
],
 "Resource": "*"
 }
]
}

Snowflake and Data Wrangler

All permissions for AWS resources are managed via your IAM role attached to your Studio Classic
instance. The Snowflake administrator manages Snowflake-specific permissions, as they can grant
granular permissions and privileges to each Snowflake user. This includes databases, schemas,
tables, warehouses, and storage integration objects. You must ensure that the correct permissions
are set up outside of Data Wrangler.

Security and Permissions 2335

Amazon SageMaker Developer Guide

Note that the Snowflake COPY INTO Amazon S3 command moves data from Snowflake to
Amazon S3 over the public internet by default, but data in transit is secured using SSL. Data at rest
in Amazon S3 is encrypted with SSE-KMS using the default AWS KMS key.

With respect to Snowflake credentials storage, Data Wrangler does not store customer credentials.
Data Wrangler uses Secrets Manager to store the credentials in a secret and rotates secrets as
part of a best practice security plan. The Snowflake or Studio Classic administrator needs to
ensure that the data scientist’s Studio Classic execution role is granted permission to perform
GetSecretValue on the secret storing the credentials. If already attached to the Studio Classic
execution role, the AmazonSageMakerFullAccess policy has the necessary permissions
to read secrets created by Data Wrangler and secrets created by following the naming and
tagging convention in the instructions above. Secrets that do not follow the conventions must be
separately granted access. We recommend using Secrets Manager to prevent sharing credentials
over unsecured channels; however, note that a logged-in user can retrieve the plain-text password
by launching a terminal or Python notebook in Studio Classic and then invoking API calls from the
Secrets Manager API.

Data Encryption with AWS KMS

Within Data Wrangler, you can decrypt encrypted files and add them to your Data Wrangler flow.
You can also encrypt the output of the transforms using either a default AWS KMS key or one that
you provide.

You can import files if they have the following:

• server-side encryption

• SSE-KMS as the encryption type

To decrypt the file and import to a Data Wrangler flow, you must add the SageMaker Studio Classic
user that you're using as a key user.

The following screenshot shows a Studio Classic user role added as a key user. See IAM Roles to
access users under the left panel to make this change.

Security and Permissions 2336

https://console.aws.amazon.com/iam/home#/roles

Amazon SageMaker Developer Guide

Amazon S3 customer managed key setup for Data Wrangler imported data storage

By default, Data Wrangler uses Amazon S3 buckets that have the following naming convention:
sagemaker-region-account number. For example, if your account number is 111122223333
and you are using Studio Classic in us-east-1, your imported datasets are stored with the following
naming convention: sagemaker-us-east-1-111122223333.

The following instructions explain how to set up a customer managed key for your default Amazon
S3 bucket.

1. To enable server-side encryption and setup a customer managed key for your default S3 bucket,
see Using KMS Encryption.

2. After following step 1, navigate to AWS KMS in your AWS Management Console. Find the
customer managed key you selected in step 1 of the previous step and add the Studio Classic
role as the key user. To do this, follow the instructions in Allows key users to use a customer
managed key.

Encrypting the Data That You Export

You can encrypt the data that you export using one of the following methods:

• Specifying that your Amazon S3 bucket has object use SSE-KMS encryption.

• Specifying an AWS KMS key to encrypt the data that you export from Data Wrangler.

On the Export data page, specify a value for the AWS KMS key ID or ARN.

For more information on using AWS KMS keys, see Protecting Data Using Server-Side Encryption
with AWS KMS keys Stored in AWSAWS Key Management Service (SSE-KMS) .

Amazon AppFlow Permissions

When you're performing a transfer, you must specify an IAM role that has permissions to perform
the transfer. You can use the same IAM role that has permissions to use Data Wrangler. By default,
the IAM role that you use to access Data Wrangler is the SageMakerExecutionRole.

The IAM role must have the following permissions:

• Permissions to Amazon AppFlow

• Permissions to the AWS Glue Data Catalog

Security and Permissions 2337

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Amazon SageMaker Developer Guide

• Permissions for AWS Glue to discover the data sources that are available

When you run a transfer, Amazon AppFlow stores metadata from the transfer in the AWS Glue Data
Catalog. Data Wrangler uses the metadata from the catalog to determine whether it's available for
you to query and import.

To add permissions to Amazon AppFlow, add the AmazonAppFlowFullAccess AWS managed
policy to the IAM role. For more information about adding policies, see Adding or removing IAM
identity permissions.

If you're transferring data to Amazon S3, you must also attach the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketTagging",
 "s3:ListBucketVersions",
 "s3:CreateBucket",
 "s3:ListBucket",
 "s3:GetBucketPolicy",
 "s3:PutEncryptionConfiguration",
 "s3:GetEncryptionConfiguration",
 "s3:PutBucketTagging",
 "s3:GetObjectTagging",
 "s3:GetBucketOwnershipControls",
 "s3:PutObjectTagging",
 "s3:DeleteObject",
 "s3:DeleteBucket",
 "s3:DeleteObjectTagging",
 "s3:GetBucketPublicAccessBlock",
 "s3:GetBucketPolicyStatus",
 "s3:PutBucketPublicAccessBlock",
 "s3:PutAccountPublicAccessBlock",
 "s3:ListAccessPoints",
 "s3:PutBucketOwnershipControls",
 "s3:PutObjectVersionTagging",
 "s3:DeleteObjectVersionTagging",

Security and Permissions 2338

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon SageMaker Developer Guide

 "s3:GetBucketVersioning",
 "s3:GetBucketAcl",
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAllMyBuckets",
 "s3:GetAnalyticsConfiguration",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

To add AWS Glue permissions, add the AWSGlueConsoleFullAccess managed policy to the
IAM role. For more information about AWS Glue permissions with Amazon AppFlow, see [link-to-
appflow-page].

Amazon AppFlow needs to access AWS Glue and Data Wrangler for you to import the data that
you've transferred. To grant Amazon AppFlow access, add the following trust policy to the IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root",
 "Service": [
 "appflow.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

To display the Amazon AppFlow data in Data Wrangler, add the following policy to the IAM role:

Security and Permissions 2339

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "glue:SearchTables",
 "Resource": [
 "arn:aws:glue:*:*:table/*/*",
 "arn:aws:glue:*:*:database/*",
 "arn:aws:glue:*:*:catalog"
]
 }
]
}

Using Lifecycle Configurations in Data Wrangler

You might have an Amazon EC2 instance that is configured to run Kernel Gateway applications, but
not the Data Wrangler application. Kernel Gateway applications provide access to the environment
and the kernels that you use to run Studio Classic notebooks and terminals. The Data Wrangler
application is the UI application that runs Data Wrangler. Amazon EC2 instances that aren't
Data Wrangler instances require a modification to their lifecycle configurations to run Data
Wrangler. Lifecycle configurations are shell scripts that automate the customization of your
Amazon SageMaker Studio Classic environment.

For more information about lifecycle configurations, see Use lifecycle configurations with Amazon
SageMaker Studio Classic.

The default lifecycle configuration for your instance doesn't support using Data Wrangler. You
can make the following modifications to the default configuration to use Data Wrangler with your
instance.

#!/bin/bash
set -eux
STATUS=$(
python3 -c "import sagemaker_dataprep"
echo $?
)
if ["$STATUS" -eq 0]; then
echo 'Instance is of Type Data Wrangler'
else

Security and Permissions 2340

Amazon SageMaker Developer Guide

echo 'Instance is not of Type Data Wrangler'

Replace this with the URL of your git repository
export REPOSITORY_URL="https://github.com/aws-samples/sagemaker-studio-lifecycle-
config-examples.git"

git -C /root clone $REPOSTIORY_URL

fi

You can save the script as lifecycle_configuration.sh.

You attach the lifecycle configuration to your Studio Classic domain or user profile. For more
information about creating and attaching a lifecycle configuration, see Create and associate a
lifecycle configuration.

The following instructions show you how to attach a lifecycle configuration to a Studio Classic
domain or user profile.

You might run into errors when you're creating or attaching a lifecycle configuration. For
information about debugging lifecycle configuration errors, KernelGateway app failure.

Release Notes

Data Wrangler is regularly updated with new features and bug fixes. To upgrade the version of
Data Wrangler you are using in Studio Classic, follow the instructions in Shut down and Update
Studio Classic Apps.

Release Notes

8/31/2023

New functionality:

You can now create a Data Quality and Insights report on your entire dataset. For more
information, see Get Insights On Data and Data Quality.

5/20/2023

New functionality:

Release Notes 2341

Amazon SageMaker Developer Guide

Release Notes

You can now import your data from Salesforce Data Cloud. For more information, see Import
data from Salesforce Data Cloud.

4/18/2023

New functionality:

You can now get your data in a format that Amazon Personalize can interpret. For more
information, see Map Columns for Amazon Personalize.

3/1/2023

New functionality:

You can now use Hive to import your data from Amazon EMR. For more information, see Import
data from Amazon EMR.

12/10/2022

New functionality:

You can now export your Data Wrangler flow to an inference endpoint. For more information,
see Export to an Inference Endpoint.

New functionality:

You can now use an interactive notebook widget for data preparation. For more information, see
Use an Interactive Data Preparation Widget in an Amazon SageMaker Studio Classic Notebook
to Get Data Insights.

New functionality:

You can now import data from SaaS platforms. For more information, see Import Data From
Software as a Service (SaaS) Platforms.

10/12/2022

New functionality:

Release Notes 2342

Amazon SageMaker Developer Guide

Release Notes

You can now reuse data flows for different data sets. For more information, see Reusing Data
Flows for Different Datasets.

10/05/2022

New functionality:

You can now use Principal Component Analysis (PCA) as a transform. For more information, see
Reduce Dimensionality within a Dataset.

10/05/2022

New functionality:

You can now refit parameters in your Data Wrangler flow. For more information, see Export.

10/03/2022

New functionality:

You can now deploy models from your Data Wrangler flow. For more information, see Automatic
ally Train Models on Your Data Flow.

9/20/2022

New functionality:

You can now set data retention periods in Athena. For more information, see Import data from
Athena.

6/9/2022

New functionality:

You can now use Amazon SageMaker Autopilot to train a model directly from your Data
Wrangler flow. For more information, see Automatically Train Models on Your Data Flow.

5/6/2022

New functionality:

Release Notes 2343

Amazon SageMaker Developer Guide

Release Notes

You can now use additional m5 and r5 instances. For more information, see Instances.

4/27/2022

New functionalities:

• You can now get a data quality report. For more information, see Get Insights On Data and
Data Quality

• You can now perform random sampling and stratified sampling. For more information, see
Sampling.

4/1/2022

New functionality:

You can now use Databricks as a data source. For more information, see Import data from
Databricks (JDBC).

2/2/2022

New functionalities:

• You can now export using destination nodes. For more information, see Export

• You can import ORC and JSON files. For more information about file types, see Import.

• Data Wrangler now supports using the SMOTE transform. For more information, see Balance
Data.

• Data Wrangler now supports similarity encoding for categorical data. For more information,
see Similarity encode.

• Data Wrangler now supports unnesting JSON data. For more information, see Unnest JSON
Data.

• Data Wrangler now supports expanding the values of an array into separate columns. For
more information, see Explode Array.

• Data Wrangler now supports reaching out to the service team when you're having issues. For
more information, see Troubleshoot.

Release Notes 2344

Amazon SageMaker Developer Guide

Release Notes

• Data Wrangler supports editing and deleting steps in your data flow. For more information,
see Delete a Step from Your Data Flow and Edit a Step in Your Data Wrangler Flow.

• You can now perform transformations on multiple columns. For more information, see
Transform Data.

• Data Wrangler now supports cost allocation tags. For more information, see Using Cost
Allocation Tags.

10/16/2021

New functionality:

Data Wrangler now supports Athena workgroups. For more information, see Import data from
Athena.

10/6/2021

New functionality:

Data Wrangler now supports transforming time series data. For more information, see
Transform Time Series.

7/15/2021

New functionalities:

• Snowflake and Data Wrangler is now supported. You can use Snowflake as a data source in
Data Wrangler.

• Added support for custom field delimiter in CSV. Now comma, colon, semicolon, pipe (|) and
Tab are supported.

• Now you can export results directly to Amazon S3.

• Added a few new multicollinearity analyzers: Variance Inflation Factors, Principal Component
Analysis and Lasso feature selection.

Enhancements:

• The analyze charts can no longer be could be packed with overlapping labels.

Release Notes 2345

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon SageMaker Developer Guide

Release Notes

Bug Fixes:

• One-hot encoder handles empty string gracefully.

• Fixed crashes that occured when a dataframe column name contained dots.

4/26/2021

Enhancements:

• Added support for distributed processing Jobs. You can use multiple instances when running a
processing job.

• Data Wrangler Processing job now automatically coalesces small outputs when estimated
result size is less than 1 gigabytes.

• Feature Store Notebook: Improved feature store ingestion performance

• Data Wrangler Processing jobs now use 1.x as the authoritative container tag for future
releases.

Bug Fixes:

• Fixed rendering issues for faceted histogram.

• Fixed Export to Processing Job to support vector type columns.

• Fixed Extract using regex operator to return the first captured group if one or more
exists in the regular expression or regex.

2/8/2021

New Functionalities:

• Data Wrangler Flows supports multiple instances.

• Updated Export to Data Wrangler Job Notebook to use SageMaker SDK 2.20.0.

• Updated Export to Pipeline Notebook to use SageMaker SDK 2.20.0.

• Updated Export to Pipeline Notebook to add XGBoost training example as an optional step.

Enhancements:

Release Notes 2346

Amazon SageMaker Developer Guide

Release Notes

• To improve performance, importing CSV files that contain multiple lines in a single field is no
longer supported.

Bug Fixes:

• Fixed type inference issue in Quick model.

• Fixed the bias metric bug in bias reports.

• Fixed the Featurize text transform to work with columns with missing values.

• Fixed Histogram and Scatter plot built-in visualizations to work with datasets that contain
array-like columns.

• Athena query now re-runs if the query execution ID has expired.

Troubleshoot

If an issue arises when using Amazon SageMaker Data Wrangler, we recommend you do the
following:

• If an error message is provided, read the message and resolve the issue it reports if possible.

• Make sure the IAM role of your Studio Classic user has the required permissions to perform the
action. For more information, see Security and Permissions.

• If the issue occurs when you are trying to import from another AWS service, such as Amazon
Redshift or Athena, make sure that you have configured the necessary permissions and resources
to perform the data import. For more information, see Import.

• If you're still having issues, choose Get help at the top right of your screen to reach out to the
Data Wrangler team. For more information, see the following images.

Troubleshoot 2347

Amazon SageMaker Developer Guide

Troubleshoot 2348

Amazon SageMaker Developer Guide

As a last resort, you can try restarting the kernel on which Data Wrangler is running.

1. Save and exit the .flow file for which you want to restart the kernel.

2. Select the Running Terminals and Kernels icon, as shown in the following image.

3. Select the Stop icon to the right of the .flow file for which you want to terminate the kernel, as
shown in the following image.

Troubleshoot 2349

Amazon SageMaker Developer Guide

4. Refresh the browser.

5. Reopen the .flow file on which you were working.

Troubleshooting issues with Amazon EMR

Use the following information to help you troubleshoot errors that might come up when you're
using Amazon EMR.

• Connection failure – If the connection fails with the following message The IP address of
the EMR cluster isn't private error message, your Amazon EMR cluster might not
have been launched in a private subnet. As a security best practice, Data Wrangler only supports
connecting to private Amazon EMR clusters. Choose a private EC2 subnet you launch an EMR
cluster.

• Connection hanging and timing out – The issue is most likely due to a network connectivity
issue. After you start connecting to the cluster, the screen doesn't refresh. After about 2 minutes,
you might see the following error JdbcAddConnectionError: An error occurred when
trying to connect to presto: xxx: Connect to xxx failed: Connection timed
out (Connection timed out) will display on top of the screen..

Troubleshoot 2350

Amazon SageMaker Developer Guide

The errors might have two root causes:

• The Amazon EMR and Amazon SageMaker Studio Classic are in different VPCs. We recommend
launching both Amazon EMR and Studio Classic in the same VPC. You can also use VPC
peering. For more information, see What is VPC peering?.

• The Amazon EMR master security group lacks the inbound traffic rule for the security group
of Amazon SageMaker Studio Classic on the port used for Presto. To resolve the issue, allow
inbound traffic on port 8889.

• Connection fails due to the connection type being misconfigured – You might see the
following error message: Data Wrangler couldn't create a connection to
{connection_source} successfully. Try connecting to {connection_source}
again. For more information, see Troubleshoot. If you’re still
experiencing issues, contact support.

Check the authentication method. The authentication method that you've specified in Data
Wrangler should match the authentication method that you're using on the cluster.

• You don't have HDFS permissions for LDAP authentication – Use the following guidance to
resolve the issue Set up HDFS Permissions using Linux Credentials. You can log into the cluster
using the following commands:

hdfs dfs -mkdir /user/USERNAME
hdfs dfs -chown USERNAME:USERNAME /user/USERNAME

• LDAP authentication missing connection key error – You might see the following error message:
Data Wrangler couldn't connect to EMR hive successfully. JDBC connection
is missing required connection key(s): PWD.

For LDAP authentication, you must specify both a username and a password. The JDBC URL
stored in Secrets Manager is missing property PWD.

• When you're troubleshooting the LDAP configuration: We recommend making sure that the
LDAP authenticator (LDAP server) is correctly configured to connect to the Amazon EMR cluster.
Use the ldapwhoami command to help you resolve the configuration issue. The following are
example commands that you can run:

• For LDAPS – ldapwhoami -x -H ldaps://ldap-server

• For LDAP – ldapwhoami -x -H ldap://ldap-server

Troubleshoot 2351

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/whitepapers/latest/teaching-big-data-skills-with-amazon-emr/set-up-hdfs-permissions-using-linux-credentials.html

Amazon SageMaker Developer Guide

Either command should return Anonymous if you've configured the authenticator successfully.

Troubleshooting with Salesforce

Lifecycle configuration error

When your user opens Studio Classic for the first time, they might get an error saying that there's
something wrong with their lifecycle configuration. Use Amazon CloudWatch to access the logs
written by your lifecycle configuration script. For more information about debugging lifecycle
configurations, see Debug lifecycle configurations.

If you aren't able to debug the error, you can create the configuration file manually. You must
create the file every time you delete or restart the Jupyter server. Use the following procedure to
create the file manually.

To create a configuration file

1. Navigate to Studio Classic.

2. Choose File, then New, then Terminal.

3. Create .sfgenie_identity_provider_oauth_config.

4. Open the file in a text editor.

5. Add a JSON object containing the Amazon Resource Name (ARN) of the Secrets Manager secret
to the file. You can use the following template to create the object.

{
 "secret_arn": "example-secret-ARN"
}

6. Save your changes to the file.

Unable to access Salesforce Data Cloud from the Data Wrangler flow

After your user chooses Salesforce Data Cloud from your Data Wrangler flow, they might get an
error indicating the prerequisites to set up the connection haven't been met. It might be caused by
following errors:

• The Salesforce secret in Secrets Manager hasn't been created.

Troubleshoot 2352

Amazon SageMaker Developer Guide

• The Salesforce secret in Secrets Manager has been created, but it's missing the Salesforce tag.

• The Salesforce secret in Secrets Manager has been created in the wrong AWS Region. For
example, your user won't be able to access the Salesforce Data Cloud in ca-central-1 because
you've created the secret in us-east-1. You can either replicate the secret to ca-central-1
or create a new secret with the same credentials in ca-central-1. For information about
replicating secrets, see Replicate an AWS Secrets Manager secret to other AWS Regions.

• The policy that your users are using to access Amazon SageMaker Studio Classic are missing
permissions for AWS Secrets Manager

• There's a typo in the Secrets Manager ARN of the JSON object that you've specified through your
lifecycle configuration.

• There's a typo in the Secrets Manager secret containing your Salesforce OAuth configuration

Blank page showing redirect_uri_mismatch

After your users choose Save and Connect, they might get redirected to a page that shows
redirect_uri_mismatch. The callback URI that you've registered in your Salesforce Connected
App settings is either missing or incorrect.

Use the following URL to check that your Studio Classic URL is correctly registered in your
Salesforce org's Connected App settings: https://EXAMPLE_SALESFORCE_ORG/lightning/
setup/NavigationMenus/home/. For more information about using the connected app settings,
navigate to the following URL: https://EXAMPLE_SALESFORCE_ORG/lightning/setup/
NavigationMenus/home/.

Note

It takes roughly ten minutes to propagate the URI within Salesforce's systems.

Shared spaces

Shared spaces doesn't currently work with the Salesforce Data Cloud integration. You can either
delete the shared spaces in the Amazon SageMaker domain that you intend to use, or you can use
another domain that doesn't have shared spaces set up.

Troubleshoot 2353

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create-manage-multi-region-secrets.html

Amazon SageMaker Developer Guide

OAuth Redirect Error

Your users should be able to import their data from the Salesforce Data Cloud after they choose
Connect. If they're running into an error, we recommend asking them to do the following:

• Tell them to be patient – When they get redirected back to Amazon SageMaker Studio Classic, it
can take up to a minute to complete the authentication process. While they're getting redirected,
we recommend telling them to avoid interacting with the browser. For example, they shouldn't
close the browser tab, switch to another tab, or interact with the Data Wrangler flow. Interacting
with the browser might remove the authorization code required to connect to the data cloud.

• Have your users reconnect to the data cloud – There are transient issues that can cause a
connection to the Salesforce Data Cloud to fail. Have your users create a new Data Wrangler flow
and try connecting to the Salesforce Data Cloud again.

• Make sure your users close all other tabs with Amazon SageMaker Studio Classic – Having Studio
Classic open in multiple tabs can cause the Salesforce Data Cloud connection to fail. Make sure
your users only have one Studio Classic tab open.

• Multiple users accessing Studio Classic at the same time – Only one user should access an
Amazon SageMaker domain at a time. If multiple users access the same domain, the connection
that a user is trying to create to the Salesforce Data Cloud might fail.

Updating both Data Wrangler and Studio Classic might also fix their error. For information about
updating Data Wrangler, see Update Data Wrangler. For information about updating Studio Classic,
see Shut down and Update SageMaker Studio Classic.

If none of the preceding troubleshooting steps work, you might find an error
message from Salesforce with a corresponding description embedded in the
Studio Classic URL. The following is an example of a message you could find:
error=invalid_client_id&error_description=client%20identifier%20invalid.

You can look at the error message in the URL and try to address the issues it presents. If the error
message or description is unclear, we recommend searching the Salesforce Knowledge Base. If
searching the knowledge base doesn't work, you can reach out to the Salesforce help desk for more
assistance.

Data Wrangler takes a long time to load

When your users are getting redirected back to Data Wrangler from the Salesforce Data Cloud, they
might experience long load times.

Troubleshoot 2354

Amazon SageMaker Developer Guide

If this is the user's first time using Data Wrangler or they've deleted the kernel, it might take about
5 minutes to provision the new Amazon EC2 instance to use Data Wrangler.

If this isn't the user's first time using Data Wrangler and they haven't deleted the kernel, you can
ask them to refresh the page or close as many browser tabs as possible.

If none of the preceding interventions work, have them set up a new connection to the Salesforce
Data Cloud.

User fails to export their data with an Invalid batch Id error

When your user exports the transformations that they've made to their Salesforce data, the
SageMaker processing job that Data Wrangler uses on the backend might fail. The Salesforce Data
Cloud might be temporarily unavailable or there could be a caching issue.

To address the issue, we recommend having your users go back to the step where they're importing
the data and changing the order of the columns that they're querying . For example, they can
change the following query:

SELECT col_A, col_B FROM table

To the following query:

SELECT col_B, col_A FROM table

After they've changed the order of the columns and made sure that the subsequent
transformations they've made are still valid, they can start exporting their data again.

Users can't export a very large dataset

If your users imported a very large dataset from the Salesforce Data Cloud, they might not be able
to export the transformations that they've made. A large dataset might have too many rows, or it
can result from a complex query.

We recommend having your users take the following actions:

• Simplifying their SQL query

Troubleshoot 2355

Amazon SageMaker Developer Guide

• Sampling their data

The following are some strategies that they can use to simplify their queries:

• Specify column names instead of using the * operator

• Finding a subset of the data that they'd like to import instead of using a larger subset

• Minimizing joins between very large datasets

They can use sampling to reduce the number of rows in their dataset. For information about
sampling methods, your users can refer to Sampling.

Users can't export data due to invalid refresh token

Data Wrangler uses a JDBC driver to integrate with the Salesforce Data Cloud. The method for
authentication is OAuth. For OAuth, the refresh token and the access token are two different pieces
of data that are used to authorize access to resources within your Salesforce Data Cloud.

The access token, or core token, is what allows you to access your Salesforce data and run queries
directly through Data Wrangler. It's short lived and designed to expire quickly. To maintain access
to your Salesforce data, Data Wrangler uses the refresh token to get a new access token from
Salesforce.

You might have set the refresh to expire too quickly to get a new access token for your users. You
might have to revisit your refresh token policy to make sure that it can accommodate queries that
take a long time to run for your users. For information about configuring your refresh token policy,
see https://EXAMPLE_SALESFORCE_ORG_URL/lightning/setup/ConnectedApplication/
home/.

Queries failing or tables not loading

Salesforce experiences service outages. Even if you’ve configured everything correctly, your users
might not be able to import their data for periods of time.

Service outages can happen for maintenance reasons. We recommend checking in the following
day to see if the issue has been resolved.

If you’re experiencing issues for more than a day, we recommend contacting Salesforce’s help desk
for further assistance. For information about contacting Salesforce, see How would you like to
contact Salesforce?

Troubleshoot 2356

https://www.salesforce.com/company/contact-us/
https://www.salesforce.com/company/contact-us/

Amazon SageMaker Developer Guide

OAUTH_APP_BLOCKED during Studio Classic redirect

When your user gets redirected back to Amazon SageMaker Studio Classic, they might notice the
query parameter error=OAUTH_APP_BLOCKED within the URL. They're might be experiencing a
transient issue that should resolve itself within a day.

It's possible that you've blocked their access to the Connected App as well. For information about
resolving the issue, see https://EXAMPLE_SALESFORCE_ORG_URL/lightning/setup/
ConnectedApplication/home/.

OAUTH_APP_DENIED during Studio Classic redirect

When your user gets redirected back to Amazon SageMaker Studio Classic, they might notice the
query parameter error=OAUTH_APP_ACCESS_DENIED within the URL. You haven't given their
profile type permissions to access the Connected App associated with Data Wrangler.

To resolve their access issue, navigate to https://EXAMPLE_SALESFORCE_ORG_URL/
lightning/setup/ManageUsers/home/ and check whether the user is assigned to the correct
profile.

Increase Amazon EC2 Instance Limit

You might see the following error message when you're using Data Wrangler: The following
instance type is not available: ml.m5.4xlarge. Try selecting a different
instance below.

The message can indicate that you need to select a different instance type, but it can also indicate
that you don't have enough Amazon EC2 instances to successfully run Data Wrangler on your
workflow. You can increase the number of instances by using the following procedure.

To increase the number of instances, do the following.

1. Open the AWS Management Console.

2. In the search bar, specify Services Quotas.

3. Choose Service Quotas.

4. Choose AWS services.

5. In the search bar, specify Amazon SageMaker.

6. Choose Amazon SageMaker.

Increase Amazon EC2 Instance Limit 2357

Amazon SageMaker Developer Guide

7. Under Service quotas, specify Studio KernelGateway Apps running on
ml.m5.4xlarge instance.

Note

ml.m5.4xlarge is the default instance type for Data Wrangler. You can use other
instance types and request quota increases for them. For more information, see
Instances.

8. Select Studio KernelGateway Apps running on ml.m5.4xlarge instance.

9. Choose Request quota increase.

10. For Change quota value, specify a value greater than Applied quota value.

11. Choose Request.

If your request is approved, AWS sends a notification to the email address associated with your
account. You can also check the status of your request by choosing Quota request history on the
Service Quotas page. Processed requests have a Status of Closed.

Update Data Wrangler

To update Data Wrangler to the latest release, first shut down the corresponding KernelGateway
app from the Amazon SageMaker Studio Classic control panel. After the KernelGateway app is shut
down, restart it by opening a new or existing Data Wrangler flow in Studio Classic. When you open
a new or existing Data Wrangler flow, the kernel that starts contains the latest version of Data
Wrangler.

Update your Studio Classic and Data Wrangler instance

1. Navigate to your SageMaker Console.

2. Choose SageMaker and then Studio Classic.

3. Choose your user name.

4. Under Apps, in the row displaying the App name, choose Delete app for the app that starts
with sagemaker-data-wrang, and for the JupyterServer app.

5. Choose Yes, delete app.

6. Type delete in the confirmation box.

7. Choose Delete.

Update Data Wrangler 2358

https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

8. Reopen your Studio Classic instance. When you begin to create a Data Wrangler flow, your
instance now uses the latest version of Data Wrangler.

Alternatively, if you are using a Data Wrangler application version that is not the latest version, and
you have an existing Data Wrangler flow open, you are prompted to update your Data Wrangler
application version in the Studio Classic UI. The following screenshot shows this prompt.

Important

This updates the Data Wrangler kernel gateway app only. You still need to shut down the
JupyterServer app in your user account. To do this, follow the preceding steps.

You can also choose Remind me later, in which case an Update button appears in the top-right
corner of the screen.

Update Data Wrangler 2359

Amazon SageMaker Developer Guide

Shut Down Data Wrangler

When you are not using Data Wrangler, it is important to shut down the instance on which it runs
to avoid incurring additional fees.

To avoid losing work, save your data flow before shutting Data Wrangler down. To save your data
flow in Studio Classic, choose File and then choose Save Data Wrangler Flow. Data Wrangler
automatically saves your data flow every 60 seconds.

To shut down the Data Wrangler instance in Studio Classic

1. In Studio Classic, select the Running Instances and Kernels icon (

).

2. Under RUNNING APPS is the sagemaker-data-wrangler-1.0 app. Select the shutdown icon
next to this app (

).

Shut Down Data Wrangler 2360

Amazon SageMaker Developer Guide

Data Wrangler runs on an ml.m5.4xlarge instance. This instance disappears from RUNNING
INSTANCES when you shut down the Data Wrangler app.

Important

If you open Data Wrangler again, an Amazon EC2 instance starts running the application
and you will be charged for the compute. In addition to compute, you are also charged
for the storage that you use. For example, you're charged for any Amazon S3 buckets that
you're using with Data Wrangler.
If you find that you're still getting charged for Data Wrangler after shutting down your
applications, there's a Jupyter extension that you can use to automatically shut down idle
sessions. For information about the extension, see SageMaker-Studio-Autoshutdown-
Extension.

After you shut down the Data Wrangler app, it has to restart the next time you open a Data
Wrangler flow file. This can take a few minutes.

Prepare Data at Scale with Studio Classic using Amazon EMR or
AWS Glue

Amazon SageMaker Studio Classic provides data scientists, machine learning (ML) engineers, and
general practitioners with tools to perform data analytics and data preparation at scale. Analyzing,
transforming, and preparing large amounts of data is a foundational step of any data science and
ML workflow. SageMaker Studio Classic comes with built-in integration of Amazon EMR and AWS
Glue Interactive Sessions to handle your large-scale interactive data preparation and machine
learning workflows, all within your Studio Classic notebook.

Amazon EMR is a managed big data platform with resources to help you run petabyte-scale
distributed data processing jobs using open-source analytics frameworks on AWS such as Apache
Spark, Apache Hive, Presto, HBase, Flink, and Hudi among others. Data engineers and data
scientists use Amazon EMR for a wide variety of use cases, including big data analytics, what-
if analyses, real-time analytics, and data preparation for machine learning. With Studio Classic
integration with Amazon EMR, you can create, browse, discover, and connect to Amazon EMR
clusters without leaving your Studio Classic notebook. You can also monitor and debug your Spark
workloads with one-click access to the Spark UI from within the notebook. You should consider

Prepare Data at Scale with Studio Classic using Amazon EMR or AWS Glue 2361

https://github.com/aws-samples/sagemaker-studio-auto-shutdown-extension
https://github.com/aws-samples/sagemaker-studio-auto-shutdown-extension
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://aws.amazon.com/emr/features/spark
https://aws.amazon.com/emr/features/spark
https://aws.amazon.com/emr/features/hive
https://aws.amazon.com/emr/features/presto

Amazon SageMaker Developer Guide

Amazon EMR for your data preparation workloads if you want maximum control over hardware and
software versions, containers, and big data processing applications.

AWS Glue Interactive Sessions is a serverless service that you can enlist to collect, transform,
cleanse, and prepare data for storage in your data lakes and data pipelines. AWS Glue Interactive
Sessions provides an on-demand, serverless Apache Spark runtime environment that you can
initialize in seconds on a dedicated Data Processing Unit (DPU) without having to worry about
provisioning and managing complex compute cluster infrastructure. After initialization, you
can quickly browse the AWS Glue data catalog, run large queries, access data governed by AWS
Lake Formation, and interactively analyze and prepare data using Spark, right in your Studio
Classic notebook. You can then use the prepared data to train, tune, and deploy models using the
purpose-built ML tools within SageMaker Studio Classic. You should consider AWS Glue Interactive
Sessions for your data preparation workloads when you want a serverless Spark service with
moderate control of configurability and flexibility.

Content

• Prepare data using Amazon EMR

• Prepare data using AWS Glue Interactive Sessions

Prepare data using Amazon EMR

Amazon SageMaker Studio Classic comes with built-in integration of Amazon EMR, with which data
scientists and data engineers can perform petabyte-scale interactive data preparation and machine
learning (ML) right from their Studio Classic notebook. Within a notebook, they can discover and
connect to existing Amazon EMR clusters, then interactively explore, visualize, and prepare large-
scale data for machine learning using Apache Spark, Apache Hive, Presto. Additionally, users can
access Spark UI with a single click to monitor their Spark jobs from their Studio Classic notebooks.

Administrators can use the AWS Service Catalog to define AWS CloudFormation templates
of Amazon EMR clusters accessible to Studio Classic users. Data scientists can then choose a
predefined template to self-provision an Amazon EMR cluster directly from Amazon SageMaker
Studio Classic notebooks. Administrators can further parameterize the templates to let users
choose aspects of the cluster to match their workloads within predefined values. For example, a
data scientist or data engineer may want to specify the number of core nodes of the cluster up to a
predetermined maximum value, or select the instance type of a node from a dropdown menu.

Prepare data using Amazon EMR 2362

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-overview.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://aws.amazon.com/emr/features/spark
https://aws.amazon.com/emr/features/hive
https://aws.amazon.com/emr/features/presto
https://docs.aws.amazon.com/servicecatalog/latest/userguide/end-user-console.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

Amazon SageMaker Developer Guide

• If you are an administrator, make sure that you have enabled communication between Amazon
SageMaker Studio Classic notebooks and Amazon EMR clusters. For instructions, see the
Configure networking (for administrators) section. Once this communication is enabled, you have
the option to:

• Define cluster templates in AWS Service Catalog and ensure the availability of these templates
through Studio Classic's notebooks: Configure Amazon EMR templates in AWS Service Catalog
(for administrators).

• Configure the discoverability of existing Amazon EMR clusters directly from Studio Classic's
notebooks: Configure the discoverability of Amazon EMR clusters (for administrators).

• If you are a data scientist or data engineer looking to self-provision an Amazon EMR cluster, see
Launch an Amazon EMR cluster from Studio Classic.

• If you are a data scientist or data engineer looking to discover and connect to existing Amazon
EMR clusters from Studio Classic, see Use Amazon EMR clusters from Studio Classic notebooks.

List of topics

• Configure networking (for administrators)

• Create an Amazon EMR cluster from Studio Classic notebooks

• Use Amazon EMR clusters from Studio Classic notebooks

• Access Spark UI from Studio Classic

• Walkthroughs and whitepapers

• Additional Configuration for cross accounts use cases (for administrators)

• Troubleshooting

Configure networking (for administrators)

This section provides information about how administrators can configure their network to allow
communication between Amazon SageMaker Studio Classic notebooks and an Amazon EMR
cluster.

The networking instructions vary based on whether SageMaker Studio Classic and Amazon EMR are
deployed within a private Amazon Virtual Private Cloud (VPC) or communicate over the internet.

By default, SageMaker Studio Classic runs in an AWS managed VPC with internet access. When
using an internet connection, Studio Classic accesses AWS resources, such as Amazon S3 buckets,

Prepare data using Amazon EMR 2363

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html#studio-notebooks-and-internet-access-default

Amazon SageMaker Developer Guide

over the internet. However, if you have security requirements to control access to your data
and job containers, we recommend that you configure SageMaker Studio Classic and Amazon
EMR so that your data and containers aren’t accessible over the internet. To control access to
your resources or run SageMaker Studio Classic without public internet access, you can specify
the VPC only network access type when you onboard to Amazon SageMaker domain. In this
scenario, SageMaker Studio Classic establishes connections with other AWS services via private VPC
endpoints. For information about configuring SageMaker Studio Classic in VPC only mode, see
Connect SageMaker Studio Classic notebooks in a VPC to external resources..

The first two sections describe how to ensure communication between SageMaker Studio Classic
and an Amazon EMR cluster in VPCs without public internet access. The last section covers how
to ensure communication between SageMaker Studio Classic and Amazon EMR using an internet
connection. Prior to connecting SageMaker Studio Classic and Amazon EMR without internet
access, make sure to establish endpoints for Amazon Simple Storage Service (data storage),
Amazon CloudWatch (logging and monitoring), and Amazon SageMaker Runtime (fine-grained
role-based access control (RBAC)).

• If your Amazon SageMaker Studio Classic and Amazon EMR cluster are set up in different VPCs
in the same AWS account or in different accounts, see Studio Classic and Amazon EMR are
deployed in separate VPCs.

• If your Amazon SageMaker Studio Classic and Amazon EMR cluster are set up in the same VPC,
see Amazon SageMaker Studio Classic and Amazon EMR are in the same VPC.

• If you chose to connect Amazon SageMaker Studio Classic and Amazon EMR cluster over public
internet, see Amazon SageMaker Studio Classic and Amazon EMR communicate over public
internet.

Studio Classic and Amazon EMR are deployed in separate VPCs

To allow communication between SageMaker Studio Classic and an Amazon EMR cluster when they
are deployed in different VPCs:

1. Start by connecting your VPCs through a VPC peering connection.

2. Update your routing tables in each VPC to route the network traffic between Studio Classic
subnets and Amazon EMR subnets both ways.

3. Configure your security groups to allow inbound and outbound traffic.

Prepare data using Amazon EMR 2364

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html#studio-notebooks-and-internet-access-vpc

Amazon SageMaker Developer Guide

The steps are similar, regardless of whether Amazon SageMaker Studio Classic and the Amazon
EMR cluster are deployed within the same AWS account (Single account use case) or different AWS
accounts (Cross accounts use case).

1. VPC peering

Create a VPC peering connection to facilitate the networking between the two VPCs
(SageMaker Studio Classic and Amazon EMR).

a. From your SageMaker Studio Classic account, on the VPC dashboard, choose Peering
connections, then Create peering connection.

b. Create your request to peer the Studio Classic VPC within the Amazon EMR VPC. When
requesting peering in another AWS account, choose Another account in Select another
VPC to peer with.

For cross accounts peering, the administrator must accept the request from the Amazon
EMR account.

When peering private subnets, you should enable private IP DNS resolution at the VPC
peering connection level.

2. Routing tables

Send the network traffic between SageMaker Studio Classic subnets and Amazon EMR subnets
both ways.

After you establish the peering connection, the administrator (on each account for cross-
account access) can add routes to the private subnet route tables to route the traffic between
the notebooks and the cluster subnets. You can define those routes by going to the Route
Tables section of each VPC in the VPC dashboard.

The following illustration of the route table of a Studio Classic VPCsubnet shows an example
of an outbound route from the Studio Classic account to the Amazon EMR VPC IP range (here
2.0.1.0/24) through the peering connection.

Prepare data using Amazon EMR 2365

https://docs.aws.amazon.com/vpc/latest/peering/working-with-vpc-peering.html

Amazon SageMaker Developer Guide

The following illustration of a route table of an Amazon EMR VPC subnet shows an example of
return routes from the Amazon EMR VPC to Studio Classic VPC IP range (here 10.0.20.0/24)
through the peering connection.

3. Security groups

Lastly, the security group of your Studio Classic domain must allow outbound traffic, and
the security group of the Amazon EMR primary node must allow inbound traffic on Apache
Livy, Hive, or Presto TCP ports (respectively 8998, 10000, and 8889) from the Studio Classic
instance security group. Apache Livy is a service that enables interaction with a Amazon EMR
cluster over a REST interface.

The following image shows an example of an Amazon VPC setup that enables SageMaker Studio
Classic notebooks to provision Amazon EMR clusters from AWS CloudFormation templates and
then connect to an Amazon EMR cluster within the same AWS account. The diagram provides an
additional illustration of the required endpoints for a direct connection to various AWS services,
such as Amazon S3 or Amazon CloudWatch, when the VPCs have no internet access. Alternatively, a
NAT gateway must be used to allow instances in private subnets of multiple VPCs to share a single
public IP address provided by the internet gateway when accessing the internet.

Prepare data using Amazon EMR 2366

https://livy.apache.org/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-working-with
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

Amazon SageMaker Developer Guide

Amazon SageMaker Studio Classic and Amazon EMR are in the same VPC

If Amazon SageMaker Studio Classic and the cluster are in different subnets, add routes to each
private subnet route table to route the traffic between the notebooks and the cluster subnets. You
can define those routes by going to the Route Tables section of each VPC in the VPC dashboard. If
you deployed Amazon SageMaker Studio Classic and an Amazon EMR cluster in the same VPC and
the same subnet, you do not need to route the traffic between the notebooks and the cluster.

Whether or not you needed to update your routing tables, the security group of your Studio Classic
domain must allow outbound traffic, and the security group of the Amazon EMR primary node
must allow inbound traffic on Apache Livy, Hive,or Presto TCP ports (respectively 8998, 10000,
and 8889) from the Studio Classic instance security group. Apache Livy is a service that enables
interaction with a Amazon EMR cluster over a REST interface.

Amazon SageMaker Studio Classic and Amazon EMR communicate over public internet

By default, SageMaker Studio Classic provides a network interface that allows communication with
the internet through an internet gateway in the VPC associated with the SageMaker domain. If you

Prepare data using Amazon EMR 2367

https://livy.apache.org/

Amazon SageMaker Developer Guide

choose to connect to Amazon EMR through the public internet, your Amazon EMR cluster needs
to accept inbound traffic on Apache Livy, Hive,or Presto TCP ports (respectively 8998, 10000, and
8889) from its internet gateway. Apache Livy is a service that enables interaction with an Amazon
EMR cluster over a REST interface.

Keep in mind that any port on which you allow inbound traffic represents a potential security
vulnerability. Carefully review custom security groups to ensure that you minimize vulnerabilities.
For more information, see Control network traffic with security groups.

Alternatively, see Walkthroughs and whitepapers for a detailed walkthrough of how to enable
Kerberos on Amazon EMR, set the cluster in a private subnet, and access the cluster using a
Network Load Balancer (NLB) to expose only specific ports, which are access-controlled via security
groups.

Note

When connecting to your Apache Livy endpoint through the public internet, we
recommend that you secure communications between Amazon SageMaker Studio Classic
and your Amazon EMR cluster using TLS.
For information on setting up HTTPS with Apache Livy, see Enabling HTTPS with Apache
Livy. For information on setting an Amazon EMR cluster with transit encryption enabled,
see Providing certificates for encrypting data in transit with Amazon EMR encryption.
Additionally, you need to configure Studio Classic to access your certificate key as specified
in Connect to an Amazon EMR cluster over HTTPS.

Create an Amazon EMR cluster from Studio Classic notebooks

Administrators can use AWS Service Catalog to define AWS CloudFormation templates of Amazon
EMR clusters as products of a portfolio, then make them available to selected users. Using the
Service Catalog, administrators can fully control the organizational, security, and networking
setup of Amazon EMR clusters. Data scientists and data engineers can then view, select, and
customize those templates for their specific workloads to create on-demand Amazon EMR clusters
directly from their SageMaker Studio Classic notebooks. This can be done without manually setting
up complex configurations. Users can also terminate Amazon EMR clusters from Studio Classic
notebooks after use.

Prepare data using Amazon EMR 2368

https://livy.apache.org/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-groups.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/enabling-https.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/enabling-https.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-encryption-certificates
https://docs.aws.amazon.com/servicecatalog/latest/userguide/end-user-console.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

Amazon SageMaker Developer Guide

• If you are an administrator looking to configure AWS CloudFormation templates as AWS Service
Catalog products so users can create Amazon EMR clusters from Studio Classic, see Configure
Amazon EMR templates in AWS Service Catalog (for administrators).

• If you are a data scientist or data engineer looking to self-provision an Amazon EMR cluster
to process data at scale using open-source frameworks such as Apache Spark, Apache Hive, or
Presto, see Launch an Amazon EMR cluster from Studio Classic.

• If you are looking to discover and connect to existing Amazon EMR clusters from Studio Classic,
see Use Amazon EMR clusters from Studio Classic notebooks.

Topics

• Configure Amazon EMR templates in AWS Service Catalog (for administrators)

• Launch an Amazon EMR cluster from Studio Classic

Configure Amazon EMR templates in AWS Service Catalog (for administrators)

This section provides details about how administrators can configure an AWS Service Catalog
product so users can independently self-provision Amazon EMR clusters from Amazon SageMaker
Studio Classic notebooks. Additionally, administrators can configure the Amazon EMR cluster
templates in a way so end-users can customize various aspects of the cluster to suit their specific
requirements. For example, the administrator can define a list of permissible instance types from
which users can choose when creating cluster.

This topic assumes that you are familiar with the creation of portfolios and products in AWS
Service Catalog as well as Amazon EMR, and AWS CloudFormation.

Note

You can refer to the AWS CloudFormation templates in aws-samples/sagemaker-studio-
emr GitHub repository as examples of CloudFormation stacks to deploy IAM roles, Amazon
VPCs, a sandbox Studio Classic domain, a user profile, as well as a CloudFormation
template to launch an Amazon EMR cluster. Several options are available depending on
your authentication method between Studio Classic and the Amazon EMR cluster. In these
examples, a parent CloudFormation template passes the SageMaker VPC ID, security group,
and subnet ID parameters to the CloudFormation template of an Amazon EMR cluster.

Prepare data using Amazon EMR 2369

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-portfolio.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-portfolio.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://github.com/aws-samples/sagemaker-studio-emr/tree/main/cloudformation/getting_started
https://github.com/aws-samples/sagemaker-studio-emr/tree/main/cloudformation/getting_started

Amazon SageMaker Developer Guide

You can access various examples of CloudFormation Amazon EMR templates in the nested
repository sagemaker-studio-emr/cloudformation/emr_servicecatalog_templates and
further choose from a single account deployment to cross accounts.
For more information about the authentication methods available when connecting to an
Amazon EMR cluster, see Use Amazon EMR clusters from Studio Classic notebooks.

To simplify the creation of Amazon EMR clusters, administrators can register the CloudFormation
template of an Amazon EMR cluster as a product in the portfolio of the AWS Service Catalog. Then
they associate the Service Catalog portfolio with the Studio Classic execution role to ensure the
availability of the template in Studio Classic. Furthermore, to make sure that data scientists can
discover those templates, provision Amazon EMR clusters, and connect to Amazon EMR clusters
from their Studio Classic notebooks, administrators need to set the proper access permissions.

The following list provides the additional settings that administrators need to apply to a baseline
CloudFormation stack to enable Studio Classic to access the Service Catalog products and provision
Amazon EMR clusters. Those settings must be applied at multiple levels:

• In the Service Catalog portfolio

• In the Service Catalog product

• In the CloudFormation Amazon EMR template declared as the Service Catalog product

Finally, administrators must assign the required permissions to both the Studio Classic execution
role accessing the clusters and the account where Amazon EMR is deployed, based on whether
Studio Classic and Amazon EMR are in the same or different AWS accounts.

• Pre-requisites: Networking and authentication requirements

As a prerequisite, ensure that you have reviewed the networking and security requirements in
Configure networking (for administrators) and that you have created a baseline CloudFormation
stack supporting the authentication method of your choice. You can find examples of
CloudFormation templates in aws-samples/sagemaker-studio-emr.

• In your Service Catalog portfolio:

Add the following section to your portfolio CloudFormation template (see the example in YAML
format) to associate your portfolio with the Studio Classic execution role accessing your cluster.

SageMakerStudioEMRProductPortfolioPrincipalAssociation:

Prepare data using Amazon EMR 2370

https://github.com/aws-samples/sagemaker-studio-emr/tree/main/cloudformation/emr_servicecatalog_templates
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticmapreduce-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticmapreduce-cluster.html
https://github.com/aws-samples/sagemaker-studio-emr/tree/main/cloudformation/getting_started

Amazon SageMaker Developer Guide

 Type: AWS::ServiceCatalog::PortfolioPrincipalAssociation
 Properties:
 PrincipalARN: SageMakerExecutionRole.Arn
 PortfolioId: SageMakerStudioEMRProductPortfolio ID
 PrincipalType: IAM

• In your Service Catalog product:

Add the following tag key "sagemaker:studio-visibility:emr" and set to the value
"true" (here in YAML) to the Service Catalog product referencing the Amazon EMR template
resource. This ensures the visibility of the template in Studio Classic .

SMStudioEMRNoAuthProduct:
 Type: AWS::ServiceCatalog::CloudFormationProduct
 Properties:
 Owner: AWS
 Name: SageMaker Studio Domain No Auth EMR
 ProvisioningArtifactParameters:
 - Name: SageMaker Studio Domain No Auth EMR
 Description: Provisions a SageMaker domain and No Auth EMR Cluster
 Info:
 LoadTemplateFromURL: Link to your CloudFormation template. For example,
 https://aws-ml-blog.s3.amazonaws.com/artifacts/astra-m4-sagemaker/end-to-end/CFN-
EMR-NoStudioNoAuthTemplate-v3.yaml
 Tags:
 - Key: "sagemaker:studio-visibility:emr"
 Value: "true"

• In the CloudFormation template of the Amazon EMR cluster within your Service Catalog
product:

Add the following mandatory stack parameters as a placeholder. This section is populated with
the Studio Classic project name and identifier used by the user when provisioning a cluster from
Studio Classic.

SageMakerProjectName:
Type: String
Description: Name of the project

SageMakerProjectId:
Type: String
Description: Service generated Id of the project.

Prepare data using Amazon EMR 2371

Amazon SageMaker Developer Guide

Administrators can specify Default and AllowedValues to include choices in the parameters
section of a template, letting users input or select custom values when creating a cluster. The
following example illustrates additional input parameters that administrators can set when
creating an Amazon EMR template.

"Parameters": {
 "EmrClusterName": {
 "Type": "String",
 "Description": "EMR cluster Name."
 },
 "MasterInstanceType": {
 "Type": "String",
 "Description": "Instance type of the EMR master node.",
 "Default": "m5.xlarge",
 "AllowedValues": [
 "m5.xlarge",
 "m5.2xlarge",
 "m5.4xlarge"
]
 },
 "CoreInstanceType": {
 "Type": "String",
 "Description": "Instance type of the EMR core nodes.",
 "Default": "m5.xlarge",
 "AllowedValues": [
 "m5.xlarge",
 "m5.2xlarge",
 "m5.4xlarge",
 "m3.medium",
 "m3.large",
 "m3.xlarge",
 "m3.2xlarge"
]
 },
 "CoreInstanceCount": {
 "Type": "String",
 "Description": "Number of core instances in the EMR cluster.",
 "Default": "2",
 "AllowedValues": [
 "2",
 "5",
 "10"

Prepare data using Amazon EMR 2372

Amazon SageMaker Developer Guide

]
 },
 "EmrReleaseVersion": {
 "Type": "String",
 "Description": "The release version of EMR to launch.",
 "Default": "emr-5.33.1",
 "AllowedValues": [
 "emr-5.33.1",
 "emr-6.4.0"
]
 }
 }

• Last, attach the required IAM policies to enable the visibility of CloudFormation Amazon EMR
templates and the self-provisioning of Amazon EMR clusters from the Studio Classic notebooks.
The role to which you must add those policies depends on whether Studio Classic and Amazon
EMR are deployed in the same account (single account) or in different accounts (cross accounts).

• If your Amazon EMR cluster is deployed in the same AWS account as the Studio Classic
account, refer to the Single Account tab.

• If your Amazon EMR cluster is deployed in a different AWS account than the Studio Classic
account, refer to the Cross Accounts tab.

For more information on cross-account access using roles, see Cross account resource access in
IAM or Cross-account policy evaluation logic.

Single account

Attach the following permissions to the Studio Classic execution role accessing your cluster.

The following list provides a breakdown of the permissions required.

• AllowEMRTemplateDiscovery allows the discoverability for Amazon EMR templates.

• AllowSagemakerProjectManagement enables the creation of SageMaker projects. In
Studio Classic, access to the AWS Service Catalog is granted through Projects.

• AllowClusterDetailsDiscovery and AllowClusterDiscovery allow the discovery
and connection to Amazon EMR clusters.

• AllowPresignedUrl allows the creation of pre-signed URLs to access Spark UI.

The following is a comprehensive JSON that includes these permissions.

{
Prepare data using Amazon EMR 2373

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html

Amazon SageMaker Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPresignedUrl",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstanceGroups",
 "elasticmapreduce:CreatePersistentAppUI",
 "elasticmapreduce:DescribePersistentAppUI",
 "elasticmapreduce:GetPersistentAppUIPresignedURL",
 "elasticmapreduce:GetOnClusterAppUIPresignedURL"
],
 "Resource": [
 "arn:aws:elasticmapreduce:studio-region:studio-account:cluster/*"
]
 },
 {
 "Sid": "AllowClusterDetailsDiscovery",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstances",
 "elasticmapreduce:ListInstanceGroups",
 "elasticmapreduce:DescribeSecurityConfiguration"
],
 "Resource": [
 "arn:aws:elasticmapreduce:studio-region:studio-account:cluster/*"
]
 },
 {
 "Sid": "AllowClusterDiscovery",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:ListClusters"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowEMRTemplateDiscovery",
 "Effect": "Allow",
 "Action": [
 "servicecatalog:SearchProducts"
],

Prepare data using Amazon EMR 2374

Amazon SageMaker Developer Guide

 "Resource": "*"
 },
 {
 "Sid": "AllowSagemakerProjectManagement",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateProject",
 "sagemaker:DeleteProject"
],
 "Resource": "arn:aws:sagemaker:studio-region:studio-account:project/*"
 },
]
}

Cross accounts

If your Amazon EMR clusters and Studio Classic are deployed in separate AWS accounts, you
configure the permissions in multiple steps.

• On the trusting account (the account in which Amazon EMR is deployed), create a custom
IAM role (referred to as ASSUMABLE-ROLE in this page) with the following permissions and
trust relationship.

For information about creating a role on an AWS account, see Creating an IAM role
(console).

1. Add an IAM policy defining the following permissions.

• AllowClusterDetailsDiscovery and AllowClusterDiscovery to allow the
discovery and connection to Amazon EMR clusters.

• AllowPresignedUrl to allow the creation of pre-signed URLs to access Spark UI.

The following is a comprehensive JSON that includes these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPresignedUrl",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstanceGroups",

Prepare data using Amazon EMR 2375

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon SageMaker Developer Guide

 "elasticmapreduce:CreatePersistentAppUI",
 "elasticmapreduce:DescribePersistentAppUI",
 "elasticmapreduce:GetPersistentAppUIPresignedURL",
 "elasticmapreduce:GetOnClusterAppUIPresignedURL"
],
 "Resource": [
 "arn:aws:elasticmapreduce:emr-region:emr-account:cluster/*"
]
 },
 {
 "Sid": "AllowClusterDetailsDiscovery",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstances",
 "elasticmapreduce:ListInstanceGroups",
 "elasticmapreduce:DescribeSecurityConfiguration"
],
 "Resource": [
 "arn:aws:elasticmapreduce:emr-region:emr-account:cluster/*"
]
 },
 {
 "Sid": "AllowClusterDiscovery",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:ListClusters"
],
 "Resource": "*"
 }
]
}

2. To grant the trusted account (the account in which Studio Classic is deployed) the
permission to assume a role in the trusting account, include the following trust
relationship.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Prepare data using Amazon EMR 2376

Amazon SageMaker Developer Guide

 "AWS": "arn:aws:iam::studio-account:root"
 },
 "Action": "sts:AssumeRole"
 }
]
}

• On the trusted account (the account in which Studio Classic is deployed), add the following
permissions and trust relationship to the Studio Classic execution role.

1. Add an IAM policy defining the following permissions.

• AllowSagemakerProjectManagement to allow the creation of SageMaker projects.
In Studio Classic, access to the AWS Service Catalog is granted through Projects.

• AllowEMRTemplateDiscovery to allow the discoverability of Amazon EMR
templates.

The following is a comprehensive JSON that includes these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSagemakerProjectManagement",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateProject",
 "sagemaker:DeleteProject"
],
 "Resource": "arn:aws:sagemaker:::project/*"
 },
 {
 "Sid": "AllowEMRTemplateDiscovery",
 "Effect": "Allow",
 "Action": [
 "servicecatalog:SearchProducts"
],
 "Resource": "*"
 }
]
}

Prepare data using Amazon EMR 2377

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html

Amazon SageMaker Developer Guide

2. To grant the Studio Classic execution role the permission to assume the ASSUMABLE-
ROLE in the trusting account, include the following trust relationship.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRoleAssumptionForCrossAccountDiscovery",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": ["arn:aws:iam::emr-account:role/ASSUMABLE-ROLE"]
 }]
 }

• Last, see Additional Configuration for cross accounts use cases (for administrators) to learn
how to provide the ARN of the ASSUMABLE-ROLE to the Studio Classic execution role. The
ARN is loaded by the Studio Classic Jupyter server at launch. The Studio Classic execution
role assumes that cross-account role to discover and connect to Amazon EMR clusters in
the trusting account.

Once the CloudFormation templates are available in Amazon SageMaker Studio Classic, data
scientists can use them to self-provision Amazon EMR clusters. Each of the "Parameters"
specified in the template becomes an input box in the cluster creation form of Studio Classic, with
the corresponding "AllowedValues" appearing in a dropdown menu.

The following illustration shows the dynamic form assembled from a CloudFormation Amazon EMR
template to create an Amazon EMR cluster in SageMaker Studio Classic.

Prepare data using Amazon EMR 2378

Amazon SageMaker Developer Guide

Visit Launch an Amazon EMR cluster from Studio Classic to learn about how to launch a cluster
from Studio Classic using those Amazon EMR templates.

Launch an Amazon EMR cluster from Studio Classic

Data scientists and data engineers can self-provision Amazon EMR clusters from Studio
Classic using AWS CloudFormation templates configured by their administrators. If you are an
administrator looking to configure CloudFormation templates as AWS Service Catalog products so
users can create Amazon EMR clusters from Studio Classic, see Configure Amazon EMR templates
in AWS Service Catalog (for administrators).

To provision a new Amazon EMR cluster from Studio Classic:

1. Select the Home

()
icon in the Studio Classic UI's left-side panel, then select the Data node in the navigation
menu. Navigate down to the Clusters node. This opens up a page listing the Amazon EMR
clusters that you can access from SageMaker Studio Classic.

Prepare data using Amazon EMR 2379

Amazon SageMaker Developer Guide

2. Choose Create cluster. This opens up a page, in the main working area, listing the cluster
templates available to you.

3. Select a cluster configuration template by choosing a template name. The selection of a
template activates the Select template button. Choose Select template. This opens up a
cluster creation form.

4. Enter the cluster's details, such as a cluster name and any specific configurable parameter set
by your administrator, then choose Create cluster. The creation of the cluster might take a
couple of minutes.

Once the cluster is provisioned, the Studio Classic UI displays a The cluster has been successfully
created message.

To connect to your cluster, see Use Amazon EMR clusters from Studio Classic notebooks

Use Amazon EMR clusters from Studio Classic notebooks

In this section, you learn about how to discover, connect to, or terminate an Amazon EMR cluster
from SageMaker Studio Classic notebooks.

Prepare data using Amazon EMR 2380

Amazon SageMaker Developer Guide

• If you are an administrator, see Configure the discoverability of Amazon EMR clusters (for
administrators) to configure the discoverability of Amazon EMR clusters from SageMaker Studio
Classic notebooks.

• If you are a data scientist or data engineer looking to discover Amazon EMR clusters from your
Studio Classic notebooks, see Discover Amazon EMR clusters from SageMaker Studio Classic.

• If you are a data scientist or data engineer looking to connect to existing Amazon EMR clusters
from your Studio Classic notebooks, see Connect to an Amazon EMR cluster from SageMaker
Studio Classic.

When connecting to your Amazon EMR cluster from SageMaker Studio Classic, you can
authenticate to your cluster with Kerberos, Lightweight Directory Access Protocol (LDAP), or
use runtime IAM role authentication. Your authentication method depends on your cluster
configuration. You can refer to this example Access Apache Livy using a Network Load Balancer
on a Kerberos-enabled Amazon EMR cluster to set up an Amazon EMR cluster that uses Kerberos.
Alternatively, you can look at the CloudFormation example templates using Kerberos or LDAP in
the aws-samples/sagemaker-studio-emr GitHub repository.

Find the list of available connection commands to an Amazon EMR cluster per authentication
method in Enter the connection command to an Amazon EMR cluster manually to connect to your
Amazon EMR cluster.

Supported images and kernels to connect to an Amazon EMR cluster from SageMaker Studio
Classic

SageMaker Studio Classic provides built-in support to connect to Amazon EMR clusters in the
following images and kernels:

• DataScience – Python 3 kernel

• DataScience 2.0 – Python 3 kernel

• DataScience 3.0 – Python 3 kernel

• SparkAnalytics 1.0 – SparkMagic and PySpark kernels

• SparkAnalytics 2.0 – SparkMagic and PySpark kernels

• SparkMagic – SparkMagic and PySpark kernels

• PyTorch 1.8 – Python 3 kernels

• TensorFlow 2.6 – Python 3 kernel

• TensorFlow 2.11 – Python 3 kernel

Prepare data using Amazon EMR 2381

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-emr-cluster-rbac.html
https://aws.amazon.com/blogs/big-data/access-apache-livy-using-a-network-load-balancer-on-a-kerberos-enabled-amazon-emr-cluster/
https://aws.amazon.com/blogs/big-data/access-apache-livy-using-a-network-load-balancer-on-a-kerberos-enabled-amazon-emr-cluster/
https://github.com/aws-samples/sagemaker-studio-emr/tree/main/cloudformation/getting_started

Amazon SageMaker Developer Guide

Those images and kernels come with sagemaker-studio-analytics-extension, a notebook extension
that enables connection to a remote Spark (Amazon EMR) cluster via the SparkMagic library using
Apache Livy.

To connect to Amazon EMR clusters using another built-in image or your own image, follow the
instructions in Bring your own image.

Bring your own image

To bring your own image in SageMaker Studio Classic and allow your notebooks to connect to
Amazon EMR clusters, install the following sagemaker-studio-analytics-extension extension to your
kernel. It supports connecting SageMaker Studio Classic notebooks to Spark(Amazon EMR) clusters
through the SparkMagic library.

pip install sparkmagic
pip install sagemaker-studio-sparkmagic-lib
pip install sagemaker-studio-analytics-extension

Additionally, to connect to Amazon EMR with Kerberos authentication, you must install the kinit
client. Depending on your OS, the command to install the kinit client can vary. To bring an Ubuntu
(Debian based) image, use the apt-get install -y -qq krb5-user command.

For more information on bringing your own image in SageMaker Studio Classic, see Bring your own
SageMaker image.

Configure the discoverability of Amazon EMR clusters (for administrators)

This section provides details about how administrators can configure the discoverability of existing
Amazon EMR clusters from SageMaker Studio Classic. The clusters can be deployed in the same
AWS account as Studio Classic (Single Account tab) or in separate accounts (Cross Accounts tab).

Single Account

Attach the following permissions to the SageMaker Studio Classic execution role accessing your
cluster.

The following list provides a breakdown of the permissions required.

• AllowSagemakerProjectManagement enables the creation of SageMaker projects. In
Studio Classic, access to the AWS Service Catalog is granted through Projects.

Prepare data using Amazon EMR 2382

https://pypi.org/project/sagemaker-studio-analytics-extension/
https://github.com/jupyter-incubator/sparkmagic
https://livy.apache.org/
https://pypi.org/project/sagemaker-studio-analytics-extension/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-magics.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html

Amazon SageMaker Developer Guide

• AllowClusterDetailsDiscovery and AllowClusterDiscovery allow the discovery
and connection to Amazon EMR clusters.

• AllowPresignedUrl allows the creation of pre-signed URLs to access Spark UI.

The following is a comprehensive JSON that includes these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPresignedUrl",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstanceGroups",
 "elasticmapreduce:CreatePersistentAppUI",
 "elasticmapreduce:DescribePersistentAppUI",
 "elasticmapreduce:GetPersistentAppUIPresignedURL",
 "elasticmapreduce:GetOnClusterAppUIPresignedURL"
],
 "Resource": [
 "arn:aws:elasticmapreduce:region:account-id:cluster/*"
]
 },
 {
 "Sid": "AllowClusterDetailsDiscovery",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstances",
 "elasticmapreduce:ListInstanceGroups",
 "elasticmapreduce:DescribeSecurityConfiguration"
],
 "Resource": [
 "arn:aws:elasticmapreduce:region:account-id:cluster/*"
]
 },
 {
 "Sid": "AllowClusterDiscovery",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:ListClusters"

Prepare data using Amazon EMR 2383

Amazon SageMaker Developer Guide

],
 "Resource": "*"
 },
 {
 "Sid": "AllowSagemakerProjectManagement",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateProject",
 "sagemaker:DeleteProject"
],
 "Resource": "arn:aws:sagemaker:region:account-id:project/*"
 }
]
}

Cross Accounts

If your Amazon EMR clusters and SageMaker Studio Classic are deployed in separate AWS
accounts, you configure the permissions in multiple steps.

• On the trusting account (the account in which Amazon EMR is deployed), create a custom IAM
role (referred to as ASSUMABLE-ROLE in this page) with the following permissions and trust
relationship.

For information about creating a role on an AWS account, see Creating an IAM role (console).

1. Add a policy defining the following permissions.

• AllowClusterDetailsDiscovery and AllowClusterDiscovery to allow the
discovery and connection to Amazon EMR clusters.

• AllowPresignedUrl to allow the creation of pre-signed URLs to access Spark UI.

The following is a comprehensive JSON that includes these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPresignedUrl",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstanceGroups",

Prepare data using Amazon EMR 2384

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon SageMaker Developer Guide

 "elasticmapreduce:CreatePersistentAppUI",
 "elasticmapreduce:DescribePersistentAppUI",
 "elasticmapreduce:GetPersistentAppUIPresignedURL",
 "elasticmapreduce:GetOnClusterAppUIPresignedURL"
],
 "Resource": [
 "arn:aws:elasticmapreduce:emr-region:emr-account:cluster/*"
]
 },
 {
 "Sid": "AllowClusterDetailsDiscovery",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstances",
 "elasticmapreduce:ListInstanceGroups",
 "elasticmapreduce:DescribeSecurityConfiguration"
],
 "Resource": [
 "arn:aws:elasticmapreduce:emr-region:emr-account:cluster/*"
]
 },
 {
 "Sid": "AllowClusterDiscovery",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:ListClusters"
],
 "Resource": "*"
 }
]
}

2. To grant the trusted account (the account in which SageMaker Studio Classic's account is
deployed) the permission to assume a role in the trusting account, add the following trust
relationship.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Prepare data using Amazon EMR 2385

Amazon SageMaker Developer Guide

 "AWS": "arn:aws:iam::studio-account:root"
 },
 "Action": "sts:AssumeRole"
 }
]
}

• On the trusted account (the account in which SageMaker Studio Classic is deployed), add the
following trust relationship to the Studio Classic execution role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRoleAssumptionForCrossAccountDiscovery",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": ["arn:aws:iam::emr-account:role/ASSUMABLE-ROLE"]
 }]
}

• Last, see Additional Configuration for cross accounts use cases (for administrators) to learn
how to provide the ARN of the ASSUMABLE-ROLE to the Studio Classic execution role. The
ARN is loaded by the Studio Classic Jupyter server at launch. The Studio Classic execution
role assumes that cross-account role to discover and connect to Amazon EMR clusters in the
trusting account.

Visit Discover Amazon EMR clusters from SageMaker Studio Classic to learn about how to discover
and connect to Amazon EMR clusters from Studio Classic notebooks.

Discover Amazon EMR clusters from SageMaker Studio Classic

Data scientists and data engineers can discover, connect to, and manage Amazon EMR clusters
from Amazon SageMaker Studio Classic. The Amazon EMR clusters may be in the same AWS
account as Amazon SageMaker Studio Classic or in a different AWS account.

If your administrator configured the cross accounts discovery of Amazon EMR clusters, you can see
a consolidated list of clusters in the AWS account used by SageMaker Studio Classic as well as in
the remote accounts.

Prepare data using Amazon EMR 2386

Amazon SageMaker Developer Guide

If you are an administrator looking to set up the discoverability of Amazon EMR clusters from
SageMaker Studio Classic, see Configure the discoverability of Amazon EMR clusters (for
administrators).

To view the list of available Amazon EMR clusters from SageMaker Studio Classic:

1. Select the Home

()
icon in Studio Classic UI's left-side panel, then select the Data node in the navigation menu.

2. Navigate down to the Clusters node. This opens up a page listing the Amazon EMR clusters
that you can access from SageMaker Studio Classic.

The list displays the status of each cluster. A cluster status can be Starting, Bootstrapping,
Running/Walking, Terminating, Terminated, and Terminated with error. You can filter
clusters by status by selecting the filter icon. The following image shows an example of a list of
clusters.

3. To connect to a particular Running/Walking cluster, see Connect to an Amazon EMR cluster
from SageMaker Studio Classic.

Connect to an Amazon EMR cluster from SageMaker Studio Classic

This section explains how you can connect to an Amazon EMR cluster from a Studio Classic
notebook when you use any of the supported kernels.

Prepare data using Amazon EMR 2387

Amazon SageMaker Developer Guide

Connect to an Amazon EMR cluster automatically

To connect to your cluster using the Studio Classic UI, you can either initiate a connection from the
list of clusters accessed in Discover Amazon EMR clusters from SageMaker Studio Classic, or from a
notebook in SageMaker Studio Classic.

To connect to a particular cluster from your list of clusters

1. Choose the name of the cluster in your list. This activates the Attach to new notebook button.

2. Choose Attach to new notebook. This opens up the images and kernels selection box.

3. Select your image and kernel, then choose Select. For a list of supported images, see
Supported images and kernels to connect to an Amazon EMR cluster from SageMaker Studio
Classic or refer to Bring your own image.

4. If the cluster you select does not use Kerberos, LDAP, or runtime role authentication, Studio
Classic prompts you to select the credential type. Choose from Http basic authentication or
No credentials, then enter your credentials, if applicable. A connection command populates
the first cell of your notebook and initiates the connection with the Amazon EMR cluster.

Once the connection succeeds, a message confirms the connection and the start of the Spark
application.

Alternatively, you can connect to a cluster from a notebook.

1. Choose Cluster at the top of your notebook.

Cluster is only visible when you use a kernel from Supported images and kernels to connect to
an Amazon EMR cluster from SageMaker Studio Classic or from Bring your own image. If you
cannot see Cluster at the top of your notebook, ensure that your administrator has configured
the discoverability of your clusters and switch to a supported kernel.

This opens up a list of available clusters.

2. Select the cluster to which you want to connect, then choose Connect.

3. If you configured your Amazon EMR clusters to support runtime IAM roles and your
administrator preloaded your roles in an execution role configuration JSON, you can select

Prepare data using Amazon EMR 2388

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-configure-discoverability-emr-cluster.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-configure-discoverability-emr-cluster.html

Amazon SageMaker Developer Guide

your Amazon EMR access role from the Amazon EMR execution role drop down menu. If your
roles are not preloaded, Studio Classic uses your Studio Classic execution role by default. For
information about using runtime roles with Amazon EMR, see Connect to an Amazon EMR
cluster from Studio Classic using runtime IAM roles. When you connect to a cluster, Studio
Classic adds a code block to an active cell to establish the connection.

Otherwise, if the cluster you choose does not use Kerberos, LDAP, or runtime role
authentication, Studio Classic prompts you to select the credential type. You can choose HTTP
basic authentication or No credential.

4. An active cell populates and runs. This cell contains the connection command to connect to
your Amazon EMR cluster.

Once the connection succeeds, a message confirm the connection and the start of the Spark
application.

Enter the connection command to an Amazon EMR cluster manually

You can manually connect to your Amazon EMR cluster from a Studio Classic notebook whether or
not your Studio Classic application and cluster reside in the same AWS account.

For each of the following authentication types, use the specified command to manually connect to
your cluster from your Studio Classic notebook.

• Kerberos

Append the --assumable-role-arn argument if you need cross-account Amazon EMR access.
Append the --verify-certificate argument if you connect to your cluster with HTTPS.

%load_ext sagemaker_studio_analytics_extension.magics
%sm_analytics emr connect --cluster-id cluster_id \
--auth-type Kerberos --language python
[--assumable-role-arn EMR_access_role_ARN]
[--verify-certificate /home/user/certificateKey.pem]

• LDAP

Append the --assumable-role-arn argument if you need cross-account Amazon EMR access.
Append the --verify-certificate argument if you connect to your cluster with HTTPS.

%load_ext sagemaker_studio_analytics_extension.magics

Prepare data using Amazon EMR 2389

Amazon SageMaker Developer Guide

%sm_analytics emr connect --cluster-id cluster_id \
--auth-type Basic_Access --language python
[--assumable-role-arn EMR_access_role_ARN]
[--verify-certificate /home/user/certificateKey.pem]

• NoAuth

Append the --assumable-role-arn argument if you need cross-account Amazon EMR access.
Append the --verify-certificate argument if you connect to your cluster with HTTPS.

%load_ext sagemaker_studio_analytics_extension.magics
%sm_analytics emr connect --cluster-id cluster_id \
--auth-type None --language python
[--assumable-role-arn EMR_access_role_ARN]
[--verify-certificate /home/user/certificateKey.pem]

• Runtime IAM roles

Append the --assumable-role-arn argument if you need cross-account Amazon EMR access.
Append the --verify-certificate argument if you connect to your cluster with HTTPS.

For more information on connecting to an Amazon EMR cluster using runtime IAM roles, see
Connect to an Amazon EMR cluster from Studio Classic using runtime IAM roles.

%load_ext sagemaker_studio_analytics_extension.magics
%sm_analytics emr connect --cluster-id cluster_id \
--auth-type Basic_Access \
--emr-execution-role-arn arn:aws:iam::studio_account_id:role/emr-execution-role-name
[--assumable-role-arn EMR_access_role_ARN]
[--verify-certificate /home/user/certificateKey.pem]

Connect to an Amazon EMR cluster over HTTPS

If you have configured your Amazon EMR cluster with transit encryption enabled and Apache Livy
server for HTTPS and would like Studio Classic to communicate with Amazon EMR using HTTPS,
you need to configure Studio Classic to access your certificate key.

For self-signed or local Certificate Authority (CA) signed certificates, you can do this in two steps:

1. Download the PEM file of your certificate to your local file system using one of the following
options:

Prepare data using Amazon EMR 2390

Amazon SageMaker Developer Guide

• Jupyter's built-in file upload function.

• A notebook cell.

• A lifecycle configuration (LCC) script.

For information on how to use an LCC script, see Customize a Notebook Instance Using a
Lifecycle Configuration Script

2. Enable the validation of the certificate by providing the path to your certificate in the --
verify-certificate argument of your connection command.

%sm_analytics emr connect --cluster-id cluster_id \
 --verify-certificate /home/user/certificateKey.pem ...

For public CA issued certificates, set the certificate validation by setting the --verify-
certificate parameter as true.

Alternatively, you can disable the certificate validation by setting the --verify-certificate
parameter as false.

You can find the list of available connection commands to an Amazon EMR cluster in Enter the
connection command to an Amazon EMR cluster manually.

Connect to an Amazon EMR cluster from Studio Classic using runtime IAM roles

When you connect to an Amazon EMR cluster from your Amazon SageMaker Studio Classic
notebook, you can visually browse a list of IAM roles, known as runtime roles, and select one on
the fly. Subsequently, all your Apache Spark, Apache Hive, or Presto jobs created from your Studio
Classic notebook access only the data and resources permitted by policies attached to the runtime
role. Also, when data is accessed from data lakes managed with AWS Lake Formation, you can
enforce table-level and column-level access using policies attached to the runtime role.

With this capability, you and your teammates can connect to the same cluster, each using a runtime
role scoped with permissions matching your individual level of access to data. Your sessions are
also isolated from one another on the shared cluster. With this ability to control fine-grained access
to data on the same shared cluster, you can simplify provisioning of Amazon EMR clusters, reducing
operational overhead and saving costs.

To try out this new feature, see Apply fine-grained data access controls with AWS Lake Formation
and Amazon EMR from Amazon SageMaker Studio Classic . This blog post helps you set up a demo

Prepare data using Amazon EMR 2391

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://aws.amazon.com/blogs/machine-learning/apply-fine-grained-data-access-controls-with-aws-lake-formation-and-amazon-emr-from-amazon-sagemaker-studio/
https://aws.amazon.com/blogs/machine-learning/apply-fine-grained-data-access-controls-with-aws-lake-formation-and-amazon-emr-from-amazon-sagemaker-studio/

Amazon SageMaker Developer Guide

environment where you can try using preconfigured runtime roles to connect to Amazon EMR
clusters.

Prerequisites

Before you get started, make sure you meet the following prerequisites:

• Use Amazon EMR version 6.9 or above.

• Use JupyterLab version 3 in the Studio Classic Jupyter server application configuration. This
version supports Studio Classic connection to Amazon EMR clusters using runtime roles.

• Allow the use of runtime roles in your cluster’s security configuration. For more information, see
Runtime roles for Amazon EMR steps.

• Create a notebook with any of the kernels listed in Use Amazon EMR clusters from Studio Classic
notebooks.

• Make sure you review the instructions in Set up Studio Classic to use runtime IAM roles to
configure runtime roles with Studio Classic.

Cross-account connection scenarios

Runtime role authentication supports a variety of cross-account connection scenarios when your
data resides outside of your Studio Classic account. The following image shows three different
ways you can assign your Amazon EMR cluster, data, and even Amazon EMR execution role
between your Studio Classic and data accounts:

Prepare data using Amazon EMR 2392

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-steps-runtime-roles.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-steps-runtime-roles.html

Amazon SageMaker Developer Guide

In option 1, your Amazon EMR cluster and Amazon EMR execution role are in a separate data
account from your Studio Classic account. You define a separate Amazon EMR access role
permission policy which grants permission to your Studio Classic execution role to assume
the Amazon EMR access role. The Amazon EMR access role then calls the Amazon EMR API
GetClusterSessionCredentials on behalf of your Studio Classic execution role, giving you
access to the cluster.

In option 2, your Amazon EMR cluster and Amazon EMR execution role are in your Studio
Classic account. Your Studio Classic execution role has permission to use the Amazon EMR API
GetClusterSessionCredentials to gain access to your cluster. To access the Amazon S3

Prepare data using Amazon EMR 2393

Amazon SageMaker Developer Guide

bucket, give the Amazon EMR execution role cross-account Amazon S3 bucket access permissions
— you grant these permissions within your Amazon S3 bucket policy.

In option 3, your Amazon EMR clusters are in your Studio Classic account, and the Amazon EMR
execution role is in the data account. Your Studio Classic execution role has permission to use the
Amazon EMR API GetClusterSessionCredentials to gain access to your cluster. Add the
Amazon EMR execution role into the execution role configuration JSON. Then you can select the
role in the UI when you choose your cluster. For details about how to set up your execution role
configuration JSON file, see Preload your execution roles into Studio Classic.

Set up Studio Classic to use runtime IAM roles

To establish runtime role authentication for your Amazon EMR clusters, configure the required IAM
policies, network, and usability enhancements. Your setup depends on whether you handle any
cross-account arrangements if your Amazon EMR clusters, Amazon EMR execution role, or both,
reside outside of your Amazon SageMaker Studio Classic account. The following discussion guides
you through the policies to install, how to configure the network to allow traffic between cross-
accounts, and the local configuration file to set up to automate your Amazon EMR connection.

Configure runtime role authentication when your Amazon EMR cluster and Studio Classic are in
the same account

If your Amazon EMR cluster resides in your Studio Classic account, add the basic policy
to connect to your Amazon EMR cluster and set permissions to call the Amazon EMR API
GetClusterSessionCredentials, which gives you access to the cluster. Complete the following
steps to add necessary permissions to your Studio Classic execution policy:

1. Add the required IAM policy to connect to Amazon EMR clusters. For details, see Discover
Amazon EMR clusters from SageMaker Studio Classic.

2. Grant permission to call the Amazon EMR API GetClusterSessionCredentials when you
pass one or more permitted Amazon EMR execution roles specified in the policy.

3. (Optional) Grant permission to pass IAM roles that follow any user-defined naming conventions.

4. (Optional) Grant permission to access Amazon EMR clusters that are tagged with specific user-
defined strings.

5. If you don't want to manually call the Amazon EMR connection command, install a SageMaker
configuration file in your local Amazon EFS and select the role to use when you select your
Amazon EMR cluster. For details about how to preload your IAM roles, see Preload your
execution roles into Studio Classic.

Prepare data using Amazon EMR 2394

Amazon SageMaker Developer Guide

The following example policy permits Amazon EMR execution roles belonging to the modeling
and training groups to call GetClusterSessionCredentials. In addition, the policyholder can
access Amazon EMR clusters tagged with the strings modeling or training.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "elasticmapreduce:GetClusterSessionCredentials",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "elasticmapreduce:ExecutionRoleArn": [
 "arn:aws:iam::123456780910:role/emr-execution-role-ml-
modeling*",
 "arn:aws:iam::123456780910:role/emr-execution-role-ml-
training*"
],
 "elasticmapreduce:ResourceTag/group": [
 "*modeling*",
 "*training*"
]
 }
 }
 }
]
}

Configure runtime role authentication when your cluster and Studio Classic are in different
accounts

If your Amazon EMR cluster is not in your Studio Classic account, allow your Studio Classic
execution role to assume the cross-account Amazon EMR access role so you can connect to the
cluster. Complete the following steps to set up your cross-account configuration:

1. Create your Studio Classic execution role permission policy so that the execution role can
assume the Amazon EMR access role. The following policy is an example:

{
 "Version": "2012-10-17",

Prepare data using Amazon EMR 2395

Amazon SageMaker Developer Guide

 "Statement": [
 {
 "Sid": "AllowAssumeCrossAccountEMRAccessRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::emr_account_id:role/emr-access-role-name"
 }
]
}

2. Create the trust policy to specify which Studio Classic account IDs are trusted to assume the
Amazon EMR access role. The following policy is an example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCrossAccountSageMakerExecutionRoleToAssumeThisRole",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::studio_account_id:role/studio_execution_role"
 },
 "Action": "sts:AssumeRole"
 }
}

3. Create the Amazon EMR access role permission policy, which grants the Amazon EMR execution
role the needed permissions to carry out the intended tasks on the cluster. Configure the
Amazon EMR access role to call the API GetClusterSessionCredentials with the Amazon
EMR execution roles specified in the access role permission policy. The following policy is an
example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCallingEmrGetClusterSessionCredentialsAPI",
 "Effect": "Allow",
 "Action": "elasticmapreduce:GetClusterSessionCredentials",
 "Resource": "",
 "Condition": {
 "StringLike": {

Prepare data using Amazon EMR 2396

Amazon SageMaker Developer Guide

 "elasticmapreduce:ExecutionRoleArn": [
 "arn:aws:iam::emr_account_id:role/emr-execution-role-name"
]
 }
 }
 }
]
}

4. Set up the cross-account network so that traffic can move back and forth between your
accounts. For guided instruction, see Set up the network in the blog post Create and manage
Amazon EMR Clusters from SageMaker Studio Classic to run interactive Spark and ML workloads
– Part 2. The steps in the blog post help you complete the following tasks:

a. VPC-peer your Studio Classic account and your Amazon EMR account to establish a
connection.

b. Manually add routes to the private subnet route tables in both accounts. This permits creation
and connection of Amazon EMR clusters from the Studio Classic account to the remote
account’s private subnet.

c. Set up the security group attached to your Studio Classic domain to allow outbound traffic
and the security group of the Amazon EMR primary node to allow inbound TCP traffic from
the Studio Classic instance security group.

5. If you don't want to manually call the Amazon EMR connection command, install a SageMaker
configuration file in your local Amazon EFS so you can select the role to use when you choose
your Amazon EMR cluster. For details about how to preload your IAM roles, see Preload your
execution roles into Studio Classic.

Configure Lake Formation access

When you access data from data lakes managed by AWS Lake Formation, you can enforce table-
level and column-level access using policies attached to your runtime role. To configure permission
for Lake Formation access, see Integrate Amazon EMR with AWS Lake Formation.

Preload your execution roles into Studio Classic

If you don't want to manually call the Amazon EMR connection command, you can install a
SageMaker configuration file in your local Amazon EFS so you can select the execution role to use
when you choose your Amazon EMR cluster.

Prepare data using Amazon EMR 2397

https://aws.amazon.com/blogs/machine-learning/part-2-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://aws.amazon.com/blogs/machine-learning/part-2-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://aws.amazon.com/blogs/machine-learning/part-2-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lake-formation.html

Amazon SageMaker Developer Guide

To write a configuration file for the Amazon EMR execution roles, associate a Use lifecycle
configurations with Amazon SageMaker Studio Classic (LCC) to the Jupyter server application.
Alternatively, you can write or update the configuration file and restart the Jupyter server with the
command: restart-jupyter-server.

The following snippet is an example LCC bash script you can apply if your Studio Classic application
and cluster are in the same account:

#!/bin/bash

set -eux

FILE_DIRECTORY="/home/sagemaker-user/.sagemaker-analytics-configuration-DO_NOT_DELETE"
FILE_NAME="emr-configurations-DO_NOT_DELETE.json"
FILE="$FILE_DIRECTORY/$FILE_NAME"

mkdir -p $FILE_DIRECTORY

cat << 'EOF' > "$FILE"
{
 "emr-execution-role-arns":
 {
 "123456789012": [
 "arn:aws:iam::123456789012:role/emr-execution-role-1",
 "arn:aws:iam::123456789012:role/emr-execution-role-2"
]
 }
}
EOF

If your Studio Classic application and clusters are in different accounts, specify the Amazon EMR
access roles that can use the cluster. In the following example policy, 123456789012 is the ARN
for the Amazon EMR cluster account, and 212121212121 and 434343434343 are the ARNs for the
permitted Amazon EMR access roles.

#!/bin/bash

set -eux

FILE_DIRECTORY="/home/sagemaker-user/.sagemaker-analytics-configuration-DO_NOT_DELETE"
FILE_NAME="emr-configurations-DO_NOT_DELETE.json"
FILE="$FILE_DIRECTORY/$FILE_NAME"

Prepare data using Amazon EMR 2398

Amazon SageMaker Developer Guide

mkdir -p $FILE_DIRECTORY

cat << 'EOF' > "$FILE"
{
 "emr-execution-role-arns":
 {
 "123456789012": [
 "arn:aws:iam::212121212121:role/emr-execution-role-1",
 "arn:aws:iam::434343434343:role/emr-execution-role-2"
]
 }
}
EOF

add your cross-account EMR access role
FILE_DIRECTORY="/home/sagemaker-user/.cross-account-configuration-DO_NOT_DELETE"
FILE_NAME="emr-discovery-iam-role-arns-DO_NOT_DELETE.json"
FILE="$FILE_DIRECTORY/$FILE_NAME"

mkdir -p $FILE_DIRECTORY

cat << 'EOF' > "$FILE"
{
 "123456789012": "arn:aws:iam::123456789012:role/cross-account-emr-access-role"
}
EOF

Terminate an Amazon EMR cluster from Studio Classic

The following procedure shows how to terminate an Amazon EMR cluster from a Studio Classic
notebook.

To terminate a cluster in a Running state, navigate to the list of available Amazon EMR
clusters.

1. In SageMaker Studio Classic, select the Home

()
icon in Studio Classic UI's left-side panel, then select the Data node in the navigation menu.

2. Navigate down to the Clusters node. This opens up a page listing the Amazon EMR clusters
that you can access from SageMaker Studio Classic.

Prepare data using Amazon EMR 2399

Amazon SageMaker Developer Guide

3. Select the name of the cluster that you want to terminate, then choose Terminate.

4. This opens up a confirmation window informing you that any pending work or data on your
cluster will be lost permanently after termination. Confirm by choosing Terminate again.

Access Spark UI from Studio Classic

The following sections give instructions for accessing the Spark UI from SageMaker Studio Classic
notebooks. The Spark UI allows you to monitor and debug your Spark Jobs submitted to run on
Amazon EMR from Studio Classic notebooks. SSH tunneling and presigned URLs are two ways for
accessing the Spark UI.

Set up SSH tunneling for Spark UI access

To set up SSH tunneling to access the Spark UI, follow one of the two options in this section.

Options for setting up SSH tunneling:

• Option 1: Set up an SSH tunnel to the master node using local port forwarding

• Option 2, part 1: Set up an SSH tunnel to the master node using dynamic port forwarding

Option 2, part 2: Configure proxy settings to view websites hosted on the master node

For information about viewing web interfaces hosted on Amazon EMR clusters, see View web
interfaces hosted on Amazon EMR Clusters. You can also visit your Amazon EMR console to get
access to the Spark UI.

Note

You can set up an SSH tunnel even if presigned URLs are not available to you.

Presigned URLs

To create one-click URLs that can access Spark UI on Amazon EMR from SageMaker Studio Classic
notebooks, you must enable the following IAM permissions. Choose the option that applies to you:

• For Amazon EMR clusters that are in the same account as the SageMaker Studio Classic
notebook: Add the following permissions to the SageMaker Studio Classic IAM execution role.

Prepare data using Amazon EMR 2400

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ssh-tunnel-local.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ssh-tunnel.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-connect-master-node-proxy.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-web-interfaces.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-web-interfaces.html

Amazon SageMaker Developer Guide

• For Amazon EMR clusters that are in a different account (not SageMaker Studio Classic
notebook): Add the following permissions to the cross-account role that you created for
Discover Amazon EMR clusters from SageMaker Studio Classic.

Note

You can access presigned URLs from the console in the following regions:

• US East (N. Virginia) Region

• US West (N. California) Region

• Canada (Central) Region

• Europe (Frankfurt) Region

• Europe (Stockholm) Region

• Europe (Ireland) Region

• Europe (London) Region

• Europe (Paris) Region

• Asia Pacific (Tokyo) Region

• Asia Pacific (Seoul) Region

• Asia Pacific (Sydney) Region

• Asia Pacific (Mumbai) Region

• Asia Pacific (Singapore) Region

• South America (São Paulo)

The following policy gives access to presigned URLs for your execution role.

{
 "Sid": "AllowPresignedUrl",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstanceGroups",
 "elasticmapreduce:CreatePersistentAppUI",
 "elasticmapreduce:DescribePersistentAppUI",
 "elasticmapreduce:GetPersistentAppUIPresignedURL",
 "elasticmapreduce:GetOnClusterAppUIPresignedURL"

Prepare data using Amazon EMR 2401

Amazon SageMaker Developer Guide

],
 "Resource": [
 "arn:aws:elasticmapreduce:region:account-id:cluster/*"
]
}

Walkthroughs and whitepapers

The following blogs use a case study of sentiment prediction for a movie review to illustrate
the process of executing a complete machine learning workflow. This includes data preparation,
monitoring Spark jobs, and training and deploying a ML model to get predictions directly from
your Studio Classic notebook.

• Create and manage Amazon EMR clusters from SageMaker Studio Classic to run interactive Spark
and ML workloads.

• To extend the use case to a cross-account configuration where SageMaker Studio Classic and
your Amazon EMR cluster are deployed in separete AWS accounts, see Create and manage
Amazon EMR clusters from SageMaker Studio Classic to run interactive Spark and ML workloads -
Part 2.

See also:

• A walkthrough of the configuration of Access Apache Livy using a Network Load Balancer on a
Kerberos-enabled Amazon EMR cluster.

• AWS whitepapers for SageMaker Studio Classic best practices.

Additional Configuration for cross accounts use cases (for administrators)

To enable cluster discovery across accounts, administrators need to provide the ARN of a cross-
account IAM role to the execution role of SageMaker Studio Classic. SageMaker Studio Classic's
execution role assumes that remote role to discover and connect to Amazon EMR clusters in the
trusting account. The ARN of this role is loaded by the Studio Classic's Jupyter server at launch.

You can specify this information in two ways.

• Write this remote role in a file named emr-discovery-iam-role-arns-
DO_NOT_DELETE.json placed in the directory .cross-account-configuration-

Prepare data using Amazon EMR 2402

https://aws.amazon.com/blogs/machine-learning/part-1-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://aws.amazon.com/blogs/machine-learning/part-1-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://aws.amazon.com/blogs/machine-learning/part-2-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://aws.amazon.com/blogs/machine-learning/part-2-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://aws.amazon.com/blogs/machine-learning/part-2-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://aws.amazon.com/blogs/big-data/access-apache-livy-using-a-network-load-balancer-on-a-kerberos-enabled-amazon-emr-cluster/
https://aws.amazon.com/blogs/big-data/access-apache-livy-using-a-network-load-balancer-on-a-kerberos-enabled-amazon-emr-cluster/
https://docs.aws.amazon.com/whitepapers/latest/sagemaker-studio-admin-best-practices/sagemaker-studio-admin-best-practices.html

Amazon SageMaker Developer Guide

DO_NOT_DELETE in your home directory located in the Amazon EFS storage volume used by
SageMaker Studio Classic.

• Alternatively, you can automate this process by using Lifecycle Configuration (LCC) scripts. You
can attach the LCC to your domain or a specific user profile. The LCC script that you use must
be a JupyterServer configuration. For more information on how to create an LCC script, see Use
Lifecycle Configurations with Studio Classic.

The following is an example LCC script. To modify the script, replace ASSUMABLE-ROLE and emr-
account with your role name and remote account ID, respectively. The number of cross accounts is
limited to five.

This script creates the file that informs SageMaker Studio Classic that the role
 "arn:aws:iam::emr-account:role/ASSUMABLE-ROLE" in remote account "emr-account" must be
 assumed to list and describe Amazon EMR clusters in the remote account.

#!/bin/bash

set -eux

FILE_DIRECTORY="/home/sagemaker-user/.cross-account-configuration-DO_NOT_DELETE"
FILE_NAME="emr-discovery-iam-role-arns-DO_NOT_DELETE.json"
FILE="$FILE_DIRECTORY/$FILE_NAME"

mkdir -p $FILE_DIRECTORY

cat > "$FILE" <<- "EOF"
{
 emr-cross-account1: "arn:aws:iam::emr-cross-account1:role/ASSUMABLE-ROLE",
 emr-cross-account2: "arn:aws:iam::emr-cross-account2:role/ASSUMABLE-ROLE"
}
EOF

After the LCC runs and the files are written, the server reads the file /home/sagemaker-
user/.cross-account-configuration-DO_NOT_DELETE/emr-discovery-iam-role-
arns-DO_NOT_DELETE.json and stores the cross-account ARN.

Troubleshooting

The following are common errors that might occur while connecting or using Amazon EMR clusters
from Studio Classic notebooks.

Prepare data using Amazon EMR 2403

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-manage-storage.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lcc.html

Amazon SageMaker Developer Guide

Troubleshoot Livy connections hanging or failing

The following are Livy connectivity issues that might occur while using Amazon EMR clusters from
Studio Classic notebooks.

• Your Amazon EMR cluster encountered an out-of-memory error.

A possible reason for a Livy connection via sparkmagic hanging or failing is if your Amazon
EMR cluster encountered an out-of-memory error.

By default, the Java configuration parameter of the Apache Spark driver,
spark.driver.defaultJavaOptions, is set to -XX:OnOutOfMemoryError='kill
-9 %p'. This means that the default action taken when the driver program encounters an
OutOfMemoryError is to terminate the driver program by sending a SIGKILL signal. When
the Apache Spark driver is terminated, any Livy connection via sparkmagic that depends on
that driver hangs or fails. This is because the Spark driver is responsible for managing the Spark
application's resources, including task scheduling and execution. Without the driver, the Spark
application cannot function, and any attempts to interact with it fails.

If you suspect that your Spark cluster is experiencing memory issues, you can check Amazon EMR
logs. Containers killed due to out-of-memory errors typically exit with a code of 137. In such
cases, you need to restart the Spark application and establish a new Livy connection to resume
interaction with the Spark cluster.

You can refer to the knowledge base article How do I resolve the error "Container killed by YARN
for exceeding memory limits" in Spark on Amazon EMR? on AWS re:Post to learn about various
strategies and parameters that can be used to address an out-of-memory issue.

We recommend reviewing the Amazon EMR Best Practices Guides for best practices and tuning
guidance on running Apache Spark workloads on your Amazon EMR clusters.

• Your Livy session times out when connecting to an Amazon EMR cluster for the first time.

When you initially connect to an Amazon EMR cluster using sagemaker-studio-analytics-
extension, which enables connection to a remote Spark (Amazon EMR) cluster via the SparkMagic
library using Apache Livy, you may encounter a connection timeout error:

An error was encountered: Session 0 did not start up in 60 seconds.

If your Amazon EMR cluster requires the initialization of a Spark application upon establishing a
connection, there is an increased chance of seeing connection timeout errors.

Prepare data using Amazon EMR 2404

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-view-web-log-files.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-view-web-log-files.html
https://repost.aws/knowledge-center/emr-spark-yarn-memory-limit
https://repost.aws/knowledge-center/emr-spark-yarn-memory-limit
https://aws.github.io/aws-emr-best-practices/
https://pypi.org/project/sagemaker-studio-analytics-extension/
https://pypi.org/project/sagemaker-studio-analytics-extension/
https://github.com/jupyter-incubator/sparkmagic
https://livy.apache.org/

Amazon SageMaker Developer Guide

To reduce the chances of getting timeouts when connecting to an Amazon EMR cluster using Livy
through the analytics extension, sagemaker-studio-analytics-extension version 0.0.19
and later override the default server session timeout to 120 seconds instead of sparkmagic's
default of 60 seconds.

We recommend upgrading your extension 0.0.18 and sooner by running the following upgrade
command.

pip install --upgrade sagemaker-studio-analytics-extension

Note that when providing a custom timeout configuration in sparkmagic, sagemaker-
studio-analytics-extension honors this override. However, setting the session timeout
to 60 seconds automatically triggers the default server session timeout of 120 seconds in
sagemaker-studio-analytics-extension.

Prepare data using AWS Glue Interactive Sessions

AWS Glue Interactive Sessions is an on-demand, serverless, Apache Spark runtime environment
that data scientists and engineers can use to rapidly build, test, and run data preparation and
analytics applications.

You can initiate an AWS Glue interactive session by starting a SageMaker Studio Classic notebook.
When creating your Studio Classic notebook, choose the built-in Glue PySpark or Glue Spark
kernel. This automatically starts an interactive, serverless Spark session. You do not need to
provision or manage any compute cluster or infrastructure. After initialization, you can explore the
AWS Glue Data Catalog, execute complex queries, and interactively analyze and prepare data using
Spark within your Studio Classic notebook. You can then use the prepared data to build, train, tune,
and deploy models using the purpose-built ML tools within SageMaker Studio Classic.

Before starting your AWS Glue interactive session in SageMaker Studio Classic, you need to set the
appropriate roles and policies. Additionally, you may need to provide access to additional resources,
such as a storage Amazon S3 bucket, which might require additional policies. For more information
about required and additional IAM policies, see Permissions for AWS Glue Interactive Sessions in
SageMaker Studio Classic.

SageMaker Studio Classic provides a default configuration for your AWS Glue interactive session,
however, you can use AWS Glue’s full catalog of Jupyter magic commands to further customize

Prepare data using AWS Glue Interactive Sessions 2405

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-overview.html

Amazon SageMaker Developer Guide

your environment. For information about the default and additional Jupyter magics that you
can use in your AWS Glue interactive session, see Configure your AWS Glue interactive session in
SageMaker Studio Classic.

The supported images and kernels for connecting to a AWS Glue interactive session are as follows:

• Images: SparkAnalytics 1.0, SparkAnalytics 2.0

• Kernel: Glue Python [PySpark and Ray] and Glue Spark

Prerequisites:

The SparkAnalytics image that you select to launch your AWS Glue session in Studio Classic is a
combination of two frameworks - the SparkMagic framework (used with Amazon EMR), and AWS
Glue. For this reason, the prerequisites for both frameworks apply. However, you do not have to set
up the Amazon EMR cluster if you only plan to use AWS Glue Interactive Sessions. Before you start
your first AWS Glue interactive session in Studio Classic, complete the following:

• Complete the prerequisites required to use the SparkMagic image. For a list of the prerequisites,
see the Prerequisites section in Prepare Data at Scale with Studio Classic Notebooks.

• Create an execution role with permissions for both AWS Glue and SageMaker Studio Classic.
Add the managed policy AwsGlueSessionUserRestrictedServiceRole, and create a
custom policy that includes permissions sts:GetCallerIdentity, iam:GetRole, and
IAM:Passrole. For instructions about how to create the necessary permissions, see Permissions
for AWS Glue Interactive Sessions in SageMaker Studio Classic.

• Create a SageMaker domain with the execution role you created. For instructions about how to
create a domain, see Custom onboarding using IAM.

Get Started with AWS Glue Interactive Sessions

In this guide, you learn how to initiate an AWS Glue interactive session in SageMaker Studio Classic,
and manage your environment with Jupyter magics.

Permissions for AWS Glue Interactive Sessions in SageMaker Studio Classic

This section lists the required policies to run AWS Glue interactive sessions in Studio Classic and
explains how to set them up. In particular, it details how to:

Prepare data using AWS Glue Interactive Sessions 2406

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-emr-cluster.html

Amazon SageMaker Developer Guide

• Attach the AwsGlueSessionUserRestrictedServiceRole managed policy to your
SageMaker execution role.

• Create an inline custom policy on your SageMaker execution role.

• Modify the trust relationship of your SageMaker execution role.

To attach the AwsGlueSessionUserRestrictedServiceRole managed policy to your
execution role

1. Open the IAM console.

2. Select Roles in the left-side panel.

3. Find your Studio Classic execution role. Choose the role name to access the role summary
page.

4. Under the Permissions tab, select Attach policies from the Add Permissions dropdown menu.

5. Select the checkbox next to the managed policy
AwsGlueSessionUserRestrictedServiceRole.

6. Choose Attach policies.

The summary page shows your newly-added managed policies.

To create the inline custom policy on your execution role

1. Select Create inline policy in the Add Permissions dropdown menu.

2. Select the JSON tab.

3. Copy and paste in the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "unique_statement_id",

 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole",
 "sts:GetCallerIdentity"

Prepare data using AWS Glue Interactive Sessions 2407

https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

],
 "Resource": "*"
 }
]
}

4. Choose Review policy.

5. Enter a Name and choose Create policy.

The summary page shows your newly-added custom policy.

To modify the trust relationship of your execution role

1. Select the Trust relationships tab.

2. Chose Edit trust policy.

3. Copy and paste in the following policy.

{
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "glue.amazonaws.com",
 "sagemaker.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

4. Choose Update policy.

You can add additional roles and policies if you need to access other AWS resources. For a
description of the additional roles and policies you can include, see Interactive sessions with IAM in
the AWS Glue documentation.

Prepare data using AWS Glue Interactive Sessions 2408

https://docs.aws.amazon.com/glue/latest/dg/glue-is-security.html

Amazon SageMaker Developer Guide

Tag propagation

Tags are commonly used to track and allocate costs, control access to your session, isolate your
resources, and more. To learn about adding metadata to your AWS resources using tagging, or for
details on common use cases, see Additional information.

You can enable the automatic propagation of AWS tags to new AWS Glue interactive sessions
created from within the Studio Classic UI. When an AWS Glue interactive session is created from
SageMaker Studio Classic, any user-defined tags attached to the user profile or shared space
are carried over to the new AWS Glue interactive session. Additionally, SageMaker Studio Classic
automatically adds two AWS-generated internal tags ((sagemaker:user-profile-arn and
sagemaker:domain-arn) or (sagemaker:shared-space-arn and sagemaker:domain-arn))
to new AWS Glue interactive sessions created from the Studio Classic UI. You can use these tags to
aggregate costs across individual domains, user profiles, or spaces.

Enable tag propagation

To enable the automatic propagation of tags to new AWS Glue interactive sessions, set the
following permissions for your SageMaker execution role and the IAM role associated with your
AWS Glue session:

Note

By default, the role associated with the AWS Glue interactive session is the same as
the SageMaker execution role. You can specify a different execution role for the AWS
Glue interactive session by using the %iam_role magic command. For information on
the available Jupyter magic commands to configure AWS Glue interactive sessions, see
Configure your AWS Glue interactive session in SageMaker Studio Classic.

• On your SageMaker execution role: Create a new inline policy, and paste the following JSON
file. The policy grants the execution role permission to describe (DescribeUserProfile,
DescribeSpace, DescribeDomain) and list the tags (ListTag) set on the user profiles, shared
spaces, and SageMaker domain.

{
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"

Prepare data using AWS Glue Interactive Sessions 2409

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/custom-tags.html

Amazon SageMaker Developer Guide

],
 "Resource": [
 "arn:aws:sagemaker:*:*:user-profile/*",
 "arn:aws:sagemaker:*:*:space/*"
]
},
{
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeUserProfile"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:user-profile/*"
]
},
{
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeSpace"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:space/*"
]
}
{
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeDomain"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:domain/*"
]
}

• On the IAM role of your AWS Glue session: Create a new inline policy, and paste the following
JSON file. The policy grants your role permission to attach tags (TagResource) to your session,
or retrieve its list of tags (GetTags).

{
 "Effect": "Allow",
 "Action": [
 "glue:TagResource",
 "glue:GetTags"

Prepare data using AWS Glue Interactive Sessions 2410

Amazon SageMaker Developer Guide

],
 "Resource": [
 "arn:aws:glue:*:*:session/*"
]
}

Note

• Failures occurring while applying those permissions do not prevent the creation of
AWS Glue interactive sessions. You can find details about the reason of the failure in
SageMaker Studio Classic CloudWatch logs.

• You must restart the kernel of your AWS Glue interactive session to propagate the
update of a tag’s value.

It is important to note the following points:

• Once a tag is attached to a session, it cannot be removed by propagation.

You can remove tags from an AWS Glue interactive session directly through the AWS CLI, the
AWS Glue API, or the https://console.aws.amazon.com/sagemaker/. For example, using the AWS
CLI, you can remove a tag by providing the session's ARN and the tag keys you want to remove as
follows:

aws glue untag-resource \
--resource-arn arn:aws:glue:region:account-id:session:session-name \
--tags-to-remove tag-key1,tag-key2

• SageMaker Studio Classic adds two AWS-generated internal tags ((sagemaker:user-
profile-arn and sagemaker:domain-arn) or (sagemaker:shared-space-arn and
sagemaker:domain-arn)) to new AWS Glue interactive sessions created from the Studio
Classic UI. Those tags count against the limit of 50 tags set on all AWS resources. Both
sagemaker:user-profile-arn and sagemaker:shared-space-arn contain the domain ID
to which they belong.

• Tags keys starting with aws:, AWS:, or any combination of upper and lowercase letters as a
prefix for keys are not propagated and are reserved for AWS use.

Prepare data using AWS Glue Interactive Sessions 2411

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Additional information

For more information on tagging, refer to the following resources.

• To learn about adding metadata to your AWS resources with tagging, see Tagging AWS
resources.

• For information on tracking costs using tags, see Cost analysis in SageMaker Studio Classic
Administration Best Practices.

• For information on controlling access to AWS Glue based on tag keys, see ABAC with AWS Glue.

Launch your AWS Glue interactive session on SageMaker Studio Classic

After you create the roles, policies, and SageMaker domain, you can launch your AWS Glue
interactive session in SageMaker Studio Classic.

To launch AWS Glue in SageMaker Studio Classic

1. Create a SageMaker domain. For instructions on how to create a new domain, see Amazon
SageMaker domain overview.

2. Sign in to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

3. Select Control Panel in the left-side panel.

4. In the Launch App dropdown menu next to the user name, select Studio.

5. In the Jupyter view, choose File, then New, then Notebook.

6. In the Image dropdown menu, select SparkAnalytics 1.0 or SparkAnalytics 2.0. In the kernel
dropdown menu, select Glue Spark or Glue Python [PySpark and Ray]. Choose Select.

7. (optional) Use Jupyter magics to customize your environment. For more information about
Jupyter magics, see Configure your AWS Glue interactive session in SageMaker Studio Classic.

8. Start writing your Spark data processing scripts.

Configure your AWS Glue interactive session in SageMaker Studio Classic

Note

All magic configurations are carried over to subsequent sessions for the lifetime of the AWS
Glue kernel.

Prepare data using AWS Glue Interactive Sessions 2412

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/whitepapers/latest/sagemaker-studio-admin-best-practices/cost-attribution.html
glue/latest/dg/security_iam_service-with-iam.html#security_iam_service-with-iam-tags
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

You can use Jupyter magics in your AWS Glue interactive session to modify your session and
configuration parameters. Magics are short commands prefixed with % at the start of Jupyter
cells that provide a quick and easy way to help you control your environment. In your AWS Glue
interactive session, the following magics are set for you by default:

Magic Default value

%glue_version 3.0

%iam_role execution role attached to your SageMaker
domain

%region your region

You can use magics to further customize your environment. For example, if you want to change
the number of workers allocated to your job from the default five to 10, you can specify
%number_of_workers 10. If you want to configure your session to stop after 10 minutes of idle
time instead of the default 2880, you can specify %idle_timeout 10.

All of the Jupyter magics currently available in AWS Glue are also available in SageMaker Studio
Classic. For the complete list of AWS Glue magics available, see Configuring AWS Glue interactive
sessions for Jupyter and AWS Glue Studio Classic notebooks.

AWS Glue Interactive Session Pricing

When you use AWS Glue Interactive Sessions on SageMaker Studio Classic notebooks, you are
charged separately for resource usage on AWS Glue and Studio Classic notebooks.

AWS charges for AWS Glue Interactive Sessions based on how long the session is active and the
number of Data Processing Units (DPU) used. You are charged an hourly rate for the number
of DPUs used to run your workloads, billed in increments of one second. AWS Glue Interactive
Sessions assigns a default of five DPUs and requires a minimum of two DPUs. There is also a one-
minute minimum billing duration for each interactive session. To see the AWS Glue rates and
pricing examples, or to estimate your costs using the AWS Pricing Calculator, see AWS Glue pricing .

Your SageMaker Studio Classic notebook runs on an Amazon EC2 instance and you are charged for
the instance type you choose, based on the duration of use. Studio Classic assigns you a default
EC2 instance type of ml-t3-medium when you select the SparkAnalytics image and associated

Prepare data using AWS Glue Interactive Sessions 2413

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html
https://aws.amazon.com/glue/pricing

Amazon SageMaker Developer Guide

kernel. You can change the instance type for of your Studio Classic notebook to suit your workload.
For information about SageMaker Studio Classic pricing, see Amazon SageMaker Pricing.

Prepare data using AWS Glue Interactive Sessions 2414

https://aws.amazon.com/sagemaker/pricing

Amazon SageMaker Developer Guide

Process data

SageMaker Processing refers to SageMaker’s capabilities to run data pre and post processing,
feature engineering, and model evaluation tasks on SageMaker's fully-managed infrastructure.
These tasks are executed as processing jobs. Using SageMaker Processing API, data scientists can
run scripts and notebooks to process, transform, and analyze datasets to prepare them for machine
learning. When combined with the other critical machine learning tasks provided by SageMaker,
such as training and hosting, Processing provides you with the benefits of a fully managed machine
learning environment, including all the security and compliance support built into SageMaker. You
have the flexibility to use the built-in data processing containers or to bring your own containers
for custom processing logic and then submit jobs to run on SageMaker managed infrastructure.

Note

You can create a processing job programmatically by calling the CreateProcessingJob API
action in any language supported by SageMaker or by using the AWS CLI. For information
on how this API action translates into a function in the language of your choice, see the
See Also section of CreateProcessingJob and choose an SDK. As an example, for Python
users, refer to the Amazon SageMaker Processing section of SageMaker Python SDK.
Alternatively, see the full request syntax of create_processing_job in the AWS SDK for
Python (Boto3).

The following diagram shows how Amazon SageMaker spins up a Processing job. Amazon
SageMaker takes your script, copies your data from Amazon Simple Storage Service (Amazon
S3), and then pulls a processing container. The underlying infrastructure for a Processing job is
fully managed by Amazon SageMaker. After you submit a processing job, SageMaker launches
the compute instances, processes and analyzes the input data, and releases the resources upon
completion. The output of the Processing job is stored in the Amazon S3 bucket you specified.

Note

Your input data must be stored in an Amazon S3 bucket. Alternatively, you can use Amazon
Athena or Amazon Redshift as input sources.

2415

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html#API_CreateProcessingJob_SeeAlsoAPI_CreateProcessingJob.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_processing_job.html

Amazon SageMaker Developer Guide

Tip

To learn best practices for distributed computing of machine learning (ML) training and
processing jobs in general, see Distributed computing with SageMaker best practices.

Use Amazon SageMaker Processing Sample Notebooks

We provide two sample Jupyter notebooks that show how to perform data preprocessing, model
evaluation, or both.

For a sample notebook that shows how to run scikit-learn scripts to perform data preprocessing
and model training and evaluation with the SageMaker Python SDK for Processing, see scikit-learn
Processing. This notebook also shows how to use your own custom container to run processing
workloads with your Python libraries and other specific dependencies.

For a sample notebook that shows how to use Amazon SageMaker Processing to perform
distributed data preprocessing with Spark, see Distributed Processing (Spark). This notebook also
shows how to train a regression model using XGBoost on the preprocessed dataset.

For instructions on how to create and access Jupyter notebook instances that you can use to run
these samples in SageMaker, see Amazon SageMaker Notebook Instances. After you have created
a notebook instance and opened it, choose the SageMaker Examples tab to see a list of all the
SageMaker samples. To open a notebook, choose its Use tab and choose Create copy.

Sample Notebooks 2416

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_processing/scikit_learn_data_processing_and_model_evaluation
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_processing/scikit_learn_data_processing_and_model_evaluation
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_processing/spark_distributed_data_processing/sagemaker-spark-processing.ipynb

Amazon SageMaker Developer Guide

Monitor Amazon SageMaker Processing Jobs with CloudWatch
Logs and Metrics

Amazon SageMaker Processing provides Amazon CloudWatch logs and metrics to monitor
processing jobs. CloudWatch provides CPU, GPU, memory, GPU memory, and disk metrics, and
event logging. For more information, see Monitor Amazon SageMaker with Amazon CloudWatch
and Log Amazon SageMaker Events with Amazon CloudWatch.

Data Processing with Apache Spark

Apache Spark is a unified analytics engine for large-scale data processing. Amazon SageMaker
provides prebuilt Docker images that include Apache Spark and other dependencies needed to
run distributed data processing jobs. With the Amazon SageMaker Python SDK, you can easily
apply data transformations and extract features (feature engineering) using the Spark framework.
For information about using the SageMaker Python SDK to run Spark processing jobs, see Data
Processing with Spark in the Amazon SageMaker Python SDK.

A code repository that contains the source code and Dockerfiles for the Spark images is available
on GitHub.

Running a Spark Processing Job

You can use the sagemaker.spark.PySparkProcessor or
sagemaker.spark.SparkJarProcessor class to run your Spark application inside of a
processing job. Note you can set MaxRuntimeInSeconds to a maximum runtime limit of 5 days.
With respect to execution time, and number of instances used, simple spark workloads see a near
linear relationship between the number of instances vs. time to completion.

The following code example shows how to run a processing job that invokes your PySpark script
preprocess.py.

from sagemaker.spark.processing import PySparkProcessor

spark_processor = PySparkProcessor(
 base_job_name="spark-preprocessor",
 framework_version="2.4",
 role=role,
 instance_count=2,

CloudWatch Logs and Metrics 2417

https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html#data-processing-with-spark
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html#data-processing-with-spark
https://sagemaker.readthedocs.io/en/stable/
https://github.com/aws/sagemaker-spark-container
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.spark.processing.PySparkProcessor
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.spark.processing.SparkJarProcessor

Amazon SageMaker Developer Guide

 instance_type="ml.m5.xlarge",
 max_runtime_in_seconds=1200,
)

spark_processor.run(
 submit_app="preprocess.py",
 arguments=['s3_input_bucket', bucket,
 's3_input_key_prefix', input_prefix,
 's3_output_bucket', bucket,
 's3_output_key_prefix', output_prefix]
)

For an in-depth look, see the Distributed Data Processing with Apache Spark and SageMaker
Processing example notebook.

If you are not using the Amazon SageMaker Python SDK and one of its Processor classes to retrieve
the pre-built images, you can retrieve these images yourself. The SageMaker prebuilt Docker
images are stored in Amazon Elastic Container Registry (Amazon ECR). For a complete list of the
available pre-built Docker images, see the available images document.

To learn more about using the SageMaker Python SDK with Processing containers, see Amazon
SageMaker Python SDK.

Data Processing with scikit-learn

For a sample notebook that shows how to run scikit-learn scripts using a Docker image provided
and maintained by SageMaker to preprocess data and evaluate models, see scikit-learn Processing.
To use this notebook, you need to install the SageMaker Python SDK for Processing.

This notebook runs a processing job using SKLearnProcessor class from the the SageMaker
Python SDK to run a scikit-learn script that you provide. The script preprocesses data, trains a
model using a SageMaker training job, and then runs a processing job to evaluate the trained
model. The processing job estimates how the model is expected to perform in production.

To learn more about using the SageMaker Python SDK with Processing containers, see the
SageMaker Python SDK. For a complete list of pre-built Docker images available for processing
jobs, see Docker Registry Paths and Example Code.

The following code example shows how the notebook uses SKLearnProcessor to run your own
scikit-learn script using a Docker image provided and maintained by SageMaker, instead of your
own Docker image.

Data Processing with scikit-learn 2418

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_processing/spark_distributed_data_processing/sagemaker-spark-processing.html
https://sagemaker.readthedocs.io/
https://github.com/aws/sagemaker-spark-container/blob/master/available_images.md
https://sagemaker.readthedocs.io/en/stable/
https://sagemaker.readthedocs.io/en/stable/
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_processing/scikit_learn_data_processing_and_model_evaluation
https://sagemaker.readthedocs.io/en/stable/
https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths

Amazon SageMaker Developer Guide

from sagemaker.sklearn.processing import SKLearnProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput

sklearn_processor = SKLearnProcessor(framework_version='0.20.0',
 role=role,
 instance_type='ml.m5.xlarge',
 instance_count=1)

sklearn_processor.run(code='preprocessing.py',
 inputs=[ProcessingInput(
 source='s3://path/to/my/input-data.csv',
 destination='/opt/ml/processing/input')],
 outputs=[ProcessingOutput(source='/opt/ml/processing/output/
train'),
 ProcessingOutput(source='/opt/ml/processing/output/
validation'),
 ProcessingOutput(source='/opt/ml/processing/output/
test')]
)

To process data in parallel using Scikit-Learn on Amazon SageMaker Processing, you can shard
input objects by S3 key by setting s3_data_distribution_type='ShardedByS3Key' inside a
ProcessingInput so that each instance receives about the same number of input objects.

Data Processing with Framework Processors

A FrameworkProcessor can run Processing jobs with a specified machine learning framework,
providing you with an Amazon SageMaker–managed container for whichever machine learning
framework you choose. FrameworkProcessor provides premade containers for the following
machine learning frameworks: Hugging Face, MXNet, PyTorch, TensorFlow, and XGBoost.

The FrameworkProcessor class also provides you with customization over the container
configuration. The FrameworkProcessor class supports specifying a source directory
source_dir for your processing scripts and dependencies. With this capability, you can give
the processor access to multiple scripts in a directory instead of only specifying one script.
FrameworkProcessor also supports including a requirements.txt file in the source_dir for
customizing the Python libraries to install in the container.

For more information on the FrameworkProcessor class and its methods and parameters, see
FrameworkProcessor in the Amazon SageMaker Python SDK.

Data Processing with Framework Processors 2419

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.processing.FrameworkProcessor

Amazon SageMaker Developer Guide

To see examples of using a FrameworkProcessor for each of the supported machine learning
frameworks, see the following topics.

Topics

• Hugging Face Framework Processor

• MXNet Framework Processor

• PyTorch Framework Processor

• TensorFlow Framework Processor

• XGBoost Framework Processor

Hugging Face Framework Processor

Hugging Face is an open-source provider of natural language processing (NLP) models. The
HuggingFaceProcessor in the Amazon SageMaker Python SDK provides you with the ability to
run processing jobs with Hugging Face scripts. When you use the HuggingFaceProcessor, you
can leverage an Amazon-built Docker container with a managed Hugging Face environment so that
you don't need to bring your own container.

The following code example shows how you can use the HuggingFaceProcessor to run
your Processing job using a Docker image provided and maintained by SageMaker. Note that
when you run the job, you can specify a directory containing your scripts and dependencies in
the source_dir argument, and you can have a requirements.txt file located inside your
source_dir directory that specifies the dependencies for your processing script(s). SageMaker
Processing installs the dependencies in requirements.txt in the container for you.

from sagemaker.huggingface import HuggingFaceProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker import get_execution_role

#Initialize the HuggingFaceProcessor
hfp = HuggingFaceProcessor(
 role=get_execution_role(),
 instance_count=1,
 instance_type='ml.g4dn.xlarge',
 transformers_version='4.4.2',
 pytorch_version='1.6.0',
 base_job_name='frameworkprocessor-hf'
)

Hugging Face Framework Processor 2420

Amazon SageMaker Developer Guide

#Run the processing job
hfp.run(
 code='processing-script.py',
 source_dir='scripts',
 inputs=[
 ProcessingInput(
 input_name='data',
 source=f's3://{BUCKET}/{S3_INPUT_PATH}',
 destination='/opt/ml/processing/input/data/'
)
],
 outputs=[
 ProcessingOutput(output_name='train', source='/opt/ml/processing/output/
train/', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'),
 ProcessingOutput(output_name='test', source='/opt/ml/processing/output/test/',
 destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'),
 ProcessingOutput(output_name='val', source='/opt/ml/processing/output/val/',
 destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}')
]
)

If you have a requirements.txt file, it should be a list of libraries you want to install in the
container. The path for source_dir can be a relative, absolute, or Amazon S3 URI path. However,
if you use an Amazon S3 URI, then it must point to a tar.gz file. You can have multiple scripts in the
directory you specify for source_dir. To learn more about the HuggingFaceProcessor class,
see Hugging Face Estimator in the Amazon SageMaker Python SDK.

MXNet Framework Processor

Apache MXNet is an open-source deep learning framework commonly used for training and
deploying neural networks. The MXNetProcessor in the Amazon SageMaker Python SDK
provides you with the ability to run processing jobs with MXNet scripts. When you use the
MXNetProcessor, you can leverage an Amazon-built Docker container with a managed MXNet
environment so that you don’t need to bring your own container.

The following code example shows how you can use the MXNetProcessor to run your Processing
job using a Docker image provided and maintained by SageMaker. Note that when you run the
job, you can specify a directory containing your scripts and dependencies in the source_dir
argument, and you can have a requirements.txt file located inside your source_dir directory

MXNet Framework Processor 2421

https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/sagemaker.huggingface.html

Amazon SageMaker Developer Guide

that specifies the dependencies for your processing script(s). SageMaker Processing installs the
dependencies in requirements.txt in the container for you.

from sagemaker.mxnet import MXNetProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker import get_execution_role

#Initialize the MXNetProcessor
mxp = MXNetProcessor(
 framework_version='1.8.0',
 py_version='py37',
 role=get_execution_role(),
 instance_count=1,
 instance_type='ml.c5.xlarge',
 base_job_name='frameworkprocessor-mxnet'
)

#Run the processing job
mxp.run(
 code='processing-script.py',
 source_dir='scripts',
 inputs=[
 ProcessingInput(
 input_name='data',
 source=f's3://{BUCKET}/{S3_INPUT_PATH}',
 destination='/opt/ml/processing/input/data/'
)
],
 outputs=[
 ProcessingOutput(
 output_name='processed_data',
 source='/opt/ml/processing/output/',
 destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'
)
]
)

If you have a requirements.txt file, it should be a list of libraries you want to install in the
container. The path for source_dir can be a relative, absolute, or Amazon S3 URI path. However,
if you use an Amazon S3 URI, then it must point to a tar.gz file. You can have multiple scripts in
the directory you specify for source_dir. To learn more about the MXNetProcessor class, see
MXNet Estimator in the Amazon SageMaker Python SDK.

MXNet Framework Processor 2422

https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/sagemaker.mxnet.html#mxnet-estimator

Amazon SageMaker Developer Guide

PyTorch Framework Processor

PyTorch is an open-source machine learning framework. The PyTorchProcessor in the Amazon
SageMaker Python SDK provides you with the ability to run processing jobs with PyTorch scripts.
When you use the PyTorchProcessor, you can leverage an Amazon-built Docker container with a
managed PyTorch environment so that you don’t need to bring your own container.

The following code example shows how you can use the PyTorchProcessor to run your
Processing job using a Docker image provided and maintained by SageMaker. Note that when
you run the job, you can specify a directory containing your scripts and dependencies in the
source_dir argument, and you can have a requirements.txt file located inside your
source_dir directory that specifies the dependencies for your processing script(s). SageMaker
Processing installs the dependencies in requirements.txt in the container for you.

For the PyTorch versions supported by SageMaker, see the available Deep Learning Container
images.

from sagemaker.pytorch.processing import PyTorchProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker import get_execution_role

#Initialize the PyTorchProcessor
pytorch_processor = PyTorchProcessor(
 framework_version='1.8',
 role=get_execution_role(),
 instance_type='ml.m5.xlarge',
 instance_count=1,
 base_job_name='frameworkprocessor-PT'
)

#Run the processing job
pytorch_processor.run(
 code='processing-script.py',
 source_dir='scripts',
 inputs=[
 ProcessingInput(
 input_name='data',
 source=f's3://{BUCKET}/{S3_INPUT_PATH}',
 destination='/opt/ml/processing/input'
)
],
 outputs=[

PyTorch Framework Processor 2423

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

 ProcessingOutput(output_name='data_structured', source='/opt/ml/processing/tmp/
data_structured', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'),
 ProcessingOutput(output_name='train', source='/opt/ml/processing/output/train',
 destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'),
 ProcessingOutput(output_name='validation', source='/opt/ml/processing/output/
val', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'),
 ProcessingOutput(output_name='test', source='/opt/ml/processing/output/test',
 destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'),
 ProcessingOutput(output_name='logs', source='/opt/ml/processing/logs',
 destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}')
]
)

If you have a requirements.txt file, it should be a list of libraries you want to install in the
container. The path for source_dir can be a relative, absolute, or Amazon S3 URI path. However,
if you use an Amazon S3 URI, then it must point to a tar.gz file. You can have multiple scripts in the
directory you specify for source_dir. To learn more about the PyTorchProcessor class, see
PyTorch Estimator in the Amazon SageMaker Python SDK.

TensorFlow Framework Processor

TensorFlow is an open-source machine learning and artificial intelligence library. The
TensorFlowProcessor in the Amazon SageMaker Python SDK provides you with the ability to
run processing jobs with TensorFlow scripts. When you use the TensorFlowProcessor, you can
leverage an Amazon-built Docker container with a managed TensorFlow environment so that you
don’t need to bring your own container.

The following code example shows how you can use the TensorFlowProcessor to run your
Processing job using a Docker image provided and maintained by SageMaker. Note that when
you run the job, you can specify a directory containing your scripts and dependencies in the
source_dir argument, and you can have a requirements.txt file located inside your
source_dir directory that specifies the dependencies for your processing script(s). SageMaker
Processing installs the dependencies in requirements.txt in the container for you.

from sagemaker.tensorflow import TensorFlowProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker import get_execution_role

#Initialize the TensorFlowProcessor
tp = TensorFlowProcessor(
 framework_version='2.3',

TensorFlow Framework Processor 2424

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html

Amazon SageMaker Developer Guide

 role=get_execution_role(),
 instance_type='ml.m5.xlarge',
 instance_count=1,
 base_job_name='frameworkprocessor-TF',
 py_version='py37'
)

#Run the processing job
tp.run(
 code='processing-script.py',
 source_dir='scripts',
 inputs=[
 ProcessingInput(
 input_name='data',
 source=f's3://{BUCKET}/{S3_INPUT_PATH}',
 destination='/opt/ml/processing/input/data'
),
 ProcessingInput(
 input_name='model',
 source=f's3://{BUCKET}/{S3_PATH_TO_MODEL}',
 destination='/opt/ml/processing/input/model'
)
],
 outputs=[
 ProcessingOutput(
 output_name='predictions',
 source='/opt/ml/processing/output',
 destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'
)
]
)

If you have a requirements.txt file, it should be a list of libraries you want to install in the
container. The path for source_dir can be a relative, absolute, or Amazon S3 URI path. However,
if you use an Amazon S3 URI, then it must point to a tar.gz file. You can have multiple scripts in the
directory you specify for source_dir. To learn more about the TensorFlowProcessor class, see
TensorFlow Estimator in the Amazon SageMaker Python SDK.

XGBoost Framework Processor

XGBoost is an open-source machine learning framework. The XGBoostProcessor in the Amazon
SageMaker Python SDK provides you with the ability to run processing jobs with XGBoost scripts.

XGBoost Framework Processor 2425

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator

Amazon SageMaker Developer Guide

When you use the XGBoostProcessor, you can leverage an Amazon-built Docker container with a
managed XGBoost environment so that you don’t need to bring your own container.

The following code example shows how you can use the XGBoostProcessor to run your
Processing job using a Docker image provided and maintained by SageMaker. Note that when
you run the job, you can specify a directory containing your scripts and dependencies in the
source_dir argument, and you can have a requirements.txt file located inside your
source_dir directory that specifies the dependencies for your processing script(s). SageMaker
Processing installs the dependencies in requirements.txt in the container for you.

from sagemaker.xgboost import XGBoostProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker import get_execution_role

#Initialize the XGBoostProcessor
xgb = XGBoostProcessor(
 framework_version='1.2-2',
 role=get_execution_role(),
 instance_type='ml.m5.xlarge',
 instance_count=1,
 base_job_name='frameworkprocessor-XGB',
)

#Run the processing job
xgb.run(
 code='processing-script.py',
 source_dir='scripts',
 inputs=[
 ProcessingInput(
 input_name='data',
 source=f's3://{BUCKET}/{S3_INPUT_PATH}',
 destination='/opt/ml/processing/input/data'
)
],
 outputs=[
 ProcessingOutput(
 output_name='processed_data',
 source='/opt/ml/processing/output/',
 destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'
)
]
)

XGBoost Framework Processor 2426

Amazon SageMaker Developer Guide

If you have a requirements.txt file, it should be a list of libraries you want to install in the
container. The path for source_dir can be a relative, absolute, or Amazon S3 URI path. However,
if you use an Amazon S3 URI, then it must point to a tar.gz file. You can have multiple scripts in the
directory you specify for source_dir. To learn more about the XGBoostProcessor class, see
XGBoost Estimator in the Amazon SageMaker Python SDK.

Use Your Own Processing Code

You can install libraries to run your scripts in your own processing container or, in a more advanced
scenario, you can build your own processing container that satisfies the contract to run in Amazon
SageMaker. For more information about containers in SageMaker, see Use Docker containers
to build models. For a formal specification that defines the contract for an Amazon SageMaker
Processing container, see Build Your Own Processing Container (Advanced Scenario).

Topics

• Run Scripts with Your Own Processing Container

• Build Your Own Processing Container (Advanced Scenario)

Run Scripts with Your Own Processing Container

You can use scikit-learn scripts to preprocess data and evaluate your models. To see how to run
scikit-learn scripts to perform these tasks, see the scikit-learn Processing sample notebook.
This notebook uses the ScriptProcessor class from the Amazon SageMaker Python SDK for
Processing.

The following example shows a general workflow for using a ScriptProcessor class with
your own processing container. The workflow shows how to create your own image, build your
container, and use a ScriptProcessor class to run a Python preprocessing script with the
container. The processing job processes your input data and saves the processed data in Amazon
Simple Storage Service (Amazon S3).

Before using the following examples, you need to have your own input data and a Python script
prepared to process your data. For an end-to-end, guided example of this process, refer back to the
scikit-learn Processing sample notebook.

1. Create a Docker directory and add the Dockerfile used to create the processing container. Install
pandas and scikit-learn into it. (You could also install your own dependencies with a similar RUN
command.)

Use Your Own Processing Code 2427

https://sagemaker.readthedocs.io/en/stable/frameworks/xgboost/xgboost.html
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_processing/scikit_learn_data_processing_and_model_evaluation
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_processing/scikit_learn_data_processing_and_model_evaluation

Amazon SageMaker Developer Guide

mkdir docker

%%writefile docker/Dockerfile

FROM python:3.7-slim-buster

RUN pip3 install pandas==0.25.3 scikit-learn==0.21.3
ENV PYTHONUNBUFFERED=TRUE

ENTRYPOINT ["python3"]

2. Build the container using the docker command, create an Amazon Elastic Container Registry
(Amazon ECR) repository, and push the image to Amazon ECR.

import boto3

account_id = boto3.client('sts').get_caller_identity().get('Account')
region = boto3.Session().region_name
ecr_repository = 'sagemaker-processing-container'
tag = ':latest'
processing_repository_uri = '{}.dkr.ecr.{}.amazonaws.com/{}'.format(account_id,
 region, ecr_repository + tag)

Create ECR repository and push docker image
!docker build -t $ecr_repository docker
!aws ecr get-login-password --region {region} | docker login --username AWS --
password-stdin {account_id}.dkr.ecr.{region}.amazonaws.com
!aws ecr create-repository --repository-name $ecr_repository
!docker tag {ecr_repository + tag} $processing_repository_uri
!docker push $processing_repository_uri

3. Set up the ScriptProcessor from the SageMaker Python SDK to run the script. Replace
image_uri with the URI for the image you created, and replace role_arn with the ARN for an
AWS Identity and Access Management role that has access to your target Amazon S3 bucket.

from sagemaker.processing import ScriptProcessor, ProcessingInput, ProcessingOutput

script_processor = ScriptProcessor(command=['python3'],
 image_uri='image_uri',
 role='role_arn',
 instance_count=1,

Run Scripts with a Processing Container 2428

Amazon SageMaker Developer Guide

 instance_type='ml.m5.xlarge')

4. Run the script. Replace preprocessing.py with the name of your own Python processing
script, and replace s3://path/to/my/input-data.csv with the Amazon S3 path to your
input data.

script_processor.run(code='preprocessing.py',
 inputs=[ProcessingInput(
 source='s3://path/to/my/input-data.csv',
 destination='/opt/ml/processing/input')],
 outputs=[ProcessingOutput(source='/opt/ml/processing/output/
train'),
 ProcessingOutput(source='/opt/ml/processing/output/
validation'),
 ProcessingOutput(source='/opt/ml/processing/output/
test')])

You can use the same procedure with any other library or system dependencies. You can also use
existing Docker images. This includes images that you run on other platforms such as Kubernetes.

Build Your Own Processing Container (Advanced Scenario)

You can provide Amazon SageMaker Processing with a Docker image that has your own code and
dependencies to run your data processing, feature engineering, and model evaluation workloads.

The following example of a Dockerfile builds a container with the Python libraries scikit-learn and
pandas, which you can run as a processing job.

FROM python:3.7-slim-buster

Install scikit-learn and pandas
RUN pip3 install pandas==0.25.3 scikit-learn==0.21.3

Add a Python script and configure Docker to run it
ADD processing_script.py /
ENTRYPOINT ["python3", "/processing_script.py"]

For an example of a processing script, see Get started with SageMaker Processing.

Build Your Own Processing Container 2429

https://kubernetes.io/
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_processing/basic_sagemaker_data_processing/basic_sagemaker_processing.ipynb

Amazon SageMaker Developer Guide

Build and push this Docker image to an Amazon Elastic Container Registry (Amazon ECR) repository
and ensure that your SageMaker IAM role can pull the image from Amazon ECR. Then you can run
this image on Amazon SageMaker Processing.

How Amazon SageMaker Processing Runs Your Processing Container Image

Amazon SageMaker Processing runs your processing container image in a similar way as the
following command, where AppSpecification.ImageUri is the Amazon ECR image URI that
you specify in a CreateProcessingJob operation.

docker run [AppSpecification.ImageUri]

This command runs the ENTRYPOINT command configured in your Docker image.

You can also override the entrypoint command in the image or give command-line arguments
to your entrypoint command using the AppSpecification.ContainerEntrypoint and
AppSpecification.ContainerArgument parameters in your CreateProcessingJob request.
Specifying these parameters configures Amazon SageMaker Processing to run the container similar
to the way that the following command does.

 docker run --entry-point [AppSpecification.ContainerEntrypoint]
 [AppSpecification.ImageUri] [AppSpecification.ContainerArguments]

For example, if you specify the ContainerEntrypoint to be [python3, -v, /
processing_script.py] in your CreateProcessingJob request, and ContainerArguments
to be [data-format, csv], Amazon SageMaker Processing runs your container with the
following command.

 python3 -v /processing_script.py data-format csv

When building your processing container, consider the following details:

• Amazon SageMaker Processing decides whether the job completes or fails depending on the
exit code of the command run. A processing job completes if all of the processing containers exit
successfully with an exit code of 0, and fails if any of the containers exits with a non-zero exit
code.

• Amazon SageMaker Processing lets you override the processing container's entrypoint and set
command-line arguments just like you can with the Docker API. Docker images can also configure

Build Your Own Processing Container 2430

Amazon SageMaker Developer Guide

the entrypoint and command-line arguments using the ENTRYPOINT and CMD instructions.
The way CreateProcessingJob's ContainerEntrypoint and ContainerArgument
parameters configure a Docker image's entrypoint and arguments mirrors how Docker overrides
the entrypoint and arguments through the Docker API:

• If neither ContainerEntrypoint nor ContainerArguments are provided, Processing uses
the default ENTRYPOINT or CMD in the image.

• If ContainerEntrypoint is provided, but not ContainerArguments, Processing runs the
image with the given entrypoint, and ignores the ENTRYPOINT and CMD in the image.

• If ContainerArguments is provided, but not ContainerEntrypoint, Processing runs the
image with the default ENTRYPOINT in the image and with the provided arguments.

• If both ContainerEntrypoint and ContainerArguments are provided, Processing runs the
image with the given entrypoint and arguments, and ignores the ENTRYPOINT and CMD in the
image.

• You must use the exec form of the ENTRYPOINT instruction in your Dockerfile (ENTRYPOINT
["executable", "param1", "param2"]) instead of the shell form (ENTRYPOINT command
param1 param2). This lets your processing container receive SIGINT and SIGKILL signals,
which Processing uses to stop processing jobs with the StopProcessingJob API.

• /opt/ml and all its subdirectories are reserved by SageMaker. When building your Processing
Docker image, don't place any data required by your processing container in these directories.

• If you plan to use GPU devices, make sure that your containers are nvidia-docker compatible.
Include only the CUDA toolkit in containers. Don't bundle NVIDIA drivers with the image. For
more information about nvidia-docker, see NVIDIA/nvidia-docker.

How Amazon SageMaker Processing Configures Input and Output For Your
Processing Container

When you create a processing job using the CreateProcessingJob operation, you can specify
multiple ProcessingInput and ProcessingOutput. values.

You use the ProcessingInput parameter to specify an Amazon Simple Storage Service (Amazon
S3) URI to download data from, and a path in your processing container to download the data to.
The ProcessingOutput parameter configures a path in your processing container from which
to upload data, and where in Amazon S3 to upload that data to. For both ProcessingInput
and ProcessingOutput, the path in the processing container must begin with /opt/ml/
processing/ .

Build Your Own Processing Container 2431

https://github.com/NVIDIA/nvidia-docker

Amazon SageMaker Developer Guide

For example, you might create a processing job with one ProcessingInput parameter that
downloads data from s3://your-data-bucket/path/to/input/csv/data into /opt/
ml/processing/csv in your processing container, and a ProcessingOutput parameter that
uploads data from /opt/ml/processing/processed_csv to s3://your-data-bucket/
path/to/output/csv/data. Your processing job would read the input data, and write output
data to /opt/ml/processing/processed_csv. Then it uploads the data written to this path to
the specified Amazon S3 output location.

Important

Symbolic links (symlinks) can not be used to upload output data to Amazon S3. Symlinks
are not followed when uploading output data.

How Amazon SageMaker Processing Provides Logs and Metrics for Your
Processing Container

When your processing container writes to stdout or stderr, Amazon SageMaker Processing saves
the output from each processing container and puts it in Amazon CloudWatch logs. For information
about logging, see Log Amazon SageMaker Events with Amazon CloudWatch.

Amazon SageMaker Processing also provides CloudWatch metrics for each instance running your
processing container. For information about metrics, see Monitor Amazon SageMaker with Amazon
CloudWatch.

How Amazon SageMaker Processing Configures Your Processing Container

Amazon SageMaker Processing provides configuration information to your processing
container through environment variables and two JSON files—/opt/ml/config/
processingjobconfig.json and /opt/ml/config/resourceconfig.json— at predefined
locations in the container.

When a processing job starts, it uses the environment variables that you specified with
the Environment map in the CreateProcessingJob request. The /opt/ml/config/
processingjobconfig.json file contains information about the hostnames of your processing
containers, and is also specified in the CreateProcessingJob request.

The following example shows the format of the /opt/ml/config/
processingjobconfig.json file.

Build Your Own Processing Container 2432

Amazon SageMaker Developer Guide

{
 "ProcessingJobArn": "<processing_job_arn>",
 "ProcessingJobName": "<processing_job_name>",
 "AppSpecification": {
 "ImageUri": "<image_uri>",
 "ContainerEntrypoint": null,
 "ContainerArguments": null
 },
 "Environment": {
 "KEY": "VALUE"
 },
 "ProcessingInputs": [
 {
 "InputName": "input-1",
 "S3Input": {
 "LocalPath": "/opt/ml/processing/input/dataset",
 "S3Uri": "<s3_uri>",
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3InputMode": "File",
 "S3CompressionType": "None",
 "S3DownloadMode": "StartOfJob"
 }
 }
],
 "ProcessingOutputConfig": {
 "Outputs": [
 {
 "OutputName": "output-1",
 "S3Output": {
 "LocalPath": "/opt/ml/processing/output/dataset",
 "S3Uri": "<s3_uri>",
 "S3UploadMode": "EndOfJob"
 }
 }
],
 "KmsKeyId": null
 },
 "ProcessingResources": {
 "ClusterConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.m5.xlarge",
 "VolumeSizeInGB": 30,

Build Your Own Processing Container 2433

Amazon SageMaker Developer Guide

 "VolumeKmsKeyId": null
 }
 },
 "RoleArn": "<IAM role>",
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 86400
 }
}

The /opt/ml/config/resourceconfig.json file contains information about the hostnames
of your processing containers. Use the following hostnames when creating or running distributed
processing code.

{
 "current_host": "algo-1",
 "hosts": ["algo-1","algo-2","algo-3"]
}

Don't use the information about hostnames contained in /etc/hostname or /etc/hosts
because it might be inaccurate.

Hostname information might not be immediately available to the processing container. We
recommend adding a retry policy on hostname resolution operations as nodes become available in
the cluster.

Save and Access Metadata Information About Your Processing Job

To save metadata from the processing container after exiting it, containers can write UTF-8
encoded text to the /opt/ml/output/message file. After the processing job enters
any terminal status ("Completed", "Stopped", or "Failed"), the "ExitMessage" field in
DescribeProcessingJob contains the first 1 KB of this file. Access that initial part of file with
a call to DescribeProcessingJob, which returns it through the ExitMessage parameter. For
failed processing jobs, you can use this field to communicate information about why the processing
container failed.

Important

Don't write sensitive data to the /opt/ml/output/message file.

Build Your Own Processing Container 2434

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html

Amazon SageMaker Developer Guide

If the data in this file isn't UTF-8 encoded, the job fails and returns a ClientError. If multiple
containers exit with an ExitMessage, the content of the ExitMessage from each processing
container is concatenated, then truncated to 1 KB.

Run Your Processing Container Using the SageMaker Python SDK

You can use the SageMaker Python SDK to run your own processing image by using the
Processor class. The following example shows how to run your own processing container with
one input from Amazon Simple Storage Service (Amazon S3) and one output to Amazon S3.

from sagemaker.processing import Processor, ProcessingInput, ProcessingOutput

processor = Processor(image_uri='<your_ecr_image_uri>',
 role=role,
 instance_count=1,
 instance_type="ml.m5.xlarge")

processor.run(inputs=[ProcessingInput(
 source='<s3_uri or local path>',
 destination='/opt/ml/processing/input_data')],
 outputs=[ProcessingOutput(
 source='/opt/ml/processing/processed_data',
 destination='<s3_uri>')],
)

Instead of building your processing code into your processing image, you can provide a
ScriptProcessor with your image and the command that you want to run, along with the
code that you want to run inside that container. For an example, see Run Scripts with Your Own
Processing Container.

You can also use the scikit-learn image that Amazon SageMaker Processing provides through
SKLearnProcessor to run scikit-learn scripts. For an example, see Data Processing with scikit-
learn.

Build Your Own Processing Container 2435

Amazon SageMaker Developer Guide

Create, store, and share features with Amazon
SageMaker Feature Store

The machine learning (ML) development process often begins with extracting data signals also
known as features from data to train ML models. Amazon SageMaker Feature Store makes it easy
for data scientists, machine learning engineers, and general practitioners to create, share, and
manage features for ML development. Feature Store accelerates this process by reducing repetitive
data processing and curation work required to convert raw data into features for training an ML
algorithm.

Further, the processing logic for your data is authored only once, and features generated are used
for both training and inference, reducing the training-serving skew. Feature Store is a centralized
store for features and associated metadata so features can be easily discovered and reused. You
can create an online or an offline store. The online store is used for low latency real-time inference
use cases, and the offline store is used for training and batch inference.

The following diagram shows how you can use Feature Store as part of your machine learning
pipeline. First, you read in your raw data and process it. You can ingest data via streaming
to the online and offline store, or in batches directly to the offline store. You first create a
FeatureGroup and configure it to an online or offline store, or both. Then, you can ingest data
into your FeatureGroup and store it in your store. A FeatureGroup is a group of features that is
defined via a schema in Feature Store to describe a record.

Online store is primarily designed for supporting real-time predictions that need low millisecond
latency reads and high throughput writes. Offline store is primarily intended for batch predictions
and model training. Offline store is an append only store and can be used to store and access
historical feature data. The offline store can help you store and serve features for exploration and
model training. The online store retains only the latest feature data. Feature Groups are mutable
and can evolve their schema after creation.

2436

Amazon SageMaker Developer Guide

How Feature Store works

In Feature Store, features are stored in a collection called a feature group. You can visualize a
feature group as a table in which each column is a feature, with a unique identifier for each row. In
principle, a feature group is composed of features and values specific to each feature. A Record is
a collection of values for features that correspond to a unique RecordIdentifier. Altogether, a
FeatureGroup is a group of features defined in your FeatureStore to describe a Record.

You can use Feature Store in the following modes:

• Online – In online mode, features are read with low latency (milliseconds) reads and used for
high throughput predictions. This mode requires a feature group to be stored in an online store.

• Offline – In offline mode, large streams of data are fed to an offline store, which can be used for
training and batch inference. This mode requires a feature group to be stored in an offline store.
The offline store uses your S3 bucket for storage and can also fetch data using Athena queries.

• Online and Offline – This includes both online and offline modes.

You can ingest data into feature groups in Feature Store in two ways: streaming or in batches.
When you ingest data through streaming, a collection of records are pushed to Feature Store by
calling a synchronous PutRecord API call. This API enables you to maintain the latest feature
values in Feature Store and to push new feature values as soon an update is detected.

Alternatively, Feature Store can process and ingest data in batches. You can author features using
Amazon SageMaker Data Wrangler, create feature groups in Feature Store and ingest features in
batches using a SageMaker Processing job with a notebook exported from Data Wrangler. This
mode allows for batch ingestion into the offline store. It also supports ingestion into the online
store if the feature group is configured for both online and offline use.

How Feature Store works 2437

Amazon SageMaker Developer Guide

Create feature groups

To ingest features into Feature Store, you must first define the feature group and the feature
definitions (feature name and data type) for all features that belong to the feature group. After
they are created, feature groups are mutable and can evolve their schema. Feature group names
are unique within an AWS Region and AWS account. When creating a feature group, you can also
create the metadata for the feature group, such as a short description, storage configuration,
features for identifying each record, and the event time, as well as tags to store information such
as the author, data source, version, and more.

Important

FeatureGroup names or associated metadata such as description or tags should not
contain any personal identifiable information (PII) or confidential information.

Find, discover, and share features

After you create a feature group in Feature Store, other authorized users of the feature store can
share and discover it. Users can browse through a list of all feature groups in Feature Store or
discover existing feature groups by searching by feature group name, description, record identifier
name, creation date, and tags.

Real-time inference for features stored in the online store

With Feature Store, you can enrich your features stored in the online store in real time with data
from a streaming source (clean stream data from another application) and serve the features with
low millisecond latency for real-time inference.

You can also perform joins across different FeatureGroups for real-time inference by querying
two different FeatureGroups in the client application.

Offline store for model training and batch inference

Feature Store provides offline storage for feature values in your S3 bucket. Your data is stored in
your S3 bucket using a prefixing scheme based on event time. The offline store is an append-only
store, enabling Feature Store to maintain a historical record of all feature values. Data is stored in
the offline store in Parquet format for optimized storage and query access.

Create feature groups 2438

Amazon SageMaker Developer Guide

You can query, explore, and visualize features using Data Wrangler from the console. Feature Store
supports combining data to produce, train, validate, and test data sets, and allows you to extract
data at different points in time.

Feature data ingestion

Feature generation pipelines can be created to process large batches (1 million rows of data or
more) or small batches, and to write feature data to the offline or online store. Streaming sources
such as Amazon Managed Streaming for Apache Kafka or Amazon Kinesis can also be used as
data sources from which features are extracted and directly fed to the online store for training,
inference, or feature creation.

You can push records to Feature Store by calling the synchronous PutRecord API call. Since this
is a synchronous API call, it allows small batches of updates to be pushed in a single API call. This
enables you to maintain high freshness of the feature values and publish values as soon as an
update is detected. These are also called streaming features.

When feature data is ingested and updated, Feature Store stores historical data for all features in
the offline store. For batch ingest, you can pull feature values from your S3 bucket or use Athena
to query. You can also use Data Wrangler to process and engineer new features that can then
be exported to a chosen S3 bucket to be accessed by Feature Store. For batch ingestion, you can
configure a processing job to batch ingest your data into Feature Store, or you can pull feature
values from your S3 bucket using Athena.

To remove a Record from your online store, use the DeleteRecord API call. This will also add the
deleted record to the offline store.

Resilience in Feature Store

Feature Store is distributed across multiple Availability Zones (AZs). An AZ is an isolated location
within an AWS Region. If some AZs fail, Feature Store can use other AZs. For more information
about AZs, see Resilience in Amazon SageMaker.

Get started with Amazon SageMaker Feature Store

The following topics give information about using Amazon SageMaker Feature Store. First learn the
Feature Store concepts, then how to manage permissions to use Feature Store, how to create and
use feature groups using Studio Classic, Jupyter or JupyterLab notebook, how to use Feature Store

Feature data ingestion 2439

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html

Amazon SageMaker Developer Guide

using the User Interface through the console, and how to delete feature groups using the console
and AWS SDK for Python (Boto3).

The instructions on using Feature Store through the console depends on if you have enabled
Studio or Studio Classic as your default experience. For information on accessing Studio Classic, see
Launch Studio Classic Using the Amazon SageMaker Console.

Topics

• Feature Store concepts

• Adding policies to your IAM role

• Use Feature Store with SDK for Python (Boto3)

• Using Amazon SageMaker Feature Store in the console

• Delete a feature group

Feature Store concepts

We list common terms used in Amazon SageMaker Feature Store, followed by example diagrams to
visualize a few concepts:

• Feature Store: Storage and data management layer for machine learning (ML) features. Serves
as the single source of truth to store, retrieve, remove, track, share, discover, and control access
to features. In the following example diagram, the Feature Store is a store for your feature
groups, which contains your ML data, and provides additional services.

• Online store: Low latency, high availability store for a feature group that enables real-time
lookup of records. The online store allows quick access to the latest record via the GetRecord
API.

• Offline store: Stores historical data in your Amazon S3 bucket. The offline store is used when low
(sub-second) latency reads are not needed. For example, the offline store can be used when you
want to store and serve features for exploration, model training, and batch inference.

• Feature group: The main resource of Feature Store that contains the data and metadata used for
training or predicting with a ML model. A feature group is a logical grouping of features used to
describe records. In the following example diagram, a feature group contains your ML data.

• Feature: A property that is used as one of the inputs to train or predict using your ML model. In
the Feature Store API a feature is an attribute of a record. In the following example diagram, a
feature describes a column in your ML data table.

Feature Store concepts 2440

Amazon SageMaker Developer Guide

• Feature definition: Consists of a name and one of the data types: integral, string or fractional. A
feature group contains a list of feature definitions. For more information on Feature Store data
types, see Data types.

• Record: Collection of values for features for a single record identifier. A combination of record
identifier and event time values uniquely identify a record within a feature group. In the
following example diagram, a record is a row in your ML data table.

• Record identifier name: The record identifier name is the name of the feature that identifies
the records. It must refer to one of the names of a feature defined in the feature group's feature
definitions. Each feature group is defined with a record identifier name.

• Event time: Timestamp that you provide corresponding to when the record event occurred. All
records in a feature group must have a corresponding event time. The online store only contains
the record corresponding to the latest event time, whereas the offline store contains all historic
records. For more information on event time formats, see Data types.

• Ingestion: Adding new records to a feature group. Ingestion is typically achieved via the
PutRecord API.

Topics

• Concepts overview diagram

• Ingestion diagrams

Concepts overview diagram

The following example diagram conceptualizes a few Feature Store concepts:

Feature Store concepts 2441

Amazon SageMaker Developer Guide

The Feature Store contains your feature groups and a feature group contains your ML data. In the
example diagram, the original feature group contains a data table that has three features (each
describing a column) and two records (rows).

• A feature's definition describes the feature name and data type of the feature values that are
associated with records.

• A record contains the feature values and is uniquely identified by its record identifier and must
include the event time.

Ingestion diagrams

Ingestion is the action of adding a record or records to an existing feature group. The online and
offline stores are updated differently for different storage use cases.

Ingestion to the online store example

The online store acts as a real-time look-up of records and only keeps the most up-to-date records.
Once a record is ingested into an existing online store, the updated online store will only keep the
record with the latest event time.

Feature Store concepts 2442

Amazon SageMaker Developer Guide

In the following example diagram, the original online store contains a ML data table with one
record. A record is ingested with the same record identifier name as the original record, and the
ingested record has an earlier event time than the original record. As the updated online store only
keeps the record with the latest event time, the updated online store contains the original record.

Feature Store concepts 2443

Amazon SageMaker Developer Guide

Ingestion to the offline store example

Feature Store concepts 2444

Amazon SageMaker Developer Guide

The offline store acts as a historical look-up of records and keeps all records. After a new record is
ingested into an existing offline store, the updated offline store will keep the new record.

In the following example diagram, the original offline store contains a ML data table with one
record. A record is ingested with the same record identifier name as the original record, and the
ingested record has an event time earlier than the original record. As the updated offline store
keeps all of the records, the updated offline store contains both records.

Feature Store concepts 2445

Amazon SageMaker Developer Guide

Feature Store concepts 2446

Amazon SageMaker Developer Guide

Adding policies to your IAM role

To get started with Amazon SageMaker Feature Store you must have a role and add the required
policy to your role, AmazonSageMakerFeatureStoreAccess. The following is a walkthrough on
how to view the policies attached to a role and how to add a policy to your role. For information on
how to create a role, see SageMaker Roles. For information on how to get your execution role, see
Get execution role.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane on the left of the IAM console, choose Roles.

3. In the search bar enter the role you are using for Amazon SageMaker Feature Store.

For examples on how to find your execution role ARN for a notebook within SageMaker, see
Get execution role. The role is at the end of the execution role ARN.

4. After you enter the role in the search bar, choose the role.

Under Permissions policies you can view the policies attached to the role.

5. After you choose the role, choose Add permissions, then choose Attach policies.

6. In the search bar under Other permissions policies enter
AmazonSageMakerFeatureStoreAccess and press enter. If the policy does not show, you
may already have the policy attached, listed under your Current permissions policies.

7. After you press enter, select the check box next to the policy and then choose Add
permissions.

8. After you have attached the policy to your role, the policy will appear under Permissions
policies for your IAM role.

Use Feature Store with SDK for Python (Boto3)

The feature group is the main Feature Store resource that contains your machine learning (ML)
data and metadata stored in Amazon SageMaker Feature Store. A feature group is a logical
grouping of features and records. A feature group’s definition is composed of a configurations for
its online and offline store and a list of feature definitions that are used to describe the values
of your records. The feature definitions must include a record identifier name and an event time
name. For more information on feature store concepts, see Feature Store concepts.

Adding policies to your IAM role 2447

https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

Prior to using a feature store you typically load your dataset, run transformations, and set up
your features for ingestion. This process has a lot of variation and is highly dependent on your
data. The example code in the following topics refer to the Introduction to Feature Store and
Fraud Detection with Amazon SageMaker Feature Store example notebooks, respectively. Both
use the AWS SDK for Python (Boto3). For more Feature Store examples and resources, see Amazon
SageMaker Feature Store resources.

Feature Store supports the following feature types: String, Fractional (IEEE 64-bit floating
point value), and Integral (Int64 - 64 bit signed integral value). The default type is set to
String. This means that, if a column in your dataset is not of a float or long feature type, it
defaults to String in your feature store.

You may use a schema to describe your data’s columns and data types. You pass this schema
into FeatureDefinitions, a required parameter for a FeatureGroup. You can use
the SDK for Python (Boto3), which has automatic data type detection when you use the
load_feature_definitions function.

The default behavior when a new feature record is added with an already existing record ID is
as follows. In the offline store, the new record will be appended. In the online store, if the event
time of the new record is less than the existing event time then nothing will happen, but if the
event time of the new record is greater than or equal to the existing event time, the record will be
overwritten.

When you create a new feature group you can choose one of the following table formats:

• AWS Glue (Default)

• Apache Iceberg

Ingesting data, especially when streaming, can result in a large number of small files deposited
into the offline store. This can negatively impact query performance due the higher number of file
operations required. To avoid potential performance issues, use the Apache Iceberg table format
when creating new feature groups. With Iceberg you can compact the small data files into fewer
large files in the partition, resulting in significantly faster queries. This compaction operation is
concurrent and does not affect ongoing read and write operations on the feature group. If you
choose the Iceberg option when creating new feature groups, Amazon SageMaker Feature Store
will create the Iceberg tables using Parquet file format, and register the tables with the AWS Glue
Data Catalog.

Use Feature Store with SDK for Python (Boto3) 2448

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/feature_store_introduction.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/sagemaker_featurestore_fraud_detection_python_sdk.html

Amazon SageMaker Developer Guide

Important

Note that for feature groups in Iceberg table format, you must specify String as the
value for the event time. If you specify any other type, you can't create the feature group
successfully.

In the following we list some available Feature Store managed resources.

Topics

• Introduction to Feature Store example notebook

• Fraud detection with Feature Store example notebook

Introduction to Feature Store example notebook

The example code on this page refers to the Introduction to Feature Store example notebook.
We recommend that you run this notebook in Studio Classic, notebook instances, or JupyterLab
because the code in this guide is conceptual and not fully functional if copied.

Use the following to clone the aws/amazon-sagemaker-examples GitHub repository, containing
the example notebook:

• For Studio Classic

Launch Studio Classic. You can open Studio Classic if Studio or Studio Classic is enabled as your
default experience. For instructions on how to open Studio Classic, see Launch Studio Classic
Using the Amazon SageMaker Console.

Clone the aws/amazon-sagemaker-examples GitHub repository to Studio Classic by following
the steps in Clone a Git Repository in SageMaker Studio Classic.

• For Amazon SageMaker notebook instances

Launch SageMaker notebook instance by following the instructions in Access Notebook
Instances.

Check if the examples are already in your notebooks by following the instructions in Example
Notebooks. If not, follow the instructions in Add a Git Repository to Your Amazon SageMaker
Account.

Use Feature Store with SDK for Python (Boto3) 2449

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/feature_store_introduction.html
https://github.com/aws/amazon-sagemaker-examples
https://github.com/aws/amazon-sagemaker-examples

Amazon SageMaker Developer Guide

Now that you have the SageMaker example notebooks, navigate to the amazon-sagemaker-
examples/sagemaker-featurestore directory and open the Introduction to Feature Store
example notebook.

Step 1: Set up your SageMaker session

To start using Feature Store, create a SageMaker session. Then, set up the Amazon Simple Storage
Service (Amazon S3) bucket that you want to use for your features. The Amazon S3 bucket is your
offline store. The following code uses the SageMaker default bucket and adds a custom prefix to it.

Note

The role that you use to run the notebook must have the following managed policies
attached to it: AmazonS3FullAccess and AmazonSageMakerFeatureStoreAccess. For
information about adding policies to your IAM role, see Adding policies to your IAM role.

SageMaker Python SDK version 2.x is required
import sagemaker
import sys

import boto3
import pandas as pd
import numpy as np
import io
from sagemaker.session import Session
from sagemaker import get_execution_role

prefix = 'sagemaker-featurestore-introduction'
role = get_execution_role()

sagemaker_session = sagemaker.Session()
region = sagemaker_session.boto_region_name
s3_bucket_name = sagemaker_session.default_bucket()

Step 2: Inspect your data

In this notebook example, we ingest synthetic data from the GitHub repository that hosts the full
notebook.

Use Feature Store with SDK for Python (Boto3) 2450

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/feature_store_introduction.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-featurestore/data

Amazon SageMaker Developer Guide

customer_data = pd.read_csv("data/feature_store_introduction_customer.csv")
orders_data = pd.read_csv("data/feature_store_introduction_orders.csv")

print(customer_data.head())
print(orders_data.head())

The following diagram illustrates the steps that data goes through before Feature Store ingests it.
In this notebook, we illustrate the use case where you have data from multiple sources and want to
store them independently in a Feature Store. Our example considers data from a data warehouse
(customer data), and data from a real-time streaming service (order data).

Step 3: Create feature groups

We first start by creating feature group names for customer_data and orders_data. Following this,
we create two feature groups, one for customer_data and another for orders_data:

import time
from time import strftime, gmtime
customers_feature_group_name = 'customers-feature-group-' + strftime('%d-%H-%M-%S',
 gmtime())

Use Feature Store with SDK for Python (Boto3) 2451

Amazon SageMaker Developer Guide

orders_feature_group_name = 'orders-feature-group-' + strftime('%d-%H-%M-%S', gmtime())

Instantiate a FeatureGroup object for customers_data and orders_data:

from sagemaker.feature_store.feature_group import FeatureGroup

customers_feature_group = FeatureGroup(
 name=customers_feature_group_name, sagemaker_session=sagemaker_session
)
orders_feature_group = FeatureGroup(
 name=orders_feature_group_name, sagemaker_session=sagemaker_session
)

import time
current_time_sec = int(round(time.time()))
record_identifier_feature_name = "customer_id"

Append EventTime feature to your data frame. This parameter is required, and timestamps each
data point:

customer_data["EventTime"] = pd.Series([current_time_sec]*len(customer_data),
 dtype="float64")
orders_data["EventTime"] = pd.Series([current_time_sec]*len(orders_data),
 dtype="float64")

Load feature definitions to your feature group:

customers_feature_group.load_feature_definitions(data_frame=customer_data)
orders_feature_group.load_feature_definitions(data_frame=orders_data)

The following calls create to create two feature groups, customers_feature_group and
orders_feature_group, respectively:

customers_feature_group.create(
 s3_uri=f"s3://{s3_bucket_name}/{prefix}",
 record_identifier_name=record_identifier_feature_name,
 event_time_feature_name="EventTime",
 role_arn=role,
 enable_online_store=True
)

Use Feature Store with SDK for Python (Boto3) 2452

Amazon SageMaker Developer Guide

orders_feature_group.create(
 s3_uri=f"s3://{s3_bucket_name}/{prefix}",
 record_identifier_name=record_identifier_feature_name,
 event_time_feature_name="EventTime",
 role_arn=role,
 enable_online_store=True
)

To confirm that your feature group was created, we display it by using DescribeFeatureGroup
and ListFeatureGroups APIs:

customers_feature_group.describe()

orders_feature_group.describe()

sagemaker_session.boto_session.client('sagemaker',
 region_name=region).list_feature_groups() # We use the boto client to list
 FeatureGroups

Step 4: Ingest data into a feature group

After feature groups are created, we can put data into them. If you're using the SageMaker AWS
SDK for Python (Boto3), use the ingest API call. If you're using SDK for Python (Boto3), then
use the PutRecord API. It will take less than 1 minute to ingest data both of these options. This
example uses the SageMaker SDK for Python (Boto3), so it uses the ingest API call:

def check_feature_group_status(feature_group):
 status = feature_group.describe().get("FeatureGroupStatus")
 while status == "Creating":
 print("Waiting for Feature Group to be Created")
 time.sleep(5)
 status = feature_group.describe().get("FeatureGroupStatus")
 print(f"FeatureGroup {feature_group.name} successfully created.")

check_feature_group_status(customers_feature_group)
check_feature_group_status(orders_feature_group)

customers_feature_group.ingest(

Use Feature Store with SDK for Python (Boto3) 2453

Amazon SageMaker Developer Guide

 data_frame=customer_data, max_workers=3, wait=True
)

orders_feature_group.ingest(
 data_frame=orders_data, max_workers=3, wait=True
)

Using an arbitrary customer record id, 573291 we use get_record to check that the data has
been ingested into the feature group.

customer_id = 573291
sample_record = sagemaker_session.boto_session.client('sagemaker-featurestore-runtime',
 region_name=region).get_record(FeatureGroupName=customers_feature_group_name,
 RecordIdentifierValueAsString=str(customer_id))

print(sample_record)

The following demonstrates how to use the batch_get_record to get a batch of records.

all_records = sagemaker_session.boto_session.client(
 "sagemaker-featurestore-runtime", region_name=region
).batch_get_record(
 Identifiers=[
 {
 "FeatureGroupName": customers_feature_group_name,
 "RecordIdentifiersValueAsString": ["573291", "109382", "828400", "124013"],
 },
 {
 "FeatureGroupName": orders_feature_group_name,
 "RecordIdentifiersValueAsString": ["573291", "109382", "828400", "124013"],
 },
]
)

print(all_records)

Step 5: Clean up

Here we remove the Feature Groups that we created.

Use Feature Store with SDK for Python (Boto3) 2454

Amazon SageMaker Developer Guide

customers_feature_group.delete()
orders_feature_group.delete()

Step 6: Next steps

In this example notebook, you learned how to get started with Feature Store, create feature
groups, and ingest data into them.

For an advanced example on how to use Feature Store for a fraud detection use case, see Fraud
Detection with Feature Store.

Step 7: Code examples for programmers

In this notebook we used a variety of different API calls. Most of them are accessible through the
SageMaker Python SDK, however some only exist within Boto3. You can invoke the SageMaker
Python SDK API calls directly on your Feature Store objects, whereas to invoke API calls that exist
within Boto3, you must first access a Boto3 client through your Boto3 and SageMaker sessions: for
example, sagemaker_session.boto_session.client().

The following is a list of API calls for this notebook. These calls exist within the SDK for Python and
exist in Boto3, for your reference:

SDK for Python (Boto3) API Calls

describe()
ingest()
delete()
create()
load_feature_definitions()

Boto3 API Calls

list_feature_groups()
get_record()

Fraud detection with Feature Store example notebook

The example code on this page refers to the example notebook: Fraud Detection with Amazon
SageMaker Feature Store. We recommend that you run this notebook in Studio Classic, notebook

Use Feature Store with SDK for Python (Boto3) 2455

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/sagemaker_featurestore_fraud_detection_python_sdk.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/sagemaker_featurestore_fraud_detection_python_sdk.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/sagemaker_featurestore_fraud_detection_python_sdk.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/sagemaker_featurestore_fraud_detection_python_sdk.html

Amazon SageMaker Developer Guide

instances, or JupyterLab because the code in this guide is conceptual and not fully functional if
copied.

Use the following to clone the aws/amazon-sagemaker-examples GitHub repository, containing
the example notebook.

• For Studio Classic

First launch Studio Classic. You can open Studio Classic if Studio or Studio Classic is enabled as
your default experience. To open Studio Classic, see Launch Studio Classic Using the Amazon
SageMaker Console.

Clone the aws/amazon-sagemaker-examples GitHub repository to Studio Classic by following
the steps in Clone a Git Repository in SageMaker Studio Classic.

• For Amazon SageMaker notebook instances

First launch SageMaker notebook instance by following the instructions in Access Notebook
Instances.

Check if the examples are already in your notebooks by following the instructions in Example
Notebooks. If not, follow the instructions in Add a Git Repository to Your Amazon SageMaker
Account.

Now that you have the SageMaker example notebooks, navigate to the amazon-sagemaker-
examples/sagemaker-featurestore directory and open the Fraud Detection with Amazon
SageMaker Feature Store example notebook.

Step 1: Set up your Feature Store session

To start using Feature Store, create a SageMaker session, Boto3 session, and a Feature Store
session. Also, set up the Amazon S3 bucket you want to use for your features. This is your offline
store. The following code uses the SageMaker default bucket and adds a custom prefix to it.

Note

The role that you use to run the notebook must have the following
managed policies attached to it: AmazonSageMakerFullAccess and
AmazonSageMakerFeatureStoreAccess. For information about adding policies to your
IAM role, see Adding policies to your IAM role.

Use Feature Store with SDK for Python (Boto3) 2456

https://github.com/aws/amazon-sagemaker-examples
https://github.com/aws/amazon-sagemaker-examples
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/sagemaker_featurestore_fraud_detection_python_sdk.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/sagemaker_featurestore_fraud_detection_python_sdk.html

Amazon SageMaker Developer Guide

import boto3
import sagemaker
from sagemaker.session import Session

sagemaker_session = sagemaker.Session()
region = sagemaker_session.boto_region_name
boto_session = boto3.Session(region_name=region)
role = sagemaker.get_execution_role()
default_bucket = sagemaker_session.default_bucket()
prefix = 'sagemaker-featurestore'
offline_feature_store_bucket = 's3://{}/{}'.format(default_bucket, prefix)

sagemaker_client = boto_session.client(service_name='sagemaker', region_name=region)
featurestore_runtime = boto_session.client(service_name='sagemaker-featurestore-
runtime', region_name=region)

feature_store_session = Session(
 boto_session=boto_session,
 sagemaker_client=sagemaker_client,
 sagemaker_featurestore_runtime_client=featurestore_runtime
)

Step 2: Load datasets and partition data into feature groups

Load your data into data frames for each of your features. You use these data frames after you
set up the feature group. In the fraud detection example, you can see these steps in the following
code.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import io

s3_client = boto3.client(service_name='s3', region_name=region)

fraud_detection_bucket_name = 'sagemaker-featurestore-fraud-detection'
identity_file_key = 'sampled_identity.csv'
transaction_file_key = 'sampled_transactions.csv'

identity_data_object = s3_client.get_object(Bucket=fraud_detection_bucket_name,
 Key=identity_file_key)
transaction_data_object = s3_client.get_object(Bucket=fraud_detection_bucket_name,
 Key=transaction_file_key)

Use Feature Store with SDK for Python (Boto3) 2457

Amazon SageMaker Developer Guide

identity_data = pd.read_csv(io.BytesIO(identity_data_object['Body'].read()))
transaction_data = pd.read_csv(io.BytesIO(transaction_data_object['Body'].read()))

identity_data = identity_data.round(5)
transaction_data = transaction_data.round(5)

identity_data = identity_data.fillna(0)
transaction_data = transaction_data.fillna(0)

Feature transformations for this dataset are applied before ingestion into
 FeatureStore.
One hot encode card4, card6
encoded_card_bank = pd.get_dummies(transaction_data['card4'], prefix = 'card_bank')
encoded_card_type = pd.get_dummies(transaction_data['card6'], prefix = 'card_type')

transformed_transaction_data = pd.concat([transaction_data, encoded_card_type,
 encoded_card_bank], axis=1)
transformed_transaction_data =
 transformed_transaction_data.rename(columns={"card_bank_american express":
 "card_bank_american_express"})

Step 3: Set up feature groups

When you set up your feature groups, you need to customize the feature names with a unique
name and set up each feature group with the FeatureGroup class.

from sagemaker.feature_store.feature_group import FeatureGroup
feature_group_name = "some string for a name"
feature_group = FeatureGroup(name=feature_group_name,
 sagemaker_session=feature_store_session)

For example, in the fraud detection example, the two feature groups are identity and
transaction. In the following code you can see how the names are customized with a timestamp,
and then each group is set up by passing in the name and the session.

import time
from time import gmtime, strftime, sleep
from sagemaker.feature_store.feature_group import FeatureGroup

identity_feature_group_name = 'identity-feature-group-' + strftime('%d-%H-%M-%S',
 gmtime())

Use Feature Store with SDK for Python (Boto3) 2458

Amazon SageMaker Developer Guide

transaction_feature_group_name = 'transaction-feature-group-' + strftime('%d-%H-%M-%S',
 gmtime())

identity_feature_group = FeatureGroup(name=identity_feature_group_name,
 sagemaker_session=feature_store_session)
transaction_feature_group = FeatureGroup(name=transaction_feature_group_name,
 sagemaker_session=feature_store_session)

Step 4: Set up record identifier and event time features

In this step, you specify a record identifier name and an event time feature name. This name maps
to the column of the corresponding features in your data. For example, in the fraud detection
example, the column of interest is TransactionID. EventTime can be appended to your data
when no timestamp is available. In the following code, you can see how these variables are set, and
then EventTime is appended to both feature’s data.

record_identifier_name = "TransactionID"
event_time_feature_name = "EventTime"
current_time_sec = int(round(time.time()))
identity_data[event_time_feature_name] =
 pd.Series([current_time_sec]*len(identity_data), dtype="float64")
transformed_transaction_data[event_time_feature_name] =
 pd.Series([current_time_sec]*len(transaction_data), dtype="float64")

Step 5: Load feature definitions

You can now load the feature definitions by passing a data frame containing the feature data. In
the following code for the fraud detection example, the identity feature and transaction feature
are each loaded by using load_feature_definitions, and this function automatically detects
the data type of each column of data. For developers using a schema rather than automatic
detection, see the Export Feature Groups from Data Wrangler example for code that shows how
to load the schema, map it, and add it as a FeatureDefinition that you can use to create the
FeatureGroup. This example also covers a AWS SDK for Python (Boto3) implementation, which
you can use instead of the SageMaker Python SDK.

identity_feature_group.load_feature_definitions(data_frame=identity_data); # output is
 suppressed
transaction_feature_group.load_feature_definitions(data_frame=transformed_transaction_data);
 # output is suppressed

Use Feature Store with SDK for Python (Boto3) 2459

https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-data-export.html#data-wrangler-data-export-feature-store

Amazon SageMaker Developer Guide

Step 6: Create a feature group

In this step, you use the create function to create the feature group. The following code shows all
of the available parameters. The online store is not created by default, so you must set this as True
if you want to enable it. The s3_uri is the S3 bucket location of your offline store.

create a FeatureGroup
feature_group.create(
 description = "Some info about the feature group",
 feature_group_name = feature_group_name,
 record_identifier_name = record_identifier_name,
 event_time_feature_name = event_time_feature_name,
 feature_definitions = feature_definitions,
 role_arn = role,
 s3_uri = offline_feature_store_bucket,
 enable_online_store = True,
 online_store_kms_key_id = None,
 offline_store_kms_key_id = None,
 disable_glue_table_creation = False,
 data_catalog_config = None,
 tags = ["tag1","tag2"])

The following code from the fraud detection example shows a minimal create call for each of the
two features groups being created.

identity_feature_group.create(
 s3_uri=offline_feature_store_bucket,
 record_identifier_name=record_identifier_name,
 event_time_feature_name=event_time_feature_name,
 role_arn=role,
 enable_online_store=True
)

transaction_feature_group.create(
 s3_uri=offline_feature_store_bucket,
 record_identifier_name=record_identifier_name,
 event_time_feature_name=event_time_feature_name,
 role_arn=role,
 enable_online_store=True
)

Use Feature Store with SDK for Python (Boto3) 2460

Amazon SageMaker Developer Guide

When you create a feature group, it takes time to load the data, and you need to wait until the
feature group is created before you can use it. You can check status using the following method.

status = feature_group.describe().get("FeatureGroupStatus")

While the feature group is being created, you receive Creating as a response. When this step
has finished successfully, the response is Created. Other possible statuses are CreateFailed,
Deleting, or DeleteFailed.

Step 7: Work with feature groups

Now that you've set up your feature group, you can perform any of the following tasks:

Topics

• Describe a feature group

• List feature groups

• Put records in a feature group

• Get records from a feature group

• Generate hive DDL commands

• Build a training dataset

• Write and execute an Athena query

• Delete a feature group

Describe a feature group

You can retrieve information about your feature group with the describe function.

feature_group.describe()

List feature groups

You can list all of your feature groups with the list_feature_groups function.

sagemaker_client.list_feature_groups()

Use Feature Store with SDK for Python (Boto3) 2461

Amazon SageMaker Developer Guide

Put records in a feature group

You can use the ingest function to load your feature data. You pass in a data frame of feature
data, set the number of workers, and choose to wait for it to return or not. The following example
demonstrates using the ingest function.

feature_group.ingest(
 data_frame=feature_data, max_workers=3, wait=True
)

For each feature group you have, run the ingest function on the feature data you want to load.

Get records from a feature group

You can use the get_record function to retrieve the data for a specific feature by its record
identifier. The following example uses an example identifier to retrieve the record.

record_identifier_value = str(2990130)
featurestore_runtime.get_record(FeatureGroupName=transaction_feature_group_name,
 RecordIdentifierValueAsString=record_identifier_value)

An example response from the fraud detection example:

...
'Record': [{'FeatureName': 'TransactionID', 'ValueAsString': '2990130'},
 {'FeatureName': 'isFraud', 'ValueAsString': '0'},
 {'FeatureName': 'TransactionDT', 'ValueAsString': '152647'},
 {'FeatureName': 'TransactionAmt', 'ValueAsString': '75.0'},
 {'FeatureName': 'ProductCD', 'ValueAsString': 'H'},
 {'FeatureName': 'card1', 'ValueAsString': '4577'},
...

Generate hive DDL commands

The SageMaker Python SDK’s FeatureStore class also provides the functionality to generate Hive
DDL commands. The schema of the table is generated based on the feature definitions. Columns
are named after feature name and data-type are inferred based on feature type.

print(feature_group.as_hive_ddl())

Example output:

Use Feature Store with SDK for Python (Boto3) 2462

Amazon SageMaker Developer Guide

CREATE EXTERNAL TABLE IF NOT EXISTS sagemaker_featurestore.identity-feature-
group-27-19-33-00 (
 TransactionID INT
 id_01 FLOAT
 id_02 FLOAT
 id_03 FLOAT
 id_04 FLOAT
 ...

Build a training dataset

Feature Store automatically builds an AWS Glue data catalog when you create feature groups and
you can turn this off if you want. The following describes how to create a single training dataset
with feature values from both identity and transaction feature groups created earlier in this topic.
Also, the following describes how to run an Amazon Athena query to join data stored in the offline
store from both identity and transaction feature groups.

To start, create an Athena query using athena_query() for both identity and transaction feature
groups. The `table_name` is the AWS Glue table that is autogenerated by Feature Store.

identity_query = identity_feature_group.athena_query()
transaction_query = transaction_feature_group.athena_query()

identity_table = identity_query.table_name
transaction_table = transaction_query.table_name

Write and execute an Athena query

You write your query using SQL on these feature groups, and then execute the query with the
.run() command and specify your Amazon S3 bucket location for the data set to be saved there.

Athena query
query_string = 'SELECT * FROM "'+transaction_table+'" LEFT JOIN "'+identity_table+'" ON
 "'+transaction_table+'".transactionid = "'+identity_table+'".transactionid'

run Athena query. The output is loaded to a Pandas dataframe.
dataset = pd.DataFrame()
identity_query.run(query_string=query_string,
 output_location='s3://'+default_s3_bucket_name+'/query_results/')
identity_query.wait()
dataset = identity_query.as_dataframe()

Use Feature Store with SDK for Python (Boto3) 2463

Amazon SageMaker Developer Guide

From here you can train a model using this data set and then perform inference.

Delete a feature group

You can delete a feature group with the delete function.

feature_group.delete()

The following code example is from the fraud detection example.

identity_feature_group.delete()
transaction_feature_group.delete()

For more information, see the Delete a feature group API.

Using Amazon SageMaker Feature Store in the console

You can use Amazon SageMaker Feature Store on the console to create, view, update, and monitor
your feature groups. Monitoring in this guide includes viewing pipeline executions and lineage
of your feature groups. This guide provides instructions on how to achieve these tasks from the
console.

For Feature Store examples and resources using the Amazon SageMaker APIs and AWS SDK for
Python (Boto3), see Amazon SageMaker Feature Store resources.

Topics

• Create a feature group from the console

• View feature group details from the console

• Update a feature group from the console

• View pipeline executions from the console

• View lineage from the console

Create a feature group from the console

The create feature group process has four steps:

1. Enter feature group information.

2. Enter feature definitions.

Using Amazon SageMaker Feature Store in the console 2464

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteFeatureGroup.html

Amazon SageMaker Developer Guide

3. Enter required features.

4. Enter feature group tags.

Consider which of the following options fits your use case:

• Create an online store, an offline store, or both. For more information about the differences
between online and offline stores, see Feature Store concepts.

• Use a default AWS Key Management Service key or your own KMS key. The default key is AWS
KMS key (SSE-KMS). You can reduce AWS KMS request costs by configuring use of Amazon S3
Bucket Keys on the offline store Amazon S3 bucket. The Amazon S3 Bucket Key must be enabled
before using the bucket for your feature groups. For more information about reducing the cost
by using Amazon S3 Bucket Keys, see Reducing the cost of SSE-KMS with Amazon S3 Bucket
Keys.

You can use the same key for both online and offline stores, or have a unique key for each. For
more information about AWS KMS, see AWS Key Management Service.

• If you create an offline store:

• Decide if you want to create an Amazon S3 bucket or use an existing one. When using an
existing one, you must know the Amazon S3 bucket URL or Amazon S3 bucket name and
dataset directory name, if applicable.

• Choose which Amazon Resource Name (ARN) to use to specify the IAM role. For more
information about how to find your role and attached policies, see Adding policies to your IAM
role.

• Decide whether to use the AWS Glue (default) or Apache Iceberg table format. In most use
cases, you use the Apache Iceberg table format. For more information about table formats, see
Use Feature Store with SDK for Python (Boto3).

You can use the console to view the lineage of a feature group. The instructions for using Feature
Store on the console vary depending on whether you enabled Amazon SageMaker Studio or
Amazon SageMaker Studio Classic as your default experience.

Create feature groups if Studio is your default experience (console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data from the left navigation pane to expand the dropdown list.

Using Amazon SageMaker Feature Store in the console 2465

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

3. From the dropdown list, choose Feature Store.

4. Choose Create feature group.

5. Under Feature group details, enter a feature group name.

6. (Optional) Enter a description of the feature group.

7. Under Feature group storage configuration, choose a storage configuration from the
dropdown list. For information about storage configurations, see Feature Store storage
configurations.

8. If you have chosen to enable the online storage:

a. If you only enable the online storage, you can choose a Storage type from the dropdown
list. For information about online store storage types, see Online store.

b. (Optional) Apply Time to Live (TTL) by toggling the switch to On and specifying the Time
to Live duration value and unit. This will update the default TTL duration for all records
added to the feature group after the feature group is created. For more information about
TTL, see Time to live (TTL) duration for records.

9. If you have chosen to enable the offline storage:

a. Under the Amazon S3 bucket name, enter a new bucket name, or enter an existing bucket
URL, manually.

b. From the Table format dropdown list, choose the table format. In most use cases, you
should use the Apache Iceberg table format. For more information about table formats,
see Use Feature Store with SDK for Python (Boto3).

c. Under IAM role ARN, choose the IAM role ARN you want to attach to this feature group.
For more information about how to find your role and attached policies, see Adding
policies to your IAM role.

d. If you have chosen to enable the offline storage Table format and AWS Glue (default)
Table format, under Data catalog, you can choose one of the following two options:

• Use default values for your AWS Glue Data Catalog.

• Provide your existing Data Catalog name, table name, and database name to extend
your existing AWS Glue Data Catalog.

10. Under the Online store encryption key or Offline store encryption key dropdown list, choose
one of the following options:

• Use AWS managed AWS KMS key (default)

Using Amazon SageMaker Feature Store in the console 2466

Amazon SageMaker Developer Guide

• Enter an AWS KMS key ARN and enter your AWS KMS key ARN under Offline store
encryption key ARN. For more information about AWS KMS, see AWS Key Management
Service.

11. If applicable, you will have the option to choose your throughput mode, which impacts how
you are charged. Under Throughput mode, choose a mode from the dropdown list and input
the read and write capacities when available. For information about throughput modes, like
when the mode can be applied and capacity units, see Throughput modes.

12. After you specify all of the required information, the Continue button appears available.
Choose Continue.

13. Under Specify feature definitions, you have two options for providing a schema for your
features: a JSON editor, or a table editor.

• JSON editor: In the JSON tab, enter or copy and paste your feature definitions in the JSON
format.

• Table editor: In the Table tab, enter the feature feature name and choose the corresponding
data type for each feature in your feature group. Choose + Add feature definitions to
include more features. Be aware that you cannot remove feature definitions from your
feature groups. However, you can add and update feature definitions after the feature group
is created.

There must be at least two features in a feature group that represent the record identifier and
event time:

• The record Feature type can be a string, fractional, or an integral.

• The event time Feature type must be a string or a fractional. However, if you chose the
Iceberg table format, the event time must be a string.

14. After all of the features are included, choose Continue.

15. Under Select required features, you must specify the record identifier and event time
features. Do this by choosing the feature name under Record identifier feature name and
Event time feature name dropdown lists, respectively.

16. After you choose the record identifier and event time features, choose Continue.

17. (Optional) To add tags for the feature group, choose Add new tag. Then enter a tag key and
the corresponding value under Key and Value, respectively.

18. Choose Continue.

Using Amazon SageMaker Feature Store in the console 2467

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

19. Under Review feature group, review the feature group information. To edit any step, choose
the Edit button that corresponds to that step. This brings you to the corresponding step for
editing. To return to step 5, choose Continue until you return to step 5.

20. After you finalize the setup for your feature group, choose Create feature group.

If an issue occurs during setup, a pop-up alert message appears at the bottom of the page
with tips for solving the issue. You can return to previous steps to fix the issues by choosing
Edit for the step with conflicts.

After the feature group has been successfully created, a green pop-up message appears at the
bottom of the page. The new feature group also appears in your feature groups catalog.

Create feature groups if Studio Classic is your default experience (console)

1. Open the Studio Classic console by following the instructions in Launch Amazon SageMaker
Studio Classic.

2. Choose the Home icon

()
on the left navigation pane.

3. Choose Data.

4. From the dropdown list, choose Feature Store.

5. Choose Create feature group.

6. Under Feature group details, enter a feature group name.

7. (Optional) Enter a description of the feature group.

8. Under Feature group storage configuration, choose a storage configuration from the
dropdown list. For information about storage configurations, see Feature Store storage
configurations.

9. If you have chosen to enable the online storage:

a. If you only enable the online storage, you may choose a Storage type from the dropdown
list. For information about online store storage types, see Online store.

b. (Optional) Apply Time to Live (TTL) by toggling the switch to On and specifying the Time
to Live duration value and unit. This will update the default TTL duration for all records
added to the feature group after the feature group is created. For more information about
TTL, see Time to live (TTL) duration for records.

Using Amazon SageMaker Feature Store in the console 2468

Amazon SageMaker Developer Guide

10. If you have chosen to enable the offline storage:

a. Under the Amazon S3 bucket name, enter a new bucket name or enter an existing bucket
URL manually.

b. From the Table format dropdown list, choose the table format. In most use cases, you
should use the Apache Iceberg table format. For more information about table formats,
see Use Feature Store with SDK for Python (Boto3).

c. Under IAM role ARN, choose the IAM role ARN you want to attach to this feature group.
For more information about how to find your role and attached policies, see Adding
policies to your IAM role.

d. If you have chosen to enable the offline storage Table format and AWS Glue (default)
Table format, under Data catalog, you can choose one of the following two options:

• Use default values for your AWS Glue Data Catalog.

• Provide your existing Data Catalog name, table name, and database name to extend
your existing AWS Glue Data Catalog.

11. Under the Online store encryption key or Offline store encryption key dropdown list, choose
one of the following options:

• Use AWS managed AWS KMS key (default)

• Enter an AWS KMS key ARN and enter your AWS KMS key ARN under Offline store
encryption key ARN. For more information about AWS KMS, see AWS Key Management
Service.

12. After you specify all of the required information, the Continue button appears available.
Choose Continue.

13. Under Specify feature definitions, you have two options for providing a schema for your
features: a JSON editor, or a table editor.

• JSON editor: In the JSON tab, enter or copy and paste your feature definitions in the JSON
format.

• Table editor: In the Table tab, enter the feature feature name and choose the corresponding
data type for each feature in your feature group. Choose + Add feature definitions to
include more features. Be aware that you cannot remove feature definitions from your
feature groups. However, you can add and update feature definitions after the feature group
is created.

Using Amazon SageMaker Feature Store in the console 2469

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

There must be at least two features in a feature group that represent the record identifier and
event time:

• The record Feature type can be a string, fractional, or an integral.

• The event time Feature type must be a string or a fractional. However, if you chose the
Iceberg table format, the event time must be a string.

14. After all of the features are included, choose Continue.

15. Under Select required features, you must specify the record identifier and event time
features. Do this by choosing the feature name under Record identifier feature name and
Event time feature name dropdown lists, respectively.

16. After you choose the record identifier and event time features, choose Continue.

17. (Optional) To add tags for the feature group, choose Add new tag. Then enter a tag key and
the corresponding value under Key and Value, respectively.

18. Choose Continue.

19. Under Review feature group, review the feature group information. To edit any step, choose
the Edit button that corresponds to that step. This brings you to the corresponding step for
editing. To return to step 5, choose Continue until you return to step 5.

20. After you finalize the setup for your feature group, choose Create feature group.

If an issue occurs during setup, a pop-up alert message appears at the bottom of the page
with tips for solving the issue. You can return to previous steps to fix the issues by choosing
Edit for the step with conflicts.

After the feature group has been successfully created, a green pop-up message appears at the
bottom of the page. The new feature group also appears in your feature groups catalog.

View feature group details from the console

You can view details of your feature groups after a feature group has successfully been created in
the Feature Store.

You can use the console or the Amazon SageMaker Feature Store API to view your feature
group details. The instructions for using Feature Store through the console depends on if you
have enabled Amazon SageMaker Studio or Amazon SageMaker Studio Classic as your default
experience.

Using Amazon SageMaker Feature Store in the console 2470

Amazon SageMaker Developer Guide

View feature group details if Studio is your default experience (console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data in the left navigation pane, to expand the dropdown list.

3. From the dropdown list, choose Feature Store.

4. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

5. Under the Feature group catalog tab, choose your feature group name from the list. This
opens the feature group page.

6. On the Features tab, you can find a list of all of the features. Use the filter to refine your list.
Choose a feature to view its details.

7. Under the Details tab and the Information subtab, you can review your feature group
information. This includes Latest execution, Offline storage settings, Online storage settings,
and more.

8. Under the Details tab and the Tags subtab, you can review your feature group tags. Choose
Add new tag to add a new tag or Remove to remove a tag.

9. Under the Pipeline Executions tab, you can view the associated pipelines or pipeline
executions for your feature group.

10. Under the Lineage tab, you can view the lineage of your feature group.

View feature group details if Studio Classic is your default experience (console)

1. Open the Studio Classic console by following the instructions in Launch Amazon SageMaker
Studio Classic.

2. Choose the Home icon

()
in the left navigation pane.

3. Choose Data.

4. From the dropdown list, choose Feature Store.

5. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

6. Under the Feature group catalog tab, choose your feature group name from the list. This
opens the feature group page.

Using Amazon SageMaker Feature Store in the console 2471

Amazon SageMaker Developer Guide

7. On the Features tab, you can find a list of all of the features. Use the filter to refine your list.
Choose a feature to view its details.

8. Under the Details tab and the Information subtab, you can review your feature group
information, including Latest execution, Offline storage settings, Online storage settings,
and more.

9. Under the Details tab and the Tags subtab, you can review your feature group tags. Choose
Add new tag to add a new tag or Remove to remove a tag.

10. Under the Pipeline Executions tab, you can view the associated pipelines or pipeline
executions for your feature group.

11. Under the Lineage tab, you can view the lineage of your feature group.

Update a feature group from the console

You can update your feature groups after a feature group has successfully been created in the
Feature Store.

You can use the console or the Amazon SageMaker Feature Store API to update a feature group.
The instructions for using Feature Store through the console depends on if you have enabled
Amazon SageMaker Studio or Amazon SageMaker Studio Classic as your default experience.

Update a feature group if Studio is your default experience (console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data in the left navigation pane, to expand the dropdown list.

3. From the dropdown list, choose Feature Store.

4. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

5. Under the Feature group catalog tab, search for and choose your feature group name from
the list. This opens the feature group page.

6. Choose Update feature group.

7. (Optional) If applicable, you can change your throughput mode, which impacts how you are
charged. Under Throughput mode, choose a mode from the dropdown list and input the read
and write capacities when available. For information about throughput modes, like when the
mode can be applied and capacity units, see Throughput modes.

8. (Optional) If your feature group uses the online store, you can update the default Time to
Live (TTL). If TTL hasn't been enabled for the feature group, toggle the switch button under

Using Amazon SageMaker Feature Store in the console 2472

Amazon SageMaker Developer Guide

Time to Live (TTL) to On. You can specify the TTL value and unit under Time to Live duration.
This will update the default TTL duration for all records added to the feature group after the
feature group is updated.

9. (Optional) You can add feature definitions to your feature group but be aware that you cannot
remove feature definitions from your feature groups. To add a feature definition, choose + Add
feature definition and then specify the new feature definition name under the Name column
and select the feature type under the Feature type column.

10. Choose Save changes.

11. To confirm your changes, choose Confirm.

Update a feature group if Studio Classic is your default experience (console)

1. Open the Studio Classic console by following the instructions in Launch Amazon SageMaker
Studio Classic.

2. Choose the Home icon

()
in the left navigation pane.

3. Choose Data.

4. From the dropdown list, choose Feature Store.

5. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

6. Under the Feature group catalog tab, search for and choose your feature group name from
the list. This opens the feature group page.

7. Choose Update feature group.

8. (Optional) If your feature group uses the online store, you can update the default Time to
Live (TTL). If TTL hasn't been enabled for the feature group, toggle the switch button under
Time to Live (TTL) to On. You can specify the TTL value and unit under Time to Live duration.
This will update the default TTL duration for all records added to the feature group after the
feature group is updated.

9. (Optional) You can add feature definitions to your feature group but be aware that you cannot
remove feature definitions from your feature groups. To add a feature definition, choose + Add
feature definition and then specify the new feature definition name under the Name column
and select the feature type under the Feature type column.

10. Choose Save changes.

Using Amazon SageMaker Feature Store in the console 2473

Amazon SageMaker Developer Guide

11. To confirm your changes, choose Confirm.

View pipeline executions from the console

You can view the latest pipeline execution information for a feature or feature group under
Pipeline executions. You can also get links to pipelines, executions, code, and other useful
execution information.

You can use the console to view your pipeline executions. The instructions for using Feature Store
through the console depends on if you have enabled Amazon SageMaker Studio or Amazon
SageMaker Studio Classic as your default experience.

View pipeline executions if Studio is your default experience (console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data in the left navigation pane, to expand the dropdown list.

3. From the dropdown list, choose Feature Store.

4. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

5. Choose a feature group or feature to view their pipeline executions.

6. Choose the Pipeline executions tab.

7. Search for a pipeline from the Select a pipeline dropdown list.

8. You can view the links for the pipeline, execution, and code details. You can also view the
execution owner, status, date, and duration.

View pipeline executions if Studio Classic is your default experience (console)

1. Open the Studio Classic console by following the instructions in Launch Amazon SageMaker
Studio Classic.

2. Choose the Home icon

()
in the left navigation pane.

3. Choose Data.

4. From the dropdown list, choose Feature Store.

Using Amazon SageMaker Feature Store in the console 2474

Amazon SageMaker Developer Guide

5. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

6. Choose a feature group or feature to view their pipeline executions.

7. Choose the Pipeline executions tab.

8. Search for a pipeline from the Select a pipeline dropdown list.

9. You can view the links for the pipeline, execution, and code details. You can also view the
execution owner, status, date, and duration.

View lineage from the console

You can view the lineage of a feature group. The lineage includes the information about the
execution code of your feature processing workflow, what data sources were used, and how they
are ingested to the feature group or feature.

You can use the console to view the lineage of a feature group. The instructions on using Feature
Store through the console depends on if you have enabled Amazon SageMaker Studio or Amazon
SageMaker Studio Classic as your default experience.

View lineage if Studio is your default experience (console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data from the left navigation pane to expand the dropdown list.

3. From the dropdown list, choose Feature Store.

4. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

5. Choose a feature group or feature to view its lineage details.

6. Choose the Lineage tab.

7. Choose a feature group or pipeline node to expand the node. This contains more information
about a feature group or pipeline.

8. You can zoom in, zoom out, or recenter the lineage graph by using the buttons on the bottom
left of the screen.

9. You can move through the lineage map when you choose and drag the screen. To move
your lineage maps using nodes as the focal point, you can press Tab or Shift+Tab to switch
between nodes.

Using Amazon SageMaker Feature Store in the console 2475

Amazon SageMaker Developer Guide

10. If applicable, you can navigate the lineage upstream (left, earlier) or downstream (right, most
recent). Do this by choosing a node and then choosing Query upstream lineage or Query
downstream lineage.

View lineage if Studio Classic is your default experience (console)

1. Open Studio Classic by following the instructions in Launch Amazon SageMaker Studio Classic.

2. Choose the Home icon

()
in the left navigation pane.

3. Choose Data.

4. From the dropdown list, choose Feature Store.

5. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

6. Choose a feature group or feature to view its lineage details.

7. Choose the Lineage tab.

8. Choose a feature group or pipeline node to expand the node. This contains more information
about a feature group or pipeline.

9. You can zoom in, zoom out, or recenter the lineage graph by using the buttons on the bottom
left of the screen.

10. You can move through the lineage map when you choose and drag the screen. To move
your lineage maps using nodes as the focal point, you can press Tab or Shift+Tab to switch
between nodes.

11. If applicable, you can navigate the lineage upstream (left, earlier) or downstream (right, most
recent). Do this by choosing a node and then choosing Query upstream lineage or Query
downstream lineage.

Delete a feature group

You can use the console or the Amazon SageMaker Feature Store API to delete your feature group.
The instructions on using Feature Store through the console depends on if you have enabled Studio
or Studio Classic as your default experience. For more information about the differences between
the two, or how to change your default, see Amazon SageMaker Studio.

Delete a feature group 2476

Amazon SageMaker Developer Guide

The following sections provide an overview on how to delete a feature group.

Topics

• Delete a feature group using the console

• Delete feature group example Python code

Delete a feature group using the console

This section shows two ways to delete a feature group in the console, depending on your default
experience: Studio or Studio Classic.

Delete feature group if Studio is your default experience (console)

1. Open the Studio console by following instructions in Launch Amazon SageMaker Studio
Classic.

2. Choose Data in the left navigation pane to expand the dropdown list.

3. From the dropdown list, choose Feature Store.

4. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

5. In the Feature Group Catalog tab, choose the feature group to delete under Feature group
name.

6. Choose Delete feature group.

7. In the pop-up window, confirm deletion by entering delete in the field, then choose Delete.

Delete feature group if Studio Classic is your default experience (console)

1. Open the Studio Classic console by following the instructions in Launch Amazon SageMaker
Studio Classic.

2. In the left navigation pane, choose the Home icon

().

3. Choose Data.

4. From the dropdown list, choose Feature Store.

5. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

Delete a feature group 2477

Amazon SageMaker Developer Guide

6. In the Feature Group Catalog tab, choose the feature group to delete under Feature group
name.

7. Choose Delete feature group.

8. In the pop-up window, confirm deletion by typing delete in the field, then choose Delete.

Delete feature group example Python code

The following code uses the DeleteFeatureGroup API operation to delete your feature group
using the AWS SDK for Python (Boto3). It assumes that you've set up Feature Store and created
a feature group. For more information about getting started, see Introduction to Feature Store
example notebook.

import sagemaker
from sagemaker.feature_store.feature_group import FeatureGroup

sagemaker_session = sagemaker.Session()
fg_name = 'your-feature-group-name'

my_fg = FeatureGroup(name=fg_name, sagemaker_session=sagemaker_session)
my_fg.delete()

Data sources and ingestion

Records are added to your feature groups through ingestion. Depending on your desired use
case, the ingested records may be kept within the feature group or not. This depends on the
storage configuration, if your feature group uses the offline or online store. The offline store is
used as a historical database, that is typically used for data exploration, machine learning (ML)
model training, and batch inference. The online store is used as a real-time lookup of records,
that is typically used for ML model serving. For more information on Feature Store concepts and
ingestion, see Feature Store concepts.

There are multiple ways to bring your data into Amazon SageMaker Feature Store. Feature Store
offers a single API call for data ingestion called PutRecord that enables you to ingest data in
batches or from streaming sources. You can use Amazon SageMaker Data Wrangler to engineer
features and then ingest your features into your Feature Store. You can also use Amazon EMR for
batch data ingestion through a Spark connector.

In the following topics we will discuss the difference between

Data sources and ingestion 2478

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteFeatureGroup.html

Amazon SageMaker Developer Guide

Topics

• Stream ingestion

• Data Wrangler with Feature Store

• Batch ingestion with Amazon SageMaker Feature Store Spark

Stream ingestion

You can use streaming sources such as Kafka or Kinesis as a data source, where records are
extracted from, and directly feed records to the online store for training, inference or feature
creation. Records can be ingested into your feature group by using the synchronous PutRecord
API call. Since this is a synchronous API call it allows small batches of updates to be pushed in a
single API call. This enables you to maintain high freshness of the feature values and publish values
as soon an update is detected. These are also called streaming features.

Data Wrangler with Feature Store

Data Wrangler is a feature of Studio Classic that provides an end-to-end solution to import,
prepare, transform, featurize, and analyze data. Data Wrangler enables you to engineer your
features and ingest them into your online or offline store feature groups.

The following instructions exports a Jupyter notebook that contains all of the source code needed
to create a Feature Store feature group that adds your features from Data Wrangler to an online or
offline store.

The instructions on exporting your Data Wrangler data flow to Feature Store on the console vary
depending on whether you enabled enabled Amazon SageMaker Studio or Amazon SageMaker
Studio Classic as your default experience.

Export your Data Wrangler data flow to Feature Store if Studio is your default experience
(console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data from the left panel, to expand the dropdown list.

3. From the dropdown list, choose Data Wrangler.

4. If you have an instance of Amazon SageMaker Canvas already running, choose Open Canvas.

If you don't have an instance of SageMaker Canvas running, choose Run in Canvas.

Stream ingestion 2479

Amazon SageMaker Developer Guide

5. On the SageMaker Canvas console, choose Data Wrangler in the left navigation pane.

6. Choose Data flows to view your data flows.

7. Choose + to expand the dropdown list.

8. Choose Export data flow to expand the dropdown list.

9. Choose Save to SageMaker Feature Store (via JupyterLab Notebook).

10. Under Export data flow as notebook, choose one of the following options:

• Download a local copy to download the dataflow to your local machine.

• Export to S3 location to download the dataflow to an Amazon Simple Storage Service
location and enter the Amazon S3 location or choose Browse to find your Amazon S3
location.

11. Choose Export.

Export your Data Wrangler data flow to Feature Store if Studio Classic is your default
experience (console)

1. Open the Studio Classic console by following the instructions in Launch Amazon SageMaker
Studio Classic.

2. Choose the Home icon

()
in the left navigation pane.

3. Choose Data.

4. From the dropdown list, choose Data Wrangler.

5. Choose your workflow.

6. Choose the Export tab.

7. Choose Export Step.

8. Choose Feature Store.

After the feature group has been created, you can also select and join data across multiple feature
groups to create new engineered features in Data Wrangler and then export your data set to an
Amazon S3 bucket.

For more information on how to export to Feature Store, see Export to SageMaker Feature Store.

Data Wrangler with Feature Store 2480

https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-data-export.html#data-wrangler-data-export-feature-store

Amazon SageMaker Developer Guide

Batch ingestion with Amazon SageMaker Feature Store Spark

Amazon SageMaker Feature Store Spark is a Spark connector that connects the Spark library to
Feature Store. Feature Store Spark simplifies data ingestion from Spark DataFrames to feature
groups. Feature Store supports batch data ingestion with Spark, using your existing ETL pipeline,
on Amazon EMR, GIS, an AWS Glue job, an Amazon SageMaker Processing job, or a SageMaker
notebook.

Methods for installing and implementing batch data ingestion are provided for Python and Scala
developers. Python developers can use the open-source sagemaker-feature-store-pyspark
Python library for local development, installation on Amazon EMR, and for Jupyter Notebooks by
following the instructions in the Amazon SageMaker Feature Store Spark GitHub repository. Scala
developers can use the Feature Store Spark connector available in the Amazon SageMaker Feature
Store Spark SDK Maven central repository.

You can use the Spark connector to ingest data in the following ways, depending on if the online
store, offline store, or both are enabled.

1. Ingest by default – If the online store is enabled, Spark connector first ingests your dataframe
into the online store using the PutRecord API. Only the record with the largest event time
remains in the online store. If the offline store is enabled, within 15 minutes Feature Store
ingests your dataframe into the offline store. For more information about how the online and
offline stores work, see Feature Store concepts.

You can accomplish this by not specifying target_stores in the .ingest_data(...)
method.

2. Offline store direct ingestion – If offline store is enabled, Spark connector batch ingests your
dataframe directly into the offline store. Ingesting the dataframe directly into the offline store
doesn't update the online store.

You can accomplish this by setting target_stores=["OfflineStore"] in the
.ingest_data(...) method.

3. Online store only – If online store is enabled, Spark connector ingests your dataframe into the
online store using the PutRecord API. Ingesting the dataframe directly into the online store
doesn't update the offline store.

You can accomplish this by setting target_stores=["OnlineStore"] in the
.ingest_data(...) method.

Feature Store Spark 2481

https://github.com/aws/sagemaker-feature-store-spark
https://mvnrepository.com/artifact/software.amazon.sagemaker.featurestore/sagemaker-feature-store-spark-sdk
https://mvnrepository.com/artifact/software.amazon.sagemaker.featurestore/sagemaker-feature-store-spark-sdk
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_PutRecord.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_PutRecord.html

Amazon SageMaker Developer Guide

For information about using the different ingestion methods, see Example implementations.

Topics

• Feature Store Spark installation

• Retrieving the JAR for Feature Store Spark

• Example implementations

Feature Store Spark installation

Scala users

The Feature Store Spark SDK is available in the Amazon SageMaker Feature Store Spark SDK Maven
central repository for Scala users.

Requirements

• Spark >= 3.0.0 and <= 3.3.0
• iceberg-spark-runtime >= 0.14.0
• Scala >= 2.12.x
• Amazon EMR >= 6.1.0 (only if you are using Amazon EMR)

Declare the dependency in POM.xml

The Feature Store Spark connector has a dependency on the iceberg-spark-runtime library.
You must therefore add corresponding version of the iceberg-spark-runtime library to
the dependency if you're ingesting data into a feature group that you've auto-created with the
Iceberg table format. For example, if you're using Spark 3.1, you must declare the following in your
project’s POM.xml:

 <dependency>
 <groupId>software.amazon.sagemaker.featurestore</groupId>
 <artifactId>sagemaker-feature-store-spark-sdk_2.12</artifactId>
 <version>1.0.0</version>
 </dependency>

 <dependency>
 <groupId>org.apache.iceberg</groupId>
 <artifactId>iceberg-spark-runtime-3.1_2.12</artifactId>

Feature Store Spark 2482

https://mvnrepository.com/artifact/software.amazon.sagemaker.featurestore/sagemaker-feature-store-spark-sdk
https://mvnrepository.com/artifact/software.amazon.sagemaker.featurestore/sagemaker-feature-store-spark-sdk

Amazon SageMaker Developer Guide

 <version>0.14.0</version>
</dependency>

Python users

The Feature Store Spark SDK is available in the open-source Amazon SageMaker Feature Store
Spark GitHub repository.

Requirements

• Spark >= 3.0.0 and <= 3.3.0

• Amazon EMR >= 6.1.0 (only if you are using Amazon EMR)

• Kernel = conda_python3

We recommend setting the $SPARK_HOME to the directory where you have Spark installed. During
installation, Feature Store uploads the required JAR to SPARK_HOME, so that the dependencies load
automatically. Spark starting a JVM is required to make this PySpark library work.

Local installation

To find more info about the installation, enable verbose mode by appending --verbose to the
following installation command.

pip3 install sagemaker-feature-store-pyspark-3.1 --no-binary :all:

Installation on Amazon EMR

Create an Amazon EMR cluster with the release version 6.1.0 or later. Enable SSH to help you
troubleshoot any issues.

You can do one of the following to install the library:

• Create a custom step within Amazon EMR.

• Connect to your cluster using SSH and install the library from there.

Feature Store Spark 2483

https://github.com/aws/sagemaker-feature-store-spark
https://github.com/aws/sagemaker-feature-store-spark

Amazon SageMaker Developer Guide

Note

The following information uses Spark version 3.1, but you can specify any version that
meets the requirements.

export SPARK_HOME=/usr/lib/spark
sudo -E pip3 install sagemaker-feature-store-pyspark-3.1 --no-binary :all: --verbose

Note

If you want to install the dependent JARs automatically to SPARK_HOME, do not use the
bootstrap step.

Installation on a SageMaker notebook instance

Install a version of PySpark that's compatible with the Spark connector using the following
commands:

!pip3 install pyspark==3.1.1
!pip3 install sagemaker-feature-store-pyspark-3.1 --no-binary :all:

If you're performing batch ingestion to the offline store, the dependencies aren't within the
notebook instance environment.

from pyspark.sql import SparkSession
import feature_store_pyspark

extra_jars = ",".join(feature_store_pyspark.classpath_jars())

spark = SparkSession.builder \
 .config("spark.jars", extra_jars) \
 .config("spark.jars.packages", "org.apache.hadoop:hadoop-
aws:3.2.1,org.apache.hadoop:hadoop-common:3.2.1") \
 .getOrCreate()

Feature Store Spark 2484

Amazon SageMaker Developer Guide

Installation on notebooks with GIS

Important

You must use AWS Glue Version 2.0 or later.

Use the following information to help you install the PySpark connector in an AWS Glue Interactive
Session (GIS).

Amazon SageMaker Feature Store Spark requires a specific Spark connector JAR during the
initialization of the session to be uploaded to your Amazon S3 bucket. For more information on
uploading the required JAR to your S3 bucket, see Retrieving the JAR for Feature Store Spark.

After you’ve uploaded the JAR, you must provide the GIS sessions with the JAR using the following
command.

%extra_jars s3:/<YOUR_BUCKET>/spark-connector-jars/sagemaker-feature-store-spark-
sdk.jar

To install Feature Store Spark in the AWS Glue runtime, use the %additional_python_modules
magic command within the GIS notebook. AWS Glue runs pip to the modules that you’ve specified
under %additional_python_modules.

%additional_python_modules sagemaker-feature-store-pyspark-3.1

Before you start the AWS Glue session, you must use both of the preceding magic commands.

Installation on an AWS Glue job

Important

You must use AWS Glue Version 2.0 or later.

To install the Spark connector on a AWS Glue job, use the --extra-jars argument to provide
the necessary JARs and --additional-python-modules to install the Spark Connector as
job parameters when you create the AWS Glue job as shown in the following example. For more

Feature Store Spark 2485

Amazon SageMaker Developer Guide

information on uploading the required JAR to your S3 bucket, see Retrieving the JAR for Feature
Store Spark.

glue_client = boto3.client('glue', region_name=region)
response = glue_client.create_job(
 Name=pipeline_id,
 Description='Feature Store Compute Job',
 Role=glue_role_arn,
 ExecutionProperty={'MaxConcurrentRuns': max_concurrent_run},
 Command={
 'Name': 'glueetl',
 'ScriptLocation': script_location_uri,
 'PythonVersion': '3'
 },
 DefaultArguments={
 '--TempDir': temp_dir_location_uri,
 '--additional-python-modules': 'sagemaker-feature-store-pyspark-3.1',
 '--extra-jars': "s3:/<YOUR_BUCKET>/spark-connector-jars/sagemaker-feature-
store-spark-sdk.jar",
 ...
 },
 MaxRetries=3,
 NumberOfWorkers=149,
 Timeout=2880,
 GlueVersion='3.0',
 WorkerType='G.2X'
)

Installation on an Amazon SageMaker Processing job

To use Feature Store Spark with Amazon SageMaker Processing jobs, bring your own image.
For more information about bringing your image, see Bring your own SageMaker image. Add
the installation step to a Dockerfile. After you've pushed the Docker image to an Amazon ECR
repository, you can use the PySparkProcessor to create the processing job. For more information
about creating a processing job with the PySpark processor, see Data Processing with Apache
Spark.

The following is an example of adding an installation step to the Dockerfile.

FROM <ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/sagemaker-spark-processing:3.1-
cpu-py38-v1.0

Feature Store Spark 2486

Amazon SageMaker Developer Guide

RUN /usr/bin/python3 -m pip install sagemaker-feature-store-pyspark-3.1 --no-
binary :all: --verbose

Retrieving the JAR for Feature Store Spark

To retrieve the Feature Store Spark dependency JAR, you must install the Spark connector from the
Python Package Index (PyPI) repository using pip in any Python environment with network access.
A SageMaker Jupyter Notebook is an example of a Python environment with network access.

The following command installs the Spark connector.

!pip install sagemaker-feature-store-pyspark-3.1

After you've installed Feature Store Spark, you can retrieve the JAR location and upload the JAR to
Amazon S3.

The feature-store-pyspark-dependency-jars command provides the location of the
necessary dependency JAR that Feature Store Spark added. You can use the command to retrieve
the JAR and upload it to Amazon S3.

jar_location = !feature-store-pyspark-dependency-jars
jar_location = jar_location[0]

s3_client = boto3.client("s3")
s3_client.upload_file(jar_location, "<YOUR_BUCKET>","spark-connector-jars/sagemaker-
feature-store-spark-sdk.jar")

Example implementations

Example Python script

FeatureStoreBatchIngestion.py

from pyspark.sql import SparkSession
from feature_store_pyspark.FeatureStoreManager import FeatureStoreManager
import feature_store_pyspark

Feature Store Spark 2487

Amazon SageMaker Developer Guide

spark = SparkSession.builder \
 .getOrCreate()

Construct test DataFrame
columns = ["RecordIdentifier", "EventTime"]
data = [("1","2021-03-02T12:20:12Z"), ("2", "2021-03-02T12:20:13Z"), ("3",
 "2021-03-02T12:20:14Z")]

df = spark.createDataFrame(data).toDF(*columns)

Initialize FeatureStoreManager with a role arn if your feature group is created by
 another account
feature_store_manager= FeatureStoreManager("arn:aws:iam::111122223333:role/role-
arn")

Load the feature definitions from input schema. The feature definitions can be
 used to create a feature group
feature_definitions = feature_store_manager.load_feature_definitions_from_schema(df)

feature_group_arn = "arn:aws:sagemaker:<AWS_REGION>:<ACCOUNT_ID>:feature-
group/<YOUR_FEATURE_GROUP_NAME>"

Ingest by default. The connector will leverage PutRecord API to ingest your data
 in stream
https://docs.aws.amazon.com/sagemaker/latest/APIReference/
API_feature_store_PutRecord.html
feature_store_manager.ingest_data(input_data_frame=df,
 feature_group_arn=feature_group_arn)

To select the target stores for ingestion, you can specify the target store as the
 paramter
If OnlineStore is selected, the connector will leverage PutRecord API to ingest
 your data in stream
feature_store_manager.ingest_data(input_data_frame=df,
 feature_group_arn=feature_group_arn, target_stores=["OfflineStore", "OnlineStore"])

If only OfflineStore is selected, the connector will batch write the data to
 offline store directly
feature_store_manager.ingest_data(input_data_frame=df,
 feature_group_arn=feature_group_arn, target_stores=["OfflineStore"])

To retrieve the records failed to be ingested by spark connector
failed_records_df = feature_store_manager.get_failed_stream_ingestion_data_frame()

Feature Store Spark 2488

Amazon SageMaker Developer Guide

Submit a Spark job with example Python script

The PySpark version requires an extra dependent JAR to be imported, so extra steps are needed
to run the Spark application.

If you did not specify SPARK_HOME during installation, then you have to load required JARs
in JVM when running spark-submit. feature-store-pyspark-dependency-jars is a
Python script installed by the Spark library to automatically fetch the path to all JARs for you.

spark-submit --jars `feature-store-pyspark-dependency-
jars` FeatureStoreBatchIngestion.py

If you are running this application on Amazon EMR, we recommended that you run the
application in client mode, so that you do not need to distribute the dependent JARs to other
task nodes. Add one more step in Amazon EMR cluster with Spark argument similar to the
following:

spark-submit --deploy-mode client --master yarn s3:/<PATH_TO_SCRIPT>/
FeatureStoreBatchIngestion.py

Example Scala script

FeatureStoreBatchIngestion.scala

import software.amazon.sagemaker.featurestore.sparksdk.FeatureStoreManager
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}

object TestSparkApp {
 def main(args: Array[String]): Unit = {

 val spark = SparkSession.builder().getOrCreate()

 // Construct test DataFrame
 val data = List(
 Row("1", "2021-07-01T12:20:12Z"),

Feature Store Spark 2489

Amazon SageMaker Developer Guide

 Row("2", "2021-07-02T12:20:13Z"),
 Row("3", "2021-07-03T12:20:14Z")
)

 val schema = StructType(
 List(StructField("RecordIdentifier", StringType), StructField("EventTime",
 StringType))
)

 val df = spark.createDataFrame(spark.sparkContext.parallelize(data), schema)

 // Initialize FeatureStoreManager with a role arn if your feature group is
 created by another account
 val featureStoreManager = new
 FeatureStoreManager("arn:aws:iam::111122223333:role/role-arn")

 // Load the feature definitions from input schema. The feature definitions can
 be used to create a feature group
 val featureDefinitions =
 featureStoreManager.loadFeatureDefinitionsFromSchema(df)

 val featureGroupArn = "arn:aws:sagemaker:<AWS_REGION>:<ACCOUNT_ID>:feature-
group/<YOUR_FEATURE_GROUP_NAME>"

 // Ingest by default. The connector will leverage PutRecord API to ingest your
 data in stream
 // https://docs.aws.amazon.com/sagemaker/latest/APIReference/
API_feature_store_PutRecord.html
 featureStoreManager.ingestData(df, featureGroupArn)

 // To select the target stores for ingestion, you can specify the target store
 as the paramter
 // If OnlineStore is selected, the connector will leverage PutRecord API to
 ingest your data in stream
 featureStoreManager.ingestData(df, featureGroupArn, List("OfflineStore",
 "OnlineStore"))

 // If only OfflineStore is selected, the connector will batch write the data to
 offline store directly
 featureStoreManager.ingestData(df, featureGroupArn, ["OfflineStore"])

 // To retrieve the records failed to be ingested by spark connector
 val failedRecordsDf = featureStoreManager.getFailedStreamIngestionDataFrame()
 }

Feature Store Spark 2490

Amazon SageMaker Developer Guide

}

Submit a Spark job

Scala

You should be able to use Feature Store Spark as a normal dependency. No extra instruction is
needed to run the application on all platforms.

Feature Processing

Amazon SageMaker Feature Store Feature Processing is a capability with which you can transform
raw data into machine learning (ML) features. It provides you with a Feature Processor SDK with
which you can transform and ingest data from batch data sources into your feature groups. With
this capability, Feature Store takes care of the underlying infrastructure including provisioning
the compute environments and creating and maintaining SageMaker Pipelines to load and ingest
data. This way you can focus on your feature processor definitions that includes a transformation
function (for example, count of product views, mean of transaction value), sources (where to apply
this transformation on), and sinks (where to write the computed feature values to).

Feature Processor pipeline is a SageMaker Pipelines pipeline. As a SageMaker Pipelines, you can
also track scheduled Feature Processor pipelines with SageMaker lineage in the console. For more
information on SageMaker Lineage, see Amazon SageMaker ML Lineage Tracking This includes
tracking scheduled executions, visualizing lineage to trace features back to their data sources, and
viewing shared feature processors in a single environment. For information on using Feature Store
with the console, see View pipeline executions from the console.

Topics

• Feature Store Feature Processor SDK

• Running Feature Store Feature Processor remotely

• Creating and running Feature Store Feature Processor pipelines

• Scheduled and event based executions for Feature Processor pipelines

• Monitor Amazon SageMaker Feature Store Feature Processor pipelines

• IAM permissions and execution roles

• Feature Processor restrictions, limits, and quotas

• Data sources

Feature Processing 2491

Amazon SageMaker Developer Guide

• Example Feature Processing code for common use cases

Feature Store Feature Processor SDK

Declare a Feature Store Feature Processor definition by decorating your transformation functions
with the @feature_processor decorator. The SageMaker SDK for Python (Boto3) automatically
loads data from the configured input data sources, applies the decorated transformation function,
and then ingests the transformed data to a target feature group. Decorated transformation
functions must conform to the expected signature of the @feature_processor decorator. For
more information about the @feature_processor decorator, see @feature_processor Decorator
in the Amazon SageMaker Feature Store Read the Docs.

With the @feature_processor decorator, your transformation function runs in a Spark runtime
environment where the input arguments provided to your function and its return value are Spark
DataFrames. The number of input parameters in your transformation function must match the
number of inputs configured in the @feature_processor decorator.

For more information on the @feature_processor decorator, see the Feature Processor Feature
Store SDK for Python (Boto3).

The following code are basic examples on how to use the @feature_processor decorator. For
more specific example usage cases, see Example Feature Processing code for common use cases.

The Feature Processor SDK can be installed from the SageMaker Python SDK and its extras using
the following command.

pip install sagemaker[feature-processor]

In the following examples, us-east-1 is the region of the resource, 111122223333 is the
resource owner account ID, and your-feature-group-name is the feature group name.

The following is a basic feature processor definition, where the @feature_processor decorator
configures a CSV input from Amazon S3 to be loaded and provided to your transformation function
(for example, transform), and prepares it for ingestion to a feature group. The last line runs it.

from sagemaker.feature_store.feature_processor import CSVDataSource, feature_processor

CSV_DATA_SOURCE = CSVDataSource('s3://your-bucket/prefix-to-csv/')
OUTPUT_FG = 'arn:aws:sagemaker:us-east-1:111122223333:feature-group/your-feature-group-
name'

Feature Store Feature Processor SDK 2492

https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#feature-processor-decorator
https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/feature_store/feature_processor
https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/feature_store/feature_processor

Amazon SageMaker Developer Guide

@feature_processor(inputs=[CSV_DATA_SOURCE], output=OUTPUT_FG)
def transform(csv_input_df):
 return csv_input_df

transform()

The @feature_processor parameters include:

• inputs (List[str]): A list of data sources that are used in your Feature Store Feature Processor.
If your data sources are feature groups or stored in Amazon S3 you may be able to use Feature
Store provided data source definitions for feature processor. For a full list of Feature Store
provided data source definitions, see the Feature Processor Data Source in the Amazon
SageMaker Feature Store Read the Docs.

• output (str): The ARN of the feature group to ingest the output of the decorated function.

• target_stores (Optional[List[str]]): A list of stores (for example, OnlineStore or
OfflineStore) to ingest to the output. If unspecified, data is ingested to all of the output
feature group’s enabled stores.

• parameters (Dict[str, Any]): A dictionary to be provided to your transformation function.

• enable_ingestion (bool): A flag to indicate whether the transformation function’s outputs
are ingested to the output feature group. This flag is useful during the development phase. If
unspecified, ingestion is enabled.

Optional wrapped function parameters (provided as an argument if provided in the function
signature) include:

• params (Dict[str, Any]): The dictionary defined in the @feature_processor parameters. It also
contains system configured parameters that can be referenced with the key system, such as the
scheduled_time parameter.

• spark (SparkSession): A reference to the SparkSession instance initialized for the Spark
Application.

The following code is an example of using the params and spark parameters.

from sagemaker.feature_store.feature_processor import CSVDataSource, feature_processor

CSV_DATA_SOURCE = CSVDataSource('s3://your-bucket/prefix-to-csv/')

Feature Store Feature Processor SDK 2493

https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#feature-processor-data-source

Amazon SageMaker Developer Guide

OUTPUT_FG = 'arn:aws:sagemaker:us-east-1:111122223333:feature-group/your-feature-group-
name'

@feature_processor(inputs=[CSV_DATA_SOURCE], output=OUTPUT_FG)
def transform(csv_input_df, params, spark):

 scheduled_time = params['system']['scheduled_time']
 csv_input_df.createOrReplaceTempView('csv_input_df')
 return spark.sql(f'''
 SELECT *
 FROM csv_input_df
 WHERE date_add(event_time, 1) >= {scheduled_time}
 ''')

transform()

The scheduled_time system parameter (provided in the params argument to your function) is
an important value to support retrying each execution. The value can help to uniquely identify the
Feature Processor’s execution and can be used as a reference point for daterange–based inputs (for
example, only loading the last 24 hours worth of data) to guarantee the input range independent
of the code’s actual execution time. If the Feature Processor runs on a schedule (see Scheduled
and event based executions for Feature Processor pipelines) then its value is fixed to the time it is
scheduled to run. The argument can be overridden during synchronous execution using the SDK’s
execute API to support use cases such as data backfills or re-running a missed past execution. Its
value is the current time if the Feature Processor runs any other way.

For information about authoring Spark code, see the Spark SQL Programming Guide.

For more code samples for common use-cases, see the Example Feature Processing code for
common use cases.

Note that transformation functions decorated with @feature_processor do not return
a value. To programmatically test your function, you can remove or monkey patch the
@feature_processor decorator such that it acts as a pass-through to the wrapped function.
For more details on the @feature_processor decorator, see Amazon SageMaker Feature Store
Python SDK.

Running Feature Store Feature Processor remotely

To run your Feature Processors on large data sets that require hardware more powerful than what
is locally available, you can decorate your code with the @remote decorator to run your local

Running Feature Store Feature Processor remotely 2494

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_featurestore.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_featurestore.html

Amazon SageMaker Developer Guide

Python code as a single or multi-node distributed SageMaker training job. For more information
on running your code as a SageMaker training job, see Run your local code as a SageMaker training
job.

The following is a usage example of the @remote decorator along with the @feature_processor
decorator.

from sagemaker.remote_function.spark_config import SparkConfig
from sagemaker.remote_function import remote
from sagemaker.feature_store.feature_processor import CSVDataSource, feature_processor

CSV_DATA_SOURCE = CSVDataSource('s3://bucket/prefix-to-csv/')
OUTPUT_FG = 'arn:aws:sagemaker:us-east-1:123456789012:feature-group/feature-group'

@remote(
 spark_config=SparkConfig(),
 instance_type="ml.m5.2xlarge",
 dependencies="/local/requirements.txt"
)
@feature_processor(
 inputs=[CSV_DATA_SOURCE],
 output=OUTPUT_FG,
)
def transform(csv_input_df):
 return csv_input_df

transform()

The spark_config parameter indicates that the remote job runs as a Spark application. The
SparkConfig instance can be used to configure the Spark Configuration and provide additional
dependencies to the Spark application such as Python files, JARs, and files.

For faster iterations when developing your feature processing code, you can specify the
keep_alive_period_in_seconds argument in the @remote decorator to retain configured
resources in a warm pool for subsequent training jobs. For more information on warm pools, see
KeepAlivePeriodInSeconds in the API Reference guide.

The following code is an example of local requirements.txt:

sagemaker>=2.167.0

Running Feature Store Feature Processor remotely 2495

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceConfig.html#sagemaker-Type-ResourceConfig-KeepAlivePeriodInSeconds

Amazon SageMaker Developer Guide

This will install the corresponding SageMaker SDK version in remote job which is required for
executing the method annotated by @feature-processor.

Creating and running Feature Store Feature Processor pipelines

The Feature Processor SDK provides APIs to promote your Feature Processor Definitions into a
fully managed SageMaker Pipeline. For more information on SageMaker Pipelines, see SageMaker
Pipelines Overview. To convert your Feature Processor Definitions in to a SageMaker Pipeline, use
the to_pipeline API with your Feature Processor definition. You can schedule executions of
your Feature Processor Definition can be scheduled, operationally monitor them with CloudWatch
metrics, and integrate them with EventBridge to act as event sources or subscribers. For more
information about monitoring pipelines created with SageMaker Pipelines, see Monitor Amazon
SageMaker Feature Store Feature Processor pipelines.

To view your Feature Processor pipelines, see View pipeline executions from the console.

If your function is also decorated with the @remote decorator, then its configurations is carried
over to the Feature Processor pipeline. You can specify advanced configurations such as compute
instance type and count, runtime dependencies, network and security configurations using the
@remote decorator.

The following example uses the to_pipeline and execute APIs.

from sagemaker.feature_store.feature_processor import (
 execute, to_pipeline, describe, TransformationCode
)

pipeline_name="feature-processor-pipeline"
pipeline_arn = to_pipeline(
 pipeline_name=pipeline_name,
 step=transform,
 transformation_code=TransformationCode(s3_uri="s3://bucket/prefix"),
)

pipeline_execution_arn = execute(
 pipeline_name=pipeline_name
)

The to_pipeline API is semantically an upsert operation. It updates the pipeline if it already
exists; otherwise, it creates a pipeline.

Creating and running Feature Store Feature Processor pipelines 2496

Amazon SageMaker Developer Guide

The to_pipeline API optionally accepts an Amazon S3 URI that references a file containing
the Feature Processor definition to associate it with the Feature Processor pipeline to track the
transformation function and its versions in its SageMaker machine learning lineage.

To retrieve a list of every Feature Processor pipeline in your account, you can use the
list_pipelines API. A subsequent request to the describe API returns details related to the
Feature Processor pipeline including, but not limited to, SageMaker Pipelines and schedule details.

The following example uses the list_pipelines and describe APIs.

from sagemaker.feature_store.feature_processor import list_pipelines, describe

feature_processor_pipelines = list_pipelines()

pipeline_description = describe(
 pipeline_name = feature_processor_pipelines[0]
)

Scheduled and event based executions for Feature Processor pipelines

Amazon SageMaker Feature Store Feature Processing pipeline executions can be configured to start
automatically and asynchronously based on a preconfigured schedule or as a result of another AWS
service event. For example, you can schedule Feature Processing pipelines to execute on the first
of every month or chain two pipelines together so that a target pipeline is executed automatically
after a source pipeline execution completes.

Topics

• Schedule based executions

• Event based executions

Schedule based executions

The Feature Processor SDK provides a schedule API to run Feature Processor pipelines on a
recurring basis with Amazon EventBridge Scheduler integration. The schedule can be specified
with an at, rate, or cron expression using the ScheduleExpression parameter with the
same expressions supported by Amazon EventBridge. The schedule API is semantically an upsert
operation in that it updates the schedule if it already exists; otherwise, it creates it. For more
information on the EventBridge expressions and examples, see Schedule types on EventBridge
Scheduler in the EventBridge Scheduler User Guide.

Scheduled and event based executions for Feature Processor pipelines 2497

https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#sagemaker.feature_store.feature_processor.schedule
https://docs.aws.amazon.com/scheduler/latest/APIReference/API_CreateSchedule.html#scheduler-CreateSchedule-request-ScheduleExpression
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html

Amazon SageMaker Developer Guide

The following examples use the Feature Processor schedule API, using the at, rate, and cron
expressions.

from sagemaker.feature_store.feature_processor import schedule
pipeline_name='feature-processor-pipeline'

event_bridge_schedule_arn = schedule(
 pipeline_name=pipeline_name,
 schedule_expression="at(2020-11-30T00:00:00)"
)

event_bridge_schedule_arn = schedule(
 pipeline_name=pipeline_name,
 schedule_expression="rate(24 hours)"
)

event_bridge_schedule_arn = schedule(
 pipeline_name=pipeline_name,
 schedule_expression="cron(0 0-23/1 ? * * 2023-2024)"
)

The default timezone for date and time inputs in the schedule API are in UTC. For more
information about EventBridge Scheduler schedule expressions, see ScheduleExpression in the
EventBridge Scheduler API Reference documentation.

Scheduled Feature Processor pipeline executions provide your transformation function with the
scheduled execution time, to be used as an idempotency token or a fixed reference point for date
range–based inputs. To disable (i.e., pause) or re-enable a schedule, use the state parameter of
the schedule API with ‘DISABLED’ or ‘ENABLED’, respectively.

For information about Feature Processor, see Feature Processor SDK data sources.

Event based executions

A Feature Processing pipeline can be configured to automatically execute when an AWS
event occurs. The Feature Processing SDK provides a put_trigger function that accepts
a list of source events and a target pipeline. The source events must be instances of
FeatureProcessorPipelineEvent, that specifies a pipeline and execution status events.

Scheduled and event based executions for Feature Processor pipelines 2498

https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#sagemaker.feature_store.feature_processor.schedule
https://docs.aws.amazon.com/scheduler/latest/APIReference/API_CreateSchedule.html#scheduler-CreateSchedule-request-ScheduleExpression
https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#sagemaker.feature_store.feature_processor.schedule
https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#sagemaker.feature_store.feature_processor.put_trigger
https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#sagemaker.feature_store.feature_processor.FeatureProcessorPipelineEvent
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineExecution.html#sagemaker-DescribePipelineExecution-response-PipelineExecutionStatus

Amazon SageMaker Developer Guide

The put_trigger function configures an Amazon EventBridge rule and target to route events and
allows you to specify an EventBridge event pattern to respond to any AWS event. For information
on these concepts, see Amazon EventBridge rules, targets, and event patterns.

Triggers can be enabled or disabled. EventBridge will start a target pipeline execution using the
role provided in the role_arn parameter of the put_trigger API. The execution role is used by
default if the SDK is used in a Amazon SageMaker Studio Classic or Notebook environment. For
information on how to get your execution role, see Get execution role.

The following example sets up:

• A SageMaker Pipeline using the to_pipeline API, that takes in your target pipeline name
(target-pipeline) and your transformation function (transform). For information on your
Feature Processor and transform function, see Feature Processor SDK data sources.

• A trigger using the put_trigger API, that takes in FeatureProcessorPipelineEvent for
the event and your target pipeline name (target-pipeline).

The FeatureProcessorPipelineEvent defines the trigger for when the status of your source
pipeline (source-pipeline) becomes Succeeded. For information on the Feature Processor
Pipeline event function, see FeatureProcessorPipelineEvent in the Feature Store Read the
Docs.

from sagemaker.feature_store.feature_processor import put_trigger, to_pipeline,
 FeatureProcessorPipelineEvent

to_pipeline(pipeline_name="target-pipeline", step=transform)

put_trigger(
 source_pipeline_events=[
 FeatureProcessorPipelineEvent(
 pipeline_name="source-pipeline",
 status=["Succeeded"]
)
],
 target_pipeline="target-pipeline"
)

Scheduled and event based executions for Feature Processor pipelines 2499

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-targets.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html
https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#sagemaker.feature_store.feature_processor.FeatureProcessorPipelineEvent

Amazon SageMaker Developer Guide

For an example of using event based triggers to create continuous executions and automatic retries
for your Feature Processor pipeline, see Continuous executions and automatic retries using event
based triggers.

For an example of using event based triggers to create continuous streaming and automatic retries
using event based triggers, see Streaming custom data source examples.

Monitor Amazon SageMaker Feature Store Feature Processor pipelines

AWS provides monitoring tools to watch your Amazon SageMaker resources and applications in
real time, report when something goes wrong, and take automatic actions when appropriate.
Feature Store Feature Processor pipelines are SageMaker Pipelines, so the standard monitoring
mechanisms and integrations are available. Operational metrics such as execution failures can be
monitored via Amazon CloudWatch metrics and Amazon EventBridge events.

For more information on how to monitor and operationalize Feature Store Feature Processor, see
the following resources:

• Monitor AWS resources provisioned while using Amazon SageMaker - General guidance on
monitoring and auditing activity for SageMaker resources.

• SageMaker Pipelines Metrics - CloudWatch Metrics emitted by SageMaker Pipelines.

• Pipeline execution state change - EventBridge events emitted for SageMaker Pipelines and
executions.

• Troubleshooting Amazon SageMaker Model Building Pipelines - General debugging and
troubleshooting tips for SageMaker Pipelines.

Feature Store Feature Processor execution logs can be found in Amazon CloudWatch Logs under
the /aws/sagemaker/TrainingJobs log group, where you can find the execution log streams
using lookup conventions. For executions created by directly invoking the @feature_processor
decorated function, you can find logs in your local execution environment’s console. For @remote
decorated executions, the CloudWatch Logs stream name contains the name of the function and
the execution timestamp. For Feature Processor pipeline executions, the CloudWatch Logs stream
for the step contains the feature-processor string and the pipeline execution ID.

Feature Store Feature Processor pipelines and recent execution statuses can be found in Amazon
SageMaker Studio Classic for a given feature group in the Feature Store UI. Feature groups related
to the Feature Processor pipelines as either inputs or outputs are displayed in the UI. In addition,

Monitor Amazon SageMaker Feature Store Feature Processor pipelines 2500

Amazon SageMaker Developer Guide

the lineage view can provide context into upstream executions, such as data producing Feature
Processor pipelines and data sources, for further debugging. For more information on using the
lineage view using Studio Classic, see View lineage from the console.

IAM permissions and execution roles

To use the The Amazon SageMaker Python SDK requires permissions to interact with AWS services.
The following policies are required for full Feature Processor functionality. You can attach the
AmazonSageMakerFullAccess and AmazonEventBridgeSchedulerFullAccess AWS Managed Policies
attached to your IAM role. For information on attaching policies to your IAM role, see Adding
policies to your IAM role. See the following examples for details.

The trust policy of the role to which this policy is applied must allow the
"scheduler.amazonaws.com", "sagemaker.amazonaws.com", and "glue.amazonaws.com" principles.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "scheduler.amazonaws.com",
 "sagemaker.amazonaws.com",
 "glue.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Feature Processor restrictions, limits, and quotas

Amazon SageMaker Feature Store Feature Processing relies on SageMaker machine learning (ML)
lineage tracking. The Feature Store Feature Processor uses lineage contexts to represent and track
Feature Processing Pipelines and Pipeline versions. Each Feature Store Feature Processor consumes
at least two lineage contexts (one for the Feature Processing Pipeline and another for the version).
If the input or output data source of a Feature Processing Pipeline changes, an additional lineage

IAM permissions and execution roles 2501

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/security_iam_id-based-policy-examples.html#security_iam_id-based-policies-managed-policies

Amazon SageMaker Developer Guide

context is created. You can update SageMaker ML lineage limits by reaching out to AWS support for
a limit increase. Default limits for resources used by Feature Store Feature Processor are as follows.
For information on SageMaker ML lineage tracking, see Amazon SageMaker ML Lineage Tracking.

For more information on SageMaker quotas, see Amazon SageMaker endpoints and quotas.

Lineage limits per Region

• Contexts – 500 (soft limit)

• Artifacts – 6,000 (soft limit)

• Associations – 6,000 (soft limit)

Training Limits per Region

• Longest run time for a training job – 432,000 seconds

• Maximum number of instances per training job – 20

• The maximum number of CreateTrainingJob requests that you can make, per second, in this
account in the current Region – 1 TPS

• Keep alive period for cluster reuse – 3,600 seconds

Maximum number of Pipelines and concurrent pipeline executions per Region

• Maximum number of pipelines allowed per account – 500

• Maximum number of concurrent pipeline executions allowed per account – 20

• Time at which pipeline executions time out – 672 hours

Data sources

Amazon SageMaker Feature Store Feature Processing supports multiple data sources. The Feature
Processor SDK for Python (Boto3) provides constructs to load data from feature groups or objects
stored in Amazon S3. In addition, you can author custom data sources to load data from other data
sources. For information about Feature Store provided data sources, see Feature Processor data
source Feature Store Python SDK.

Topics

• Feature Processor SDK data sources

Data sources 2502

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/feature_store/feature_processor/_data_source.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/feature_store/feature_processor/_data_source.py

Amazon SageMaker Developer Guide

• Custom data sources

• Custom data source examples

Feature Processor SDK data sources

The Amazon SageMaker Feature Store Feature Processor SDK for Python (Boto3) provides
constructs to load data from feature groups or objects stored in Amazon S3. For a full list of
Feature Store provided data source definitions, see the Feature Processor data source Feature Store
Python SDK.

For examples on how to use the Feature Store Python SDK data source definitions, see Example
Feature Processing code for common use cases.

FeatureGroupDataSource

The FeatureGroupDataSource is used to specify a feature group as an input data source for a
Feature Processor. Data can be loaded from an offline store feature group. Attempting to load your
data from an online store feature group will result in a validation error. You can specify start and
end offsets to limit the data that is loaded to a specific time range. For example, you can specify a
start offset of ‘14 days' to load only the last two weeks of data, and you can additionally specify an
end offset of '7 days' to limit the input to the previous week of data.

Feature Store provided data source definitions

The Feature Store Python SDK contain data source definitions that can be used to specify various
input data sources for a Feature Processor. These include CSV, Parquet, and Iceberg table sources.
For a full list of Feature Store provided data source definitions, see the Feature Processor data
source Feature Store Python SDK.

Custom data sources

On this page we will describe how to create a custom data source class and show some usage
examples. With custom data sources, you can use the SageMaker SDK for Python (Boto3) provided
APIs in the same way as if you are using Amazon SageMaker Feature Store provided data sources.

To use a custom data source to transform and ingest data into a feature group using Feature
Processing, you will need to extend the PySparkDataSource class with the following class
members and function.

Data sources 2503

https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/feature_store/feature_processor/_data_source.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/feature_store/feature_processor/_data_source.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/feature_store/feature_processor/_data_source.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/feature_store/feature_processor/_data_source.py

Amazon SageMaker Developer Guide

• data_source_name (str): an arbitrary name for the data source. For example, Amazon Redshift,
Snowflake, or a Glue Catalog ARN.

• data_source_unique_id (str): a unique identifier that refers to the specific resource being
accessed. For example, table name, DDB Table ARN, Amazon S3 prefix. All usage of the same
data_source_unique_id in custom data sources will be associated to the same data source in
the lineage view. Lineage includes information about the execution code of a feature processing
workflow, what data sources were used, and how they are ingested into the feature group or
feature. For information about viewing lineage of a feature group in Studio, see View lineage
from the console.

• read_data (func): a method used to connect with the feature processor. Returns a Spark data
frame. For examples, see Custom data source examples.

Both data_source_name and data_source_unique_id are used to uniquely identify
your lineage entity. The following is an example for a custom data source class named
CustomDataSource.

from sagemaker.feature_store.feature_processor import PySparkDataSource
from pyspark.sql import DataFrame

class CustomDataSource(PySparkDataSource):

 data_source_name = "custom-data-source-name"
 data_source_unique_id = "custom-data-source-id"

 def read_data(self, parameter, spark) -> DataFrame:
 your own code here to read data into a Spark dataframe
 return dataframe

Custom data source examples

This section provides examples of custom data sources implementations for Feature Processors. For
more information on custom data sources, see Custom data sources.

Security is a shared responsibility between AWS and our customers. AWS is responsible for
protecting the infrastructure that runs the services in the AWS Cloud. Customers are responsible
for all of their necessary security configuration and management tasks. For example, secrets such
as access credentials to data stores should not be hard coded in your custom data sources. You can
use AWS Secrets Manager to manage these credentials. For information about Secrets Manager, see

Data sources 2504

Amazon SageMaker Developer Guide

What is AWS Secrets Manager? in the AWS Secrets Manager user guide. The following examples will
use Secrets Manager for your credentials.

Topics

• Amazon Redshift Clusters (JDBC) custom data source examples

• Snowflake custom data source examples

• Databricks (JDBC) custom data source examples

• Streaming custom data source examples

Amazon Redshift Clusters (JDBC) custom data source examples

Amazon Redshift offers a JDBC driver that can be used to read data with Spark. For information
about how to download the Amazon Redshift JDBC driver, see Download the Amazon Redshift
JDBC driver, version 2.1.

To create the custom Amazon Redshift data source class, you will need to overwrite the
read_data method from the Custom data sources.

To connect with an Amazon Redshift cluster you need your:

• Amazon Redshift JDBC URL (jdbc-url)

For information about obtaining your Amazon Redshift JDBC URL, see Getting the JDBC URL in
the Amazon Redshift Database Developer Guide.

• Amazon Redshift user name (redshift-user) and password (redshift-password)

For information about how to create and manage database users using the Amazon Redshift SQL
commands, see Users in the Amazon Redshift Database Developer Guide.

• Amazon Redshift table name (redshift-table-name)

For information about how to create a table with some examples, see CREATE TABLE in the
Amazon Redshift Database Developer Guide.

• (Optional) If using Secrets Manager, you’ll need the secret name (secret-redshift-account-
info) where you store your Amazon Redshift access username and password on Secrets
Manager.

For information about Secrets Manager, see Find secrets in AWS Secrets Manager in the AWS
Secrets Manager User Guide.

Data sources 2505

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/redshift/latest/mgmt/jdbc20-download-driver.html
https://docs.aws.amazon.com/redshift/latest/mgmt/jdbc20-download-driver.html
https://docs.aws.amazon.com/redshift/latest/mgmt/jdbc20-obtain-url.html
https://docs.aws.amazon.com/redshift/latest/dg/r_Users.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html

Amazon SageMaker Developer Guide

• AWS Region (your-region)

For information about obtaining your current session’s region name using SDK for Python
(Boto3), see region_name in the Boto3 documentation.

The following example demonstrates how to retrieve the JDBC URL and personal access
token from Secrets Manager and override the read_data for your custom data source class,
DatabricksDataSource.

from sagemaker.feature_store.feature_processor import PySparkDataSource
import json
import boto3

class RedshiftDataSource(PySparkDataSource):

 data_source_name = "Redshift"
 data_source_unique_id = "redshift-resource-arn"

 def read_data(self, spark, params):
 url = "jdbc-url?user=redshift-user&password=redshift-password"
 aws_iam_role_arn = "redshift-command-access-role"
 secret_name = "secret-redshift-account-info"
 region_name = "your-region"

 session = boto3.session.Session()
 sm_client = session.client(
 service_name='secretsmanager',
 region_name=region_name,
)

 secrets = json.loads(sm_client.get_secret_value(SecretId=secret_name)
["SecretString"])
 jdbc_url = url.replace("jdbc-url", secrets["jdbcurl"]).replace("redshift-user",
 secrets['username']).replace("redshift-password", secrets['password'])

 return spark.read \
 .format("jdbc") \
 .option("url", url) \
 .option("driver", "com.amazon.redshift.Driver") \
 .option("dbtable", "redshift-table-name") \
 .option("tempdir", "s3a://your-bucket-name/your-bucket-prefix") \

Data sources 2506

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html#boto3.session.Session.region_name

Amazon SageMaker Developer Guide

 .option("aws_iam_role", aws_iam_role_arn) \
 .load()

The following example shows how to connect RedshiftDataSource to your
feature_processor decorator.

from sagemaker.feature_store.feature_processor import feature_processor

@feature_processor(
 inputs=[RedshiftDataSource()],
 output="feature-group-arn",
 target_stores=["OfflineStore"],
 spark_config={"spark.jars.packages": "com.amazon.redshift:redshift-
jdbc42:2.1.0.16"}
)
def transform(input_df):
 return input_df

To run the feature processor job remotely, you need to provide the jdbc driver by defining
SparkConfig and pass it to the @remote decorator.

from sagemaker.remote_function import remote
from sagemaker.remote_function.spark_config import SparkConfig

config = {
 "Classification": "spark-defaults",
 "Properties": {
 "spark.jars.packages": "com.amazon.redshift:redshift-jdbc42:2.1.0.16"
 }
}

@remote(
 spark_config=SparkConfig(configuration=config),
 instance_type="ml.m5.2xlarge",
)
@feature_processor(
 inputs=[RedshiftDataSource()],
 output="feature-group-arn",
 target_stores=["OfflineStore"],
)
def transform(input_df):
 return input_df

Data sources 2507

Amazon SageMaker Developer Guide

Snowflake custom data source examples

Snowflake provides a Spark connector that can be used for your feature_processor decorator.
For information about Snowflake connector for Spark, see Snowflake Connector for Spark in the
Snowflake documentation.

To create the custom Snowflake data source class, you will need to override the read_data
method from the Custom data sources and add the Spark connector packages to the Spark
classpath.

To connect with a Snowflake data source you need:

• Snowflake URL (sf-url)

For information about URLs for accessing Snowflake web interfaces, see Account Identifiers in
the Snowflake documentation.

• Snowflake database (sf-database)

For information about obtaining the name of your database using Snowflake, see
CURRENT_DATABASE in the Snowflake documentation.

• Snowflake database schema (sf-schema)

For information about obtaining the name of your schema using Snowflake, see
CURRENT_SCHEMA in the Snowflake documentation.

• Snowflake warehouse (sf-warehouse)

For information about obtaining the name of your warehouse using Snowflake, see
CURRENT_WAREHOUSE in the Snowflake documentation.

• Snowflake table name (sf-table-name)

• (Optional) If using Secrets Manager, you’ll need the secret name (secret-snowflake-
account-info) where you store your Snowflake access username and password on Secrets
Manager.

For information about Secrets Manager, see Find secrets in AWS Secrets Manager in the AWS
Secrets Manager User Guide.

• AWS Region (your-region)

For information about obtaining your current session’s region name using SDK for Python
(Boto3), see region_name in the Boto3 documentation.

Data sources 2508

https://docs.snowflake.com/en/user-guide/spark-connector
https://docs.snowflake.com/en/user-guide/admin-account-identifier
https://docs.snowflake.com/en/sql-reference/functions/current_database
https://docs.snowflake.com/en/sql-reference/functions/current_schema
https://docs.snowflake.com/en/sql-reference/functions/current_warehouse
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html#boto3.session.Session.region_name

Amazon SageMaker Developer Guide

The following example demonstrates how to retrieve the Snowflake user name and password
from Secrets Manager and override the read_data function for your custom data source class
SnowflakeDataSource.

from sagemaker.feature_store.feature_processor import PySparkDataSource
from sagemaker.feature_store.feature_processor import feature_processor
import json
import boto3

class SnowflakeDataSource(PySparkDataSource):

 sf_options = {
 "sfUrl" : "sf-url",
 "sfDatabase" : "sf-database",
 "sfSchema" : "sf-schema",
 "sfWarehouse" : "sf-warehouse",
 }

 data_source_name = "Snowflake"
 data_source_unique_id = "sf-url"

 def read_data(self, spark, params):
 secret_name = "secret-snowflake-account-info"
 region_name = "your-region"

 session = boto3.session.Session()
 sm_client = session.client(
 service_name='secretsmanager',
 region_name=region_name,
)

 secrets = json.loads(sm_client.get_secret_value(SecretId=secret_name)
["SecretString"])
 self.sf_options["sfUser"] = secrets.get("username")
 self.sf_options["sfPassword"] = secrets.get("password")

 return spark.read.format("net.snowflake.spark.snowflake") \
 .options(**self.sf_options) \
 .option("dbtable", "sf-table-name") \
 .load()

Data sources 2509

Amazon SageMaker Developer Guide

The following example shows how to connect SnowflakeDataSource to your
feature_processor decorator.

from sagemaker.feature_store.feature_processor import feature_processor

@feature_processor(
 inputs=[SnowflakeDataSource()],
 output=feature-group-arn,
 target_stores=["OfflineStore"],
 spark_config={"spark.jars.packages": "net.snowflake:spark-snowflake_2.12:2.12.0-
spark_3.3"}
)
def transform(input_df):
 return input_df

To run the feature processor job remotely, you need to provide the packages via defining
SparkConfig and pass it to @remote decorator. The Spark packages in the following example
are such that spark-snowflake_2.12 is the Feature Processor Scala version, 2.12.0 is the
Snowflake version you wish to use, and spark_3.3 is the Feature Processor Spark version.

from sagemaker.remote_function import remote
from sagemaker.remote_function.spark_config import SparkConfig

config = {
 "Classification": "spark-defaults",
 "Properties": {
 "spark.jars.packages": "net.snowflake:spark-snowflake_2.12:2.12.0-spark_3.3"
 }
}

@remote(
 spark_config=SparkConfig(configuration=config),
 instance_type="ml.m5.2xlarge",
)
@feature_processor(
 inputs=[SnowflakeDataSource()],
 output="feature-group-arn>",
 target_stores=["OfflineStore"],
)
def transform(input_df):
 return input_df

Data sources 2510

Amazon SageMaker Developer Guide

Databricks (JDBC) custom data source examples

Spark can read data from Databricks by using the Databricks JDBC driver. For information about
the Databricks JDBC driver, see Configure the Databricks ODBC and JDBC drivers in the Databricks
documentation.

Note

You can read data from any other database by including the corresponding JDBC driver
in Spark classpath. For more information, see JDBC To Other Databases in the Spark SQL
Guide.

To create the custom Databricks data source class, you will need to override the read_data
method from the Custom data sources and add the JDBC jar to the Spark classpath.

To connect with a Databricks data source you need:

• Databricks URL (databricks-url)

For information about your Databricks URL, see Building the connection URL for the Databricks
driver in the Databricks documentation.

• Databricks personal access token (personal-access-token)

For information about your Databricks access token, see Databricks personal access token
authentication in the Databricks documentation.

• Data catalog name (db-catalog)

For information about your Databricks catalog name, see Catalog name in the Databricks
documentation.

• Schema name (db-schema)

For information about your Databricks schema name, see Schema name in the Databricks
documentation.

• Table name (db-table-name)

For information about your Databricks table name, see Table name in the Databricks
documentation.

Data sources 2511

https://docs.databricks.com/en/integrations/jdbc-odbc-bi.html#configure-the-databricks-odbc-and-jdbc-drivers
https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html
https://docs.databricks.com/en/integrations/jdbc-odbc-bi.html#building-the-connection-url-for-the-databricks-driver
https://docs.databricks.com/en/integrations/jdbc-odbc-bi.html#building-the-connection-url-for-the-databricks-driver
https://docs.databricks.com/en/dev-tools/auth.html#pat
https://docs.databricks.com/en/dev-tools/auth.html#pat
https://docs.databricks.com/en/sql/language-manual/sql-ref-names.html#catalog-name
https://docs.databricks.com/en/sql/language-manual/sql-ref-names.html#schema-name
https://docs.databricks.com/en/sql/language-manual/sql-ref-names.html#table-name

Amazon SageMaker Developer Guide

• (Optional) If using Secrets Manager, you’ll need the secret name (secret-databricks-
account-info) where you store your Databricks access username and password on Secrets
Manager.

For information about Secrets Manager, see Find secrets in AWS Secrets Manager in the AWS
Secrets Manager User Guide.

• AWS Region (your-region)

For information about obtaining your current session’s region name using SDK for Python
(Boto3), see region_name in the Boto3 documentation.

The following example demonstrates how to retrieve the JDBC URL and personal access
token from Secrets Manager and overwrite the read_data for your custom data source class,
DatabricksDataSource.

from sagemaker.feature_store.feature_processor import PySparkDataSource
import json
import boto3

class DatabricksDataSource(PySparkDataSource):

 data_source_name = "Databricks"
 data_source_unique_id = "databricks-url"

 def read_data(self, spark, params):
 secret_name = "secret-databricks-account-info"
 region_name = "your-region"

 session = boto3.session.Session()
 sm_client = session.client(
 service_name='secretsmanager',
 region_name=region_name,
)

 secrets = json.loads(sm_client.get_secret_value(SecretId=secret_name)
["SecretString"])
 jdbc_url = secrets["jdbcurl"].replace("personal-access-token", secrets['pwd'])

 return spark.read.format("jdbc") \
 .option("url", jdbc_url) \

Data sources 2512

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html#boto3.session.Session.region_name

Amazon SageMaker Developer Guide

 .option("dbtable","`db-catalog`.`db-schema`.`db-table-name`") \
 .option("driver", "com.simba.spark.jdbc.Driver") \
 .load()

The following example shows how to upload the JDBC driver jar, jdbc-jar-file-name.jar,
to Amazon S3 in order to add it to the Spark classpath. For information about downloading the
Spark JDBC driver (jdbc-jar-file-name.jar) from Databricks, see Download JDBC Driverin the
Databricks website.

from sagemaker.feature_store.feature_processor import feature_processor

@feature_processor(
 inputs=[DatabricksDataSource()],
 output=feature-group-arn,
 target_stores=["OfflineStore"],
 spark_config={"spark.jars": "s3://your-bucket-name/your-bucket-prefix/jdbc-jar-
file-name.jar"}
)
def transform(input_df):
 return input_df

To run the feature processor job remotely, you need to provide the jars by defining SparkConfig
and pass it to the @remote decorator.

from sagemaker.remote_function import remote
from sagemaker.remote_function.spark_config import SparkConfig

config = {
 "Classification": "spark-defaults",
 "Properties": {
 "spark.jars": "s3://your-bucket-name/your-bucket-prefix/jdbc-jar-file-name.jar"
 }
}

@remote(
 spark_config=SparkConfig(configuration=config),
 instance_type="ml.m5.2xlarge",
)
@feature_processor(
 inputs=[DatabricksDataSource()],
 output="feature-group-arn",
 target_stores=["OfflineStore"],

Data sources 2513

https://www.databricks.com/spark/jdbc-drivers-download

Amazon SageMaker Developer Guide

)
def transform(input_df):
 return input_df

Streaming custom data source examples

You can connect to streaming data sources like Amazon Kinesis, and author transforms with Spark
Structured Streaming to read from streaming data sources. For information about the Kinesis
connector, see Kinesis Connector for Spark Structured Streaming in GitHub. For information about
Amazon Kinesis, see What Is Amazon Kinesis Data Streams? in the Amazon Kinesis Developer
Guide.

To create the custom Amazon Kinesis data source class, you will need to extend the
BaseDataSource class and override the read_data method from Custom data sources.

To connect to an Amazon Kinesis data stream you need:

• Kinesis ARN (kinesis-resource-arn)

For information on Kinesis data stream ARNs, see Amazon Resource Names (ARNs) for Kinesis
Data Streams in the Amazon Kinesis Developer Guide.

• Kinesis data stream name (kinesis-stream-name)

• AWS Region (your-region)

For information about obtaining your current session’s region name using SDK for Python
(Boto3), see region_name in the Boto3 documentation.

from sagemaker.feature_store.feature_processor import BaseDataSource
from sagemaker.feature_store.feature_processor import feature_processor

class KinesisDataSource(BaseDataSource):

 data_source_name = "Kinesis"
 data_source_unique_id = "kinesis-resource-arn"

 def read_data(self, spark, params):
 return spark.readStream.format("kinesis") \
 .option("streamName", "kinesis-stream-name") \
 .option("awsUseInstanceProfile", "false") \
 .option("endpointUrl", "https://kinesis.your-region.amazonaws.com")

Data sources 2514

https://github.com/roncemer/spark-sql-kinesis
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/streams/latest/dev/controlling-access.html#kinesis-using-iam-arn-format
https://docs.aws.amazon.com/streams/latest/dev/controlling-access.html#kinesis-using-iam-arn-format
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html#boto3.session.Session.region_name

Amazon SageMaker Developer Guide

 .load()

The following example demonstrates how to connect KinesisDataSource to your
feature_processor decorator.

from sagemaker.remote_function import remote
from sagemaker.remote_function.spark_config import SparkConfig
import feature_store_pyspark.FeatureStoreManager as fsm

def ingest_micro_batch_into_fg(input_df, epoch_id):
 feature_group_arn = "feature-group-arn"
 fsm.FeatureStoreManager().ingest_data(
 input_data_frame = input_df,
 feature_group_arn = feature_group_arn
)

@remote(
 spark_config=SparkConfig(
 configuration={
 "Classification": "spark-defaults",
 "Properties":{
 "spark.sql.streaming.schemaInference": "true",
 "spark.jars.packages": "com.roncemer.spark/spark-sql-
kinesis_2.13/1.2.2_spark-3.2"
 }
 }
),
 instance_type="ml.m5.2xlarge",
 max_runtime_in_seconds=2419200 # 28 days
)
@feature_processor(
 inputs=[KinesisDataSource()],
 output="feature-group-arn"
)
def transform(input_df):
 output_stream = (
 input_df.selectExpr("CAST(rand() AS STRING) as partitionKey", "CAST(data AS
 STRING)")
 .writeStream.foreachBatch(ingest_micro_batch_into_fg)
 .trigger(processingTime="1 minute")
 .option("checkpointLocation", "s3a://checkpoint-path")
 .start()
)

Data sources 2515

Amazon SageMaker Developer Guide

 output_stream.awaitTermination()

In the example code above we use a few Spark Structured Streaming options while streaming
micro-batches into your feature group. For a full list of options, see the Structured Streaming
Programming Guide in the Apache Spark documentation.

• The foreachBatch sink mode is a feature that allows you to apply operations and write logic
on the output data of each micro-batch of a streaming query.

For information on foreachBatch, see Using Foreach and ForeachBatch in the Apache Spark
Structured Streaming Programming Guide.

• The checkpointLocation option periodically saves the state of the streaming application. The
streaming log is saved in checkpoint location s3a://checkpoint-path.

For information on the checkpointLocation option, see Recovering from Failures with
Checkpointing in the Apache Spark Structured Streaming Programming Guide.

• The trigger setting defines how often the micro-batch processing is triggered in a
streaming application. In the example, the processing time trigger type is used with one-
minute micro-batch intervals, specified by trigger(processingTime="1 minute").
To backfill from a stream source, you can use the available-now trigger type, specified by
trigger(availableNow=True).

For a full list of trigger types, see Triggers in the Apache Spark Structured Streaming
Programming Guide.

Continuous streaming and automatic retries using event based triggers

The Feature Processor uses SageMaker Training as compute infrastructure and it has a maximum
runtime limit of 28 days. You can use event based triggers to extend your continuous streaming for
a longer period of time and recover from transient failures. For more information on schedule and
event based executions, see Scheduled and event based executions for Feature Processor pipelines.

The following is an example of setting up an event based trigger to keep the streaming Feature
Processor pipeline running continuously. This uses the streaming transform function defined in the
previous example. A target pipeline can be configured to be triggered when a STOPPED or FAILED
event occurs for a source pipeline execution. Note that the same pipeline is used as the source and
target so that it run continuously.

Data sources 2516

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#using-foreach-and-foreachbatch
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#triggers

Amazon SageMaker Developer Guide

import sagemaker.feature_store.feature_processor as fp
from sagemaker.feature_store.feature_processor import FeatureProcessorPipelineEvent
from sagemaker.feature_store.feature_processor import
 FeatureProcessorPipelineExecutionStatus

streaming_pipeline_name = "streaming-pipeline"
streaming_pipeline_arn = fp.to_pipeline(
 pipeline_name = streaming_pipeline_name,
 step = transform # defined in previous section
)

fp.put_trigger(
 source_pipeline_events=FeatureProcessorPipelineEvents(
 pipeline_name=source_pipeline_name,
 pipeline_execution_status=[
 FeatureProcessorPipelineExecutionStatus.STOPPED,
 FeatureProcessorPipelineExecutionStatus.FAILED]
),
 target_pipeline=target_pipeline_name
)

Example Feature Processing code for common use cases

The following examples provide sample Feature Processing code for common use cases. For a more
detailed example notebook showcasing specific use cases, see Amazon SageMaker Feature Store
Feature Processing notebook.

In the following examples, us-east-1 is the region of the resource, 111122223333 is the
resource owner account ID, and your-feature-group-name is the feature group name.

The transactions data set used in the following examples has the following schema:

'FeatureDefinitions': [
 {'FeatureName': 'txn_id', 'FeatureType': 'String'},
 {'FeatureName': 'txn_time', 'FeatureType': 'String'},
 {'FeatureName': 'credit_card_num', 'FeatureType': 'String'},
 {'FeatureName': 'txn_amount', 'FeatureType': 'Fractional'}
]

Topics

• Joining data from multiple data sources

Example Feature Processing code for common use cases 2517

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-featurestore/feature_store_feature_processor.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-featurestore/feature_store_feature_processor.ipynb

Amazon SageMaker Developer Guide

• Sliding window aggregates

• Tumbling window aggregates

• Promotion from the offline store to online store

• Transformations with the Pandas library

• Continuous executions and automatic retries using event based triggers

Joining data from multiple data sources

@feature_processor(
 inputs=[
 CSVDataSource('s3://bucket/customer'),
 FeatureGroupDataSource('transactions')
],
 output='arn:aws:sagemaker:us-east-1:111122223333:feature-group/your-feature-group-
name'
)
def join(transactions_df, customer_df):
 '''Combine two data sources with an inner join on a common column'''

 return transactions_df.join(
 customer_df, transactions_df.customer_id == customer_df.customer_id, "inner"
)

Sliding window aggregates

@feature_processor(
 inputs=[FeatureGroupDataSource('transactions')],
 output='arn:aws:sagemaker:us-east-1:111122223333:feature-group/your-feature-group-
name'
)
def sliding_window_aggregates(transactions_df):
 '''Aggregates over 1-week windows, across 1-day sliding windows.'''
 from pyspark.sql.functions import window, avg, count

 return (
 transactions_df
 .groupBy("credit_card_num", window("txn_time", "1 week", "1 day"))
 .agg(avg("txn_amount").alias("avg_week"), count("*").alias("count_week"))
 .orderBy("window.start")
 .select("credit_card_num", "window.start", "avg_week", "count_week")

Example Feature Processing code for common use cases 2518

Amazon SageMaker Developer Guide

)

Tumbling window aggregates

@feature_processor(
 inputs=[FeatureGroupDataSource('transactions')],
 output='arn:aws:sagemaker:us-east-1:111122223333:feature-group/your-feature-group-
name'
)
def tumbling_window_aggregates(transactions_df, spark):
 '''Aggregates over 1-week windows, across 1-day tumbling windows, as a SQL
 query.'''

 transactions_df.createOrReplaceTempView('transactions')
 return spark.sql(f'''
 SELECT credit_card_num, window.start, AVG(amount) AS avg, COUNT(*) AS count
 FROM transactions
 GROUP BY credit_card_num, window(txn_time, "1 week")
 ORDER BY window.start
 ''')

Promotion from the offline store to online store

@feature_processor(
 inputs=[FeatureGroupDataSource('transactions')],
 target_stores=['OnlineStore'],
 output='arn:aws:sagemaker:us-east-1:111122223333:feature-group/transactions'
)
def offline_to_online():
 '''Move data from the offline store to the online store of the same feature
 group.'''

 transactions_df.createOrReplaceTempView('transactions')
 return spark.sql(f'''
 SELECT txn_id, txn_time, credit_card_num, amount
 FROM
 (SELECT *,
 row_number()
 OVER
 (PARTITION BY txn_id
 ORDER BY "txn_time" DESC, Api_Invocation_Time DESC, write_time DESC)
 AS row_number

Example Feature Processing code for common use cases 2519

Amazon SageMaker Developer Guide

 FROM transactions)
 WHERE row_number = 1
 ''')

Transformations with the Pandas library

Transformations with the Pandas library

@feature_processor(
 inputs=[FeatureGroupDataSource('transactions')],
 target_stores=['OnlineStore'],
 output='arn:aws:sagemaker:us-east-1:111122223333:feature-group/transactions'
)
def pandas(transactions_df):
 '''Author transformations using the Pandas interface.

 Requires PyArrow to be installed via pip.
 For more details: https://spark.apache.org/docs/latest/api/python/user_guide/
pandas_on_spark
 '''
 import pyspark.pandas as ps

 # PySpark DF to Pandas-On-Spark DF (Distributed DF with Pandas interface).
 pandas_on_spark_df = transactions_df.pandas_api()
 # Pandas-On-Spark DF to Pandas DF (Single Machine Only).
 pandas_df = pandas_on_spark_df.to_pandas()

 # Reverse: Pandas DF to Pandas-On-Spark DF
 pandas_on_spark_df = ps.from_pandas(pandas_df)
 # Reverse: Pandas-On-Spark DF to PySpark DF
 spark_df = pandas_on_spark_df.to_spark()

 return spark_df

Continuous executions and automatic retries using event based triggers

from sagemaker.feature_store.feature_processor import put_trigger, to_pipeline,
 FeatureProcessorPipelineEvent
from sagemaker.feature_store.feature_processor import
 FeatureProcessorPipelineExecutionStatus

streaming_pipeline_name = "target-pipeline"

Example Feature Processing code for common use cases 2520

Amazon SageMaker Developer Guide

to_pipeline(
 pipeline_name=streaming_pipeline_name,
 step=transform
)

put_trigger(
 source_pipeline_events=[
 FeatureProcessorPipelineEvent(
 pipeline_name=streaming_pipeline_name,
 pipeline_execution_status=[
 FeatureProcessorPipelineExecutionStatus.STOPPED,
 FeatureProcessorPipelineExecutionStatus.FAILED]
)
],
 target_pipeline=streaming_pipeline_name
)

Time to live (TTL) duration for records

Amazon SageMaker Feature Store provides the option for records to be hard deleted from the
online store after a time duration is reached, with time to live (TTL) duration (TtlDuration). The
record will expire after the record’s EventTime plus the TtlDuration is reached, or ExpiresAt =
EventTime + TtlDuration. The TtlDuration can be applied at a feature group level, where all
records within the feature group will have the TtlDuration by default, or at an individual record
level. If TtlDuration is unspecified, the default value is null and the record will remain in the
online store until it is overwritten.

A record deleted using TtlDuration is hard deleted, or completely removed from the online
store, and the deleted record is added to the offline store. For more information on hard delete and
deletion modes, see DeleteRecord in the Amazon SageMaker API Reference guide. When a record
is hard deleted it immediately becomes inaccessible using Feature Store APIs.

Important

TTL typically deletes expired items within a few days. Depending on the size and activity
level of a table, the actual delete operation of an expired item can vary. Because TTL is
meant to be a background process, the nature of the capacity used to expire and delete
items via TTL is variable (but free of charge). For more information on how items are
deleted from a DynamoDB table, see How it works: DynamoDB Time to Live (TTL).

Time to live (TTL) duration for records 2521

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/howitworks-ttl.html

Amazon SageMaker Developer Guide

TtlDuration must be a dictionary containing a Unit and a Value, where the Unit must be a
string with values "Seconds", "Minutes", "Hours", "Days", or "Weeks" and Value must be an integer
greater than or equal to 1. TtlDuration can be applied while using the CreateFeatureGroup,
UpdateFeatureGroup, and PutRecord APIs. See the request and response syntax in the SDK
for Python (Boto3) documentation for CreateFeatureGroup, UpdateFeatureGroup, and
PutRecord APIs.

• When TtlDuration is applied at a feature group level (using the CreateFeatureGroup or
UpdateFeatureGroup APIs), the applied TtlDuration becomes the default TtlDuration for
all records that are added to the feature group from the point in time that the API is called. When
applying TtlDuration with the UpdateFeatureGroup API, this will not become the default
TtlDuration for records that were created before the API is called.

To remove the default TtlDuration from an existing feature group, use the
UpdateFeatureGroup API and set the TtlDuration Unit and Value to null.

• When TtlDuration is applied at a record level (for example, using PutRecord API), the
TtlDuration duration applies to that record and is used instead of the feature group level
default TtlDuration.

• When TtlDuration is applied on a feature group level it may take a few minutes for
TtlDuration to come into effect.

• If TtlDuration is used when there is no online store, you will receive a Validation
Exception (400) error.

The following example code shows how to apply TtlDuration while updating a feature group,
such that the records added to the feature group after running the API will by default expire four
weeks after their event times.

import boto3

sagemaker_client = boto3.client("sagemaker")
feature_group_name = '<YOUR_FEATURE_GROUP_NAME>'

sagemaker_client.update_feature_group(
 FeatureGroupName=feature_group_name,
 OnlineStoreConfig={
 TtlDuration:{
 Unit: "Weeks",
 Value: 4

Time to live (TTL) duration for records 2522

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_feature_group.html#SageMaker.Client.create_feature_group
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/update_feature_group.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-featurestore-runtime/client/put_record.html#

Amazon SageMaker Developer Guide

 }
 }
)

You can use the DescribeFeatureGroup API to view the default TtlDuration.

To view the expiration times, ExpiresAt (in UTC time ISO-8601 format), while using the
GetRecord or BatchGetRecord APIs you must set ExpirationTimeResponse to ENABLED.
See the request and response syntax in the SDK for Python (Boto3) documentation for
DescribeFeatureGroup, GetRecord, and BatchGetRecord APIs.

Cross account feature group discoverability and access

Data scientists and data engineers can benefit from exploring and accessing features that span
multiple accounts, in order to promote data consistency, streamline collaboration, and reduce
duplication of effort.

With Amazon SageMaker Feature Store, you can share feature group resources across accounts.
The resources that can be shared in Feature Store are feature group entities or the feature group
catalog, where the feature group catalog contains all of the feature group entities on your account.
The resource owner account shares resources with the resource consumer accounts. There are two
distinct categories of permissions associated with sharing resources:

• Discoverability permission: Discoverability means being able to see feature group names and
metadata. When you share the feature group catalog and grant the discoverability permission,
all feature group entities in the account that you share from (resource owner account) become
discoverable by the accounts that you are sharing with (resource consumer account). For
example, if you make the feature group catalog in the resource owner account discoverable to a
resource consumer account, then principals of the resource consumer account can see all feature
groups contained in the resource owner account. It means discoverability is “all or nothing” at
the account level (regionalized). This permission is granted to resource consumer accounts by
using the feature group catalog resource type.

• Access permissions: When you grant an access permission, you do so at a feature group resource
level (not at account level). This gives you more granular control over granting access to data.
The type of access permissions that can be granted are: read-only, read-write, and admin. For
example, you can select only certain feature groups from the resource owner account to be
accessible by principals of the resource consumer account, depending on your business needs.

Cross account feature group discoverability and access 2523

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/describe_feature_group.html#describe-feature-group
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-featurestore-runtime/client/get_record.html#get-record
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-featurestore-runtime/client/batch_get_record.html#batch-get-record

Amazon SageMaker Developer Guide

This permission is granted to resource consumer accounts by using the feature group resource
type and specifying feature group entities.

The distinction between discoverability and access is important to keep in mind when you set up
cross account sharing. Also, the methods of sharing resources differ depending on whether you are
sharing online or offline feature groups. For information about online and offline feature groups,
see Feature Store concepts. In the following topics, you can learn how to apply discoverability and
access permissions to your shared resources.

The following example diagram visualizes the feature group catalog resource versus a feature
group resource entity. The feature group catalog contains all of your feature group entities and
can be shared using the discoverability permission. When granted a discoverability permission, the
resource consumer account can search and discover all feature group entities within the resource
owner account. A feature group entity contains your machine learning data and can be shared
using the access permission. When granted an access permission, the resource consumer account
can access the feature group data, with access determined by the relevant access permission.

Cross account feature group discoverability and access 2524

Amazon SageMaker Developer Guide

Topics

• Enabling cross account discoverability

• Enabling cross account access

Enabling cross account discoverability

With AWS Resource Access Manager (AWS RAM) you can securely share the feature group catalog,
which contains all of your feature group and feature resources, with other AWS accounts. This
lets members of your team search and discover feature groups and features that span multiple
accounts, promoting data consistency, streamlining collaboration, and reducing duplication of
effort.

Enabling cross account discoverability 2525

Amazon SageMaker Developer Guide

The resource owner account can share resources with other individual AWS accounts by granting
permissions using AWS RAM. The resource consumer account is the AWS account with whom a
resource is shared, limited by the permissions granted from the resource owner account. If you
are an organization, you may want to take advantage of AWS Organizations, with which you can
share resources with individual AWS accounts, with all accounts in your organization, or in an
Organization Unit (OU), without having to apply permissions to each account. For instructional
videos and more information about AWS RAM concepts and benefits, see What is AWS Resource
Access Manager? in the AWS RAM User Guide.

This section covers how the resource owner account can choose the feature group catalog and
grant discoverability privilege to resource consumer accounts, and then how the resource consumer
accounts with the discoverability privilege can use search and discover the feature groups within
the resource owner account. The discoverability permission does not grant access permissions
(read-only, read-write, or admin). Access permissions are granted at a resource level and not at
the account level. For information about granting access permissions, see Enabling cross account
access.

The following topics discuss how to share the feature group catalog and how to search for shared
resources with discoverability permissions applied.

Topics

• Share your feature group catalog

• Search discoverable resources

Share your feature group catalog

The feature group catalog, DefaultFeatureGroupCatalog, contains all feature group entities
owned by the resource owner account. The catalog can be shared by the resource owner account
to grant discoverability to a single or multiple resource consumer accounts, by creating a resource
share in AWS Resource Access Manager (AWS RAM). A feature group is the main resource in
Amazon SageMaker Feature Store and is composed of feature definitions and records that are
managed by Feature Store. For more information about feature groups, see Feature Store concepts.

Discoverability means that the resource consumer accounts can search for the discoverable
resources and view them as if they were in their own account (excluding tags). When allowing
the feature group catalog to be discoverable, the resource consumer accounts by default are not
granted access permissions (read-only, read-write, or admin). Access permissions are granted at a

Enabling cross account discoverability 2526

https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/ram/latest/userguide/what-is.html

Amazon SageMaker Developer Guide

resource level and not at the account level. For information about granting access permissions, see
Enabling cross account access.

In order to enable cross account discoverability you will need to specify the SageMaker Resource
Catalog and the feature group catalog while using the AWS RAM Create a resources share
instructions in the AWS RAM developer guide. In the following we give the specifications for using
the AWS RAM console instructions.

1. Specify resource share details:

• Resource type: Choose SageMaker Resource Catalogs.

• ARN: Choose the feature group catalog ARN with the format: arn:aws:sagemaker:us-
east-1:111122223333:sagemaker-catalog/DefaultFeatureGroupCatalog

us-east-1 is the region of the resource and 111122223333 is the resource owner account
ID.

• Resource ID: Choose DefaultFeatureGroupCatalog.

2. Associate managed permissions:

• Managed permission: Choose AWSRAMPermissionSageMakerCatalogResourceSearch.

3. Grant access to principals:

• Choose the principal types (AWS account, Organization, or Organizational unit) and enter
the appropriate ID.

If you are an organization, you may want to take advantage of AWS Organizations, with
which you can share resources with individual AWS accounts, with all accounts in your
organization, or with an Organization Unit (OU), without having to apply permissions to
each account. For more information about sharing your resources and granting permissions
within AWS, see Enable resource sharing within AWS Organizations in the AWS Resource
Access Manager Developer Guide.

4. Review and create:

• Review then choose Create resource share.

It may take a few minutes for the resource share and principal, or resource consumer account,
associations to complete. Once the resource share and principal associations are set, the specified
resource consumer accounts receive an invitation to join the resource share. The resource consumer

Enabling cross account discoverability 2527

https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-create
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-orgs

Amazon SageMaker Developer Guide

accounts can view and accept the invitations by opening the Shared with me: Resource shares page
in the AWS RAM console. For more information on accepting and viewing resources in AWS RAM,
see Access AWS resources shared with you. Invitations are not sent in these cases:

• If you are part of an organization in AWS Organizations and sharing in your organization is
enabled, then principals in the organization automatically get access to the shared resources
without invitations.

• If you share with the AWS account that owns the resource, then the principals in that account
automatically get access to the shared resources without invitations.

For more information about accepting and using a resource share, see Search discoverable
resources.

Share the feature group catalog using the AWS SDK for Python (Boto3)

You can use the AWS SDK for Python (Boto3) for AWS RAM APIs to create a resource share. The
following code is an example of a resource owner account ID 111122223333 within the region us-
east-1 creating a resource share named test-cross-account-catalog, sharing the feature
group catalog with the resource consumer account ID 444455556666. To use the Python SDK for
AWS RAM APIs, attach the AWSRAMPermissionSageMakerCatalogResourceSearch policy with
the execution role. See AWS RAM APIs for more details.

#Call list resource catalogs as a prerequisite for RAM share
sagemaker_client.list_resource_catalogs()

Share DefaultFeatureGroupCatalog with other account
ram_client = boto3.client("ram")
response = ram_client.create_resource_share(
 name='test-cross-account-catalog', # Change to your custom resource share name
 resourceArns=[
 'arn:aws:sagemaker:us-east-1:111122223333:sagemaker-catalog/' +
 'DefaultFeatureGroupCatalog', # Change 111122223333 to the resource owner account ID
],
 principals=[
 '444455556666', # Change 444455556666 to the resource consumer account ID
],
 permissionArns = ["arn:aws:ram::aws:permission/
AWSRAMPermissionSageMakerCatalogResourceSearch"] #
 AWSRAMPermissionSageMakerCatalogResourceSearch is the only policy allowed for
 SageMaker Catalog

Enabling cross account discoverability 2528

https://console.aws.amazon.com/ram/home#SharedResourceShares
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ram/client/create_resource_share.html

Amazon SageMaker Developer Guide

)

Principals are actors in a security system. In a resource-based policy, the allowed principals are IAM
users, IAM roles, the root account, or another AWS service.

Search discoverable resources

The resource owner account must grant permissions to resource consumer accounts to allow for
discoverability or access (read-only, read-write, or admin) privileges with a shared resource. In the
following sections, we provide instructions on how to accept an invitation to shared resources and
examples showing how to search for discoverable feature groups.

Accept an invitation to shared resources

As the resource consumer account, you receive an invitation to join a resource share once the
resource owner account has granted permission. To accept the invitation to any shared resources,
open the Shared with me: Resource shares page in the AWS RAM console to view and respond to
invitations. Invitations are not sent in these cases:

• If you are part of an organization in AWS Organizations and sharing in your organization is
enabled, then principals in the organization automatically get access to the shared resources
without invitations.

• If you share with the AWS account that owns the resource, then the principals in that account
automatically get access to the shared resources without invitations.

For more information about accepting and using a resource share in AWS RAM, see Respond to the
resource share invitation.

Search discoverable feature groups example

Once resources are shared with a resource consumer account with the discoverability permission
applied, the resource consumer account can search for and discover the shared resources in
Amazon SageMaker Feature Store using the console UI and the Feature Store SDK. Note that you
cannot search on tags for cross account resources. The maximum number of feature group catalogs
viewable is 1000. For more information about granting discoverability permissions, see Enabling
cross account discoverability.

For details about viewing shared feature groups in the console, see Find feature groups in your
Feature Store.

Enabling cross account discoverability 2529

https://console.aws.amazon.com/ram/home#SharedResourceShares
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html

Amazon SageMaker Developer Guide

In the following example, the resource consumer account uses SageMaker search to search
for resources made discoverable to them when CrossAccountFilterOption is set to
"CrossAccount":

from sagemaker.session import Session

sagemaker_session = Session(boto_session=boto_session)

sagemaker_session.search(
 resource="FeatureGroup",
 search_expression={
 "Filters": [
 {
 "Name": "FeatureGroupName",
 "Value": "MyFeatureGroup",
 "Operator": "Contains",
 }
],
 "Operator": "And",
 },
 sort_by="Name",
 sort_order="Ascending",
 next_token="token",
 max_results=50,
 CrossAccountFilterOption="CrossAccount"
)

For more information about SageMaker search and the request parameters, see Search in the
Amazon SageMaker API Reference.

Enabling cross account access

The access permissions are read-only, read-write, and admin permissions. The permission name,
description, and list of specific APIs available for each permission are listed in the following:

• Read-only permission (AWSRAMPermissionFeatureGroupReadOnly): The read privilege
allows resource consumer accounts to read records in the shared feature groups and view details
and metadata.

• DescribeFeatureGroup: Retrieves details about a feature group and its configuration

• DescribeFeatureMetadata: Shows the metadata for a feature within a feature group

• BatchGetRecord: Retrieves a batch of records from a feature group

Enabling cross account access 2530

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html

Amazon SageMaker Developer Guide

• GetRecord: Retrieves a record from a feature group

• Read-write permission (AWSRAMPermissionSagemakerFeatureGroupReadWrite): The read-
write privilege allows resource consumer accounts to write records to, and delete records from,
the shared feature groups, in addition to read permissions.

• PutRecord: Writes a record to a feature group

• DeleteRecord: Removes a record from a feature group

• APIs listed in AWSRAMPermissionFeatureGroupReadOnly

• Admin permission (AWSRAMPermissionSagemakerFeatureGroupAdmin): The admin privilege
allows the resource consumer accounts to update the description and parameters of features
within the shared feature groups, update the configuration of the shared feature groups, in
addition to read-write permissions.

• DescribeFeatureMetadata: Shows the metadata for a feature within a feature group

• UpdateFeatureGroup: Updates a feature group configuration

• UpdateFeatureMetadata: Updates description and parameters of a feature in the feature
group

• APIs listed in AWSRAMPermissionSagemakerFeatureGroupReadWrite

In the following topics you can learn how to share online store and offline feature groups—there
are differences between the two when it comes to sharing.

Topics

• Share online feature groups with AWS Resource Access Manager

• Cross account offline store access

Share online feature groups with AWS Resource Access Manager

With AWS Resource Access Manager (AWS RAM) you can securely share Amazon SageMaker Feature
Store online feature groups with other AWS accounts. Members of your team can explore and
access feature groups that span multiple accounts, promoting data consistency, streamlining
collaboration, and reducing duplication of effort.

The resource owner account can share resources with other individual AWS accounts by granting
permissions using AWS RAM. The resource consumer account is the AWS account with whom a
resource is shared, limited by the permissions granted from the resource owner account. If you

Enabling cross account access 2531

Amazon SageMaker Developer Guide

are an organization, you may want to take advantage of AWS Organizations, with which you can
share resources with individual AWS accounts, with all accounts in your organization, or in an
Organization Unit (OU), without having to apply permissions to each account. For instructional
videos and more information about AWS RAM concepts and benefits, see What is AWS Resource
Access Manager? in the AWS RAM User Guide.

Note that there is a soft maximum limit to the transactions per second (TPS) per API per AWS
account. The maximum TPS limit applies to all transactions on the resources within the resource
owner account, so transactions from the resource consumer accounts also count towards this
maximum limit. For information about service quotas and how to request a quota increase, see
AWS service quotas.

This section covers how the resource owner account can choose feature groups and grant access
privileges (read-only, read-write, and admin) to resource consumer accounts, and then how the
resource consumer accounts with access privileges can use those feature groups. The access
permissions do not allow for the resource consumer accounts to search and discover feature
groups. To allow for resource consumer accounts to search and discover feature groups from the
resource owner account, the resource owner account must grant discoverability permission to the
resource consumer accounts, where all of the feature groups within the resource owner account
are discoverable by the resource consumer accounts. For more information about granting the
discoverability permission, see Enabling cross account discoverability.

The following topics show how to share Feature Store online store resources using the AWS RAM
console. For information about sharing your resources and granting permissions within AWS using
the AWS RAM console or AWS Command Line Interface (AWS CLI), see Sharing your AWS resources.

Topics

• Share your feature group entities

• Use online store shared resources with access permissions

Share your feature group entities

As the resource owner account you can use the feature group resource type for Amazon SageMaker
Feature Store to share feature group entities, by creating a resource share in AWS Resource Access
Manager (AWS RAM).

Use the following instructions along with the Sharing your AWS resources instructions in the AWS
RAM User Guide.

Enabling cross account access 2532

https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-create

Amazon SageMaker Developer Guide

When sharing the feature group resource type using the AWS RAM console, you need to make the
following choices.

1. Specify resource share details:

• Resource type: Choose SageMaker Feature Groups.

• ARN: Choose your feature group ARN with the format: arn:aws:sagemaker:us-
east-1:111122223333:feature-group/your-feature-group-name.

us-east-1 is the region of the resource, 111122223333 is the resource owner account ID,
and your-feature-group-name is the feature group you are sharing.

• Resource ID: Choose the feature group, your-feature-group-name, to which you want to
grant access permissions.

2. Associate managed permissions:

• Managed permission: Choose the access permission. For more information about access
permissions, see Enabling cross account access.

3. Grant access to principals:

• Choose the principal type (AWS account, Organization, Organizational unit, IAM role, or IAM
user) and enter the appropriate ID or ARN.

4. Review and create:

• Review then choose Create resource share.

Granting any access permission does not grant resource consumer accounts the discoverability
permission, so the resource consumer accounts with access permissions cannot search and
discover those feature groups. To allow for resource consumer accounts to search and discover
feature groups from the resource owner account, the resource owner account must grant the
discoverability permission to the resource consumer accounts, where all of the feature groups
within the resource owner account are discoverable by the resource consumer accounts. For
more information about granting the discoverability permission, see Enabling cross account
discoverability.

If the resource consumer accounts are only granted access permissions, the feature group entities
can still be viewed on AWS RAM. To view resources on AWS RAM, see Access AWS resources shared
with you in the AWS RAM User Guide.

Enabling cross account access 2533

https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-shared.html

Amazon SageMaker Developer Guide

It may take a few minutes for the resource share and principal, or resource consumer account,
associations to complete. Once the resource share and principal associations are set, the specified
resource consumer accounts receive an invitation to join the resource share. The resource consumer
accounts can view and accept the invitations by opening the Shared with me: Resource shares page
in the AWS RAM console. Invitations are not sent in these cases:

• If you are part of an organization in AWS Organizations and sharing in your organization is
enabled, then principals in the organization automatically get access to the shared resources
without invitations.

• If you share with the AWS account that owns the resource, then the principals in that account
automatically get access to the shared resources without invitations.

For more information about accepting and using a resource share in AWS RAM, see Using shared
AWS resources in the AWS RAM User Guide.

Share online store feature groups using the AWS SDK for Python (Boto3)

You can use the AWS SDK for Python (Boto3) for AWS RAM APIs to create a resource share.
The following code is an example of a resource owner account ID 111122223333 creating a
resource share named 'test-cross-account-fg', sharing the feature group named 'my-
feature-group' with the resource consumer account ID 444455556666 while granting the
AWSRAMPermissionSageMakerFeatureGroupReadOnly permission. For more information
about access permissions, see Enabling cross account access. To use the Python SDK for AWS
RAM APIs, you need to attach AWS RAM full access managed policy with execution role. See
create_resource_share AWS RAM API for more details.

import boto3

Choose feature group name
feature_group_name = 'my-feature-group' # Change to your feature group name

Share 'my-feature-group' with other account
ram_client = boto3.client("ram")
response = ram_client.create_resource_share(
 name='test-cross-account-fg', # Change to your custom resource share name
 resourceArns=[
 'arn:aws:sagemaker:us-east-1:111122223333:feature-group/' + feature_group_name,
 # Change 111122223333 to the resource owner account ID
],
 principals=[

Enabling cross account access 2534

https://console.aws.amazon.com/ram/home#SharedResourceShares
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ram/client/create_resource_share.html

Amazon SageMaker Developer Guide

 '444455556666', # Change 444455556666 to the resource consumer account ID
],
 permissionArns = ["arn:aws:ram::aws:permission/
AWSRAMPermissionSageMakerFeatureGroupReadOnly"]
)

Principals are actors in a security system. In a resource-based policy, the allowed principals are IAM
users, IAM roles, the root account, or another AWS service.

Use online store shared resources with access permissions

The resource owner account must grant permissions to resource consumer accounts to allow
for discoverability, read-only, write, or admin privileges with a shared resource. In the following
sections, we provide instructions on how to accept an invitation to access shared resources and
provide examples showing how to view and interact with shared feature groups.

Accept an invitation to access shared resources using AWS RAM

As the resource consumer account, you will receive an invitation to join a resource share once the
resource owner account has granted permission. To accept the invitation to any shared resources,
open the Shared with me: Resource shares page in the AWS RAM console to view and respond to
invitations. Invitations are not sent in these cases:

• If you are part of an organization in AWS Organizations and sharing in your organization is
enabled, then principals in the organization automatically get access to the shared resources
without invitations.

• If you share with the AWS account that owns the resource, then the principals in that account
automatically get access to the shared resources without invitations.

For more information about accepting and using a resource share in AWS RAM, see Using shared
AWS resources in the AWS RAM User Guide.

View shared resources on the AWS RAM console

Granting any access permissions does not grant resource consumer accounts the discoverability
permission, so the resource consumer accounts with access permissions cannot search and
discover those feature groups. To allow for resource consumer accounts to search and discover
feature groups from the resource owner account, the resource owner account must grant the
discoverability permission to the resource consumer accounts, where all of the feature groups
within the resource owner account are discoverable by the resource consumer accounts. For

Enabling cross account access 2535

https://console.aws.amazon.com/ram/home#SharedResourceShares
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html

Amazon SageMaker Developer Guide

more information about granting the discoverability permission, see Enabling cross account
discoverability.

To view the shared resources on the AWS RAM console, open the Shared with me: Resource shares
page in the AWS RAM console.

Read and write actions with a shared feature groups example

Once your resource consumer account is granted the appropriate permissions by the resource
owner account, you can perform actions on the shared resources using the Feature Store SDK.
You can do this by providing the resource ARN as the FeatureGroupName. To obtain the Feature
Group ARN, you can use the AWS SDK for Python (Boto3) DescribeFeatureGroup function or
use the console UI. For information about using the console UI to view feature group details, see
View feature group details from the console.

The following examples use PutRecord and GetRecord with a shared feature group entity.
See the request and response syntax in the AWS SDK for Python (Boto3) documentation for
PutRecord and GetRecordAPIs.

import boto3

sagemaker_featurestore_runtime = boto3.client('sagemaker-featurestore-runtime')

Put record into feature group named 'test-fg' within the resource owner account ID
 111122223333
featurestore_runtime.put_record(
 FeatureGroupName="arn:aws:sagemaker:us-east-1:111122223333:feature-group/test-fg",
 Record=[value.to_dict() for value in record] # You will need to define record prior
 to calling PutRecord
)

import boto3

sagemaker_featurestore_runtime = boto3.client('sagemaker-featurestore-runtime')

Choose record identifier
record_identifier_value = str(2990130)

Get record from feature group named 'test-fg' within the resource owner account ID
 111122223333
featurestore_runtime.get_record(
 FeatureGroupName="arn:aws:sagemaker:us-east-1:111122223333:feature-group/test-fg",

Enabling cross account access 2536

https://console.aws.amazon.com/ram/home#SharedResourceShares
https://boto3.amazonaws.com/v1/documentation/api/1.26.98/reference/services/sagemaker/client/describe_feature_group.html#describe-feature-group
https://boto3.amazonaws.com/v1/documentation/api/1.26.98/reference/services/firehose/client/put_record.html#put-record
https://boto3.amazonaws.com/v1/documentation/api/1.26.98/reference/services/sagemaker-featurestore-runtime/client/get_record.html#get-record

Amazon SageMaker Developer Guide

 RecordIdentifierValueAsString=record_identifier_value
)

For more information about granting permissions to feature group entities, see Share your feature
group entities.

Cross account offline store access

Amazon SageMaker Feature Store allows users to create a feature group in one account (Account
A) and configure it with an offline store using an Amazon S3 bucket in another account (Account B).
You can set this up using the steps in the following section.

Topics

• Step 1: Set up the offline store access role in Account A

• Step 2: Set up an offline store Amazon S3 bucket in Account B

• Step 3: Set up an offline store AWS KMS encryption key in Account A

• Step 4: Create a feature group in Account A

Step 1: Set up the offline store access role in Account A

First, set up a role for Amazon SageMaker Feature Store to write the data into the
offline store. The simplest way to accomplish this is to create a new role using the
AmazonSageMakerFeatureStoreAccess policy or to use an existing role that already has the
AmazonSageMakerFeatureStoreAccess policy attached. This document refers to this policy as
Account-A-Offline-Feature-Store-Role-ARN.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetBucketAcl",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",

Enabling cross account access 2537

Amazon SageMaker Developer Guide

 "arn:aws:s3:::*sagemaker*"
]
 }
]
}

The preceding code snippet shows the AmazonSageMakerFeatureStoreAccess policy. The
Resource section of the policy is scoped down by default to S3 buckets with names that contain
SageMaker, Sagemaker, or sagemaker. This means the offline store Amazon S3 bucket being
used must follow this naming convention. If this is not your case, or if you want to further scope
down the resource, you can copy and paste the policy to your Amazon S3 bucket policy in the
console, customize the Resource section to be arn:aws:s3:::your-offline-store-
bucket-name, and then attach to the role.

Additionally, this role must have AWS KMS permissions attached. At a minimum, it requires the
kms:GenerateDataKey permission to be able to write to the offline store using your customer
managed key. See Step 3 to learn about why a customer managed key is needed for the cross
account scenario and how to set it up. The following example shows an inline policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:*:Account-A-Account-Id:key/*"
 }
]
}

The Resource section of this policy is scoped to any key in Account A. To further scope this down,
after setting up the offline store KMS key in Step 3, return to this policy and replace it with the key
ARN.

Step 2: Set up an offline store Amazon S3 bucket in Account B

Create an Amazon S3 bucket in Account B. If you are using the default
AmazonSageMakerFeatureStoreAccess policy, the bucket name must include SageMaker,

Enabling cross account access 2538

Amazon SageMaker Developer Guide

Sagemaker, or sagemaker. Edit the bucket policy as shown in the following example to allow
Account A to read and write objects.

This document refers to the following example bucket policy as Account-B-Offline-Feature-
Store-Bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3CrossAccountBucketAccess",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetBucketAcl"
],
 "Principal": {
 "AWS": [
 "*Account-A-Offline-Feature-Store-Role-ARN*"
],
 },
 "Resource": [
 "arn:aws:s3:::offline-store-bucket-name/*",
 "arn:aws:s3:::offline-store-bucket-name"
]
 }
]
}

In the preceding policy, the principal is Account-A-Offline-Feature-Store-Role-ARN, which
is the role created in Account A in Step 1 and provided to Amazon SageMaker Feature Store to
write to the offline store. You can provide multiple ARN roles under Principal.

Step 3: Set up an offline store AWS KMS encryption key in Account A

Amazon SageMaker Feature Store ensures that server-side encryption is always enabled for
Amazon S3 objects in the offline store. For cross account use cases, you must provide a customer
managed key so that you are in control of who can write to the offline store (in this case,
Account-A-Offline-Feature-Store-Role-ARN from Account A) and who can read from the
offline store (in this case, identities from Account B).

Enabling cross account access 2539

Amazon SageMaker Developer Guide

This document refers to the following example key policy as Account-A-Offline-Feature-
Store-KMS-Key-ARN.

{
 "Version": "2012-10-17",
 "Id": "key-consolepolicy-3",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-A-Account-Id:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::Account-A-Account-Id:role/Administrator",
]
 },
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
 },
 {

Enabling cross account access 2540

Amazon SageMaker Developer Guide

 "Sid": "Allow Feature Store to get information about the customer managed
 key",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": [
 "kms:Describe*",
 "kms:Get*",
 "kms:List*"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "*Account-A-Offline-Feature-Store-Role-ARN*",
 "*arn:aws:iam::Account-B-Account-Id:root*"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:RetireGrant",
 "kms:ReEncryptFrom",
 "kms:ReEncryptTo",
 "kms:GenerateDataKey",
 "kms:ListAliases",
 "kms:ListGrants"
],
 "Resource": "*",
 }
]
}

Step 4: Create a feature group in Account A

Next, create the feature group in Account A, with an offline store Amazon
S3 bucket in Account B. To do this, provide the following parameters for

Enabling cross account access 2541

Amazon SageMaker Developer Guide

RoleArn, OfflineStoreConfig.S3StorageConfig.KmsKeyId, and
OfflineStoreConfig.S3StorageConfig.S3Uri, respectively:

• Provide Account-A-Offline-Feature-Store-Role-ARN as the RoleArn.

• Provide Account-A-Offline-Feature-Store-KMS-Key-ARN for
OfflineStoreConfig.S3StorageConfig.KmsKeyId.

• Provide Account-B-Offline-Feature-Store-Bucket for
OfflineStoreConfig.S3StorageConfig.S3Uri.

Feature Store storage configurations

Amazon SageMaker Feature Store consists of an online store and an offline store. The online store
enables real-time lookup of features for inference, while the offline store contains historical data
for model training and batch inference. When creating a feature group, you have the option of
enabling either the online store, offline store, or both. When you enable both, they sync to avoid
discrepancies between training and serving data. For more information about the online and
offline stores and other Feature Store concepts, see Feature Store concepts.

The following topics discuss online store storage types and offline store table formats.

Topics

• Online store

• Offline store

• Throughput modes

Online store

The online store is a low-latency, high-availability data store that provides real-time lookup of
features. It is typically used for machine learning (ML) model serving. You can chose between the
standard online store (Standard) or an in-memory tier online store (InMemory), at the point when
you create a feature group. In this way, you can select the storage type that best matches the read
and write patterns for a particular application, while considering performance and cost. For more
details about pricing, see Amazon SageMaker Pricing.

The online store contains the following StorageType options. For more information about the
online store contents, see OnlineStoreConfig.

Feature Store storage configurations 2542

https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OnlineStoreConfig.html

Amazon SageMaker Developer Guide

Standard tier storage type

The Standard tier is a managed low-latency data store for online store feature groups. It provides
fast data retrieval for ML model service for your applications. Standard is the default storage
type.

In-memory tier storage type

The InMemory tier is a managed data store for online store feature groups that supports very low-
latency retrieval. It provides large-scale real-time data retrieval for ML model serving used for high
throughput applications. The InMemory tier is powered by Amazon ElastiCache for Redis. For more
information, see What is Amazon ElastiCache for Redis?.

The online store InMemory tier supports collection types, namely list, set, and vector. For more
information about the InMemory collection types, see Collection types.

Feature Store provides low latency read and writes to the online store. The application latency
is primarily made up of two primary components: infrastructure or network latency and Feature
Store API latency. Reduction of network latency helps with getting the lowest latency reads and
writes to Feature Store. You can reduce the network latency to Feature Store by deploying AWS
PrivateLink to Feature Store Runtime endpoint. With AWS PrivateLink, you can privately access
all Feature Store Runtime API operations from your Amazon Virtual Private Cloud (VPC) in a
scalable manner by using interface VPC endpoints. An AWS PrivateLink deployment with the
privateDNSEnabled option set as true:

• It keeps all Feature Store read/write traffic within your VPC.

• It keeps traffic in the same AZ as the client that originated it when using Feature Store. This
avoids the “hops” between AZs reducing the network latency.

Follow the steps in Access an AWS service using an interface VPC endpoint to setup AWS
PrivateLink to Feature Store. The service name for Feature Store Runtime in AWS PrivateLink is
com.amazonaws.region.sagemaker.featurestore-runtime.

The InMemory tier online store scales automatically based about storage usage and requests. The
automated scaling can take a few minutes to adapt to a new usage pattern if it changes rapidly.
During automated scaling:

• Write operations to the feature group may receive throttling errors. You should retry your
requests a few minutes later.

Online store 2543

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/WhatIs.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html

Amazon SageMaker Developer Guide

• Read operations to the feature group may receive throttling errors. Standard retry strategies are
suitable in this case.

• Read operations may see elevated latency.

The default InMemory tier feature group maximum size is 50 GiB.

Note that the InMemory tier currently supports online feature groups only, not online+offline
feature groups, so there is not replication between online and offline stores for the InMemory tier.
Also, the InMemory tier does not currently support customer managed KMS keys.

Offline store

The offline store is used for historical data when sub-second retrieval is not needed. It is typically
used for data exploration, model training, and batch inference.

When you enable both the online and offline stores for your feature group, both stores sync to
avoid discrepancies between training and serving data. Please note that an online store feature
group with the InMemory storage type enabled does not currently support a corresponding
feature group in the offline store (no online to offline replication). For more information about ML
model serving in Amazon SageMaker Feature Store, see Online store.

The offline store contains the following TableFormat options. For information about the offline
store contents, see OfflineStoreConfig in the Amazon SageMaker API Reference.

Glue table format

The Glue format (default) is a standard Hive type table format for AWS Glue. With AWS Glue, you
can discover, prepare, move, and integrate data from multiple sources. It also includes additional
productivity and data ops tooling for authoring, running jobs, and implementing business
workflows. For more information about AWS Glue, see What is AWS Glue?.

Iceberg table format

The Iceberg format (recommended) is an open table format for very large analytic tables. With
Iceberg, you can compact the small data files into fewer large files in the partition, resulting in
significantly faster queries. This compaction operation is concurrent and does not affect ongoing
read and write operations on the feature group. For more information about optimizing Iceberg
tables, see the Amazon Athena and AWS Lake Formation user guides.

Offline store 2544

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OfflineStoreConfig.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-data-optimization.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-compaction.html

Amazon SageMaker Developer Guide

Iceberg manages large collections of files as tables and supports modern analytical data lake
operations. If you choose the Iceberg option when creating new feature groups, Amazon
SageMaker Feature Store creates the Iceberg tables using Parquet file format, and registers the
tables with the AWS Glue Data Catalog. For more information about Iceberg table formats, see
Using Apache Iceberg tables.

Important

Note that for feature groups in Iceberg table format, you must specify String as the
feature type for the event time. If you specify any other type, you can't create the feature
group successfully.

Throughput modes

Amazon SageMaker Feature Store provides two pricing models to choose from: on-demand (On-
demand) and provisioned (Provisioned) throughput modes. On-demand works best for less
predictable traffic, while Provisioned works best for consistent and predictable traffic.

You have the option to switch between On-demand and Provisioned throughput modes for a
given feature group, to accommodate periods in which application traffic patterns are changing
or less predictable. You can only update your feature group throughput mode to On-demand
once in a 24 hour period. The throughput mode can be updated programmatically using the
UpdateFeatureGroup API or through the console UI. For more information about using the console,
see Using Amazon SageMaker Feature Store in the console.

You can use the Provisioned throughput mode with offline-only feature groups or feature
groups with the Standard storage type. For other storage configurations, the On-demand
throughput mode is used. For information about the online and offline storage configurations, see
Online store and Offline store, respectively.

For more details about pricing, see Amazon SageMaker Pricing.

Topics

• On-demand throughput mode

• Provisioned throughput mode

• Throughput mode metrics

• Throughput mode limits

Throughput modes 2545

https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureGroup.html
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

On-demand throughput mode

The On-demand (default) throughput mode works best when you are using feature groups with
unknown workload, unpredictable application traffic, and you cannot forecast the capacity
requirements.

The On-demand mode charges you for the reads and writes that your application performs on your
feature groups. You do not need to specify how much read and write throughput you expect your
application to perform because Feature Store instantly accommodates your workloads as they
ramp up or down. You pay only for what you use, which is measured in ReadRequestsUnits and
WriteRequestsUnits.

You can enable the On-demand throughput mode using the CreateFeatureGroup or
UpdateFeatureGroup APIs or through the console UI. For more information about using the console
UI, see Using Amazon SageMaker Feature Store in the console.

Important

You can only update your feature group throughput mode to On-demand once in a 24 hour
period.

Provisioned throughput mode

The Provisioned throughput mode works best when you are using feature groups with
predictable workloads and you can forecast the capacity requirements to control costs. This
can make it more cost effective for certain workloads where you can anticipate throughput
requirements in advance.

When you set a feature group to Provisioned mode, you specify capacity units which are the
maximum amount of capacity that an application can consume from a feature group. If your
application exceeds this Provisioned throughput capacity, it is subject to request throttling.

The following includes information about the read and write capacity units.

• Retrieving a single record of up to 4 KB using the GetRecord API will consume at least 1 RCU
(read capacity unit). Retrieving larger payloads may take more. The total number of read capacity
units required depends on the item size, including a small per record metadata added by the
Feature Store service.

Throughput modes 2546

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureGroup.html

Amazon SageMaker Developer Guide

• A single write request with a payload of 1 KB using the PutRecord API will consume at least 1
WCU (write capacity unit), with fractional payloads rounded up to nearest KB. It may consume
more depending on the event time, deletion status of the record, and time to live (TTL) status.
For more information about TTL, see Time to live (TTL) duration for records.

Important

When setting your capacity units please consider the following:

• You will be charged for the read and write capacities you provision for your feature
group, even if you do not fully utilize the Provisioned capacity.

• If you set a read or write capacity too low, your requests may experience throttling.

• In some cases, records may consume an extra capacity unit due to record level metadata
that is added by the Feature Store service to enable various features.

• Retrieving only a subset of features using GetRecord or BatchGetRecord APIs will still
consume RCU corresponding to the entire record.

• For write capacity, you should provision 2x the recent peak capacity to avoid throttling
when performing backfills or bulk ingestion that may result in a large number of
historical record writes. This is because writing historical records consumes additional
write capacity.

• Feature Store does not currently support auto scaling for Provisioned mode.

You can enable the On-demand throughput mode using the CreateFeatureGroup or
UpdateFeatureGroup APIs or through the console UI. For more information about using the console
UI, see Using Amazon SageMaker Feature Store in the console.

The following describes how you can increase or decrease the RCU and WCU throughput for your
feature groups when Provisioned mode is enabled.

Increasing provisioned throughput

You can increase RCU or WCU as often as needed using the UpdateFeatureGroup API or the console
UI.

Decreasing provisioned throughput

Throughput modes 2547

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureGroup.html

Amazon SageMaker Developer Guide

You can decrease RCU and WCU (or both) for feature groups using UpdateFeatureGroup API or the
console UI.

There is a default quota on the number of Provisioned capacity decreases you can perform
on your feature group per day. A day is defined according to Universal Time Coordinated (UTC).
On a given day, you can start by performing up to four decreases within one hour as long as you
have not performed any other decreases yet during that day. Subsequently, you can perform
one additional decrease per hour as long as there were no decreases in the preceding hour. This
effectively brings the maximum number of decreases in a day to 27 times (4 decreases in the first
hour, and 1 decrease for each of the subsequent 1-hour windows in a day).

Throughput mode metrics

A feature group in On-demand mode will emit ConsumedReadRequestsUnits and
ConsumedWriteRequestsUnits metrics. A feature group in Provisioned mode will emit
ConsumedReadCapacityUnits and ConsumedWriteCapacityUnits metrics. For more
information about Feature Store metrics, see Amazon SageMaker Feature Store Metrics.

Throughput mode limits

Each AWS account has default service quotas or limits that are applied to help ensure availability
and manage billing risks. For information about the default quotas and limits, see Quotas, naming
rules and data types.

In some cases, these limits may be lower than what is stated in the documentation. If you need
higher limits, you can submit a request for an increase. It's a good idea to do so before reaching
current limits to avoid interruptions to your work. For information about service quotas and how to
request a quota increase, see AWS service quotas.

Collection types

Collection types provide a way to organize and structure data for efficient retrieval and analysis.
They are used in ML databases to define the schema of a dataset and its elements. In Amazon
SageMaker Feature Store, the supported collection types include list, set, and vector.

Collections are a grouping of elements in which each element within the collection must have the
same feature type (String, Integral, or Fractional). For example, a collection can contain
elements with all of the element feature types as Fractional, but a collection cannot contain
elements with some feature types as Fractional and some feature types as String.

Collection types 2548

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureGroup.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon SageMaker Developer Guide

Only InMemory online store feature groups currently support collection types. The following list
describes the collection type options.

List: An ordered collection of elements.

• The length of the list is determined by how many elements are in the collection.

• Example: You can have a list such as [‘a’, ‘b’, ‘a’], because the list preserves the order and can
have repeat elements.

Set: An unordered collection of unique elements.

• The length of the set is determined by how many unique elements are in the collection.

• Example: You cannot have a set such as [‘a’, 'b', 'a'], because it contains a repeat element. The set
will instead have the elements [‘a’, ‘b’], because the set only contains unique elements.

Vector: A specialized list that represents a fixed-size array of elements. The order of the elements
hold significance, such that the positions of the elements represent certain properties of the data.

• The elements in the vector collection type must have the Fractional feature type.

• You may only have one vector collection type per online store InMemory tier feature group.

• The dimension (number of elements in the vector) of the vector is predetermined by you and is
specified using VectorDimension. The max dimension limit is 8192.

• Example: You can have a vector such as [4.2, -6.3, 4.2], where the first, second, and third
elements can represent the x, y, and z positions in physical space.

There are no limits on the length of the collections, as long as they don't exceed the maximum size
of a record. For the maximum size of a record, see Quotas, naming rules and data types.

Add features and records to a feature group

You can use the Amazon SageMaker Feature Store API or the console to update and describe
your feature group as well as add features and records to your feature group. A feature group is
an object that contains your data and a feature describes a column in the table. When you add a
feature to the feature group you are effectively adding a column to the table. When you add a new
record to the feature group you are filling in values for features associated with a specific record
identifier. For more information on Feature Store concepts, see Feature Store concepts.

Add features and records to a feature group 2549

Amazon SageMaker Developer Guide

After you successfully add features to a feature group, you cannot remove those features. The
features that you have added do not add any data to your records. You can add new records to the
feature group or overwrite them using the PutRecord API. For examples on updating, describing,
and putting records into a feature group, see Example code.

You can use the console to add features to a feature group. For more information on how to
update your feature groups using the console, see Update a feature group from the console.

The following sections provide an overview of using Feature Store APIs to add features to a feature
group followed by examples. With the API, you can also add or overwrite records after you've
updated the feature group.

Topics

• API

• Example code

API

Use the UpdateFeatureGroup operation to add features to a feature group.

You can use the DescribeFeatureGroup operation to see if you've added the features
successfully.

To add or overwrite records, use the PutRecord operation.

To see the updates that you've made to a record, use the GetRecord operation. To see the updates
that you've made to multiple records, use the BatchGetRecord operation. It can take up to five
minutes for the updates that you've made to appear.

You can use the example code in the following section to walk through adding features and records
using the AWS SDK for Python (Boto3).

Example code

The example code walks you through the following process:

1. Adding features to the feature group

2. Verifying that you've added them successfully

3. Adding a record to the feature group

API 2550

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_PutRecord.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_PutRecord.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_GetRecord.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_BatchGetRecord.html

Amazon SageMaker Developer Guide

4. Verifying that you've added it successfully

Step 1: Add features to a feature group

The following code uses the UpdateFeatureGroup operation to add new features to the
feature group. It assumes that you've set up Feature Store and created a feature group. For more
information about getting started, see Introduction to Feature Store example notebook.

import boto3

sagemaker_client = boto3.client("sagemaker")

sagemaker_client.update_feature_group(
 FeatureGroupName=feature_group_name,
 FeatureAdditions=[
 {"FeatureName": "new-feature-1", "FeatureType": "Integral"},
 {"FeatureName": "new-feature-2", "FeatureType": "Fractional"},
 {"FeatureName": "new-feature-3", "FeatureType": "String"}
]
)

The following code uses the DescribeFeatureGroup operation to check the status of the
update. If the LastUpdateStatus field is Successful, you've added the features successfully.

sagemaker_client.describe_feature_group(
 FeatureGroupName=feature_group_name
)

Step 2: Add a new record to the feature group

The following code uses the PutRecord operation to add records to the feature group that you've
created.

record_identifier_value = 'new_record'

sagemaker_featurestore_runtime_client = boto3.client("sagemaker-featurestore-runtime")

Example code 2551

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureGroup.html#sagemaker-DescribeFeatureGroup-response-LastUpdateStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_PutRecord.html

Amazon SageMaker Developer Guide

sagemaker_runtime_client.put_record(
 FeatureGroupName=feature_group_name,
 Record=[
 {
 'FeatureName': "record-identifier-feature-name",
 'ValueAsString': record_identifier_value
 },
 {
 'FeatureName': "event-time-feature",
 'ValueAsString': "timestamp-that-feature-store-returns"
 },
 {
 'FeatureName': "new-feature-1",
 'ValueAsString': "value-as-string"
 },
 {
 'FeatureName': "new-feature-2",
 'ValueAsString': "value-as-string"
 },
 {
 'FeatureName': "new-feature-3",
 'ValueAsString': "value-as-string"
 },
]
)

Use the GetRecord operation to see which records in your feature group don't have data for the
features that you've added. You can use the PutRecord operation to overwrite the records that
don't have data for the features that you've added.

Find features in your feature groups

With Amazon SageMaker Feature Store, you can search for the features that you created in your
feature groups. You can search through all of your features without needing to select a feature
group first. The search functionality helps find the features that are relevant to your use case.

Note

The feature groups where you're searching for features must be within your AWS
Region and AWS account. For shared feature groups, the feature groups must be made

Find features in your feature groups 2552

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_GetRecord.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_PutRecord.html

Amazon SageMaker Developer Guide

discoverable to your AWS account. For more instructions on how to share the feature group
catalog and grant discoverability, see Share your feature group catalog.

If you're on a team, and teammates are looking for features to use in their models, they can search
through the features in all of the feature groups.

You can add searchable parameters and descriptions to make your features more discoverable. For
more information, see Adding searchable metadata to your features.

You can search for features using either the console or by using the Search API operation in
SageMaker. The following table lists all of the searchable metadata and whether you can search for
it in the console or with the API.

Searchable metadata API field name Searchable in the console?

All Parameters AllParameters Yes

Creation time CreationTime Yes

Description Description Yes

Feature group name FeatureGroupName No

Feature name FeatureName Yes

Feature type FeatureType No

Last modified time LastModifiedTime No

Parameters Parameters.key Yes

How to search for your features

The instructions for using Feature Store through the console depends on whether you have
enabled Amazon SageMaker Studio or Amazon SageMaker Studio Classic as your default
experience. Choose one of the following instructions based on your use case.

How to search for your features 2553

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html

Amazon SageMaker Developer Guide

Search for features if Studio is your default experience (console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data in the left navigation pane to expand the dropdown list.

3. From the dropdown list, choose Feature Store.

4. (Optional) To view your features, choose My account. To view shared features, choose Cross
account.

5. Under the Feature Catalog tab, choose My account to view your feature groups.

6. Under the Feature Catalog tab, choose Cross account to view feature groups that others made
discoverable to you. Under Created by, you can view the resource owner account ID.

7. You can search for your feature in the Search dropdown list:

• (Optional) To filter your search, choose the filter icon next to the Search dropdown list. You
can use filters to specify parameters or date ranges in your search results. If you search for a
parameter, specify both its key and value. To find your features, specify time ranges, or clear
(deselect) columns that you don't want to query.

• For shared resources, you can only edit feature group metadata or feature definitions if
you have the proper access permission granted from the resource owner account. The
discoverability permission alone won't allow you to edit metadata or feature definitions. For
more information about granting access permissions, seeEnabling cross account access.

Search for features if Studio Classic is your default experience (console)

Use the latest version of Amazon SageMaker Studio Classic so that you have the most recent
version of the search functionality. For information about updating Studio Classic, see Shut down
and Update SageMaker Studio Classic.

1. Open the Studio Classic console by following the instructions in Launch Amazon SageMaker
Studio Classic.

2. Choose the Home icon

()
in the left navigation pane.

3. Choose Data.

4. From the dropdown list, choose Feature Store.

How to search for your features 2554

Amazon SageMaker Developer Guide

5. (Optional) To view your features, choose My account. To view shared features, choose Cross
account.

6. Under the Feature Catalog tab, choose My account to view your feature groups.

7. Under the Feature Catalog tab, choose Cross account to view feature groups that others made
discoverable to you. Under Created by, you can view the resource owner account ID.

8. You can search for your feature in the Search dropdown list:

• (Optional) To filter your search, choose the filter icon next to the Search dropdown list. You
can use filters to specify parameters or date ranges in your search results. If you search for a
parameter, specify both its key and value. To find your features, specify time ranges, or clear
(deselect) columns that you don't want to query.

• For shared resources, you can only edit feature group metadata or feature definitions if
you have the proper access permission granted from the resource owner account. The
discoverability permission alone won't allow you to edit metadata or feature definitions. For
more information about granting access permissions, seeEnabling cross account access.

Search for your features using SDK for Python (Boto3)

The code in this section uses the Search operation in the AWS SDK for Python (Boto3) to run the
search query to find features in your feature groups. For information about the other languages to
submit a query, see See Also in the Amazon SageMaker API Reference.

For more Feature Store examples and resources, see Amazon SageMaker Feature Store resources.

The following code shows different example search queries using the API:

Return all features in your feature groups
sagemaker_client.search(
 Resource="FeatureMetadata",
)

Search for all features that belong to a feature group that contain the "ver"
 substring
sagemaker_client.search(
 Resource="FeatureMetadata",
 SearchExpression={
 'Filters': [
 {

How to search for your features 2555

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html#API_Search_SeeAlso

Amazon SageMaker Developer Guide

 'Name': 'FeatureGroupName',
 'Operator': 'Contains',
 'Value': 'ver'
 },
]
 }
)

Search for all features that belong to a feature group that have the EXACT name
 "airport"
sagemaker_client.search(
 Resource="FeatureMetadata",
 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Equals',
 'Value': 'airport'
 },
]
 }
)

Search for all features that belong to a feature group that contains the name "ver"
AND have a name that contains "wha"
AND have a parameter (key or value) that contains "hea"

sagemaker_client.search(
 Resource="FeatureMetadata",
 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Contains',
 'Value': 'ver'
 },
 {
 'Name': 'FeatureName',
 'Operator': 'Contains',
 'Value': 'wha'
 },
 {
 'Name': 'AllParameters',
 'Operator': 'Contains',

How to search for your features 2556

Amazon SageMaker Developer Guide

 'Value': 'hea'
 },
]
 }
)

Search for all features that belong to a feature group with substring "ver" in its
 name
OR features that have a name that contain "wha"
OR features that have a parameter (key or value) that contains "hea"

sagemaker_client.search(
 Resource="FeatureMetadata",
 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Contains',
 'Value': 'ver'
 },
 {
 'Name': 'FeatureName',
 'Operator': 'Contains',
 'Value': 'wha'
 },
 {
 'Name': 'AllParameters',
 'Operator': 'Contains',
 'Value': 'hea'
 },
],
 'Operator': 'Or' # note that this is explicitly set to "Or"- the default is
 "And"
 }
)

Search for all features that belong to a feature group with substring "ver" in its
 name
OR features that have a name that contain "wha"
OR parameters with the value 'Sage' for the 'org' key

sagemaker_client.search(
 Resource="FeatureMetadata",

How to search for your features 2557

Amazon SageMaker Developer Guide

 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Contains',
 'Value': 'ver'
 },
 {
 'Name': 'FeatureName',
 'Operator': 'Contains',
 'Value': 'wha'
 },
 {
 'Name': 'Parameters.org',
 'Operator': 'Contains',
 'Value': 'Sage'
 },
],
 'Operator': 'Or' # note that this is explicitly set to "Or"- the default is
 "And"
 }
)

Find feature groups in your Feature Store

With Amazon SageMaker Feature Store, you can search for the feature groups using either the
console or the Search operation. You can use the search functionality to find features and feature
groups that are relevant to the models that you're creating. You can use the search functionality to
quickly find the feature groups that are relevant to your use case.

Note

The feature groups that you're searching for must be within your AWS Region and AWS
account, or shared with and made discoverable to your AWS account. For more information
about how to share the feature group catalog and grant discoverability, see Share your
feature group catalog.

The following table shows the searchable fields and whether you can use the console to search for
a specific field.

Find feature groups in your Feature Store 2558

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html

Amazon SageMaker Developer Guide

You can search for features using either Amazon SageMaker Studio Classic or the Search
operation in the SageMaker API. The following table lists all of the searchable metadata and
whether you can search for it in the console. Tags are searchable for your own feature groups but
are not searchable for feature groups made discoverable to you.

Searchable metadata API field name Searchable in the
console?

Searchable with
cross account?

All Tags AllTags Yes No

Creation Failure
Reason

FailureReason No No

Creation Status FeatureGroupStatus Yes Yes

Creation time CreationTime Yes Yes

Description Description Yes Yes

Event Time Feature
Name

EventTimeFeatureNa
me

No No

Feature Definitions FeatureDefinitions No No

Feature Group ARN FeatureGroupARN No No

Feature Group Name FeatureGroupName Yes Yes

Offline Store
Configuration

OfflineStoreConfig No No

Offline Store Status OfflineStoreStatus Yes Yes

Last Update Status LastUpdateStatus No No

Record Identfier
Feature Name

RecordIdentifierFe
atureName

Yes Yes

Tags Tags.key Yes No

Find feature groups in your Feature Store 2559

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FeatureDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OfflineStoreConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OfflineStoreStatus.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_LastUpdateStatus.html

Amazon SageMaker Developer Guide

How to find feature groups

You can use the console or the Amazon SageMaker Feature Store API to find your feature groups.
The instructions for using Feature Store through the console depends on if you have enabled
Amazon SageMaker Studio or Amazon SageMaker Studio Classic as your default experience.

Find feature groups if Studio is your default experience (console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data in the left navigation pane to expand the dropdown list.

3. From the dropdown list, choose Feature Store.

4. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

5. Under the Feature Group Catalog tab, choose My account to view your feature groups.

6. Under the Feature Group Catalog tab, choose Cross account to view feature groups that
others made discoverable to you. Under Created by, you can view the resource owner account
ID.

7. You can search for your feature groups in the Search dropdown list:

• (Optional) To filter your search, choose the filter icon next to the Search dropdown list. You
can use filters to specify parameters or date ranges in your search results. If you search for a
parameter, specify both its key and value. To find your feature groups, you can specify time
ranges, clear (deselect) columns that you don't want to query, choose stores to search, or
search by status.

• For shared resources, you can only edit feature group metadata or feature definitions if
you have the proper access permission granted from the resource owner account. The
discoverability permission alone won't allow you to edit metadata or feature definitions. For
more information about granting access permissions, see Enabling cross account access.

Find feature groups if Studio Classic is your default experience (console)

Use the latest version of Amazon SageMaker Studio Classic to get the most recent version of the
search functionality if you are accessing Feature Store through the Studio Classic application. For
information about updating Studio Classic, see Shut down and Update SageMaker Studio Classic.

1. Open the Studio Classic console by following the instructions in Launch Amazon SageMaker
Studio Classic.

How to find feature groups 2560

Amazon SageMaker Developer Guide

2. Choose the Home icon

()
in the left navigation pane.

3. Choose Data.

4. From the dropdown list, choose Feature Store.

5. (Optional) To view your feature groups, choose My account. To view shared feature groups,
choose Cross account.

6. Under the Feature Group Catalog tab, choose My account to view your feature groups.

7. Under the Feature Group Catalog tab, choose Cross account to view feature groups that
others made discoverable to you. Under Created by, you can view the resource owner account
ID.

8. You can search for your feature groups in the Search dropdown list:

• (Optional) To filter your search, choose the filter icon next to the Search dropdown list. You
can use filters to specify parameters or date ranges in your search results. If you search for a
parameter, specify both its key and value. To find your feature groups more easily, you can
specify time ranges, clear (deselect) columns that you don't want to query, choose stores to
search, or search by status.

• For shared resources, you can only edit feature group metadata or feature definitions if
you have the proper access permission granted from the resource owner account. The
discoverability permission alone won't allow you to edit metadata or feature definitions. For
more information about granting access permissions, see Enabling cross account access.

Find feature groups using SDK for Python (Boto3)

The code in this section uses the Search operation in the AWS SDK for Python (Boto3) to run the
search query to find feature groups. For information about the other languages to submit a query,
see See Also in the Amazon SageMaker API Reference.

For more Feature Store examples and resources, see Amazon SageMaker Feature Store resources.

The following code shows different example search queries using the API:

Return all feature groups
sagemaker_client.search(
 Resource="FeatureGroups",
)

How to find feature groups 2561

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html#API_Search_SeeAlso

Amazon SageMaker Developer Guide

Search for feature groups that are shared with your account
sagemaker_session.search(
 resource="FeatureGroup",
 search_expression={
 "Filters": [
 {
 "Name": "FeatureGroupName",
 "Value": "MyFeatureGroup",
 "Operator": "Contains",
 }
],
 "Operator": "And",
 },
 sort_by="Name",
 sort_order="Ascending",
 next_token="token",
 max_results=50,
 CrossAccountFilterOption="SameAccount"
)

Search for all feature groups with a name that contains the "ver" substring
sagemaker_client.search(
 Resource="FeatureGroups",
 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Contains',
 'Value': 'ver'
 },
]
 }
)

Search for all feature groups that have the EXACT name "airport"
sagemaker_client.search(
 Resource="FeatureGroups",
 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Equals',
 'Value': 'airport'

How to find feature groups 2562

Amazon SageMaker Developer Guide

 },
]
 }
)

Search for all feature groups that contains the name "ver"
AND have a record identifier feature name that contains "wha"
AND have a tag (key or value) that contains "hea"
sagemaker_client.search(
 Resource="FeatureGroups",
 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Contains',
 'Value': 'ver'
 },
 {
 'Name': 'RecordIdentifierFeatureName',
 'Operator': 'Contains',
 'Value': 'wha'
 },
 {
 'Name': 'AllTags',
 'Operator': 'Contains',
 'Value': 'hea'
 },
]
 }
)

Search for all feature groups with substring "ver" in its name
OR feature groups that have a record identifier feature name that contains "wha"
OR feature groups that have a tag (key or value) that contains "hea"
sagemaker_client.search(
 Resource="FeatureGroups",
 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Contains',
 'Value': 'ver'
 },
 {

How to find feature groups 2563

Amazon SageMaker Developer Guide

 'Name': 'RecordIdentifierFeatureName',
 'Operator': 'Contains',
 'Value': 'wha'
 },
 {
 'Name': 'AllTags',
 'Operator': 'Contains',
 'Value': 'hea'
 },
],
 'Operator': 'Or' # note that this is explicitly set to "Or"- the default is
 "And"
 }
)

Search for all feature groups with substring "ver" in its name
OR feature groups that have a record identifier feature name that contains "wha"
OR tags with the value 'Sage' for the 'org' key
sagemaker_client.search(
 Resource="FeatureGroups",
 SearchExpression={
 'Filters': [
 {
 'Name': 'FeatureGroupName',
 'Operator': 'Contains',
 'Value': 'ver'
 },
 {
 'Name': 'RecordIdentifierFeatureName',
 'Operator': 'Contains',
 'Value': 'wha'
 },
 {
 'Name': 'Tags.org',
 'Operator': 'Contains',
 'Value': 'Sage'
 },
],
 'Operator': 'Or' # note that this is explicitly set to "Or"- the default is
 "And"
 }
)

How to find feature groups 2564

Amazon SageMaker Developer Guide

Search for all offline only feature groups
sagemaker_client.search(
 Resource="FeatureGroups",
 SearchExpression={
 'Filters': [
 {
 'Name': 'OnlineStoreConfig.EnableOnlineStore',
 'Operator': 'NotEquals',
 'Value': 'true'
 },
 {
 'Name': 'OfflineStoreConfig.S3StorageConfig.S3Uri',
 'Operator': 'Exists'
 }
]
 }
)

Search for all online only feature groups
sagemaker_client.search(
 Resource="FeatureGroups",
 SearchExpression={
 'Filters': [
 {
 'Name': 'OnlineStoreConfig.EnableOnlineStore',
 'Operator': 'Equals',
 'Value': 'true'
 },
 {
 'Name': 'OfflineStoreConfig.S3StorageConfig.S3Uri',
 'Operator': 'NotExists'
 }
]
 }
)

Search for all feature groups that are BOTH online and offline
sagemaker_client.search(
 Resource="FeatureGroups",
 SearchExpression={
 'Filters': [
 {
 'Name': 'OnlineStoreConfig.EnableOnlineStore',
 'Operator': 'Equals',

How to find feature groups 2565

Amazon SageMaker Developer Guide

 'Value': 'true'
 },
 {
 'Name': 'OfflineStoreConfig.S3StorageConfig.S3Uri',
 'Operator': 'Exists'
 }
]
 }
)

You can also use python SDK of AWS RAM APIs to create resource share. The API signature is given
below. To use python SDK of AWS RAM API, you need attach AWS RAM full access managed policy
with execution Role.

response = client.create_resource_share(
 name='string',
 resourceArns=[
 'string',
],
 principals=[
 'string',
],
 tags=[
 {
 'key': 'string',
 'value': 'string'
 },
],
 allowExternalPrincipals=True|False,
 clientToken='string',
 permissionArns=[
 'string',
]
)

Adding searchable metadata to your features

In Amazon SageMaker Feature Store, you can search through all of your features. To make your
features more discoverable, you can add metadata to them. You can add the following types of
metadata:

Adding searchable metadata to your features 2566

Amazon SageMaker Developer Guide

• Description – A searchable description of the feature.

• Parameters – Searchable key-value pairs.

The description can have up to 255 characters. For parameters, you must specify a key-value pair in
your search. You can add up to 25 parameters.

To update the metadata of a feature, you can use either the console or the
UpdateFeatureMetadata operation.

How to add searchable metadata to your features

You can use the console or the Amazon SageMaker Feature Store API to add searchable metadata
to your features. Instructions for using Feature Store through the console depend on whether you
have enabled Amazon SageMaker Studio or Amazon SageMaker Studio Classic as your default
experience.

Add searchable metadata to features if Studio is your default experience (console)

1. Open the Studio console by following the instructions in Launch Amazon SageMaker Studio.

2. Choose Data in the left navigation pane, to expand the dropdown list.

3. From the dropdown list, choose Feature Store.

4. (Optional) To view your features, choose My account. To view shared features, choose Cross
account.

5. To view your feature groups, under the Feature Catalog tab, choose My account.

6. Under the Feature Catalog tab, choose Cross account to view feature groups that others make
discoverable to you. Under Created by, you can view the resource owner account ID of the
feature group.

7. You can search for your feature in the Search dropdown list.

• (Optional) To filter your search, choose the filter icon next to the Search dropdown list. You
can use filters to specify parameters or date ranges in your search results. If you search for a
parameter, specify both its key and value. To find your features more easily, you can specify
time ranges or deselect columns that you don't want to query.

• For shared resources, you can only edit feature group metadata or feature definitions if you
have the proper access permission granted from the resource owner account. Having the
discoverability permission alone doesn't allow you to edit metadata or feature definitions.
For more information about granting access permissions, seeEnabling cross account access.

How to add searchable metadata to your features 2567

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureMetadata.html

Amazon SageMaker Developer Guide

8. Choose your feature.

9. Choose Edit metadata.

10. In the Description field, add or update the description.

11. In the Parameters field under Parameters, specify a key-value pair for the parameter.

12. (Optional) Choose Add new parameter to add another parameter.

13. Choose Save changes.

14. Choose Confirm.

Add searchable metadata to your features if Studio Classic is your default experience (console)

1. Open the Studio Classic console by following the instructions in Launch Studio Classic Using
the Amazon SageMaker Console.

2. In the left navigation pane, choose the Home icon

().

3. Choose Data.

4. From the dropdown list, choose Feature Store.

5. (Optional) To view your features, choose My account. To view shared features, choose Cross
account.

6. To view your feature groups, under the Feature Catalog tab, choose My account.

7. Under the Feature Catalog tab, choose Cross account to view feature groups that other
accounts made discoverable to you. Under Created by, you can view the resource owner
account ID of the feature group.

8. You can search for your feature in the Search dropdown list.

• (Optional) To filter your search, choose the filter icon next to the Search dropdown list. You
can use filters to specify parameters or date ranges in your search results. If you search for a
parameter, specify both its key and value. To find your features more easily, you can specify
time ranges or deselect columns that you don't want to query.

• For shared resources, you can only edit feature group metadata or feature definitions if you
have the proper access permission granted from the resource owner account. Having the
discoverability permission alone doesn't allow you to edit metadata or feature definitions.
For more information about granting access permissions, seeEnabling cross account access.

9. Choose your feature.

How to add searchable metadata to your features 2568

Amazon SageMaker Developer Guide

10. Choose Edit metadata.

11. In the Description field, add or update the description.

12. In the Parameters field under Parameters, specify a key-value pair for the parameter.

13. (Optional) Choose Add new parameter to add another parameter.

14. Choose Save changes.

15. Choose Confirm.

Add searchable metadata to your features using SDK for Python (Boto3)

The code in this section uses the UpdateFeatureMetadata operation in the AWS SDK for Python
(Boto3) to add searchable metadata to your features for different scenarios. For information about
the other languages to submit a query, see See Also in the Amazon SageMaker API Reference.

For more Feature Store examples and resources, see Amazon SageMaker Feature Store resources.

Add a list of parameters to a feature

To add a list of parameters to a feature, specify values for the following fields:

• FeatureGroupName

• Feature

• Parameters

The following example code uses the AWS SDK for Python (Boto3) to add two parameters.

sagemaker_client.update_feature_metadata(
 FeatureGroupName="feature_group_name",
 FeatureName="feature-name",
 ParameterAdditions=[
 {"Key": "example-key-0", "Value": "example-value-0"},
 {"Key": "example-key-1", "Value": "example-value-1"},
]
)

Add a description to a feature

To add a description to a feature, specify values for the following fields:

How to add searchable metadata to your features 2569

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureMetadata.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateFeatureMetadata.html#API_Search_SeeAlso

Amazon SageMaker Developer Guide

• FeatureGroupName

• Feature

• Description

sagemaker_client.update_feature_metadata(
 FeatureGroupName="feature-group-name",
 FeatureName="feature-name",
 Description="description"
)

Remove parameters for a feature

To remove all parameters for a feature, do the following.

Specify values for the following fields:

• FeatureGroupName

• Feature

Specify the keys for the parameters that you're removing under ParameterRemovals.

sagemaker_client.update_feature_metadata(
 FeatureGroupName="feature_group_name",
 FeatureName="feature-name",
 ParameterRemovals=[
 {"Key": "example-key-0"},
 {"Key": "example-key-1"},
]
)

Remove the description for a feature

To remove the description for a feature, do the following.

Specify values for the following fields:

• FeatureGroupName

How to add searchable metadata to your features 2570

Amazon SageMaker Developer Guide

• Feature

Specify an empty string for Description.

sagemaker_client.update_feature_metadata(
 FeatureGroupName="feature-group-name",
 FeatureName="feature-name",
 Description=""
)

Example code

After you've updated the metadata for a feature, you can use the DescribeFeatureMetadata
operation to see the updates that you've made.

The following code goes through an example workflow using the AWS SDK for Python (Boto3). The
example code does the following:

1. Sets up your SageMaker environment.

2. Creates a feature group.

3. Adds features to the group.

4. Adds metadata to the features.

For more Feature Store examples and resources, see Amazon SageMaker Feature Store resources.

Step 1: Setup

To start using Feature Store, create SageMaker, boto3 and Feature Store sessions. Then set up the
S3 bucket you want to use for your features. This is your offline store. The following code uses the
SageMaker default bucket and adds a custom prefix to it.

Note

The role that you use must have the following managed policies attached to it:
AmazonS3FullAccess and AmazonSageMakerFeatureStoreAccess.

How to add searchable metadata to your features 2571

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureMetadata.html

Amazon SageMaker Developer Guide

SageMaker Python SDK version 2.x is required
%pip install 'sagemaker>=2.0.0'
import sagemaker
import sys

import boto3
import pandas as pd
import numpy as np
import io
from sagemaker.session import Session
from sagemaker import get_execution_role
from botocore.exceptions import ClientError

prefix = 'sagemaker-featurestore-introduction'
role = get_execution_role()

sagemaker_session = sagemaker.Session()
region = sagemaker_session.boto_region_name
s3_bucket_name = sagemaker_session.default_bucket()
sagemaker_client = boto_session.client(service_name='sagemaker', region_name=region)

Step 2: Create a feature group and add features

The following code is an example of creating a feature group with feature definitions.

feature_group_name = "test-for-feature-metadata"
feature_definitions = [
 {"FeatureName": "feature-1", "FeatureType": "String"},
 {"FeatureName": "feature-2", "FeatureType": "String"},
 {"FeatureName": "feature-3", "FeatureType": "String"},
 {"FeatureName": "feature-4", "FeatureType": "String"},
 {"FeatureName": "feature-5", "FeatureType": "String"}
]
try:
 sagemaker_client.create_feature_group(
 FeatureGroupName=feature_group_name,
 RecordIdentifierFeatureName="feature-1",
 EventTimeFeatureName="feature-2",

How to add searchable metadata to your features 2572

Amazon SageMaker Developer Guide

 FeatureDefinitions=feature_definitions,
 OnlineStoreConfig={"EnableOnlineStore": True}
)
except ClientError as e:
 if e.response["Error"]["Code"] == "ResourceInUse":
 pass
 else:
 raise e

Step 3: Add metadata

Before you add metadata, use the DescribeFeatureGroup operation to make sure that the
status of the feature group is Created.

sagemaker_client.describe_feature_group(
 FeatureGroupName=feature_group_name
)

Add a description to the feature.

sagemaker_client.update_feature_metadata(
 FeatureGroupName=feature_group_name,
 FeatureName="feature-1",
 Description="new description"
)

You can use the DescribeFeatureMetadata operation to see if you successfully updated the
description for the feature group.

 sagemaker_client.describe_feature_metadata(
 FeatureGroupName=feature_group_name,
 FeatureName="feature-1"
)

You can also use it to add parameters to the feature group.

How to add searchable metadata to your features 2573

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureMetadata.html

Amazon SageMaker Developer Guide

sagemaker_client.update_feature_metadata(
 FeatureGroupName=feature_group_name,
 FeatureName="feature-1",
 ParameterAdditions=[
 {"Key": "team", "Value": "featurestore"},
 {"Key": "org", "Value": "sagemaker"},
]
)

You can use the DescribeFeatureMetadata operation again to see if you have successfully
added the parameters.

 sagemaker_client.describe_feature_metadata(
 FeatureGroupName=feature_group_name,
 FeatureName="feature-1"
)

Create a dataset from your feature groups

After a Feature Store feature group has been created in an offline store, you can choose to use the
following methods to get your data:

• Using the Amazon SageMaker Python SDK

• Running SQL queries in the Amazon Athena

Important

Feature Store requires data to be registered in a AWS Glue data catalog. By default, Feature
Store automatically builds an AWS Glue data catalog when you create a feature group.

After you've created feature groups for your offline store and populated them with data, you can
create a dataset by running queries or using the SDK to join data stored in the offline store from
different feature groups. You can also join the feature groups to a single pandas dataframe. You
can use Amazon Athena to write and execute SQL queries.

Create a dataset from your feature groups 2574

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureMetadata.html

Amazon SageMaker Developer Guide

Note

To make sure that your data is up to date, you can set up a AWS Glue crawler to run on a
schedule.
To set up a AWS Glue crawler, specify an IAM role that the crawler is using to access the
offline store’s Amazon S3 buckets. For more information, see Create an IAM role.
For more information on how to use AWS Glue and Athena to build a training dataset for
model training and inference, see Use Feature Store with SDK for Python (Boto3).

Using the Amazon SageMaker Python SDK to get your data from your
feature groups

You can use the Feature Store APIs to create a dataset from your feature groups. Data scientists
create ML datasets for training by retrieving ML feature data from one or more feature groups in
the offline store. Use the create_dataset() function to create the dataset. You can use the SDK
to do the following:

• Create a dataset from multiple feature groups.

• Create a dataset from the feature groups and a pandas data frame.

By default, Feature Store doesn't include records that you've deleted from the dataset. It also
doesn't include duplicated records. A duplicate record has the record ID and timestamp value in the
event time column.

Before you use the SDK to create a dataset, you must start a SageMaker session. Use the following
code to start the session.

import boto3
from sagemaker.session import Session
from sagemaker.feature_store.feature_store import FeatureStore

region = boto3.Session().region_name
boto_session = boto3.Session(region_name=region)

sagemaker_client = boto_session.client(
 service_name="sagemaker", region_name=region
)
featurestore_runtime = boto_session.client(

Using the Amazon SageMaker Python SDK to get your data from your feature groups 2575

https://docs.aws.amazon.com/glue/latest/dg/create-an-iam-role.html
https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#dataset-builder

Amazon SageMaker Developer Guide

 service_name="sagemaker-featurestore-runtime",region_name=region
)

feature_store_session = Session(
 boto_session=boto_session,
 sagemaker_client=sagemaker_client,
 sagemaker_featurestore_runtime_client=featurestore_runtime,
)

feature_store = FeatureStore(feature_store_session)

The following code shows an example of creating a dataset from multiple feature groups. The
following code snippet uses the example feature groups "base_fg_name", "first_fg_name", and
"second_fg_name", which may not exist or have the same schema within your Feature Store. It is
recommended to replace these feature groups with feature groups that exist within your Feature
Store. For information on how to create a feature group, see Step 3: Create feature groups.

from sagemaker.feature_store.feature_group import FeatureGroup

s3_bucket_name = "offline-store-sdk-test"

base_fg_name = "base_fg_name"
base_fg = FeatureGroup(name=base_fg_name, sagemaker_session=feature_store_session)

first_fg_name = "first_fg_name"
first_fg = FeatureGroup(name=first_fg_name, sagemaker_session=feature_store_session)

second_fg_name = "second_fg_name"
second_fg = FeatureGroup(name=second_fg_name, sagemaker_session=feature_store_session)

feature_store = FeatureStore(feature_store_session)
builder = feature_store.create_dataset(
 base=base_fg,
 output_path=f"s3://{DOC-EXAMPLE-BUCKET1}",
).with_feature_group(first_fg
).with_feature_group(second_fg, "base_id", ["base_feature_1"])

The following code shows an example of creating a dataset from multiple feature groups and a
pandas dataframe.

base_data = [[1, 187512346.0, 123, 128],

Using the Amazon SageMaker Python SDK to get your data from your feature groups 2576

Amazon SageMaker Developer Guide

 [2, 187512347.0, 168, 258],
 [3, 187512348.0, 125, 184],
 [1, 187512349.0, 195, 206]]
base_data_df = pd.DataFrame(
 base_data,
 columns=["base_id", "base_time", "base_feature_1", "base_feature_2"]
)

builder = feature_store.create_dataset(
 base=base_data_df,
 event_time_identifier_feature_name='base_time',
 record_identifier_feature_name='base_id',
 output_path=f"s3://{s3_bucket_name}"
).with_feature_group(first_fg
).with_feature_group(second_fg, "base_id", ["base_feature_1"])

The Feature Store APIs provides you with helper methods for the create_dataset function. You
can use them to do the following:

• Create a dataset from multiple feature groups.

• Create a dataset from multiple feature groups and a pandas dataframe.

• Create a dataset from a single feature group and a pandas dataframe.

• Create a dataset using a point in time accurate join where records in the joined feature group
follow sequentially.

• Create a dataset with the duplicated records, instead of following the default behavior of the
function.

• Create a dataset with the deleted records, instead of following the default behavior of the
function.

• Create a dataset for time periods that you specify.

• Save the dataset as a CSV file.

• Save the dataset as a pandas dataframe.

The base feature group is an important concept for joins. The base feature group is the feature
group that has other feature groups or the pandas dataframe joined to it. For each dataset

You can add the following optional methods to the create_dataset function to configure how
you're creating dataset:

Using the Amazon SageMaker Python SDK to get your data from your feature groups 2577

https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html#dataset-builder

Amazon SageMaker Developer Guide

• with_feature_group – Performs an inner join between the base feature group and another
feature group using the record identifier and the target feature name in the base feature group.
The following provides information about the parameters that you specify:

• feature_group – The feature group that you're joining.

• target_feature_name_in_base – The name of the feature in the base feature group that
you're using as a key in the join. The record identifier in the other feature groups are the other
keys that Feature Store uses in the join.

• included_feature_names – A list of strings representing the feature names of the base
feature group. You can use the field to specify the features that you want to include in the
dataset.

• feature_name_in_target – Optional string representing the feature in the target feature
group that will be compared to the target feature in the base feature group.

• join_comparator – Optional JoinComparatorEnum representing the comparator
used when joining the target feature in the base feature group and the feature in the
target feature group. These JoinComparatorEnum values can be GREATER_THAN,
GREATER_THAN_OR_EQUAL_TO, LESS_THAN, LESS_THAN_OR_EQUAL_TO, NOT_EQUAL_TO or
EQUALS by default.

• join_type – Optional JoinTypeEnum representing the type of join between the base
and target feature groups. These JoinTypeEnum values can be LEFT_JOIN, RIGHT_JOIN,
FULL_JOIN, CROSS_JOIN or INNER_JOIN by default.

• with_event_time_range – Creates a dataset using the event time range that you specify.

• as_of – Creates a dataset up to a timestamp that you specify. For example, if you specify
datetime(2021, 11, 28, 23, 55, 59, 342380) as the value, creates a dataset up to
November 28th, 2021.

• point_time_accurate_join – Creates a dataset where all of the event time values of
the base feature group is less than all the event time values of the feature group or pandas
dataframe that you're joining.

• include_duplicated_records – Keeps duplicated values in the feature groups.

• include_deleted_records – Keeps deleted values in the feature groups.

• with_number_of_recent_records_by_record_identifier – An integer that you specify
to determine how many of the most recent records appear in the dataset.

• with_number_of_records_by_record_identifier – An integer that represents how many
records appear in the dataset.

Using the Amazon SageMaker Python SDK to get your data from your feature groups 2578

Amazon SageMaker Developer Guide

After you've configured the dataset, you can specify the output using one of the following
methods:

• to_csv_file – Saves the dataset as a CSV file.

• to_dataframe – Saves the dataset as a pandas dataframe.

You can retrieve data that comes after a specific period in time. The following code retrieves data
after a timestamp.

fg1 = FeatureGroup("example-feature-group-1")
feature_store.create_dataset(
 base=fg1,
 output_path="s3://example-S3-path"
).with_number_of_records_from_query_results(5).to_csv_file()

You can also retrieve data from a specific time period. You can use the following code to get data
for a specific time range:

fg1 = FeatureGroup("fg1")
feature_store.create_dataset(
 base=fg1,
 output_path="example-S3-path"
).with_event_time_range(
 datetime(2021, 11, 28, 23, 55, 59, 342380),
 datetime(2020, 11, 28, 23, 55, 59, 342380)
).to_csv_file() #example time range specified in datetime functions

You might want to join multiple feature groups to a pandas dataframe where the event time values
of the feature group happen no later than the event time of the data frame. Use the following
code as a template to help you perform the join.

fg1 = FeatureGroup("fg1")
fg2 = FeatureGroup("fg2")
events = [['2020-02-01T08:30:00Z', 6, 1],
 ['2020-02-02T10:15:30Z', 5, 2],
 ['2020-02-03T13:20:59Z', 1, 3],
 ['2021-01-01T00:00:00Z', 1, 4]]
df = pd.DataFrame(events, columns=['event_time', 'customer-id', 'title-id'])
feature_store.create_dataset(
 base=df,

Using the Amazon SageMaker Python SDK to get your data from your feature groups 2579

Amazon SageMaker Developer Guide

 event_time_identifier_feature_name='event_time',
 record_identifier_feature_name='customer_id',
 output_path="s3://example-S3-path"
).with_feature_group(fg1, "customer-id"
).with_feature_group(fg2, "title-id"
).point_in_time_accurate_join(
).to_csv_file()

You can also retrieve data that comes after a specific period in time. The following code retrieves
data after the time specified by the timestamp in the as_of method.

fg1 = FeatureGroup("fg1")
feature_store.create_dataset(
 base=fg1,
 output_path="s3://example-s3-file-path"
).as_of(datetime(2021, 11, 28, 23, 55, 59, 342380)
).to_csv_file() # example datetime values

Sample Amazon Athena queries

You can write queries in Amazon Athena to create a dataset from your feature groups. You can also
write queries that create a dataset from feature groups and a single pandas dataframe.

Interactive Exploration

This query selects the first 1000 records.

SELECT *
FROM <FeatureGroup.DataCatalogConfig.DatabaseName>.<FeatureGroup.DataCatalogConfig.TableName>
LIMIT 1000

Latest snapshot without duplicates

This query selects the latest non-duplicate records.

SELECT *
FROM
 (SELECT *,
 row_number()
 OVER (PARTITION BY <RecordIdentiferFeatureName>

Sample Amazon Athena queries 2580

Amazon SageMaker Developer Guide

 ORDER BY <EventTimeFeatureName> desc, Api_Invocation_Time DESC, write_time DESC)
 AS row_num
 FROM
 <FeatureGroup.DataCatalogConfig.DatabaseName>.<FeatureGroup.DataCatalogConfig.TableName>)
WHERE row_num = 1;

Latest snapshot without duplicates and deleted records in the offline store

This query filters out any deleted records and selects non-duplicate records from the offline store.

SELECT *
FROM
 (SELECT *,
 row_number()
 OVER (PARTITION BY <RecordIdentiferFeatureName>
 ORDER BY <EventTimeFeatureName> desc, Api_Invocation_Time DESC, write_time DESC)
 AS row_num
 FROM
 <FeatureGroup.DataCatalogConfig.DatabaseName>.<FeatureGroup.DataCatalogConfig.TableName>)
WHERE row_num = 1 and
NOT is_deleted;

Time Travel without duplicates and deleted records in the offline store

This query filters out any deleted records and selects non-duplicate records from a particular point
in time.

SELECT *
FROM
 (SELECT *,
 row_number()
 OVER (PARTITION BY <RecordIdentiferFeatureName>
 ORDER BY <EventTimeFeatureName> desc, Api_Invocation_Time DESC, write_time DESC)
 AS row_num
 FROM
 <FeatureGroup.DataCatalogConfig.DatabaseName>.<FeatureGroup.DataCatalogConfig.TableName>
 where <EventTimeFeatureName> <= timestamp '<timestamp>')
 -- replace timestamp '<timestamp>' with just <timestamp> if EventTimeFeature is of
 type fractional
WHERE row_num = 1 and
NOT is_deleted

Sample Amazon Athena queries 2581

Amazon SageMaker Developer Guide

Delete records from your feature groups

You can use the Amazon SageMaker Feature Store API to delete records from your feature groups.
A feature group is an object that contains your machine learning (ML) data, where the columns
of your data are described by features and your data are contained in records. A record contains
values for features that are associated with a specific record identifier.

There are two storage configurations for your feature groups: online store and offline store. The
online store only keeps the record with the latest event time and is typically used for real-time
lookup for ML inference. The offline store keeps all records and acts as a historical database and is
typically used for feature exploration, ML training, and batch inference.

For more information on Feature Store concepts, see Ingestion diagrams.

There are two ways to delete records from your feature groups, and the behavior is different
depending on the storage configuration. In the following topics we will describe how to soft and
hard delete records from the online and offline stores and provide examples.

Topics

• Delete records from the online store

• Delete records from the offline store

Delete records from the online store

You can soft or hard delete a record from the online store using the DeleteRecord API by using
the DeletionMode request parameter to specify SoftDelete (default) or HardDelete. For
more information on the DeleteRecord API, see DeleteRecord in the Amazon SageMaker API
Reference.

With the online store:

• When you soft delete (default), the record is no longer retrievable by GetRecord
or BatchGetRecord and the feature column values are set to null, except for the
RecordIdentifer and EventTime feature values.

• When you hard delete, the record is completely removed from the online store.

In both cases Feature Store appends the deleted record marker to the OfflineStore. The deleted
record marker is a record with the same RecordIdentifer as the original, but with is_deleted

Delete records from your feature groups 2582

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html

Amazon SageMaker Developer Guide

value set to True, EventTime set to the delete input EventTime, and other feature values set to
null.

Note that the EventTime specified in DeleteRecord should be set later than the EventTime of
the existing record in the OnlineStore for that same RecordIdentifer. If it is not, the deletion
does not occur:

• For SoftDelete, the existing (not deleted) record remains in the OnlineStore, though the
delete record marker is still written to the OfflineStore.

• HardDelete returns EventTime: 400 ValidationException to indicate that the delete
operation failed. No delete record marker is written to the OfflineStore.

The following examples use the SDK for Python (Boto3) delete_record operation to delete a
record from a feature group. To delete a record from a feature group, you will need:

• Feature group name (feature-group-name)

• Record identifier value as a string (record-identifier-value)

• Deletion event time (deletion-event-time)

The deletion event time should be later than the event time of the record you wish to delete.

Online store soft delete example

For soft delete you will need use the DeleteRecord API and can use the default DeletionMode
or set the DeletionMode to SoftDelete.

import boto3
client = boto3.client('sagemaker-featurestore-runtime')

client.delete_record(
 FeatureGroupName='feature-group-name',
 RecordIdentifierValueAsString='record-identifier-value',
 EventTime='deletion-event-time',
 TargetStores=[
 'OnlineStore',
],
 DeletionMode='SoftDelete'
)

Delete records from the online store 2583

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-featurestore-runtime/client/delete_record.html#delete-record

Amazon SageMaker Developer Guide

Online store hard delete example

For hard delete you will need use the DeleteRecord API and set the DeletionMode to
HardDelete.

import boto3
client = boto3.client('sagemaker-featurestore-runtime')

client.delete_record(
 FeatureGroupName='feature-group-name',
 RecordIdentifierValueAsString='record-identifier-value',
 EventTime='deletion-event-timestamp',
 TargetStores=[
 'OnlineStore',
],
 DeletionMode='HardDelete'
)

Delete records from the offline store

With Amazon SageMaker Feature Store you can soft and hard delete a record from the
OfflineStore Iceberg table format. With the OfflineStore Iceberg table format:

• When you soft delete a record the latest version of the Iceberg table file will not contain the
record, but previous versions will still contain the record and can be accessed using time travel.
For information on time travel, see Querying Iceberg table data and performing time travel in
the Athena user guide.

• When you hard delete a record you are removing previous versions of the Iceberg table that
contain the record. In this case you should specify which versions of the Iceberg table you wish to
delete.

Obtain your Iceberg table name

To soft and hard delete from your OfflineStore Iceberg table, you will need to obtain your
Iceberg table name, iceberg-table-name. The following instructions assumes you have already
used Feature Store to create a feature group using the offline store storage configuration using
the Iceberg table format, with DisableGlueTableCreation = False (default). For more
information on creating feature groups, see Get started with Amazon SageMaker Feature Store.

Delete records from the offline store 2584

https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-table-data.html

Amazon SageMaker Developer Guide

To obtain your iceberg-table-name, use the DescribeFeatureGroup API to obtain
DataCatalogConfig. This contains the metadata of the Glue table which serves as data catalog
for the OfflineStore. The TableName within the DataCatalogConfig is your iceberg-
table-name.

Amazon Athena offline store soft and hard delete example

The following instructions use Amazon Athena to soft delete then hard delete a record from
the OfflineStore Iceberg table. This assumes that the record you intend to delete in your
OfflineStore is a deleted record marker. For information on the deleted record marker in your
OfflineStore, see Delete records from the online store.

1. Obtain your Iceberg table name, iceberg-table-name. For information on how to obtain
your Iceberg table name, see Obtain your Iceberg table name.

2. Run the DELETE command to soft delete the records on the OfflineStore, such that the
latest version (or snapshot) of the Iceberg table will not contain the records. The following
example deletes the records where is_deleted is 'True' and the previous event-time
versions of the those records .You may add additional conditions based on other features to
restrict the deletion. For more information on using DELETE with Athena, see DELETE in the
Athena user guide.

DELETE FROM iceberg-table-name WHERE record-id-feature-name IS IN (SELECT record-
id-feature-name FROM iceberg-table-name WHERE is_deleted = 'True')

The soft deleted records are still viewable on previous file versions by performing time travel.
For information on performing time travel, see Querying Iceberg table data and performing
time travel in the Athena user guide.

3. Remove the record from previous versions of your Iceberg tables to hard delete the record
from OfflineStore:

a. Run the OPTIMIZE command to rewrite the data files into a more optimized layout, based
on their size and number of associated delete files. For more information on optimizing
Iceberg tables and the syntax, see Optimizing Iceberg tables in the Athena user guide.

OPTIMIZE iceberg-table-name REWRITE DATA USING BIN_PACK

b. (Optional, only need to run once) Run the ALTER TABLE command to alter
the Iceberg table set values, and set when previous file versions are to be hard

Delete records from the offline store 2585

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureGroup.html.title
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataCatalogConfig.html
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-table-data.html
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-table-data.html
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-data-optimization.html

Amazon SageMaker Developer Guide

deleted according to your specifications. This can be done by assigning values to
vacuum_min_snapshots_to_keep and vacuum_max_snapshot_age_seconds
properties. For more information on altering your Iceberg table set properties, see ALTER
TABLE SET PROPERTIES in the Athena user guide. For more information on Iceberg table
property key-value pairs, see Table properties in the Athena user guide.

ALTER TABLE iceberg-table-name SET TBLPROPERTIES (
 'vacuum_min_snapshots_to_keep'='your-specified-value',
 'vacuum_max_snapshot_age_seconds'='your-specified-value'
)

c. Run the VACUUM command to remove no longer needed data files for your Iceberg
tables, not referenced by the current version. The VACUUM command should run after
the deleted record is no longer referenced in the current snapshot. For example,
vacuum_max_snapshot_age_seconds after the deletion. For more information on
VACUUM with Athena and the syntax, see VACUUM.

VACUUM iceberg-table-name

Apache Spark offline store soft and hard delete example

To soft and then hard delete a record from the OfflineStore Iceberg table using Apache Spark,
you can follow the same instructions as in the Amazon Athena offline store soft and hard delete
example above, but using Spark procedures. For a full list of procedures, see Spark Procedures in
the Apache Iceberg documentation.

• When soft deleting from the OfflineStore: instead of using the DELETE command in Athena,
use the DELETE FROM command in Apache Spark.

• To remove the record from previous versions of your Iceberg tables to hard delete the record
from OfflineStore:

• When changing your Iceberg table configuration: instead of using the ALTER TABLE command
from Athena, use expire_snapshots procedure.

• To remove no longer needed data files from your Iceberg tables: instead of using the VACUUM
command in Athena, use the remove_orphan_files procedure.

Delete records from the offline store 2586

https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-managing-tables.html#querying-iceberg-alter-table-set-properties
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-managing-tables.html#querying-iceberg-alter-table-set-properties
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-creating-tables.html#querying-iceberg-table-properties
https://docs.aws.amazon.com/athena/latest/ug/vacuum-statement.html
https://iceberg.apache.org/docs/1.3.1/spark-procedures/
https://iceberg.apache.org/docs/latest/spark-writes/#delete-from
https://iceberg.apache.org/docs/1.3.1/spark-procedures/#expire_snapshots
https://iceberg.apache.org/docs/1.3.1/spark-procedures/#remove_orphan_files

Amazon SageMaker Developer Guide

Logging Feature Store operations by using AWS CloudTrail

Amazon SageMaker Feature Store is integrated with AWS CloudTrail, a service that provides a
record of actions taken by a user, role, or an AWS service in Feature Store. CloudTrail captures
all of the API calls for Feature Store listed on this page. The logged events include API calls from
Feature Store resource management and data operations. When you create a trail, you activate
continuous delivery of CloudTrail events from Feature Store to an Amazon S3 bucket. Using the
information collected by CloudTrail, you can determine the request that was made to Feature
Store, the IP address from which the request was made, who made the request, when it was made,
and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Management events

Management events capture operations performed on Feature Store resources in your AWS
account. For example, the log generated from the management events provides visibility if a
user creates or deletes a Feature Store. The following APIs log management events with Amazon
SageMaker Feature Store.

• CreateFeatureGroup

• DeleteFeatureGroup

• DescribeFeatureGroup

• UpdateFeatureGroup

Amazon SageMaker API calls and management events are logged by default when you create
the account, as described in Log Amazon SageMaker API Calls with AWS CloudTrail. For more
information, see Logging management events for trails.

Data events

Data events capture data plane operations performed using the Feature Store resources in your
AWS account. For example, the log generated from the data events provides visibility if a user
adds or deletes a record within a feature group. The following APIs log data events with Amazon
SageMaker Feature Store.

• BatchGetRecord

Logging Feature Store operations by using AWS CloudTrail 2587

https://docs.aws.amazon.com/awscloudtrail/latest/userguide
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html

Amazon SageMaker Developer Guide

• DeleteRecord

• GetRecord

• PutRecord

Data events are not logged by CloudTrail trails by default. To activate logging of data events, turn
on logging of data plane API activity in CloudTrail. For more information, see CloudTrail's Logging
data events for trails.

The following is an example CloudTrail event for a PutRecord API call:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "USERPRINCIPALID",
 "arn": "arn:aws:iam::123456789012:user/user",
 "accountId": "123456789012",
 "accessKeyId": "USERACCESSKEYID",
 "userName": "your-user-name"
 },
 "eventTime": "2023-01-01T01:00:00Z",
 "eventSource": "sagemaker.amazonaws.com",
 "eventName": "PutRecord",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "your-user-agent",
 "requestParameters": {
 "featureGroupName": "your-feature-group-name"
 },
 "responseElements": null,
 "requestID": "request-id",
 "eventID": "event-id",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::SageMaker::FeatureGroup",
 "ARN": "arn:aws:sagemaker:us-east-1:123456789012:feature-group/your-
feature-group-name"
 }
],
 "eventType": "AwsApiCall",

Data events 2588

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

Amazon SageMaker Developer Guide

 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data",
 "tlsDetails": {
 ...
 }
}

Security and access control

Amazon SageMaker Feature Store enables you to create two types of stores: an online store or
offline store. The online store is used for low latency real-time inference use cases whereas the
offline store is used for training and batch inference use cases. When you create a feature group
for online or offline use you can provide a AWS Key Management Service customer managed key
to encrypt all your data at rest. In case you do not provide a AWS KMS key then we ensure that
your data is encrypted on the server side using an AWS owned AWS KMS key or AWS managed
AWS KMS key. While creating a feature group, you can select storage type and optionally provide
a AWS KMS key for encrypting data, then you can call various APIs for data management such as
PutRecord, GetRecord, DeleteRecord.

Feature Store allows you to grant or deny access to individuals at the feature group-level and
enables cross-account access to Feature Store. For example, you can set up developer accounts
to access the offline store for model training and exploration that do not have write access to
production accounts. You can set up production accounts to access both online and offline stores.
Feature Store uses unique customer AWS KMS keys for offline and online store data at-rest
encryption. Access control is enabled through both API and AWS KMS key access. You can also
create feature group-level access control.

For more information about customer managed key, see customer managed keys. For more
information about AWS KMS, see AWS KMS.

Using AWS KMS permissions for Amazon SageMaker Feature Store

Encryption at rest protects Feature Store under an AWS KMS customer managed key. By default, it
uses an AWS owned customer managed key for OnlineStore and AWS managed customer managed
key for OfflineStore. Feature Store supports an option to encrypt your online or offline store under
customer managed key. You can select the customer managed key for Feature Store when you
create your online or offline store, and they can be different for each store.

Security and access control 2589

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon SageMaker Developer Guide

Feature Store supports only symmetric customer managed keys. You cannot use an asymmetric
customer managed key to encrypt your data in your online or offline store. For help determining
whether a customer managed key is symmetric or asymmetric, see Identifying symmetric and
asymmetric customer managed keys.

When you use a customer managed key, you can take advantage of the following features:

• You create and manage the customer managed key, including setting the key policies, IAM
policies and grants to control access to the customer managed key. You can enable and disable
the customer managed key, enable and disable automatic key rotation, and delete the customer
managed key when it is no longer in use.

• You can use a customer managed key with imported key material or a customer managed key in
a custom key store that you own and manage.

• You can audit the encryption and decryption of your online or offline store by examining the API
calls to AWS KMS in AWS CloudTrail logs.

You do not pay a monthly fee for AWS owned customer managed keys. Customer managed keys
will incur a charge for each API call and AWS Key Management Service quotas apply to each
customer managed key.

Authorizing use of a customer managed Key for your online store

If you use a customer managed key to protect your online store, the policies on that customer
managed key must give Feature Store permission to use it on your behalf. You have full control
over the policies and grants on a customer managed key.

Feature Store does not need additional authorization to use the default AWS owned KMS key to
protect your online or offline stores in your AWS account.

Customer managed key policy

When you select a customer managed key to protect your Online Store, Feature Store must have
permission to use the customer managed key on behalf of the principal who makes the selection.
That principal, a user or role, must have the permissions on the customer managed key that
Feature Store requires. You can provide these permissions in a key policy, an IAM policy, or a grant.
At a minimum, Feature Store requires the following permissions on a customer managed key:

Authorizing use of a customer managed Key for your online store 2590

https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-dynamodb.html#dynamodb-cmk-trail
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

Amazon SageMaker Developer Guide

• "kms:Encrypt", "kms:Decrypt", "kms:DescribeKey", "kms:CreateGrant", "kms:RetireGrant",
"kms:ReEncryptFrom", "kms:ReEncryptTo", "kms:GenerateDataKey", "kms:ListAliases",
"kms:ListGrants", "kms:RevokeGrant"

For example, the following example key policy provides only the required permissions. The policy
has the following effects:

• Allows Feature Store to use the customer managed key in cryptographic operations and create
grants, but only when it is acting on behalf of principals in the account who have permission to
use your Feature Store. If the principals specified in the policy statement don't have permission
to use your Feature Store, the call fails, even when it comes from the Feature Store service.

• The kms:ViaService condition key allows the permissions only when the request comes
from FeatureStore on behalf of the principals listed in the policy statement. These
principals can't call these operations directly. The value for kms:ViaService should be
sagemaker.*.amazonaws.com.

Note

The kms:ViaService condition key can only be used for the online store customer
managed AWS KMS key, and cannot be used for the offline store. If you add this special
condition to your customer managed key, and use the same AWS KMS key for both the
online and offline store, then it will fail the CreateFeatureGroup API operation.

• Gives the customer managed key administrators read-only access to the customer managed key
and permission to revoke grants, including the grants that Feature Store uses to protect your
data.

Before using an example key policy, replace the example principals with actual principals from your
AWS account.

{"Id": "key-policy-feature-store",
 "Version":"2012-10-17",
 "Statement": [
 {"Sid" : "Allow access through Amazon SageMaker Feature Store for all principals
 in the account that are authorized to use Amazon SageMaker Feature Store",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/featurestore-user"},
 "Action": [

Authorizing use of a customer managed Key for your online store 2591

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service

Amazon SageMaker Developer Guide

 "kms:Encrypt",
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:RetireGrant",
 "kms:ReEncryptFrom",
 "kms:ReEncryptTo",
 "kms:GenerateDataKey",
 "kms:ListAliases",
 "kms:ListGrants"
],
 "Resource": "*",
 "Condition": {"StringLike": {"kms:ViaService" : "sagemaker.*.amazonaws.com"
 }
 }
 },
 {"Sid": "Allow administrators to view the customer managed key and revoke
 grants",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/featurestore-admin"
 },
 "Action": [
 "kms:Describe*",
 "kms:Get*",
 "kms:List*",
 "kms:RevokeGrant"
],
 "Resource": "*"
 },
 {"Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::123456789:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 }
]
 }

Authorizing use of a customer managed Key for your online store 2592

Amazon SageMaker Developer Guide

Using grants to authorize Feature Store

In addition to key policies, Feature Store uses grants to set permissions on the customer managed
key. To view the grants on a customer managed key in your account, use the ListGrants
operation. Feature Store does not need grants, or any additional permissions, to use the AWS
owned customer managed key to protect your online store.

Feature Store uses the grant permissions when it performs background system maintenance and
continuous data protection tasks.

Each grant is specific to an online store. If the account includes multiple stores encrypted under
the same customer managed key, there will be unique grants per FeatureGroup using the same
customer managed key.

The key policy can also allow the account to revoke the grant on the customer managed key.
However, if you revoke the grant on an active encrypted online store, Feature Store won't be able
to protect and maintain the store.

Monitoring Feature Store interaction with AWS KMS

If you use a customer managed key to protect your online or offline store, you can use AWS
CloudTrail logs to track the requests that Feature Store sends to AWS KMS on your behalf.

Accessing data in your online store

The caller (either user or role) to ALL DataPlane operations (Put, Get, DeleteRecord) must have
below permissions on the customer managed key:

"kms:Decrypt"

Authorizing use of a customer managed key for your offline store

The roleArn that is passed as a parameter to createFeatureGroup must have below permissions
to the OfflineStore KmsKeyId:

"kms:GenerateDataKey"

Using grants to authorize Feature Store 2593

https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon SageMaker Developer Guide

Note

The key policy for the online store also works for the offline store, only when the
kms:ViaService condition is not specified.

Important

You can specify a AWS KMS encryption key to encrypt the Amazon S3 location used for
your offline feature store when you create a feature group. If AWS KMS encryption key is
not specified, by default we encrypt all data at rest using AWS KMS key. By defining your
bucket-level key for SSE, you can reduce AWS KMS requests costs by up to 99 percent.

Quotas, naming rules and data types

Quota terminologies

• Read Request Unit (RRU): Measure of read throughput, where the number of RRUs per read
request is equal to the ceiling of read record's size divided into 4KB chunks. The minimum RRU
per request is 0.

• Write Request Unit (WRU): Measure of write throughput, where the number of WRUs per write
request is equal to the ceiling of the written record's size divided into 1KB chunks. The minimum
WRU per request is 1 (including delete operations).

Limits and quotas

Note

Soft limits can be increased based on your needs.

• Maximum number of feature groups per AWS account: Soft limit of 100.

• Maximum number of feature definitions per feature group: 2500.

• Maximum number of RRU per record identifier: 2400 RRU per second.

• Maximum number of WRU per record identifier: 500 WRU per second.

Quotas, naming rules and data types 2594

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html

Amazon SageMaker Developer Guide

• Max Read Capacity Units (RCU) that can be provisioned on a single feature group: 40000 RCU.

• Max Write Capacity Units (WCU) that can be provisioned on a single feature group: 40000
WCU.

• Max Read Capacity Units that can be provisioned across all feature groups in a region: 80000
RCU.

• Max Write Capacity Units that can be provisioned across all feature groups in a region: 80000
WCU.

• Maximum Transactions per second (TPS) per API per AWS account: Soft limit of 10000 TPS per
API excluding the BatchGetRecord API call, which has a soft limit of 500 TPS.

• Maximum size of a record: 350KB.

• Maximum size of a record identifier: 2KB.

• Maximum size of a feature value: 350KB.

• Maximum number of concurrent feature group creation workflows: 4.

• BatchGetRecord API: Can contain as many as 100 records and can query up to 100 feature
groups.

For information about service quotas and how to request a quota increase, see AWS service quotas.

Naming rules

• Reserved Words: The following are reserved words and cannot be used as feature names in
feature definitions: is_deleted, write_time, and api_invocation_time.

Data types

• String Feature Type: Strings are Unicode with UTF-8 binary encoding. The minimum length of a
string can be zero, the maximum length is constrained by the maximum size of a record.

• Fractional Feature Type: Fractional feature values must conform to a double precision floating
point number as defined by the IEEE 754 standard.

• Integral Feature Type: Feature Store supports integral values in the range of a 64-bit signed
integer. Minimum value of -263 and a maximum value: 263 - 1.

• Event Time Features: All feature groups have an event time feature with nanosecond precision.
Any event time with lower than nanosecond precision will lead to backwards incompatibility. The
feature can have a feature type of either String or Fractional.

Naming rules 2595

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://en.wikipedia.org/wiki/IEEE_754

Amazon SageMaker Developer Guide

• A string event time is accepted in ISO-8601 format, in UTC time, conforming to the pattern(s):
[yyyy-MM-dd'T'HH:mm:ssZ, yyyy-MM-dd'T'HH:mm:ss.SSSSSSSSSZ].

• A fractional event time value is accepted as seconds from unix epoch. Event times must be in
the range of [0000-01-01T00:00:00.000000000Z, 9999-12-31T23:59:59.999999999Z]. For
feature groups in the Iceberg table format, you can only use String type for the event time.

Amazon SageMaker Feature Store offline store data format

Amazon SageMaker Feature Store supports the AWS Glue and Apache Iceberg table formats for the
offline store. You can choose the table format when you’re creating a new feature group. AWS Glue
is the default format.

Amazon SageMaker Feature Store offline store data is stored in an Amazon S3 bucket within your
account. When you call PutRecord, your data is buffered, batched, and written into Amazon S3
within 15 minutes. Feature Store only supports the Parquet file format when writing your data
to your offline store. Specifically, when your data is written to your offline store, the data can be
retrieved from your Amazon S3 bucket in Parquet format. Each file can contain multiple Records.

For the Iceberg format, Feature Store saves the table’s metadata in the same Amazon S3 bucket
that you’re using to store the offline store data. You can find it under the metadata prefix.

Feature Store also exposes the OfflineStoreConfig.S3StorageConfig.ResolvedOutputS3Uri field,
which can be found from in the DescribeFeatureGroup API call. This is the S3 path under which the
files for the specific feature group are written.

The following additional fields are added by Feature Store to each record when they persist in the
offline store:

• api_invocation_time – The timestamp when the service receives the PutRecord or
DeleteRecord call. If using managed ingestion (e.g. Data Wrangler), this is the timestamp when
data was written into the offline store.

• write_time – The timestamp when data was written into the offline store. Can be used for
constructing time-travel related queries.

• is_deleted – False by default. If DeleteRecord is called, a new Record is inserted into
RecordIdentifierValue and set to True in the offline store.

Amazon SageMaker Feature Store offline store data format 2596

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3StorageConfig.html#sagemaker-Type-S3StorageConfig-ResolvedOutputS3Uri
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureGroup.html

Amazon SageMaker Developer Guide

Amazon SageMaker Feature Store offline store URI structures

In the following examples DOC-EXAMPLE-BUCKET is the Amazon S3 bucket within your account,
example-prefix is your example prefix, 111122223333 is your account ID, AWS Region is your
region, feature-group-name is the name of your feature group.

AWS Glue table format

Records in the offline store stored using the AWS Glue table format are partitioned by event time
into hourly partitions. You can’t configure the partitioning scheme. The following URI structure
shows the organization of a Parquet file using the AWS Glue format:

s3://DOC-EXAMPLE-BUCKET/example-prefix/111122223333/sagemaker/AWS Region/offline-
store/feature-group-name-feature-group-creation-time/data/year=year/month=month/
day=day/hour=hour/timestamp_of_latest_event_time_in_file_16-random-alphanumeric-
digits.parquet

The following example is the output location of a Parquet file for a file with feature-group-
name as customer-purchase-history-patterns:

s3://DOC-EXAMPLE-BUCKET/example-prefix/111122223333/sagemaker/AWS Region/offline-
store/customer-purchase-history-patterns-1593511200/data/year=2020/month=06/day=31/
hour=00/20200631T064401Z_108934320012Az11.parquet

Iceberg table format

Records in the offline store stored in the Iceberg table format are partitioned by event time into
daily partitions. You can’t configure the partitioning scheme. The following URI structure shows the
organization of the data files saved in the Iceberg table format:

s3://DOC-EXAMPLE-BUCKET/example-prefix/111122223333/sagemaker/AWS Region/offline-
store/feature-group-name-feature-group-creation-time/data/8-random-alphanumeric-
digits/event-time-feature-name_trunc=event-time-year-event-time-month-event-time-day/
timestamp-of-latest-event-time-in-file_16-random-alphanumeric-digits.parquet

The following example is the output location of a Parquet file for a file with feature-group-
name as customer-purchase-history-patterns, and the event-time-feature-name is
EventTime:

Amazon SageMaker Feature Store offline store URI structures 2597

Amazon SageMaker Developer Guide

s3://DOC-EXAMPLE-BUCKET/example-prefix/111122223333/sagemaker/AWS Region/
offline-store/customer-purchase-history-patterns-1593511200/data/0aec19ca/
EventTime_trunc=2022-11-09/20221109T215231Z_yolTtpyuWbkaeGIl.parquet

The following example is the location of a metadata file for data files saved in the Iceberg table
format.

s3://DOC-EXAMPLE-BUCKET/example-prefix/111122223333/sagemaker/AWS Region/offline-
store/feature-group-name-feature-group-creation-time/metadata/

Amazon SageMaker Feature Store resources

The following lists the available resources for Amazon SageMaker Feature Store users. For the
Feature Store main page, see Amazon SageMaker Feature Store.

Feature Store example notebooks and workshops

To get started using Amazon SageMaker Feature Store, you can choose from a variety of example
Jupyter notebooks from the following table. If this is your first time using Feature Store, try out the
Introduction to Feature Store notebook. To run any these notebooks, you must attach this policy to
your IAM execution role: AmazonSageMakerFeatureStoreAccess.

See IAM Roles to access your role and attach this policy. For a walkthrough on how to view the
policies attached to a role and how to add a policy to your role, see Adding policies to your IAM
role.

The following table lists a variety of resources to help you get started with Feature Store. This
table contains examples, instructions, and example notebooks to guide you in how to use Feature
Store for the first time to specific use cases. The code in these resources use the SageMaker SDK for
Python (Boto3).

Page Description

Get started with Amazon SageMaker Feature
Store in Read the Docs.

A list of example notebooks to introduce you
to Feature Store and its features to help you
get started.

Amazon SageMaker Feature Store resources 2598

https://aws.amazon.com/sagemaker/feature-store/
https://console.aws.amazon.com/iam/home#/roles
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-adding-policies.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store-adding-policies.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-featurestore/

Amazon SageMaker Developer Guide

Page Description

Amazon SageMaker Feature Store guide in
Read the Docs.

A Feature Store guide on how to set up, create
a feature group, load data into a feature
group, and how to use Feature Store in
general.

Amazon SageMaker Feature Store end-to-
end workshop in the aws-samples Github
repository

An end-to-end Feature Store workshop.

Feature Store example notebooks in the
SageMaker example notebooks repository.

Specific use case example notebooks for
Feature Store.

Feature Store Python SDK and API

Python Software Development Kit (SDK) and Application Programming Interface (API) are tools
used for creating software applications. The Feature Store SDK for Python (Boto3) and API are
listed in the following table.

Page Description

Feature Store APIs in the Amazon SageMaker
Python SDK Read the Docs

The Feature Store APIs in Read the Docs.

Feature Store Python SDK in the Amazon
SageMaker Python SDK Github repository

The Feature Store Python SDK Github
repository.

Feature Store Runtime operations and
data types in the SDK for Python (Boto3)
documentation

Feature Store Runtime client that contains all
data plane API operations and data types for
Feature Store.

Amazon SageMaker Feature Store Runtime in
the Amazon SageMaker API Reference

Some feature group level actions supported
by Feature Store. If the API operation or data
type you are looking for is not listed here,
please use search in the guide.

Feature Store Python SDK and API 2599

https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_featurestore.html
https://github.com/aws-samples/amazon-sagemaker-feature-store-end-to-end-workshop
https://github.com/aws-samples/amazon-sagemaker-feature-store-end-to-end-workshop
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-featurestore
https://sagemaker.readthedocs.io/en/stable/api/prep_data/feature_store.html
https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/feature_store
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-featurestore-runtime.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-featurestore-runtime.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html#Welcome_Amazon_SageMaker_Feature_Store_Runtime

Amazon SageMaker Developer Guide

Page Description

Amazon SageMaker Feature Store Runtime in
the Amazon SageMaker API Reference

Record level actions supported by Feature
Store. If the API operation or data type you are
looking for is not listed here, please use search
in the guide.

Feature Store Python SDK and API 2600

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Operations_Amazon_SageMaker_Feature_Store_Runtime.html

Amazon SageMaker Developer Guide

Train machine learning models

The training stage of the full machine learning (ML) lifecycle spans from accessing your training
dataset to generating a final model and selecting the best performing model for deployment. The
following sections provide an overview of available SageMaker training features and resources with
in-depth technical information for each.

The simplest training workflow in SageMaker

If you’re using SageMaker for the first time and want to find a quick ML solution to train a model
on your dataset, consider using a no-code or low-code solution such as SageMaker Canvas,
SageMaker JumpStart within SageMaker Studio Classic, or SageMaker Autopilot.

For intermediate coding experiences, consider using a SageMaker Studio Classic notebook or
SageMaker Notebook Instances. To get started, follow the instructions at the section called “Step 4:
Train a Model” of the SageMaker Getting Started guide. We recommend this for use cases in which
you create your own model and training script using an ML framework.

The following architecture diagram shows how SageMaker manages ML training jobs and
provisions Amazon EC2 instances on behalf of SageMaker users. You as a SageMaker user can bring
your own training dataset, saving it to Amazon S3. You can choose an ML model training from
available SageMaker built-in algorithms, or bring your own training script with a model built with
popular machine learning frameworks.

The simplest training workflow in SageMaker 2601

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html

Amazon SageMaker Developer Guide

Full view of the SageMaker Training workflow and features

The full journey of ML training involves tasks beyond data ingestion to ML models, training models
on compute instances, and obtaining model artifacts and outputs. You need to evaluate every
phase of before, during, and after training to make sure your model is trained well to meet the
target accuracy for your objectives.

The following flow chart shows a high-level overview of your actions (in blue boxes) and available
SageMaker Training features (in light blue boxes) throughout the training phase of the ML lifecycle.

Full view of the SageMaker Training workflow and features 2602

Amazon SageMaker Developer Guide

The following sections walk you through each phase of training depicted in the previous flow chart
and useful features offered by SageMaker throughout the three sub-stages of the ML training.

Topics

• Before training

• During training

• After training

Full view of the SageMaker Training workflow and features 2603

Amazon SageMaker Developer Guide

Before training

There are a number of scenarios of setting up data resources and access you need to consider
before training. Refer to the following diagram and details of each before-training stage to get a
sense of what decisions you need to make.

• Prepare data: Before training, you must have finished data cleaning and feature engineering
during the data preparation stage. SageMaker has several labeling and feature engineering tools

Before training 2604

Amazon SageMaker Developer Guide

to help you. See Label Data, Prepare and Analyze Datasets, Process Data, and Create, Store, and
Share Features for more information.

• Choose an algorithm or framework: Depending on how much customization you need, there are
different options for algorithms and frameworks.

• If you prefer a low-code implementation of a pre-built algorithm, use one of the built-in
algorithms offered by SageMaker. For more information, see Choose an Algorithm.

• If you need more flexibility to customize your model, run your training script using your
preferred frameworks and toolkits within SageMaker. For more information, see ML
Frameworks and Toolkits.

• To extend pre-built SageMaker Docker images as the base image of your own container, see
Use Pre-built SageMaker Docker images.

• To bring your custom Docker container to SageMaker, see Adapting your own Docker container
to work with SageMaker. You need to install the sagemaker-training-toolkit to your container.

• Manage data storage: Understand mapping between the data storage (such as Amazon S3,
Amazon EFS, or Amazon FSx) and the training container that runs in the Amazon EC2 compute
instance. SageMaker helps map the storage paths and local paths in the training container.
You can also manually specify them. After mapping is done, consider using one of the data
transmission modes: File, Pipe, and FastFile mode. To learn how SageMaker maps storage paths,
see Training Storage Folders.

• Set up access to training data: Use Amazon SageMaker domain, a domain user profile,
IAM, Amazon VPC, and AWS KMS to meet the requirements of the most security-sensitive
organizations.

• For account administration, see Amazon SageMaker domain.

• For a complete reference about IAM policies and security, see Security in Amazon SageMaker.

• Stream your input data: SageMaker provides three data input modes, File, Pipe, and FastFile. The
default input mode is File mode, which loads the entire dataset during initializing the training
job. To learn about general best practices for streaming data from your data storage to the
training container, see Access Training Data.

In case of Pipe mode, you can also consider using an augmented manifest file to stream your
data directly from Amazon Simple Storage Service (Amazon S3) and train your model. Using
pipe mode reduces disk space because Amazon Elastic Block Store only needs to store your final
model artifacts, rather than storing your full training dataset. For more information, see Provide
Dataset Metadata to Training Jobs with an Augmented Manifest File.

Before training 2605

https://docs.aws.amazon.com/sagemaker/latest/dg/data-label.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-prep.html
https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-choose.html
https://docs.aws.amazon.com/sagemaker/latest/dg/frameworks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/frameworks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-prebuilt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-adapt-your-own.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-adapt-your-own.html
https://github.com/aws/sagemaker-training-toolkit
https://docs.aws.amazon.com/sagemaker/latest/dg/model-train-storage.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sm-domain.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html

Amazon SageMaker Developer Guide

• Analyze your data for bias: Before training, you can analyze your dataset and model for bias
against a disfavored group so that you can check that your model learns an unbiased dataset
using SageMaker Clarify.

• Choose which SageMaker SDK to use: There are two ways to launch a training job in SageMaker:
using the high-level SageMaker Python SDK, or using the low-level SageMaker APIs for the
SDK for Python (Boto3) or the AWS CLI. The SageMaker Python SDK abstracts the low-level
SageMaker API to provide convenient tools. As aforementioned in the section called “The
simplest training workflow in SageMaker”, you can also pursue no-code or minimal-code options
using SageMaker Canvas, SageMaker JumpStart within SageMaker Studio Classic, or SageMaker
Autopilot.

During training

During training, you need to continuously improve training stability, training speed, training
efficiency while scaling compute resources, cost optimization, and, most importantly, model
performance. Read on for more information about during-training stages and relevant SageMaker
Training features.

During training 2606

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-detect-data-bias.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html

Amazon SageMaker Developer Guide

• Set up infrastructure: Choose the right instance type and infrastructure management tools for
your use case. You can start from a small instance and scale up depending on your workload.
For training a model on a tabular dataset, start with the smallest CPU instance of the C4 or C5
instance families. For training a large model for computer vision or natural language processing,
start with the smallest GPU instance of the P2, P3, G4dn or G5 instance families. You can also
mix different instance types in a cluster, or keep instances in warm pools using the following
instance management tools offered by SageMaker. You can also use persistent cache to reduce
latency and billable time on iterative training jobs over the latency reduction from warm pools
alone. To learn more, see the following topics.

• Train Using a Heterogeneous Cluster

• Train Using SageMaker Managed Warm Pools

• Using persistent cache

You must have sufficient quota to run a training job. If you run your training job on an instance
where you have insufficient quota, you will receive a ResourceLimitExceeded error. To check
the currently available quotas in your account, use your Service Quotas console. To learn how to
request a quota increase, see Supported Regions and Quotas. Also, to find pricing information
and available instance types depending on the AWS Regions, look up the tables in the Amazon
SageMaker Pricing page.

• Run a training job from a local code: You can annotate your local code with a remote decorator
to run your code as a SageMaker training job from inside Amazon SageMaker Studio Classic, an
Amazon SageMaker notebook or from your local integrated development environment. For more
information, see Run your local code as a SageMaker training job.

• Track training jobs: Monitor and track your training jobs using SageMaker Experiments,
SageMaker Debugger, or Amazon CloudWatch. You can watch the model performance in terms
of accuracy and convergence, and run comparative analysis of metrics between multiple training
jobs by using SageMaker Experiments. You can watch the compute resource utilization rate by
using SageMaker Debugger’s profiling tools or Amazon CloudWatch. To learn more, see the
following topics.

• Manage Machine Learning with Amazon SageMaker Experiments

• Profile Training Jobs Using Amazon SageMaker Debugger

• Monitor and Analyze Using CloudWatch Metrics

Additionally, for deep learning tasks, use the Amazon SageMaker Debugger model debugging
tools and built-in rules to identify more complex issues in model convergence and weight update
processes.

During training 2607

https://console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profile-training-jobs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/training-metrics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-debug-training-jobs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-debug-training-jobs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html

Amazon SageMaker Developer Guide

• Distributed training: If your training job is going into a stable stage without breaking due
to misconfiguration of the training infrastructure or out-of-memory issues, you might want
to find more options to scale your job and run over an extended period of time for days and
even months. When you’re ready to scale up, consider distributed training. SageMaker provides
various options for distributed computation from light ML workloads to heavy deep learning
workloads.

For deep learning tasks that involve training very large models on very large datasets, consider
using one of the SageMaker distributed training strategies to scale up and achieve data
parallelism, model parallelism, or a combination of the two. You can also use SageMaker Training
Compiler for compiling and optimizing model graphs on GPU instances. These SageMaker
features support deep learning frameworks such as PyTorch, TensorFlow, and Hugging Face
Transformers.

• Model hyperparameter tuning: Tune your model hyperparameters using Automatic Model
Tuning with SageMaker. SageMaker provides hyperparameter tuning methods such as grid
search and Bayesian search, launching parallel hyperparameter tuning jobs with early-stopping
functionality for non-improving hyperparameter tuning jobs.

• Checkpointing and cost saving with Spot instances: If training time is not a big concern, you
might consider optimizing model training costs with managed Spot instances. Note that you
must activate checkpointing for Spot training to keep restoring from intermittent job pauses due
to Spot instance replacements. You can also use the checkpointing functionality to back up your
models in case of unexpected training job termination. To learn more, see the following topics.

• Managed Spot Training

• Use Checkpoints

After training

After training, you obtain a final model artifact to use for model deployment and inference. There
are additional actions involved in the after-training phase as shown in the following diagram.

After training 2608

https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html

Amazon SageMaker Developer Guide

• Obtain baseline model: After you have the model artifact, you can set it as a baseline model.
Consider the following post-training actions and using SageMaker features before moving on to
model deployment to production.

• Examine model performance and check for bias: Use Amazon CloudWatch Metrics and
SageMaker Clarify for post-training bias to detect any bias in incoming data and model over time
against the baseline. You need to evaluate your new data and model predictions against the
new data regularly or in real time. Using these features, you can receive alerts about any acute
changes or anomalies, as well as gradual changes or drifts in data and model.

• You can also use the Incremental Training functionality of SageMaker to load and update your
model (or fine-tune) with an expanded dataset.

• You can register model training as a step in your SageMaker Pipeline or as part of other
Workflow features offered by SageMaker in order to orchestrate the full ML lifecycle.

After training 2609

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-detect-post-training-bias.html
https://docs.aws.amazon.com/sagemaker/latest/dg/incremental-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/workflows.html

Amazon SageMaker Developer Guide

Train a Model with Amazon SageMaker

The following diagram shows how you train and deploy a model with Amazon SageMaker. Your
training code accesses your training data and outputs model artifacts from an S3 bucket. Then
you can make requests to a model endpoint to run inference. You can store both the training and
inference container images in an Amazon Elastic Container Registry (ECR).

The following guide highlights two components of SageMaker: model training and model
deployment.

To train a model in SageMaker, you create a training job. The training job includes the following
information:

Model Training 2610

Amazon SageMaker Developer Guide

• The URL of the Amazon Simple Storage Service (Amazon S3) bucket where you've stored the
training data.

• The compute resources that you want SageMaker to use for model training. Compute resources
are machine learning (ML) compute instances that are managed by SageMaker.

• The URL of the S3 bucket where you want to store the output of the job.

• The Amazon Elastic Container Registry path where the training code is stored. For more
information, see Docker Registry Paths and Example Code.

Note

Your input dataset must be in the same AWS Region as your training job.

You have the following options for a training algorithm:

• Use an algorithm provided by SageMaker—SageMaker provides dozens of built-in training
algorithms and hundreds of pre-trained models. If one of these meets your needs, it's a great
out-of-the-box solution for quick model training. For a list of algorithms provided by SageMaker,
see Use Amazon SageMaker Built-in Algorithms or Pre-trained Models. To try an exercise
that uses an algorithm provided by SageMaker, see Get started. You can also use SageMaker
JumpStart to use algorithms and models through the Studio Classic UI.

• Use SageMaker Debugger—to inspect training parameters and data throughout the training
process when working with the TensorFlow, PyTorch, and Apache MXNet learning frameworks or
the XGBoost algorithm. Debugger automatically detects and alerts users to commonly occurring
errors such as parameter values getting too large or small. For more information about using
Debugger, see Use Amazon SageMaker Debugger to debug and improve model performance.
Debugger sample notebooks are available at Amazon SageMaker Debugger Samples.

• Use Apache Spark with SageMaker—SageMaker provides a library that you can use in Apache
Spark to train models with SageMaker. Using the library provided by SageMaker is similar
to using Apache Spark MLLib. For more information, see Use Apache Spark with Amazon
SageMaker.

• Submit custom code to train with deep learning frameworks—You can submit custom Python
code that uses TensorFlow, PyTorch, or Apache MXNet for model training. For more information,
see Use TensorFlow with Amazon SageMaker, Use PyTorch with Amazon SageMaker, and Use
Apache MXNet with Amazon SageMaker.

Model Training 2611

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger

Amazon SageMaker Developer Guide

• Use your own custom algorithms—Put your code together as a Docker image and specify the
registry path of the image in a SageMaker CreateTrainingJob API call. For more information,
see Use Docker containers to build models.

• Use an algorithm that you subscribe to from AWS Marketplace—For information, see Find and
Subscribe to Algorithms and Model Packages on AWS Marketplace.

After you create the training job, SageMaker launches the ML compute instances and uses the
training code and the training dataset to train the model. It saves the resulting model artifacts and
other output in the S3 bucket you specified for that purpose.

You can create a training job with the SageMaker console or the API. For information about
creating a training job with the API, see the CreateTrainingJob API.

When you create a training job with the API, SageMaker replicates the entire dataset on ML
compute instances by default. To make SageMaker replicate a subset of the data on each ML
compute instance, you must set the S3DataDistributionType field to ShardedByS3Key. You
can set this field using the low-level SDK. For more information, see S3DataDistributionType
in S3DataSource.

Important

To prevent your algorithm container from contending for memory, we reserve memory for
our SageMaker critical system processes on your ML compute instances and therefore you
cannot expect to see all the memory for your instance type.

Choose an Algorithm

Machine learning can help you accomplish empirical tasks that require some sort of inductive
inference. This task involves induction as it uses data to train algorithms to make generalizable
inferences. This means that the algorithms can make statistically reliable predictions or decisions,
or complete other tasks when applied to new data that was not used to train them.

To help you select the best algorithm for your task, we classify these tasks on various levels
of abstraction. At the highest level of abstraction, machine learning attempts to find patterns
or relationships between features or less structured items, such as text in a data set. Pattern
recognition techniques can be classified into distinct machine learning paradigms, each of which

Choose an Algorithm 2612

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html

Amazon SageMaker Developer Guide

address specific problem types. There are currently three basic paradigms for machine learning
used to address various problem types:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

The types of problems that each learning paradigm can address are identified by considering the
inferences (or predictions, decisions, or other tasks) you want to make from the type of data that
you have or could collect. Machine learning paradigms use algorithmic methods to address their
various problem types. The algorithms provide recipes for solving these problems.

However, many algorithms, such as neural networks, can be deployed with different learning
paradigms and on different types of problems. Multiple algorithms can also address a specific
problem type. Some algorithms are more generally applicable and others are quite specific for
certain kinds of objectives and data. So the mapping between machine learning algorithms and
problem types is many-to-many. Also, there are various implementation options available for
algorithms.

The following sections provide guidance concerning implementation options, machine learning
paradigms, and algorithms appropriate for different problem types.

Topics

• Choose an algorithm implementation

• Problem types for the basic machine learning paradigms

• Use Amazon SageMaker Built-in Algorithms or Pre-trained Models

• Use Reinforcement Learning with Amazon SageMaker

Choose an algorithm implementation

After choosing an algorithm, you must decide which implementation of it you want to use. Amazon
SageMaker supports three implementation options that require increasing levels of effort.

• Pre-trained models require the least effort and are models ready to deploy or to fine-tune and
deploy using SageMaker JumpStart.

Choose an algorithm implementation 2613

Amazon SageMaker Developer Guide

• Built-in algorithms require more effort and scale if the data set is large and significant resources
are needed to train and deploy the model.

• If there is no built-in solution that works, try to develop one that uses pre-made images for
machine and deep learning frameworks for supported frameworks such as Scikit-Learn,
TensorFlow, PyTorch, MXNet, or Chainer.

• If you need to run custom packages or use any code which isn’t a part of a supported framework
or available via PyPi, then you need to build your own custom Docker image that is configured
to install the necessary packages or software. The custom image must also be pushed to an
online repository like the Amazon Elastic Container Registry.

Topics

• Use a built-in algorithm

• Use script mode in a supported framework

• Use a custom Docker image

Algorithm implementation guidance

Implement
ation

Requires
code

Pre-coded
algorithms

Support for
third party
packages

Support for
custom code

Level of
effort

Built-in No Yes No No Low

Scikit-learn Yes Yes PyPi only Yes Medium

Spark ML Yes Yes PyPi only Yes Medium

XGBoost
(open source)

Yes Yes PyPi only Yes Medium

TensorFlow Yes No PyPi only Yes Medium-high

PyTorch Yes No PyPi only Yes Medium-high

MXNet Yes No PyPi only Yes Medium-high

Chainer Yes No PyPi only Yes Medium-high

Choose an algorithm implementation 2614

Amazon SageMaker Developer Guide

Implement
ation

Requires
code

Pre-coded
algorithms

Support for
third party
packages

Support for
custom code

Level of
effort

Custom
image

Yes No Yes, from any
source

Yes High

Use a built-in algorithm

When choosing an algorithm for your type of problem and data, the easiest option is to use one of
Amazon SageMaker's built-in algorithms. These built-in algorithms come with two major benefits.

• The built-in algorithms require no coding to start running experiments. The only inputs you
need to provide are the data, hyperparameters, and compute resources. This allows you to run
experiments more quickly, with less overhead for tracking results and code changes.

• The built-in algorithms come with parallelization across multiple compute instances and GPU
support right out of the box for all applicable algorithms (some algorithms may not be included
due to inherent limitations). If you have a lot of data with which to train your model, most
built-in algorithms can easily scale to meet the demand. Even if you already have a pre-trained
model, it may still be easier to use its corollary in SageMaker and input the hyper-parameters
you already know than to port it over, using script mode on a supported framework.

For more information on the built-in algorithms provided by SageMaker, see Use Amazon
SageMaker Built-in Algorithms or Pre-trained Models.

For important information about docker registry paths, data formats, recommended EC2 instance
types, and CloudWatch logs common to all of the built-in algorithms provided by SageMaker, see
Common Information About Built-in Algorithms.

Use script mode in a supported framework

If the algorithm you want to use for your model is not supported by a built-in choice and you are
comfortable coding your own solution, then you should consider using an Amazon SageMaker
supported framework. This is referred to as "script mode" because you write your custom code
(script) in a text file with a .py extension. As the table above indicates, SageMaker supports
most of the popular machine learning frameworks. These frameworks come preloaded with the
corresponding framework and some additional Python packages, such as Pandas and NumPy,

Choose an algorithm implementation 2615

Amazon SageMaker Developer Guide

so you can write your own code for training an algorithm. These frameworks also allow you to
install any Python package hosted on PyPi by including a requirements.txt file with your training
code or to include your own code directories. R is also supported natively in SageMaker notebook
kernels. Some frameworks, like scikit-learn and Spark ML, have pre-coded algorithms you can
use easily, while other frameworks like TensorFlow and PyTorch may require you to implement
the algorithm yourself. The only limitation when using a supported framework image is that you
cannot import any software packages that are not hosted on PyPi or that are not already included
with the framework’s image.

For more information on the frameworks supported by SageMaker, see Machine Learning
Frameworks and Languages.

Use a custom Docker image

Amazon SageMaker's built-in algorithms and supported frameworks should cover most use cases,
but there are times when you may need to use an algorithm from a package not included in
any of the supported frameworks. You might also have a pre-trained model picked or persisted
somewhere which you need to deploy. SageMaker uses Docker images to host the training
and serving of all models, so you can supply your own custom Docker image if the package or
software you need is not included in a supported framework. This may be your own Python
package or an algorithm coded in a language like Stan or Julia. For these images you must also
configure the training of the algorithm and serving of the model properly in your Dockerfile. This
requires intermediate knowledge of Docker and is not recommended unless you are comfortable
writing your own machine learning algorithm. Your Docker image must be uploaded to an online
repository, such as the Amazon Elastic Container Registry (ECR) before you can train and serve your
model properly.

For more information on custom Docker images in SageMaker, see Use Docker containers to build
models.

Problem types for the basic machine learning paradigms

The following three sections describe the main problem types addressed by the three basic
paradigms for machine learning. For a list of the built-in algorithms that SageMaker provides
to address these problem types, see Use Amazon SageMaker Built-in Algorithms or Pre-trained
Models.

Topics

• Supervised learning

Problem types for the basic machine learning paradigms 2616

Amazon SageMaker Developer Guide

• Unsupervised learning

• Reinforcement learning

Supervised learning

If your data set consists of features or attributes (inputs) that contain target values (outputs), then
you have a supervised learning problem. If your target values are categorical (mathematically
discrete), then you have a classification problem. It is a standard practice to distinguish binary
from multiclass classification.

• Binary classification is a type of supervised learning that assigns an individual to one of two
predefined and mutually exclusive classes based on the individual's attributes. It is supervised
because the models are trained using examples in which the attributes are provided with
correctly labeled objects. A medical diagnosis for whether an individual has a disease or not
based on the results of diagnostic tests is an example of binary classification.

• Multiclass classification is a type of supervised learning that assigns an individual to one of
several classes based on the individual's attributes. It is supervised because the models are
trained using examples in which the attributes are provided with correctly labeled objects. An
example is the prediction of the topic most relevant to a text document. A document may be
classified as being about religion, politics, or finance, or as about one of several other predefined
topic classes.

If the target values you are trying to predict are mathematically continuous, then you have a
regression problem. Regression estimates the values of a dependent target variable based on one
or more other variables or attributes that are correlated with it. An example is the prediction of
house prices using features like the number of bathrooms and bedrooms and the square footage
of the house and garden. Regression analysis can create a model that takes one or more of these
features as an input and predicts the price of a house.

For more information on the built-in supervised learning algorithms provided by SageMaker, see
Supervised Learning.

Unsupervised learning

If your data set consists of features or attributes (inputs) that do not contain labels or target
values (outputs), then you have an unsupervised learning problem. In this type of problem,
the output must be predicted based on the pattern discovered in the input data. The goal in

Problem types for the basic machine learning paradigms 2617

Amazon SageMaker Developer Guide

unsupervised learning problems is to discover patterns such as groupings within the data. There
are a large variety of tasks or problem types to which unsupervised learning can be applied.
Principal component and cluster analyses are two of the main methods commonly deployed for
preprocessing data. Here is a short list of problem types that can be addressed by unsupervised
learning:

• Dimension reduction is typically part of a data exploration step used to determine the most
relevant features to use for model construction. The idea is to transform data from a high-
dimensional, sparsely populated space into a low-dimensional space that retains most significant
properties of the original data. This provides relief for the curse of dimensionality that can
arise with sparsely populated, high-dimensional data on which statistical analysis becomes
problematic. It can also be used to help understand data, reducing high-dimensional data to a
lower dimensionality that can be visualized.

• Cluster analysis is a class of techniques that are used to classify objects or cases into groups
called clusters. It attempts to find discrete groupings within data, where members of a group are
as similar as possible to one another and as different as possible from members of other groups.
You define the features or attributes that you want the algorithm to use to determine similarity,
select a distance function to measure similarity, and specify the number of clusters to use in the
analysis.

• Anomaly detection is the identification of rare items, events, or observations in a data set which
raise suspicions because they differ significantly from the rest of the data. The identification of
anomalous items can be used, for example, to detect bank fraud or medical errors. Anomalies are
also referred to as outliers, novelties, noise, deviations, and exceptions.

• Density estimation is the construction of estimates of unobservable underlying probability
density functions based on observed data. A natural use of density estimates is for data
exploration. Density estimates can discover features such as skewness and multimodality in the
data. The most basic form of density estimation is a rescaled histogram.

SageMaker provides several built-in machine learning algorithms that you can use for these
unsupervised learning tasks. For more information on the built-in unsupervised algorithms
provided by SageMaker, see Unsupervised Learning.

Reinforcement learning

Reinforcement learning is a type of learning that is based on interaction with the environment. This
type of learning is used by an agent that must learn behavior through trial-and-error interactions
with a dynamic environment in which the goal is to maximize the long-term rewards that the agent

Problem types for the basic machine learning paradigms 2618

Amazon SageMaker Developer Guide

receives as a result of its actions. Rewards are maximized by trading off exploring actions that have
uncertain rewards with exploiting actions that have known rewards.

For more information on SageMaker's frameworks, toolkits, and environments for reinforcement
learning, see Use Reinforcement Learning with Amazon SageMaker.

Use Amazon SageMaker Built-in Algorithms or Pre-trained Models

Amazon SageMaker provides a suite of built-in algorithms, pre-trained models, and pre-built
solution templates to help data scientists and machine learning practitioners get started on
training and deploying machine learning models quickly. For someone who is new to SageMaker,
choosing the right algorithm for your particular use case can be a challenging task. The following
table provides a quick cheat sheet that shows how you can start with an example problem or use
case and find an appropriate built-in algorithm offered by SageMaker that is valid for that problem
type. Additional guidance organized by learning paradigms (supervised and unsupervised) and
important data domains (text and images) is provided in the sections following the table.

Table: Mapping use cases to built-in algorithms

Example
problems and
use cases

Learning
paradigm or
domain

Problem types Data input
format

Built-in
algorithms

Here a few
examples out of
the 15 problem
types that can
be addressed by
the pre-trained
models and pre-
built solution
templates
provided by
SageMaker
JumpStart:

Question
answering:
chatbot that

Pre-trained
models and pre-
built solution
templates

Image Classific
ation

Tabular Classific
ation

Tabular
Regression

Text Classific
ation

Object Detection

Text Embedding

Image, Text,
Tabular

Popular models,
including
Mobilenet,
YOLO, Faster
R-CNN, BERT,
lightGBM, and
CatBoost

For a list of
pre-trained
models available
, see JumpStart
Models.

For a list of pre-
built solution

Use Built-in Algorithms 2619

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html#jumpstart-models
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html#jumpstart-models

Amazon SageMaker Developer Guide

Example
problems and
use cases

Learning
paradigm or
domain

Problem types Data input
format

Built-in
algorithms

outputs an
answer for a
given question.

Text analysis:
analyze texts
from models
specific to an
industry domain
such as finance.

Question
Answering

Sentence Pair
Classification

Image
Embedding

Named Entity
Recognition

Instance
Segmentation

Text Generation

Text Summariza
tion

Semantic
Segmentation

Machine
Translation

templates
available, see
JumpStart
Solutions.

Use Built-in Algorithms 2620

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html#jumpstart-solutions
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html#jumpstart-solutions

Amazon SageMaker Developer Guide

Example
problems and
use cases

Learning
paradigm or
domain

Problem types Data input
format

Built-in
algorithms

Predict if an
item belongs to
a category: an
email spam filter

Binary/multi-
class classific
ation

Tabular AutoGluon
-Tabular,
CatBoost,
Factorization
Machines
Algorithm
, K-Nearest
Neighbors (k-
NN) Algorithm
, LightGBM,
Linear Learner
Algorithm
, TabTransf
ormer, XGBoost
Algorithm

Predict a
numeric/c
ontinuous value:
estimate the
value of a house

Supervised
Learning

Regression Tabular AutoGluon
-Tabular,
CatBoost,
Factorization
Machines
Algorithm
, K-Nearest
Neighbors (k-
NN) Algorithm
, LightGBM,
Linear Learner
Algorithm
, TabTransf
ormer, XGBoost
Algorithm

Use Built-in Algorithms 2621

Amazon SageMaker Developer Guide

Example
problems and
use cases

Learning
paradigm or
domain

Problem types Data input
format

Built-in
algorithms

Based on
historical data
for a behavior,
predict future
behavior: predict
sales on a new
product based
on previous
sales data.

Time-series
forecasting

Tabular DeepAR
Forecasting
Algorithm

Improve the
data embedding
s of the high-
dimensional
objects: identify
duplicate
support tickets
or find the
correct routing
based on
similarity of text
in the tickets

Embeddings:
convert high-
dimensional
objects into low-
dimensional
space.

Tabular Object2Vec
Algorithm

Drop those
columns from
a dataset that
have a weak
relation with
the label/tar
get variable: the
color of a car
when predicting
its mileage.

Unsupervised
Learning

Feature
engineering:
dimensionality
reduction

Tabular Principal
Component
Analysis (PCA)
Algorithm

Use Built-in Algorithms 2622

Amazon SageMaker Developer Guide

Example
problems and
use cases

Learning
paradigm or
domain

Problem types Data input
format

Built-in
algorithms

Detect abnormal
behavior in
application: spot
when an IoT
sensor is sending
abnormal
readings

Anomaly
detection

Tabular Random Cut
Forest (RCF)
Algorithm

Protect your
application
from suspiciou
s users: detect
if an IP address
accessing a
service might be
from a bad actor

IP anomaly
detection

Tabular IP Insights

Group similar
objects/data
together: find
high-, medium-,
and low-spend
ing customers
from their
transaction
histories

Clustering or
grouping

Tabular K-Means
Algorithm

Use Built-in Algorithms 2623

Amazon SageMaker Developer Guide

Example
problems and
use cases

Learning
paradigm or
domain

Problem types Data input
format

Built-in
algorithms

Organize a set
of documents
into topics
(not known in
advance): tag
a document
as belonging
to a medical
category based
on the terms
used in the
document.

Topic modeling Text Latent Dirichlet
Allocation (LDA)
Algorithm,
Neural Topic
Model (NTM)
Algorithm

Assign pre-defin
ed categories
to documents
in a corpus:
categorize books
in a library
into academic
disciplines

Text classific
ation

Text BlazingText
algorithm, Text
Classification -
TensorFlow

Convert text
from one
language to
other: Spanish
to English

Machine
translation
algorithm

Text Sequence-
to-Sequence
Algorithm

Summarize a
long text corpus:
an abstract for a
research paper

Textual Analysis

Text summariza
tion

Text Sequence-
to-Sequence
Algorithm

Use Built-in Algorithms 2624

Amazon SageMaker Developer Guide

Example
problems and
use cases

Learning
paradigm or
domain

Problem types Data input
format

Built-in
algorithms

Convert audio
files to text:
transcribe call
center conversat
ions for further
analysis

Speech-to-text Text Sequence-
to-Sequence
Algorithm

Label/tag an
image based
on the content
of the image:
alerts about
adult content in
an image

Image and
multi-label
classification

Image Image Classific
ation - MXNet

Classify
something
in an image
using transfer
learning.

Image classific
ation

Image Image Classific
ation - TensorFlo
w

Detect people
and objects in
an image: police
review a large
photo gallery for
a missing person

Image Processin
g

Object detection
and classific
ation

Image Object Detection
- MXNet, Object
Detection -
TensorFlow

Use Built-in Algorithms 2625

Amazon SageMaker Developer Guide

Example
problems and
use cases

Learning
paradigm or
domain

Problem types Data input
format

Built-in
algorithms

Tag every pixel
of an image
individually
with a category:
self-driving
cars prepare to
identify objects
in their way

Computer vision Image Semantic
Segmentation
Algorithm

For important information about Docker registry paths, data formats, recommenced Amazon
EC2 instance types, and CloudWatch logs common to all of the built-in algorithms provided by
SageMaker, see Common Information About Built-in Algorithms.

The following sections provide additional guidance for the Amazon SageMaker built-in algorithms
grouped by the supervised and unsupervised learning paradigms to which they belong. For
descriptions of these learning paradigms and their associated problem types, see Choose an
Algorithm. Sections are also provided for the SageMaker built-in algorithms available to address
two important machine learning domains: textual analysis and image processing.

• Pre-trained Models and Solution Templates

• Supervised Learning

• Unsupervised Learning

• Textual Analysis

• Image Processing

Pre-trained Models and Solution Templates

SageMaker JumpStart provides a wide range of pre-trained models, pre-built solution templates,
and examples for popular problem types that use the SageMaker SDK as well as Studio Classic.
For more information about these models, solutions, and the example notebooks provided by
SageMaker JumpStart, see SageMaker JumpStart.

Use Built-in Algorithms 2626

Amazon SageMaker Developer Guide

Supervised Learning

Amazon SageMaker provides several built-in general purpose algorithms that can be used for
either classification or regression problems.

• AutoGluon-Tabular—an open-source AutoML framework that succeeds by ensembling models
and stacking them in multiple layers.

• CatBoost—an implementation of the gradient-boosted trees algorithm that introduces ordered
boosting and an innovative algorithm for processing categorical features.

• Factorization Machines Algorithm—an extension of a linear model that is designed to
economically capture interactions between features within high-dimensional sparse datasets.

• K-Nearest Neighbors (k-NN) Algorithm—a non-parametric method that uses the k nearest
labeled points to assign a label to a new data point for classification or a predicted target value
from the average of the k nearest points for regression.

• LightGBM—an implementation of the gradient-boosted trees algorithm that adds two novel
techniques for improved efficiency and scalability: Gradient-based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB).

• Linear Learner Algorithm—learns a linear function for regression or a linear threshold function
for classification.

• TabTransformer—a novel deep tabular data modeling architecture built on self-attention-based
Transformers.

• XGBoost Algorithm—an implementation of the gradient-boosted trees algorithm that combines
an ensemble of estimates from a set of simpler and weaker models.

Amazon SageMaker also provides several built-in supervised learning algorithms that are used for
more specialized tasks during feature engineering and forecasting from time series data.

• Object2Vec Algorithm—a new highly customizable multi-purpose algorithm used for feature
engineering. It can learn low-dimensional dense embeddings of high-dimensional objects to
produce features that improve training efficiencies for downstream models. While this is a
supervised algorithm, as it requires labeled data for training, there are many scenarios in which
the relationship labels can be obtained purely from natural clusterings in data, without any
explicit human annotation.

• DeepAR Forecasting Algorithm—a supervised learning algorithm for forecasting scalar (one-
dimensional) time series using recurrent neural networks (RNN).

Use Built-in Algorithms 2627

Amazon SageMaker Developer Guide

Unsupervised Learning

Amazon SageMaker provides several built-in algorithms that can be used for a variety of
unsupervised learning tasks such as clustering, dimension reduction, pattern recognition, and
anomaly detection.

• Principal Component Analysis (PCA) Algorithm—reduces the dimensionality (number of
features) within a dataset by projecting data points onto the first few principal components. The
objective is to retain as much information or variation as possible. For mathematicians, principal
components are eigenvectors of the data's covariance matrix.

• K-Means Algorithm—finds discrete groupings within data, where members of a group are as
similar as possible to one another and as different as possible from members of other groups.

• IP Insights—learns the usage patterns for IPv4 addresses. It is designed to capture associations
between IPv4 addresses and various entities, such as user IDs or account numbers.

• Random Cut Forest (RCF) Algorithm—detects anomalous data points within a data set that
diverge from otherwise well-structured or patterned data.

Textual Analysis

SageMaker provides algorithms that are tailored to the analysis of textual documents used
in natural language processing, document classification or summarization, topic modeling or
classification, and language transcription or translation.

• BlazingText algorithm—a highly optimized implementation of the Word2vec and text
classification algorithms that scale to large datasets easily. It is useful for many downstream
natural language processing (NLP) tasks.

• Sequence-to-Sequence Algorithm—a supervised algorithm commonly used for neural machine
translation.

• Latent Dirichlet Allocation (LDA) Algorithm—an algorithm suitable for determining topics in a set
of documents. It is an unsupervised algorithm, which means that it doesn't use example data with
answers during training.

• Neural Topic Model (NTM) Algorithm—another unsupervised technique for determining topics in
a set of documents, using a neural network approach.

• Text Classification - TensorFlow—a supervised algorithm that supports transfer learning with
available pretrained models for text classification.

Use Built-in Algorithms 2628

Amazon SageMaker Developer Guide

Image Processing

SageMaker also provides image processing algorithms that are used for image classification, object
detection, and computer vision.

• Image Classification - MXNet—uses example data with answers (referred to as a supervised
algorithm). Use this algorithm to classify images.

• Image Classification - TensorFlow—uses pretrained TensorFlow Hub models to fine-tune for
specific tasks (referred to as a supervised algorithm). Use this algorithm to classify images.

• Semantic Segmentation Algorithm—provides a fine-grained, pixel-level approach to developing
computer vision applications.

• Object Detection - MXNet—detects and classifies objects in images using a single deep neural
network. It is a supervised learning algorithm that takes images as input and identifies all
instances of objects within the image scene.

• Object Detection - TensorFlow—detects bounding boxes and object labels in an image. It
is a supervised learning algorithm that supports transfer learning with available pretrained
TensorFlow models.

Topics

• Common Information About Built-in Algorithms

• Built-in SageMaker Algorithms for Tabular Data

• Built-in SageMaker Algorithms for Text Data

• Built-in SageMaker Algorithms for Time-Series Data

• Unsupervised Built-in SageMaker Algorithms

• Built-in SageMaker Algorithms for Computer Vision

Common Information About Built-in Algorithms

The following table lists parameters for each of the algorithms provided by Amazon SageMaker.

Use Built-in Algorithms 2629

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

AutoGluon
-Tabular

training
and
(optional
ly)
validation

File CSV CPU or
GPU
(single
instance
only)

No

BlazingTe
xt

train File or Pipe Text file
(one
sentence
per line
with
space-sep
arated
tokens)

CPU or
GPU
(single
instance
only)

No

CatBoost training
and
(optional
ly)
validation

File CSV CPU
(single
instance
only)

No

DeepAR
Forecasti
ng

train and
(optional
ly) test

File JSON Lines
or Parquet

CPU or
GPU

Yes

Factoriza
tion
Machines

train and
(optional
ly) test

File or Pipe recordIO-
protobuf

CPU (GPU
for dense
data)

Yes

Image
Classific
ation -
MXNet

train and
validation,
(optional
ly) train_lst
, validatio

File or Pipe recordIO
or image
files (.jpg
or .png)

GPU Yes

Use Built-in Algorithms 2630

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

n_lst, and
model

Image
Classific
ation -
TensorFlo
w

training
and
validation

File image files
(.jpg, .jpeg,
or .png)

CPU or
GPU

Yes (only
across
multiple
GPUs on
a single
instance)

IP Insights train and
(optional
ly)
validation

File CSV CPU or
GPU

Yes

K-Means train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU or
GPUCommon
(single
GPU device
on one
or more
instances)

No

K-Nearest-
Neighbors
(k-NN)

train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU or
GPU
(single
GPU device
on one
or more
instances)

Yes

Use Built-in Algorithms 2631

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

LDA train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU
(single
instance
only)

No

LightGBM train/tra
ining and
(optional
ly)
validation

File CSV CPU Yes

Linear
Learner

train and
(optional
ly)
validatio
n, test, or
both

File or Pipe recordIO-
protobuf
or CSV

CPU or
GPU

Yes

Neural
Topic
Model

train and
(optional
ly)
validatio
n, test, or
both

File or Pipe recordIO-
protobuf
or CSV

CPU or
GPU

Yes

Object2Ve
c

train and
(optional
ly)
validatio
n, test, or
both

File JSON Lines CPU or
GPU
(single
instance
only)

No

Use Built-in Algorithms 2632

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

Object
Detection -
MXNet

train and
validation,
(optional
ly)
train_ann
otation,
validatio
n_annotat
ion, and
model

File or Pipe recordIO
or image
files (.jpg
or .png)

GPU Yes

Object
Detection -
TensorFlo
w

training
and
validation

File image files
(.jpg, .jpeg,
or .png)

GPU Yes (only
across
multiple
GPUs on
a single
instance)

PCA train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU or
GPU

Yes

Random
Cut Forest

train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU Yes

Use Built-in Algorithms 2633

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

Semantic
Segmentat
ion

train and
validation,
train_ann
otation,
validatio
n_annotat
ion, and
(optional
ly)
label_map
and model

File or Pipe Image files GPU
(single
instance
only)

No

Seq2Seq
Modeling

train,
validation,
and vocab

File recordIO-
protobuf

GPU
(single
instance
only)

No

TabTransf
ormer

training
and
(optional
ly)
validation

File CSV CPU or
GPU
(single
instance
only)

No

Text
Classific
ation -
TensorFlo
w

training
and
validation

File CSV CPU or
GPU

Yes (only
across
multiple
GPUs on
a single
instance)

Use Built-in Algorithms 2634

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

XGBoost
(0.90-1,
0.90-2,
1.0-1,
1.2-1,
1.2-21)

train and
(optional
ly)
validation

File or Pipe CSV,
LibSVM, or
Parquet

CPU (or
GPU for
1.2-1)

Yes

Algorithms that are parallelizable can be deployed on multiple compute instances for distributed
training.

The following topics provide information about data formats, recommended Amazon EC2 instance
types, and CloudWatch logs common to all of the built-in algorithms provided by Amazon
SageMaker.

Note

To look up the Docker image URIs of the built-in algorithms managed by SageMaker, see
Docker Registry Paths and Example Code.

Topics

• Common Data Formats for Built-in Algorithms

• Instance Types for Built-in Algorithms

• Logs for Built-in Algorithms

Common Data Formats for Built-in Algorithms

The following topics explain the data formats for the algorithms provided by Amazon SageMaker.

Topics

• Common Data Formats for Training

• Common Data Formats for Inference

Use Built-in Algorithms 2635

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths

Amazon SageMaker Developer Guide

Common Data Formats for Training

To prepare for training, you can preprocess your data using a variety of AWS services, including
AWS Glue, Amazon EMR, Amazon Redshift, Amazon Relational Database Service, and Amazon
Athena. After preprocessing, publish the data to an Amazon S3 bucket. For training, the data need
to go through a series of conversions and transformations, including:

• Training data serialization (handled by you)

• Training data deserialization (handled by the algorithm)

• Training model serialization (handled by the algorithm)

• Trained model deserialization (optional, handled by you)

When using Amazon SageMaker in the training portion of the algorithm, make sure to upload all
data at once. If more data is added to that location, a new training call would need to be made to
construct a brand new model.

Topics

• Content Types Supported by Built-In Algorithms

• Using Pipe Mode

• Using CSV Format

• Using RecordIO Format

• Trained Model Deserialization

Content Types Supported by Built-In Algorithms

The following table lists some of the commonly supported ContentType values and the
algorithms that use them:

ContentTypes for Built-in Algorithms

ContentType Algorithm

application/x-image Object Detection Algorithm, Semantic Segmentation

application/x-recordio Object Detection Algorithm

Use Built-in Algorithms 2636

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html#SageMaker-Type-Channel-ContentType

Amazon SageMaker Developer Guide

ContentType Algorithm

application/x-recordio-
protobuf

Factorization Machines, K-Means, k-NN, Latent Dirichlet Allocation,
Linear Learner, NTM, PCA, RCF, Sequence-to-Sequence

application/jsonlines BlazingText, DeepAR

image/jpeg Object Detection Algorithm, Semantic Segmentation

image/png Object Detection Algorithm, Semantic Segmentation

text/csv IP Insights, K-Means, k-NN, Latent Dirichlet Allocation, Linear
Learner, NTM, PCA, RCF, XGBoost

text/libsvm XGBoost

For a summary of the parameters used by each algorithm, see the documentation for the individual
algorithms or this table.

Using Pipe Mode

In Pipe mode, your training job streams data directly from Amazon Simple Storage Service (Amazon
S3). Streaming can provide faster start times for training jobs and better throughput. This is
in contrast to File mode, in which your data from Amazon S3 is stored on the training instance
volumes. File mode uses disk space to store both your final model artifacts and your full training
dataset. By streaming in your data directly from Amazon S3 in Pipe mode, you reduce the size
of Amazon Elastic Block Store volumes of your training instances. Pipe mode needs only enough
disk space to store your final model artifacts. See the AlgorithmSpecification for additional
details on the training input mode.

Using CSV Format

Many Amazon SageMaker algorithms support training with data in CSV format. To use data
in CSV format for training, in the input data channel specification, specify text/csv as the
ContentType. Amazon SageMaker requires that a CSV file does not have a header record and
that the target variable is in the first column. To run unsupervised learning algorithms that don't
have a target, specify the number of label columns in the content type. For example, in this case
'content_type=text/csv;label_size=0'. For a notebook example that uses CSV format,

Use Built-in Algorithms 2637

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html#SageMaker-Type-Channel-ContentType

Amazon SageMaker Developer Guide

see Breast Cancer Prediction. For more information, see Now use Pipe mode with CSV datasets for
faster training on Amazon SageMaker built-in algorithms.

Using RecordIO Format

In the protobuf recordIO format, SageMaker converts each observation in the dataset into a
binary representation as a set of 4-byte floats, then loads it in the protobuf values field. If you
are using Python for your data preparation, we strongly recommend that you use these existing
transformations. However, if you are using another language, the protobuf definition file below
provides the schema that you use to convert your data into SageMaker protobuf format.

Note

For an example that shows how to convert the commonly used numPy array into the
protobuf recordIO format, see An Introduction to Factorization Machines with MNIST .

syntax = "proto2";

 package aialgs.data;

 option java_package = "com.amazonaws.aialgorithms.proto";
 option java_outer_classname = "RecordProtos";

 // A sparse or dense rank-R tensor that stores data as doubles (float64).
 message Float32Tensor {
 // Each value in the vector. If keys is empty, this is treated as a
 // dense vector.
 repeated float values = 1 [packed = true];

 // If key is not empty, the vector is treated as sparse, with
 // each key specifying the location of the value in the sparse vector.
 repeated uint64 keys = 2 [packed = true];

 // An optional shape that allows the vector to represent a matrix.
 // For example, if shape = [10, 20], floor(keys[i] / 20) gives the row,
 // and keys[i] % 20 gives the column.
 // This also supports n-dimensonal tensors.
 // Note: If the tensor is sparse, you must specify this value.
 repeated uint64 shape = 3 [packed = true];
 }

Use Built-in Algorithms 2638

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_applying_machine_learning/breast_cancer_prediction/Breast%20Cancer%20Prediction.html
https://aws.amazon.com/blogs/machine-learning/now-use-pipe-mode-with-csv-datasets-for-faster-training-on-amazon-sagemaker-built-in-algorithms/
https://aws.amazon.com/blogs/machine-learning/now-use-pipe-mode-with-csv-datasets-for-faster-training-on-amazon-sagemaker-built-in-algorithms/
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.html

Amazon SageMaker Developer Guide

 // A sparse or dense rank-R tensor that stores data as doubles (float64).
 message Float64Tensor {
 // Each value in the vector. If keys is empty, this is treated as a
 // dense vector.
 repeated double values = 1 [packed = true];

 // If this is not empty, the vector is treated as sparse, with
 // each key specifying the location of the value in the sparse vector.
 repeated uint64 keys = 2 [packed = true];

 // An optional shape that allows the vector to represent a matrix.
 // For example, if shape = [10, 20], floor(keys[i] / 10) gives the row,
 // and keys[i] % 20 gives the column.
 // This also supports n-dimensonal tensors.
 // Note: If the tensor is sparse, you must specify this value.
 repeated uint64 shape = 3 [packed = true];
 }

 // A sparse or dense rank-R tensor that stores data as 32-bit ints (int32).
 message Int32Tensor {
 // Each value in the vector. If keys is empty, this is treated as a
 // dense vector.
 repeated int32 values = 1 [packed = true];

 // If this is not empty, the vector is treated as sparse with
 // each key specifying the location of the value in the sparse vector.
 repeated uint64 keys = 2 [packed = true];

 // An optional shape that allows the vector to represent a matrix.
 // For Exmple, if shape = [10, 20], floor(keys[i] / 10) gives the row,
 // and keys[i] % 20 gives the column.
 // This also supports n-dimensonal tensors.
 // Note: If the tensor is sparse, you must specify this value.
 repeated uint64 shape = 3 [packed = true];
 }

 // Support for storing binary data for parsing in other ways (such as JPEG/etc).
 // This is an example of another type of value and may not immediately be supported.
 message Bytes {
 repeated bytes value = 1;

 // If the content type of the data is known, stores it.
 // This allows for the possibility of using decoders for common formats
 // in the future.

Use Built-in Algorithms 2639

Amazon SageMaker Developer Guide

 optional string content_type = 2;
 }

 message Value {
 oneof value {
 // The numbering assumes the possible use of:
 // - float16, float128
 // - int8, int16, int32
 Float32Tensor float32_tensor = 2;
 Float64Tensor float64_tensor = 3;
 Int32Tensor int32_tensor = 7;
 Bytes bytes = 9;
 }
 }

 message Record {
 // Map from the name of the feature to the value.
 //
 // For vectors and libsvm-like datasets,
 // a single feature with the name `values`
 // should be specified.
 map<string, Value> features = 1;

 // An optional set of labels for this record.
 // Similar to the features field above, the key used for
 // generic scalar / vector labels should be 'values'.
 map<string, Value> label = 2;

 // A unique identifier for this record in the dataset.
 //
 // Whilst not necessary, this allows better
 // debugging where there are data issues.
 //
 // This is not used by the algorithm directly.
 optional string uid = 3;

 // Textual metadata describing the record.
 //
 // This may include JSON-serialized information
 // about the source of the record.
 //
 // This is not used by the algorithm directly.
 optional string metadata = 4;

Use Built-in Algorithms 2640

Amazon SageMaker Developer Guide

 // An optional serialized JSON object that allows per-record
 // hyper-parameters/configuration/other information to be set.
 //
 // The meaning/interpretation of this field is defined by
 // the algorithm author and may not be supported.
 //
 // This is used to pass additional inference configuration
 // when batch inference is used (e.g. types of scores to return).
 optional string configuration = 5;
 }

After creating the protocol buffer, store it in an Amazon S3 location that Amazon SageMaker can
access and that can be passed as part of InputDataConfig in create_training_job.

Note

For all Amazon SageMaker algorithms, the ChannelName in InputDataConfig must be
set to train. Some algorithms also support a validation or test input channels. These
are typically used to evaluate the model's performance by using a hold-out dataset. Hold-
out datasets are not used in the initial training but can be used to further tune the model.

Trained Model Deserialization

Amazon SageMaker models are stored as model.tar.gz in the S3 bucket specified in
OutputDataConfig S3OutputPath parameter of the create_training_job call. The S3
bucket must be in the same AWS Region as the notebook instance. You can specify most of
these model artifacts when creating a hosting model. You can also open and review them in your
notebook instance. When model.tar.gz is untarred, it contains model_algo-1, which is a
serialized Apache MXNet object. For example, you use the following to load the k-means model
into memory and view it:

import mxnet as mx
print(mx.ndarray.load('model_algo-1'))

Common Data Formats for Inference

Amazon SageMaker algorithms accept and produce several different MIME types for the HTTP
payloads used in retrieving online and mini-batch predictions. You can use various AWS services to

Use Built-in Algorithms 2641

Amazon SageMaker Developer Guide

transform or preprocess records prior to running inference. At a minimum, you need to convert the
data for the following:

• Inference request serialization (handled by you)

• Inference request deserialization (handled by the algorithm)

• Inference response serialization (handled by the algorithm)

• Inference response deserialization (handled by you)

Topics

• Convert Data for Inference Request Serialization

• Convert Data for Inference Response Deserialization

• Common Request Formats for All Algorithms

• Use Batch Transform with Built-in Algorithms

Convert Data for Inference Request Serialization

Content type options for Amazon SageMaker algorithm inference requests include: text/csv,
application/json, and application/x-recordio-protobuf. Algorithms that don't support
all of these types can support other types. XGBoost, for example, only supports text/csv from
this list, but also supports text/libsvm.

For text/csv, the value for the Body argument to invoke_endpoint should be a string with
commas separating the values for each feature. For example, a record for a model with four
features might look like 1.5,16.0,14,23.0. Any transformations performed on the training
data should also be performed on the data before obtaining inference. The order of the features
matters and must remain unchanged.

application/json is significantly more flexible and provides multiple possible formats for
developers to use in their applications. At a high level, in JavaScript, the payload might look like
the following:

let request = {
 // Instances might contain multiple rows that predictions are sought for.
 "instances": [
 {
 // Request and algorithm specific inference parameters.
 "configuration": {},

Use Built-in Algorithms 2642

Amazon SageMaker Developer Guide

 // Data in the specific format required by the algorithm.
 "data": {
 "<field name>": dataElement
 }
 }
]
}

You have the following options for specifying the dataElement:

Protocol buffers equivalent

// Has the same format as the protocol buffers implementation described for training.
let dataElement = {
 "keys": [],
 "values": [],
 "shape": []
}

Simple numeric vector

// An array containing numeric values is treated as an instance containing a
// single dense vector.
let dataElement = [1.5, 16.0, 14.0, 23.0]

// It will be converted to the following representation by the SDK.
let converted = {
 "features": {
 "values": dataElement
 }
}

For multiple records

let request = {
 "instances": [
 // First instance.
 {
 "features": [1.5, 16.0, 14.0, 23.0]
 },
 // Second instance.
 {
 "features": [-2.0, 100.2, 15.2, 9.2]

Use Built-in Algorithms 2643

Amazon SageMaker Developer Guide

 }
]
}

Convert Data for Inference Response Deserialization

Amazon SageMaker algorithms return JSON in several layouts. At a high level, the structure is:

let response = {
 "predictions": [{
 // Fields in the response object are defined on a per algorithm-basis.
 }]
}

The fields that are included in predictions differ across algorithms. The following are examples of
output for the k-means algorithm.

Single-record inference

let response = {
 "predictions": [{
 "closest_cluster": 5,
 "distance_to_cluster": 36.5
 }]
}

Multi-record inference

let response = {
 "predictions": [
 // First instance prediction.
 {
 "closest_cluster": 5,
 "distance_to_cluster": 36.5
 },
 // Second instance prediction.
 {
 "closest_cluster": 2,
 "distance_to_cluster": 90.3
 }
]
}

Use Built-in Algorithms 2644

Amazon SageMaker Developer Guide

Multi-record inference with protobuf input

{
 "features": [],
 "label": {
 "closest_cluster": {
 "values": [5.0] // e.g. the closest centroid/cluster was 1.0
 },
 "distance_to_cluster": {
 "values": [36.5]
 }
 },
 "uid": "abc123",
 "metadata": "{ "created_at": '2017-06-03' }"
}

SageMaker algorithms also support the JSONLINES format, where the per-record response content
is same as that in JSON format. The multi-record structure is a concatenation of per-record
response objects separated by newline characters. The response content for the built-in KMeans
algorithm for 2 input data points is:

{"distance_to_cluster": 23.40593910217285, "closest_cluster": 0.0}
{"distance_to_cluster": 27.250282287597656, "closest_cluster": 0.0}

While running batch transform, we recommended using the jsonlines response type by setting
the Accept field in the CreateTransformJobRequest to application/jsonlines.

Common Request Formats for All Algorithms

Most algorithms use several of the following inference request formats.

JSON Request Format

Content type: application/JSON

Dense format

let request = {
 "instances": [
 {
 "features": [1.5, 16.0, 14.0, 23.0]
 }
]

Use Built-in Algorithms 2645

Amazon SageMaker Developer Guide

}

let request = {
 "instances": [
 {
 "data": {
 "features": {
 "values": [1.5, 16.0, 14.0, 23.0]
 }
 }
 }
]
}

Sparse format

{
 "instances": [
 {"data": {"features": {
 "keys": [26, 182, 232, 243, 431],
 "shape": [2000],
 "values": [1, 1, 1, 4, 1]
 }
 }
 },
 {"data": {"features": {
 "keys": [0, 182, 232, 243, 431],
 "shape": [2000],
 "values": [13, 1, 1, 4, 1]
 }
 }
 },
]
}

JSONLINES Request Format

Content type: application/JSONLINES

Dense format

A single record in dense format can be represented as either:

Use Built-in Algorithms 2646

Amazon SageMaker Developer Guide

{ "features": [1.5, 16.0, 14.0, 23.0] }

or:

{ "data": { "features": { "values": [1.5, 16.0, 14.0, 23.0] } }

Sparse Format

A single record in sparse format is represented as:

{"data": {"features": { "keys": [26, 182, 232, 243, 431], "shape": [2000], "values":
 [1, 1, 1, 4, 1] } } }

Multiple records are represented as a concatenation of the above single-record representations,
separated by newline characters:

{"data": {"features": { "keys": [0, 1, 3], "shape": [4], "values": [1, 4, 1] } } }
{ "data": { "features": { "values": [1.5, 16.0, 14.0, 23.0] } }
{ "features": [1.5, 16.0, 14.0, 23.0] }

CSV Request Format

Content type: text/CSV; label_size=0

Note

CSV support is not available for factorization machines.

RECORDIO Request Format

Content type: application/x-recordio-protobuf

Use Batch Transform with Built-in Algorithms

While running batch transform, we recommended using the JSONLINES response type instead
of JSON, if supported by the algorithm. This is accomplished by setting the Accept field in the
CreateTransformJobRequest to application/jsonlines.

When you create a transform job, the SplitType must be set according to the ContentType of
the input data. Similarly, depending on the Accept field in the CreateTransformJobRequest,

Use Built-in Algorithms 2647

Amazon SageMaker Developer Guide

AssembleWith must be set accordingly. Please use the following table to help appropriately set
these fields:

ContentType Recommended SplitType

application/x-recordio-protobuf RecordIO

text/csv Line

application/jsonlines Line

application/json None

application/x-image None

image/* None

Accept Recommended AssembleWith

application/x-recordio-protobuf None

application/json None

application/jsonlines Line

For more information on response formats for specific algorithms, see the following:

• DeepAR Inference Formats

• Factorization Machines Response Formats

• IP Insights Inference Data Formats

• K-Means Response Formats

• k-NN Request and Response Formats

• Linear learner response formats

• NTM Response Formats

• Data Formats for Object2Vec Inference

• Encoder Embeddings for Object2Vec

• PCA Response Formats

Use Built-in Algorithms 2648

Amazon SageMaker Developer Guide

• RCF Response Formats

Instance Types for Built-in Algorithms

For training and hosting Amazon SageMaker algorithms, we recommend using the following
Amazon EC2 instance types:

• ml.m5.xlarge, ml.m5.4xlarge, and ml.m5.12xlarge

• ml.c5.xlarge, ml.c5.2xlarge, and ml.c5.8xlarge

• ml.p3.xlarge, ml.p3.8xlarge, and ml.p3.16xlarge

Most Amazon SageMaker algorithms have been engineered to take advantage of GPU computing
for training. For most algorithm training, we support P2, P3, G4dn, and G5 GPU instances. Despite
higher per-instance costs, GPUs train more quickly, making them more cost effective. Exceptions
are noted in this guide.

The size and type of data can have a great effect on which hardware configuration is most
effective. When the same model is trained on a recurring basis, initial testing across a spectrum
of instance types can discover configurations that are more cost-effective in the long run.
Additionally, algorithms that train most efficiently on GPUs might not require GPUs for efficient
inference. Experiment to determine the most cost effectiveness solution. To get an automatic
instance recommendation or conduct custom load tests, use Amazon SageMaker Inference
Recommender.

For more information on SageMaker hardware specifications, see Amazon SageMaker ML Instance
Types.

Logs for Built-in Algorithms

Amazon SageMaker algorithms produce Amazon CloudWatch logs, which provide detailed
information on the training process. To see the logs, in the AWS management console, choose
CloudWatch, choose Logs, and then choose the /aws/sagemaker/TrainingJobs log group. Each
training job has one log stream per node on which it was trained. The log stream’s name begins
with the value specified in the TrainingJobName parameter when the job was created.

Use Built-in Algorithms 2649

https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://aws.amazon.com/sagemaker/pricing/instance-types/

Amazon SageMaker Developer Guide

Note

If a job fails and logs do not appear in CloudWatch, it's likely that an error occurred before
the start of training. Reasons include specifying the wrong training image or S3 location.

The contents of logs vary by algorithms. However, you can typically find the following information:

• Confirmation of arguments provided at the beginning of the log

• Errors that occurred during training

• Measurement of an algorithm's accuracy or numerical performance

• Timings for the algorithm and any major stages within the algorithm

Common Errors

If a training job fails, some details about the failure are provided by the FailureReason return
value in the training job description, as follows:

sage = boto3.client('sagemaker')
sage.describe_training_job(TrainingJobName=job_name)['FailureReason']

Others are reported only in the CloudWatch logs. Common errors include the following:

1. Misspecifying a hyperparameter or specifying a hyperparameter that is invalid for the algorithm.

From the CloudWatch Log

[10/16/2017 23:45:17 ERROR 139623806805824 train.py:48]
Additional properties are not allowed (u'mini_batch_siz' was
unexpected)

2. Specifying an invalid value for a hyperparameter.

FailureReason

AlgorithmError: u'abc' is not valid under any of the given
schemas\n\nFailed validating u'oneOf' in
schema[u'properties'][u'feature_dim']:\n {u'oneOf':
[{u'pattern': u'^([1-9][0-9]*)$', u'type': u'string'},\n

Use Built-in Algorithms 2650

Amazon SageMaker Developer Guide

{u'minimum': 1, u'type': u'integer'}]}\

FailureReason

[10/16/2017 23:57:17 ERROR 140373086025536 train.py:48] u'abc'
is not valid under any of the given schemas

3. Inaccurate protobuf file format.

From the CloudWatch log

[10/17/2017 18:01:04 ERROR 140234860816192 train.py:48] cannot
 copy sequence with size 785 to array axis with dimension 784

Built-in SageMaker Algorithms for Tabular Data

Amazon SageMaker provides built-in algorithms that are tailored to the analysis of tabular data.
Tabular data refers to any datasets that are organized in tables consisting of rows (observations)
and columns (features). The built-in SageMaker algorithms for tabular data can be used for either
classification or regression problems.

• AutoGluon-Tabular—an open-source AutoML framework that succeeds by ensembling models
and stacking them in multiple layers.

• CatBoost—an implementation of the gradient-boosted trees algorithm that introduces ordered
boosting and an innovative algorithm for processing categorical features.

• Factorization Machines Algorithm—an extension of a linear model that is designed to
economically capture interactions between features within high-dimensional sparse datasets.

• K-Nearest Neighbors (k-NN) Algorithm—a non-parametric method that uses the k nearest
labeled points to assign a label to a new data point for classification or a predicted target value
from the average of the k nearest points for regression.

• LightGBM—an implementation of the gradient-boosted trees algorithm that adds two novel
techniques for improved efficiency and scalability: Gradient-based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB).

• Linear Learner Algorithm—learns a linear function for regression or a linear threshold function
for classification.

Use Built-in Algorithms 2651

Amazon SageMaker Developer Guide

• TabTransformer—a novel deep tabular data modeling architecture built on self-attention-based
Transformers.

• XGBoost Algorithm—an implementation of the gradient-boosted trees algorithm that combines
an ensemble of estimates from a set of simpler and weaker models.

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

AutoGluon
-Tabular

training
and
(optional
ly)
validation

File CSV CPU or
GPU
(single
instance
only)

No

CatBoost training
and
(optional
ly)
validation

File CSV CPU
(single
instance
only)

No

Factoriza
tion
Machines

train and
(optional
ly) test

File or Pipe recordIO-
protobuf

CPU (GPU
for dense
data)

Yes

K-Nearest-
Neighbors
(k-NN)

train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU or
GPU
(single
GPU device
on one
or more
instances)

Yes

LightGBM training
and
(optional

File CSV CPU
(single
instance
only)

No

Use Built-in Algorithms 2652

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

ly)
validation

Linear
Learner

train and
(optional
ly)
validatio
n, test, or
both

File or Pipe recordIO-
protobuf
or CSV

CPU or
GPU

Yes

TabTransf
ormer

training
and
(optional
ly)
validation

File CSV CPU or
GPU
(single
instance
only)

No

XGBoost
(0.90-1,
0.90-2,
1.0-1,
1.2-1,
1.2-21)

train and
(optional
ly)
validation

File or Pipe CSV,
LibSVM, or
Parquet

CPU (or
GPU for
1.2-1)

Yes

AutoGluon-Tabular

AutoGluon-Tabular is a popular open-source AutoML framework that trains highly accurate
machine learning models on an unprocessed tabular dataset. Unlike existing AutoML frameworks
that primarily focus on model and hyperparameter selection, AutoGluon-Tabular succeeds by
ensembling multiple models and stacking them in multiple layers.

How to use SageMaker AutoGluon-Tabular

You can use AutoGluon-Tabular as an Amazon SageMaker built-in algorithm. The following section
describes how to use AutoGluon-Tabular with the SageMaker Python SDK. For information on

Use Built-in Algorithms 2653

https://auto.gluon.ai/stable/index.html

Amazon SageMaker Developer Guide

how to use AutoGluon-Tabular from the Amazon SageMaker Studio Classic UI, see SageMaker
JumpStart.

• Use AutoGluon-Tabular as a built-in algorithm

Use the AutoGluon-Tabular built-in algorithm to build an AutoGluon-Tabular training container
as shown in the following code example. You can automatically spot the AutoGluon-Tabular
built-in algorithm image URI using the SageMaker image_uris.retrieve API (or the
get_image_uri API if using Amazon SageMaker Python SDK version 2).

After specifying the AutoGluon-Tabular image URI, you can use the AutoGluon-Tabular container
to construct an estimator using the SageMaker Estimator API and initiate a training job. The
AutoGluon-Tabular built-in algorithm runs in script mode, but the training script is provided
for you and there is no need to replace it. If you have extensive experience using script mode to
create a SageMaker training job, then you can incorporate your own AutoGluon-Tabular training
scripts.

from sagemaker import image_uris, model_uris, script_uris

train_model_id, train_model_version, train_scope = "autogluon-classification-
ensemble", "*", "training"
training_instance_type = "ml.p3.2xlarge"

Retrieve the docker image
train_image_uri = image_uris.retrieve(
 region=None,
 framework=None,
 model_id=train_model_id,
 model_version=train_model_version,
 image_scope=train_scope,
 instance_type=training_instance_type
)

Retrieve the training script
train_source_uri = script_uris.retrieve(
 model_id=train_model_id, model_version=train_model_version,
 script_scope=train_scope
)

train_model_uri = model_uris.retrieve(
 model_id=train_model_id, model_version=train_model_version,
 model_scope=train_scope

Use Built-in Algorithms 2654

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

)

Sample training data is available in this bucket
training_data_bucket = f"jumpstart-cache-prod-{aws_region}"
training_data_prefix = "training-datasets/tabular_binary/"

training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/
train"
validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/
validation"

output_bucket = sess.default_bucket()
output_prefix = "jumpstart-example-tabular-training"

s3_output_location = f"s3://{output_bucket}/{output_prefix}/output"

from sagemaker import hyperparameters

Retrieve the default hyperparameters for training the model
hyperparameters = hyperparameters.retrieve_default(
 model_id=train_model_id, model_version=train_model_version
)

[Optional] Override default hyperparameters with custom values
hyperparameters[
 "auto_stack"
] = "True"
print(hyperparameters)

from sagemaker.estimator import Estimator
from sagemaker.utils import name_from_base

training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training")

Create SageMaker Estimator instance
tabular_estimator = Estimator(
 role=aws_role,
 image_uri=train_image_uri,
 source_dir=train_source_uri,
 model_uri=train_model_uri,
 entry_point="transfer_learning.py",
 instance_count=1,
 instance_type=training_instance_type,
 max_run=360000,

Use Built-in Algorithms 2655

Amazon SageMaker Developer Guide

 hyperparameters=hyperparameters,
 output_path=s3_output_location
)

Launch a SageMaker Training job by passing the S3 path of the training data
tabular_estimator.fit(
 {
 "training": training_dataset_s3_path,
 "validation": validation_dataset_s3_path,
 }, logs=True, job_name=training_job_name
)

For more information about how to set up the AutoGluon-Tabular as a built-in algorithm, see the
following notebook examples. Any S3 bucket used in these examples must be in the same AWS
Region as the notebook instance used to run them.

• Tabular classification with Amazon SageMaker AutoGluon-Tabular algorithm

• Tabular regression with Amazon SageMaker AutoGluon-Tabular algorithm

Input and Output interface for the AutoGluon-Tabular algorithm

Gradient boosting operates on tabular data, with the rows representing observations, one column
representing the target variable or label, and the remaining columns representing features.

The SageMaker implementation of AutoGluon-Tabular supports CSV for training and inference:

• For Training ContentType, valid inputs must be text/csv.

• For Inference ContentType, valid inputs must be text/csv.

Note

For CSV training, the algorithm assumes that the target variable is in the first column and
that the CSV does not have a header record.
For CSV inference, the algorithm assumes that CSV input does not have the label column.

Input format for training data, validation data, and categorical features

Be mindful of how to format your training data for input to the AutoGluon-Tabular model. You
must provide the path to an Amazon S3 bucket that contains your training and validation data. You

Use Built-in Algorithms 2656

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb

Amazon SageMaker Developer Guide

can also include a list of categorical features. Use both the training and validation channels
to provide your input data. Alternatively, you can use only the training channel.

Use both the training and validation channels

You can provide your input data by way of two S3 paths, one for the training channel and one
for the validation channel. Each S3 path can either be an S3 prefix or a full S3 path pointing
to one specific CSV file. The target variables should be in the first column of your CSV file. The
predictor variables (features) should be in the remaining columns. The validation data is used to
compute a validation score at the end of each boosting iteration. Early stopping is applied when
the validation score stops improving.

If your predictors include categorical features, you can provide a JSON file named
categorical_index.json in the same location as your training data file. If you provide
a JSON file for categorical features, your training channel must point to an S3 prefix and
not a specific CSV file. This file should contain a Python dictionary where the key is the string
"cat_index_list" and the value is a list of unique integers. Each integer in the value list should
indicate the column index of the corresponding categorical features in your training data CSV
file. Each value should be a positive integer (greater than zero because zero represents the target
value), less than the Int32.MaxValue (2147483647), and less than the total number of columns.
There should only be one categorical index JSON file.

Use only the training channel:

You can alternatively provide your input data by way of a single S3 path for the training channel.
This S3 path should point to a directory with a subdirectory named training/ that contains a
CSV file. You can optionally include another subdirectory in the same location called validation/
that also has a CSV file. If the validation data is not provided, then 20% of your training data is
randomly sampled to serve as the validation data. If your predictors include categorical features,
you can provide a JSON file named categorical_index.json in the same location as your data
subdirectories.

Note

For CSV training input mode, the total memory available to the algorithm (instance count
multiplied by the memory available in the InstanceType) must be able to hold the
training dataset.

Use Built-in Algorithms 2657

Amazon SageMaker Developer Guide

SageMaker AutoGluon-Tabular uses the autogluon.tabular.TabularPredictor module to
serialize or deserialize the model, which can be used for saving or loading the model.

To use a model trained with SageMaker AutoGluon-Tabular with the AutoGluon framework

• Use the following Python code:

import tarfile
from autogluon.tabular import TabularPredictor

t = tarfile.open('model.tar.gz', 'r:gz')
t.extractall()

model = TabularPredictor.load(model_file_path)

prediction with test data
dtest should be a pandas DataFrame with column names feature_0, feature_1, ...,
 feature_d
pred = model.predict(dtest)

Amazon EC2 instance recommendation for the AutoGluon-Tabular algorithm

SageMaker AutoGluon-Tabular supports single-instance CPU and single-instance GPU training.
Despite higher per-instance costs, GPUs train more quickly, making them more cost effective.
To take advantage of GPU training, specify the instance type as one of the GPU instances (for
example, P3). SageMaker AutoGluon-Tabular currently does not support multi-GPU training.

AutoGluon-Tabular sample notebooks

The following table outlines a variety of sample notebooks that address different use cases of
Amazon SageMaker AutoGluon-Tabular algorithm.

Notebook Title Description

Tabular classification with Amazon SageMaker
AutoGluon-Tabular algorithm

This notebook demonstrates the use of the
Amazon SageMaker AutoGluon-Tabular
algorithm to train and host a tabular classific
ation model.

Use Built-in Algorithms 2658

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Classification_AutoGluon.ipynb

Amazon SageMaker Developer Guide

Notebook Title Description

Tabular regression with Amazon SageMaker
AutoGluon-Tabular algorithm

This notebook demonstrates the use of the
Amazon SageMaker AutoGluon-Tabular
algorithm to train and host a tabular regressio
n model.

For instructions on how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created a
notebook instance and opened it, choose the SageMaker Examples tab to see a list of all of the
SageMaker samples. To open a notebook, choose its Use tab and choose Create copy.

How AutoGluon-Tabular works

AutoGluon-Tabular performs advanced data processing, deep learning, and multi-layer model
ensemble methods. It automatically recognizes the data type in each column for robust data
preprocessing, including special handling of text fields.

AutoGluon fits various models ranging from off-the-shelf boosted trees to customized neural
networks. These models are ensembled in a novel way: models are stacked in multiple layers
and trained in a layer-wise manner that guarantees raw data can be translated into high-quality
predictions within a given time constraint. This process mitigates overfitting by splitting the data in
various ways with careful tracking of out-of-fold examples.

The AutoGluon-Tabular algorithm performs well in machine learning competitions because of its
robust handling of a variety of data types, relationships, and distributions. You can use AutoGluon-
Tabular for regression, classification (binary and multiclass), and ranking problems.

Refer to the following diagram illustrating how the multi-layer stacking strategy works.

Use Built-in Algorithms 2659

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/autogluon_tabular/Amazon_Tabular_Regression_AutoGluon.ipynb

Amazon SageMaker Developer Guide

For more information, see AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data.

AutoGluon-Tabular hyperparameters

The following table contains the subset of hyperparameters that are required or most commonly
used for the Amazon SageMaker AutoGluon-Tabular algorithm. Users set these parameters to
facilitate the estimation of model parameters from data. The SageMaker AutoGluon-Tabular
algorithm is an implementation of the open-source AutoGluon-Tabular package.

Note

The default hyperparameters are based on example datasets in the AutoGluon-Tabular
sample notebooks.

By default, the SageMaker AutoGluon-Tabular algorithm automatically chooses an evaluation
metric based on the type of classification problem. The algorithm detects the type of classification
problem based on the number of labels in your data. For regression problems, the evaluation
metric is root mean squared error. For binary classification problems, the evaluation metric is area
under the receiver operating characteristic curve (AUC). For multiclass classification problems,
the evaluation metric is accuracy. You can use the eval_metric hyperparameter to change the
default evaluation metric. Refer to the following table for more information on AutoGluon-Tabular
hyperparameters, including descriptions, valid values, and default values.

Use Built-in Algorithms 2660

https://arxiv.org/pdf/2003.06505.pdf
https://github.com/awslabs/autogluon

Amazon SageMaker Developer Guide

Parameter Name Description

eval_metric The evaluation metric for validation data. If eval_metric is
set to the default "auto" value, then the algorithm automatic
ally chooses an evaluation metric based on the type of classific
ation problem:

• "root_mean_squared_error" for regression

• "roc_auc" for binary classification

• "accuracy" for multi-class classification

Valid values: string, refer to the AutoGluon documentation for
valid values.

Default value: "auto".

presets List of preset configurations for various arguments in fit().

• "best_quality" : high predictive accuracy, slower
inference times and higher disk usage

• "high_quality" : high predictive accuracy and fast
inference

• "good_quality" : good predictive accuracy and very fast
inference

• "medium_quality" : medium predictive accuracy, very
fast inference and training time

• "optimize_for_deployment" : delete unused models
and remove training artifacts

• "interpretable" : fits only interpretable rule-based
models from the imodels package

For more details, see AutoGluon Predictors.

Valid values: string, any of the following: ("best_qua
lity" , "high_quality" , good_quality" , "medium_q

Use Built-in Algorithms 2661

https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html
https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html

Amazon SageMaker Developer Guide

Parameter Name Description

uality" , "optimize_for_deployment" , or
"interpretable").

Default value: "medium_quality" .

auto_stack Whether AutoGluon should automatically utilize bagging and
multi-layer stack ensembling to boost predictive accuracy. Set
auto_stack to "True" if you are willing to tolerate longer
training times in order to maximize predictive accuracy. This
automatically sets the num_bag_folds and num_stack
_levels arguments based on dataset properties.

Valid values: string, "True" or "False".

Default value: "False".

num_bag_folds Number of folds used for bagging of models. When
num_bag_folds is equal to k, training time is roughly
increased by a factor of k. Set num_bag_folds to 0 to
deactivate bagging. This is disabled by default, but we
recommend using values between 5 and 10 to maximize
predictive performance. Increasing num_bag_folds results
in models with lower bias, but that are more prone to overfitti
ng. One is an invalid value for this parameter, and will raise a
ValueError . Values greater than 10 may produce diminishi
ng returns and can even harm overall results due to overfitting.
To further improve predictions, avoid increasing num_bag_f
olds and instead increase num_bag_sets .

Valid values: string, any integer between (and including) "0"
and "10".

Default value: "0".

Use Built-in Algorithms 2662

Amazon SageMaker Developer Guide

Parameter Name Description

num_bag_sets Number of repeats of kfold bagging to perform (values
must be greater than or equal to 1). The total number of
models trained during bagging is equal to num_bag_f
olds * num_bag_sets . This parameter defaults to one if
time_limit is not specified. This parameters is disabled if
num_bag_folds is not specified. Values greater than one
result in superior predictive performance, especially on smaller
problems and with stacking enabled.

Valid values: integer, range: [1, 20].

Default value: 1.

num_stack_levels Number of stacking levels to use in stack ensemble. Roughly
increases model training time by factor of num_stack
_levels + 1. Set this parameter to 0 to deactivate stack
ensembling. This parameter is deactivated by default, but
we recommend using values between 1 and 3 to maximize
predictive performance. To prevent overfitting and a
ValueError , num_bag_folds must be greater than or
equal to 2.

Valid values: float, range: [0, 3].

Default value: 0.

refit_full Whether or not to retrain all models on all of the data (training
 and validation) after the normal training procedure. For more
details, see AutoGluon Predictors.

Valid values: string, "True" or "False".

Default value: "False".

Use Built-in Algorithms 2663

https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html

Amazon SageMaker Developer Guide

Parameter Name Description

set_best_to_refit_
full

Whether or not to change the default model that the predictor
uses for prediction. If set_best_to_refit_full is set
to "True", the default model changes to the model that
exhibited the highest validation score as a result of refitting
(activated by refit_full). Only valid if refit_full is set.

Valid values: string, "True" or "False".

Default value: "False".

save_space Whether or note to reduce the memory and disk size of
predictor by deleting auxiliary model files that aren’t needed
for prediction on new data. This has no impact on inference
accuracy. We recommend setting save_space to "True"
if the only goal is to use the trained model for prediction.
Certain advanced functionality may no longer be available
if save_space is set to "True". Refer to the predictor
.save_space() documentation for more details.

Valid values: string, "True" or "False".

Default value: "False".

verbosity The verbosity of print messages. verbosity levels range
from 0 to 4, with higher levels corresponding to more detailed
print statements. A verbosity of 0 suppresses warnings.

Valid values: integer, any of the following: (0, 1, 2, 3, or 4).

Default value: 2.

Tuning an AutoGluon-Tabular model

Although AutoGluon-Tabular can be used with model tuning, its design can deliver good
performance using stacking and ensemble methods, meaning hyperparameter optimization is not
necessary. Rather than focusing on model tuning, AutoGluon-Tabular succeeds by stacking models
in multiple layers and training in a layer-wise manner.

Use Built-in Algorithms 2664

https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.save_space.html
https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.save_space.html

Amazon SageMaker Developer Guide

For more information about AutoGluon-Tabular hyperparameters, see AutoGluon-Tabular
hyperparameters.

CatBoost

CatBoost is a popular and high-performance open-source implementation of the Gradient
Boosting Decision Tree (GBDT) algorithm. GBDT is a supervised learning algorithm that attempts to
accurately predict a target variable by combining an ensemble of estimates from a set of simpler
and weaker models.

CatBoost introduces two critical algorithmic advances to GBDT:

1. The implementation of ordered boosting, a permutation-driven alternative to the classic
algorithm

2. An innovative algorithm for processing categorical features

Both techniques were created to fight a prediction shift caused by a special kind of target leakage
present in all currently existing implementations of gradient boosting algorithms.

How to use SageMaker CatBoost

You can use CatBoost as an Amazon SageMaker built-in algorithm. The following section describes
how to use CatBoost with the SageMaker Python SDK. For information on how to use CatBoost
from the Amazon SageMaker Studio Classic UI, see SageMaker JumpStart.

• Use CatBoost as a built-in algorithm

Use the CatBoost built-in algorithm to build a CatBoost training container as shown in the
following code example. You can automatically spot the CatBoost built-in algorithm image URI
using the SageMaker image_uris.retrieve API (or the get_image_uri API if using Amazon
SageMaker Python SDK version 2).

After specifying the CatBoost image URI, you can use the CatBoost container to construct an
estimator using the SageMaker Estimator API and initiate a training job. The CatBoost built-in
algorithm runs in script mode, but the training script is provided for you and there is no need to
replace it. If you have extensive experience using script mode to create a SageMaker training job,
then you can incorporate your own CatBoost training scripts.

from sagemaker import image_uris, model_uris, script_uris

Use Built-in Algorithms 2665

https://catboost.ai/
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

train_model_id, train_model_version, train_scope = "catboost-classification-model",
 "*", "training"
training_instance_type = "ml.m5.xlarge"

Retrieve the docker image
train_image_uri = image_uris.retrieve(
 region=None,
 framework=None,
 model_id=train_model_id,
 model_version=train_model_version,
 image_scope=train_scope,
 instance_type=training_instance_type
)

Retrieve the training script
train_source_uri = script_uris.retrieve(
 model_id=train_model_id, model_version=train_model_version,
 script_scope=train_scope
)

train_model_uri = model_uris.retrieve(
 model_id=train_model_id, model_version=train_model_version,
 model_scope=train_scope
)

Sample training data is available in this bucket
training_data_bucket = f"jumpstart-cache-prod-{aws_region}"
training_data_prefix = "training-datasets/tabular_multiclass/"

training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/
train"
validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/
validation"

output_bucket = sess.default_bucket()
output_prefix = "jumpstart-example-tabular-training"

s3_output_location = f"s3://{output_bucket}/{output_prefix}/output"

from sagemaker import hyperparameters

Retrieve the default hyperparameters for training the model
hyperparameters = hyperparameters.retrieve_default(
 model_id=train_model_id, model_version=train_model_version

Use Built-in Algorithms 2666

Amazon SageMaker Developer Guide

)

[Optional] Override default hyperparameters with custom values
hyperparameters[
 "iterations"
] = "500"
print(hyperparameters)

from sagemaker.estimator import Estimator
from sagemaker.utils import name_from_base

training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training")

Create SageMaker Estimator instance
tabular_estimator = Estimator(
 role=aws_role,
 image_uri=train_image_uri,
 source_dir=train_source_uri,
 model_uri=train_model_uri,
 entry_point="transfer_learning.py",
 instance_count=1,
 instance_type=training_instance_type,
 max_run=360000,
 hyperparameters=hyperparameters,
 output_path=s3_output_location
)

Launch a SageMaker Training job by passing the S3 path of the training data
tabular_estimator.fit(
 {
 "training": training_dataset_s3_path,
 "validation": validation_dataset_s3_path,
 }, logs=True, job_name=training_job_name
)

For more information about how to set up CatBoost as a built-in algorithm, see the following
notebook examples.

• Tabular classification with Amazon SageMaker LightGBM and CatBoost algorithm

• Tabular regression with Amazon SageMaker LightGBM and CatBoost algorithm

Use Built-in Algorithms 2667

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb

Amazon SageMaker Developer Guide

Input and Output interface for the CatBoost algorithm

Gradient boosting operates on tabular data, with the rows representing observations, one column
representing the target variable or label, and the remaining columns representing features.

The SageMaker implementation of CatBoost supports CSV for training and inference:

• For Training ContentType, valid inputs must be text/csv.

• For Inference ContentType, valid inputs must be text/csv.

Note

For CSV training, the algorithm assumes that the target variable is in the first column and
that the CSV does not have a header record.
For CSV inference, the algorithm assumes that CSV input does not have the label column.

Input format for training data, validation data, and categorical features

Be mindful of how to format your training data for input to the CatBoost model. You must provide
the path to an Amazon S3 bucket that contains your training and validation data. You can also
include a list of categorical features. Use both the training and validation channels to provide
your input data. Alternatively, you can use only the training channel.

Use both the training and validation channels

You can provide your input data by way of two S3 paths, one for the training channel and one
for the validation channel. Each S3 path can either be an S3 prefix that points to one or more
CSV files or a full S3 path pointing to one specific CSV file. The target variables should be in the
first column of your CSV file. The predictor variables (features) should be in the remaining columns.
If multiple CSV files are provided for the training or validation channels, the CatBoost
algorithm concatenates the files. The validation data is used to compute a validation score at the
end of each boosting iteration. Early stopping is applied when the validation score stops improving.

If your predictors include categorical features, you can provide a JSON file named
categorical_index.json in the same location as your training data file or files. If you provide
a JSON file for categorical features, your training channel must point to an S3 prefix and
not a specific CSV file. This file should contain a Python dictionary where the key is the string
"cat_index_list" and the value is a list of unique integers. Each integer in the value list should

Use Built-in Algorithms 2668

Amazon SageMaker Developer Guide

indicate the column index of the corresponding categorical features in your training data CSV
file. Each value should be a positive integer (greater than zero because zero represents the target
value), less than the Int32.MaxValue (2147483647), and less than the total number of columns.
There should only be one categorical index JSON file.

Use only the training channel:

You can alternatively provide your input data by way of a single S3 path for the training channel.
This S3 path should point to a directory with a subdirectory named training/ that contains one
or more CSV files. You can optionally include another subdirectory in the same location called
validation/ that also has one or more CSV files. If the validation data is not provided, then 20%
of your training data is randomly sampled to serve as the validation data. If your predictors include
categorical features, you can provide a JSON file named categorical_index.json in the same
location as your data subdirectories.

Note

For CSV training input mode, the total memory available to the algorithm (instance count
multiplied by the memory available in the InstanceType) must be able to hold the
training dataset.

SageMaker CatBoost uses the catboost.CatBoostClassifier and
catboost.CatBoostRegressor modules to serialize or deserialize the model, which can be used
for saving or loading the model.

To use a model trained with SageMaker CatBoost with catboost

• Use the following Python code:

import tarfile
from catboost import CatBoostClassifier

t = tarfile.open('model.tar.gz', 'r:gz')
t.extractall()

file_path = os.path.join(model_file_path, "model")
model = CatBoostClassifier()
model.load_model(file_path)

Use Built-in Algorithms 2669

Amazon SageMaker Developer Guide

prediction with test data
dtest should be a pandas DataFrame with column names feature_0, feature_1, ...,
 feature_d
pred = model.predict(dtest)

Amazon EC2 instance recommendation for the CatBoost algorithm

SageMaker CatBoost currently only trains using CPUs. CatBoost is a memory-bound (as opposed to
compute-bound) algorithm. So, a general-purpose compute instance (for example, M5) is a better
choice than a compute-optimized instance (for example, C5). Further, we recommend that you have
enough total memory in selected instances to hold the training data.

CatBoost sample notebooks

The following table outlines a variety of sample notebooks that address different use cases of
Amazon SageMaker CatBoost algorithm.

Notebook Title Description

Tabular classification with Amazon SageMaker
LightGBM and CatBoost algorithm

This notebook demonstrates the use of the
Amazon SageMaker CatBoost algorithm to
train and host a tabular classification model.

Tabular regression with Amazon SageMaker
LightGBM and CatBoost algorithm

This notebook demonstrates the use of the
Amazon SageMaker CatBoost algorithm to
train and host a tabular regression model.

For instructions on how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created a
notebook instance and opened it, choose the SageMaker Examples tab to see a list of all of the
SageMaker samples. To open a notebook, choose its Use tab and choose Create copy.

How CatBoost Works

CatBoost implements a conventional Gradient Boosting Decision Tree (GBDT) algorithm with the
addition of two critical algorithmic advances:

1. The implementation of ordered boosting, a permutation-driven alternative to the classic
algorithm

Use Built-in Algorithms 2670

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb

Amazon SageMaker Developer Guide

2. An innovative algorithm for processing categorical features

Both techniques were created to fight a prediction shift caused by a special kind of target leakage
present in all currently existing implementations of gradient boosting algorithms.

The CatBoost algorithm performs well in machine learning competitions because of its
robust handling of a variety of data types, relationships, distributions, and the diversity of
hyperparameters that you can fine-tune. You can use CatBoost for regression, classification (binary
and multiclass), and ranking problems.

For more information on gradient boosting, see How XGBoost Works. For in-depth details about
the additional GOSS and EFB techniques used in the CatBoost method, see CatBoost: unbiased
boosting with categorical features.

CatBoost hyperparameters

The following table contains the subset of hyperparameters that are required or most commonly
used for the Amazon SageMaker CatBoost algorithm. Users set these parameters to facilitate
the estimation of model parameters from data. The SageMaker CatBoost algorithm is an
implementation of the open-source CatBoost package.

Note

The default hyperparameters are based on example datasets in the CatBoost sample
notebooks.

By default, the SageMaker CatBoost algorithm automatically chooses an evaluation metric and loss
function based on the type of classification problem. The CatBoost algorithm detects the type of
classification problem based on the number of labels in your data. For regression problems, the
evaluation metric and loss functions are both root mean squared error. For binary classification
problems, the evaluation metric is Area Under the Curve (AUC) and the loss function is log loss.
For multiclass classification problems, the evaluation metric and loss functions are multiclass
cross entropy. You can use the eval_metric hyperparameter to change the default evaluation
metric. Refer to the following table for more information on LightGBM hyperparameters, including
descriptions, valid values, and default values.

Use Built-in Algorithms 2671

https://arxiv.org/pdf/1706.09516.pdf
https://arxiv.org/pdf/1706.09516.pdf
https://github.com/catboost/catboost

Amazon SageMaker Developer Guide

Parameter Name Description

iterations The maximum number of trees that can be built.

Valid values: integer, range: Positive integer.

Default value: 500.

early_stopping_rou
nds

The training will stop if one metric of one validation data point
does not improve in the last early_stopping_rounds
round. If early_stopping_rounds is less than or equal to
zero, this hyperparameter is ignored.

Valid values: integer.

Default value: 5.

eval_metric The evaluation metric for validation data. If eval_metric is
set to the default "auto" value, then the algorithm automatic
ally chooses an evaluation metric based on the type of classific
ation problem:

• "RMSE" for regression

• "AUC" for binary classification

• "MultiClass" for multi-class classification

Valid values: string, refer to the CatBoost documentation for
valid values.

Default value: "auto".

learning_rate The rate at which the model weights are updated after working
through each batch of training examples.

Valid values: float, range: (0.0, 1.0).

Default value: 0.009.

depth Depth of the tree.

Use Built-in Algorithms 2672

https://catboost.ai/en/docs/references/eval-metric__supported-metrics

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: integer, range: (1, 16).

Default value: 6.

l2_leaf_reg Coefficient for the L2 regularization term of the cost function.

Valid values: integer, range: Positive integer.

Default value: 3.

random_strength The amount of randomness to use for scoring splits when the
tree structure is selected. Use this parameter to avoid overfitti
ng the model.

Valid values: float, range: Positive floating point number.

Default value: 1.0.

max_leaves The maximum number of leaves in the resulting tree. Can only
be used with the "Lossguide" growing policy.

Valid values: integer, range: [2, 64].

Default value: 31.

rsm Random subspace method. The percentage of features to use
at each split selection, when features are selected over again at
random.

Valid values: float, range: (0.0, 1.0].

Default value: 1.0.

sampling_frequency Frequency to sample weights and objects when building trees.

Valid values: string, either: ("PerTreeLevel" or "PerTree"
).

Default value: "PerTreeLevel" .

Use Built-in Algorithms 2673

Amazon SageMaker Developer Guide

Parameter Name Description

min_data_in_leaf The minimum number of training samples in a leaf. CatBoost
does not search for new splits in leaves with a sample count
less than the specified value. Can only be used with the
"Lossguide" and "Depthwise" growing policies.

Valid values: integer, range: (1 or ∞).

Default value: 1.

bagging_temperature Defines the settings of the Bayesian bootstrap. Use the
Bayesian bootstrap to assign random weights to objects. If
bagging_temperature is set to 1.0, then the weights
are sampled from an exponential distribution. If bagging_t
emperature is set to 0.0, then all weights are 1.0.

Valid values: float, range: Non-negative float.

Default value: 1.0.

boosting_type The boosting scheme. "Auto" means that the boosting_
type is selected based on processing unit type, the number
of objects in the training dataset, and the selected learning
mode.

Valid values: string, any of the following: ("Auto", "Ordered"
, "Plain").

Default value: "Auto".

scale_pos_weight The weight for positive class in binary classification. The value
is used as a multiplier for the weights of objects from positive
class.

Valid values: float, range: Positive float.

Default value: 1.0.

Use Built-in Algorithms 2674

Amazon SageMaker Developer Guide

Parameter Name Description

max_bin The number of splits for numerical features. "Auto" means
that max_bin is selected based on the processing unit type
and other parameters. For details, see the CatBoost documenta
tion.

Valid values: string, either: ("Auto" or string of integer from
"1" to "65535" inclusively).

Default value: "Auto".

grow_policy The tree growing policy. Defines how to perform greedy tree
construction.

Valid values: string, any of the following: ("Symmetri
cTree" , "Depthwise" , or "Lossguide").

Default value: "SymmetricTree" .

random_seed The random seed used for training.

Valid values: integer, range: Non-negative integer.

Default value: 1.0.

thread_count The number of threads to use during the training. If
thread_count is -1, then the number of threads is equal to
the number of processor cores. thread_count cannot be 0.

Valid values: integer, either: (-1 or positive integer).

Default value: -1.

verbose The verbosity of print messages, with higher levels correspon
ding to more detailed print statements.

Valid values: integer, range: Positive integer.

Default value: 1.

Use Built-in Algorithms 2675

Amazon SageMaker Developer Guide

Tune a CatBoost model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your training and validation
datasets. Model tuning focuses on the following hyperparameters:

Note

The learning loss function is automatically assigned based on the type of classification
task, which is determined by the number of unique integers in the label column. For more
information, see CatBoost hyperparameters.

• A learning loss function to optimize during model training

• An evaluation metric that is used to evaluate model performance during validation

• A set of hyperparameters and a range of values for each to use when tuning the model
automatically

Automatic model tuning searches your chosen hyperparameters to find the combination of values
that results in a model that optimizes the chosen evaluation metric.

Note

Automatic model tuning for CatBoost is only available from the Amazon SageMaker SDKs,
not from the SageMaker console.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Evaluation metrics computed by the CatBoost algorithm

The SageMaker CatBoost algorithm computes the following metrics to use for model validation.
The evaluation metric is automatically assigned based on the type of classification task, which is
determined by the number of unique integers in the label column.

Use Built-in Algorithms 2676

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

Regex Pattern

RMSE root mean square error minimize "bestTest
= ([0-9\\.]
+)"

MAE mean absolute error minimize "bestTest
= ([0-9\\.]
+)"

MedianAbs
oluteError

median absolute error minimize "bestTest
= ([0-9\\.]
+)"

R2 r2 score maximize "bestTest
= ([0-9\\.]
+)"

Logloss binary cross entropy maximize "bestTest
= ([0-9\\.]
+)"

Precision precision maximize "bestTest
= ([0-9\\.]
+)"

Recall recall maximize "bestTest
= ([0-9\\.]
+)"

F1 f1 score maximize "bestTest
= ([0-9\\.]
+)"

AUC auc score maximize "bestTest
= ([0-9\\.]
+)"

Use Built-in Algorithms 2677

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

Regex Pattern

MultiClass multiclass cross entropy maximize "bestTest
= ([0-9\\.]
+)"

Accuracy accuracy maximize "bestTest
= ([0-9\\.]
+)"

BalancedA
ccuracy

balanced accuracy maximize "bestTest
= ([0-9\\.]
+)"

Tunable CatBoost hyperparameters

Tune the CatBoost model with the following hyperparameters. The hyperparameters that have
the greatest effect on optimizing the CatBoost evaluation metrics are: learning_rate, depth,
l2_leaf_reg, and random_strength. For a list of all the CatBoost hyperparameters, see
CatBoost hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

learning_rate ContinuousParameterRanges MinValue: 0.001,
MaxValue: 0.01

depth IntegerParameterRanges MinValue: 4,
MaxValue: 10

l2_leaf_reg IntegerParameterRanges MinValue: 2,
MaxValue: 10

random_strength ContinuousParameterRanges MinValue: 0,
MaxValue: 10

Use Built-in Algorithms 2678

Amazon SageMaker Developer Guide

Factorization Machines Algorithm

The Factorization Machines algorithm is a general-purpose supervised learning algorithm that
you can use for both classification and regression tasks. It is an extension of a linear model that
is designed to capture interactions between features within high dimensional sparse datasets
economically. For example, in a click prediction system, the Factorization Machines model can
capture click rate patterns observed when ads from a certain ad-category are placed on pages
from a certain page-category. Factorization machines are a good choice for tasks dealing with high
dimensional sparse datasets, such as click prediction and item recommendation.

Note

The Amazon SageMaker implementation of the Factorization Machines algorithm considers
only pair-wise (2nd order) interactions between features.

Topics

• Input/Output Interface for the Factorization Machines Algorithm

• EC2 Instance Recommendation for the Factorization Machines Algorithm

• Factorization Machines Sample Notebooks

• How Factorization Machines Work

• Factorization Machines Hyperparameters

• Tune a Factorization Machines Model

• Factorization Machines Response Formats

Input/Output Interface for the Factorization Machines Algorithm

The Factorization Machines algorithm can be run in either in binary classification mode or
regression mode. In each mode, a dataset can be provided to the test channel along with the
train channel dataset. The scoring depends on the mode used. In regression mode, the testing
dataset is scored using Root Mean Square Error (RMSE). In binary classification mode, the test
dataset is scored using Binary Cross Entropy (Log Loss), Accuracy (at threshold=0.5) and F1 Score
(at threshold =0.5).

For training, the Factorization Machines algorithm currently supports only the recordIO-
protobuf format with Float32 tensors. Because their use case is predominantly on sparse data,

Use Built-in Algorithms 2679

Amazon SageMaker Developer Guide

CSV is not a good candidate. Both File and Pipe mode training are supported for recordIO-wrapped
protobuf.

For inference, the Factorization Machines algorithm supports the application/json and x-
recordio-protobuf formats.

• For the binary classification problem, the algorithm predicts a score and a label. The label
is a number and can be either 0 or 1. The score is a number that indicates how strongly the
algorithm believes that the label should be 1. The algorithm computes score first and then
derives the label from the score value. If the score is greater than or equal to 0.5, the label is 1.

• For the regression problem, just a score is returned and it is the predicted value. For example, if
Factorization Machines is used to predict a movie rating, score is the predicted rating value.

Please see Factorization Machines Sample Notebooks for more details on training and inference file
formats.

EC2 Instance Recommendation for the Factorization Machines Algorithm

The Amazon SageMaker Factorization Machines algorithm is highly scalable and can train across
distributed instances. We recommend training and inference with CPU instances for both sparse
and dense datasets. In some circumstances, training with one or more GPUs on dense data might
provide some benefit. Training with GPUs is available only on dense data. Use CPU instances for
sparse data. The Factorization Machines algorithm supports P2, P3, G4dn, and G5 instances for
training and inference.

Factorization Machines Sample Notebooks

For a sample notebook that uses the SageMaker Factorization Machines algorithm to analyze
the images of handwritten digits from zero to nine in the MNIST dataset, see An Introduction to
Factorization Machines with MNIST. For instructions how to create and access Jupyter notebook
instances that you can use to run the example in SageMaker, see Amazon SageMaker Notebook
Instances. Once you have created a notebook instance and opened it, select the SageMaker
Examples tab to see a list of all the SageMaker samples. Example notebooks that use Factorization
Machines algorithm are located in the Introduction to Amazon algorithms section. To open a
notebook, click on its Use tab and select Create copy.

Use Built-in Algorithms 2680

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/factorization_machines_mnist/factorization_machines_mnist.html

Amazon SageMaker Developer Guide

How Factorization Machines Work

The prediction task for a Factorization Machines model is to estimate a function ŷ from a feature
set xi to a target domain. This domain is real-valued for regression and binary for classification.
The Factorization Machines model is supervised and so has a training dataset (xi,yj) available. The
advantages this model presents lie in the way it uses a factorized parametrization to capture the
pairwise feature interactions. It can be represented mathematically as follows:

The three terms in this equation correspond respectively to the three components of the model:

• The w0 term represents the global bias.

• The wi linear terms model the strength of the ith variable.

• The <vi,vj> factorization terms model the pairwise interaction between the ith and jth variable.

The global bias and linear terms are the same as in a linear model. The pairwise feature
interactions are modeled in the third term as the inner product of the corresponding factors
learned for each feature. Learned factors can also be considered as embedding vectors for each
feature. For example, in a classification task, if a pair of features tends to co-occur more often in
positive labeled samples, then the inner product of their factors would be large. In other words,
their embedding vectors would be close to each other in cosine similarity. For more information
about the Factorization Machines model, see Factorization Machines.

For regression tasks, the model is trained by minimizing the squared error between the model
prediction ŷn and the target value yn. This is known as the square loss:

For a classification task, the model is trained by minimizing the cross entropy loss, also known as
the log loss:

where:

Use Built-in Algorithms 2681

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

Amazon SageMaker Developer Guide

For more information about loss functions for classification, see Loss functions for classification.

Factorization Machines Hyperparameters

The following table contains the hyperparameters for the Factorization Machines algorithm. These
are parameters that are set by users to facilitate the estimation of model parameters from data.
The required hyperparameters that must be set are listed first, in alphabetical order. The optional
hyperparameters that can be set are listed next, also in alphabetical order.

Parameter Name Description

feature_dim The dimension of the input feature space. This could be very
high with sparse input.

Required

Valid values: Positive integer. Suggested value range:
[10000,10000000]

num_factors The dimensionality of factorization.

Required

Valid values: Positive integer. Suggested value range: [2,1000],
 64 typically generates good outcomes and is a good starting
point.

predictor_type The type of predictor.

• binary_classifier : For binary classification tasks.

• regressor : For regression tasks.

Required

Valid values: String: binary_classifier or regressor

bias_init_method The initialization method for the bias term:

Use Built-in Algorithms 2682

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Amazon SageMaker Developer Guide

Parameter Name Description

• normal: Initializes weights with random values sampled
from a normal distribution with a mean of zero and standard
deviation specified by bias_init_sigma .

• uniform: Initializes weights with random values uniformly
sampled from a range specified by [-bias_init_scale ,
+bias_init_scale].

• constant: Initializes the weights to a scalar value specified
by bias_init_value .

Optional

Valid values: uniform, normal, or constant

Default value: normal

bias_init_scale Range for initialization of the bias term. Takes effect if
bias_init_method is set to uniform.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: None

bias_init_sigma The standard deviation for initialization of the bias term. Takes
effect if bias_init_method is set to normal.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.01

Use Built-in Algorithms 2683

Amazon SageMaker Developer Guide

Parameter Name Description

bias_init_value The initial value of the bias term. Takes effect if bias_init
_method is set to constant.

Optional

Valid values: Float. Suggested value range: [1e-8, 512].

Default value: None

bias_lr The learning rate for the bias term.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.1

bias_wd The weight decay for the bias term.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.01

clip_gradient Gradient clipping optimizer parameter. Clips the gradient by
projecting onto the interval [-clip_gradient , +clip_grad
ient].

Optional

Valid values: Float

Default value: None

Use Built-in Algorithms 2684

Amazon SageMaker Developer Guide

Parameter Name Description

epochs The number of training epochs to run.

Optional

Valid values: Positive integer

Default value: 1

eps Epsilon parameter to avoid division by 0.

Optional

Valid values: Float. Suggested value: small.

Default value: None

factors_init_method The initialization method for factorization terms:

• normal Initializes weights with random values sampled
from a normal distribution with a mean of zero and standard
deviation specified by factors_init_sigma .

• uniform: Initializes weights with random values uniformly
sampled from a range specified by [-factors_i
nit_scale , +factors_init_scale].

• constant: Initializes the weights to a scalar value specified
by factors_init_value .

Optional

Valid values: uniform, normal, or constant.

Default value: normal

Use Built-in Algorithms 2685

Amazon SageMaker Developer Guide

Parameter Name Description

factors_init_scale The range for initialization of factorization terms. Takes effect
if factors_init_method is set to uniform.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: None

factors_init_sigma The standard deviation for initialization of factorization terms.
Takes effect if factors_init_method is set to normal.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.001

factors_init_value The initial value of factorization terms. Takes effect if
factors_init_method is set to constant.

Optional

Valid values: Float. Suggested value range: [1e-8, 512].

Default value: None

factors_lr The learning rate for factorization terms.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.0001

Use Built-in Algorithms 2686

Amazon SageMaker Developer Guide

Parameter Name Description

factors_wd The weight decay for factorization terms.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.00001

linear_lr The learning rate for linear terms.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.001

linear_init_method The initialization method for linear terms:

• normal Initializes weights with random values sampled
from a normal distribution with a mean of zero and standard
deviation specified by linear_init_sigma .

• uniform Initializes weights with random values uniformly
sampled from a range specified by [-linear_init_scale ,
+linear_init_scale].

• constant Initializes the weights to a scalar value specified
by linear_init_value .

Optional

Valid values: uniform, normal, or constant.

Default value: normal

Use Built-in Algorithms 2687

Amazon SageMaker Developer Guide

Parameter Name Description

linear_init_scale Range for initialization of linear terms. Takes effect if
linear_init_method is set to uniform.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: None

linear_init_sigma The standard deviation for initialization of linear terms. Takes
effect if linear_init_method is set to normal.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.01

linear_init_value The initial value of linear terms. Takes effect if linear_in
it_method is set to constant.

Optional

Valid values: Float. Suggested value range: [1e-8, 512].

Default value: None

linear_wd The weight decay for linear terms.

Optional

Valid values: Non-negative float. Suggested value range: [1e-8,
512].

Default value: 0.001

Use Built-in Algorithms 2688

Amazon SageMaker Developer Guide

Parameter Name Description

mini_batch_size The size of mini-batch used for training.

Optional

Valid values: Positive integer

Default value: 1000

rescale_grad Gradient rescaling optimizer parameter. If set, multiplies the
gradient with rescale_grad before updating. Often choose
to be 1.0/batch_size .

Optional

Valid values: Float

Default value: None

Tune a Factorization Machines Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the Factorization Machines Algorithm

The Factorization Machines algorithm has both binary classification and regression predictor
types. The predictor type determines which metric you can use for automatic model tuning. The
algorithm reports a test:rmse regressor metric, which is computed during training. When tuning
the model for regression tasks, choose this metric as the objective.

Use Built-in Algorithms 2689

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

test:rmse Root Mean Square Error Minimize

The Factorization Machines algorithm reports three binary classification metrics, which are
computed during training. When tuning the model for binary classification tasks, choose one of
these as the objective.

Metric Name Description Optimization
Direction

test:bina
ry_classi
fication_
accuracy

Accuracy Maximize

test:bina
ry_classi
fication_
cross_entropy

Cross Entropy Minimize

test:bina
ry_f_beta

Beta Maximize

Tunable Factorization Machines Hyperparameters

You can tune the following hyperparameters for the Factorization Machines algorithm. The
initialization parameters that contain the terms bias, linear, and factorization depend on
their initialization method. There are three initialization methods: uniform, normal, and
constant. These initialization methods are not themselves tunable. The parameters that
are tunable are dependent on this choice of the initialization method. For example, if the
initialization method is uniform, then only the scale parameters are tunable. Specifically,
if bias_init_method==uniform, then bias_init_scale, linear_init_scale, and
factors_init_scale are tunable. Similarly, if the initialization method is normal, then

Use Built-in Algorithms 2690

Amazon SageMaker Developer Guide

only sigma parameters are tunable. If the initialization method is constant, then only value
parameters are tunable. These dependencies are listed in the following table.

Parameter Name Parameter Type Recommended
Ranges

Dependenc
y

bias_init
_scale

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
uniform

bias_init
_sigma

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
normal

bias_init
_value

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
constant

bias_lr ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

bias_wd ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

epoch IntegerParameterRange MinValue: 1,
MaxValue: 1000

None

factors_i
nit_scale

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
uniform

factors_i
nit_sigma

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
normal

factors_i
nit_value

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
constant

Use Built-in Algorithms 2691

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

Dependenc
y

factors_lr ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

factors_wd ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512]

None

linear_in
it_scale

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
uniform

linear_in
it_sigma

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
normal

linear_in
it_value

ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

bias_init
_method==
constant

linear_lr ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

linear_wd ContinuousParameterRange MinValue: 1e-8,
MaxValue: 512

None

mini_batc
h_size

IntegerParameterRange MinValue: 100,
MaxValue: 10000

None

Factorization Machines Response Formats

JSON Response Format

Binary classification

let response = {
 "predictions": [
 {
 "score": 0.4,

Use Built-in Algorithms 2692

Amazon SageMaker Developer Guide

 "predicted_label": 0
 }
]
}

Regression

let response = {
 "predictions": [
 {
 "score": 0.4
 }
]
}

JSONLINES Response Format

Binary classification

{"score": 0.4, "predicted_label": 0}

Regression

{"score": 0.4}

RECORDIO Response Format

Binary classification

[
 Record = {
 features = {},
 label = {
 'score’: {
 keys: [],
 values: [0.4] # float32
 },
 'predicted_label': {
 keys: [],
 values: [0.0] # float32

Use Built-in Algorithms 2693

Amazon SageMaker Developer Guide

 }
 }
 }
]

Regression

[
 Record = {
 features = {},
 label = {
 'score’: {
 keys: [],
 values: [0.4] # float32
 }
 }
 }
]

K-Nearest Neighbors (k-NN) Algorithm

Amazon SageMaker k-nearest neighbors (k-NN) algorithm is an index-based algorithm. It uses a
non-parametric method for classification or regression. For classification problems, the algorithm
queries the k points that are closest to the sample point and returns the most frequently used label
of their class as the predicted label. For regression problems, the algorithm queries the k closest
points to the sample point and returns the average of their feature values as the predicted value.

Training with the k-NN algorithm has three steps: sampling, dimension reduction, and index
building. Sampling reduces the size of the initial dataset so that it fits into memory. For dimension
reduction, the algorithm decreases the feature dimension of the data to reduce the footprint
of the k-NN model in memory and inference latency. We provide two methods of dimension
reduction methods: random projection and the fast Johnson-Lindenstrauss transform. Typically,
you use dimension reduction for high-dimensional (d >1000) datasets to avoid the “curse of
dimensionality” that troubles the statistical analysis of data that becomes sparse as dimensionality
increases. The main objective of k-NN's training is to construct the index. The index enables
efficient lookups of distances between points whose values or class labels have not yet been
determined and the k nearest points to use for inference.

Topics

• Input/Output Interface for the k-NN Algorithm

Use Built-in Algorithms 2694

Amazon SageMaker Developer Guide

• k-NN Sample Notebooks

• How the k-NN Algorithm Works

• EC2 Instance Recommendation for the k-NN Algorithm

• k-NN Hyperparameters

• Tune a k-NN Model

• Data Formats for k-NN Training Input

• k-NN Request and Response Formats

Input/Output Interface for the k-NN Algorithm

SageMaker k-NN supports train and test data channels.

• Use a train channel for data that you want to sample and construct into the k-NN index.

• Use a test channel to emit scores in log files. Scores are listed as one line per mini-batch: accuracy
for classifier, mean-squared error (mse) for regressor for score.

For training inputs, k-NN supports text/csv and application/x-recordio-protobuf data
formats. For input type text/csv, the first label_size columns are interpreted as the label
vector for that row. You can use either File mode or Pipe mode to train models on data that is
formatted as recordIO-wrapped-protobuf or as CSV.

For inference inputs, k-NN supports the application/json, application/x-recordio-
protobuf, and text/csv data formats. The text/csv format accepts a label_size and
encoding parameter. It assumes a label_size of 0 and a UTF-8 encoding.

For inference outputs, k-NN supports the application/json and application/x-recordio-
protobuf data formats. These two data formats also support a verbose output mode. In verbose
output mode, the API provides the search results with the distances vector sorted from smallest to
largest, and corresponding elements in the labels vector.

For batch transform, k-NN supports the application/jsonlines data format for both input
and output. An example input is as follows:

content-type: application/jsonlines

{"features": [1.5, 16.0, 14.0, 23.0]}

Use Built-in Algorithms 2695

Amazon SageMaker Developer Guide

{"data": {"features": {"values": [1.5, 16.0, 14.0, 23.0]}}

An example output is as follows:

accept: application/jsonlines

{"predicted_label": 0.0}
{"predicted_label": 2.0}

For more information on input and output file formats, see Data Formats for k-NN Training Input
for training, k-NN Request and Response Formats for inference, and the k-NN Sample Notebooks.

k-NN Sample Notebooks

For a sample notebook that uses the SageMaker k-nearest neighbor algorithm to predict
wilderness cover types from geological and forest service data, see the K-Nearest Neighbor
Covertype .

Use a Jupyter notebook instance to run the example in SageMaker. To learn how to create and
open a Jupyter notebook instance in SageMaker, see Amazon SageMaker Notebook Instances.
Once you have created a notebook instance and opened it, select the SageMaker Examples tab
to see a list of all the SageMaker example notebooks. Find K-Nearest Neighbor notebooks in the
Introduction to Amazon algorithms section. To open a notebook, click on its Use tab and select
Create copy.

How the k-NN Algorithm Works

Step 1: Sample

To specify the total number of data points to be sampled from the training dataset, use the
sample_sizeparameter. For example, if the initial dataset has 1,000 data points and the
sample_size is set to 100, where the total number of instances is 2, each worker would sample
50 points. A total set of 100 data points would be collected. Sampling runs in linear time with
respect to the number of data points.

Step 2: Perform Dimension Reduction

The current implementation of the k-NN algorithm has two methods of dimension reduction. You
specify the method in the dimension_reduction_type hyperparameter. The sign method
specifies a random projection, which uses a linear projection using a matrix of random signs,

Use Built-in Algorithms 2696

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/k_nearest_neighbors_covtype/k_nearest_neighbors_covtype.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/k_nearest_neighbors_covtype/k_nearest_neighbors_covtype.html

Amazon SageMaker Developer Guide

and the fjlt method specifies a fast Johnson-Lindenstrauss transform, a method based on the
Fourier transform. Both methods preserve the L2 and inner product distances. The fjlt method
should be used when the target dimension is large and has better performance with CPU inference.
The methods differ in their computational complexity. The sign method requires O(ndk) time
to reduce the dimension of a batch of n points of dimension d into a target dimension k. The
fjlt method requires O(nd log(d)) time, but the constants involved are larger. Using dimension
reduction introduces noise into the data and this noise can reduce prediction accuracy.

Step 3: Build an Index

During inference, the algorithm queries the index for the k-nearest-neighbors of a sample point.
Based on the references to the points, the algorithm makes the classification or regression
prediction. It makes the prediction based on the class labels or values provided. k-NN provides
three different types of indexes: a flat index, an inverted index, and an inverted index with product
quantization. You specify the type with the index_type parameter.

Serialize the Model

When the k-NN algorithm finishes training, it serializes three files to prepare for inference.

• model_algo-1: Contains the serialized index for computing the nearest neighbors.

• model_algo-1.labels: Contains serialized labels (np.float32 binary format) for computing the
predicted label based on the query result from the index.

• model_algo-1.json: Contains the JSON-formatted model metadata which stores the k and
predictor_type hyper-parameters from training for inference along with other relevant state.

With the current implementation of k-NN, you can modify the metadata file to change the way
predictions are computed. For example, you can change k to 10 or change predictor_type to
regressor.

{
 "k": 5,
 "predictor_type": "classifier",
 "dimension_reduction": {"type": "sign", "seed": 3, "target_dim": 10, "input_dim":
 20},
 "normalize": False,
 "version": "1.0"
}

Use Built-in Algorithms 2697

Amazon SageMaker Developer Guide

EC2 Instance Recommendation for the k-NN Algorithm

We recommend training on a CPU instance (such as ml.m5.2xlarge) or on a GPU instance. The k-NN
algorithm supports P2, P3, G4dn, and G5 GPU instance families for training and inference.

Inference requests from CPUs generally have a lower average latency than requests from GPUs
because there is a tax on CPU-to-GPU communication when you use GPU hardware. However, GPUs
generally have higher throughput for larger batches.

k-NN Hyperparameters

Parameter Name Description

feature_dim The number of features in the input data.

Required

Valid values: positive integer.

k The number of nearest neighbors.

Required

Valid values: positive integer

predictor_type The type of inference to use on the data labels.

Required

Valid values: classifier for classification or regressor for regression.

sample_size The number of data points to be sampled from the training data set.

Required

Valid values: positive integer

dimension
_reductio
n_target

The target dimension to reduce to.

Required when you specify the dimension_reduction_type
parameter.

Use Built-in Algorithms 2698

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: positive integer greater than 0 and less than
feature_dim .

dimension
_reduction_type

The type of dimension reduction method.

Optional

Valid values: sign for random projection or fjlt for the fast Johnson-L
indenstrauss transform.

Default value: No dimension reduction

faiss_ind
ex_ivf_nlists

The number of centroids to construct in the index when index_typ
e is faiss.IVFFlat or faiss.IVFPQ.

Optional

Valid values: positive integer

Default value: auto, which resolves to sqrt(sample_size) .

faiss_index_pq_m The number of vector sub-components to construct in the index
when index_type is set to faiss.IVFPQ.

The FaceBook AI Similarity Search (FAISS) library requires that the
value of faiss_index_pq_m is a divisor of the data dimension
. If faiss_index_pq_m is not a divisor of the data dimension
, we increase the data dimension to smallest integer divisible by
faiss_index_pq_m . If no dimension reduction is applied, the
algorithm adds a padding of zeros. If dimension reduction is applied,
the algorithm increase the value of the dimension_reductio
n_target hyper-parameter.

Optional

Valid values: One of the following positive integers: 1, 2, 3, 4, 8, 12,
16, 20, 24, 28, 32, 40, 48, 56, 64, 96

Use Built-in Algorithms 2699

Amazon SageMaker Developer Guide

Parameter Name Description

index_metric The metric to measure the distance between points when finding
nearest neighbors. When training with index_type set to
faiss.IVFPQ , the INNER_PRODUCT distance and COSINE
similarity are not supported.

Optional

Valid values: L2 for Euclidean-distance, INNER_PRODUCT for inner-
product distance, COSINE for cosine similarity.

Default value: L2

index_type The type of index.

Optional

Valid values: faiss.Flat, faiss.IVFFlat, faiss.IVFPQ.

Default values: faiss.Flat

mini_batch_size The number of observations per mini-batch for the data iterator.

Optional

Valid values: positive integer

Default value: 5000

Tune a k-NN Model

The Amazon SageMaker k-nearest neighbors algorithm is a supervised algorithm. The algorithm
consumes a test data set and emits a metric about the accuracy for a classification task or
about the mean squared error for a regression task. These accuracy metrics compare the model
predictions for their respective task to the ground truth provided by the empirical test data. To
find the best model that reports the highest accuracy or lowest error on the test dataset, run a
hyperparameter tuning job for k-NN.

Use Built-in Algorithms 2700

Amazon SageMaker Developer Guide

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric appropriate for the prediction task of the algorithm. Automatic model tuning
searches the hyperparameters chosen to find the combination of values that result in the model
that optimizes the objective metric. The hyperparameters are used only to help estimate model
parameters and are not used by the trained model to make predictions.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the k-NN Algorithm

The k-nearest neighbors algorithm computes one of two metrics in the following table during
training depending on the type of task specified by the predictor_type hyper-parameter.

• classifier specifies a classification task and computes test:accuracy

• regressor specifies a regression task and computes test:mse.

Choose the predictor_type value appropriate for the type of task undertaken to calculate the
relevant objective metric when tuning a model.

Metric Name Description Optimization
Direction

test:accuracy When predictor_type is set to classifier,
k-NN compares the predicted label, based on
the average of the k-nearest neighbors' labels,
to the ground truth label provided in the test
channel data. The accuracy reported ranges
from 0.0 (0%) to 1.0 (100%).

Maximize

test:mse When predictor_type is set to regressor
, k-NN compares the predicted label, based
on the average of the k-nearest neighbors'
labels, to the ground truth label provided in
the test channel data. The mean squared error
is computed by comparing the two labels.

Minimize

Use Built-in Algorithms 2701

Amazon SageMaker Developer Guide

Tunable k-NN Hyperparameters

Tune the Amazon SageMaker k-nearest neighbor model with the following hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

k IntegerParameterRanges MinValue: 1,
MaxValue: 1024

sample_size IntegerParameterRanges MinValue: 256,
MaxValue: 20000000

Data Formats for k-NN Training Input

All Amazon SageMaker built-in algorithms adhere to the common input training formats described
in Common Data Formats - Training. This topic contains a list of the available input formats for the
SageMaker k-nearest-neighbor algorithm.

CSV Data Format

content-type: text/csv; label_size=1

4,1.2,1.3,9.6,20.3

The first label_size columns are interpreted as the label vector for that row.

RECORDIO Data Format

content-type: application/x-recordio-protobuf

[
 Record = {
 features = {
 'values': {
 values: [1.2, 1.3, 9.6, 20.3] # float32
 }
 },

Use Built-in Algorithms 2702

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html

Amazon SageMaker Developer Guide

 label = {
 'values': {
 values: [4] # float32
 }
 }
 }
]

}

k-NN Request and Response Formats

All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. This topic contains a list of the available output formats for
the SageMaker k-nearest-neighbor algorithm.

INPUT: CSV Request Format

content-type: text/csv

1.2,1.3,9.6,20.3

This accepts a label_size or encoding parameter. It assumes a label_size of 0 and a utf-8
encoding.

INPUT: JSON Request Format

content-type: application/json

{
 "instances": [
 {"data": {"features": {"values": [-3, -1, -4, 2]}}},
 {"features": [3.0, 0.1, 0.04, 0.002]}]
}

INPUT: JSONLINES Request Format

content-type: application/jsonlines

{"features": [1.5, 16.0, 14.0, 23.0]}

Use Built-in Algorithms 2703

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide

{"data": {"features": {"values": [1.5, 16.0, 14.0, 23.0]}}

INPUT: RECORDIO Request Format

content-type: application/x-recordio-protobuf

[
 Record = {
 features = {
 'values': {
 values: [-3, -1, -4, 2] # float32
 }
 },
 label = {}
 },
 Record = {
 features = {
 'values': {
 values: [3.0, 0.1, 0.04, 0.002] # float32
 }
 },
 label = {}
 },
]

OUTPUT: JSON Response Format

accept: application/json

{
 "predictions": [
 {"predicted_label": 0.0},
 {"predicted_label": 2.0}
]
}

OUTPUT: JSONLINES Response Format

accept: application/jsonlines

{"predicted_label": 0.0}
{"predicted_label": 2.0}

Use Built-in Algorithms 2704

Amazon SageMaker Developer Guide

OUTPUT: VERBOSE JSON Response Format

In verbose mode, the API provides the search results with the distances vector sorted from smallest
to largest, with corresponding elements in the labels vector. In this example, k is set to 3.

accept: application/json; verbose=true

{
 "predictions": [
 {
 "predicted_label": 0.0,
 "distances": [3.11792408, 3.89746071, 6.32548437],
 "labels": [0.0, 1.0, 0.0]
 },
 {
 "predicted_label": 2.0,
 "distances": [1.08470316, 3.04917915, 5.25393973],
 "labels": [2.0, 2.0, 0.0]
 }
]
}

OUTPUT: RECORDIO-PROTOBUF Response Format

content-type: application/x-recordio-protobuf

[
 Record = {
 features = {},
 label = {
 'predicted_label': {
 values: [0.0] # float32
 }
 }
 },
 Record = {
 features = {},
 label = {
 'predicted_label': {
 values: [2.0] # float32
 }
 }
 }

Use Built-in Algorithms 2705

Amazon SageMaker Developer Guide

]

OUTPUT: VERBOSE RECORDIO-PROTOBUF Response Format

In verbose mode, the API provides the search results with the distances vector sorted from smallest
to largest, with corresponding elements in the labels vector. In this example, k is set to 3.

accept: application/x-recordio-protobuf; verbose=true

[
 Record = {
 features = {},
 label = {
 'predicted_label': {
 values: [0.0] # float32
 },
 'distances': {
 values: [3.11792408, 3.89746071, 6.32548437] # float32
 },
 'labels': {
 values: [0.0, 1.0, 0.0] # float32
 }
 }
 },
 Record = {
 features = {},
 label = {
 'predicted_label': {
 values: [0.0] # float32
 },
 'distances': {
 values: [1.08470316, 3.04917915, 5.25393973] # float32
 },
 'labels': {
 values: [2.0, 2.0, 0.0] # float32
 }
 }
 }
]

SAMPLE OUTPUT for the k-NN Algorithm

For regressor tasks:

Use Built-in Algorithms 2706

Amazon SageMaker Developer Guide

[06/08/2018 20:15:33 INFO 140026520049408] #test_score (algo-1) : ('mse',
 0.013333333333333334)

For classifier tasks:

[06/08/2018 20:15:46 INFO 140285487171328] #test_score (algo-1) : ('accuracy',
 0.98666666666666669)

LightGBM

LightGBM is a popular and efficient open-source implementation of the Gradient Boosting Decision
Tree (GBDT) algorithm. GBDT is a supervised learning algorithm that attempts to accurately predict
a target variable by combining an ensemble of estimates from a set of simpler and weaker models.
LightGBM uses additional techniques to significantly improve the efficiency and scalability of
conventional GBDT.

How to use SageMaker LightGBM

You can use LightGBM as an Amazon SageMaker built-in algorithm. The following section describes
how to use LightGBM with the SageMaker Python SDK. For information on how to use LightGBM
from the Amazon SageMaker Studio Classic UI, see SageMaker JumpStart.

• Use LightGBM as a built-in algorithm

Use the LightGBM built-in algorithm to build a LightGBM training container as shown in the
following code example. You can automatically spot the LightGBM built-in algorithm image URI
using the SageMaker image_uris.retrieve API (or the get_image_uri API if using Amazon
SageMaker Python SDK version 2).

After specifying the LightGBM image URI, you can use the LightGBM container to construct an
estimator using the SageMaker Estimator API and initiate a training job. The LightGBM built-in
algorithm runs in script mode, but the training script is provided for you and there is no need to
replace it. If you have extensive experience using script mode to create a SageMaker training job,
then you can incorporate your own LightGBM training scripts.

from sagemaker import image_uris, model_uris, script_uris

train_model_id, train_model_version, train_scope = "lightgbm-classification-model",
 "*", "training"
training_instance_type = "ml.m5.xlarge"

Use Built-in Algorithms 2707

https://lightgbm.readthedocs.io/en/latest/
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Retrieve the docker image
train_image_uri = image_uris.retrieve(
 region=None,
 framework=None,
 model_id=train_model_id,
 model_version=train_model_version,
 image_scope=train_scope,
 instance_type=training_instance_type
)

Retrieve the training script
train_source_uri = script_uris.retrieve(
 model_id=train_model_id, model_version=train_model_version,
 script_scope=train_scope
)

train_model_uri = model_uris.retrieve(
 model_id=train_model_id, model_version=train_model_version,
 model_scope=train_scope
)

Sample training data is available in this bucket
training_data_bucket = f"jumpstart-cache-prod-{aws_region}"
training_data_prefix = "training-datasets/tabular_multiclass/"

training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/
train"
validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/
validation"

output_bucket = sess.default_bucket()
output_prefix = "jumpstart-example-tabular-training"

s3_output_location = f"s3://{output_bucket}/{output_prefix}/output"

from sagemaker import hyperparameters

Retrieve the default hyperparameters for training the model
hyperparameters = hyperparameters.retrieve_default(
 model_id=train_model_id, model_version=train_model_version
)

[Optional] Override default hyperparameters with custom values

Use Built-in Algorithms 2708

Amazon SageMaker Developer Guide

hyperparameters[
 "num_boost_round"
] = "500"
print(hyperparameters)

from sagemaker.estimator import Estimator
from sagemaker.utils import name_from_base

training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training")

Create SageMaker Estimator instance
tabular_estimator = Estimator(
 role=aws_role,
 image_uri=train_image_uri,
 source_dir=train_source_uri,
 model_uri=train_model_uri,
 entry_point="transfer_learning.py",
 instance_count=1, # for distributed training, specify an instance_count greater
 than 1
 instance_type=training_instance_type,
 max_run=360000,
 hyperparameters=hyperparameters,
 output_path=s3_output_location
)

Launch a SageMaker Training job by passing the S3 path of the training data
tabular_estimator.fit(
 {
 "train": training_dataset_s3_path,
 "validation": validation_dataset_s3_path,
 }, logs=True, job_name=training_job_name
)

For more information about how to set up the LightGBM as a built-in algorithm, see the
following notebook examples.

• Tabular classification with Amazon SageMaker LightGBM and CatBoost algorithm

• Tabular regression with Amazon SageMaker LightGBM and CatBoost algorithm

Use Built-in Algorithms 2709

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.ipynb

Amazon SageMaker Developer Guide

Input and Output interface for the LightGBM algorithm

Gradient boosting operates on tabular data, with the rows representing observations, one column
representing the target variable or label, and the remaining columns representing features.

The SageMaker implementation of LightGBM supports CSV for training and inference:

• For Training ContentType, valid inputs must be text/csv.

• For Inference ContentType, valid inputs must be text/csv.

Note

For CSV training, the algorithm assumes that the target variable is in the first column and
that the CSV does not have a header record.
For CSV inference, the algorithm assumes that CSV input does not have the label column.

Input format for training data, validation data, and categorical features

Be mindful of how to format your training data for input to the LightGBM model. You must provide
the path to an Amazon S3 bucket that contains your training and validation data. You can also
include a list of categorical features. Use both the train and validation channels to provide
your input data. Alternatively, you can use only the train channel.

Note

Both train and training are valid channel names for LightGBM training.

Use both the train and validation channels

You can provide your input data by way of two S3 paths, one for the train channel and one for
the validation channel. Each S3 path can either be an S3 prefix that points to one or more CSV
files or a full S3 path pointing to one specific CSV file. The target variables should be in the first
column of your CSV file. The predictor variables (features) should be in the remaining columns. If
multiple CSV files are provided for the train or validation channels, the LightGBM algorithm
concatenates the files. The validation data is used to compute a validation score at the end of each
boosting iteration. Early stopping is applied when the validation score stops improving.

Use Built-in Algorithms 2710

Amazon SageMaker Developer Guide

If your predictors include categorical features, you can provide a JSON file named
categorical_index.json in the same location as your training data file or files. If you
provide a JSON file for categorical features, your train channel must point to an S3 prefix and
not a specific CSV file. This file should contain a Python dictionary where the key is the string
"cat_index_list" and the value is a list of unique integers. Each integer in the value list should
indicate the column index of the corresponding categorical features in your training data CSV
file. Each value should be a positive integer (greater than zero because zero represents the target
value), less than the Int32.MaxValue (2147483647), and less than the total number of columns.
There should only be one categorical index JSON file.

Use only the train channel:

You can alternatively provide your input data by way of a single S3 path for the train channel.
This S3 path should point to a directory with a subdirectory named train/ that contains one
or more CSV files. You can optionally include another subdirectory in the same location called
validation/ that also has one or more CSV files. If the validation data is not provided, then 20%
of your training data is randomly sampled to serve as the validation data. If your predictors include
categorical features, you can provide a JSON file named categorical_index.json in the same
location as your data subdirectories.

Note

For CSV training input mode, the total memory available to the algorithm (instance count
multiplied by the memory available in the InstanceType) must be able to hold the
training dataset.

SageMaker LightGBM uses the Python Joblib module to serialize or deserialize the model, which
can be used for saving or loading the model.

To use a model trained with SageMaker LightGBM with the JobLib module

• Use the following Python code:

import joblib
import tarfile

t = tarfile.open('model.tar.gz', 'r:gz')
t.extractall()

Use Built-in Algorithms 2711

Amazon SageMaker Developer Guide

model = joblib.load(model_file_path)

prediction with test data
dtest should be a pandas DataFrame with column names feature_0, feature_1, ...,
 feature_d
pred = model.predict(dtest)

Amazon EC2 instance recommendation for the LightGBM algorithm

SageMaker LightGBM currently supports single-instance and multi-instance CPU training. For
multi-instance CPU training (distributed training), specify an instance_count greater than 1
when you define your Estimator. For more information on distributed training with LightGBM, see
Amazon SageMaker LightGBM Distributed training using Dask.

LightGBM is a memory-bound (as opposed to compute-bound) algorithm. So, a general-purpose
compute instance (for example, M5) is a better choice than a compute-optimized instance (for
example, C5). Further, we recommend that you have enough total memory in selected instances to
hold the training data.

LightGBM sample notebooks

The following table outlines a variety of sample notebooks that address different use cases of
Amazon SageMaker LightGBM algorithm.

Notebook Title Description

Tabular classification with Amazon SageMaker
LightGBM and CatBoost algorithm

This notebook demonstrates the use of the
Amazon SageMaker LightGBM algorithm to
train and host a tabular classification model.

Tabular regression with Amazon SageMaker
LightGBM and CatBoost algorithm

This notebook demonstrates the use of the
Amazon SageMaker LightGBM algorithm to
train and host a tabular regression model.

Amazon SageMaker LightGBM Distributed
training using Dask

This notebook demonstrates distribut
ed training with the Amazon SageMaker
LightGBM algorithm using the Dask
framework.

Use Built-in Algorithms 2712

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_applying_machine_learning/sagemaker_lightgbm_distributed_training_dask/sagemaker-lightgbm-distributed-training-dask.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Classification_LightGBM_CatBoost.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/lightgbm_catboost_tabular/Amazon_Tabular_Regression_LightGBM_CatBoost.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_applying_machine_learning/sagemaker_lightgbm_distributed_training_dask/sagemaker-lightgbm-distributed-training-dask.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_applying_machine_learning/sagemaker_lightgbm_distributed_training_dask/sagemaker-lightgbm-distributed-training-dask.html

Amazon SageMaker Developer Guide

For instructions on how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created a
notebook instance and opened it, choose the SageMaker Examples tab to see a list of all of the
SageMaker samples. To open a notebook, choose its Use tab and choose Create copy.

How LightGBM works

LightGBM implements a conventional Gradient Boosting Decision Tree (GBDT) algorithm with
the addition of two novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB). These techniques are designed to significantly improve the efficiency and
scalability of GBDT.

The LightGBM algorithm performs well in machine learning competitions because of its
robust handling of a variety of data types, relationships, distributions, and the diversity of
hyperparameters that you can fine-tune. You can use LightGBM for regression, classification (binary
and multiclass), and ranking problems.

For more information on gradient boosting, see How XGBoost Works. For in-depth details about
the additional GOSS and EFB techniques used in the LightGBM method, see LightGBM: A Highly
Efficient Gradient Boosting Decision Tree.

LightGBM hyperparameters

The following table contains the subset of hyperparameters that are required or most commonly
used for the Amazon SageMaker LightGBM algorithm. Users set these parameters to facilitate
the estimation of model parameters from data. The SageMaker LightGBM algorithm is an
implementation of the open-source LightGBM package.

Note

The default hyperparameters are based on example datasets in the LightGBM sample
notebooks.

By default, the SageMaker LightGBM algorithm automatically chooses an evaluation metric and
objective function based on the type of classification problem. The LightGBM algorithm detects
the type of classification problem based on the number of labels in your data. For regression
problems, the evaluation metric is root mean squared error and the objective function is L2 loss.
For binary classification problems, the evaluation metric and objective function are both binary

Use Built-in Algorithms 2713

https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://github.com/microsoft/LightGBM

Amazon SageMaker Developer Guide

cross entropy. For multiclass classification problems, the evaluation metric is multiclass cross
entropy and the objective function is softmax. You can use the metric hyperparameter to change
the default evaluation metric. Refer to the following table for more information on LightGBM
hyperparameters, including descriptions, valid values, and default values.

Parameter Name Description

num_boost_round The maximum number of boosting iterations. Note: Internall
y, LightGBM constructs num_class * num_boost_round
trees for multi-class classification problems.

Valid values: integer, range: Positive integer.

Default value: 100.

early_stopping_rou
nds

The training will stop if one metric of one validation data point
does not improve in the last early_stopping_rounds
round. If early_stopping_rounds is less than or equal to
zero, this hyperparameter is ignored.

Valid values: integer.

Default value: 10.

metric The evaluation metric for validation data. If metric is set to
the default "auto" value, then the algorithm automatically
chooses an evaluation metric based on the type of classific
ation problem:

• rmse for regression

• binary_logloss for binary classification

• multi_logloss for multi-class classification

Valid values: string, any of the following: ("auto", "rmse",
"l1", "l2", "huber", "fair", "binary_logloss" ,
"binary_error" , "auc", "average_precision" ,
"multi_logloss" , "multi_error" , "auc_mu", or
"cross_entropy").

Use Built-in Algorithms 2714

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: "auto".

learning_rate The rate at which the model weights are updated after working
through each batch of training examples.

Valid values: float, range: (0.0, 1.0).

Default value: 0.1.

num_leaves The maximum number of leaves in one tree.

Valid values: integer, range: (1, 131072).

Default value: 64.

feature_fraction A subset of features to be selected on each iteration (tree).
Must be less than 1.0.

Valid values: float, range: (0.0, 1.0).

Default value: 0.9.

bagging_fraction A subset of features similar to feature_fraction , but
bagging_fraction randomly selects part of the data
without resampling.

Valid values: float, range: (0.0, 1.0].

Default value: 0.9.

bagging_freq The frequency to perform bagging. At every bagging_freq
iteration, LightGBM randomly selects a percentage of the data
to use for the next bagging_freq iteration. This percentage
is determined by the bagging_fraction hyperparameter. If
bagging_freq is zero, then bagging is deactivated.

Valid values: integer, range: Non-negative integer.

Default value: 1.

Use Built-in Algorithms 2715

Amazon SageMaker Developer Guide

Parameter Name Description

max_depth The maximum depth for a tree model. This is used to deal with
overfitting when the amount of data is small. If max_depth

 is less than or equal to zero, this means there is no limit for
maximum depth.

Valid values: integer.

Default value: 6.

min_data_in_leaf The minimum amount of data in one leaf. Can be used to deal
with overfitting.

Valid values: integer, range: Non-negative integer.

Default value: 3.

max_delta_step Used to limit the max output of tree leaves. If max_delta
_step is less than or equal to 0, then there is no constrain
t. The final max output of leaves is learning_rate *
max_delta_step .

Valid values: float.

Default value: 0.0.

lambda_l1 L1 regularization.

Valid values: float, range: Non-negative float.

Default value: 0.0.

lambda_l2 L2 regularization.

Valid values: float, range: Non-negative float.

Default value: 0.0.

Use Built-in Algorithms 2716

Amazon SageMaker Developer Guide

Parameter Name Description

boosting Boosting type

Valid values: string, any of the following: ("gbdt", "rf",
"dart", or "goss").

Default value: "gbdt".

min_gain_to_split The minimum gain to perform a split. Can be used to speed up
training.

Valid values: integer, float: Non-negative float.

Default value: 0.0.

scale_pos_weight The weight of the labels with positive class. Used only for
binary classification tasks. scale_pos_weight cannot be
used if is_unbalance is set to "True".

Valid values: float, range: Positive float.

Default value: 1.0.

tree_learner Tree learner type.

Valid values: string, any of the following: ("serial",
"feature" , "data", or "voting").

Default value: "serial".

feature_fraction_b
ynode

Selects a subset of random features on each tree node. For
example, if feature_fraction_bynode is 0.8, then 80%
of features are selected. Can be used to deal with overfitting.

Valid values: integer, range: (0.0, 1.0].

Default value: 1.0.

Use Built-in Algorithms 2717

Amazon SageMaker Developer Guide

Parameter Name Description

is_unbalance Set to "True" if training data is unbalanced. Used only for
binary classification tasks. is_unbalance cannot be used
with scale_pos_weight .

Valid values: string, either: ("True" or "False").

Default value: "False".

max_bin The maximum number of bins used to bucket feature values.
A small number of bins may reduce training accuracy, but
may increase general performance. Can be used to deal with
overfitting.

Valid values: integer, range: (1, ∞).

Default value: 255.

tweedie_variance_p
ower

Controls the variance of the Tweedie distribution. Set this
closer to 2.0 to shift toward a gamma distribution. Set this
closer to 1.0 to shift toward a Poisson distribution. Used only
for regression tasks.

Valid values: float, range: [1.0, 2.0).

Default value: 1.5.

num_threads Number of parallel threads used to run LightGBM. Value 0
means default number of threads in OpenMP.

Valid values: integer, range: Non-negative integer.

Default value: 0.

Use Built-in Algorithms 2718

Amazon SageMaker Developer Guide

Parameter Name Description

verbosity The verbosity of print messages. If the verbosity is
less than 0, then print messages only show fatal errors. If
verbosity is set to 0, then print messages include errors
and warnings. If verbosity is 1, then print messages show
more information. A verbosity greater than 1 shows the
most information in print messages and can be used for
debugging.

Valid values: integer.

Default value: 1.

Tune a LightGBM model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your training and validation
datasets. Model tuning focuses on the following hyperparameters:

Note

The learning objective function is automatically assigned based on the type of classification
task, which is determined by the number of unique integers in the label column. For more
information, see LightGBM hyperparameters.

• A learning objective function to optimize during model training

• An evaluation metric that is used to evaluate model performance during validation

• A set of hyperparameters and a range of values for each to use when tuning the model
automatically

Automatic model tuning searches your specified hyperparameters to find the combination of
values that results in a model that optimizes the chosen evaluation metric.

Use Built-in Algorithms 2719

Amazon SageMaker Developer Guide

Note

Automatic model tuning for LightGBM is only available from the Amazon SageMaker SDKs,
not from the SageMaker console.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Evaluation metrics computed by the LightGBM algorithm

The SageMaker LightGBM algorithm computes the following metrics to use for model validation.
The evaluation metric is automatically assigned based on the type of classification task, which is
determined by the number of unique integers in the label column.

Metric Name Description Optimization
Direction

Regex Pattern

rmse root mean square error minimize "rmse:
([0-9\\.]
+)"

l1 mean absolute error minimize "l1: ([0-9\
\.]+)"

l2 mean squared error minimize "l2: ([0-9\
\.]+)"

huber huber loss minimize "huber:
([0-9\\.]
+)"

fair fair loss minimize "fair:
([0-9\\.]
+)"

binary_lo
gloss

binary cross entropy maximize "binary_l
ogloss:
([0-9\\.]
+)"

Use Built-in Algorithms 2720

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

Regex Pattern

binary_er
ror

binary error minimize "binary_e
rror:
([0-9\\.]
+)"

auc AUC maximize "auc: ([0-9\
\.]+)"

average_p
recision

average precision score maximize "average_
precision
: ([0-9\\.]
+)"

multi_log
loss

multiclass cross entropy maximize "multi_lo
gloss:
([0-9\\.]
+)"

multi_error multiclass error score minimize "multi_er
ror: ([0-9\
\.]+)"

auc_mu AUC-mu maximize "auc_mu:
([0-9\\.]
+)"

cross_ent
ropy

cross entropy minimize "cross_en
tropy:
([0-9\\.]
+)"

Tunable LightGBM hyperparameters

Tune the LightGBM model with the following hyperparameters. The hyperparameters that
have the greatest effect on optimizing the LightGBM evaluation metrics are: learning_rate,

Use Built-in Algorithms 2721

Amazon SageMaker Developer Guide

num_leaves, feature_fraction, bagging_fraction, bagging_freq, max_depth
and min_data_in_leaf. For a list of all the LightGBM hyperparameters, see LightGBM
hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

learning_rate ContinuousParameterRanges MinValue: 0.001,
MaxValue: 0.01

num_leaves IntegerParameterRanges MinValue: 10,
MaxValue: 100

feature_f
raction

ContinuousParameterRanges MinValue: 0.1,
MaxValue: 1.0

bagging_f
raction

ContinuousParameterRanges MinValue: 0.1,
MaxValue: 1.0

bagging_freq IntegerParameterRanges MinValue: 0,
MaxValue: 10

max_depth IntegerParameterRanges MinValue: 15,
MaxValue: 100

min_data_
in_leaf

IntegerParameterRanges MinValue: 10,
MaxValue: 200

Linear Learner Algorithm

Linear models are supervised learning algorithms used for solving either classification or regression
problems. For input, you give the model labeled examples (x, y). x is a high-dimensional vector
and y is a numeric label. For binary classification problems, the label must be either 0 or 1. For
multiclass classification problems, the labels must be from 0 to num_classes - 1. For regression
problems, y is a real number. The algorithm learns a linear function, or, for classification problems,
a linear threshold function, and maps a vector x to an approximation of the label y.

The Amazon SageMaker linear learner algorithm provides a solution for both classification and
regression problems. With the SageMaker algorithm, you can simultaneously explore different

Use Built-in Algorithms 2722

Amazon SageMaker Developer Guide

training objectives and choose the best solution from a validation set. You can also explore a large
number of models and choose the best. The best model optimizes either of the following:

• Continuous objectives, such as mean square error, cross entropy loss, absolute error.

• Discrete objectives suited for classification, such as F1 measure, precision, recall, or accuracy.

Compared with methods that provide a solution for only continuous objectives, the SageMaker
linear learner algorithm provides a significant increase in speed over naive hyperparameter
optimization techniques. It is also more convenient.

The linear learner algorithm requires a data matrix, with rows representing the observations,
and columns representing the dimensions of the features. It also requires an additional column
that contains the labels that match the data points. At a minimum, Amazon SageMaker linear
learner requires you to specify input and output data locations, and objective type (classification
or regression) as arguments. The feature dimension is also required. For more information, see
CreateTrainingJob. You can specify additional parameters in the HyperParameters string
map of the request body. These parameters control the optimization procedure, or specifics of the
objective function that you train on. For example, the number of epochs, regularization, and loss
type.

If you're using Managed Spot Training, the linear learner algorithm supports using checkpoints to
take a snapshot of the state of the model.

Topics

• Input/Output interface for the linear learner algorithm

• EC2 instance recommendation for the linear learner algorithm

• Linear learner sample notebooks

• How linear learner works

• Linear learner hyperparameters

• Tune a linear learner model

• Linear learner response formats

Input/Output interface for the linear learner algorithm

The Amazon SageMaker linear learner algorithm supports three data channels: train, validation
(optional), and test (optional). If you provide validation data, the S3DataDistributionType

Use Built-in Algorithms 2723

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html

Amazon SageMaker Developer Guide

should be FullyReplicated. The algorithm logs validation loss at every epoch, and uses a
sample of the validation data to calibrate and select the best model. If you don't provide validation
data, the algorithm uses a sample of the training data to calibrate and select the model. If you
provide test data, the algorithm logs include the test score for the final model.

For training, the linear learner algorithm supports both recordIO-wrapped protobuf and CSV
formats. For the application/x-recordio-protobuf input type, only Float32 tensors are
supported. For the text/csv input type, the first column is assumed to be the label, which is the
target variable for prediction. You can use either File mode or Pipe mode to train linear learner
models on data that is formatted as recordIO-wrapped-protobuf or as CSV.

For inference, the linear learner algorithm supports the application/json,
application/x-recordio-protobuf, and text/csv formats. When you make
predictions on new data, the format of the response depends on the type of model. For
regression (predictor_type='regressor'), the score is the prediction produced
by the model. For classification (predictor_type='binary_classifier' or
predictor_type='multiclass_classifier'), the model returns a score and also a
predicted_label. The predicted_label is the class predicted by the model and the score
measures the strength of that prediction.

• For binary classification, predicted_label is 0 or 1, and score is a single floating point
number that indicates how strongly the algorithm believes that the label should be 1.

• For multiclass classification, the predicted_class will be an integer from 0 to
num_classes-1, and score will be a list of one floating point number per class.

To interpret the score in classification problems, you have to consider the loss function used.
If the loss hyperparameter value is logistic for binary classification or softmax_loss for
multiclass classification, then the score can be interpreted as the probability of the corresponding
class. These are the loss values used by the linear learner when the loss value is auto default
value. But if the loss is set to hinge_loss, then the score cannot be interpreted as a probability.
This is because hinge loss corresponds to a Support Vector Classifier, which does not produce
probability estimates.

For more information on input and output file formats, see Linear learner response formats. For
more information on inference formats, and the Linear learner sample notebooks.

Use Built-in Algorithms 2724

Amazon SageMaker Developer Guide

EC2 instance recommendation for the linear learner algorithm

The linear learner algorithm supports both CPU and GPU instances for training and inference. For
GPU, the linear learner algorithm supports P2, P3, G4dn, and G5 GPU families.

During testing, we have not found substantial evidence that multi-GPU instances are faster than
single-GPU instances. Results can vary, depending on your specific use case.

Linear learner sample notebooks

The following table outlines a variety of sample notebooks that address different use cases of
Amazon SageMaker linear learner algorithm.

Notebook Title Description

An Introduction with the MNIST dataset Using the MNIST dataset, we train a binary
classifier to predict a single digit.

How to Build a Multiclass Classifier? Using UCI's Covertype dataset, we demonstra
te how to train a multiclass classifier.

How to Build a Machine Learning (ML) Pipeline
for Inference?

Using a Scikit-learn container, we demonstrate
how to build an end-to-end ML pipeline.

For instructions on how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created a
notebook instance and opened it, choose the SageMaker Examples tab to see a list of all of the
SageMaker samples. The topic modeling example notebooks using the linear learning algorithm
are located in the Introduction to Amazon algorithms section. To open a notebook, choose its Use
tab and choose Create copy.

How linear learner works

There are three steps involved in the implementation of the linear learner algorithm: preprocess,
train, and validate.

Step 1: Preprocess

Normalization, or feature scaling, is an important preprocessing step for certain loss functions
that ensures the model being trained on a dataset does not become dominated by the weight of

Use Built-in Algorithms 2725

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/linear_learner_mnist/linear_learner_mnist.html
https://sagemaker-examples.readthedocs.io/en/latest/scientific_details_of_algorithms/linear_learner_multiclass_classification/linear_learner_multiclass_classification.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/scikit_learn_inference_pipeline/Inference%20Pipeline%20with%20Scikit-learn%20and%20Linear%20Learner.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/scikit_learn_inference_pipeline/Inference%20Pipeline%20with%20Scikit-learn%20and%20Linear%20Learner.html

Amazon SageMaker Developer Guide

a single feature. The Amazon SageMaker Linear Learner algorithm has a normalization option to
assist with this preprocessing step. If normalization is turned on, the algorithm first goes over a
small sample of the data to learn the mean value and standard deviation for each feature and for
the label. Each of the features in the full dataset is then shifted to have mean of zero and scaled to
have a unit standard deviation.

Note

For best results, ensure your data is shuffled before training. Training with unshuffled data
may cause training to fail.

You can configure whether the linear learner algorithm normalizes the feature data and the
labels using the normalize_data and normalize_label hyperparameters, respectively.
Normalization is enabled by default for both features and labels for regression. Only the features
can be normalized for binary classification and this is the default behavior.

Step 2: Train

With the linear learner algorithm, you train with a distributed implementation of stochastic
gradient descent (SGD). You can control the optimization process by choosing the optimization
algorithm. For example, you can choose to use Adam, AdaGrad, stochastic gradient descent,
or other optimization algorithms. You also specify their hyperparameters, such as momentum,
learning rate, and the learning rate schedule. If you aren't sure which algorithm or hyperparameter
value to use, choose a default that works for the majority of datasets.

During training, you simultaneously optimize multiple models, each with slightly different
objectives. For example, you vary L1 or L2 regularization and try out different optimizer settings.

Step 3: Validate and set the threshold

When training multiple models in parallel, the models are evaluated against a validation set to
select the most optimal model once training is complete. For regression, the most optimal model
is the one that achieves the best loss on the validation set. For classification, a sample of the
validation set is used to calibrate the classification threshold. The most optimal model selected is
the one that achieves the best binary classification selection criteria on the validation set. Examples
of such criteria include the F1 measure, accuracy, and cross-entropy loss.

Use Built-in Algorithms 2726

Amazon SageMaker Developer Guide

Note

If the algorithm is not provided a validation set, then evaluating and selecting the most
optimal model is not possible. To take advantage of parallel training and model selection
ensure you provide a validation set to the algorithm.

Linear learner hyperparameters

The following table contains the hyperparameters for the linear learner algorithm. These
are parameters that are set by users to facilitate the estimation of model parameters from
data. The required hyperparameters that must be set are listed first, in alphabetical order. The
optional hyperparameters that can be set are listed next, also in alphabetical order. When a
hyperparameter is set to auto, Amazon SageMaker will automatically calculate and set the value
of that hyperparameter.

Parameter Name Description

num_classes The number of classes for the response variable. The algorithm
 assumes that classes are labeled 0, ..., num_classes - 1 .

Required when predictor_type is multiclass_classif
ier . Otherwise, the algorithm ignores it.

Valid values: Integers from 3 to 1,000,000

predictor_type Specifies the type of target variable as a binary classification,
multiclass classification, or regression.

Required

Valid values: binary_classifier , multiclass_classifier ,
or regressor

accuracy_top_k When computing the top-k accuracy metric for multiclass classific
ation, the value of k. If the model assigns one of the top-k scores to
the true label, an example is scored as correct.

Optional

Use Built-in Algorithms 2727

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: Positive integers

Default value: 3

balance_m
ulticlass
_weights

Specifies whether to use class weights, which give each class equal
importance in the loss function. Used only when the predictor
_type is multiclass_classifier .

Optional

Valid values: true, false

Default value: false

beta_1 The exponential decay rate for first-moment estimates. Applies only
when the optimizer value is adam.

Optional

Valid values: auto or floating-point value between 0 and 1.0

Default value: auto

beta_2 The exponential decay rate for second-moment estimates. Applies
only when the optimizer value is adam.

Optional

Valid values: auto or floating-point integer between 0 and 1.0

Default value: auto

bias_lr_mult Allows a different learning rate for the bias term. The actual learning
rate for the bias is learning_rate * bias_lr_mult .

Optional

Valid values: auto or positive floating-point integer

Default value: auto

Use Built-in Algorithms 2728

Amazon SageMaker Developer Guide

Parameter Name Description

bias_wd_mult Allows different regularization for the bias term. The actual L2
regularization weight for the bias is wd * bias_wd_mult . By
default, there is no regularization on the bias term.

Optional

Valid values: auto or non-negative floating-point integer

Default value: auto

binary_cl
assifier_
model_sel
ection_criteria

When predictor_type is set to binary_classifier , the
model evaluation criteria for the validation dataset (or for the
training dataset if you don't provide a validation dataset). Criteria
include:

• accuracy—The model with the highest accuracy.

• f_beta—The model with the highest F1 score. The default is F1.

• precision_at_target_recall —The model with the highest
precision at a given recall target.

• recall_at_target_precision —The model with the highest
recall at a given precision target.

• loss_function —The model with the lowest value of the loss
function used in training.

Optional

Valid values: accuracy, f_beta, precision_at_targe
t_recall , recall_at_target_precision , or loss_func
tion

Default value: accuracy

Use Built-in Algorithms 2729

Amazon SageMaker Developer Guide

Parameter Name Description

early_sto
pping_patience

If no improvement is made in the relevant metric, the number of
epochs to wait before ending training. If you have provided a value
for binary_classifier_model_selection_criteria . the
metric is that value. Otherwise, the metric is the same as the value
specified for the loss hyperparameter.

The metric is evaluated on the validation data. If you haven't
provided validation data, the metric is always the same as the value
specified for the loss hyperparameter and is evaluated on the
training data. To disable early stopping, set early_stopping_pat
ience to a value greater than the value specified for epochs.

Optional

Valid values: Positive integer

Default value: 3

early_sto
pping_tolerance

The relative tolerance to measure an improvement in loss. If the
ratio of the improvement in loss divided by the previous best loss is
smaller than this value, early stopping considers the improvement to
be zero.

Optional

Valid values: Positive floating-point integer

Default value: 0.001

epochs The maximum number of passes over the training data.

Optional

Valid values: Positive integer

Default value: 15

Use Built-in Algorithms 2730

Amazon SageMaker Developer Guide

Parameter Name Description

f_beta The value of beta to use when calculating F score metrics for binary
or multiclass classification. Also used if the value specified for
binary_classifier_model_selection_criteria is
f_beta.

Optional

Valid values: Positive floating-point integers

Default value: 1.0

feature_dim The number of features in the input data.

Optional

Valid values: auto or positive integer

Default values: auto

huber_delta The parameter for Huber loss. During training and metric evaluatio
n, compute L2 loss for errors smaller than delta and L1 loss for errors
larger than delta.

Optional

Valid values: Positive floating-point integer

Default value: 1.0

init_bias Initial weight for the bias term.

Optional

Valid values: Floating-point integer

Default value: 0

Use Built-in Algorithms 2731

Amazon SageMaker Developer Guide

Parameter Name Description

init_method Sets the initial distribution function used for model weights.
Functions include:

• uniform—Uniformly distributed between (-scale, +scale)

• normal—Normal distribution, with mean 0 and sigma

Optional

Valid values: uniform or normal

Default value: uniform

init_scale Scales an initial uniform distribution for model weights. Applies only
when the init_method hyperparameter is set to uniform.

Optional

Valid values: Positive floating-point integer

Default value: 0.07

init_sigma The initial standard deviation for the normal distribution. Applies
only when the init_method hyperparameter is set to normal.

Optional

Valid values: Positive floating-point integer

Default value: 0.01

l1 The L1 regularization parameter. If you don't want to use L1
regularization, set the value to 0.

Optional

Valid values: auto or non-negative float

Default value: auto

Use Built-in Algorithms 2732

Amazon SageMaker Developer Guide

Parameter Name Description

learning_rate The step size used by the optimizer for parameter updates.

Optional

Valid values: auto or positive floating-point integer

Default value: auto, whose value depends on the optimizer chosen.

loss Specifies the loss function.

The available loss functions and their default values depend on the
value of predictor_type :

• If the predictor_type is set to regressor , the available
options are auto, squared_loss , absolute_loss ,
eps_insensitive_squared_loss , eps_insen
sitive_absolute_loss , quantile_loss , and
huber_loss . The default value for auto is squared_loss .

• If the predictor_type is set to binary_classifier , the
available options are auto,logistic, and hinge_loss . The
default value for auto is logistic.

• If the predictor_type is set to multiclass_classifier ,
the available options are auto and softmax_loss . The default
value for auto is softmax_loss .

Valid values: auto, logistic, squared_loss , absolute_
loss , hinge_loss , eps_insensitive_squared_loss ,
eps_insensitive_absolute_loss , quantile_loss , or
huber_loss

Optional

Default value: auto

Use Built-in Algorithms 2733

Amazon SageMaker Developer Guide

Parameter Name Description

loss_inse
nsitivity

The parameter for the epsilon-insensitive loss type. During training
and metric evaluation, any error smaller than this value is considered
to be zero.

Optional

Valid values: Positive floating-point integer

Default value: 0.01

lr_schedu
ler_factor

For every lr_scheduler_step hyperparameter, the learning
rate decreases by this quantity. Applies only when the use_lr_sc
heduler hyperparameter is set to true.

Optional

Valid values: auto or positive floating-point integer between 0 and 1

Default value: auto

lr_schedu
ler_minimum_lr

The learning rate never decreases to a value lower than the value
set for lr_scheduler_minimum_lr . Applies only when the
use_lr_scheduler hyperparameter is set to true.

Optional

Valid values: auto or positive floating-point integer

Default values: auto

lr_scheduler_step The number of steps between decreases of the learning rate. Applies
only when the use_lr_scheduler hyperparameter is set to true.

Optional

Valid values: auto or positive integer

Default value: auto

Use Built-in Algorithms 2734

Amazon SageMaker Developer Guide

Parameter Name Description

margin The margin for the hinge_loss function.

Optional

Valid values: Positive floating-point integer

Default value: 1.0

mini_batch_size The number of observations per mini-batch for the data iterator.

Optional

Valid values: Positive integer

Default value: 1000

momentum The momentum of the sgd optimizer.

Optional

Valid values: auto or a floating-point integer between 0 and 1.0

Default value: auto

normalize_data Normalizes the feature data before training. Data normalization
shifts the data for each feature to have a mean of zero and scales it
to have unit standard deviation.

Optional

Valid values: auto, true, or false

Default value: true

Use Built-in Algorithms 2735

Amazon SageMaker Developer Guide

Parameter Name Description

normalize_label Normalizes the label. Label normalization shifts the label to have a
mean of zero and scales it to have unit standard deviation.

The auto default value normalizes the label for regression problems
but does not for classification problems. If you set the normalize
_label hyperparameter to true for classification problems, the
algorithm ignores it.

Optional

Valid values: auto, true, or false

Default value: auto

num_calib
ration_samples

The number of observations from the validation dataset to use for
model calibration (when finding the best threshold).

Optional

Valid values: auto or positive integer

Default value: auto

num_models The number of models to train in parallel. For the default, auto, the
algorithm decides the number of parallel models to train. One model
is trained according to the given training parameter (regularization,
optimizer, loss), and the rest by close parameters.

Optional

Valid values: auto or positive integer

Default values: auto

Use Built-in Algorithms 2736

Amazon SageMaker Developer Guide

Parameter Name Description

num_point
_for_scaler

The number of data points to use for calculating normalization or
unbiasing of terms.

Optional

Valid values: Positive integer

Default value: 10,000

optimizer The optimization algorithm to use.

Optional

Valid values:

• auto—The default value.

• sgd—Stochastic gradient descent.

• adam—Adaptive momentum estimation.

• rmsprop—A gradient-based optimization technique that uses a
moving average of squared gradients to normalize the gradient.

Default value: auto. The default setting for auto is adam.

positive_
example_w
eight_mult

The weight assigned to positive examples when training a binary
classifier. The weight of negative examples is fixed at 1. If you
want the algorithm to choose a weight so that errors in classifying
negative vs. positive examples have equal impact on training loss,
specify balanced. If you want the algorithm to choose the weight
that optimizes performance, specify auto.

Optional

Valid values: balanced, auto, or a positive floating-point integer

Default value: 1.0

Use Built-in Algorithms 2737

https://arxiv.org/pdf/1412.6980.pdf

Amazon SageMaker Developer Guide

Parameter Name Description

quantile The quantile for quantile loss. For quantile q, the model attempts
to produce predictions so that the value of true_label is greater
than the prediction with probability q.

Optional

Valid values: Floating-point integer between 0 and 1

Default value: 0.5

target_precision The target precision. If binary_classifier_model_sel
ection_criteria is recall_at_target_precision , then
precision is held at this value while recall is maximized.

Optional

Valid values: Floating-point integer between 0 and 1.0

Default value: 0.8

target_recall The target recall. If binary_classifier_model_sel
ection_criteria is precision_at_target_recall , then
recall is held at this value while precision is maximized.

Optional

Valid values: Floating-point integer between 0 and 1.0

Default value: 0.8

unbias_data Unbiases the features before training so that the mean is 0. By
default data is unbiased as the use_bias hyperparameter is set to
true.

Optional

Valid values: auto, true, or false

Default value: auto

Use Built-in Algorithms 2738

Amazon SageMaker Developer Guide

Parameter Name Description

unbias_label Unbiases labels before training so that the mean is 0. Applies to
regression only if the use_bias hyperparameter is set to true.

Optional

Valid values: auto, true, or false

Default value: auto

use_bias Specifies whether the model should include a bias term, which is the
intercept term in the linear equation.

Optional

Valid values: true or false

Default value: true

use_lr_scheduler Whether to use a scheduler for the learning rate. If you want to use a
scheduler, specify true.

Optional

Valid values: true or false

Default value: true

wd The weight decay parameter, also known as the L2 regularization
parameter. If you don't want to use L2 regularization, set the value to
0.

Optional

Valid values:auto or non-negative floating-point integer

Default value: auto

Use Built-in Algorithms 2739

Amazon SageMaker Developer Guide

Tune a linear learner model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

The linear learner algorithm also has an internal mechanism for tuning hyperparameters separate
from the automatic model tuning feature described here. By default, the linear learner algorithm
tunes hyperparameters by training multiple models in parallel. When you use automatic model
tuning, the linear learner internal tuning mechanism is turned off automatically. This sets the
number of parallel models, num_models, to 1. The algorithm ignores any value that you set for
num_models.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics computed by the linear learner algorithm

The linear learner algorithm reports the metrics in the following table, which are computed during
training. Choose one of them as the objective metric. To avoid overfitting, we recommend tuning
the model against a validation metric instead of a training metric.

Metric Name Description Optimization
Direction

test:abso
lute_loss

The absolute loss of the final model on the
test dataset. This objective metric is only valid
for regression.

Minimize

test:bina
ry_classi
fication_
accuracy

The accuracy of the final model on the test
dataset. This objective metric is only valid for
binary classification.

Maximize

test:bina
ry_f_beta

The F-beta score of the final model on the test
dataset. By default, it is the F1 score, which
is the harmonic mean of precision and recall.

Maximize

Use Built-in Algorithms 2740

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

This objective metric is only valid for binary
classification.

test:dcg The discounted cumulative gain of the final
model on the test dataset. This objective
metric is only valid for multiclass classification.

Maximize

test:macr
o_f_beta

The F-beta score of the final model on the test
dataset. This objective metric is only valid for
multiclass classification.

Maximize

test:macr
o_precision

The precision score of the final model on the
test dataset. This objective metric is only valid
for multiclass classification.

Maximize

test:macr
o_recall

The recall score of the final model on the test
dataset. This objective metric is only valid for
multiclass classification.

Maximize

test:mse The mean square error of the final model on
the test dataset. This objective metric is only
valid for regression.

Minimize

test:mult
iclass_ac
curacy

The accuracy of the final model on the test
dataset. This objective metric is only valid for
multiclass classification.

Maximize

test:mult
iclass_to
p_k_accuracy

The accuracy among the top k labels predicted
on the test dataset. If you choose this metric
as the objective, we recommend setting the
value of k using the accuracy_top_k
hyperparameter. This objective metric is only
valid for multiclass classification.

Maximize

Use Built-in Algorithms 2741

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

test:obje
ctive_loss

The mean value of the objective loss function
on the test dataset after the model is trained.
By default, the loss is logistic loss for binary
classification and squared loss for regression.
To set the loss to other types, use the loss
hyperparameter.

Minimize

test:precision The precision of the final model on the test
dataset. If you choose this metric as the
objective, we recommend setting a target
recall by setting the binary_classifier_
model_selection hyperparameter to
precision_at_target_recall and
setting the value for the target_recall
hyperparameter. This objective metric is only
valid for binary classification.

Maximize

test:recall The recall of the final model on the test
dataset. If you choose this metric as the
objective, we recommend setting a target
precision by setting the binary_cl
assifier_model_selection hyperpara
meter to recall_at_target_precision
and setting the value for the target_pr
ecision hyperparameter. This objective
metric is only valid for binary classification.

Maximize

test:roc_
auc_score

The area under receiving operating character
istic curve (ROC curve) of the final model on
the test dataset. This objective metric is only
valid for binary classification.

Maximize

Use Built-in Algorithms 2742

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

validatio
n:absolut
e_loss

The absolute loss of the final model on the
validation dataset. This objective metric is only
valid for regression.

Minimize

validatio
n:binary_
classific
ation_accuracy

The accuracy of the final model on the
validation dataset. This objective metric is only
valid for binary classification.

Maximize

validatio
n:binary_
f_beta

The F-beta score of the final model on the
validation dataset. By default, the F-beta
score is the F1 score, which is the harmonic
mean of the validation:precision and
validation:recall metrics. This objective
metric is only valid for binary classification.

Maximize

validation:dcg The discounted cumulative gain of the final
model on the validation dataset. This objective
metric is only valid for multiclass classification.

Maximize

validatio
n:macro_f_beta

The F-beta score of the final model on the
validation dataset. This objective metric is only
valid for multiclass classification.

Maximize

validatio
n:macro_p
recision

The precision score of the final model on the
validation dataset. This objective metric is only
valid for multiclass classification.

Maximize

validatio
n:macro_recall

The recall score of the final model on the
validation dataset. This objective metric is only
valid for multiclass classification.

Maximize

validation:mse The mean square error of the final model on
the validation dataset. This objective metric is
only valid for regression.

Minimize

Use Built-in Algorithms 2743

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

validatio
n:multicl
ass_accuracy

The accuracy of the final model on the
validation dataset. This objective metric is only
valid for multiclass classification.

Maximize

validatio
n:multicl
ass_top_k
_accuracy

The accuracy among the top k labels predicted
on the validation dataset. If you choose this
metric as the objective, we recommend setting
the value of k using the accuracy_top_k
hyperparameter. This objective metric is only
valid for multiclass classification.

Maximize

validatio
n:objecti
ve_loss

The mean value of the objective loss function
on the validation dataset every epoch. By
default, the loss is logistic loss for binary
classification and squared loss for regressio
n. To set loss to other types, use the loss
hyperparameter.

Minimize

validatio
n:precision

The precision of the final model on the
validation dataset. If you choose this metric as
the objective, we recommend setting a target
recall by setting the binary_classifier_
model_selection hyperparameter to
precision_at_target_recall and
setting the value for the target_recall
hyperparameter. This objective metric is only
valid for binary classification.

Maximize

Use Built-in Algorithms 2744

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

validatio
n:recall

The recall of the final model on the validatio
n dataset. If you choose this metric as
the objective, we recommend setting a
target precision by setting the binary_cl
assifier_model_selection hyperpara
meter to recall_at_target_precision
and setting the value for the target_pr
ecision hyperparameter. This objective
metric is only valid for binary classification.

Maximize

validation:rmse The root mean square error of the final model
on the validation dataset. This objective metric
is only valid for regression.

Minimize

validatio
n:roc_auc
_score

The area under receiving operating character
istic curve (ROC curve) of the final model on
the validation dataset. This objective metric is
only valid for binary classification.

Maximize

Tuning linear learner hyperparameters

You can tune a linear learner model with the following hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

wd ContinuousParameterRanges MinValue: 1e-7,
MaxValue: 1

l1 ContinuousParameterRanges MinValue: 1e-7,
MaxValue: 1

learning_rate ContinuousParameterRanges MinValue: 1e-5,
MaxValue: 1

Use Built-in Algorithms 2745

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

mini_batch_size IntegerParameterRanges MinValue: 100,
MaxValue: 5000

use_bias CategoricalParameterRanges [True, False]

positive_
example_w
eight_mult

ContinuousParameterRanges MinValue: 1e-5,
MaxValue: 1e5

Linear learner response formats

JSON response formats

All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. The following are the available output formats for the
SageMaker linear learner algorithm.

Binary Classification

let response = {
 "predictions": [
 {
 "score": 0.4,
 "predicted_label": 0
 }
]
}

Multiclass Classification

let response = {
 "predictions": [
 {
 "score": [0.1, 0.2, 0.4, 0.3],
 "predicted_label": 2
 }
]

Use Built-in Algorithms 2746

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide

}

Regression

let response = {
 "predictions": [
 {
 "score": 0.4
 }
]
}

JSONLINES response formats

Binary Classification

{"score": 0.4, "predicted_label": 0}

Multiclass Classification

{"score": [0.1, 0.2, 0.4, 0.3], "predicted_label": 2}

Regression

{"score": 0.4}

RECORDIO response formats

Binary Classification

[
 Record = {
 features = {},
 label = {
 'score': {
 keys: [],
 values: [0.4] # float32
 },
 'predicted_label': {
 keys: [],
 values: [0.0] # float32

Use Built-in Algorithms 2747

Amazon SageMaker Developer Guide

 }
 }
 }
]

Multiclass Classification

[
 Record = {
 "features": [],
 "label": {
 "score": {
 "values": [0.1, 0.2, 0.3, 0.4]
 },
 "predicted_label": {
 "values": [3]
 }
 },
 "uid": "abc123",
 "metadata": "{created_at: '2017-06-03'}"
 }
]

Regression

[
 Record = {
 features = {},
 label = {
 'score': {
 keys: [],
 values: [0.4] # float32
 }
 }
 }
]

TabTransformer

TabTransformer is a novel deep tabular data modeling architecture for supervised learning. The
TabTransformer architecture is built on self-attention-based Transformers. The Transformer layers
transform the embeddings of categorical features into robust contextual embeddings to achieve

Use Built-in Algorithms 2748

https://arxiv.org/abs/2012.06678

Amazon SageMaker Developer Guide

higher prediction accuracy. Furthermore, the contextual embeddings learned from TabTransformer
are highly robust against both missing and noisy data features, and provide better interpretability.

How to use SageMaker TabTransformer

You can use TabTransformer as an Amazon SageMaker built-in algorithm. The following section
describes how to use TabTransformer with the SageMaker Python SDK. For information on how to
use TabTransformer from the Amazon SageMaker Studio Classic UI, see SageMaker JumpStart.

• Use TabTransformer as a built-in algorithm

Use the TabTransformer built-in algorithm to build a TabTransformer training container as shown
in the following code example. You can automatically spot the TabTransformer built-in algorithm
image URI using the SageMaker image_uris.retrieve API (or the get_image_uri API if
using Amazon SageMaker Python SDK version 2).

After specifying the TabTransformer image URI, you can use the TabTransformer container
to construct an estimator using the SageMaker Estimator API and initiate a training job. The
TabTransformer built-in algorithm runs in script mode, but the training script is provided for you
and there is no need to replace it. If you have extensive experience using script mode to create a
SageMaker training job, then you can incorporate your own TabTransformer training scripts.

from sagemaker import image_uris, model_uris, script_uris

train_model_id, train_model_version, train_scope = "pytorch-
tabtransformerclassification-model", "*", "training"
training_instance_type = "ml.p3.2xlarge"

Retrieve the docker image
train_image_uri = image_uris.retrieve(
 region=None,
 framework=None,
 model_id=train_model_id,
 model_version=train_model_version,
 image_scope=train_scope,
 instance_type=training_instance_type
)

Retrieve the training script
train_source_uri = script_uris.retrieve(
 model_id=train_model_id, model_version=train_model_version,
 script_scope=train_scope

Use Built-in Algorithms 2749

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

)

train_model_uri = model_uris.retrieve(
 model_id=train_model_id, model_version=train_model_version,
 model_scope=train_scope
)

Sample training data is available in this bucket
training_data_bucket = f"jumpstart-cache-prod-{aws_region}"
training_data_prefix = "training-datasets/tabular_binary/"

training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/
train"
validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/
validation"

output_bucket = sess.default_bucket()
output_prefix = "jumpstart-example-tabular-training"

s3_output_location = f"s3://{output_bucket}/{output_prefix}/output"

from sagemaker import hyperparameters

Retrieve the default hyperparameters for training the model
hyperparameters = hyperparameters.retrieve_default(
 model_id=train_model_id, model_version=train_model_version
)

[Optional] Override default hyperparameters with custom values
hyperparameters[
 "n_epochs"
] = "50"
print(hyperparameters)

from sagemaker.estimator import Estimator
from sagemaker.utils import name_from_base

training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training")

Create SageMaker Estimator instance
tabular_estimator = Estimator(
 role=aws_role,
 image_uri=train_image_uri,
 source_dir=train_source_uri,

Use Built-in Algorithms 2750

Amazon SageMaker Developer Guide

 model_uri=train_model_uri,
 entry_point="transfer_learning.py",
 instance_count=1,
 instance_type=training_instance_type,
 max_run=360000,
 hyperparameters=hyperparameters,
 output_path=s3_output_location
)

Launch a SageMaker Training job by passing the S3 path of the training data
tabular_estimator.fit(
 {
 "training": training_dataset_s3_path,
 "validation": validation_dataset_s3_path,
 }, logs=True, job_name=training_job_name
)

For more information about how to set up the TabTransformer as a built-in algorithm, see the
following notebook examples.

• Tabular classification with Amazon SageMaker TabTransformer algorithm

• Tabular regression with Amazon SageMaker TabTransformer algorithm

Input and Output interface for the TabTransformer algorithm

TabTransformer operates on tabular data, with the rows representing observations, one column
representing the target variable or label, and the remaining columns representing features.

The SageMaker implementation of TabTransformer supports CSV for training and inference:

• For Training ContentType, valid inputs must be text/csv.

• For Inference ContentType, valid inputs must be text/csv.

Note

For CSV training, the algorithm assumes that the target variable is in the first column and
that the CSV does not have a header record.
For CSV inference, the algorithm assumes that CSV input does not have the label column.

Use Built-in Algorithms 2751

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Classification_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb

Amazon SageMaker Developer Guide

Input format for training data, validation data, and categorical features

Be mindful of how to format your training data for input to the TabTransformer model. You must
provide the path to an Amazon S3 bucket that contains your training and validation data. You can
also include a list of categorical features. Use both the training and validation channels to
provide your input data. Alternatively, you can use only the training channel.

Use both the training and validation channels

You can provide your input data by way of two S3 paths, one for the training channel and one
for the validation channel. Each S3 path can either be an S3 prefix that points to one or more
CSV files or a full S3 path pointing to one specific CSV file. The target variables should be in the
first column of your CSV file. The predictor variables (features) should be in the remaining columns.
If multiple CSV files are provided for the training or validation channels, the TabTransformer
algorithm concatenates the files. The validation data is used to compute a validation score at the
end of each boosting iteration. Early stopping is applied when the validation score stops improving.

If your predictors include categorical features, you can provide a JSON file named
categorical_index.json in the same location as your training data file or files. If you provide
a JSON file for categorical features, your training channel must point to an S3 prefix and
not a specific CSV file. This file should contain a Python dictionary where the key is the string
"cat_index_list" and the value is a list of unique integers. Each integer in the value list should
indicate the column index of the corresponding categorical features in your training data CSV
file. Each value should be a positive integer (greater than zero because zero represents the target
value), less than the Int32.MaxValue (2147483647), and less than the total number of columns.
There should only be one categorical index JSON file.

Use only the training channel:

You can alternatively provide your input data by way of a single S3 path for the training channel.
This S3 path should point to a directory with a subdirectory named training/ that contains one
or more CSV files. You can optionally include another subdirectory in the same location called
validation/ that also has one or more CSV files. If the validation data is not provided, then 20%
of your training data is randomly sampled to serve as the validation data. If your predictors include
categorical features, you can provide a JSON file named categorical_index.json in the same
location as your data subdirectories.

Use Built-in Algorithms 2752

Amazon SageMaker Developer Guide

Note

For CSV training input mode, the total memory available to the algorithm (instance count
multiplied by the memory available in the InstanceType) must be able to hold the
training dataset.

Amazon EC2 instance recommendation for the TabTransformer algorithm

SageMaker TabTransformer supports single-instance CPU and single-instance GPU training. Despite
higher per-instance costs, GPUs train more quickly, making them more cost effective. To take
advantage of GPU training, specify the instance type as one of the GPU instances (for example, P3).
SageMaker TabTransformer currently does not support multi-GPU training.

TabTransformer sample notebooks

The following table outlines a variety of sample notebooks that address different use cases of
Amazon SageMaker TabTransformer algorithm.

Notebook Title Description

Tabular classification with Amazon SageMaker
TabTransformer algorithm

This notebook demonstrates the use of the
Amazon SageMaker TabTransformer algorithm
to train and host a tabular classification
model.

Tabular regression with Amazon SageMaker
TabTransformer algorithm

This notebook demonstrates the use of the
Amazon SageMaker TabTransformer algorithm
to train and host a tabular regression model.

For instructions on how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created a
notebook instance and opened it, choose the SageMaker Examples tab to see a list of all of the
SageMaker samples. To open a notebook, choose its Use tab and choose Create copy.

How TabTransformer works

TabTransformer is a novel deep tabular data modeling architecture for supervised learning. The
TabTransformer is built upon self-attention based Transformers. The Transformer layers transform

Use Built-in Algorithms 2753

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Classification_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Classification_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/tabtransformer_tabular/Amazon_Tabular_Regression_TabTransformer.ipynb

Amazon SageMaker Developer Guide

the embeddings of categorical features into robust contextual embeddings to achieve higher
prediction accuracy. Furthermore, the contextual embeddings learned from TabTransformer are
highly robust against both missing and noisy data features, and provide better interpretability.

TabTransformer performs well in machine learning competitions because of its robust handling of
a variety of data types, relationships, distributions, and the diversity of hyperparameters that you
can fine-tune. You can use TabTransformer for regression, classification (binary and multiclass), and
ranking problems.

The following diagram illustrates the TabTransformer architecture.

For more information, see TabTransformer: Tabular Data Modeling Using Contextual Embeddings.

Use Built-in Algorithms 2754

https://arxiv.org/abs/2012.06678

Amazon SageMaker Developer Guide

TabTransformer hyperparameters

The following table contains the subset of hyperparameters that are required or most commonly
used for the Amazon SageMaker TabTransformer algorithm. Users set these parameters to
facilitate the estimation of model parameters from data. The SageMaker TabTransformer algorithm
is an implementation of the open-source TabTransformer package.

Note

The default hyperparameters are based on example datasets in the TabTransformer sample
notebooks.

The SageMaker TabTransformer algorithm automatically chooses an evaluation metric and
objective function based on the type of classification problem. The TabTransformer algorithm
detects the type of classification problem based on the number of labels in your data. For
regression problems, the evaluation metric is r square and the objective function is mean square
error. For binary classification problems, the evaluation metric and objective function are both
binary cross entropy. For multiclass classification problems, the evaluation metric and objective
function are both multiclass cross entropy.

Note

The TabTransformer evaluation metric and objective functions are not currently available as
hyperparameters. Instead, the SageMaker TabTransformer built-in algorithm automatically
detects the type of classification task (regression, binary, or multiclass) based on the
number of unique integers in the label column and assigns an evaluation metric and
objective function.

Parameter Name Description

n_epochs Number of epochs to train the deep neural network.

Valid values: integer, range: Positive integer.

Default value: 5.

Use Built-in Algorithms 2755

https://github.com/jrzaurin/pytorch-widedeep

Amazon SageMaker Developer Guide

Parameter Name Description

patience The training will stop if one metric of one validation data point
does not improve in the last patience round.

Valid values: integer, range: (2, 60).

Default value: 10.

learning_rate The rate at which the model weights are updated after working
through each batch of training examples.

Valid values: float, range: Positive floating point number.

Default value: 0.001.

batch_size The number of examples propagated through the network.

Valid values: integer, range: (1, 2048).

Default value: 256.

input_dim The dimension of embeddings to encode the categorical and/
or continuous columns.

Valid values: string, any of the following: "16", "32", "64",
"128", "256", or "512".

Default value: "32".

n_blocks The number of Transformer encoder blocks.

Valid values: integer, range: (1, 12).

Default value: 4.

attn_dropout Dropout rate applied to the Multi-Head Attention layers.

Valid values: float, range: (0, 1).

Default value: 0.2.

Use Built-in Algorithms 2756

Amazon SageMaker Developer Guide

Parameter Name Description

mlp_dropout Dropout rate applied to the FeedForward network within the
encoder layers and the final MLP layers on top of Transformer
encoders.

Valid values: float, range: (0, 1).

Default value: 0.1.

frac_shared_embed The fraction of embeddings shared by all the different
categories for one particular column.

Valid values: float, range: (0, 1).

Default value: 0.25.

Tune a TabTransformer model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your training and validation
datasets. Model tuning focuses on the following hyperparameters:

Note

The learning objective function and evaluation metric are both automatically assigned
based on the type of classification task, which is determined by the number of unique
integers in the label column. For more information, see TabTransformer hyperparameters.

• A learning objective function to optimize during model training

• An evaluation metric that is used to evaluate model performance during validation

• A set of hyperparameters and a range of values for each to use when tuning the model
automatically

Automatic model tuning searches your chosen hyperparameters to find the combination of values
that results in a model that optimizes the chosen evaluation metric.

Use Built-in Algorithms 2757

Amazon SageMaker Developer Guide

Note

Automatic model tuning for TabTransformer is only available from the Amazon SageMaker
SDKs, not from the SageMaker console.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Evaluation metrics computed by the TabTransformer algorithm

The SageMaker TabTransformer algorithm computes the following metrics to use for model
validation. The evaluation metric is automatically assigned based on the type of classification task,
which is determined by the number of unique integers in the label column.

Metric Name Description Optimization
Direction

Regex Pattern

r2 r square maximize "metrics=
{'r2': (\\S
+)}"

f1_score binary cross entropy maximize "metrics=
{'f1': (\\S
+)}"

accuracy_
score

multiclass cross entropy maximize "metrics=
{'accurac
y': (\\S
+)}"

Tunable TabTransformer hyperparameters

Tune the TabTransformer model with the following hyperparameters. The hyperparameters
that have the greatest effect on optimizing the TabTransformer evaluation metrics
are: learning_rate, input_dim, n_blocks, attn_dropout, mlp_dropout, and
frac_shared_embed. For a list of all the TabTransformer hyperparameters, see TabTransformer
hyperparameters.

Use Built-in Algorithms 2758

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

learning_rate ContinuousParameterRanges MinValue: 0.001,
MaxValue: 0.01

input_dim CategoricalParameterRanges [16, 32, 64, 128, 256,
512]

n_blocks IntegerParameterRanges MinValue: 1,
MaxValue: 12

attn_dropout ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.8

mlp_dropout ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.8

frac_shar
ed_embed

ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.5

XGBoost Algorithm

The XGBoost (eXtreme Gradient Boosting) is a popular and efficient open-source implementation
of the gradient boosted trees algorithm. Gradient boosting is a supervised learning algorithm
that attempts to accurately predict a target variable by combining an ensemble of estimates from
a set of simpler and weaker models. The XGBoost algorithm performs well in machine learning
competitions because of its robust handling of a variety of data types, relationships, distributions,
and the variety of hyperparameters that you can fine-tune. You can use XGBoost for regression,
classification (binary and multiclass), and ranking problems.

You can use the new release of the XGBoost algorithm either as a Amazon SageMaker built-
in algorithm or as a framework to run training scripts in your local environments. This
implementation has a smaller memory footprint, better logging, improved hyperparameter
validation, and an expanded set of metrics than the original versions. It provides an XGBoost
estimator that executes a training script in a managed XGBoost environment. The current release
of SageMaker XGBoost is based on the original XGBoost versions 1.0, 1.2, 1.3, 1.5, and 1.7.

Use Built-in Algorithms 2759

https://github.com/dmlc/xgboost

Amazon SageMaker Developer Guide

Supported versions

• Framework (open source) mode: 1.0-1, 1.2-1, 1.2-2, 1.3-1, 1.5-1, 1.7-1

• Algorithm mode: 1.0-1, 1.2-1, 1.2-2, 1.3-1, 1.5-1, 1.7-1

Warning

Due to required compute capacity, version 1.7-1 of SageMaker XGBoost is not compatible
with GPU instances from the P2 instance family for training or inference.

Important

When you retrieve the SageMaker XGBoost image URI, do not use :latest or :1 for the
image URI tag. You must specify one of the Supported versions to choose the SageMaker-
managed XGBoost container with the native XGBoost package version that you want to use.
To find the package version migrated into the SageMaker XGBoost containers, see Docker
Registry Paths and Example Code, choose your AWS Region, and navigate to the XGBoost
(algorithm) section.

Warning

The XGBoost 0.90 versions are deprecated. Supports for security updates or bug fixes for
XGBoost 0.90 is discontinued. It is highly recommended to upgrade the XGBoost version to
one of the newer versions.

Note

XGBoost v1.1 is not supported on SageMaker because XGBoost 1.1 has a broken capability
to run prediction when the test input has fewer features than the training data in LIBSVM
inputs. This capability has been restored in XGBoost v1.2. Consider using SageMaker
XGBoost 1.2-2 or later.

Use Built-in Algorithms 2760

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html

Amazon SageMaker Developer Guide

How to Use SageMaker XGBoost

With SageMaker, you can use XGBoost as a built-in algorithm or framework. By using XGBoost as a
framework, you have more flexibility and access to more advanced scenarios, such as k-fold cross-
validation, because you can customize your own training scripts. The following sections describe
how to use XGBoost with the SageMaker Python SDK. For information on how to use XGBoost from
the Amazon SageMaker Studio Classic UI, see SageMaker JumpStart.

• Use XGBoost as a framework

Use XGBoost as a framework to run your customized training scripts that can incorporate
additional data processing into your training jobs. In the following code example, you can
find how SageMaker Python SDK provides the XGBoost API as a framework in the same way it
provides other framework APIs, such as TensorFlow, MXNet, and PyTorch.

import boto3
import sagemaker
from sagemaker.xgboost.estimator import XGBoost
from sagemaker.session import Session
from sagemaker.inputs import TrainingInput

initialize hyperparameters
hyperparameters = {
 "max_depth":"5",
 "eta":"0.2",
 "gamma":"4",
 "min_child_weight":"6",
 "subsample":"0.7",
 "verbosity":"1",
 "objective":"reg:squarederror",
 "num_round":"50"}

set an output path where the trained model will be saved
bucket = sagemaker.Session().default_bucket()
prefix = 'DEMO-xgboost-as-a-framework'
output_path = 's3://{}/{}/{}/output'.format(bucket, prefix, 'abalone-xgb-framework')

construct a SageMaker XGBoost estimator
specify the entry_point to your xgboost training script
estimator = XGBoost(entry_point = "your_xgboost_abalone_script.py",
 framework_version='1.7-1',
 hyperparameters=hyperparameters,

Use Built-in Algorithms 2761

Amazon SageMaker Developer Guide

 role=sagemaker.get_execution_role(),
 instance_count=1,
 instance_type='ml.m5.2xlarge',
 output_path=output_path)

define the data type and paths to the training and validation datasets
content_type = "libsvm"
train_input = TrainingInput("s3://{}/{}/{}/".format(bucket, prefix, 'train'),
 content_type=content_type)
validation_input = TrainingInput("s3://{}/{}/{}/".format(bucket, prefix,
 'validation'), content_type=content_type)

execute the XGBoost training job
estimator.fit({'train': train_input, 'validation': validation_input})

For an end-to-end example of using SageMaker XGBoost as a framework, see Regression with
Amazon SageMaker XGBoost

• Use XGBoost as a built-in algorithm

Use the XGBoost built-in algorithm to build an XGBoost training container as shown in the
following code example. You can automatically spot the XGBoost built-in algorithm image URI
using the SageMaker image_uris.retrieve API (or the get_image_uri API if using Amazon
SageMaker Python SDK version 1). If you want to ensure if the image_uris.retrieve API
finds the correct URI, see Common parameters for built-in algorithms and look up xgboost
from the full list of built-in algorithm image URIs and available regions.

After specifying the XGBoost image URI, you can use the XGBoost container to construct an
estimator using the SageMaker Estimator API and initiate a training job. This XGBoost built-in
algorithm mode does not incorporate your own XGBoost training script and runs directly on the
input datasets.

Important

When you retrieve the SageMaker XGBoost image URI, do not use :latest or :1 for
the image URI tag. You must specify one of the Supported versions to choose the
SageMaker-managed XGBoost container with the native XGBoost package version that
you want to use. To find the package version migrated into the SageMaker XGBoost
containers, see Docker Registry Paths and Example Code, choose your AWS Region, and
navigate to the XGBoost (algorithm) section.

Use Built-in Algorithms 2762

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone_dist_script_mode.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone_dist_script_mode.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html

Amazon SageMaker Developer Guide

import sagemaker
import boto3
from sagemaker import image_uris
from sagemaker.session import Session
from sagemaker.inputs import TrainingInput

initialize hyperparameters
hyperparameters = {
 "max_depth":"5",
 "eta":"0.2",
 "gamma":"4",
 "min_child_weight":"6",
 "subsample":"0.7",
 "objective":"reg:squarederror",
 "num_round":"50"}

set an output path where the trained model will be saved
bucket = sagemaker.Session().default_bucket()
prefix = 'DEMO-xgboost-as-a-built-in-algo'
output_path = 's3://{}/{}/{}/output'.format(bucket, prefix, 'abalone-xgb-built-in-
algo')

this line automatically looks for the XGBoost image URI and builds an XGBoost
 container.
specify the repo_version depending on your preference.
xgboost_container = sagemaker.image_uris.retrieve("xgboost", region, "1.7-1")

construct a SageMaker estimator that calls the xgboost-container
estimator = sagemaker.estimator.Estimator(image_uri=xgboost_container,
 hyperparameters=hyperparameters,
 role=sagemaker.get_execution_role(),
 instance_count=1,
 instance_type='ml.m5.2xlarge',
 volume_size=5, # 5 GB
 output_path=output_path)

define the data type and paths to the training and validation datasets
content_type = "libsvm"
train_input = TrainingInput("s3://{}/{}/{}/".format(bucket, prefix, 'train'),
 content_type=content_type)
validation_input = TrainingInput("s3://{}/{}/{}/".format(bucket, prefix,
 'validation'), content_type=content_type)

Use Built-in Algorithms 2763

Amazon SageMaker Developer Guide

execute the XGBoost training job
estimator.fit({'train': train_input, 'validation': validation_input})

For more information about how to set up the XGBoost as a built-in algorithm, see the following
notebook examples.

• Managed Spot Training for XGBoost

• Regression with Amazon SageMaker XGBoost (Parquet input)

Input/Output Interface for the XGBoost Algorithm

Gradient boosting operates on tabular data, with the rows representing observations, one column
representing the target variable or label, and the remaining columns representing features.

The SageMaker implementation of XGBoost supports the following data formats for training and
inference:

• text/libsvm (default)

• text/csv

• application/x-parquet

• application/x-recordio-protobuf

Note

There are a few considerations to be aware of regarding training and inference input:

• For increased performance, we recommend using XGBoost with File mode, in which your
data from Amazon S3 is stored on the training instance volumes.

• For training with columnar input, the algorithm assumes that the target variable (label)
is the first column. For inference, the algorithm assumes that the input has no label
column.

• For CSV data, the input should not have a header record.

• For LIBSVM training, the algorithm assumes that subsequent columns after the label
column contain the zero-based index value pairs for features. So each row has the
format: : <label> <index0>:<value0> <index1>:<value1>.

Use Built-in Algorithms 2764

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_managed_spot_training.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_parquet_input_training.html

Amazon SageMaker Developer Guide

• For information on instance types and distributed training, see EC2 Instance
Recommendation for the XGBoost Algorithm.

For CSV training input mode, the total memory available to the algorithm (Instance Count * the
memory available in the InstanceType) must be able to hold the training dataset. For libsvm
training input mode, it's not required, but we recommend it.

For v1.3-1 and later, SageMaker XGBoost saves the model in the XGBoost internal binary format,
using Booster.save_model. Previous versions use the Python pickle module to serialize/
deserialize the model.

Note

Be mindful of versions when using an SageMaker XGBoost model in open source XGBoost.
Versions 1.3-1 and later use the XGBoost internal binary format while previous versions use
the Python pickle module.

To use a model trained with SageMaker XGBoost v1.3-1 or later in open source XGBoost

• Use the following Python code:

import xgboost as xgb

xgb_model = xgb.Booster()
xgb_model.load_model(model_file_path)
xgb_model.predict(dtest)

To use a model trained with previous versions of SageMaker XGBoost in open source XGBoost

• Use the following Python code:

import pickle as pkl
import tarfile

t = tarfile.open('model.tar.gz', 'r:gz')
t.extractall()

Use Built-in Algorithms 2765

Amazon SageMaker Developer Guide

model = pkl.load(open(model_file_path, 'rb'))

prediction with test data
pred = model.predict(dtest)

To differentiate the importance of labelled data points use Instance Weight Supports

• SageMaker XGBoost allows customers to differentiate the importance of labelled data
points by assigning each instance a weight value. For text/libsvm input, customers can
assign weight values to data instances by attaching them after the labels. For example,
label:weight idx_0:val_0 idx_1:val_1.... For text/csv input, customers need to
turn on the csv_weights flag in the parameters and attach weight values in the column after
labels. For example: label,weight,val_0,val_1,...).

EC2 Instance Recommendation for the XGBoost Algorithm

SageMaker XGBoost supports CPU and GPU training and inference. Instance recommendations
depend on training and inference needs, as well as the version of the XGBoost algorithm. Choose
one of the following options for more information:

• CPU training

• GPU training

• Distributed CPU training

• Distributed GPU training

• Inference

Training

The SageMaker XGBoost algorithm supports CPU and GPU training.

CPU training

SageMaker XGBoost 1.0-1 or earlier only trains using CPUs. It is a memory-bound (as opposed to
compute-bound) algorithm. So, a general-purpose compute instance (for example, M5) is a better
choice than a compute-optimized instance (for example, C4). Further, we recommend that you have
enough total memory in selected instances to hold the training data. Although it supports the use

Use Built-in Algorithms 2766

Amazon SageMaker Developer Guide

of disk space to handle data that does not fit into main memory (the out-of-core feature available
with the libsvm input mode), writing cache files onto disk slows the algorithm processing time.

GPU training

SageMaker XGBoost version 1.2-2 or later supports GPU training. Despite higher per-instance costs,
GPUs train more quickly, making them more cost effective.

SageMaker XGBoost version 1.2-2 or later supports P2, P3, G4dn, and G5 GPU instance families.

SageMaker XGBoost version 1.7-1 or later supports P3, G4dn, and G5 GPU instance families. Note
that due to compute capacity requirements, version 1.7-1 or later does not support the P2 instance
family.

To take advantage of GPU training, specify the instance type as one of the GPU instances (for
example, P3) and set the tree_method hyperparameter to gpu_hist in your existing XGBoost
script.

Distributed training

SageMaker XGBoost supports CPU and GPU instances for distributed training.

Distributed CPU training

To run CPU training on multiple instances, set the instance_count parameter for the estimator
to a value greater than one. The input data must be divided between the total number of
instances.

Divide input data across instances

Divide the input data using the following steps:

1. Break the input data down into smaller files. The number of files should be at least equal to
the number of instances used for distributed training. Using multiple smaller files as opposed
to one large file also decreases the data download time for the training job.

2. When creating your TrainingInput, set the distribution parameter to ShardedByS3Key. This
parameter ensures that each instance gets approximately 1/n of the number of files in S3 if
there are n instances specified in the training job.

Distributed GPU training

You can use distributed training with either single-GPU or multi-GPU instances.

Use Built-in Algorithms 2767

https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html

Amazon SageMaker Developer Guide

Distributed training with single-GPU instances

SageMaker XGBoost versions 1.2-2 through 1.3-1 only support single-GPU instance training. This
means that even if you select a multi-GPU instance, only one GPU is used per instance.

If you use XGBoost versions 1.2-2 through 1.3-1, or if you do not need to use multi-GPU
instances, then you must divide your input data between the total number of instances. For more
information, see Divide input data across instances.

Note

Versions 1.2-2 through 1.3-1 of SageMaker XGBoost only use one GPU per instance even if
you choose a multi-GPU instance.

Distributed training with multi-GPU instances

Starting with version 1.5-1, SageMaker XGBoost offers distributed GPU training with Dask. With
Dask you can utilize all GPUs when using one or more multi-GPU instances. Dask also works when
using single-GPU instances.

Train with Dask using the following steps:

1. Either omit the distribution parameter in your TrainingInput or set it to
FullyReplicated.

2. When defining your hyperparameters, set use_dask_gpu_training to "true".

Important

Distributed training with Dask only supports CSV and Parquet input formats. If you use
other data formats such as LIBSVM or PROTOBUF, the training job fails.
For Parquet data, ensure that the column names are saved as strings. Columns that have
names of other data types will fail to load.

Use Built-in Algorithms 2768

https://www.dask.org/
https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html

Amazon SageMaker Developer Guide

Important

Distributed training with Dask does not support pipe mode. If pipe mode is specified, the
training job fails.

There are a few considerations to be aware of when training SageMaker XGBoost with Dask. Be
sure to split your data into smaller files. Dask reads each Parquet file as a partition. There is a
Dask worker for every GPU, so the number of files should be greater than the total number of
GPUs (instance count * number of GPUs per instance). Having a very large number of files can also
degrade performance. For more information, see Dask Best Practices.

Variations in output

The specified tree_method hyperparameter determines the algorithm that is used for XGBoost
training. The tree methods approx, hist and gpu_hist are all approximate methods and
use sketching for quantile calculation. For more information, see Tree Methods in the XGBoost
documentation. Sketching is an approximate algorithm. Therefore, you can expect variations in the
model depending on factors such as the number of workers chosen for distributed training. The
significance of the variation is data-dependent.

Inference

SageMaker XGBoost supports CPU and GPU instances for inference. For information about the
instance types for inference, see Amazon SageMaker ML Instance Types.

XGBoost Sample Notebooks

The following table outlines a variety of sample notebooks that address different use cases of
Amazon SageMaker XGBoost algorithm.

Notebook Title Description

How to Create a Custom XGBoost container? This notebook shows you how to build a
custom XGBoost Container with Amazon
SageMaker Batch Transform.

Use Built-in Algorithms 2769

https://docs.dask.org/en/stable/best-practices.html
https://xgboost.readthedocs.io/en/stable/treemethod.html
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://sagemaker-examples.readthedocs.io/en/latest/aws_sagemaker_studio/sagemaker_studio_image_build/xgboost_bring_your_own/Batch_Transform_BYO_XGB.html

Amazon SageMaker Developer Guide

Notebook Title Description

Regression with XGBoost using Parquet This notebook shows you how to use the
Abalone dataset in Parquet to train a XGBoost
model.

How to Train and Host a Multiclass Classific
ation Model?

This notebook shows how to use the MNIST
dataset to train and host a multiclass classific
ation model.

How to train a Model for Customer Churn
Prediction?

This notebook shows you how to train a model
to Predict Mobile Customer Departure in an
effort to identify unhappy customers.

An Introduction to Amazon SageMaker
Managed Spot infrastructure for XGBoost
Training

This notebook shows you how to use Spot
Instances for training with a XGBoost
Container.

How to use Amazon SageMaker Debugger to
debug XGBoost Training Jobs?

This notebook shows you how to use Amazon
SageMaker Debugger to monitor training
jobs to detect inconsistencies using built-in
debugging rules.

How to use Amazon SageMaker Debugger to
debug XGBoost Training Jobs in Real-Time?

This notebook shows you how to use the
MNIST dataset and Amazon SageMaker
 Debugger to perform real-time analysis of
XGBoost training jobs while training jobs are
running.

For instructions on how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created a
notebook instance and opened it, choose the SageMaker Examples tab to see a list of all of the
SageMaker samples. The topic modeling example notebooks using the linear learning algorithm
are located in the Introduction to Amazon algorithms section. To open a notebook, choose its Use
tab and choose Create copy.

Use Built-in Algorithms 2770

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_parquet_input_training.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_mnist/xgboost_mnist.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_mnist/xgboost_mnist.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_applying_machine_learning/xgboost_customer_churn/xgboost_customer_churn.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_applying_machine_learning/xgboost_customer_churn/xgboost_customer_churn.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_managed_spot_training.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_managed_spot_training.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_managed_spot_training.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_realtime_analysis/xgboost-realtime-analysis.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_realtime_analysis/xgboost-realtime-analysis.html

Amazon SageMaker Developer Guide

How XGBoost Works

XGBoost is a popular and efficient open-source implementation of the gradient boosted trees
algorithm. Gradient boosting is a supervised learning algorithm, which attempts to accurately
predict a target variable by combining the estimates of a set of simpler, weaker models.

When using gradient boosting for regression, the weak learners are regression trees, and each
regression tree maps an input data point to one of its leafs that contains a continuous score.
XGBoost minimizes a regularized (L1 and L2) objective function that combines a convex loss
function (based on the difference between the predicted and target outputs) and a penalty
term for model complexity (in other words, the regression tree functions). The training proceeds
iteratively, adding new trees that predict the residuals or errors of prior trees that are then
combined with previous trees to make the final prediction. It's called gradient boosting because it
uses a gradient descent algorithm to minimize the loss when adding new models.

Below is a brief illustration on how gradient tree boosting works.

Use Built-in Algorithms 2771

https://github.com/dmlc/xgboost
https://en.wikipedia.org/wiki/Gradient_boosting

Amazon SageMaker Developer Guide

For more detail on XGBoost, see:

• XGBoost: A Scalable Tree Boosting System

• Gradient Tree Boosting

• Introduction to Boosted Trees

XGBoost Hyperparameters

The following table contains the subset of hyperparameters that are required or most commonly
used for the Amazon SageMaker XGBoost algorithm. These are parameters that are set by users
to facilitate the estimation of model parameters from data. The required hyperparameters that
must be set are listed first, in alphabetical order. The optional hyperparameters that can be set are
listed next, also in alphabetical order. The SageMaker XGBoost algorithm is an implementation of
the open-source DMLC XGBoost package. For details about full set of hyperparameter that can be
configured for this version of XGBoost, see XGBoost Parameters.

Parameter Name Description

num_class The number of classes.

Required if objective is set to multi:softmax or multi:sof
tprob.

Valid values: Integer.

num_round The number of rounds to run the training.

Required

Valid values: Integer.

alpha L1 regularization term on weights. Increasing this value makes
models more conservative.

Optional

Valid values: Float.

Default value: 0

Use Built-in Algorithms 2772

https://arxiv.org/pdf/1603.02754.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf#page=380
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/release_1.2.0/

Amazon SageMaker Developer Guide

Parameter Name Description

base_score The initial prediction score of all instances, global bias.

Optional

Valid values: Float.

Default value: 0.5

booster Which booster to use. The gbtree and dart values use a tree-
based model, while gblinear uses a linear function.

Optional

Valid values: String. One of "gbtree", "gblinear" , or
"dart".

Default value: "gbtree"

colsample_bylevel Subsample ratio of columns for each split, in each level.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

colsample_bynode Subsample ratio of columns from each node.

Optional

Valid values: Float. Range: (0,1].

Default value: 1

Use Built-in Algorithms 2773

Amazon SageMaker Developer Guide

Parameter Name Description

colsample_bytree Subsample ratio of columns when constructing each tree.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

csv_weights When this flag is enabled, XGBoost differentiates the
importance of instances for csv input by taking the second
column (the column after labels) in training data as the
instance weights.

Optional

Valid values: 0 or 1

Default value: 0

deterministic_hist
ogram

When this flag is enabled, XGBoost builds histogram on
GPU deterministically. Used only if tree_method is set to
gpu_hist.

For a full list of valid inputs, please refer to XGBoost Parameter
s.

Optional

Valid values: String. Range: "true" or "false".

Default value: "true"

Use Built-in Algorithms 2774

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide

Parameter Name Description

early_stopping_rou
nds

The model trains until the validation score stops improving.
Validation error needs to decrease at least every early_sto
pping_rounds to continue training. SageMaker hosting
uses the best model for inference.

Optional

Valid values: Integer.

Default value: -

eta Step size shrinkage used in updates to prevent overfitting.
After each boosting step, you can directly get the weights of
new features. The eta parameter actually shrinks the feature
weights to make the boosting process more conservative.

Optional

Valid values: Float. Range: [0,1].

Default value: 0.3

eval_metric Evaluation metrics for validation data. A default metric is
assigned according to the objective:

• rmse: for regression

• error: for classification

• map: for ranking

For a list of valid inputs, see XGBoost Learning Task Parameter
s.

Optional

Valid values: String.

Default value: Default according to objective.

Use Built-in Algorithms 2775

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst#learning-task-parameters
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst#learning-task-parameters

Amazon SageMaker Developer Guide

Parameter Name Description

gamma Minimum loss reduction required to make a further partition
on a leaf node of the tree. The larger, the more conservative
the algorithm is.

Optional

Valid values: Float. Range: [0,∞).

Default value: 0

grow_policy Controls the way that new nodes are added to the tree.
Currently supported only if tree_method is set to hist.

Optional

Valid values: String. Either "depthwise" or "lossguide" .

Default value: "depthwise"

interaction_constr
aints

Specify groups of variables that are allowed to interact.

Optional

Valid values: Nested list of integers. Each integer represents a
feature, and each nested list contains features that are allowed
to interact e.g., [[1,2], [3,4,5]].

Default value: None

lambda L2 regularization term on weights. Increasing this value makes
models more conservative.

Optional

Valid values: Float.

Default value: 1

Use Built-in Algorithms 2776

Amazon SageMaker Developer Guide

Parameter Name Description

lambda_bias L2 regularization term on bias.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0

max_bin Maximum number of discrete bins to bucket continuous
features. Used only if tree_method is set to hist.

Optional

Valid values: Integer.

Default value: 256

max_delta_step Maximum delta step allowed for each tree's weight estimatio
n. When a positive integer is used, it helps make the update
more conservative. The preferred option is to use it in logistic
regression. Set it to 1-10 to help control the update.

Optional

Valid values: Integer. Range: [0,∞).

Default value: 0

max_depth Maximum depth of a tree. Increasing this value makes the
model more complex and likely to be overfit. 0 indicates no
limit. A limit is required when grow_policy =depth-wise .

Optional

Valid values: Integer. Range: [0,∞)

Default value: 6

Use Built-in Algorithms 2777

Amazon SageMaker Developer Guide

Parameter Name Description

max_leaves Maximum number of nodes to be added. Relevant only if
grow_policy is set to lossguide .

Optional

Valid values: Integer.

Default value: 0

min_child_weight Minimum sum of instance weight (hessian) needed in a child.
If the tree partition step results in a leaf node with the sum of
instance weight less than min_child_weight , the building
process gives up further partitioning. In linear regression
models, this simply corresponds to a minimum number of
instances needed in each node. The larger the algorithm, the
more conservative it is.

Optional

Valid values: Float. Range: [0,∞).

Default value: 1

monotone_constraints Specifies monotonicity constraints on any feature.

Optional

Valid values: Tuple of Integers. Valid integers: -1 (decreasing
constraint), 0 (no constraint), 1 (increasing constraint).

E.g., (0, 1): No constraint on first predictor, and an increasing
constraint on the second. (-1, 1): Decreasing constraint on first
predictor, and an increasing constraint on the second.

Default value: (0, 0)

Use Built-in Algorithms 2778

Amazon SageMaker Developer Guide

Parameter Name Description

normalize_type Type of normalization algorithm.

Optional

Valid values: Either tree or forest.

Default value: tree

nthread Number of parallel threads used to run xgboost.

Optional

Valid values: Integer.

Default value: Maximum number of threads.

objective Specifies the learning task and the corresponding learning
objective. Examples: reg:logistic , multi:softmax ,
reg:squarederror . For a full list of valid inputs, refer to
XGBoost Learning Task Parameters.

Optional

Valid values: String

Default value: "reg:squarederror"

one_drop When this flag is enabled, at least one tree is always dropped
during the dropout.

Optional

Valid values: 0 or 1

Default value: 0

Use Built-in Algorithms 2779

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst#learning-task-parameters

Amazon SageMaker Developer Guide

Parameter Name Description

process_type The type of boosting process to run.

Optional

Valid values: String. Either "default" or "update".

Default value: "default"

rate_drop The dropout rate that specifies the fraction of previous trees to
drop during the dropout.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0.0

refresh_leaf This is a parameter of the 'refresh' updater plug-in. When set
to true (1), tree leaves and tree node stats are updated. When
set to false(0), only tree node stats are updated.

Optional

Valid values: 0/1

Default value: 1

sample_type Type of sampling algorithm.

Optional

Valid values: Either uniform or weighted.

Default value: uniform

Use Built-in Algorithms 2780

Amazon SageMaker Developer Guide

Parameter Name Description

scale_pos_weight Controls the balance of positive and negative weights. It's
useful for unbalanced classes. A typical value to consider:
 sum(negative cases) / sum(positive cases) .

Optional

Valid values: float

Default value: 1

seed Random number seed.

Optional

Valid values: integer

Default value: 0

single_precision_h
istogram

When this flag is enabled, XGBoost uses single precision to
build histograms instead of double precision. Used only if
tree_method is set to hist or gpu_hist.

For a full list of valid inputs, please refer to XGBoost Parameter
s.

Optional

Valid values: String. Range: "true" or "false"

Default value: "false"

Use Built-in Algorithms 2781

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide

Parameter Name Description

sketch_eps Used only for approximate greedy algorithm. This translate
s into O(1 / sketch_eps) number of bins. Compared to
directly select number of bins, this comes with theoretical
guarantee with sketch accuracy.

Optional

Valid values: Float, Range: [0, 1].

Default value: 0.03

skip_drop Probability of skipping the dropout procedure during a
boosting iteration.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0.0

subsample Subsample ratio of the training instance. Setting it to 0.5
means that XGBoost randomly collects half of the data
instances to grow trees. This prevents overfitting.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

tree_method The tree construction algorithm used in XGBoost.

Optional

Valid values: One of auto, exact, approx, hist, or
gpu_hist.

Default value: auto

Use Built-in Algorithms 2782

Amazon SageMaker Developer Guide

Parameter Name Description

tweedie_variance_p
ower

Parameter that controls the variance of the Tweedie distribut
ion.

Optional

Valid values: Float. Range: (1, 2).

Default value: 1.5

updater A comma-separated string that defines the sequence of tree
updaters to run. This provides a modular way to construct and
to modify the trees.

For a full list of valid inputs, please refer to XGBoost Parameter
s.

Optional

Valid values: comma-separated string.

Default value: grow_colmaker , prune

use_dask_gpu_train
ing

Set use_dask_gpu_training to "true" if you want to
run distributed GPU training with Dask. Dask GPU training
is only supported for versions 1.5-1 and later. Do not set
this value to "true" for versions preceding 1.5-1. For more
information, see Distributed GPU training.

Optional

Valid values: String. Range: "true" or "false"

Default value: "false"

Use Built-in Algorithms 2783

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide

Parameter Name Description

verbosity Verbosity of printing messages.

Valid values: 0 (silent), 1 (warning), 2 (info), 3 (debug).

Optional

Default value: 1

Tune an XGBoost Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your training and validation
datasets. You choose three types of hyperparameters:

• a learning objective function to optimize during model training

• an eval_metric to use to evaluate model performance during validation

• a set of hyperparameters and a range of values for each to use when tuning the model
automatically

You choose the evaluation metric from set of evaluation metrics that the algorithm computes.
Automatic model tuning searches the hyperparameters chosen to find the combination of values
that result in the model that optimizes the evaluation metric.

Note

Automatic model tuning for XGBoost 0.90 is only available from the Amazon SageMaker
SDKs, not from the SageMaker console.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Evaluation Metrics Computed by the XGBoost Algorithm

The XGBoost algorithm computes the following metrics to use for model validation. When tuning
the model, choose one of these metrics to evaluate the model. For full list of valid eval_metric
values, refer to XGBoost Learning Task Parameters

Use Built-in Algorithms 2784

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst#learning-task-parameters

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

validatio
n:accuracy

Classification rate, calculated as #(right)/#(all
cases).

Maximize

validation:auc Area under the curve. Maximize

validatio
n:error

Binary classification error rate, calculated as
#(wrong cases)/#(all cases).

Minimize

validation:f1 Indicator of classification accuracy, calculated
as the harmonic mean of precision and recall.

Maximize

validatio
n:logloss

Negative log-likelihood. Minimize

validation:mae Mean absolute error. Minimize

validation:map Mean average precision. Maximize

validatio
n:merror

Multiclass classification error rate, calculated
as #(wrong cases)/#(all cases).

Minimize

validatio
n:mlogloss

Negative log-likelihood for multiclass classific
ation.

Minimize

validation:mse Mean squared error. Minimize

validation:ndcg Normalized Discounted Cumulative Gain. Maximize

validation:rmse Root mean square error. Minimize

Tunable XGBoost Hyperparameters

Tune the XGBoost model with the following hyperparameters. The hyperparameters that have the
greatest effect on optimizing the XGBoost evaluation metrics are: alpha, min_child_weight,
subsample, eta, and num_round.

Use Built-in Algorithms 2785

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

alpha ContinuousParameterRanges MinValue: 0,
MaxValue: 1000

colsample
_bylevel

ContinuousParameterRanges MinValue: 0.1,
MaxValue: 1

colsample
_bynode

ContinuousParameterRanges MinValue: 0.1,
MaxValue: 1

colsample
_bytree

ContinuousParameterRanges MinValue: 0.5,
MaxValue: 1

eta ContinuousParameterRanges MinValue: 0.1,
MaxValue: 0.5

gamma ContinuousParameterRanges MinValue: 0,
MaxValue: 5

lambda ContinuousParameterRanges MinValue: 0,
MaxValue: 1000

max_delta_step IntegerParameterRanges [0, 10]

max_depth IntegerParameterRanges [0, 10]

min_child
_weight

ContinuousParameterRanges MinValue: 0,
MaxValue: 120

num_round IntegerParameterRanges [1, 4000]

subsample ContinuousParameterRanges MinValue: 0.5,
MaxValue: 1

Use Built-in Algorithms 2786

Amazon SageMaker Developer Guide

Deprecated Versions of XGBoost and their Upgrades

This topic contains documentation for previous versions of Amazon SageMaker XGBoost that are
still available but deprecated. It also provides instructions on how to upgrade deprecated versions
of XGBoost, when possible, to more current versions.

Topics

• Upgrade XGBoost Version 0.90 to Version 1.5

• XGBoost Version 0.72

Upgrade XGBoost Version 0.90 to Version 1.5

If you are using the SageMaker Python SDK, to upgrade existing XGBoost 0.90 jobs to version
1.5, you must have version 2.x of the SDK installed and change the XGBoost version and
framework_version parameters to 1.5-1. If you are using Boto3, you need to update the Docker
image, and a few hyperparameters and learning objectives.

Topics

• Upgrade SageMaker Python SDK Version 1.x to Version 2.x

• Change the image tag to 1.5-1

• Change Docker Image for Boto3

• Update Hyperparameters and Learning Objectives

Upgrade SageMaker Python SDK Version 1.x to Version 2.x

If you are still using Version 1.x of the SageMaker Python SDK, you must to upgrade version 2.x of
the SageMaker Python SDK. For information on the latest version of the SageMaker Python SDK,
see Use Version 2.x of the SageMaker Python SDK. To install the latest version, run:

python -m pip install --upgrade sagemaker

Change the image tag to 1.5-1

If you are using the SageMaker Python SDK and using the XGBoost build-in algorithm, change the
version parameter in image_uris.retrive.

from sagemaker import image_uris

Use Built-in Algorithms 2787

https://sagemaker.readthedocs.io/en/stable/v2.html

Amazon SageMaker Developer Guide

image_uris.retrieve(framework="xgboost", region="us-west-2", version="1.5-1")

estimator = sagemaker.estimator.Estimator(image_uri=xgboost_container,
 hyperparameters=hyperparameters,
 role=sagemaker.get_execution_role(),
 instance_count=1,
 instance_type='ml.m5.2xlarge',
 volume_size=5, # 5 GB
 output_path=output_path)

If you are using the SageMaker Python SDK and using XGBoost as a framework to run your
customized training scripts, change the framework_version parameter in the XGBoost API.

estimator = XGBoost(entry_point = "your_xgboost_abalone_script.py",
 framework_version='1.5-1',
 hyperparameters=hyperparameters,
 role=sagemaker.get_execution_role(),
 instance_count=1,
 instance_type='ml.m5.2xlarge',
 output_path=output_path)

sagemaker.session.s3_input in SageMaker Python SDK version 1.x has been renamed to
sagemaker.inputs.TrainingInput. You must use sagemaker.inputs.TrainingInput as
in the following example.

content_type = "libsvm"
train_input = TrainingInput("s3://{}/{}/{}/".format(bucket, prefix, 'train'),
 content_type=content_type)
validation_input = TrainingInput("s3://{}/{}/{}/".format(bucket, prefix, 'validation'),
 content_type=content_type)

For the full list of SageMaker Python SDK version 2.x changes, see Use Version 2.x of the
SageMaker Python SDK.

Change Docker Image for Boto3

If you are using Boto3 to train or deploy your model, change the docker image tag (1, 0.72, 0.90-1
or 0.90-2) to 1.5-1.

{
 "AlgorithmSpecification":: {

Use Built-in Algorithms 2788

https://sagemaker.readthedocs.io/en/stable/v2.html
https://sagemaker.readthedocs.io/en/stable/v2.html

Amazon SageMaker Developer Guide

 "TrainingImage": "746614075791.dkr.ecr.us-west-1.amazonaws.com/sagemaker-
xgboost:1.5-1"
 }
 ...
}

If you using the SageMaker Python SDK to retrieve registry path, change the version parameter
in image_uris.retrieve.

from sagemaker import image_uris
image_uris.retrieve(framework="xgboost", region="us-west-2", version="1.5-1")

Update Hyperparameters and Learning Objectives

The silent parameter has been deprecated and is no longer available in XGBoost 1.5 and later
versions. Use verbosity instead. If you were using the reg:linear learning objective, it has
been deprecated as well in favor of reg:squarederror. Use reg:squarederror instead.

hyperparameters = {
 "verbosity": "2",
 "objective": "reg:squarederror",
 "num_round": "50",
 ...
}

estimator = sagemaker.estimator.Estimator(image_uri=xgboost_container,
 hyperparameters=hyperparameters,
 ...)

XGBoost Version 0.72

Important

The XGBoost 0.72 is deprecated by Amazon SageMaker. You can still use this old version of
XGBoost (as a built-in algorithm) by pulling its image URI as shown in the following code
sample. For XGBoost, the image URI ending with :1 is for the old version.

SageMaker Python SDK v1

import boto3
from sagemaker.amazon.amazon_estimator import get_image_uri

Use Built-in Algorithms 2789

Amazon SageMaker Developer Guide

xgb_image_uri = get_image_uri(boto3.Session().region_name, "xgboost",
 repo_version="1")

SageMaker Python SDK v2

import boto3
from sagemaker import image_uris

xgb_image_uri = image_uris.retrieve("xgboost", boto3.Session().region_name,
 "1")

If you want to use newer versions, you have to explicitly specify the image URI tags (see
Supported versions).

This previous release of the Amazon SageMaker XGBoost algorithm is based on the 0.72 release.
XGBoost (eXtreme Gradient Boosting) is a popular and efficient open-source implementation of
the gradient boosted trees algorithm. Gradient boosting is a supervised learning algorithm that
attempts to accurately predict a target variable by combining the estimates of a set of simpler,
weaker models. XGBoost has done remarkably well in machine learning competitions because
it robustly handles a variety of data types, relationships, and distributions, and because of the
large number of hyperparameters that can be tweaked and tuned for improved fits. This flexibility
makes XGBoost a solid choice for problems in regression, classification (binary and multiclass), and
ranking.

Customers should consider using the new release of XGBoost Algorithm. They can use it as a
SageMaker built-in algorithm or as a framework to run scripts in their local environments as
they would typically, for example, do with a Tensorflow deep learning framework. The new
implementation has a smaller memory footprint, better logging, improved hyperparameter
validation, and an expanded set of metrics. The earlier implementation of XGBoost remains
available to customers if they need to postpone migrating to the new version. But this previous
implementation will remain tied to the 0.72 release of XGBoost.

Input/Output Interface for the XGBoost Release 0.72

Gradient boosting operates on tabular data, with the rows representing observations, one column
representing the target variable or label, and the remaining columns representing features.

Use Built-in Algorithms 2790

https://github.com/dmlc/xgboost

Amazon SageMaker Developer Guide

The SageMaker implementation of XGBoost supports CSV and libsvm formats for training and
inference:

• For Training ContentType, valid inputs are text/libsvm (default) or text/csv.

• For Inference ContentType, valid inputs are text/libsvm or (the default) text/csv.

Note

For CSV training, the algorithm assumes that the target variable is in the first column and
that the CSV does not have a header record. For CSV inference, the algorithm assumes that
CSV input does not have the label column.
For libsvm training, the algorithm assumes that the label is in the first column. Subsequent
columns contain the zero-based index value pairs for features. So each row has the format:
<label> <index0>:<value0> <index1>:<value1> ... Inference requests for libsvm may or may
not have labels in the libsvm format.

This differs from other SageMaker algorithms, which use the protobuf training input format to
maintain greater consistency with standard XGBoost data formats.

For CSV training input mode, the total memory available to the algorithm (Instance Count * the
memory available in the InstanceType) must be able to hold the training dataset. For libsvm
training input mode, it's not required, but we recommend it.

SageMaker XGBoost uses the Python pickle module to serialize/deserialize the model, which can be
used for saving/loading the model.

To use a model trained with SageMaker XGBoost in open source XGBoost

• Use the following Python code:

import pickle as pkl
import tarfile
import xgboost

t = tarfile.open('model.tar.gz', 'r:gz')
t.extractall()

model = pkl.load(open(model_file_path, 'rb'))

Use Built-in Algorithms 2791

Amazon SageMaker Developer Guide

prediction with test data
pred = model.predict(dtest)

To differentiate the importance of labelled data points use Instance Weight Supports

• SageMaker XGBoost allows customers to differentiate the importance of labelled data
points by assigning each instance a weight value. For text/libsvm input, customers can
assign weight values to data instances by attaching them after the labels. For example,
label:weight idx_0:val_0 idx_1:val_1.... For text/csv input, customers need to
turn on the csv_weights flag in the parameters and attach weight values in the column after
labels. For example: label,weight,val_0,val_1,...).

EC2 Instance Recommendation for the XGBoost Release 0.72

SageMaker XGBoost currently only trains using CPUs. It is a memory-bound (as opposed to
compute-bound) algorithm. So, a general-purpose compute instance (for example, M4) is a better
choice than a compute-optimized instance (for example, C4). Further, we recommend that you have
enough total memory in selected instances to hold the training data. Although it supports the use
of disk space to handle data that does not fit into main memory (the out-of-core feature available
with the libsvm input mode), writing cache files onto disk slows the algorithm processing time.

XGBoost Release 0.72 Sample Notebooks

For a sample notebook that shows how to use the latest version of SageMaker XGBoost as a built-
in algorithm to train and host a regression model, see Regression with Amazon SageMaker XGBoost
algorithm. To use the 0.72 version of XGBoost, you need to change the version in the sample code
to 0.72. For instructions how to create and access Jupyter notebook instances that you can use
to run the example in SageMaker, see Amazon SageMaker Notebook Instances. Once you have
created a notebook instance and opened it, select the SageMaker Examples tab to see a list of all
the SageMaker samples. The topic modeling example notebooks using the XGBoost algorithms are
located in the Introduction to Amazon algorithms section. To open a notebook, click on its Use
tab and select Create copy.

XGBoost Release 0.72 Hyperparameters

The following table contains the hyperparameters for the XGBoost algorithm. These are
parameters that are set by users to facilitate the estimation of model parameters from data. The

Use Built-in Algorithms 2792

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.html

Amazon SageMaker Developer Guide

required hyperparameters that must be set are listed first, in alphabetical order. The optional
hyperparameters that can be set are listed next, also in alphabetical order. The SageMaker XGBoost
algorithm is an implementation of the open-source XGBoost package. Currently SageMaker
supports version 0.72. For more detail about hyperparameter configuration for this version of
XGBoost, see XGBoost Parameters.

Parameter Name Description

num_class The number of classes.

Required if objective is set to multi:softmax or multi:sof
tprob.

Valid values: integer

num_round The number of rounds to run the training.

Required

Valid values: integer

alpha L1 regularization term on weights. Increasing this value makes
models more conservative.

Optional

Valid values: float

Default value: 0

base_score The initial prediction score of all instances, global bias.

Optional

Valid values: float

Default value: 0.5

booster Which booster to use. The gbtree and dart values use a tree-
based model, while gblinear uses a linear function.

Use Built-in Algorithms 2793

https://xgboost.readthedocs.io/en/release_0.72/parameter.html

Amazon SageMaker Developer Guide

Parameter Name Description

Optional

Valid values: String. One of gbtree, gblinear, or dart.

Default value: gbtree

colsample_bylevel Subsample ratio of columns for each split, in each level.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

colsample_bytree Subsample ratio of columns when constructing each tree.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

csv_weights When this flag is enabled, XGBoost differentiates the
importance of instances for csv input by taking the second
column (the column after labels) in training data as the
instance weights.

Optional

Valid values: 0 or 1

Default value: 0

Use Built-in Algorithms 2794

Amazon SageMaker Developer Guide

Parameter Name Description

early_stopping_rou
nds

The model trains until the validation score stops improving.
Validation error needs to decrease at least every early_sto
pping_rounds to continue training. SageMaker hosting
uses the best model for inference.

Optional

Valid values: integer

Default value: -

eta Step size shrinkage used in updates to prevent overfitting.
After each boosting step, you can directly get the weights of
new features. The eta parameter actually shrinks the feature
weights to make the boosting process more conservative.

Optional

Valid values: Float. Range: [0,1].

Default value: 0.3

eval_metric Evaluation metrics for validation data. A default metric is
assigned according to the objective:

• rmse: for regression

• error: for classification

• map: for ranking

For a list of valid inputs, see XGBoost Parameters.

Optional

Valid values: string

Default value: Default according to objective.

Use Built-in Algorithms 2795

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst#learning-task-parameters

Amazon SageMaker Developer Guide

Parameter Name Description

gamma Minimum loss reduction required to make a further partition
 on a leaf node of the tree. The larger, the more conservative
the algorithm is.

Optional

Valid values: Float. Range: [0,∞).

Default value: 0

grow_policy Controls the way that new nodes are added to the tree.
Currently supported only if tree_method is set to hist.

Optional

Valid values: String. Either depthwise or lossguide .

Default value: depthwise

lambda L2 regularization term on weights. Increasing this value makes
models more conservative.

Optional

Valid values: float

Default value: 1

lambda_bias L2 regularization term on bias.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0

Use Built-in Algorithms 2796

Amazon SageMaker Developer Guide

Parameter Name Description

max_bin Maximum number of discrete bins to bucket continuous
features. Used only if tree_method is set to hist.

Optional

Valid values: integer

Default value: 256

max_delta_step Maximum delta step allowed for each tree's weight estimatio
n. When a positive integer is used, it helps make the update
more conservative. The preferred option is to use it in logistic
regression. Set it to 1-10 to help control the update.

Optional

Valid values: Integer. Range: [0,∞).

Default value: 0

max_depth Maximum depth of a tree. Increasing this value makes the
model more complex and likely to be overfit. 0 indicates no
limit. A limit is required when grow_policy =depth-wise .

Optional

Valid values: Integer. Range: [0,∞)

Default value: 6

max_leaves Maximum number of nodes to be added. Relevant only if
grow_policy is set to lossguide .

Optional

Valid values: integer

Default value: 0

Use Built-in Algorithms 2797

Amazon SageMaker Developer Guide

Parameter Name Description

min_child_weight Minimum sum of instance weight (hessian) needed in a child.
If the tree partition step results in a leaf node with the sum of
instance weight less than min_child_weight , the building
process gives up further partitioning. In linear regression
models, this simply corresponds to a minimum number of
instances needed in each node. The larger the algorithm, the
more conservative it is.

Optional

Valid values: Float. Range: [0,∞).

Default value: 1

normalize_type Type of normalization algorithm.

Optional

Valid values: Either tree or forest.

Default value: tree

nthread Number of parallel threads used to run xgboost.

Optional

Valid values: integer

Default value: Maximum number of threads.

Use Built-in Algorithms 2798

Amazon SageMaker Developer Guide

Parameter Name Description

objective Specifies the learning task and the corresponding learning
objective. Examples: reg:logistic , reg:softmax ,
multi:squarederror . For a full list of valid inputs, refer
to XGBoost Parameters.

Optional

Valid values: string

Default value: reg:squarederror

one_drop When this flag is enabled, at least one tree is always dropped
during the dropout.

Optional

Valid values: 0 or 1

Default value: 0

process_type The type of boosting process to run.

Optional

Valid values: String. Either default or update.

Default value: default

rate_drop The dropout rate that specifies the fraction of previous trees to
drop during the dropout.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0.0

Use Built-in Algorithms 2799

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst#learning-task-parameters

Amazon SageMaker Developer Guide

Parameter Name Description

refresh_leaf This is a parameter of the 'refresh' updater plug-in. When set
to true (1), tree leaves and tree node stats are updated. When
set to false(0), only tree node stats are updated.

Optional

Valid values: 0/1

Default value: 1

sample_type Type of sampling algorithm.

Optional

Valid values: Either uniform or weighted.

Default value: uniform

scale_pos_weight Controls the balance of positive and negative weights. It's
useful for unbalanced classes. A typical value to consider:
 sum(negative cases) / sum(positive cases) .

Optional

Valid values: float

Default value: 1

seed Random number seed.

Optional

Valid values: integer

Default value: 0

Use Built-in Algorithms 2800

Amazon SageMaker Developer Guide

Parameter Name Description

silent 0 means print running messages, 1 means silent mode.

Valid values: 0 or 1

Optional

Default value: 0

sketch_eps Used only for approximate greedy algorithm. This translate
s into O(1 / sketch_eps) number of bins. Compared to
directly select number of bins, this comes with theoretical
guarantee with sketch accuracy.

Optional

Valid values: Float, Range: [0, 1].

Default value: 0.03

skip_drop Probability of skipping the dropout procedure during a
boosting iteration.

Optional

Valid values: Float. Range: [0.0, 1.0].

Default value: 0.0

subsample Subsample ratio of the training instance. Setting it to 0.5
means that XGBoost randomly collects half of the data
instances to grow trees. This prevents overfitting.

Optional

Valid values: Float. Range: [0,1].

Default value: 1

Use Built-in Algorithms 2801

Amazon SageMaker Developer Guide

Parameter Name Description

tree_method The tree construction algorithm used in XGBoost.

Optional

Valid values: One of auto, exact, approx, or hist.

Default value: auto

tweedie_variance_p
ower

Parameter that controls the variance of the Tweedie distribut
ion.

Optional

Valid values: Float. Range: (1, 2).

Default value: 1.5

updater A comma-separated string that defines the sequence of tree
updaters to run. This provides a modular way to construct and
to modify the trees.

For a full list of valid inputs, please refer to XGBoost Parameter
s.

Optional

Valid values: comma-separated string.

Default value: grow_colmaker , prune

Tune an XGBoost Release 0.72 Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your training and validation
datasets. You choose three types of hyperparameters:

• a learning objective function to optimize during model training

• an eval_metric to use to evaluate model performance during validation

Use Built-in Algorithms 2802

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

Amazon SageMaker Developer Guide

• a set of hyperparameters and a range of values for each to use when tuning the model
automatically

You choose the evaluation metric from set of evaluation metrics that the algorithm computes.
Automatic model tuning searches the hyperparameters chosen to find the combination of values
that result in the model that optimizes the evaluation metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the XGBoost Release 0.72 Algorithm

The XGBoost algorithm based on version 0.72 computes the following nine metrics to use for
model validation. When tuning the model, choose one of these metrics to evaluate the model. For
full list of valid eval_metric values, refer to XGBoost Learning Task Parameters

Metric Name Description Optimization
Direction

validation:auc Area under the curve. Maximize

validatio
n:error

Binary classification error rate, calculated as
#(wrong cases)/#(all cases).

Minimize

validatio
n:logloss

Negative log-likelihood. Minimize

validation:mae Mean absolute error. Minimize

validation:map Mean average precision. Maximize

validatio
n:merror

Multiclass classification error rate, calculated
as #(wrong cases)/#(all cases).

Minimize

validatio
n:mlogloss

Negative log-likelihood for multiclass classific
ation.

Minimize

validation:ndcg Normalized Discounted Cumulative Gain. Maximize

validation:rmse Root mean square error. Minimize

Use Built-in Algorithms 2803

https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst#learning-task-parameters

Amazon SageMaker Developer Guide

Tunable XGBoost Release 0.72 Hyperparameters

Tune the XGBoost model with the following hyperparameters. The hyperparameters that have the
greatest effect on optimizing the XGBoost evaluation metrics are: alpha, min_child_weight,
subsample, eta, and num_round.

Parameter Name Parameter Type Recommended
Ranges

alpha ContinuousParameterRanges MinValue: 0,
MaxValue: 1000

colsample
_bylevel

ContinuousParameterRanges MinValue: 0.1,
MaxValue: 1

colsample
_bytree

ContinuousParameterRanges MinValue: 0.5,
MaxValue: 1

eta ContinuousParameterRanges MinValue: 0.1,
MaxValue: 0.5

gamma ContinuousParameterRanges MinValue: 0,
MaxValue: 5

lambda ContinuousParameterRanges MinValue: 0,
MaxValue: 1000

max_delta_step IntegerParameterRanges [0, 10]

max_depth IntegerParameterRanges [0, 10]

min_child
_weight

ContinuousParameterRanges MinValue: 0,
MaxValue: 120

num_round IntegerParameterRanges [1, 4000]

subsample ContinuousParameterRanges MinValue: 0.5,
MaxValue: 1

Use Built-in Algorithms 2804

Amazon SageMaker Developer Guide

Built-in SageMaker Algorithms for Text Data

SageMaker provides algorithms that are tailored to the analysis of textual documents used
in natural language processing, document classification or summarization, topic modeling or
classification, and language transcription or translation.

• BlazingText algorithm—a highly optimized implementation of the Word2vec and text
classification algorithms that scale to large datasets easily. It is useful for many downstream
natural language processing (NLP) tasks.

• Latent Dirichlet Allocation (LDA) Algorithm—an algorithm suitable for determining topics in a set
of documents. It is an unsupervised algorithm, which means that it doesn't use example data with
answers during training.

• Neural Topic Model (NTM) Algorithm—another unsupervised technique for determining topics in
a set of documents, using a neural network approach.

• Object2Vec Algorithm—a general-purpose neural embedding algorithm that can be used for
recommendation systems, document classification, and sentence embeddings.

• Sequence-to-Sequence Algorithm—a supervised algorithm commonly used for neural machine
translation.

• Text Classification - TensorFlow—a supervised algorithm that supports transfer learning with
available pretrained models for text classification.

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

BlazingTe
xt

train File or Pipe Text file
(one
sentence
per line
with
space-sep
arated
tokens)

GPU
(single
instance
only) or
CPU

No

Use Built-in Algorithms 2805

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

LDA train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU
(single
instance
only)

No

Neural
Topic
Model

train and
(optional
ly)
validatio
n, test, or
both

File or Pipe recordIO-
protobuf
or CSV

GPU or
CPU

Yes

Object2Ve
c

train and
(optional
ly)
validatio
n, test, or
both

File JSON Lines GPU
or CPU
(single
instance
only)

No

Seq2Seq
Modeling

train,
validation,
and vocab

File recordIO-
protobuf

GPU
(single
instance
only)

No

Text
Classific
ation -
TensorFlo
w

training
and
validation

File CSV CPU or
GPU

Yes (only
across
multiple
GPUs on
a single
instance)

Use Built-in Algorithms 2806

Amazon SageMaker Developer Guide

BlazingText algorithm

The Amazon SageMaker BlazingText algorithm provides highly optimized implementations of
the Word2vec and text classification algorithms. The Word2vec algorithm is useful for many
downstream natural language processing (NLP) tasks, such as sentiment analysis, named entity
recognition, machine translation, etc. Text classification is an important task for applications that
perform web searches, information retrieval, ranking, and document classification.

The Word2vec algorithm maps words to high-quality distributed vectors. The resulting vector
representation of a word is called a word embedding. Words that are semantically similar
correspond to vectors that are close together. That way, word embeddings capture the semantic
relationships between words.

Many natural language processing (NLP) applications learn word embeddings by training on large
collections of documents. These pretrained vector representations provide information about
semantics and word distributions that typically improves the generalizability of other models
that are later trained on a more limited amount of data. Most implementations of the Word2vec
algorithm are not optimized for multi-core CPU architectures. This makes it difficult to scale to
large datasets.

With the BlazingText algorithm, you can scale to large datasets easily. Similar to Word2vec, it
provides the Skip-gram and continuous bag-of-words (CBOW) training architectures. BlazingText's
implementation of the supervised multi-class, multi-label text classification algorithm extends the
fastText text classifier to use GPU acceleration with custom CUDA kernels. You can train a model
on more than a billion words in a couple of minutes using a multi-core CPU or a GPU. And, you
achieve performance on par with the state-of-the-art deep learning text classification algorithms.

The BlazingText algorithm is not parallelizable. For more information on parameters related to
training, see Docker Registry Paths for SageMaker Built-in Algorithms.

The SageMaker BlazingText algorithms provides the following features:

• Accelerated training of the fastText text classifier on multi-core CPUs or a GPU and Word2Vec on
GPUs using highly optimized CUDA kernels. For more information, see BlazingText: Scaling and
Accelerating Word2Vec using Multiple GPUs.

• Enriched Word Vectors with Subword Information by learning vector representations for
character n-grams. This approach enables BlazingText to generate meaningful vectors for out-
of-vocabulary (OOV) words by representing their vectors as the sum of the character n-gram
(subword) vectors.

Use Built-in Algorithms 2807

https://docs.nvidia.com/cuda/index.html
https://docs.aws.amazon.com/en_us/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://dl.acm.org/citation.cfm?doid=3146347.3146354
https://dl.acm.org/citation.cfm?doid=3146347.3146354
https://arxiv.org/abs/1607.04606

Amazon SageMaker Developer Guide

• A batch_skipgram mode for the Word2Vec algorithm that allows faster training and
distributed computation across multiple CPU nodes. The batch_skipgram mode does mini-
batching using the Negative Sample Sharing strategy to convert level-1 BLAS operations into
level-3 BLAS operations. This efficiently leverages the multiply-add instructions of modern
architectures. For more information, see Parallelizing Word2Vec in Shared and Distributed
Memory.

To summarize, the following modes are supported by BlazingText on different types instances:

Modes Word2Vec

(Unsupervised Learning)

Text Classification

(Supervised Learning)

Single CPU instance cbow

Skip-gram

Batch Skip-gram

supervised

Single GPU instance (with 1
or more GPUs)

cbow

Skip-gram

supervised with one GPU

Multiple CPU instances Batch Skip-gram None

For more information about the mathematics behind BlazingText, see BlazingText: Scaling and
Accelerating Word2Vec using Multiple GPUs.

Topics

• Input/Output Interface for the BlazingText Algorithm

• EC2 Instance Recommendation for the BlazingText Algorithm

• BlazingText Sample Notebooks

• BlazingText Hyperparameters

• Tune a BlazingText Model

Use Built-in Algorithms 2808

https://arxiv.org/pdf/1604.04661.pdf
https://arxiv.org/pdf/1604.04661.pdf
https://dl.acm.org/citation.cfm?doid=3146347.3146354
https://dl.acm.org/citation.cfm?doid=3146347.3146354

Amazon SageMaker Developer Guide

Input/Output Interface for the BlazingText Algorithm

The BlazingText algorithm expects a single preprocessed text file with space-separated tokens.
Each line in the file should contain a single sentence. If you need to train on multiple text files,
concatenate them into one file and upload the file in the respective channel.

Training and Validation Data Format

Training and Validation Data Format for the Word2Vec Algorithm

For Word2Vec training, upload the file under the train channel. No other channels are supported.
The file should contain a training sentence per line.

Training and Validation Data Format for the Text Classification Algorithm

For supervised mode, you can train with file mode or with the augmented manifest text format.

Train with File Mode

For supervised mode, the training/validation file should contain a training sentence per line
along with the labels. Labels are words that are prefixed by the string __label__. Here is an example
of a training/validation file:

__label__4 linux ready for prime time , intel says , despite all the linux hype , the
 open-source movement has yet to make a huge splash in the desktop market . that may be
 about to change , thanks to chipmaking giant intel corp .

__label__2 bowled by the slower one again , kolkata , november 14 the past caught up
 with sourav ganguly as the indian skippers return to international cricket was short
 lived .

Note

The order of labels within the sentence doesn't matter.

Upload the training file under the train channel, and optionally upload the validation file under the
validation channel.

Use Built-in Algorithms 2809

Amazon SageMaker Developer Guide

Train with Augmented Manifest Text Format

Supervised mode for CPU instances also supports the augmented manifest format, which enables
you to do training in pipe mode without needing to create RecordIO files. While using the
format, an S3 manifest file needs to be generated that contains the list of sentences and their
corresponding labels. The manifest file format should be in JSON Lines format in which each
line represents one sample. The sentences are specified using the source tag and the label can
be specified using the label tag. Both source and label tags should be provided under the
AttributeNames parameter value as specified in the request.

{"source":"linux ready for prime time , intel says , despite all the linux hype",
 "label":1}
{"source":"bowled by the slower one again , kolkata , november 14 the past caught up
 with sourav ganguly", "label":2}

Multi-label training is also supported by specifying a JSON array of labels.

{"source":"linux ready for prime time , intel says , despite all the linux hype",
 "label": [1, 3]}
{"source":"bowled by the slower one again , kolkata , november 14 the past caught up
 with sourav ganguly", "label": [2, 4, 5]}

For more information on augmented manifest files, see Provide Dataset Metadata to Training Jobs
with an Augmented Manifest File.

Model Artifacts and Inference

Model Artifacts for the Word2Vec Algorithm

For Word2Vec training, the model artifacts consist of vectors.txt, which contains words-to-vectors
mapping, and vectors.bin, a binary used by BlazingText for hosting, inference, or both. vectors.txt
stores the vectors in a format that is compatible with other tools like Gensim and Spacy. For
example, a Gensim user can run the following commands to load the vectors.txt file:

from gensim.models import KeyedVectors
word_vectors = KeyedVectors.load_word2vec_format('vectors.txt', binary=False)
word_vectors.most_similar(positive=['woman', 'king'], negative=['man'])
word_vectors.doesnt_match("breakfast cereal dinner lunch".split())

If the evaluation parameter is set to True, an additional file, eval.json, is created. This file contains
the similarity evaluation results (using Spearman’s rank correlation coefficients) on WS-353

Use Built-in Algorithms 2810

http://jsonlines.org/

Amazon SageMaker Developer Guide

dataset. The number of words from the WS-353 dataset that aren't there in the training corpus are
reported.

For inference requests, the model accepts a JSON file containing a list of strings and returns a list
of vectors. If the word is not found in vocabulary, inference returns a vector of zeros. If subwords
is set to True during training, the model is able to generate vectors for out-of-vocabulary (OOV)
words.

Sample JSON Request

Mime-type: application/json

{
"instances": ["word1", "word2", "word3"]
}

Model Artifacts for the Text Classification Algorithm

Training with supervised outputs creates a model.bin file that can be consumed by BlazingText
hosting. For inference, the BlazingText model accepts a JSON file containing a list of sentences and
returns a list of corresponding predicted labels and probability scores. Each sentence is expected to
be a string with space-separated tokens, words, or both.

Sample JSON Request

Mime-type: application/json

{
 "instances": ["the movie was excellent", "i did not like the plot ."]
}

By default, the server returns only one prediction, the one with the highest probability. For
retrieving the top k predictions, you can set k in the configuration, as follows:

{
 "instances": ["the movie was excellent", "i did not like the plot ."],
 "configuration": {"k": 2}
}

Use Built-in Algorithms 2811

Amazon SageMaker Developer Guide

For BlazingText, the content-type and accept parameters must be equal. For batch transform,
they both need to be application/jsonlines. If they differ, the Accept field is ignored. The
format for input follows:

content-type: application/jsonlines

{"source": "source_0"}
{"source": "source_1"}

if you need to pass the value of k for top-k, then you can do it in the following way:

{"source": "source_0", "k": 2}
{"source": "source_1", "k": 3}

The format for output follows:

accept: application/jsonlines

{"prob": [prob_1], "label": ["__label__1"]}
{"prob": [prob_1], "label": ["__label__1"]}

If you have passed the value of k to be more than 1, then response will be in this
 format:

{"prob": [prob_1, prob_2], "label": ["__label__1", "__label__2"]}
{"prob": [prob_1, prob_2], "label": ["__label__1", "__label__2"]}

For both supervised (text classification) and unsupervised (Word2Vec) modes, the binaries (*.bin)
produced by BlazingText can be cross-consumed by fastText and vice versa. You can use binaries
produced by BlazingText by fastText. Likewise, you can host the model binaries created with
fastText using BlazingText.

Here is an example of how to use a model generated with BlazingText with fastText:

#Download the model artifact from S3
aws s3 cp s3://<YOUR_S3_BUCKET>/<PREFIX>/model.tar.gz model.tar.gz

#Unzip the model archive
tar -xzf model.tar.gz

Use Built-in Algorithms 2812

Amazon SageMaker Developer Guide

#Use the model archive with fastText
fasttext predict ./model.bin test.txt

However, the binaries are only supported when training on CPU and single GPU; training on multi-
GPU will not produce binaries.

EC2 Instance Recommendation for the BlazingText Algorithm

For cbow and skipgram modes, BlazingText supports single CPU and single GPU instances. Both
of these modes support learning of subwords embeddings. To achieve the highest speed without
compromising accuracy, we recommend that you use an ml.p3.2xlarge instance.

For batch_skipgram mode, BlazingText supports single or multiple CPU instances. When
training on multiple instances, set the value of the S3DataDistributionType field of the
S3DataSource object that you pass to CreateTrainingJob to FullyReplicated. BlazingText
takes care of distributing data across machines.

For the supervised text classification mode, a C5 instance is recommended if the training dataset is
less than 2 GB. For larger datasets, use an instance with a single GPU. BlazingText supports P2, P3,
G4dn, and G5 instances for training and inference.

BlazingText Sample Notebooks

For a sample notebook that trains and deploys the SageMaker BlazingText algorithm to generate
word vectors, see Learning Word2Vec Word Representations using BlazingText. For instructions
for creating and accessing Jupyter notebook instances that you can use to run the example in
SageMaker, see Amazon SageMaker Notebook Instances. After creating and opening a notebook
instance, choose the SageMaker Examples tab to see a list of all the SageMaker examples. The
topic modeling example notebooks that use the Blazing Text are located in the Introduction to
Amazon algorithms section. To open a notebook, choose its Use tab, then choose Create copy.

BlazingText Hyperparameters

When you start a training job with a CreateTrainingJob request, you specify a training
algorithm. You can also specify algorithm-specific hyperparameters as string-to-string maps.
The hyperparameters for the BlazingText algorithm depend on which mode you use: Word2Vec
(unsupervised) and Text Classification (supervised).

Use Built-in Algorithms 2813

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/blazingtext_word2vec_text8/blazingtext_word2vec_text8.html

Amazon SageMaker Developer Guide

Word2Vec Hyperparameters

The following table lists the hyperparameters for the BlazingText Word2Vec training algorithm
provided by Amazon SageMaker.

Parameter Name Description

mode The Word2vec architecture used for training.

Required

Valid values: batch_skipgram , skipgram, or cbow

batch_size The size of each batch when mode is set to batch_ski
pgram . Set to a number between 10 and 20.

Optional

Valid values: Positive integer

Default value: 11

buckets The number of hash buckets to use for subwords.

Optional

Valid values: positive integer

Default value: 2000000

epochs The number of complete passes through the training data.

Optional

Valid values: Positive integer

Default value: 5

evaluation Whether the trained model is evaluated using the WordSimil
arity-353 Test.

Optional

Use Built-in Algorithms 2814

http://www.gabrilovich.com/resources/data/wordsim353/wordsim353.html
http://www.gabrilovich.com/resources/data/wordsim353/wordsim353.html

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: (Boolean) True or False

Default value: True

learning_rate The step size used for parameter updates.

Optional

Valid values: Positive float

Default value: 0.05

min_char The minimum number of characters to use for subwords/
character n-grams.

Optional

Valid values: positive integer

Default value: 3

min_count Words that appear less than min_count times are discarded.

Optional

Valid values: Non-negative integer

Default value: 5

max_char The maximum number of characters to use for subwords/
character n-grams

Optional

Valid values: positive integer

Default value: 6

Use Built-in Algorithms 2815

Amazon SageMaker Developer Guide

Parameter Name Description

negative_samples The number of negative samples for the negative sample
sharing strategy.

Optional

Valid values: Positive integer

Default value: 5

sampling_threshold The threshold for the occurrence of words. Words that appear
with higher frequency in the training data are randomly down-
sampled.

Optional

Valid values: Positive fraction. The recommended range is (0,
1e-3]

Default value: 0.0001

subwords Whether to learn subword embeddings on not.

Optional

Valid values: (Boolean) True or False

Default value: False

vector_dim The dimension of the word vectors that the algorithm learns.

Optional

Valid values: Positive integer

Default value: 100

Use Built-in Algorithms 2816

Amazon SageMaker Developer Guide

Parameter Name Description

window_size The size of the context window. The context window is the
number of words surrounding the target word used for
training.

Optional

Valid values: Positive integer

Default value: 5

Text Classification Hyperparameters

The following table lists the hyperparameters for the Text Classification training algorithm
provided by Amazon SageMaker.

Note

Although some of the parameters are common between the Text Classification and
Word2Vec modes, they might have different meanings depending on the context.

Parameter Name Description

mode The training mode.

Required

Valid values: supervised

buckets The number of hash buckets to use for word n-grams.

Optional

Valid values: Positive integer

Default value: 2000000

Use Built-in Algorithms 2817

Amazon SageMaker Developer Guide

Parameter Name Description

early_stopping Whether to stop training if validation accuracy doesn't improve
after a patience number of epochs. Note that a validation
channel is required if early stopping is used.

Optional

Valid values: (Boolean) True or False

Default value: False

epochs The maximum number of complete passes through the training
data.

Optional

Valid values: Positive integer

Default value: 5

learning_rate The step size used for parameter updates.

Optional

Valid values: Positive float

Default value: 0.05

min_count Words that appear less than min_count times are discarded.

Optional

Valid values: Non-negative integer

Default value: 5

Use Built-in Algorithms 2818

Amazon SageMaker Developer Guide

Parameter Name Description

min_epochs The minimum number of epochs to train before early stopping
logic is invoked.

Optional

Valid values: Positive integer

Default value: 5

patience The number of epochs to wait before applying early stopping
when no progress is made on the validation set. Used only
when early_stopping is True.

Optional

Valid values: Positive integer

Default value: 4

vector_dim The dimension of the embedding layer.

Optional

Valid values: Positive integer

Default value: 100

word_ngrams The number of word n-gram features to use.

Optional

Valid values: Positive integer

Default value: 2

Tune a BlazingText Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the

Use Built-in Algorithms 2819

Amazon SageMaker Developer Guide

tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the BlazingText Algorithm

The BlazingText Word2Vec algorithm (skipgram, cbow, and batch_skipgram modes) reports
on a single metric during training: train:mean_rho. This metric is computed on WS-353 word
similarity datasets. When tuning the hyperparameter values for the Word2Vec algorithm, use this
metric as the objective.

The BlazingText Text Classification algorithm (supervised mode), also reports on a single metric
during training: the validation:accuracy. When tuning the hyperparameter values for the text
classification algorithm, use these metrics as the objective.

Metric Name Description Optimization
Direction

train:mean_rho The mean rho (Spearman's rank correlati
on coefficient) on WS-353 word similarity
datasets

Maximize

validatio
n:accuracy

The classification accuracy on the user-spec
ified validation dataset

Maximize

Tunable BlazingText Hyperparameters

Tunable Hyperparameters for the Word2Vec Algorithm

Tune an Amazon SageMaker BlazingText Word2Vec model with the following hyperparameters.
The hyperparameters that have the greatest impact on Word2Vec objective metrics are: mode,
learning_rate, window_size, vector_dim, and negative_samples.

Use Built-in Algorithms 2820

https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)
https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)
http://alfonseca.org/pubs/ws353simrel.tar.gz
http://alfonseca.org/pubs/ws353simrel.tar.gz

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges or Values

batch_size IntegerParameterRange [8-32]

epochs IntegerParameterRange [5-15]

learning_rate ContinuousParameterRange MinValue: 0.005,
MaxValue: 0.01

min_count IntegerParameterRange [0-100]

mode CategoricalParameterRange ['batch_sk
ipgram' ,
'skipgram' ,
'cbow']

negative_
samples

IntegerParameterRange [5-25]

sampling_
threshold

ContinuousParameterRange MinValue: 0.0001,
MaxValue: 0.001

vector_dim IntegerParameterRange [32-300]

window_size IntegerParameterRange [1-10]

Tunable Hyperparameters for the Text Classification Algorithm

Tune an Amazon SageMaker BlazingText text classification model with the following
hyperparameters.

Parameter Name Parameter Type Recommended
Ranges or Values

buckets IntegerParameterRange [1000000-10000000]

epochs IntegerParameterRange [5-15]

Use Built-in Algorithms 2821

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges or Values

learning_rate ContinuousParameterRange MinValue: 0.005,
MaxValue: 0.01

min_count IntegerParameterRange [0-100]

vector_dim IntegerParameterRange [32-300]

word_ngrams IntegerParameterRange [1-3]

Latent Dirichlet Allocation (LDA) Algorithm

The Amazon SageMaker Latent Dirichlet Allocation (LDA) algorithm is an unsupervised learning
algorithm that attempts to describe a set of observations as a mixture of distinct categories. LDA
is most commonly used to discover a user-specified number of topics shared by documents within
a text corpus. Here each observation is a document, the features are the presence (or occurrence
count) of each word, and the categories are the topics. Since the method is unsupervised, the
topics are not specified up front, and are not guaranteed to align with how a human may naturally
categorize documents. The topics are learned as a probability distribution over the words that
occur in each document. Each document, in turn, is described as a mixture of topics.

The exact content of two documents with similar topic mixtures will not be the same. But overall,
you would expect these documents to more frequently use a shared subset of words, than when
compared with a document from a different topic mixture. This allows LDA to discover these word
groups and use them to form topics. As an extremely simple example, given a set of documents
where the only words that occur within them are: eat, sleep, play, meow, and bark, LDA might
produce topics like the following:

Topic eat sleep play meow bark

Topic 1 0.1 0.3 0.2 0.4 0.0

Topic 2 0.2 0.1 0.4 0.0 0.3

Use Built-in Algorithms 2822

Amazon SageMaker Developer Guide

You can infer that documents that are more likely to fall into Topic 1 are about cats (who are more
likely to meow and sleep), and documents that fall into Topic 2 are about dogs (who prefer to play
and bark). These topics can be found even though the words dog and cat never appear in any of
the texts.

Topics

• Choosing between Latent Dirichlet Allocation (LDA) and Neural Topic Model (NTM)

• Input/Output Interface for the LDA Algorithm

• EC2 Instance Recommendation for the LDA Algorithm

• LDA Sample Notebooks

• How LDA Works

• LDA Hyperparameters

• Tune an LDA Model

Choosing between Latent Dirichlet Allocation (LDA) and Neural Topic Model (NTM)

Topic models are commonly used to produce topics from corpuses that (1) coherently encapsulate
semantic meaning and (2) describe documents well. As such, topic models aim to minimize
perplexity and maximize topic coherence.

Perplexity is an intrinsic language modeling evaluation metric that measures the inverse of the
geometric mean per-word likelihood in your test data. A lower perplexity score indicates better
generalization performance. Research has shown that the likelihood computed per word often
does not align to human judgement, and can be entirely non-correlated, thus topic coherence has
been introduced. Each inferred topic from your model consists of words, and topic coherence is
computed to the top N words for that particular topic from your model. It is often defined as the
average or median of the pairwise word-similarity scores of the words in that topic e.g., Pointwise
Mutual Information (PMI). A promising model generates coherent topics or topics with high topic
coherence scores.

While the objective is to train a topic model that minimizes perplexity and maximizes topic
coherence, there is often a tradeoff with both LDA and NTM. Recent research by Amazon, Dinget
et al., 2018 has shown that NTM is promising for achieving high topic coherence but LDA trained
with collapsed Gibbs sampling achieves better perplexity. There is a tradeoff between perplexity
and topic coherence. From a practicality standpoint regarding hardware and compute power,
SageMaker NTM hardware is more flexible than LDA and can scale better because NTM can run on

Use Built-in Algorithms 2823

Amazon SageMaker Developer Guide

CPU and GPU and can be parallelized across multiple GPU instances, whereas LDA only supports
single-instance CPU training.

Topics

• Input/Output Interface for the LDA Algorithm

• EC2 Instance Recommendation for the LDA Algorithm

• LDA Sample Notebooks

• How LDA Works

• LDA Hyperparameters

• Tune an LDA Model

Input/Output Interface for the LDA Algorithm

LDA expects data to be provided on the train channel, and optionally supports a test channel,
which is scored by the final model. LDA supports both recordIO-wrapped-protobuf (dense and
sparse) and CSV file formats. For CSV, the data must be dense and have dimension equal to number
of records * vocabulary size. LDA can be trained in File or Pipe mode when using recordIO-wrapped
protobuf, but only in File mode for the CSV format.

For inference, text/csv, application/json, and application/x-recordio-protobuf
content types are supported. Sparse data can also be passed for application/json and
application/x-recordio-protobuf. LDA inference returns application/json or
application/x-recordio-protobuf predictions, which include the topic_mixture vector for
each observation.

Please see the LDA Sample Notebooks for more detail on training and inference formats.

EC2 Instance Recommendation for the LDA Algorithm

LDA currently only supports single-instance CPU training. CPU instances are recommended for
hosting/inference.

LDA Sample Notebooks

For a sample notebook that shows how to train the SageMaker Latent Dirichlet Allocation
algorithm on a dataset and then how to deploy the trained model to perform inferences about the
topic mixtures in input documents, see the An Introduction to SageMaker LDA. For instructions how
to create and access Jupyter notebook instances that you can use to run the example in SageMaker,

Use Built-in Algorithms 2824

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/lda_topic_modeling/LDA-Introduction.html

Amazon SageMaker Developer Guide

see Amazon SageMaker Notebook Instances. Once you have created a notebook instance and
opened it, select the SageMaker Examples tab to see a list of all the SageMaker samples. The
topic modeling example notebooks using the NTM algorithms are located in the Introduction to
Amazon algorithms section. To open a notebook, click on its Use tab and select Create copy.

How LDA Works

Amazon SageMaker LDA is an unsupervised learning algorithm that attempts to describe a set of
observations as a mixture of different categories. These categories are themselves a probability
distribution over the features. LDA is a generative probability model, which means it attempts
to provide a model for the distribution of outputs and inputs based on latent variables. This is
opposed to discriminative models, which attempt to learn how inputs map to outputs.

You can use LDA for a variety of tasks, from clustering customers based on product purchases
to automatic harmonic analysis in music. However, it is most commonly associated with topic
modeling in text corpuses. Observations are referred to as documents. The feature set is referred
to as vocabulary. A feature is referred to as a word. And the resulting categories are referred to as
topics.

Note

Lemmatization significantly increases algorithm performance and accuracy. Consider pre-
processing any input text data. For more information, see Stemming and lemmatization.

An LDA model is defined by two parameters:

• α—A prior estimate on topic probability (in other words, the average frequency that each topic
within a given document occurs).

• β—a collection of k topics where each topic is given a probability distribution over the
vocabulary used in a document corpus, also called a "topic-word distribution."

LDA is a "bag-of-words" model, which means that the order of words does not matter. LDA is a
generative model where each document is generated word-by-word by choosing a topic mixture θ
∼ Dirichlet(α).

For each word in the document:

• Choose a topic z ∼ Multinomial(θ)

Use Built-in Algorithms 2825

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Amazon SageMaker Developer Guide

• Choose the corresponding topic-word distribution β_z.

• Draw a word w ∼ Multinomial(β_z).

When training the model, the goal is to find parameters α and β, which maximize the probability
that the text corpus is generated by the model.

The most popular methods for estimating the LDA model use Gibbs sampling or Expectation
Maximization (EM) techniques. The Amazon SageMaker LDA uses tensor spectral decomposition.
This provides several advantages:

• Theoretical guarantees on results. The standard EM-method is guaranteed to converge only to
local optima, which are often of poor quality.

• Embarrassingly parallelizable. The work can be trivially divided over input documents in both
training and inference. The EM-method and Gibbs Sampling approaches can be parallelized, but
not as easily.

• Fast. Although the EM-method has low iteration cost it is prone to slow convergence rates. Gibbs
Sampling is also subject to slow convergence rates and also requires a large number of samples.

At a high-level, the tensor decomposition algorithm follows this process:

1. The goal is to calculate the spectral decomposition of a V x V x V tensor, which summarizes
the moments of the documents in our corpus. V is vocabulary size (in other words, the number
of distinct words in all of the documents). The spectral components of this tensor are the LDA
parameters α and β, which maximize the overall likelihood of the document corpus. However,
because vocabulary size tends to be large, this V x V x V tensor is prohibitively large to store in
memory.

2. Instead, it uses a V x V moment matrix, which is the two-dimensional analog of the tensor from
step 1, to find a whitening matrix of dimension V x k. This matrix can be used to convert the V x
V moment matrix into a k x k identity matrix. k is the number of topics in the model.

3. This same whitening matrix can then be used to find a smaller k x k x k tensor. When spectrally
decomposed, this tensor has components that have a simple relationship with the components
of the V x V x V tensor.

4. Alternating Least Squares is used to decompose the smaller k x k x k tensor. This provides a
substantial improvement in memory consumption and speed. The parameters α and β can be
found by “unwhitening” these outputs in the spectral decomposition.

Use Built-in Algorithms 2826

Amazon SageMaker Developer Guide

After the LDA model’s parameters have been found, you can find the topic mixtures for each
document. You use stochastic gradient descent to maximize the likelihood function of observing a
given topic mixture corresponding to these data.

Topic quality can be improved by increasing the number of topics to look for in training and then
filtering out poor quality ones. This is in fact done automatically in SageMaker LDA: 25% more
topics are computed and only the ones with largest associated Dirichlet priors are returned. To
perform further topic filtering and analysis, you can increase the topic count and modify the
resulting LDA model as follows:

> import mxnet as mx
> alpha, beta = mx.ndarray.load(‘model.tar.gz’)
> # modify alpha and beta
> mx.nd.save(‘new_model.tar.gz’, [new_alpha, new_beta])
> # upload to S3 and create new SageMaker model using the console

For more information about algorithms for LDA and the SageMaker implementation, see the
following:

• Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
Decompositions for Learning Latent Variable Models, Journal of Machine Learning Research,
15:2773–2832, 2014.

• David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3(Jan):993–1022, 2003.

• Thomas L Griffiths and Mark Steyvers. Finding Scientific Topics. Proceedings of the National
Academy of Sciences, 101(suppl 1):5228–5235, 2004.

• Tamara G Kolda and Brett W Bader. Tensor Decompositions and Applications. SIAM Review,
51(3):455–500, 2009.

LDA Hyperparameters

In the CreateTrainingJob request, you specify the training algorithm. You can also specify
algorithm-specific hyperparameters as string-to-string maps. The following table lists the
hyperparameters for the LDA training algorithm provided by Amazon SageMaker. For more
information, see How LDA Works.

Use Built-in Algorithms 2827

Amazon SageMaker Developer Guide

Parameter Name Description

num_topics The number of topics for LDA to find within the data.

Required

Valid values: positive integer

feature_dim The size of the vocabulary of the input document corpus.

Required

Valid values: positive integer

mini_batch_size The total number of documents in the input document corpus.

Required

Valid values: positive integer

alpha0 Initial guess for the concentration parameter: the sum of the
elements of the Dirichlet prior. Small values are more likely to
generate sparse topic mixtures and large values (greater than
1.0) produce more uniform mixtures.

Optional

Valid values: Positive float

Default value: 1.0

max_restarts The number of restarts to perform during the Alternating
Least Squares (ALS) spectral decomposition phase of the
algorithm. Can be used to find better quality local minima at
the expense of additional computation, but typically should
not be adjusted.

Optional

Valid values: Positive integer

Use Built-in Algorithms 2828

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: 10

max_iterations The maximum number of iterations to perform during the
ALS phase of the algorithm. Can be used to find better quality
minima at the expense of additional computation, but typically
should not be adjusted.

Optional

Valid values: Positive integer

Default value: 1000

tol Target error tolerance for the ALS phase of the algorithm.
Can be used to find better quality minima at the expense of
additional computation, but typically should not be adjusted.

Optional

Valid values: Positive float

Default value: 1e-8

Tune an LDA Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

LDA is an unsupervised topic modeling algorithm that attempts to describe a set of observations
(documents) as a mixture of different categories (topics). The “per-word log-likelihood” (PWLL)
metric measures the likelihood that a learned set of topics (an LDA model) accurately describes
a test document dataset. Larger values of PWLL indicate that the test data is more likely to be
described by the LDA model.

Use Built-in Algorithms 2829

Amazon SageMaker Developer Guide

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the LDA Algorithm

The LDA algorithm reports on a single metric during training: test:pwll. When tuning a model,
choose this metric as the objective metric.

Metric Name Description Optimization
Direction

test:pwll Per-word log-likelihood on the test dataset.
The likelihood that the test dataset is
accurately described by the learned LDA
model.

Maximize

Tunable LDA Hyperparameters

You can tune the following hyperparameters for the LDA algorithm. Both hyperparameters,
alpha0 and num_topics, can affect the LDA objective metric (test:pwll). If you don't already
know the optimal values for these hyperparameters, which maximize per-word log-likelihood and
produce an accurate LDA model, automatic model tuning can help find them.

Parameter Name Parameter Type Recommended
Ranges

alpha0 ContinuousParameterRanges MinValue: 0.1,
MaxValue: 10

num_topics IntegerParameterRanges MinValue: 1,
MaxValue: 150

Neural Topic Model (NTM) Algorithm

Amazon SageMaker NTM is an unsupervised learning algorithm that is used to organize a corpus
of documents into topics that contain word groupings based on their statistical distribution.
Documents that contain frequent occurrences of words such as "bike", "car", "train", "mileage",
and "speed" are likely to share a topic on "transportation" for example. Topic modeling can be
used to classify or summarize documents based on the topics detected or to retrieve information

Use Built-in Algorithms 2830

Amazon SageMaker Developer Guide

or recommend content based on topic similarities. The topics from documents that NTM learns
are characterized as a latent representation because the topics are inferred from the observed
word distributions in the corpus. The semantics of topics are usually inferred by examining the top
ranking words they contain. Because the method is unsupervised, only the number of topics, not
the topics themselves, are prespecified. In addition, the topics are not guaranteed to align with
how a human might naturally categorize documents.

Topic modeling provides a way to visualize the contents of a large document corpus in terms of
the learned topics. Documents relevant to each topic might be indexed or searched for based on
their soft topic labels. The latent representations of documents might also be used to find similar
documents in the topic space. You can also use the latent representations of documents that
the topic model learns for input to another supervised algorithm such as a document classifier.
Because the latent representations of documents are expected to capture the semantics of the
underlying documents, algorithms based in part on these representations are expected to perform
better than those based on lexical features alone.

Although you can use both the Amazon SageMaker NTM and LDA algorithms for topic modeling,
they are distinct algorithms and can be expected to produce different results on the same input
data.

For more information on the mathematics behind NTM, see Neural Variational Inference for Text
Processing.

Topics

• Input/Output Interface for the NTM Algorithm

• EC2 Instance Recommendation for the NTM Algorithm

• NTM Sample Notebooks

• NTM Hyperparameters

• Tune an NTM Model

• NTM Response Formats

Input/Output Interface for the NTM Algorithm

Amazon SageMaker Neural Topic Model supports four data channels: train, validation, test, and
auxiliary. The validation, test, and auxiliary data channels are optional. If you specify any of these
optional channels, set the value of the S3DataDistributionType parameter for them to
FullyReplicated. If you provide validation data, the loss on this data is logged at every epoch,

Use Built-in Algorithms 2831

https://arxiv.org/pdf/1511.06038.pdf
https://arxiv.org/pdf/1511.06038.pdf

Amazon SageMaker Developer Guide

and the model stops training as soon as it detects that the validation loss is not improving. If you
don't provide validation data, the algorithm stops early based on the training data, but this can be
less efficient. If you provide test data, the algorithm reports the test loss from the final model.

The train, validation, and test data channels for NTM support both recordIO-wrapped-
protobuf (dense and sparse) and CSV file formats. For CSV format, each row must be represented
densely with zero counts for words not present in the corresponding document, and have
dimension equal to: (number of records) * (vocabulary size). You can use either File mode or Pipe
mode to train models on data that is formatted as recordIO-wrapped-protobuf or as CSV. The
auxiliary channel is used to supply a text file that contains vocabulary. By supplying the vocabulary
file, users are able to see the top words for each of the topics printed in the log instead of their
integer IDs. Having the vocabulary file also allows NTM to compute the Word Embedding Topic
Coherence (WETC) scores, a new metric displayed in the log that captures similarity among the
top words in each topic effectively. The ContentType for the auxiliary channel is text/plain,
with each line containing a single word, in the order corresponding to the integer IDs provided in
the data. The vocabulary file must be named vocab.txt and currently only UTF-8 encoding is
supported.

For inference, text/csv, application/json, application/jsonlines, and application/
x-recordio-protobuf content types are supported. Sparse data can also be passed for
application/json and application/x-recordio-protobuf. NTM inference returns
application/json or application/x-recordio-protobuf predictions, which include the
topic_weights vector for each observation.

See the blog post and the companion notebook for more details on using the auxiliary channel
and the WETC scores. For more information on how to compute the WETC score, see Coherence-
Aware Neural Topic Modeling. We used the pairwise WETC described in this paper for the Amazon
SageMaker Neural Topic Model.

For more information on input and output file formats, see NTM Response Formats for inference
and the NTM Sample Notebooks.

EC2 Instance Recommendation for the NTM Algorithm

NTM training supports both GPU and CPU instance types. We recommend GPU instances, but
for certain workloads, CPU instances may result in lower training costs. CPU instances should be
sufficient for inference. NTM training supports P2, P3, G4dn, and G5 GPU instance families for
training and inference.

Use Built-in Algorithms 2832

https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-neural-topic-model-now-supports-auxiliary-vocabulary-channel-new-topic-evaluation-metrics-and-training-subsampling/
https://sagemaker-examples.readthedocs.io/en/latest/scientific_details_of_algorithms/ntm_topic_modeling/ntm_wikitext.html
https://arxiv.org/pdf/1809.02687.pdf
https://arxiv.org/pdf/1809.02687.pdf

Amazon SageMaker Developer Guide

NTM Sample Notebooks

For a sample notebook that uses the SageMaker NTM algorithm to uncover topics in documents
from a synthetic data source where the topic distributions are known, see the Introduction to
Basic Functionality of NTM. For instructions how to create and access Jupyter notebook instances
that you can use to run the example in SageMaker, see Amazon SageMaker Notebook Instances.
Once you have created a notebook instance and opened it, select the SageMaker Examples tab
to see a list of all the SageMaker samples. The topic modeling example notebooks using the NTM
algorithms are located in the Introduction to Amazon algorithms section. To open a notebook,
click on its Use tab and select Create copy.

NTM Hyperparameters

Parameter Name Description

feature_dim The vocabulary size of the dataset.

Required

Valid values: Positive integer (min: 1, max: 1,000,000)

num_topics The number of required topics.

Required

Valid values: Positive integer (min: 2, max: 1000)

batch_norm Whether to use batch normalization during training.

Optional

Valid values: true or false

Default value: false

clip_gradient The maximum magnitude for each gradient component.

Optional

Valid values: Float (min: 1e-3)

Use Built-in Algorithms 2833

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/ntm_synthetic/ntm_synthetic.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/ntm_synthetic/ntm_synthetic.html

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: Infinity

encoder_layers The number of layers in the encoder and the output size of
each layer. When set to auto, the algorithm uses two layers of
sizes 3 x num_topics and 2 x num_topics respectively.

Optional

Valid values: Comma-separated list of positive integers or auto

Default value: auto

encoder_layers_act
ivation

The activation function to use in the encoder layers.

Optional

Valid values:

• sigmoid: Sigmoid function

• tanh: Hyperbolic tangent

• relu: Rectified linear unit

Default value: sigmoid

epochs The maximum number of passes over the training data.

Optional

Valid values: Positive integer (min: 1)

Default value: 50

learning_rate The learning rate for the optimizer.

Optional

Valid values: Float (min: 1e-6, max: 1.0)

Default value: 0.001

Use Built-in Algorithms 2834

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Hyperbolic_function#Hyperbolic_tangent
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

Amazon SageMaker Developer Guide

Parameter Name Description

mini_batch_size The number of examples in each mini batch.

Optional

Valid values: Positive integer (min: 1, max: 10000)

Default value: 256

num_patience_epochs The number of successive epochs over which early stopping
criterion is evaluated. Early stopping is triggered when
the change in the loss function drops below the specified
 tolerance within the last num_patience_epochs
number of epochs. To disable early stopping, set num_patie
nce_epochs to a value larger than epochs.

Optional

Valid values: Positive integer (min: 1)

Default value: 3

optimizer The optimizer to use for training.

Optional

Valid values:

• sgd: Stochastic gradient descent

• adam: Adaptive momentum estimation

• adagrad: Adaptive gradient algorithm

• adadelta: An adaptive learning rate algorithm

• rmsprop: Root mean square propagation

Default value: adadelta

Use Built-in Algorithms 2835

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://arxiv.org/pdf/1212.5701.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp

Amazon SageMaker Developer Guide

Parameter Name Description

rescale_gradient The rescale factor for gradient.

Optional

Valid values: float (min: 1e-3, max: 1.0)

Default value: 1.0

sub_sample The fraction of the training data to sample for training per
epoch.

Optional

Valid values: Float (min: 0.0, max: 1.0)

Default value: 1.0

tolerance The maximum relative change in the loss function. Early
stopping is triggered when change in the loss function drops
below this value within the last num_patience_epochs
number of epochs.

Optional

Valid values: Float (min: 1e-6, max: 0.1)

Default value: 0.001

weight_decay The weight decay coefficient. Adds L2 regularization.

Optional

Valid values: Float (min: 0.0, max: 1.0)

Default value: 0.0

Use Built-in Algorithms 2836

Amazon SageMaker Developer Guide

Tune an NTM Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

Amazon SageMaker NTM is an unsupervised learning algorithm that learns latent representations
of large collections of discrete data, such as a corpus of documents. Latent representations use
inferred variables that are not directly measured to model the observations in a dataset. Automatic
model tuning on NTM helps you find the model that minimizes loss over the training or validation
data. Training loss measures how well the model fits the training data. Validation loss measures
how well the model can generalize to data that it is not trained on. Low training loss indicates that
a model is a good fit to the training data. Low validation loss indicates that a model has not overfit
the training data and so should be able to model documents successfully on which is has not been
trained. Usually, it's preferable to have both losses be small. However, minimizing training loss too
much might result in overfitting and increase validation loss, which would reduce the generality of
the model.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the NTM Algorithm

The NTM algorithm reports a single metric that is computed during training:
validation:total_loss. The total loss is the sum of the reconstruction loss and Kullback-
Leibler divergence. When tuning hyperparameter values, choose this metric as the objective.

Metric Name Description Optimization
Direction

validatio
n:total_loss

Total Loss on validation set Minimize

Tunable NTM Hyperparameters

You can tune the following hyperparameters for the NTM algorithm. Usually setting low
mini_batch_size and small learning_rate values results in lower validation losses, although

Use Built-in Algorithms 2837

Amazon SageMaker Developer Guide

it might take longer to train. Low validation losses don't necessarily produce more coherent topics
as interpreted by humans. The effect of other hyperparameters on training and validation loss can
vary from dataset to dataset. To see which values are compatible, see NTM Hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

encoder_l
ayers_act
ivation

CategoricalParameterRanges ['sigmoid', 'tanh',
'relu']

learning_rate ContinuousParameterRange MinValue: 1e-4,
MaxValue: 0.1

mini_batch_size IntegerParameterRanges MinValue: 16,
MaxValue:2048

optimizer CategoricalParameterRanges ['sgd', 'adam',
'adadelta']

rescale_g
radient

ContinuousParameterRange MinValue: 0.1,
MaxValue: 1.0

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 1.0

NTM Response Formats

All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. This topic contains a list of the available output formats for
the SageMaker NTM algorithm.

JSON Response Format

{
 "predictions": [
 {"topic_weights": [0.02, 0.1, 0,...]},
 {"topic_weights": [0.25, 0.067, 0,...]}
]

Use Built-in Algorithms 2838

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide

}

JSONLINES Response Format

{"topic_weights": [0.02, 0.1, 0,...]}
{"topic_weights": [0.25, 0.067, 0,...]}

RECORDIO Response Format

[
 Record = {
 features = {},
 label = {
 'topic_weights': {
 keys: [],
 values: [0.25, 0.067, 0, ...] # float32
 }
 }
 },
 Record = {
 features = {},
 label = {
 'topic_weights': {
 keys: [],
 values: [0.25, 0.067, 0, ...] # float32
 }
 }
 }
]

Object2Vec Algorithm

The Amazon SageMaker Object2Vec algorithm is a general-purpose neural embedding algorithm
that is highly customizable. It can learn low-dimensional dense embeddings of high-dimensional
objects. The embeddings are learned in a way that preserves the semantics of the relationship
between pairs of objects in the original space in the embedding space. You can use the learned
embeddings to efficiently compute nearest neighbors of objects and to visualize natural clusters
of related objects in low-dimensional space, for example. You can also use the embeddings as
features of the corresponding objects in downstream supervised tasks, such as classification or
regression.

Use Built-in Algorithms 2839

Amazon SageMaker Developer Guide

Object2Vec generalizes the well-known Word2Vec embedding technique for words that is
optimized in the SageMaker BlazingText algorithm. For a blog post that discusses how to apply
Object2Vec to some practical use cases, see Introduction to Amazon SageMaker Object2Vec.

Topics

• I/O Interface for the Object2Vec Algorithm

• EC2 Instance Recommendation for the Object2Vec Algorithm

• Object2Vec Sample Notebooks

• How Object2Vec Works

• Object2Vec Hyperparameters

• Tune an Object2Vec Model

• Data Formats for Object2Vec Training

• Data Formats for Object2Vec Inference

• Encoder Embeddings for Object2Vec

I/O Interface for the Object2Vec Algorithm

You can use Object2Vec on many input data types, including the following examples.

Input Data Type Example

Sentence-sentence pairs "A soccer game with multiple males playing." and "Some men
are playing a sport."

Labels-sequence pairs The genre tags of the movie "Titanic", such as "Romance"
and "Drama", and its short description: "James Cameron's
Titanic is an epic, action-packed romance set against the ill-
fated maiden voyage of the R.M.S. Titanic. She was the most
luxurious liner of her era, a ship of dreams, which ultimately
carried over 1,500 people to their death in the ice cold waters
of the North Atlantic in the early hours of April 15, 1912."

Customer-customer pairs The customer ID of Jane and customer ID of Jackie.

Product-product pairs The product ID of football and product ID of basketball.

Use Built-in Algorithms 2840

https://aws.amazon.com/blogs/machine-learning/introduction-to-amazon-sagemaker-object2vec/

Amazon SageMaker Developer Guide

Input Data Type Example

Item review user-item pairs A user's ID and the items she has bought, such as apple, pear,
and orange.

To transform the input data into the supported formats, you must preprocess it. Currently,
Object2Vec natively supports two types of input:

• A discrete token, which is represented as a list of a single integer-id. For example, [10].

• A sequences of discrete tokens, which is represented as a list of integer-ids. For example,
[0,12,10,13].

The object in each pair can be asymmetric. For example, the pairs can be (token, sequence)
or (token, token) or (sequence, sequence). For token inputs, the algorithm supports simple
embeddings as compatible encoders. For sequences of token vectors, the algorithm supports the
following as encoders:

• Average-pooled embeddings

• Hierarchical convolutional neural networks (CNNs),

• Multi-layered bidirectional long short-term memory (BiLSTMs)

The input label for each pair can be one of the following:

• A categorical label that expresses the relationship between the objects in the pair

• A score that expresses the strength of the similarity between the two objects

For categorical labels used in classification, the algorithm supports the cross-entropy loss function.
For ratings/score-based labels used in regression, the algorithm supports the mean squared error
(MSE) loss function. Specify these loss functions with the output_layer hyperparameter when
you create the model training job.

EC2 Instance Recommendation for the Object2Vec Algorithm

The type of Amazon Elastic Compute Cloud (Amazon EC2) instance that you use depends on
whether you are training or running inference.

Use Built-in Algorithms 2841

Amazon SageMaker Developer Guide

When training a model using the Object2Vec algorithm on a CPU, start with an ml.m5.2xlarge
instance. For training on a GPU, start with an ml.p2.xlarge instance. If the training takes too long
on this instance, you can use a larger instance. Currently, the Object2Vec algorithm can train only
on a single machine. However, it does offer support for multiple GPUs. Object2Vec supports P2, P3,
G4dn, and G5 GPU instance families for training and inference.

For inference with a trained Object2Vec model that has a deep neural network, we
recommend using ml.p3.2xlarge GPU instance. Due to GPU memory scarcity, the
INFERENCE_PREFERRED_MODE environment variable can be specified to optimize on whether
the the section called “GPU optimization: Classification or Regression” or the section called “GPU
optimization: Encoder Embeddings” inference network is loaded into GPU.

Object2Vec Sample Notebooks

• Using Object2Vec to Encode Sentences into Fixed Length Embeddings

Note

To run the notebooks on a notebook instance, see Example Notebooks. To run the
notebooks on Studio, see Create or Open an Amazon SageMaker Studio Classic Notebook.

How Object2Vec Works

When using the Amazon SageMaker Object2Vec algorithm, you follow the standard workflow:
process the data, train the model, and produce inferences.

Topics

• Step 1: Process Data

• Step 2: Train a Model

• Step 3: Produce Inferences

Step 1: Process Data

During preprocessing, convert the data to the JSON Lines text file format specified in Data Formats
for Object2Vec Training . To get the highest accuracy during training, also randomly shuffle the
data before feeding it into the model. How you generate random permutations depends on the
language. For python, you could use np.random.shuffle; for Unix, shuf.

Use Built-in Algorithms 2842

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/object2vec_sentence_similarity/object2vec_sentence_similarity.html
http://jsonlines.org/

Amazon SageMaker Developer Guide

Step 2: Train a Model

The SageMaker Object2Vec algorithm has the following main components:

• Two input channels – The input channels take a pair of objects of the same or different types as
inputs, and pass them to independent and customizable encoders.

• Two encoders – The two encoders, enc0 and enc1, convert each object into a fixed-length
embedding vector. The encoded embeddings of the objects in the pair are then passed into a
comparator.

• A comparator – The comparator compares the embeddings in different ways and outputs scores
that indicate the strength of the relationship between the paired objects. In the output score for
a sentence pair. For example, 1 indicates a strong relationship between a sentence pair, and 0
represents a weak relationship.

During training, the algorithm accepts pairs of objects and their relationship labels or scores as
inputs. The objects in each pair can be of different types, as described earlier. If the inputs to both
encoders are composed of the same token-level units, you can use a shared token embedding layer
by setting the tied_token_embedding_weight hyperparameter to True when you create the
training job. This is possible, for example, when comparing sentences that both have word token-
level units. To generate negative samples at a specified rate, set the negative_sampling_rate
hyperparameter to the desired ratio of negative to positive samples. This hyperparameter
expedites learning how to discriminate between the positive samples observed in the training data
and the negative samples that are not likely to be observed.

Pairs of objects are passed through independent, customizable encoders that are compatible
with the input types of corresponding objects. The encoders convert each object in a pair into a
fixed-length embedding vector of equal length. The pair of vectors are passed to a comparator
operator, which assembles the vectors into a single vector using the value specified in the he
comparator_list hyperparameter. The assembled vector then passes through a multilayer
perceptron (MLP) layer, which produces an output that the loss function compares with the labels
that you provided. This comparison evaluates the strength of the relationship between the objects
in the pair as predicted by the model. The following figure shows this workflow.

Use Built-in Algorithms 2843

Amazon SageMaker Developer Guide

Architecture of the Object2Vec Algorithm from Data Inputs to Scores

Step 3: Produce Inferences

After the model is trained, you can use the trained encoder to preprocess input objects or to
perform two types of inference:

• To convert singleton input objects into fixed-length embeddings using the corresponding
encoder

• To predict the relationship label or score between a pair of input objects

The inference server automatically figures out which of the types is requested based on the input
data. To get the embeddings as output, provide only one input. To predict the relationship label or
score, provide both inputs in the pair.

Use Built-in Algorithms 2844

Amazon SageMaker Developer Guide

Object2Vec Hyperparameters

In the CreateTrainingJob request, you specify the training algorithm. You can also specify
algorithm-specific hyperparameters as string-to-string maps. The following table lists the
hyperparameters for the Object2Vec training algorithm.

Parameter Name Description

enc0_max_seq_len The maximum sequence length for the enc0 encoder.

Required

Valid values: 1 ≤ integer ≤ 5000

enc0_vocab_size The vocabulary size of enc0 tokens.

Required

Valid values: 2 ≤ integer ≤ 3000000

bucket_width The allowed difference between data sequence length when
bucketing is enabled. To enable bucketing, specify a non-zero
value for this parameter.

Optional

Valid values: 0 ≤ integer ≤ 100

Default value: 0 (no bucketing)

comparator_list A list used to customize the way in which two embedding
s are compared. The Object2Vec comparator operator layer
takes the encodings from both encoders as inputs and outputs
a single vector. This vector is a concatenation of subvector
s. The string values passed to the comparator_list
and the order in which they are passed determine how
these subvectors are assembled. For example, if comparato
r_list="hadamard, concat" , then the comparator
operator constructs the vector by concatenating the Hadamard
product of two encodings and the concatenation of two

Use Built-in Algorithms 2845

Amazon SageMaker Developer Guide

Parameter Name Description

encodings. If, on the other hand, comparator_list="h
adamard" , then the comparator operator constructs the
vector as the hadamard product of only two encodings.

Optional

Valid values: A string that contains any combination of the
names of the three binary operators: hadamard, concat, or
abs_diff. The Object2Vec algorithm currently requires that
the two vector encodings have the same dimension. These
operators produce the subvectors as follows:

• hadamard: Constructs a vector as the Hadamard (element-
wise) product of two encodings.

• concat: Constructs a vector as the concatenation of two
encodings.

• abs_diff: Constructs a vector as the absolute difference
between two encodings.

Default value: "hadamard, concat, abs_diff"

dropout The dropout probability for network layers. Dropout is a form
of regularization used in neural networks that reduces overfitti
ng by trimming codependent neurons.

Optional

Valid values: 0.0 ≤ float ≤ 1.0

Default value: 0.0

Use Built-in Algorithms 2846

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

Amazon SageMaker Developer Guide

Parameter Name Description

early_stopping_pat
ience

The number of consecutive epochs without improveme
nt allowed before early stopping is applied. Improvement
is defined by with the early_stopping_tolerance
hyperparameter.

Optional

Valid values: 1 ≤ integer ≤ 5

Default value: 3

early_stopping_tol
erance

The reduction in the loss function that an algorithm must
achieve between consecutive epochs to avoid early stopping
after the number of consecutive epochs specified in the
early_stopping_patience hyperparameter concludes.

Optional

Valid values: 0.000001 ≤ float ≤ 0.1

Default value: 0.01

enc_dim The dimension of the output of the embedding layer.

Optional

Valid values: 4 ≤ integer ≤ 10000

Default value: 4096

Use Built-in Algorithms 2847

Amazon SageMaker Developer Guide

Parameter Name Description

enc0_network The network model for the enc0 encoder.

Optional

Valid values: hcnn, bilstm, or pooled_embedding

• hcnn: A hierarchical convolutional neural network.

• bilstm: A bidirectional long short-term memory network
(biLSTM), in which the signal propagates backward and
forward in time. This is an appropriate recurrent neural
network (RNN) architecture for sequential learning tasks.

• pooled_embedding : Averages the embeddings of all of
the tokens in the input.

Default value: hcnn

enc0_cnn_filter_wi
dth

The filter width of the convolutional neural network (CNN)
enc0 encoder.

Conditional

Valid values: 1 ≤ integer ≤ 9

Default value: 3

enc0_freeze_pretra
ined_embedding

Whether to freeze enc0 pretrained embedding weights.

Conditional

Valid values: True or False

Default value: True

Use Built-in Algorithms 2848

Amazon SageMaker Developer Guide

Parameter Name Description

enc0_layers The number of layers in the enc0 encoder.

Conditional

Valid values: auto or 1 ≤ integer ≤ 4

• For hcnn, auto means 4.

• For bilstm, auto means 1.

• For pooled_embedding , auto ignores the number of
layers.

Default value: auto

enc0_pretrained_em
bedding_file

The filename of the pretrained enc0 token embedding file in
the auxiliary data channel.

Conditional

Valid values: String with alphanumeric characters, underscore,
or period. [A-Za-z0-9\._]

Default value: "" (empty string)

enc0_token_embeddi
ng_dim

The output dimension of the enc0 token embedding layer.

Conditional

Valid values: 2 ≤ integer ≤ 1000

Default value: 300

Use Built-in Algorithms 2849

Amazon SageMaker Developer Guide

Parameter Name Description

enc0_vocab_file The vocabulary file for mapping pretrained enc0 token
embedding vectors to numerical vocabulary IDs.

Conditional

Valid values: String with alphanumeric characters, underscore,
or period. [A-Za-z0-9\._]

Default value: "" (empty string)

enc1_network The network model for the enc1 encoder. If you want the enc1
encoder to use the same network model as enc0, including the
hyperparameter values, set the value to enc0.

Note

Even when the enc0 and enc1 encoder networks have
symmetric architectures, you can't shared parameter
values for these networks.

Optional

Valid values: enc0, hcnn, bilstm, or pooled_embedding

• enc0: The network model for the enc0 encoder.

• hcnn: A hierarchical convolutional neural network.

• bilstm: A bidirectional LSTM, in which the signal propagate
s backward and forward in time. This is an appropriate
recurrent neural network (RNN) architecture for sequential
learning tasks.

• pooled_embedding : The averages of the embeddings of
all of the tokens in the input.

Default value: enc0

Use Built-in Algorithms 2850

Amazon SageMaker Developer Guide

Parameter Name Description

enc1_cnn_filter_wi
dth

The filter width of the CNN enc1 encoder.

Conditional

Valid values: 1 ≤ integer ≤ 9

Default value: 3

enc1_freeze_pretra
ined_embedding

Whether to freeze enc1 pretrained embedding weights.

Conditional

Valid values: True or False

Default value: True

enc1_layers The number of layers in the enc1 encoder.

Conditional

Valid values: auto or 1 ≤ integer ≤ 4

• For hcnn, auto means 4.

• For bilstm, auto means 1.

• For pooled_embedding , auto ignores the number of
layers.

Default value: auto

enc1_max_seq_len The maximum sequence length for the enc1 encoder.

Conditional

Valid values: 1 ≤ integer ≤ 5000

Use Built-in Algorithms 2851

Amazon SageMaker Developer Guide

Parameter Name Description

enc1_pretrained_em
bedding_file

The name of the enc1 pretrained token embedding file in the
auxiliary data channel.

Conditional

Valid values: String with alphanumeric characters, underscore,
or period. [A-Za-z0-9\._]

Default value: "" (empty string)

enc1_token_embeddi
ng_dim

The output dimension of the enc1 token embedding layer.

Conditional

Valid values: 2 ≤ integer ≤ 1000

Default value: 300

enc1_vocab_file The vocabulary file for mapping pretrained enc1 token
embeddings to vocabulary IDs.

Conditional

Valid values: String with alphanumeric characters, underscore,
or period. [A-Za-z0-9\._]

Default value: "" (empty string)

enc1_vocab_size The vocabulary size of enc0 tokens.

Conditional

Valid values: 2 ≤ integer ≤ 3000000

Use Built-in Algorithms 2852

Amazon SageMaker Developer Guide

Parameter Name Description

epochs The number of epochs to run for training.

Optional

Valid values: 1 ≤ integer ≤ 100

Default value: 30

learning_rate The learning rate for training.

Optional

Valid values: 1.0E-6 ≤ float ≤ 1.0

Default value: 0.0004

mini_batch_size The batch size that the dataset is split into for an optimizer
during training.

Optional

Valid values: 1 ≤ integer ≤ 10000

Default value: 32

mlp_activation The type of activation function for the multilayer perceptron
(MLP) layer.

Optional

Valid values: tanh, relu, or linear

• tanh: Hyperbolic tangent

• relu: Rectified linear unit (ReLU)

• linear: Linear function

Default value: linear

Use Built-in Algorithms 2853

Amazon SageMaker Developer Guide

Parameter Name Description

mlp_dim The dimension of the output from MLP layers.

Optional

Valid values: 2 ≤ integer ≤ 10000

Default value: 512

mlp_layers The number of MLP layers in the network.

Optional

Valid values: 0 ≤ integer ≤ 10

Default value: 2

negative_sampling_
rate

The ratio of negative samples, generated to assist in training
the algorithm, to positive samples that are provided by users.
Negative samples represent data that is unlikely to occur in
reality and are labelled negatively for training. They facilitate
training a model to discriminate between the positive samples
observed and the negative samples that are not. To specify the
ratio of negative samples to positive samples used for training,
set the value to a positive integer. For example, if you train the
algorithm on input data in which all of the samples are positive
and set negative_sampling_rate to 2, the Object2Ve
c algorithm internally generates two negative samples per
positive sample. If you don't want to generate or use negative
samples during training, set the value to 0.

Optional

Valid values: 0 ≤ integer

Default value: 0 (off)

Use Built-in Algorithms 2854

Amazon SageMaker Developer Guide

Parameter Name Description

num_classes The number of classes for classification training. Amazon
SageMaker ignores this hyperparameter for regression
problems.

Optional

Valid values: 2 ≤ integer ≤ 30

Default value: 2

optimizer The optimizer type.

Optional

Valid values: adadelta, adagrad, adam, sgd, or rmsprop.

• adadelta: A per-dimension learning rate method for
gradient descent

• adagrad: The adaptive gradient algorithm

• adam: The adaptive moment estimation algorithm

• sgd: Stochastic gradient descent

• rmsprop: Root mean square propagation

Default value: adam

output_layer The type of output layer where you specify that the task is
regression or classification.

Optional

Valid values: softmax or mean_squared_error

• softmax: The Softmax function used for classification.

• mean_squared_error : The MSE used for regression.

Default value: softmax

Use Built-in Algorithms 2855

https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1212.5701.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Mean_squared_error

Amazon SageMaker Developer Guide

Parameter Name Description

tied_token_embeddi
ng_weight

Whether to use a shared embedding layer for both encoders.
If the inputs to both encoders use the same token-level
units, use a shared token embedding layer. For example, for
a collection of documents, if one encoder encodes sentences
and another encodes whole documents, you can use a shared
token embedding layer. That's because both sentences and
documents are composed of word tokens from the same
vocabulary.

Optional

Valid values: True or False

Default value: False

Use Built-in Algorithms 2856

Amazon SageMaker Developer Guide

Parameter Name Description

token_embedding_st
orage_type

The mode of gradient update used during training: when the
dense mode is used, the optimizer calculates the full gradient
matrix for the token embedding layer even if most rows of
the gradient are zero-valued. When sparse mode is used, the
optimizer only stores rows of the gradient that are actually
being used in the mini-batch. If you want the algorithm to
perform lazy gradient updates, which calculate the gradients
only in the non-zero rows and which speed up training, specify
row_sparse . Setting the value to row_sparse constrains
the values available for other hyperparameters, as follows:

• The optimizer hyperparameter must be set to adam,
adagrad, or sgd. Otherwise, the algorithm throws a
CustomerValueError .

• The algorithm automatically disables bucketing, setting the
bucket_width hyperparameter to 0.

Optional

Valid values: dense or row_sparse

Default value: dense

weight_decay The weight decay parameter used for optimization.

Optional

Valid values: 0 ≤ float ≤ 10000

Default value: 0 (no decay)

Tune an Object2Vec Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. For the objective

Use Built-in Algorithms 2857

Amazon SageMaker Developer Guide

metric, you use one of the metrics that the algorithm computes. Automatic model tuning searches
the chosen hyperparameters to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the Object2Vec Algorithm

The Object2Vec algorithm has both classification and regression metrics. The output_layer type
determines which metric you can use for automatic model tuning.

Regressor Metrics Computed by the Object2Vec Algorithm

The algorithm reports a mean squared error regressor metric, which is computed during testing
and validation. When tuning the model for regression tasks, choose this metric as the objective.

Metric Name Description Optimization
Direction

test:mean
_squared_error

The Mean Square Error Minimize

validatio
n:mean_sq
uared_error

The Mean Square Error Minimize

Classification Metrics Computed by the Object2Vec Algorithm

The Object2Vec algorithm reports accuracy and cross-entropy classification metrics, which are
computed during test and validation. When tuning the model for classification tasks, choose one of
these as the objective.

Metric Name Description Optimization
Direction

test:accuracy Accuracy Maximize

test:cros
s_entropy

Cross-entropy Minimize

Use Built-in Algorithms 2858

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

validatio
n:accuracy

Accuracy Maximize

validatio
n:cross_e
ntropy

Cross-entropy Minimize

Tunable Object2Vec Hyperparameters

You can tune the following hyperparameters for the Object2Vec algorithm.

Hyperparameter
Name

Hyperparameter Type Recommend
ed Ranges and
Values

dropout ContinuousParameterRange MinValue: 0.0,
MaxValue: 1.0

early_sto
pping_pat
ience

IntegerParameterRange MinValue: 1,
MaxValue: 5

early_sto
pping_tol
erance

ContinuousParameterRange MinValue: 0.001,
MaxValue: 0.1

enc_dim IntegerParameterRange MinValue: 4,
MaxValue: 4096

enc0_cnn_
filter_wi
dth

IntegerParameterRange MinValue: 1,
MaxValue: 5

enc0_layers IntegerParameterRange MinValue: 1,
MaxValue: 4

Use Built-in Algorithms 2859

Amazon SageMaker Developer Guide

Hyperparameter
Name

Hyperparameter Type Recommend
ed Ranges and
Values

enc0_toke
n_embeddi
ng_dim

IntegerParameterRange MinValue: 5,
MaxValue: 300

enc1_cnn_
filter_wi
dth

IntegerParameterRange MinValue: 1,
MaxValue: 5

enc1_layers IntegerParameterRange MinValue: 1,
MaxValue: 4

enc1_toke
n_embeddi
ng_dim

IntegerParameterRange MinValue: 5,
MaxValue: 300

epochs IntegerParameterRange MinValue: 4,
MaxValue: 20

learning_
rate

ContinuousParameterRange MinValue: 1e-6,
MaxValue: 1.0

mini_batc
h_size

IntegerParameterRange MinValue: 1,
MaxValue: 8192

mlp_activ
ation

CategoricalParameterRanges [tanh, relu,
linear]

mlp_dim IntegerParameterRange MinValue: 16,
MaxValue: 1024

mlp_layers IntegerParameterRange MinValue: 1,
MaxValue: 4

Use Built-in Algorithms 2860

Amazon SageMaker Developer Guide

Hyperparameter
Name

Hyperparameter Type Recommend
ed Ranges and
Values

optimizer CategoricalParameterRanges [adagrad, adam,
rmsprop, sgd,
adadelta]

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 1.0

Data Formats for Object2Vec Training

Input: JSON Lines Request Format

Content-type: application/jsonlines

{"label": 0, "in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80,
 15, 69, 821, 4], "in1": [16, 21, 13, 45, 14, 9, 80, 59, 164, 4]}
{"label": 1, "in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9,
 107, 4], "in1": [22, 32, 13, 25, 1016, 573, 3252, 4]}
{"label": 1, "in0": [774, 14, 21, 206], "in1": [21, 366, 125]}

The “in0” and “in1” are the inputs for encoder0 and encoder1, respectively. The same format is
valid for both classification and regression problems. For regression, the field "label" can accept
real valued inputs.

Data Formats for Object2Vec Inference

GPU optimization: Classification or Regression

Due to GPU memory scarcity, the INFERENCE_PREFERRED_MODE environment variable can be
specified to optimize on whether the classification/regression or the the section called “Output:
Encoder Embeddings” inference network is loaded into GPU. If the majority of your inference
is for classification or regression, specify INFERENCE_PREFERRED_MODE=classification.
The following is a Batch Transform example of using 4 instances of p3.2xlarge that optimizes for
classification/regression inference:

transformer = o2v.transformer(instance_count=4,

Use Built-in Algorithms 2861

Amazon SageMaker Developer Guide

 instance_type="ml.p2.xlarge",
 max_concurrent_transforms=2,
 max_payload=1, # 1MB
 strategy='MultiRecord',
 env={'INFERENCE_PREFERRED_MODE': 'classification'}, #
 only useful with GPU
 output_path=output_s3_path)

Input: Classification or Regression Request Format

Content-type: application/json

{
 "instances" : [
 {"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69,
 821, 4], "in1": [16, 21, 13, 45, 14, 9, 80, 59, 164, 4]},
 {"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107,
 4], "in1": [22, 32, 13, 25, 1016, 573, 3252, 4]},
 {"in0": [774, 14, 21, 206], "in1": [21, 366, 125]}
]
}

Content-type: application/jsonlines

{"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821,
 4], "in1": [16, 21, 13, 45, 14, 9, 80, 59, 164, 4]}
{"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4],
 "in1": [22, 32, 13, 25, 1016, 573, 3252, 4]}
{"in0": [774, 14, 21, 206], "in1": [21, 366, 125]}

For classification problems, the length of the scores vector corresponds to num_classes. For
regression problems, the length is 1.

Output: Classification or Regression Response Format

Accept: application/json

{
 "predictions": [
 {
 "scores": [
 0.6533935070037842,

Use Built-in Algorithms 2862

Amazon SageMaker Developer Guide

 0.07582679390907288,
 0.2707797586917877
]
 },
 {
 "scores": [
 0.026291321963071823,
 0.6577019095420837,
 0.31600672006607056
]
 }
]
}

Accept: application/jsonlines

{"scores":[0.195667684078216,0.395351558923721,0.408980727195739]}
{"scores":[0.251988261938095,0.258233487606048,0.489778339862823]}
{"scores":[0.280087798833847,0.368331134319305,0.351581096649169]}

In both the classification and regression formats, the scores apply to individual labels.

Encoder Embeddings for Object2Vec

GPU optimization: Encoder Embeddings

An embedding is a mapping from discrete objects, such as words, to vectors of real numbers.

Due to GPU memory scarcity, the INFERENCE_PREFERRED_MODE environment variable can
be specified to optimize on whether the the section called “Inference Formats: Scoring” or the
encoder embedding inference network is loaded into GPU. If the majority of your inference is for
encoder embeddings, specify INFERENCE_PREFERRED_MODE=embedding. The following is a
Batch Transform example of using 4 instances of p3.2xlarge that optimizes for encoder embedding
inference:

transformer = o2v.transformer(instance_count=4,
 instance_type="ml.p2.xlarge",
 max_concurrent_transforms=2,
 max_payload=1, # 1MB
 strategy='MultiRecord',
 env={'INFERENCE_PREFERRED_MODE': 'embedding'}, # only
 useful with GPU

Use Built-in Algorithms 2863

Amazon SageMaker Developer Guide

 output_path=output_s3_path)

Input: Encoder Embeddings

Content-type: application/json; infer_max_seqlens=<FWD-LENGTH>,<BCK-LENGTH>

Where <FWD-LENGTH> and <BCK-LENGTH> are integers in the range [1,5000] and define the
maximum sequence lengths for the forward and backward encoder.

{
 "instances" : [
 {"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69,
 821, 4]},
 {"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107,
 4]},
 {"in0": [774, 14, 21, 206]}
]
}

Content-type: application/jsonlines; infer_max_seqlens=<FWD-LENGTH>,<BCK-LENGTH>

Where <FWD-LENGTH> and <BCK-LENGTH> are integers in the range [1,5000] and define the
maximum sequence lengths for the forward and backward encoder.

{"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821,
 4]}
{"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4]}
{"in0": [774, 14, 21, 206]}

In both of these formats, you specify only one input type: “in0” or “in1.” The inference service
then invokes the corresponding encoder and outputs the embeddings for each of the instances.

Output: Encoder Embeddings

Content-type: application/json

{
 "predictions": [
 {"embeddings":
[0.057368703186511,0.030703511089086,0.099890425801277,0.063688032329082,0.026327300816774,0.003637571120634,0.021305780857801,0.004316598642617,0.0,0.003397724591195,0.0,0.000378780066967,0.0,0.0,0.0,0.007419463712722]},
 {"embeddings":
[0.150190666317939,0.05145975202322,0.098204270005226,0.064249359071254,0.056249320507049,0.01513972133398,0.047553978860378,0.0,0.0,0.011533712036907,0.011472506448626,0.010696629062294,0.0,0.0,0.0,0.008508535102009]}

Use Built-in Algorithms 2864

Amazon SageMaker Developer Guide

]
}

Content-type: application/jsonlines

{"embeddings":
[0.057368703186511,0.030703511089086,0.099890425801277,0.063688032329082,0.026327300816774,0.003637571120634,0.021305780857801,0.004316598642617,0.0,0.003397724591195,0.0,0.000378780066967,0.0,0.0,0.0,0.007419463712722]}
{"embeddings":
[0.150190666317939,0.05145975202322,0.098204270005226,0.064249359071254,0.056249320507049,0.01513972133398,0.047553978860378,0.0,0.0,0.011533712036907,0.011472506448626,0.010696629062294,0.0,0.0,0.0,0.008508535102009]}

The vector length of the embeddings output by the inference service is equal to the value of one of
the following hyperparameters that you specify at training time: enc0_token_embedding_dim,
enc1_token_embedding_dim, or enc_dim.

Sequence-to-Sequence Algorithm

Amazon SageMaker Sequence to Sequence is a supervised learning algorithm where the input is
a sequence of tokens (for example, text, audio) and the output generated is another sequence of
tokens. Example applications include: machine translation (input a sentence from one language
and predict what that sentence would be in another language), text summarization (input a longer
string of words and predict a shorter string of words that is a summary), speech-to-text (audio
clips converted into output sentences in tokens). Recently, problems in this domain have been
successfully modeled with deep neural networks that show a significant performance boost over
previous methodologies. Amazon SageMaker seq2seq uses Recurrent Neural Networks (RNNs) and
Convolutional Neural Network (CNN) models with attention as encoder-decoder architectures.

Topics

• Input/Output Interface for the Sequence-to-Sequence Algorithm

• EC2 Instance Recommendation for the Sequence-to-Sequence Algorithm

• Sequence-to-Sequence Sample Notebooks

• How Sequence-to-Sequence Works

• Sequence-to-Sequence Hyperparameters

• Tune a Sequence-to-Sequence Model

Input/Output Interface for the Sequence-to-Sequence Algorithm

Training

Use Built-in Algorithms 2865

Amazon SageMaker Developer Guide

SageMaker seq2seq expects data in RecordIO-Protobuf format. However, the tokens are expected
as integers, not as floating points, as is usually the case.

A script to convert data from tokenized text files to the protobuf format is included in the seq2seq
example notebook. In general, it packs the data into 32-bit integer tensors and generates the
necessary vocabulary files, which are needed for metric calculation and inference.

After preprocessing is done, the algorithm can be invoked for training. The algorithm expects three
channels:

• train: It should contain the training data (for example, the train.rec file generated by the
preprocessing script).

• validation: It should contain the validation data (for example, the val.rec file generated by
the preprocessing script).

• vocab: It should contain two vocabulary files (vocab.src.json and vocab.trg.json)

If the algorithm doesn't find data in any of these three channels, training results in an error.

Inference

For hosted endpoints, inference supports two data formats. To perform inference using space
separated text tokens, use the application/json format. Otherwise, use the recordio-
protobuf format to work with the integer encoded data. Both modes support batching of input
data. application/json format also allows you to visualize the attention matrix.

• application/json: Expects the input in JSON format and returns the output in JSON format.
Both content and accept types should be application/json. Each sequence is expected to
be a string with whitespace separated tokens. This format is recommended when the number
of source sequences in the batch is small. It also supports the following additional configuration
options:

configuration: {attention_matrix: true}: Returns the attention matrix for the particular
input sequence.

• application/x-recordio-protobuf: Expects the input in recordio-protobuf format
and returns the output in recordio-protobuf format. Both content and accept types should
be applications/x-recordio-protobuf. For this format, the source sequences must be
converted into a list of integers for subsequent protobuf encoding. This format is recommended
for bulk inference.

Use Built-in Algorithms 2866

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.html

Amazon SageMaker Developer Guide

For batch transform, inference supports JSON Lines format. Batch transform expects the input in
JSON Lines format and returns the output in JSON Lines format. Both content and accept types
should be application/jsonlines. The format for input is as follows:

content-type: application/jsonlines

{"source": "source_sequence_0"}
{"source": "source_sequence_1"}

The format for response is as follows:

accept: application/jsonlines

{"target": "predicted_sequence_0"}
{"target": "predicted_sequence_1"}

For additional details on how to serialize and deserialize the inputs and outputs to specific formats
for inference, see the Sequence-to-Sequence Sample Notebooks .

EC2 Instance Recommendation for the Sequence-to-Sequence Algorithm

The Amazon SageMaker seq2seq algorithm only supports on GPU instance types and can only train
on a single machine. However, you can use instances with multiple GPUs. The seq2seq algorithm
supports P2, P3, G4dn, and G5 GPU instance families.

Sequence-to-Sequence Sample Notebooks

For a sample notebook that shows how to use the SageMaker Sequence to Sequence algorithm
to train a English-German translation model, see Machine Translation English-German Example
Using SageMaker Seq2Seq. For instructions how to create and access Jupyter notebook instances
that you can use to run the example in SageMaker, see Amazon SageMaker Notebook Instances.
Once you have created a notebook instance and opened it, select the SageMaker Examples tab
to see a list of all the SageMaker samples. The topic modeling example notebooks using the NTM
algorithms are located in the Introduction to Amazon algorithms section. To open a notebook,
click on its Use tab and select Create copy.

How Sequence-to-Sequence Works

Typically, a neural network for sequence-to-sequence modeling consists of a few layers, including:

Use Built-in Algorithms 2867

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.html

Amazon SageMaker Developer Guide

• An embedding layer. In this layer, the input matrix, which is input tokens encoded in a sparse
way (for example, one-hot encoded) are mapped to a dense feature layer. This is required
because a high-dimensional feature vector is more capable of encoding information regarding
a particular token (word for text corpora) than a simple one-hot-encoded vector. It is also a
standard practice to initialize this embedding layer with a pre-trained word vector like FastText
or Glove or to initialize it randomly and learn the parameters during training.

• An encoder layer. After the input tokens are mapped into a high-dimensional feature space,
the sequence is passed through an encoder layer to compress all the information from the input
embedding layer (of the entire sequence) into a fixed-length feature vector. Typically, an encoder
is made of RNN-type networks like long short-term memory (LSTM) or gated recurrent units
(GRU). (Colah's blog explains LSTM in a great detail.)

• A decoder layer. The decoder layer takes this encoded feature vector and produces the output
sequence of tokens. This layer is also usually built with RNN architectures (LSTM and GRU).

The whole model is trained jointly to maximize the probability of the target sequence given the
source sequence. This model was first introduced by Sutskever et al. in 2014.

Attention mechanism. The disadvantage of an encoder-decoder framework is that model
performance decreases as and when the length of the source sequence increases because of
the limit of how much information the fixed-length encoded feature vector can contain. To
tackle this problem, in 2015, Bahdanau et al. proposed the attention mechanism. In an attention
mechanism, the decoder tries to find the location in the encoder sequence where the most
important information could be located and uses that information and previously decoded words
to predict the next token in the sequence.

For more in details, see the whitepaper Effective Approaches to Attention-based Neural Machine
Translation by Luong, et al. that explains and simplifies calculations for various attention
mechanisms. Additionally, the whitepaper Google's Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation by Wu, et al. describes Google's architecture for
machine translation, which uses skip connections between encoder and decoder layers.

Sequence-to-Sequence Hyperparameters

Parameter Name Description

batch_size Mini batch size for gradient descent.

Optional

Use Built-in Algorithms 2868

https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: positive integer

Default value: 64

beam_size Length of the beam for beam search. Used during
training for computing bleu and used during inference
.

Optional

Valid values: positive integer

Default value: 5

bleu_sample_size Number of instances to pick from validation dataset
to decode and compute bleu score during training.
Set to -1 to use full validation set (if bleu is chosen as
optimized_metric).

Optional

Valid values: integer

Default value: 0

bucket_width Returns (source,target) buckets up to (max_seq_l
en_source , max_seq_len_target). The longer
side of the data uses steps of bucket_width while
the shorter side uses steps scaled down by the average
target/source length ratio. If one sided reaches its
maximum length before the other, width of extra
buckets on that side is fixed to that side of max_len.

Optional

Valid values: positive integer

Default value: 10

Use Built-in Algorithms 2869

Amazon SageMaker Developer Guide

Parameter Name Description

bucketing_enabled Set to false to disable bucketing, unroll to maximum
length.

Optional

Valid values: true or false

Default value: true

checkpoint_frequen
cy_num_batches

Checkpoint and evaluate every x batches. This
checkpointing hyperparameter is passed to the
SageMaker's seq2seq algorithm for early stopping and
retrieving the best model. The algorithm's checkpoin
ting runs locally in the algorithm's training container
and is not compatible with SageMaker checkpointing.
The algorithm temporarily saves checkpoints to a local
path and stores the best model artifact to the model
output path in S3 after the training job has stopped.

Optional

Valid values: positive integer

Default value: 1000

Use Built-in Algorithms 2870

Amazon SageMaker Developer Guide

Parameter Name Description

checkpoint_threshold Maximum number of checkpoints model is allowed
to not improve in optimized_metric on validatio
n dataset before training is stopped. This checkpoin
ting hyperparameter is passed to the SageMaker's
seq2seq algorithm for early stopping and retrieving
the best model. The algorithm's checkpointing runs
locally in the algorithm's training container and is
not compatible with SageMaker checkpointing. The
algorithm temporarily saves checkpoints to a local path
and stores the best model artifact to the model output
path in S3 after the training job has stopped.

Optional

Valid values: positive integer

Default value: 3

clip_gradient Clip absolute gradient values greater than this. Set to
negative to disable.

Optional

Valid values: float

Default value: 1

cnn_activation_type The cnn activation type to be used.

Optional

Valid values: String. One of glu, relu, softrelu,
sigmoid, or tanh.

Default value: glu

Use Built-in Algorithms 2871

Amazon SageMaker Developer Guide

Parameter Name Description

cnn_hidden_dropout Dropout probability for dropout between convolutional
layers.

Optional

Valid values: Float. Range in [0,1].

Default value: 0

cnn_kernel_width_decoder Kernel width for the cnn decoder.

Optional

Valid values: positive integer

Default value: 5

cnn_kernel_width_encoder Kernel width for the cnn encoder.

Optional

Valid values: positive integer

Default value: 3

cnn_num_hidden Number of cnn hidden units for encoder and decoder.

Optional

Valid values: positive integer

Default value: 512

decoder_type Decoder type.

Optional

Valid values: String. Either rnn or cnn.

Default value: rnn

Use Built-in Algorithms 2872

Amazon SageMaker Developer Guide

Parameter Name Description

embed_dropout_source Dropout probability for source side embeddings.

Optional

Valid values: Float. Range in [0,1].

Default value: 0

embed_dropout_target Dropout probability for target side embeddings.

Optional

Valid values: Float. Range in [0,1].

Default value: 0

encoder_type Encoder type. The rnn architecture is based on
attention mechanism by Bahdanau et al. and cnn
architecture is based on Gehring et al.

Optional

Valid values: String. Either rnn or cnn.

Default value: rnn

fixed_rate_lr_half_life Half life for learning rate in terms of number of
checkpoints for fixed_rate_ * schedulers.

Optional

Valid values: positive integer

Default value: 10

Use Built-in Algorithms 2873

Amazon SageMaker Developer Guide

Parameter Name Description

learning_rate Initial learning rate.

Optional

Valid values: float

Default value: 0.0003

loss_type Loss function for training.

Optional

Valid values: String. cross-entropy

Default value: cross-entropy

lr_scheduler_type Learning rate scheduler type. plateau_reduce
means reduce the learning rate whenever optimized
_metric on validation_accuracy plateaus.
inv_t is inverse time decay. learning_rate /
(1+decay_rate *t)

Optional

Valid values: String. One of plateau_reduce ,
fixed_rate_inv_t , or fixed_rate_inv_sqr
t_t .

Default value: plateau_reduce

max_num_batches Maximum number of updates/batches to process. -1
for infinite.

Optional

Valid values: integer

Default value: -1

Use Built-in Algorithms 2874

Amazon SageMaker Developer Guide

Parameter Name Description

max_num_epochs Maximum number of epochs to pass through training
data before fitting is stopped. Training continues until
this number of epochs even if validation accuracy is not
improving if this parameter is passed. Ignored if not
passed.

Optional

Valid values: Positive integer and less than or equal to
max_num_epochs.

Default value: none

max_seq_len_source Maximum length for the source sequence length.
Sequences longer than this length are truncated to this
length.

Optional

Valid values: positive integer

Default value: 100

max_seq_len_target Maximum length for the target sequence length.
Sequences longer than this length are truncated to this
length.

Optional

Valid values: positive integer

Default value: 100

Use Built-in Algorithms 2875

Amazon SageMaker Developer Guide

Parameter Name Description

min_num_epochs Minimum number of epochs the training must run
before it is stopped via early_stopping conditions.

Optional

Valid values: positive integer

Default value: 0

momentum Momentum constant used for sgd. Don't pass this
parameter if you are using adam or rmsprop.

Optional

Valid values: float

Default value: none

num_embed_source Embedding size for source tokens.

Optional

Valid values: positive integer

Default value: 512

num_embed_target Embedding size for target tokens.

Optional

Valid values: positive integer

Default value: 512

Use Built-in Algorithms 2876

Amazon SageMaker Developer Guide

Parameter Name Description

num_layers_decoder Number of layers for Decoder rnn or cnn.

Optional

Valid values: positive integer

Default value: 1

num_layers_encoder Number of layers for Encoder rnn or cnn.

Optional

Valid values: positive integer

Default value: 1

optimized_metric Metrics to optimize with early stopping.

Optional

Valid values: String. One of perplexity , accuracy,
or bleu.

Default value: perplexity

optimizer_type Optimizer to choose from.

Optional

Valid values: String. One of adam, sgd, or rmsprop.

Default value: adam

Use Built-in Algorithms 2877

Amazon SageMaker Developer Guide

Parameter Name Description

plateau_reduce_lr_factor Factor to multiply learning rate with (for plateau_r
educe).

Optional

Valid values: float

Default value: 0.5

plateau_reduce_lr_
threshold

For plateau_reduce scheduler, multiply learning
rate with reduce factor if optimized_metric didn't
improve for this many checkpoints.

Optional

Valid values: positive integer

Default value: 3

rnn_attention_in_u
pper_layers

Pass the attention to upper layers of rnn, like Google
NMT paper. Only applicable if more than one layer is
used.

Optional

Valid values: boolean (true or false)

Default value: true

rnn_attention_num_hidden Number of hidden units for attention layers. defaults
to rnn_num_hidden .

Optional

Valid values: positive integer

Default value: rnn_num_hidden

Use Built-in Algorithms 2878

Amazon SageMaker Developer Guide

Parameter Name Description

rnn_attention_type Attention model for encoders. mlp refers to concat and
bilinear refers to general from the Luong et al. paper.

Optional

Valid values: String. One of dot, fixed, mlp, or
bilinear.

Default value: mlp

rnn_cell_type Specific type of rnn architecture.

Optional

Valid values: String. Either lstm or gru.

Default value: lstm

rnn_decoder_state_init How to initialize rnn decoder states from encoders.

Optional

Valid values: String. One of last, avg, or zero.

Default value: last

rnn_first_residual_layer First rnn layer to have a residual connection, only
applicable if number of layers in encoder or decoder is
more than 1.

Optional

Valid values: positive integer

Default value: 2

Use Built-in Algorithms 2879

Amazon SageMaker Developer Guide

Parameter Name Description

rnn_num_hidden The number of rnn hidden units for encoder and
decoder. This must be a multiple of 2 because the
algorithm uses bi-directional Long Term Short Term
Memory (LSTM) by default.

Optional

Valid values: positive even integer

Default value: 1024

rnn_residual_connections Add residual connection to stacked rnn. Number of
layers should be more than 1.

Optional

Valid values: boolean (true or false)

Default value: false

rnn_decoder_hidden_dropout Dropout probability for hidden state that combines the
context with the rnn hidden state in the decoder.

Optional

Valid values: Float. Range in [0,1].

Default value: 0

training_metric Metrics to track on training on validation data.

Optional

Valid values: String. Either perplexity or
accuracy.

Default value: perplexity

Use Built-in Algorithms 2880

Amazon SageMaker Developer Guide

Parameter Name Description

weight_decay Weight decay constant.

Optional

Valid values: float

Default value: 0

weight_init_scale Weight initialization scale (for uniform and xavier
initialization).

Optional

Valid values: float

Default value: 2.34

weight_init_type Type of weight initialization.

Optional

Valid values: String. Either uniform or xavier.

Default value: xavier

xavier_factor_type Xavier factor type.

Optional

Valid values: String. One of in, out, or avg.

Default value: in

Tune a Sequence-to-Sequence Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches

Use Built-in Algorithms 2881

Amazon SageMaker Developer Guide

the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the Sequence-to-Sequence Algorithm

The sequence to sequence algorithm reports three metrics that are computed during training.
Choose one of them as an objective to optimize when tuning the hyperparameter values.

Metric Name Description Optimization
Direction

validatio
n:accuracy

Accuracy computed on the validation dataset. Maximize

validation:bleu Bleu score computed on the validation
dataset. Because BLEU computation is
expensive, you can choose to compute BLEU
on a random subsample of the validatio
n dataset to speed up the overall training
process. Use the bleu_sample_size
parameter to specify the subsample.

Maximize

validatio
n:perplexity

Perplexity, is a loss function computed on the
validation dataset. Perplexity measures the
cross-entropy between an empirical sample
and the distribution predicted by a model
and so provides a measure of how well a
model predicts the sample values, Models that
are good at predicting a sample have a low
perplexity.

Minimize

Tunable Sequence-to-Sequence Hyperparameters

You can tune the following hyperparameters for the SageMaker Sequence to Sequence algorithm.
The hyperparameters that have the greatest impact on sequence to sequence objective

Use Built-in Algorithms 2882

https://en.wikipedia.org/wiki/BLEU
https://en.wikipedia.org/wiki/Perplexity

Amazon SageMaker Developer Guide

metrics are: batch_size, optimizer_type, learning_rate, num_layers_encoder, and
num_layers_decoder.

Parameter Name Parameter Type Recommended
Ranges

num_layer
s_encoder

IntegerParameterRange [1-10]

num_layer
s_decoder

IntegerParameterRange [1-10]

batch_size CategoricalParameterRange [16,32,64,128,256,
512,1024,2048]

optimizer_type CategoricalParameterRange ['adam', 'sgd',
'rmsprop']

weight_in
it_type

CategoricalParameterRange ['xavier', 'uniform']

weight_in
it_scale

ContinuousParameterRange For the xavier type:
MinValue: 2.0,
MaxValue: 3.0 For
the uniform type:
MinValue: -1.0,
MaxValue: 1.0

learning_rate ContinuousParameterRange MinValue: 0.00005,
MaxValue: 0.2

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.1

momentum ContinuousParameterRange MinValue: 0.5,
MaxValue: 0.9

clip_gradient ContinuousParameterRange MinValue: 1.0,
MaxValue: 5.0

Use Built-in Algorithms 2883

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

rnn_num_hidden CategoricalParameterRange Applicable only to
recurrent neural
networks (RNNs).
[128,256,512,1024,
2048]

cnn_num_hidden CategoricalParameterRange Applicable only to
convolutional neural
networks (CNNs).
[128,256,512,1024,
2048]

num_embed
_source

IntegerParameterRange [256-512]

num_embed
_target

IntegerParameterRange [256-512]

embed_dro
pout_source

ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.5

embed_dro
pout_target

ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.5

rnn_decod
er_hidden
_dropout

ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.5

cnn_hidde
n_dropout

ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.5

lr_schedu
ler_type

CategoricalParameterRange ['plateau_reduce',
 'fixed_rate_inv_t',
'fixed_rate_inv_sq
rt_t']

Use Built-in Algorithms 2884

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

plateau_r
educe_lr_
factor

ContinuousParameterRange MinValue: 0.1,
MaxValue: 0.5

plateau_r
educe_lr_
threshold

IntegerParameterRange [1-5]

fixed_rat
e_lr_half_life

IntegerParameterRange [10-30]

Text Classification - TensorFlow

The Amazon SageMaker Text Classification - TensorFlow algorithm is a supervised learning
algorithm that supports transfer learning with many pretrained models from the TensorFlow Hub.
Use transfer learning to fine-tune one of the available pretrained models on your own dataset,
even if a large amount of text data is not available. The text classification algorithm takes a text
string as input and outputs a probability for each of the class labels. Training datasets must be in
CSV format.

Topics

• How to use the SageMaker Text Classification - TensorFlow algorithm

• Input and output interface for the Text Classification - TensorFlow algorithm

• Amazon EC2 instance recommendation for the Text Classification - TensorFlow algorithm

• Text Classification - TensorFlow sample notebooks

• How Text Classification - TensorFlow Works

• TensorFlow Hub Models

• Text Classification - TensorFlow Hyperparameters

• Tune a Text Classification - TensorFlow model

Use Built-in Algorithms 2885

https://tfhub.dev/

Amazon SageMaker Developer Guide

How to use the SageMaker Text Classification - TensorFlow algorithm

You can use Text Classification - TensorFlow as an Amazon SageMaker built-in algorithm. The
following section describes how to use Text Classification - TensorFlow with the SageMaker Python
SDK. For information on how to use Text Classification - TensorFlow from the Amazon SageMaker
Studio Classic UI, see SageMaker JumpStart.

The Text Classification - TensorFlow algorithm supports transfer learning using any of the
compatible pretrained TensorFlow models. For a list of all available pretrained models, see
TensorFlow Hub Models. Every pretrained model has a unique model_id. The following example
uses BERT Base Uncased (model_id: tensorflow-tc-bert-en-uncased-L-12-H-768-
A-12-2) to fine-tune on a custom dataset. The pretrained models are all pre-downloaded from
the TensorFlow Hub and stored in Amazon S3 buckets so that training jobs can run in network
isolation. Use these pre-generated model training artifacts to construct a SageMaker Estimator.

First, retrieve the Docker image URI, training script URI, and pretrained model URI. Then,
change the hyperparameters as you see fit. You can see a Python dictionary of all available
hyperparameters and their default values with hyperparameters.retrieve_default. For
more information, see Text Classification - TensorFlow Hyperparameters. Use these values to
construct a SageMaker Estimator.

Note

Default hyperparameter values are different for different models. For example, for larger
models, the default batch size is smaller.

This example uses the SST2 dataset, which contains positive and negative movie reviews. We pre-
downloaded the dataset and made it available with Amazon S3. To fine-tune your model, call .fit
using the Amazon S3 location of your training dataset. Any S3 bucket used in a notebook must be
in the same AWS Region as the notebook instance that accesses it.

from sagemaker import image_uris, model_uris, script_uris, hyperparameters
from sagemaker.estimator import Estimator

model_id, model_version = "tensorflow-tc-bert-en-uncased-L-12-H-768-A-12-2", "*"
training_instance_type = "ml.p3.2xlarge"

Retrieve the Docker image

Use Built-in Algorithms 2886

https://www.tensorflow.org/datasets/catalog/glue#gluesst2

Amazon SageMaker Developer Guide

train_image_uri =
 image_uris.retrieve(model_id=model_id,model_version=model_version,image_scope="training",instance_type=training_instance_type,region=None,framework=None)

Retrieve the training script
train_source_uri = script_uris.retrieve(model_id=model_id, model_version=model_version,
 script_scope="training")

Retrieve the pretrained model tarball for transfer learning
train_model_uri = model_uris.retrieve(model_id=model_id, model_version=model_version,
 model_scope="training")

Retrieve the default hyperparameters for fine-tuning the model
hyperparameters = hyperparameters.retrieve_default(model_id=model_id,
 model_version=model_version)

[Optional] Override default hyperparameters with custom values
hyperparameters["epochs"] = "5"

Sample training data is available in this bucket
training_data_bucket = f"jumpstart-cache-prod-{aws_region}"
training_data_prefix = "training-datasets/SST2/"

training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}"

output_bucket = sess.default_bucket()
output_prefix = "jumpstart-example-tc-training"
s3_output_location = f"s3://{output_bucket}/{output_prefix}/output"

Create an Estimator instance
tf_tc_estimator = Estimator(
 role=aws_role,
 image_uri=train_image_uri,
 source_dir=train_source_uri,
 model_uri=train_model_uri,
 entry_point="transfer_learning.py",
 instance_count=1,
 instance_type=training_instance_type,
 max_run=360000,
 hyperparameters=hyperparameters,
 output_path=s3_output_location,
)

Launch a training job

Use Built-in Algorithms 2887

Amazon SageMaker Developer Guide

tf_tc_estimator.fit({"training": training_dataset_s3_path}, logs=True)

For more information about how to use the SageMaker Text Classification - TensorFlow algorithm
for transfer learning on a custom dataset, see the Introduction to JumpStart - Text Classification
notebook.

Input and output interface for the Text Classification - TensorFlow algorithm

Each of the pretrained models listed in TensorFlow Hub Models can be fine-tuned to any
dataset made up of text sentences with any number of classes. The pretrained model attaches a
classification layer to the Text Embedding model and initializes the layer parameters to random
values. The output dimension of the classification layer is determined based on the number of
classes detected in the input data.

Be mindful of how to format your training data for input to the Text Classification - TensorFlow
model.

• Training data input format: A directory containing a data.csv file. Each row of the first column
should have integer class labels between 0 and the number of classes. Each row of the second
column should have the corresponding text data.

The following is an example of an input CSV file. Note that the file should not have any
header. The file should be hosted in an Amazon S3 bucket with a path similar to the following:
s3://bucket_name/input_directory/. Note that the trailing / is required.

0	hide new secretions from the parental units
0	contains no wit , only labored gags
1	that loves its characters and communicates something rather beautiful about human
nature	
...	...

Incremental training

You can seed the training of a new model with artifacts from a model that you trained previously
with SageMaker. Incremental training saves training time when you want to train a new model with
the same or similar data.

Use Built-in Algorithms 2888

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_classification/Amazon_JumpStart_Text_Classification.ipynb

Amazon SageMaker Developer Guide

Note

You can only seed a SageMaker Text Classification - TensorFlow model with another Text
Classification - TensorFlow model trained in SageMaker.

You can use any dataset for incremental training, as long as the set of classes remains the same.
The incremental training step is similar to the fine-tuning step, but instead of starting with a
pretrained model, you start with an existing fine-tuned model.

For more information on using incremental training with the SageMaker Text Classification -
TensorFlow algorithm, see the Introduction to JumpStart - Text Classification sample notebook.

Inference with the Text Classification - TensorFlow algorithm

You can host the fine-tuned model that results from your TensorFlow Text Classification training
for inference. Any raw text formats for inference must be content type application/x-text.

Running inference results in probability values, class labels for all classes, and the predicted label
corresponding to the class index with the highest probability encoded in JSON format. The Text
Classification - TensorFlow model processes a single string per request and outputs only one line.
The following is an example of a JSON format response:

accept: application/json;verbose

{"probabilities": [prob_0, prob_1, prob_2, ...],
"labels": [label_0, label_1, label_2, ...],
"predicted_label": predicted_label}

If accept is set to application/json, then the model only outputs probabilities.

Amazon EC2 instance recommendation for the Text Classification - TensorFlow algorithm

The Text Classification - TensorFlow algorithm supports all CPU and GPU instances for training,
including:

• ml.p2.xlarge

• ml.p2.16xlarge

• ml.p3.2xlarge

Use Built-in Algorithms 2889

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_classification/Amazon_JumpStart_Text_Classification.ipynb

Amazon SageMaker Developer Guide

• ml.p3.16xlarge

• ml.g4dn.xlarge

• ml.g4dn.16.xlarge

• ml.g5.xlarge

• ml.g5.48xlarge

We recommend GPU instances with more memory for training with large batch sizes. Both
CPU (such as M5) and GPU (P2, P3, G4dn, or G5) instances can be used for inference. For a
comprehensive list of SageMaker training and inference instances across AWS Regions, see Amazon
SageMaker Pricing.

Text Classification - TensorFlow sample notebooks

For more information about how to use the SageMaker Text Classification - TensorFlow algorithm
for transfer learning on a custom dataset, see the Introduction to JumpStart - Text Classification
notebook.

For instructions how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created
a notebook instance and opened it, select the SageMaker Examples tab to see a list of all the
SageMaker samples. To open a notebook, choose its Use tab and choose Create copy.

How Text Classification - TensorFlow Works

The Text Classification - TensorFlow algorithm takes text as classifies it into one of the output class
labels. Deep learning networks such as BERT are highly accurate for text classification. There are
also deep learning networks that are trained on large text datasets, such as TextNet, which has
more than 11 million texts with about 11,000 categories. After a network is trained with TextNet
data, you can then fine-tune the network on a dataset with a particular focus to perform more
specific text classification tasks. The Amazon SageMaker Text Classification - TensorFlow algorithm
supports transfer learning on many pretrained models that are available in the TensorFlow Hub.

According to the number of class labels in your training data, a text classification layer is attached
to the pretrained TensorFlow model of your choice. The classification layer consists of a dropout
layer, a dense layer, and a fully connected layer with 2-norm regularization, and is initialized with
random weights. You can change the hyperparameter values for the dropout rate of the dropout
layer and the L2 regularization factor for the dense layer.

Use Built-in Algorithms 2890

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_classification/Amazon_JumpStart_Text_Classification.ipynb
https://arxiv.org/pdf/1810.04805.pdf

Amazon SageMaker Developer Guide

You can fine-tune either the entire network (including the pretrained model) or only the top
classification layer on new training data. With this method of transfer learning, training with
smaller datasets is possible.

TensorFlow Hub Models

The following pretrained models are available to use for transfer learning with the Text
Classification - TensorFlow algorithm.

The following models vary significantly in size, number of model parameters, training time,
and inference latency for any given dataset. The best model for your use case depends on the
complexity of your fine-tuning dataset and any requirements that you have on training time,
inference latency, or model accuracy.

Model Name model_id Source

BERT Base Uncased tensorflow-tc-bert
-en-uncased-L-12-H
-768-A-12-2

TensorFlow Hub link

BERT Base Cased tensorflow-tc-bert-
en-cased-L-12-H-768-
A-12-2

TensorFlow Hub link

BERT Base Multilingual Cased tensorflow-tc-bert
-multi-cased-L-12-
H-768-A-12-2

TensorFlow Hub link

Small BERT L-2_H-128_A-2 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-2-H-128-A-2

TensorFlow Hub link

Small BERT L-2_H-256_A-4 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-2-H-256-A-4

TensorFlow Hub link

Small BERT L-2_H-512_A-8 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-2-H-512-A-8

TensorFlow Hub link

Use Built-in Algorithms 2891

https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3
https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/3
https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/3
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-512_A-8/1

Amazon SageMaker Developer Guide

Model Name model_id Source

Small BERT L-2_H-768_A-12 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-2-H-768-A-12

TensorFlow Hub link

Small BERT L-4_H-128_A-2 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-4-H-128-A-2

TensorFlow Hub link

Small BERT L-4_H-256_A-4 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-4-H-256-A-4

TensorFlow Hub link

Small BERT L-4_H-512_A-8 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-4-H-512-A-8

TensorFlow Hub link

Small BERT L-4_H-768_A-12 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-4-H-768-A-12

TensorFlow Hub link

Small BERT L-6_H-128_A-2 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-6-H-128-A-2

TensorFlow Hub link

Small BERT L-6_H-256_A-4 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-6-H-256-A-4

TensorFlow Hub link

Small BERT L-6_H-512_A-8 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-6-H-512-A-8

TensorFlow Hub link

Small BERT L-6_H-768_A-12 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-6-H-768-A-12

TensorFlow Hub link

Use Built-in Algorithms 2892

https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-768_A-12/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-128_A-2/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-256_A-4/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-768_A-12/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-128_A-2/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-256_A-4/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-512_A-8/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-6_H-768_A-12/1

Amazon SageMaker Developer Guide

Model Name model_id Source

Small BERT L-8_H-128_A-2 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-8-H-128-A-2

TensorFlow Hub link

Small BERT L-8_H-256_A-4 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-8-H-256-A-4

TensorFlow Hub link

Small BERT L-8_H-512_A-8 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-8-H-512-A-8

TensorFlow Hub link

Small BERT L-8_H-768_A-12 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-8-H-768-A-12

TensorFlow Hub link

Small BERT L-10_H-128_A-2 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-10-H-128-A-2

TensorFlow Hub link

Small BERT L-10_H-256_A-4 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-10-H-256-A-4

TensorFlow Hub link

Small BERT L-10_H-512_A-8 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-10-H-512-A-8

TensorFlow Hub link

Small BERT L-10_H-768_A-12 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-10-H-768-A-
12

TensorFlow Hub link

Small BERT L-12_H-128_A-2 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-12-H-128-A-2

TensorFlow Hub link

Use Built-in Algorithms 2893

https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-8_H-128_A-2/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-8_H-256_A-4/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-8_H-512_A-8/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-8_H-768_A-12/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-10_H-128_A-2/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-10_H-256_A-4/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-10_H-512_A-8/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-10_H-768_A-12/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-128_A-2/1

Amazon SageMaker Developer Guide

Model Name model_id Source

Small BERT L-12_H-256_A-4 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-12-H-256-A-4

TensorFlow Hub link

Small BERT L-12_H-512_A-8 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-12-H-512-A-8

TensorFlow Hub link

Small BERT L-12_H-768_A-12 tensorflow-tc-smal
l-bert-bert-en-unc
ased-L-12-H-768-A-
12

TensorFlow Hub link

BERT Large Uncased tensorflow-tc-bert
-en-uncased-L-24-H
-1024-A-16-2

TensorFlow Hub link

BERT Large Cased tensorflow-tc-bert
-en-cased-L-24-H-1
024-A-16-2

TensorFlow Hub link

BERT Large Uncased Whole
Word Masking

tensorflow-tc-bert-
en-wwm-uncased-L-24-
H-1024-A-16-2

TensorFlow Hub link

BERT Large Cased Whole
Word Masking

tensorflow-tc-bert-
en-wwm-cased-L-24-
H-1024-A-16-2

TensorFlow Hub link

ALBERT Base tensorflow-tc-albe
rt-en-base

TensorFlow Hub link

ELECTRA Small++ tensorflow-tc-elec
tra-small-1

TensorFlow Hub link

Use Built-in Algorithms 2894

https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-256_A-4/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-512_A-8/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-768_A-12/1
https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/3
https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/3
https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/3
https://tfhub.dev/tensorflow/bert_en_wwm_cased_L-24_H-1024_A-16/3
https://tfhub.dev/tensorflow/albert_en_base/2
https://tfhub.dev/google/electra_small/2

Amazon SageMaker Developer Guide

Model Name model_id Source

ELECTRA Base tensorflow-tc-elec
tra-base-1

TensorFlow Hub link

BERT Base Wikipedia and
BooksCorpus

tensorflow-tc-expe
rts-bert-wiki-book
s-1

TensorFlow Hub link

BERT Base MEDLINE/PubMed tensorflow-tc-expe
rts-bert-pubmed-1

TensorFlow Hub link

Talking Heads Base tensorflow-tc-talk
ing-heads-base

TensorFlow Hub link

Talking Heads Large tensorflow-tc-talk
ing-heads-large

TensorFlow Hub link

Text Classification - TensorFlow Hyperparameters

Hyperparameters are parameters that are set before a machine learning model begins learning.
The following hyperparameters are supported by the Amazon SageMaker built-in Object Detection
- TensorFlow algorithm. See Tune a Text Classification - TensorFlow model for information on
hyperparameter tuning.

Parameter Name Description

batch_size The batch size for training. For training on instances with
multiple GPUs, this batch size is used across the GPUs.

Valid values: positive integer.

Default value: 32.

beta_1 The beta1 for the "adam" and "adamw" optimizers. Represent
s the exponential decay rate for the first moment estimates.
Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Use Built-in Algorithms 2895

https://tfhub.dev/google/electra_base/2
https://tfhub.dev/google/experts/bert/wiki_books/2
https://tfhub.dev/google/experts/bert/pubmed/2
https://tfhub.dev/tensorflow/talkheads_ggelu_bert_en_base/1
https://tfhub.dev/tensorflow/talkheads_ggelu_bert_en_large/1

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: 0.9.

beta_2 The beta2 for the "adam" and "adamw" optimizers. Represent
s the exponential decay rate for the second moment estimates.
Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.999.

dropout_rate The dropout rate for the dropout layer in the top classification
layer. Used only when reinitialize_top_layer is set to
"True".

Valid values: float, range: [0.0, 1.0].

Default value: 0.2

early_stopping Set to "True" to use early stopping logic during training. If
"False", early stopping is not used.

Valid values: string, either: ("True" or "False").

Default value: "False".

early_stopping_min
_delta

The minimum change needed to qualify as an improveme
nt. An absolute change less than the value of early_sto
pping_min_delta does not qualify as improvement. Used
only when early_stopping is set to "True".

Valid values: float, range: [0.0, 1.0].

Default value: 0.0.

Use Built-in Algorithms 2896

Amazon SageMaker Developer Guide

Parameter Name Description

early_stopping_pat
ience

The number of epochs to continue training with no improveme
nt. Used only when early_stopping is set to "True".

Valid values: positive integer.

Default value: 5.

epochs The number of training epochs.

Valid values: positive integer.

Default value: 10.

epsilon The epsilon for "adam", "rmsprop" , "adadelta" , and
"adagrad" optimizers. Usually set to a small value to avoid
division by 0. Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 1e-7.

initial_accumulato
r_value

The starting value for the accumulators, or the per-parameter
momentum values, for the "adagrad" optimizer. Ignored for
other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.0001.

learning_rate The optimizer learning rate.

Valid values: float, range: [0.0, 1.0].

Default value: 0.001.

Use Built-in Algorithms 2897

Amazon SageMaker Developer Guide

Parameter Name Description

momentum The momentum for the "sgd" and "nesterov" optimizers.
Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.9.

optimizer The optimizer type. For more information, see Optimizers in
the TensorFlow documentation.

Valid values: string, any of the following: ("adamw", "adam",
"sgd", "nesterov" , "rmsprop" , "adagrad" ,
"adadelta").

Default value: "adam".

regularizers_l2 The L2 regularization factor for the dense layer in the classific
ation layer. Used only when reinitialize_top_layer is
set to "True".

Valid values: float, range: [0.0, 1.0].

Default value: 0.0001.

reinitialize_top_l
ayer

If set to "Auto", the top classification layer parameters are
re-initialized during fine-tuning. For incremental training, top
classification layer parameters are not re-initialized unless set
to "True".

Valid values: string, any of the following: ("Auto", "True" or
"False").

Default value: "Auto".

Use Built-in Algorithms 2898

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

Amazon SageMaker Developer Guide

Parameter Name Description

rho The discounting factor for the gradient of the "adadelta"
and "rmsprop" optimizers. Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.95.

train_only_on_top_
layer

If "True", only the top classification layer parameters are fine-
tuned. If "False", all model parameters are fine-tuned.

Valid values: string, either: ("True" or "False").

Default value: "False".

validation_split_r
atio

The fraction of training data to randomly split to create
validation data. Only used if validation data is not provided
through the validation channel.

Valid values: float, range: [0.0, 1.0].

Default value: 0.2.

warmup_steps_fract
ion

The fraction of the total number of gradient update steps,
where the learning rate increases from 0 to the initial learning
rate as a warm up. Only used with the adamw optimizer.

Valid values: float, range: [0.0, 1.0].

Default value: 0.1.

Tune a Text Classification - TensorFlow model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

Use Built-in Algorithms 2899

Amazon SageMaker Developer Guide

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics computed by the Text Classification - TensorFlow algorithm

Refer to the following chart to find which metrics are computed by the Text Classification -
TensorFlow algorithm.

Metric Name Description Optimization
Direction

Regex Pattern

validatio
n:accuracy

The ratio of the number of correct
predictions to the total number of
predictions made.

Maximize val_accur
acy=([0-9\
\.]+)

Tunable Text Classification - TensorFlow hyperparameters

Tune a text classification model with the following hyperparameters. The hyperparameters
that have the greatest impact on text classification objective metrics are: batch_size,
learning_rate, and optimizer. Tune the optimizer-related hyperparameters, such as
momentum, regularizers_l2, beta_1, beta_2, and eps based on the selected optimizer. For
example, use beta_1 and beta_2 only when adamw or adam is the optimizer.

For more information about which hyperparameters are used for each optimizer, see Text
Classification - TensorFlow Hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

batch_size IntegerParameterRanges MinValue: 4,
MaxValue: 128

beta_1 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

beta_2 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

Use Built-in Algorithms 2900

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

eps ContinuousParameterRanges MinValue: 1e-8,
MaxValue: 1.0

learning_rate ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.5

momentum ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

optimizer CategoricalParameterRanges ['adamw', 'adam',
'sgd', 'rmsprop',
'nesterov', 'adagrad',
'adadelta']

regularizers_l2 ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

train_onl
y_on_top_layer

CategoricalParameterRanges ['True', 'False']

Built-in SageMaker Algorithms for Time-Series Data

SageMaker provides algorithms that are tailored to the analysis of time-series data for forecasting
product demand, server loads, webpage requests, and more.

• DeepAR Forecasting Algorithm—a supervised learning algorithm for forecasting scalar (one-
dimensional) time series using recurrent neural networks (RNN).

Use Built-in Algorithms 2901

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

DeepAR
Forecasti
ng

train and
(optional
ly) test

File JSON Lines
or Parquet

GPU or
CPU

Yes

DeepAR Forecasting Algorithm

The Amazon SageMaker DeepAR forecasting algorithm is a supervised learning algorithm for
forecasting scalar (one-dimensional) time series using recurrent neural networks (RNN). Classical
forecasting methods, such as autoregressive integrated moving average (ARIMA) or exponential
smoothing (ETS), fit a single model to each individual time series. They then use that model to
extrapolate the time series into the future.

In many applications, however, you have many similar time series across a set of cross-sectional
units. For example, you might have time series groupings for demand for different products, server
loads, and requests for webpages. For this type of application, you can benefit from training a
single model jointly over all of the time series. DeepAR takes this approach. When your dataset
contains hundreds of related time series, DeepAR outperforms the standard ARIMA and ETS
methods. You can also use the trained model to generate forecasts for new time series that are
similar to the ones it has been trained on.

The training input for the DeepAR algorithm is one or, preferably, more target time series that
have been generated by the same process or similar processes. Based on this input dataset, the
algorithm trains a model that learns an approximation of this process/processes and uses it to
predict how the target time series evolves. Each target time series can be optionally associated
with a vector of static (time-independent) categorical features provided by the cat field and a
vector of dynamic (time-dependent) time series provided by the dynamic_feat field. SageMaker
trains the DeepAR model by randomly sampling training examples from each target time series in
the training dataset. Each training example consists of a pair of adjacent context and prediction
windows with fixed predefined lengths. To control how far in the past the network can see, use the
context_length hyperparameter. To control how far in the future predictions can be made, use
the prediction_length hyperparameter. For more information, see How the DeepAR Algorithm
Works.

Use Built-in Algorithms 2902

Amazon SageMaker Developer Guide

Topics

• Input/Output Interface for the DeepAR Algorithm

• Best Practices for Using the DeepAR Algorithm

• EC2 Instance Recommendations for the DeepAR Algorithm

• DeepAR Sample Notebooks

• How the DeepAR Algorithm Works

• DeepAR Hyperparameters

• Tune a DeepAR Model

• DeepAR Inference Formats

Input/Output Interface for the DeepAR Algorithm

DeepAR supports two data channels. The required train channel describes the training dataset.
The optional test channel describes a dataset that the algorithm uses to evaluate model accuracy
after training. You can provide training and test datasets in JSON Lines format. Files can be in gzip
or Parquet file format.

When specifying the paths for the training and test data, you can specify a single file or a directory
that contains multiple files, which can be stored in subdirectories. If you specify a directory,
DeepAR uses all files in the directory as inputs for the corresponding channel, except those that
start with a period (.) and those named _SUCCESS. This ensures that you can directly use output
folders produced by Spark jobs as input channels for your DeepAR training jobs.

By default, the DeepAR model determines the input format from the file extension (.json,
.json.gz, or .parquet) in the specified input path. If the path does not end in one of these
extensions, you must explicitly specify the format in the SDK for Python. Use the content_type
parameter of the s3_input class.

The records in your input files should contain the following fields:

• start—A string with the format YYYY-MM-DD HH:MM:SS. The start timestamp can't contain
time zone information.

• target—An array of floating-point values or integers that represent the time series. You can
encode missing values as null literals, or as "NaN" strings in JSON, or as nan floating-point
values in Parquet.

Use Built-in Algorithms 2903

http://jsonlines.org/
https://parquet.apache.org/
https://sagemaker.readthedocs.io/en/stable/session.html#sagemaker.session.s3_input

Amazon SageMaker Developer Guide

• dynamic_feat (optional)—An array of arrays of floating-point values or integers that
represents the vector of custom feature time series (dynamic features). If you set this field, all
records must have the same number of inner arrays (the same number of feature time series).
In addition, each inner array must be the same length as the associated target value plus
prediction_length. Missing values are not supported in the features. For example, if target
time series represents the demand of different products, an associated dynamic_feat might
be a boolean time-series which indicates whether a promotion was applied (1) to the particular
product or not (0):

{"start": ..., "target": [1, 5, 10, 2], "dynamic_feat": [[0, 1, 1, 0]]}

• cat (optional)—An array of categorical features that can be used to encode the groups that
the record belongs to. Categorical features must be encoded as a 0-based sequence of positive
integers. For example, the categorical domain {R, G, B} can be encoded as {0, 1, 2}. All values
from each categorical domain must be represented in the training dataset. That's because the
DeepAR algorithm can forecast only for categories that have been observed during training.
And, each categorical feature is embedded in a low-dimensional space whose dimensionality is
controlled by the embedding_dimension hyperparameter. For more information, see DeepAR
Hyperparameters.

If you use a JSON file, it must be in JSON Lines format. For example:

{"start": "2009-11-01 00:00:00", "target": [4.3, "NaN", 5.1, ...], "cat": [0, 1],
 "dynamic_feat": [[1.1, 1.2, 0.5, ...]]}
{"start": "2012-01-30 00:00:00", "target": [1.0, -5.0, ...], "cat": [2, 3],
 "dynamic_feat": [[1.1, 2.05, ...]]}
{"start": "1999-01-30 00:00:00", "target": [2.0, 1.0], "cat": [1, 4], "dynamic_feat":
 [[1.3, 0.4]]}

In this example, each time series has two associated categorical features and one time series
features.

For Parquet, you use the same three fields as columns. In addition, "start" can be the datetime
type. You can compress Parquet files using gzip (gzip) or the Snappy compression library
(snappy).

If the algorithm is trained without cat and dynamic_feat fields, it learns a "global" model, that
is a model that is agnostic to the specific identity of the target time series at inference time and is
conditioned only on its shape.

Use Built-in Algorithms 2904

http://jsonlines.org/

Amazon SageMaker Developer Guide

If the model is conditioned on the cat and dynamic_feat feature data provided for each
time series, the prediction will probably be influenced by the character of time series with the
corresponding cat features. For example, if the target time series represents the demand of
clothing items, you can associate a two-dimensional cat vector that encodes the type of item (e.g.
0 = shoes, 1 = dress) in the first component and the color of an item (e.g. 0 = red, 1 = blue) in the
second component. A sample input would look as follows:

{ "start": ..., "target": ..., "cat": [0, 0], ... } # red shoes
{ "start": ..., "target": ..., "cat": [1, 1], ... } # blue dress

At inference time, you can request predictions for targets with cat values that are combinations of
the cat values observed in the training data, for example:

{ "start": ..., "target": ..., "cat": [0, 1], ... } # blue shoes
{ "start": ..., "target": ..., "cat": [1, 0], ... } # red dress

The following guidelines apply to training data:

• The start time and length of the time series can differ. For example, in marketing, products often
enter a retail catalog at different dates, so their start dates naturally differ. But all series must
have the same frequency, number of categorical features, and number of dynamic features.

• Shuffle the training file with respect to the position of the time series in the file. In other words,
the time series should occur in random order in the file.

• Make sure to set the start field correctly. The algorithm uses the start timestamp to derive
the internal features.

• If you use categorical features (cat), all time series must have the same number of categorical
features. If the dataset contains the cat field, the algorithm uses it and extracts the cardinality
of the groups from the dataset. By default, cardinality is "auto". If the dataset contains the
cat field, but you don't want to use it, you can disable it by setting cardinality to "". If a
model was trained using a cat feature, you must include it for inference.

• If your dataset contains the dynamic_feat field, the algorithm uses it automatically. All time
series have to have the same number of feature time series. The time points in each of the
feature time series correspond one-to-one to the time points in the target. In addition, the entry
in the dynamic_feat field should have the same length as the target. If the dataset contains
the dynamic_feat field, but you don't want to use it, disable it by setting(num_dynamic_feat
to ""). If the model was trained with the dynamic_feat field, you must provide this field for

Use Built-in Algorithms 2905

Amazon SageMaker Developer Guide

inference. In addition, each of the features has to have the length of the provided target plus the
prediction_length. In other words, you must provide the feature value in the future.

If you specify optional test channel data, the DeepAR algorithm evaluates the trained model with
different accuracy metrics. The algorithm calculates the root mean square error (RMSE) over the
test data as follows:

yi,t is the true value of time series i at the time t. ŷi,t is the mean prediction. The sum is over

all n time series in the test set and over the last Τ time points for each time series, where Τ
corresponds to the forecast horizon. You specify the length of the forecast horizon by setting the
prediction_length hyperparameter. For more information, see DeepAR Hyperparameters.

In addition, the algorithm evaluates the accuracy of the forecast distribution using weighted
quantile loss. For a quantile in the range [0, 1], the weighted quantile loss is defined as follows:

qi,t
(τ) is the τ-quantile of the distribution that the model predicts. To specify which quantiles to

calculate loss for, set the test_quantiles hyperparameter. In addition to these, the average of
the prescribed quantile losses is reported as part of the training logs. For information, see DeepAR
Hyperparameters.

For inference, DeepAR accepts JSON format and the following fields:

• "instances", which includes one or more time series in JSON Lines format

• A name of "configuration", which includes parameters for generating the forecast

For more information, see DeepAR Inference Formats.

Best Practices for Using the DeepAR Algorithm

When preparing your time series data, follow these best practices to achieve the best results:

• Except for when splitting your dataset for training and testing, always provide the entire time
series for training, testing, and when calling the model for inference. Regardless of how you set

Use Built-in Algorithms 2906

Amazon SageMaker Developer Guide

context_length, don't break up the time series or provide only a part of it. The model uses
data points further back than the value set in context_length for the lagged values feature.

• When tuning a DeepAR model, you can split the dataset to create a training dataset and a test
dataset. In a typical evaluation, you would test the model on the same time series used for
training, but on the future prediction_length time points that follow immediately after
the last time point visible during training. You can create training and test datasets that satisfy
this criteria by using the entire dataset (the full length of all time series that are available) as a
test set and removing the last prediction_length points from each time series for training.
During training, the model doesn't see the target values for time points on which it is evaluated
during testing. During testing, the algorithm withholds the last prediction_length points of
each time series in the test set and generates a prediction. Then it compares the forecast with
the withheld values. You can create more complex evaluations by repeating time series multiple
times in the test set, but cutting them at different endpoints. With this approach, accuracy
metrics are averaged over multiple forecasts from different time points. For more information,
see Tune a DeepAR Model.

• Avoid using very large values (>400) for the prediction_length because it makes the model
slow and less accurate. If you want to forecast further into the future, consider aggregating your
data at a lower frequency. For example, use 5min instead of 1min.

• Because lags are used, a model can look further back in the time series than the value specified
for context_length. Therefore, you don't need to set this parameter to a large value. We
recommend starting with the value that you used for prediction_length.

• We recommend training a DeepAR model on as many time series as are available. Although a
DeepAR model trained on a single time series might work well, standard forecasting algorithms,
such as ARIMA or ETS, might provide more accurate results. The DeepAR algorithm starts to
outperform the standard methods when your dataset contains hundreds of related time series.
Currently, DeepAR requires that the total number of observations available across all training
time series is at least 300.

EC2 Instance Recommendations for the DeepAR Algorithm

You can train DeepAR on both GPU and CPU instances and in both single and multi-machine
settings. We recommend starting with a single CPU instance (for example, ml.c4.2xlarge or
ml.c4.4xlarge), and switching to GPU instances and multiple machines only when necessary. Using
GPUs and multiple machines improves throughput only for larger models (with many cells per layer
and many layers) and for large mini-batch sizes (for example, greater than 512).

Use Built-in Algorithms 2907

Amazon SageMaker Developer Guide

For inference, DeepAR supports only CPU instances.

Specifying large values for context_length, prediction_length, num_cells, num_layers,
or mini_batch_size can create models that are too large for small instances. In this case, use a
larger instance type or reduce the values for these parameters. This problem also frequently occurs
when running hyperparameter tuning jobs. In that case, use an instance type large enough for the
model tuning job and consider limiting the upper values of the critical parameters to avoid job
failures.

DeepAR Sample Notebooks

For a sample notebook that shows how to prepare a time series dataset for training the SageMaker
DeepAR algorithm and how to deploy the trained model for performing inferences, see DeepAR
demo on electricity dataset, which illustrates the advanced features of DeepAR on a real world
dataset. For instructions on creating and accessing Jupyter notebook instances that you can use
to run the example in SageMaker, see Amazon SageMaker Notebook Instances. After creating
and opening a notebook instance, choose the SageMaker Examples tab to see a list of all of the
SageMaker examples. To open a notebook, choose its Use tab, and choose Create copy.

How the DeepAR Algorithm Works

During training, DeepAR accepts a training dataset and an optional test dataset. It uses the test
dataset to evaluate the trained model. In general, the datasets don't have to contain the same
set of time series. You can use a model trained on a given training set to generate forecasts for
the future of the time series in the training set, and for other time series. Both the training and
the test datasets consist of one or, preferably, more target time series. Each target time series can
optionally be associated with a vector of feature time series and a vector of categorical features.
For more information, see Input/Output Interface for the DeepAR Algorithm.

For example, the following is an element of a training set indexed by i which consists of a target
time series, Zi,t, and two associated feature time series, Xi,1,t and Xi,2,t:

Use Built-in Algorithms 2908

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/deepar_electricity/DeepAR-Electricity.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/deepar_electricity/DeepAR-Electricity.html

Amazon SageMaker Developer Guide

The target time series might contain missing values, which are represented by line breaks in the
time series. DeepAR supports only feature time series that are known in the future. This allows you
to run "what if?" scenarios. What happens, for example, if I change the price of a product in some
way?

Each target time series can also be associated with a number of categorical features. You can use
these features to encode which groupings a time series belongs to. Categorical features allow the
model to learn typical behavior for groups, which it can use to increase model accuracy. DeepAR
implements this by learning an embedding vector for each group that captures the common
properties of all time series in the group.

How Feature Time Series Work in the DeepAR Algorithm

To facilitate learning time-dependent patterns, such as spikes during weekends, DeepAR
automatically creates feature time series based on the frequency of the target time series. It uses
these derived feature time series with the custom feature time series that you provide during
training and inference. The following figure shows two of these derived time series features: ui,1,t

represents the hour of the day and ui,2,t the day of the week.

Use Built-in Algorithms 2909

Amazon SageMaker Developer Guide

The DeepAR algorithm automatically generates these feature time series. The following table lists
the derived features for the supported basic time frequencies.

Frequency of the Time Series Derived Features

Minute minute-of-hour , hour-of-day , day-of-week , day-
of-month , day-of-year

Hour hour-of-day , day-of-week , day-of-month , day-of-
year

Day day-of-week , day-of-month , day-of-year

Week day-of-month , week-of-year

Month month-of-year

DeepAR trains a model by randomly sampling several training examples from each of the time
series in the training dataset. Each training example consists of a pair of adjacent context and
prediction windows with fixed predefined lengths. The context_length hyperparameter controls
how far in the past the network can see, and the prediction_length hyperparameter controls
how far in the future predictions can be made. During training, the algorithm ignores training set
elements containing time series that are shorter than a specified prediction length. The following
figure represents five samples with context lengths of 12 hours and prediction lengths of 6 hours
drawn from element i. For brevity, we've omitted the feature time series xi,1,t and ui,2,t.

Use Built-in Algorithms 2910

Amazon SageMaker Developer Guide

To capture seasonality patterns, DeepAR also automatically feeds lagged values from the target
time series. In the example with hourly frequency, for each time index, t = T, the model exposes the
zi,t values, which occurred approximately one, two, and three days in the past.

For inference, the trained model takes as input target time series, which might or might
not have been used during training, and forecasts a probability distribution for the next
prediction_length values. Because DeepAR is trained on the entire dataset, the forecast takes
into account patterns learned from similar time series.

For information on the mathematics behind DeepAR, see DeepAR: Probabilistic Forecasting with
Autoregressive Recurrent Networks.

DeepAR Hyperparameters

Parameter Name Description

context_length The number of time-points that the model gets to see before
making the prediction. The value for this parameter should
be about the same as the prediction_length . The model
also receives lagged inputs from the target, so context_l
ength can be much smaller than typical seasonalities. For
example, a daily time series can have yearly seasonality. The
model automatically includes a lag of one year, so the context
length can be shorter than a year. The lag values that the
model picks depend on the frequency of the time series. For
example, lag values for daily frequency are previous week, 2
weeks, 3 weeks, 4 weeks, and year.

Required

Use Built-in Algorithms 2911

https://arxiv.org/abs/1704.04110
https://arxiv.org/abs/1704.04110

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: Positive integer

epochs The maximum number of passes over the training data. The
optimal value depends on your data size and learning rate. See
also early_stopping_patience . Typical values range
from 10 to 1000.

Required

Valid values: Positive integer

prediction_length The number of time-steps that the model is trained to predict,
also called the forecast horizon. The trained model always
generates forecasts with this length. It can't generate longer
forecasts. The prediction_length is fixed when a model is
trained and it cannot be changed later.

Required

Valid values: Positive integer

Use Built-in Algorithms 2912

Amazon SageMaker Developer Guide

Parameter Name Description

time_freq The granularity of the time series in the dataset. Use
time_freq to select appropriate date features and lags.
The model supports the following basic frequencies. It also
supports multiples of these basic frequencies. For example,
5min specifies a frequency of 5 minutes.

• M: monthly

• W: weekly

• D: daily

• H: hourly

• min: every minute

Required

Valid values: An integer followed by M, W, D, H, or min. For
example, 5min.

Use Built-in Algorithms 2913

Amazon SageMaker Developer Guide

Parameter Name Description

cardinality When using the categorical features (cat), cardinality
is an array specifying the number of categories (groups) per
categorical feature. Set this to auto to infer the cardinality
from the data. The auto mode also works when no categoric
al features are used in the dataset. This is the recommended
setting for the parameter.

Set cardinality to ignore to force DeepAR to not use categoric
al features, even it they are present in the data.

To perform additional data validation, it is possible to explicitl
y set this parameter to the actual value. For example, if two
categorical features are provided where the first has 2 and the
other has 3 possible values, set this to [2, 3].

For more information on how to use categorical feature, see
the data-section on the main documentation page of DeepAR.

Optional

Valid values: auto, ignore, array of positive integers, empty
string, or

Default value: auto

dropout_rate The dropout rate to use during training. The model uses
zoneout regularization. For each iteration, a random subset of
hidden neurons are not updated. Typical values are less than
0.2.

Optional

Valid values: float

Default value: 0.1

Use Built-in Algorithms 2914

Amazon SageMaker Developer Guide

Parameter Name Description

early_stopping_pat
ience

If this parameter is set, training stops when no progress is
made within the specified number of epochs. The model that
has the lowest loss is returned as the final model.

Optional

Valid values: integer

embedding_dimension Size of embedding vector learned per categorical feature (same
value is used for all categorical features).

The DeepAR model can learn group-level time series patterns
when a categorical grouping feature is provided. To do this,
the model learns an embedding vector of size embedding
_dimension for each group, capturing the common
properties of all time series in the group. A larger embedding
_dimension allows the model to capture more complex
patterns. However, because increasing the embedding
_dimension increases the number of parameters in the
model, more training data is required to accurately learn these
parameters. Typical values for this parameter are between
10-100.

Optional

Valid values: positive integer

Default value: 10

learning_rate The learning rate used in training. Typical values range from
1e-4 to 1e-1.

Optional

Valid values: float

Default value: 1e-3

Use Built-in Algorithms 2915

Amazon SageMaker Developer Guide

Parameter Name Description

likelihood The model generates a probabilistic forecast, and can provide
quantiles of the distribution and return samples. Depending on
your data, select an appropriate likelihood (noise model) that
is used for uncertainty estimates. The following likelihoods can
be selected:

• gaussian: Use for real-valued data.

• beta: Use for real-valued targets between 0 and 1 inclusive.

• negative-binomial: Use for count data (non-negative
integers).

• student-T: An alternative for real-valued data that works well
for bursty data.

• deterministic-L1: A loss function that does not estimate
uncertainty and only learns a point forecast.

Optional

Valid values: One of gaussian, beta, negative-binomial, student-
T, or deterministic-L1.

Default value: student-T

mini_batch_size The size of mini-batches used during training. Typical values
range from 32 to 512.

Optional

Valid values: positive integer

Default value: 128

Use Built-in Algorithms 2916

Amazon SageMaker Developer Guide

Parameter Name Description

num_cells The number of cells to use in each hidden layer of the RNN.
Typical values range from 30 to 100.

Optional

Valid values: positive integer

Default value: 40

num_dynamic_feat The number of dynamic_feat provided in the data. Set this
to auto to infer the number of dynamic features from the
data. The auto mode also works when no dynamic features are
used in the dataset. This is the recommended setting for the
parameter.

To force DeepAR to not use dynamic features, even it they are
present in the data, set num_dynamic_feat to ignore.

To perform additional data validation, it is possible to explicitl
y set this parameter to the actual integer value. For example, if
two dynamic features are provided, set this to 2.

Optional

Valid values: auto, ignore, positive integer, or empty string

Default value: auto

Use Built-in Algorithms 2917

Amazon SageMaker Developer Guide

Parameter Name Description

num_eval_samples The number of samples that are used per time-series when
calculating test accuracy metrics. This parameter does not have
any influence on the training or the final model. In particular,
the model can be queried with a different number of samples.
This parameter only affects the reported accuracy scores on
the test channel after training. Smaller values result in faster
evaluation, but then the evaluation scores are typically worse
and more uncertain. When evaluating with higher quantiles,
for example 0.95, it may be important to increase the number
of evaluation samples.

Optional

Valid values: integer

Default value: 100

num_layers The number of hidden layers in the RNN. Typical values range
from 1 to 4.

Optional

Valid values: positive integer

Default value: 2

test_quantiles Quantiles for which to calculate quantile loss on the test
channel.

Optional

Valid values: array of floats

Default value: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Use Built-in Algorithms 2918

Amazon SageMaker Developer Guide

Tune a DeepAR Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the DeepAR Algorithm

The DeepAR algorithm reports three metrics, which are computed during training. When tuning a
model, choose one of these as the objective. For the objective, use either the forecast accuracy on
a provided test channel (recommended) or the training loss. For recommendations for the training/
test split for the DeepAR algorithm, see Best Practices for Using the DeepAR Algorithm.

Metric Name Description Optimization
Direction

test:RMSE The root mean square error between the
forecast and the actual target computed on
the test set.

Minimize

test:mean
_wQuantileLoss

The average overall quantile losses computed
on the test set. To control which quantiles are
used, set the test_quantiles hyperpara
meter.

Minimize

train:fin
al_loss

The training negative log-likelihood loss
averaged over the last training epoch for the
model.

Minimize

Tunable Hyperparameters for the DeepAR Algorithm

Tune a DeepAR model with the following hyperparameters. The hyperparameters that have the
greatest impact, listed in order from the most to least impactful, on DeepAR objective metrics are:
epochs, context_length, mini_batch_size, learning_rate, and num_cells.

Use Built-in Algorithms 2919

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

epochs IntegerParameterRanges MinValue: 1,
MaxValue: 1000

context_length IntegerParameterRanges MinValue: 1,
MaxValue: 200

mini_batch_size IntegerParameterRanges MinValue: 32,
MaxValue: 1028

learning_rate ContinuousParameterRange MinValue: 1e-5,
MaxValue: 1e-1

num_cells IntegerParameterRanges MinValue: 30,
MaxValue: 200

num_layers IntegerParameterRanges MinValue: 1,
MaxValue: 8

dropout_rate ContinuousParameterRange MinValue: 0.00,
MaxValue: 0.2

embedding
_dimension

IntegerParameterRanges MinValue: 1,
MaxValue: 50

DeepAR Inference Formats

DeepAR JSON Request Formats

Query a trained model by using the model's endpoint. The endpoint takes the following JSON
request format.

In the request, the instances field corresponds to the time series that should be forecast by the
model.

If the model was trained with categories, you must provide a cat for each instance. If the model
was trained without the cat field, it should be omitted.

Use Built-in Algorithms 2920

Amazon SageMaker Developer Guide

If the model was trained with a custom feature time series (dynamic_feat), you have to provide
the same number of dynamic_featvalues for each instance. Each of them should have a length
given by length(target) + prediction_length, where the last prediction_length values
correspond to the time points in the future that will be predicted. If the model was trained without
custom feature time series, the field should not be included in the request.

{
 "instances": [
 {
 "start": "2009-11-01 00:00:00",
 "target": [4.0, 10.0, "NaN", 100.0, 113.0],
 "cat": [0, 1],
 "dynamic_feat": [[1.0, 1.1, 2.1, 0.5, 3.1, 4.1, 1.2, 5.0, ...]]
 },
 {
 "start": "2012-01-30",
 "target": [1.0],
 "cat": [2, 1],
 "dynamic_feat": [[2.0, 3.1, 4.5, 1.5, 1.8, 3.2, 0.1, 3.0, ...]]
 },
 {
 "start": "1999-01-30",
 "target": [2.0, 1.0],
 "cat": [1, 3],
 "dynamic_feat": [[1.0, 0.1, -2.5, 0.3, 2.0, -1.2, -0.1, -3.0, ...]]
 }
],
 "configuration": {
 "num_samples": 50,
 "output_types": ["mean", "quantiles", "samples"],
 "quantiles": ["0.5", "0.9"]
 }
}

The configuration field is optional. configuration.num_samples sets the
number of sample paths that the model generates to estimate the mean and quantiles.
configuration.output_types describes the information that will be returned in the request.
Valid values are "mean" "quantiles" and "samples". If you specify "quantiles", each of
the quantile values in configuration.quantiles is returned as a time series. If you specify
"samples", the model also returns the raw samples used to calculate the other outputs.

Use Built-in Algorithms 2921

Amazon SageMaker Developer Guide

DeepAR JSON Response Formats

The following is the format of a response, where [...] are arrays of numbers:

{
 "predictions": [
 {
 "quantiles": {
 "0.9": [...],
 "0.5": [...]
 },
 "samples": [...],
 "mean": [...]
 },
 {
 "quantiles": {
 "0.9": [...],
 "0.5": [...]
 },
 "samples": [...],
 "mean": [...]
 },
 {
 "quantiles": {
 "0.9": [...],
 "0.5": [...]
 },
 "samples": [...],
 "mean": [...]
 }
]
}

DeepAR has a response timeout of 60 seconds. When passing multiple time series in a single
request, the forecasts are generated sequentially. Because the forecast for each time series
typically takes about 300 to 1000 milliseconds or longer, depending on the model size, passing
too many time series in a single request can cause time outs. It's better to send fewer time series
per request and send more requests. Because the DeepAR algorithm uses multiple workers per
instance, you can achieve much higher throughput by sending multiple requests in parallel.

By default, DeepAR uses one worker per CPU for inference, if there is sufficient memory
per CPU. If the model is large and there isn't enough memory to run a model on each

Use Built-in Algorithms 2922

Amazon SageMaker Developer Guide

CPU, the number of workers is reduced. The number of workers used for inference can be
overwritten using the environment variable MODEL_SERVER_WORKERS For example, by setting
MODEL_SERVER_WORKERS=1) when calling the SageMaker CreateModel API.

Batch Transform with the DeepAR Algorithm

DeepAR forecasting supports getting inferences by using batch transform from data using the
JSON Lines format. In this format, each record is represented on a single line as a JSON object, and
lines are separated by newline characters. The format is identical to the JSON Lines format used
for model training. For information, see Input/Output Interface for the DeepAR Algorithm. For
example:

{"start": "2009-11-01 00:00:00", "target": [4.3, "NaN", 5.1, ...], "cat": [0, 1],
 "dynamic_feat": [[1.1, 1.2, 0.5, ..]]}
{"start": "2012-01-30 00:00:00", "target": [1.0, -5.0, ...], "cat": [2, 3],
 "dynamic_feat": [[1.1, 2.05, ...]]}
{"start": "1999-01-30 00:00:00", "target": [2.0, 1.0], "cat": [1, 4], "dynamic_feat":
 [[1.3, 0.4]]}

Note

When creating the transformation job with CreateTransformJob, set the
BatchStrategy value to SingleRecord and set the SplitType value in the
TransformInput configuration to Line, as the default values currently cause runtime
failures.

Similar to the hosted endpoint inference request format, the cat and the dynamic_feat fields for
each instance are required if both of the following are true:

• The model is trained on a dataset that contained both the cat and the dynamic_feat fields.

• The corresponding cardinality and num_dynamic_feat values used in the training job are
not set to "".

Unlike hosted endpoint inference, the configuration field is set once for the entire batch
inference job using an environment variable named DEEPAR_INFERENCE_CONFIG. The
value of DEEPAR_INFERENCE_CONFIG can be passed when the model is created by calling

Use Built-in Algorithms 2923

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformInput.html

Amazon SageMaker Developer Guide

CreateTransformJob API. If DEEPAR_INFERENCE_CONFIG is missing in the container
environment, the inference container uses the following default:

{
 "num_samples": 100,
 "output_types": ["mean", "quantiles"],
 "quantiles": ["0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9"]
}

The output is also in JSON Lines format, with one line per prediction, in an order identical to the
instance order in the corresponding input file. Predictions are encoded as objects identical to the
ones returned by responses in online inference mode. For example:

{ "quantiles": { "0.1": [...], "0.2": [...] }, "samples": [...], "mean": [...] }

Note that in the TransformInput configuration of the SageMaker CreateTransformJob
request clients must explicitly set the AssembleWith value to Line, as the default value None
concatenates all JSON objects on the same line.

For example, here is a SageMaker CreateTransformJob request for a DeepAR job with a custom
DEEPAR_INFERENCE_CONFIG:

{
 "BatchStrategy": "SingleRecord",
 "Environment": {
 "DEEPAR_INFERENCE_CONFIG" : "{ \"num_samples\": 200, \"output_types\": [\"mean
\"] }",
 ...
 },
 "TransformInput": {
 "SplitType": "Line",
 ...
 },
 "TransformOutput": {
 "AssembleWith": "Line",
 ...
 },
 ...
}

Use Built-in Algorithms 2924

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformInput.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

Unsupervised Built-in SageMaker Algorithms

Amazon SageMaker provides several built-in algorithms that can be used for a variety of
unsupervised learning tasks such as clustering, dimension reduction, pattern recognition, and
anomaly detection.

• IP Insights—learns the usage patterns for IPv4 addresses. It is designed to capture associations
between IPv4 addresses and various entities, such as user IDs or account numbers.

• K-Means Algorithm—finds discrete groupings within data, where members of a group are as
similar as possible to one another and as different as possible from members of other groups.

• Principal Component Analysis (PCA) Algorithm—reduces the dimensionality (number of
features) within a dataset by projecting data points onto the first few principal components. The
objective is to retain as much information or variation as possible. For mathematicians, principal
components are eigenvectors of the data's covariance matrix.

• Random Cut Forest (RCF) Algorithm—detects anomalous data points within a data set that
diverge from otherwise well-structured or patterned data.

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

IP Insights train and
(optional
ly)
validation

File CSV CPU or
GPU

Yes

K-Means train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU or
GPUCommon
(single
GPU device
on one
or more
instances)

No

Use Built-in Algorithms 2925

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

PCA train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

GPU or
CPU

Yes

Random
Cut Forest

train and
(optional
ly) test

File or Pipe recordIO-
protobuf
or CSV

CPU Yes

IP Insights

Amazon SageMaker IP Insights is an unsupervised learning algorithm that learns the usage
patterns for IPv4 addresses. It is designed to capture associations between IPv4 addresses and
various entities, such as user IDs or account numbers. You can use it to identify a user attempting
to log into a web service from an anomalous IP address, for example. Or you can use it to identify
an account that is attempting to create computing resources from an unusual IP address. Trained
IP Insight models can be hosted at an endpoint for making real-time predictions or used for
processing batch transforms.

SageMaker IP insights ingests historical data as (entity, IPv4 Address) pairs and learns the IP usage
patterns of each entity. When queried with an (entity, IPv4 Address) event, a SageMaker IP Insights
model returns a score that infers how anomalous the pattern of the event is. For example, when
a user attempts to log in from an IP address, if the IP Insights score is high enough, a web login
server might decide to trigger a multi-factor authentication system. In more advanced solutions,
you can feed the IP Insights score into another machine learning model. For example, you can
combine the IP Insight score with other features to rank the findings of another security system,
such as those from Amazon GuardDuty.

The SageMaker IP Insights algorithm can also learn vector representations of IP addresses, known
as embeddings. You can use vector-encoded embeddings as features in downstream machine
learning tasks that use the information observed in the IP addresses. For example, you can use
them in tasks such as measuring similarities between IP addresses in clustering and visualization
tasks.

Topics

Use Built-in Algorithms 2926

https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html

Amazon SageMaker Developer Guide

• Input/Output Interface for the IP Insights Algorithm

• EC2 Instance Recommendation for the IP Insights Algorithm

• IP Insights Sample Notebooks

• How IP Insights Works

• IP Insights Hyperparameters

• Tune an IP Insights Model

• IP Insights Data Formats

Input/Output Interface for the IP Insights Algorithm

Training and Validation

The SageMaker IP Insights algorithm supports training and validation data channels. It uses the
optional validation channel to compute an area-under-curve (AUC) score on a predefined negative
sampling strategy. The AUC metric validates how well the model discriminates between positive
and negative samples. Training and validation data content types need to be in text/csv format.
The first column of the CSV data is an opaque string that provides a unique identifier for the entity.
The second column is an IPv4 address in decimal-dot notation. IP Insights currently supports only
File mode. For more information and some examples, see IP Insights Training Data Formats.

Inference

For inference, IP Insights supports text/csv, application/json, and application/
jsonlines data content types. For more information about the common data formats for
inference provided by SageMaker, see Common Data Formats for Inference. IP Insights inference
returns output formatted as either application/json or application/jsonlines. Each
record in the output data contains the corresponding dot_product (or compatibility score) for
each input data point. For more information and some examples, see IP Insights Inference Data
Formats.

EC2 Instance Recommendation for the IP Insights Algorithm

The SageMaker IP Insights algorithm can run on both GPU and CPU instances. For training jobs,
we recommend using GPU instances. However, for certain workloads with large training datasets,
distributed CPU instances might reduce training costs. For inference, we recommend using CPU
instances. IP Insights supports P2, P3, G4dn, and G5 GPU families.

Use Built-in Algorithms 2927

Amazon SageMaker Developer Guide

GPU Instances for the IP Insights Algorithm

IP Insights supports all available GPUs. If you need to speed up training, we recommend starting
with a single GPU instance, such as ml.p3.2xlarge, and then moving to a multi-GPU environment,
such as ml.p3.8xlarge and ml.p3.16xlarge. Multi-GPUs automatically divide the mini batches
of training data across themselves. If you switch from a single GPU to multiple GPUs, the
mini_batch_size is divided equally into the number of GPUs used. You may want to increase the
value of the mini_batch_size to compensate for this.

CPU Instances for the IP Insights Algorithm

The type of CPU instance that we recommend depends largely on the instance's available memory
and the model size. The model size is determined by two hyperparameters: vector_dim and
num_entity_vectors. The maximum supported model size is 8 GB. The following table lists
typical EC2 instance types that you would deploy based on these input parameters for various
model sizes. In Table 1, the value for vector_dim in the first column range from 32 to 2048 and
the values for num_entity_vectors in the first row range from 10,000 to 50,000,000.

vector_di
m \
num_entit
y_vectors

.

10,000 50,000 100,000 500,000 1,000,000 5,000,000 10,000,00
0

50,000,00
0

32 ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.xla
rge

ml.m5.2xl
arge

ml.m5.4xl
arge

64 ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.2xl
arge

ml.m5.2xl
arge

128 ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.2xl
arge

ml.m5.4xl
arge

256 ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.xla
rge

ml.m5.4xl
arge

512 ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.2xl
arge

Use Built-in Algorithms 2928

Amazon SageMaker Developer Guide

vector_di
m \
num_entit
y_vectors

.

10,000 50,000 100,000 500,000 1,000,000 5,000,000 10,000,00
0

50,000,00
0

1024 ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.xla
rge

ml.m5.4xl
arge

2048 ml.m5.lar
ge

ml.m5.lar
ge

ml.m5.xla
rge

ml.m5.xla
rge

The values for the mini_batch_size, num_ip_encoder_layers,
random_negative_sampling_rate, and shuffled_negative_sampling_rate
hyperparameters also affect the amount of memory required. If these values are large, you might
need to use a larger instance type than normal.

IP Insights Sample Notebooks

For a sample notebook that shows how to train the SageMaker IP Insights algorithm and perform
inferences with it, see An Introduction to the SageMakerIP Insights Algorithm . For instructions how
to create and access Jupyter notebook instances that you can use to run the example in SageMaker,
see Amazon SageMaker Notebook Instances. After creating a notebook instance, choose the
SageMaker Examples tab to see a list of all the SageMaker examples. To open a notebook, choose
its Use tab and choose Create copy.

How IP Insights Works

Amazon SageMaker IP Insights is an unsupervised algorithm that consumes observed data in
the form of (entity, IPv4 address) pairs that associates entities with IP addresses. IP Insights
determines how likely it is that an entity would use a particular IP address by learning latent vector
representations for both entities and IP addresses. The distance between these two representations
can then serve as the proxy for how likely this association is.

The IP Insights algorithm uses a neural network to learn the latent vector representations for
entities and IP addresses. Entities are first hashed to a large but fixed hash space and then encoded
by a simple embedding layer. Character strings such as user names or account IDs can be fed
directly into IP Insights as they appear in log files. You don't need to preprocess the data for entity

Use Built-in Algorithms 2929

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/ipinsights_login/ipinsights-tutorial.html

Amazon SageMaker Developer Guide

identifiers. You can provide entities as an arbitrary string value during both training and inference.
The hash size should be configured with a value that is high enough to ensure that the number
of collisions, which occur when distinct entities are mapped to the same latent vector, remain
insignificant. For more information about how to select appropriate hash sizes, see Feature Hashing
for Large Scale Multitask Learning. For representing IP addresses, on the other hand, IP Insights
uses a specially designed encoder network to uniquely represent each possible IPv4 address by
exploiting the prefix structure of IP addresses.

During training, IP Insights automatically generates negative samples by randomly pairing entities
and IP addresses. These negative samples represent data that is less likely to occur in reality. The
model is trained to discriminate between positive samples that are observed in the training data
and these generated negative samples. More specifically, the model is trained to minimize the cross
entropy, also known as the log loss, defined as follows:

yn is the label that indicates whether the sample is from the real distribution governing observed
data (yn=1) or from the distribution generating negative samples (yn=0). pn is the probability that
the sample is from the real distribution, as predicted by the model.

Generating negative samples is an important process that is used to achieve an accurate model
of the observed data. If negative samples are extremely unlikely, for example, if all of the
IP addresses in negative samples are 10.0.0.0, then the model trivially learns to distinguish
negative samples and fails to accurately characterize the actual observed dataset. To keep
negative samples more realistic, IP Insights generates negative samples both by randomly
generating IP addresses and randomly picking IP addresses from training data. You can configure
the type of negative sampling and the rates at which negative samples are generated with
the random_negative_sampling_rate and shuffled_negative_sampling_rate
hyperparameters.

Given an nth (entity, IP address pair), the IP Insights model outputs a score, Sn , that indicates how
compatible the entity is with the IP address. This score corresponds to the log odds ratio for a
given (entity, IP address) of the pair coming from a real distribution as compared to coming from a
negative distribution. It is defined as follows:

Use Built-in Algorithms 2930

https://alex.smola.org/papers/2009/Weinbergeretal09.pdf
https://alex.smola.org/papers/2009/Weinbergeretal09.pdf

Amazon SageMaker Developer Guide

The score is essentially a measure of the similarity between the vector representations of the nth
entity and IP address. It can be interpreted as how much more likely it would be to observe this
event in reality than in a randomly generated dataset. During training, the algorithm uses this
score to calculate an estimate of the probability of a sample coming from the real distribution, pn,
to use in the cross entropy minimization, where:

IP Insights Hyperparameters

In the CreateTransformJob request, you specify the training algorithm. You can also specify
algorithm-specific hyperparameters as string-to-string maps. The following table lists the
hyperparameters for the Amazon SageMaker IP Insights algorithm.

Parameter Name Description

num_entity_vectors The number of entity vector representations (entity
embedding vectors) to train. Each entity in the training
set is randomly assigned to one of these vectors using
a hash function. Because of hash collisions, it might be
possible to have multiple entities assigned to the same
vector. This would cause the same vector to represent
multiple entities. This generally has a negligible effect
on model performance, as long as the collision rate is
not too severe. To keep the collision rate low, set this
value as high as possible. However, the model size, and,
therefore, the memory requirement, for both training
and inference, scales linearly with this hyperparameter.
We recommend that you set this value to twice the
number of unique entity identifiers.

Use Built-in Algorithms 2931

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

Parameter Name Description

Required

Valid values: 1 ≤ positive integer ≤ 250,000,000

vector_dim The size of embedding vectors to represent entities and
IP addresses. The larger the value, the more informati
on that can be encoded using these representations. In
practice, model size scales linearly with this parameter
and limits how large the dimension can be. In addition,
using vector representations that are too large can
cause the model to overfit, especially for small training
datasets. Overfitting occurs when a model doesn't
learn any pattern in the data but effectively memorizes
the training data and, therefore, cannot generalize well
and performs poorly during inference. The recommend
ed value is 128.

Required

Valid values: 4 ≤ positive integer ≤ 4096

batch_metrics_publ
ish_interval

The interval (every X batches) at which the Apache
MXNet Speedometer function prints the training speed
of the network (samples/second).

Optional

Valid values: positive integer ≥ 1

Default value: 1,000

Use Built-in Algorithms 2932

Amazon SageMaker Developer Guide

Parameter Name Description

epochs The number of passes over the training data. The
optimal value depends on your data size and learning
rate. Typical values range from 5 to 100.

Optional

Valid values: positive integer ≥ 1

Default value: 10

learning_rate The learning rate for the optimizer. IP Insights use a
gradient-descent-based Adam optimizer. The learning
rate effectively controls the step size to update model
parameters at each iteration. Too large a learning rate
can cause the model to diverge because the training is
likely to overshoot a minima. On the other hand, too
small a learning rate slows down convergence. Typical
values range from 1e-4 to 1e-1.

Optional

Valid values: 1e-6 ≤ float ≤ 10.0

Default value: 0.001

Use Built-in Algorithms 2933

Amazon SageMaker Developer Guide

Parameter Name Description

mini_batch_size The number of examples in each mini batch. The
training procedure processes data in mini batches.
The optimal value depends on the number of unique
account identifiers in the dataset. In general, the
larger the mini_batch_size , the faster the training
and the greater the number of possible shuffled-
negative-sample combinations. However, with a
large mini_batch_size , the training is more likely
to converge to a poor local minimum and perform
relatively worse for inference.

Optional

Valid values: 1 ≤ positive integer ≤ 500000

Default value: 10,000

num_ip_encoder_layers The number of fully connected layers used to encode
the IP address embedding. The larger the number of
layers, the greater the model's capacity to capture
patterns among IP addresses. However, using a large
number of layers increases the chance of overfitting.

Optional

Valid values: 0 ≤ positive integer ≤ 100

Default value: 1

Use Built-in Algorithms 2934

Amazon SageMaker Developer Guide

Parameter Name Description

random_negative_sa
mpling_rate

The number of random negative samples, R, to
generate per input example. The training procedure
relies on negative samples to prevent the vector
representations of the model collapsing to a single
point. Random negative sampling generates R random
IP addresses for each input account in the mini batch.
The sum of the random_negative_sampling_ra
te (R) and shuffled_negative_sampling_
rate (S) must be in the interval: 1 ≤ R + S ≤ 500.

Optional

Valid values: 0 ≤ positive integer ≤ 500

Default value: 1

shuffled_negative_
sampling_rate

The number of shuffled negative samples, S, to
generate per input example. In some cases, it helps to
use more realistic negative samples that are randomly
picked from the training data itself. This kind of
negative sampling is achieved by shuffling the data
within a mini batch. Shuffled negative sampling
generates S negative IP addresses by shuffling the IP
address and account pairings within a mini batch. The
sum of the random_negative_sampling_rate
(R) and shuffled_negative_sampling_rate
(S) must be in the interval: 1 ≤ R + S ≤ 500.

Optional

Valid values: 0 ≤ positive integer ≤ 500

Default value: 1

Use Built-in Algorithms 2935

Amazon SageMaker Developer Guide

Parameter Name Description

weight_decay The weight decay coefficient. This parameter adds an
L2 regularization factor that is required to prevent the
model from overfitting the training data.

Optional

Valid values: 0.0 ≤ float ≤ 10.0

Default value: 0.00001

Tune an IP Insights Model

Automatic model tuning, also called hyperparameter tuning, finds the best version of a model by
running many jobs that test a range of hyperparameters on your dataset. You choose the tunable
hyperparameters, a range of values for each, and an objective metric. You choose the objective
metric from the metrics that the algorithm computes. Automatic model tuning searches the
hyperparameters chosen to find the combination of values that result in the model that optimizes
the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the IP Insights Algorithm

The Amazon SageMaker IP Insights algorithm is an unsupervised learning algorithm that learns
associations between IP addresses and entities. The algorithm trains a discriminator model , which
learns to separate observed data points (positive samples) from randomly generated data points
(negative samples). Automatic model tuning on IP Insights helps you find the model that can most
accurately distinguish between unlabeled validation data and automatically generated negative
samples. The model accuracy on the validation dataset is measured by the area under the receiver
operating characteristic curve. This validation:discriminator_auc metric can take values
between 0.0 and 1.0, where 1.0 indicates perfect accuracy.

The IP Insights algorithm computes a validation:discriminator_auc metric during
validation, the value of which is used as the objective function to optimize for hyperparameter
tuning.

Use Built-in Algorithms 2936

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

validatio
n:discrim
inator_auc

Area under the receiver operating character
istic curve on the validation dataset. The
validation dataset is not labeled. Area Under
the Curve (AUC) is a metric that describes the
model's ability to discriminate validation data
points from randomly generated data points.

Maximize

Tunable IP Insights Hyperparameters

You can tune the following hyperparameters for the SageMaker IP Insights algorithm.

Parameter Name Parameter Type Recommended
Ranges

epochs IntegerParameterRange MinValue: 1,
MaxValue: 100

learning_rate ContinuousParameterRange MinValue: 1e-4,
MaxValue: 0.1

mini_batch_size IntegerParameterRanges MinValue: 100,
MaxValue: 50000

num_entit
y_vectors

IntegerParameterRanges MinValue: 10000,
MaxValue: 1000000

num_ip_en
coder_layers

IntegerParameterRanges MinValue: 1,
MaxValue: 10

random_ne
gative_sa
mpling_rate

IntegerParameterRanges MinValue: 0,
MaxValue: 10

Use Built-in Algorithms 2937

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

shuffled_
negative_
sampling_rate

IntegerParameterRanges MinValue: 0,
MaxValue: 10

vector_dim IntegerParameterRanges MinValue: 8,
MaxValue: 256

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 1.0

IP Insights Data Formats

This section provides examples of the available input and output data formats used by the IP
Insights algorithm during training and inference.

Topics

• IP Insights Training Data Formats

• IP Insights Inference Data Formats

IP Insights Training Data Formats

The following are the available data input formats for the IP Insights algorithm. Amazon
SageMaker built-in algorithms adhere to the common input training format described in Common
Data Formats for Training. However, the SageMaker IP Insights algorithm currently supports only
the CSV data input format.

IP Insights Training Data Input Formats

INPUT: CSV

The CSV file must have two columns. The first column is an opaque string that corresponds to an
entity's unique identifier. The second column is the IPv4 address of the entity's access event in
decimal-dot notation.

content-type: text/csv

Use Built-in Algorithms 2938

Amazon SageMaker Developer Guide

entity_id_1, 192.168.1.2
entity_id_2, 10.10.1.2

IP Insights Inference Data Formats

The following are the available input and output formats for the IP Insights algorithm. Amazon
SageMaker built-in algorithms adhere to the common input inference format described in Common
Data Formats for Inference. However, the SageMaker IP Insights algorithm does not currently
support RecordIO format.

IP Insights Input Request Formats

INPUT: CSV Format

The CSV file must have two columns. The first column is an opaque string that corresponds to an
entity's unique identifier. The second column is the IPv4 address of the entity's access event in
decimal-dot notation.

content-type: text/csv

entity_id_1, 192.168.1.2
entity_id_2, 10.10.1.2

INPUT: JSON Format

JSON data can be provided in different formats. IP Insights follows the common SageMaker
formats. For more information about inference formats, see Common Data Formats for Inference.

content-type: application/json

{
 "instances": [
 {"data": {"features": {"values": ["entity_id_1", "192.168.1.2"]}}},
 {"features": ["entity_id_2", "10.10.1.2"]}
]
}

INPUT: JSONLINES Format

The JSON Lines content type is useful for running batch transform jobs. For more information on
SageMaker inference formats, see Common Data Formats for Inference. For more information on
running batch transform jobs, see Use Batch Transform.

Use Built-in Algorithms 2939

Amazon SageMaker Developer Guide

content-type: application/jsonlines

{"data": {"features": {"values": ["entity_id_1", "192.168.1.2"]}}},
{"features": ["entity_id_2", "10.10.1.2"]}]

IP Insights Output Response Formats

OUTPUT: JSON Response Format

The default output of the SageMaker IP Insights algorithm is the dot_product between the input
entity and IP address. The dot_product signifies how compatible the model considers the entity
and IP address. The dot_product is unbounded. To make predictions about whether an event is
anomalous, you need to set a threshold based on your defined distribution. For information about
how to use the dot_product for anomaly detection, see the An Introduction to the SageMakerIP
Insights Algorithm.

accept: application/json

{
 "predictions": [
 {"dot_product": 0.0},
 {"dot_product": 2.0}
]
}

Advanced users can access the model's learned entity and IP embeddings by providing the
additional content-type parameter verbose=True to the Accept heading. You can use the
entity_embedding and ip_embedding for debugging, visualizing, and understanding the
model. Additionally, you can use these embeddings in other machine learning techniques, such as
classification or clustering.

accept: application/json;verbose=True

{
 "predictions": [
 {
 "dot_product": 0.0,
 "entity_embedding": [1.0, 0.0, 0.0],
 "ip_embedding": [0.0, 1.0, 0.0]
 },

Use Built-in Algorithms 2940

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/ipinsights_login/ipinsights-tutorial.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/ipinsights_login/ipinsights-tutorial.html

Amazon SageMaker Developer Guide

 {
 "dot_product": 2.0,
 "entity_embedding": [1.0, 0.0, 1.0],
 "ip_embedding": [1.0, 0.0, 1.0]
 }
]
}

OUTPUT: JSONLINES Response Format

accept: application/jsonlines

{"dot_product": 0.0}
{"dot_product": 2.0}

accept: application/jsonlines; verbose=True

{"dot_product": 0.0, "entity_embedding": [1.0, 0.0, 0.0], "ip_embedding": [0.0, 1.0,
 0.0]}
{"dot_product": 2.0, "entity_embedding": [1.0, 0.0, 1.0], "ip_embedding": [1.0, 0.0,
 1.0]}

K-Means Algorithm

K-means is an unsupervised learning algorithm. It attempts to find discrete groupings within data,
where members of a group are as similar as possible to one another and as different as possible
from members of other groups. You define the attributes that you want the algorithm to use to
determine similarity.

Amazon SageMaker uses a modified version of the web-scale k-means clustering algorithm.
Compared with the original version of the algorithm, the version used by Amazon SageMaker is
more accurate. Like the original algorithm, it scales to massive datasets and delivers improvements
in training time. To do this, the version used by Amazon SageMaker streams mini-batches (small,
random subsets) of the training data. For more information about mini-batch k-means, see Web-
scale k-means Clustering.

The k-means algorithm expects tabular data, where rows represent the observations that you want
to cluster, and the columns represent attributes of the observations. The n attributes in each row
represent a point in n-dimensional space. The Euclidean distance between these points represents
the similarity of the corresponding observations. The algorithm groups observations with similar

Use Built-in Algorithms 2941

https://citeseerx.ist.psu.edu/document?repid=rep1type=pdf&doi=b452a856a3e3d4d37b1de837996aa6813bedfdcf
https://citeseerx.ist.psu.edu/document?repid=rep1type=pdf&doi=b452a856a3e3d4d37b1de837996aa6813bedfdcf

Amazon SageMaker Developer Guide

attribute values (the points corresponding to these observations are closer together). For more
information about how k-means works in Amazon SageMaker, see How K-Means Clustering Works.

Topics

• Input/Output Interface for the K-Means Algorithm

• EC2 Instance Recommendation for the K-Means Algorithm

• K-Means Sample Notebooks

• How K-Means Clustering Works

• K-Means Hyperparameters

• Tune a K-Means Model

• K-Means Response Formats

Input/Output Interface for the K-Means Algorithm

For training, the k-means algorithm expects data to be provided in the train channel
(recommended S3DataDistributionType=ShardedByS3Key), with an optional test channel
(recommended S3DataDistributionType=FullyReplicated) to score the data on. Both
recordIO-wrapped-protobuf and CSV formats are supported for training. You can use either
File mode or Pipe mode to train models on data that is formatted as recordIO-wrapped-
protobuf or as CSV.

For inference, text/csv, application/json, and application/x-recordio-protobuf are
supported. k-means returns a closest_cluster label and the distance_to_cluster for each
observation.

For more information on input and output file formats, see K-Means Response Formats for
inference and the K-Means Sample Notebooks. The k-means algorithm does not support multiple
instance learning, in which the training set consists of labeled “bags”, each of which is a collection
of unlabeled instances.

EC2 Instance Recommendation for the K-Means Algorithm

We recommend training k-means on CPU instances. You can train on GPU instances, but should
limit GPU training to single-GPU instances (such as ml.g4dn.xlarge) because only one GPU is used
per instance. The k-means algorithm supports P2, P3, G4dn, and G5 instances for training and
inference.

Use Built-in Algorithms 2942

Amazon SageMaker Developer Guide

K-Means Sample Notebooks

For a sample notebook that uses the SageMaker K-means algorithm to segment the population
of counties in the United States by attributes identified using principle component analysis, see
Analyze US census data for population segmentation using Amazon SageMaker. For instructions
how to create and access Jupyter notebook instances that you can use to run the example in
SageMaker, see Amazon SageMaker Notebook Instances. Once you have created a notebook
instance and opened it, select the SageMaker Examples tab to see a list of all the SageMaker
samples. To open a notebook, click on its Use tab and select Create copy.

How K-Means Clustering Works

K-means is an algorithm that trains a model that groups similar objects together. The k-means
algorithm accomplishes this by mapping each observation in the input dataset to a point in the
n-dimensional space (where n is the number of attributes of the observation). For example, your
dataset might contain observations of temperature and humidity in a particular location, which are
mapped to points (t, h) in 2-dimensional space.

Note

Clustering algorithms are unsupervised. In unsupervised learning, labels that might be
associated with the objects in the training dataset aren't used. For more information, see
Unsupervised learning.

In k-means clustering, each cluster has a center. During model training, the k-means algorithm uses
the distance of the point that corresponds to each observation in the dataset to the cluster centers
as the basis for clustering. You choose the number of clusters (k) to create.

For example, suppose that you want to create a model to recognize handwritten digits and you
choose the MNIST dataset for training. The dataset provides thousands of images of handwritten
digits (0 through 9). In this example, you might choose to create 10 clusters, one for each digit
(0, 1, …, 9). As part of model training, the k-means algorithm groups the input images into 10
clusters.

Each image in the MNIST dataset is a 28x28-pixel image, with a total of 784 pixels. Each image
corresponds to a point in a 784-dimensional space, similar to a point in a 2-dimensional space (x,y).
To find a cluster to which a point belongs, the k-means algorithm finds the distance of that point

Use Built-in Algorithms 2943

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_applying_machine_learning/US-census_population_segmentation_PCA_Kmeans/sagemaker-countycensusclustering.html

Amazon SageMaker Developer Guide

from all of the cluster centers. It then chooses the cluster with the closest center as the cluster to
which the image belongs.

Note

Amazon SageMaker uses a customized version of the algorithm where, instead of
specifying that the algorithm create k clusters, you might choose to improve model
accuracy by specifying extra cluster centers (K = k*x). However, the algorithm ultimately
reduces these to k clusters.

In SageMaker, you specify the number of clusters when creating a training job. For more
information, see CreateTrainingJob. In the request body, you add the HyperParameters
string map to specify the k and extra_center_factor strings.

The following is a summary of how k-means works for model training in SageMaker:

1. It determines the initial K cluster centers.

Note

In the following topics, K clusters refer to k * x, where you specify k and x when creating
a model training job.

2. It iterates over input training data and recalculates cluster centers.

3. It reduces resulting clusters to k (if the data scientist specified the creation of k*x clusters in the
request).

The following sections also explain some of the parameters that a data scientist might specify to
configure a model training job as part of the HyperParameters string map.

Topics

• Step 1: Determine the Initial Cluster Centers

• Step 2: Iterate over the Training Dataset and Calculate Cluster Centers

• Step 3: Reduce the Clusters from K to k

Use Built-in Algorithms 2944

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

Step 1: Determine the Initial Cluster Centers

When using k-means in SageMaker, the initial cluster centers are chosen from the observations in
a small, randomly sampled batch. Choose one of the following strategies to determine how these
initial cluster centers are selected:

• The random approach—Randomly choose K observations in your input dataset as cluster centers.
For example, you might choose a cluster center that points to the 784-dimensional space that
corresponds to any 10 images in the MNIST training dataset.

• The k-means++ approach, which works as follows:

1. Start with one cluster and determine its center. You randomly select an observation from your
training dataset and use the point corresponding to the observation as the cluster center. For
example, in the MNIST dataset, randomly choose a handwritten digit image. Then choose the
point in the 784-dimensional space that corresponds to the image as your cluster center. This
is cluster center 1.

2. Determine the center for cluster 2. From the remaining observations in the training dataset,
pick an observation at random. Choose one that is different than the one you previously
selected. This observation corresponds to a point that is far away from cluster center 1. Using
the MNIST dataset as an example, you do the following:

• For each of the remaining images, find the distance of the corresponding point from cluster
center 1. Square the distance and assign a probability that is proportional to the square of
the distance. That way, an image that is different from the one that you previously selected
has a higher probability of getting selected as cluster center 2.

• Choose one of the images randomly, based on probabilities assigned in the previous step.
The point that corresponds to the image is cluster center 2.

3. Repeat Step 2 to find cluster center 3. This time, find the distances of the remaining images
from cluster center 2.

4. Repeat the process until you have the K cluster centers.

To train a model in SageMaker, you create a training job. In the request, you provide configuration
information by specifying the following HyperParameters string maps:

• To specify the number of clusters to create, add the k string.

• For greater accuracy, add the optional extra_center_factor string.

Use Built-in Algorithms 2945

Amazon SageMaker Developer Guide

• To specify the strategy that you want to use to determine the initial cluster centers, add the
init_method string and set its value to random or k-means++.

For more information about the SageMaker k-means estimator, see K-means in the Amazon
SageMaker Python SDK documentation.

You now have an initial set of cluster centers.

Step 2: Iterate over the Training Dataset and Calculate Cluster Centers

The cluster centers that you created in the preceding step are mostly random, with some
consideration for the training dataset. In this step, you use the training dataset to move these
centers toward the true cluster centers. The algorithm iterates over the training dataset, and
recalculates the K cluster centers.

1. Read a mini-batch of observations (a small, randomly chosen subset of all records) from the
training dataset and do the following.

Note

When creating a model training job, you specify the batch size in the
mini_batch_size string in the HyperParameters string map.

a. Assign all of the observations in the mini-batch to one of the clusters with the closest
cluster center.

b. Calculate the number of observations assigned to each cluster. Then, calculate the
proportion of new points assigned per cluster.

For example, consider the following clusters:

Cluster c1 = 100 previously assigned points. You added 25 points from the mini-batch in
this step.

Cluster c2 = 150 previously assigned points. You added 40 points from the mini-batch in
this step.

Cluster c3 = 450 previously assigned points. You added 5 points from the mini-batch in
this step.

Use Built-in Algorithms 2946

https://sagemaker.readthedocs.io/en/stable/algorithms/unsupervised/kmeans.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Calculate the proportion of new points assigned to each of clusters as follows:

p1 = proportion of points assigned to c1 = 25/(100+25)
p2 = proportion of points assigned to c2 = 40/(150+40)
p3 = proportion of points assigned to c3 = 5/(450+5)

c. Compute the center of the new points added to each cluster:

d1 = center of the new points added to cluster 1
d2 = center of the new points added to cluster 2
d3 = center of the new points added to cluster 3

d. Compute the weighted average to find the updated cluster centers as follows:

Center of cluster 1 = ((1 - p1) * center of cluster 1) + (p1 * d1)
Center of cluster 2 = ((1 - p2) * center of cluster 2) + (p2 * d2)
Center of cluster 3 = ((1 - p3) * center of cluster 3) + (p3 * d3)

2. Read the next mini-batch, and repeat Step 1 to recalculate the cluster centers.

3. For more information about mini-batch k-means, see Web-scale k-means Clustering).

Step 3: Reduce the Clusters from K to k

If the algorithm created K clusters—(K = k*x) where x is greater than 1—then it reduces the K
clusters to k clusters. (For more information, see extra_center_factor in the preceding
discussion.) It does this by applying Lloyd's method with kmeans++ initialization to the K cluster
centers. For more information about Lloyd's method, see k-means clustering.

K-Means Hyperparameters

In the CreateTrainingJob request, you specify the training algorithm that you want to use. You
can also specify algorithm-specific hyperparameters as string-to-string maps. The following table
lists the hyperparameters for the k-means training algorithm provided by Amazon SageMaker. For
more information about how k-means clustering works, see How K-Means Clustering Works.

Parameter Name Description

feature_dim The number of features in the input data.

Required

Use Built-in Algorithms 2947

https://citeseerx.ist.psu.edu/document?repid=rep1type=pdf&doi=b452a856a3e3d4d37b1de837996aa6813bedfdcf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: Positive integer

k The number of required clusters.

Required

Valid values: Positive integer

epochs The number of passes done over the training data.

Optional

Valid values: Positive integer

Default value: 1

eval_metrics A JSON list of metric types used to report a score for the
model. Allowed values are msd for Means Square Deviation and
ssd for Sum of Square Distance. If test data is provided, the
score is reported for each of the metrics requested.

Optional

Valid values: Either [\"msd\"] or [\"ssd\"] or [\"msd
\",\"ssd\"] .

Default value: [\"msd\"]

extra_center_factor The algorithm creates K centers = num_clusters *
extra_center_factor as it runs and reduces the number
of centers from K to k when finalizing the model.

Optional

Valid values: Either a positive integer or auto.

Default value: auto

Use Built-in Algorithms 2948

Amazon SageMaker Developer Guide

Parameter Name Description

half_life_time_size Used to determine the weight given to an observation when
computing a cluster mean. This weight decays exponentially as
more points are observed. When a point is first observed, it is
assigned a weight of 1 when computing the cluster mean. The
decay constant for the exponential decay function is chosen
so that after observing half_life_time_size points, its
weight is 1/2. If set to 0, there is no decay.

Optional

Valid values: Non-negative integer

Default value: 0

init_method Method by which the algorithm chooses the initial cluster
centers. The standard k-means approach chooses them at
random. An alternative k-means++ method chooses the first
cluster center at random. Then it spreads out the position of
the remaining initial clusters by weighting the selection of
centers with a probability distribution that is proportional to
the square of the distance of the remaining data points from
existing centers.

Optional

Valid values: Either random or kmeans++.

Default value: random

local_lloyd_init_m
ethod

The initialization method for Lloyd's expectation-maximization
(EM) procedure used to build the final model containing k
centers.

Optional

Valid values: Either random or kmeans++.

Default value: kmeans++

Use Built-in Algorithms 2949

Amazon SageMaker Developer Guide

Parameter Name Description

local_lloyd_max_iter The maximum number of iterations for Lloyd's expectation-
maximization (EM) procedure used to build the final model
containing k centers.

Optional

Valid values: Positive integer

Default value: 300

local_lloyd_num_tr
ials

The number of times the Lloyd's expectation-maximization
(EM) procedure with the least loss is run when building the
final model containing k centers.

Optional

Valid values: Either a positive integer or auto.

Default value: auto

local_lloyd_tol The tolerance for change in loss for early stopping of Lloyd's
expectation-maximization (EM) procedure used to build the
final model containing k centers.

Optional

Valid values: Float. Range in [0, 1].

Default value: 0.0001

mini_batch_size The number of observations per mini-batch for the data
iterator.

Optional

Valid values: Positive integer

Default value: 5000

Use Built-in Algorithms 2950

Amazon SageMaker Developer Guide

Tune a K-Means Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

The Amazon SageMaker k-means algorithm is an unsupervised algorithm that groups data into
clusters whose members are as similar as possible. Because it is unsupervised, it doesn't use a
validation dataset that hyperparameters can optimize against. But it does take a test dataset and
emits metrics that depend on the squared distance between the data points and the final cluster
centroids at the end of each training run. To find the model that reports the tightest clusters on the
test dataset, you can use a hyperparameter tuning job. The clusters optimize the similarity of their
members.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the K-Means Algorithm

The k-means algorithm computes the following metrics during training. When tuning a model,
choose one of these metrics as the objective metric.

Metric Name Description Optimization
Direction

test:msd Mean squared distances between each record
in the test set and the closest center of the
model.

Minimize

test:ssd Sum of the squared distances between each
record in the test set and the closest center of
the model.

Minimize

Tunable K-Means Hyperparameters

Tune the Amazon SageMaker k-means model with the following hyperparameters.
The hyperparameters that have the greatest impact on k-means objective metrics are:

Use Built-in Algorithms 2951

Amazon SageMaker Developer Guide

mini_batch_size, extra_center_factor, and init_method. Tuning the hyperparameter
epochs generally results in minor improvements.

Parameter Name Parameter Type Recommended
Ranges

epochs IntegerParameterRanges MinValue: 1,
MaxValue:10

extra_cen
ter_factor

IntegerParameterRanges MinValue: 4,
MaxValue:10

init_method CategoricalParameterRanges ['kmeans++',
'random']

mini_batch_size IntegerParameterRanges MinValue: 3000,
MaxValue:15000

K-Means Response Formats

All SageMaker built-in algorithms adhere to the common input inference format described in
Common Data Formats - Inference. This topic contains a list of the available output formats for the
SageMaker k-means algorithm.

JSON Response Format

{
 "predictions": [
 {
 "closest_cluster": 1.0,
 "distance_to_cluster": 3.0,
 },
 {
 "closest_cluster": 2.0,
 "distance_to_cluster": 5.0,
 },

]
}

Use Built-in Algorithms 2952

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide

JSONLINES Response Format

{"closest_cluster": 1.0, "distance_to_cluster": 3.0}
{"closest_cluster": 2.0, "distance_to_cluster": 5.0}

RECORDIO Response Format

[
 Record = {
 features = {},
 label = {
 'closest_cluster': {
 keys: [],
 values: [1.0, 2.0] # float32
 },
 'distance_to_cluster': {
 keys: [],
 values: [3.0, 5.0] # float32
 },
 }
 }
]

CSV Response Format

The first value in each line corresponds to closest_cluster.

The second value in each line corresponds to distance_to_cluster.

1.0,3.0
2.0,5.0

Principal Component Analysis (PCA) Algorithm

PCA is an unsupervised machine learning algorithm that attempts to reduce the dimensionality
(number of features) within a dataset while still retaining as much information as possible. This
is done by finding a new set of features called components, which are composites of the original
features that are uncorrelated with one another. They are also constrained so that the first
component accounts for the largest possible variability in the data, the second component the
second most variability, and so on.

Use Built-in Algorithms 2953

Amazon SageMaker Developer Guide

In Amazon SageMaker, PCA operates in two modes, depending on the scenario:

• regular: For datasets with sparse data and a moderate number of observations and features.

• randomized: For datasets with both a large number of observations and features. This mode
uses an approximation algorithm.

PCA uses tabular data.

The rows represent observations you want to embed in a lower dimensional space. The columns
represent features that you want to find a reduced approximation for. The algorithm calculates the
covariance matrix (or an approximation thereof in a distributed manner), and then performs the
singular value decomposition on this summary to produce the principal components.

Topics

• Input/Output Interface for the PCA Algorithm

• EC2 Instance Recommendation for the PCA Algorithm

• PCA Sample Notebooks

• How PCA Works

• PCA Hyperparameters

• PCA Response Formats

Input/Output Interface for the PCA Algorithm

For training, PCA expects data provided in the train channel, and optionally supports a dataset
passed to the test dataset, which is scored by the final algorithm. Both recordIO-wrapped-
protobuf and CSV formats are supported for training. You can use either File mode or Pipe mode
to train models on data that is formatted as recordIO-wrapped-protobuf or as CSV.

For inference, PCA supports text/csv, application/json, and application/x-recordio-
protobuf. Results are returned in either application/json or application/x-recordio-
protobuf format with a vector of "projections."

For more information on input and output file formats, see PCA Response Formats for inference
and the PCA Sample Notebooks.

Use Built-in Algorithms 2954

Amazon SageMaker Developer Guide

EC2 Instance Recommendation for the PCA Algorithm

PCA supports CPU and GPU instances for training and inference. Which instance type is most
performant depends heavily on the specifics of the input data. For GPU instances, PCA supports P2,
P3, G4dn, and G5.

PCA Sample Notebooks

For a sample notebook that shows how to use the SageMaker Principal Component Analysis
algorithm to analyze the images of handwritten digits from zero to nine in the MNIST dataset, see
An Introduction to PCA with MNIST. For instructions how to create and access Jupyter notebook
instances that you can use to run the example in SageMaker, see Amazon SageMaker Notebook
Instances. Once you have created a notebook instance and opened it, select the SageMaker
Examples tab to see a list of all the SageMaker samples. The topic modeling example notebooks
using the NTM algorithms are located in the Introduction to Amazon algorithms section. To open
a notebook, click on its Use tab and select Create copy.

How PCA Works

Principal Component Analysis (PCA) is a learning algorithm that reduces the dimensionality
(number of features) within a dataset while still retaining as much information as possible.

PCA reduces dimensionality by finding a new set of features called components, which are
composites of the original features, but are uncorrelated with one another. The first component
accounts for the largest possible variability in the data, the second component the second most
variability, and so on.

It is an unsupervised dimensionality reduction algorithm. In unsupervised learning, labels that
might be associated with the objects in the training dataset aren't used.

Given the input of a matrix with rows

each of dimension 1 * d, the data is partitioned into mini-batches of rows and distributed among
the training nodes (workers). Each worker then computes a summary of its data. The summaries of
the different workers are then unified into a single solution at the end of the computation.

Modes

The Amazon SageMaker PCA algorithm uses either of two modes to calculate these summaries,
depending on the situation:

Use Built-in Algorithms 2955

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/pca_mnist/pca_mnist.html

Amazon SageMaker Developer Guide

• regular: for datasets with sparse data and a moderate number of observations and features.

• randomized: for datasets with both a large number of observations and features. This mode
uses an approximation algorithm.

As the algorithm's last step, it performs the singular value decomposition on the unified solution,
from which the principal components are then derived.

Mode 1: Regular

The workers jointly compute both

and

.

Note

Because

are 1 * d row vectors,

is a matrix (not a scalar). Using row vectors within the code allows us to obtain efficient
caching.

The covariance matrix is computed as

, and its top num_components singular vectors form the model.

Note

If subtract_mean is False, we avoid computing and subtracting

.

Use Built-in Algorithms 2956

Amazon SageMaker Developer Guide

Use this algorithm when the dimension d of the vectors is small enough so that

can fit in memory.

Mode 2: Randomized

When the number of features in the input dataset is large, we use a
method to approximate the covariance metric. For every mini-batch

of dimension b * d, we randomly initialize a (num_components + extra_components)
* b matrix that we multiply by each mini-batch, to create a (num_components +
extra_components) * d matrix. The sum of these matrices is computed by the workers, and the
servers perform SVD on the final (num_components + extra_components) * d matrix. The
top right num_components singular vectors of it are the approximation of the top singular vectors
of the input matrix.

Let

= num_components + extra_components. Given a mini-batch

of dimension b * d, the worker draws a random matrix

of dimension

. Depending on whether the environment uses a GPU or CPU and the
dimension size, the matrix is either a random sign matrix where each entry
is +-1 or a FJLT (fast Johnson Lindenstrauss transform; for information,
see FJLT Transforms and the follow-up papers). The worker then computes

and maintains

. The worker also maintains

, the sum of columns of

(T being the total number of mini-batches), and s, the sum of all input rows. After processing the
entire shard of data, the worker sends the server B, h, s, and n (the number of input rows).

Use Built-in Algorithms 2957

https://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf

Amazon SageMaker Developer Guide

Denote the different inputs to the server as

The server computes B, h, s, n the sums of the respective inputs. It then computes

, and finds its singular value decomposition. The top-right singular vectors and singular values of C
are used as the approximate solution to the problem.

PCA Hyperparameters

In the CreateTrainingJob request, you specify the training algorithm. You can also specify
algorithm-specific HyperParameters as string-to-string maps. The following table lists the
hyperparameters for the PCA training algorithm provided by Amazon SageMaker. For more
information about how PCA works, see How PCA Works.

Parameter Name Description

feature_dim Input dimension.

Required

Valid values: positive integer

mini_batch_size Number of rows in a mini-batch.

Required

Valid values: positive integer

num_components The number of principal components to compute.

Required

Valid values: positive integer

algorithm_mode Mode for computing the principal components.

Optional

Valid values: regular or randomized

Default value: regular

Use Built-in Algorithms 2958

Amazon SageMaker Developer Guide

Parameter Name Description

extra_components As the value increases, the solution becomes more accurate
but the runtime and memory consumption increase linearly.
The default, -1, means the maximum of 10 and num_compo
nents . Valid for randomized mode only.

Optional

Valid values: Non-negative integer or -1

Default value: -1

subtract_mean Indicates whether the data should be unbiased both during
training and at inference.

Optional

Valid values: One of true or false

Default value: true

PCA Response Formats

All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. This topic contains a list of the available output formats for
the SageMaker PCA algorithm.

JSON Response Format

Accept—application/json

{
 "projections": [
 {
 "projection": [1.0, 2.0, 3.0, 4.0, 5.0]
 },
 {
 "projection": [6.0, 7.0, 8.0, 9.0, 0.0]
 },

Use Built-in Algorithms 2959

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide

]
}

JSONLINES Response Format

Accept—application/jsonlines

{ "projection": [1.0, 2.0, 3.0, 4.0, 5.0] }
{ "projection": [6.0, 7.0, 8.0, 9.0, 0.0] }

RECORDIO Response Format

Accept—application/x-recordio-protobuf

[
 Record = {
 features = {},
 label = {
 'projection': {
 keys: [],
 values: [1.0, 2.0, 3.0, 4.0, 5.0]
 }
 }
 },
 Record = {
 features = {},
 label = {
 'projection': {
 keys: [],
 values: [1.0, 2.0, 3.0, 4.0, 5.0]
 }
 }
 }
]

Random Cut Forest (RCF) Algorithm

Amazon SageMaker Random Cut Forest (RCF) is an unsupervised algorithm for detecting
anomalous data points within a data set. These are observations which diverge from otherwise
well-structured or patterned data. Anomalies can manifest as unexpected spikes in time series
data, breaks in periodicity, or unclassifiable data points. They are easy to describe in that, when

Use Built-in Algorithms 2960

Amazon SageMaker Developer Guide

viewed in a plot, they are often easily distinguishable from the "regular" data. Including these
anomalies in a data set can drastically increase the complexity of a machine learning task since the
"regular" data can often be described with a simple model.

With each data point, RCF associates an anomaly score. Low score values indicate that the data
point is considered "normal." High values indicate the presence of an anomaly in the data. The
definitions of "low" and "high" depend on the application but common practice suggests that
scores beyond three standard deviations from the mean score are considered anomalous.

While there are many applications of anomaly detection algorithms to one-dimensional time series
data such as traffic volume analysis or sound volume spike detection, RCF is designed to work
with arbitrary-dimensional input. Amazon SageMaker RCF scales well with respect to number of
features, data set size, and number of instances.

Topics

• Input/Output Interface for the RCF Algorithm

• Instance Recommendations for the RCF Algorithm

• RCF Sample Notebooks

• How RCF Works

• RCF Hyperparameters

• Tune an RCF Model

• RCF Response Formats

Input/Output Interface for the RCF Algorithm

Amazon SageMaker Random Cut Forest supports the train and test data channels. The optional
test channel is used to compute accuracy, precision, recall, and F1-score metrics on labeled data.
Train and test data content types can be either application/x-recordio-protobuf or text/
csv formats. For the test data, when using text/csv format, the content must be specified as
text/csv;label_size=1 where the first column of each row represents the anomaly label: "1" for an
anomalous data point and "0" for a normal data point. You can use either File mode or Pipe mode
to train RCF models on data that is formatted as recordIO-wrapped-protobuf or as CSV

The train channel only supports S3DataDistributionType=ShardedByS3Key and the test
channel only supports S3DataDistributionType=FullyReplicated. The following example
specifies the S3 distribution type for the train channel using the Amazon SageMaker Python SDK.

Use Built-in Algorithms 2961

https://sagemaker.readthedocs.io/en/stable/v2.html

Amazon SageMaker Developer Guide

Note

The sagemaker.inputs.s3_input method was renamed to
sagemaker.inputs.TrainingInput in SageMaker Python SDK v2.

 import sagemaker

 # specify Random Cut Forest training job information and hyperparameters
 rcf = sagemaker.estimator.Estimator(...)

 # explicitly specify "ShardedByS3Key" distribution type
 train_data = sagemaker.inputs.TrainingInput(
 s3_data=s3_training_data_location,
 content_type='text/csv;label_size=0',
 distribution='ShardedByS3Key')

 # run the training job on input data stored in S3
 rcf.fit({'train': train_data})

To avoid common errors around execution roles, ensure that you have the execution roles required,
AmazonSageMakerFullAccess and AmazonEC2ContainerRegistryFullAccess. To avoid
common errors around your image not existing or its permissions being incorrect, ensure that your
ECR image is not larger then the allocated disk space on the training instance. To avoid this, run
your training job on an instance that has sufficient disk space. In addition, if your ECR image is from
a different AWS account's Elastic Container Service (ECS) repository, and you do not set repository
permissions to grant access, this will result in an error. See the ECR repository permissions for
more information on setting a repository policy statement.

See the S3DataSource for more information on customizing the S3 data source attributes. Finally,
in order to take advantage of multi-instance training the training data must be partitioned into at
least as many files as instances.

For inference, RCF supports application/x-recordio-protobuf, text/csv and
application/json input data content types. See the Common Data Formats for Built-in
Algorithms documentation for more information. RCF inference returns application/x-
recordio-protobuf or application/json formatted output. Each record in these output data
contains the corresponding anomaly scores for each input data point. See Common Data Formats--
Inference for more information.

Use Built-in Algorithms 2962

https://sagemaker.readthedocs.io/en/stable/v2.html#s3-input
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide

For more information on input and output file formats, see RCF Response Formats for inference
and the RCF Sample Notebooks.

Instance Recommendations for the RCF Algorithm

For training, we recommend the ml.m4, ml.c4, and ml.c5 instance families. For inference we
recommend using a ml.c5.xl instance type in particular, for maximum performance as well as
minimized cost per hour of usage. Although the algorithm could technically run on GPU instance
types it does not take advantage of GPU hardware.

RCF Sample Notebooks

For an example of how to train an RCF model and perform inferences with it, see the An
Introduction to SageMaker Random Cut Forests notebook. For instructions how to create and
access Jupyter notebook instances that you can use to run the example in SageMaker, see Amazon
SageMaker Notebook Instances. Once you have created a notebook instance and opened it, select
the SageMaker Examples tab to see a list of all the SageMaker samples. To open a notebook, click
on its Use tab and select Create copy.

How RCF Works

Amazon SageMaker Random Cut Forest (RCF) is an unsupervised algorithm for detecting
anomalous data points within a dataset. These are observations which diverge from otherwise
well-structured or patterned data. Anomalies can manifest as unexpected spikes in time series
data, breaks in periodicity, or unclassifiable data points. They are easy to describe in that, when
viewed in a plot, they are often easily distinguishable from the "regular" data. Including these
anomalies in a dataset can drastically increase the complexity of a machine learning task since the
"regular" data can often be described with a simple model.

The main idea behind the RCF algorithm is to create a forest of trees where each tree is obtained
using a partition of a sample of the training data. For example, a random sample of the input
data is first determined. The random sample is then partitioned according to the number of trees
in the forest. Each tree is given such a partition and organizes that subset of points into a k-d
tree. The anomaly score assigned to a data point by the tree is defined as the expected change in
complexity of the tree as a result adding that point to the tree; which, in approximation, is inversely
proportional to the resulting depth of the point in the tree. The random cut forest assigns an
anomaly score by computing the average score from each constituent tree and scaling the result
with respect to the sample size. The RCF algorithm is based on the one described in reference [1].

Use Built-in Algorithms 2963

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.html

Amazon SageMaker Developer Guide

Sample Data Randomly

The first step in the RCF algorithm is to obtain a random sample of
the training data. In particular, suppose we want a sample of size

from

total data points. If the training data is small enough, the entire dataset can be used, and we could
randomly draw

elements from this set. However, frequently the training data is too large to fit all at once, and this
approach isn't feasible. Instead, we use a technique called reservoir sampling.

Reservoir sampling is an algorithm for efficiently drawing random samples from a dataset

where the elements in the dataset can only be observed one at a
time or in batches. In fact, reservoir sampling works even when

is not known a priori. If only one sample is requested, such as when
,

the algorithm is like this:

Algorithm: Reservoir Sampling

• Input: dataset or data stream

• Initialize the random sample

• For each observed sample
:

• Pick a uniform random number

• If

• Set

Use Built-in Algorithms 2964

https://en.wikipedia.org/wiki/Reservoir_sampling

Amazon SageMaker Developer Guide

• Return

This algorithm selects a random sample such that

for all
.

When

the algorithm is more complicated. Additionally, a distinction must be made between random
sampling that is with and without replacement. RCF performs an augmented reservoir sampling
without replacement on the training data based on the algorithms described in [2].

Train a RCF Model and Produce Inferences

The next step in RCF is to construct a random cut forest using the random sample of data. First, the
sample is partitioned into a number of equal-sized partitions equal to the number of trees in the
forest. Then, each partition is sent to an individual tree. The tree recursively organizes its partition
into a binary tree by partitioning the data domain into bounding boxes.

This procedure is best illustrated with an example. Suppose a tree is given the following two-
dimensional dataset. The corresponding tree is initialized to the root node:

A two-dimensional dataset where the majority of data lies in a cluster (blue) except for one
anomalous data point (orange). The tree is initialized with a root node.

Use Built-in Algorithms 2965

Amazon SageMaker Developer Guide

The RCF algorithm organizes these data in a tree by first computing a bounding box of the data,
selecting a random dimension (giving more weight to dimensions with higher "variance"), and
then randomly determining the position of a hyperplane "cut" through that dimension. The two
resulting subspaces define their own sub tree. In this example, the cut happens to separate a lone
point from the remainder of the sample. The first level of the resulting binary tree consists of two
nodes, one which will consist of the subtree of points to the left of the initial cut and the other
representing the single point on the right.

A random cut partitioning the two-dimensional dataset. An anomalous data point is more likely to
lie isolated in a bounding box at a smaller tree depth than other points.

Bounding boxes are then computed for the left and right halves of the data and the process is
repeated until every leaf of the tree represents a single data point from the sample. Note that if
the lone point is sufficiently far away then it is more likely that a random cut would result in point
isolation. This observation provides the intuition that tree depth is, loosely speaking, inversely
proportional to the anomaly score.

When performing inference using a trained RCF model the final anomaly score is reported as the
average across scores reported by each tree. Note that it is often the case that the new data point
does not already reside in the tree. To determine the score associated with the new point the data
point is inserted into the given tree and the tree is efficiently (and temporarily) reassembled in a
manner equivalent to the training process described above. That is, the resulting tree is as if the
input data point were a member of the sample used to construct the tree in the first place. The
reported score is inversely proportional to the depth of the input point within the tree.

Use Built-in Algorithms 2966

Amazon SageMaker Developer Guide

Choose Hyperparameters

The primary hyperparameters used to tune the RCF model are num_trees and
num_samples_per_tree. Increasing num_trees has the effect of reducing the noise observed in
anomaly scores since the final score is the average of the scores reported by each tree. While the
optimal value is application-dependent we recommend using 100 trees to begin with as a balance
between score noise and model complexity. Note that inference time is proportional to the number
of trees. Although training time is also affected it is dominated by the reservoir sampling algorithm
describe above.

The parameter num_samples_per_tree is related to the expected density of anomalies
in the dataset. In particular, num_samples_per_tree should be chosen such that 1/
num_samples_per_tree approximates the ratio of anomalous data to normal data. For example,
if 256 samples are used in each tree then we expect our data to contain anomalies 1/256 or
approximately 0.4% of the time. Again, an optimal value for this hyperparameter is dependent on
the application.

References

1. Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. "Robust random cut forest based
anomaly detection on streams." In International Conference on Machine Learning, pp. 2712-2721.
2016.

2. Byung-Hoon Park, George Ostrouchov, Nagiza F. Samatova, and Al Geist. "Reservoir-based
random sampling with replacement from data stream." In Proceedings of the 2004 SIAM
International Conference on Data Mining, pp. 492-496. Society for Industrial and Applied
Mathematics, 2004.

RCF Hyperparameters

In the CreateTrainingJob request, you specify the training algorithm. You can also specify
algorithm-specific hyperparameters as string-to-string maps. The following table lists the
hyperparameters for the Amazon SageMaker RCF algorithm. For more information, including
recommendations on how to choose hyperparameters, see How RCF Works.

Use Built-in Algorithms 2967

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

Parameter Name Description

feature_dim The number of features in the data set. (If you use the Random Cut
Forest estimator, this value is calculated for you and need not be
specified.)

Required

Valid values: Positive integer (min: 1, max: 10000)

eval_metrics A list of metrics used to score a labeled test data set. The following
metrics can be selected for output:

• accuracy - returns fraction of correct predictions.

• precision_recall_fscore - returns the positive and
negative precision, recall, and F1-scores.

Optional

Valid values: a list with possible values taken from accuracy or
precision_recall_fscore .

Default value: Both accuracy, precision_recall_fscore are
calculated.

num_sampl
es_per_tree

Number of random samples given to each tree from the training data
set.

Optional

Valid values: Positive integer (min: 1, max: 2048)

Default value: 256

num_trees Number of trees in the forest.

Optional

Valid values: Positive integer (min: 50, max: 1000)

Use Built-in Algorithms 2968

https://sagemaker.readthedocs.io/en/stable/algorithms/unsupervised/randomcutforest.html
https://sagemaker.readthedocs.io/en/stable/algorithms/unsupervised/randomcutforest.html

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: 100

Tune an RCF Model

Automatic model tuning, also known as hyperparameter tuning or hyperparameter optimization,
finds the best version of a model by running many jobs that test a range of hyperparameters on
your dataset. You choose the tunable hyperparameters, a range of values for each, and an objective
metric. You choose the objective metric from the metrics that the algorithm computes. Automatic
model tuning searches the hyperparameters chosen to find the combination of values that result in
the model that optimizes the objective metric.

The Amazon SageMaker RCF algorithm is an unsupervised anomaly-detection algorithm that
requires a labeled test dataset for hyperparameter optimization. RCF calculates anomaly scores
for test data points and then labels the data points as anomalous if their scores are beyond three
standard deviations from the mean score. This is known as the three-sigma limit heuristic. The F1-
score is based on the difference between calculated labels and actual labels. The hyperparameter
tuning job finds the model that maximizes that score. The success of hyperparameter optimization
depends on the applicability of the three-sigma limit heuristic to the test dataset.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the RCF Algorithm

The RCF algorithm computes the following metric during training. When tuning the model, choose
this metric as the objective metric.

Metric Name Description Optimization
Direction

test:f1 F1-score on the test dataset, based on the
difference between calculated labels and
actual labels.

Maximize

Tunable RCF Hyperparameters

You can tune a RCF model with the following hyperparameters.

Use Built-in Algorithms 2969

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

num_sampl
es_per_tree

IntegerParameterRanges MinValue: 1,
MaxValue:2048

num_trees IntegerParameterRanges MinValue: 50,
MaxValue:1000

RCF Response Formats

All Amazon SageMaker built-in algorithms adhere to the common input inference format described
in Common Data Formats - Inference. Note that SageMaker Random Cut Forest supports both
dense and sparse JSON and RecordIO formats. This topic contains a list of the available output
formats for the SageMaker RCF algorithm.

JSON Response Format

ACCEPT: application/json.

 {

 "scores": [

 {"score": 0.02},

 {"score": 0.25}

]

Use Built-in Algorithms 2970

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide

 }

JSONLINES Response Format

ACCEPT: application/jsonlines.

{"score": 0.02},
{"score": 0.25}

RECORDIO Response Format

ACCEPT: application/x-recordio-protobuf.

 [

 Record = {

 features = {},

 label = {

 'score': {

 keys: [],

 values: [0.25] # float32

 }

Use Built-in Algorithms 2971

Amazon SageMaker Developer Guide

 }

 },

 Record = {

 features = {},

 label = {

 'score': {

 keys: [],

 values: [0.23] # float32

 }

 }

 }

Use Built-in Algorithms 2972

Amazon SageMaker Developer Guide

]

Built-in SageMaker Algorithms for Computer Vision

SageMaker provides image processing algorithms that are used for image classification, object
detection, and computer vision.

• Image Classification - MXNet—uses example data with answers (referred to as a supervised
algorithm). Use this algorithm to classify images.

• Image Classification - TensorFlow—uses pretrained TensorFlow Hub models to fine-tune for
specific tasks (referred to as a supervised algorithm). Use this algorithm to classify images.

• Object Detection - MXNet—detects and classifies objects in images using a single deep neural
network. It is a supervised learning algorithm that takes images as input and identifies all
instances of objects within the image scene.

• Object Detection - TensorFlow—detects bounding boxes and object labels in an image. It
is a supervised learning algorithm that supports transfer learning with available pretrained
TensorFlow models.

• Semantic Segmentation Algorithm—provides a fine-grained, pixel-level approach to developing
computer vision applications.

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

Image
Classific
ation -
MXNet

train and
validation,
(optional
ly) train_lst
, validatio
n_lst, and
model

File or Pipe recordIO
or image
files (.jpg
or .png)

GPU Yes

Use Built-in Algorithms 2973

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

Image
Classific
ation -
TensorFlo
w

training
and
validation

File image files
(.jpg, .jpeg,
or .png)

CPU or
GPU

Yes (only
across
multiple
GPUs on
a single
instance)

Object
Detection

train and
validation,
(optional
ly)
train_ann
otation,
validatio
n_annotat
ion, and
model

File or Pipe recordIO
or image
files (.jpg
or .png)

GPU Yes

Object
Detection -
TensorFlo
w

training
and
validation

File image files
(.jpg, .jpeg,
or .png)

GPU Yes (only
across
multiple
GPUs on
a single
instance)

Use Built-in Algorithms 2974

Amazon SageMaker Developer Guide

Algorithm
name

Channel
name

Training
input
mode

File type Instance
class

Paralleli
zable

Semantic
Segmentat
ion

train and
validation,
train_ann
otation,
validatio
n_annotat
ion, and
(optional
ly)
label_map
and model

File or Pipe Image files GPU
(single
instance
only)

No

Image Classification - MXNet

The Amazon SageMaker image classification algorithm is a supervised learning algorithm that
supports multi-label classification. It takes an image as input and outputs one or more labels
assigned to that image. It uses a convolutional neural network that can be trained from scratch or
trained using transfer learning when a large number of training images are not available

The recommended input format for the Amazon SageMaker image classification algorithms is
Apache MXNet RecordIO. However, you can also use raw images in .jpg or .png format. Refer to
this discussion for a broad overview of efficient data preparation and loading for machine learning
systems.

Note

To maintain better interoperability with existing deep learning frameworks, this differs
from the protobuf data formats commonly used by other Amazon SageMaker algorithms.

For more information on convolutional networks, see:

• Deep residual learning for image recognition Kaiming He, et al., 2016 IEEE Conference on
Computer Vision and Pattern Recognition

Use Built-in Algorithms 2975

https://mxnet.apache.org/api/faq/recordio
https://mxnet.apache.org/api/architecture/note_data_loading
https://arxiv.org/abs/1512.03385

Amazon SageMaker Developer Guide

• ImageNet image database

• Image classification with Gluon-CV and MXNet

Topics

• Input/Output Interface for the Image Classification Algorithm

• EC2 Instance Recommendation for the Image Classification Algorithm

• Image Classification Sample Notebooks

• How Image Classification Works

• Image Classification Hyperparameters

• Tune an Image Classification Model

Input/Output Interface for the Image Classification Algorithm

The SageMaker Image Classification algorithm supports both RecordIO (application/x-
recordio) and image (image/png, image/jpeg, and application/x-image) content types
for training in file mode, and supports the RecordIO (application/x-recordio) content type
for training in pipe mode. However, you can also train in pipe mode using the image files (image/
png, image/jpeg, and application/x-image), without creating RecordIO files, by using the
augmented manifest format.

Distributed training is supported for file mode and pipe mode. When using the RecordIO content
type in pipe mode, you must set the S3DataDistributionType of the S3DataSource to
FullyReplicated. The algorithm supports a fully replicated model where your data is copied
onto each machine.

The algorithm supports image/png, image/jpeg, and application/x-image for inference.

Train with RecordIO Format

If you use the RecordIO format for training, specify both train and validation channels as
values for the InputDataConfig parameter of the CreateTrainingJob request. Specify one
RecordIO (.rec) file in the train channel and one RecordIO file in the validation channel. Set
the content type for both channels to application/x-recordio.

Use Built-in Algorithms 2976

http://www.image-net.org/
https://gluon-cv.mxnet.io/build/examples_classification/index.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

Train with Image Format

If you use the Image format for training, specify train, validation, train_lst,
and validation_lst channels as values for the InputDataConfig parameter of the
CreateTrainingJob request. Specify the individual image data (.jpg or .png files) for
the train and validation channels. Specify one .lst file in each of the train_lst and
validation_lst channels. Set the content type for all four channels to application/x-image.

Note

SageMaker reads the training and validation data separately from different channels, so
you must store the training and validation data in different folders.

A .lst file is a tab-separated file with three columns that contains a list of image files. The first
column specifies the image index, the second column specifies the class label index for the image,
and the third column specifies the relative path of the image file. The image index in the first
column must be unique across all of the images. The set of class label indices are numbered
successively and the numbering should start with 0. For example, 0 for the cat class, 1 for the dog
class, and so on for additional classes.

The following is an example of a .lst file:

5 1 your_image_directory/train_img_dog1.jpg
1000 0 your_image_directory/train_img_cat1.jpg
22 1 your_image_directory/train_img_dog2.jpg

For example, if your training images are stored in s3://<your_bucket>/train/class_dog,
s3://<your_bucket>/train/class_cat, and so on, specify the path for your train channel
as s3://<your_bucket>/train, which is the top-level directory for your data. In the .lst file,
specify the relative path for an individual file named train_image_dog1.jpg in the class_dog
class directory as class_dog/train_image_dog1.jpg. You can also store all your image files
under one subdirectory inside the train directory. In that case, use that subdirectory for the
relative path. For example, s3://<your_bucket>/train/your_image_directory.

Train with Augmented Manifest Image Format

The augmented manifest format enables you to do training in Pipe mode using image files without
needing to create RecordIO files. You need to specify both train and validation channels as values

Use Built-in Algorithms 2977

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

for the InputDataConfig parameter of the CreateTrainingJob request. While using the
format, an S3 manifest file needs to be generated that contains the list of images and their
corresponding annotations. The manifest file format should be in JSON Lines format in which each
line represents one sample. The images are specified using the 'source-ref' tag that points
to the S3 location of the image. The annotations are provided under the "AttributeNames"
parameter value as specified in the CreateTrainingJob request. It can also contain additional
metadata under the metadata tag, but these are ignored by the algorithm. In the following
example, the "AttributeNames" are contained in the list of image and annotation references
["source-ref", "class"]. The corresponding label value is "0" for the first image and “1”
for the second image:

{"source-ref":"s3://image/filename1.jpg", "class":"0"}
{"source-ref":"s3://image/filename2.jpg", "class":"1", "class-metadata": {"class-name":
 "cat", "type" : "groundtruth/image-classification"}}

The order of "AttributeNames" in the input files matters when training the ImageClassification
algorithm. It accepts piped data in a specific order, with image first, followed by label. So the
"AttributeNames" in this example are provided with "source-ref" first, followed by "class".
When using the ImageClassification algorithm with Augmented Manifest, the value of the
RecordWrapperType parameter must be "RecordIO".

Multi-label training is also supported by specifying a JSON array of values. The num_classes
hyperparameter must be set to match the total number of classes. There are two valid label
formats: multi-hot and class-id.

In the multi-hot format, each label is a multi-hot encoded vector of all classes, where each class
takes the value of 0 or 1. In the following example, there are three classes. The first image is
labeled with classes 0 and 2, while the second image is labeled with class 2 only:

{"image-ref": "s3://mybucket/sample01/image1.jpg", "class": "[1, 0, 1]"}
{"image-ref": "s3://mybucket/sample02/image2.jpg", "class": "[0, 0, 1]"}

In the class-id format, each label is a list of the class ids, from [0, num_classes), which apply to
the data point. The previous example would instead look like this:

{"image-ref": "s3://mybucket/sample01/image1.jpg", "class": "[0, 2]"}
{"image-ref": "s3://mybucket/sample02/image2.jpg", "class": "[2]"}

Use Built-in Algorithms 2978

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
http://jsonlines.org/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

The multi-hot format is the default, but can be explicitly set in the content type with the label-
format parameter: "application/x-recordio; label-format=multi-hot". The class-id
format, which is the format outputted by GroundTruth, must be set explicitly: "application/x-
recordio; label-format=class-id".

For more information on augmented manifest files, see Provide Dataset Metadata to Training Jobs
with an Augmented Manifest File.

Incremental Training

You can also seed the training of a new model with the artifacts from a model that you trained
previously with SageMaker. Incremental training saves training time when you want to train a new
model with the same or similar data. SageMaker image classification models can be seeded only
with another built-in image classification model trained in SageMaker.

To use a pretrained model, in the CreateTrainingJob request, specify the ChannelName as
"model" in the InputDataConfig parameter. Set the ContentType for the model channel to
application/x-sagemaker-model. The input hyperparameters of both the new model and
the pretrained model that you upload to the model channel must have the same settings for the
num_layers, image_shape and num_classes input parameters. These parameters define the
network architecture. For the pretrained model file, use the compressed model artifacts (in .tar.gz
format) output by SageMaker. You can use either RecordIO or image formats for input data.

Inference with the Image Classification Algorithm

The generated models can be hosted for inference and support encoded .jpg and .png image
formats as image/png, image/jpeg, and application/x-image content-type. The input
image is resized automatically. The output is the probability values for all classes encoded in JSON
format, or in JSON Lines text format for batch transform. The image classification model processes
a single image per request and so outputs only one line in the JSON or JSON Lines format. The
following is an example of a response in JSON Lines format:

accept: application/jsonlines

 {"prediction": [prob_0, prob_1, prob_2, prob_3, ...]}

For more details on training and inference, see the image classification sample notebook instances
referenced in the introduction.

Use Built-in Algorithms 2979

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
http://jsonlines.org/

Amazon SageMaker Developer Guide

EC2 Instance Recommendation for the Image Classification Algorithm

For image classification, we support P2, P3, G4dn, and G5 instances. We recommend using GPU
instances with more memory for training with large batch sizes. You can also run the algorithm on
multi-GPU and multi-machine settings for distributed training. Both CPU (such as C4) and GPU (P2,
P3, G4dn, or G5) instances can be used for inference.

Image Classification Sample Notebooks

For a sample notebook that uses the SageMaker image classification algorithm, see Build and
Register an MXNet Image Classification Model via SageMaker Pipelines. For instructions how to
create and access Jupyter notebook instances that you can use to run the example in SageMaker,
see Amazon SageMaker Notebook Instances. Once you have created a notebook instance and
opened it, select the SageMaker Examples tab to see a list of all the SageMaker samples. The
example image classification notebooks are located in the Introduction to Amazon algorithms
section. To open a notebook, click on its Use tab and select Create copy.

How Image Classification Works

The image classification algorithm takes an image as input and classifies it into one of the output
categories. Deep learning has revolutionized the image classification domain and has achieved
great performance. Various deep learning networks such as ResNet, DenseNet, Inception, and so
on, have been developed to be highly accurate for image classification. At the same time, there
have been efforts to collect labeled image data that are essential for training these networks.
ImageNet is one such large dataset that has more than 11 million images with about 11,000
categories. Once a network is trained with ImageNet data, it can then be used to generalize with
other datasets as well, by simple re-adjustment or fine-tuning. In this transfer learning approach, a
network is initialized with weights (in this example, trained on ImageNet), which can be later fine-
tuned for an image classification task in a different dataset.

Image classification in Amazon SageMaker can be run in two modes: full training and transfer
learning. In full training mode, the network is initialized with random weights and trained on user
data from scratch. In transfer learning mode, the network is initialized with pre-trained weights
and just the top fully connected layer is initialized with random weights. Then, the whole network
is fine-tuned with new data. In this mode, training can be achieved even with a smaller dataset.
This is because the network is already trained and therefore can be used in cases without sufficient
training data.

Use Built-in Algorithms 2980

https://github.com/aws-samples/amazon-sagemaker-pipelines-mxnet-image-classification/blob/main/image-classification-sagemaker-pipelines.ipynb
https://github.com/aws-samples/amazon-sagemaker-pipelines-mxnet-image-classification/blob/main/image-classification-sagemaker-pipelines.ipynb
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://arxiv.org/pdf/1409.4842.pdf
https://www.image-net.org/

Amazon SageMaker Developer Guide

Image Classification Hyperparameters

Hyperparameters are parameters that are set before a machine learning model begins learning.
The following hyperparameters are supported by the Amazon SageMaker built-in Image
Classification algorithm. See Tune an Image Classification Model for information on image
classification hyperparameter tuning.

Parameter Name Description

num_classes Number of output classes. This parameter defines the
dimensions of the network output and is typically set to the
number of classes in the dataset.

Besides multi-class classification, multi-label classification is
supported too. Please refer to Input/Output Interface for the
Image Classification Algorithm for details on how to work with
multi-label classification with augmented manifest files.

Required

Valid values: positive integer

num_training_samples Number of training examples in the input dataset.

If there is a mismatch between this value and the number
of samples in the training set, then the behavior of the
lr_scheduler_step parameter is undefined and distribut
ed training accuracy might be affected.

Required

Valid values: positive integer

augmentation_type Data augmentation type. The input images can be augmented
in multiple ways as specified below.

• crop: Randomly crop the image and flip the image horizonta
lly

• crop_color : In addition to ‘crop’, three random values in
the range [-36, 36], [-50, 50], and [-50, 50] are added to the

Use Built-in Algorithms 2981

Amazon SageMaker Developer Guide

Parameter Name Description

corresponding Hue-Saturation-Lightness channels respectiv
ely

• crop_color_transform : In addition to crop_colo
r , random transformations, including rotation, shear,
and aspect ratio variations are applied to the image. The
maximum angle of rotation is 10 degrees, the maximum
shear ratio is 0.1, and the maximum aspect changing ratio is
0.25.

Optional

Valid values: crop, crop_color , or crop_color_transfo
rm .

Default value: no default value

beta_1 The beta1 for adam, that is the exponential decay rate for the
first moment estimates.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.9

beta_2 The beta2 for adam, that is the exponential decay rate for the
second moment estimates.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.999

Use Built-in Algorithms 2982

Amazon SageMaker Developer Guide

Parameter Name Description

checkpoint_frequency Period to store model parameters (in number of epochs).

Note that all checkpoint files are saved as part of the final
model file "model.tar.gz" and uploaded to S3 to the specified
model location. This increases the size of the model file
proportionally to the number of checkpoints saved during
training.

Optional

Valid values: positive integer no greater than epochs.

Default value: no default value (Save checkpoint at the epoch
that has the best validation accuracy)

early_stopping True to use early stopping logic during training. False not to
use it.

Optional

Valid values: True or False

Default value: False

early_stopping_min
_epochs

The minimum number of epochs that must be run before
the early stopping logic can be invoked. It is used only when
early_stopping = True.

Optional

Valid values: positive integer

Default value: 10

Use Built-in Algorithms 2983

Amazon SageMaker Developer Guide

Parameter Name Description

early_stopping_pat
ience

The number of epochs to wait before ending training if no
improvement is made in the relevant metric. It is used only
when early_stopping = True.

Optional

Valid values: positive integer

Default value: 5

early_stopping_tol
erance

Relative tolerance to measure an improvement in accuracy
validation metric. If the ratio of the improvement in accuracy
divided by the previous best accuracy is smaller than the
early_stopping_tolerance value set, early stopping
considers there is no improvement. It is used only when
early_stopping = True.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.0

epochs Number of training epochs.

Optional

Valid values: positive integer

Default value: 30

eps The epsilon for adam and rmsprop. It is usually set to a small
value to avoid division by 0.

Optional

Valid values: float. Range in [0, 1].

Default value: 1e-8

Use Built-in Algorithms 2984

Amazon SageMaker Developer Guide

Parameter Name Description

gamma The gamma for rmsprop, the decay factor for the moving
average of the squared gradient.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.9

image_shape The input image dimensions, which is the same size as
the input layer of the network. The format is defined as
'num_channels , height, width'. The image dimension can
take on any value as the network can handle varied dimension
s of the input. However, there may be memory constraints if
a larger image dimension is used. Pretrained models can use
only a fixed 224 x 224 image size. Typical image dimensions
for image classification are '3,224,224'. This is similar to the
ImageNet dataset.

For training, if any input image is smaller than this parameter
in any dimension, training fails. If an image is larger, a portion
of the image is cropped, with the cropped area specified by this
parameter. If hyperparameter augmentation_type is set,
random crop is taken; otherwise, central crop is taken.

At inference, input images are resized to the image_shape
that was used during training. Aspect ratio is not preserved,
and images are not cropped.

Optional

Valid values: string

Default value: ‘3,224,224’

Use Built-in Algorithms 2985

Amazon SageMaker Developer Guide

Parameter Name Description

kv_store Weight update synchronization mode during distributed
training. The weight updates can be updated either synchrono
usly or asynchronously across machines. Synchronous updates
typically provide better accuracy than asynchronous updates
but can be slower. See distributed training in MXNet for more
details.

This parameter is not applicable to single machine training.

• dist_sync : The gradients are synchronized after every
batch with all the workers. With dist_sync , batch-size
now means the batch size used on each machine. So if there
are n machines and we use batch size b, then dist_sync
behaves like local with batch size n*b

• dist_async : Performs asynchronous updates. The weights
are updated whenever gradients are received from any
machine and the weight updates are atomic. However, the
order is not guaranteed.

Optional

Valid values: dist_sync or dist_async

Default value: no default value

learning_rate Initial learning rate.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.1

Use Built-in Algorithms 2986

Amazon SageMaker Developer Guide

Parameter Name Description

lr_scheduler_factor The ratio to reduce learning rate used in conjunction with
the lr_scheduler_step parameter, defined as lr_new =
lr_old * lr_scheduler_factor .

Optional

Valid values: float. Range in [0, 1].

Default value: 0.1

lr_scheduler_step The epochs at which to reduce the learning rate. As explained
in the lr_scheduler_factor parameter, the learning rate
is reduced by lr_scheduler_factor at these epochs. For
example, if the value is set to "10, 20", then the learning rate is
reduced by lr_scheduler_factor after 10th epoch and
again by lr_scheduler_factor after 20th epoch. The
epochs are delimited by ",".

Optional

Valid values: string

Default value: no default value

mini_batch_size The batch size for training. In a single-machine multi-GPU
 setting, each GPU handles mini_batch_size /num_gpu
training samples. For the multi-machine training in dist_sync
mode, the actual batch size is mini_batch_size *number of
machines. See MXNet docs for more details.

Optional

Valid values: positive integer

Default value: 32

Use Built-in Algorithms 2987

Amazon SageMaker Developer Guide

Parameter Name Description

momentum The momentum for sgd and nag, ignored for other optimizers.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.9

multi_label Flag to use for multi-label classification where each sample can
be assigned multiple labels. Average accuracy across all classes
is logged.

Optional

Valid values: 0 or 1

Default value: 0

num_layers Number of layers for the network. For data with large image
size (for example, 224x224 - like ImageNet), we suggest
selecting the number of layers from the set [18, 34, 50, 101,
152, 200]. For data with small image size (for example, 28x28
- like CIFAR), we suggest selecting the number of layers from
the set [20, 32, 44, 56, 110]. The number of layers in each set is
based on the ResNet paper. For transfer learning, the number
of layers defines the architecture of base network and hence
can only be selected from the set [18, 34, 50, 101, 152, 200].

Optional

Valid values: positive integer in [18, 34, 50, 101, 152, 200] or
[20, 32, 44, 56, 110]

Default value: 152

Use Built-in Algorithms 2988

Amazon SageMaker Developer Guide

Parameter Name Description

optimizer The optimizer type. For more details of the parameters for the
optimizers, please refer to MXNet's API.

Optional

Valid values: One of sgd, adam, rmsprop, or nag.

• sgd: Stochastic gradient descent

• adam: Adaptive momentum estimation

• rmsprop: Root mean square propagation

• nag: Nesterov accelerated gradient

Default value: sgd

precision_dtype The precision of the weights used for training. The algorithm
 can use either single precision (float32) or half precision
(float16) for the weights. Using half-precision for weights
results in reduced memory consumption.

Optional

Valid values: float32 or float16

Default value: float32

Use Built-in Algorithms 2989

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp
https://calculus.subwiki.org/wiki/Nesterov%27s_gradient_acceleration

Amazon SageMaker Developer Guide

Parameter Name Description

resize The number of pixels in the shortest side of an image after
resizing it for training. If the parameter is not set, then the
training data is used without resizing. The parameter should
be larger than both the width and height components of
image_shape to prevent training failure.

Required when using image content types

Optional when using the RecordIO content type

Valid values: positive integer

Default value: no default value

top_k Reports the top-k accuracy during training. This parameter has
to be greater than 1, since the top-1 training accuracy is the
same as the regular training accuracy that has already been
reported.

Optional

Valid values: positive integer larger than 1.

Default value: no default value

use_pretrained_model Flag to use pre-trained model for training. If set to 1, then the
pretrained model with the corresponding number of layers is
loaded and used for training. Only the top FC layer are reinitial
ized with random weights. Otherwise, the network is trained
from scratch.

Optional

Valid values: 0 or 1

Default value: 0

Use Built-in Algorithms 2990

Amazon SageMaker Developer Guide

Parameter Name Description

use_weighted_loss Flag to use weighted cross-entropy loss for multi-label classific
ation (used only when multi_label = 1), where the weights
are calculated based on the distribution of classes.

Optional

Valid values: 0 or 1

Default value: 0

weight_decay The coefficient weight decay for sgd and nag, ignored for
other optimizers.

Optional

Valid values: float. Range in [0, 1].

Default value: 0.0001

Tune an Image Classification Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the Image Classification Algorithm

The image classification algorithm is a supervised algorithm. It reports an accuracy metric that is
computed during training. When tuning the model, choose this metric as the objective metric.

Use Built-in Algorithms 2991

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

validatio
n:accuracy

The ratio of the number of correct predictions
to the total number of predictions made.

Maximize

Tunable Image Classification Hyperparameters

Tune an image classification model with the following hyperparameters. The hyperparameters
that have the greatest impact on image classification objective metrics are: mini_batch_size,
learning_rate, and optimizer. Tune the optimizer-related hyperparameters, such as
momentum, weight_decay, beta_1, beta_2, eps, and gamma, based on the selected optimizer.
For example, use beta_1 and beta_2 only when adam is the optimizer.

For more information about which hyperparameters are used in each optimizer, see Image
Classification Hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

beta_1 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

beta_2 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

eps ContinuousParameterRanges MinValue: 1e-8,
MaxValue: 1.0

gamma ContinuousParameterRanges MinValue: 1e-8,
MaxValue: 0.999

learning_rate ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.5

mini_batch_size IntegerParameterRanges MinValue: 8,
MaxValue: 512

Use Built-in Algorithms 2992

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

momentum ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

optimizer CategoricalParameterRanges ['sgd', ‘adam’,
‘rmsprop’, 'nag']

weight_decay ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

Image Classification - TensorFlow

The Amazon SageMaker Image Classification - TensorFlow algorithm is a supervised learning
algorithm that supports transfer learning with many pretrained models from the TensorFlow Hub.
Use transfer learning to fine-tune one of the available pretrained models on your own dataset,
even if a large amount of image data is not available. The image classification algorithm takes
an image as input and outputs a probability for each provided class label. Training datasets must
consist of images in .jpg, .jpeg, or .png format.

Topics

• How to use the SageMaker Image Classification - TensorFlow algorithm

• Input and output interface for the Image Classification - TensorFlow algorithm

• Amazon EC2 instance recommendation for the Image Classification - TensorFlow algorithm

• Image Classification - TensorFlow sample notebooks

• How Image Classification - TensorFlow Works

• TensorFlow Hub Models

• Image Classification - TensorFlow Hyperparameters

• Tune an Image Classification - TensorFlow model

How to use the SageMaker Image Classification - TensorFlow algorithm

You can use Image Classification - TensorFlow as an Amazon SageMaker built-in algorithm. The
following section describes how to use Image Classification - TensorFlow with the SageMaker

Use Built-in Algorithms 2993

https://tfhub.dev/s?fine-tunable=yes&module-type=image-classification&subtype=module,placeholder&tf-version=tf2

Amazon SageMaker Developer Guide

Python SDK. For information on how to use Image Classification - TensorFlow from the Amazon
SageMaker Studio Classic UI, see SageMaker JumpStart.

The Image Classification - TensorFlow algorithm supports transfer learning using any of the
compatible pretrained TensorFlow Hub models. For a list of all available pretrained models,
see TensorFlow Hub Models. Every pretrained model has a unique model_id. The following
example uses MobileNet V2 1.00 224 (model_id: tensorflow-ic-imagenet-mobilenet-
v2-100-224-classification-4) to fine-tune on a custom dataset. The pretrained models are
all pre-downloaded from the TensorFlow Hub and stored in Amazon S3 buckets so that training
jobs can run in network isolation. Use these pre-generated model training artifacts to construct a
SageMaker Estimator.

First, retrieve the Docker image URI, training script URI, and pretrained model URI. Then,
change the hyperparameters as you see fit. You can see a Python dictionary of all available
hyperparameters and their default values with hyperparameters.retrieve_default. For
more information, see Image Classification - TensorFlow Hyperparameters. Use these values to
construct a SageMaker Estimator.

Note

Default hyperparameter values are different for different models. For larger models, the
default batch size is smaller and the train_only_top_layer hyperparameter is set to
"True".

This example uses the tf_flowers dataset, which contains five classes of flower images. We pre-
downloaded the dataset from TensorFlow under the Apache 2.0 license and made it available with
Amazon S3. To fine-tune your model, call .fit using the Amazon S3 location of your training
dataset.

from sagemaker import image_uris, model_uris, script_uris, hyperparameters
from sagemaker.estimator import Estimator

model_id, model_version = "tensorflow-ic-imagenet-mobilenet-v2-100-224-
classification-4", "*"
training_instance_type = "ml.p3.2xlarge"

Retrieve the Docker image
train_image_uri =
 image_uris.retrieve(model_id=model_id,model_version=model_version,image_scope="training",instance_type=training_instance_type,region=None,framework=None)

Use Built-in Algorithms 2994

https://www.tensorflow.org/datasets/catalog/tf_flowers

Amazon SageMaker Developer Guide

Retrieve the training script
train_source_uri = script_uris.retrieve(model_id=model_id, model_version=model_version,
 script_scope="training")

Retrieve the pretrained model tarball for transfer learning
train_model_uri = model_uris.retrieve(model_id=model_id, model_version=model_version,
 model_scope="training")

Retrieve the default hyper-parameters for fine-tuning the model
hyperparameters = hyperparameters.retrieve_default(model_id=model_id,
 model_version=model_version)

[Optional] Override default hyperparameters with custom values
hyperparameters["epochs"] = "5"

The sample training data is available in the following S3 bucket
training_data_bucket = f"jumpstart-cache-prod-{aws_region}"
training_data_prefix = "training-datasets/tf_flowers/"

training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}"

output_bucket = sess.default_bucket()
output_prefix = "jumpstart-example-ic-training"
s3_output_location = f"s3://{output_bucket}/{output_prefix}/output"

Create SageMaker Estimator instance
tf_ic_estimator = Estimator(
 role=aws_role,
 image_uri=train_image_uri,
 source_dir=train_source_uri,
 model_uri=train_model_uri,
 entry_point="transfer_learning.py",
 instance_count=1,
 instance_type=training_instance_type,
 max_run=360000,
 hyperparameters=hyperparameters,
 output_path=s3_output_location,
)

Use S3 path of the training data to launch SageMaker TrainingJob
tf_ic_estimator.fit({"training": training_dataset_s3_path}, logs=True)

Use Built-in Algorithms 2995

Amazon SageMaker Developer Guide

Input and output interface for the Image Classification - TensorFlow algorithm

Each of the pretrained models listed in TensorFlow Hub Models can be fine-tuned to any dataset
with any number of image classes. Be mindful of how to format your training data for input to the
Image Classification - TensorFlow model.

• Training data input format: Your training data should be a directory with as many subdirectories
as the number of classes. Each subdirectory should contain images belonging to that class
in .jpg, .jpeg, or .png format.

The following is an example of an input directory structure. This example dataset has two
classes: roses and dandelion. The image files in each class folder can have any name. The
input directory should be hosted in an Amazon S3 bucket with a path similar to the following:
s3://bucket_name/input_directory/. Note that the trailing / is required.

input_directory
 |--roses
 |--abc.jpg
 |--def.jpg
 |--dandelion
 |--ghi.jpg
 |--jkl.jpg

Trained models output label mapping files that map class folder names to the indices in the list
of output class probabilities. This mapping is in alphabetical order. For example, in the preceding
example, the dandelion class is index 0 and the roses class is index 1.

After training, you have a fine-tuned model that you can further train using incremental training
or deploy for inference. The Image Classification - TensorFlow algorithm automatically adds a pre-
processing and post-processing signature to the fine-tuned model so that it can take in images as
input and return class probabilities. The file mapping class indices to class labels is saved along
with the models.

Incremental training

You can seed the training of a new model with artifacts from a model that you trained previously
with SageMaker. Incremental training saves training time when you want to train a new model with
the same or similar data.

Use Built-in Algorithms 2996

Amazon SageMaker Developer Guide

Note

You can only seed a SageMaker Image Classification - TensorFlow model with another
Image Classification - TensorFlow model trained in SageMaker.

You can use any dataset for incremental training, as long as the set of classes remains the same.
The incremental training step is similar to the fine-tuning step, but instead of starting with a
pretrained model, you start with an existing fine-tuned model. For an example of incremental
training with the SageMaker Image Classification - TensorFlow algorithm, see the Introduction to
SageMaker TensorFlow - Image Classification sample notebook.

Inference with the Image Classification - TensorFlow algorithm

You can host the fine-tuned model that results from your TensorFlow Image Classification training
for inference. Any input image for inference must be in .jpg, .jpeg, or .png format and be
content type application/x-image. The Image Classification - TensorFlow algorithm resizes
input images automatically.

Running inference results in probability values, class labels for all classes, and the predicted label
corresponding to the class index with the highest probability encoded in JSON format. The Image
Classification - TensorFlow model processes a single image per request and outputs only one line.
The following is an example of a JSON format response:

accept: application/json;verbose

 {"probabilities": [prob_0, prob_1, prob_2, ...],
 "labels": [label_0, label_1, label_2, ...],
 "predicted_label": predicted_label}

If accept is set to application/json, then the model only outputs probabilities. For more
information on training and inference with the Image Classification - TensorFlow algorithm, see the
Introduction to SageMaker TensorFlow - Image Classification sample notebook.

Amazon EC2 instance recommendation for the Image Classification - TensorFlow algorithm

The Image Classification - TensorFlow algorithm supports all CPU and GPU instances for training,
including:

• ml.p2.xlarge

Use Built-in Algorithms 2997

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/image_classification_tensorflow/Amazon_TensorFlow_Image_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/image_classification_tensorflow/Amazon_TensorFlow_Image_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/image_classification_tensorflow/Amazon_TensorFlow_Image_Classification.ipynb

Amazon SageMaker Developer Guide

• ml.p2.16xlarge

• ml.p3.2xlarge

• ml.p3.16xlarge

• ml.g4dn.xlarge

• ml.g4dn.16.xlarge

• ml.g5.xlarge

• ml.g5.48xlarge

We recommend GPU instances with more memory for training with large batch sizes. Both CPU
(such as M5) and GPU (P2, P3, G4dn, or G5) instances can be used for inference.

Image Classification - TensorFlow sample notebooks

For more information about how to use the SageMaker Image Classification - TensorFlow algorithm
for transfer learning on a custom dataset, see the Introduction to SageMaker TensorFlow - Image
Classification notebook.

For instructions how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created
a notebook instance and opened it, select the SageMaker Examples tab to see a list of all the
SageMaker samples. To open a notebook, choose its Use tab and choose Create copy.

How Image Classification - TensorFlow Works

The Image Classification - TensorFlow algorithm takes an image as input and classifies it into one
of the output class labels. Various deep learning networks such as MobileNet, ResNet, Inception,
and EfficientNet are highly accurate for image classification. There are also deep learning networks
that are trained on large image datasets, such as ImageNet, which has over 11 million images and
almost 11,000 classes. After a network is trained with ImageNet data, you can then fine-tune the
network on a dataset with a particular focus to perform more specific classification tasks. The
Amazon SageMaker Image Classification - TensorFlow algorithm supports transfer learning on
many pretrained models that are available in the TensorFlow Hub.

According to the number of class labels in your training data, a classification layer is attached to
the pretrained TensorFlow Hub model of your choice. The classification layer consists of a dropout
layer, a dense layer, and a fully-connected layer with 2-norm regularizer that is initialized with
random weights. The model has hyperparameters for the dropout rate of the dropout layer and
the L2 regularization factor for the dense layer. You can then fine-tune either the entire network

Use Built-in Algorithms 2998

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/image_classification_tensorflow/Amazon_TensorFlow_Image_Classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/image_classification_tensorflow/Amazon_TensorFlow_Image_Classification.ipynb

Amazon SageMaker Developer Guide

(including the pretrained model) or only the top classification layer on new training data. With this
method of transfer learning, training with smaller datasets is possible.

TensorFlow Hub Models

The following pretrained models are available to use for transfer learning with the Image
Classification - TensorFlow algorithm.

The following models vary significantly in size, number of model parameters, training time,
and inference latency for any given dataset. The best model for your use case depends on the
complexity of your fine-tuning dataset and any requirements that you have on training time,
inference latency, or model accuracy.

Model Name model_id Source

MobileNet V2 1.00 224 tensorflow-ic-imag
enet-mobilenet-v2-
100-224-classifica
tion-4

TensorFlow Hub link

MobileNet V2 0.75 224 tensorflow-ic-imag
enet-mobilenet-v2-
075-224-classifica
tion-4

TensorFlow Hub link

MobileNet V2 0.50 224 tensorflow-ic-imag
enet-mobilenet-v2-
050-224-classifica
tion-4

TensorFlow Hub link

MobileNet V2 0.35 224 tensorflow-ic-imag
enet-mobilenet-v2-
035-224-classifica
tion-4

TensorFlow Hub link

MobileNet V2 1.40 224 tensorflow-ic-imag
enet-mobilenet-v2-
140-224-classifica
tion-4

TensorFlow Hub link

Use Built-in Algorithms 2999

https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v2_075_224/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v2_050_224/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v2_035_224/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/classification/4

Amazon SageMaker Developer Guide

Model Name model_id Source

MobileNet V2 1.30 224 tensorflow-ic-imag
enet-mobilenet-v2-
130-224-classifica
tion-4

TensorFlow Hub link

MobileNet V2 tensorflow-ic-tf2-
preview-mobilenet-
v2-classification-4

TensorFlow Hub link

Inception V3 tensorflow-ic-imag
enet-inception-v3-
classification-4

TensorFlow Hub link

Inception V2 tensorflow-ic-imag
enet-inception-v2-
classification-4

TensorFlow Hub link

Inception V1 tensorflow-ic-imag
enet-inception-v1-
classification-4

TensorFlow Hub link

Inception V3 Preview tensorflow-ic-tf2-
preview-inception-
v3-classification-4

TensorFlow Hub link

Inception ResNet V2 tensorflow-ic-imag
enet-inception-res
net-v2-classificat
ion-4

TensorFlow Hub link

ResNet V2 50 tensorflow-ic-imag
enet-resnet-v2-50-
classification-4

TensorFlow Hub link

Use Built-in Algorithms 3000

https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/classification/4
https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4
https://tfhub.dev/google/imagenet/inception_v3/classification/4
https://tfhub.dev/google/imagenet/inception_v2/classification/4
https://tfhub.dev/google/imagenet/inception_v1/classification/4
https://tfhub.dev/google/tf2-preview/inception_v3/classification/4
https://tfhub.dev/google/imagenet/inception_resnet_v2/classification/4
https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4

Amazon SageMaker Developer Guide

Model Name model_id Source

ResNet V2 101 tensorflow-ic-imag
enet-resnet-v2-101-
classification-4

TensorFlow Hub link

ResNet V2 152 tensorflow-ic-imag
enet-resnet-v2-152-
classification-4

TensorFlow Hub link

ResNet V1 50 tensorflow-ic-imag
enet-resnet-v1-50-
classification-4

TensorFlow Hub link

ResNet V1 101 tensorflow-ic-imag
enet-resnet-v1-101-
classification-4

TensorFlow Hub link

ResNet V1 152 tensorflow-ic-imag
enet-resnet-v1-152-
classification-4

TensorFlow Hub link

ResNet 50 tensorflow-ic-imag
enet-resnet-50-cla
ssification-4

TensorFlow Hub link

EfficientNet B0 tensorflow-ic-effi
cientnet-b0-classi
fication-1

TensorFlow Hub link

EfficientNet B1 tensorflow-ic-effi
cientnet-b1-classi
fication-1

TensorFlow Hub link

EfficientNet B2 tensorflow-ic-effi
cientnet-b2-classi
fication-1

TensorFlow Hub link

Use Built-in Algorithms 3001

https://tfhub.dev/google/imagenet/resnet_v2_101/classification/4
https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4
https://tfhub.dev/google/imagenet/resnet_v1_50/classification/4
https://tfhub.dev/google/imagenet/resnet_v1_101/classification/4
https://tfhub.dev/google/imagenet/resnet_v1_152/classification/4
https://tfhub.dev/google/imagenet/resnet_50/classification/1
https://tfhub.dev/google/efficientnet/b0/classification/1
https://tfhub.dev/google/efficientnet/b1/classification/1
https://tfhub.dev/google/efficientnet/b2/classification/1

Amazon SageMaker Developer Guide

Model Name model_id Source

EfficientNet B3 tensorflow-ic-effi
cientnet-b3-classi
fication-1

TensorFlow Hub link

EfficientNet B4 tensorflow-ic-effi
cientnet-b4-classi
fication-1

TensorFlow Hub link

EfficientNet B5 tensorflow-ic-effi
cientnet-b5-classi
fication-1

TensorFlow Hub link

EfficientNet B6 tensorflow-ic-effi
cientnet-b6-classi
fication-1

TensorFlow Hub link

EfficientNet B7 tensorflow-ic-effi
cientnet-b7-classi
fication-1

TensorFlow Hub link

EfficientNet B0 Lite tensorflow-ic-effi
cientnet-lite0-cla
ssification-2

TensorFlow Hub link

EfficientNet B1 Lite tensorflow-ic-effi
cientnet-lite1-cla
ssification-2

TensorFlow Hub link

EfficientNet B2 Lite tensorflow-ic-effi
cientnet-lite2-cla
ssification-2

TensorFlow Hub link

EfficientNet B3 Lite tensorflow-ic-effi
cientnet-lite3-cla
ssification-2

TensorFlow Hub link

Use Built-in Algorithms 3002

https://tfhub.dev/google/efficientnet/b3/classification/1
https://tfhub.dev/google/efficientnet/b4/classification/1
https://tfhub.dev/google/efficientnet/b5/classification/1
https://tfhub.dev/google/efficientnet/b6/classification/1
https://tfhub.dev/google/efficientnet/b7/classification/1
https://tfhub.dev/tensorflow/efficientnet/lite0/classification/2
https://tfhub.dev/tensorflow/efficientnet/lite1/classification/2
https://tfhub.dev/tensorflow/efficientnet/lite2/classification/2
https://tfhub.dev/tensorflow/efficientnet/lite3/classification/2

Amazon SageMaker Developer Guide

Model Name model_id Source

EfficientNet B4 Lite tensorflow-ic-effi
cientnet-lite4-cla
ssification-2

TensorFlow Hub link

MobileNet V1 1.00 224 tensorflow-ic-imag
enet-mobilenet-v1-
100-224-classifica
tion-4

TensorFlow Hub link

MobileNet V1 1.00 192 tensorflow-ic-imag
enet-mobilenet-v1-
100-192-classifica
tion-4

TensorFlow Hub link

MobileNet V1 1.00 160 tensorflow-ic-imag
enet-mobilenet-v1-
100-160-classifica
tion-4

TensorFlow Hub link

MobileNet V1 1.00 128 tensorflow-ic-imag
enet-mobilenet-v1-
100-128-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.75 224 tensorflow-ic-imag
enet-mobilenet-v1-
075-224-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.75 192 tensorflow-ic-imag
enet-mobilenet-v1-
075-192-classifica
tion-4

TensorFlow Hub link

Use Built-in Algorithms 3003

https://tfhub.dev/tensorflow/efficientnet/lite4/classification/2
https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_100_192/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_100_160/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_100_128/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_075_224/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_075_192/classification/4

Amazon SageMaker Developer Guide

Model Name model_id Source

MobileNet V1 0.75 160 tensorflow-ic-imag
enet-mobilenet-v1-
075-160-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.75 128 tensorflow-ic-imag
enet-mobilenet-v1-
075-128-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.50 224 tensorflow-ic-imag
enet-mobilenet-v1-
050-224-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.50 192 tensorflow-ic-imag
enet-mobilenet-v1-
050-192-classifica
tion-4

TensorFlow Hub link

MobileNet V1 1.00 160 tensorflow-ic-imag
enet-mobilenet-v1-
050-160-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.50 128 tensorflow-ic-imag
enet-mobilenet-v1-
050-128-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.25 224 tensorflow-ic-imag
enet-mobilenet-v1-
025-224-classifica
tion-4

TensorFlow Hub link

Use Built-in Algorithms 3004

https://tfhub.dev/google/imagenet/mobilenet_v1_075_160/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_075_128/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_050_192/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_050_160/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_050_128/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_025_224/classification/4

Amazon SageMaker Developer Guide

Model Name model_id Source

MobileNet V1 0.25 192 tensorflow-ic-imag
enet-mobilenet-v1-
025-192-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.25 160 tensorflow-ic-imag
enet-mobilenet-v1-
025-160-classifica
tion-4

TensorFlow Hub link

MobileNet V1 0.25 128 tensorflow-ic-imag
enet-mobilenet-v1-
025-128-classifica
tion-4

TensorFlow Hub link

BiT-S R50x1 tensorflow-ic-bit-
s-r50x1-ilsvrc2012-
classification-1

TensorFlow Hub link

BiT-S R50x3 tensorflow-ic-bit-
s-r50x3-ilsvrc2012-
classification-1

TensorFlow Hub link

BiT-S R101x1 tensorflow-ic-bit-s-
r101x1-ilsvrc2012-
classification-1

TensorFlow Hub link

BiT-S R101x3 tensorflow-ic-bit-s-
r101x3-ilsvrc2012-
classification-1

TensorFlow Hub link

BiT-M R50x1 tensorflow-ic-bit-
m-r50x1-ilsvrc2012-
classification-1

TensorFlow Hub link

Use Built-in Algorithms 3005

https://tfhub.dev/google/imagenet/mobilenet_v1_025_192/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_025_160/classification/4
https://tfhub.dev/google/imagenet/mobilenet_v1_025_128/classification/4
https://tfhub.dev/google/bit/s-r50x1/ilsvrc2012_classification/1
https://tfhub.dev/google/bit/s-r50x3/ilsvrc2012_classification/1
https://tfhub.dev/google/bit/s-r101x1/ilsvrc2012_classification/1
https://tfhub.dev/google/bit/s-r101x3/ilsvrc2012_classification/1
https://tfhub.dev/google/bit/m-r50x1/ilsvrc2012_classification/1

Amazon SageMaker Developer Guide

Model Name model_id Source

BiT-M R50x3 tensorflow-ic-bit-
m-r50x3-ilsvrc2012-
classification-1

TensorFlow Hub link

BiT-M R101x1 tensorflow-ic-bit-m-
r101x1-ilsvrc2012-
classification-1

TensorFlow Hub link

BiT-M R101x3 tensorflow-ic-bit-m-
r101x3-ilsvrc2012-
classification-1

TensorFlow Hub link

BiT-M R50x1 ImageNet-21k tensorflow-ic-bit-m-
r50x1-imagenet21k-
classification-1

TensorFlow Hub link

BiT-M R50x3 ImageNet-21k tensorflow-ic-bit-m-
r50x3-imagenet21k-
classification-1

TensorFlow Hub link

BiT-M R101x1 ImageNet-21k tensorflow-ic-bit-m-
r101x1-imagenet21k-
classification-1

TensorFlow Hub link

BiT-M R101x3 ImageNet-21k tensorflow-ic-bit-m-
r101x3-imagenet21k-
classification-1

TensorFlow Hub link

Image Classification - TensorFlow Hyperparameters

Hyperparameters are parameters that are set before a machine learning model begins learning.
The following hyperparameters are supported by the Amazon SageMaker built-in Image
Classification - TensorFlow algorithm. See Tune an Image Classification - TensorFlow model for
information on hyperparameter tuning.

Use Built-in Algorithms 3006

https://tfhub.dev/google/bit/m-r50x3/ilsvrc2012_classification/1
https://tfhub.dev/google/bit/m-r101x1/ilsvrc2012_classification/1
https://tfhub.dev/google/bit/m-r101x3/ilsvrc2012_classification/1
https://tfhub.dev/google/bit/m-r50x1/imagenet21k_classification/1
https://tfhub.dev/google/bit/m-r50x3/imagenet21k_classification/1
https://tfhub.dev/google/bit/m-r101x1/imagenet21k_classification/1
https://tfhub.dev/google/bit/m-r101x3/imagenet21k_classification/1

Amazon SageMaker Developer Guide

Parameter Name Description

augmentation Set to "True" to apply augmentation_random_flip ,
augmentation_random_rotation , and augmentat
ion_random_zoom to the training data.

Valid values: string, either: ("True" or "False").

Default value: "False".

augmentation_rando
m_flip

Indicates which flip mode to use for data augmentation when
augmentation is set to "True". For more information, see
RandomFlip in the TensorFlow documentation.

Valid values: string, any of the following: ("horizont
al_and_vertical" , "vertical" , or "None").

Default value: "horizontal_and_vertical" .

augmentation_rando
m_rotation

Indicates how much rotation to use for data augmentation
when augmentation is set to "True". Values represent a
fraction of 2π. Positive values rotate counterclockwise while
negative values rotate clockwise. 0 means no rotation. For
more information, see RandomRotation in the TensorFlow
documentation.

Valid values: float, range: [-1.0, 1.0].

Default value: 0.2.

augmentation_rando
m_zoom

Indicates how much vertical zoom to use for data augmentat
ion when augmentation is set to "True". Positive values
zoom out while negative values zoom in. 0 means no zoom.
For more information, see RandomZoom in the TensorFlow
documentation.

Valid values: float, range: [-1.0, 1.0].

Default value: 0.1.

Use Built-in Algorithms 3007

https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomFlip
https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomRotation
https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomZoom

Amazon SageMaker Developer Guide

Parameter Name Description

batch_size The batch size for training. For training on instances with
multiple GPUs, this batch size is used across the GPUs.

Valid values: positive integer.

Default value: 32.

beta_1 The beta1 for the "adam" optimizer. Represents the exponenti
al decay rate for the first moment estimates. Ignored for other
optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.9.

beta_2 The beta2 for the "adam" optimizer. Represents the exponenti
al decay rate for the second moment estimates. Ignored for
other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.999.

binary_mode When binary_mode is set to "True", the model returns a
single probability number for the positive class and can use
additional eval_metric options. Use only for binary classific
ation problems.

Valid values: string, either: ("True" or "False").

Default value: "False".

dropout_rate The dropout rate for the dropout layer in the top classification
layer.

Valid values: float, range: [0.0, 1.0].

Default value: 0.2

Use Built-in Algorithms 3008

Amazon SageMaker Developer Guide

Parameter Name Description

early_stopping Set to "True" to use early stopping logic during training. If
"False", early stopping is not used.

Valid values: string, either: ("True" or "False").

Default value: "False".

early_stopping_min
_delta

The minimum change needed to qualify as an improveme
nt. An absolute change less than the value of early_sto
pping_min_delta does not qualify as improvement. Used
only when early_stopping is set to "True".

Valid values: float, range: [0.0, 1.0].

Default value: 0.0.

early_stopping_pat
ience

The number of epochs to continue training with no improveme
nt. Used only when early_stopping is set to "True".

Valid values: positive integer.

Default value: 5.

epochs The number of training epochs.

Valid values: positive integer.

Default value: 3.

epsilon The epsilon for "adam", "rmsprop" , "adadelta" , and
"adagrad" optimizers. Usually set to a small value to avoid
division by 0. Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 1e-7.

Use Built-in Algorithms 3009

Amazon SageMaker Developer Guide

Parameter Name Description

eval_metric If binary_mode is set to "False", eval_metric can only
be "accuracy" . If binary_mode is "True", select any
of the valid values. For more information, see Metrics in the
TensorFlow documentation.

Valid values: string, any of the following: ("accuracy" ,
"precision" , "recall", "auc", or "prc").

Default value: "accuracy" .

image_resize_inter
polation

Indicates interpolation method used when resizing images.
For more information, see image.resize in the TensorFlow
documentation.

Valid values: string, any of the following: ("bilinear" ,
"nearest" , "bicubic" , "area", "lanczos3" ,
"lanczos5" , "gaussian" , or "mitchellcubic").

Default value: "bilinear" .

initial_accumulato
r_value

The starting value for the accumulators, or the per-parameter
momentum values, for the "adagrad" optimizer. Ignored for
other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.0001.

label_smoothing Indicates how much to relax the confidence on label values. For
example, if label_smoothing is 0.1, then non-target labels
are 0.1/num_classes and target labels are 0.9+0.1/n
um_classes .

Valid values: float, range: [0.0, 1.0].

Default value: 0.1.

Use Built-in Algorithms 3010

https://www.tensorflow.org/api_docs/python/tf/keras/metrics
https://www.tensorflow.org/api_docs/python/tf/image/resize

Amazon SageMaker Developer Guide

Parameter Name Description

learning_rate The optimizer learning rate.

Valid values: float, range: [0.0, 1.0].

Default value: 0.001.

momentum The momentum for "sgd", "nesterov" , and "rmsprop"
optimizers. Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.9.

optimizer The optimizer type. For more information, see Optimizers in
the TensorFlow documentation.

Valid values: string, any of the following: ("adam", "sgd",
"nesterov" , "rmsprop" , "adagrad" , "adadelta").

Default value: "adam".

regularizers_l2 The L2 regularization factor for the dense layer in the classific
ation layer.

Valid values: float, range: [0.0, 1.0].

Default value: .0001.

reinitialize_top_l
ayer

If set to "Auto", the top classification layer parameters are
re-initialized during fine-tuning. For incremental training, top
classification layer parameters are not re-initialized unless set
to "True".

Valid values: string, any of the following: ("Auto", "True" or
"False").

Default value: "Auto".

Use Built-in Algorithms 3011

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

Amazon SageMaker Developer Guide

Parameter Name Description

rho The discounting factor for the gradient of the "adadelta"
and "rmsprop" optimizers. Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.95.

train_only_top_layer If "True", only the top classification layer parameters are fine-
tuned. If "False", all model parameters are fine-tuned.

Valid values: string, either: ("True" or "False").

Default value: "False".

Tune an Image Classification - TensorFlow model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics computed by the Image Classification - TensorFlow algorithm

The image classification algorithm is a supervised algorithm. It reports an accuracy metric that is
computed during training. When tuning the model, choose this metric as the objective metric.

Metric Name Description Optimization
Direction

validatio
n:accuracy

The ratio of the number of correct predictions
to the total number of predictions made.

Maximize

Use Built-in Algorithms 3012

Amazon SageMaker Developer Guide

Tunable Image Classification - TensorFlow hyperparameters

Tune an image classification model with the following hyperparameters. The hyperparameters
that have the greatest impact on image classification objective metrics are: batch_size,
learning_rate, and optimizer. Tune the optimizer-related hyperparameters, such as
momentum, regularizers_l2, beta_1, beta_2, and eps based on the selected optimizer. For
example, use beta_1 and beta_2 only when adam is the optimizer.

For more information about which hyperparameters are used for each optimizer, see Image
Classification - TensorFlow Hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

batch_size IntegerParameterRanges MinValue: 8,
MaxValue: 512

beta_1 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

beta_2 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

eps ContinuousParameterRanges MinValue: 1e-8,
MaxValue: 1.0

learning_rate ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.5

momentum ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

optimizer CategoricalParameterRanges ['sgd', ‘adam’,
‘rmsprop’, 'nesterov',
'adagrad', 'adadelta']

regularizers_l2 ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

Use Built-in Algorithms 3013

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

train_onl
y_top_layer

ContinuousParameterRanges ['True', 'False']

Object Detection - MXNet

The Amazon SageMaker Object Detection - MXNet algorithm detects and classifies objects in
images using a single deep neural network. It is a supervised learning algorithm that takes images
as input and identifies all instances of objects within the image scene. The object is categorized
into one of the classes in a specified collection with a confidence score that it belongs to the class.
Its location and scale in the image are indicated by a rectangular bounding box. It uses the Single
Shot multibox Detector (SSD) framework and supports two base networks: VGG and ResNet. The
network can be trained from scratch, or trained with models that have been pre-trained on the
ImageNet dataset.

Topics

• Input/Output Interface for the Object Detection Algorithm

• EC2 Instance Recommendation for the Object Detection Algorithm

• Object Detection Sample Notebooks

• How Object Detection Works

• Object Detection Hyperparameters

• Tune an Object Detection Model

• Object Detection Request and Response Formats

Input/Output Interface for the Object Detection Algorithm

The SageMaker Object Detection algorithm supports both RecordIO (application/x-recordio)
and image (image/png, image/jpeg, and application/x-image) content types for training
in file mode and supports RecordIO (application/x-recordio) for training in pipe mode.
However you can also train in pipe mode using the image files (image/png, image/jpeg, and
application/x-image), without creating RecordIO files, by using the augmented manifest
format. The recommended input format for the Amazon SageMaker object detection algorithms

Use Built-in Algorithms 3014

https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1603.05027.pdf
http://www.image-net.org/

Amazon SageMaker Developer Guide

is Apache MXNet RecordIO. However, you can also use raw images in .jpg or .png format. The
algorithm supports only application/x-image for inference.

Note

To maintain better interoperability with existing deep learning frameworks, this differs
from the protobuf data formats commonly used by other Amazon SageMaker algorithms.

See the Object Detection Sample Notebooks for more details on data formats.

Train with the RecordIO Format

If you use the RecordIO format for training, specify both train and validation channels as values
for the InputDataConfig parameter of the CreateTrainingJob request. Specify one RecordIO
(.rec) file in the train channel and one RecordIO file in the validation channel. Set the content type
for both channels to application/x-recordio. An example of how to generate RecordIO file
can be found in the object detection sample notebook. You can also use tools from the MXNet's
GluonCV to generate RecordIO files for popular datasets like the PASCAL Visual Object Classes and
Common Objects in Context (COCO).

Train with the Image Format

If you use the image format for training, specify train, validation, train_annotation,
and validation_annotation channels as values for the InputDataConfig parameter of
CreateTrainingJob request. Specify the individual image data (.jpg or .png) files for the
train and validation channels. For annotation data, you can use the JSON format. Specify the
corresponding .json files in the train_annotation and validation_annotation channels.
Set the content type for all four channels to image/png or image/jpeg based on the image type.
You can also use the content type application/x-image when your dataset contains both .jpg
and .png images. The following is an example of a .json file.

{
 "file": "your_image_directory/sample_image1.jpg",
 "image_size": [
 {
 "width": 500,
 "height": 400,
 "depth": 3

Use Built-in Algorithms 3015

https://mxnet.apache.org/api/architecture/note_data_loading
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://gluon-cv.mxnet.io/build/examples_datasets/recordio.html
https://gluon-cv.mxnet.io/build/examples_datasets/recordio.html
http://host.robots.ox.ac.uk/pascal/VOC/
http://cocodataset.org/#home
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

 }
],
 "annotations": [
 {
 "class_id": 0,
 "left": 111,
 "top": 134,
 "width": 61,
 "height": 128
 },
 {
 "class_id": 0,
 "left": 161,
 "top": 250,
 "width": 79,
 "height": 143
 },
 {
 "class_id": 1,
 "left": 101,
 "top": 185,
 "width": 42,
 "height": 130
 }
],
 "categories": [
 {
 "class_id": 0,
 "name": "dog"
 },
 {
 "class_id": 1,
 "name": "cat"
 }
]
}

Each image needs a .json file for annotation, and the .json file should have the same name
as the corresponding image. The name of above .json file should be "sample_image1.json".
There are four properties in the annotation .json file. The property "file" specifies the relative
path of the image file. For example, if your training images and corresponding .json files are
stored in s3://your_bucket/train/sample_image and s3://your_bucket/train_annotation,

Use Built-in Algorithms 3016

Amazon SageMaker Developer Guide

specify the path for your train and train_annotation channels as s3://your_bucket/train and
s3://your_bucket/train_annotation, respectively.

In the .json file, the relative path for an image named sample_image1.jpg should be
sample_image/sample_image1.jpg. The "image_size" property specifies the overall image
dimensions. The SageMaker object detection algorithm currently only supports 3-channel images.
The "annotations" property specifies the categories and bounding boxes for objects within the
image. Each object is annotated by a "class_id" index and by four bounding box coordinates
("left", "top", "width", "height"). The "left" (x-coordinate) and "top" (y-coordinate)
values represent the upper-left corner of the bounding box. The "width" (x-coordinate) and
"height" (y-coordinate) values represent the dimensions of the bounding box. The origin (0,
0) is the upper-left corner of the entire image. If you have multiple objects within one image,
all the annotations should be included in a single .json file. The "categories" property stores
the mapping between the class index and class name. The class indices should be numbered
successively and the numbering should start with 0. The "categories" property is optional for
the annotation .json file

Train with Augmented Manifest Image Format

The augmented manifest format enables you to do training in pipe mode using image files without
needing to create RecordIO files. You need to specify both train and validation channels as values
for the InputDataConfig parameter of the CreateTrainingJob request. While using the
format, an S3 manifest file needs to be generated that contains the list of images and their
corresponding annotations. The manifest file format should be in JSON Lines format in which each
line represents one sample. The images are specified using the 'source-ref' tag that points
to the S3 location of the image. The annotations are provided under the "AttributeNames"
parameter value as specified in the CreateTrainingJob request. It can also contain additional
metadata under the metadata tag, but these are ignored by the algorithm. In the following
example, the "AttributeNames are contained in the list ["source-ref", "bounding-box"]:

{"source-ref": "s3://your_bucket/image1.jpg", "bounding-box":{"image_size":[{ "width":
 500, "height": 400, "depth":3}], "annotations":[{"class_id": 0, "left": 111, "top":
 134, "width": 61, "height": 128}, {"class_id": 5, "left": 161, "top": 250, "width":
 80, "height": 50}]}, "bounding-box-metadata":{"class-map":{"0": "dog", "5": "horse"},
 "type": "groundtruth/object-detection"}}
{"source-ref": "s3://your_bucket/image2.jpg", "bounding-box":{"image_size":[{ "width":
 400, "height": 300, "depth":3}], "annotations":[{"class_id": 1, "left": 100, "top":
 120, "width": 43, "height": 78}]}, "bounding-box-metadata":{"class-map":{"1": "cat"},
 "type": "groundtruth/object-detection"}}

Use Built-in Algorithms 3017

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
http://jsonlines.org/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

The order of "AttributeNames" in the input files matters when training the Object Detection
algorithm. It accepts piped data in a specific order, with image first, followed by annotations.
So the "AttributeNames" in this example are provided with "source-ref" first, followed
by "bounding-box". When using Object Detection with Augmented Manifest, the value of
parameter RecordWrapperType must be set as "RecordIO".

For more information on augmented manifest files, see Provide Dataset Metadata to Training Jobs
with an Augmented Manifest File.

Incremental Training

You can also seed the training of a new model with the artifacts from a model that you trained
previously with SageMaker. Incremental training saves training time when you want to train a new
model with the same or similar data. SageMaker object detection models can be seeded only with
another built-in object detection model trained in SageMaker.

To use a pretrained model, in the CreateTrainingJob request, specify the ChannelName as
"model" in the InputDataConfig parameter. Set the ContentType for the model channel to
application/x-sagemaker-model. The input hyperparameters of both the new model and
the pretrained model that you upload to the model channel must have the same settings for
the base_network and num_classes input parameters. These parameters define the network
architecture. For the pretrained model file, use the compressed model artifacts (in .tar.gz format)
output by SageMaker. You can use either RecordIO or image formats for input data.

For more information on incremental training and for instructions on how to use it, see Use
Incremental Training in Amazon SageMaker.

EC2 Instance Recommendation for the Object Detection Algorithm

The object detection algorithm supports P2, P3, G4dn, and G5 GPU instance families. We
recommend using GPU instances with more memory for training with large batch sizes. You can
run the object detection algorithm on multi-GPU and mult-machine settings for distributed
training.

You can use both CPU (such as C5 and M5) and GPU (such as P3 and G4dn) instances for inference.

Object Detection Sample Notebooks

For a sample notebook that shows how to use the SageMaker Object Detection algorithm to train
and host a model on the

Use Built-in Algorithms 3018

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

Caltech Birds (CUB 200 2011) dataset using the Single Shot multibox Detector algorithm, see
Amazon SageMaker Object Detection for Bird Species. For instructions how to create and access
Jupyter notebook instances that you can use to run the example in SageMaker, see Amazon
SageMaker Notebook Instances. Once you have created a notebook instance and opened it, select
the SageMaker Examples tab to see a list of all the SageMaker samples. The object detection
example notebook using the Object Detection algorithm is located in the Introduction to Amazon
Algorithms section. To open a notebook, click on its Use tab and select Create copy.

How Object Detection Works

The object detection algorithm identifies and locates all instances of objects in an image from
a known collection of object categories. The algorithm takes an image as input and outputs the
category that the object belongs to, along with a confidence score that it belongs to the category.
The algorithm also predicts the object's location and scale with a rectangular bounding box.
Amazon SageMaker Object Detection uses the Single Shot multibox Detector (SSD) algorithm that
takes a convolutional neural network (CNN) pretrained for classification task as the base network.
SSD uses the output of intermediate layers as features for detection.

Various CNNs such as VGG and ResNet have achieved great performance on the image classification
task. Object detection in Amazon SageMaker supports both VGG-16 and ResNet-50 as a base
network for SSD. The algorithm can be trained in full training mode or in transfer learning mode.
In full training mode, the base network is initialized with random weights and then trained on user
data. In transfer learning mode, the base network weights are loaded from pretrained models.

The object detection algorithm uses standard data augmentation operations, such as flip, rescale,
and jitter, on the fly internally to help avoid overfitting.

Object Detection Hyperparameters

In the CreateTrainingJob request, you specify the training algorithm that you want to use. You
can also specify algorithm-specific hyperparameters that are used to help estimate the parameters
of the model from a training dataset. The following table lists the hyperparameters provided by
Amazon SageMaker for training the object detection algorithm. For more information about how
object training works, see How Object Detection Works.

Use Built-in Algorithms 3019

http://www.vision.caltech.edu/datasets/cub_200_2011/
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/object_detection_birds/object_detection_birds.html
https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1603.05027.pdf
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

Parameter Name Description

num_classes The number of output classes. This parameter defines the
dimensions of the network output and is typically set to the
number of classes in the dataset.

Required

Valid values: positive integer

num_training_samples The number of training examples in the input dataset.

Note

If there is a mismatch between this value and the
number of samples in the training set, then the
behavior of the lr_scheduler_step parameter will
be undefined and distributed training accuracy may be
affected.

Required

Valid values: positive integer

base_network The base network architecture to use.

Optional

Valid values: 'vgg-16' or 'resnet-50'

Default value: 'vgg-16'

early_stopping True to use early stopping logic during training. False not to
use it.

Optional

Valid values: True or False

Use Built-in Algorithms 3020

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: False

early_stopping_min
_epochs

The minimum number of epochs that must be run before
the early stopping logic can be invoked. It is used only when
early_stopping = True.

Optional

Valid values: positive integer

Default value: 10

early_stopping_pat
ience

The number of epochs to wait before ending training if no
improvement, as defined by the early_stopping_tol
erance hyperparameter, is made in the relevant metric. It is
used only when early_stopping = True.

Optional

Valid values: positive integer

Default value: 5

early_stopping_tol
erance

The tolerance value that the relative improvement in
validation:mAP , the mean average precision (mAP), is
required to exceed to avoid early stopping. If the ratio of the
change in the mAP divided by the previous best mAP is smaller
than the early_stopping_tolerance value set, early
stopping considers that there is no improvement. It is used
only when early_stopping = True.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.0

Use Built-in Algorithms 3021

Amazon SageMaker Developer Guide

Parameter Name Description

image_shape The image size for input images. We rescale the input image to
a square image with this size. We recommend using 300 and
512 for better performance.

Optional

Valid values: positive integer ≥300

Default: 300

epochs The number of training epochs.

Optional

Valid values: positive integer

Default: 30

freeze_layer_pattern The regular expression (regex) for freezing layers in the base
network. For example, if we set freeze_layer_pattern =
"^(conv1_|conv2_).*" , then any layers with a name that
contains "conv1_" or "conv2_" are frozen, which means that
the weights for these layers are not updated during training.
The layer names can be found in the network symbol files
vgg16-symbol.json and resnet-50-symbol.json. Freezing a
layer means that its weights can not be modified further. This
can reduce training time significantly in exchange for modest
losses in accuracy. This technique is commonly used in transfer
learning where the lower layers in the base network do not
need to be retrained.

Optional

Valid values: string

Default: No layers frozen.

Use Built-in Algorithms 3022

http://data.mxnet.io/models/imagenet/vgg/vgg16-symbol.json
http://data.mxnet.io/models/imagenet/resnet/50-layers/resnet-50-symbol.json

Amazon SageMaker Developer Guide

Parameter Name Description

kv_store The weight update synchronization mode used for distribut
ed training. The weights can be updated either synchrono
usly or asynchronously across machines. Synchronous updates
typically provide better accuracy than asynchronous updates
but can be slower. See the Distributed Training MXNet tutorial
for details.

Note

This parameter is not applicable to single machine
training.

Optional

Valid values: 'dist_sync' or 'dist_async'

• 'dist_sync' : The gradients are synchronized after every
batch with all the workers. With 'dist_sync' , batch-
size now means the batch size used on each machine. So if
there are n machines and we use batch size b, then dist_sync
behaves like a single machine with batch size n*b.

• 'dist_async' : Performs asynchronous updates. The
weights are updated whenever gradients are received from
any machine and the weight updates are atomic. However,
the order is not guaranteed.

Default: -

Use Built-in Algorithms 3023

https://mxnet.apache.org/api/faq/distributed_training

Amazon SageMaker Developer Guide

Parameter Name Description

label_width The force padding label width used to sync across training and
validation data. For example, if one image in the data contains
at most 10 objects, and each object's annotation is specified
with 5 numbers, [class_id, left, top, width, height], then the
label_width should be no smaller than (10*5 + header
information length). The header information length is usually
2. We recommend using a slightly larger label_width for
the training, such as 60 for this example.

Optional

Valid values: Positive integer large enough to accommodate
the largest annotation information length in the data.

Default: 350

learning_rate The initial learning rate.

Optional

Valid values: float in (0, 1]

Default: 0.001

lr_scheduler_factor The ratio to reduce learning rate. Used in conjunction with
the lr_scheduler_step parameter defined as lr_new =
lr_old * lr_scheduler_factor .

Optional

Valid values: float in (0, 1)

Default: 0.1

Use Built-in Algorithms 3024

Amazon SageMaker Developer Guide

Parameter Name Description

lr_scheduler_step The epochs at which to reduce the learning rate. The learning
rate is reduced by lr_scheduler_factor at epochs
listed in a comma-delimited string: "epoch1, epoch2, ...". For
example, if the value is set to "10, 20" and the lr_schedu
ler_factor is set to 1/2, then the learning rate is halved
after 10th epoch and then halved again after 20th epoch.

Optional

Valid values: string

Default: empty string

mini_batch_size The batch size for training. In a single-machine multi-gpu
 setting, each GPU handles mini_batch_size /num_gpu
training samples. For the multi-machine training in dist_sync

 mode, the actual batch size is mini_batch_size *number
of machines. A large mini_batch_size usually leads to
faster training, but it may cause out of memory problem. The
memory usage is related to mini_batch_size , image_sha
pe , and base_network architecture. For example, on a
single p3.2xlarge instance, the largest mini_batch_size
without an out of memory error is 32 with the base_network
set to "resnet-50" and an image_shape of 300. With the
same instance, you can use 64 as the mini_batch_size
with the base network vgg-16 and an image_shape of 300.

Optional

Valid values: positive integer

Default: 32

Use Built-in Algorithms 3025

Amazon SageMaker Developer Guide

Parameter Name Description

momentum The momentum for sgd. Ignored for other optimizers.

Optional

Valid values: float in (0, 1]

Default: 0.9

nms_threshold The non-maximum suppression threshold.

Optional

Valid values: float in (0, 1]

Default: 0.45

optimizer The optimizer types. For details on optimizer values, see
MXNet's API.

Optional

Valid values: ['sgd', 'adam', 'rmsprop', 'adadelta']

Default: 'sgd'

overlap_threshold The evaluation overlap threshold.

Optional

Valid values: float in (0, 1]

Default: 0.5

Use Built-in Algorithms 3026

https://mxnet.apache.org/api/python/docs/api/

Amazon SageMaker Developer Guide

Parameter Name Description

use_pretrained_model Indicates whether to use a pre-trained model for training. If set
to 1, then the pre-trained model with corresponding architect
ure is loaded and used for training. Otherwise, the network is
trained from scratch.

Optional

Valid values: 0 or 1

Default: 1

weight_decay The weight decay coefficient for sgd and rmsprop. Ignored for
other optimizers.

Optional

Valid values: float in (0, 1)

Default: 0.0005

Tune an Object Detection Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics Computed by the Object Detection Algorithm

The object detection algorithm reports on a single metric during training: validation:mAP. When
tuning a model, choose this metric as the objective metric.

Use Built-in Algorithms 3027

Amazon SageMaker Developer Guide

Metric Name Description Optimization
Direction

validation:mAP Mean Average Precision (mAP) computed on
the validation set.

Maximize

Tunable Object Detection Hyperparameters

Tune the Amazon SageMaker object detection model with the following hyperparameters. The
hyperparameters that have the greatest impact on the object detection objective metric are:
mini_batch_size, learning_rate, and optimizer.

Parameter Name Parameter Type Recommended
Ranges

learning_rate ContinuousParameterRange MinValue: 1e-6,
MaxValue: 0.5

mini_batch_size IntegerParameterRanges MinValue: 8,
MaxValue: 64

momentum ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.999

optimizer CategoricalParameterRanges ['sgd', 'adam',
'rmsprop', 'adadelta']

weight_decay ContinuousParameterRange MinValue: 0.0,
MaxValue: 0.999

Object Detection Request and Response Formats

Request Format

Query a trained model by using the model's endpoint. The endpoint takes .jpg and .png image
formats with image/jpeg and image/png content-types.

Use Built-in Algorithms 3028

Amazon SageMaker Developer Guide

Response Formats

The response is the class index with a confidence score and bounding box coordinates for all
objects within the image encoded in JSON format. The following is an example of response .json
file:

{"prediction":[
 [4.0, 0.86419455409049988, 0.3088374733924866, 0.07030484080314636,
 0.7110607028007507, 0.9345266819000244],
 [0.0, 0.73376623392105103, 0.5714187026023865, 0.40427327156066895,
 0.827075183391571, 0.9712159633636475],
 [4.0, 0.32643985450267792, 0.3677481412887573, 0.034883320331573486,
 0.6318609714508057, 0.5967587828636169],
 [8.0, 0.22552496790885925, 0.6152569651603699, 0.5722782611846924, 0.882301390171051,
 0.8985623121261597],
 [3.0, 0.42260299175977707, 0.019305512309074402, 0.08386176824569702,
 0.39093565940856934, 0.9574796557426453]
]}

Each row in this .json file contains an array that represents a detected object. Each of these object
arrays consists of a list of six numbers. The first number is the predicted class label. The second
number is the associated confidence score for the detection. The last four numbers represent the
bounding box coordinates [xmin, ymin, xmax, ymax]. These output bounding box corner indices
are normalized by the overall image size. Note that this encoding is different than that use by the
input .json format. For example, in the first entry of the detection result, 0.3088374733924866 is
the left coordinate (x-coordinate of upper-left corner) of the bounding box as a ratio of the overall
image width, 0.07030484080314636 is the top coordinate (y-coordinate of upper-left corner)
of the bounding box as a ratio of the overall image height, 0.7110607028007507 is the right
coordinate (x-coordinate of lower-right corner) of the bounding box as a ratio of the overall image
width, and 0.9345266819000244 is the bottom coordinate (y-coordinate of lower-right corner) of
the bounding box as a ratio of the overall image height.

To avoid unreliable detection results, you might want to filter out the detection results with low
confidence scores. In the object detection sample notebook, we provide examples of scripts that
use a threshold to remove low confidence detections and to plot bounding boxes on the original
images.

For batch transform, the response is in JSON format, where the format is identical to the JSON
format described above. The detection results of each image is represented as a JSON file. For
example:

Use Built-in Algorithms 3029

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/object_detection_birds/object_detection_birds.ipynb

Amazon SageMaker Developer Guide

{"prediction": [[label_id, confidence_score, xmin, ymin, xmax, ymax], [label_id,
 confidence_score, xmin, ymin, xmax, ymax]]}

For more details on training and inference, see the Object Detection Sample Notebooks.

OUTPUT: JSON Response Format

accept: application/json;annotation=1

{
 "image_size": [
 {
 "width": 500,
 "height": 400,
 "depth": 3
 }
],
 "annotations": [
 {
 "class_id": 0,
 "score": 0.943,
 "left": 111,
 "top": 134,
 "width": 61,
 "height": 128
 },
 {
 "class_id": 0,
 "score": 0.0013,
 "left": 161,
 "top": 250,
 "width": 79,
 "height": 143
 },
 {
 "class_id": 1,
 "score": 0.0133,
 "left": 101,
 "top": 185,
 "width": 42,
 "height": 130
 }
]

Use Built-in Algorithms 3030

Amazon SageMaker Developer Guide

}

Object Detection - TensorFlow

The Amazon SageMaker Object Detection - TensorFlow algorithm is a supervised learning
algorithm that supports transfer learning with many pretrained models from the TensorFlow
Model Garden. Use transfer learning to fine-tune one of the available pretrained models on your
own dataset, even if a large amount of image data is not available. The object detection algorithm
takes an image as input and outputs a list of bounding boxes. Training datasets must consist of
images in .jpg, .jpeg, or .png format.

Topics

• How to use the SageMaker Object Detection - TensorFlow algorithm

• Input and output interface for the Object Detection - TensorFlow algorithm

• Amazon EC2 instance recommendation for the Object Detection - TensorFlow algorithm

• Object Detection - TensorFlow sample notebooks

• How Object Detection - TensorFlow Works

• TensorFlow Models

• Object Detection - TensorFlow Hyperparameters

• Tune an Object Detection - TensorFlow model

How to use the SageMaker Object Detection - TensorFlow algorithm

You can use Object Detection - TensorFlow as an Amazon SageMaker built-in algorithm. The
following section describes how to use Object Detection - TensorFlow with the SageMaker Python
SDK. For information on how to use Object Detection - TensorFlow from the Amazon SageMaker
Studio Classic UI, see SageMaker JumpStart.

The Object Detection - TensorFlow algorithm supports transfer learning using any of the
compatible pretrained TensorFlow models. For a list of all available pretrained models, see
TensorFlow Models. Every pretrained model has a unique model_id. The following example uses
ResNet50 (model_id: tensorflow-od1-ssd-resnet50-v1-fpn-640x640-coco17-tpu-8) to
fine-tune on a custom dataset. The pretrained models are all pre-downloaded from the TensorFlow
Hub and stored in Amazon S3 buckets so that training jobs can run in network isolation. Use these
pre-generated model training artifacts to construct a SageMaker Estimator.

Use Built-in Algorithms 3031

https://github.com/tensorflow/models
https://github.com/tensorflow/models

Amazon SageMaker Developer Guide

First, retrieve the Docker image URI, training script URI, and pretrained model URI. Then,
change the hyperparameters as you see fit. You can see a Python dictionary of all available
hyperparameters and their default values with hyperparameters.retrieve_default. For
more information, see Object Detection - TensorFlow Hyperparameters. Use these values to
construct a SageMaker Estimator.

Note

Default hyperparameter values are different for different models. For example, for larger
models, the default number of epochs is smaller.

This example uses the PennFudanPed dataset, which contains images of pedestriants in the street.
We pre-downloaded the dataset and made it available with Amazon S3. To fine-tune your model,
call .fit using the Amazon S3 location of your training dataset.

from sagemaker import image_uris, model_uris, script_uris, hyperparameters
from sagemaker.estimator import Estimator

model_id, model_version = "tensorflow-od1-ssd-resnet50-v1-fpn-640x640-coco17-tpu-8",
 "*"
training_instance_type = "ml.p3.2xlarge"

Retrieve the Docker image
train_image_uri =
 image_uris.retrieve(model_id=model_id,model_version=model_version,image_scope="training",instance_type=training_instance_type,region=None,framework=None)

Retrieve the training script
train_source_uri = script_uris.retrieve(model_id=model_id, model_version=model_version,
 script_scope="training")

Retrieve the pretrained model tarball for transfer learning
train_model_uri = model_uris.retrieve(model_id=model_id, model_version=model_version,
 model_scope="training")

Retrieve the default hyperparameters for fine-tuning the model
hyperparameters = hyperparameters.retrieve_default(model_id=model_id,
 model_version=model_version)

[Optional] Override default hyperparameters with custom values
hyperparameters["epochs"] = "5"

Use Built-in Algorithms 3032

https://www.cis.upenn.edu/~jshi/ped_html/#pub1

Amazon SageMaker Developer Guide

Sample training data is available in this bucket
training_data_bucket = f"jumpstart-cache-prod-{aws_region}"
training_data_prefix = "training-datasets/PennFudanPed_COCO_format/"

training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}"

output_bucket = sess.default_bucket()
output_prefix = "jumpstart-example-od-training"
s3_output_location = f"s3://{output_bucket}/{output_prefix}/output"

Create an Estimator instance
tf_od_estimator = Estimator(
 role=aws_role,
 image_uri=train_image_uri,
 source_dir=train_source_uri,
 model_uri=train_model_uri,
 entry_point="transfer_learning.py",
 instance_count=1,
 instance_type=training_instance_type,
 max_run=360000,
 hyperparameters=hyperparameters,
 output_path=s3_output_location,
)

Launch a training job
tf_od_estimator.fit({"training": training_dataset_s3_path}, logs=True)

For more information about how to use the SageMaker Object Detection - TensorFlow algorithm
for transfer learning on a custom dataset, see the Introduction to SageMaker TensorFlow - Object
Detection notebook.

Input and output interface for the Object Detection - TensorFlow algorithm

Each of the pretrained models listed in TensorFlow Models can be fine-tuned to any dataset with
any number of image classes. Be mindful of how to format your training data for input to the
Object Detection - TensorFlow model.

• Training data input format: Your training data should be a directory with an images
subdirectory and an annotations.json file.

Use Built-in Algorithms 3033

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/object_detection_tensorflow/Amazon_Tensorflow_Object_Detection.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/object_detection_tensorflow/Amazon_Tensorflow_Object_Detection.ipynb

Amazon SageMaker Developer Guide

The following is an example of an input directory structure. The input directory
should be hosted in an Amazon S3 bucket with a path similar to the following:
s3://bucket_name/input_directory/. Note that the trailing / is required.

input_directory
 |--images
 |--abc.png
 |--def.png
 |--annotations.json

The annotations.json file should contain information for bounding boxes and their class labels
in the form of a dictionary "images" and "annotations" keys. The value for the "images" key
should be a list of dictionaries. There should be one dictionary for each image with the following
information: {"file_name": image_name, "height": height, "width": width, "id":
image_id}. The value for the "annotations" key should also be a list of dictionaries. There
should be one dictionary for each bounding box with the following information: {"image_id":
image_id, "bbox": [xmin, ymin, xmax, ymax], "category_id": bbox_label}.

After training, a label mapping file and trained model are saved to your Amazon S3 bucket.

Incremental training

You can seed the training of a new model with artifacts from a model that you trained previously
with SageMaker. Incremental training saves training time when you want to train a new model with
the same or similar data.

Note

You can only seed a SageMaker Object Detection - TensorFlow model with another Object
Detection - TensorFlow model trained in SageMaker.

You can use any dataset for incremental training, as long as the set of classes remains the same.
The incremental training step is similar to the fine-tuning step, but instead of starting with a
pretrained model, you start with an existing fine-tuned model. For more information about how to
use incremental training with the SageMaker Object Detection - TensorFlow, see the Introduction
to SageMaker TensorFlow - Object Detection notebook.

Use Built-in Algorithms 3034

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/object_detection_tensorflow/Amazon_Tensorflow_Object_Detection.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/object_detection_tensorflow/Amazon_Tensorflow_Object_Detection.ipynb

Amazon SageMaker Developer Guide

Inference with the Object Detection - TensorFlow algorithm

You can host the fine-tuned model that results from your TensorFlow Object Detection training for
inference. Any input image for inference must be in .jpg, .jpeg, or .png format and be content
type application/x-image. The Object Detection - TensorFlow algorithm resizes input images
automatically.

Running inference results in bounding boxes, predicted classes, and the scores of each prediction
encoded in JSON format. The Object Detection - TensorFlow model processes a single image per
request and outputs only one line. The following is an example of a JSON format response:

accept: application/json;verbose

{"normalized_boxes":[[xmin1, xmax1, ymin1, ymax1],....],
 "classes":[classidx1, class_idx2,...],
 "scores":[score_1, score_2,...],
 "labels": [label1, label2, ...],
 "tensorflow_model_output":<original output of the model>}

If accept is set to application/json, then the model only outputs normalized boxes, classes,
and scores.

Amazon EC2 instance recommendation for the Object Detection - TensorFlow algorithm

The Object Detection - TensorFlow algorithm supports all GPU instances for training, including:

• ml.p2.xlarge

• ml.p2.16xlarge

• ml.p3.2xlarge

• ml.p3.16xlarge

We recommend GPU instances with more memory for training with large batch sizes. Both CPU
(such as M5) and GPU (P2 or P3) instances can be used for inference. For a comprehensive list of
SageMaker training and inference instances across AWS Regions, see Amazon SageMaker Pricing.

Object Detection - TensorFlow sample notebooks

For more information about how to use the SageMaker Object Detection - TensorFlow algorithm
for transfer learning on a custom dataset, see the Introduction to SageMaker TensorFlow - Object
Detection notebook.

Use Built-in Algorithms 3035

https://aws.amazon.com/sagemaker/pricing/
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/object_detection_tensorflow/Amazon_Tensorflow_Object_Detection.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/object_detection_tensorflow/Amazon_Tensorflow_Object_Detection.ipynb

Amazon SageMaker Developer Guide

For instructions how to create and access Jupyter notebook instances that you can use to run
the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have created
a notebook instance and opened it, select the SageMaker Examples tab to see a list of all the
SageMaker samples. To open a notebook, choose its Use tab and choose Create copy.

How Object Detection - TensorFlow Works

The Object Detection - TensorFlow algorithm takes an image as input and predicts bounding
boxes and object labels. Various deep learning networks such as MobileNet, ResNet, Inception,
and EfficientNet are highly accurate for object detection. There are also deep learning networks
that are trained on large image datasets, such as Common Objects in Context (COCO), which has
328,000 images. After a network is trained with COCO data, you can then fine-tune the network
on a dataset with a particular focus to perform more specific object detection tasks. The Amazon
SageMaker Object Detection - TensorFlow algorithm supports transfer learning on many pretrained
models that are available in the TensorFlow Model Garden.

According to the number of class labels in your training data, an object detection layer is attached
to the pretrained TensorFlow model of your choice. You can then fine-tune either the entire
network (including the pretrained model) or only the top classification layer on new training data.
With this method of transfer learning, training with smaller datasets is possible.

TensorFlow Models

The following pretrained models are available to use for transfer learning with the Object
Detection - TensorFlow algorithm.

The following models vary significantly in size, number of model parameters, training time,
and inference latency for any given dataset. The best model for your use case depends on the
complexity of your fine-tuning dataset and any requirements that you have on training time,
inference latency, or model accuracy.

Model Name model_id Source

ResNet50 V1 FPN 640 tensorflow-od1-ssd
-resnet50-v1-fpn-6
40x640-coco17-tpu-8

TensorFlow Model Garden
link

Use Built-in Algorithms 3036

http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz

Amazon SageMaker Developer Guide

Model Name model_id Source

EfficientDet D0 512 tensorflow-od1-ssd
-efficientdet-d0-5
12x512-coco17-tpu-8

TensorFlow Model Garden
link

EfficientDet D1 640 tensorflow-od1-ssd
-efficientdet-d1-6
40x640-coco17-tpu-8

TensorFlow Model Garden
link

EfficientDet D2 768 tensorflow-od1-ssd
-efficientdet-d2-7
68x768-coco17-tpu-8

TensorFlow Model Garden
link

EfficientDet D3 896 tensorflow-od1-ssd
-efficientdet-d3-8
96x896-coco17-tpu-
32

TensorFlow Model Garden
link

MobileNet V1 FPN 640 tensorflow-od1-ssd
-mobilenet-v1-fpn-
640x640-coco17-tpu
-8

TensorFlow Model Garden
link

MobileNet V2 FPNLite 320 tensorflow-od1-ssd
-mobilenet-v2-fpnl
ite-320x320-coco17-
tpu-8

TensorFlow Model Garden
link

MobileNet V2 FPNLite 640 tensorflow-od1-ssd
-mobilenet-v2-fpnl
ite-640x640-coco17-
tpu-8

TensorFlow Model Garden
link

ResNet50 V1 FPN 1024 tensorflow-od1-ssd
-resnet50-v1-fpn-1
024x1024-coco17-tp
u-8

TensorFlow Model Garden
link

Use Built-in Algorithms 3037

http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d0_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d0_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d1_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d1_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d2_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d2_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d3_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d3_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_1024x1024_coco17_tpu-8.tar.gz

Amazon SageMaker Developer Guide

Model Name model_id Source

ResNet101 V1 FPN 640 tensorflow-od1-ssd
-resnet101-v1-fpn-
640x640-coco17-tpu
-8

TensorFlow Model Garden
link

ResNet101 V1 FPN 1024 tensorflow-od1-ssd
-resnet101-v1-fpn-
1024x1024-coco17-t
pu-8

TensorFlow Model Garden
link

ResNet152 V1 FPN 640 tensorflow-od1-ssd
-resnet152-v1-fpn-
640x640-coco17-tpu
-8

TensorFlow Model Garden
link

ResNet152 V1 FPN 1024 tensorflow-od1-ssd
-resnet152-v1-fpn-
1024x1024-coco17-t
pu-8

TensorFlow Model Garden
link

Object Detection - TensorFlow Hyperparameters

Hyperparameters are parameters that are set before a machine learning model begins learning.
The following hyperparameters are supported by the Amazon SageMaker built-in Object Detection
- TensorFlow algorithm. See Tune an Object Detection - TensorFlow model for information on
hyperparameter tuning.

Parameter Name Description

batch_size The batch size for training.

Valid values: positive integer.

Default value: 3.

Use Built-in Algorithms 3038

http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_1024x1024_coco17_tpu-8.tar.gz

Amazon SageMaker Developer Guide

Parameter Name Description

beta_1 The beta1 for the "adam" optimizer. Represents the exponenti
al decay rate for the first moment estimates. Ignored for other
optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.9.

beta_2 The beta2 for the "adam" optimizer. Represents the exponenti
al decay rate for the second moment estimates. Ignored for
other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.999.

early_stopping Set to "True" to use early stopping logic during training. If
"False", early stopping is not used.

Valid values: string, either: ("True" or "False").

Default value: "False".

early_stopping_min
_delta

The minimum change needed to qualify as an improveme
nt. An absolute change less than the value of early_sto
pping_min_delta does not qualify as improvement. Used
only when early_stopping is set to "True".

Valid values: float, range: [0.0, 1.0].

Default value: 0.0.

early_stopping_pat
ience

The number of epochs to continue training with no improveme
nt. Used only when early_stopping is set to "True".

Valid values: positive integer.

Default value: 5.

Use Built-in Algorithms 3039

Amazon SageMaker Developer Guide

Parameter Name Description

epochs The number of training epochs.

Valid values: positive integer.

Default value: 5 for smaller models, 1 for larger models.

epsilon The epsilon for "adam", "rmsprop" , "adadelta" , and
"adagrad" optimizers. Usually set to a small value to avoid
division by 0. Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 1e-7.

initial_accumulato
r_value

The starting value for the accumulators, or the per-parameter
momentum values, for the "adagrad" optimizer. Ignored for
other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.1.

learning_rate The optimizer learning rate.

Valid values: float, range: [0.0, 1.0].

Default value: 0.001.

momentum The momentum for the "sgd" and "nesterov" optimizers.
Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.9.

Use Built-in Algorithms 3040

Amazon SageMaker Developer Guide

Parameter Name Description

optimizer The optimizer type. For more information, see Optimizers in
the TensorFlow documentation.

Valid values: string, any of the following: ("adam", "sgd",
"nesterov" , "rmsprop" , "adagrad" , "adadelta").

Default value: "adam".

reinitialize_top_l
ayer

If set to "Auto", the top classification layer parameters are
re-initialized during fine-tuning. For incremental training, top
classification layer parameters are not re-initialized unless set
to "True".

Valid values: string, any of the following: ("Auto", "True" or
"False").

Default value: "Auto".

rho The discounting factor for the gradient of the "adadelta"
and "rmsprop" optimizers. Ignored for other optimizers.

Valid values: float, range: [0.0, 1.0].

Default value: 0.95.

train_only_on_top_
layer

If "True", only the top classification layer parameters are fine-
tuned. If "False", all model parameters are fine-tuned.

Valid values: string, either: ("True" or "False").

Default value: "False".

Tune an Object Detection - TensorFlow model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches

Use Built-in Algorithms 3041

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

Amazon SageMaker Developer Guide

the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

For more information about model tuning, see Perform Automatic Model Tuning with SageMaker.

Metrics computed by the Object Detection - TensorFlow algorithm

Refer to the following chart to find which metrics are computed by the Object Detection -
TensorFlow algorithm.

Metric Name Description Optimization
Direction

Regex Pattern

validatio
n:localiz
ation_loss

The localization loss for box
prediction.

Minimize Val_local
ization=(
[0-9\\.]+)

Tunable Object Detection - TensorFlow hyperparameters

Tune an object detection model with the following hyperparameters. The hyperparameters
that have the greatest impact on object detection objective metrics are: batch_size,
learning_rate, and optimizer. Tune the optimizer-related hyperparameters, such as
momentum, regularizers_l2, beta_1, beta_2, and eps based on the selected optimizer. For
example, use beta_1 and beta_2 only when adam is the optimizer.

For more information about which hyperparameters are used for each optimizer, see Object
Detection - TensorFlow Hyperparameters.

Parameter Name Parameter Type Recommended
Ranges

batch_size IntegerParameterRanges MinValue: 8,
MaxValue: 512

beta_1 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

beta_2 ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.999

Use Built-in Algorithms 3042

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

eps ContinuousParameterRanges MinValue: 1e-8,
MaxValue: 1.0

learning_rate ContinuousParameterRanges MinValue: 1e-6,
MaxValue: 0.5

momentum ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

optimizer CategoricalParameterRanges ['sgd', ‘adam’,
‘rmsprop’, 'nesterov',
'adagrad', 'adadelta']

regularizers_l2 ContinuousParameterRanges MinValue: 0.0,
MaxValue: 0.999

train_onl
y_on_top_layer

CategoricalParameterRanges ['True', 'False']

initial_a
ccumulato
r_value

CategoricalParameterRanges MinValue: 0.0,
MaxValue: 0.999

Semantic Segmentation Algorithm

The SageMaker semantic segmentation algorithm provides a fine-grained, pixel-level approach to
developing computer vision applications. It tags every pixel in an image with a class label from a
predefined set of classes. Tagging is fundamental for understanding scenes, which is critical to an
increasing number of computer vision applications, such as self-driving vehicles, medical imaging
diagnostics, and robot sensing.

For comparison, the SageMaker Image Classification - MXNet is a supervised learning algorithm
that analyzes only whole images, classifying them into one of multiple output categories. The
Object Detection - MXNet is a supervised learning algorithm that detects and classifies all instances

Use Built-in Algorithms 3043

Amazon SageMaker Developer Guide

of an object in an image. It indicates the location and scale of each object in the image with a
rectangular bounding box.

Because the semantic segmentation algorithm classifies every pixel in an image, it also provides
information about the shapes of the objects contained in the image. The segmentation output is
represented as a grayscale image, called a segmentation mask. A segmentation mask is a grayscale
image with the same shape as the input image.

The SageMaker semantic segmentation algorithm is built using the MXNet Gluon framework and
the Gluon CV toolkit. It provides you with a choice of three built-in algorithms to train a deep
neural network. You can use the Fully-Convolutional Network (FCN) algorithm , Pyramid Scene
Parsing (PSP) algorithm, or DeepLabV3.

Each of the three algorithms has two distinct components:

• The backbone (or encoder)—A network that produces reliable activation maps of features.

• The decoder—A network that constructs the segmentation mask from the encoded activation
maps.

You also have a choice of backbones for the FCN, PSP, and DeepLabV3 algorithms: ResNet50
or ResNet101. These backbones include pretrained artifacts that were originally trained on the
ImageNet classification task. You can fine-tune these backbones for segmentation using your own
data. Or, you can initialize and train these networks from scratch using only your own data. The
decoders are never pretrained.

To deploy the trained model for inference, use the SageMaker hosting service. During inference,
you can request the segmentation mask either as a PNG image or as a set of probabilities for each
class for each pixel. You can use these masks as part of a larger pipeline that includes additional
downstream image processing or other applications.

Topics

• Semantic Segmentation Sample Notebooks

• Input/Output Interface for the Semantic Segmentation Algorithm

• EC2 Instance Recommendation for the Semantic Segmentation Algorithm

• Semantic Segmentation Hyperparameters

• Tuning a Semantic Segmentation Model

Use Built-in Algorithms 3044

https://github.com/dmlc/gluon-cv
https://github.com/dmlc/gluon-cv
https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1612.01105
https://arxiv.org/abs/1612.01105
https://arxiv.org/abs/1706.05587
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://www.image-net.org/

Amazon SageMaker Developer Guide

Semantic Segmentation Sample Notebooks

For a sample Jupyter notebook that uses the SageMaker semantic segmentation algorithm to
train a model and deploy it to perform inferences, see the Semantic Segmentation Example. For
instructions on how to create and access Jupyter notebook instances that you can use to run the
example in SageMaker, see Amazon SageMaker Notebook Instances.

To see a list of all of the SageMaker samples, create and open a notebook instance, and choose
the SageMaker Examples tab. The example semantic segmentation notebooks are located under
Introduction to Amazon algorithms. To open a notebook, choose its Use tab, and choose Create
copy.

Input/Output Interface for the Semantic Segmentation Algorithm

SageMaker semantic segmentation expects the customer's training dataset to be on Amazon
Simple Storage Service (Amazon S3). Once trained, it produces the resulting model artifacts on
Amazon S3. The input interface format for the SageMaker semantic segmentation is similar to that
of most standardized semantic segmentation benchmarking datasets. The dataset in Amazon S3
is expected to be presented in two channels, one for train and one for validation using four
directories, two for images and two for annotations. Annotations are expected to be uncompressed
PNG images. The dataset might also have a label map that describes how the annotation mappings
are established. If not, the algorithm uses a default. It also supports the augmented manifest
image format (application/x-image) for training in Pipe input mode straight from Amazon S3.
For inference, an endpoint accepts images with an image/jpeg content type.

How Training Works

The training data is split into four directories: train, train_annotation, validation,
and validation_annotation. There is a channel for each of these directories. The dataset
also expected to have one label_map.json file per channel for train_annotation and
validation_annotation respectively. If you don't provide these JSON files, SageMaker provides
the default set label map.

The dataset specifying these files should look similar to the following example:

s3://bucket_name
 |
 |- train
 |
 | - 0000.jpg
 | - coffee.jpg

Use Built-in Algorithms 3045

https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/semantic_segmentation_pascalvoc/semantic_segmentation_pascalvoc.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Amazon SageMaker Developer Guide

 |- validation
 |
 | - 00a0.jpg
 | - bananna.jpg
 |- train_annotation
 |
 | - 0000.png
 | - coffee.png
 |- validation_annotation
 |
 | - 00a0.png
 | - bananna.png
 |- label_map
 | - train_label_map.json
 | - validation_label_map.json

Every JPG image in the train and validation directories has a corresponding PNG label image with
the same name in the train_annotation and validation_annotation directories. This
naming convention helps the algorithm to associate a label with its corresponding image during
training. The train, train_annotation, validation, and validation_annotation channels
are mandatory. The annotations are single-channel PNG images. The format works as long as the
metadata (modes) in the image helps the algorithm read the annotation images into a single-
channel 8-bit unsigned integer. For more information on our support for modes, see the Python
Image Library documentation. We recommend using the 8-bit pixel, true color P mode.

The image that is encoded is a simple 8-bit integer when using modes. To get from this mapping
to a map of a label, the algorithm uses one mapping file per channel, called the label map. The
label map is used to map the values in the image with actual label indices. In the default label
map, which is provided by default if you don’t provide one, the pixel value in an annotation matrix
(image) directly index the label. These images can be grayscale PNG files or 8-bit indexed PNG files.
The label map file for the unscaled default case is the following:

{
 "scale": "1"
}

To provide some contrast for viewing, some annotation software scales the label images by a
constant amount. To support this, the SageMaker semantic segmentation algorithm provides
a rescaling option to scale down the values to actual label values. When scaling down doesn’t
convert the value to an appropriate integer, the algorithm defaults to the greatest integer less than

Use Built-in Algorithms 3046

https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes
https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes

Amazon SageMaker Developer Guide

or equal to the scale value. The following code shows how to set the scale value to rescale the label
values:

{
 "scale": "3"
}

The following example shows how this "scale" value is used to rescale the encoded_label
values of the input annotation image when they are mapped to the mapped_label values to be
used in training. The label values in the input annotation image are 0, 3, 6, with scale 3, so they are
mapped to 0, 1, 2 for training:

encoded_label = [0, 3, 6]
mapped_label = [0, 1, 2]

In some cases, you might need to specify a particular color mapping for each class. Use the map
option in the label mapping as shown in the following example of a label_map file:

{
 "map": {
 "0": 5,
 "1": 0,
 "2": 2
 }
}

This label mapping for this example is:

encoded_label = [0, 5, 2]
mapped_label = [1, 0, 2]

With label mappings, you can use different annotation systems and annotation software to obtain
data without a lot of preprocessing. You can provide one label map per channel. The files for a
label map in the label_map channel must follow the naming conventions for the four directory
structure. If you don't provide a label map, the algorithm assumes a scale of 1 (the default).

Training with the Augmented Manifest Format

The augmented manifest format enables you to do training in Pipe mode using image files without
needing to create RecordIO files. The augmented manifest file contains data objects and should be

Use Built-in Algorithms 3047

Amazon SageMaker Developer Guide

in JSON Lines format, as described in the CreateTrainingJob request. Each line in the manifest
is an entry containing the Amazon S3 URI for the image and the URI for the annotation image.

Each JSON object in the manifest file must contain a source-ref key. The source-ref key
should contain the value of the Amazon S3 URI to the image. The labels are provided under the
AttributeNames parameter value as specified in the CreateTrainingJob request. It can also
contain additional metadata under the metadata tag, but these are ignored by the algorithm.
In the example below, the AttributeNames are contained in the list of image and annotation
references ["source-ref", "city-streets-ref"]. These names must have -ref appended
to them. When using the Semantic Segmentation algorithm with Augmented Manifest, the value
of the RecordWrapperType parameter must be "RecordIO" and value of the ContentType
parameter must be application/x-recordio.

{"source-ref": "S3 bucket location", "city-streets-ref": "S3 bucket location", "city-
streets-metadata": {"job-name": "label-city-streets", }}

For more information on augmented manifest files, see Provide Dataset Metadata to Training Jobs
with an Augmented Manifest File.

Incremental Training

You can also seed the training of a new model with a model that you trained previously using
SageMaker. This incremental training saves training time when you want to train a new model with
the same or similar data. Currently, incremental training is supported only for models trained with
the built-in SageMaker Semantic Segmentation.

To use your own pre-trained model, specify the ChannelName as "model" in the
InputDataConfig for the CreateTrainingJob request. Set the ContentType for the model
channel to application/x-sagemaker-model. The backbone, algorithm, crop_size,
and num_classes input parameters that define the network architecture must be consistently
specified in the input hyperparameters of the new model and the pre-trained model that you
upload to the model channel. For the pretrained model file, you can use the compressed (.tar.gz)
artifacts from SageMaker outputs. You can only use Image formats for input data. For more
information on incremental training and for instructions on how to use it, see Use Incremental
Training in Amazon SageMaker.

Produce Inferences

To query a trained model that is deployed to an endpoint, you need to provide an image and an
AcceptType that denotes the type of output required. The endpoint takes JPEG images with an

Use Built-in Algorithms 3048

http://jsonlines.org/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

image/jpeg content type. If you request an AcceptType of image/png, the algorithm outputs a
PNG file with a segmentation mask in the same format as the labels themselves. If you request an
accept type ofapplication/x-recordio-protobuf, the algorithm returns class probabilities
encoded in recordio-protobuf format. The latter format outputs a 3D tensor where the third
dimension is the same size as the number of classes. This component denotes the probability of
each class label for each pixel.

EC2 Instance Recommendation for the Semantic Segmentation Algorithm

The SageMaker semantic segmentation algorithm only supports GPU instances for training, and
we recommend using GPU instances with more memory for training with large batch sizes. The
algorithm can be trained using P2, P3, G4dn, or G5 instances in single machine configurations.

For inference, you can use either CPU instances (such as C5 and M5) and GPU instances (such as P3
and G4dn) or both. For information about the instance types that provide varying combinations
of CPU, GPU, memory, and networking capacity for inference, see Amazon SageMaker ML Instance
Types.

Semantic Segmentation Hyperparameters

The following tables list the hyperparameters supported by the Amazon SageMaker semantic
segmentation algorithm for network architecture, data inputs, and training. You specify Semantic
Segmentation for training in the AlgorithmName of the CreateTrainingJob request.

Network Architecture Hyperparameters

Parameter Name Description

backbone The backbone to use for the algorithm's encoder component.

Optional

Valid values: resnet-50 , resnet-101

Default value: resnet-50

use_pretr
ained_model

Whether a pretrained model is to be used for the backbone.

Optional

Valid values: True, False

Use Built-in Algorithms 3049

https://aws.amazon.com/sagemaker/pricing/instance-types/
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: True

algorithm The algorithm to use for semantic segmentation.

Optional

Valid values:

• fcn: Fully-Convolutional Network (FCN) algorithm

• psp: Pyramid Scene Parsing (PSP) algorithm

• deeplab: DeepLab V3 algorithm

Default value: fcn

Data Hyperparameters

Parameter Name Description

num_classes The number of classes to segment.

Required

Valid values: 2 ≤ positive integer ≤ 254

num_train
ing_samples

The number of samples in the training data. The algorithm uses this
value to set up the learning rate scheduler.

Required

Valid values: positive integer

base_size Defines how images are rescaled before cropping. Images are
rescaled such that the long size length is set to base_size
multiplied by a random number from 0.5 to 2.0, and the short size is
computed to preserve the aspect ratio.

Optional

Use Built-in Algorithms 3050

https://arxiv.org/abs/1605.06211
https://arxiv.org/abs/1612.01105
https://arxiv.org/abs/1706.05587

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: positive integer > 16

Default value: 520

crop_size The image size for input during training. We randomly rescale the
input image based on base_size , and then take a random square
crop with side length equal to crop_size . The crop_size will
be automatically rounded up to multiples of 8.

Optional

Valid values: positive integer > 16

Default value: 240

Training Hyperparameters

Parameter Name Description

early_stopping Whether to use early stopping logic during training.

Optional

Valid values: True, False

Default value: False

early_sto
pping_min_epochs

The minimum number of epochs that must be run.

Optional

Valid values: integer

Default value: 5

early_sto
pping_patience

The number of epochs that meet the tolerance for lower performan
ce before the algorithm enforces an early stop.

Optional

Use Built-in Algorithms 3051

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: integer

Default value: 4

early_sto
pping_tolerance

If the relative improvement of the score of the training job, the
mIOU, is smaller than this value, early stopping considers the epoch
as not improved. This is used only when early_stopping = True.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.0

epochs The number of epochs with which to train.

Optional

Valid values: positive integer

Default value: 10

gamma1 The decay factor for the moving average of the squared gradient for
rmsprop. Used only for rmsprop.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.9

gamma2 The momentum factor for rmsprop.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.9

Use Built-in Algorithms 3052

Amazon SageMaker Developer Guide

Parameter Name Description

learning_rate The initial learning rate.

Optional

Valid values: 0 < float ≤ 1

Default value: 0.001

lr_scheduler The shape of the learning rate schedule that controls its decrease
over time.

Optional

Valid values:

• step: A stepwise decay, where the learning rate is reduced
(multiplied) by the lr_scheduler_factor after epochs
specified by lr_scheduler_step .

• poly: A smooth decay using a polynomial function.

• cosine: A smooth decay using a cosine function.

Default value: poly

lr_schedu
ler_factor

If lr_scheduler is set to step, the ratio by which to reduce
(multipy) the learning_rate after each of the epochs specified by
the lr_scheduler_step . Otherwise, ignored.

Optional

Valid values: 0 ≤ float ≤ 1

Default value: 0.1

Use Built-in Algorithms 3053

Amazon SageMaker Developer Guide

Parameter Name Description

lr_scheduler_step A comma delimited list of the epochs after which the learning_
rate is reduced (multiplied) by an lr_scheduler_factor . For
example, if the value is set to "10, 20", then the learning-rate
is reduced by lr_scheduler_factor after the 10th epoch and
again by this factor after 20th epoch.

Conditionally Required if lr_scheduler is set to step. Otherwise
, ignored.

Valid values: string

Default value: (No default, as the value is required when used.)

mini_batch_size The batch size for training. Using a large mini_batch_size
usually results in faster training, but it might cause you to run out of
memory. Memory usage is affected by the values of the mini_batc
h_size and image_shape parameters, and the backbone
architecture.

Optional

Valid values: positive integer

Default value: 16

momentum The momentum for the sgd optimizer. When you use other
optimizers, the semantic segmentation algorithm ignores this
parameter.

Optional

Valid values: 0 < float ≤ 1

Default value: 0.9

Use Built-in Algorithms 3054

Amazon SageMaker Developer Guide

Parameter Name Description

optimizer The type of optimizer. For more information about an optimizer,
choose the appropriate link:

• adam: Adaptive momentum estimation

• adagrad: Adaptive gradient descent

• nag: Nesterov accelerated gradient

• rmsprop: Root mean square propagation

• sgd: Stochastic gradient descent

Optional

Valid values: adam, adagrad, nag, rmsprop, sgd

Default value: sgd

syncbn If set to True, the batch normalization mean and variance are
computed over all the samples processed across the GPUs.

Optional

Valid values: True, False

Default value: False

Use Built-in Algorithms 3055

https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://calculus.subwiki.org/wiki/Nesterov%27s_gradient_acceleration
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Amazon SageMaker Developer Guide

Parameter Name Description

validatio
n_mini_ba
tch_size

The batch size for validation. A large mini_batch_size usually
results in faster training, but it might cause you to run out of
memory. Memory usage is affected by the values of the mini_batc
h_size and image_shape parameters, and the backbone
architecture.

• To score the validation on the entire image without cropping the
images, set this parameter to 1. Use this option if you want to
measure performance on the entire image as a whole.

Note

Setting the validation_mini_batch_size
parameter to 1 causes the algorithm to create a new
network model for every image. This might slow validation
and training.

• To crop images to the size specified in the crop_size parameter
, even during evaluation, set this parameter to a value greater than
1.

Optional

Valid values: positive integer

Default value: 16

weight_decay The weight decay coefficient for the sgd optimizer. When you use
other optimizers, the algorithm ignores this parameter.

Optional

Valid values: 0 < float < 1

Default value: 0.0001

Use Built-in Algorithms 3056

Amazon SageMaker Developer Guide

Tuning a Semantic Segmentation Model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model
by running many jobs that test a range of hyperparameters on your dataset. You choose the
tunable hyperparameters, a range of values for each, and an objective metric. You choose the
objective metric from the metrics that the algorithm computes. Automatic model tuning searches
the hyperparameters chosen to find the combination of values that result in the model that
optimizes the objective metric.

Metrics Computed by the Semantic Segmentation Algorithm

The semantic segmentation algorithm reports two validation metrics. When tuning
hyperparameter values, choose one of these metrics as the objective.

Metric Name Description Optimization
Direction

validation:mIOU The area of the intersection of the predicted
segmentation and the ground truth divided by
the area of union between them for images in
the validation set. Also known as the Jaccard
Index.

Maximize

validatio
n:pixel_a
ccuracy

The percentage of pixels that are correctly
classified in images from the validation set.

Maximize

Tunable Semantic Segmentation Hyperparameters

You can tune the following hyperparameters for the semantic segmentation algorithm.

Parameter Name Parameter Type Recommended
Ranges

learning_rate ContinuousParameterRange MinValue: 1e-4,
MaxValue: 1e-1

Use Built-in Algorithms 3057

Amazon SageMaker Developer Guide

Parameter Name Parameter Type Recommended
Ranges

mini_batch_size IntegerParameterRanges MinValue: 1,
MaxValue: 128

momentum ContinuousParameterRange MinValue: 0.9,
MaxValue: 0.999

optimzer CategoricalParameterRanges ['sgd', 'adam',
'adadelta']

weight_decay ContinuousParameterRange MinValue: 1e-5,
MaxValue: 1e-3

Use Reinforcement Learning with Amazon SageMaker

Reinforcement learning (RL) combines fields such as computer science, neuroscience, and
psychology to determine how to map situations to actions to maximize a numerical reward
signal. This notion of a reward signal in RL stems from neuroscience research into how the human
brain makes decisions about which actions maximize reward and minimize punishment. In most
situations, humans are not given explicit instructions on which actions to take, but instead must
learn both which actions yield the most immediate rewards, and how those actions influence future
situations and consequences.

The problem of RL is formalized using Markov decision processes (MDPs) that originate from
dynamical systems theory. MDPs aim to capture high-level details of a real problem that a
learning agent encounters over some period of time in attempting to achieve some ultimate
goal. The learning agent should be able to determine the current state of its environment and
identify possible actions that affect the learning agent’s current state. Furthermore, the learning
agent’s goals should correlate strongly to the state of the environment. A solution to a problem
formulated in this way is known as a reinforcement learning method.

What are the differences between reinforcement, supervised, and unsupervised
learning paradigms?

Machine learning can be divided into three distinct learning paradigms: supervised, unsupervised,
and reinforcement.

Use Reinforcement Learning 3058

Amazon SageMaker Developer Guide

In supervised learning, an external supervisor provides a training set of labeled examples. Each
example contains information about a situation, belongs to a category, and has a label identifying
the category to which it belongs. The goal of supervised learning is to generalize in order to predict
correctly in situations that are not present in the training data.

In contrast, RL deals with interactive problems, making it infeasible to gather all possible
examples of situations with correct labels that an agent might encounter. This type of learning
is most promising when an agent is able to accurately learn from its own experience and adjust
accordingly.

In unsupervised learning, an agent learns by uncovering structure within unlabeled data. While a
RL agent might benefit from uncovering structure based on its experiences, the sole purpose of RL
is to maximize a reward signal.

Topics

• Why is Reinforcement Learning Important?

• Markov Decision Process (MDP)

• Key Features of Amazon SageMaker RL

• Reinforcement Learning Sample Notebooks

• Sample RL Workflow Using Amazon SageMaker RL

• RL Environments in Amazon SageMaker

• Distributed Training with Amazon SageMaker RL

• Hyperparameter Tuning with Amazon SageMaker RL

Why is Reinforcement Learning Important?

RL is well-suited for solving large, complex problems, such as supply chain management, HVAC
systems, industrial robotics, game artificial intelligence, dialog systems, and autonomous vehicles.
Because RL models learn by a continuous process of receiving rewards and punishments for every
action taken by the agent, it is possible to train systems to make decisions under uncertainty and in
dynamic environments.

Markov Decision Process (MDP)

RL is based on models called Markov Decision Processes (MDPs). An MDP consists of a series of time
steps. Each time step consists of the following:

Use Reinforcement Learning 3059

Amazon SageMaker Developer Guide

Environment

Defines the space in which the RL model operates. This can be either a real-world environment
or a simulator. For example, if you train a physical autonomous vehicle on a physical road,
that would be a real-world environment. If you train a computer program that models an
autonomous vehicle driving on a road, that would be a simulator.

State

Specifies all information about the environment and past steps that is relevant to the future.
For example, in an RL model in which a robot can move in any direction at any time step, the
position of the robot at the current time step is the state, because if we know where the robot
is, it isn't necessary to know the steps it took to get there.

Action

What the agent does. For example, the robot takes a step forward.

Reward

A number that represents the value of the state that resulted from the last action that the
agent took. For example, if the goal is for a robot to find treasure, the reward for finding
treasure might be 5, and the reward for not finding treasure might be 0. The RL model attempts
to find a strategy that optimizes the cumulative reward over the long term. This strategy is
called a policy.

Observation

Information about the state of the environment that is available to the agent at each step. This
might be the entire state, or it might be just a part of the state. For example, the agent in a
chess-playing model would be able to observe the entire state of the board at any step, but
a robot in a maze might only be able to observe a small portion of the maze that it currently
occupies.

Typically, training in RL consists of many episodes. An episode consists of all of the time steps in an
MDP from the initial state until the environment reaches the terminal state.

Key Features of Amazon SageMaker RL

To train RL models in SageMaker RL, use the following components:

• A deep learning (DL) framework. Currently, SageMaker supports RL in TensorFlow and Apache
MXNet.

Use Reinforcement Learning 3060

Amazon SageMaker Developer Guide

• An RL toolkit. An RL toolkit manages the interaction between the agent and the
environment and provides a wide selection of state of the art RL algorithms. SageMaker
supports the Intel Coach and Ray RLlib toolkits. For information about Intel Coach, see
https://nervanasystems.github.io/coach/. For information about Ray RLlib, see https://
ray.readthedocs.io/en/latest/rllib.html.

• An RL environment. You can use custom environments, open-source environments, or
commercial environments. For information, see RL Environments in Amazon SageMaker.

The following diagram shows the RL components that are supported in SageMaker RL.

Use Reinforcement Learning 3061

https://nervanasystems.github.io/coach/
https://ray.readthedocs.io/en/latest/rllib.html
https://ray.readthedocs.io/en/latest/rllib.html

Amazon SageMaker Developer Guide

Reinforcement Learning Sample Notebooks

For complete code examples, see the reinforcement learning sample notebooks in the SageMaker
Examples repository.

Sample RL Workflow Using Amazon SageMaker RL

The following example describes the steps for developing RL models using Amazon SageMaker RL.

1. Formulate the RL problem—First, formulate the business problem into an RL problem. For
example, auto scaling enables services to dynamically increase or decrease capacity depending
on conditions that you define. Currently, this requires setting up alarms, scaling policies,
thresholds, and other manual steps. To solve this with RL, we define the components of the
Markov Decision Process:

a. Objective—Scale instance capacity so that it matches the desired load profile.

b. Environment—A custom environment that includes the load profile. It generates a
simulated load with daily and weekly variations and occasional spikes. The simulated
system has a delay between when new resources are requested and when they become
available for serving requests.

c. State—The current load, number of failed jobs, and number of active machines.

d. Action—Remove, add, or keep the same number of instances.

e. Reward—A positive reward for successful transactions and a high penalty for failing
transactions beyond a specified threshold.

2. Define the RL environment—The RL environment can be the real world where the RL
agent interacts or a simulation of the real world. You can connect open source and custom
environments developed using Gym interfaces and commercial simulation environments such
as MATLAB and Simulink.

3. Define the presets—The presets configure the RL training jobs and define the
hyperparameters for the RL algorithms.

4. Write the training code—Write training code as a Python script and pass the script to a
SageMaker training job. In your training code, import the environment files and the preset
files, and then define the main() function.

5. Train the RL Model—Use the SageMaker RLEstimator in the Amazon SageMaker Python
SDK to start an RL training job. If you are using local mode, the training job runs on the
notebook instance. When you use SageMaker for training, you can select GPU or CPU

Use Reinforcement Learning 3062

https://github.com/aws/amazon-sagemaker-examples/tree/main/reinforcement_learning
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

instances. Store the output from the training job in a local directory if you train in local mode,
or on Amazon S3 if you use SageMaker training.

The RLEstimator requires the following information as parameters.

a. The source directory where the environment, presets, and training code are uploaded.

b. The path to the training script.

c. The RL toolkit and deep learning framework you want to use. This automatically resolves
to the Amazon ECR path for the RL container.

d. The training parameters, such as the instance count, job name, and S3 path for output.

e. Metric definitions that you want to capture in your logs. These can also be visualized in
CloudWatch and in SageMaker notebooks.

6. Visualize training metrics and output—After a training job that uses an RL model completes,
you can view the metrics you defined in the training jobs in CloudWatch,. You can also plot
the metrics in a notebook by using the Amazon SageMaker Python SDK analytics library.
Visualizing metrics helps you understand how the performance of the model as measured by
the reward improves over time.

Note

If you train in local mode, you can't visualize metrics in CloudWatch.

7. Evaluate the model—Checkpointed data from the previously trained models can be passed on
for evaluation and inference in the checkpoint channel. In local mode, use the local directory.
In SageMaker training mode, you need to upload the data to S3 first.

8. Deploy RL models—Finally, deploy the trained model on an endpoint hosted on SageMaker
containers or on an edge device by using AWS IoT Greengrass.

For more information on RL with SageMaker, see Using RL with the SageMaker Python SDK.

RL Environments in Amazon SageMaker

Amazon SageMaker RL uses environments to mimic real-world scenarios. Given the current state of
the environment and an action taken by the agent or agents, the simulator processes the impact
of the action, and returns the next state and a reward. Simulators are useful in cases where it is not
safe to train an agent in the real world (for example, flying a drone) or if the RL algorithm takes a
long time to converge (for example, when playing chess).

Use Reinforcement Learning 3063

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/using_rl.html

Amazon SageMaker Developer Guide

The following diagram shows an example of the interactions with a simulator for a car racing
game.

The simulation environment consists of an agent and a simulator. Here, a convolutional neural
network (CNN) consumes images from the simulator and generates actions to control the game
controller. With multiple simulations, this environment generates training data of the form
state_t, action, state_t+1, and reward_t+1. Defining the reward is not trivial and impacts
the RL model quality. We want to provide a few examples of reward functions, but would like to
make it user-configurable.

Topics

• Use OpenAI Gym Interface for Environments in SageMaker RL

• Use Open-Source Environments

• Use Commercial Environments

Use OpenAI Gym Interface for Environments in SageMaker RL

To use OpenAI Gym environments in SageMaker RL, use the following API elements. For more
information about OpenAI Gym, see Gym Documentation.

• env.action_space—Defines the actions the agent can take, specifies whether each action is
continuous or discrete, and specifies the minimum and maximum if the action is continuous.

• env.observation_space—Defines the observations the agent receives from the environment,
as well as minimum and maximum for continuous observations.

• env.reset()—Initializes a training episode. The reset() function returns the initial state
of the environment, and the agent uses the initial state to take its first action. The action is

Use Reinforcement Learning 3064

https://www.gymlibrary.dev/

Amazon SageMaker Developer Guide

then sent to step() repeatedly until the episode reaches a terminal state. When step()
returns done = True, the episode ends. The RL toolkit re-initializes the environment by calling
reset().

• step()—Takes the agent action as input and outputs the next state of the environment, the
reward, whether the episode has terminated, and an info dictionary to communicate debugging
information. It is the responsibility of the environment to validate the inputs.

• env.render()—Used for environments that have visualization. The RL toolkit calls this
function to capture visualizations of the environment after each call to the step() function.

Use Open-Source Environments

You can use open-source environments, such as EnergyPlus and RoboSchool, in SageMaker RL by
building your own container. For more information about EnergyPlus, see https://energyplus.net/.
For more information about RoboSchool, see https://github.com/openai/roboschool. The HVAC
and RoboSchool examples in the SageMaker examples repository show how to build a custom
container to use with SageMaker RL:

Use Commercial Environments

You can use commercial environments, such as MATLAB and Simulink, in SageMaker RL by building
your own container. You need to manage your own licenses.

Distributed Training with Amazon SageMaker RL

Amazon SageMaker RL supports multi-core and multi-instance distributed training. Depending on
your use case, training and/or environment rollout can be distributed. For example, SageMaker RL
works for the following distributed scenarios:

• Single training instance and multiple rollout instances of the same instance type. For an
example, see the Neural Network Compression example in the SageMaker examples repository.

• Single trainer instance and multiple rollout instances, where different instance types for
training and rollouts. For an example, see the AWS DeepRacer / AWS RoboMaker example in the
SageMaker examples repository.

• Single trainer instance that uses multiple cores for rollout. For an example, see the Roboschool
example in the SageMaker examples repository. This is useful if the simulation environment is
light-weight and can run on a single thread.

• Multiple instances for training and rollouts. For an example, see the Roboschool example in the
SageMaker examples repository.

Use Reinforcement Learning 3065

https://energyplus.net/
https://github.com/openai/roboschool
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning

Amazon SageMaker Developer Guide

Hyperparameter Tuning with Amazon SageMaker RL

You can run a hyperparameter tuning job to optimize hyperparameters for Amazon SageMaker RL.
The Roboschool example in the sample notebooks in the SageMaker examples repository shows
how you can do this with RL Coach. The launcher script shows how you can abstract parameters
from the Coach preset file and optimize them.

Run your local code as a SageMaker training job

You can run your local machine learning (ML) Python code as a large single-node Amazon
SageMaker training job or as multiple parallel jobs. You can do this by annotating your code with
an @remote decorator, as shown in the following code example. Distributed training (across
multiple instances) are not supported with remote functions.

@remote(**settings)
def divide(x, y):
 return x / y

The SageMaker Python SDK will automatically translate your existing workspace environment and
any associated data processing code and datasets into a SageMaker training job that runs on the
SageMaker training platform. You can also activate a persistent cache feature, which will further
reduce job start latency by caching previously downloaded dependency packages. This reduction
in job latency is greater than the reduction in latency from using SageMaker managed warm pools
alone. For more information, see Using persistent cache.

Note

Distributed training jobs are not supported by remote functions.

The following sections show how to annotate your local ML code with an @remote decorator
and tailor your experience for your use case. This includes customizing your environment and
integrating with SageMaker Experiments.

Topics

• Set up your environment

• Invoking a function

Run local code as a remote job 3066

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning
https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html

Amazon SageMaker Developer Guide

• Configuration file

• Customize your runtime environment

• Container image compatibility

• Logging parameters and metrics with Amazon SageMaker Experiments

• Using modular code with the @remote decorator

• Private repository for runtime dependencies

• Example notebooks

Set up your environment

Choose one of the following three options to set up your environment.

Run your code from Amazon SageMaker Studio Classic

You can annotate and run your local ML code from SageMaker Studio Classic by creating a
SageMaker Notebook and attaching any image available on SageMaker Studio Classic image. The
following instructions help you create a SageMaker Notebook, install the SageMaker Python SDK,
and annotate your code with the decorator.

1. Create a SageMaker Notebook and attach an image in SageMaker Studio Classic as follows:

a. Follow the instructions in Launch Amazon SageMaker Studio Classic in the Amazon SageMaker
Developer Guide.

b. Select Studio from the left navigation pane. This opens a new window.

c. In the Get Started dialog box, select a user profile from the down arrow. This opens a new
window.

d. Select Open Studio Classic.

e. Select Open Launcher from the main working area. This opens a new page.

f. Select Create notebook from the main working area.

g. Select Base Python 3.0 from the down arrow next to Image in the Change environment
dialog box.

The @remote decorator automatically detects the image attached to the SageMaker Studio
Classic notebook and uses it to run the SageMaker training job. If image_uri is specified
either as an argument in the decorator or in the configuration file, then the value specified in
image_uri will be used instead of the detected image.

Set up your environment 3067

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

For more information about how to create a notebook in SageMaker Studio Classic, see the
Create a Notebook from the File Menu section in Create or Open an Amazon SageMaker
Studio Classic Notebook.

For a list of available images, see Supported Docker images.

2. Install the SageMaker Python SDK.

To annotate your code with the @remote function inside a SageMaker Studio Classic Notebook,
you must have the SageMaker Python SDK installed. Install the SageMaker Python SDK, as
shown in the following code example.

!pip install sagemaker

3. Use @remote decorator to run functions in a SageMaker training job.

To run your local ML code, first create a dependencies file to instruct SageMaker where to locate
your local code. To do so, follow these steps:

a. From the SageMaker Studio Classic Launcher main working area, in Utilities and files, choose
Text file. This opens a new tab with a text file called untitled.txt.

For more information about the SageMaker Studio Classic user interface (UI), see Amazon
SageMaker Studio Classic UI Overview.

b. Rename untitled.txt to requirements.txt.

c. Add all the dependencies required for the code along with the SageMaker library to
requirements.txt.

A minimal code example for requirements.txt for the example divide function is
provided in the following section, as follows.

sagemaker

d. Run your code with the remote decorator by passing the dependencies file, as follows.

from sagemaker.remote_function import remote

@remote(instance_type="ml.m5.xlarge", dependencies='./requirements.txt')
def divide(x, y):
 return x / y

Set up your environment 3068

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-create-open.html#notebooks-create-file-menu
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-create-open.html#notebooks-create-file-menu
https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-decorator-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.html

Amazon SageMaker Developer Guide

divide(2, 3.0)

For additional code examples, see the sample notebook quick_start.ipynb.

If you’re already running a SageMaker Studio Classic notebook, and you install the Python
SDK as instructed in 2. Install the SageMaker Python SDK, you must restart your kernel. For
more information, see Use the SageMaker Studio Classic Notebook Toolbar in the Amazon
SageMaker Developer Guide.

Run your code from an Amazon SageMaker notebook

You can annotate your local ML code from a SageMaker notebook instance. The following
instructions show how to create a notebook instance with a custom kernel, install the SageMaker
Python SDK, and annotate your code with the decorator.

1. Create a notebook instance with a custom conda kernel.

You can annotate your local ML code with an @remote decorator to use inside of a SageMaker
training job. First you must create and customize a SageMaker notebook instance to use a kernel
with Python version 3.7 or higher, up to 3.10.x. To do so, follow these steps:

a. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

b. In the left navigation panel, choose Notebook to expand its options.

c. Choose Notebook Instances from the expanded options.

d. Choose the Create Notebook Instance button. This opens a new page.

e. For Notebook instance name, enter a name with a maximum of 63 characters and no spaces.
Valid characters: A-Z, a-z, 0-9, and .:+=@ _%- (hyphen).

f. In the Notebook instance settings dialog box, expand the right arrow next to Additional
Configuration.

g. Under Lifecycle configuration - optional, expand the down arrow and select Create a new
lifecycle configuration. This opens a new dialog box.

h. Under Name, enter a name for your configuration setting.

i. In the Scripts dialog box, in the Start notebook tab, replace the existing contents of the text
box with the following script.

#!/bin/bash

Set up your environment 3069

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-remote-function/quick_start/quick_start.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-menu.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

set -e

sudo -u ec2-user -i <<'EOF'
unset SUDO_UID
WORKING_DIR=/home/ec2-user/SageMaker/custom-miniconda/
source "$WORKING_DIR/miniconda/bin/activate"
for env in $WORKING_DIR/miniconda/envs/*; do
 BASENAME=$(basename "$env")
 source activate "$BASENAME"
 python -m ipykernel install --user --name "$BASENAME" --display-name "Custom
 ($BASENAME)"
done
EOF

echo "Restarting the Jupyter server.."
restart command is dependent on current running Amazon Linux and JupyterLab
CURR_VERSION_AL=$(cat /etc/system-release)
CURR_VERSION_JS=$(jupyter --version)

if [[$CURR_VERSION_JS == *$"jupyter_core : 4.9.1"*]] && [[$CURR_VERSION_AL
 == *$" release 2018"*]]; then
 sudo initctl restart jupyter-server --no-wait
else
 sudo systemctl --no-block restart jupyter-server.service
fi

j. In the Scripts dialog box, in the Create notebook tab, replace the existing contents of the text
box with the following script.

#!/bin/bash

set -e

sudo -u ec2-user -i <<'EOF'
unset SUDO_UID
Install a separate conda installation via Miniconda
WORKING_DIR=/home/ec2-user/SageMaker/custom-miniconda
mkdir -p "$WORKING_DIR"
wget https://repo.anaconda.com/miniconda/Miniconda3-4.6.14-Linux-x86_64.sh -O
 "$WORKING_DIR/miniconda.sh"
bash "$WORKING_DIR/miniconda.sh" -b -u -p "$WORKING_DIR/miniconda"
rm -rf "$WORKING_DIR/miniconda.sh"
Create a custom conda environment

Set up your environment 3070

Amazon SageMaker Developer Guide

source "$WORKING_DIR/miniconda/bin/activate"
KERNEL_NAME="custom_python310"
PYTHON="3.10"
conda create --yes --name "$KERNEL_NAME" python="$PYTHON" pip
conda activate "$KERNEL_NAME"
pip install --quiet ipykernel
Customize these lines as necessary to install the required packages
EOF

k. Choose the Create configuration button on the bottom right of the window.

l. Choose the Create notebook instance button on the bottom right of the window.

m.Wait for the notebook instance Status to change from Pending to InService.

2. Create a Jupyter notebook in the notebook instance.

The following instructions show how to create a Jupyter notebook using Python 3.10 in your
newly created SageMaker instance.

a. After the notebook instance Status from the previous step is InService, do the following:

i. Select Open Jupyter under Actions in the row containing your newly created notebook
instance Name. This opens a new Jupyter server.

b. In the Jupyter server, select New from the top right menu.

c. From the down arrow, select conda_custom_python310. This creates a new Jupyter notebook
that uses a Python 3.10 kernel. This new Jupyter notebook can now be used similarly to a
local Jupyter notebook.

3. Install the SageMaker Python SDK.

After your virtual environment is running, install the SageMaker Python SDK by using the
following code example.

!pip install sagemaker

4. Use an @remote decorator to run functions in a SageMaker training job.

When you annotate your local ML code with an @remote decorator inside the SageMaker
notebook, SageMaker training will automatically interpret the function of your code and run it
as a SageMaker training job. Set up your notebook by doing the following:

a. Select the kernel name in the notebook menu from the SageMaker notebook instance that
you created in step 1, Create a SageMaker Notebook instance with a custom kernel.

Set up your environment 3071

Amazon SageMaker Developer Guide

For more information, see Change an Image or a Kernel.

b. From the down arrow, choose the a custom conda kernel that uses a version of Python that is
3.7 or higher.

As an example, selecting conda_custom_python310 chooses the kernel for Python 3.10.

c. Choose Select.

d. Wait for the kernel’s status to show as idle, which indicates that the kernel has started.

e. In the Jupyter Server Home, select New from the top right menu.

f. Next to the down arrow, select Text file. This creates a new text file called untitled.txt.

g. Rename untitled.txt to requirements.txt and add any dependencies required for the
code along with sagemaker.

h. Run your code with the remote decorator by passing the dependencies file as shown below.

from sagemaker.remote_function import remote

@remote(instance_type="ml.m5.xlarge", dependencies='./requirements.txt')
def divide(x, y):
 return x / y

divide(2, 3.0)

See the sample notebook quick_start.ipnyb for additional code examples.

Run your code from within your local IDE

You can annotate your local ML code with an @remote decorator inside your preferred local IDE.
The following steps show the necessary prerequisites, how to install the Python SDK, and how to
annotate your code with the @remote decorator.

1. Install prerequisites by setting up the AWS Command Line Interface (AWS CLI) and creating a
role, as follows:

• Onboard to a SageMaker domain following the instructions in the AWS CLI Prerequisites
section of Set Up Amazon SageMaker Prerequisites.

• Create an IAM role following the Create execution role section of SageMaker Roles.

2. Create a virtual environment by using either PyCharm or conda and using Python version 3.7 or
higher, up to 3.10.x.

Set up your environment 3072

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-run-and-manage-change-image.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-remote-function/quick_start/quick_start.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-set-up.html#gs-cli-prereq
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon SageMaker Developer Guide

• Set up a virtual environment using PyCharm as follows:

a. Select File from the main menu.

b. Choose New Project.

c. Choose Conda from the down arrow under New environment using.

d. In the field for Python version use the down arrow to select a version of Python that is 3.7
or above. You can go up to 3.10.x from the list.

• If you have Anaconda installed, you can set up a virtual environment using conda, as follows:

• Open an Anaconda prompt terminal interface.

• Create and activate a new conda environment using a Python version of 3.7 or higher, up to
3.10x. The following code example shows how to create a conda environment using Python
version 3.10.

conda create -n sagemaker_jobs_quick_start python=3.10 pip
conda activate sagemaker_jobs_quick_start

3. Install the SageMaker Python SDK.

Set up your environment 3073

Amazon SageMaker Developer Guide

To package your code from your preferred IDE, you must have a virtual environment set up
using Python 3.7 or higher, up to 3.10x. You also need a compatible container image. Install the
SageMaker Python SDK using the following code example.

pip install sagemaker

4. Wrap your code inside the @remote decorator. The SageMaker Python SDK will automatically
interpret the function of your code and run it as a SageMaker training job. The following code
examples show how to import the necessary libraries, set up a SageMaker session, and annotate
a function with the @remote decorator.

You can run your code by either providing the dependencies needed directly, or by using
dependencies from the active conda environment.

• To provide the dependencies directly, do the following:

• Create a requirements.txt file in the working directory that the code resides in.

• Add all of the dependencies required for the code along with the SageMaker library. The
following section provides a minimal code example for requirements.txt for the
example divide function.

sagemaker

• Run your code with the @remote decorator by passing the dependencies file. In the
following code example, replace The IAM role name with an AWS Identity and Access
Management (IAM) role ARN that you would like SageMaker to use to run your job.

import boto3
import sagemaker
from sagemaker.remote_function import remote

sm_session =
 sagemaker.Session(boto_session=boto3.session.Session(region_name="us-west-2"))
settings = dict(
 sagemaker_session=sm_session,
 role=<The IAM role name>,
 instance_type="ml.m5.xlarge",
 dependencies='./requirements.txt'
)

@remote(**settings)

Set up your environment 3074

Amazon SageMaker Developer Guide

def divide(x, y):
 return x / y

if __name__ == "__main__":
 print(divide(2, 3.0))

• To use dependencies from the active conda environment, use the value auto_capture for
the dependencies parameter, as shown in the following.

import boto3
import sagemaker
from sagemaker.remote_function import remote

sm_session = sagemaker.Session(boto_session=boto3.session.Session(region_name="us-
west-2"))
settings = dict(
 sagemaker_session=sm_session,
 role=<The IAM role name>,
 instance_type="ml.m5.xlarge",
 dependencies="auto_capture"
)

@remote(**settings)
def divide(x, y):
 return x / y

if __name__ == "__main__":
 print(divide(2, 3.0))

Note

You can also implement the previous code inside a Jupyter notebook. PyCharm
Professional Edition supports Jupyter natively. For more guidance, see Jupyter
notebook support in PyCharm's documentation.

Invoking a function

To invoke a function inside the @remote decorator, use either of the following methods:

Invoking a function 3075

https://www.jetbrains.com/help/pycharm/jupyter-notebook-support.html
https://www.jetbrains.com/help/pycharm/jupyter-notebook-support.html

Amazon SageMaker Developer Guide

• Use an @remote decorator to invoke a function.

• Use the RemoteExecutor API to invoke a function.

If you use the @remote decorator method to invoke a function, the training job will wait for the
function to complete before starting a new task. However, if you use the RemoteExecutor API,
you can run more than one job in parallel. The following sections show both ways of invoking a
function.

Use an @remote decorator to invoke a function

You can use the @remote decorator to annotate a function. SageMaker will transform the code
inside the decorator into a SageMaker training job. The training job will then invoke the function
inside the decorator and wait for the job to complete. The following code example shows how to
import the required libraries, start a SageMaker instance, and annotate a matrix multiplication with
the @remote decorator.

from sagemaker.remote_function import remote
import numpy as np

@remote(instance_type="ml.m5.large")
def matrix_multiply(a, b):
 return np.matmul(a, b)

a = np.array([[1, 0],
 [0, 1]])
b = np.array([1, 2])

assert (matrix_multiply(a, b) == np.array([1,2])).all()

The decorator is defined as follows.

def remote(
 *,
 **kwarg):
 ...

When you invoke a decorated function, SageMaker Python SDK loads any exceptions raised by
an error into local memory. In the following code example, the first call to the divide function
completes successfully and the result is loaded into local memory. In the second call to the divide
function, the code returns an error and this error is loaded into local memory.

Invoking a function 3076

Amazon SageMaker Developer Guide

from sagemaker.remote_function import remote
import pytest

@remote()
def divide(a, b):
 return a/b

the underlying job is completed successfully
and the function return is loaded
assert divide(10, 5) == 2

the underlying job fails with "AlgorithmError"
and the function exception is loaded into local memory
with pytest.raises(ZeroDivisionError):
 divide(10, 0)

Note

The decorated function is run as a remote job. If the thread is interrupted, the underlying
job will not be stopped.

How to change the value of a local variable

The decorator function is run on a remote machine. Changing a non-local variable or input
arguments inside a decorated function will not change the local value.

In the following code example, a list and a dict are appended inside the decorator function. This
does not change when the decorator function is invoked.

a = []

@remote
def func():
 a.append(1)

when func is invoked, a in the local memory is not modified
func()
func()

a stays as []

Invoking a function 3077

Amazon SageMaker Developer Guide

a = {}
@remote
def func(a):
 # append new values to the input dictionary
 a["key-2"] = "value-2"

a = {"key": "value"}
func(a)

a stays as {"key": "value"}

To change the value of a local variable declared inside of a decorator function, return the variable
from the function. The following code example shows that the value of a local variable is changed
when it is returned from the function.

a = {"key-1": "value-1"}

@remote
def func(a):
 a["key-2"] = "value-2"
 return a

a = func(a)

-> {"key-1": "value-1", "key-2": "value-2"}

Data serialization and deserialization

When you invoke a remote function, SageMaker automatically serializes your function arguments
during the input and output stages. Function arguments and returns are serialized using
cloudpickle. SageMaker supports serializing the following Python objects and functions.

• Built-in Python objects including dicts, lists, floats, ints, strings, boolean values and tuples

• Numpy arrays

• Pandas Dataframes

• Scikit-learn datasets and estimators

• PyTorch models

• TensorFlow models

• The Booster class for XGBoost

Invoking a function 3078

https://github.com/cloudpipe/cloudpickle

Amazon SageMaker Developer Guide

The following can be used with some limitations.

• Dask DataFrames

• The XGBoost Dmatrix class

• TensorFlow datasets and subclasses

• PyTorch models

The following section contains best practices for using the previous Python classes with some
limitations in your remote function, information about where SageMaker stores your serialized
data and how to manage access to it.

Best practices for Python classes with limited support for remote data serialization

You can use the Python classes listed in this section with limitations. The next sections discuss best
practices for how to use the following Python classes.

• Dask DataFrames

• The XGBoost DMatric class

• TensorFlow datasets and subclasses

• PyTorch models

Best practices for Dask

Dask is an open-source library used for parallel computing in Python. This section shows the
following.

• How to pass a Dask DataFrame into your remote function

• How to convert summary statistics from a Dask DataFrame into a Pandas DataFrame

How to pass a Dask DataFrame into your remote function

Dask DataFrames are often used to process large datasets because they can hold datasets that
require more memory than is available. This is because a Dask DataFrame does not load your local
data into memory. If you pass a Dask DataFrame as a function argument to your remote function,
Dask may pass a reference to the data in your local disk or cloud storage, instead of the data itself.
The following code shows an example of passing a Dask DataFrame inside your remote function
that will operate on an empty DataFrame.

Invoking a function 3079

https://www.dask.org/
https://www.dask.org/
https://docs.dask.org/en/latest/dataframe.html

Amazon SageMaker Developer Guide

#Do not pass a Dask DataFrame to your remote function as follows
def clean(df: dask.DataFrame):
 cleaned = df[] \ ...

Dask will load the data from the Dask DataFrame into memory only when you use the DataFrame .
If you want to use a Dask DataFrame inside a remote function, provide the path to the data . Then
Dask will read the dataset directly from the data path that you specify when the code runs.

The following code example shows how to use a Dask DataFrame inside the remote function
clean. In the code example, raw_data_path is passed to clean instead of the Dask DataFrame.
When the code runs, the dataset is read directly from the location of an Amazon S3 bucket
specified in raw_data_path. Then the persist function keeps the dataset in memory to
facilitate the subsequent random_split function and written back to the output data path in an
S3 bucket using Dask DataFrame API functions.

import dask.dataframe as dd

@remote(
 instance_type='ml.m5.24xlarge',
 volume_size=300,
 keep_alive_period_in_seconds=600)
#pass the data path to your remote function rather than the Dask DataFrame itself
def clean(raw_data_path: str, output_data_path: str: split_ratio: list[float]):
 df = dd.read_parquet(raw_data_path) #pass the path to your DataFrame
 cleaned = df[(df.column_a >= 1) & (df.column_a < 5)]\
 .drop(['column_b', 'column_c'], axis=1)\
 .persist() #keep the data in memory to facilitate the following random_split
 operation

 train_df, test_df = cleaned.random_split(split_ratio, random_state=10)

 train_df.to_parquet(os.path.join(output_data_path, 'train')
 test_df.to_parquet(os.path.join(output_data_path, 'test'))

clean("s3://my-bucket/raw/", "s3://my-bucket/cleaned/", split_ratio=[0.7, 0.3])

How to convert summary statistics from a Dask DataFrame into a Pandas DataFrame

Summary statistics from a Dask DataFrame can be converted into a Pandas DataFrame by invoking
the compute method as shown in the following example code. In the example, the S3 bucket

Invoking a function 3080

Amazon SageMaker Developer Guide

contains a large Dask DataFrame that cannot fit into memory or into a Pandas dataframe. In the
following example, a remote function scans the data set and returns a Dask DataFrame containing
the output statistics from describe to a Pandas DataFrame.

executor = RemoteExecutor(
 instance_type='ml.m5.24xlarge',
 volume_size=300,
 keep_alive_period_in_seconds=600)

future = executor.submit(lambda: dd.read_parquet("s3://my-bucket/
raw/").describe().compute())

future.result()

Best practices for the XGBoost DMatric class

DMatrix is an internal data structure used by XGBoost to load data. A DMatrix object can’t be
pickled in order to move easily between compute sessions. Directly passing DMatrix instances will
fail with a SerializationError.

How to pass a data object to your remote function and train with XGBoost

To convert a Pandas DataFrame into a DMatrix instance and use it for training in your remote
function, pass it directly to the remote function as shown in the following code example.

import xgboost as xgb

@remote
def train(df, params):
 #Convert a pandas dataframe into a DMatrix DataFrame and use it for training
 dtrain = DMatrix(df)
 return xgb.train(dtrain, params)

Best practices for TensorFlow datasets and sub-classes

TensorFlow datasets and subclasses are internal objects used by TensorFlow to load data
during training. TensorFlow datasets and subclasses can’t be pickled in order to move easily
between compute sessions. Directly passing Tensorflow datasets or subclasses will fail with a
SerializationError. Use the Tensorflow I/O APIs to load data from the storage, as shown in
the following code example.

Invoking a function 3081

Amazon SageMaker Developer Guide

import tensorflow as tf
import tensorflow_io as tfio

@remote
def train(data_path: str, params):

 dataset = tf.data.TextLineDataset(tf.data.Dataset.list_files(f"{data_path}/*.txt"))
 ...

train("s3://my-bucket/data", {})

Best practices for PyTorch models

PyTorch models are serializable and can be passed between your local environment and remote
function. If your local environment and remote environment have different device types, such as
(GPUs and CPUs), you cannot return a trained model to your local environment. For example, if the
following code is developed in a local environment without GPUs but run in an instance with GPUs,
returning the trained model directly will lead to a DeserializationError.

Do not return a model trained on GPUs to a CPU-only environment as follows

@remote(instance_type='ml.g4dn.xlarge')
def train(...):
 if torch.cuda.is_available():
 device = torch.device("cuda")
 else:
 device = torch.device("cpu") # a device without GPU capabilities

 model = Net().to(device)

 # train the model
 ...

 return model

model = train(...) #returns a DeserializationError if run on a device with GPU

To return a model trained in a GPU environment to one that contains only CPU capabilities, use the
PyTorch model I/O APIs directly as shown in the code example below.

import s3fs

Invoking a function 3082

Amazon SageMaker Developer Guide

model_path = "s3://my-bucket/folder/"

@remote(instance_type='ml.g4dn.xlarge')
def train(...):
 if torch.cuda.is_available():
 device = torch.device("cuda")
 else:
 device = torch.device("cpu")

 model = Net().to(device)

 # train the model
 ...

 fs = s3fs.FileSystem()
 with fs.open(os.path.join(model_path, 'model.pt'), 'wb') as file:
 torch.save(model.state_dict(), file) #this writes the model in a device-
agnostic way (CPU vs GPU)

train(...) #use the model to train on either CPUs or GPUs

model = Net()
fs = s3fs.FileSystem()with fs.open(os.path.join(model_path, 'model.pt'), 'rb') as file:
 model.load_state_dict(torch.load(file, map_location=torch.device('cpu')))

Where SageMaker stores your serialized data

When you invoke a remote function, SageMaker automatically serializes your function arguments
and return values during the input and output stages. This serialized data is stored under a root
directory in your S3 bucket. You specify the root directory, <s3_root_uri>, in a configuration file.
The parameter job_name is automatically generated for you.

Under the root directory, SageMaker creates a <job_name> folder, which holds your current work
directory, serialized function, the arguments for your serialized function, results and any exceptions
that arose from invoking the serialized function.

Under <job_name>, the directory workdir contains a zipped archive of your current working
directory. The zipped archive includes any Python files in your working directory and the
requirements.txt file, which specifies any dependencies needed to run your remote function.

Invoking a function 3083

Amazon SageMaker Developer Guide

The following is an example of the folder structure under an S3 bucket that you specify in your
configuration file.

<s3_root_uri>/ # specified by s3_root_uri or S3RootUri
 <job_name>/ #automatically generated for you
 workdir/workspace.zip # archive of the current working directory (workdir)
 function/ # serialized function
 arguments/ # serialized function arguments
 results/ # returned output from the serialized function including the model
 exception/ # any exceptions from invoking the serialized function

The root directory that you specify in your S3 bucket is not meant for long term storage. The
serialized data are tightly tied to the Python version and machine learning (ML) framework version
that were used during serialization. If you upgrade the Python version or ML framework, you may
not be able to use your serialized data. Instead, do the following.

• Store your model and model artifacts in a format that is agnostic to your Python version and ML
framework.

• If you upgrade your Python or ML framework, access your model results from your long-term
storage.

Important

To delete your serialized data after a specified amount of time, set a lifetime configuration
on your S3 bucket.

Note

Files that are serialized with the Python pickle module can be less portable than other data
formats including CSV, Parquet and JSON. Be wary of loading pickled files from unknown
sources.

For more information about what to include in a configuration file for a remote function, see
Configuration File.

Invoking a function 3084

https://docs.aws.amazon.com/AmazonS3/latest/userguide/how-to-set-lifecycle-configuration-intro.html
https://docs.python.org/3/library/pickle.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-decorator-config.html

Amazon SageMaker Developer Guide

Access to your serialized data

Administrators can provide settings for your serialized data, including its location and any
encryption settings in a configuration file. By default, the serialized data are encrypted with an
AWS Key Management Service (AWS KMS) Key. Administrators can also restrict access to the root
directory that you specify in your configuration file with a bucket policy. The configuration file can
be shared and used across projects and jobs. For more information, see Configuration File.

Use the RemoteExecutor API to invoke a function

You can use the RemoteExecutor API to invoke a function. SageMaker Python SDK will transform
the code inside the RemoteExecutor call into a SageMaker training job. The training job will
then invoke the function as an asynchronous operation and return a future. If you use the
RemoteExecutor API, you can run more than one training job in parallel. For more information
about futures in Python, see Futures.

The following code example shows how to import the required libraries, define a function, start a
SageMaker instance, and use the API to submit a request to run 2 jobs in parallel.

from sagemaker.remote_function import RemoteExecutor

def matrix_multiply(a, b):
 return np.matmul(a, b)

a = np.array([[1, 0],
 [0, 1]])
b = np.array([1, 2])

with RemoteExecutor(max_parallel_job=2, instance_type="ml.m5.large") as e:
 future = e.submit(matrix_multiply, a, b)

assert (future.result() == np.array([1,2])).all()

The RemoteExecutor class is an implementation of the concurrent.futures.Executor library.

The following code example shows how to define a function and call it using the
RemoteExecutorAPI. In this example, the RemoteExecutor will submit 4 jobs in total, but only
2 in parallel. The last two jobs will reuse the clusters with minimal overhead.

from sagemaker.remote_function.client import RemoteExecutor

Invoking a function 3085

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-decorator-config.html
https://docs.python.org/3/library/asyncio-future.html
https://docs.python.org/3/library/concurrent.futures.html

Amazon SageMaker Developer Guide

def divide(a, b):
 return a/b

with RemoteExecutor(max_parallel_job=2, keep_alive_period_in_seconds=60) as e:
 futures = [e.submit(divide, a, 2) for a in [3, 5, 7, 9]]

for future in futures:
 print(future.result())

The max_parallel_job parameter only serves as a rate limiting mechanism without optimizing
compute resource allocation. In the previous code example, RemoteExecutor doesn’t reserve
compute resources for the two parallel jobs before any jobs are submitted. For more information
about max_parallel_job or other parameters for the @remote decorator, see Remote function
classes and methods specification.

Future class for the RemoteExecutor API

A future class is a public class that represents the return function from the training job when it is
invoked asynchronously. The future class implements the concurrent.futures.Future class. This class
can be used to do operations on the underlying job and load data into memory.

Configuration file

The Amazon SageMaker Python SDK supports setting of default values for AWS infrastructure
primitive types. After administrators configure these defaults, they are automatically passed when
SageMaker Python SDK calls supported APIs. The arguments for the decorator function can be
put inside of configuration files. This is so that you can separate settings that are related to the
infrastructure from the code base. For more information about parameters and arguments for the
remote function and methods, see Remote function classes and methods specification.

You can set infrastructure settings for the network configuration, IAM roles, Amazon S3 folder for
input, output data, and tags inside the configuration file. The configuration file can be used when
invoking a function using either the @remote decorator or the RemoteExecutor API.

An example configuration file that defines the dependencies, resources, and other arguments
follows. This example configuration file is used to invoke a function that is initiated either using the
@remote decorator or the RemoteExecutor API.

SchemaVersion: '1.0'
SageMaker:

Configuration file 3086

https://sagemaker.readthedocs.io/en/stable/remote_function/sagemaker.remote_function.html
https://sagemaker.readthedocs.io/en/stable/remote_function/sagemaker.remote_function.html
https://docs.python.org/3/library/concurrent.futures.html
https://sagemaker.readthedocs.io/en/stable/remote_function/sagemaker.remote_function.html

Amazon SageMaker Developer Guide

 PythonSDK:
 Modules:
 RemoteFunction:
 Dependencies: 'path/to/requirements.txt'
 EnableInterContainerTrafficEncryption: true
 EnvironmentVariables: {'EnvVarKey': 'EnvVarValue'}
 ImageUri: '366666666666.dkr.ecr.us-west-2.amazonaws.com/my-image:latest'
 IncludeLocalWorkDir: true
 CustomFileFilter:
 IgnoreNamePatterns:
 - "*.ipynb"
 - "data"
 InstanceType: 'ml.m5.large'
 JobCondaEnvironment: 'your_conda_env'
 PreExecutionCommands:
 - 'command_1'
 - 'command_2'
 PreExecutionScript: 'path/to/script.sh'
 RoleArn: 'arn:aws:iam::366666666666:role/MyRole'
 S3KmsKeyId: 'yourkmskeyid'
 S3RootUri: 's3://my-bucket/my-project'
 VpcConfig:
 SecurityGroupIds:
 - 'sg123'
 Subnets:
 - 'subnet-1234'
 Tags: [{'Key': 'yourTagKey', 'Value':'yourTagValue'}]
 VolumeKmsKeyId: 'yourkmskeyid'

The @remote decorator and RemoteExecutor will look for Dependencies in the following
configuration files:

• An admin-defined configuration file.

• A user-defined configuration file.

The default locations for these configuration files depend on, and are relative to, your
environment. The following code example returns the default location of your admin and user
configuration files. These commands must be run in the same environment where you're using the
SageMaker Python SDK.

import os

Configuration file 3087

Amazon SageMaker Developer Guide

from platformdirs import site_config_dir, user_config_dir

#Prints the location of the admin config file
print(os.path.join(site_config_dir("sagemaker"), "config.yaml"))

#Prints the location of the user config file
print(os.path.join(user_config_dir("sagemaker"), "config.yaml"))

You can override the default locations of these files by setting the
SAGEMAKER_ADMIN_CONFIG_OVERRIDE and SAGEMAKER_USER_CONFIG_OVERRIDE environment
variables for the admin-defined and user-defined configuration file paths, respectively.

If a key exists in both the admin-defined and user-defined configuration files, the value in the user-
defined file will be used.

Customize your runtime environment

You can customize your runtime environment to use your preferred local integrated development
environments (IDEs), SageMaker notebooks, or SageMaker Studio Classic notebooks to write
your ML code. SageMaker will help package and submit your functions and its dependencies as a
SageMaker training job. This allows you to access the capacity of the SageMaker training server to
run your training jobs.

Both the remote decorator and the RemoteExecutor methods to invoke a function allow users to
define and customize their runtime environment. You can use either a requirements.txt file or
a conda environment YAML file.

To customize a runtime environment using both a conda environment YAML file and a
requirements.txt file, refer to the following code example.

specify a conda environment inside a yaml file
@remote(instance_type="ml.m5.large",
 image_uri = "my_base_python:latest",
 dependencies = "./environment.yml")
def matrix_multiply(a, b):
 return np.matmul(a, b)

use a requirements.txt file to import dependencies
@remote(instance_type="ml.m5.large",
 image_uri = "my_base_python:latest",
 dependencies = './requirements.txt')
def matrix_multiply(a, b):

Customize your runtime environment 3088

Amazon SageMaker Developer Guide

 return np.matmul(a, b)

Alternatively, you can set dependencies to auto_capture to let the SageMaker Python SDK
capture the installed dependencies in the active conda environment. The following are required for
auto_capture to work reliably:

• You must have an active conda environment. We recommend not using the base conda
environment for remote jobs so that you can reduce potential dependency conflicts. Not using
the base conda environment also allows for faster environment setup in the remote job.

• You must not have any dependencies installed using pip with a value for the parameter --
extra-index-url.

• You must not have any dependency conflicts between packages installed with conda and
packages installed with pip in the local development environment.

• Your local development environment must not contain operating system-specific dependencies
that are not compatible with Linux.

In case auto_capture does not work, we recommend that you pass in your dependencies as a
requirement.txt or conda environment.yaml file, as described in the first coding example in this
section.

Container image compatibility

The following table shows a list of SageMaker training images that are compatible with the
@remote decorator.

Name Python Version Image URI - CPU Image URI - GPU

Data Science 3.7(py37) For SageMaker Studio
Classic Notebooks
only. Python SDK
automatically selects
the image URI when
used as SageMaker
Studio Classic
Notebook kernel
image.

For SageMaker Studio
Classic Notebooks
only. Python SDK
automatically selects
the image URI when
used as SageMaker
Studio Classic
Notebook kernel
image.

Container image compatibility 3089

Amazon SageMaker Developer Guide

Name Python Version Image URI - CPU Image URI - GPU

Data Science 2.0 3.8(py38) For SageMaker Studio
Classic Notebooks
only. Python SDK
automatically selects
the image URI when
used as SageMaker
Studio Classic
Notebook kernel
image.

For SageMaker Studio
Classic Notebooks
only. Python SDK
automatically selects
the image URI when
used as SageMaker
Studio Classic
Notebook kernel
image.

Data Science 3.0 3.10(py310) For SageMaker Studio
Classic Notebooks
only. Python SDK
automatically selects
the image URI when
used as SageMaker
Studio Classic
Notebook kernel
image.

For SageMaker Studio
Classic Notebooks
only. Python SDK
automatically selects
the image URI when
used as SageMaker
Studio Classic
Notebook kernel
image.

Base Python 2.0 3.8(py38) Python SDK selects
this image when
it detects that
development
environment is using
Python 3.8 runtime.
Otherwise Python
SDK automatic
ally selects this
image when used as
SageMaker Studio
Classic Notebook
kernel image

For SageMaker Studio
Classic Notebooks
only. Python SDK
automatically selects
the image URI when
used as SageMaker
Studio Classic
Notebook kernel
image.

Container image compatibility 3090

Amazon SageMaker Developer Guide

Name Python Version Image URI - CPU Image URI - GPU

Base Python 3.0 3.10(py310) Python SDK selects
this image when
it detects that
development
environment is using
Python 3.8 runtime.
Otherwise Python
SDK automatic
ally selects this
image when used as
SageMaker Studio
Classic Notebook
kernel image

For SageMaker Studio
Classic Notebooks
only. Python SDK
automatically selects
the image URI when
used as Studio Classic
Notebook kernel
image.

DLC-TensorFlow
2.12.0 for SageMaker
Training

3.10(py310) 763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.12.0-cpu-
py310-ubuntu20.04-
sagemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.12.0-gpu-
py310-cu118-ubu
ntu20.04-sagemaker

DLC-Tensorflow
2.11.0 for SageMaker
training

3.9(py39) 763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.11.0-cpu-
py39-ubuntu20.04-
sagemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.11.0-gpu-
py39-cu112-ubun
tu20.04-sagemaker

DLC-TensorFlow
2.10.1 for SageMaker
training

3.9(py39) 763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.10.1-cpu-
py39-ubuntu20.04-
sagemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.10.1-gpu-
py39-cu112-ubun
tu20.04-sagemaker

Container image compatibility 3091

Amazon SageMaker Developer Guide

Name Python Version Image URI - CPU Image URI - GPU

DLC-TensorFlow
2.9.2 for SageMaker
training

3.9(py39) 763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.9.2-cpu-
py39-ubuntu20.04-
sagemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.9.2-gpu-
py39-cu112-ubunt
u20.04-sagemaker

DLC-TensorFlow
2.8.3 for SageMaker
training

3.9(py39) 763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.8.3-cpu-
py39-ubuntu20.04-
sagemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/tensorflow
-training:2.8.3-gpu-
py39-cu112-ubunt
u20.04-sagemaker

DLC-PyTorch 2.0.0 for
SageMaker training

3.10(py310) 763104351884.dkr.e
cr.<region>.amazon
aws.com/pytorch-tr
aining:2.0.0-cpu-p
y310-ubuntu20.04-s
agemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/pytorch-tr
aining:2.0.0-gpu-p
y310-cu118-ubuntu2
0.04-sagemaker

DLC-PyTorch 1.13.1
for SageMaker
training

3.9(py39) 763104351884.dkr.e
cr.<region>.amazon
aws.com/pytorch-tr
aining:1.13.1-cpu-
py39-ubuntu20.04-s
agemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/pytorch-tr
aining:1.13.1-gpu-
py39-cu117-ubuntu2
0.04-sagemaker

DLC-PyTorch 1.12.1
for SageMaker
training

3.8(py38) 763104351884.dkr.e
cr.<region>.amazon
aws.com/pytorch-tr
aining:1.12.1-cpu-
py38-ubuntu20.04-s
agemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/pytorch-tr
aining:1.12.1-gpu-
py38-cu113-ubuntu2
0.04-sagemaker

Container image compatibility 3092

Amazon SageMaker Developer Guide

Name Python Version Image URI - CPU Image URI - GPU

DLC-PyTorch 1.11.0
for SageMaker
training

3.8(py38) 763104351884.dkr.e
cr.<region>.amazon
aws.com/pytorch-tr
aining:1.11.0-cpu-
py38-ubuntu20.04-s
agemaker

763104351884.dkr.e
cr.<region>.amazon
aws.com/pytorch-tr
aining:1.11.0-gpu-
py38-cu113-ubuntu2
0.04-sagemaker

DLC-MXNet 1.9.0 for
SageMaker training

3.8(py38) 763104351884.dkr.e
cr.<region>.amazon
aws.com/mxnet-trai
ning:1.9.0-cpu-py3
8-ubuntu20.04-sage
maker

763104351884.dkr.e
cr.<region>.amazon
aws.com/mxnet-trai
ning:1.9.0-gpu-py38-
cu112-ubuntu20.04-
sagemaker

Note

To run jobs locally using AWS Deep Learning Containers (DLC) images, use the image URIs
found in the DLC documentation. The DLC images do not support the auto_capture
value for dependencies.
Jobs with SageMaker Distribution in SageMaker Studio run in a container as a non-root
user named sagemaker-user. This user needs full permission to access /opt/ml and
/tmp. Grant this permission by adding sudo chmod -R 777 /opt/ml /tmp to the
pre_execution_commands list, as shown in the following snippet:

@remote(pre_execution_commands=["sudo chmod -R 777 /opt/ml /tmp"])
def func():
 pass

You can also run remote functions with your custom images. For compatibility with remote
functions, custom images should be built with Python version 3.7.x-3.10.x. The following is a
minimal Dockerfile example showing you how to use a Docker image with Python 3.10.

FROM python:3.10

Container image compatibility 3093

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/sagemaker-distribution#amazon-sagemaker-studio

Amazon SageMaker Developer Guide

#... Rest of the Dockerfile

To create conda environments in your image and use it to run jobs, set the environment
variable SAGEMAKER_JOB_CONDA_ENV to the conda environment name. If your image has
the SAGEMAKER_JOB_CONDA_ENV value set, the remote function cannot create a new conda
environment during the training job runtime. Refer to the following Dockerfile example that uses a
conda environment with Python version 3.10.

FROM continuumio/miniconda3:4.12.0

ENV SHELL=/bin/bash \
 CONDA_DIR=/opt/conda \
 SAGEMAKER_JOB_CONDA_ENV=sagemaker-job-env

RUN conda create -n $SAGEMAKER_JOB_CONDA_ENV \
 && conda install -n $SAGEMAKER_JOB_CONDA_ENV python=3.10 -y \
 && conda clean --all -f -y \

For SageMaker to use mamba to manage your Python virtual environment in the container image,
install the mamba toolkit from miniforge. To use mamba, add the following code example to your
Dockerfile. Then, SageMaker will detect the mamba availability at runtime and use it instead of
conda.

#Mamba Installation
RUN curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/
Mambaforge-Linux-x86_64.sh" \
 && bash Mambaforge-Linux-x86_64.sh -b -p "/opt/conda" \
 && /opt/conda/bin/conda init bash

Using a custom conda channel on an Amazon S3 bucket is not compatible with mamba when
using a remote function. If you choose to use mamba, make sure you are not using a custom conda
channel on Amazon S3. For more information, see the Prerequisites section under Custom conda
repository using Amazon S3.

The following is a complete Dockerfile example showing how to create a compatible Docker image.

FROM python:3.10

RUN apt-get update -y \
 # Needed for awscli to work

Container image compatibility 3094

https://mamba.readthedocs.io/en/latest/user_guide/mamba.html
https://github.com/conda-forge/miniforge

Amazon SageMaker Developer Guide

 # See: https://github.com/aws/aws-cli/issues/1957#issuecomment-687455928
 && apt-get install -y groff unzip curl \
 && pip install --upgrade \
 'boto3>1.0<2' \
 'awscli>1.0<2' \
 'ipykernel>6.0.0<7.0.0' \
#Use ipykernel with --sys-prefix flag, so that the absolute path to
 #/usr/local/share/jupyter/kernels/python3/kernel.json python is used
 # in kernelspec.json file
 && python -m ipykernel install --sys-prefix

#Install Mamba
RUN curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/
Mambaforge-Linux-x86_64.sh" \
 && bash Mambaforge-Linux-x86_64.sh -b -p "/opt/conda" \
 && /opt/conda/bin/conda init bash

#cleanup
RUN apt-get clean \
 && rm -rf /var/lib/apt/lists/* \
 && rm -rf ${HOME}/.cache/pip \
 && rm Mambaforge-Linux-x86_64.sh

ENV SHELL=/bin/bash \
 PATH=$PATH:/opt/conda/bin

The resulting image from running the previous Dockerfile example can also be used as a
SageMaker Studio Classic kernel image.

Logging parameters and metrics with Amazon SageMaker Experiments

This guide show how to log parameters and metrics with Amazon SageMaker Experiments. A
SageMaker experiment consists of runs, and each run consists of all the inputs, parameters,
configurations and results for a single model training interaction.

You can log parameters and metrics from a remote function using either the @remote decorator or
the RemoteExecutor API.

To log parameters and metrics from a remote function, choose one of the following methods:

• Instantiate a SageMaker experiment run inside a remote function using Run from the SageMaker
Experiments library. For more information, see Create an Amazon SageMaker Experiment.

Logging parameters and metrics with Amazon SageMaker Experiments 3095

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-create.html

Amazon SageMaker Developer Guide

• Use the load_run function inside a remote function from the SageMaker Experiments library.
This will load a Run instance that is declared outside of the remote function.

The following sections show how to create and track lineage with SageMaker experiment runs
by using the previous listed methods. The sections also describe cases that are not supported by
SageMaker training.

Use the @remote decorator to integrate with SageMaker Experiments

You can either instantiate an experiment in SageMaker, or load a current SageMaker experiment
from inside a remote function. The following sections show you show to use either method.

Create an experiment with SageMaker Experiments

You can create an experiment run in SageMaker experiment. To do this you pass your experiment
name, run name, and other parameters into your remote function.

The following code example imports the name of your experiment, the name of the run, and the
parameters to log during each run. The parameters param_1 and param_2 are logged over time
inside a training loop. Common parameters may include batch size or epochs. In this example,
the metrics metric_a and metric_b are logged for a run over time inside a training loop. Other
common metrics may include accuracy or loss.

from sagemaker.remote_function import remote
from sagemaker.experiments.run import Run

Define your remote function
@remote
def train(value_1, value_2, exp_name, run_name):
 ...
 ...
 #Creates the experiment
 with Run(
 experiment_name=exp_name,
 run_name=run_name,
) as run:
 ...
 #Define values for the parameters to log
 run.log_parameter("param_1", value_1)
 run.log_parameter("param_2", value_2)
 ...

Logging parameters and metrics with Amazon SageMaker Experiments 3096

Amazon SageMaker Developer Guide

 #Define metrics to log
 run.log_metric("metric_a", 0.5)
 run.log_metric("metric_b", 0.1)

Invoke your remote function
train(1.0, 2.0, "my-exp-name", "my-run-name")

Load current SageMaker Experiments with a job initiated by the @remote decorator

Use the load_run() function from the SageMaker Experiments library to load the current run
object from the run context. You can also use the load_run() function within your remote
function. Load the run object initialized locally by the with statement on the run object as shown
in the following code example.

from sagemaker.experiments.run import Run, load_run

Define your remote function
@remote
def train(value_1, value_2):
 ...
 ...
 with load_run() as run:
 run.log_metric("metric_a", value_1)
 run.log_metric("metric_b", value_2)

Invoke your remote function
with Run(
 experiment_name="my-exp-name",
 run_name="my-run-name",
) as run:
 train(0.5, 1.0)

Load a current experiment run within a job initiated with the RemoteExecutor
API

You can also load a current SageMaker experiment run if your jobs were initiated with the
RemoteExecutor API. The following code example shows how to use RemoteExecutor API
with the SageMaker Experiments load_run function. You do this to load a current SageMaker
experiment run and capture metrics in the job submitted by RemoteExecutor.

Logging parameters and metrics with Amazon SageMaker Experiments 3097

Amazon SageMaker Developer Guide

from sagemaker.experiments.run import Run, load_run

def square(x):
 with load_run() as run:
 result = x * x
 run.log_metric("result", result)
 return result

with RemoteExecutor(
 max_parallel_job=2,
 instance_type="ml.m5.large"
) as e:
 with Run(
 experiment_name="my-exp-name",
 run_name="my-run-name",
):
 future_1 = e.submit(square, 2)

Unsupported uses for SageMaker Experiments while annotating your code with
an @remote decorator

SageMaker does not support passing a Run type object to an @remote function or using global
Run objects. The following examples show code that will throw a SerializationError.

The following code example attempts to pass a Run type object to an @remote decorator, and it
generates an error.

@remote
def func(run: Run):
 run.log_metrics("metric_a", 1.0)

with Run(...) as run:
 func(run) ---> SerializationError caused by NotImplementedError

The following code example attempts to use a global run object instantiated outside of the
remote function. In the code example, the train() function is defined inside the with Run
context, referencing a global run object from within. When train() is called, it generates an error.

with Run(...) as run:
 @remote

Logging parameters and metrics with Amazon SageMaker Experiments 3098

Amazon SageMaker Developer Guide

 def train(metric_1, value_1, metric_2, value_2):
 run.log_parameter(metric_1, value_1)
 run.log_parameter(metric_2, value_2)

 train("p1", 1.0, "p2", 0.5) ---> SerializationError caused by NotImplementedError

Using modular code with the @remote decorator

You can organize your code into modules for ease of workspace management during development
and still use the @remote function to invoke a function. You can also replicate the local modules
from your development environment to the remote job environment. To do so, set the parameter
include_local_workdir to True, as shown in the following code example.

@remote(
 include_local_workdir=True,
)

Note

The @remote decorator and parameter must appear in the main file, rather than in any of
the dependent files.

When include_local_workdir is set to True, SageMaker packages all of the Python scripts
while maintaining the directory structure in the process' current directory. It also makes the
dependencies available in the job's working directory.

For example, suppose your Python script which processes the MNIST dataset is divided into a
main.py script and a dependent pytorch_mnist.py script. main.py calls the dependent script.
Also, the main.py script contains code to import the dependency as shown.

from mnist_impl.pytorch_mnist import ...

The main.py file must also contain the @remote decorator, and it must set the
include_local_workdir parameter to True.

The include_local_workdir parameter by default includes all the Python scripts in the
directory. You can customize which files you want to upload to the job by using this parameter in

Using modular code with the @remote decorator 3099

Amazon SageMaker Developer Guide

conjunction with the custom_file_filter parameter. You can either pass a function that filters
job dependencies to be uploaded to S3, or a CustomFileFilter object that specifies the local
directories and files to ignore in the remote function. You can use custom_file_filter only if
include_local_workdir is set to True—otherwise the parameter is ignored.

The following example uses CustomFileFilter to ignore all notebook files and folders or files
named data when uploading files to S3.

@remote(
 include_local_workdir=True,
 custom_file_filter=CustomFileFilter(
 ignore_pattern_names=[# files or directories to ignore
 "*.ipynb", # all notebook files
 "data", # folter or file named data
]
)
)

The following example demonstrates how you can package an entire workspace.

@remote(
 include_local_workdir=True,
 custom_file_filter=CustomFileFilter(
 ignore_pattern_names=[] # package whole workspace
)
)

The following example shows how you can use a function to filter files.

import os

def my_filter(path: str, files: List[str]) -> List[str]:
 to_ignore = []
 for file in files:
 if file.endswith(".txt") or file.endswith(".ipynb"):
 to_ignore.append(file)
 return to_ignore

@remote(
 include_local_workdir=True,
 custom_file_filter=my_filter

Using modular code with the @remote decorator 3100

Amazon SageMaker Developer Guide

)

Best practices in structuring your working directory

The following best practices suggest how you can organize your directory structure while using the
@remote decorator in your modular code.

• Put the @remote decorator in a file that resides at the root level directory of the workspace.

• Structure the local modules at the root level.

The following example image shows the recommended directory structure. In this example
structure, the main.py script is located at the root level directory.

.
config.yaml
data/
main.py <----------------- @remote used here
mnist_impl
__pycache__/
pytorch_mnist.cpython-310.pyc
pytorch_mnist.py <-------- dependency of main.py
requirements.txt

The following example image shows a directory structure that will result in inconsistent behavior
when it is used to annotate your code with an @remote decorator.

In this example structure, the main.py script that contains the @remote decorator is not located
at the root level directory. The following structure is NOT recommended.

.
config.yaml
entrypoint
data
main.py <----------------- @remote used here
mnist_impl
__pycache__
pytorch_mnist.cpython-310.pyc
pytorch_mnist.py <-------- dependency of main.py
requirements.txt

Using modular code with the @remote decorator 3101

Amazon SageMaker Developer Guide

Private repository for runtime dependencies

You can use pre-execution commands or script to configure a dependency manager like pip or
conda in your job environment. To achieve network isolation, use either of these options to redirect
your dependency managers to access your private repositories and run remote functions within
a VPC. The pre-execution commands or script will run before your remote function runs. You can
define them with the @remote decorator, the RemoteExecutor API, or within a configuration file.

The following sections show you how to access a private Python Package Index (PyPI) repository
managed with AWS CodeArtifact. The sections also show how to access a custom conda channel
hosted on Amazon Simple Storage Service (Amazon S3).

How to use a custom PyPI repository managed with AWS CodeArtifact

To use CodeArtifact to manage a custom PyPI repository, the following prerequisites are required:

• Your private PyPI repository should already have been created. You can utilize AWS CodeArtifact
to create and manage your private package repositories. To learn more about CodeArtifact, see
the CodeArtifact User Guide.

• Your VPC should have access to your CodeArtifact repository. To allow a connection from your
VPC to your CodeArtifact repository, you must do the following:

• Create VPC endpoints for CodeArtifact.

• Create an Amazon S3 gateway endpoint for your VPC, which allows CodeArtifact to store
package assets.

The following pre-execution command example shows how to configure pip in the SageMaker
training job to point to your CodeArtifact repository. For more information, see Configure and use
pip with CodeArtifact.

use a requirements.txt file to import dependencies
@remote(
 instance_type="ml.m5.large"
 image_uri = "my_base_python:latest",
 dependencies = './requirements.txt',
 pre_execution_commands=[
 "aws codeartifact login --tool pip --domain my-org --domain-owner
 <000000000000> --repository my-codeartifact-python-repo --endpoint-url https://vpce-
xxxxx.api.codeartifact.us-east-1.vpce.amazonaws.com"

Private repository for runtime dependencies 3102

https://docs.aws.amazon.com/codeartifact/latest/ug/welcome.html
https://docs.aws.amazon.com/codeartifact/latest/ug/create-vpc-endpoints.html
https://docs.aws.amazon.com/codeartifact/latest/ug/create-s3-gateway-endpoint.html
https://docs.aws.amazon.com/codeartifact/latest/ug/python-configure-pip.html
https://docs.aws.amazon.com/codeartifact/latest/ug/python-configure-pip.html

Amazon SageMaker Developer Guide

]
)
def matrix_multiply(a, b):
 return np.matmul(a, b)

How to use a custom conda channel hosted on Amazon S3

To use Amazon S3 to manage a custom conda repository, the following prerequisites are required:

• Your private conda channel must already be set up in your Amazon S3 bucket, and all dependent
packages must be indexed and uploaded to your Amazon S3 bucket. For instructions on how to
index your conda packages, see Creating custom channels.

• Your VPC should have access to the Amazon S3 bucket. For more information, see Endpoints for
Amazon S3.

• The base conda environment in your job image should have boto3 installed. To check your
environment, enter the following in your Anaconda prompt to check that boto3 appears in the
resulting generated list.

conda list -n base

• You job image should be installed with conda, not mamba. To check your environment, ensure
that the previous code prompt does not return mamba.

The following pre-execution commands example shows how to configure conda in the SageMaker
training job to point to your private channel on Amazon S3 The pre-execution commands removes
the defaults channel and adds custom channels to a .condarc conda configuration file.

specify your dependencies inside a conda yaml file
@remote(
 instance_type="ml.m5.large"
 image_uri = "my_base_python:latest",
 dependencies = "./environment.yml",
 pre_execution_commands=[
 "conda config --remove channels 'defaults'"
 "conda config --add channels 's3://my_bucket/my-conda-repository/conda-
forge/'",
 "conda config --add channels 's3://my_bucket/my-conda-repository/main/'"
]
)
def matrix_multiply(a, b):

Private repository for runtime dependencies 3103

https://conda.io/projects/conda/en/latest/user-guide/tasks/create-custom-channels.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://mamba.readthedocs.io/en/latest/installation.html

Amazon SageMaker Developer Guide

 return np.matmul(a, b)

Example notebooks

You can transform a training code in an existing workspace environment and any associated data
processing code and datasets into a SageMaker training job. The following notebooks show you
how to customize your environment, job settings, and more for an image classification problem,
using the XGBoost algorithm and Hugging Face.

The quick_start notebook contains the following code examples:

• How to customize your job settings with a configuration file.

• How to invoke Python functions as jobs, asynchronously.

• How to customize the job runtime environment by bringing in additional dependencies.

• How to use local dependencies with the @remote function method.

The following notebooks provide additional code examples for different ML problems types and
implementations.

• To see code examples to use the @remote decorator for an image classification problem, open
the pytorch_mnist.ipynb notebook. This classification problem recognizes handwritten digits
using the Modified National Institute of Standards and Technology (MNIST) sample dataset.

• To see code examples for using the @remote decorator for the previous image classification
problem with a script, see the Pytorch MNIST sample script, train.py.

• To see how the XGBoost algorithm implemented with an @remote decorator: Open the
xgboost_abalone.ipynb notebook.

• To see how Hugging Face is integrated with an @remote decorator: Open the huggingface.ipynb
notebook.

Manage Machine Learning with Amazon SageMaker
Experiments

Amazon SageMaker Experiments is a capability of Amazon SageMaker that lets you create,
manage, analyze, and compare your machine learning experiments.

Experimentation in machine learning

Example notebooks 3104

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-remote-function/quick_start/quick_start.ipynb
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-remote-function/pytorch_mnist_sample_notebook
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-remote-function/pytorch_mnist_sample_script
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-remote-function/xgboost_abalone
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-remote-function/huggingface_text_classification

Amazon SageMaker Developer Guide

Machine learning is an iterative process. You need to experiment with multiple combinations
of data, algorithms, and parameters, all while observing the impact of incremental changes on
model accuracy. Over time, this iterative experimentation can result in thousands of model training
runs and model versions. This makes it hard to track the best performing models and their input
configurations. It’s also difficult to compare active experiments with past experiments to identify
opportunities for further incremental improvements. Use SageMaker Experiments to organize,
view, analyze, and compare iterative ML experimentation to gain comparative insights and track
your best performing models.

Manage ML experimentation with SageMaker Experiments

SageMaker Experiments automatically tracks the inputs, parameters, configurations, and results of
your iterations as runs. You can assign, group, and organize these runs into experiments. SageMaker
Experiments is integrated with Amazon SageMaker Studio Classic, providing a visual interface
to browse your active and past experiments, compare runs on key performance metrics, and
identify the best performing models. SageMaker Experiments tracks all of the steps and artifacts
that went into creating a model, and you can quickly revisit the origins of a model when you are
troubleshooting issues in production, or auditing your models for compliance verifications.

Use SageMaker Experiments to view, manage, analyze, and compare both custom experiments that
you programmatically create and experiments automatically created from SageMaker jobs.

Supported AWS Regions

SageMaker Experiments is generally available in all AWS commercial Regions where Amazon
SageMaker Studio Classic is available, except the China Regions.

Topics

• Create an Amazon SageMaker Experiment

• View, search, and compare experiment runs

• SageMaker integrations

• Example notebooks for Amazon SageMaker Experiments

• Monitor experiment training metrics with AWS CloudTrail

• Clean Up Amazon SageMaker Experiment Resources

• Additional supported SDK

• Experiments FAQs

• Search Using the Amazon SageMaker Console and API

Supported AWS Regions 3105

https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html

Amazon SageMaker Developer Guide

Create an Amazon SageMaker Experiment

Create an Amazon SageMaker experiment to track your machine learning (ML) workflows with
a few lines of code from your preferred development environment. You can then browse your
experiments, create visualizations for analysis, and find the best performing model. You can also
integrate SageMaker Experiments into your SageMaker training script using the SageMaker Python
SDK.

Overview

The following components make up the building blocks of an experiment in Amazon SageMaker.

• experiment: An experiment is a collection of runs. When you initialize a run in your training
loop, you include the name of the experiment that the run belongs to. Experiment names must
be unique within your AWS account.

• Run: A run consists of all the inputs, parameters, configurations, and results for one interaction
of model training. Initialize an experiment run for tracking a training job with Run.init().

Note

We recommend that you initialize a Run object in a Jupyter Notebook, and create the
SageMaker job for your experiment within the context of this Run object initialization. To
refer to this Run object in script mode, use the load_run() operation. For examples, see
Example notebooks for Amazon SageMaker Experiments.

Note

The SageMaker Python SDK automatically turns experiment names and run names to
lowercase.

• load_run: To run your experiments in script mode, refer to an initialized Run object with
load_run(). If an experiment for a run exists, load_run returns the experiment context.
Generally, you use load_run with no arguments to track metrics, parameters, and artifacts
within a SageMaker training or processing job script.

Load run from a local script passing experiment and run names
with load_run(experiment_name=experiment_name, run_name=run_name) as run:

Create an experiment 3106

Amazon SageMaker Developer Guide

 run.log_parameter("param1", "value1")

Load run within a training or processing Job (automated context sharing)
with load_run() as run:
 run.log_parameter("param1", "value1")

• log_parameter: Log parameters for a run, such as batch size or epochs, over time in a training
loop with run.log_parameter(). log_parameter records a single name-value pair in a
run. You can use run.log_parameters() to log multiple parameters. If called multiple times
within a run for a parameter of the same name, log_parameter overwrites any previous value.
The name must be a string and the value must be either a string, integer, or float.

Log a single parameter
run.log_parameter("param1", "value1")

Log multiple parameters
run.log_parameters({
 "param2": "value2",
 "param3": "value3"
})

• log_metric: Log metrics for a run, such as accuracy or loss, over time in a training loop with
run.log_metric(). log_metric records a name-value pair where the name is a string and
the value is an integer or float. To declare the frequency of logging over the course of the run,
define a step value. You can then visualize these metrics in the Studio Classic Experiments UI.
For more information, see View, search, and compare experiment runs.

Log a metric over the course of a run
run.log_metric(name="Final_loss", value=finalloss)

Log a metric over the course of a run at each epoch
run.log_metric(name="test:loss", value=loss, step=epoch)

• log_artifact: Log any input or output artifacts related to a run with run.log_artifact().
Log artifacts such as S3 URIs, datasets, models, and more for your experiment to help you keep
track of artifacts across multiple runs. is_output is True by default. To record the artifact as an
input artifact instead of an output artifact, set is_output to False.

Track a string value as an input or output artifact

Create an experiment 3107

Amazon SageMaker Developer Guide

run.log_artifact(name="training_data", value="data.csv" is_output=False)

• log_file: Log any input or output files related to a run, such as training or test data, and store
them in Amazon S3 with run.log_file(). is_output is True by default. To record the file as
an input artifact instead of an output artifact, set is_output to False.

Upload a local file to S3 and track it as an input or output artifact
run.log_file("training_data.csv", name="training_data", is_output=False)

For more information on initializing a Run object, see Experiments in the SageMaker Python SDK
documentation. For information on visualizing logged experiment data and automatic logging, see
View, search, and compare experiment runs.

Create an experiment with the SageMaker Python SDK

The following section demonstrates how to create an Amazon SageMaker Experiment using the
SageMaker Python SDK. This example uses the Run class to track a Keras model in a notebook
environment. The Keras Callback class provides an operation on_epoch_end which emits
metrics at the end of each epoch. First, define a Callback class.

class ExperimentCallback(keras.callbacks.Callback):
 """ """

 def __init__(self, run, model, x_test, y_test):
 """Save params in constructor"""
 self.run = run
 self.model = model
 self.x_test = x_test
 self.y_test = y_test

 def on_epoch_end(self, epoch, logs=None):
 """ """
 keys = list(logs.keys())
 for key in keys:
 run.log_metric(name=key, value=logs[key], step=epoch)
 print("Epoch: {}\n{} -> {}".format(epoch, key, logs[key]))

Next, train the Keras model in a notebook environment and track it as an experiment.

Create an experiment 3108

https://sagemaker.readthedocs.io/en/stable/experiments/sagemaker.experiments.html

Amazon SageMaker Developer Guide

Note

This example carries out jobs sequentially. To run SageMaker jobs asynchronously, you may
need to increase your resource limit.

from sagemaker.experiments import Run

The run name is an optional argument to `run.init()`
with Run(experiment_name = 'my-experiment') as run:

 # Define values for the parameters to log
 run.log_parameter("batch_size", batch_size)
 run.log_parameter("epochs", epochs)
 run.log_parameter("dropout", 0.5)

 # Define input artifacts
 run.log_file('datasets/input_train.npy', is_output = False)
 run.log_file('datasets/input_test.npy', is_output = False)
 run.log_file('datasets/input_train_labels.npy', is_output = False)
 run.log_file('datasets/input_test_labels.npy', is_output = False)

 # Train locally
 model.fit(
 x_train,
 y_train,
 batch_size=batch_size,
 epochs=epochs,
 validation_split=0.1,
 callbacks = [ExperimentCallback(run, model, x_test, y_test)]
)

 score = model.evaluate(x_test, y_test, verbose=0)
 print("Test loss:", score[0])
 print("Test accuracy:", score[1])

 # Define metrics to log
 run.log_metric(name = "Final Test Loss", value = score[0])
 run.log_metric(name = "Final Test Accuracy", value = score[1])

For more code examples and example notebooks, see Example notebooks for Amazon SageMaker
Experiments.

Create an experiment 3109

Amazon SageMaker Developer Guide

Create an experiment using SageMaker script mode

You can use SageMaker script mode to write your own code to train a model and track it as an
experiment. When creating an experiment with script mode, use load_run().

Make sure that you have the latest version of the SageMaker Python SDK
import os
os.system("pip install -U sagemaker")

Import additional requirements
import boto3
from sagemaker.session import Session
from sagemaker.experiments.run import load_run

Define training script
if __name__ == "__main__":
 session = Session(boto3.session.Session(region_name=args.region))
 with load_run(sagemaker_session=session) as run:
 # Define values for the parameters to log
 run.log_parameters({
 "batch_size": batch_size,
 "epochs": epochs,
 "dropout": 0.5
 })
 # Define input artifacts
 run.log_file('datasets/input_train.npy', is_output = False)
 run.log_file('datasets/input_test.npy', is_output = False)
 run.log_file('datasets/input_train_labels.npy', is_output = False)
 run.log_file('datasets/input_test_labels.npy', is_output = False)

 # Train the model
 model.fit(
 x_train,
 y_train,
 batch_size=batch_size,
 epochs=epochs,
 validation_split=0.1,
 callbacks = [ExperimentCallback(run, model, x_test, y_test)]
)

 score = model.evaluate(x_test, y_test, verbose=0)
 print("Test loss:", score[0])
 print("Test accuracy:", score[1])

Create an experiment 3110

Amazon SageMaker Developer Guide

 # Define metrics to log
 run.log_metric(name = "Final Test Loss", value = score[0])
 run.log_metric(name = "Final Test Accuracy", value = score[1])

For more code examples and example notebooks on using Amazon SageMaker Experiments in
SageMaker script mode, see Track experiments for SageMaker training jobs using script mode.

For more information on script mode, see Use script mode in a supported framework. You can also
define custom metrics in script mode by specifying a name and regular expression for each metric
that a tuning job monitors. See Use a custom algorithm for training for more information.

View your experiment in Studio

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

To view your experiments, you must do so through Studio Classic, which you can access through
the updated Studio experience.

Within Studio, choose Experiments on the lefthand navigation pane. Then, choose View Studio
Classic. For information about using the Studio Classic application, see Amazon SageMaker Studio
Classic. For more information on getting started with the updated Studio experience, see Amazon
SageMaker Studio.

Create an experiment 3111

https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-choose.html#supported-frameworks-benefits
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html#automatic-model-tuning-define-metrics-custom

Amazon SageMaker Developer Guide

View your experiment in Studio Classic

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

To view the experiment in Studio Classic, in the left sidebar, choose Experiments.

Select the name of the experiment to view all associated runs. It might take a moment for the list
to refresh and display a new experiment or experiment run. You can click Refresh to update the
page. Your experiment list should look similar to the following:

Create an experiment 3112

Amazon SageMaker Developer Guide

To view the runs that make up your experiment, select the experiment name. For more
information, see View, search, and compare experiment runs.

View unassigned runs

All SageMaker jobs, including training jobs, processing jobs, and transform jobs, correspond to
runs and create Run objects by default. If you launch these jobs without explicitly associating them
with an experiment, the resulting runs are unassigned and can be viewed in the Unassigned runs
section of the Studio Classic Experiments UI.

Create an experiment 3113

Amazon SageMaker Developer Guide

To clean up the resources you created, see Clean Up Amazon SageMaker Experiment Resources.

View, search, and compare experiment runs

An Amazon SageMaker experiment consists of multiple run groups with a related objective. A run
group consists of one or more runs, such as a data preprocessing job and a training job.

To view your experiments, you must do so through Studio Classic. For an overview of the Studio
Classic user interface, see Amazon SageMaker Studio Classic UI Overview. For information about
using the Studio Classic application, see Amazon SageMaker Studio Classic.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

View, search, and compare experiment runs 3114

Amazon SageMaker Developer Guide

View experiments and runs

Amazon SageMaker Studio Classic provides an experiments browser that you can use to view lists
of experiments and runs. You can choose one of these entities to view detailed information about
the entity or choose multiple entities for comparison. You can filter the list of experiments by
entity name, type, and tags.

To view experiments and runs

1. To view the experiment in Studio Classic, in the left sidebar, choose Experiments.

Select the name of the experiment to view all associated runs. You can search experiments by
typing directly into the Search bar or filtering for experiment type. You can also choose which
columns to display in your experiment or run list.

It might take a moment for the list to refresh and display a new experiment or experiment
run. You can click Refresh to update the page. Your experiment list should look similar to the
following:

2. In the experiments list, double-click an experiment to display a list of the runs in the
experiment.

View, search, and compare experiment runs 3115

Amazon SageMaker Developer Guide

Note

Experiment runs that are automatically created by SageMaker jobs and
containers are visible in the Experiments Studio Classic UI by default. To hide
runs created by SageMaker jobs for a given experiment, choose the settings icon

()
and toggle Show jobs.

3. Double-click a run to display information about a specific run.

In the Overview pane, choose any of the following headings to see available information
about each run:

• Metrics – Metrics that are logged during a run.

• Charts – Build your own charts to compare runs.

• Output artifacts – Any resulting artifacts of the experiment run and the artifact locations in
Amazon S3.

• Bias reports – Pre-training or post-training bias reports generated using Clarify.

View, search, and compare experiment runs 3116

Amazon SageMaker Developer Guide

• Explainability– Explainability reports generated using Clarify.

• Debugs – A list of debugger rules and any issues found.

Compare and analyze runs

To analyze experiment runs, select the experiment of your choice in the Amazon SageMaker
Studio Classic Experiments UI and then select the runs that you want to compare. You must select
between 1 and 20 runs. After you have your runs selected, choose Analyze in the upper right-hand
corner.

To compare experiment runs:

1. After navigating to the experiment of your choice, select all the runs that you want to
compare. You must choose more than 1 and less than 20 runs to analyze.

2. Choose Analyze in the upper right-hand corner.

3. Visualize the comparative metrics of multiple experiment runs in a histogram, line chart,
scatter plot, or bar chart. To add a chart, choose Add Chart, select values for your chart axes,
and choose Create.

View, search, and compare experiment runs 3117

Amazon SageMaker Developer Guide

You can update, download, or delete existing charts.

Log charts

Logging charts and visualizations is available for classification models. You can log a confusion
matrix, receiver operating characteristics, or precision and recall graphs.

Log and visualize metrics with the following Python SDK methods:

• log_confusion_matrix: Records a confusion matrix artifact that you can view in the Charts
section of the Run Overview in Studio Classic.

• log_roc_curve: Records a receiver operating characteristic artifact that you can view in the
Charts section of the Run Overview in Studio Classic.

• log_precision_recall: Records a precision recall graph that you can view in the Charts
section of the Run Overview in Studio Classic.

An automatically logged precision recall record creates a chart similar to the following:

View, search, and compare experiment runs 3118

Amazon SageMaker Developer Guide

SageMaker integrations

Amazon SageMaker Experiments is integrated with a number of SageMaker features. Certain
SageMaker jobs automatically create experiments. You can view and manage SageMaker Clarify
bias reports or SageMaker Debugger output tensors for specific experiment runs directly in the
Studio Classic Experiments UI.

• Automatic experiment creation

• Bias and explainability reports

• Debugging

Automatic experiment creation

Amazon SageMaker automatically creates experiments when running Autopilot jobs,
hyperparameter optimization (HPO) jobs, or Pipeline executions. You can view these experiments in
the Studio Classic Experiments UI.

SageMaker integrations 3119

Amazon SageMaker Developer Guide

Autopilot

Amazon SageMaker Experiments is integrated with Amazon SageMaker Autopilot. When you
perform an Autopilot job, SageMaker Experiments creates an experiment for that job as well as
runs for each of the different combinations of the available run components, parameters, and
artifacts. You can find these runs in the SageMaker Experiments UI by filtering for the run type
Autopilot. For more information, see Automate model development with Amazon SageMaker
Autopilot.

HPO

Amazon SageMaker Experiments is integrated with HPO jobs. An HPO job automatically creates
Amazon SageMaker experiments, runs, and components for each training job that it completes. You
can find these runs in the SageMaker Experiments UI by filtering for the run type HPO. For more
information, see Tune Multiple Algorithms with Hyperparameter Optimization to Find the Best
Model.

Pipelines

Amazon SageMaker Model Building Pipelines is closely integrated with Amazon SageMaker
Experiments. By default, when SageMaker Pipelines creates and executes a pipeline, experiments,
runs, and components are created if they do not already exist. You can find these runs in the
SageMaker Experiments UI by filtering for the run type Pipelines. For more information, see
Amazon SageMaker Experiments Integration.

Bias and explainability reports

Manage SageMaker Clarify bias and explainability reports for experiment runs directly through
Studio Classic. To view reports, find and select the name of the experiment run of your choice in
Studio Classic. Choose Bias reports to see any Clarify bias reports associated with the experiment
run.

SageMaker integrations 3120

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multiple-algorithm-hpo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multiple-algorithm-hpo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-experiments.html

Amazon SageMaker Developer Guide

Choose Explanations to see any Clarify explainability reports associated with the experiment run.

SageMaker integrations 3121

Amazon SageMaker Developer Guide

You can generate pre-training or post-training bias reports that analyze bias in datasets or model
predictions using labels and bias metrics with SageMaker Clarify. You can also use SageMaker
Clarify to generate explainability reports that document model behavior for global or local
data samples. For more information, see Amazon SageMaker Clarify Bias Detection and Model
Explainability.

Debugging

You can debug model training progress with Amazon SageMaker Debugger and view debug output
tensors in the Studio Classic Experiments UI. Choose the name of the run associated with the
Debugger report and choose Debugger.

Then, choose the training job name to view the associated Amazon SageMaker Debugger
dashboard.

SageMaker integrations 3122

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-configure-processing-jobs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-configure-processing-jobs.html

Amazon SageMaker Developer Guide

For more information, see Debug Training Jobs Using Amazon SageMaker Debugger.

Example notebooks for Amazon SageMaker Experiments

The following tutorials demonstrate how to track runs for various model training experiments. You
can view the resulting experiments in Studio Classic after running the notebooks. To clean up the
resources created by a notebook, see Clean Up Amazon SageMaker Experiment Resources. For a
tutorial that showcases additional features of Studio, see Amazon SageMaker Studio Classic Tour.

Track experiments in a notebook environment

To learn more about tracking experiments in a notebook environment, see the following example
notebooks:

• Track an experiment while training a Keras model locally

• Track an experiment while training a Pytorch model locally or in your notebook

Tutorials 3123

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/local_experiment_tracking/keras_experiment.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/local_experiment_tracking/pytorch_experiment.html

Amazon SageMaker Developer Guide

Track bias and explainability for your experiments with SageMaker Clarify

For a step-by-step guide on tracking bias and explainability for your experiments, see the following
example notebook:

• Fairness and Explainability with SageMaker Clarify

Track experiments for SageMaker training jobs using script mode

For more information about tracking experiments for SageMaker training jobs, see the following
example notebooks:

• Run a SageMaker Experiment with Pytorch Distributed Data Parallel - MNIST Handwritten Digits
Classification

• Track an experiment while training a Pytorch model with a SageMaker Training Job

• Train a TensorFlow model with a SageMaker training job and track it using SageMaker
Experiments

Monitor experiment training metrics with AWS CloudTrail

The training metrics for Amazon SageMaker Experiments are integrated with AWS
CloudTrail, a service that provides a record of actions taken by a user, role, or an AWS
service. CloudTrail captures all API calls for BatchPutMetrics as events. SageMaker
automatically calls BatchPutMetrics when you create an experiment run using the
SageMaker SDK for Python. AWS CloudTrail captures data related to calls for resource type
AWS::SageMaker::ExperimentTrialComponent.

Note

In the Studio Classic Experiments UI, trials are referred to as run groups and trial
components are referred to as runs.

When you create an experiment run, you can also configure the continuous delivery of CloudTrail
events to an Amazon S3 bucket. Use CloudTrail to monitor all ingested training metrics for an
experiment run, including information such as the metric name, the training step of the recorded
metric, the timestamp, and the metric value. CloudTrail events also include the experiment

CloudTrail metrics 3124

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/sagemaker_clarify_integration/tracking_bias_explainability.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/sagemaker_job_tracking/pytorch_distributed_training_experiment.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/sagemaker_job_tracking/pytorch_distributed_training_experiment.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/sagemaker_job_tracking/pytorch_script_mode_training_job.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/sagemaker_job_tracking/tensorflow_script_mode_training_job.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/sagemaker_job_tracking/tensorflow_script_mode_training_job.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_metrics_BatchPutMetrics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-create.html#experiments-create-python-sdk
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-create.html#experiments-create-python-sdk
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-create.html

Amazon SageMaker Developer Guide

run ARN, the ID of the account that created the run, and the resource type, which should be
AWS::SageMaker::ExperimentTrialComponent.

To monitor BatchPutMetrics API calls as CloudTrail events, you must first set up the logging
of data plane API activity in CloudTrail. See Logging data events for trails for more information.
For granular control over which API calls you want to selectively log and pay for, you can filter
CloudTrail events by resource type. Specify AWS::SageMaker::ExperimentTrialComponent
as a resource type to monitor calls to the BatchPutMetrics API. For more information, see
DataResource in the AWS CloudTrail API reference. To learn more about CloudTrail, see the AWS
CloudTrail User Guide.

For an in-depth explanation of how Amazon SageMaker works with AWS CloudTrail, see Log
Amazon SageMaker API Calls with AWS CloudTrail.

The following is an example CloudTrail event for a training metric in an experiment run:

{
 ...
 "eventTime": "2022-12-14T21:53:41Z",
 "eventSource": "metrics-sagemaker.amazonaws.com",
 "eventName": "BatchPutMetrics",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/2.7.25 Python/3.9.11 Linux/5.4.214-134.408.amzn2int.x86_64 exe/
x86_64.amzn.2 prompt/off command/sm-metrics.batch-put-metrics",
 "requestParameters": {
 "trialComponentName": "trial-component-name",
 "metricData": [
 {
 "metricName": "foo",
 "timestamp": 1670366870000,
 "step": 101,
 "value": 0.9
 }
]
 },
 ...
 "resources": [
 {
 "accountId": "abcdef01234567890",
 "type": "AWS::SageMaker::ExperimentTrialComponent",

CloudTrail metrics 3125

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_DataResource.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon SageMaker Developer Guide

 "ARN": "arn:aws:sagemaker:us-east-1:1234567890abcdef0:experiment-trial-component/
trial-component-name"
 }
],
 ...
}

Clean Up Amazon SageMaker Experiment Resources

To avoid incurring unnecessary charges, delete the Amazon SageMaker Experiment resources
you no longer need. You can't delete Experiment resources through the SageMaker Management
Console or the Amazon SageMaker Studio Classic UI. This topic shows you how to clean up these
resources using the SageMaker Python SDK, Boto3, and the Experiments SDK.

Topics

• Clean Up Using the SageMaker Python SDK (Recommended)

• Clean Up Using the Python SDK (Boto3)

• Clean Up Using the Experiments SDK

Clean Up Using the SageMaker Python SDK (Recommended)

To clean up using the SageMaker Python SDK

from sagemaker.experiments.experiment import Experiment

exp = Experiment.load(experiment_name=experiment_name, sagemaker_session=sm_session)
exp._delete_all(action="--force")

Clean Up Using the Python SDK (Boto3)

To clean up using Boto 3

import boto3
sm = boto3.Session().client('sagemaker')

Define cleanup_boto3

def cleanup_boto3(experiment_name):

Clean up experiment resources 3126

Amazon SageMaker Developer Guide

 trials = sm.list_trials(ExperimentName=experiment_name)['TrialSummaries']
 print('TrialNames:')
 for trial in trials:
 trial_name = trial['TrialName']
 print(f"\n{trial_name}")

 components_in_trial = sm.list_trial_components(TrialName=trial_name)
 print('\tTrialComponentNames:')
 for component in components_in_trial['TrialComponentSummaries']:
 component_name = component['TrialComponentName']
 print(f"\t{component_name}")
 sm.disassociate_trial_component(TrialComponentName=component_name,
 TrialName=trial_name)
 try:
 # comment out to keep trial components
 sm.delete_trial_component(TrialComponentName=component_name)
 except:
 # component is associated with another trial
 continue
 # to prevent throttling
 time.sleep(.5)
 sm.delete_trial(TrialName=trial_name)
 sm.delete_experiment(ExperimentName=experiment_name)
 print(f"\nExperiment {experiment_name} deleted")

Call cleanup_boto3

Use experiment name not display name
experiment_name = "experiment-name"
cleanup_boto3(experiment_name)

Clean Up Using the Experiments SDK

To clean up using the Experiments SDK

import sys
!{sys.executable} -m pip install sagemaker-experiments

import time

from smexperiments.experiment import Experiment
from smexperiments.trial import Trial

Clean up experiment resources 3127

Amazon SageMaker Developer Guide

from smexperiments.trial_component import TrialComponent

Define cleanup_sme_sdk

def cleanup_sme_sdk(experiment):
 for trial_summary in experiment.list_trials():
 trial = Trial.load(trial_name=trial_summary.trial_name)
 for trial_component_summary in trial.list_trial_components():
 tc = TrialComponent.load(
 trial_component_name=trial_component_summary.trial_component_name)
 trial.remove_trial_component(tc)
 try:
 # comment out to keep trial components
 tc.delete()
 except:
 # tc is associated with another trial
 continue
 # to prevent throttling
 time.sleep(.5)
 trial.delete()
 experiment_name = experiment.experiment_name
 experiment.delete()
 print(f"\nExperiment {experiment_name} deleted")

Call cleanup_sme_sdk

experiment_to_cleanup = Experiment.load(
 # Use experiment name not display name
 experiment_name="experiment-name")

cleanup_sme_sdk(experiment_to_cleanup)

Additional supported SDK

Important

As of v2.123.0, SageMaker Experiments is now fully integrated with the SageMaker
Python SDK and you no longer need to use the separate SageMaker Experiments SDK. We
recommend creating an experiment with sagemaker.experiments.run rather than the
following smexperiments module.

Additional supported SDK 3128

https://github.com/aws/sagemaker-python-sdk/releases/tag/v2.123.0
https://sagemaker.readthedocs.io/en/stable/
https://sagemaker.readthedocs.io/en/stable/
https://sagemaker-experiments.readthedocs.io/en/latest/

Amazon SageMaker Developer Guide

The following section describes how to create a SageMaker Experiment with the SageMaker
Experiments SDK.

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Create an Amazon SageMaker Experiment with the SageMaker Experiments SDK

Create an Amazon SageMaker experiment to track your SageMaker training, processing, and
transform jobs.

The following procedure shows you how to create a SageMaker experiment for a SageMaker
training, processing, or transform job. Steps labeled as (Studio Classic) describe how to view the
experiment in Amazon SageMaker Studio Classic. You don't have to run the experiment in Studio
Classic to view the experiment in Studio Classic.

1. Import the sys module to install the SDKs.

import sys

2. (Optional) The Amazon SageMaker Python SDK, comes preinstalled in Amazon SageMaker
Studio Classic. If you plan to run your code outside Studio Classic, install the SageMaker
Python SDK.

!{sys.executable} -m pip install sagemaker

3. Install the SageMaker Experiments Python SDK.

!{sys.executable} -m pip install sagemaker-experiments

4. Import modules.

import time
from time import strftime

Additional supported SDK 3129

https://sagemaker.readthedocs.io
https://sagemaker-experiments.readthedocs.io/en/latest/

Amazon SageMaker Developer Guide

import sagemaker

from smexperiments.experiment import Experiment
from smexperiments.trial import Trial
from smexperiments.trial_component import TrialComponent
from smexperiments.tracker import Tracker

5. Get the execution role and create the SageMaker session.

role = sagemaker.get_execution_role()
sm_sess = sagemaker.session.Session()

6. Create a SageMaker experiment. The experiment name must be unique in your account.

Note

The tags parameter is optional. You can search for the tag using Studio Classic,
the SageMaker console, and the SDK. Tags can also be applied to trials and trial
components.

create_date = strftime("%Y-%m-%d-%H-%M-%S")
demo_experiment = Experiment.create(experiment_name = "DEMO-
{}".format(create_date),
 description = "Demo experiment",
 tags = [{'Key': 'demo-experiments', 'Value':
 'demo1'}])

7. (Studio Classic) To view the experiment in Amazon SageMaker Studio Classic, in the left
sidebar, choose the Experiments.

After the code runs, the experiment list contains the new experiment. It might take a moment
for the list to refresh and display the experiment. The filter on the experiment tag is also
displayed. Only experiments that have a matching tag are displayed. Your list should look
similar to the following:

Additional supported SDK 3130

Amazon SageMaker Developer Guide

8. Create a trial for the experiment. The trial name must be unique in your account.

demo_trial = Trial.create(trial_name = "DEMO-{}".format(create_date),
 experiment_name = demo_experiment.experiment_name,
 tags = [{'Key': 'demo-trials', 'Value': 'demo1'}])

9. Create a trial component as part of the trial. The trial component is the SageMaker job.

Add the ExperimentConfig parameter to the appropriate method. The SageMaker jobs listed in
the following table are supported.

Job SageMaker Python SDK method Boto3 method

Training Estimator.fit CreateTrainingJob

Processing Processor.run CreateProcessingJob

Transform Transformer.transform CreateTransformJob

Additional supported SDK 3131

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ExperimentConfig.html
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
https://sagemaker.readthedocs.io/en/stable/api/inference/transformer.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

The following examples are for a training job. The Tags parameter adds a tag to the trial
component. ExperimentName isn't specified because the trial was associated with the
experiment when the trial was created in an earlier step.

Using the SageMaker Python SDK

sagemaker.estimator.Estimator(
 ...,
 sagemaker_session = sm_sess,
 tags = [{'Key': 'demo-jobs', 'Value': 'demo2'}])

estimator.fit(
 ...,
 experiment_config = {
 # "ExperimentName"
 "TrialName" : demo_trial.trial_name,
 "TrialComponentDisplayName" : "TrainingJob",
 })

Using Boto3

create_training_job(
 ...,
 "ExperimentConfig": {
 # "ExperimentName"
 "TrialName" : demo_trial.trial_name,
 "TrialComponentDisplayName" : "TrainingJob",
 },
 "Tags": [{'Key': 'demo-jobs', 'Value': 'demo2'}])

10. (Studio Classic) In the experiment list, double-click the experiment to display a list of the
trials in the experiment. In the Studio Classic UI, trials are referred to as run groups and trial
components are referred to as runs. Your list should look similar to the following:

Additional supported SDK 3132

Amazon SageMaker Developer Guide

11. (Studio Classic) To view information about the experiment, trial, and job (trial component), see
View, search, and compare experiment runs.

To clean up the resources you created, see Clean Up Amazon SageMaker Experiment Resources.

Experiments FAQs

Refer to the following FAQ items for answers to commonly asked questions about SageMaker
Experiments.

Q. What is the recommended method to create an experiment?

A: Experiments are a collection of runs aimed at finding the best model to solve a problem. To
initialize a run within an experiment, use the SageMaker Python SDK Run class. For more examples,
see Create an Amazon SageMaker Experiment.

Q. Can I create an experiment using SageMaker script mode?

Yes. You can create experiments using SageMaker script mode. In the Jupyter notebook or Python
file you are using to define your estimator, initialize a run using the Run class. Within the run,
launch an estimator with your custom entry point script. Within that entry point script, use the

Experiments FAQs 3133

Amazon SageMaker Developer Guide

load_run method to initialize the run you defined within the entry point script and log your
metrics. For in-depth examples, see Track experiments for SageMaker training jobs using script
mode.

Q. What SageMaker jobs automatically create experiments?

SageMaker Hyperparameter Optimzation (HPO) jobs (also known as tuning jobs) automatically
create experiments to track all the training jobs launched during a hyperparameter search. All
other SageMaker jobs create unassigned runs unless launched from within an experiment.

Q. What kind of SageMaker jobs can I create an experiment for?

You can use SageMaker Experiments to track metrics from training jobs, processing jobs, and
transform jobs.

Q. Why do I see experiments and runs in the Experiments Studio Classic UI that I did not create
using the SageMaker Python SDK?

Experiment runs that are automatically created by SageMaker jobs and
containers are visible in the Experiments Studio Classic UI by default. To hide
runs created by SageMaker jobs for a given experiment, choose the settings icon

()
and toggle Show jobs.

Q. Is the SageMaker Experiments SDK still supported?

Yes, the SageMaker Experiments SDK is still supported. However, as of v2.123.0, SageMaker
Experiments is fully integrated with the SageMaker Python SDK. We recommend using the
SageMaker Python SDK to create experiments and runs. For more information, see Create an
Amazon SageMaker Experiment.

Q. Can I use distributed training with my experiments?

A: Yes. However, metrics for distributed training can be logged only at the epoch level. Be sure that
you only log metrics generated by the leader node, as shown in the following example:

...
if rank == 0:
 test_loss, correct, target, pred = test(model, test_loader, device, tracker)
 logger.info(
 "Test Average loss: {:.4f}, Test Accuracy: {:.0f}%;\n".format(

Experiments FAQs 3134

https://github.com/aws/sagemaker-python-sdk/releases/tag/v2.123.0

Amazon SageMaker Developer Guide

 test_loss, test_accuracy)
)
)
 run.log_metric(name = "train_loss", value = loss.item(), step = epoch)
 run.log_metric(name = "test_loss", value = test_loss, step = epoch)
 run.log_metric(name = "test_accuracy", value = test_accuracy, step = epoch)
 ...

For more information, see the Run a SageMaker Experiment with Pytorch Distributed Data Parallel
- MNIST Handwritten Digits Classification example notebook.

Q. What are unassigned runs?

A: All jobs in SageMaker (training jobs, processing jobs, transform jobs) correspond to runs. When
launching these jobs, TrialComponents are created by default. TrialComponents map directly
to runs. If these jobs are launched without being explicitly associated with an experiment or run,
they are created as unassigned runs.

Q. Do I need to pass the experiment run context to the training script when running a
SageMaker training job?

A: Yes. You need to load the run context into the training script, along with the SageMaker session
information.

from sagemaker.session import Session
from sagemaker.experiments.run import load_run

session = Session(boto3.session.Session(region_name=args.region))

with load_run(sagemaker_session=session) as run:
 run.log_parameters(
 {"num_train_samples": len(train_set.data), "num_test_samples":
 len(test_set.data)}
)

Q. How do I add a new run to an experiment analysis?

A: If you already created a comparison for your experiment and want to add a new run to analyze,
select all the runs from your previous analysis as well as the new run and choose Analyze. If you
don’t see your new run in the resulting analysis page, then refresh the Studio Classic browser. Note
that refreshing your Studio Classic browser may impact your other open tabs.

Experiments FAQs 3135

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/sagemaker_job_tracking/pytorch_distributed_training_experiment.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-experiments/sagemaker_job_tracking/pytorch_distributed_training_experiment.html

Amazon SageMaker Developer Guide

Search Using the Amazon SageMaker Console and API

Developing a machine learning model typically requires extensive experimenting with different
datasets, algorithms, and hyperparameter values. To manage up to thousands of machine learning
model experiments, use the search capabilities in SageMaker.

You can use SageMaker search to:

• Organize, find, and evaluate training jobs using properties, hyperparameters, performance
metrics, or any metadata.

• Find the best performing model by reviewing training job and model metrics, such as training
loss or validation accuracy.

• Trace a model's lineage to the training job and its related resources, such as the training datasets.

This topic covers searching from the SageMaker console and the SageMaker API.

Topics

• Organize, Find, and Evaluate Training Jobs (Console)

• Find and Evaluate Training Jobs (API)

• Verify the Datasets Used by Your Training Jobs

• Trace Model Lineage

Organize, Find, and Evaluate Training Jobs (Console)

To organize training jobs, assign one or more tags to them.

To find a specific training job, model, or resource, use model tracking to search on keywords
assigned to any searchable items. Searchable items include training jobs, models, hyperparameters,
metadata, tags, and URLs. To refine your tracking results, you can search using multiple criteria.

To choose the best model for deployment, evaluate how all models performed against one or
more metrics. You can use model tracking results to list, sort, and evaluate the performance of the
models in your experiments.

Topics

• Use Tags to Track Training Jobs (Console)

• Find Training Jobs (Console)

Search using the console and API 3136

Amazon SageMaker Developer Guide

• Evaluate Models (Console)

Use Tags to Track Training Jobs (Console)

To group training jobs, create tags with descriptive keys and a value. For example, create tag keys
for: project, owner, customer, and industry.

Add tags to training jobs (console)

1. Open the Amazon SageMaker console.

2. In the navigation pane, choose Training jobs and Create training job.

3. Scroll to the bottom of the page and enter a key and value for the tag.

4. To add another tag, choose Add tag, and add another key-value pair.

Find Training Jobs (Console)

You can search for training jobs using a variety of job attributes. Note that some search parameters
appear only if you have created a training job with that attribute. For example, Tags appears only if
you have added a tag for a training job.

To find training jobs (console)

1. Open the Amazon SageMaker console.

2. In the navigation pane, choose Search.

3. Add Parameters.

a. In the search box, enter a parameter and choose a parameter type, for example
TrainingJobName.

Search using the console and API 3137

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

b. Choose a conditional operation. For numeric values, use operators such as is equals to,
lesser than, or or greater than. For text-based values, use operators such as equals to or
contains.

c. Enter a value for the parameter.

4. (Optional) To refine your search, add additional search criteria. Choose Add row and enter the
parameter values.

5. Choose Search.

Evaluate Models (Console)

To evaluate a model's performance, review its metadata, hyperparameters, and metrics. To
highlight metrics, adjust the view to show only metrics and important hyperparameters.

To evaluate a model (console)

1. Open the Amazon SageMaker console.

2. In the navigation pane, choose Search and search for training jobs by specifying relevant
parameters. The results are displayed in a table.

3. Open the preferences window by choosing the settings icon in the search results table.

4. To show or hide a hyperparameter or metric, turn it on or off by choosing Hyperparameter or
Metric .

5. Make necessary changes, then choose Update view.

6. After viewing metrics and important hyperparameters, you can compare and contrast the
result. Then, you can choose the best model to host or investigate the models that are
performing poorly.

Search using the console and API 3138

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Find and Evaluate Training Jobs (API)

To the find and evaluate training jobs or to get suggestions for items used in experiments that are
searchable, you can use the Search API.

Topics

• Find Training Jobs (API)

• Evaluate Models (API)

• Get Suggestions for a Search (API)

Find Training Jobs (API)

To find training jobs, create a search parameter using the search_params parameter. Then use
the search function in the smclient subprocess in the AWS SDK for Python (Boto3).

The following example shows how to use the Search API to find training jobs.

import boto3

search_params={
 "MaxResults": 10,
 "Resource": "TrainingJob",
 "SearchExpression": {
 "Filters": [{
 "Name": "Tags.Project",
 "Operator": "Equals",
 "Value": "Project_Binary_Classifier"
 }]},
 "SortBy": "Metrics.train:binary_classification_accuracy",
 "SortOrder": "Descending"
}

smclient = boto3.client(service_name='sagemaker')
results = smclient.search(**search_params)

Evaluate Models (API)

To evaluate models, run a search as described in Find Training Jobs (API), review model metrics,
then, use the AWS SDK for Python (Boto3) to create a table and plot it.

The following example shows how to evaluate models and to display the results in a table.

Search using the console and API 3139

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html

Amazon SageMaker Developer Guide

import pandas

headers=["Training Job Name", "Training Job Status", "Batch Size", "Binary
 Classification Accuracy"]
rows=[]
for result in results['Results']:
 trainingJob = result['TrainingJob']
 metrics = trainingJob['FinalMetricDataList']
 rows.append([trainingJob['TrainingJobName'],
 trainingJob['TrainingJobStatus'],
 trainingJob['HyperParameters']['mini_batch_size'],
 metrics[[x['MetricName'] for x in
 metrics].index('train:binary_classification_accuracy')]['Value']
])

df = pandas.DataFrame(data=rows,columns=headers)

from IPython.display import display, HTMLdisplay(HTML(df.to_html()))

Get Suggestions for a Search (API)

To get suggestions for a search, use the GetSearchSuggestions API.

The following example for AWS SDK for Python (Boto3) is a get_search_suggestions request
for items containing linear.

search_suggestion_params={
 "Resource": "TrainingJob",
 "SuggestionQuery": {
 "PropertyNameQuery": {
 "PropertyNameHint": "linear"
 }
 }
}

The following is an example response for a get_search_suggestions request.

{
 'PropertyNameSuggestions': [{'PropertyName':
 'hyperparameters.linear_init_method'},
 {'PropertyName': 'hyperparameters.linear_init_value'},
 {'PropertyName': 'hyperparameters.linear_init_sigma'},

Search using the console and API 3140

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetSearchSuggestions.html

Amazon SageMaker Developer Guide

 {'PropertyName': 'hyperparameters.linear_lr'},
 {'PropertyName': 'hyperparameters.linear_wd'}]
}

After getting search suggestions, you can use one of the property names in a search.

Verify the Datasets Used by Your Training Jobs

You can use model tracking capability to verify which datasets were used in training, where
holdout datasets were used, and other details about training jobs. For example, use model tracking
capability to verify that a specific dataset was used in a training job for an audit or to verify
compliance.

To check whether a specific dataset was used in a training job, you search for the URL to its
location in Amazon Simple Storage Service (Amazon S3). Model tracking capability returns the
training jobs that used the dataset that you specify. If your search doesn't return the dataset (the
result is empty), the dataset wasn't used in a training job. An empty result confirms, for example,
that a holdout dataset wasn't used.

Trace Model Lineage

You can use model tracking capability to get information about the lineage of training jobs and
the model resources that were used for them, including the dataset, algorithm, hyperparameters,
and metrics. For example, if you find that the performance of a hosted model has declined, you can
review its training job and the resources it used to determine what's causing the problem.

Topics

• Trace Model Lineage (Console)

• Trace Model Lineage (API)

Trace Model Lineage (Console)

To trace a model's lineage (console)

1. Open the Amazon SageMaker console.

2. In the navigation pane, choose Endpoints, and choose the relevant endpoint.

3. Scroll to the Endpoint configuration settings section. This section lists all of the model
versions deployed at the endpoint, with a hyperlink to the training job that created each.

Search using the console and API 3141

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Trace Model Lineage (API)

To trace a model's lineage, get the model's name, then use it to search for training jobs.

The following example shows how to trace a model's lineage using the API.

Get the name of model deployed at endpoint
endpoint_config = smclient.describe_endpoint_config(EndpointConfigName=endpointName)
model_name = endpoint_config['ProductionVariants'][0]['ModelName']

Get the model's name
model = smclient.describe_model(ModelName=model_name)

Search the training job by the location of model artifacts in Amazon S3
search_params={
 "MaxResults": 1,
 "Resource": "TrainingJob",
 "SearchExpression": {
 "Filters": [
 {
 "Name": "ModelArtifacts.S3ModelArtifacts",
 "Operator": "Equals",
 "Value": model['PrimaryContainer']['ModelDataUrl']
 }]},
}
results = smclient.search(**search_params)

After finding the training job, you can review the resources used to train the model.

Perform Automatic Model Tuning with SageMaker

Amazon SageMaker automatic model tuning (AMT), also known as hyperparameter tuning, finds
the best version of a model by running many training jobs on your dataset. To do this, AMT uses
the algorithm and ranges of hyperparameters that you specify. It then chooses the hyperparameter
values that creates a model that performs the best, as measured by a metric that you choose.

For example, suppose that you want to solve a binary classification problem on a marketing
dataset. Your goal is to maximize the area under the curve (AUC) metric of the algorithm by
training an XGBoost Algorithm model. You want to find which values for the eta, alpha,
min_child_weight, and max_depth hyperparameters that will train the best model. Specify
a range of values for these hyperparameters. Then, SageMaker hyperparameter tuning searches

Perform Automatic Model Tuning 3142

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#binary-classification-model
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#AUC

Amazon SageMaker Developer Guide

within these ranges to find a combination of values that creates a training job that creates a model
with the highest AUC. To conserve resources or meet a specific model quality expectation, you can
also set up completion criteria to stop tuning after the criteria have been met.

You can use SageMaker AMT with built-in algorithms, custom algorithms, or SageMaker pre-built
containers for machine learning frameworks.

SageMaker AMT can use an Amazon EC2 Spot instance to optimize costs when running training
jobs. For more information, see Use Managed Spot Training in Amazon SageMaker.

Before you start using hyperparameter tuning, you should have a well-defined machine learning
problem, including the following:

• A dataset

• An understanding of the type of algorithm that you need to train

• A clear understanding of how you measure success

Prepare your dataset and algorithm so that they work in SageMaker and successfully run a training
job at least once. For information about setting up and running a training job, see Get started.

Topics

• How Hyperparameter Tuning Works

• Define metrics and environment variables

• Define Hyperparameter Ranges

• Track and set completion criteria for your tuning job

• Tune Multiple Algorithms with Hyperparameter Optimization to Find the Best Model

• Example: Hyperparameter Tuning Job

• Stop Training Jobs Early

• Run a Warm Start Hyperparameter Tuning Job

• Resource Limits for Automatic Model Tuning

• Best Practices for Hyperparameter Tuning

How Hyperparameter Tuning Works

When you build complex machine learning systems like deep learning neural networks, exploring
all of the possible combinations is impractical. Hyperparameter tuning can accelerate your

How Hyperparameter Tuning Works 3143

Amazon SageMaker Developer Guide

productivity by trying many variations of a model. It looks for the best model automatically by
focusing on the most promising combinations of hyperparameter values within the ranges that you
specify. To get good results, you must choose the right ranges to explore.

Use the API reference guide to understand how to interact with hyperparameter tuning.
The examples on this page can be found in the HyperParameterTuningJobConfig and
HyperbandStrategyConfig APIs.

Note

Because the algorithm itself is stochastic, it’s possible that the hyperparameter tuning
model will fail to converge on the best answer. This can occur even if the best possible
combination of values is within the ranges that you choose.

Grid Search

When using grid search, hyperparameter tuning chooses combinations of values from the
range of categorical values that you specify when you create the job. Only categorical
parameters are supported when using the grid search strategy. You do not need to specify the
MaxNumberOfTrainingJobs. The number of training jobs created by the tuning job will be
automatically calculated to be the total number of distinct categorical combinations possible. If
specified, the value of MaxNumberOfTrainingJobs should equal the total number of distinct
categorical combinations possible.

Random Search

When using random search, hyperparameter tuning chooses a random combination of values from
within the ranges that you specify for hyperparameters for each training job it launches. Because
the choice of hyperparameter values doesn't depend on the results of previous training jobs, you
can run the maximum number of concurrent training jobs without affecting the performance of the
tuning.

For an example notebook that uses random search, see the Random search and hyperparameter
scaling with SageMaker XGBoost and Automatic Model Tuning notebook.

Bayesian Optimization

Bayesian optimization treats hyperparameter tuning like a regression problem. Given a set of input
features (the hyperparameters), hyperparameter tuning optimizes a model for the metric that

How Hyperparameter Tuning Works 3144

https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html?icmpid=docs_sagemaker_lp
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperbandStrategyConfig.html
https://github.com/aws/amazon-sagemaker-examples-community/blob/215215eb25b40eadaf126d055dbb718a245d7603/training/sagemaker-automatic-model-tuning/hpo_xgboost_random_log.ipynb
https://github.com/aws/amazon-sagemaker-examples-community/blob/215215eb25b40eadaf126d055dbb718a245d7603/training/sagemaker-automatic-model-tuning/hpo_xgboost_random_log.ipynb
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#[regression]

Amazon SageMaker Developer Guide

you choose. To solve a regression problem, hyperparameter tuning makes guesses about which
hyperparameter combinations are likely to get the best results, and runs training jobs to test these
values. After testing a set of hyperparameter values, hyperparameter tuning uses regression to
choose the next set of hyperparameter values to test.

Hyperparameter tuning uses an Amazon SageMaker implementation of Bayesian optimization.

When choosing the best hyperparameters for the next training job, hyperparameter tuning
considers everything that it knows about this problem so far. Sometimes it chooses a combination
of hyperparameter values close to the combination that resulted in the best previous training job
to incrementally improve performance. This allows hyperparameter tuning to exploit the best
known results. Other times, it chooses a set of hyperparameter values far removed from those it
has tried. This allows it to explore the range of hyperparameter values to try to find new areas that
are not yet well understood. The explore/exploit trade-off is common in many machine learning
problems.

For more information about Bayesian optimization, see the following:

Basic Topics on Bayesian Optimization

• A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning

• Practical Bayesian Optimization of Machine Learning Algorithms

• Taking the Human Out of the Loop: A Review of Bayesian Optimization

Speeding up Bayesian Optimization

• Google Vizier: A Service for Black-Box Optimization

• Learning Curve Prediction with Bayesian Neural Networks

• Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation
of learning curves

Advanced Modeling and Transfer Learning

• Scalable Hyperparameter Transfer Learning

• Bayesian Optimization with Tree-structured Dependencies

• Bayesian Optimization with Robust Bayesian Neural Networks

How Hyperparameter Tuning Works 3145

https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1206.2944
http://ieeexplore.ieee.org/document/7352306/?reload=true
https://dl.acm.org/citation.cfm?id=3098043
https://openreview.net/forum?id=S11KBYclx
https://dl.acm.org/citation.cfm?id=2832731
https://dl.acm.org/citation.cfm?id=2832731
https://papers.nips.cc/paper/7917-scalable-hyperparameter-transfer-learning
http://proceedings.mlr.press/v70/jenatton17a.html
https://papers.nips.cc/paper/6116-bayesian-optimization-with-robust-bayesian-neural-networks

Amazon SageMaker Developer Guide

• Scalable Bayesian Optimization Using Deep Neural Networks

• Input Warping for Bayesian Optimization of Non-stationary Functions

Hyperband

Hyperband is a multi-fidelity based tuning strategy that dynamically reallocates resources.
Hyperband uses both intermediate and final results of training jobs to re-allocate epochs to well-
utilized hyperparameter configurations and automatically stops those that underperform. It also
seamlessly scales to using many parallel training jobs. These features can significantly speed up
hyperparameter tuning over random search and Bayesian optimization strategies.

Hyperband should only be used to tune iterative algorithms that publish results at different
resource levels. For example, Hyperband can be used to tune a neural network for image
classification which publishes accuracy metrics after every epoch.

For more information about Hyperband, see the following links:

• Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

• Massively Parallel Hyperparameter Tuning

• BOHB: Robust and Efficient Hyperparameter Optimization at Scale

• Model-based Asynchronous Hyperparameter and Neural Architecture Search

Hyperband with early stopping

Training jobs can be stopped early when they are unlikely to improve the objective metric of the
hyperparameter tuning job. This can help reduce compute time and avoid overfitting your model.
Hyperband uses an advanced internal mechanism to apply early stopping. Thus, the parameter
TrainingJobEarlyStoppingType in the HyperParameterTuningJobConfig API must be set
to OFF when using the Hyperband internal early stopping feature.

Note

Hyperparameter tuning might not improve your model. It is an advanced tool for building
machine solutions. As such, it should be considered part of the scientific development
process.

How Hyperparameter Tuning Works 3146

http://proceedings.mlr.press/v37/snoek15.pdf
https://arxiv.org/abs/1402.0929
https://arxiv.org/pdf/1603.06560.pdf
https://liamcli.com/assets/pdf/asha_arxiv.pdf
http://proceedings.mlr.press/v80/falkner18a/falkner18a.pdf
https://openreview.net/pdf?id=a2rFihIU7i

Amazon SageMaker Developer Guide

Define metrics and environment variables

A tuning job optimizes hyperparameters for training jobs that it launches by using a metric to
evaluate performance. This guide shows how to define metrics so that you can use a custom
algorithm for training, or use a built-in algorithm from Amazon SageMaker. This guide also shows
how to specify environment variables during an Automatic model tuning (AMT) job.

Define metrics

Amazon SageMaker hyperparameter tuning parses your machine learning algorithm's stdout and
stderr streams to find metrics, such as loss or validation-accuracy. The metrics show how well the
model is performing on the dataset.

The following sections describe how to use two types of algorithms for training: built-in and
custom.

Use a built-in algorithm for training

If you use one of the SageMaker built-in algorithms, metrics are already defined for you.
In addition, built-in algorithms automatically send metrics to hyperparameter tuning for
optimization. These metrics are also written to Amazon CloudWatch logs. For more information,
see Log Amazon SageMaker Events with Amazon CloudWatch.

For the objective metric for the tuning job, choose one of the metrics that the built-in algorithm
emits. For a list of available metrics, see the model tuning section for the appropriate algorithm in
Use Amazon SageMaker Built-in Algorithms or Pre-trained Models.

You can choose up to 40 metrics to monitor in your tuning job. Select one of those metrics to be
the objective metric. The hyperparameter tuning job returns the training job that performed the
best against the objective metric.

Note

Hyperparameter tuning automatically sends an additional hyperparameter
_tuning_objective_metric to pass your objective metric to the tuning job for use
during training.

Define metrics and environment variables 3147

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/logging-cloudwatch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterAlgorithmSpecification.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html#sagemaker-DescribeHyperParameterTuningJob-response-BestTrainingJob

Amazon SageMaker Developer Guide

Use a custom algorithm for training

This section shows how to define your own metrics to use your own custom algorithm for training.
When doing so, make sure that your algorithm writes at least one metric to stderr or stdout.
Hyperparameter tuning parses these streams to find algorithm metrics that show how well the
model is performing on the dataset.

You can define custom metrics by specifying a name and regular expression for each
metric that your tuning job monitors. Then, pass these metric definitions to the
CreateHyperParameterTuningJob API in the TrainingJobDefinition parameter in the
MetricDefinitions field of AlgorithmSpecification.

The following shows sample output from a log written to stderr or stdout by a training
algorithm.

GAN_loss=0.138318; Scaled_reg=2.654134; disc:[-0.017371,0.102429] real 93.3% gen 0.0%
 disc-combined=0.000000; disc_train_loss=1.374587; Loss = 16.020744; Iteration 0 took
 0.704s; Elapsed=0s

The following code example shows how to use regular expressions in Python (regex). This is used to
search the sample log output and capture the numeric values of four different metrics.

[
 {
 "Name": "ganloss",
 "Regex": "GAN_loss=(.*?);",
 },
 {
 "Name": "disc-combined",
 "Regex": "disc-combined=(.*?);",
 },
 {
 "Name": "discloss",
 "Regex": "disc_train_loss=(.*?);",
 },
 {
 "Name": "loss",
 "Regex": "Loss = (.*?);",
 },
]

In regular expressions, parenthesis () are used to group parts of the regular expression together.

Define metrics and environment variables 3148

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

• For the loss metric that is defined in the code example, the expression (.*?); captures any
character between the exact text "Loss=" and the first semicolon (;) character.

• The character . instructs the regular expression to match any character.

• The character * means to match zero or more characters.

• The character ? means capture only until the first instance of the ; character.

The loss metric defined in the code sample will capture Loss = 16.020744 from the sample
output.

Choose one of the metrics that you define as the objective metric for the tuning
job. If you are using the SageMaker API, specify the value of the name key in the
HyperParameterTuningJobObjective field of the HyperParameterTuningJobConfig
parameter that you send to the CreateHyperParameterTuningJob operation.

Specify environment variables

SageMaker AMT optimizes hyperparameters within a tuning job to find the best parameters for
model performance. You can use environment variables to configure your tuning job to change its
behavior. You can also use environment variables that you used during training inside your tuning
job.

If you want to use an environment variable from your tuning job or specify a new
environment variable, input a string value for Environment within the SageMaker
HyperParameterTrainingJobDefinition API. Pass this training job definition to the
CreateHyperParameterTuningJob API.

For example, the environment variable SM_LOG_LEVEL can be set to the following values to tailor
the output from a Python container.

NOTSET=0
DEBUG=10
INFO=20
WARN=30
ERROR=40
CRITICAL=50

As an example, to set the log level to 10 to debug your container logs, set the environment
variable inside the HyperParameterTrainingJobDefinition, as follows.

Define metrics and environment variables 3149

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html

Amazon SageMaker Developer Guide

{
 "HyperParameterTuningJobConfig": {
 ...,
 }
 "TrainingJobDefinition": {
 ...,
 "Environment" : [
 {
 "SM_LOG_LEVEL": 10
 }
],
 ...,
 },
 ...,
}

Define Hyperparameter Ranges

This guide shows how to use SageMaker APIs to define hyperparameter ranges. It also provides a
list of hyperparameter scaling types that you can use.

Choosing hyperparameters and ranges significantly affects the performance of your tuning job.
Hyperparameter tuning finds the best hyperparameter values for your model by searching over a
range of values that you specify for each tunable hyperparameter. You can also specify up to 100
static hyperparameters that do not change over the course of the tuning job. You can use up to 100
hyperparameters in total (static + tunable). For guidance on choosing hyperparameters and ranges,
see Best Practices for Hyperparameter Tuning. You can also use autotune to find optimal tuning job
settings. For more information, see the following Autotune section.

Note

SageMaker Automatic Model Tuning (AMT) may add additional hyperparameters(s)
that contribute to the limit of 100 total hyperparameters. Currently, to pass
your objective metric to the tuning job for use during training, SageMaker adds
_tuning_objective_metric automatically.

Define Hyperparameter Ranges 3150

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html#sagemaker-CreateHyperParameterTuningJob-request-HyperParameterTuningJobConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html#sagemaker-CreateHyperParameterTuningJob-request-TrainingJobDefinition
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-HyperParameterRanges
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters

Amazon SageMaker Developer Guide

Static hyperparameters

Use static hyperparameters for the following cases: For example, you can use AMT to tune
your model using param1 (a tunable parameter) and param2 (a static parameter). If you do,
then use a search space for param1 that lies between two values, and pass param2 as a static
hyperparameter, as follows.

param1: ["range_min","range_max"]
param2: "static_value"

Static hyperparameters have the following structure:

"StaticHyperParameters": {
 "objective" : "reg:squarederror",
 "dropout_rate": "0.3"
}

You can use the Amazon SageMaker API to specify key value pairs in the StaticHyperParameters
field of the HyperParameterTrainingJobDefinition parameter that you pass to the
CreateHyperParameterTuningJob operation.

Dynamic hyperparameters

You can use the SageMaker API to define hyperparameter ranges. Specify the
names of hyperparameters and ranges of values in the ParameterRanges field
of the HyperParameterTuningJobConfig parameter that you pass to the
CreateHyperParameterTuningJob operation.

The ParameterRanges field has three subfields: categorical, integer, and continuous. You can
define up to 30 total (categorical + integer + continuous) tunable hyperparameters to search over.

Note

Each categorical hyperparameter can have at most 30 different values.

Dynamic hyperparameters have the following structure:

"ParameterRanges": {

Define Hyperparameter Ranges 3151

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-HyperParameterRanges
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

 "CategoricalParameterRanges": [
 {
 "Name": "tree_method",
 "Values": ["auto", "exact", "approx", "hist"]
 }
],
 "ContinuousParameterRanges": [
 {
 "Name": "eta",
 "MaxValue" : "0.5",
 "MinValue": "0",
 "ScalingType": "Auto"
 }
],
 "IntegerParameterRanges": [
 {
 "Name": "max_depth",
 "MaxValue": "10",
 "MinValue": "1",
 "ScalingType": "Auto"
 }
]
}

If you create a tuning job with a Grid strategy, you can only specify categorical values. You don't
need to provide the MaxNumberofTrainingJobs. This value is inferred from the total number
of configurations that can be produced from your categorical parameters. If specified, the value
of MaxNumberOfTrainingJobs should be equal to the total number of distinct categorical
combinations possible.

Autotune

To save time and resources searching for hyperparameter ranges, resources or objective metrics,
autotune can automatically guess optimal values for some hyperparameter fields. Use autotune to
find optimal values for the following fields:

• ParameterRanges – The names and ranges of hyperparameters that a tuning job can optimize.

• ResourceLimits – The maximum resources to be used in a tuning job. These resources can
include the maximum number of training jobs, maximum runtime of a tuning job, and the
maximum number of training jobs that can be run at the same time.

Define Hyperparameter Ranges 3152

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html

Amazon SageMaker Developer Guide

• TrainingJobEarlyStoppingType – A flag that stops a training job if a job is not significantly
improving against an objective metric. Defaults to enabled. For more information, see Stop
Training Jobs Early.

• RetryStrategy – The number of times to retry a training job. Non-zero values for
RetryStrategy can increase the likelihood that your job will complete successfully.

• Strategy – Specifies how hyperparameter tuning chooses the combinations of hyperparameter
values to use for the training job that it launches.

• ConvergenceDetected – A flag to indicate that Automatic Model Tuning (AMT) has detected
model convergence.

To use autotune, do the following:

1. Specify the hyperparameter and an example value in the AutoParameters field of the
ParameterRanges API.

2. Enable autotune.

AMT will determine if your hyperparameters and example values are eligible for autotune.
Hyperparameters that can be used in autotune are automatically assigned to the appropriate
parameter range type. Then, AMT uses ValueHint to select an optimal range for you. You can use
the DescribeHyperParameterTrainingJob API to view these ranges.

The following example shows you how to configure a tuning job that uses autotune. In the
configuration example, the hyperparameter max_depth has ValueHint containing an example
value of 4.

config = {
 'Autotune': {'Mode': 'Enabled'},
 'HyperParameterTuningJobName':'my-autotune-job',
 'HyperParameterTuningJobConfig': {
 'HyperParameterTuningJobObjective': {'Type': 'Minimize', 'MetricName':
 'validation:rmse'},
 'ResourceLimits': {'MaxNumberOfTrainingJobs': 5, 'MaxParallelTrainingJobs': 1},
 'ParameterRanges': {
 'AutoParameters': [
 {'Name': 'max_depth', 'ValueHint': '4'}
]
 }
 },

Define Hyperparameter Ranges 3153

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-Strategy
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ParameterRanges.html

Amazon SageMaker Developer Guide

 'TrainingJobDefinition': {
 }

Continuing the previous example, a tuning job is created after the previous
configuration is included in a call to the CreateHyperParameterTuningJob
API. Then, autotune converts the max_depth hyperparameter in AutoParameters
to the hyperparameter IntegerParameterRanges. The following response
from a DescribeHyperParameterTrainingJob API shows that the optimal
IntegerParameterRanges for max_depth are between 2 and 8.

{
 'HyperParameterTuningJobName':'my_job',
 'HyperParameterTuningJobConfig': {
 'ParameterRanges': {
 'IntegerParameterRanges': [
 {'Name': 'max_depth', 'MinValue': '2', 'MaxValue': '8'},
],
 }
 },
 'TrainingJobDefinition': {
 ...
 },
 'Autotune': {'Mode': 'Enabled'}

}

Hyperparameter scaling types

For integer and continuous hyperparameter ranges, you can choose the scale that you want
hyperparameter tuning to use. For example, to search the range of values, you can specify a value
for the ScalingType field of the hyperparameter range. You can choose from the following
hyperparameter scaling types:

Auto

SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.

Linear

Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
Typically, you choose this if the range of all values from the lowest to the highest is relatively

Define Hyperparameter Ranges 3154

Amazon SageMaker Developer Guide

small (within one order of magnitude). Uniformly searching values from the range provides a
reasonable exploration of the entire range.

Logarithmic

Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic
scale.

Logarithmic scaling works only for ranges that have values greater than 0.

Choose logarithmic scaling when you're searching a range that spans several orders of
magnitude.

For example, if you're tuning a Tune a linear learner model model, and you specify a range of
values between .0001 and 1.0 for the learning_rate hyperparameter, consider the following:
Searching uniformly on a logarithmic scale gives you a better sample of the entire range than
searching on a linear scale would. This is because searching on a linear scale would, on average,
devote 90 percent of your training budget to only the values between .1 and 1.0. As a result,
that leaves only 10 percent of your training budget for the values between .0001 and .1.

ReverseLogarithmic

Hyperparameter tuning searches the values in the hyperparameter range by using a reverse
logarithmic scale. Reverse logarithmic scaling is supported only for continuous hyperparameter
ranges. It is not supported for integer hyperparameter ranges.

Choose reverse logarithmic scaling when you are searching a range that is highly sensitive to
small changes that are very close to 1.

Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.

For an example notebook that uses hyperparameter scaling, see these Amazon SageMaker
hyperparameter examples on GitHub.

Track and set completion criteria for your tuning job

You can use completion criteria to instruct Automatic model tuning (AMT) to stop your tuning job
if certain conditions are met. With these conditions, you can set a minimum model performance
or maximum number of training jobs that don’t improve when evaluated against the objective
metric. You can also track the progress of your tuning job and decide to let it continue or to stop it

Track and set completion criteria 3155

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb

Amazon SageMaker Developer Guide

manually. This guide shows you how to set completion criteria, check the progress of and stop your
tuning job manually.

Set completion criteria for your tuning job

During hyperparameter optimization, a tuning job will launch several training jobs inside a loop.
The tuning job will do the following.

• Check your training jobs for completion and update statistics accordingly

• Decide what combination of hyperparameters to evaluate next.

AMT will continuously check the training jobs that were launched from your tuning job to update
statistics. These statistics include tuning job runtime and best training job. Then, AMT determines
whether it should stop the job according to your completion criteria. You can also check these
statistics and stop your job manually. For more information about stopping a job manually, see the
Stopping your tuning job manually section.

As an example, if your tuning job meets your objective, you can stop tuning early to conserve
resources or ensure model quality. AMT checks your job performance against your completion
criteria and stops the tuning job if any have been met.

You can specify the following kinds of completion criteria:

• MaxNumberOfTrainingJobs – The maximum number of training jobs to be run before tuning
is stopped.

• MaxNumberOfTrainingJobsNotImproving – The maximum number of training jobs that do
not improve performance against the objective metric from the current best training job. As an
example, if the best training job returned an objective metric that had an accuracy of 90%, and
MaxNumberOfTrainingJobsNotImproving is set to 10. In this example, tuning will stop after
10 training jobs fail to return an accuracy higher than 90%.

• MaxRuntimeInSeconds – The upper limit of wall clock time in seconds of how long a tuning job
can run.

• TargetObjectiveMetricValue – The value of the objective metric against which the tuning
job is evaluated. Once this value is met, AMT stops the tuning job.

• CompleteOnConvergence – A flag to stop tuning after an internal algorithm determines that
the tuning job is unlikely to improve more than 1% over the objective metric from the best
training job.

Track and set completion criteria 3156

Amazon SageMaker Developer Guide

Selecting completion criteria

You can choose one or multiple completion criteria to stop your hyperparameter tuning job after
a condition has been meet. The following instructions show you how to select completion criteria
and how to decide which is the most appropriate for your use case.

• Use MaxNumberOfTrainingJobs in the ResourceLimits API to set an upper limit for the
number of training jobs that can be run before your tuning job is stopped. Start with a large
number and adjust it based on model performance against your tuning job objective. Most
users input values of around 50 or more training jobs to find an optimal hyperparameter
configuration. Users looking for higher levels of model performance will use 200 or more
training jobs.

• Use MaxNumberOfTrainingJobsNotImproving in the BestObjectiveNotImproving
API field to stop training if model performance fails to improve after a specified number
of jobs. Model performance is evaluated against an objective function. After the
MaxNumberOfTrainingJobsNotImproving is met, AMT will stop the tuning job. Tuning jobs
tend to make the most progress in the beginning of the job. Improving model performance
against an objective function will require a larger number of training jobs towards the end
of tuning. Select a value for MaxNumberOfTrainingJobsNotImproving by checking the
performance of similar training jobs against your objective metric.

• Use MaxRuntimeInSeconds in the ResourceLimits API to set an upper limit for the amount
of wall clock time that the tuning job may take. Use this field to meet a deadline by which the
tuning job must complete or to limit compute resources.

To get an estimated total compute time in seconds for a tuning job, use the following formula:

Estimated max compute time in seconds= MaxRuntimeInSeconds *
MaxParallelTrainingJobs * MaxInstancesPerTrainingJob

Note

The actual duration of a tuning job may deviate slightly from the value specified in this
field.

• Use TargetObjectiveMetricValue in the TuningJobCompletionCriteria API to stop your
tuning job. You stop the tuning job after any training job that is launched by the tuning job
reaches this objective metric value. Use this field if your use case depends on reaching a specific
performance level, rather than spending compute resources to find the best possible model.

Track and set completion criteria 3157

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_BestObjectiveNotImproving.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TuningJobCompletionCriteria.html

Amazon SageMaker Developer Guide

• Use CompleteOnConvergence in the TuningJobCompletionCriteria API to stop a tuning job
after AMT has detected that the tuning job has converged, and is unlikely to make further
significant progress. Use this field when it is not clear what values for any of the other
completion criteria should be used. AMT determines convergence based on an algorithm
developed and tested on a wide range of diverse benchmarks. A tuning job is defined to
have converged when none of the training jobs return significant improvement (1% or less).
Improvement is measured against the objective metric returned by the highest performing job,
so far.

Combining different completion criteria

You can also combine any of the different completion criteria in the same tuning job. AMT will
stop the tuning job when any one of the completion criteria is met. For example, if you want to
tune your model until it meets an objective metric, but don't want to keep tuning if your job has
converged, use the following guidance.

• Specify TargetObjectiveMetricValue in the TuningJobCompletionCriteria API to set a
target objective metrics value to reach.

• Set CompleteOnConvergence to Enabled to stop a tuning job if AMT has determined that
model performance is unlikely to improve.

Track tuning job progress

You can use the DescribeHyperParameterTuningJob API to track the progress of your tuning
job at any time while it is running. You don't have to specify completion criteria to obtain tracking
information for your tuning job. Use the following fields to obtain statistics about your tuning job.

• BestTrainingJob – An object that describes the best training job obtained so far, evaluated
against your objective metric. Use this field to check your current model performance and the
value of the objective metric of this best training job.

• ObjectiveStatusCounters – An object that specifies the total number of training jobs completed
in a tuning job. To estimate average duration of a tuning job, use ObjectiveStatusCounters
and the total runtime of a tuning job. You can use the average duration to estimate how much
longer your tuning job will run.

• ConsumedResources – The total resources, such as RunTimeInSeconds, consumed by your
tuning job. Compare ConsumedResources, found in the DescribeHyperParameterTuningJob
API, against BestTrainingJob in the same API. You can also compare ConsumedResources

Track and set completion criteria 3158

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TuningJobCompletionCriteria.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TuningJobCompletionCriteria.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html#sagemaker-DescribeHyperParameterTuningJob-response-BestTrainingJob
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html#sagemaker-DescribeHyperParameterTuningJob-response-ObjectiveStatusCounters
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

against the response from the ListTrainingJobsForHyperParameterTuningJob API to assess if
your tuning job is making satisfactory progress given the resources being consumed.

• TuningJobCompletionDetails – Tuning job completion information that includes the following:

• The timestamp of when convergence is detected if the job has converged.

• The number of training jobs that have not improved model performance. Model performance
is evaluated against the objective metric from the best training job.

Use the tuning job completion criteria to assess how likely your tuning job is to improve your
model performance. Model performance is evaluated against the best objective metric if it ran to
completion.

Stopping your tuning job manually

You can determine if you should let the tuning job run until it completes or if you should stop
the tuning job manually. To determine this, use the information returned by the parameters
in the DescribeHyperParameterTuningJob API, as shown in the previous Tracking tuning
job progress section. As an example, if your model performance does not improve after several
training jobs complete, you may choose to stop the tuning job. Model performance is evaluated
against the best objective metric.

To stop the tuning job manually, use the StopHyperParameterTuningJob API and provide the name
of the tuning job to be stopped.

Tune Multiple Algorithms with Hyperparameter Optimization to Find
the Best Model

To create a new hyperparameter optimization (HPO) job with Amazon SageMaker that tunes
multiple algorithms, you must provide job settings that apply to all of the algorithms to be tested
and a training definition for each of these algorithms. You must also specify the resources you
want to use for the tuning job.

• The job settings to configure include warm starting, early stopping, and the tuning strategy.
Warm starting and early stopping are available only when tuning a single algorithm.

• The training job definition to specify the name, algorithm source, objective metric, and the
range of values, when required, to configure the set of hyperparameter values for each training
job. It configures the channels for data inputs, data output locations, and any checkpoint
storage locations for each training job. The definition also configures the resources to deploy

Tune Multiple Algorithms 3159

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobsForHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobCompletionDetails.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

for each training job, including instance types and counts, managed spot training, and stopping
conditions.

• The tuning job resources: to deploy, including the maximum number of concurrent training jobs
that a hyperparameter tuning job can run concurrently and the maximum number of training
jobs that the hyperparameter tuning job can run.

Get Started

You can create a new hyperparameter tuning job, clone a job, add, or edit tags to a job from the
console. You can also use the search feature to find jobs by their name, creation time, or status.
Alternatively, you can also hyperparameter tuning jobs with the SageMaker API.

• In the console: To create a new job, open the Amazon SageMaker console at https://
console.aws.amazon.com/sagemaker/, choose Hyperparameter tuning jobs from the Training,
menu, and then choose Create hyperparameter tuning job. Then following the configuration
steps to create a training job for each algorithm that you want to use. These steps are
documented in the Create a Hyperparameter Optimization Tuning Job for One or More
Algorithms (Console) topic.

Note

When you start the configuration steps, note that the warm start and early stopping
features are not available to use with multi-algorithm HPO. If you want to use these
features, you can only tune a single algorithm at a time.

• With the API: For instructions on using the SageMaker API to create a
hyperparameter tuning job, see Example: Hyperparameter Tuning Job. When you call
CreateHyperParameterTuningJob to tune multiple algorithms, you must provide
a list of training definitions using TrainingJobDefinitions instead of specifying a
single TrainingJobDefinition. You must provide job settings that apply to all of the algorithms
to be tested and a training definition for each of these algorithms. You must also specify the
resources that you want to use for the tuning job. Choose only one of these definition types
depending on the number of algorithms that are being tuned.

Topics

• Create a Hyperparameter Optimization Tuning Job for One or More Algorithms (Console)

Tune Multiple Algorithms 3160

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
automatic-model-tuning-ex.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html#sagemaker-CreateHyperParameterTuningJob-request-TrainingJobDefinitions
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html#sagemaker-CreateHyperParameterTuningJob-request-TrainingJobDefinition

Amazon SageMaker Developer Guide

• Manage Hyperparameter Tuning and Training Jobs

Create a Hyperparameter Optimization Tuning Job for One or More Algorithms
(Console)

This guide shows you how to create a new hyperparameter optimization (HPO) tuning job for
one or more algorithms. To create an HPO job, define the settings for the tuning job, and create
training job definitions for each algorithm being tuned. Next, configure the resources for and
create the tuning job. The following sections provide details about how to complete each step. We
provide an example of how to tune multiple algorithms using the SageMaker SDK for Python client
at the end of this guide.

Components of a tuning job

An HPO tuning job contains the following three components:

• Tuning job settings

• Training job definitions

• Tuning job configuration

The way that these components are included in your HPO tuning job depends on whether your
tuning job contains one or multiple training algorithms. The following guide describes each of the
components and gives an example of both types of tuning jobs.

Tuning job settings

Your tuning job settings are applied across all of the algorithms in the HPO tuning job. Warm start
and early stopping are available only when you're tuning a single algorithm. After you define the
job settings, you can create individual training definitions for each algorithm or variation that you
want to tune.

Warm start

If you cloned this job, you can use the results from a previous tuning job to improve the
performance of this new tuning job. This is the warm start feature, and it's only available when
tuning a single algorithm. With the warm start option, you can choose up to five previous
hyperparameter tuning jobs to use. Alternatively, you can use transfer learning to add additional
data to the parent tuning job. When you select this option, you choose one previous tuning job as
the parent.

Tune Multiple Algorithms 3161

Amazon SageMaker Developer Guide

Note

Warm start is compatible only with tuning jobs that were created after October 1, 2018.
For more information, see Run a warm start job.

Early stopping

To reduce compute time and avoid overfitting your model, you can stop training jobs early. Early
stopping is helpful when the training job is unlikely to improve the current best objective metric
of the hyperparameter tuning job. Like warm start, this feature is only available when tuning a
single algorithm. This is an automatic feature without configuration options, and it’s disabled by
default. For more information about how early stopping works, the algorithms that support it, and
how to use it with your own algorithms, see Stop Training Jobs Early.

Tuning strategy

Tuning strategy can be either random, Bayesian, or Hyperband. These selections specify how
automatic tuning algorithms search specified hyperparameter ranges that are selected in a later
step. Random search chooses random combinations of values from the specified ranges and
can be run sequentially or in parallel. Bayesian optimization chooses values based on what is
likely to get the best result according to the known history of previous selections. Hyperband
uses a multi-fidelity strategy that dynamically allocates resources toward well-utilized jobs and
automatically stops those that underperform. The new configuration that starts after stopping
other configurations is chosen randomly.

Hyperband can only be used with iterative algorithms, or algorithms that run steps in iterations,
such as XGBoost or Random Cut Forest. Hyperband can't be used with non-iterative algorithms,
such as decision trees or k-Nearest Neighbors. For more information about search strategies, see
How Hyperparameter Tuning Works.

Note

Hyperband uses an advanced internal mechanism to apply early stopping. Therefore,
when you use the Hyperband internal early stopping feature, the parameter
TrainingJobEarlyStoppingType in the HyperParameterTuningJobConfig API
must be set to OFF.

Tune Multiple Algorithms 3162

automatic-model-tuning-considerations.html
automatic-model-tuning-early-stopping.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-nearest-neighbors.html
automatic-model-tuning-how-it-works.html

Amazon SageMaker Developer Guide

Tags

To help you manage tuning jobs, you can enter tags as key-value pairs to assign metadata to
tuning jobs. Values in the key-value pair are not required. You can use the key without values. To
see the keys associated with a job, choose the Tags tab on the details page for tuning job. For more
information about using tags for tuning jobs, see Manage Hyperparameter Tuning and Training
Jobs.

Training job definitions

To create a training job definition, you must configure the algorithm and parameters, define the
data input and output, and configure resources. Provide at least one TrainingJobDefinition
for each HPO tuning job. Each training definition specifies the configuration for an algorithm.

To create several definitions for your training job, you can clone a job definition. Cloning a job can
save time because it copies all of the job settings, including data channels and Amazon S3 storage
locations for output artifacts. You can edit a cloned job to change what you need for your use case.

Topics

• Configure algorithm and parameters

• Define data input and output

• Configure training job resources

• Add or clone a training job

Configure algorithm and parameters

The following list describes what you need to configure the set of hyperparameter values for each
training job.

• A name for your tuning job

• Permission to access services

• Parameters for any algorithm options

• An objective metric

• The range of hyperparameter values, when required

Name

Tune Multiple Algorithms 3163

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobDefinition.html

Amazon SageMaker Developer Guide

Provide a unique name for the training definition.

Permissions

Amazon SageMaker requires permissions to call other services on your behalf. Choose
an AWS Identity and Access Management (IAM) role, or let AWS create a role with the
AmazonSageMakerFullAccess IAM policy attached.

Optional security settings

The network isolation setting prevents the container from making any outbound network calls.
This is required for AWS Marketplace machine learning offerings.

You can also choose to use a virtual private cloud (VPC).

Note

Inter-container encryption is only available when you create a job definition from the API.

Algorithm options

You can choose built-in algorithms, your own algorithm, your own container with an algorithm, or
you can subscribe to an algorithm from AWS Marketplace.

• If you choose a built-in algorithm, it has the Amazon Elastic Container Registry (Amazon ECR)
image information pre-populated.

• If you choose your own container, you must specify the (Amazon ECR) image information. You
can select the input mode for the algorithm as file or pipe.

• If you plan to supply your data using a CSV file from Amazon S3, you should select the file.

Metrics

When you choose a built-in algorithm, metrics are provided for you. If you choose your own
algorithm, you must define your metrics. You can define up to 20 metrics for your tuning job to
monitor. You must choose one metric as the objective metric. For more information about how to
define a metric for a tuning job, see Define metrics.

Objective metric

Tune Multiple Algorithms 3164

Amazon SageMaker Developer Guide

To find the best training job, set an objective metric and whether to maximize or minimize it. After
the training job is complete, you can view the tuning job detail page. The detail page provides a
summary of the best training job that is found using this objective metric.

Hyperparameter configuration

When you choose a built-in algorithm, the default values for its hyperparameters are set for you,
using ranges that are optimized for the algorithm that's being tuned. You can change these values
as you see fit. For example, instead of a range, you can set a fixed value for a hyperparameter
by setting the parameter’s type to static. Each algorithm has different required and optional
parameters. For more information, see Best Practices for Hyperparameter Tuning and Define
Hyperparameter Ranges.

Define data input and output

Each training job definition for a tuning job must configure the channels for data inputs, data
output locations, and optionally, any checkpoint storage locations for each training job.

Input data configuration

Input data is defined by channels. Each channel its own source location (Amazon S3 or Amazon
Elastic File System), compression, and format options. You can define up to 20 channels of input
sources. If the algorithm that you choose supports multiple input channels, you can specify
those, too. For example, when you use the XGBoost churn prediction notebook, you can add two
channels: train and validation.

Checkpoint configuration

Checkpoints are periodically generated during training. For the checkpoints to be saved, you
must choose an Amazon S3 location. Checkpoints are used in metrics reporting, and are also used
to resume managed spot training jobs. For more information, see Use checkpoints in Amazon
SageMaker.

Output data configuration

Define an Amazon S3 location for the artifacts of the training job to be stored. You have the option
of adding encryption to the output using an AWS Key Management Service (AWS KMS) key.

Configure training job resources

Each training job definition for a tuning job must configure the resources to deploy, including
instance types and counts, managed spot training, and stopping conditions.

Tune Multiple Algorithms 3165

automatic-model-tuning-considerations.html
automatic-model-tuning-define-ranges.html
automatic-model-tuning-define-ranges.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_applying_machine_learning/xgboost_customer_churn/xgboost_customer_churn.html

Amazon SageMaker Developer Guide

Resource configuration

Each training definition can have a different resource configuration. You choose the instance type
and number of nodes.

Managed spot training

You can save computer costs for jobs if you have flexibility in start and end times by allowing
SageMaker to use spare capacity to run jobs. For more information, see Use Managed Spot Training
in Amazon SageMaker.

Stopping condition

The stopping condition specifies the maximum duration that's allowed for each training job.

Add or clone a training job

After you create a training job definition for a tuning job, you will return to the Training Job
Definition(s) panel. This panel is where you can create additional training job definitions to train
additional algorithms. You can select the Add training job definition and work through the steps
to define a training job again.

Alternatively, to replicate an existing training job definition and edit it for the new algorithm,
choose Clone from the Action menu. The clone option can save time because it copies all of the
job’s settings, including the data channels and Amazon S3 storage locations. For more information
about cloning, see Manage Hyperparameter Tuning and Training Jobs.

Tuning job configuration

Resource Limits

You can specify the maximum number of concurrent training jobs that a hyperparameter tuning
job can run concurrently (10 at most). You can also specify the maximum number of training jobs
that the hyperparameter tuning job can run (500 at most). The number of parallel jobs should not
exceed the number of nodes that you have requested across all of your training definitions. The
total number of jobs can’t exceed the number of jobs that your definitions are expected to run.

Review the job settings, the training job definitions, and the resource limits. Then select Create
hyperparameter tuning job.

Tune Multiple Algorithms 3166

Amazon SageMaker Developer Guide

HPO tuning job example

To run a hyperparameter optimization (HPO) training job, first create a training job definition for
each algorithm that's being tuned. Next, define the tuning job settings and configure the resources
for the tuning job. Finally, run the tuning job.

If your HPO tuning job contains a single training algorithm, the SageMaker tuning function will
call the HyperparameterTuner API directly and pass in your parameters. If your HPO tuning job
contains multiple training algorithms, your tuning function will call the create function of the
HyperparameterTuner API. The create function tells the API to expect a dictionary containing
one or more estimators.

In the following section, code examples show how to tune a job containing either a single training
algorithm or multiple algorithms using the SageMaker Python SDK.

Create training job definitions

When you create a tuning job that includes multiple training algorithms, your tuning job
configuration will include the estimators and metrics and other parameters for your training jobs.
Therefore, you need to create the training job definition first, and then configure your tuning job.

The following code example shows how to retrieve two SageMaker containers containing the built-
in algorithms XGBoost and Linear Learner. If your tuning job contains only one training algorithm,
omit one of the containers and one of the estimators.

import sagemaker
from sagemaker import image_uris

from sagemaker.estimator import Estimator

sess = sagemaker.Session()
region = sess.boto_region_name
role = sagemaker.get_execution_role()

bucket = sess.default_bucket()
prefix = "sagemaker/multi-algo-hpo"

Define the training containers and intialize the estimators
xgb_container = image_uris.retrieve("xgboost", region, "latest")
ll_container = image_uris.retrieve("linear-learner", region, "latest")

xgb_estimator = Estimator(

Tune Multiple Algorithms 3167

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html

Amazon SageMaker Developer Guide

 xgb_container,
 role=role,
 instance_count=1,
 instance_type="ml.m4.xlarge",
 output_path='s3://{}/{}/xgb_output".format(bucket, prefix)',
 sagemaker_session=sess,
)

ll_estimator = Estimator(
 ll_container,
 role,
 instance_count=1,
 instance_type="ml.c4.xlarge",
 output_path="s3://{}/{}/ll_output".format(bucket, prefix),
 sagemaker_session=sess,
)

Set static hyperparameters
ll_estimator.set_hyperparameters(predictor_type="binary_classifier")
xgb_estimator.set_hyperparameters(
 eval_metric="auc",
 objective="binary:logistic",
 num_round=100,
 rate_drop=0.3,
 tweedie_variance_power=1.4,
)

Next, define your input data by specifying the training, validation, and testing datasets, as shown in
the following code example. This example shows how to tune multiple training algorithms.

training_data = sagemaker.inputs.TrainingInput(
 s3_data="s3://{}/{}/train".format(bucket, prefix), content_type="csv"
)
validation_data = sagemaker.inputs.TrainingInput(
 s3_data="s3://{}/{}/validate".format(bucket, prefix), content_type="csv"
)
test_data = sagemaker.inputs.TrainingInput(
 s3_data="s3://{}/{}/test".format(bucket, prefix), content_type="csv"
)

train_inputs = {
 "estimator-1": {
 "train": training_data,

Tune Multiple Algorithms 3168

Amazon SageMaker Developer Guide

 "validation": validation_data,
 "test": test_data,
 },
 "estimator-2": {
 "train": training_data,
 "validation": validation_data,
 "test": test_data,
 },
}

If your tuning algorithm contains only one training algorithm, your train_inputs should contain
only one estimator.

You must upload the inputs for the training, validation, and training datasets to your Amazon S3
bucket before you use those in an HPO tuning job.

Define resources and settings for your tuning job

This section shows how to initialize a tuner, define resources, and specify job settings for your
tuning job. If your tuning job contains multiple training algorithms, these settings are applied
to all of the algorithms that are contained inside your tuning job. This section provides two
code examples to define a tuner. The code examples show you how to optimize a single training
algorithm followed by an example of how to tune multiple training algorithms.

Tune a single training algorithm

The following code example shows how to initialize a tuner and set hyperparameter ranges for one
SageMaker built-in algorithm, XGBoost.

from sagemaker.tuner import HyperparameterTuner
from sagemaker.parameter import ContinuousParameter, IntegerParameter

hyperparameter_ranges = {
 "max_depth": IntegerParameter(1, 10),
 "eta": ContinuousParameter(0.1, 0.3),
}

objective_metric_name = "validation:accuracy"

tuner = HyperparameterTuner(
 xgb_estimator,
 objective_metric_name,
 hyperparameter_ranges,

Tune Multiple Algorithms 3169

Amazon SageMaker Developer Guide

 objective_type="Maximize",
 max_jobs=5,
 max_parallel_jobs=2,
)

Tune multiple training algorithms

Each training job requires different configurations, and these are specified using a dictionary. The
following code example shows how to initialize a tuner with configurations for two SageMaker
built-in algorithms, XGBoost and Linear Learner. The code example also shows how to set a tuning
strategy and other job settings, such as the compute resources for the tuning job. The following
code example uses metric_definitions_dict, which is optional.

from sagemaker.tuner import HyperparameterTuner
from sagemaker.parameter import ContinuousParameter, IntegerParameter

Initialize your tuner
tuner = HyperparameterTuner.create(
 estimator_dict={
 "estimator-1": xgb_estimator,
 "estimator-2": ll_estimator,
 },
 objective_metric_name_dict={
 "estimator-1": "validation:auc",
 "estimator-2": "test:binary_classification_accuracy",
 },
 hyperparameter_ranges_dict={
 "estimator-1": {"eta": ContinuousParameter(0.1, 0.3)},
 "estimator-2": {"learning_rate": ContinuousParameter(0.1, 0.3)},
 },
 metric_definitions_dict={
 "estimator-1": [
 {"Name": "validation:auc", "Regex": "Overall test accuracy: (.*?);"}
],
 "estimator-2": [
 {
 "Name": "test:binary_classification_accuracy",
 "Regex": "Overall test accuracy: (.*?);",
 }
],
 },
 strategy="Bayesian",
 max_jobs=10,

Tune Multiple Algorithms 3170

Amazon SageMaker Developer Guide

 max_parallel_jobs=3,
)

Run your HPO tuning job

Now you can run your tuning job by passing your training inputs to the fit function of the
HyperparameterTuner class. The following code example shows how to pass the train_inputs
parameter, that is defined in a previous code example, to your tuner.

tuner.fit(inputs=train_inputs, include_cls_metadata ={}, estimator_kwargs ={})

Manage Hyperparameter Tuning and Training Jobs

A tuning job can contain many training jobs and creating and managing these jobs and their
definitions can become a complex and onerous task. SageMaker provides tools to help facilitate the
management of these jobs. Tuning jobs you have run can be accessed from the Amazon SageMaker
console at https://console.aws.amazon.com/sagemaker/. Select Hyperparameter tuning job from
the Training menu to see the list. This page is also where you start the procedure to create a new
tuning job by selecting Create hyperparameter tuning job.

To see the training jobs run a part of a tuning job, select one of the hyperparameter tuning
jobs from the list. The tabs on the tuning job page allow you to inspect the training jobs, their
definitions, the tags and configuration used for the tuning job, and the best training job found
during tuning. You can select the best training job or any of the other training jobs that belong
to the tuning job to see all of their settings. From here you can create a model that uses the
hyperparameter values found by a training job by selecting Create Model or you can clone the
training job by selecting Clone.

Cloning

You can save time by cloning a training job that belongs to a hyperparameter tuning job. Cloning
copies all of the job’s settings, including data channels, S3 storage locations for output artifacts.
You can do this for training jobs you have already run from the tuning job page, as just described,
or when you are creating additional training job definitions while creating a hyperparameter tuning
job, as described in Add or clone a training job step of that procedure.

Tagging

Automatic Model Tuning launches multiple training jobs within a single parent tuning job to
discover the ideal weighting of model hyperparameters. Tags can be added to the parent tuning

Tune Multiple Algorithms 3171

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

job as described in the Components of a tuning job section and these tags are then propagated to
the individual training jobs underneath. Customers can use these tags for purposes, such as cost
allocation or access control. To add tags using the SageMaker SDK, use AddTags API. For more
information about using tagging for AWS resources, see Tagging AWS resources.

Example: Hyperparameter Tuning Job

This example shows how to create a new notebook for configuring and launching a
hyperparameter tuning job. The tuning job uses the XGBoost Algorithm to train a model to predict
whether a customer will enroll for a term deposit at a bank after being contacted by phone.

You use the low-level SDK for Python (Boto3) to configure and launch the hyperparameter tuning
job, and the AWS Management Console to monitor the status of hyperparameter tuning jobs. You
can also use the Amazon SageMaker high-level Amazon SageMaker Python SDK to configure, run,
monitor, and analyze hyperparameter tuning jobs. For more information, see https://github.com/
aws/sagemaker-python-sdk.

Prerequisites

To run the code in this example, you need

• An AWS account and an administrator user

• An Amazon S3 bucket for storing your training dataset and the model artifacts created during
training

• A running SageMaker notebook instance

Topics

• Create a Notebook Instance

• Get the Amazon SageMaker Boto 3 Client

• Get the SageMaker Execution Role

• Use an Amazon S3 bucket for input and output

• Download, Prepare, and Upload Training Data

• Configure and Launch a Hyperparameter Tuning Job

• Clean up

Example: Hyperparameter Tuning Job 3172

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk

Amazon SageMaker Developer Guide

Create a Notebook Instance

Create a Jupyter notebook that contains a pre-installed environment with the default Anaconda
installation and Python3.

To create a Jupyter notebook

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Open a running notebook instance, by choosing Open next to its name. The Jupyter notebook
server page appears:

3. To create a notebook, choose Files, New, and conda_python3. .

4. Name the notebook.

Next Step

Get the Amazon SageMaker Boto 3 Client

Get the Amazon SageMaker Boto 3 Client

Import Amazon SageMaker Python SDK, AWS SDK for Python (Boto3), and other Python libraries.
In a new Jupyter notebook, paste the following code to the first cell:

import sagemaker
import boto3

import numpy as np # For performing matrix operations
 and numerical processing
import pandas as pd # For manipulating tabular data
from time import gmtime, strftime
import os

region = boto3.Session().region_name

Example: Hyperparameter Tuning Job 3173

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

smclient = boto3.Session().client('sagemaker')

The preceding code cell defines region and smclient objects that you will use to call the built-in
XGBoost algorithm and set the SageMaker hyperparameter tuning job.

Next Step

Get the SageMaker Execution Role

Get the SageMaker Execution Role

Get the execution role for the notebook instance. This is the IAM role that you created for your
notebook instance.

To find the ARN of the IAM execution role attached to a notebook instance:

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the left navigation pane, choose Notebook then Notebook instances.

3. From the list of notebooks, select the notebook that you want to view.

4. The ARN is in the Permissions and encryption section.

Alternatively, Amazon SageMaker Python SDK users can retrieve the ARN of the execution role
attached to their user profile or a notebook instance by running the following code:

from sagemaker import get_execution_role

role = get_execution_role()
print(role)

For more information about using get_execution_role in the Amazon SageMaker Python SDK,
see Session. For more information about roles, see SageMaker Roles.

Next Step

Use an Amazon S3 bucket for input and output

Use an Amazon S3 bucket for input and output

Set up a S3 bucket to upload training datasets and save training output data for your
hyperparameter tuning job.

Example: Hyperparameter Tuning Job 3174

https://console.aws.amazon.com/iam/
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/utility/session.html

Amazon SageMaker Developer Guide

To use a default S3 bucket

Use the following code to specify the default S3 bucket allocated for your SageMaker session.
prefix is the path within the bucket where SageMaker stores the data for the current training job.

sess = sagemaker.Session()
bucket = sess.default_bucket() # Set a default S3 bucket
prefix = 'DEMO-automatic-model-tuning-xgboost-dm'

To use a specific S3 bucket (Optional)

If you want to use a specific S3 bucket, use the following code and replace the strings to the
exact name of the S3 bucket. The name of the bucket must contain sagemaker, and be globally
unique. The bucket must be in the same AWS Region as the notebook instance that you use for this
example.

bucket = "sagemaker-your-preferred-s3-bucket"

sess = sagemaker.Session(
 default_bucket = bucket
)

Note

The name of the bucket doesn't need to contain sagemaker if the IAM role that you use to
run the hyperparameter tuning job has a policy that gives the S3FullAccess permission.

Next Step

Download, Prepare, and Upload Training Data

Download, Prepare, and Upload Training Data

For this example, you use a training dataset of information about bank customers that includes
the customer's job, marital status, and how they were contacted during the bank's direct marketing
campaign. To use a dataset for a hyperparameter tuning job, you download it, transform the data,
and then upload it to an Amazon S3 bucket.

Example: Hyperparameter Tuning Job 3175

Amazon SageMaker Developer Guide

For more information about the dataset and the data transformation that the example performs,
see the hpo_xgboost_direct_marketing_sagemaker_APIs notebook in the Hyperparameter Tuning
section of the SageMaker Examples tab in your notebook instance.

Download and Explore the Training Dataset

To download and explore the dataset, run the following code in your notebook:

!wget -N https://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-
additional.zip
!unzip -o bank-additional.zip
data = pd.read_csv('./bank-additional/bank-additional-full.csv', sep=';')
pd.set_option('display.max_columns', 500) # Make sure we can see all of the columns
pd.set_option('display.max_rows', 5) # Keep the output on one page
data

Prepare and Upload Data

Before creating the hyperparameter tuning job, prepare the data and upload it to an S3 bucket
where the hyperparameter tuning job can access it.

Run the following code in your notebook:

data['no_previous_contact'] = np.where(data['pdays'] == 999, 1, 0)
 # Indicator variable to capture when pdays takes a value of 999
data['not_working'] = np.where(np.in1d(data['job'], ['student', 'retired',
 'unemployed']), 1, 0) # Indicator for individuals not actively employed
model_data = pd.get_dummies(data)
 # Convert categorical variables to sets of indicators
model_data
model_data = model_data.drop(['duration', 'emp.var.rate', 'cons.price.idx',
 'cons.conf.idx', 'euribor3m', 'nr.employed'], axis=1)

train_data, validation_data, test_data = np.split(model_data.sample(frac=1,
 random_state=1729), [int(0.7 * len(model_data)), int(0.9*len(model_data))])

pd.concat([train_data['y_yes'], train_data.drop(['y_no', 'y_yes'], axis=1)],
 axis=1).to_csv('train.csv', index=False, header=False)
pd.concat([validation_data['y_yes'], validation_data.drop(['y_no', 'y_yes'], axis=1)],
 axis=1).to_csv('validation.csv', index=False, header=False)
pd.concat([test_data['y_yes'], test_data.drop(['y_no', 'y_yes'], axis=1)],
 axis=1).to_csv('test.csv', index=False, header=False)

Example: Hyperparameter Tuning Job 3176

Amazon SageMaker Developer Guide

boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'train/
train.csv')).upload_file('train.csv')
boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'validation/
validation.csv')).upload_file('validation.csv')

Next Step

Configure and Launch a Hyperparameter Tuning Job

Configure and Launch a Hyperparameter Tuning Job

A hyperparameter is a high-level parameter that influences the learning process during model
training. To get the best model predictions, you can optimize a hyperparameter configuration
or set hyperparameter values. The process of finding an optimal configuration is called
hyperparameter tuning. To configure and launch a hyperparameter tuning job, complete the steps
in these guides.

Topics

• Settings for the hyperparameter tuning job

• Configure the training jobs

• Name and launch the hyperparameter tuning job

• Monitor the Progress of a Hyperparameter Tuning Job

• View the Status of the Training Jobs

• View the Best Training Job

Settings for the hyperparameter tuning job

To specify settings for the hyperparameter tuning job, define a JSON object when you create
the tuning job. Pass this JSON object as the value of the HyperParameterTuningJobConfig
parameter to the CreateHyperParameterTuningJob API.

In this JSON object, specify the following:

In this JSON object, you specify:

• HyperParameterTuningJobObjective – The objective metric used to evaluate the
performance of the training job launched by the hyperparameter tuning job.

• ParameterRanges – The range of values that a tunable hyperparameter can use during
optimization. For more information, see Define Hyperparameter Ranges

Example: Hyperparameter Tuning Job 3177

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

• RandomSeed – A value used to initialize a pseudo-random number generator. Setting a random
seed will allow the hyperparameter tuning search strategies to produce more consistent
configurations for the same tuning job (optional).

• ResourceLimits – The maximum number of training and parallel training jobs that the
hyperparameter tuning job can use.

Note

If you use your own algorithm for hyperparameter tuning, rather than a SageMaker built-
in algorithm, you must define metrics for your algorithm. For more information, see Define
metrics.

The following code example shows how to configure a hyperparameter tuning job using the
built-in XGBoost algorithm. The code example shows how to define ranges for the eta, alpha,
min_child_weight, and max_depth hyperparameters. For more information about these and
other hyperparameters see XGBoost Parameters.

In this code example, the objective metric for the hyperparameter tuning job finds the
hyperparameter configuration that maximizes validation:auc. SageMaker built-in algorithms
automatically write the objective metric to CloudWatch Logs. The following code example also
shows how to set a RandomSeed.

tuning_job_config = {
 "ParameterRanges": {
 "CategoricalParameterRanges": [],
 "ContinuousParameterRanges": [
 {
 "MaxValue": "1",
 "MinValue": "0",
 "Name": "eta"
 },
 {
 "MaxValue": "2",
 "MinValue": "0",
 "Name": "alpha"
 },
 {
 "MaxValue": "10",

Example: Hyperparameter Tuning Job 3178

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://xgboost.readthedocs.io/en/release_1.2.0/parameter.html

Amazon SageMaker Developer Guide

 "MinValue": "1",
 "Name": "min_child_weight"
 }
],
 "IntegerParameterRanges": [
 {
 "MaxValue": "10",
 "MinValue": "1",
 "Name": "max_depth"
 }
]
 },
 "ResourceLimits": {
 "MaxNumberOfTrainingJobs": 20,
 "MaxParallelTrainingJobs": 3
 },
 "Strategy": "Bayesian",
 "HyperParameterTuningJobObjective": {
 "MetricName": "validation:auc",
 "Type": "Maximize"
 },
 "RandomSeed" : 123
 }

Configure the training jobs

The hyperparameter tuning job will launch training jobs to find an optimal configuration
of hyperparameters. These training jobs should be configured using the SageMaker
CreateHyperParameterTuningJob API.

To configure the training jobs, define a JSON object and pass it as the value of the
TrainingJobDefinition parameter inside CreateHyperParameterTuningJob.

In this JSON object, you can specify the following:

• AlgorithmSpecification – The registry path of the Docker image containing the training
algorithm and related metadata. To specify an algorithm, you can use your own custom built
algorithm inside a Docker container or a SageMaker built-in algorithm (required).

• InputDataConfig – The input configuration, including the ChannelName, ContentType, and
data source for your training and test data (required).

• InputDataConfig – The input configuration, including the ChannelName, ContentType, and
data source for your training and test data (required).

Example: Hyperparameter Tuning Job 3179

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.docker.com/get-started/overview/
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide

• The storage location for the algorithm's output. Specify the S3 bucket where you want to store
the output of the training jobs.

• RoleArn – The Amazon Resource Name (ARN) of an AWS Identity and Access Management (IAM)
role that SageMaker uses to perform tasks. Tasks include reading input data, downloading a
Docker image, writing model artifacts to an S3 bucket, writing logs to Amazon CloudWatch Logs,
and writing metrics to Amazon CloudWatch (required).

• StoppingCondition – The maximum runtime in seconds that a training job can run before
being stopped. This value should be greater than the time needed to train your model (required).

• MetricDefinitions – The name and regular expression that defines any metrics that
the training jobs emit. Define metrics only when you use a custom training algorithm. The
example in the following code uses a built-in algorithm, which already has metrics defined. For
information about defining metrics (optional), see Define metrics.

• TrainingImage – The Dockercontainer image that specifies the training algorithm (optional).

• StaticHyperParameters – The name and values of hyperparameters that are not tuned in the
tuning job (optional).

The following code example sets static values for the eval_metric, num_round, objective,
rate_drop, and tweedie_variance_power parameters of the XGBoost Algorithm built-in
algorithm.

SageMaker Python SDK v1

from sagemaker.amazon.amazon_estimator import get_image_uri
training_image = get_image_uri(region, 'xgboost', repo_version='1.0-1')

s3_input_train = 's3://{}/{}/train'.format(bucket, prefix)
s3_input_validation ='s3://{}/{}/validation/'.format(bucket, prefix)

training_job_definition = {
 "AlgorithmSpecification": {
 "TrainingImage": training_image,
 "TrainingInputMode": "File"
 },
 "InputDataConfig": [
 {
 "ChannelName": "train",
 "CompressionType": "None",
 "ContentType": "csv",

Example: Hyperparameter Tuning Job 3180

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.docker.com/get-started/overview/

Amazon SageMaker Developer Guide

 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": s3_input_train
 }
 }
 },
 {
 "ChannelName": "validation",
 "CompressionType": "None",
 "ContentType": "csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": s3_input_validation
 }
 }
 }
],
 "OutputDataConfig": {
 "S3OutputPath": "s3://{}/{}/output".format(bucket,prefix)
 },
 "ResourceConfig": {
 "InstanceCount": 2,
 "InstanceType": "ml.c4.2xlarge",
 "VolumeSizeInGB": 10
 },
 "RoleArn": role,
 "StaticHyperParameters": {
 "eval_metric": "auc",
 "num_round": "100",
 "objective": "binary:logistic",
 "rate_drop": "0.3",
 "tweedie_variance_power": "1.4"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 43200
 }
}

Example: Hyperparameter Tuning Job 3181

Amazon SageMaker Developer Guide

SageMaker Python SDK v2

training_image = sagemaker.image_uris.retrieve('xgboost', region, '1.0-1')

s3_input_train = 's3://{}/{}/train'.format(bucket, prefix)
s3_input_validation ='s3://{}/{}/validation/'.format(bucket, prefix)

training_job_definition = {
 "AlgorithmSpecification": {
 "TrainingImage": training_image,
 "TrainingInputMode": "File"
 },
 "InputDataConfig": [
 {
 "ChannelName": "train",
 "CompressionType": "None",
 "ContentType": "csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": s3_input_train
 }
 }
 },
 {
 "ChannelName": "validation",
 "CompressionType": "None",
 "ContentType": "csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": s3_input_validation
 }
 }
 }
],
 "OutputDataConfig": {
 "S3OutputPath": "s3://{}/{}/output".format(bucket,prefix)
 },
 "ResourceConfig": {
 "InstanceCount": 2,
 "InstanceType": "ml.c4.2xlarge",

Example: Hyperparameter Tuning Job 3182

Amazon SageMaker Developer Guide

 "VolumeSizeInGB": 10
 },
 "RoleArn": role,
 "StaticHyperParameters": {
 "eval_metric": "auc",
 "num_round": "100",
 "objective": "binary:logistic",
 "rate_drop": "0.3",
 "tweedie_variance_power": "1.4"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 43200
 }
}

Name and launch the hyperparameter tuning job

After you configure the hyperparameter tuning job, you can launch it by calling
the CreateHyperParameterTuningJob API. The following code example uses
tuning_job_config and training_job_definition. These were defined in the previous two
code examples to create a hyperparameter tuning job.

tuning_job_name = "MyTuningJob"
smclient.create_hyper_parameter_tuning_job(HyperParameterTuningJobName =
 tuning_job_name,
 HyperParameterTuningJobConfig =
 tuning_job_config,
 TrainingJobDefinition =
 training_job_definition)

Monitor the Progress of a Hyperparameter Tuning Job

To monitor the progress of a hyperparameter tuning job and the training jobs that it launches, use
the Amazon SageMaker console.

Topics

• View the Status of the Hyperparameter Tuning Job

Example: Hyperparameter Tuning Job 3183

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

View the Status of the Hyperparameter Tuning Job

To view the status of the hyperparameter tuning job

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Hyperparameter tuning jobs.

3. In the list of hyperparameter tuning jobs, check the status of the hyperparameter tuning job
you launched. A tuning job can be:

• Completed—The hyperparameter tuning job successfully completed.

• InProgress—The hyperparameter tuning job is in progress. One or more training jobs are
still running.

• Failed—The hyperparameter tuning job failed.

• Stopped—The hyperparameter tuning job was manually stopped before it completed. All
training jobs that the hyperparameter tuning job launched are stopped.

• Stopping—The hyperparameter tuning job is in the process of stopping.

View the Status of the Training Jobs

To view the status of the training jobs that the hyperparameter tuning job launched

1. In the list of hyperparameter tuning jobs, choose the job that you launched.

Example: Hyperparameter Tuning Job 3184

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

2. Choose Training jobs.

3. View the status of each training job. To see more details about a job, choose it in the
list of training jobs. To view a summary of the status of all of the training jobs that the
hyperparameter tuning job launched, see Training job status counter.

A training job can be:

• Completed—The training job successfully completed.

• InProgress—The training job is in progress.

• Stopped—The training job was manually stopped before it completed.

• Failed (Retryable)—The training job failed, but can be retried. A failed training job can
be retried only if it failed because an internal service error occurred.

• Failed (Non-retryable)—The training job failed and can't be retried. A failed training
job can't be retried when a client error occurs.

Note

Hyperparameter tuning jobs can be stopped and the underlying resources deleted, but
the jobs themselves cannot be deleted.

Example: Hyperparameter Tuning Job 3185

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-ex-cleanup.html

Amazon SageMaker Developer Guide

View the Best Training Job

A hyperparameter tuning job uses the objective metric that each training job returns to evaluate
training jobs. While the hyperparameter tuning job is in progress, the best training job is the one
that has returned the best objective metric so far. After the hyperparameter tuning job is complete,
the best training job is the one that returned the best objective metric.

To view the best training job, choose Best training job.

To deploy the best training job as a model that you can host at a SageMaker endpoint, choose
Create model.

Next Step

Clean up

Clean up

To avoid incurring unnecessary charges, when you are done with the example, use the AWS
Management Console to delete the resources that you created for it.

Note

If you plan to explore other examples, you might want to keep some of these resources,
such as your notebook instance, S3 bucket, and IAM role.

Example: Hyperparameter Tuning Job 3186

Amazon SageMaker Developer Guide

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/ and delete the
notebook instance. Stop the instance before deleting it.

2. Open the Amazon S3 console at https://console.aws.amazon.com/s3/ and delete the bucket
that you created to store model artifacts and the training dataset.

3. Open the IAM console at https://console.aws.amazon.com/iam/ and delete the IAM role. If you
created permission policies, you can delete them, too.

4. Open the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/ and
delete all of the log groups that have names starting with /aws/sagemaker/.

Stop Training Jobs Early

Stop the training jobs that a hyperparameter tuning job launches early when they are not
improving significantly as measured by the objective metric. Stopping training jobs early can help
reduce compute time and helps you avoid overfitting your model. To configure a hyperparameter
tuning job to stop training jobs early, do one of the following:

• If you are using the AWS SDK for Python (Boto3), set the TrainingJobEarlyStoppingType
field of the HyperParameterTuningJobConfig object that you use to configure the tuning
job to AUTO.

• If you are using the Amazon SageMaker Python SDK, set the early_stopping_type parameter
of the HyperParameterTuner object to Auto.

• In the Amazon SageMaker console, in the Create hyperparameter tuning job workflow, under
Early stopping, choose Auto.

For a sample notebook that demonstrates how to use early stopping, see https://
github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/
image_classification_early_stopping/hpo_image_classification_early_stopping.ipynb or open the
hpo_image_classification_early_stopping.ipynb notebook in the Hyperparameter
Tuning section of the SageMaker Examples in a notebook instance. For information about using
sample notebooks in a notebook instance, see Example Notebooks.

How Early Stopping Works

When you enable early stopping for a hyperparameter tuning job, SageMaker evaluates each
training job the hyperparameter tuning job launches as follows:

Stop Training Jobs Early 3187

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/tuner.html
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_early_stopping/hpo_image_classification_early_stopping.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_early_stopping/hpo_image_classification_early_stopping.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_early_stopping/hpo_image_classification_early_stopping.ipynb

Amazon SageMaker Developer Guide

• After each epoch of training, get the value of the objective metric.

• Compute the running average of the objective metric for all previous training jobs up to the
same epoch, and then compute the median of all of the running averages.

• If the value of the objective metric for the current training job is worse (higher when minimizing
or lower when maximizing the objective metric) than the median value of running averages
of the objective metric for previous training jobs up to the same epoch, SageMaker stops the
current training job.

Algorithms That Support Early Stopping

To support early stopping, an algorithm must emit objective metrics for each epoch. The following
built-in SageMaker algorithms support early stopping:

• LightGBM

• CatBoost

• AutoGluon-Tabular

• TabTransformer

• Linear Learner Algorithm—Supported only if you use objective_loss as the objective metric.

• XGBoost Algorithm

• Image Classification - MXNet

• Object Detection - MXNet

• Sequence-to-Sequence Algorithm

• IP Insights

Note

This list of built-in algorithms that support early stopping is current as of December 13,
2018. Other built-in algorithms might support early stopping in the future. If an algorithm
emits a metric that can be used as an objective metric for a hyperparameter tuning job
(preferably a validation metric), then it supports early stopping.

Stop Training Jobs Early 3188

Amazon SageMaker Developer Guide

To use early stopping with your own algorithm, you must write your algorithms such that it emits
the value of the objective metric after each epoch. The following list shows how you can do that in
different frameworks:

TensorFlow

Use the tf.keras.callbacks.ProgbarLogger class. For information, see the
tf.keras.callbacks.ProgbarLogger API.

MXNet

Use the mxnet.callback.LogValidationMetricsCallback. For information, see the
mxnet.callback APIs.

Chainer

Extend chainer by using the extensions.Evaluator class. For information, see the
chainer.training.extensions.Evaluator API.

PyTorch and Spark

There is no high-level support. You must explicitly write your training code so that it computes
objective metrics and writes them to logs after each epoch.

Run a Warm Start Hyperparameter Tuning Job

Use warm start to start a hyperparameter tuning job using one or more previous tuning jobs as
a starting point. The results of previous tuning jobs are used to inform which combinations of
hyperparameters to search over in the new tuning job. Hyperparameter tuning uses either Bayesian
or random search to choose combinations of hyperparameter values from ranges that you specify.
For more information, see How Hyperparameter Tuning Works. Using information from previous
hyperparameter tuning jobs can help increase the performance of the new hyperparameter tuning
job by making the search for the best combination of hyperparameters more efficient.

Note

Warm start tuning jobs typically take longer to start than standard hyperparameter tuning
jobs, because the results from the parent jobs have to be loaded before the job can start.
The increased time depends on the total number of training jobs launched by the parent
jobs.

Run a Warm Start Hyperparameter Tuning Job 3189

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ProgbarLogger
https://mxnet.apache.org/versions/master/api/python/docs/api/legacy/callback/index.html
https://docs.chainer.org/en/v1.24.0/reference/extensions.html#evaluator

Amazon SageMaker Developer Guide

Reasons to consider warm start include the following:

• To gradually increase the number of training jobs over several tuning jobs based on results after
each iteration.

• To tune a model using new data that you received.

• To change hyperparameter ranges that you used in a previous tuning job, change static
hyperparameters to tunable, or change tunable hyperparameters to static values.

• You stopped a previous hyperparameter job early or it stopped unexpectedly.

Topics

• Types of Warm Start Tuning Jobs

• Warm Start Tuning Restrictions

• Warm Start Tuning Sample Notebook

• Create a Warm Start Tuning Job

Types of Warm Start Tuning Jobs

There are two different types of warm start tuning jobs:

IDENTICAL_DATA_AND_ALGORITHM

The new hyperparameter tuning job uses the same input data and training image as the
parent tuning jobs. You can change the hyperparameter ranges to search and the maximum
number of training jobs that the hyperparameter tuning job launches. You can also change
hyperparameters from tunable to static, and from static to tunable, but the total number of
static plus tunable hyperparameters must remain the same as it is in all parent jobs. You cannot
use a new version of the training algorithm, unless the changes in the new version do not
affect the algorithm itself. For example, changes that improve logging or adding support for a
different data format are allowed.

Use identical data and algorithm when you use the same training data as you used in a previous
hyperparameter tuning job, but you want to increase the total number of training jobs or
change ranges or values of hyperparameters.

When you run an warm start tuning job of type IDENTICAL_DATA_AND_ALGORITHM, there
is an additional field in the response to DescribeHyperParameterTuningJob named
OverallBestTrainingJob. The value of this field is the TrainingJobSummary for the training

Run a Warm Start Hyperparameter Tuning Job 3190

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobSummary.html

Amazon SageMaker Developer Guide

job with the best objective metric value of all training jobs launched by this tuning job and all
parent jobs specified for the warm start tuning job.

TRANSFER_LEARNING

The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum
number of concurrent training jobs, and maximum number of training jobs that are different
than those of its parent hyperparameter tuning jobs. You can also change hyperparameters
from tunable to static, and from static to tunable, but the total number of static plus tunable
hyperparameters must remain the same as it is in all parent jobs. The training algorithm image
can also be a different version from the version used in the parent hyperparameter tuning job.
When you use transfer learning, changes in the dataset or the algorithm that significantly affect
the value of the objective metric might reduce the usefulness of using warm start tuning.

Warm Start Tuning Restrictions

The following restrictions apply to all warm start tuning jobs:

• A tuning job can have a maximum of 5 parent jobs, and all parent jobs must be in a terminal
state (Completed, Stopped, or Failed) before you start the new tuning job.

• The objective metric used in the new tuning job must be the same as the objective metric used in
the parent jobs.

• The total number of static plus tunable hyperparameters must remain the same between
parent jobs and the new tuning job. Because of this, if you think you might want to use a
hyperparameter as tunable in a future warm start tuning job, you should add it as a static
hyperparameter when you create a tuning job.

• The type of each hyperparameter (continuous, integer, categorical) must not change between
parent jobs and the new tuning job.

• The number of total changes from tunable hyperparameters in the parent jobs to static
hyperparameters in the new tuning job, plus the number of changes in the values of static
hyperparameters cannot be more than 10. For example, if the parent job has a tunable
categorical hyperparameter with the possible values red and blue, you change that
hyperparameter to static in the new tuning job, that counts as 2 changes against the allowed
total of 10. If the same hyperparameter had a static value of red in the parent job, and you
change the static value to blue in the new tuning job, it also counts as 2 changes.

• Warm start tuning is not recursive. For example, if you create MyTuningJob3 as a warm start
tuning job with MyTuningJob2 as a parent job, and MyTuningJob2 is itself an warm start

Run a Warm Start Hyperparameter Tuning Job 3191

Amazon SageMaker Developer Guide

tuning job with a parent job MyTuningJob1, the information that was learned when running
MyTuningJob1 is not used for MyTuningJob3. If you want to use the information from
MyTuningJob1, you must explicitly add it as a parent for MyTuningJob3.

• The training jobs launched by every parent job in a warm start tuning job count against the 500
maximum training jobs for a tuning job.

• Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for
warm start tuning jobs.

Warm Start Tuning Sample Notebook

For a sample notebook that shows how to use warm start tuning, see https://github.com/
awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/
image_classification_warmstart/hpo_image_classification_warmstart.ipynb. For instructions
how to create and access Jupyter notebook instances that you can use to run the example in
SageMaker, see Example Notebooks. Once you have created a notebook instance and opened
it, select the SageMaker Examples tab to see a list of all the SageMaker samples. The warm
start tuning example notebook is located in the Hyperparameter tuning section, and is named
hpo_image_classification_warmstart.ipynb. To open a notebook, click on its Use tab and
select Create copy.

Create a Warm Start Tuning Job

You can use either the low-level AWS SDK for Python (Boto 3) or the high-level SageMaker Python
SDK to create a warm start tuning job.

Topics

• Create a Warm Start Tuning Job (Low-level SageMaker API for Python (Boto 3))

• Create a Warm Start Tuning Job (SageMaker Python SDK)

Create a Warm Start Tuning Job (Low-level SageMaker API for Python (Boto 3))

To use warm start tuning, you specify the values of a
HyperParameterTuningJobWarmStartConfig object, and pass that as the WarmStartConfig
field in a call to CreateHyperParameterTuningJob.

Run a Warm Start Hyperparameter Tuning Job 3192

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_warmstart/hpo_image_classification_warmstart.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_warmstart/hpo_image_classification_warmstart.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/hyperparameter_tuning/image_classification_warmstart/hpo_image_classification_warmstart.ipynb
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobWarmStartConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

The following code shows how to create a HyperParameterTuningJobWarmStartConfig
object and pass it to CreateHyperParameterTuningJob job by using the low-level SageMaker
API for Python (Boto 3).

Create the HyperParameterTuningJobWarmStartConfig object:

warm_start_config = {
 "ParentHyperParameterTuningJobs" : [
 {"HyperParameterTuningJobName" : 'MyParentTuningJob'}
],
 "WarmStartType" : "IdenticalDataAndAlgorithm"
}

Create the warm start tuning job:

smclient = boto3.Session().client('sagemaker')
smclient.create_hyper_parameter_tuning_job(HyperParameterTuningJobName =
 'MyWarmStartTuningJob',
 HyperParameterTuningJobConfig = tuning_job_config, # See notebook for tuning
 configuration
 TrainingJobDefinition = training_job_definition, # See notebook for job definition
 WarmStartConfig = warm_start_config)

Create a Warm Start Tuning Job (SageMaker Python SDK)

To use the Amazon SageMaker Python SDK to run a warm start tuning job, you:

• Specify the parent jobs and the warm start type by using a WarmStartConfig object.

• Pass the WarmStartConfig object as the value of the warm_start_config argument of a
HyperparameterTuner object.

• Call the fit method of the HyperparameterTuner object.

For more information about using the Amazon SageMaker Python SDK for hyperparameter tuning,
see https://github.com/aws/sagemaker-python-sdk#sagemaker-automatic-model-tuning.

This example uses an estimator that uses the Image Classification - MXNet algorithm for training.
The following code sets the hyperparameter ranges that the warm start tuning job searches within
to find the best combination of values. For information about setting hyperparameter ranges, see
Define Hyperparameter Ranges.

Run a Warm Start Hyperparameter Tuning Job 3193

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobWarmStartConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/tuner.html
https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-python-sdk#sagemaker-automatic-model-tuning

Amazon SageMaker Developer Guide

hyperparameter_ranges = {'learning_rate': ContinuousParameter(0.0, 0.1),
 'momentum': ContinuousParameter(0.0, 0.99)}

The following code configures the warm start tuning job by creating a WarmStartConfig object.

from sagemaker.tuner import WarmStartConfig,WarmStartTypes

parent_tuning_job_name = "MyParentTuningJob"
warm_start_config =
 WarmStartConfig(warm_start_type=WarmStartTypes.IDENTICAL_DATA_AND_ALGORITHM,
 parents={parent_tuning_job_name})

Now set the values for static hyperparameters, which are hyperparameters that keep the same
value for every training job that the warm start tuning job launches. In the following code,
imageclassification is an estimator that was created previously.

imageclassification.set_hyperparameters(num_layers=18,
 image_shape='3,224,224',
 num_classes=257,
 num_training_samples=15420,
 mini_batch_size=128,
 epochs=30,
 optimizer='sgd',
 top_k='2',
 precision_dtype='float32',
 augmentation_type='crop')

Now create the HyperparameterTuner object and pass the WarmStartConfig object that you
previously created as the warm_start_config argument.

tuner_warm_start = HyperparameterTuner(imageclassification,
 'validation:accuracy',
 hyperparameter_ranges,
 objective_type='Maximize',
 max_jobs=10,
 max_parallel_jobs=2,
 base_tuning_job_name='warmstart',
 warm_start_config=warm_start_config)

Finally, call the fit method of the HyperparameterTuner object to launch the warm start
tuning job.

Run a Warm Start Hyperparameter Tuning Job 3194

Amazon SageMaker Developer Guide

tuner_warm_start.fit(
 {'train': s3_input_train, 'validation': s3_input_validation},
 include_cls_metadata=False)

Resource Limits for Automatic Model Tuning

SageMaker sets the following default limits for resources used by automatic model tuning:

Resource Regions Default limits Can be increased to

Number of parallel
(concurrent)
hyperparameter
tuning jobs

All 100 N/A

Number of hyperpara
meters that can be
searched *

All 30 N/A

Number of metrics
defined per
hyperparameter
tuning job

All 20 N/A

Number of parallel
training jobs per
hyperparameter
tuning job

All 10 100

[Bayesian optimizat
ion] Number of
training jobs per
hyperparameter
tuning job

All 750 N/A

[Random search]
Number of training

All 750 10000

Resource Limits for Automatic Model Tuning 3195

Amazon SageMaker Developer Guide

Resource Regions Default limits Can be increased to

jobs per hyperpara
meter tuning job

[Hyperband] Number
of training jobs per
hyperparameter
tuning job

All 750 N/A

[Grid] Number of
training jobs per
hyperparameter
tuning job, either
specified explicitly
or inferred from the
search space

All 750 N/A

Maximum run time
for a hyperparameter
tuning job

All 30 days N/A

* Each categorical hyperparameter can have at most 30 different values.

Resource limit example

When you plan hyperparameter tuning jobs, you also have to take into account the limits on
training resources. For information about the default resource limits for SageMaker training jobs,
see SageMaker Limits. Every concurrent training instance on which all of your hyperparameter
tuning jobs run counts against the total number of training instances allowed. For example, if you
run 10 concurrent hyperparameter tuning jobs, each of those hyperparameter tuning jobs runs
100 total training jobs and 20 concurrent training jobs. Each of those training jobs runs on one
ml.m4.xlarge instance. The following limits apply:

• Number of concurrent hyperparameter tuning jobs: You don't need to increase the limit, because
10 tuning jobs is below the limit of 100.

• Number of training jobs per hyperparameter tuning job: You don't need to increase the limit,
because 100 training jobs is below the limit of 750.

Resource Limits for Automatic Model Tuning 3196

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_sagemaker

Amazon SageMaker Developer Guide

• Number of concurrent training jobs per hyperparameter tuning job: You need to request a limit
increase to 20, because the default limit is 10.

• SageMaker training ml.m4.xlarge instances: You need to request a limit increase to 200, because
you have 10 hyperparameter tuning jobs, each of which is running 20 concurrent training jobs.
The default limit is 20 instances.

• SageMaker training total instance count: You need to request a limit increase to 200, because
you have 10 hyperparameter tuning jobs, each of which is running 20 concurrent training jobs.
The default limit is 20 instances.

To request a quota increase:

1. Open the AWS Support Center page, sign in if necessary, and then choose Create case.

2. On the Create case page, choose Service limit increase.

3. On the Case details panel, select SageMaker Automatic Model Tuning [Hyperparameter
Optimization] for the Limit type

4. On the Requests panel for Request 1, select the Region, the resource Limit to increase and
the New Limit value you are requesting. Select Add another request if you have additional
requests for quota increases.

Resource Limits for Automatic Model Tuning 3197

https://console.aws.amazon.com/support/home#/

Amazon SageMaker Developer Guide

5. In the Case description panel, provide a description of your use case .

6. In the Contact options panel, select your preferred Contact methods (Web, Chat or Phone)
and then choose Submit.

Best Practices for Hyperparameter Tuning

Hyperparameter optimization (HPO) is not a fully-automated process. To improve optimization,
follow these best practices for hyperparameter tuning.

Topics

• Choosing a tuning strategy

Best Practices for Hyperparameter Tuning 3198

Amazon SageMaker Developer Guide

• Choosing the number of hyperparameters

• Choosing hyperparameter ranges

• Using the correct scales for hyperparameters

• Choosing the best number of parallel training jobs

• Running training jobs on multiple instances

• Using a random seed to reproduce hyperparameter configurations

Choosing a tuning strategy

For large jobs, using the Hyperband tuning strategy can reduce computation time. Hyperband
has an early stopping mechanism to stop under-performing jobs. Hyperband can also reallocate
resources towards well-utilized hyperparameter configurations and run parallel jobs. For smaller
training jobs using less runtime, use either random search or Bayesian optimization.

Use Bayesian optimization to make increasingly informed decisions about improving
hyperparameter configurations in the next run. Bayesian optimization uses information
gathered from prior runs to improve subsequent runs. Because of its sequential nature, Bayesian
optimization cannot massively scale.

Use random search to run a large number of parallel jobs. In random search, subsequent jobs
do not depend on the results from prior jobs and can be run independently. Compared to other
strategies, random search is able to run the largest number of parallel jobs.

Use grid search to reproduce results of a tuning job, or if simplicity and transparency of the
optimization algorithm are important. You can also use grid search to explore the entire
hyperparameter search space evenly. Grid search methodically searches through every
hyperparameter combination to find optimal hyperparameter values. Unlike grid search, Bayesian
optimization, random search and Hyperband all draw hyperparameters randomly from the
search space. Because grid search analyzes every combination of hyperparameters, optimal
hyperparameter values will be identical between tuning jobs that use the same hyperparameters.

Choosing the number of hyperparameters

During optimization, the computational complexity of a hyperparameter tuning job depends on the
following:

• The number of hyperparameters

• The range of values that Amazon SageMaker has to search

Best Practices for Hyperparameter Tuning 3199

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html#automatic-tuning-hyperband
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html#automatic-tuning-random-search
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html#automatic-tuning-bayesian-optimization.title
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html#automatic-tuning-grid-search

Amazon SageMaker Developer Guide

Although you can simultaneously specify up to 30 hyperparameters, limiting your search to a
smaller number can reduce computation time. Reducing computation time allows SageMaker to
converge more quickly to an optimal hyperparameter configuration.

Choosing hyperparameter ranges

The range of values that you choose to search can adversely affect hyperparameter optimization.
For example, a range that covers every possible hyperparameter value can lead to large compute
times and a model that doesn't generalize well to unseen data. If you know that using a subset
of the largest possible range is appropriate for your use case, consider limiting the range to that
subset.

Using the correct scales for hyperparameters

During hyperparameter tuning, SageMaker attempts to infer if your hyperparameters are log-
scaled or linear-scaled. Initially, SageMaker assumes linear scaling for hyperparameters. If
hyperparameters are log-scaled, choosing the correct scale will make your search more efficient.
You can also select Auto for ScalingType in the CreateHyperParameterTuningJob API if you want
SageMaker to detect the scale for you.

Choosing the best number of parallel training jobs

You can use the results of previous trials to improve the performance of subsequent trials. Choose
the largest number of parallel jobs that would provide a meaningful incremental result that is also
within your region and account compute constraints. Use the MaxParallelTrainingJobs field
to limit the number of training jobs that a hyperparameter tuning job can launch in parallel. For
more information, see Running multiple HPO jobs in parallel on Amazon SageMaker.

Running training jobs on multiple instances

When a training job runs on multiple machines in distributed mode, each machine emits an
objective metric. HPO can only use one of these emitted objective metrics to evaluate model
performance, In distributed mode, HPO uses the objective metric that was reported by the last
running job across all instances.

Using a random seed to reproduce hyperparameter configurations

You can specify an integer as a random seed for hyperparameter tuning and use that seed during
hyperparameter generation. Later, you can use the same seed to reproduce hyperparameter

Best Practices for Hyperparameter Tuning 3200

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html#MaxParallelTrainingJobs
https://aws.amazon.com/blogs/machine-learning/running-multiple-hpo-jobs-in-parallel-on-amazon-sagemaker

Amazon SageMaker Developer Guide

configurations that are consistent with your previous results. For random search and Hyperband
strategies, using the same random seed can provide up to 100% reproducibility of the previous
hyperparameter configuration for the same tuning job. For Bayesian strategy, using the same
random seed will improve reproducibility for the same tuning job.

Refine data during training with Amazon SageMaker smart
sifting

Amazon SageMaker smart sifting is in preview release and is subject to change.

SageMaker smart sifting is a capability of SageMaker Training that helps improve the efficiency of
your training datasets and reduce total training time and cost.

Modern deep learning models such as large language models (LLMs) or vision transformer models
often require massive datasets to achieve acceptable accuracy. For example, LLMs often require
trillions of tokens or petabytes of data to converge. The growing size of training datasets, along
with the size of state-of-the-art models, can increase the compute time and cost of model training.

Invariably, samples in a dataset do not contribute equally to the learning process during model
training. A significant proportion of computational resources provisioned during training might be
spent on processing easy samples that do not contribute substantially to the overall accuracy of a
model. Ideally, training datasets would only include samples that are actually improving the model
convergence. Filtering out less helpful data can reduce training time and compute cost. However,
identifying less helpful data can be challenging and risky. It is practically difficult to identify which
samples are less informative before training, and model accuracy can be impacted if the wrong
samples or too many samples are excluded.

Smart sifting of data with Amazon SageMaker can help reduce training time and cost by improving
data efficiency. The SageMaker smart sifting algorithm evaluates the loss value of each data during
the data loading stage of a training job and excludes samples which are less informative to the
model. By using refined data for training, the total time and cost of training your model is reduced
by eliminating unnecessary forward and backward passes on non-improving data. Therefore, there
is minimal or no impact on the accuracy of the model.

SageMaker smart sifting is available through SageMaker Training Deep Learning Containers (DLCs)
and supports PyTorch workloads via the PyTorch DataLoader. Just a few lines of code change

Refine data during training 3201

Amazon SageMaker Developer Guide

are needed to implement SageMaker smart sifting and you do not need to change your existing
training or data processing workflows.

How SageMaker smart sifting works

The goal of SageMaker smart sifting is to sift through your training data during the training
process and only feed more informative samples to the model. During typical training with
PyTorch, data is iteratively sent in batches to the training loop and to accelerator devices (such as
GPUs or Trainium chips) by the PyTorch DataLoader. SageMaker smart sifting is implemented
at this data loading stage and is thus independent of any upstream data pre-processing in your
training pipeline. SageMaker smart sifting uses your model and its user-specified loss function to
do an evaluative forward pass of each data sample as it is loaded. Samples that return low-loss
values have less of an impact on the model's learning and are thus excluded from training, because
it is already easy for the model to make the right prediction about them with high confidence.
Meanwhile, those relatively high-loss samples are what the model still needs to learn, so these are
kept for training. A key input you can set for SageMaker smart sifting is the proportion of data to
exclude. For example, by setting the proportion to 25%, samples distributed in the lowest quartile
of the distribution of loss (taken from a user-specified number of previous samples) are excluded
from training. High-loss samples are accumulated in a refined data batch. The refined data batch
is sent to the training loop (forward and backward pass), and the model learns and trains on the
refined data batch.

The following diagram shows an overview of how the SageMaker smart sifting algorithm is
designed.

How SageMaker smart sifting works 3202

https://pytorch.org/docs/stable/data.html

Amazon SageMaker Developer Guide

In short, SageMaker smart sifting operates during training as data is loaded. The SageMaker smart
sifting algorithm runs loss calculation over the batches, and sifts non-improving data out before
the forward and backward pass of each iteration. The refined data batch is then used for the
forward and backward pass.

SageMaker smart sifting works for PyTorch-based training jobs with classic distributed data
parallelism, which makes model replicas on each GPU worker and performs AllReduce. It works
with PyTorch DDP and the SageMaker distributed data parallel library.

How SageMaker smart sifting works 3203

Amazon SageMaker Developer Guide

Supported frameworks and AWS Regions

Before using SageMaker smart sifting data loader, check if your framework of choice is supported,
that the instance types are available in your AWS account, and that your AWS account is in one of
the supported AWS Regions.

Supported Frameworks

SageMaker smart sifting supports the following deep learning frameworks and is available through
AWS Deep Learning Containers.

Topics

• PyTorch

PyTorch

Framework Framework version Deep Learning
Container URI

PyTorch 2.1.0 763104351
884 .dkr.ecr.
region.amazonaw
s.com/pytorch-trai
ning:2.1.0-gpu-py3
10-cu121-ubuntu20.
04-sagemaker

For more information about the pre-built containers, see SageMaker Framework Containers in the
AWS Deep Learning Containers GitHub repository.

AWS Regions

The containers packaged with the SageMaker smart sifting library are available in the AWS Regions
where AWS Deep Learning Containers are in service.

Supported frameworks and AWS Regions 3204

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-training-compiler-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

Instance types

You can use SageMaker smart sifting for any PyTorch training jobs on any instance types. We
recommend that you use P4d, P4de, or P5 instances.

Apply SageMaker smart sifting to your training script

The SageMaker smart sifting library is packaged in the SageMaker framework DLCs as a
complementary library. It provides a filtering logic against training samples that have relatively
lower impact on model training, and your model can reach the desired model accuracy with fewer
training samples when compared to the model training with full data samples.

PyTorch

These instructions demonstrate how to enable SageMaker smart sifting with your training script.

1. Configure the SageMaker smart sifting interface.

The SageMaker smart sifting library implements a relative-threshold loss-based sampling
technique that helps filter out samples with lower impact on reducing the loss value. The
SageMaker smart sifting algorithm calculates the loss value of every input data sample using a
forward pass, and calculates its relative percentile against the loss values of preceding data.

The following two parameters are what you need to specify to the
RelativeProbabilisticSiftConfig class for creating a sifting configuration object.

• Specify the proportion of data that should be used for training to the beta_value
parameter.

• Specify the number of samples used in the comparison with the loss_history_length
parameter.

The following code example demonstrates setting up an object of the
RelativeProbabilisticSiftConfig class.

from smart_sifting.sift_config.sift_configs import (
 RelativeProbabilisticSiftConfig
 LossConfig
 SiftingBaseConfig
)

Apply SageMaker smart sifting to your training script 3205

Amazon SageMaker Developer Guide

sift_config=RelativeProbabilisticSiftConfig(
 beta_value=0.5,
 loss_history_length=500,
 loss_based_sift_config=LossConfig(
 sift_config=SiftingBaseConfig(sift_delay=0)
)
)

For more information about the loss_based_sift_config parameter and related classes,
see the section called “SageMaker smart sifting configuration modules” in the SageMaker
smart sifting Python SDK reference section.

The sift_config object in the preceding code example is used in step 4 for setting up the
SiftingDataloader class.

2. (Optional) Configure a SageMaker smart sifting batch transform class.

Different training use cases require different training data formats. Given the variety of data
formats, the SageMaker smart sifting algorithm needs to identify how to perform sifting on a
particular batch. To address this, SageMaker smart sifting provides a batch transform module
that helps convert batches into standardized formats that it can efficiently sift.

a. SageMaker smart sifting handles batch transform of training data in the following
formats: Python lists, dictionaries, tuples, and tensors. For these data formats, SageMaker
smart sifting automatically handles the batch data format conversion, and you can skip
the rest of this step. If you skip this step, in step 4 for configuring SiftingDataloader,
leave the batch_transforms parameter of SiftingDataloader to its default value,
which is None.

b. If your dataset is not in these format, you should proceed to the rest of this step to create
a custom batch transform using SiftingBatchTransform.

In cases in which your dataset isn’t in one of the supported formats by SageMaker smart
sifting, you might run into errors. Such data format errors can be resolved by adding the
batch_format_index or batch_transforms parameter to the SiftingDataloader
class, which you set up in step 4. The following shows example errors due to an
incompatible data format and resolutions for them.

Error Message Resolution

Apply SageMaker smart sifting to your training script 3206

Amazon SageMaker Developer Guide

Batches of type {type(batch)} are not
supported by default.

This error indicates the batch format is
not supported by default. You should
implement a custom batch transform
class, and use this by specifying it to the
batch_transforms parameter of the
SiftingDataloader class.

Unable to index the batch of type
{type(batch)}

This error indicates the batch object
cannot be indexed normally. User must
implement a custom batch transform and
pass this using the batch_transforms
parameter.

Batch size {batch_size} does not
match dimension 0 or dimension 1 sizes

This error occurs when the provided
batch size does not match the 0th or
1st dimensions of the batch. User must
implement a custom batch transform and
pass this using the batch_transforms
parameter.

Both dimension 0 and dimension 1 match
batch size

This error indicates that since multiple
dimensions match the provided batch
size, more information is required to
sift the batch. The user can provide the
batch_format_index parameter
to indicate if the batch is indexable
by sample or feature. Users may also
implement a custom batch transform, but
this is more work than required.

To resolve the aforementioned issues, you need to create a custom batch transform class
using the SiftingBatchTransform module. A batch transform class should consist of
a pair of transform and reverse-transform functions. The function pair converts your data
format to a format that SageMaker smart sifting algorithm can process. After you create
a batch transform class, the class returns a SiftingBatch object that you'll pass to the
SiftingDataloader class in step 4.

Apply SageMaker smart sifting to your training script 3207

Amazon SageMaker Developer Guide

The following are examples of custom batch transform classes of the
SiftingBatchTransform module.

• An example of a custom list batch transform implementation with SageMaker smart
sifting for cases where the dataloader chunk has inputs, masks, and labels.

from typing import Any

import torch

from smart_sifting.data_model.data_model_interface import
 SiftingBatchTransform
from smart_sifting.data_model.list_batch import ListBatch

class ListBatchTransform(SiftingBatchTransform):
 def transform(self, batch: Any):
 inputs = batch[0].tolist()
 labels = batch[-1].tolist() # assume the last one is the list of
 labels
 return ListBatch(inputs, labels)

 def reverse_transform(self, list_batch: ListBatch):
 a_batch = [torch.tensor(list_batch.inputs),
 torch.tensor(list_batch.labels)]
 return a_batch

• An example of a custom list batch transform implementation with SageMaker smart
sifting for cases where no labels are needed for reverse transformation.

class ListBatchTransformNoLabels(SiftingBatchTransform):
 def transform(self, batch: Any):
 return ListBatch(batch[0].tolist())

 def reverse_transform(self, list_batch: ListBatch):
 a_batch = [torch.tensor(list_batch.inputs)]
 return a_batch

• An example of a custom tensor batch implementation with SageMaker smart sifting for
cases where the data loader chunk has inputs, masks, and labels.

from typing import Any

Apply SageMaker smart sifting to your training script 3208

Amazon SageMaker Developer Guide

from smart_sifting.data_model.data_model_interface import
 SiftingBatchTransform
from smart_sifting.data_model.tensor_batch import TensorBatch

class TensorBatchTransform(SiftingBatchTransform):
 def transform(self, batch: Any):
 a_tensor_batch = TensorBatch(
 batch[0], batch[-1]
) # assume the last one is the list of labels
 return a_tensor_batch

 def reverse_transform(self, tensor_batch: TensorBatch):
 a_batch = [tensor_batch.inputs, tensor_batch.labels]
 return a_batch

After you create a SiftingBatchTransform-implemted batch transform class, you use
this class in step 4 for setting up the SiftingDataloader class. The rest of this guide
assumes that a ListBatchTransform class is created. In step 4, this class is passed to
the batch_transforms.

3. Create a class for implementing the SageMaker smart sifting Loss interface. This tutorial
assumes that the class is named SiftingImplementedLoss. While setting up this class, we
recommend that you use the same loss function in the model training loop. Go through the
following substeps for creating a SageMaker smart sifting Loss implemented class.

a. SageMaker smart sifting calculates a loss value for each training data sample, as opposed
to calculating a single loss value for a batch. To ensure that SageMaker smart sifting uses
the same loss calculation logic, create a smart-sifting-implemented loss function using the
SageMaker smart sifting Loss module that uses your loss function and calculates loss per
training sample.

Tip

SageMaker smart sifting algorithm runs on every data sample, not on the entire
batch, so you should add an initialization function to set the PyTorch loss function
without any reduction strategy.

class SiftingImplementedLoss(Loss):
 def __init__(self):

Apply SageMaker smart sifting to your training script 3209

Amazon SageMaker Developer Guide

 self.loss = torch.nn.CrossEntropyLoss(reduction='none')

This is also shown in the following code example.

b. Define a loss function that accepts the original_batch (or transformed_batch if you
have set up a batch transform in step 2) and the PyTorch model. Using the specified loss
function with no reduction, SageMaker smart sifting runs a forward pass for each data
sample to evaluate its loss value.

The following code is an example of a smart-sifting-implemented Loss interface named
SiftingImplementedLoss.

from typing import Any

import torch
import torch.nn as nn
from torch import Tensor

from smart_sifting.data_model.data_model_interface import SiftingBatch
from smart_sifting.loss.abstract_sift_loss_module import Loss

model=... # a PyTorch model based on torch.nn.Module

class SiftingImplementedLoss(Loss):
 # You should add the following initializaztion function
 # to calculate loss per sample, not per batch.
 def __init__(self):
 self.loss_no_reduction = torch.nn.CrossEntropyLoss(reduction='none')

 def loss(
 self,
 model: torch.nn.Module,
 transformed_batch: SiftingBatch,
 original_batch: Any = None,
) -> torch.Tensor:
 device = next(model.parameters()).device
 batch = [t.to(device) for t in original_batch] # use this if you use
 original batch and skipped step 2
 # batch = [t.to(device) for t in transformed_batch] # use this if you
 transformed batches in step 2

Apply SageMaker smart sifting to your training script 3210

Amazon SageMaker Developer Guide

 # compute loss
 outputs = model(batch)
 return self.loss_no_reduction(outputs.logits, batch[2])

Before the training loop hits the actual forward pass, this sifting loss calculation is done during
the data loading phase of fetching a batch in each iteration. The individual loss value is then
compared to previous loss values, and its relative percentile is estimated per the object of
RelativeProbabilisticSiftConfig you have set up in step 1.

4. Wrap the PyTroch data loader by the SageMaker SiftingDataloader class.

Finally, use all the SageMaker smart sifting implemented classes you configured in the
previous steps to the SageMaker SiftingDataloder configuration class. This class is a
wrapper for PyTorch DataLoader. By wrapping PyTorch DataLoader, SageMaker smart
sifting is registered to run as part of data loading in each iteration of a PyTorch training job.
The following code example demonstrates implementing SageMaker data sifting to a PyTorch
DataLoader.

from smart_sifting.dataloader.sift_dataloader import SiftingDataloader
from torch.utils.data import DataLoader

train_dataloader = DataLoader(...) # PyTorch data loader

Wrap the PyTorch data loader by SiftingDataloder
train_dataloader = SiftingDataloader(
 sift_config=sift_config, # config object of RelativeProbabilisticSiftConfig
 orig_dataloader=train_dataloader,
 batch_transforms=ListBatchTransform(), # Optional, this is the custom class
 from step 2
 loss_impl=SiftingImplementedLoss(), # PyTorch loss function wrapped by the
 Sifting Loss interface
 model=model,
 log_batch_data=False
)

Hugging Face Transformers

There are two ways to implement the SageMaker smart sifting into the Transformers Trainer
class.

Apply SageMaker smart sifting to your training script 3211

https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

Amazon SageMaker Developer Guide

Note

If you use one of the DLCs for PyTorch with the SageMaker smart sifting package installed,
note that you need to install the transformers library. You can install additional
packages by extending the DLCs or passing requirements.txt to the training job
launcher class for PyTorch (sagemaker.pytorch.PyTorch) in the SageMaker Python
SDK.

Simple setup

The simplest way to implement SageMaker smart sifting into the Transformers Trainer class is to
use the enable_sifting function. This function accepts an existing Trainer object, and wraps
the existing DataLoader object with SiftingDataloader. You can continue using the same
training object. See the following example usage.

from smart_sifting.integrations.trainer import enable_sifting
from smart_sifting.loss.abstract_sift_loss_module import Loss
from smart_sifting.sift_config.sift_configs import (
 RelativeProbabilisticSiftConfig
 LossConfig
 SiftingBaseConfig
)

class SiftingImplementedLoss(Loss):
 def loss(self, model, transformed_batch, original_batch):
 loss_fct = MSELoss(reduction="none") # make sure to set reduction to "none"
 logits = model.bert(**original_batch)
 return loss_fct(logits, original_batch.get("labels"))

sift_config = RelativeProbabilisticSiftConfig(
 beta_value=0.5,
 loss_history_length=500,
 loss_based_sift_config=LossConfig(
 sift_config=SiftingBaseConfig(sift_delay=0)
)
)

trainer = Trainer(...)
enable_sifting(trainer, sift_config, loss=SiftingImplementedLoss()) # updates the
 trainer with Sifting Loss and config

Apply SageMaker smart sifting to your training script 3212

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html

Amazon SageMaker Developer Guide

trainer.train()

The SiftingDataloader class is an iterable data loader. The exact size of the resulting dataset
is not known beforehand due to the random sampling during sifting. As a result, the Hugging Face
Trainer expects the max_steps training argument. Note that this argument overrides the epoch
configuration parameter num_train_epochs. If your original data loader was also iterable, or
your training uses max_steps and a single epoch, then the SiftingDataloader performs the
same as the existing dataloader. If the original dataloader was not iterable or max_steps was not
provided, the Hugging Face Trainer might throw an error message similar to the following.

args.max_steps must be set to a positive value if dataloader does not have a length,
was -1

To address this, the enable_sifting function provides an optional set_epochs parameter.
This enables training with epochs, using the number of epochs provided by num_train_epochs
argument of the Trainer class, and sets max_steps to the maximum system integer, allowing
training to progress until the specified epochs have completed.

Custom setup

For a custom integration of the SageMaker smart sifting dataloader, you can utilize a custom
Hugging Face Trainer class. Within any subclass of Trainer, the get_train_dataloader()
function can be overridden to return an object of the SiftingDataloader class instead. For cases
with existing custom trainers, this approach might be less intrusive but requires code changes than
the simple setup option. The following is an example implementation of SageMaker smart sifting
into a custom Hugging Face Trainer class.

from smart_sifting.sift_config.sift_configs import (
 RelativeProbabilisticSiftConfig
 LossConfig
 SiftingBaseConfig
)
from smart_sifting.dataloader.sift_dataloader import SiftingDataloader
from smart_sifting.loss.abstract_sift_loss_module import Loss
from smart_sifting.data_model.data_model_interface import SiftingBatch,
 SiftingBatchTransform
from smart_sifting.data_model.list_batch import ListBatch

class SiftingListBatchTransform(SiftingBatchTransform):
 def transform(self, batch: Any):

Apply SageMaker smart sifting to your training script 3213

https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.max_steps
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.num_train_epochs(float,
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.num_train_epochs(float,

Amazon SageMaker Developer Guide

 inputs = batch[0].tolist()
 labels = batch[-1].tolist() # assume the last one is the list of labels
 return ListBatch(inputs, labels)

 def reverse_transform(self, list_batch: ListBatch):
 a_batch = [torch.tensor(list_batch.inputs), torch.tensor(list_batch.labels)]
 return a_batch

class SiftingImplementedLoss():
 # You should add the following initializaztion function
 # to calculate loss per sample, not per batch.
 def __init__(self):
 self.celoss = torch.nn.CrossEntropyLoss(reduction='none')

 def loss(
 self,
 model: torch.nn.Module,
 transformed_batch: SiftingBatch,
 original_batch: Any = None,
) -> torch.Tensor:
 device = next(model.parameters()).device
 batch = [t.to(device) for t in original_batch]

 # compute loss
 outputs = model(batch)
 return self.celoss(outputs.logits, batch[2])

class SiftingImplementedTrainer(Trainer):
 def get_train_dataloader(self):
 dl = super().get_train_dataloader()

 sift_config = RelativeProbabilisticSiftConfig(
 beta_value=0.5,
 loss_history_length=500,
 loss_based_sift_config=LossConfig(
 sift_config=SiftingBaseConfig(sift_delay=0)
)
)

 return SiftingDataloader(
 sift_config=sift_config,
 orig_dataloader=dl,
 batch_transforms=SiftingListBatchTransform(),
 loss_impl=SiftingImplementedLoss(),

Apply SageMaker smart sifting to your training script 3214

Amazon SageMaker Developer Guide

 model=self.model
)

Using the wrapped Trainer class, create an object of it as follows.

trainer = SiftingImplementedTrainer(
 model=model,
 args=training_args,
 train_dataset=small_train_dataset,
 eval_dataset=small_eval_dataset
)

trainer.train()

Best practices, considerations, and troubleshooting

Best practices

• Smart sifting of data on SageMaker uses additional forward passes to analyze and filter your
training data. In turn, there are fewer backward passes as less impactful data is excluded from
your training job. Because of this, models which have long or expensive backward passes see
the greatest efficiency gains when using smart sifting. Meanwhile, if your model's forward pass
takes longer than its backward pass, overhead could increase total training time. To measure
the time spent by each pass, you can run a pilot training job and collect logs that record the
time on the processes. Also consider using SageMaker Profiler that provides profiling tools and
UI application. To learn more, see Use Amazon SageMaker Profiler to profile activities on AWS
compute resources.

• SageMaker smart sifting supports PyTorch model training with traditional data parallelism
and distributed data parallelism, which makes model replicas in all GPU workers and uses the
AllReduce operation. It doesn’t work with model parallelism techniques, including sharded
data parallelism.

• Because SageMaker smart sifting works for data parallelism jobs, make sure that the model you
train fits in each GPU memory.

• SageMaker smart sifting runs on individual data in batches during data loading, so make sure
that you set the reduction strategy of the PyTorch loss function to "none" for non-reduction.
With reduction set to "mean" or "sum", the loss function returns a single loss value, which
leads SageMaker smart sifting not working properly.

Best practices, considerations, and troubleshooting 3215

Amazon SageMaker Developer Guide

Troubleshooting

If you run into an error, you can use the following list to try to troubleshoot
the issue. If you need further support, reach out to the SageMaker team at
<sm-smart-sifting-feedback@amazon.com>.

Exceptions from the SageMaker smart sifting library

Use the following reference of exceptions raised by the SageMaker smart sifting library to
troubleshoot errors and identify causes.

Exception Name Description

SiftConfigValidationException Thrown from the SageMaker smart sifting
library in case of any missing Config key or
unsupported value type for Sift Key

UnsupportedDataFormatException Thrown from the SageMaker smart sifting
library in case of any unsupported DataFormat
for Sifting logic

LossImplementationNotProvidedException Thrown in case of missing or not implement
ing Loss interface

Security in SageMaker smart sifting

Because the SageMaker smart sifting library runs processes of removing less valuable training
samples, it requires full access to training datasets as they are produced by the data loader. This
access is not different than the access already provided to PyTorch in normal training scenario.

SageMaker smart sifting has built-in logging with security implications. By default, SageMaker
smart sifting logs are only application-level logs containing metrics, latencies, and user errors or
warnings. Users can, however, choose to enable verbose logs, which log full batch data to show
which samples were removed from a given batch. These logs are emitted using Python loggers
and are not uploaded or stored anywhere by the library. In the case of automatic log uploading to
CloudWatch or similar services, please note that using verbose logs may result in sensitive training
data being uploaded off of the training instance.

Security in SageMaker smart sifting 3216

Amazon SageMaker Developer Guide

Beyond the aforementioned logging, SageMaker smart sifting does not have any network
functionality nor does it interact with the local file system. User data is stored as in-memory
objects for the entirety of the time it is used by the library.

SageMaker smart sifting Python SDK reference

This page provides a reference of Python modules you need for applying SageMaker smart sifting
to your training script.

SageMaker smart sifting configuration modules

class
smart_sifting.sift_config.sift_configs.RelativeProbabilisticSiftConfig()

The SageMaker smart sifting configuration class.

Parameters

• beta_value (float) – A beta (constant) value for calculating the probability of selecting a
sample for training based on the percentile of the loss in the history of loss values. Lowering
the beta value results in a lower percentage of data sifted, and raising it results in a higher
percentage of data sifted. There’s no minimum or maximum value for the beta value, beside that
it must be a positive value. Refer to the following reference table for sifting rates with respect to
beta_value.

beta_value Proportion of data kept (%) Proportion of data sifted out
(%)

0.1 90.91 9.01

0.25 80 20

0.5 66.67 33.33

1 50 50

2 33.33 66.67

3 25 75

SageMaker smart sifting Python SDK reference 3217

Amazon SageMaker Developer Guide

10 9.09 90.92

100 0.99 99.01

• loss_history_length (int) – The number of previous training losses to store for the relative
threshold loss based sampling.

• loss_based_sift_config (dict or a LossConfig object) – Specify a LossConfig object that
returns the SageMaker smart sifting Loss interface configuration.

class smart_sifting.sift_config.sift_configs.LossConfig()

The configuration class for the loss_based_sift_config parameter of the
RelativeProbabilisticSiftConfig class.

Parameters

• sift_config (dict or a SiftingBaseConfig object) – Specify a SiftingBaseConfig object
that returns a sifting base configuration dictionary.

class smart_sifting.sift_config.sift_configs.SiftingBaseConfig()

The configuration class for the sift_config parameter of LossConfig.

Parameters

• sift_delay (int) – The number of training steps to wait for before start sifting. We recommend
that you start sifting after all the layers in the model has sufficient view of the training data. The
default value is 1000.

• repeat_delay_per_epoch (bool) – Specify whether to delay sifting every epoch. The default
value is False.

SageMaker smart sifting data batch transform modules

class smart_sifting.data_model.data_model_interface.SiftingBatchTransform

A SageMaker smart sifting Python module for defining how to perform batch transform. Using
this, you can set up a batch transform class that converts the data format of your training data to
SiftingBatch format, which SageMaker smart sifting can sift and accumulate into a sifted batch.

SageMaker smart sifting Python SDK reference 3218

Amazon SageMaker Developer Guide

class smart_sifting.data_model.data_model_interface.SiftingBatch

An interface to define a batch data type that can be sifted and accumulated.

class smart_sifting.data_model.list_batch.ListBatch

A module for keeping track of a list batch for sifting.

class smart_sifting.data_model.tensor_batch.TensorBatch

A module for keeping track of a tensor batch for sifting.

SageMaker smart sifting loss implementation module

class smart_sifting.loss.abstract_sift_loss_module.Loss

A wrapper module for registering the SageMaker smart sifting interface to the loss function of a
PyTorch-based model.

SageMaker smart sifting data loader wrapper module

class smart_sifting.dataloader.sift_dataloader.SiftingDataloader

A wrapper module for registering the SageMaker smart sifting interface to the data loader of a
PyTorch-based model.

The Main Sifting Dataloader iterator sifts out training samples from a dataloader based on a sift
configuration

Parameters

• sift_config (dict or a RelativeProbabilisticSiftConfig object) – A
RelativeProbabilisticSiftConfig object.

• orig_dataloader (a PyTorch DataLoader object) – Specify the PyTorch Dataloader object to be
wrapped.

• batch_transforms (a SiftingBatchTransform object) – (Optional) If your data format is
not supported by the SageMaker smart sifting library’s default transform, you need to create a
batch transform class using the SiftingBatchTransform module. This parameter is to pass
the batch transform class that SiftingDataloader can run to convert the data for SageMaker
smart sifting algorithm can accept.

SageMaker smart sifting Python SDK reference 3219

Amazon SageMaker Developer Guide

• model (a PyTorch model object) – The original PyTorch model

• loss_impl (a sifting loss function of
smart_sifting.loss.abstract_sift_loss_module.Loss) – A sifting loss function that is
configured with the Loss module and wraps the PyTorch loss function.

• log_batch_data (bool) – Specify whether to log batch data. If set to True, SageMaker smart
sifting logs the details of the batches that are kept or sifted. We recommend that you turn it on
only for a pilot training job. When logging is on, the samples are loaded to GPU and transferred
to CPU, which introduces overhead. The default value is False.

SageMaker smart sifting release notes

See the following release notes to track the latest updates for the SageMaker smart sifting
capability.

SageMaker smart sifting release notes: November 29, 2023

New Features

• Launched the Amazon SageMaker smart sifting library at AWS re:Invent 2023.

Migration to AWS Deep Learning Containers

• The SageMaker smart sifting library passed integration testing and is available in AWS Deep
Learning Containers. To find a complete list of the pre-built containers with the SageMaker smart
sifting library, see the section called “Supported frameworks and AWS Regions”.

Debug and improve model performance

The essence of training machine learning models, deep learning neural networks, transformer
models is in achieving stable model convergence, and as such, state-of-the-art models have
millions, billions, or trillions of model parameters. The number of operations to update the gigantic
number of model parameters during each iteration can easily become astronomical. To identify
model convergence issues, it is important to be able to access the model parameters, activations,
and gradients computed during optimization processes.

Amazon SageMaker provides two debugging tools to help identify such convergence issues and
gain visibility into your models.

Release notes 3220

Amazon SageMaker Developer Guide

Amazon SageMaker with TensorBoard

To offer a greater compatiblity with the open-source community tools within the SageMaker
Training platform, SageMaker hosts TensorBoard as an application in SageMaker domain. You can
bring your training jobs to SageMaker and keep using the TensorBoard summary writer to collect
the model output tensors. Because TensorBoard is implemented into SageMaker domain, it also
gives you more options to manage user profiles under the SageMaker domain in your AWS account,
and provides fine control over the user profiles by granting access to specific actions and resources.
To learn more, see the section called “Use TensorBoard”.

Amazon SageMaker Debugger

Amazon SageMaker Debugger is a capability of SageMaker that provides tools to register hooks
to callbacks to extract model output tensors and save them in Amazon Simple Storage Service.
It provides built-in rules for detecting model convergence issues, such as overfitting, saturated
activation functions, vanishing gradients, and more. You can also set up the built-in rules with
Amazon CloudWatch Events and AWS Lambda for taking automated actions against detected
issues, and set up Amazon Simple Notification Service to receive email or text notifications. To
learn more, see the section called “Use SageMaker Debugger”.

Topics

• Use TensorBoard to debug and analyze training jobs in Amazon SageMaker

• Use Amazon SageMaker Debugger to debug and improve model performance

• Access a training container through AWS Systems Manager for remote debugging

• Release notes for debugging capabilities of Amazon SageMaker

Use TensorBoard to debug and analyze training jobs in Amazon
SageMaker

Amazon SageMaker with TensorBoard is a capability of Amazon SageMaker that brings the
visualization tools of TensorBoard to SageMaker, integrated with SageMaker Training and domain.
It provides options to administer your AWS account and users belonging to the account through
SageMaker domain, to give the domain users access to the TensorBoard data with appropriate
permissions to Amazon S3, and help the domain users perform model debugging tasks using the
TensorBoard visualization plugins. SageMaker with TensorBoard is extended with the SageMaker
Data Manager plugin, with which domain users can access a number of training jobs in one place
within the TensorBoard application.

Use TensorBoard 3221

https://docs.aws.amazon.com/sagemaker/latest/dg/sm-domain.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sm-domain.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://www.tensorflow.org/tensorboard
https://docs.aws.amazon.com/sagemaker/latest/dg/sm-domain.html

Amazon SageMaker Developer Guide

Note

This feature is for training and debugging deep learning models using the PyTorch or
TensorFlow framework.

For data scientists

Training large models can have scientific problems that require data scientists to debug and resolve
them in order to improve model convergence and stabilize gradient descent processes.

When you encounter model training issues, such as loss not converging, or vanishing or exploding
weights and gradients, you need to access tensor data to dive deep and analyze the model
parameters, scalars, and any custom metrics. Using SageMaker with TensorBoard, you can visualize
model output tensors extracted from training jobs. As you experiment with different models,
multiple training runs, and model hyperparameters, you can select multiple training jobs in
TensorBoard and compare them in one place.

For administrators

Through the TensorBoard landing page in the SageMaker console or SageMaker domain, you
can manage TensorBoard application users if you are an administrator of an AWS account or
SageMaker domain. Each domain user can access their own TensorBoard application given the
granted permissions. As a SageMaker domain administrator and domain user, you can create and
delete the TensorBoard application given the permission level you have.

Supported frameworks and AWS Regions

This feature supports the following machine learning frameworks and AWS Regions.

Frameworks

• PyTorch

• TensorFlow

• Hugging Face Transformers

AWS Regions

• US East (N. Virginia) (us-east-1)

Use TensorBoard 3222

https://docs.aws.amazon.com/sagemaker/latest/dg/sm-domain.html

Amazon SageMaker Developer Guide

• US East (Ohio) (us-east-2)

• US West (Oregon) (us-west-2)

• Europe (Frankfurt) (eu-central-1)

• Europe (Ireland) (eu-west-1)

Note

Amazon SageMaker with TensorBoard runs the TensorBoard application on an
ml.r5.large instance and incurs charges after the SageMaker free tier or the free trial
period of the feature. For more information, see Amazon SageMaker Pricing.

Prerequisites

The following list shows the prerequisites to start using SageMaker with TensorBoard.

• A SageMaker domain that's set up with Amazon VPC in your AWS account.

For instructions on setting up a domain, see Onboard to Amazon SageMaker domain using quick
setup. You also need to add domain user profiles for individual users to access the TensorBoard
on SageMaker. For more information, see Add and remove SageMaker domain user profiles.

• The following list is the minimum set of permissions for using TensorBoard on SageMaker.

• sagemaker:CreateApp

• sagemaker:DeleteApp

• sagemaker:DescribeTrainingJob

• sagemaker:Search

• s3:GetObject

• s3:ListBucket

Prepare a training job with a TensorBoard output data configuration

A typical training job for deep learning in SageMaker consists of two main steps: preparing a
training script and configuring a SageMaker Training job launcher. In this section, you can check the
required changes to collect TensorBoard-compatible data from SageMaker Training.

Use TensorBoard 3223

https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-quick-start.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-quick-start.html
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-user-profile-add-remove.html

Amazon SageMaker Developer Guide

Step 1: Modify your training script

Make sure you determine which output tensors and scalars to collect, and modify code lines in
your training script using any of the following tools: TensorBoardX, TensorFlow Summary Writer,
PyTorch Summary Writer, or SageMaker Debugger.

Also make sure that you specify the TensorBoard data output path as the log directory (log_dir)
for callback in the training container.

For more information about callbacks per framework, see the following resources.

• For PyTorch, use torch.utils.tensorboard.SummaryWriter. See also the Using TensorBoard
in PyTorch and Log scalars sections in the PyTorch tutorials. Alternatively, you can use
TensorBoardX Summary Writer.

LOG_DIR="/opt/ml/output/tensorboard"
tensorboard_callback=torch.utils.tensorboard.writer.SummaryWriter(log_dir=LOG_DIR)

• For TensorFlow, use the native callback for TensorBoard, tf.keras.callbacks.TensorBoard.

LOG_DIR="/opt/ml/output/tensorboard"
tensorboard_callback=tf.keras.callbacks.TensorBoard(
 log_dir=LOG_DIR, histogram_freq=1)

• For Transformers with PyTorch, you can use transformers.integrations.TensorBoardCallback.

For Transformers with TensorFlow, use the tf.keras.tensorboard.callback, and pass that
to the keras callback in transformers.

Tip

You can also use a different container local output path. However, in Step 2: Construct
a SageMaker training launcher with TensorBoard data configuration, you must map
the paths correctly for SageMaker to successfully search the local path and save the
TensorBoard data to the S3 output bucket.

• For guidance on modifying training scripts using the SageMaker Debugger Python library, see
the section called “Step 1: Adapt Your Training Script to Register a Hook”.

Use TensorBoard 3224

https://pytorch.org/docs/stable/tensorboard.html#module-torch.utils.tensorboard
https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html#using-tensorboard-in-pytorch
https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html#using-tensorboard-in-pytorch
https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html#log-scalars
https://tensorboardx.readthedocs.io/en/latest/tutorial.html
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard
https://huggingface.co/docs/transformers/main/en/main_classes/callback#transformers.integrations.TensorBoardCallback

Amazon SageMaker Developer Guide

Step 2: Construct a SageMaker training launcher with TensorBoard data configuration

Use the sagemaker.debugger.TensorBoardOutputConfig while configuring a SageMaker
framework estimator. This configuration API maps the S3 bucket you specify for saving
TensorBoard data with the local path in the training container (/opt/ml/output/tensorboard).
Pass the object of the module to the tensorboard_output_config parameter of the estimator
class. The following code snippet shows an example of preparing a TensorFlow estimator with the
TensorBoard output configuration parameter.

Note

This example assumes that you use the SageMaker Python SDK. If you use the low-
level SageMaker API, you should include the following to the request syntax of the
CreateTrainingJob API.

"TensorBoardOutputConfig": {
 "LocalPath": "/opt/ml/output/tensorboard",
 "S3OutputPath": "s3_output_bucket"
}

from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import TensorBoardOutputConfig

Set variables for training job information,
such as s3_out_bucket and other unique tags.
...

LOG_DIR="/opt/ml/output/tensorboard"

output_path = os.path.join(
 "s3_output_bucket", "sagemaker-output", "date_str", "your-training_job_name"
)

tensorboard_output_config = TensorBoardOutputConfig(
 s3_output_path=os.path.join(output_path, 'tensorboard'),
 container_local_output_path=LOG_DIR
)

estimator = TensorFlow(
 entry_point="train.py",

Use TensorBoard 3225

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

 source_dir="src",
 role=role,
 image_uri=image_uri,
 instance_count=1,
 instance_type="ml.c5.xlarge",
 base_job_name="your-training_job_name",
 tensorboard_output_config=tensorboard_output_config,
 hyperparameters=hyperparameters
)

How to access TensorBoard on SageMaker

You can access TensorBoard by two methods: programmatically using the
sagemaker.interactive_apps.tensorboard module that generates an unsigned or a
presigned URL, or using the TensorBoard landing page in the SageMaker console. After you open
TensorBoard, SageMaker runs the TensorBoard plugin and automatically finds all training job
output data in TensorBoard-compatible file format.

Topics

• Open TensorBoard using the sagemaker.interactive_apps.tensorboard module

• Open TensorBoard using the get_app_url function as an estimator class method

• Open TensorBoard through the SageMaker console

Open TensorBoard using the sagemaker.interactive_apps.tensorboard module

The sagemaker.interactive_apps.tensorboard module provides a function called
get_app_url that generates unsigned or presigned URLs to open the TensorBoard application
in any environment in SageMaker or Amazon EC2. This is to provide a unified experience for both
Studio Classic and non-Studio Classic users. For the Studio environment, you can open TensorBoard
by running the get_app_url() function as it is, or you can also specify a job name to start
tracking as the TensorBoard application opens. For non-Studio Classic environments, you can open
TensorBoard by providing your domain and user profile information to the utility function. With
this functionality, regardless of where or how you run training code and launch training jobs, you
can directly access TensorBoard by running the get_app_url function in your Jupyter notebook
or terminal.

Use TensorBoard 3226

Amazon SageMaker Developer Guide

Note

This functionality is available in the SageMaker Python SDK v2.184.0 and later. To use this
functionality, make sure that you upgrade the SDK by running pip install sagemaker
--upgrade.

Topics

• Option 1: For SageMaker Studio Classic

• Option 2: For non-Studio Classic environments

Option 1: For SageMaker Studio Classic

If you are using SageMaker Studio Classic, you can directly open the TensorBoard application or
retrieve an unsigned URL by running the get_app_url function as follows. As you are already
within the Studio Classic environment and signed in as a domain user, get_app_url() generates
unsigned URL because it is not necessary to authenticate again.

To open the TensorBoard application

The following code automatically opens the TensorBoard application from the unsigned URL that
the get_app_url() function returns in the your environment's default web browser.

from sagemaker.interactive_apps import tensorboard

region = "us-west-2"
app = tensorboard.TensorBoardApp(region)

app.get_app_url(
 training_job_name="your-training_job_name" # Optional. Specify the job name to
 track a specific training job
)

To retrieve an unsigned URL and open the TensorBoard application manually

The following code prints an unsigned URL that you can copy to a web browser and open the
TensorBoard application.

from sagemaker.interactive_apps import tensorboard

Use TensorBoard 3227

Amazon SageMaker Developer Guide

region = "us-west-2"
app = tensorboard.TensorBoardApp(region)
print("Navigate to the following URL:")
print(
 app.get_app_url(
 training_job_name="your-training_job_name", # Optional. Specify the name of the
 job to track.
 open_in_default_web_browser=False # Set to False to print the URL to
 terminal.
)
)

Note that if you run the preceding two code samples outside the SageMaker Studio Classic
environment, the function will return a URL to the TensorBoard landing page in the SageMaker
console, because these do not have sign-in information to your domain and user profile. For
creating a presigned URL, see Option 2 in the following section.

Option 2: For non-Studio Classic environments

If you use non-Studio Classic environments, such as SageMaker Notebook instance or Amazon EC2,
and want to open TensorBoard directly from the environment you are in, you need to generate
a URL presigned with your domain and user profile information. A presigned URL is a URL that's
signed in to Amazon SageMaker Studio Classic while the URL is being created with your domain
and user profile, and therefore granted access to all of the domain applications and files associated
with your domain. To open TensorBoard through a presigned URL, use the get_app_url function
with your domain and user profile name as follows.

Note that this option requires the domain user to have the
sagemaker:CreatePresignedDomainUrl permission. Without the permission, the domain user
will receive an exception error.

Important

Do not share any presigned URLs. The get_app_url function creates presigned URLs,
which automatically authenticates with your domain and user profile and gives access to
any applications and files associated with your domain.

print(

Use TensorBoard 3228

Amazon SageMaker Developer Guide

 app.get_app_url(
 training_job_name="your-training_job_name", # Optional. Specify the name of the
 job to track.
 create_presigned_domain_url=True, # Reguired to be set to True for
 creating a presigned URL.
 domain_id="your-domain-id", # Required if creating a presigned
 URL (create_presigned_domain_url=True).
 user_profile_name="your-user-profile-name", # Required if creating a presigned
 URL (create_presigned_domain_url=True).
 open_in_default_web_browser=False, # Optional. Set to False to print
 the URL to terminal.
 optional_create_presigned_url_kwargs={} # Optional. Add any additional args
 for Boto3 create_presigned_domain_url
)
)

Tip

The get_app_url function runs the
SageMaker.Client.create_presigned_domain_url API in the AWS SDK for Python
(Boto3) in the backend. As the Boto3 create_presigned_domain_url API creates
presigned domain URLs that expire in 300 seconds by default, presigned TensorBoard
application URLs also expire in 300 seconds. If you want to extend the expiration time, pass
the ExpiresInSeconds argument to the optional_create_presigned_url_kwargs
argument of the get_app_url function as follows.

optional_create_presigned_url_kwargs={"ExpiresInSeconds": 1500}

Note

If any of your input passed to the arguments of get_app_url is invalid, the function
outputs a URL to the TensorBoard landing page instead of opening the TensorBoard
application. The output message would be similar to the following.

Navigate to the following URL:
https://us-west-2.console.aws.amazon.com/sagemaker/home?region=us-west-2#/
tensor-board-landing

Use TensorBoard 3229

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_presigned_domain_url.html

Amazon SageMaker Developer Guide

Open TensorBoard using the get_app_url function as an estimator class method

If you are in the process of running a training job using the estimator class of the SageMaker
Python SDK and have an active object of the estimator class, you can also access the
get_app_url function as a class method of the estimator class. Open the TensorBoard
application or retrieve an unsigned URL by running the get_app_url method as follows. The
get_app_url class method pulls the training job name from the estimator and opens the
TensorBoard application with the specified job.

Note

This functionality is available in the SageMaker Python SDK v2.184.0 and later. To use this
functionality, make sure that you upgrade the SDK by running pip install sagemaker
--upgrade.

Topics

• Option 1: For SageMaker Studio Classic

• Option 2: For non-Studio Classic environments

Option 1: For SageMaker Studio Classic

To open the TensorBoard application

The following code automatically opens the TensorBoard application from the unsigned URL that
the get_app_url() method returns in the your environment's default web browser.

estimator.get_app_url(
 app_type=SupportedInteractiveAppTypes.TENSORBOARD # Required.
)

To retrieve an unsigned URL and open the TensorBoard application manually

The following code prints an unsigned URL that you can copy to a web browser and open the
TensorBoard application.

print(
 estimator.get_app_url(

Use TensorBoard 3230

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.EstimatorBase.get_app_url

Amazon SageMaker Developer Guide

 app_type=SupportedInteractiveAppTypes.TENSORBOARD, # Required.
 open_in_default_web_browser=False, # Optional. Set to False to print the URL to
 terminal.
)
)

Note that if you run the preceding two code samples outside the SageMaker Studio Classic
environment, the function will return a URL to the TensorBoard landing page in the SageMaker
console, because these do not have sign-in information to your domain and user profile. For
creating a presigned URL, see Option 2 in the following section.

Option 2: For non-Studio Classic environments

If you use non-Studio Classic environments, such as SageMaker Notebook instance and Amazon
EC2, and want to generate a presigned URL to open the TensorBoard application, use the
get_app_url method with your domain and user profile information as follows.

Note that this option requires the domain user to have the
sagemaker:CreatePresignedDomainUrl permission. Without the permission, the domain user
will receive an exception error.

Important

Do not share any presigned URLs. The get_app_url function creates presigned URLs,
which automatically authenticates with your domain and user profile and gives access to
any applications and files associated with your domain.

print(
 estimator.get_app_url(
 app_type=SupportedInteractiveAppTypes.TENSORBOARD, # Required
 create_presigned_domain_url=True, # Reguired to be set to True for
 creating a presigned URL.
 domain_id="your-domain-id", # Required if creating a presigned
 URL (create_presigned_domain_url=True).
 user_profile_name="your-user-profile-name", # Required if creating a presigned
 URL (create_presigned_domain_url=True).
 open_in_default_web_browser=False, # Optional. Set to False to print
 the URL to terminal.
 optional_create_presigned_url_kwargs={} # Optional. Add any additional
 args for Boto3 create_presigned_domain_url

Use TensorBoard 3231

Amazon SageMaker Developer Guide

)
)

Open TensorBoard through the SageMaker console

You can also use the SageMaker console UI to open the TensorBoard application. There are two
options to open the TensorBoard application through the SageMaker console.

Topics

• Option 1: Launch TensorBoard from the domain details page

• Option 2: Launch TensorBoard from the TensorBoard landing page

Option 1: Launch TensorBoard from the domain details page

Navigate to the domain details page

The following procedure shows how to navigate to the domain details page.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. From the list of domains, select the domain in which you want to launch the TensorBoard
application.

Launch a user profile application

The following procedure shows how to launch a Studio Classic application that is scoped to a user
profile.

1. On the domain details page, choose the User profiles tab.

2. Identify the user profile for which you want to launch the Studio Classic application.

3. Choose Launch for your selected user profile, then choose TensorBoard.

Option 2: Launch TensorBoard from the TensorBoard landing page

The following procedure describes how to launch a TensorBoard application from the TensorBoard
landing page.

Use TensorBoard 3232

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose TensorBoard.

3. Under Get started, select the domain in which you want to launch the Studio Classic application.
If your user profile only belongs to one domain, you do not see the option for selecting a
domain.

4. Select the user profile for which you want to launch the Studio Classic application. If there is
no user profile in the domain, choose Create user profile. For more information, see Add and
Remove User Profiles.

5. Choose Open TensorBoard.

The following screenshot shows the location of TensorBoard in the left navigation pane of the
SageMaker console and the SageMaker with TensorBoard landing page in the main pane.

Access and visualize training output data in TensorBoard

You can conduct an online or offline analysis by loading collected output tensors from S3 buckets
paired with training jobs during or after training.

When you open the TensorBoard application, TensorBoard opens with the SageMaker Data
Manager tab. The following screenshot shows the full view of the SageMaker Data Manager tab in
the TensorBoard application.

Use TensorBoard 3233

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-user-profile-add-remove.html
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-user-profile-add-remove.html

Amazon SageMaker Developer Guide

In the SageMaker Data Manager tab, you can select any training job and load TensorBoard-
compatible training output data from Amazon S3.

1. In the Search training jobs section, use the filters to narrow down the list of training jobs you
want to find, load, and visualize.

2. In the List of training jobs section, use the check boxes to choose training jobs from which you
want to pull data and visualize for debugging.

3. Choose Add selected jobs. The selected jobs should appear in the Tracked training jobs section,
as shown in the following screenshot.

Use TensorBoard 3234

Amazon SageMaker Developer Guide

Note

The SageMaker Data Manager tab only shows training jobs configured with the
TensorBoardOutputConfig parameter. Make sure you have configured the SageMaker
estimator with this parameter. For more information, see Step 2: Construct a SageMaker
training launcher with TensorBoard data configuration.

Note

The visualization tabs might not appear if you are using SageMaker with TensorBoard
for the first time or no data is loaded from a previous use. After adding training jobs and
waiting for a few seconds, refresh the viewer by choosing the clockwise circular arrow
on the upper-right corner. The visualization tabs should appear after the job data are
successfully loaded. You can also set to auto-refresh using the Settings button next to the
refresh button in the upper right corner.

Explore training output data visualized in TensorBoard

In the graphics tabs, you can see the list of the loaded training jobs in the left pane. You can also
use the check boxes of the training jobs to show or hide visualizations. The TensorBoard dynamic

Use TensorBoard 3235

Amazon SageMaker Developer Guide

plugins are activated dynamically depending on how you have set your training script to include
summary writers and pass callbacks for tensor and scalar collection, and therefore the graphics
tabs also appear dynamically. The following screenshots show example views of each tab with
visualization of two training jobs that collected metrics for time series, scalar, graph, distribution,
and histogram plugins.

The TIME SERIES tab view

The SCALARS tab view

Use TensorBoard 3236

Amazon SageMaker Developer Guide

The GRAPHS tab view

Use TensorBoard 3237

Amazon SageMaker Developer Guide

The DISTRIBUTIONS tab view

The HISTOGRAMS tab view

Use TensorBoard 3238

Amazon SageMaker Developer Guide

Delete unused TensorBoard applications

After you are done with monitoring and experimenting with jobs in TensorBoard, shut the
TensorBoard application down.

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Choose your domain.

5. Choose your user profile.

6. Under Apps, choose Delete App for the TensorBoard row.

7. Choose Yes, delete app.

8. Type delete in the text box, then choose Delete.

9. A blue message should appear at the top of the screen: default is being deleted.

Considerations

Consider the following when using SageMaker with TensorBoard.

Use TensorBoard 3239

Amazon SageMaker Developer Guide

• You cannot share the TensorBoard applications for collaboration purposes because SageMaker
domain does not allow application sharing among users. Users can share the output tensors
saved in an S3 bucket, if they have access to the bucket.

• The visualization plugins might not appear when you first launch the TensorBoard application.
After you select training jobs in the SageMaker Data Manager plugin, the TensorBoard
application loads the TensorBoard data and populates the visualization plugins.

• The TensorBoard applications automatically shuts down after 1 hour of inactivity. If you
want to shut the application down when you are done using it, make sure to manually shut
down TensorBoard to avoid paying for the instance hosting it. For instructions on deleting the
application, see Delete unused TensorBoard applications.

Use Amazon SageMaker Debugger to debug and improve model
performance

Debug model output tensors from machine learning training jobs in real time and detect non-
converging issues using Amazon SageMaker Debugger.

Amazon SageMaker Debugger Features

A machine learning (ML) training job can have problems such as overfitting, saturated activation
functions, and vanishing gradients, which can compromise model performance.

SageMaker Debugger provides tools to debug training jobs and resolve such problems to improve
the performance of your model. Debugger also offers tools to send alerts when training anomalies
are found, take actions against the problems, and identify the root cause of them by visualizing
collected metrics and tensors.

SageMaker Debugger supports the Apache MXNet, PyTorch, TensorFlow, and XGBoost frameworks.
For more information about available frameworks and versions supported by SageMaker Debugger,
see Supported Frameworks and Algorithms.

Use SageMaker Debugger 3240

Amazon SageMaker Developer Guide

The high-level Debugger workflow is as follows:

1. Modify your training script with the sagemaker-debugger Python SDK if needed.

2. Configure a SageMaker training job with SageMaker Debugger.

• Configure using the SageMaker Estimator API (for Python SDK).

• Configure using the SageMaker CreateTrainingJob request (for Boto3 or CLI).

• Configure custom training containers with SageMaker Debugger.

3. Start a training job and monitor training issues in real time.

• List of Debugger Built-in Rules.

4. Get alerts and take prompt actions against the training issues.

• Receive texts and emails and stop training jobs when training issues are found using Debugger
Built-in Actions for Rules.

• Set up your own actions using Amazon CloudWatch Events and AWS Lambda.

5. Explore deep analysis of the training issues.

• For debugging model output tensors, see Visualize Debugger Output Tensors in TensorBoard.

6. Fix the issues, consider the suggestions provided by Debugger, and repeat steps 1–5 until you
optimize your model and achieve target accuracy.

The SageMaker Debugger developer guide walks you through the following topics.

Topics

• Supported Frameworks and Algorithms

Use SageMaker Debugger 3241

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html

Amazon SageMaker Developer Guide

• Amazon SageMaker Debugger Architecture

• Get Started with Debugger Tutorials

• Debug Training Jobs Using Amazon SageMaker Debugger

• List of Debugger Built-in Rules

• Create Debugger Custom Rules for Training Job Analysis

• Use Debugger with Custom Training Containers

• Configure Debugger Using Amazon SageMaker API

• Best Practices for Amazon SageMaker Debugger

• Amazon SageMaker Debugger Advanced Topics and Reference Documentation

Supported Frameworks and Algorithms

The following table shows SageMaker machine learning frameworks and algorithms supported by
Debugger.

SageMaker-supported frameworks and
algorithms

Debugging output tensors

TensorFlow AWS TensorFlow deep learning containers
1.15.4 or later

PyTorch AWS PyTorch deep learning containers 1.5.0 or
later

MXNet AWS MXNet deep learning containers 1.6.0 or
later

XGBoost 1.0-1, 1.2-1, 1.3-1

SageMaker generic estimator Custom training containers (available for
TensorFlow, PyTorch, MXNet, and XGBoost
with manual hook registration)

• Debugging output tensors – Track and debug model parameters, such as weights, gradients,
biases, and scalar values of your training job. Available deep learning frameworks are Apache
MXNet, TensorFlow, PyTorch, and XGBoost.

Use SageMaker Debugger 3242

https://sagemaker.readthedocs.io/en/stable/using_tf.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers
https://sagemaker.readthedocs.io/en/stable/using_pytorch.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers
https://sagemaker.readthedocs.io/en/stable/frameworks/xgboost/using_xgboost.html
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html

Amazon SageMaker Developer Guide

Important

For the TensorFlow framework with Keras, SageMaker Debugger deprecates the zero
code change support for debugging models built using the tf.keras modules of
TensorFlow 2.6 and later. This is due to breaking changes announced in the TensorFlow
2.6.0 release note. For instructions on how to update your training script, see the section
called “TensorFlow”.

Important

From PyTorch v1.12.0 and later, SageMaker Debugger deprecates the zero code change
support for debugging models.
This is due to breaking changes that cause SageMaker Debugger to interfere with the
torch.jit functionality. For instructions on how to update your training script, see the
section called “PyTorch”.

If the framework or algorithm that you want to train and debug is not listed in the table, go to the
AWS Discussion Forum and leave feedback on SageMaker Debugger.

AWS Regions

Amazon SageMaker Debugger is available in all regions where Amazon SageMaker is in service
except the following region.

• Asia Pacific (Jakarta): ap-southeast-3

To find if Amazon SageMaker is in service in your AWS Region, see AWS Regional Services.

Use Debugger with Custom Training Containers

Bring your training containers to SageMaker and gain insights into your training jobs using
Debugger. Maximize your work efficiency by optimizing your model on Amazon EC2 instances using
the monitoring and debugging features.

Use SageMaker Debugger 3243

https://github.com/tensorflow/tensorflow/releases/tag/v2.6.0
https://github.com/tensorflow/tensorflow/releases/tag/v2.6.0
https://forums.aws.amazon.com/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon SageMaker Developer Guide

For more information about how to build your training container with the sagemaker-debugger
client library, push it to the Amazon Elastic Container Registry (Amazon ECR), and monitor and
debug, see Use Debugger with Custom Training Containers.

Debugger Open-Source GitHub Repositories

Debugger APIs are provided through the SageMaker Python SDK and designed to construct
Debugger hook and rule configurations for the SageMaker CreateTrainingJob and
DescribeTrainingJob API operations. The sagemaker-debugger client library provides tools to
register hooks and access the training data through its trial feature, all through its flexible and
powerful API operations. It supports the machine learning frameworks TensorFlow, PyTorch,
MXNet, and XGBoost on Python 3.6 and later.

For direct resources about the Debugger and sagemaker-debugger API operations, see the
following links:

• The Amazon SageMaker Python SDK documentation

• The Amazon SageMaker Python SDK - Debugger APIs

• The sagemaker-debugger Python SDK documentation for the Amazon SageMaker Debugger
open source client library

• The sagemaker-debugger PyPI

If you use the SDK for Java to conduct SageMaker training jobs and want to configure Debugger
APIs, see the following references:

• Amazon SageMaker Debugger API Operations

• Configure Debugger Using Amazon SageMaker API

Amazon SageMaker Debugger Architecture

This topic walks you through a high-level overview of the Amazon SageMaker Debugger workflow.

Debugger supports profiling functionality for performance optimization to identify computation
issues, such as system bottlenecks and underutilization, and to help optimize hardware resource
utilization at scale.

Use SageMaker Debugger 3244

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html
https://sagemaker-debugger.readthedocs.io/en/website/index.html
https://github.com/awslabs/sagemaker-debugger#amazon-sagemaker-debugger
https://github.com/awslabs/sagemaker-debugger#amazon-sagemaker-debugger
https://pypi.org/project/smdebug/

Amazon SageMaker Developer Guide

Debugger's debugging functionality for model optimization is about analyzing non-converging
training issues that can arise while minimizing the loss functions using optimization algorithms,
such as gradient descent and its variations.

The following diagram shows the architecture of SageMaker Debugger. The blocks with bold
boundary lines are what Debugger manages to analyze your training job.

Use SageMaker Debugger 3245

Amazon SageMaker Developer Guide

Debugger stores the following data from your training jobs in your secured Amazon S3 bucket:

• Output tensors – Collections of scalars and model parameters that are continuously updated
during the forward and backward passes while training ML models. The output tensors include

Use SageMaker Debugger 3246

Amazon SageMaker Developer Guide

scalar values (accuracy and loss) and matrices (weights, gradients, input layers, and output
layers).

Note

By default, Debugger monitors and debugs SageMaker training jobs without any
Debugger-specific parameters configured in SageMaker estimators. Debugger collects
system metrics every 500 milliseconds and basic output tensors (scalar outputs such as
loss and accuracy) every 500 steps. It also runs the ProfilerReport rule to analyze the
system metrics and aggregate the Studio Debugger insights dashboard and a profiling
report. Debugger saves the output data in your secured Amazon S3 bucket.

The Debugger built-in rules run on processing containers, which are designed to evaluate machine
learning models by processing the training data collected in your S3 bucket (see Process Data and
Evaluate Models). The built-in rules are fully managed by Debugger. You can also create your own
rules customized to your model to watch for any issues you want to monitor.

Get Started with Debugger Tutorials

The following topics walk you through tutorials from the basics to advanced use cases of
monitoring, profiling, and debugging SageMaker training jobs using Debugger. Explore the
Debugger features and learn how you can debug and improve your machine learning models
efficiently by using Debugger.

Topics

• Debugger Tutorial Videos

• Debugger Example Notebooks

• Debugger Advanced Demos and Visualization

Debugger Tutorial Videos

The following videos provide a tour of Amazon SageMaker Debugger capabilities using SageMaker
Studio and SageMaker notebook instances.

Topics

• Debug Models with Amazon SageMaker Debugger in Studio

Use SageMaker Debugger 3247

https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html
https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html

Amazon SageMaker Developer Guide

• Deep Dive on Amazon SageMaker Debugger and SageMaker Model Monitor

Debug Models with Amazon SageMaker Debugger in Studio

Julien Simon, AWS Technical Evangelist | Length: 14 minutes 17 seconds

This tutorial video demonstrates how to use Amazon SageMaker Debugger to capture and inspect
debugging information from a training model. The example training model used in this video
is a simple convolutional neural network (CNN) based on Keras with the TensorFlow backend.
SageMaker in a TensorFlow framework and Debugger enable you to build an estimator directly
using the training script and debug the training job.

Debug Models with Amazon SageMaker Debugger (part 1)

You can find the example notebook in the video in this Studio Demo repository provided by the
author. You need to clone the debugger.ipynb notebook file and the mnist_keras_tf.py
training script to your SageMaker Studio or a SageMaker notebook instance. After you clone the
two files, specify the path keras_script_path to the mnist_keras_tf.py file inside the
debugger.ipynb notebook. For example, if you cloned the two files in the same directory, set it
as keras_script_path = "mnist_keras_tf.py".

Deep Dive on Amazon SageMaker Debugger and SageMaker Model Monitor

Julien Simon, AWS Technical Evangelist | Length: 44 minutes 34 seconds

This video session explores advanced features of Debugger and SageMaker Model Monitor that
help boost productivity and the quality of your models. First, this video shows how to detect and
fix training issues, visualize tensors, and improve models with Debugger. Next, at 22:41, the video
shows how to monitor models in production and identify prediction issues such as missing features
or data drift using SageMaker Model Monitor. Finally, it offers cost optimization tips to help you
make the most of your machine learning budget.

Debug Models with Debugger (part 2)

You can find the example notebook in the video in this AWS Dev Days 2020 repository offered by
the author.

Use SageMaker Debugger 3248

https://www.youtube.com/embed/MqPdTj0Znwg
https://gitlab.com/juliensimon/amazon-studio-demos/-/tree/master
https://www.youtube.com/embed/0zqoeZxakOI
https://gitlab.com/juliensimon/awsdevdays2020/-/tree/master/mls1

Amazon SageMaker Developer Guide

Debugger Example Notebooks

SageMaker Debugger example notebooks are provided in the aws/amazon-sagemaker-examples
repository. The Debugger example notebooks walk you through basic to advanced use cases of
debugging and profiling training jobs.

We recommend that you run the example notebooks on SageMaker Studio or a SageMaker
Notebook instance because most of the examples are designed for training jobs in the SageMaker
ecosystem, including Amazon EC2, Amazon S3, and Amazon SageMaker Python SDK.

To clone the example repository to SageMaker Studio, follow the instructions at Amazon
SageMaker Studio Tour.

To find the examples in a SageMaker Notebook instance, follow the instructions at SageMaker
Notebook Instance Example Notebooks.

Important

To use the new Debugger features, you need to upgrade the SageMaker Python SDK
and the SMDebug client library. In your iPython kernel, Jupyter Notebook, or JupyterLab
environment, run the following code to install the latest versions of the libraries and restart
the kernel.

import sys
import IPython
!{sys.executable} -m pip install -U sagemaker smdebug
IPython.Application.instance().kernel.do_shutdown(True)

Debugger Example Notebooks for Profiling Training Jobs

The following list shows Debugger example notebooks introducing Debugger's adaptability to
monitor and profile training jobs for various machine learning models, datasets, and frameworks.

Notebook
Title

Framework Model Dataset Description

Amazon
SageMaker

TensorFlow Keras
ResNet50

Cifar-10 This notebook provides an
introduction to interacti

Use SageMaker Debugger 3249

https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/
https://github.com/aws/amazon-sagemaker-examples
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-end-to-end.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-end-to-end.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/debugger_interactive_analysis_profiling/interactive_analysis_profiling_data.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/debugger_interactive_analysis_profiling/interactive_analysis_profiling_data.html

Amazon SageMaker Developer Guide

Notebook
Title

Framework Model Dataset Description

Debugger
Profiling
Data Analysis

ve analysis of profiled data
captured by SageMaker
Debugger. Explore the full
functionality of the SMDebug
interactive analysis tools.

Profile
machine
learning
training with
Amazon
SageMaker
Debugger

TensorFlow 1-D
Convoluti
onal Neural
Network

IMDB dataset Profile a TensorFlow 1-D
CNN for sentiment analysis
of IMDB data that consists
of movie reviews labeled as
having positive or negative
sentiment. Explore the
Studio Debugger insights and
Debugger profiling report.

Profiling
TensorFlo
w ResNet
model
training
with various
distribut
ed training
settings

TensorFlow ResNet50 Cifar-10 Run TensorFlow training
jobs with various distribut
ed training settings, monitor
system resource utilization,
and profile model performan
ce using Debugger.

Profiling
PyTorch
ResNet
model
training
with various
distribut
ed training
settings

PyTorch ResNet50 Cifar-10 Run PyTorch training jobs
with various distributed
training settings, monitor
system resource utilization,
and profile model performan
ce using Debugger.

Use SageMaker Debugger 3250

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/debugger_interactive_analysis_profiling/interactive_analysis_profiling_data.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/debugger_interactive_analysis_profiling/interactive_analysis_profiling_data.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/debugger_interactive_analysis_profiling/interactive_analysis_profiling_data.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_nlp_sentiment_analysis/sentiment-analysis-tf-distributed-training-bringyourownscript.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_nlp_sentiment_analysis/sentiment-analysis-tf-distributed-training-bringyourownscript.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_nlp_sentiment_analysis/sentiment-analysis-tf-distributed-training-bringyourownscript.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_nlp_sentiment_analysis/sentiment-analysis-tf-distributed-training-bringyourownscript.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_nlp_sentiment_analysis/sentiment-analysis-tf-distributed-training-bringyourownscript.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_nlp_sentiment_analysis/sentiment-analysis-tf-distributed-training-bringyourownscript.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_nlp_sentiment_analysis/sentiment-analysis-tf-distributed-training-bringyourownscript.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_profiling

Amazon SageMaker Developer Guide

Debugger Example Notebooks for Analyzing Model Parameters

The following list shows Debugger example notebooks introducing Debugger's adaptability to
debug training jobs for various machine learning models, datasets, and frameworks.

Notebook
Title

Framework Model Dataset Description

Amazon
SageMaker
Debugger -
Use built-in
rule

TensorFlow Convoluti
onal Neural
Network

MNIST Use the Amazon SageMaker
Debugger built-in rules for
debugging a TensorFlow
model.

Amazon
SageMaker
Debugger -
Tensorflow
2.1

TensorFlow ResNet50 Cifar-10 Use the Amazon SageMaker
Debugger hook configura
tion and built-in rules for
debugging a model with the
Tensorflow 2.1 framework.

Visualizing
Debugging
Tensors
of MXNet
training

MXNet Gluon
Convoluti
onal Neural
Network

Fashion
MNIST

Run a training job and
configure SageMaker
Debugger to store all tensors
from this job, then visualize
those tensors ina notebook.

Enable Spot
Training with
Amazon
SageMaker
Debugger

MXNet Gluon
Convoluti
onal Neural
Network

Fashion
MNIST

Learn how Debugger collects
tensor data from a training
job on a spot instance, and
how to use the Debugger
built-in rules with managed
spot training.

Explain an
XGBoost
model that
predicts an
individua

XGBoost XGBoost
Regression

Adult Census
dataset

Learn how to use the
Debugger hook and built-
in rules for collecting and
visualizing tensor data from
an XGBoost regression model,

Use SageMaker Debugger 3251

https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_builtin_rule
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_builtin_rule
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_builtin_rule
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_builtin_rule
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_builtin_rule
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow2
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow2
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow2
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow2
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow2
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mnist_tensor_plot
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mnist_tensor_plot
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mnist_tensor_plot
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mnist_tensor_plot
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mnist_tensor_plot
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mxnet_spot_training
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mxnet_spot_training
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mxnet_spot_training
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mxnet_spot_training
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mxnet_spot_training
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult

Amazon SageMaker Developer Guide

Notebook
Title

Framework Model Dataset Description

l’s income
with Amazon
SageMaker
Debugger

such as loss values, features,
and SHAP values.

To find advanced visualizations of model parameters and use cases, see the next topic at Debugger
Advanced Demos and Visualization.

Debugger Advanced Demos and Visualization

The following demos walk you through advanced use cases and visualization scripts using
Debugger.

Topics

• Train and Tune Your Models with Amazon SageMaker Experiments and Debugger

• Using SageMaker Debugger to Monitor a Convolutional Autoencoder Model Training

• Using SageMaker Debugger to Monitor Attentions in BERT Model Training

• Using SageMaker Debugger to Visualize Class Activation Maps in Convolutional Neural Networks
(CNNs)

Train and Tune Your Models with Amazon SageMaker Experiments and Debugger

Dr. Nathalie Rauschmayr, AWS Applied Scientist | Length: 49 minutes 26 seconds

Train and Prune Models with SageMaker Experiments and Debugger

Find out how Amazon SageMaker Experiments and Debugger can simplify the management of your
training jobs. Amazon SageMaker Debugger provides transparent visibility into training jobs and
saves training metrics into your Amazon S3 bucket. SageMaker Experiments enables you to call the
training information as trials through SageMaker Studio and supports visualization of the training
job. This helps you keep model quality high while reducing less important parameters based on
importance rank.

This video demonstrates a model pruning technique that makes pre-trained ResNet50 and AlexNet
models lighter and affordable while keeping high standards for model accuracy.

Use SageMaker Debugger 3252

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/xgboost_census_explanations/xgboost-census-debugger-rules.html
https://www.youtube.com/embed/Tnv6HsT1r4I

Amazon SageMaker Developer Guide

SageMaker Estimator trains those algorithms supplied from the PyTorch model zoo in an AWS
Deep Learning Containers with PyTorch framework, and Debugger extracts training metrics from
the training process.

The video also demonstrates how to set up a Debugger custom rule to watch the accuracy of
a pruned model, to trigger an Amazon CloudWatch event and an AWS Lambda function when
the accuracy hits a threshold, and to automatically stop the pruning process to avoid redundant
iterations.

Learning objectives are as follows:

• Learn how to use SageMaker to accelerate ML model training and improve model quality.

• Understand how to manage training iterations with SageMaker Experiments by automatically
capturing input parameters, configurations, and results.

• Discover how Debugger makes the training process transparent by automatically capturing
real-time tensor data from metrics such as weights, gradients, and activation outputs of
convolutional neural networks.

• Use CloudWatch to trigger Lambda when Debugger catches issues.

• Master the SageMaker training process using SageMaker Experiments and Debugger.

You can find the notebooks and training scripts used in this video from SageMaker Debugger
PyTorch Iterative Model Pruning.

The following image shows how the iterative model pruning process reduces the size of AlexNet
by cutting out the 100 least significant filters based on importance rank evaluated by activation
outputs and gradients.

The pruning process reduced the initial 50 million parameters to 18 million. It also reduced the
estimated model size from 201 MB to 73 MB.

Use SageMaker Debugger 3253

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_iterative_model_pruning
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_iterative_model_pruning

Amazon SageMaker Developer Guide

You also need to track model accuracy, and the following image shows how you can plot the model
pruning process to visualize changes in model accuracy based on the number of parameters in
SageMaker Studio.

Use SageMaker Debugger 3254

Amazon SageMaker Developer Guide

In SageMaker Studio, choose the Experiments tab, select a list of tensors saved by Debugger from
the pruning process, and then compose a Trial Component List panel. Select all ten iterations and
then choose Add chart to create a Trial Component Chart. After you decide on a model to deploy,
choose the trial component and choose a menu to perform an action or choose Deploy model.

Use SageMaker Debugger 3255

Amazon SageMaker Developer Guide

Note

To deploy a model through SageMaker Studio using the following notebook example, add a
line at the end of the train function in the train.py script.

In the train.py script, look for the train function in line 58.
def train(epochs, batch_size, learning_rate):
 ...
 print('acc:{:.4f}'.format(correct/total))
 hook.save_scalar("accuracy", correct/total, sm_metric=True)

 # Add the following code to line 128 of the train.py script to save the
 pruned models
 # under the current SageMaker Studio model directory
 torch.save(model.state_dict(), os.environ['SM_MODEL_DIR'] + '/model.pt')

Using SageMaker Debugger to Monitor a Convolutional Autoencoder Model Training

This notebook demonstrates how SageMaker Debugger visualizes tensors from an unsupervised (or
self-supervised) learning process on a MNIST image dataset of handwritten numbers.

The training model in this notebook is a convolutional autoencoder with the MXNet framework.
The convolutional autoencoder has a bottleneck-shaped convolutional neural network that consists
of an encoder part and a decoder part.

The encoder in this example has two convolution layers to produce compressed representation
(latent variables) of the input images. In this case, the encoder produces a latent variable of size
(1, 20) from an original input image of size (28, 28) and significantly reduces the size of data for
training by 40 times.

The decoder has two deconvolutional layers and ensures that the latent variables preserve key
information by reconstructing output images.

The convolutional encoder powers clustering algorithms with smaller input data size and the
performance of clustering algorithms such as k-means, k-NN, and t-Distributed Stochastic
Neighbor Embedding (t-SNE).

Use SageMaker Debugger 3256

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/model_specific_realtime_analysis/autoencoder_mnist/autoencoder_mnist.html

Amazon SageMaker Developer Guide

This notebook example demonstrates how to visualize the latent variables using Debugger, as
shown in the following animation. It also demonstrates how the t-SNE algorithm classifies the
latent variables into ten clusters and projects them into a two-dimensional space. The scatter plot
color scheme on the right side of the image reflects the true values to show how well the BERT
model and t-SNE algorithm organize the latent variables into the clusters.

Using SageMaker Debugger to Monitor Attentions in BERT Model Training

Bidirectional Encode Representations from Transformers (BERT) is a language representation
model. As the name of model reflects, the BERT model builds on transfer learning and the
Transformer model for natural language processing (NLP).

The BERT model is pre-trained on unsupervised tasks such as predicting missing words in a
sentence or predicting the next sentence that naturally follows a previous sentence. The training
data contains 3.3 billion words (tokens) of English text, from sources such as Wikipedia and
electronic books. For a simple example, the BERT model can give a high attention to appropriate
verb tokens or pronoun tokens from a subject token.

The pre-trained BERT model can be fine-tuned with an additional output layer to achieve state-of-
the-art model training in NLP tasks, such as automated responses to questions, text classification,
and many others.

Use SageMaker Debugger 3257

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/model_specific_realtime_analysis/bert_attention_head_view/bert_attention_head_view.html

Amazon SageMaker Developer Guide

Debugger collects tensors from the fine-tuning process. In the context of NLP, the weight of
neurons is called attention.

This notebook demonstrates how to use the pre-trained BERT model from the GluonNLP model
zoo on the Stanford Question and Answering dataset and how to set up SageMaker Debugger to
monitor the training job.

Plotting attention scores and individual neurons in the query and key vectors can help to identify
causes of incorrect model predictions. With SageMaker Debugger, you can retrieve the tensors and
plot the attention-head view in real time as training progresses and understand what the model is
learning.

The following animation shows the attention scores of the first 20 input tokens for ten iterations in
the training job provided in the notebook example.

Use SageMaker Debugger 3258

https://gluon-nlp.mxnet.io/model_zoo/bert/index.html
https://gluon-nlp.mxnet.io/model_zoo/bert/index.html

Amazon SageMaker Developer Guide

Use SageMaker Debugger 3259

Amazon SageMaker Developer Guide

Using SageMaker Debugger to Visualize Class Activation Maps in Convolutional Neural
Networks (CNNs)

This notebook demonstrates how to use SageMaker Debugger to plot class activation maps for
image detection and classification in convolutional neural networks (CNNs). In deep learning, a
convolutional neural network (CNN or ConvNet) is a class of deep neural networks, most commonly
applied to analyzing visual imagery. One of the applications that adopts the class activation maps
is self-driving cars, which require instantaneous detection and classification of images such as
traffic signs, roads, and obstacles.

In this notebook, the PyTorch ResNet model is trained on the German Traffic Sign Dataset, which
contains more than 40 classes of traffic-related objects and more than 50,000 images in total.

During the training process, SageMaker Debugger collects tensors to plot the class activation maps
in real time. As shown in the animated image, the class activation map (also called as a saliency
map) highlights regions with high activation in red color.

Using tensors captured by Debugger, you can visualize how the activation map evolves during the
model training. The model starts by detecting the edge on the lower-left corner at the beginning
of the training job. As the training progresses, the focus shifts to the center and detects the speed
limit sign, and the model successfully predicts the input image as Class 3, which is a class of speed
limit 60km/h signs, with a 97% confidence level.

Use SageMaker Debugger 3260

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/model_specific_realtime_analysis/cnn_class_activation_maps/cnn_class_activation_maps.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/model_specific_realtime_analysis/cnn_class_activation_maps/cnn_class_activation_maps.html
http://benchmark.ini.rub.de/

Amazon SageMaker Developer Guide

Debug Training Jobs Using Amazon SageMaker Debugger

To prepare your training script and run training jobs with SageMaker Debugger to debug model
training progress, you follow the typical two-step process: modify your training script using the
sagemaker-debugger Python SDK, and construct a SageMaker estimator using the SageMaker
Python SDK. Go through the following topics to learn how to use SageMaker Debugger's
debugging functionality.

Topics

• Step 1: Adapt Your Training Script to Register a Hook

• Step 2: Launch and Debug Training Jobs Using SageMaker Python SDK

• SageMaker Debugger Interactive Report for XGBoost

• Action on Amazon SageMaker Debugger Rules

• Visualize Amazon SageMaker Debugger Output Tensors in TensorBoard

Step 1: Adapt Your Training Script to Register a Hook

Amazon SageMaker Debugger comes with a client library called the sagemaker-debugger
Python SDK. The sagemaker-debugger Python SDK provides tools for adapting your training
script before training and analysis tools after training. In this page, you'll learn how to adapt your
training script using the client library.

The sagemaker-debugger Python SDK provides wrapper functions that help register a hook to
extract model tensors, without altering your training script. To get started with collecting model
output tensors and debug them to find training issues, make the following modifications in your
training script.

Tip

While you're following this page, use the sagemaker-debugger open source SDK
documentation for API references.

Topics

• Adapt Your PyTorch Training Script

• Adapt Your TensorFlow Training Script

Use SageMaker Debugger 3261

https://sagemaker-debugger.readthedocs.io/en/website
https://sagemaker-debugger.readthedocs.io/en/website
https://sagemaker-debugger.readthedocs.io/en/website/index.html
https://sagemaker-debugger.readthedocs.io/en/website/index.html

Amazon SageMaker Developer Guide

Adapt Your PyTorch Training Script

To start collecting model output tensors and debug training issues, make the following
modifications to your PyTorch training script.

For PyTorch 1.12.0

If you bring a PyTorch training script, you can run the training job and extract model output
tensors with a few additional code lines in your training script. You need to use the hook APIs in the
sagemaker-debugger client library. Walk through the following instructions that break down the
steps with code examples.

1. Create a hook.

(Recommended) For training jobs within SageMaker

import smdebug.pytorch as smd
hook=smd.get_hook(create_if_not_exists=True)

When you launch a training job in the section called “Step 2: Launch and Debug Training Jobs
Using SageMaker Python SDK” with any of the DebuggerHookConfig, TensorBoardConfig, or
Rules in your estimator, SageMaker adds a JSON configuration file to your training instance that
is picked up by the get_hook function. Note that if you do not include any of the configuration
APIs in your estimator, there will be no configuration file for the hook to find, and the function
returns None.

(Optional) For training jobs outside SageMaker

If you run training jobs in local mode, directly on SageMaker Notebook instances, Amazon
EC2 instances, or your own local devices, use smd.Hook class to create a hook. However,
this approach can only store the tensor collections and usable for TensorBoard visualization.
SageMaker Debugger’s built-in Rules don’t work with the local mode because the Rules require
SageMaker ML training instances and S3 to store outputs from the remote instances in real time.
The smd.get_hook API returns None in this case.

If you want to create a manual hook to save tensors in local mode, use the following code
snippet with the logic to check if the smd.get_hook API returns None and create a manual
hook using the smd.Hook class. Note that you can specify any output directory in your local
machine.

Use SageMaker Debugger 3262

https://sagemaker-debugger.readthedocs.io/en/website/hook-api.html

Amazon SageMaker Developer Guide

import smdebug.pytorch as smd
hook=smd.get_hook(create_if_not_exists=True)

if hook is None:
 hook=smd.Hook(
 out_dir='/path/to/your/local/output/',
 export_tensorboard=True
)

2. Wrap your model with the hook’s class methods.

The hook.register_module() method takes your model and iterates through each layer,
looking for any tensors that match with regular expressions that you’ll provide through the
configuration in the section called “Step 2: Launch and Debug Training Jobs Using SageMaker
Python SDK”. The collectable tensors through this hook method are weights, biases, activations,
gradients, inputs, and outputs.

hook.register_module(model)

Tip

If you collect the entire output tensors from a large deep learning model, the total size
of those collections can exponentially grow and might cause bottlenecks. If you want to
save specific tensors, you can also use the hook.save_tensor() method. This method
helps you pick the variable for the specific tensor and save to a custom collection named
as you want. For more information, see step 7 of this instruction.

3. Warp the loss function with the hook’s class methods.

The hook.register_loss method is to wrap the loss function. It extracts loss values every
save_interval that you’ll set during configuration in the section called “Step 2: Launch
and Debug Training Jobs Using SageMaker Python SDK”, and saves them to the "losses"
collection.

hook.register_loss(loss_function)

4. Add hook.set_mode(ModeKeys.TRAIN) in the train block. This indicates the tensor collection
is extracted during the training phase.

Use SageMaker Debugger 3263

Amazon SageMaker Developer Guide

def train():
 ...
 hook.set_mode(ModeKeys.TRAIN)

5. Add hook.set_mode(ModeKeys.EVAL) in the validation block. This indicates the tensor
collection is extracted during the validation phase.

def validation():
 ...
 hook.set_mode(ModeKeys.EVAL)

6. Use hook.save_scalar() to save custom scalars. You can save scalar values that aren’t in your
model. For example, if you want to record the accuracy values computed during evaluation, add
the following line of code below the line where you calculate accuracy.

hook.save_scalar("accuracy", accuracy)

Note that you need to provide a string as the first argument to name the custom scalar
collection. This is the name that'll be used for visualizing the scalar values in TensorBoard, and
can be any string you want.

7. Use hook.save_tensor() to save custom tensors. Similarly to hook.save_scalar(), you
can save additional tensors, defining your own tensor collection. For example, you can extract
input image data that are passed into the model and save as a custom tensor by adding the
following code line, where "images" is an example name of the custom tensor, image_inputs
is an example variable for the input image data.

hook.save_tensor("images", image_inputs)

Note that you must provide a string to the first argument to name the custom tensor.
hook.save_tensor() has the third argument collections_to_write to specify the tensor
collection to save the custom tensor. The default is collections_to_write="default". If
you don't explicitely specify the third argument, the custom tensor is saved to the "default"
tensor collection.

After you have completed adapting your training script, proceed to the section called “Step 2:
Launch and Debug Training Jobs Using SageMaker Python SDK”.

Use SageMaker Debugger 3264

https://sagemaker-debugger.readthedocs.io/en/website/hook-constructor.html#smdebug.core.hook.BaseHook.save_scalar
https://sagemaker-debugger.readthedocs.io/en/website/hook-constructor.html#smdebug.core.hook.BaseHook.save_tensor
https://sagemaker-debugger.readthedocs.io/en/website/hook-constructor.html#smdebug.core.hook.BaseHook.save_scalar

Amazon SageMaker Developer Guide

Adapt Your TensorFlow Training Script

To start collecting model output tensors and debug training issues, make the following
modifications to your TensorFlow training script.

Create a hook for training jobs within SageMaker

import smdebug.tensorflow as smd

hook=smd.get_hook(hook_type="keras", create_if_not_exists=True)

This creates a hook when you start a SageMaker training job. When you launch a training job in the
section called “Step 2: Launch and Debug Training Jobs Using SageMaker Python SDK” with any of
the DebuggerHookConfig, TensorBoardConfig, or Rules in your estimator, SageMaker adds a
JSON configuration file to your training instance that is picked up by the smd.get_hook method.
Note that if you do not include any of the configuration APIs in your estimator, there will be no
configuration file for the hook to find, and the function returns None.

(Optional) Create a hook for training jobs outside SageMaker

If you run training jobs in local mode, directly on SageMaker Notebook instances, Amazon
EC2 instances, or your own local devices, use smd.Hook class to create a hook. However, this
approach can only store the tensor collections and usable for TensorBoard visualization. SageMaker
Debugger’s built-in Rules don’t work with the local mode. The smd.get_hook method also returns
None in this case.

If you want to create a manual hook, use the following code snippet with the logic to check if the
hook returns None and create a manual hook using the smd.Hook class.

import smdebug.tensorflow as smd

hook=smd.get_hook(hook_type="keras", create_if_not_exists=True)

if hook is None:
 hook=smd.KerasHook(
 out_dir='/path/to/your/local/output/',
 export_tensorboard=True
)

After adding the hook creation code, proceed to the following topic for TensorFlow Keras.

Use SageMaker Debugger 3265

Amazon SageMaker Developer Guide

Note

SageMaker Debugger currently supports TensorFlow Keras only.

Register the hook in your TensorFlow Keras training script

The following precedure walks you through how to use the hook and its methods to collect output
scalars and tensors from your model and optimizer.

1. Wrap your Keras model and optimizer with the hook’s class methods.

The hook.register_model() method takes your model and iterates through each layer,
looking for any tensors that match with regular expressions that you’ll provide through the
configuration in the section called “Step 2: Launch and Debug Training Jobs Using SageMaker
Python SDK”. The collectable tensors through this hook method are weights, biases, and
activations.

model=tf.keras.Model(...)
hook.register_model(model)

2. Wrap the optimizer by the hook.wrap_optimizer() method.

optimizer=tf.keras.optimizers.Adam(...)
optimizer=hook.wrap_optimizer(optimizer)

3. Compile the model in eager mode in TensorFlow.

To collect tensors from the model, such as the input and output tensors of each layer, you must
run the training in eager mode. Otherwise, SageMaker Debugger will not be able to collect the
tensors. However, other tensors, such as model weights, biases, and the loss, can be collected
without explicitly running in eager mode.

model.compile(
 loss="categorical_crossentropy",
 optimizer=optimizer,
 metrics=["accuracy"],
 # Required for collecting tensors of each layer
 run_eagerly=True
)

Use SageMaker Debugger 3266

Amazon SageMaker Developer Guide

4. Register the hook to the tf.keras.Model.fit() method.

To collect the tensors from the hooks that you registered, add callbacks=[hook] to the Keras
model.fit() class method. This will pass the sagemaker-debugger hook as a Keras callback.

model.fit(
 X_train, Y_train,
 batch_size=batch_size,
 epochs=epoch,
 validation_data=(X_valid, Y_valid),
 shuffle=True,
 callbacks=[hook]
)

5. TensorFlow 2.x provides only symbolic gradient variables that do not provide access to their
values. To collect gradients, wrap tf.GradientTape by the hook.wrap_tape() method,
which requires you to write your own training step as follows.

def training_step(model, dataset):
 with hook.wrap_tape(tf.GradientTape()) as tape:
 pred=model(data)
 loss_value=loss_fn(labels, pred)
 grads=tape.gradient(loss_value, model.trainable_variables)
 optimizer.apply_gradients(zip(grads, model.trainable_variables))

By wrapping the tape, the sagemaker-debugger hook can identify output tensors such as
gradients, parameters, and losses. Wrapping the tape ensures that the hook.wrap_tape()
method around functions of the tape object, such as push_tape(), pop_tape(),
gradient(), will set up the writers of SageMaker Debugger and save tensors that are provided
as input to gradient() (trainable variables and loss) and output of gradient() (gradients).

Note

To collect with a custom training loop, make sure that you use eager mode. Otherwise,
SageMaker Debugger is not able to collect any tensors.

For a full list of actions that the sagemaker-debugger hook APIs offer to construct hooks and
save tensors, see Hook Methods in the sagemaker-debugger Python SDK documentation.

Use SageMaker Debugger 3267

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://sagemaker-debugger.readthedocs.io/en/website/hook-methods.html#tensorflow-specific-hook-api
https://sagemaker-debugger.readthedocs.io/en/website/hook-methods.html

Amazon SageMaker Developer Guide

After you have completed adapting your training script, proceed to the section called “Step 2:
Launch and Debug Training Jobs Using SageMaker Python SDK”.

Step 2: Launch and Debug Training Jobs Using SageMaker Python SDK

To configure a SageMaker estimator with SageMaker Debugger, use Amazon SageMaker
Python SDK and specify Debugger-specific parameters. To fully utilize the debugging
functionality, there are three parameters you need to configure: debugger_hook_config,
tensorboard_output_config, and rules.

Important

Before constructing and running the estimator fit method to launch a training job, make
sure that you adapt your training script following the instructions at the section called
“Step 1: Adapt Your Training Script to Register a Hook”.

Construct a SageMaker Estimator with Debugger-specific parameters

The code examples in this section show how to construct a SageMaker estimator with the
Debugger-specific parameters.

Note

The following code examples are templates for constructing the SageMaker framework
estimators and not directly executable. You need to proceed to the next sections and
configure the Debugger-specific parameters.

PyTorch

An example of constructing a SageMaker PyTorch estimator
import boto3
import sagemaker
from sagemaker.pytorch import PyTorch
from sagemaker.debugger import CollectionConfig, DebuggerHookConfig, Rule,
 rule_configs

session=boto3.session.Session()
region=session.region_name

Use SageMaker Debugger 3268

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

debugger_hook_config=DebuggerHookConfig(...)
rules=[
 Rule.sagemaker(rule_configs.built_in_rule())
]

estimator=PyTorch(
 entry_point="directory/to/your_training_script.py",
 role=sagemaker.get_execution_role(),
 base_job_name="debugger-demo",
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="1.12.0",
 py_version="py37",

 # Debugger-specific parameters
 debugger_hook_config=debugger_hook_config,
 rules=rules
)

estimator.fit(wait=False)

TensorFlow

An example of constructing a SageMaker TensorFlow estimator
import boto3
import sagemaker
from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import CollectionConfig, DebuggerHookConfig, Rule,
 rule_configs

session=boto3.session.Session()
region=session.region_name

debugger_hook_config=DebuggerHookConfig(...)
rules=[
 Rule.sagemaker(rule_configs.built_in_rule()),
 ProfilerRule.sagemaker(rule_configs.BuiltInRule())
]

estimator=TensorFlow(
 entry_point="directory/to/your_training_script.py",
 role=sagemaker.get_execution_role(),

Use SageMaker Debugger 3269

Amazon SageMaker Developer Guide

 base_job_name="debugger-demo",
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="2.9.0",
 py_version="py39",

 # Debugger-specific parameters
 debugger_hook_config=debugger_hook_config,
 rules=rules
)

estimator.fit(wait=False)

MXNet

An example of constructing a SageMaker MXNet estimator
import sagemaker
from sagemaker.mxnet import MXNet
from sagemaker.debugger import CollectionConfig, DebuggerHookConfig, Rule,
 rule_configs

debugger_hook_config=DebuggerHookConfig(...)
rules=[
 Rule.sagemaker(rule_configs.built_in_rule())
]

estimator=MXNet(
 entry_point="directory/to/your_training_script.py",
 role=sagemaker.get_execution_role(),
 base_job_name="debugger-demo",
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="1.7.0",
 py_version="py37",

 # Debugger-specific parameters
 debugger_hook_config=debugger_hook_config,
 rules=rules
)

estimator.fit(wait=False)

Use SageMaker Debugger 3270

Amazon SageMaker Developer Guide

XGBoost

An example of constructing a SageMaker XGBoost estimator
import sagemaker
from sagemaker.xgboost.estimator import XGBoost
from sagemaker.debugger import CollectionConfig, DebuggerHookConfig, Rule,
 rule_configs

debugger_hook_config=DebuggerHookConfig(...)
rules=[
 Rule.sagemaker(rule_configs.built_in_rule())
]

estimator=XGBoost(
 entry_point="directory/to/your_training_script.py",
 role=sagemaker.get_execution_role(),
 base_job_name="debugger-demo",
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="1.5-1",

 # Debugger-specific parameters
 debugger_hook_config=debugger_hook_config,
 rules=rules
)

estimator.fit(wait=False)

Generic estimator

An example of constructing a SageMaker generic estimator using the XGBoost
 algorithm base image
import boto3
import sagemaker
from sagemaker.estimator import Estimator
from sagemaker import image_uris
from sagemaker.debugger import CollectionConfig, DebuggerHookConfig, Rule,
 rule_configs

debugger_hook_config=DebuggerHookConfig(...)
rules=[
 Rule.sagemaker(rule_configs.built_in_rule())
]

Use SageMaker Debugger 3271

Amazon SageMaker Developer Guide

region=boto3.Session().region_name
xgboost_container=sagemaker.image_uris.retrieve("xgboost", region, "1.5-1")

estimator=Estimator(
 role=sagemaker.get_execution_role()
 image_uri=xgboost_container,
 base_job_name="debugger-demo",
 instance_count=1,
 instance_type="ml.m5.2xlarge",

 # Debugger-specific parameters
 debugger_hook_config=debugger_hook_config,
 rules=rules
)

estimator.fit(wait=False)

Configure the following parameters to activate SageMaker Debugger:

• debugger_hook_config (an object of DebuggerHookConfig) – Required to activate the hook
in the adapted training script during the section called “Step 1: Adapt Your Training Script to
Register a Hook”, configure the SageMaker training launcher (estimator) to collect output tensors
from your training job, and save the tensors into your secured S3 bucket or local machine. To
learn how to configure the debugger_hook_config parameter, see Configure SageMaker
Debugger to Save Tensors.

• rules (a list of Rule objects) – Configure this parameter to activate SageMaker Debugger
built-in rules that you want to run in real time. The built-in rules are logics that automatically
debug the training progress of your model and find training issues by analyzing the output
tensors saved in your secured S3 bucket. To learn how to configure the rules parameter, see
Configure Debugger Built-in Rules. To find a complete list of built-in rules for debugging output
tensors, see the section called “Debugger Rule”. If you want to create your own logic to detect
any training issues, see the section called “Create Custom Rules”.

Note

The built-in rules are available only through SageMaker training instances. You cannot
use them in local mode.

Use SageMaker Debugger 3272

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.DebuggerHookConfig
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.Rule

Amazon SageMaker Developer Guide

• tensorboard_output_config (an object of TensorBoardOutputConfig) – Configure
SageMaker Debugger to collect output tensors in the TensorBoard-compatible format and save
to your S3 output path specified in the TensorBoardOutputConfig object. To learn more, see
the section called “Visualize Debugger Output Tensors in TensorBoard”.

Note

The tensorboard_output_config must be configured with the
debugger_hook_config parameter, which also requires you to adapt your training
script by adding the sagemaker-debugger hook.

Note

SageMaker Debugger securely saves output tensors in subfolders of your S3 bucket. For
example, the format of the default S3 bucket URI in your account is s3://sagemaker-
<region>-<12digit_account_id>/<base-job-name>/<debugger-subfolders>/.
There are two subfolders created by SageMaker Debugger: debug-output, and rule-
output. If you add the tensorboard_output_config parameter, you'll also find
tensorboard-output folder.

See the following topics to find more examples of how to configure the Debugger-specific
parameters in detail.

Topics

• Configure SageMaker Debugger to Save Tensors

• Configure Debugger Built-in Rules

• Turn Off Debugger

• Useful SageMaker Estimator Classmethods for Debugger

Configure SageMaker Debugger to Save Tensors

Tensors are data collections of updated parameters from the backward and forward pass of
each training iteration. SageMaker Debugger collects the output tensors to analyze the state
of a training job. SageMaker Debugger's CollectionConfig and DebuggerHookConfig API

Use SageMaker Debugger 3273

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.TensorBoardOutputConfig
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.CollectionConfig
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.DebuggerHookConfig

Amazon SageMaker Developer Guide

operations provide methods for grouping tensors into collections and saving them to a target S3
bucket.

Note

After properly configured and activated, SageMaker Debugger saves the output tensors in
a default S3 bucket, unless otherwise specified. The format of the default S3 bucket URI
is s3://sagemaker-<region>-<12digit_account_id>/<training-job-name>/
debug-output/.

While constructing a SageMaker estimator, activate SageMaker Debugger by specifying the
debugger_hook_config parameter. The following steps include examples of how to set up
the debugger_hook_config using the CollectionConfig and DebuggerHookConfig API
operations to pull tensors out of your training jobs and save them.

Configure Tensor Collections Using the CollectionConfig API

Use the CollectionConfig API operation to configure tensor collections. Debugger provides pre-
built tensor collections that cover a variety of regular expressions (regex) of parameters if using
Debugger-supported deep learning frameworks and machine learning algorithms. As shown in the
following example code, add the built-in tensor collections you want to debug.

from sagemaker.debugger import CollectionConfig

collection_configs=[
 CollectionConfig(name="weights"),
 CollectionConfig(name="gradients")
]

The preceding collections set up the Debugger hook to save the tensors every 500 steps based on
the default "save_interval" value.

For a full list of available Debugger built-in collections, see Debugger Built-in Collections.

If you want to customize the built-in collections, such as changing the save intervals and tensor
regex, use the following CollectionConfig template to adjust parameters.

from sagemaker.debugger import CollectionConfig

Use SageMaker Debugger 3274

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection

Amazon SageMaker Developer Guide

collection_configs=[
 CollectionConfig(
 name="tensor_collection",
 parameters={
 "key_1": "value_1",
 "key_2": "value_2",
 ...
 "key_n": "value_n"
 }
)
]

For more information about available parameter keys, see CollectionConfig in the Amazon
SageMaker Python SDK. For example, the following code example shows how you can adjust the
save intervals of the "losses" tensor collection at different phases of training: save loss every 100
steps in training phase and validation loss every 10 steps in validation phase.

from sagemaker.debugger import CollectionConfig

collection_configs=[
 CollectionConfig(
 name="losses",
 parameters={
 "train.save_interval": "100",
 "eval.save_interval": "10"
 }
)
]

Tip

This tensor collection configuration object can be used for both DebuggerHookConfig and
Rule API operations.

Configure the DebuggerHookConfig API to Save Tensors

Use the DebuggerHookConfig API to create a debugger_hook_config object using the
collection_configs object you created in the previous step.

from sagemaker.debugger import DebuggerHookConfig

Use SageMaker Debugger 3275

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.CollectionConfig
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-configure-hook.html#debugger-configure-tensor-hook
https://docs.aws.amazon.com/sagemaker/latest/dg/use-debugger-built-in-rules.html#debugger-built-in-rules-configuration-param-change
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23sagemaker.debugger.DebuggerHookConfig

Amazon SageMaker Developer Guide

debugger_hook_config=DebuggerHookConfig(
 collection_configs=collection_configs
)

Debugger saves the model training output tensors into the default S3 bucket. The format of the
default S3 bucket URI is s3://sagemaker-<region>-<12digit_account_id>/<training-
job-name>/debug-output/.

If you want to specify an exact S3 bucket URI, use the following code example:

from sagemaker.debugger import DebuggerHookConfig

debugger_hook_config=DebuggerHookConfig(
 s3_output_path="specify-your-s3-bucket-uri"
 collection_configs=collection_configs
)

For more information, see DebuggerHookConfig in the Amazon SageMaker Python SDK.

Example Notebooks and Code Samples to Configure Debugger Hook

The following sections provide notebooks and code examples of how to use Debugger hook to
save, access, and visualize output tensors.

Topics

• Tensor Visualization Example Notebooks

• Save Tensors Using Debugger Built-in Collections

• Save Tensors Using Debugger Modified Built-in Collections

• Save Tensors Using Debugger Custom Collections

Tensor Visualization Example Notebooks

The following two notebook examples show advanced use of Amazon SageMaker Debugger for
visualizing tensors. Debugger provides a transparent view into training deep learning models.

• Interactive Tensor Analysis in SageMaker Studio Notebook with MXNet

This notebook example shows how to visualize saved tensors using Amazon SageMaker
Debugger. By visualizing the tensors, you can see how the tensor values change while training

Use SageMaker Debugger 3276

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.DebuggerHookConfig
https://sagemaker.readthedocs.io
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mnist_tensor_analysis

Amazon SageMaker Developer Guide

deep learning algorithms. This notebook includes a training job with a poorly configured
neural network and uses Amazon SageMaker Debugger to aggregate and analyze tensors,
including gradients, activation outputs, and weights. For example, the following plot shows
the distribution of gradients of a convolutional layer that is suffering from a vanishing gradient
problem.

This notebook also illustrates how a good initial hyperparameter setting improves the training
process by generating the same tensor distribution plots.

• Visualizing and Debugging Tensors from MXNet Model Training

This notebook example shows how to save and visualize tensors from an MXNet Gluon model
training job using Amazon SageMaker Debugger. It illustrates that Debugger is set to save all
tensors to an Amazon S3 bucket and retrieves ReLu activation outputs for the visualization. The
following figure shows a three-dimensional visualization of the ReLu activation outputs. The
color scheme is set to blue to indicate values close to 0 and yellow to indicate values close to 1.

Use SageMaker Debugger 3277

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mnist_tensor_plot

Amazon SageMaker Developer Guide

In this notebook, the TensorPlot class imported from tensor_plot.py is designed to
plot convolutional neural networks (CNNs) that take two-dimensional images for inputs. The
tensor_plot.py script provided with the notebook retrieves tensors using Debugger and
visualizes the CNN. You can run this notebook on SageMaker Studio to reproduce the tensor
visualization and implement your own convolutional neural network model.

• Real-time Tensor Analysis in a SageMaker Notebook with MXNet

This example guides you through installing required components for emitting tensors in an
Amazon SageMaker training job and using the Debugger API operations to access those tensors
while training is running. A gluon CNN model is trained on the Fashion MNIST dataset. While the
job is running, you will see how Debugger retrieves activation outputs of the first convolutional
layer from each of 100 batches and visualizes them. Also, this will show you how to visualize
weights after the job is done.

Save Tensors Using Debugger Built-in Collections

You can use built-in collections of tensors using the CollectionConfig API and save them using
the DebuggerHookConfig API. The following example shows how to use the default settings of

Use SageMaker Debugger 3278

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mxnet_realtime_analysis

Amazon SageMaker Developer Guide

Debugger hook configurations to construct a SageMaker TensorFlow estimator. You can also utilize
this for MXNet, PyTorch, and XGBoost estimators.

Note

In the following example code, the s3_output_path parameter for
DebuggerHookConfig is optional. If you do not specify it, Debugger saves the tensors
at s3://<output_path>/debug-output/, where the <output_path> is the default
output path of SageMaker training jobs. For example:

"s3://sagemaker-us-east-1-111122223333/sagemaker-debugger-training-YYYY-MM-DD-
HH-MM-SS-123/debug-output"

import sagemaker
from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import DebuggerHookConfig, CollectionConfig

use Debugger CollectionConfig to call built-in collections
collection_configs=[
 CollectionConfig(name="weights"),
 CollectionConfig(name="gradients"),
 CollectionConfig(name="losses"),
 CollectionConfig(name="biases")
]

configure Debugger hook
set a target S3 bucket as you want
sagemaker_session=sagemaker.Session()
BUCKET_NAME=sagemaker_session.default_bucket()
LOCATION_IN_BUCKET='debugger-built-in-collections-hook'

hook_config=DebuggerHookConfig(
 s3_output_path='s3://{BUCKET_NAME}/{LOCATION_IN_BUCKET}'.
 format(BUCKET_NAME=BUCKET_NAME,
 LOCATION_IN_BUCKET=LOCATION_IN_BUCKET),
 collection_configs=collection_configs
)

construct a SageMaker TensorFlow estimator
sagemaker_estimator=TensorFlow(

Use SageMaker Debugger 3279

Amazon SageMaker Developer Guide

 entry_point='directory/to/your_training_script.py',
 role=sm.get_execution_role(),
 base_job_name='debugger-demo-job',
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="2.9.0",
 py_version="py39",

 # debugger-specific hook argument below
 debugger_hook_config=hook_config
)

sagemaker_estimator.fit()

To see a list of Debugger built-in collections, see Debugger Built-in Collections.

Save Tensors Using Debugger Modified Built-in Collections

You can modify the Debugger built-in collections using the CollectionConfig API operation.
The following example shows how to tweak the built-in losses collection and construct a
SageMaker TensorFlow estimator. You can also use this for MXNet, PyTorch, and XGBoost
estimators.

import sagemaker
from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import DebuggerHookConfig, CollectionConfig

use Debugger CollectionConfig to call and modify built-in collections
collection_configs=[
 CollectionConfig(
 name="losses",
 parameters={"save_interval": "50"})]

configure Debugger hook
set a target S3 bucket as you want
sagemaker_session=sagemaker.Session()
BUCKET_NAME=sagemaker_session.default_bucket()
LOCATION_IN_BUCKET='debugger-modified-collections-hook'

hook_config=DebuggerHookConfig(
 s3_output_path='s3://{BUCKET_NAME}/{LOCATION_IN_BUCKET}'.
 format(BUCKET_NAME=BUCKET_NAME,
 LOCATION_IN_BUCKET=LOCATION_IN_BUCKET),

Use SageMaker Debugger 3280

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection

Amazon SageMaker Developer Guide

 collection_configs=collection_configs
)

construct a SageMaker TensorFlow estimator
sagemaker_estimator=TensorFlow(
 entry_point='directory/to/your_training_script.py',
 role=sm.get_execution_role(),
 base_job_name='debugger-demo-job',
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="2.9.0",
 py_version="py39",

 # debugger-specific hook argument below
 debugger_hook_config=hook_config
)

sagemaker_estimator.fit()

For a full list of CollectionConfig parameters, see Debugger CollectionConfig API.

Save Tensors Using Debugger Custom Collections

You can also save a reduced number of tensors instead of the full set of tensors (for example, if you
want to reduce the amount of data saved in your Amazon S3 bucket). The following example shows
how to customize the Debugger hook configuration to specify target tensors that you want to save.
You can use this for TensorFlow, MXNet, PyTorch, and XGBoost estimators.

import sagemaker
from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import DebuggerHookConfig, CollectionConfig

use Debugger CollectionConfig to create a custom collection
collection_configs=[
 CollectionConfig(
 name="custom_activations_collection",
 parameters={
 "include_regex": "relu|tanh", # Required
 "reductions": "mean,variance,max,abs_mean,abs_variance,abs_max"
 })
]

configure Debugger hook

Use SageMaker Debugger 3281

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#configuring-collection-using-sagemaker-python-sdk

Amazon SageMaker Developer Guide

set a target S3 bucket as you want
sagemaker_session=sagemaker.Session()
BUCKET_NAME=sagemaker_session.default_bucket()
LOCATION_IN_BUCKET='debugger-custom-collections-hook'

hook_config=DebuggerHookConfig(
 s3_output_path='s3://{BUCKET_NAME}/{LOCATION_IN_BUCKET}'.
 format(BUCKET_NAME=BUCKET_NAME,
 LOCATION_IN_BUCKET=LOCATION_IN_BUCKET),
 collection_configs=collection_configs
)

construct a SageMaker TensorFlow estimator
sagemaker_estimator=TensorFlow(
 entry_point='directory/to/your_training_script.py',
 role=sm.get_execution_role(),
 base_job_name='debugger-demo-job',
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="2.9.0",
 py_version="py39",

 # debugger-specific hook argument below
 debugger_hook_config=hook_config
)

sagemaker_estimator.fit()

For a full list of CollectionConfig parameters, see Debugger CollectionConfig.

Configure Debugger Built-in Rules

Amazon SageMaker Debugger's built-in rules analyze tensors emitted during the training of a
model. SageMaker Debugger offers the Rule API operation that monitors training job progress and
errors for the success of training your model. For example, the rules can detect whether gradients
are getting too large or too small, whether a model is overfitting or overtraining, and whether a
training job does not decrease loss function and improve. To see a full list of available built-in rules,
see List of Debugger Built-in Rules.

In the following topics, you'll learn how to use the SageMaker Debugger built-in rules.

Topics

Use SageMaker Debugger 3282

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#configuring-collection-using-sagemaker-python-sdk

Amazon SageMaker Developer Guide

• Use Debugger Built-in Rules with the Default Parameter Settings

• Use Debugger Built-in Rules with Custom Parameter Values

• Example Notebooks and Code Samples to Configure Debugger Rules

Use Debugger Built-in Rules with the Default Parameter Settings

To specify Debugger built-in rules in an estimator, you need to configure a list object. The following
example code shows the basic structure of listing the Debugger built-in rules:

from sagemaker.debugger import Rule, rule_configs

rules=[
 Rule.sagemaker(rule_configs.built_in_rule_name_1()),
 Rule.sagemaker(rule_configs.built_in_rule_name_2()),
 ...
 Rule.sagemaker(rule_configs.built_in_rule_name_n()),
 ... # You can also append more profiler rules in the
 ProfilerRule.sagemaker(rule_configs.*()) format.
]

For more information about default parameter values and descriptions of the built-in rule, see List
of Debugger Built-in Rules.

To find the SageMaker Debugger API reference, see sagemaker.debugger.rule_configs and
sagemaker.debugger.Rule.

For example, to inspect the overall training performance and progress of your model, construct a
SageMaker estimator with the following built-in rule configuration.

from sagemaker.debugger import Rule, rule_configs

rules=[
 Rule.sagemaker(rule_configs.loss_not_decreasing()),
 Rule.sagemaker(rule_configs.overfit()),
 Rule.sagemaker(rule_configs.overtraining()),
 Rule.sagemaker(rule_configs.stalled_training_rule())
]

When you start the training job, Debugger collects system resource utilization data every
500 milliseconds and the loss and accuracy values every 500 steps by default. Debugger

Use SageMaker Debugger 3283

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.sagemaker.debugger.rule_configs
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.Rule

Amazon SageMaker Developer Guide

analyzes the resource utilization to identify if your model is having bottleneck problems. The
loss_not_decreasing, overfit, overtraining, and stalled_training_rule monitors if
your model is optimizing the loss function without those training issues. If the rules detect training
anomalies, the rule evaluation status changes to IssueFound. You can set up automated actions,
such as notifying training issues and stopping training jobs using Amazon CloudWatch Events and
AWS Lambda. For more information, see Action on Amazon SageMaker Debugger Rules.

Use Debugger Built-in Rules with Custom Parameter Values

If you want to adjust the built-in rule parameter values and customize tensor collection
regex, configure the base_config and rule_parameters parameters for the
ProfilerRule.sagemaker and Rule.sagemaker classmethods. In case of the
Rule.sagemaker class methods, you can also customize tensor collections through the
collections_to_save parameter. The instruction of how to use the CollectionConfig class
is provided at Configure Tensor Collections Using the CollectionConfig API.

Use the following configuration template for built-in rules to customize parameter values.
By changing the rule parameters as you want, you can adjust the sensitivity of the rules to be
triggered.

• The base_config argument is where you call the built-in rule methods.

• The rule_parameters argument is to adjust the default key values of the built-in rules listed in
List of Debugger Built-in Rules.

• The collections_to_save argument takes in a tensor configuration through the
CollectionConfig API, which requires name and parameters arguments.

• To find available tensor collections for name, see Debugger Built-in Tensor Collections .

• For a full list of adjustable parameters, see Debugger CollectionConfig API.

For more information about the Debugger rule class, methods, and parameters, see SageMaker
Debugger Rule class in the Amazon SageMaker Python SDK.

from sagemaker.debugger import Rule, ProfilerRule, rule_configs, CollectionConfig

rules=[
 Rule.sagemaker(
 base_config=rule_configs.built_in_rule_name(),
 rule_parameters={
 "key": "value"

Use SageMaker Debugger 3284

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#built-in-collections
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#configuring-collection-using-sagemaker-python-sdk
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

 },
 collections_to_save=[
 CollectionConfig(
 name="tensor_collection_name",
 parameters={
 "key": "value"
 }
)
]
)
]

The parameter descriptions and value customization examples are provided for each rule at List of
Debugger Built-in Rules.

Example Notebooks and Code Samples to Configure Debugger Rules

In the following sections, notebooks and code samples of how to use Debugger rules to monitor
SageMaker training jobs are provided.

Topics

• Debugger Built-in Rules Example Notebooks

• Debugger Built-in Rules Example Code

• Use Debugger Built-in Rules with Parameter Modifications

Debugger Built-in Rules Example Notebooks

The following example notebooks show how to use Debugger built-in rules when running training
jobs with Amazon SageMaker:

• Using a SageMaker Debugger built-in rule with TensorFlow

• Using a SageMaker Debugger built-in rule with Managed Spot Training and MXNet

• Using a SageMaker Debugger built-in rule with parameter modifications for a real-time training
job analysis with XGBoost

While running the example notebooks in SageMaker Studio, you can find the training job trial
created on the Studio Experiment List tab. For example, as shown in the following screenshot,
you can find and open a Describe Trial Component window of your current training job.
On the Debugger tab, you can check if the Debugger rules, vanishing_gradient() and

Use SageMaker Debugger 3285

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_builtin_rule
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/mxnet_spot_training
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/xgboost_realtime_analysis
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/xgboost_realtime_analysis

Amazon SageMaker Developer Guide

loss_not_decreasing(), are monitoring the training session in parallel. For a full instruction
of how to find your training job trial components in the Studio UI, see SageMaker Studio - View
Experiments, Trials, and Trial Components.

Use SageMaker Debugger 3286

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks.html#studio-tasks-experiments
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks.html#studio-tasks-experiments

Amazon SageMaker Developer Guide

There are two ways of using the Debugger built-in rules in the SageMaker environment: deploy the
built-in rules as it is prepared or adjust their parameters as you want. The following topics show
you how to use the built-in rules with example codes.

Debugger Built-in Rules Example Code

The following code sample shows how to set the Debugger built-in rules using the
Rule.sagemaker method. To specify built-in rules that you want to run, use the rules_configs
API operation to call the built-in rules. To find a full list of Debugger built-in rules and default
parameter values, see List of Debugger Built-in Rules.

import sagemaker
from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import Rule, CollectionConfig, rule_configs

call built-in rules that you want to use.
built_in_rules=[
 Rule.sagemaker(rule_configs.vanishing_gradient())
 Rule.sagemaker(rule_configs.loss_not_decreasing())
]

construct a SageMaker estimator with the Debugger built-in rules
sagemaker_estimator=TensorFlow(
 entry_point='directory/to/your_training_script.py',
 role=sm.get_execution_role(),
 base_job_name='debugger-built-in-rules-demo',
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="2.9.0",
 py_version="py39",

 # debugger-specific arguments below
 rules=built_in_rules
)
sagemaker_estimator.fit()

Note

The Debugger built-in rules run in parallel with your training job. The maximum number of
built-in rule containers for a training job is 20.

Use SageMaker Debugger 3287

Amazon SageMaker Developer Guide

For more information about the Debugger rule class, methods, and parameters, see the SageMaker
Debugger Rule class in the Amazon SageMaker Python SDK.

To find an example of how to adjust the Debugger rule parameters, see the following Use
Debugger Built-in Rules with Parameter Modifications section.

Use Debugger Built-in Rules with Parameter Modifications

The following code example shows the structure of built-in rules to adjust parameters. In this
example, the stalled_training_rule collects the losses tensor collection from a training job
at every 50 steps and an evaluation stage at every 10 steps. If the training process starts stalling
and not collecting tensor outputs for 120 seconds, the stalled_training_rule stops the
training job.

import sagemaker
from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import Rule, CollectionConfig, rule_configs

call the built-in rules and modify the CollectionConfig parameters

base_job_name_prefix= 'smdebug-stalled-demo-' + str(int(time.time()))

built_in_rules_modified=[
 Rule.sagemaker(
 base_config=rule_configs.stalled_training_rule(),
 rule_parameters={
 'threshold': '120',
 'training_job_name_prefix': base_job_name_prefix,
 'stop_training_on_fire' : 'True'
 }
 collections_to_save=[
 CollectionConfig(
 name="losses",
 parameters={
 "train.save_interval": "50"
 "eval.save_interval": "10"
 }
)
]
)
]

construct a SageMaker estimator with the modified Debugger built-in rule

Use SageMaker Debugger 3288

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

sagemaker_estimator=TensorFlow(
 entry_point='directory/to/your_training_script.py',
 role=sm.get_execution_role(),
 base_job_name=base_job_name_prefix,
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="2.9.0",
 py_version="py39",

 # debugger-specific arguments below
 rules=built_in_rules_modified
)
sagemaker_estimator.fit()

For an advanced configuration of the Debugger built-in rules using the CreateTrainingJob API,
see Configure Debugger Using Amazon SageMaker API.

Turn Off Debugger

If you want to completely turn off Debugger, do one of the following:

• Before starting a training job, do the following:

To stop both monitoring and profiling, include the disable_profiler parameter to your
estimator and set it to True.

Warning

If you disable it, you won't be able to view the comprehensive Studio Debugger insights
dashboard and the autogenerated profiling report.

To stop debugging, set the debugger_hook_config parameter to False.

Warning

If you disable it, you won't be able to collect output tensors and cannot debug your
model parameters.

estimator=Estimator(

Use SageMaker Debugger 3289

Amazon SageMaker Developer Guide

 ...
 disable_profiler=True
 debugger_hook_config=False
)

For more information about the Debugger-specific parameters, see SageMaker Estimator in the
Amazon SageMaker Python SDK.

• While a training job is running, do the following:

To disable both monitoring and profiling while your training job is running, use the following
estimator classmethod:

estimator.disable_profiling()

To disable framework profiling only and keep system monitoring, use the update_profiler
method:

estimator.update_profiler(disable_framework_metrics=true)

For more information about the estimator extension methods, see the
estimator.disable_profiling and estimator.update_profiler classmethods in the Amazon
SageMaker Python SDK documentation.

Useful SageMaker Estimator Classmethods for Debugger

The following estimator class methods are useful for accessing your SageMaker training job
information and retrieving output paths of training data collected by Debugger. The following
methods are executable after you initiate a training job with the estimator.fit() method.

• To check the base S3 bucket URI of a SageMaker training job:

estimator.output_path

• To check the base job name of a SageMaker training job:

estimator.latest_training_job.job_name

• To see a full CreateTrainingJob API operation configuration of a SageMaker training job:

Use SageMaker Debugger 3290

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator.disable_profiling
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator.update_profiler
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

estimator.latest_training_job.describe()

• To check a full list of the Debugger rules while a SageMaker training job is running:

estimator.latest_training_job.rule_job_summary()

• To check the S3 bucket URI where the model parameter data (output tensors) are saved:

estimator.latest_job_debugger_artifacts_path()

• To check the S3 bucket URI at where the model performance data (system and framework
metrics) are saved:

estimator.latest_job_profiler_artifacts_path()

• To check the Debugger rule configuration for debugging output tensors:

estimator.debugger_rule_configs

• To check the list of the Debugger rules for debugging while a SageMaker training job is running:

estimator.debugger_rules

• To check the Debugger rule configuration for monitoring and profiling system and framework
metrics:

estimator.profiler_rule_configs

• To check the list of the Debugger rules for monitoring and profiling while a SageMaker training
job is running:

estimator.profiler_rules

For more information about the SageMaker estimator class and its methods, see Estimator API in
the Amazon SageMaker Python SDK.

Use SageMaker Debugger 3291

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

SageMaker Debugger Interactive Report for XGBoost

Receive training reports autogenerated by Debugger. The Debugger reports provide insights into
your training jobs and suggest recommendations to improve your model performance.

Note

You can download a Debugger reports while your training job is running or after the job
has finished. During training, Debugger concurrently updates the report reflecting the
current rules' evaluation status. You can download a complete Debugger report only after
the training job has completed.

Important

In the report, plots and and recommendations are provided for informational purposes and
are not definitive. You are responsible for making your own independent assessment of the
information.

SageMaker Debugger XGBoost Training Report

For SageMaker XGBoost training jobs, use the Debugger CreateXgboostReport rule to receive a
comprehensive training report of the training progress and results. Following this guide, specify
the CreateXgboostReport rule while constructing an XGBoost estimator, download the report using
the Amazon SageMaker Python SDK or the Amazon S3 console, and gain insights into the training
results.

Important

In the report, plots and and recommendations are provided for informational purposes and
are not definitive. You are responsible for making your own independent assessment of the
information.

Topics

• Construct a SageMaker XGBoost Estimator with the Debugger XGBoost Report Rule

• Download the Debugger XGBoost Training Report

Use SageMaker Debugger 3292

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• Debugger XGBoost Training Report Walkthrough

Construct a SageMaker XGBoost Estimator with the Debugger XGBoost Report Rule

The CreateXgboostReport rule collects the following output tensors from your training job:

• hyperparameters – Saves at the first step.

• metrics – Saves loss and accuracy every 5 steps.

• feature_importance – Saves every 5 steps.

• predictions – Saves every 5 steps.

• labels – Saves every 5 steps.

The output tensors are saved at a default S3 bucket. For example, s3://
sagemaker-<region>-<12digit_account_id>/<base-job-name>/debug-output/.

When you construct a SageMaker estimator for an XGBoost training job, specify the rule as shown
in the following example code.

Using the SageMaker generic estimator

import boto3
import sagemaker
from sagemaker.estimator import Estimator
from sagemaker import image_uris
from sagemaker.debugger import Rule, rule_configs

rules=[
 Rule.sagemaker(rule_configs.create_xgboost_report())
]

region = boto3.Session().region_name
xgboost_container=sagemaker.image_uris.retrieve("xgboost", region, "1.2-1")

estimator=Estimator(
 role=sagemaker.get_execution_role()
 image_uri=xgboost_container,
 base_job_name="debugger-xgboost-report-demo",
 instance_count=1,
 instance_type="ml.m5.2xlarge",

Use SageMaker Debugger 3293

Amazon SageMaker Developer Guide

 # Add the Debugger XGBoost report rule
 rules=rules
)

estimator.fit(wait=False)

Download the Debugger XGBoost Training Report

Download the Debugger XGBoost training report while your training job is running or after the job
has finished using the Amazon SageMaker Python SDK and AWS Command Line Interface (CLI).

Download using the SageMaker Python SDK and AWS CLI

1. Check the current job's default S3 output base URI.

estimator.output_path

2. Check the current job name.

estimator.latest_training_job.job_name

3. The Debugger XGBoost report is stored under <default-s3-output-base-uri>/
<training-job-name>/rule-output. Configure the rule output path as follows:

rule_output_path = estimator.output_path + "/" +
 estimator.latest_training_job.job_name + "/rule-output"

4. To check if the report is generated, list directories and files recursively under the
rule_output_path using aws s3 ls with the --recursive option.

! aws s3 ls {rule_output_path} --recursive

This should return a complete list of files under autogenerated folders that are named
CreateXgboostReport and ProfilerReport-1234567890. The XGBoost training
report is stored in the CreateXgboostReport, and the profiling report is stored in
the ProfilerReport-1234567890 folder. To learn more about the profiling report
generated by default with the XGBoost training job, see SageMaker Debugger profiling
report.

Use SageMaker Debugger 3294

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

The xgboost_report.html is an autogenerated XGBoost training report by Debugger.
The xgboost_report.ipynb is a Jupyter notebook that's used to aggregate training
results into the report. You can download all of the files, browse the HTML report file, and
modify the report using the notebook.

5. Download the files recursively using aws s3 cp. The following command saves all of the
rule output files to the ProfilerReport-1234567890 folder under the current working
directory.

! aws s3 cp {rule_output_path} ./ --recursive

Tip

If you are using a Jupyter notebook server, run !pwd to verify the current working
directory.

6. Under the /CreateXgboostReport directory, open xgboost_report.html. If you are
using JupyterLab, choose Trust HTML to see the autogenerated Debugger training report.

Use SageMaker Debugger 3295

Amazon SageMaker Developer Guide

7. Open the xgboost_report.ipynb file to explore how the report is generated. You can
customize and extend the training report using the Jupyter notebook file.

Download using the Amazon S3 console

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Search for the base S3 bucket. For example, if you haven't specified any
base job name, the base S3 bucket name should be in the following format:
sagemaker-<region>-111122223333. Look up the base S3 bucket through the Find
bucket by name field.

3. In the base S3 bucket, look up the training job name by entering your job name prefix in
Find objects by prefix and then choosing the training job name.

Use SageMaker Debugger 3296

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon SageMaker Developer Guide

4. In the training job's S3 bucket, choose rule-output/ subfolder. There must be three
subfolders for training data collected by Debugger: debug-output/, profiler-output/, and
rule-output/.

5. In the rule-output/ folder, choose the CreateXgboostReport/ folder. The folder contains
xbgoost_report.html (the autogenerated report in html) and xbgoost_report.ipynb (a
Jupyter notebook with scripts that are used for generating the report).

6. Choose the xbgoost_report.html file, choose Download actions, and then choose
Download.

Use SageMaker Debugger 3297

Amazon SageMaker Developer Guide

Use SageMaker Debugger 3298

Amazon SageMaker Developer Guide

7. Open the downloaded xbgoost_report.html file in a web browser.

Debugger XGBoost Training Report Walkthrough

This section walks you through the Debugger XGBoost training report. The report is automatically
aggregated depending on the output tensor regex, recognizing what type of your training job is
among binary classification, multiclass classification, and regression.

Important

In the report, plots and and recommendations are provided for informational purposes and
are not definitive. You are responsible for making your own independent assessment of the
information.

Topics

• Distribution of True Labels of the Dataset

• Loss versus Step Graph

• Feature Importance

• Confusion Matrix

• Evaluation of the Confusion Matrix

• Accuracy Rate of Each Diagonal Element Over Iteration

• Receiver Operating Characteristic Curve

• Distribution of Residuals at the Last Saved Step

• Absolute Validation Error per Label Bin Over Iteration

Distribution of True Labels of the Dataset

This histogram shows the distribution of labeled classes (for classification) or values (for
regression) in your original dataset. Skewness in your dataset could contribute to inaccuracies. This
visualization is available for the following model types: binary classification, multiclassification,
and regression.

Use SageMaker Debugger 3299

Amazon SageMaker Developer Guide

Loss versus Step Graph

This is a line chart that shows the progression of loss on training data and validation data
throughout training steps. The loss is what you defined in your objective function, such as mean
squared error. You can gauge whether the model is overfit or underfit from this plot. This section
also provides insights that you can use to determine how to resolve the overfit and underfit
problems. This visualization is available for the following model types: binary classification,
multiclassification, and regression.

Use SageMaker Debugger 3300

Amazon SageMaker Developer Guide

Feature Importance

There are three different types of feature importance visualizations provided: Weight, Gain and
Coverage. We provide detailed definitions for each of the three in the report. Feature importance
visualizations help you learn what features in your training dataset contributed to the predictions.
Feature importance visualizations are available for the following model types: binary classification,
multiclassification, and regression.

Use SageMaker Debugger 3301

Amazon SageMaker Developer Guide

Confusion Matrix

This visualization is only applicable to binary and multiclass classification models. Accuracy
alone might not be sufficient for evaluating the model performance. For some use cases, such
as healthcare and fraud detection, it’s also important to know the false positive rate and false

Use SageMaker Debugger 3302

Amazon SageMaker Developer Guide

negative rate. A confusion matrix gives you the additional dimensions for evaluating your model
performance.

Use SageMaker Debugger 3303

Amazon SageMaker Developer Guide

Evaluation of the Confusion Matrix

This section provides you with more insights on the micro, macro, and weighted metrics on
precision, recall, and F1-score for your model.

Accuracy Rate of Each Diagonal Element Over Iteration

This visualization is only applicable to binary classification and multiclass classification models.
This is a line chart that plots the diagonal values in the confusion matrix throughout the training
steps for each class. This plot shows you how the accuracy of each class progresses throughout the
training steps. You can identify the under-performing classes from this plot.

Use SageMaker Debugger 3304

Amazon SageMaker Developer Guide

Receiver Operating Characteristic Curve

This visualization is only applicable to binary classification models. The Receiver Operating
Characteristic curve is commonly used to evaluate binary classification model performance.
The y-axis of the curve is True Positive Rate (TPF) and x-axis is false positive rate (FPR). The plot
also displays the value for the area under the curve (AUC). The higher the AUC value, the more
predictive your classifier. You can also use the ROC curve to understand the trade-off between
TPR and FPR and identify the optimum classification threshold for your use case. The classification
threshold can be adjusted to tune the behavior of the model to reduce more of one or another type
of error (FP/FN).

Use SageMaker Debugger 3305

Amazon SageMaker Developer Guide

Distribution of Residuals at the Last Saved Step

This visualization is a column chart that shows the residual distributions in the last step Debugger
captures. In this visualization, you can check whether the residual distribution is close to normal
distribution that’s centered at zero. If the residuals are skewed, your features may not be sufficient
for predicting the labels.

Use SageMaker Debugger 3306

Amazon SageMaker Developer Guide

Absolute Validation Error per Label Bin Over Iteration

This visualization is only applicable to regression models. The actual target values are split into 10
intervals. This visualization shows how validation errors progress for each interval throughout the
training steps in line plots. Absolute validation error is the absolute value of difference between
prediction and actual during validation. You can identify the underperforming intervals from this
visualization.

Use SageMaker Debugger 3307

Amazon SageMaker Developer Guide

Action on Amazon SageMaker Debugger Rules

Based on the Debugger rule evaluation status, you can set up automated actions such as stopping
a training job and sending notifications using Amazon Simple Notification Service (Amazon SNS).
You can also create your own actions using Amazon CloudWatch Events and AWS Lambda. To learn
how to set up automated actions based on the Debugger rule evaluation status, see the following
topics.

Topics

• Debugger Built-in Actions for Rules

• Create Actions on Rules Using Amazon CloudWatch and AWS Lambda

Debugger Built-in Actions for Rules

Use Debugger built-in actions to respond to issues found by Debugger Rule. The Debugger
rule_configs class provides tools to configure a list of actions, including automatically stopping
training jobs and sending notifications using Amazon Simple Notification Service (Amazon SNS)
when the Debugger rules find training issues.

Use SageMaker Debugger 3308

Amazon SageMaker Developer Guide

Step 1: Set Up Amazon SNS, Create an SMDebugRules Topic, and Subscribe to the Topic

This section walks you through how to set up an Amazon SNS SMDebugRules topic, subscribe to
it, and confirm the subscription to receive notifications from the Debugger rules.

Note

For more information about billing for Amazon SNS, see Amazon SNS pricing and Amazon
SNS FAQs.

To create a SMDebugRules topic

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/v3/home.

2. In the left navigation pane, choose Topics.

3. On the Topics page, choose Create topic.

4. On the Create topic page, in the Details section, do the following:

a. For Type, choose Standard for topic type.

b. In Name, enter SMDebugRules.

5. Skip all other optional settings and choose Create topic. If you want to learn more about the
optional settings, see Creating an Amazon SNS topic.

To subscribe to the SMDebugRules topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In the left navigation pane, choose Subscriptions.

3. On the Subscriptions page, choose Create subscription.

4. On the Create subscription page, in the Details section, do the following:

a. For Topic ARN, choose the SMDebugRules topic ARN. The ARN should be in format of
arn:aws:sns:<region-id>:111122223333:SMDebugRules.

b. For Protocol, choose Email or SMS.

c. For Endpoint, enter the endpoint value, such as an email address or a phone number that
you want to receive notifications.

Use SageMaker Debugger 3309

https://aws.amazon.com/sns/pricing/
https://aws.amazon.com/sns/faqs/
https://aws.amazon.com/sns/faqs/
https://console.aws.amazon.com/sns/v3/home
https://console.aws.amazon.com/sns/v3/home
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html
https://console.aws.amazon.com/sns/v3/home

Amazon SageMaker Developer Guide

Note

Make sure you type the correct email address and phone number. Phone numbers
must include +, a country code, and phone number, with no special characters
or spaces. For example, the phone number +1 (222) 333-4444 is formatted as
+12223334444.

5. Skip all other optional settings and choose Create subscription. If you want to learn more
about the optional settings, see Subscribing to an Amazon SNS topic.

After you subscribe to the SMDebugRules topic, you receive the following confirmation message in
email or by phone:

For more information about Amazon SNS, see Mobile text messaging (SMS) and Email notifications
in the Amazon SNS Developer Guide.

Step 2: Set Up Your IAM Role to Attach Required Policies

In this step, you add the required policies to your IAM role.

To add the required policies to your IAM role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Policies, and choose Create policy.

3. On the Create policy page, do the following to create a new sns-access policy:

Use SageMaker Debugger 3310

https://docs.aws.amazon.com/sns/latest/dg/sns-create-subscribe-endpoint-to-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/sns-email-notifications.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

a. Choose the JSON tab.

b. Paste the JSON strings formatted in bold in the following code into the "Statement",
replacing the 12-digit AWS account ID with your AWS account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "sns:Publish",
 "sns:CreateTopic",
 "sns:Subscribe"
],
 "Resource": "arn:aws:sns:*:111122223333:SMDebugRules"
 }
]
}

c. At the bottom of the page, choose Review policy.

d. On the Review policy page, for Name, enter sns-access.

e. At the bottom of the page, choose Create policy.

4. Go back to the IAM console, and choose Roles in the left navigation pane.

5. Look up the IAM role that you use for SageMaker model training and choose that IAM role.

6. On the Permissions tab of the Summary page, choose Attach policies.

7. Search for the sns-access policy, select the check box next to the policy, and then choose
Attach policy.

For more examples of setting up IAM policies for Amazon SNS, see Example cases for Amazon SNS
access control.

Step 3: Configure Debugger Rules with the Built-in Actions

After successfully finishing the required settings in the preceding steps, you can configure the
Debugger built-in actions for debugging rules as shown in the following example script. You can
choose which built-in actions to use while building the actions list object. The rule_configs

Use SageMaker Debugger 3311

https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html

Amazon SageMaker Developer Guide

is a helper module that provides high-level tools to configure Debugger built-in rules and actions.
The following built-in actions are available for Debugger:

• rule_configs.StopTraining() – Stops a training job when the Debugger rule finds an issue.

• rule_configs.Email("abc@abc.com") – Sends a notification via email when the Debugger
rule finds an issue. Use the email address that you used when you set up your SNS topic
subscription.

• rule_configs.SMS("+1234567890") – Sends a notification via text message when the
Debugger rule finds an issue. Use the phone number that you used when you set up your SNS
topic subscription.

Note

Make sure you type the correct email address and phone number. Phone numbers must
include +, a country code, and a phone number, with no special characters or spaces. For
example, the phone number +1 (222) 333-4444 is formatted as +12223334444.

You can use all of the built-in actions or a subset of actions by wrapping up using the
rule_configs.ActionList() method, which takes the built-in actions and configures a list of
actions.

To add all of the three built-in actions to a single rule

If you want to assign all of the three built-in actions to a single rule, configure a Debugger built-in
action list while constructing an estimator. Use the following template to construct the estimator,
and Debugger will stop training jobs and send notifications through email and text for any rules
that you use to monitor your training job progress.

from sagemaker.debugger import Rule, rule_configs

Configure an action list object for Debugger rules
actions = rule_configs.ActionList(
 rule_configs.StopTraining(),
 rule_configs.Email("abc@abc.com"),
 rule_configs.SMS("+1234567890")
)

Configure rules for debugging with the actions parameter
rules = [

Use SageMaker Debugger 3312

Amazon SageMaker Developer Guide

 Rule.sagemaker(
 base_config=rule_configs.built_in_rule(), # Required
 rule_parameters={"paramter_key": value }, # Optional
 actions=actions
)
]

estimator = Estimator(
 ...
 rules = rules
)

estimator.fit(wait=False)

To create multiple built-in action objects to assign different actions to a single rule

If you want to assign the built-in actions to be triggered at different threshold values of a single
rule, you can create multiple built-in action objects as shown in the following script. To avoid a
conflict error by running the same rule, you must submit different rule job names (specify different
strings for the rules' name attribute) as shown in the following example script template. This
example shows how to set up StalledTrainingRule to take two different actions: send an email to
abc@abc.com when a training job stalls for 60 seconds, and stop the training job if stalling for 120
seconds.

from sagemaker.debugger import Rule, rule_configs
import time

base_job_name_prefix= 'smdebug-stalled-demo-' + str(int(time.time()))

Configure an action object for StopTraining
action_stop_training = rule_configs.ActionList(
 rule_configs.StopTraining()
)

Configure an action object for Email
action_email = rule_configs.ActionList(
 rule_configs.Email("abc@abc.com")
)

Configure a rule with the Email built-in action to trigger if a training job stalls
 for 60 seconds
stalled_training_job_rule_email = Rule.sagemaker(

Use SageMaker Debugger 3313

Amazon SageMaker Developer Guide

 base_config=rule_configs.stalled_training_rule(),
 rule_parameters={
 "threshold": "60",
 "training_job_name_prefix": base_job_name_prefix
 },
 actions=action_email
)
stalled_training_job_rule_text.name="StalledTrainingJobRuleEmail"

Configure a rule with the StopTraining built-in action to trigger if a training job
 stalls for 120 seconds
stalled_training_job_rule = Rule.sagemaker(
 base_config=rule_configs.stalled_training_rule(),
 rule_parameters={
 "threshold": "120",
 "training_job_name_prefix": base_job_name_prefix
 },
 actions=action_stop_training
)
stalled_training_job_rule.name="StalledTrainingJobRuleStopTraining"

estimator = Estimator(
 ...
 rules = [stalled_training_job_rule_email, stalled_training_job_rule]
)

estimator.fit(wait=False)

While the training job is running, the Debugger built-in action sends notification emails and text
messages whenever the rule finds issues with your training job. The following screenshot shows an
example of email notification for a training job that has a stalled training job issue.

Use SageMaker Debugger 3314

Amazon SageMaker Developer Guide

The following screenshot shows an example text notification that Debugger sends when the rule
finds a StalledTraining issue.

Considerations for Using the Debugger Built-in Actions

• To use the Debugger built-in actions, an internet connection is required. This feature is not
supported in the network isolation mode provided by Amazon SageMaker or Amazon VPC.

• The built-in actions cannot be used for Profiler rules.

• The built-in actions cannot be used on training jobs with spot training interruptions.

Use SageMaker Debugger 3315

Amazon SageMaker Developer Guide

• In email or text notifications, None appears at the end of messages. This does not have any
meaning, so you can disregard the text None.

Create Actions on Rules Using Amazon CloudWatch and AWS Lambda

Amazon CloudWatch collects Amazon SageMaker model training job logs and Amazon SageMaker
Debugger rule processing job logs. Configure Debugger with Amazon CloudWatch Events and AWS
Lambda to take action based on Debugger rule evaluation status.

CloudWatch Logs for Debugger Rules and Training Jobs

To find training job logs and Debugger rule job logs

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane under the Log node, choose Log Groups.

3. In the log groups list, do the following:

• Choose /aws/sagemaker/TrainingJobs for training job logs.

• Choose /aws/sagemaker/ProcessingJobs for Debugger rule job logs.

You can use the training and Debugger rule job status in the CloudWatch logs to take further
actions when there are training issues.

For more information about monitoring training jobs using CloudWatch, see Monitor Amazon
SageMaker.

Set Up Debugger for Automated Training Job Termination Using CloudWatch and Lambda

The Debugger rules monitor training job status, and a CloudWatch Events rule watches the
Debugger rule training job evaluation status.

Step 1: Create a Lambda Function

To create a Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. In the left navigation pane, choose Functions and then choose Create function.

3. On the Create function page, choose Author from scratch option.

Use SageMaker Debugger 3316

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-overview.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-overview.html
https://console.aws.amazon.com/lambda/

Amazon SageMaker Developer Guide

4. In the Basic information section, enter a Function name (for example, debugger-rule-stop-
training-job).

5. For Runtime, choose Python 3.7.

6. For Permissions, expand the drop down option, and choose Change default execution role.

7. For Execution role, choose Use an existing role and choose the IAM role that you use for
training jobs on SageMaker.

Note

Make sure you use the execution role with AmazonSageMakerFullAccess and
AWSLambdaBasicExecutionRole attached. Otherwise, the Lambda function
won't properly react to the Debugger rule status changes of the training job. If you
are unsure which execution role is being used, run the following code in a Jupyter
notebook cell to retrieve the execution role output:

import sagemaker
sagemaker.get_execution_role()

8. At the bottom of the page, choose Create function.

The following figure shows an example of the Create function page with the input fields and
selections completed.

Use SageMaker Debugger 3317

Amazon SageMaker Developer Guide

Use SageMaker Debugger 3318

Amazon SageMaker Developer Guide

Step 2: Configure the Lambda function

To configure the Lambda function

1. In the Function code section of the configuration page, paste the following Python script in
the Lambda code editor pane. The lambda_handler function monitors the Debugger rule
evaluation status collected by CloudWatch and triggers the StopTrainingJob API operation.
The AWS SDK for Python (Boto3) client for SageMaker provides a high-level method,
stop_training_job, which triggers the StopTrainingJob API operation.

import json
import boto3
import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
 training_job_name = event.get("detail").get("TrainingJobName")
 logging.info(f'Evaluating Debugger rules for training job:
 {training_job_name}')
 eval_statuses = event.get("detail").get("DebugRuleEvaluationStatuses", None)

 if eval_statuses is None or len(eval_statuses) == 0:
 logging.info("Couldn't find any debug rule statuses, skipping...")
 return {
 'statusCode': 200,
 'body': json.dumps('Nothing to do')
 }

 # should only attempt stopping jobs with InProgress status
 training_job_status = event.get("detail").get("TrainingJobStatus", None)
 if training_job_status != 'InProgress':
 logging.debug(f"Current Training job status({training_job_status}) is not
 'InProgress'. Exiting")
 return {
 'statusCode': 200,
 'body': json.dumps('Nothing to do')
 }

 client = boto3.client('sagemaker')

 for status in eval_statuses:

Use SageMaker Debugger 3319

Amazon SageMaker Developer Guide

 logging.info(status.get("RuleEvaluationStatus") + ', RuleEvaluationStatus='
 + str(status))
 if status.get("RuleEvaluationStatus") == "IssuesFound":
 secondary_status = event.get("detail").get("SecondaryStatus", None)
 logging.info(
 f'About to stop training job, since evaluation of rule
 configuration {status.get("RuleConfigurationName")} resulted in "IssuesFound". ' +
 f'\ntraining job "{training_job_name}" status is
 "{training_job_status}", secondary status is "{secondary_status}"' +
 f'\nAttempting to stop training job "{training_job_name}"'
)
 try:
 client.stop_training_job(
 TrainingJobName=training_job_name
)
 except Exception as e:
 logging.error(
 "Encountered error while trying to "
 "stop training job {}: {}".format(
 training_job_name, str(e)
)
)
 raise e
 return None

For more information about the Lambda code editor interface, see Creating functions using
the AWS Lambda console editor.

2. Skip all other settings and choose Save at the top of the configuration page.

Step 3: Create a CloudWatch Events Rule and Link to the Lambda Function for Debugger

To create a CloudWatch Events rule and link to the Lambda function for Debugger

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane, choose Rules under the Events node.

3. Choose Create rule.

4. In the Event Source section of the Step 1: Create rule page, choose SageMaker for Service
Name, and choose SageMaker Training Job State Change for Event Type. The Event Pattern
Preview should look like the following example JSON strings:

Use SageMaker Debugger 3320

https://docs.aws.amazon.com/lambda/latest/dg/code-editor.html
https://docs.aws.amazon.com/lambda/latest/dg/code-editor.html
https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide

{
 "source": [
 "aws.sagemaker"
],
 "detail-type": [
 "SageMaker Training Job State Change"
]
}

5. In the Targets section, choose Add target*, and choose the debugger-rule-stop-training-
job Lambda function that you created. This step links the CloudWatch Events rule with the
Lambda function.

6. Choose Configure details and go to the Step 2: Configure rule details page.

7. Specify the CloudWatch rule definition name. For example, debugger-cw-event-rule.

8. Choose Create rule to finish.

9. Go back to the Lambda function configuration page and refresh the page. Confirm that it's
configured correctly in the Designer panel. The CloudWatch Events rule should be registered
as a trigger for the Lambda function. The configuration design should look like the following
example:

Use SageMaker Debugger 3321

Amazon SageMaker Developer Guide

Run Example Notebooks to Test Automated Training Job Termination

You can run the following example notebooks, which are prepared for experimenting with stopping
a training job using Debugger's built-in rules.

• Amazon SageMaker Debugger - Reacting to CloudWatch Events from Rules

This example notebook runs a training job that has a vanishing gradient issue. The Debugger
VanishingGradient built-in rule is used while constructing the SageMaker TensorFlow estimator.
When the Debugger rule detects the issue, the training job is terminated.

• Detect Stalled Training and Invoke Actions Using SageMaker Debugger Rule

This example notebook runs a training script with a code line that forces it to sleep for 10
minutes. The Debugger StalledTrainingRule built-in rule invokes issues and stops the training job.

Use SageMaker Debugger 3322

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_action_on_rule/tf-mnist-stop-training-job.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_action_on_rule/detect_stalled_training_job_and_actions.html

Amazon SageMaker Developer Guide

Disable the CloudWatch Events Rule to Stop Using the Automated Training Job Termination

If you want to disable the automated training job termination, you need to disable the CloudWatch
Events rule. In the Lambda Designer panel, choose the EventBridge (CloudWatch Events) block
linked to the Lambda function. This shows an EventBridge panel below the Designer panel (for
example, see the previous screen shot). Select the check box next to EventBridge (CloudWatch
Events): debugger-cw-event-rule, and then choose Disable. If you want to use the automated
termination functionality later, you can enable the CloudWatch Events rule again.

Visualize Amazon SageMaker Debugger Output Tensors in TensorBoard

Important

This page is deprecated in favor of Amazon SageMaker with TensoBoard, which provides a
comprehensive TensorBoard experience integrated with SageMaker Training and the access
control functionalities of SageMaker domain. To learn more, see Use TensorBoard to debug
and analyze training jobs in Amazon SageMaker.

Use SageMaker Debugger to create output tensor files that are compatible with TensorBoard.
Load the files to visualize in TensorBoard and analyze your SageMaker training jobs. Debugger
automatically generates output tensor files that are compatible with TensorBoard. For any hook
configuration you customize for saving output tensors, Debugger has the flexibility to create scalar
summaries, distributions, and histograms that you can import to TensorBoard.

Use SageMaker Debugger 3323

Amazon SageMaker Developer Guide

You can enable this by passing DebuggerHookConfig and TensorBoardOutputConfig objects
to an estimator.

The following procedure explains how to save scalars, weights, and biases as full tensors,
histograms, and distributions that can be visualized with TensorBoard. Debugger saves them to the
training container's local path (the default path is /opt/ml/output/tensors) and syncs to the
Amazon S3 locations passed through the Debugger output configuration objects.

To save TensorBoard compatible output tensor files using Debugger

1. Set up a tensorboard_output_config configuration object to save TensorBoard output
using the Debugger TensorBoardOutputConfig class. For the s3_output_path parameter,
specify the default S3 bucket of the current SageMaker session or a preferred S3 bucket. This
example does not add the container_local_output_path parameter; instead, it is set to
the default local path /opt/ml/output/tensors.

import sagemaker
from sagemaker.debugger import TensorBoardOutputConfig

bucket = sagemaker.Session().default_bucket()
tensorboard_output_config = TensorBoardOutputConfig(
 s3_output_path='s3://{}'.format(bucket)
)

For additional information, see the Debugger TensorBoardOutputConfig API in the
Amazon SageMaker Python SDK.

2. Configure the Debugger hook and customize the hook parameter values. For example,
the following code configures a Debugger hook to save all scalar outputs every 100 steps
in training phases and 10 steps in validation phases, the weights parameters every 500
steps (the default save_interval value for saving tensor collections is 500), and the bias
parameters every 10 global steps until the global step reaches 500.

from sagemaker.debugger import CollectionConfig, DebuggerHookConfig

hook_config = DebuggerHookConfig(
 hook_parameters={
 "train.save_interval": "100",
 "eval.save_interval": "10"
 },
 collection_configs=[

Use SageMaker Debugger 3324

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.TensorBoardOutputConfig
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

 CollectionConfig("weights"),
 CollectionConfig(
 name="biases",
 parameters={
 "save_interval": "10",
 "end_step": "500",
 "save_histogram": "True"
 }
),
]
)

For more information about the Debugger configuration APIs, see the Debugger
CollectionConfig and DebuggerHookConfig APIs in the Amazon SageMaker Python SDK.

3. Construct a SageMaker estimator with the Debugger parameters passing the configuration
objects. The following example template shows how to create a generic SageMaker estimator.
You can replace estimator and Estimator with other SageMaker frameworks' estimator
parent classes and estimator classes. Available SageMaker framework estimators for this
functionality are TensorFlow, PyTorch, and MXNet.

from sagemaker.estimator import Estimator

estimator = Estimator(
 ...
 # Debugger parameters
 debugger_hook_config=hook_config,
 tensorboard_output_config=tensorboard_output_config
)
estimator.fit()

The estimator.fit() method starts a training job, and Debugger writes the output tensor
files in real time to the Debugger S3 output path and to the TensorBoard S3 output path. To
retrieve the output paths, use the following estimator methods:

• For the Debugger S3 output path, use
estimator.latest_job_debugger_artifacts_path().

• For the TensorBoard S3 output path, use
estimator.latest_job_tensorboard_artifacts_path().

4. After the training has completed, check the names of saved output tensors:

Use SageMaker Debugger 3325

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.CollectionConfig
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.DebuggerHookConfig
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/using_tf.html#create-an-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#create-an-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/using_mxnet.html#create-an-estimator

Amazon SageMaker Developer Guide

from smdebug.trials import create_trial
trial = create_trial(estimator.latest_job_debugger_artifacts_path())
trial.tensor_names()

5. Check the TensorBoard output data in Amazon S3:

tensorboard_output_path=estimator.latest_job_tensorboard_artifacts_path()
print(tensorboard_output_path)
!aws s3 ls {tensorboard_output_path}/

6. Download the TensorBoard output data to your notebook instance. For example, the following
AWS CLI command downloads the TensorBoard files to /logs/fit under the current working
directory of your notebook instance.

!aws s3 cp --recursive {tensorboard_output_path} ./logs/fit

7. Compress the file directory to a TAR file to download to your local machine.

!tar -cf logs.tar logs

8. Download and extract the Tensorboard TAR file to a directory on your device, launch a Jupyter
notebook server, open a new notebook, and run the TensorBoard app.

!tar -xf logs.tar
%load_ext tensorboard
%tensorboard --logdir logs/fit

List of Debugger Built-in Rules

Use the Debugger built-in rules provided by Amazon SageMaker Debugger and analyze metrics and
tensors collected while training your models. The Debugger built-in rules monitor various common
conditions that are critical for the success of a training job. You can call the built-in rules using
Amazon SageMaker Python SDK or the low-level SageMaker API operations. There's no additional
cost for using the built-in rules. For more information about billing, see the Amazon SageMaker
Pricing page.

Use SageMaker Debugger 3326

https://sagemaker.readthedocs.io
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Note

The maximum numbers of built-in rules that you can attach to a training job is 20.
SageMaker Debugger fully manages the built-in rules and analyzes your training job
synchronously.

Important

To use the new Debugger features, you need to upgrade the SageMaker Python SDK
and the SMDebug client library. In your iPython kernel, Jupyter notebook, or JupyterLab
environment, run the following code to install the latest versions of the libraries and restart
the kernel.

import sys
import IPython
!{sys.executable} -m pip install -U sagemaker smdebug
IPython.Application.instance().kernel.do_shutdown(True)

Debugger Rule

The following rules are the Debugger built-in rules that are callable using the Rule.sagemaker
classmethod.

Debugger built-in rules for generating training reports

Scope of Validity Built-in Rules

Training Report for SageMaker XGboost
training job

• create_xgboost_report

Debugger built-in rules for debugging model training data (output tensors)

Scope of Validity Built-in Rules

Deep learning frameworks (TensorFlow,
MXNet, and PyTorch)

• dead_relu

• exploding_tensor

Use SageMaker Debugger 3327

Amazon SageMaker Developer Guide

Scope of Validity Built-in Rules

• poor_weight_initialization

• saturated_activation

• vanishing_gradient

• weight_update_ratio

Deep learning frameworks (TensorFlow,
MXNet, and PyTorch) and the XGBoost
algorithm

• all_zero

• class_imbalance

• loss_not_decreasing

• overfit

• overtraining

• similar_across_runs

• stalled_training_rule

• tensor_variance

• unchanged_tensor

Deep learning applications • check_input_images

• nlp_sequence_ratio

XGBoost algorithm • confusion

• feature_importance_overweight

• tree_depth

To use the built-in rules with default parameter values – use the following configuration format:

from sagemaker.debugger import Rule, ProfilerRule, rule_configs

rules = [
 Rule.sagemaker(rule_configs.built_in_rule_name_1()),
 Rule.sagemaker(rule_configs.built_in_rule_name_2()),
 ...
 Rule.sagemaker(rule_configs.built_in_rule_name_n())
]

Use SageMaker Debugger 3328

Amazon SageMaker Developer Guide

To use the built-in rules with customizing the parameter values – use the following configuration
format:

from sagemaker.debugger import Rule, ProfilerRule, rule_configs

rules = [
 Rule.sagemaker(
 base_config=rule_configs.built_in_rule_name(),
 rule_parameters={
 "key": "value"
 }
 collections_to_save=[
 CollectionConfig(
 name="tensor_collection_name",
 parameters={
 "key": "value"
 }
)
]
)
]

To find available keys for the rule_parameters parameter, see the parameter description tables.

Sample rule configuration codes are provided for each built-in rule below the parameter
description tables.

• For a full instruction and examples of using the Debugger built-in rules, see Debugger Built-in
Rules Example Code.

• For a full instruction on using the built-in rules with the low-level SageMaker API operations, see
Configure Debugger Using Amazon SageMaker API.

CreateXgboostReport

The CreateXgboostReport rule collects output tensors from an XGBoost training job and
autogenerates a comprehensive training report. You can download a comprehensive profiling
report while a training job is running or after the training job is complete, and check progress of
training or the final result of the training job. The CreateXgboostReport rule collects the following
output tensors by default:

• hyperparameters – Saves at the first step

Use SageMaker Debugger 3329

Amazon SageMaker Developer Guide

• metrics – Saves loss and accuracy every 5 steps

• feature_importance – Saves every 5 steps

• predictions – Saves every 5 steps

• labels – Saves every 5 steps

Parameter Descriptions for the CreateXgboostReport Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

rules=[
 Rule.sagemaker(
 rule_configs.create_xgboost_report()
)
]

DeadRelu

This rule detects when the percentage of rectified linear unit (ReLU) activation functions in a trial
are considered dead because their activation activity has dropped below a threshold. If the percent
of inactive ReLUs in a layer is greater than the threshold_layer value of inactive ReLUs, the rule
returns True.

Parameter Descriptions for the DeadRelu Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Use SageMaker Debugger 3330

Amazon SageMaker Developer Guide

Parameter Name Description

Required

Valid values: String

tensor_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: ".*relu_output"

threshold_inactivity Defines a level of activity below which a ReLU
is considered to be dead. A ReLU might be
active in the beginning of a trial and then
slowly die during the training process. If
the ReLU is active less than the threshold
_inactivity , it is considered to be dead.

Optional

Valid values: Float

Default values: 1.0 (in percentage)

Use SageMaker Debugger 3331

Amazon SageMaker Developer Guide

Parameter Name Description

threshold_layer Returns True if the percentage of inactive
ReLUs in a layer is greater than threshold
_layer .

Returns False if the percentage of inactive
ReLUs in a layer is less than threshold
_layer .

Optional

Valid values: Float

Default values: 50.0 (in percentage)

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.dead_relu(),
 rule_parameters={
 "tensor_regex": ".*relu_output|.*ReLU_output",
 "threshold_inactivity": "1.0",
 "threshold_layer": "50.0"
 },
 collections_to_save=[
 CollectionConfig(
 name="custom_relu_collection",
 parameters={
 "include_regex: ".*relu_output|.*ReLU_output",
 "save_interval": "500"
 }
)
]
)
]

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Use SageMaker Debugger 3332

Amazon SageMaker Developer Guide

Note

This rule is not available for the XGBoost algorithm.

ExplodingTensor

This rule detects whether the tensors emitted during training have non-finite values, either infinite
or NaN (not a number). If a non-finite value is detected, the rule returns True.

Parameter Descriptions for the ExplodingTensor Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

collection_names The list of collection names whose tensors the
rule inspects.

Optional

Valid values: String

Default value: None

tensor_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Use SageMaker Debugger 3333

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: String

Default value: None

only_nan True to monitor the base_trial tensors
only for NaN values and not for infinity.

False to treat both NaN and infinity as
exploding values and to monitor for both.

Optional

Default value: False

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.exploding_tensor(),
 rule_parameters={
 "tensor_regex": ".*gradient",
 "only_nan": "False"
 },
 collections_to_save=[
 CollectionConfig(
 name="gradients",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Note

This rule is not available for the XGBoost algorithm.

Use SageMaker Debugger 3334

Amazon SageMaker Developer Guide

PoorWeightInitialization

This rule detects if your model parameters have been poorly initialized.

Good initialization breaks the symmetry of the weights and gradients in a neural network and
maintains commensurate activation variances across layers. Otherwise, the neural network doesn't
learn effectively. Initializers like Xavier aim to keep variance constant across activations, which
is especially relevant for training very deep neural nets. Too small an initialization can lead to
vanishing gradients. Too large an initialization can lead to exploding gradients. This rule checks the
variance of activation inputs across layers, the distribution of gradients, and the loss convergence
for the initial steps to determine if a neural network has been poorly initialized.

Parameter Descriptions for the PoorWeightInitialization Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

activation_inputs_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Valid values: String

Default value: ".*relu_input"

threshold If the ratio between minimum and maximum
variance of weights per layer exceeds the
threshold at a step, the rule returns True.

Use SageMaker Debugger 3335

Amazon SageMaker Developer Guide

Parameter Name Description

Optional

Valid values: Float

Default value: 10.0

distribution_range If the minimum difference between 5th and
95th percentiles of the gradient distribution is
less than the distribution_range , the
rule returns True.

Optional

Valid values: Float

Default value: 0.001

patience The number of steps to wait until the loss is
considered to be no longer decreasing.

Optional

Valid values: Integer

Default value: 5

steps The number of steps this rule analyzes. You
typically need to check only the first few
iterations.

Optional

Valid values: Float

Default value: 10

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.poor_weight_initialization(),

Use SageMaker Debugger 3336

Amazon SageMaker Developer Guide

 rule_parameters={
 "activation_inputs_regex": ".*relu_input|.*ReLU_input",
 "threshold": "10.0",
 "distribution_range": "0.001",
 "patience": "5",
 "steps": "10"
 },
 collections_to_save=[
 CollectionConfig(
 name="custom_relu_collection",
 parameters={
 "include_regex": ".*relu_input|.*ReLU_input",
 "save_interval": "500"
 }
)
]
)
]

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Note

This rule is not available for the XGBoost algorithm.

SaturatedActivation

This rule detects if the tanh and sigmoid activation layers are becoming saturated. An activation
layer is saturated when the input of the layer is close to the maximum or minimum of the
activation function. The minimum and maximum of the tanh and sigmoid activation functions are
defined by their respective min_threshold and max_thresholds values. If the activity of a node
drops below the threshold_inactivity percentage, it is considered saturated. If more than a
threshold_layer percent of the nodes are saturated, the rule returns True.

Use SageMaker Debugger 3337

Amazon SageMaker Developer Guide

Parameter Descriptions for the SaturatedActivation Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

collection_names The list of collection names whose tensors the
rule inspects.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

tensor_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Valid values: String

Default value: ".*tanh_input|.*si
gmoid_input".

threshold_tanh_min The minimum and maximum thresholds that
define the extremes of the input for a tanh
activation function, defined as: (min_thre
shold, max_threshold) . The default

Use SageMaker Debugger 3338

Amazon SageMaker Developer Guide

Parameter Name Description

values are determined based on a vanishing
gradient threshold of 0.0000001.

Optional

Valid values: Float

Default values: -9.4999

threshold_tanh_max The minimum and maximum thresholds that
define the extremes of the input for a tanh
activation function, defined as: (min_thre
shold, max_threshold) . The default
values are determined based on a vanishing
gradient threshold of 0.0000001.

Optional

Valid values: Float

Default values: 9.4999

threshold_sigmoid_min The minimum and maximum thresholds that
define the extremes of the input for a sigmoid
activation function, defined as: (min_thre
shold, max_threshold) . The default
values are determined based on a vanishing
gradient threshold of 0.0000001.

Optional

Valid values: Float

Default values: -23

Use SageMaker Debugger 3339

Amazon SageMaker Developer Guide

Parameter Name Description

threshold_sigmoid_max The minimum and maximum thresholds that
define the extremes of the input for a sigmoid
activation function, defined as: (min_thre
shold, max_threshold) . The default
values are determined based on a vanishing
gradient threshold of 0.0000001.

Optional

Valid values: Float

Default values: 16.99999

threshold_inactivity The percentage of inactivity below which
the activation layer is considered to be
saturated. The activation might be active
in the beginning of a trial and then slowly
become less active during the training process.

Optional

Valid values: Float

Default values: 1.0

threshold_layer Returns True if the number of saturated
activations in a layer is greater than the
threshold_layer percentage.

Returns False if the number of saturated
activations in a layer is less than the
threshold_layer percentage.

Optional

Valid values: Float

Default values: 50.0

Use SageMaker Debugger 3340

Amazon SageMaker Developer Guide

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.saturated_activation(),
 rule_parameters={
 "tensor_regex": ".*tanh_input|.*sigmoid_input",
 "threshold_tanh_min": "-9.4999",
 "threshold_tanh_max": "9.4999",
 "threshold_sigmoid_min": "-23",
 "threshold_sigmoid_max": "16.99999",
 "threshold_inactivity": "1.0",
 "threshold_layer": "50.0"
 },
 collections_to_save=[
 CollectionConfig(
 name="custom_activations_collection",
 parameters={
 "include_regex": ".*tanh_input|.*sigmoid_input"
 "save_interval": "500"
 }
)
]
)
]

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Note

This rule is not available for the XGBoost algorithm.

VanishingGradient

This rule detects if the gradients in a trial become extremely small or drop to a zero magnitude.
If the mean of the absolute values of the gradients drops below a specified threshold, the rule
returns True.

Use SageMaker Debugger 3341

Amazon SageMaker Developer Guide

Parameters Descriptions for the VanishingGradient Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold The value at which the gradient is determined
to be vanishing.

Optional

Valid values: Float

Default value: 0.0000001 .

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.vanishing_gradient(),
 rule_parameters={
 "threshold": "0.0000001"
 },
 collections_to_save=[
 CollectionConfig(
 name="gradients",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Use SageMaker Debugger 3342

Amazon SageMaker Developer Guide

Note

This rule is not available for the XGBoost algorithm.

WeightUpdateRatio

This rule keeps track of the ratio of updates to weights during training and detects if that ratio
gets too large or too small. If the ratio of updates to weights is larger than the large_threshold
value or if this ratio is smaller than small_threshold, the rule returns True.

Conditions for training are best when the updates are commensurate to gradients. Excessively
large updates can push the weights away from optimal values, and very small updates result
in very slow convergence. This rule requires weights to be available for two training steps, and
train.save_interval needs to be set equal to num_steps.

Parameter Descriptions for the WeightUpdateRatio Rule

Parameter Name, Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

num_steps The number of steps across which the rule
checks to determine if the tensor has changed.

The number of steps across which you want
to compare the weight ratios. If you pass no
value, the rule runs by default against the
current step and the immediately previous
saved step. If you override the default by
passing a value for this parameter, the
comparison is done between weights at step s
and at a step >= s - num_steps .

Use SageMaker Debugger 3343

Amazon SageMaker Developer Guide

Parameter Name, Description

Optional

Valid values: Integer

Default value: None

large_threshold The maximum value that the ratio of updates
to weight can take before the rule returns
True.

Optional

Valid values: Float

Default value: 10.0

small_threshold The minimum value that the ratio of updates
to weight can take, below which the rule
returns True.

Optional

Valid values: Float

Default value: 0.00000001

epsilon A small constant used to ensure that
Debugger does not divide by zero when
computing the ratio updates to weigh.

Optional

Valid values: Float

Default value: 0.000000001

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.weight_update_ratio(),

Use SageMaker Debugger 3344

Amazon SageMaker Developer Guide

 rule_parameters={
 "num_steps": "100",
 "large_threshold": "10.0",
 "small_threshold": "0.00000001",
 "epsilon": "0.000000001"
 },
 collections_to_save=[
 CollectionConfig(
 name="weights",
 parameters={
 "train.save_interval": "100"
 }
)
]
)
]

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Note

This rule is not available for the XGBoost algorithm.

AllZero

This rule detects if all or a specified percentage of the tensor values are zero.

This rule can be applied either to one of the supported deep learning frameworks
(TensorFlow, MXNet, and PyTorch) or to the XGBoost algorithm. You must specify either the
collection_names or tensor_regex parameter. If both the parameters are specified, the rule
inspects the union of tensors from both sets.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Use SageMaker Debugger 3345

Amazon SageMaker Developer Guide

Parameters Descriptions for the AllZero Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

collection_names The list of collection names whose tensors the
rule inspects.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

tensor_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

threshold Specifies the percentage of values in the
tensor that needs to be zero for this rule to be
invoked.

Use SageMaker Debugger 3346

Amazon SageMaker Developer Guide

Parameter Name Description

Optional

Valid values: Float

Default value: 100 (in percentage)

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.all_zero(),
 rule_parameters={
 "tensor_regex": ".*",
 "threshold": "100"
 },
 collections_to_save=[
 CollectionConfig(
 name="all",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

ClassImbalance

This rule measures sampling imbalances between classes and throws errors if the imbalance
exceeds a threshold or if too many mispredictions for underrepresented classes occur as a result of
the imbalance.

Classification models require well-balanced classes in the training dataset or a proper weighting/
sampling of classes during training. The rule performs the following checks:

• It counts the occurrences per class. If the ratio of number of samples between smallest and
largest class is larger than the threshold_imbalance, an error is thrown.

• It checks the prediction accuracy per class. If resampling or weighting has not been correctly
applied, then the model can reach high accuracy for the class with many training samples, but

Use SageMaker Debugger 3347

Amazon SageMaker Developer Guide

low accuracy for the classes with few training samples. If a fraction of mispredictions for a
certain class is above threshold_misprediction, an error is thrown.

This rule can be applied either to one of the supported deep learning frameworks (TensorFlow,
MXNet, and PyTorch) or to the XGBoost algorithm.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the ClassImbalance Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold_imbalance The acceptable imbalance between the
number of samples in the smallest class and
in the largest class. Exceeding this threshold
 value throws an error.

Optional

Valid values: Float

Default value: 10

threshold_misprediction A limit on the fraction of mispredictions
allowed for each class. Exceeding this
threshold throws an error. The underrepr
esented classes are most at risk of crossing
this threshold.

Optional

Valid values: Float

Use SageMaker Debugger 3348

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: 0.7

samples The number of labels that have to be
processed before an imbalance is evaluated
. The rule might not be triggered until it has
seen sufficient samples across several steps.
The more classes that your dataset contains,
the larger this sample number should be.

Optional

Valid values: Integer

Default value: 500 (assuming a dataset like
MNIST with 10 classes)

argmax If True, np.argmax is applied to the predictio
n tensor. Required when you have a vector
of probabilities for each class. It is used
to determine which class has the highest
probability.

Conditional

Valid values: Boolean

Default value: False

labels_regex The name of the tensor that contains the
labels.

Optional

Valid values: String

Default value: ".*labels"

Use SageMaker Debugger 3349

https://docs.scipy.org/doc/numpy-1.9.3/reference/generated/numpy.argmax.html

Amazon SageMaker Developer Guide

Parameter Name Description

predictions_regex The name of the tensor that contains the
predictions.

Optional

Valid values: String

Default value: ".*predictions"

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.class_imbalance(),
 rule_parameters={
 "threshold_imbalance": "10",
 "threshold_misprediction": "0.7",
 "samples": "500",
 "argmax": "False",
 "labels_regex": ".*labels",
 "predictions_regex": ".*predictions"
 },
 collections_to_save=[
 CollectionConfig(
 name="custom_output_collection",
 parameters={
 "include_regex": ".*labels|.*predictions",
 "save_interval": "500"
 }
)
]
)
]

LossNotDecreasing

This rule detects when the loss is not decreasing in value at an adequate rate. These losses must be
scalars.

This rule can be applied either to one of the supported deep learning frameworks
(TensorFlow, MXNet, and PyTorch) or to the XGBoost algorithm. You must specify either the

Use SageMaker Debugger 3350

Amazon SageMaker Developer Guide

collection_names or tensor_regex parameter. If both the parameters are specified, the rule
inspects the union of tensors from both sets.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the LossNotDecreasing Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

collection_names The list of collection names whose tensors the
rule inspects.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

tensor_regex A list of regex patterns that is used to restrict
this comparison to specific scalar-valued
tensors. The rule inspects only the tensors that
match the regex patterns specified in the list.
If no patterns are passed, the rule compares
all tensors gathered in the trials by default.
Only scalar-valued tensors can be matched.

Optional

Valid values: List of strings or a comma-sep
arated string

Use SageMaker Debugger 3351

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: None

use_losses_collection If set to True, looks for losses in the collection
named "losses" when the collection is present.

Optional

Valid values: Boolean

Default value: True

num_steps The minimum number of steps after which
the rule checks if the loss has decreased. Rule
evaluation happens every num_steps . The
rule compares the loss for this step with the
loss at a step which is at least num_steps
behind the current step. For example, suppose
that the loss is being saved every three steps,
but num_steps is set to 10. At step 21, loss
for step 21 is compared with loss for step 9.
The next step at which loss is checked is step
33, because ten steps after step 21 is step 31,
and at step 31 and step 32 loss is not saved.

Optional

Valid values: Integer

Default value: 10

Use SageMaker Debugger 3352

Amazon SageMaker Developer Guide

Parameter Name Description

diff_percent The minimum percentage difference by which
the loss should decrease between num_steps

.

Optional

Valid values: 0.0 < float < 100

Default value: 0.1 (in percentage)

increase_threshold_percent The maximum threshold percent that loss
is allowed to increase in case loss has been
increasing

Optional

Valid values: 0 < float < 100

Default value: 5 (in percentage)

mode The name of the Debugger mode to query
tensor values for rule checking. If this is not
passed, the rule checks in order by default for
the mode.EVAL , then mode.TRAIN , and
then mode.GLOBAL .

Optional

Valid values: String (EVAL, TRAIN, or GLOBAL)

Default value: GLOBAL

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.loss_not_decreasing(),
 rule_parameters={
 "tensor_regex": ".*",
 "use_losses_collection": "True",

Use SageMaker Debugger 3353

Amazon SageMaker Developer Guide

 "num_steps": "10",
 "diff_percent": "0.1",
 "increase_threshold_percent": "5",
 "mode": "GLOBAL"
 },
 collections_to_save=[
 CollectionConfig(
 name="losses",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

Overfit

This rule detects if your model is being overfit to the training data by comparing the validation and
training losses.

This rule can be applied either to one of the supported deep learning frameworks (TensorFlow,
MXNet, and PyTorch) or to the XGBoost algorithm.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Note

A standard way to prevent overfitting is to regularize your model.

Parameter Descriptions for the Overfit Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Use SageMaker Debugger 3354

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: String

tensor_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

start_step The step from which to start comparing the
validation and training loss.

Optional

Valid values: Integer

Default value: 0

patience The number of steps for which the
ratio_threshold is allowed to exceed the
value set before the model is considered to be
overfit.

Optional

Valid values: Integer

Default value: 1

Use SageMaker Debugger 3355

Amazon SageMaker Developer Guide

Parameter Name Description

ratio_threshold The maximum ratio of the difference between
the mean validation loss and mean training
loss to the mean training loss. If this threshold
is exceeded for a patience number of steps,
the model is being overfit and the rule returns
True.

Optional

Valid values: Float

Default value: 0.1

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.overfit(),
 rule_parameters={
 "tensor_regex": ".*",
 "start_step": "0",
 "patience": "1",
 "ratio_threshold": "0.1"
 },
 collections_to_save=[
 CollectionConfig(
 name="losses",
 parameters={
 "train.save_interval": "100",
 "eval.save_interval": "10"
 }
)
]
)
]

Overtraining

This rule detects if a model is being overtrained. After a number of training iterations on a well-
behaved model (both training and validation loss decrease), the model approaches to a minimum

Use SageMaker Debugger 3356

Amazon SageMaker Developer Guide

of the loss function and does not improve anymore. If the model continues training it can happen
that validation loss starts increasing, because the model starts overfitting. This rule sets up
thresholds and conditions to determine if the model is not improving, and prevents overfitting
problems due to overtraining.

This rule can be applied either to one of the supported deep learning frameworks (TensorFlow,
MXNet, and PyTorch) or to the XGBoost algorithm.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Note

Overtraining can be avoided by early stopping. For information on early stopping, see Stop
Training Jobs Early. For an example that shows how to use spot training with Debugger, see
Enable Spot Training with Amazon SageMaker Debugger.

Parameter Descriptions for the Overtraining Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

patience_train The number of steps to wait before the
training loss is considered to not to be
improving anymore.

Optional

Valid values: Integer

Default value: 5

Use SageMaker Debugger 3357

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/mxnet_spot_training/mxnet-spot-training-with-sagemakerdebugger.html

Amazon SageMaker Developer Guide

Parameter Name Description

patience_validation The number of steps to wait before the
validation loss is considered to not to be
improving anymore.

Optional

Valid values: Integer

Default value: 10

delta The minimum threshold by how much the
error should improve before it is considered as
a new optimum.

Optional

Valid values: Float

Default value: 0.01

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.overtraining(),
 rule_parameters={
 "patience_train": "5",
 "patience_validation": "10",
 "delta": "0.01"
 },
 collections_to_save=[
 CollectionConfig(
 name="losses",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

Use SageMaker Debugger 3358

Amazon SageMaker Developer Guide

SimilarAcrossRuns

This rule compares tensors gathered from a base trial with tensors from another trial.

This rule can be applied either to one of the supported deep learning frameworks (TensorFlow,
MXNet, and PyTorch) or to the XGBoost algorithm.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the SimilarAcrossRuns Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

other_trials A completed training job name whose
tensors you want to compare to those tensors
gathered from the current base_trial .

Required

Valid values: String

collection_names The list of collection names whose tensors the
rule inspects.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

tensor_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.

Use SageMaker Debugger 3359

Amazon SageMaker Developer Guide

Parameter Name Description

The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.similar_across_runs(),
 rule_parameters={
 "other_trials": "<specify-another-job-name>",
 "collection_names": "losses",
 "tensor_regex": ".*"
 },
 collections_to_save=[
 CollectionConfig(
 name="losses",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

StalledTrainingRule

StalledTrainingRule detects if there is no progress made on training job, and stops the training job
if the rule fires. This rule requires tensors to be periodically saved in a time interval defined by its
threshold parameter. This rule keeps on monitoring for new tensors, and if no new tensor has
been emitted for threshold interval rule gets fired.

Use SageMaker Debugger 3360

Amazon SageMaker Developer Guide

Parameter Descriptions for the StalledTrainingRule Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold A threshold that defines by how much time
in seconds the rule waits for a tensor output
until it fires a stalled training issue. Default
value is 1800 seconds.

Optional

Valid values: Integer

Default value: 1800

stop_training_on_fire If set to True, watches if the base training job
outputs tensors in "threshold " seconds.

Optional

Valid values: Boolean

Default value: False

training_job_name_prefix The prefix of base training job name. If
stop_training_on_fire is true, the
rule searches for SageMaker training jobs with
this prefix in the same account. If there is an
inactivity found, the rule takes a StopTrain
ingJob action. Note if there are multiple
jobs found with same prefix, the rule skips
termination. It is important that the prefix is
set unique per each training job.

Use SageMaker Debugger 3361

Amazon SageMaker Developer Guide

Parameter Name Description

Optional

Valid values: String

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.stalled_training_rule(),
 rule_parameters={
 "threshold": "1800",
 "stop_training_on_fire": "True",
 "training_job_name_prefix": "<specify-training-base-job-name>"
 },
 collections_to_save=[
 CollectionConfig(
 name="losses",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

TensorVariance

This rule detects if you have tensors with very high or low variances. Very high or low variances in
a tensor could lead to neuron saturation, which reduces the learning ability of the neural network.
Very high variance in tensors can also eventually lead to exploding tensors. Use this rule to detect
such issues early.

This rule can be applied either to one of the supported deep learning frameworks
(TensorFlow, MXNet, and PyTorch) or to the XGBoost algorithm. You must specify either the
collection_names or tensor_regex parameter. If both the parameters are specified, the rule
inspects the union of tensors from both sets.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Use SageMaker Debugger 3362

Amazon SageMaker Developer Guide

Parameter Descriptions for the TensorVariance Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

collection_names The list of collection names whose tensors the
rule inspects.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

tensor_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

max_threshold The threshold for the upper bound of tensor
variance.

Optional

Use SageMaker Debugger 3363

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: Float

Default value: None

min_threshold The threshold for the lower bound of tensor
variance.

Optional

Valid values: Float

Default value: None

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.tensor_variance(),
 rule_parameters={
 "collection_names": "weights",
 "max_threshold": "10",
 "min_threshold": "0.00001",
 },
 collections_to_save=[
 CollectionConfig(
 name="weights",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

UnchangedTensor

This rule detects whether a tensor is no longer changing across steps.

This rule runs the numpy.allclose method to check if the tensor isn't changing.

This rule can be applied either to one of the supported deep learning frameworks
(TensorFlow, MXNet, and PyTorch) or to the XGBoost algorithm. You must specify either the

Use SageMaker Debugger 3364

https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html

Amazon SageMaker Developer Guide

collection_names or tensor_regex parameter. If both the parameters are specified, the rule
inspects the union of tensors from both sets.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the UnchangedTensor Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

collection_names The list of collection names whose tensors the
rule inspects.

Optional

Valid values: List of strings or a comma-sep
arated string

Default value: None

tensor_regex A list of regex patternsused to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Valid values: List of strings or a comma-sep
arated string

Use SageMaker Debugger 3365

Amazon SageMaker Developer Guide

Parameter Name Description

Default value: None

num_steps The number of steps across which the rule
checks to determine if the tensor has changed.

This checks the last num_steps that are
available. They don't need to be consecutive. If
num_steps is 2, at step s it doesn't necessari
ly check for s-1 and s. If s-1 isn't available, it
checks the last available step along with s. In
that case, it checks the last available step with
the current step.

Optional

Valid values: Integer

Default value: 3

rtol The relative tolerance parameter to be passed
to the numpy.allclose method.

Optional

Valid values: Float

Default value: 1e-05

atol The absolute tolerance parameter to be
passed to the numpy.allclose method.

Optional

Valid values: Float

Default value: 1e-08

Use SageMaker Debugger 3366

https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html

Amazon SageMaker Developer Guide

Parameter Name Description

equal_nan Whether to compare NaNs as equal. If True,
NaNs in input array a are considered equal
to NaNs in input array b in the output array.
This parameter is passed to the numpy.all
close method.

Optional

Valid values: Boolean

Default value: False

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.unchanged_tensor(),
 rule_parameters={
 "collection_names": "losses",
 "tensor_regex": "",
 "num_steps": "3",
 "rtol": "1e-05",
 "atol": "1e-08",
 "equal_nan": "False"
 },
 collections_to_save=[
 CollectionConfig(
 name="losses",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

Use SageMaker Debugger 3367

https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html

Amazon SageMaker Developer Guide

CheckInputImages

This rule checks if input images have been correctly normalized. Specifically, it detects if the mean
of the sample data differs by more than a threshold value from zero. Many computer vision models
require that input data has a zero mean and unit variance.

This rule is applicable to deep learning applications.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the CheckInputImages Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold_mean A threshold that defines by how much mean
of the input data can differ from 0.

Optional

Valid values: Float

Default value: 0.2

threshold_samples The number of images that have to be
sampled before an error can be thrown. If the
value is too low, the estimation of the dataset
mean will be inaccurate.

Optional

Valid values: Integer

Default value: 500

Use SageMaker Debugger 3368

Amazon SageMaker Developer Guide

Parameter Name Description

regex The name of the input data tensor.

Optional

Valid values: String

Default value: ".*hybridsequentia
l0_input_0" (the name of the input
tensor for Apache MXNet models using
HybridSequential)

channel The position of the color channel in the input
tensor shape array.

Optional

Valid values: Integer

Default value: 1 (for example, MXNet expects
input data in the form of (batch_size, channel,
height, width))

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.check_input_images(),
 rule_parameters={
 "threshold_mean": "0.2",
 "threshold_samples": "500",
 "regex": ".*hybridsequential0_input_0",
 "channel": "1"
 },
 collections_to_save=[
 CollectionConfig(
 name="custom_inputs_collection",
 parameters={
 "include_regex": ".*hybridsequential0_input_0",
 "save_interval": "500"
 }

Use SageMaker Debugger 3369

Amazon SageMaker Developer Guide

)
]
)
]

NLPSequenceRatio

This rule calculates the ratio of specific tokens given the rest of the input sequence that is useful
for optimizing performance. For example, you can calculate the percentage of padding end-of-
sentence (EOS) tokens in your input sequence. If the number of EOS tokens is too high, an alternate
bucketing strategy should be performed. You also can calculate the percentage of unknown tokens
in your input sequence. If the number of unknown words is too high, an alternate vocabulary could
be used.

This rule is applicable to deep learning applications.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the NLPSequenceRatio Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

tensor_regex A list of regex patterns used to restrict this
comparison to specific scalar-valued tensors.
The rule inspects only the tensors that match
the regex patterns specified in the list. If no
patterns are passed, the rule compares all
tensors gathered in the trials by default. Only
scalar-valued tensors can be matched.

Optional

Use SageMaker Debugger 3370

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: List of strings or a comma-sep
arated string

Default value: ".*embedding0_input_0"
(assuming an embedding as the initial layer of
the network)

token_values A string of a list of the numerical values of the
tokens. For example, "3, 0".

Optional

Valid values: Comma-separated string of
numerical values

Default value: 0

token_thresholds_percent A string of a list of thresholds (in percentag
es) that correspond to each of the token_val
ues . For example,"50.0, 50.0".

Optional

Valid values: Comma-separated string of floats

Default value: "50"

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.nlp_sequence_ratio(),
 rule_parameters={
 "tensor_regex": ".*embedding0_input_0",
 "token_values": "0",
 "token_thresholds_percent": "50"
 },
 collections_to_save=[
 CollectionConfig(
 name="custom_inputs_collection",
 parameters={

Use SageMaker Debugger 3371

Amazon SageMaker Developer Guide

 "include_regex": ".*embedding0_input_0"
 }
)
]
)
]

Confusion

This rule evaluates the goodness of a confusion matrix for a classification problem.

It creates a matrix of size category_no*category_no and populates it with data coming
from (labels, predictions) pairs. For each (labels, predictions) pair, the count in
confusion[labels][predictions] is incremented by 1. When the matrix is fully populated,
the ratio of data on-diagonal values and off-diagonal values are evaluated as follows:

• For elements on the diagonal: confusion[i][i]/sum_j(confusion[j][j])>=min_diag

• For elements off the diagonal: confusion[j][i])/sum_j(confusion[j]
[i])<=max_off_diag

This rule can be applied to the XGBoost algorithm.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the Confusion Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

category_no The number of categories.

Optional

Use SageMaker Debugger 3372

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: Integer ≥2

Default value: "None"

labels The labels tensor collection or an 1-d vector
of true labels.

Optional

Valid values: String

Default value: "labels"

predictions The predictions tensor collection or an 1-
d vector of estimated labels.

Optional

Valid values: String

Default value: "predictions"

labels_collection The rule inspects the tensors in this collection
for labels.

Optional

Valid values: String

Default value: "labels"

predictions_collection The rule inspects the tensors in this collection
for predictions .

Optional

Valid values: String

Default value: "predictions"

Use SageMaker Debugger 3373

Amazon SageMaker Developer Guide

Parameter Name Description

min_diag The minimum threshold for the ratio of data
on the diagonal.

Optional

Valid values: 0≤float≤1

Default value: 0.9

max_off_diag The maximum threshold for the ratio of data
off the diagonal.

Optional

Valid values: 0≤float≤1

Default value: 0.1

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.confusion(),
 rule_parameters={
 "category_no": "10",
 "labels": "labels",
 "predictions": "predictions",
 "labels_collection": "labels",
 "predictions_collection": "predictions",
 "min_diag": "0.9",
 "max_off_diag": "0.1"
 },
 collections_to_save=[
 CollectionConfig(
 name="labels",
 parameters={
 "save_interval": "500"
 }
),
 CollectionConfig(
 name="predictions",

Use SageMaker Debugger 3374

Amazon SageMaker Developer Guide

 parameters={
 "include_regex": "500"
 }
)
]
)
]

Note

This rule infers default values for the optional parameters if their values aren't specified.

FeatureImportanceOverweight

This rule accumulates the weights of the n largest feature importance values per step and ensures
that they do not exceed the threshold. For example, you can set the threshold for the top 3
features to not hold more than 80 percent of the total weights of the model.

This rule is valid only for the XGBoost algorithm.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the FeatureImportanceOverweight Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold Defines the threshold for the proportion of
the cumulative sum of the n largest features.
The number n is defined by the nfeatures
parameter.

Optional

Use SageMaker Debugger 3375

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: Float

Default value: 0.8

nfeatures The number of largest features.

Optional

Valid values: Integer

Default value: 3

tensor_regex Regular expression (regex) of tensor names
the rule to analyze.

Optional

Valid values: String

Default value: ".*feature_importance/
weight"

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.feature_importance_overweight(),
 rule_parameters={
 "threshold": "0.8",
 "nfeatures": "3",
 "tensor_regex": ".*feature_importance/weight"
 },
 collections_to_save=[
 CollectionConfig(
 name="feature_importance",
 parameters={
 "save_interval": "500"
 }
)
]
)

Use SageMaker Debugger 3376

Amazon SageMaker Developer Guide

]

TreeDepth

This rule measures the depth of trees in an XGBoost model. XGBoost rejects splits if they do not
improve loss. This regularizes the training. As a result, the tree might not grow as deep as defined
by the depth parameter.

This rule is valid only for the XGBoost algorithm.

For an example of how to configure and deploy a built-in rule, see Configure Debugger Built-in
Rules.

Parameter Descriptions for the TreeDepth Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

depth The depth of the tree. The depth of the tree is
obtained by computing the base 2 logarithm
of the largest node ID.

Optional

Valid values: Float

Default value: 4

built_in_rules = [
 Rule.sagemaker(
 base_config=rule_configs.tree_depth(),
 rule_parameters={
 "depth": "4"
 },

Use SageMaker Debugger 3377

Amazon SageMaker Developer Guide

 collections_to_save=[
 CollectionConfig(
 name="tree",
 parameters={
 "save_interval": "500"
 }
)
]
)
]

Create Debugger Custom Rules for Training Job Analysis

You can create custom rules to monitor your training job using the Debugger Rule APIs and the
open source smdebug Python library that provide tools to build your own rule containers.

Topics

• Prerequisites for Creating Debugger Custom Rules

• Use the Debugger Client Library smdebug to Create a Custom Rule Python Script

• Use the Debugger APIs to Run Your Own Custom Rules

Prerequisites for Creating Debugger Custom Rules

To create Debugger custom rules, you need the following prerequisites.

• SageMaker Debugger Rule.custom API

• The open source smdebug Python library

• Your own custom rule python script

• Amazon SageMaker Debugger Registry URLs for Custom Rule Evaluators

Use the Debugger Client Library smdebug to Create a Custom Rule Python Script

The smdebug Rule API provides an interface to set up your own custom rules. The following
python script is a sample of how to construct a custom rule, CustomGradientRule. This tutorial
custom rule watches if the gradients are getting too large and set the default threshold as 10. The
custom rule takes a base trial created by a SageMaker estimator when it initiates training job.

from smdebug.rules.rule import Rule

Use SageMaker Debugger 3378

https://github.com/awslabs/sagemaker-debugger/
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.Rule.custom
https://github.com/awslabs/sagemaker-debugger/

Amazon SageMaker Developer Guide

class CustomGradientRule(Rule):
 def __init__(self, base_trial, threshold=10.0):
 super().__init__(base_trial)
 self.threshold = float(threshold)

 def invoke_at_step(self, step):
 for tname in self.base_trial.tensor_names(collection="gradients"):
 t = self.base_trial.tensor(tname)
 abs_mean = t.reduction_value(step, "mean", abs=True)
 if abs_mean > self.threshold:
 return True
 return False

You can add multiple custom rule classes as many as you want in the same python script and
deploy them to any training job trials by constructing custom rule objects in the following section.

Use the Debugger APIs to Run Your Own Custom Rules

The following code sample shows how to configure a custom rule with the Amazon SageMaker
Python SDK. This example assumes that the custom rule script you created in the previous step is
located at 'path/to/my_custom_rule.py'.

from sagemaker.debugger import Rule, CollectionConfig

custom_rule = Rule.custom(
 name='MyCustomRule',
 image_uri='759209512951.dkr.ecr.us-west-2.amazonaws.com/sagemaker-debugger-rule-
evaluator:latest',
 instance_type='ml.t3.medium',
 source='path/to/my_custom_rule.py',
 rule_to_invoke='CustomGradientRule',
 collections_to_save=[CollectionConfig("gradients")],
 rule_parameters={"threshold": "20.0"}
)

The following list explains the Debugger Rule.custom API arguments.

• name (str): Specify a custom rule name as you want.

• image_uri (str): This is the image of the container that has the logic of understanding your
custom rule. It sources and evaluates the specified tensor collections you save in the training job.

Use SageMaker Debugger 3379

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

You can find the list of open source SageMaker rule evaluator images from Amazon SageMaker
Debugger Registry URLs for Custom Rule Evaluators.

• instance_type (str): You need to specify an instance to build a rule docker container. This spins
up the instance in parallel with a training container.

• source (str): This is the local path or the Amazon S3 URI to your custom rule script.

• rule_to_invoke (str): This specifies the particular Rule class implementation in your custom
rule script. SageMaker supports only one rule to be evaluated at a time in a rule job.

• collections_to_save (str): This specifies which tensor collections you will save for the rule to
run.

• rule_parameters (dictionary): This accepts parameter inputs in a dictionary format. You can
adjust the parameters that you configured in the custom rule script.

After you set up the custom_rule object, you can use it for building a SageMaker estimator for
any training jobs. Specify the entry_point to your training script. You do not need to make any
change of your training script.

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(
 role=sagemaker.get_execution_role(),
 base_job_name='smdebug-custom-rule-demo-tf-keras',
 entry_point='path/to/your_training_script.py'
 train_instance_type='ml.p2.xlarge'
 ...

 # debugger-specific arguments below
 rules = [custom_rule]
)

estimator.fit()

For more variations and advanced examples of using Debugger custom rules, see the following
example notebooks.

• Monitor your training job with Amazon SageMaker Debugger custom rules

• PyTorch iterative model pruning of ResNet and AlexNet

Use SageMaker Debugger 3380

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_keras_custom_rule/tf-keras-custom-rule.html
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_iterative_model_pruning

Amazon SageMaker Developer Guide

• Trigger Amazon CloudWatch Events using Debugger Rules to Take an Action Based on Training
Status with TensorFlow

Use Debugger with Custom Training Containers

Amazon SageMaker Debugger is available for any deep learning models that you bring to Amazon
SageMaker. The AWS CLI, SageMaker Estimator API, and the Debugger APIs enable you to
use any Docker base images to build and customize containers to train your models. To use
Debugger with customized containers, you need to make a minimal change to your training script
to implement the Debugger hook callback and retrieve tensors from training jobs.

You need the following resources to build a customized container with Debugger.

• Amazon SageMaker Python SDK

• The SMDebug open source client library

• A Docker base image of your choice

• Your training script with a Debugger hook registered – For more information about registering a
Debugger hook to your training script, see Register Debugger Hook to Your Training Script.

For an end-to-end example of using Debugger with a custom training container, see the following
example notebook.

• Build a Custom Training Container and Debug Training Jobs with Debugger

Tip

This custom container with Debugger guide is an extension of the Adapting your own
training container guide which walks you thorough how to build and push your custom
training container to Amazon ECR.

Prepare to Build a Custom Training Container

To build a docker container, the basic structure of files should look like the following:

debugger_custom_container_test_notebook.ipynb # a notebook to run python
 snippet codes

Use SageMaker Debugger 3381

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_action_on_rule
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/tensorflow_action_on_rule
https://sagemaker.readthedocs.io
https://github.com/awslabs/sagemaker-debugger
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/build_your_own_container_with_debugger/debugger_byoc.html

Amazon SageMaker Developer Guide

debugger_custom_container_test_folder # this is a docker folder
 ### your-training-script.py # your training script with
 Debugger hook
 ### Dockerfile # a Dockerfile to build your own
 container

Register Debugger Hook to Your Training Script

To debug your model training, you need to add a Debugger hook to your training script.

Note

This step is required to collect model parameters (output tensors) for debugging your
model training. If you only want to monitor and profile, you can skip this hook registration
step and exclude the debugger_hook_config parameter when constructing an estimater.

The following example code shows the structure of a training script using the Keras ResNet50
model and how to pass the Debugger hook as a Keras callback for debugging. To find a complete
training script, see TensorFlow training script with SageMaker Debugger hook.

An example of training script (your-training-script.py)
import tensorflow.compat.v2 as tf
from tensorflow.keras.applications.resnet50 import ResNet50
import smdebug.tensorflow as smd

def train(batch_size, epoch, model, hook):

 ...
 model.fit(X_train, Y_train,
 batch_size=batch_size,
 epochs=epoch,
 validation_data=(X_valid, Y_valid),
 shuffle=True,

 # smdebug modification: Pass the Debugger hook in the main() as a Keras
 callback
 callbacks=[hook])

def main():
 parser=argparse.ArgumentParser(description="Train resnet50 cifar10")

Use SageMaker Debugger 3382

https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-debugger/build_your_own_container_with_debugger/docker/tf_keras_resnet_byoc.py

Amazon SageMaker Developer Guide

 # hyperparameter settings
 parser.add_argument(...)

 args = parser.parse_args()

 model=ResNet50(weights=None, input_shape=(32,32,3), classes=10)

 # Add the following line to register the Debugger hook for Keras.
 hook=smd.KerasHook.create_from_json_file()

 # Start the training.
 train(args.batch_size, args.epoch, model, hook)

if __name__ == "__main__":
 main()

For more information about registering the Debugger hook for the supported frameworks and
algorithm, see the following links in the SMDebug client library:

• SMDebug TensorFlow hook

• SMDebug PyTorch hook

• SMDebug MXNet hook

• SMDebug XGBoost hook

In the following example notebooks' training scripts, you can find more examples about how to
add the Debugger hooks to training scripts and collect output tensors in detail:

• Debugger in script mode with the TensorFlow 2.1 framework

To see the difference between using Debugger in a Deep Learning Container and in script
mode, open this notebook and put it and the previous Debugger in a Deep Learning Container
TensorFlow v2.1 notebook example side by side.

In script mode, the hook configuration part is removed from the script in which you set the
estimator. Instead, the Debugger hook feature is merged into the training script, TensorFlow
Keras ResNet training script in script mode. The training script imports the smdebug library in
the required TensorFlow Keras environment to communicate with the TensorFlow ResNet50
algorithm. It also manually implements the smdebug hook functionality by adding the

Use SageMaker Debugger 3383

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/tensorflow.md
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/pytorch.md
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/mxnet.md
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/xgboost.md
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow2/tensorflow2_keras_custom_container/tf2-keras-custom-container.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow2/tensorflow2_zero_code_change/tf2-keras-default-container.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow2/tensorflow2_zero_code_change/tf2-keras-default-container.html
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-debugger/tensorflow2/tensorflow2_keras_custom_container/src/tf_keras_resnet_byoc.py
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-debugger/tensorflow2/tensorflow2_keras_custom_container/src/tf_keras_resnet_byoc.py

Amazon SageMaker Developer Guide

callbacks=[hook] argument inside the train function (in line 49), and by adding the manual
hook configuration (in line 89) provided through SageMaker Python SDK.

This script mode example runs the training job in the TF 2.1 framework for direct comparison
with the zero script change in the TF 2.1 example. The benefit of setting up Debugger in
script mode is the flexibility to choose framework versions not covered by AWS Deep Learning
Containers.

• Using Amazon SageMaker Debugger in a PyTorch Container in Script Mode

This notebook enables Debugger in script mode in PyTorch v1.3.1 framework. PyTorch v1.3.1 is
supported by SageMaker containers, and this example shows details of how to modify a training
script.

The SageMaker PyTorch estimator is already in script mode by default. In the notebook, the line
to activate script_mode is not included in the estimator configuration.

This notebook shows detailed steps to change the original PyTorch training script to a modified
version to enable Debugger. Additionally, this example shows how you can use Debugger built-
in rules to detect training issues such as the vanishing gradients problem, and the Debugger trial
features to call and analyze the saved tensors.

Create and Configure a Dockerfile

Open your SageMaker JupyterLab and create a new folder,
debugger_custom_container_test_folder in this example, to save your training script
and Dockerfile. The following code example is a Dockerfile that includes essential docker
build commends. Paste the following code into the Dockerfile text file and save it. Upload your
training script to the same folder.

Specify a docker base image
FROM tensorflow/tensorflow:2.2.0rc2-gpu-py3
RUN /usr/bin/python3 -m pip install --upgrade pip
RUN pip install --upgrade protobuf

Install required packages to enable the SageMaker Python SDK and the smdebug library
RUN pip install sagemaker-training
RUN pip install smdebug
CMD ["bin/bash"]

Use SageMaker Debugger 3384

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger/pytorch_custom_container
https://github.com/pytorch/examples/blob/master/mnist/main.py

Amazon SageMaker Developer Guide

If you want to use a pre-built AWS Deep Learning Container image, see Available AWS Deep
Learning Containers Images.

Build and Push the Custom Training Container to Amazon ECR

Create a test notebook, debugger_custom_container_test_notebook.ipynb, and run the
following code in the notebook cell. This will access the debugger_byoc_test_docker directory,
build the docker with the specified algorithm_name, and push the docker container to your
Amazon ECR.

import boto3

account_id = boto3.client('sts').get_caller_identity().get('Account')
ecr_repository = 'sagemaker-debugger-mnist-byoc-tf2'
tag = ':latest'

region = boto3.session.Session().region_name

uri_suffix = 'amazonaws.com'
if region in ['cn-north-1', 'cn-northwest-1']:
 uri_suffix = 'amazonaws.com.cn'
byoc_image_uri = '{}.dkr.ecr.{}.{}/{}'.format(account_id, region, uri_suffix,
 ecr_repository + tag)

!docker build -t $ecr_repository docker
!$(aws ecr get-login --region $region --registry-ids $account_id --no-include-email)
!aws ecr create-repository --repository-name $ecr_repository
!docker tag {ecr_repository + tag} $byoc_image_uri
!docker push $byoc_image_uri

Tip

If you use one of the AWS Deep Learning Container base images, run the following code to
log in to Amazon ECR and access to the Deep Learning Container image repository.

! aws ecr get-login-password --region {region} | docker login --username AWS --
password-stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com

Use SageMaker Debugger 3385

https://aws.amazon.com/releasenotes/available-deep-learning-containers-images/
https://aws.amazon.com/releasenotes/available-deep-learning-containers-images/

Amazon SageMaker Developer Guide

Run and Debug Training Jobs Using the Custom Training Container

After you build and push your docker container to Amazon ECR, configure a SageMaker
estimator with your training script and the Debugger-specific parameters. After you execute the
estimator.fit(), Debugger will collect output tensors, monitor them, and detect training
issues. Using the saved tensors, you can further analyze the training job by using the smdebug
core features and tools. Configuring a workflow of Debugger rule monitoring process with Amazon
CloudWatch Events and AWS Lambda, you can automate a stopping training job process whenever
the Debugger rules spots training issues.

import sagemaker
from sagemaker.estimator import Estimator
from sagemaker.debugger import Rule, DebuggerHookConfig, CollectionConfig, rule_configs

profiler_config=ProfilerConfig(...)
debugger_hook_config=DebuggerHookConfig(...)
rules=[
 Rule.sagemaker(rule_configs.built_in_rule()),
 ProfilerRule.sagemaker(rule_configs.BuiltInRule())
]

estimator=Estimator(
 image_uri=byoc_image_uri,
 entry_point="./debugger_custom_container_test_folder/your-training-script.py"
 role=sagemaker.get_execution_role(),
 base_job_name='debugger-custom-container-test',
 instance_count=1,
 instance_type='ml.p3.2xlarge',

 # Debugger-specific parameters
 profiler_config=profiler_config,
 debugger_hook_config=debugger_hook_config,
 rules=rules
)

start training
estimator.fit()

Configure Debugger Using Amazon SageMaker API

The preceding topics focus on using Debugger through Amazon SageMaker Python SDK, which is
a wrapper around AWS SDK for Python (Boto3) and SageMaker API operations. This offers a high-

Use SageMaker Debugger 3386

Amazon SageMaker Developer Guide

level experience of accessing the Amazon SageMaker API operations. In case you need to manually
configure the SageMaker API operations using AWS Boto3 or AWS Command Line Interface (CLI)
for other SDKs, such as Java, Go, and C++, this section covers how to configure the following low-
level API operations.

Topics

• JSON (AWS CLI)

• AWS Boto3

JSON (AWS CLI)

Amazon SageMaker Debugger built-in rules can be configured for a training job using the
DebugHookConfig, DebugRuleConfiguration, ProfilerConfig, and ProfilerRuleConfiguration objects
through the SageMaker CreateTrainingJob API operation. You need to specify the right image URI
in the RuleEvaluatorImage parameter, and the following examples walk you through how to set
up the JSON strings to request CreateTrainingJob.

The following code shows a complete JSON template to run a training job with required settings
and Debugger configurations. Save the template as a JSON file in your working directory and run
the training job using AWS CLI. For example, save the following code as debugger-training-
job-cli.json.

Note

Ensure that you use the correct Docker container images. To find AWS Deep Learning
Container images, see Available Deep Learning Containers Images. To find a complete list
of available Docker images for using the Debugger rules, see Use Debugger Docker Images
for Built-in or Custom Rules.

{
 "TrainingJobName": "debugger-aws-cli-test",
 "RoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonSageMaker-
ExecutionRole-YYYYMMDDT123456",
 "AlgorithmSpecification": {
 // Specify a training Docker container image URI (Deep Learning Container or your
 own training container) to TrainingImage.
 "TrainingImage": "763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-
training:2.4.1-gpu-py37-cu110-ubuntu18.04",

Use SageMaker Debugger 3387

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugHookConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugRuleConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerRuleConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

 "TrainingInputMode": "File",
 "EnableSageMakerMetricsTimeSeries": false
 },
 "HyperParameters": {
 "sagemaker_program": "entry_point/tf-hvd-train.py",
 "sagemaker_submit_directory": "s3://sagemaker-us-west-2-111122223333/debugger-
boto3-profiling-test/source.tar.gz"
 },
 "OutputDataConfig": {
 "S3OutputPath": "s3://sagemaker-us-west-2-111122223333/debugger-aws-cli-test/
output"
 },
 "DebugHookConfig": {
 "S3OutputPath": "s3://sagemaker-us-west-2-111122223333/debugger-aws-cli-test/
debug-output",
 "CollectionConfigurations": [
 {
 "CollectionName": "losses",
 "CollectionParameters" : {
 "train.save_interval": "50"
 }
 }
]
 },
 "DebugRuleConfigurations": [
 {
 "RuleConfigurationName": "LossNotDecreasing",
 "RuleEvaluatorImage": "895741380848.dkr.ecr.us-west-2.amazonaws.com/sagemaker-
debugger-rules:latest",
 "RuleParameters": {"rule_to_invoke": "LossNotDecreasing"}
 }
],
 "ProfilerConfig": {
 "S3OutputPath": "s3://sagemaker-us-west-2-111122223333/debugger-aws-cli-test/
profiler-output",
 "ProfilingIntervalInMilliseconds": 500,
 "ProfilingParameters": {
 "DataloaderProfilingConfig": "{\"StartStep\": 5, \"NumSteps\": 3,
 \"MetricsRegex\": \".*\", }",
 "DetailedProfilingConfig": "{\"StartStep\": 5, \"NumSteps\": 3, }",
 "PythonProfilingConfig": "{\"StartStep\": 5, \"NumSteps\": 3, \"ProfilerName
\": \"cprofile\", \"cProfileTimer\": \"total_time\"}",
 "LocalPath": "/opt/ml/output/profiler/"
 }

Use SageMaker Debugger 3388

Amazon SageMaker Developer Guide

 },
 "ProfilerRuleConfigurations": [
 {
 "RuleConfigurationName": "ProfilerReport",
 "RuleEvaluatorImage": "895741380848.dkr.ecr.us-west-2.amazonaws.com/sagemaker-
debugger-rules:latest",
 "RuleParameters": {"rule_to_invoke": "ProfilerReport"}
 }
],
 "ResourceConfig": {
 "InstanceType": "ml.p3.8xlarge",
 "InstanceCount": 1,
 "VolumeSizeInGB": 30
 },

 "StoppingCondition": {
 "MaxRuntimeInSeconds": 86400
 }
}

After saving the JSON file, run the following command in your terminal. (Use ! at the beginning of
the line if you use a Jupyter notebook.)

aws sagemaker create-training-job --cli-input-json file://debugger-training-job-
cli.json

To configure a Debugger rule for debugging model parameters

The following code samples show how to configure a built-in VanishingGradient rule using this
SageMaker API.

To enable Debugger to collect output tensors

Specify the Debugger hook configuration as follows:

"DebugHookConfig": {
 "S3OutputPath": "s3://<default-bucket>/<training-job-name>/debug-output",
 "CollectionConfigurations": [
 {
 "CollectionName": "gradients",
 "CollectionParameters" : {
 "save_interval": "500"

Use SageMaker Debugger 3389

Amazon SageMaker Developer Guide

 }
 }
]
}

This will make the training job save the tensor collection, gradients, every save_interval of
500 steps. To find available CollectionName values, see Debugger Built-in Collections in the
SMDebug client library documentation. To find available CollectionParameters parameter keys
and values, see the sagemaker.debugger.CollectionConfig class in the SageMaker Python
SDK documentation.

To enable Debugger rules for debugging the output tensors

The following DebugRuleConfigurations API example shows how to run the built-in
VanishingGradient rule on the saved gradients collection.

"DebugRuleConfigurations": [
 {
 "RuleConfigurationName": "VanishingGradient",
 "RuleEvaluatorImage": "503895931360.dkr.ecr.us-east-1.amazonaws.com/sagemaker-
debugger-rules:latest",
 "RuleParameters": {
 "rule_to_invoke": "VanishingGradient",
 "threshold": "20.0"
 }
 }
]

With a configuration like the one in this sample, Debugger starts a rule evaluation job for your
training job using the VanishingGradient rule on the collection of gradients tensor. To find
a complete list of available Docker images for using the Debugger rules, see Use Debugger Docker
Images for Built-in or Custom Rules. To find the key-value pairs for RuleParameters, see List of
Debugger Built-in Rules.

To configure a Debugger built-in rule for profiling system and framework metrics

The following example code shows how to specify the ProfilerConfig API operation to enable
collecting system and framework metrics.

To enable Debugger profiling to collect system and framework metrics

Use SageMaker Debugger 3390

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#built-in-collections
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.CollectionConfig

Amazon SageMaker Developer Guide

Target Step

"ProfilerConfig": {
 // Optional. Path to an S3 bucket to save profiling outputs
 "S3OutputPath": "s3://<default-bucket>/<training-job-name>/profiler-output",
 // Available values for ProfilingIntervalInMilliseconds: 100, 200, 500, 1000 (1
 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds.
 "ProfilingIntervalInMilliseconds": 500,
 "ProfilingParameters": {
 "DataloaderProfilingConfig": "{ \"StartStep\": 5, \"NumSteps\": 3,
 \"MetricsRegex\": \".*\" }",
 "DetailedProfilingConfig": "{ \"StartStep\": 5, \"NumSteps\": 3 }",
 // For PythonProfilingConfig,
 // available ProfilerName options: cProfile, Pyinstrument
 // available cProfileTimer options only when using cProfile: cpu, off_cpu,
 total_time
 "PythonProfilingConfig": "{ \"StartStep\": 5, \"NumSteps\": 3,
 \"ProfilerName\": \"cProfile\", \"cProfileTimer\": \"total_time\" }",
 // Optional. Local path for profiling outputs
 "LocalPath": "/opt/ml/output/profiler/"
 }
}

Target Time Duration

"ProfilerConfig": {
 // Optional. Path to an S3 bucket to save profiling outputs
 "S3OutputPath": "s3://<default-bucket>/<training-job-name>/profiler-output",
 // Available values for ProfilingIntervalInMilliseconds: 100, 200, 500, 1000 (1
 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds.
 "ProfilingIntervalInMilliseconds": 500,
 "ProfilingParameters": {
 "DataloaderProfilingConfig": "{ \"StartTimeInSecSinceEpoch\": 12345567789,
 \"DurationInSeconds\": 10, \"MetricsRegex\": \".*\" }",
 "DetailedProfilingConfig": "{ \"StartTimeInSecSinceEpoch\": 12345567789,
 \"DurationInSeconds\": 10 }",
 // For PythonProfilingConfig,
 // available ProfilerName options: cProfile, Pyinstrument
 // available cProfileTimer options only when using cProfile: cpu, off_cpu,
 total_time
 "PythonProfilingConfig": "{ \"StartTimeInSecSinceEpoch\": 12345567789,
 \"DurationInSeconds\": 10, \"ProfilerName\": \"cProfile\", \"cProfileTimer\":
 \"total_time\" }",

Use SageMaker Debugger 3391

Amazon SageMaker Developer Guide

 // Optional. Local path for profiling outputs
 "LocalPath": "/opt/ml/output/profiler/"
 }
}

To enable Debugger rules for profiling the metrics

The following example code shows how to configure the ProfilerReport rule.

"ProfilerRuleConfigurations": [
 {
 "RuleConfigurationName": "ProfilerReport",
 "RuleEvaluatorImage": "895741380848.dkr.ecr.us-west-2.amazonaws.com/sagemaker-
debugger-rules:latest",
 "RuleParameters": {
 "rule_to_invoke": "ProfilerReport",
 "CPUBottleneck_cpu_threshold": "90",
 "IOBottleneck_threshold": "90"
 }
 }
]

To find a complete list of available Docker images for using the Debugger rules, see Use Debugger
Docker Images for Built-in or Custom Rules. To find the key-value pairs for RuleParameters, see
List of Debugger Built-in Rules.

Update Debugger Profiling Configuration Using the UpdateTrainingJob API Operation

Debugger profiling configuration can be updated while your training job is running by using the
UpdateTrainingJob API operation. Configure new ProfilerConfig and ProfilerRuleConfiguration
objects, and specify the training job name to the TrainingJobName parameter.

{
 "ProfilerConfig": {
 "DisableProfiler": boolean,
 "ProfilingIntervalInMilliseconds": number,
 "ProfilingParameters": {
 "string" : "string"
 }
 },
 "ProfilerRuleConfigurations": [
 {

Use SageMaker Debugger 3392

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerRuleConfiguration.html

Amazon SageMaker Developer Guide

 "RuleConfigurationName": "string",
 "RuleEvaluatorImage": "string",
 "RuleParameters": {
 "string" : "string"
 }
 }
],
 "TrainingJobName": "your-training-job-name-YYYY-MM-DD-HH-MM-SS-SSS"
}

Add Debugger Custom Rule Configuration to the CreateTrainingJob API Operation

A custom rule can be configured for a training job using the DebugHookConfig and
DebugRuleConfiguration objects in the CreateTrainingJob API operation. The following code
sample shows how to configure a custom ImproperActivation rule written with the smdebug
library using this SageMaker API operation. This example assumes that you’ve written the custom
rule in custom_rules.py file and uploaded it to an Amazon S3 bucket. The example provides
pre-built Docker images that you can use to run your custom rules. These are listed at Amazon
SageMaker Debugger Registry URLs for Custom Rule Evaluators. You specify the URL registry
address for the pre-built Docker image in the RuleEvaluatorImage parameter.

"DebugHookConfig": {
 "S3OutputPath": "s3://<default-bucket>/<training-job-name>/debug-output",
 "CollectionConfigurations": [
 {
 "CollectionName": "relu_activations",
 "CollectionParameters": {
 "include_regex": "relu",
 "save_interval": "500",
 "end_step": "5000"
 }
 }
]
},
"DebugRulesConfigurations": [
 {
 "RuleConfigurationName": "improper_activation_job",
 "RuleEvaluatorImage": "552407032007.dkr.ecr.ap-south-1.amazonaws.com/sagemaker-
debugger-rule-evaluator:latest",
 "InstanceType": "ml.c4.xlarge",
 "VolumeSizeInGB": 400,
 "RuleParameters": {

Use SageMaker Debugger 3393

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugHookConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugRuleConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugRuleConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

 "source_s3_uri": "s3://bucket/custom_rules.py",
 "rule_to_invoke": "ImproperActivation",
 "collection_names": "relu_activations"
 }
 }
]

To find a complete list of available Docker images for using the Debugger rules, see Use Debugger
Docker Images for Built-in or Custom Rules. To find the key-value pairs for RuleParameters, see
List of Debugger Built-in Rules.

AWS Boto3

Amazon SageMaker Debugger built-in rules can be configured for a training job using the
create_training_job() function of the AWS Boto3 SageMaker client. You need to specify the
right image URI in the RuleEvaluatorImage parameter, and the following examples walk you
through how to set up the request body for the create_training_job() function.

The following code shows a complete example of how to configure Debugger for the
create_training_job() request body and start a training job in us-west-2, assuming that
a training script entry_point/train.py is prepared using TensorFlow. To find an end-to-end
example notebook, see Profiling TensorFlow Multi GPU Multi Node Training Job with Amazon
SageMaker Debugger (Boto3).

Note

Ensure that you use the correct Docker container images. To find available AWS Deep
Learning Container images, see Available Deep Learning Containers Images. To find a
complete list of available Docker images for using the Debugger rules, see Use Debugger
Docker Images for Built-in or Custom Rules.

import sagemaker, boto3
import datetime, tarfile

Start setting up a SageMaker session and a Boto3 SageMaker client
session = sagemaker.Session()
region = session.boto_region_name
bucket = session.default_bucket()

Use SageMaker Debugger 3394

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_profiling/tf-resnet-profiling-multi-gpu-multi-node-boto3.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/tensorflow_profiling/tf-resnet-profiling-multi-gpu-multi-node-boto3.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

Upload a training script to a default Amazon S3 bucket of the current SageMaker
 session
source = 'source.tar.gz'
project = 'debugger-boto3-test'

tar = tarfile.open(source, 'w:gz')
tar.add ('entry_point/train.py') # Specify the directory and name of your training
 script
tar.close()

s3 = boto3.client('s3')
s3.upload_file(source, bucket, project+'/'+source)

Set up a Boto3 session client for SageMaker
sm = boto3.Session(region_name=region).client("sagemaker")

Start a training job
sm.create_training_job(
 TrainingJobName='debugger-boto3-'+datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-
%S'),
 HyperParameters={
 'sagemaker_submit_directory': 's3://'+bucket+'/'+project+'/'+source,
 'sagemaker_program': '/entry_point/train.py' # training scrip file location and
 name under the sagemaker_submit_directory
 },
 AlgorithmSpecification={
 # Specify a training Docker container image URI (Deep Learning Container or
 your own training container) to TrainingImage.
 'TrainingImage': '763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-
training:2.4.1-gpu-py37-cu110-ubuntu18.04',
 'TrainingInputMode': 'File',
 'EnableSageMakerMetricsTimeSeries': False
 },
 RoleArn='arn:aws:iam::111122223333:role/service-role/AmazonSageMaker-
ExecutionRole-20201014T161125',
 OutputDataConfig={'S3OutputPath': 's3://'+bucket+'/'+project+'/output'},
 ResourceConfig={
 'InstanceType': 'ml.p3.8xlarge',
 'InstanceCount': 1,
 'VolumeSizeInGB': 30
 },
 StoppingCondition={
 'MaxRuntimeInSeconds': 86400
 },

Use SageMaker Debugger 3395

Amazon SageMaker Developer Guide

 DebugHookConfig={
 'S3OutputPath': 's3://'+bucket+'/'+project+'/debug-output',
 'CollectionConfigurations': [
 {
 'CollectionName': 'losses',
 'CollectionParameters' : {
 'train.save_interval': '500',
 'eval.save_interval': '50'
 }
 }
]
 },
 DebugRuleConfigurations=[
 {
 'RuleConfigurationName': 'LossNotDecreasing',
 'RuleEvaluatorImage': '895741380848.dkr.ecr.us-west-2.amazonaws.com/
sagemaker-debugger-rules:latest',
 'RuleParameters': {'rule_to_invoke': 'LossNotDecreasing'}
 }
],
 ProfilerConfig={
 'S3OutputPath': 's3://'+bucket+'/'+project+'/profiler-output',
 'ProfilingIntervalInMilliseconds': 500,
 'ProfilingParameters': {
 'DataloaderProfilingConfig': '{"StartStep": 5, "NumSteps": 3,
 "MetricsRegex": ".*", }',
 'DetailedProfilingConfig': '{"StartStep": 5, "NumSteps": 3, }',
 'PythonProfilingConfig': '{"StartStep": 5, "NumSteps": 3, "ProfilerName":
 "cprofile", "cProfileTimer": "total_time"}',
 'LocalPath': '/opt/ml/output/profiler/' # Optional. Local path for
 profiling outputs
 }
 },
 ProfilerRuleConfigurations=[
 {
 'RuleConfigurationName': 'ProfilerReport',
 'RuleEvaluatorImage': '895741380848.dkr.ecr.us-west-2.amazonaws.com/
sagemaker-debugger-rules:latest',
 'RuleParameters': {'rule_to_invoke': 'ProfilerReport'}
 }
]
)

Use SageMaker Debugger 3396

Amazon SageMaker Developer Guide

To configure a Debugger rule for debugging model parameters

The following code samples show how to configure a built-in VanishingGradient rule using this
SageMaker API.

To enable Debugger to collect output tensors

Specify the Debugger hook configuration as follows:

DebugHookConfig={
 'S3OutputPath': 's3://<default-bucket>/<training-job-name>/debug-output',
 'CollectionConfigurations': [
 {
 'CollectionName': 'gradients',
 'CollectionParameters' : {
 'train.save_interval': '500',
 'eval.save_interval': '50'
 }
 }
]
}

This will make the training job save a tensor collection, gradients, every save_interval of
500 steps. To find available CollectionName values, see Debugger Built-in Collections in the
SMDebug client library documentation. To find available CollectionParameters parameter keys
and values, see the sagemaker.debugger.CollectionConfig class in the SageMaker Python
SDK documentation.

To enable Debugger rules for debugging the output tensors

The following DebugRuleConfigurations API example shows how to run the built-in
VanishingGradient rule on the saved gradients collection.

DebugRuleConfigurations=[
 {
 'RuleConfigurationName': 'VanishingGradient',
 'RuleEvaluatorImage': '895741380848.dkr.ecr.us-west-2.amazonaws.com/sagemaker-
debugger-rules:latest',
 'RuleParameters': {
 'rule_to_invoke': 'VanishingGradient',
 'threshold': '20.0'
 }

Use SageMaker Debugger 3397

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#built-in-collections
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.CollectionConfig

Amazon SageMaker Developer Guide

 }
]

With a configuration like the one in this sample, Debugger starts a rule evaluation job for your
training job using the VanishingGradient rule on the collection of gradients tensor. To find
a complete list of available Docker images for using the Debugger rules, see Use Debugger Docker
Images for Built-in or Custom Rules. To find the key-value pairs for RuleParameters, see List of
Debugger Built-in Rules.

To configure a Debugger built-in rule for profiling system and framework metrics

The following example code shows how to specify the ProfilerConfig API operation to enable
collecting system and framework metrics.

To enable Debugger profiling to collect system and framework metrics

Target Step

ProfilerConfig={
 'S3OutputPath': 's3://<default-bucket>/<training-job-name>/profiler-output', #
 Optional. Path to an S3 bucket to save profiling outputs
 # Available values for ProfilingIntervalInMilliseconds: 100, 200, 500, 1000 (1
 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds.
 'ProfilingIntervalInMilliseconds': 500,
 'ProfilingParameters': {
 'DataloaderProfilingConfig': '{
 "StartStep": 5,
 "NumSteps": 3,
 "MetricsRegex": ".*"
 }',
 'DetailedProfilingConfig': '{
 "StartStep": 5,
 "NumSteps": 3
 }',
 'PythonProfilingConfig': '{
 "StartStep": 5,
 "NumSteps": 3,
 "ProfilerName": "cprofile", # Available options: cprofile, pyinstrument
 "cProfileTimer": "total_time" # Include only when using cprofile.
 Available options: cpu, off_cpu, total_time
 }',
 'LocalPath': '/opt/ml/output/profiler/' # Optional. Local path for profiling
 outputs

Use SageMaker Debugger 3398

Amazon SageMaker Developer Guide

 }
}

Target Time Duration

ProfilerConfig={
 'S3OutputPath': 's3://<default-bucket>/<training-job-name>/profiler-output', #
 Optional. Path to an S3 bucket to save profiling outputs
 # Available values for ProfilingIntervalInMilliseconds: 100, 200, 500, 1000 (1
 second), 5000 (5 seconds), and 60000 (1 minute) milliseconds.
 'ProfilingIntervalInMilliseconds': 500,
 'ProfilingParameters': {
 'DataloaderProfilingConfig': '{
 "StartTimeInSecSinceEpoch": 12345567789,
 "DurationInSeconds": 10,
 "MetricsRegex": ".*"
 }',
 'DetailedProfilingConfig': '{
 "StartTimeInSecSinceEpoch": 12345567789,
 "DurationInSeconds": 10
 }',
 'PythonProfilingConfig': '{
 "StartTimeInSecSinceEpoch": 12345567789,
 "DurationInSeconds": 10,
 "ProfilerName": "cprofile", # Available options: cprofile, pyinstrument
 "cProfileTimer": "total_time" # Include only when using cprofile.
 Available options: cpu, off_cpu, total_time
 }',
 'LocalPath': '/opt/ml/output/profiler/' # Optional. Local path for profiling
 outputs
 }
}

To enable Debugger rules for profiling the metrics

The following example code shows how to configure the ProfilerReport rule.

ProfilerRuleConfigurations=[
 {
 'RuleConfigurationName': 'ProfilerReport',
 'RuleEvaluatorImage': '895741380848.dkr.ecr.us-west-2.amazonaws.com/sagemaker-
debugger-rules:latest',

Use SageMaker Debugger 3399

Amazon SageMaker Developer Guide

 'RuleParameters': {
 'rule_to_invoke': 'ProfilerReport',
 'CPUBottleneck_cpu_threshold': '90',
 'IOBottleneck_threshold': '90'
 }
 }
]

To find a complete list of available Docker images for using the Debugger rules, see Use Debugger
Docker Images for Built-in or Custom Rules. To find the key-value pairs for RuleParameters, see
List of Debugger Built-in Rules.

Update Debugger Profiling Configuration Using the UpdateTrainingJob API Operation

Debugger profiling configuration can be updated while your training job is running by using
the update_training_job() function of the AWS Boto3 SageMaker client. Configure new
ProfilerConfig and ProfilerRuleConfiguration objects, and specify the training job name to the
TrainingJobName parameter.

ProfilerConfig={
 'DisableProfiler': boolean,
 'ProfilingIntervalInMilliseconds': number,
 'ProfilingParameters': {
 'string' : 'string'
 }
},
ProfilerRuleConfigurations=[
 {
 'RuleConfigurationName': 'string',
 'RuleEvaluatorImage': 'string',
 'RuleParameters': {
 'string' : 'string'
 }
 }
],
TrainingJobName='your-training-job-name-YYYY-MM-DD-HH-MM-SS-SSS'

Add Debugger Custom Rule Configuration to the CreateTrainingJob API Operation

A custom rule can be configured for a training job using the DebugHookConfig
and DebugRuleConfiguration objects using the AWS Boto3 SageMaker client's
create_training_job() function. The following code sample shows how to configure a

Use SageMaker Debugger 3400

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.update_training_job
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerRuleConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugHookConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugRuleConfiguration.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job

Amazon SageMaker Developer Guide

custom ImproperActivation rule written with the smdebug library using this SageMaker API
operation. This example assumes that you’ve written the custom rule in custom_rules.py file and
uploaded it to an Amazon S3 bucket. The example provides pre-built Docker images that you can
use to run your custom rules. These are listed at Amazon SageMaker Debugger Registry URLs for
Custom Rule Evaluators. You specify the URL registry address for the pre-built Docker image in the
RuleEvaluatorImage parameter.

DebugHookConfig={
 'S3OutputPath': 's3://<default-bucket>/<training-job-name>/debug-output',
 'CollectionConfigurations': [
 {
 'CollectionName': 'relu_activations',
 'CollectionParameters': {
 'include_regex': 'relu',
 'save_interval': '500',
 'end_step': '5000'
 }
 }
]
},
DebugRulesConfigurations=[
 {
 'RuleConfigurationName': 'improper_activation_job',
 'RuleEvaluatorImage': '552407032007.dkr.ecr.ap-south-1.amazonaws.com/sagemaker-
debugger-rule-evaluator:latest',
 'InstanceType': 'ml.c4.xlarge',
 'VolumeSizeInGB': 400,
 'RuleParameters': {
 'source_s3_uri': 's3://bucket/custom_rules.py',
 'rule_to_invoke': 'ImproperActivation',
 'collection_names': 'relu_activations'
 }
 }
]

To find a complete list of available Docker images for using the Debugger rules, see Use Debugger
Docker Images for Built-in or Custom Rules. To find the key-value pairs for RuleParameters, see
List of Debugger Built-in Rules.

Best Practices for Amazon SageMaker Debugger

Use the following guidelines when you run training jobs with Debugger.

Use SageMaker Debugger 3401

Amazon SageMaker Developer Guide

Topics

• Choose a Machine Learning Framework

• Use Studio Debugger Insights Dashboard

• Download Debugger Reports and Gain More Insights

• Capture Data from Your Training Job and Save Data to Amazon S3

• Analyze the Data with a Fleet of Debugger Built-in Rules

• Take Actions Based on the Built-in Rule Status

• Dive Deep into the Data Using the SMDebug Client Library

• Monitor and Analyze Training Job Metrics

• Monitoring System Utilization and Detect Bottlenecks

• Profiling Framework Operations

• Debugging Model Output Tensors

Choose a Machine Learning Framework

You can choose a machine learning framework and use SageMaker pre-built training containers
or your own containers. Use Debugger to detect training and performance issues, and analyze
training progress of your training job in SageMaker. SageMaker provides you options to use pre-
built containers that are prepared for a number of machine learning framework environments to
train your model on Amazon EC2. Any training job can be adapted to run in AWS Deep Learning
Containers, SageMaker training containers, and custom containers.

Use Studio Debugger Insights Dashboard

With Studio Debugger insights dashboard, you are in control of your training jobs. Use the Studio
Debugger dashboards to keep your model performance on Amazon EC2 instances in control and
optimized. For any SageMaker training jobs running on Amazon EC2 instance, Debugger monitors
resource utilization and basic model output data (loss and accuracy values). Through the Studio
Debugger dashboards, gain insights into your training jobs and improve your model training
performance. To learn more, see Amazon SageMaker Debugger UI in Amazon SageMaker Studio
Classic Experiments.

Download Debugger Reports and Gain More Insights

You can view aggregated results and gain insights in Debugger reports. Debugger aggregates
training and profiling results collected from the built-in rule analysis into a report per training job.

Use SageMaker Debugger 3402

Amazon SageMaker Developer Guide

You can find more detailed information about your training results through the Debugger reports.
To learn more, see SageMaker Debugger interactive report.

Capture Data from Your Training Job and Save Data to Amazon S3

You can use a Debugger hook to save output tensors. After you choose a container and a
framework that fit your training script, use a Debugger hook to configure which tensors to save and
to which directory to save them, such as a Amazon S3 bucket. A Debugger hook helps you to build
the configuration and to keep it in your account to use in subsequent analyses, where it is secured
for use with the most privacy-sensitive applications. To learn more, see Configure SageMaker
Debugger to Save Tensors.

Analyze the Data with a Fleet of Debugger Built-in Rules

You can use Debugger built-in rules to inspect tensors in parallel with a training job. To analyze
the training performance data, Debugger provides built-in rules that watch for abnormal training
process behaviors. For example, a Debugger rule detects issues when the training process suffers
from system bottleneck issues or training issues, such as vanishing gradients, exploding tensors,
overfitting, or overtraining. If necessary, you can also build customized rules by creating a rule
definition with your own criteria to define a training issue. To learn more about the Debugger rules,
see Configure Debugger Built-in Rules for detailed instructions of using the Amazon SageMaker
Python SDK. For a full list of the Debugger built-in rules, see List of Debugger Built-in Rules. If you
want to create a custom rule, see Create Debugger Custom Rules for Training Job Analysis.

Take Actions Based on the Built-in Rule Status

You can use Debugger with Amazon CloudWatch Events and AWS Lambda. You can automate
actions based on the rule status, such as stopping training jobs early and setting up notifications
through email or text. When the Debugger rules detect problems and triggers an "IssuesFound"
evaluation status, CloudWatch Events detects the rule status changes and invokes the Lambda
function to take actions. To configure automated actions to your training issues, see Create Actions
on Rules Using Amazon CloudWatch and AWS Lambda.

Dive Deep into the Data Using the SMDebug Client Library

You can use the SMDebug tools to access and analyze training data collected by Debugger. The
TrainingJob and create_trial classes load the metrics and tensors saved by Debugger. These
classes provide extended class methods to analyze the data in real time or after the training has
finished. The SMDebug library also provides visualization tools: merge timelines of framework

Use SageMaker Debugger 3403

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

metrics to aggregate different profiling, line charts and heatmap to track the system utilization,
and histograms to find step duration outliers. To learn more about the SMDebug library tools, see
Analyze data using the Debugger Python client library.

Monitor and Analyze Training Job Metrics

Amazon CloudWatch supports high-resolution custom metrics, and its finest resolution is 1
second. However, the finer the resolution, the shorter the lifespan of the CloudWatch metrics.
For the 1-second frequency resolution, the CloudWatch metrics are available for 3 hours.
For more information about the resolution and the lifespan of the CloudWatch metrics, see
GetMetricStatistics in the Amazon CloudWatch API Reference.

If you want to profile your training job with a finer resolution down to 100-millisecond (0.1 second)
granularity and store the training metrics indefinitely in Amazon S3 for custom analysis at any
time, consider using Amazon SageMaker Debugger. SageMaker Debugger provides built-in rules to
automatically detect common training issues; it detects hardware resource utilization issues (such
as CPU, GPU, and I/O bottlenecks) and non-converging model issues (such as overfit, vanishing
gradients, and exploding tensors).

SageMaker Debugger also provides visualizations through Studio Classic and its profiling report.
Unlike CloudWatch metrics, which accumulates resource utilization rates of CPU and GPU cores and
averages those out across multiple instances, Debugger tracks the utilization rate of each core. This
enables you to identify unbalanced usage of hardware resources as you scale up to larger compute
clusters. To explore the Debugger visualizations, see SageMaker Debugger Insights Dashboard
Walkthrough, Debugger Profiling Report Walkthrough, and Analyze Data Using the SMDebug
Client Library.

Monitoring System Utilization and Detect Bottlenecks

With Amazon SageMaker Debugger monitoring, you can measure hardware system resource
utilization of Amazon EC2 instances. Monitoring is available for any SageMaker training job
constructed with the SageMaker framework estimators (TensorFlow, PyTorch, and MXNet) and the
generic SageMaker estimator (SageMaker built-in algorithms and your own custom containers).
Debugger built-in rules for monitoring detect system bottleneck issues and notify you when they
detect the bottleneck issues.

To learn how to enable Debugger system monitoring, see Configure an estimator with parameters
for basic profiling using the Amazon SageMaker Debugger Python modules and then Configure
settings for basic profiling of system resource utilization.

Use SageMaker Debugger 3404

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html
https://amazonaws.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio-insights-walkthrough.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio-insights-walkthrough.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html#debugger-profiling-report-walkthrough
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-analyze-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-analyze-data.html

Amazon SageMaker Developer Guide

For a full list of available built-in rules for monitoring, see Debugger built-in rules for profiling
hardware system resource utilization (system metrics).

Profiling Framework Operations

With Amazon SageMaker Debugger profiling you can profile deep learning frameworks operations.
You can profile your model training with the SageMaker TensorFlow training containers, the
SageMaker PyTorch framework containers, and your own training containers. Using the profiling
feature of Debugger, you can drill down into the Python operators and functions that are executed
to perform the training job. Debugger supports detailed profiling, Python profiling, data loader
profiling, and Horovod distributed training profiling. You can merge the profiled timelines to
correlate with the system bottlenecks. Debugger built-in rules for profiling watch framework
operation related issues, including excessive training initialization time due to data downloading
before training starts and step duration outliers in training loops.

To learn how to configure Debugger for framework profiling, see Configure an estimator with
parameters for basic profiling using the Amazon SageMaker Debugger Python modules and then
Configure for framework profiling.

For a complete list of available built-in rules for profiling, see Debugger built-in rules for profiling
framework metrics.

Debugging Model Output Tensors

Debugging is available for deep learning frameworks using AWS Deep Learning Containers and
the SageMaker training containers. For fully supported framework versions (see the versions
at Supported Frameworks and Algorithms), Debugger automatically registers hooks to collect
output tensors, and you can directly run your training script. For the versions with one asterisk
sign, you need to manually register the hooks to collect tensors. Debugger provides preconfigured
tensor collections with generalized names that you can utilize across the different frameworks.
If you want to customize output tensor configuration, you can also use the CollectionConfig and
DebuggerHookConfig API operations and the Amazon SageMaker Python SDK to configure your
own tensor collections. Debugger built-in rules for debugging analyze the output tensors and
identifies model optimization problems that blocks your model from minimizing the loss function.
For example, the rules identify overfitting, overtraining, loss not decreasing, exploding tensors, and
vanishing gradients.

To learn how to configure Debugger for debugging output tensors, see Step 2: Launch and Debug
Training Jobs Using SageMaker Python SDK and then Configure SageMaker Debugger to Save
Tensors.

Use SageMaker Debugger 3405

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

For a full list of available built-in rules for debugging, see Debugger built-in rules for debugging
model training data (output tensors).

Amazon SageMaker Debugger Advanced Topics and Reference Documentation

The following sections contain advanced topics, reference documentation for the API operations,
exceptions, and known limitations for Debugger.

Topics

• Amazon SageMaker Debugger API Operations

• Use Debugger Docker Images for Built-in or Custom Rules

• Amazon SageMaker Debugger Exceptions

• Considerations for Amazon SageMaker Debugger

• Amazon SageMaker Debugger Usage Statistics

Amazon SageMaker Debugger API Operations

Amazon SageMaker Debugger has API operations in several locations that are used to implement
its monitoring and analysis of model training.

Amazon SageMaker Debugger also provides the open source sagemaker-debugger Python SDK
that is used to configure built-in rules, define custom rules, and register hooks to collect output
tensor data from training jobs.

The Amazon SageMaker Python SDK is a high-level SDK focused on machine learning
experimentation. The SDK can be used to deploy built-in or custom rules defined with the
SMDebug Python library to monitor and analyze these tensors using SageMaker estimators.

Debugger has added operations and types to the Amazon SageMaker API that enable the platform
to use Debugger when training a model and to manage the configuration of inputs and outputs.

• CreateTrainingJob and UpdateTrainingJob use the following Debugger APIs to configure
tensor collections, rules, rule images, and profiling options:

• CollectionConfiguration

• DebugHookConfig

• DebugRuleConfiguration

Use SageMaker Debugger 3406

https://github.com/awslabs/sagemaker-debugger/tree/master/smdebug
https://sagemaker.readthedocs.io/en/stable/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CollectionConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugHookConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugRuleConfiguration.html

Amazon SageMaker Developer Guide

• TensorBoardOutputConfig

• ProfilerConfig

• ProfilerRuleConfiguration

• DescribeTrainingJob provides a full description of a training job, including the following
Debugger configurations and rule evaluation statuses:

• DebugHookConfig

• DebugRuleConfiguration

• DebugRuleEvaluationStatus

• ProfilerConfig

• ProfilerRuleConfiguration

• ProfilerRuleEvaluationStatus

The rule configuration API operations use the SageMaker Processing functionality when analyzing a
model training. For more information about SageMaker Processing, see Process data.

Use Debugger Docker Images for Built-in or Custom Rules

Amazon SageMaker provides two sets of Docker images for rules: one set for evaluating rules
provided by SageMaker (built-in rules) and one set for evaluating custom rules provided in Python
source files.

If you use the Amazon SageMaker Python SDK, you can simply use SageMaker high-level Debugger
API operations with SageMaker Estimator API operations, without having to manually retrieve the
Debugger Docker images and configure the ConfigureTrainingJobAPI.

If you are not using the SageMaker Python SDK, you have to retrieve a relevant pre-built container
base image for the Debugger rules. Amazon SageMaker Debugger provides pre-built Docker
images for built-in and custom rules, and the images are stored in Amazon Elastic Container
Registry (Amazon ECR). To pull an image from an Amazon ECR repository (or to push an image to
one), use the full name registry URL of the image using the CreateTrainingJob API. SageMaker
uses the following URL patterns for the Debugger rule container image registry address.

<account_id>.dkr.ecr.<Region>.amazonaws.com/<ECR repository name>:<tag>

For the account ID in each AWS Region, Amazon ECR repository name, and tag value, see the
following topics.

Use SageMaker Debugger 3407

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TensorBoardOutputConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerRuleConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugHookConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugRuleConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DebugRuleEvaluationStatus.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerRuleConfiguration.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProfilerRuleEvaluationStatus.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Topics

• Amazon SageMaker Debugger Registry URLs for Built-in Rule Evaluators

• Amazon SageMaker Debugger Registry URLs for Custom Rule Evaluators

Amazon SageMaker Debugger Registry URLs for Built-in Rule Evaluators

Use the following values for the components of the registry URLs for the images that provide built-
in rules for Amazon SageMaker Debugger. For account IDs, see the following table.

ECR Repository Name: sagemaker-debugger-rules

Tag: latest

Example of a full registry URL:

904829902805.dkr.ecr.ap-south-1.amazonaws.com/sagemaker-debugger-
rules:latest

Account IDs for Built-in Rules Container Images by AWS Region

Region account_id

af-south-1 314341159256

ap-east-1 199566480951

ap-northeast-1 430734990657

ap-northeast-2 578805364391

ap-south-1 904829902805

ap-southeast-1 972752614525

ap-southeast-2 184798709955

ca-central-1 519511493484

cn-north-1 618459771430

cn-northwest-1 658757709296

Use SageMaker Debugger 3408

Amazon SageMaker Developer Guide

Region account_id

eu-central-1 482524230118

eu-north-1 314864569078

eu-south-1 563282790590

eu-west-1 929884845733

eu-west-2 250201462417

eu-west-3 447278800020

me-south-1 986000313247

sa-east-1 818342061345

us-east-1 503895931360

us-east-2 915447279597

us-west-1 685455198987

us-west-2 895741380848

us-gov-west-1 515509971035

Amazon SageMaker Debugger Registry URLs for Custom Rule Evaluators

Use the following values for the components of the registry URL for the images that provide
custom rule evaluators for Amazon SageMaker Debugger. For account IDs, see the following table.

ECR Repository Name: sagemaker-debugger-rule-evaluator

Tag: latest

Example of a full registry URL:

552407032007.dkr.ecr.ap-south-1.amazonaws.com/sagemaker-debugger-rule-
evaluator:latest

Use SageMaker Debugger 3409

Amazon SageMaker Developer Guide

Account IDs for Custom Rules Container Images by AWS Region

Region account_id

af-south-1 515950693465

ap-east-1 645844755771

ap-northeast-1 670969264625

ap-northeast-2 326368420253

ap-south-1 552407032007

ap-southeast-1 631532610101

ap-southeast-2 445670767460

ca-central-1 105842248657

cn-north-1 617202126805

cn-northwest-1 658559488188

eu-central-1 691764027602

eu-north-1 091235270104

eu-south-1 335033873580

eu-west-1 606966180310

eu-west-2 074613877050

eu-west-3 224335253976

me-south-1 050406412588

sa-east-1 466516958431

us-east-1 864354269164

Use SageMaker Debugger 3410

Amazon SageMaker Developer Guide

Region account_id

us-east-2 840043622174

us-west-1 952348334681

us-west-2 759209512951

us-gov-west-1 515361955729

Amazon SageMaker Debugger Exceptions

Amazon SageMaker Debugger is designed to be aware that tensors required to execute a
rule might not be available at every step. As a result, it raises a few exceptions, which enable
you to control what happens when a tensor is missing. These exceptions are available in the
smdebug.exceptions module. You can import them as follows:

from smdebug.exceptions import *

The following exceptions are available:

• TensorUnavailableForStep – The tensor requested is not available for the step. This
might mean that this step might not be saved at all by the hook, or that this step might have
saved some tensors but the requested tensor is not part of them. Note that when you see this
exception, it means that this tensor can never become available for this step in the future. If the
tensor has reductions saved for the step, it notifies you they can be queried.

• TensorUnavailable – This tensor is not being saved or has not been saved by the smdebug
API. This means that this tensor is never seen for any step in smdebug.

• StepUnavailable – The step was not saved and Debugger has no data from the step.

• StepNotYetAvailable – The step has not yet been seen by smdebug. It might be available in
the future if the training is still going on. Debugger automatically loads new data as it becomes
available.

• NoMoreData – Raised when the training ends. Once you see this, you know that there are no
more steps and no more tensors to be saved.

• IndexReaderException – The index reader is not valid.

• InvalidWorker – A worker was invoked that was not valid.

Use SageMaker Debugger 3411

https://github.com/awslabs/sagemaker-debugger/blob/master/smdebug/exceptions.py

Amazon SageMaker Developer Guide

• RuleEvaluationConditionMet – Evaluation of the rule at the step resulted in the condition
being met.

• InsufficientInformationForRuleInvocation – Insufficient information was provided to
invoke the rule.

Considerations for Amazon SageMaker Debugger

Consider the following when using Amazon SageMaker Debugger.

Considerations for Distributed Training

The following list shows the scope of validity and considerations for using Debugger on training
jobs with deep learning frameworks and various distributed training options.

• Horovod

Scope of validity of using Debugger for training jobs with Horovod

Deep
Learning
Framework

Apache
MXNet

TensorFlow
1.x

TensorFlow
2.x

TensorFlo
w 2.x with
Keras

PyTorch

Monitorin
g system
bottlenecks

Yes Yes Yes Yes Yes

Profiling
framework
operations

No No No Yes Yes

Debugging
model
output
tensors

Yes Yes Yes Yes Yes

• SageMaker distributed data parallel

Use SageMaker Debugger 3412

Amazon SageMaker Developer Guide

Scope of validity of using Debugger for training jobs with SageMaker distributed data
parallel

Deep Learning
Framework

TensorFlow 2.x TensorFlow 2.x with
Keras

PyTorch

Monitoring system
bottlenecks

Yes Yes Yes

Profiling framework
operations

No* No** Yes

Debugging model
output tensors

Yes Yes Yes

* Debugger does not support framework profiling for TensorFlow 2.x.

** SageMaker distributed data parallel does not support TensorFlow 2.x with Keras
implementation.

• SageMaker distributed model parallel – Debugger does not support SageMaker distributed
model parallel training.

• Distributed training with SageMaker checkpoints – Debugger is not available for training jobs
when both the distributed training option and SageMaker checkpoints are enabled. You might
see an error that looks like the following:

SMDebug Does Not Currently Support Distributed Training Jobs With Checkpointing
 Enabled

To use Debugger for training jobs with distributed training options, you need to disable
SageMaker checkpointing and add manual checkpointing functions to your training script. For
more information about using Debugger with distributed training options and checkpoints, see
Using SageMaker distributed data parallel with Amazon SageMaker Debugger and checkpoints
and Saving Checkpoints.

• Parameter Server – Debugger does not support parameter server-based distributed training.

• Profiling distributed training framework operations, such as the AllReduced operation of
SageMaker distributed data parallel and Horovod operations, is not available.

Use SageMaker Debugger 3413

https://horovod.readthedocs.io/en/stable/timeline_include.html

Amazon SageMaker Developer Guide

Considerations for Monitoring System Bottlenecks and Profiling Framework Operations

• For AWS TensorFlow, data loader metrics cannot be collected using the default local_path
setting of the FrameworkProfile class. The path has to be manually configured and end in
"/". For example:

FrameworkProfile(local_path="/opt/ml/output/profiler/")

• For AWS TensorFlow, the data loader profiling configuration cannot be updated while a training
job is running.

• For AWS TensorFlow, a NoneType error might occur when you use analysis tools and notebook
examples with TensorFlow 2.3 training jobs and the detailed profiling option.

• Python profiling and detailed profiling are only supported for Keras API.

• To access the deep profiling feature for TensorFlow and PyTorch, currently you must specify the
latest AWS deep learning container images with CUDA 11. For example, you must specify the
specific image URI in the TensorFlow and PyTorch estimator as follows:

• For TensorFlow

image_uri = f"763104351884.dkr.ecr.{region}.amazonaws.com/tensorflow-
training:2.3.1-gpu-py37-cu110-ubuntu18.04"

• For PyTorch

image_uri = f"763104351884.dkr.ecr.{region}.amazonaws.com/pytorch-training:1.6.0-
gpu-py36-cu110-ubuntu18.04"

Considerations for Debugging Model Output Tensors

• Avoid using functional API operations. Debugger cannot collect model output tensors from
PyTorch and MXNet training scripts composed of functional API operations.

• Debugger cannot collect model output tensors from the torch.nn.functional API
operations. When you write a PyTorch training script, it is recommended to use the torch.nn
modules instead.

• Debugger cannot collect model output tensors from MXNet functional objects in hybrid blocks.
For example, the ReLu activation (F.relu) outputs cannot be collected from the following
example of mxnet.gluon.HybridBlock with F in the hybrid_forward function.

Use SageMaker Debugger 3414

https://pytorch.org/docs/stable/nn.functional.html
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
https://mxnet.apache.org/versions/1.8.0/api/python/docs/api/gluon/hybrid_block.html

Amazon SageMaker Developer Guide

import mxnet as mx
from mxnet.gluon import HybridBlock, nn

class Model(HybridBlock):
 def __init__(self, **kwargs):
 super(Model, self).__init__(**kwargs)
 # use name_scope to give child Blocks appropriate names.
 with self.name_scope():
 self.dense0 = nn.Dense(20)
 self.dense1 = nn.Dense(20)

 def hybrid_forward(self, F, x):
 x = F.relu(self.dense0(x))
 return F.relu(self.dense1(x))

model = Model()
model.initialize(ctx=mx.cpu(0))
model.hybridize()
model(mx.nd.zeros((10, 10), ctx=mx.cpu(0)))

Amazon SageMaker Debugger Usage Statistics

Consider the following when using autogenerated reports by Amazon SageMaker Debugger.

Debugger Profiling Report Usage

For all SageMaker training jobs, Amazon SageMaker Debugger runs the ProfilerReport rule and
autogenerates a SageMaker Debugger profiling report. The ProfilerReport rule provides a
Jupyter notebook file (profiler-report.ipynb) that generates a corresponding HTML file
(profiler-report.html).

Debugger collects profiling report usage statistics by including code in the Jupyter notebook
that collects the unique ProfilerReport rule's processing job ARN if the user opens the final
profiler-report.html file.

Debugger only collects information about whether a user opens the final HTML report. It DOES
NOT collect any information from training jobs, training data, training scripts, processing jobs, logs,
or the content of the profiling report itself.

You can opt out of the collection of usage statistics using either of the following options.

Use SageMaker Debugger 3415

Amazon SageMaker Developer Guide

(Recommended) Option 1: Opt Out before Running a Training Job

To opt out, you need to add the following Debugger ProfilerReport rule configuration to your
training job request.

SageMaker Python SDK

estimator=sagemaker.estimator.Estimator(
 ...

 rules=ProfilerRule.sagemaker(
 base_config=rule_configs.ProfilerReport()
 rule_parameters={"opt_out_telemetry": "True"}
)
)

AWS CLI

"ProfilerRuleConfigurations": [
 {
 "RuleConfigurationName": "ProfilerReport-1234567890",
 "RuleEvaluatorImage": "895741380848.dkr.ecr.us-west-2.amazonaws.com/
sagemaker-debugger-rules:latest",
 "RuleParameters": {
 "rule_to_invoke": "ProfilerReport",
 "opt_out_telemetry": "True"
 }
 }
]

AWS SDK for Python (Boto3)

ProfilerRuleConfigurations=[
 {
 'RuleConfigurationName': 'ProfilerReport-1234567890',
 'RuleEvaluatorImage': '895741380848.dkr.ecr.us-west-2.amazonaws.com/
sagemaker-debugger-rules:latest',
 'RuleParameters': {
 'rule_to_invoke': 'ProfilerReport',
 'opt_out_telemetry': 'True'
 }
 }

Use SageMaker Debugger 3416

Amazon SageMaker Developer Guide

]

Option 2: Opt Out after a Training Job Has Completed

To opt out after training has completed, you need to modify the profiler-report.ipynb file.

Note

HTML reports autogenerated without Option 1 already added to your training job request
still report the usage statistics even after you opt out using Option 2.

1. Follow the instructions on downloading the Debugger profiling report files in the Download the
SageMaker Debugger profiling report page.

2. In the /ProfilerReport-1234567890/profiler-output directory, open profiler-
report.ipynb.

3. Add opt_out=True to the setup_profiler_report() function in the fifth code cell as
shown in the following example code:

setup_profiler_report(processing_job_arn, opt_out=True)

4. Run the code cell to finish opting out.

Access a training container through AWS Systems Manager for remote
debugging

You can securely connect to SageMaker training containers through AWS Systems Manager (SSM).
This gives you a shell-level access to debug training jobs that are running within the container. You
can also log commands and responses that are streamed to Amazon CloudWatch. If you use your
own Amazon Virtual Private Cloud (VPC) to train a model, you can use AWS PrivateLink to set up a
VPC endpoint for SSM and connect to containers privately through SSM.

You can connect to SageMaker Framework Containers or connect to your own training container
set up with the SageMaker Training environment.

Access a training container through SSM for remote debugging 3417

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

Set up IAM permissions

To enable SSM in your SageMaker training container, you need to set up an IAM role for the
container. For you or users in your AWS account to access the training containers through SSM, you
need to set up IAM users with permissions to use SSM.

IAM role

For a SageMaker training container to start with the SSM agent, provide an IAM role with SSM
permissions.

To enable remote debugging for your training job, SageMaker needs to start the SSM agent in the
training container when the training job starts. To allow the SSM agent to communicate with the
SSM service, add the following policy to the IAM role that you use to run your training job.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssmmessages:CreateControlChannel",
 "ssmmessages:CreateDataChannel",
 "ssmmessages:OpenControlChannel",
 "ssmmessages:OpenDataChannel"
],
 "Resource": "*"
 }
]
 }

IAM user

Add the following policy to provide an IAM user with SSM session permissions to connect to an
SSM target. In this case, the SSM target is a SageMaker training container.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Access a training container through SSM for remote debugging 3418

https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html

Amazon SageMaker Developer Guide

 "ssm:StartSession",
 "ssm:TerminateSession"
],
 "Resource": "*"
 }
]
}

You can restrict IAM users to connect only to containers for specific training jobs by adding the
Condition key, as shown in the following policy sample.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:StartSession",
 "ssm:TerminateSession"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "ssm:resourceTag/aws:ssmmessages:target-id": [
 "sagemaker-training-job:*"
]
 }
 }
 }
]
}

You can also explicitly use the sagemaker:EnableRemoteDebug condition key to restrict remote
debugging. The following is an example policy for IAM users to restrict remote debugging.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyRemoteDebugInTrainingJob",

Access a training container through SSM for remote debugging 3419

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:UpdateTrainingJob"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "sagemaker:EnableRemoteDebug": false
 }
 }
 }
]
}

For more information, see Condition keys for Amazon SageMaker in the AWS Service Authorization
Reference.

How to enable remote debugging for a SageMaker training job

In this section, learn how to enable remote debugging when starting or updating a training job in
Amazon SageMaker.

SageMaker Python SDK

Using the estimator class in the SageMaker Python SDK, you can turn remote debugging on
or off using the enable_remote_debug parameter or the enable_remote_debug() and
disable_remote_debug() methods.

To enable remote debugging when you create a training job

To enable remote debugging when you create a new training job, set the
enable_remote_debug parameter to True. The default value is False, so if you don’t set this
parameter at all, or you explicitly set it to False, remote debugging functionality is disabled.

import sagemaker

session = sagemaker.Session()

estimator = sagemaker.estimator.Estimator(
 ...,
 sagemaker_session=session,

Access a training container through SSM for remote debugging 3420

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html#amazonsagemaker-policy-keys

Amazon SageMaker Developer Guide

 image_uri="<your_image_uri>", #must be owned by your organization or Amazon
 DLCs
 role=role,
 instance_type="ml.m5.xlarge",
 instance_count=1,
 output_path=output_path,
 max_run=1800,
 enable_remote_debug=True
)

To enable remote debugging by updating a training job

Using the following estimator class methods, you can enable or disable remote debugging
while a training job is running when the SecondaryStatus of the job is Downloading or
Training.

Enable RemoteDebug
estimator.enable_remote_debug()

Disable RemoteDebug
estimator.disable_remote_debug()

AWS SDK for Python (Boto3)

To enable remote debugging when you create a training job

To enable remote debugging when you create a new training job, set the value for the
EnableRemoteDebug key to True in the RemoteDebugConfig parameter.

import boto3

sm = boto3.Session(region_name=region).client("sagemaker")

Start a training job
sm.create_training_job(
 ...,
 TrainingJobName=job_name,
 AlgorithmSpecification={
 // Specify a training Docker container image URI
 // (Deep Learning Container or your own training container) to
 TrainingImage.
 "TrainingImage": "<your_image_uri>",

Access a training container through SSM for remote debugging 3421

Amazon SageMaker Developer Guide

 "TrainingInputMode": "File"
 },
 RoleArn=iam_role_arn,
 OutputDataConfig=output_path,
 ResourceConfig={
 "InstanceType": "ml.m5.xlarge",
 "InstanceCount": 1,
 "VolumeSizeInGB": 30
 },
 StoppingCondition={
 "MaxRuntimeInSeconds": 86400
 },
 RemoteDebugConfig={
 "EnableRemoteDebug": True
 }
)

To enable remote debugging by updating a training job

Using the update_traing_job API, you can enable or disable remote debugging while a
training job is running when the SecondaryStatus of the job is Downloading or Training.

Update a training job
sm.update_training_job(
 TrainingJobName=job_name,
 RemoteDebugConfig={
 "EnableRemoteDebug": True # True | False
 }
)

AWS Command Line Interface (CLI)

To enable remote debugging when you create a training job

Prepare a CreateTrainingJob request file in JSON format, as follows.

// train-with-remote-debug.json
{
 "TrainingJobName": job_name,
 "RoleArn": iam_role_arn,
 "AlgorithmSpecification": {
 // Specify a training Docker container image URI (Deep Learning Container or
 your own training container) to TrainingImage.

Access a training container through SSM for remote debugging 3422

Amazon SageMaker Developer Guide

 "TrainingImage": "<your_image_uri>",
 "TrainingInputMode": "File"
 },
 "OutputDataConfig": {
 "S3OutputPath": output_path
 },
 "ResourceConfig": {
 "InstanceType": "ml.m5.xlarge",
 "InstanceCount": 1,
 "VolumeSizeInGB": 30
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 86400
 },
 "RemoteDebugConfig": {
 "EnableRemoteDebug": True
 }
}

After saving the JSON file, run the following command in the terminal where you submit the
training job. The following example command assumes that the JSON file is named train-
with-remote-debug.json. If you run it from a Jupyter notebook, add an exclamation point
(!) to the beginning of the line.

aws sagemaker create-training-job \
 --cli-input-json file://train-with-remote-debug.json

To enable remote debugging by updating a training job

Prepare an UpdateTrainingJob request file in JSON format, as follows.

// update-training-job-with-remote-debug-config.json
{
 "TrainingJobName": job_name,
 "RemoteDebugConfig": {
 "EnableRemoteDebug": True
 }
}

After saving the JSON file, run the following command in the terminal where you submit the
training job. The following example command assumes that the JSON file is named train-

Access a training container through SSM for remote debugging 3423

Amazon SageMaker Developer Guide

with-remote-debug.json. If you run it from a Jupyter notebook, add an exclamation point
(!) to the beginning of the line.

aws sagemaker update-training-job \
 --cli-input-json file://update-training-job-with-remote-debug-config.json

Access your training container

You can access a training container when the SecondaryStatus of the corresponding training job
is Training. The following code examples demonstrate how to check the status of your training
job using the DescribeTrainingJob API, how to check the training job logs in CloudWatch, and
how to log in to the training container.

To check the status of a training job

SageMaker Python SDK

To check the SecondaryStatus of a training job, run the following SageMaker Python SDK
code.

import sagemaker

session = sagemaker.Session()

Describe the job status
training_job_info = session.describe_training_job(job_name)
print(training_job_info)

AWS SDK for Python (Boto3)

To check the SecondaryStatus of a training job, run the following SDK for Python (Boto3)
code.

import boto3

session = boto3.session.Session()
region = session.region_name
sm = boto3.Session(region_name=region).client("sagemaker")

Describe the job status

Access a training container through SSM for remote debugging 3424

Amazon SageMaker Developer Guide

sm.describe_training_job(TrainingJobName=job_name)

AWS Command Line Interface (CLI)

To check the SecondaryStatus of a training job, run the following AWS CLI command for
SageMaker.

aws sagemaker describe-training-job \
 --training-job-name job_name

To find the host name of a training container

To connect to the training container through SSM, use this format for the target ID: sagemaker-
training-job:<training-job-name>_algo-<n>, where algo-<n> is the name of the
container host. If your job is running on a single instance, the host is always algo-1. If you run a
distributed training job on multiple instances, SageMaker creates an equal number of hosts and
log streams. For example, if you use 4 instances, SageMaker creates algo-1, algo-2, algo-3, and
algo-4. You must determine which log stream you want to debug, and its host number. To access
log streams that are associated with a training job, do the following.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Training, then choose Training jobs.

3. From the Training jobs list, choose the training job that you want to debug. The training job
details page opens.

4. In the Monitor section, choose View logs. The related training job log stream list opens in the
CloudWatch console.

5. Log stream names appear in <training-job-name>/algo-<n>-<time-stamp> format, with
algo-<n> representing the host name.

To learn more about how SageMaker manages configuration information for multi-instance
distributed training, see Distributed Training Configuration.

To access the training container

Use the following command in terminal to start the SSM session (aws ssm start-session) and
connect to the training container.

Access a training container through SSM for remote debugging 3425

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html#your-algorithms-training-algo-running-container-dist-training
https://docs.aws.amazon.com/cli/latest/reference/ssm/start-session.html

Amazon SageMaker Developer Guide

aws ssm start-session --target sagemaker-training-job:<training-job-name>_algo-<n>

For example, if the training job name is training-job-test-remote-debug and the host
name is algo-1, the target ID becomes sagemaker-training-job:training-job-test-
remote-debug_algo-1. If the output of this command is similar to Starting session with
SessionId:xxxxx, the connection is successful.

SSM access with AWS PrivateLink

If your training containers run within a Amazon Virtual Private Cloud that is not connected to
the public internet, you can use AWS PrivateLink to enable SSM. AWS PrivateLink restricts all
network traffic between your endpoint instances, SSM, and Amazon EC2 to the Amazon network.
For more information on how to setup SSM access with AWS PrivateLink, see Set up an Amazon
VPC endpoint for Session Manager.

Log SSM session commands and results

After following the instructions at Create a Session Manager preferences document (command
line), you can create SSM documents that define your preferences for SSM sessions. You can use
SSM documents to configure session options, including data encryption, session duration, and
logging. For example, you can specify whether to store session log data in an Amazon Simple
Storage Service (Amazon S3) bucket or in an Amazon CloudWatch Logs group. You can create
documents that define general preferences for all sessions for an AWS account and AWS Region, or
documents that define preferences for individual sessions.

Troubleshooting issues by checking error logs from SSM

Amazon SageMaker uploads errors from the SSM agent to your CloudWatch Logs in the /aws/
sagemaker/TrainingJobs log group. SSM agent log streams are named in this format: <job-
name>/algo-<n>-<timestamp>/ssm. For example, if you create a two-node training job named
training-job-test-remote-debug, the training job log training-job-test-remote-
debug/algo-<n>-<timestamp> and multiple SSM agent error logs training-job-test-
remote-debug/algo-<n>-<timestamp>/ssm are uploaded to your CloudWatch Logs. In this
example, you can review the */ssm log streams to troubleshoot SSM issues.

training-job-test-remote-debug/algo-1-1680535238
training-job-test-remote-debug/algo-2-1680535238
training-job-test-remote-debug/algo-1-1680535238/ssm

Access a training container through SSM for remote debugging 3426

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/getting-started-create-preferences-cli.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/getting-started-create-preferences-cli.html

Amazon SageMaker Developer Guide

training-job-test-remote-debug/algo-2-1680535238/ssm

Considerations

Consider the following when using SageMaker remote debugging.

• Remote debugging isn't supported for SageMaker algorithm containers or containers from
SageMaker on AWS Marketplace.

• You can't start an SSM session for containers that have network isolation enabled because the
isolation prevents outbound network calls.

Release notes for debugging capabilities of Amazon SageMaker

See the following release notes to track the latest updates for debugging capabilities of Amazon
SageMaker.

December 21, 2023

New features

Released a remote debugging functionality, a new debugging capability of SageMaker that gives
you a shell-level access to training containers. With this release, you can debug training jobs by
logging into the job containers running on SageMaker ML instances. To learn more, see the section
called “Access a training container through SSM for remote debugging”.

September 7, 2023

New features

Added a new utility module sagemaker.interactive_apps.tensorboard.TensorBoardApp
that provides a function called get_app_url(). The get_app_url() function generates
unsigned or presigned URLs to open the TensorBoard application in any environment in SageMaker
or Amazon EC2. This is to provide a unified experience for both Studio Classic and non-Studio
Classic users. For the Studio Classic environment, you can open TensorBoard by running the
get_app_url() function as it is, or you can also specify a job name to start tracking as the
TensorBoard application opens. For non-Studio Classic environments, you can open TensorBoard
by providing your domain information to the utility function. With this functionality, regardless of
where or how you run training code and launch training jobs, you can directly access TensorBoard

Release notes 3427

https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-choose.html

Amazon SageMaker Developer Guide

by running the get_app_url function in your Jupyter notebook or terminal. This functionality is
available in the SageMaker Python SDK v2.184.0 and later. For more information, see the section
called “How to access TensorBoard on SageMaker”.

April 4, 2023

New features

Released SageMaker with TensorBoard, a capability that hosts TensorBoard on SageMaker.
TensorBoard is available as an application through SageMaker domain, and the SageMaker Training
platform supports TensorBoard output data collection to S3 and loading them automatically to
the hosted TensorBoard on SageMaker. With this capability, you can run training jobs set up with
TensorBoard summary writers in SageMaker, save the TensorBoard output files in Amazon S3, open
the TensorBoard application directly from the SageMaker console, and load the output files using
SageMaker Data Manager plugin implemented to the hosted TensorBoard interface. You don't need
to install TensorBoard manually and host locally on the SageMaker IDEs or local machine. To learn
more, see the section called “Use TensorBoard”.

March 16, 2023

Deprecation notes

SageMaker Debugger deprecates the framework profiling feature starting from TensorFlow 2.11
and PyTorch 2.0. You can still use the feature in the previous versions of the frameworks and SDKs
as follows.

• SageMaker Python SDK <= v2.130.0

• PyTorch >= v1.6.0, < v2.0

• TensorFlow >= v2.3.1, < v2.11

With the deprecation, SageMaker Debugger also discontinues support for the following three
ProfilerRules for framework profiling.

• MaxInitializationTime

• OverallFrameworkMetrics

• StepOutlier

Release notes 3428

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html#max-initialization-time
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html#overall-framework-metrics
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html#step-outlier

Amazon SageMaker Developer Guide

February 21, 2023

Other changes

• The XGBoost report tab has been removed from the SageMaker Debugger's profiler dashboard.
You can still access the XGBoost report by downloading it as a Jupyter notebook or a HTML file.
For more information, see SageMaker Debugger XGBoost Training Report.

• Starting from this release, the built-in profiler rules are not activated by default. To use the
SageMaker Debugger profiler rules to detect certain computational problems, you need to add
the rules when you configure a SageMaker training job launcher.

December 1, 2020

Amazon SageMaker Debugger launched deep profiling features at re:Invent 2020.

December 3, 2019

Amazon SageMaker Debugger initially launched at re:Invent 2019.

Profile and optimize computational performance

When training state-of-the-art deep learning models that rapidly grow in size, scaling the training
job of such models to a large GPU cluster and identifying computational performance issues from
billions and trillions of operations and communications in every iteration of the gradient descent
process become a challenge.

SageMaker provides profiling tools to visualize and diagnose such complex computation issues
arising from running training jobs on AWS cloud computing resources. There are two profiling
options that SageMaker offers: Amazon SageMaker Profiler and a resource utilzation monitor in
Amazon SageMaker Studio Classic. See the following introductions of the two functionalities to
gain quick insights and learn which one to use depending on your needs.

Amazon SageMaker Profiler

Amazon SageMaker Profiler is a profiling capability of SageMaker with which you can deep dive
into compute resources provisioned while training deep learning models, and gain visibility into
operation-level details. SageMaker Profiler provides Python modules for adding annotations
throughout PyTorch or TensorFlow training scripts and activating SageMaker Profiler. You can
access the modules through the SageMaker Python SDK and AWS Deep Learning Containers.

Profile and optimize computational performance 3429

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-training-xgboost-report.html

Amazon SageMaker Developer Guide

With SageMaker Profiler, you can track all activities on CPUs and GPUs, such as CPU and GPU
utilizations, kernel runs on GPUs, kernel launches on CPUs, sync operations, memory operations
across CPUs and GPUs, latencies between kernel launches and corresponding runs, and data
transfer between CPUs and GPUs.

SageMaker Profiler also offers a user interface (UI) that visualizes the profile, a statistical summary
of profiled events, and the timeline of a training job for tracking and understanding the time
relationship of the events between GPUs and CPUs.

To learn more about SageMaker Profiler, see the section called “Use SageMaker Profiler”.

Monitoring AWS compute resources in Amazon SageMaker Studio Classic

SageMaker also provides a user interface in Studio Classic for monitoring resource utilization at
high level, but with more granularity compared to the default utilization metrics collected from
SageMaker to CloudWatch.

For any training job you run in SageMaker using the SageMaker Python SDK, SageMaker starts
profiling basic resource utilization metrics, such as CPU utilization, GPU utilization, GPU memory
utilization, network, and I/O wait time. It collects these resource utilization metrics every 500
milliseconds.

Compared to Amazon CloudWatch metrics, which collect metrics at intervals of 1 second, the
monitoring functionality of SageMaker provides finer granularity into the resource utilization
metrics down to 100-millisecond (0.1 second) intervals, so you can dive deep into the metrics at
the level of an operation or a step.

To access the dashboard for monitoring the resource utilization metrics of a training job, see the
SageMaker Debugger UI in SageMaker Studio Experiments.

Topics

• Use Amazon SageMaker Profiler to profile activities on AWS compute resources

• Monitor AWS compute resource utilization in Amazon SageMaker Studio Classic

• Release notes for profiling capabilities of Amazon SageMaker

Profile and optimize computational performance 3430

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio.html

Amazon SageMaker Developer Guide

Use Amazon SageMaker Profiler to profile activities on AWS compute
resources

Amazon SageMaker Profiler is currently in preview release and available at no cost in supported
AWS Regions. The generally available version of Amazon SageMaker Profiler (if any) may include
features and pricing that are different than those offered in preview.

Amazon SageMaker Profiler is a capability of Amazon SageMaker that provides a detailed view
into the AWS compute resources provisioned during training deep learning models on SageMaker.
It focuses on profiling the CPU and GPU usage, kernel runs on GPUs, kernel launches on CPUs,
sync operations, memory operations across CPUs and GPUs, latencies between kernel launches
and corresponding runs, and data transfer between CPUs and GPUs. SageMaker Profiler also
offers a user interface (UI) that visualizes the profile, a statistical summary of profiled events, and
the timeline of a training job for tracking and understanding the time relationship of the events
between GPUs and CPUs.

Note

SageMaker Profiler supports PyTorch and TensorFlow and is available in AWS Deep
Learning Containers for SageMaker. To learn more, see the section called “Supported
framework images, AWS Regions, and instance types”.

For data scientists

Training deep learning models on a large compute cluster often has computational optimization
problems, such as bottlenecks, kernel launch latencies, memory limit, and low resource utilization.

To identify such computational performance issues, you need to profile deeper into the compute
resources to understand which kernels introduce latencies and which operations cause bottlenecks.
Data scientists can take the benefit from using the SageMaker Profiler UI for visualizing the
detailed profile of training jobs. The UI provides a dashboard furnished with summary charts and
a timeline interface to track every event on the compute resources. Data scientists can also add
custom annotations to track certain parts of the training job using the SageMaker Profiler Python
modules.

For administrators

Use SageMaker Profiler 3431

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

Through the Profiler landing page in the SageMaker console or SageMaker domain, you can
manage the Profiler application users if you are an administrator of an AWS account or SageMaker
domain. Each domain user can access their own Profiler application given the granted permissions.
As a SageMaker domain administrator and domain user, you can create and delete the Profiler
application given the permission level you have.

Supported framework images, AWS Regions, and instance types

This feature supports the following machine learning frameworks and AWS Regions.

Note

To use this feature, be sure to have at least version 2.180.0 of the SageMaker Python SDK
installed.

SageMaker framework images pre-installed with SageMaker Profiler

SageMaker Profiler is pre-installed in the following AWS Deep Learning Containers for SageMaker.

PyTorch images

PyTorch versions AWS DLC image URI

2.0.0 763104351884 .dkr.ecr.<region>.amazonaw
s.com/pytorch-training:2.0.0-gpu-py310-
cu118-ubuntu20.04-sagemaker

1.13.1 763104351884 .dkr.ecr.<region>.amazonaw
s.com/pytorch-training:1.13.1-gpu-py39-
cu117-ubuntu20.04-sagemaker

Use SageMaker Profiler 3432

https://docs.aws.amazon.com/sagemaker/latest/dg/sm-domain.html
https://pypi.org/project/sagemaker/2.180.0/
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

TensorFlow images

TensorFlow versions AWS DLC image URI

2.13.0 763104351884 .dkr.ecr.<region>.amazonaw
s.com/tensorflow-training:2.13.0-gpu-py310-
cu118-ubuntu20.04-sagemaker

2.12.0 763104351884 .dkr.ecr.<region>.amazonaw
s.com/tensorflow-training:2.12.0-gpu-py310-
cu118-ubuntu20.04-sagemaker

2.11.0 763104351884 .dkr.ecr.<region>.amazonaw
s.com/tensorflow-training:2.11.0-gpu-py39-
cu112-ubuntu20.04-sagemaker

If you want to use SageMaker Profiler for other framework images or your own Docker images,
install SageMaker Profiler using the SageMaker Profiler Python package binary files provided in the
following section.

SageMaker Profiler Python package binary files

If you want to configure your own Docker container, use SageMaker Profiler in other pre-built
containers for PyTorch and TensorFlow, or install the SageMaker Profiler Python package
locally, use one the following binary files. Depending on the Python and CUDA versions in your
environment, choose one of the following.

PyTorch

• Python3.8, CUDA 11.3: https://smppy.s3.amazonaws.com/pytorch/cu113/smprof-0.3.334-cp38-
cp38-linux_x86_64.whl

• Python3.9, CUDA 11.7: https://smppy.s3.amazonaws.com/pytorch/cu117/smprof-0.3.334-cp39-
cp39-linux_x86_64.whl

• Python3.10, CUDA 11.8: https://smppy.s3.amazonaws.com/pytorch/cu118/smprof-0.3.334-
cp310-cp310-linux_x86_64.whl

• Python3.10, CUDA 12.1: https://smppy.s3.amazonaws.com/pytorch/cu121/smprof-0.3.334-
cp310-cp310-linux_x86_64.whl

Use SageMaker Profiler 3433

https://smppy.s3.amazonaws.com/pytorch/cu113/smprof-0.3.334-cp38-cp38-linux_x86_64.whl
https://smppy.s3.amazonaws.com/pytorch/cu113/smprof-0.3.334-cp38-cp38-linux_x86_64.whl
https://smppy.s3.amazonaws.com/pytorch/cu117/smprof-0.3.334-cp39-cp39-linux_x86_64.whl
https://smppy.s3.amazonaws.com/pytorch/cu117/smprof-0.3.334-cp39-cp39-linux_x86_64.whl
https://smppy.s3.amazonaws.com/pytorch/cu118/smprof-0.3.334-cp310-cp310-linux_x86_64.whl
https://smppy.s3.amazonaws.com/pytorch/cu118/smprof-0.3.334-cp310-cp310-linux_x86_64.whl
https://smppy.s3.amazonaws.com/pytorch/cu121/smprof-0.3.334-cp310-cp310-linux_x86_64.whl
https://smppy.s3.amazonaws.com/pytorch/cu121/smprof-0.3.334-cp310-cp310-linux_x86_64.whl

Amazon SageMaker Developer Guide

TensorFlow

• Python3.9, CUDA 11.2: https://smppy.s3.amazonaws.com/tensorflow/cu112/smprof-0.3.334-
cp39-cp39-linux_x86_64.whl

• Python3.10, CUDA 11.8: https://smppy.s3.amazonaws.com/tensorflow/cu118/smprof-0.3.334-
cp310-cp310-linux_x86_64.whl

For more information about how to install SageMaker Profiler using the binary files, see the section
called “(Optional) Install the SageMaker Profiler Python package”.

Supported AWS Regions

SageMaker Profiler is available in the following AWS Regions.

• US East (N. Virginia) (us-east-1)

• US East (Ohio) (us-east-2)

• US West (Oregon) (us-west-2)

• Europe (Frankfurt) (eu-central-1)

• Europe (Ireland) (eu-west-1)

Supported instance types

SageMaker Profiler supports profiling of training jobs on the following instance types.

CPU and GPU profiling

• ml.g4dn.12xlarge

• ml.g5.24xlarge

• ml.g5.48xlarge

• ml.p3dn.24xlarge

• ml.p4de.24xlarge

• ml.p4d.24xlarge

• ml.p5.48xlarge

GPU profiling only

Use SageMaker Profiler 3434

https://smppy.s3.amazonaws.com/tensorflow/cu112/smprof-0.3.334-cp39-cp39-linux_x86_64.whl
https://smppy.s3.amazonaws.com/tensorflow/cu112/smprof-0.3.334-cp39-cp39-linux_x86_64.whl
https://smppy.s3.amazonaws.com/tensorflow/cu118/smprof-0.3.334-cp310-cp310-linux_x86_64.whl
https://smppy.s3.amazonaws.com/tensorflow/cu118/smprof-0.3.334-cp310-cp310-linux_x86_64.whl

Amazon SageMaker Developer Guide

• ml.g5.2xlarge

• ml.g5.4xlarge

• ml.g5.8xlarge

• ml.g5.16.xlarge

Prerequisites

The following list shows the prerequisites to start using SageMaker Profiler.

• A SageMaker domain set up with Amazon VPC in your AWS account.

For instructions on setting up a domain, see Onboard to Amazon SageMaker domain using quick
setup. You also need to add domain user profiles for individual users to access the Profiler UI
application. For more information, see Add and remove SageMaker domain user profiles.

• The following list is the minimum set of permissions for using the Profiler UI application.

• sagemaker:CreateApp

• sagemaker:DeleteApp

• sagemaker:DescribeTrainingJob

• sagemaker:Search

• s3:GetObject

• s3:ListBucket

Prepare and run a training job with SageMaker Profiler

Setting up to running a training job with the SageMaker Profiler consists of two steps: adapting the
training script and configuring the SageMaker training job launcher.

Topics

• Step 1: Adapt your training script using the SageMaker Profiler Python modules

• Step 2: Create a SageMaker framework estimator and activate SageMaker Profiler

• (Optional) Install the SageMaker Profiler Python package

Use SageMaker Profiler 3435

https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-quick-start.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-quick-start.html
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-user-profile-add-remove.html

Amazon SageMaker Developer Guide

Step 1: Adapt your training script using the SageMaker Profiler Python modules

To start capturing kernel runs on GPUs while the training job is running, modify your
training script using the SageMaker Profiler Python modules. Import the library and add the
start_profiling() and stop_profiling() methods to define the beginning and the end
of profiling. You can also use optional custom annotations to add markers in the training script to
visualize hardware activities during particular operations in each step.

Note that the annotators extract operations from GPUs. For profiling operations in CPUs, you
don’t need to add any additional annotations. CPU profiling is also activated when you specify
the profiling configuration, which you’ll practice in the section called “Step 2: Create a SageMaker
framework estimator and activate SageMaker Profiler”.

Note

Profiling an entire training job is not the most efficient use of resources. We recommend
profiling at most 300 steps of a training job.

Important

The release on December 14, 2023 involves a breaking change. The SageMaker Profiler
Python package name is changed from smppy to smprof. This is effective in the
SageMaker Framework Containers for TensorFlow v2.12 and later.
If you use one of the previous versions of the SageMaker Framework Containers such
TensorFlow v2.11.0, the SageMaker Profiler Python package is still available as smppy. If
you are uncertain about which version or the package name you should use, replace the
import statement of the SageMaker Profiler package with the following code snippet.

try:
 import smprof
except ImportError:
 # backward-compatability for TF 2.11 and PT 1.13.1 images
 import smppy as smprof

Approach 1. Use the context manager smprof.annotate to annotate full functions

Use SageMaker Profiler 3436

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

You can wrap full functions with the smprof.annotate() context manager. This wrapper is
recommended if you want to profile by functions instead of code lines. The following example
script shows how to implement the context manager to wrap the training loop and full functions in
each iteration.

import smprof

SMProf = smprof.SMProfiler.instance()
config = smprof.Config()
config.profiler = {
 "EnableCuda": "1",
}
SMProf.configure(config)
SMProf.start_profiling()

for epoch in range(args.epochs):
 if world_size > 1:
 sampler.set_epoch(epoch)
 tstart = time.perf_counter()
 for i, data in enumerate(trainloader, 0):
 with smprof.annotate("step_"+str(i)):
 inputs, labels = data
 inputs = inputs.to("cuda", non_blocking=True)
 labels = labels.to("cuda", non_blocking=True)

 optimizer.zero_grad()

 with smprof.annotate("Forward"):
 outputs = net(inputs)
 with smprof.annotate("Loss"):
 loss = criterion(outputs, labels)
 with smprof.annotate("Backward"):
 loss.backward()
 with smprof.annotate("Optimizer"):
 optimizer.step()

SMProf.stop_profiling()

Approach 2. Use smprof.annotation_begin() and smprof.annotation_end() to annotate
specific code line in functions

Use SageMaker Profiler 3437

Amazon SageMaker Developer Guide

You can also define annotations to profile specific code lines. You can set the exact starting point
and end point of profiling at the level of individual code lines, not by the functions. For example, in
the following script, the step_annotator is defined at the beginning of each iteration and ends
at the end of the iteration. Meanwhile, other detailed annotators for each operations are defined
and wrap around the target operations throughout each iteration.

import smprof

SMProf = smprof.SMProfiler.instance()
config = smprof.Config()
config.profiler = {
 "EnableCuda": "1",
}
SMProf.configure(config)
SMProf.start_profiling()

for epoch in range(args.epochs):
 if world_size > 1:
 sampler.set_epoch(epoch)
 tstart = time.perf_counter()
 for i, data in enumerate(trainloader, 0):
 step_annotator = smprof.annotation_begin("step_" + str(i))

 inputs, labels = data
 inputs = inputs.to("cuda", non_blocking=True)
 labels = labels.to("cuda", non_blocking=True)
 optimizer.zero_grad()

 forward_annotator = smprof.annotation_begin("Forward")
 outputs = net(inputs)
 smprof.annotation_end(forward_annotator)

 loss_annotator = smprof.annotation_begin("Loss")
 loss = criterion(outputs, labels)
 smprof.annotation_end(loss_annotator)

 backward_annotator = smprof.annotation_begin("Backward")
 loss.backward()
 smprof.annotation_end(backward_annotator)

 optimizer_annotator = smprof.annotation_begin("Optimizer")
 optimizer.step()
 smprof.annotation_end(optimizer_annotator)

Use SageMaker Profiler 3438

Amazon SageMaker Developer Guide

 smprof.annotation_end(step_annotator)

SMProf.stop_profiling()

After annotating and setting up the profiler initiation modules, save the script to submit using a
SageMaker training job launcher in the following Step 2. The sample launcher assumes that the
training script is named train_with_profiler_demo.py.

Step 2: Create a SageMaker framework estimator and activate SageMaker Profiler

The following procedure shows how to prepare a SageMaker framework estimator for training
using the SageMaker Python SDK.

1. Set up a profiler_config object using the ProfilerConfig and Profiler modules as
follows.

from sagemaker import ProfilerConfig, Profiler
profiler_config = ProfilerConfig(
 profile_params = Profiler(cpu_profiling_duration=3600)
)

The following is the description of the Profiler module and its argument.

• Profiler: The module for activating SageMaker Profiler with the training job.

• cpu_profiling_duration (int): Specify the time duration in seconds for profiling on
CPUs. Default is 3600 seconds.

2. Create a SageMaker framework estimator with the profiler_config object created in the
previous step. The following code shows an example of creating a PyTorch estimator. If you want
to create a TensorFlow estimator, import sagemaker.tensorflow.TensorFlow instead, and
specify one of the TensorFlow versions supported by SageMaker Profiler. For more information
about supported frameworks and instance types, see the section called “SageMaker framework
images pre-installed with SageMaker Profiler”.

import sagemaker
from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 framework_version="2.0.0",
 role=sagemaker.get_execution_role(),

Use SageMaker Profiler 3439

Amazon SageMaker Developer Guide

 entry_point="train_with_profiler_demo.py", # your training job entry point
 source_dir=source_dir, # source directory for your training script
 output_path=output_path,
 base_job_name="sagemaker-profiler-demo",
 hyperparameters=hyperparameters, # if any
 instance_count=1, # Recommended to test with < 8
 instance_type=ml.p4d.24xlarge,
 profiler_config=profiler_config
)

3. Start the training job by running the fit method. With wait=False, you can silence the
training job logs and let it run in the background.

estimator.fit(wait=False)

While running the training job or after the job has completed, you can go to the next topic at the
section called “Open the SageMaker Profiler UI application” and start exploring and visualizing the
saved profiles.

If you want to directly access the profile data saved in the Amazon S3 bucket, use the following
script to retrieve the S3 URI.

import os
This is an ad-hoc function to get the S3 URI
to where the profile output data is saved
def get_detailed_profiler_output_uri(estimator):
 config_name = None
 for processing in estimator.profiler_rule_configs:
 params = processing.get("RuleParameters", dict())
 rule = config_name = params.get("rule_to_invoke", "")
 if rule == "DetailedProfilerProcessing":
 config_name = processing.get("RuleConfigurationName")
 break
 return os.path.join(
 estimator.output_path,
 estimator.latest_training_job.name,
 "rule-output",
 config_name,
)

print(
 f"Profiler output S3 bucket: ",

Use SageMaker Profiler 3440

Amazon SageMaker Developer Guide

 get_detailed_profiler_output_uri(estimator)
)

(Optional) Install the SageMaker Profiler Python package

To use SageMaker Profiler on PyTorch or TensorFlow framework images not listed in the section
called “SageMaker framework images pre-installed with SageMaker Profiler”, or on your own
custom Docker container for training, you can install SageMaker Profiler by using one of the the
section called “SageMaker Profiler Python package binary files”.

Option 1: Install the SageMaker Profiler package while launching a training job

If you want to use SageMaker Profiler for training jobs using PyTorch or TensorFlow images not
listed in the section called “SageMaker framework images pre-installed with SageMaker Profiler”,
create a requirements.txt file and locate it under the path you specify to the source_dir
parameter of the SageMaker framework estimator in Step 2. For more information about setting
up a requirements.txt file in general, see Using third-party libraries in the SageMaker Python
SDK documentation. In the requirements.txt file, add one of the S3 bucket paths for the the
section called “SageMaker Profiler Python package binary files”.

requirements.txt
https://smppy.s3.amazonaws.com/tensorflow/cu112/smprof-0.3.332-cp39-cp39-
linux_x86_64.whl

Option 2: Install the SageMaker Profiler package in your custom Docker containers

If you use a custom Docker container for training, add one of the the section called “SageMaker
Profiler Python package binary files” to your Dockerfile.

Install the smprof package version compatible with your CUDA version
RUN pip install https://smppy.s3.amazonaws.com/tensorflow/cu112/smprof-0.3.332-cp39-
cp39-linux_x86_64.whl

For guidance on running a custom Docker container for training on SageMaker in general, see
Adapting your own training container.

Open the SageMaker Profiler UI application

You can access the SageMaker Profiler UI application through the following options.

Use SageMaker Profiler 3441

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#using-third-party-libraries
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html

Amazon SageMaker Developer Guide

Topics

• Option 1: Launch the SageMaker Profiler UI from the domain details page

• Option 2: Launch the SageMaker Profiler UI application from the SageMaker Profiler landing
page in the SageMaker console

• Option 3: Use the application launcher function in the SageMaker Python SDK

Option 1: Launch the SageMaker Profiler UI from the domain details page

If you have access to the SageMaker console, you can take this option.

Navigate to the domain details page

The following procedure shows how to navigate to the domain details page.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose domains.

3. From the list of domains, select the domain in which you want to launch the SageMaker Profiler
application.

Launch the SageMaker Profiler UI application

The following procedure shows how to launch the SageMaker Profiler application that is scoped to
a user profile.

1. On the domain details page, choose the User profiles tab.

2. Identify the user profile for which you want to launch the SageMaker Profiler UI application.

3. Choose Launch for the selected user profile, and choose Profiler.

Option 2: Launch the SageMaker Profiler UI application from the SageMaker Profiler landing
page in the SageMaker console

The following procedure describes how to launch the SageMaker Profiler UI application from the
SageMaker Profiler landing page in the SageMaker console. If you have access to the SageMaker
console, you can take this option.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the left navigation pane, choose Profiler.

Use SageMaker Profiler 3442

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

3. Under Get started, select the domain in which you want to launch the Studio Classic application.
If your user profile only belongs to one domain, you do not see the option for selecting a
domain.

4. Select the user profile for which you want to launch the SageMaker Profiler UI application. If
there is no user profile in the domain, choose Create user profile. For more information about
creating a new user profile, see Add and Remove User Profiles.

5. Choose Open Profiler.

Option 3: Use the application launcher function in the SageMaker Python SDK

If you are a SageMaker domain user and have access only to SageMaker Studio, you can
access the SageMaker Profiler UI application through SageMaker Studio Classic by running the
sagemaker.interactive_apps.detail_profiler_app.DetailProfilerApp function.

Note that SageMaker Studio Classic is the previous Studio UI experience before re:Invent 2023, and
is migrated as an application into a newly designed Studio UI at re:Invent 2023. The SageMaker
Profiler UI application is available at SageMaker domain level, and thus requires your domain ID
and user profile name. Currently, the DetailedProfilerApp function only works within the
SageMaker Studio Classic application; the function properly takes in the domain and user profile
information from SageMaker Studio Classic.

For domain, domain users, and Studio created before re:Invent 2023, Studio Classic would be the
default experience unless you have updated it following the instructions at Migrating from Amazon
SageMaker Studio Classic. If this is your case, there's no further action needed, and you can directly
launch the SageMaker Profiler UI application by running the DetailProfilerApp funciton.

If you created a new domain and Studio after re:Invent 2023, launch the Studio Classic application
within the Studio UI and then run the DetailProfilerApp function to launch the SageMaker
Profiler UI application.

Note that the DetailedProfilerApp function doesn’t work in other SageMaker machine
learning IDEs, such as the SageMaker Studio JupyterLab application, the SageMaker Studio Code
Editor application, and SageMaker Notebook instances. If you run the DetailedProfilerApp
function in those IDEs, it returns a URL to the Profiler landing page in the SageMaker console,
instead of a direct link to open the Profiler UI application.

Use SageMaker Profiler 3443

https://docs.aws.amazon.com/sagemaker/latest/dg/domain-user-profile-add-remove.html
https://sagemaker.readthedocs.io/en/stable/api/utility/interactive_apps.html#module-sagemaker.interactive_apps.detail_profiler_app
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-migrate.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-migrate.html

Amazon SageMaker Developer Guide

Explore the profile output data visualized in the SageMaker Profiler UI

This section walks through the SageMaker Profiler UI and provides tips for how to use and gain
insights from it.

Load profile

When you open the SageMaker Profiler UI, the Load profile page opens up. To load and generate
the Dashboard and Timeline, go through the following procedure.

To load the profile of a training job

1. From the List of training jobs section, use the check box to choose the training job for which
you want to load the profile.

2. Choose Load. The job name should appear in the Loaded profile section at the top.

3. Choose the radio button on the left of the Job name to generate the Dashboard and Timeline.
Note that when you choose the radio button, the UI automatically opens the Dashboard. Note
also that if you generate the visualizations while the job status and loading status still appear to
be in progress, the SageMaker Profiler UI generates Dashboard plots and a Timeline up to the
most recent profile data collected from the ongoing training job or the partially loaded profile
data.

Tip

You can load and visualize one profile at a time. To load another profile, you must first
unload the previously loaded profile. To unload a profile, use the trash bin icon on the right
end of the profile in the Loaded profile section.

Use SageMaker Profiler 3444

Amazon SageMaker Developer Guide

Dashboard

After you finish loading and selecting the training job, the UI opens the Dashboard page furnished
with the following panels by default.

• GPU active time – This pie chart shows the percentage of GPU active time versus GPU idle time.
You can check if your GPUs are more active than idle throughout the entire training job. GPU
active time is based on the profile data points with a utilization rate greater than 0%, whereas
GPU idle time is the profiled data points with 0% utilization.

• GPU utilization over time – This timeline graph shows the average GPU utilization rate over
time per node, aggregating all of the nodes in a single chart. You can check if the GPUs have an
unbalanced workload, under-utilization issues, bottlenecks, or idle issues during certain time
intervals. To track the utilization rate at the individual GPU level and related kernel runs, use the
the section called “Timeline interface”. Note that the GPU activity collection starts from where
you added the profiler starter function SMProf.start_profiling() in your training script,
and stops at SMProf.stop_profiling().

Use SageMaker Profiler 3445

Amazon SageMaker Developer Guide

• CPU active time – This pie chart shows the percentage of CPU active time versus CPU idle time.
You can check if your CPUs are more active than idle throughout the entire training job. CPU
active time is based on the profiled data points with a utilization rate greater than 0%, whereas
CPU idle time is the profiled data points with 0% utilization.

• CPU utilization over time – This timeline graph shows the average CPU utilization rate over
time per node, aggregating all of the nodes in a single chart. You can check if the CPUs are
bottlenecked or underutilized during certain time intervals. To track the utilization rate of
the CPUs aligned with the individual GPU utilization and kernel runs, use the the section
called “Timeline interface”. Note that the utilization metrics start from the start from the job
initialization.

• Time spent by all GPU kernels – This pie chart shows all GPU kernels operated throughout
the training job. It shows the top 15 GPU kernels by default as individual sectors and all other
kernels in one sector. Hover over the sectors to see more detailed information. The value shows
the total time of the GPU kernels operated in seconds, and the percentage is based on the entire
time of the profile.

• Time spent by top 15 GPU kernels – This pie chart shows all GPU kernels operated throughout
the training job. It shows the top 15 GPU kernels as individual sectors. Hover over the sectors to
see more detailed information. The value shows the total time of the GPU kernels operated in
seconds, and the percentage is based on the entire time of the profile.

• Launch counts of all GPU kernels – This pie chart shows the number of counts for every GPU
kernel launched throughout the training job. It shows the top 15 GPU kernels as individual
sectors and all other kernels in one sector. Hover over the sectors to see more detailed
information. The value shows the total count of the launched GPU kernels, and the percentage is
based on the entire count of all kernels.

• Launch counts of top 15 GPU kernels – This pie chart shows the number of counts of every GPU
kernel launched throughout the training job. It shows the top 15 GPU kernels. Hover over the
sectors to see more detailed information. The value shows the total count of the launched GPU
kernels, and the percentage is based on the entire count of all kernels.

• Step time distribution – This histogram shows the distribution of step durations on GPUs. This
plot is generated only after you add the step annotator in your training script.

• Kernel precision distribution – This pie chart shows the percentage of time spent on running
kernels in different data types such as FP32, FP16, INT32, and INT8.

• GPU activity distribution – This pie chart shows the percentage of time spent on GPU activities,
such as running kernels, memory (memcpy and memset), and synchronization (sync).

Use SageMaker Profiler 3446

Amazon SageMaker Developer Guide

• GPU memory operations distribution – This pie chart shows the percentage of time spent on
GPU memory operations. This visualizes the memcopy activities and helps identify if your training
job is spending excessive time on certain memory operations.

• Create a new histogram – Create a new diagram of a custom metric you annotated manually
during the section called “Step 1: Adapt your training script using the SageMaker Profiler Python
modules”. When adding a custom annotation to a new histogram, select or type the name of the
annotation you added in the training script. For example, in the demo training script in Step 1,
step, Forward, Backward, Optimize, and Loss are the custom annotations. While creating
a new histogram, these annotation names should appear in the drop-down menu for metric
selection. If you choose Backward, the UI adds the histogram of the time spent on backward
passes throughout the profiled time to the Dashboard. This type of histogram is useful for
checking if there are outliers taking abnormally longer time and causing bottleneck problems.

The following screenshots show the GPU and CPU active time ratio and the average GPU and CPU
utilization rate with respect to time per compute node.

The following screenshot shows an example of pie charts for comparing how many times the GPU
kernels are launched and measuring the time spent on running them. In the Time spent by all GPU
kernels and Launch counts of all GPU kernels panels, you can also specify an integer to the input

Use SageMaker Profiler 3447

Amazon SageMaker Developer Guide

field for k to adjust the number of legend to show in the plots. For example, if you specify 10, the
plots show the top 10 most run and launched kernels respectively.

The following screenshot shows an example of step time duration histogram, and pie charts for the
kernel precision distribution, GPU activity distribution, and GPU memory operation distribution.

Use SageMaker Profiler 3448

Amazon SageMaker Developer Guide

Timeline interface

To gain a detailed view into the compute resources at the level of operations and kernels scheduled
on the CPUs and run on the GPUs, use the Timeline interface.

You can zoom in and out and pan left or right in the timeline interface using your mouse, the [w,
a, s, d] keys, or the four arrow keys on the keyboard.

Tip

For more tips on the keyboard shortcuts to interact with the Timeline interface, choose
Keyboard shortcuts in the left pane.

The timeline tracks are organized in a tree structure, giving you information from the host level to
the device level. For example, if you run N instances with eight GPUs in each, the timeline structure
of each instance would be as follows.

• algo-inode – This is what SageMaker tags to assign jobs to provisioned instances. The digit inode

is randomly assigned. For example, if you use 4 instances, this section expands from algo-1 to
algo-4.

• CPU – In this section, you can check the average CPU utilization rate and performance
counters.

• GPUs – In this section, you can check the average GPU utilization rate, individual GPU
utilization rate, and kernels.

• SUM Utilization – The average GPU utilization rates per instance.

• HOST-0 PID-123 – A unique name assigned to each process track. The acronym PID is the
process ID, and the number appended to it is the process ID number that's recorded during
data capture from the process. This section shows the following information from the
process.

• GPU-inum_gpu utilization – The utilization rate of the inum_gpu-th GPU over time.

• GPU-inum_gpu device – The kernel runs on the inum_gpu-th GPU device.

• stream icuda_stream – CUDA streams showing kernel runs on the GPU device. To
learn more about CUDA streams, see the slides in PDF at CUDA C/C++ Streams and
Concurrency provided by NVIDIA.

• GPU-inum_gpu host – The kernel launches on the inum_gpu-th GPU host.
Use SageMaker Profiler 3449

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Amazon SageMaker Developer Guide

The following several screenshots show the Timeline of the profile of a training job run on
ml.p4d.24xlarge instances, which are equipped with 8 NVIDIA A100 Tensor Core GPUs in each.

The following is a zoomed-out view of the profile, printing a dozen of steps including an
intermittent data loader between step_232 and step_233 for fetching the next data batch.

For each CPU, you can track the CPU utilization and performance counters, such as
"clk_unhalted_ref.tsc" and "itlb_misses.miss_causes_a_walk", which are indicative
of instructions run on the CPU.

For each GPU, you can see a host timeline and a device timeline. Kernel launches are on the host
timeline and kernel runs are on the device timeline. You can also see annotations (such as forward,
backward, and optimize) if you have added in training script in the GPU host timeline.

In the timeline view, you can also track kernel launch-and-run pairs. This helps you understand how
a kernel launch scheduled on a host (CPU) is run on the corresponding GPU device.

Tip

Press the f key to zoom into the selected kernel.

Use SageMaker Profiler 3450

Amazon SageMaker Developer Guide

The following screenshot is a zoomed-in view into step_233 and step_234 from the previous
screenshot. The timeline interval selected in the following screenshot is the AllReduce operation,
an essential communication and synchronization step in distributed training, run on the GPU-0
device. In the screenshot, note that the kernel launch in the GPU-0 host connects to the kernel run
in the GPU-0 device stream 1, indicated with the arrow in cyan color.

Also two information tabs appear in the bottom pane of the UI when you select a timeline interval,
as shown in the previous screenshot. The Current Selection tab shows the details of the selected
kernel and the connected kernel launch from the host. The connection direction is always from
host (CPU) to device (GPU) since each GPU kernel is always called from a CPU. The Connections tab
shows the chosen kernel launch and run pair. You can select either of them to move it to the center
of the Timeline view.

The following screenshot zooms in further into the AllReduce operation launch and run pair.

Use SageMaker Profiler 3451

Amazon SageMaker Developer Guide

Information

In Information, you can access information about the loaded training job, such as the instance
type, Amazon Resource Names (ARNs) of compute resources provisioned for the job, node names,
and hyperparameters.

Settings

The SageMaker Profiler UI application instance is configured to shut down after 2 hours of idle
time by default. In Settings, use the following settings to adjust the auto shutdown timer.

• Enable app auto shutdown – Choose and set to Enabled to let the application automatically
shut down after the specified number of hours of idle time. To turn off the auto-shutdown
functionality, choose Disabled.

• Auto shutdown threshold in hours – If you choose Enabled for Enable app auto shutdown, you
can set the threshold time in hours for the application to shut down automatically. This is set to
2 by default.

Frequently asked questions about using SageMaker Profiler

Use the following frequently asked questions to find answers about using SageMaker Profiler.

Use SageMaker Profiler 3452

Amazon SageMaker Developer Guide

Q. I’m getting an error message, ModuleNotFoundError: No module named 'smppy'

Since December 2023, the name of the SageMaker Profiler Python package has changed from
smppy to smprof to resolve a duplicate package name issue; smppy is already used by an open
source package.

Therefore, if you have been using smppy since before December 2023 and experiencing this
ModuleNotFoundError issue, it might be due to the outdated package name in your training
script while having the latested smprof package installed or using one of the latest the section
called “SageMaker framework images pre-installed with SageMaker Profiler”. In this case, make
sure that you replace all mentions of smppy with smprof throughout your training script.

While updating the SageMaker Profiler Python package name in your training scripts, to avoid
confusion around which version of the package name you should use, consider using a conditional
import statement as shown in the following code snippet.

try:
 import smprof
except ImportError:
 # backward-compatability for TF 2.11 and PT 1.13.1 images
 import smppy as smprof

Also note that if you have been using smppy while upgrading to the latest PyTorch or TensorFlow
versions, make sure that you install the latest smprof package by following instructions at the
section called “(Optional) Install the SageMaker Profiler Python package”.

Q. I’m getting an error message, ModuleNotFoundError: No module named 'smprof'

First, make sure that you use one of the officially supported SageMaker Framework Containers. If
you don’t use one of those, you can install the smprof package by following instructions at the
section called “(Optional) Install the SageMaker Profiler Python package”.

Q. I’m not able to import ProfilerConfig

If you are unable to import ProfilerConfig in your job launcher script using the SageMaker
Python SDK, your local environment or the Jupyter kernel might have a significantly outdated
version of the SageMaker Python SDK. Make sure that you upgrade the SDK to the latest version.

$ pip install --upgrade sagemaker

Use SageMaker Profiler 3453

Amazon SageMaker Developer Guide

Q. I’m getting an error message, aborted: core dumped when importing smprof into
my training script

In an earlier version of smprof, this issue occurs with PyTorch 2.0+ and PyTorch Lightning. To
resolve this issue, also install the latest smprof package by following instructions at the section
called “(Optional) Install the SageMaker Profiler Python package”.

Q. I cannot find the SageMaker Profiler UI from SageMaker Studio. How can I find it?

If you have access to the SageMaker console, choose one of the following options.

• the section called “Option 1: Launch the SageMaker Profiler UI from the domain details page”

• the section called “Option 2: Launch the SageMaker Profiler UI application from the SageMaker
Profiler landing page in the SageMaker console”

If you are a domain user and don't have access to the SageMaker console, you can access the
application through SageMaker Studio Classic. If this is your case, choose the following option.

• the section called “Option 3: Use the application launcher function in the SageMaker Python
SDK”

Considerations

Consider the following when using SageMaker Profiler.

• SageMaker Profiler is not compatible with SageMaker managed warm pools.

Monitor AWS compute resource utilization in Amazon SageMaker
Studio Classic

To track compute resource utilization of your training job, use the monitoring tools offered by
Amazon SageMaker Debugger.

For any training job you run in SageMaker using the SageMaker Python SDK, Debugger collects
basic resource utilization metrics, such as CPU utilization, GPU utilization, GPU memory utilization,
network, and I/O wait time every 500 milliseconds. To see the dashbard of the resource utilization
metrics of your training job, simply use the SageMaker Debugger UI in SageMaker Studio
Experiments.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3454

https://docs.aws.amazon.com/sagemaker/latest/dg/train-warm-pools.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio.html

Amazon SageMaker Developer Guide

Deep learning operations and steps might operate in intervals of milliseconds. Compared to
Amazon CloudWatch metrics, which collect metrics at intervals of 1 second, Debugger provides
finer granularity into the resource utilization metrics down to 100-millisecond (0.1 second)
intervals so you can dive deep into the metrics at the level of an operation or a step.

If you want to change the metric collection time interval, you can add a paramter for profiling
configuration to your training job launcher. For example, if you're using the SageMaker Python
SDK, you need to pass the profiler_config parameter when you create an estimator object. To
learn how to adjust the resource utilization metric collection interval, see the section called “Code
template for configuring a SageMaker estimator object with the SageMaker Debugger Python
modules in the SageMaker Python SDK” and then the section called “Configure settings for basic
profiling of system resource utilization”.

Additionally, you can add issue detecting tools called built-in profiling rules provided by SageMaker
Debugger. The built-in profiling rules run analysis against the resource utilization metrics and
detect computational performance issues. For more information, see the section called “Configure
built-in profiler rules”. You can receive rule analysis results through the SageMaker Debugger UI in
SageMaker Studio Experiments or the SageMaker Debugger Profiling Report. You can also create
custom profiling rules using the SageMaker Python SDK.

To learn more about monitoring functionalities provided by SageMaker Debugger, see the
following topics.

Topics

• Configure an estimator with parameters for basic profiling using the Amazon SageMaker
Debugger Python modules

• Configure built-in profiler rules managed by Amazon SageMaker Debugger

• List of Debugger built-in profiler rules

• Amazon SageMaker Debugger UI in Amazon SageMaker Studio Classic Experiments

• SageMaker Debugger interactive report

• Analyze data using the Debugger Python client library

Configure an estimator with parameters for basic profiling using the Amazon
SageMaker Debugger Python modules

By default, SageMaker Debugger basic profiling is on by default and monitors resource utilization
metrics, such as CPU utilization, GPU utilization, GPU memory utilization, Network, and I/O

Monitor AWS compute resource utilization in SageMaker Studio Classic 3455

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio.html
http://dev-dsk-cmiyoung-2a-c844f850.us-west-2.amazon.com/sagemaker/AWSIronmanApiDoc/alpha/cmiyoung-tornasole/latest/dg/debugger-profiling-report.html

Amazon SageMaker Developer Guide

wait time, of all SageMaker training jobs submitted using the Amazon SageMaker Python SDK.
SageMaker Debugger collects these resource utilization metrics every 500 milliseconds. You don't
need to make any additional changes in your code, training script, or the job launcher for tracking
basic resource utilization. If you want to access the resource utilization metrics dashboard of your
training job in SageMaker Studio, you can jump onto the Amazon SageMaker Debugger UI in
Amazon SageMaker Studio Classic Experiments.

If you want to change the metric collection interval for basic profiling, you can specify Debugger-
specific parameters while creating a SageMaker training job launcher using the SageMaker Python
SDK, AWS SDK for Python (Boto3), or AWS Command Line Interface (CLI). In this guide, we focus on
how to change profiling options using the Amazon SageMaker Python SDK.

If you want to activate the rules that detect system resource utilization problems automatically,
you can add the rules parameter in the estimator object for activating the rules.

Important

To use the latest SageMaker Debugger features, you need to upgrade the SageMaker
Python SDK and the SMDebug client library. In your iPython kernel, Jupyter Notebook, or
JupyterLab environment, run the following code to install the latest versions of the libraries
and restart the kernel.

import sys
import IPython
!{sys.executable} -m pip install -U sagemaker smdebug
IPython.Application.instance().kernel.do_shutdown(True)

Code template for configuring a SageMaker estimator object with the SageMaker Debugger
Python modules in the SageMaker Python SDK

To adjust the basic profiling configuration (profiler_config) or add the profiler rules
(rules), choose one of the tabs to get the template for setting up a SageMaker estimator. In the
subsequent pages, you can find more information about how to configure the two parameters.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3456

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Note

The following code examples are not directly executable. Proceed to the next sections to
learn how to configure each parameter.

PyTorch

An example of constructing a SageMaker PyTorch estimator
import boto3
import sagemaker
from sagemaker.pytorch import PyTorch
from sagemaker.debugger import ProfilerConfig, ProfilerRule, rule_configs

session=boto3.session.Session()
region=session.region_name

profiler_config=ProfilerConfig(...)
rules=[
 ProfilerRule.sagemaker(rule_configs.BuiltInRule())
]

estimator=PyTorch(
 entry_point="directory/to/your_training_script.py",
 role=sagemaker.get_execution_role(),
 base_job_name="debugger-profiling-demo",
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="1.12.0",
 py_version="py37",

 # SageMaker Debugger parameters
 profiler_config=profiler_config,
 rules=rules
)

estimator.fit(wait=False)

TensorFlow

An example of constructing a SageMaker TensorFlow estimator
import boto3

Monitor AWS compute resource utilization in SageMaker Studio Classic 3457

Amazon SageMaker Developer Guide

import sagemaker
from sagemaker.tensorflow import TensorFlow
from sagemaker.debugger import ProfilerConfig, ProfilerRule, rule_configs

session=boto3.session.Session()
region=session.region_name

profiler_config=ProfilerConfig(...)
rules=[
 ProfilerRule.sagemaker(rule_configs.BuiltInRule())
]

estimator=TensorFlow(
 entry_point="directory/to/your_training_script.py",
 role=sagemaker.get_execution_role(),
 base_job_name="debugger-profiling-demo",
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="2.8.0",
 py_version="py37",

 # SageMaker Debugger parameters
 profiler_config=profiler_config,
 rules=rules
)

estimator.fit(wait=False)

MXNet

An example of constructing a SageMaker MXNet estimator
import sagemaker
from sagemaker.mxnet import MXNet
from sagemaker.debugger import ProfilerConfig, ProfilerRule, rule_configs

profiler_config=ProfilerConfig(...)
rules=[
 ProfilerRule.sagemaker(rule_configs.BuiltInRule())
]

estimator=MXNet(
 entry_point="directory/to/your_training_script.py",
 role=sagemaker.get_execution_role(),

Monitor AWS compute resource utilization in SageMaker Studio Classic 3458

Amazon SageMaker Developer Guide

 base_job_name="debugger-profiling-demo",
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="1.7.0",
 py_version="py37",

 # SageMaker Debugger parameters
 profiler_config=profiler_config,
 rules=rules
)

estimator.fit(wait=False)

Note

For MXNet, when configuring the profiler_config parameter, you can only configure
for system monitoring. Profiling framework metrics is not supported for MXNet.

XGBoost

An example of constructing a SageMaker XGBoost estimator
import sagemaker
from sagemaker.xgboost.estimator import XGBoost
from sagemaker.debugger import ProfilerConfig, ProfilerRule, rule_configs

profiler_config=ProfilerConfig(...)
rules=[
 ProfilerRule.sagemaker(rule_configs.BuiltInRule())
]

estimator=XGBoost(
 entry_point="directory/to/your_training_script.py",
 role=sagemaker.get_execution_role(),
 base_job_name="debugger-profiling-demo",
 instance_count=1,
 instance_type="ml.p3.2xlarge",
 framework_version="1.5-1",

 # Debugger-specific parameters
 profiler_config=profiler_config,
 rules=rules

Monitor AWS compute resource utilization in SageMaker Studio Classic 3459

Amazon SageMaker Developer Guide

)

estimator.fit(wait=False)

Note

For XGBoost, when configuring the profiler_config parameter, you can only
configure for system monitoring. Profiling framework metrics is not supported for
XGBoost.

Generic estimator

An example of constructing a SageMaker generic estimator using the XGBoost
 algorithm base image
import boto3
import sagemaker
from sagemaker.estimator import Estimator
from sagemaker import image_uris
from sagemaker.debugger import ProfilerConfig, DebuggerHookConfig, Rule,
 ProfilerRule, rule_configs

profiler_config=ProfilerConfig(...)
rules=[
 ProfilerRule.sagemaker(rule_configs.BuiltInRule())
]

region=boto3.Session().region_name
xgboost_container=sagemaker.image_uris.retrieve("xgboost", region, "1.5-1")

estimator=Estimator(
 role=sagemaker.get_execution_role()
 image_uri=xgboost_container,
 base_job_name="debugger-demo",
 instance_count=1,
 instance_type="ml.m5.2xlarge",

 # Debugger-specific parameters
 profiler_config=profiler_config,
 rules=rules
)

Monitor AWS compute resource utilization in SageMaker Studio Classic 3460

Amazon SageMaker Developer Guide

estimator.fit(wait=False)

The following provides brief descriptions of the parameters.

• profiler_config – Configure Debugger to collect system metrics and framework metrics
from your training job and save into your secured S3 bucket URI or local machine. You can
set how frequently or loosely collect the system metrics. To learn how to configure the
profiler_config parameter, see Configure settings for basic profiling of system resource
utilization and Configure for framework profiling.

• rules – Configure this parameter to activate SageMaker Debugger built-in rules that you want
to run in parallel. Make sure that your training job has access to this S3 bucket. The rules runs
on processing containers and automatically analyze your training job to find computational and
operational performance issues. The ProfilerReport rule is the most integrated rule that runs all
built-in profiling rules and saves the profiling results as a report into your secured S3 bucket. To
learn how to configure the rules parameter, see Configure built-in profiler rules managed by
Amazon SageMaker Debugger.

Note

Debugger securely saves output data in subfolders of your default S3 bucket. For
example, the format of the default S3 bucket URI is s3://sagemaker-<region>-
<12digit_account_id>/<base-job-name>/<debugger-subfolders>/. There are
three subfolders created by Debugger: debug-output, profiler-output, and rule-
output. You can also retrieve the default S3 bucket URIs using the SageMaker estimator
classmethods.

See the following topics to find out how to configure the Debugger-specific parameters in detail.

Topics

• Configure settings for basic profiling of system resource utilization

• Configure for framework profiling

• Updating Debugger system monitoring and framework profiling configuration while a training
job is running

• Turn off Debugger

Monitor AWS compute resource utilization in SageMaker Studio Classic 3461

Amazon SageMaker Developer Guide

Configure settings for basic profiling of system resource utilization

To adjust the time interval for collecting the utilization metrics, use the ProfilerConfig API
operation to create a parameter object while constructing a SageMaker framework or generic
estimator depending on your preference.

Note

By default, for all SageMaker training jobs, Debugger collects resource utilization metrics
from Amazon EC2 instances every 500 milliseconds for system monitoring, without any
Debugger-specific parameters specified in SageMaker estimators.
Debugger saves the system metrics in the default S3 bucket. The format of the default S3
bucket URI is s3://sagemaker-<region>-<12digit_account_id>/<training-
job-name>/profiler-output/.

The following code example shows how to set up the profiler_config parameter with a system
monitoring time interval of 1000 milliseconds.

from sagemaker.debugger import ProfilerConfig

profiler_config=ProfilerConfig(
 system_monitor_interval_millis=1000
)

• system_monitor_interval_millis (int) – Specify the monitoring intervals in milliseconds
to record system metrics. Available values are 100, 200, 500, 1000 (1 second), 5000 (5 seconds),
and 60000 (1 minute) milliseconds. The default value is 500 milliseconds.

To see the progress of system monitoring, see Open the Amazon SageMaker Debugger Insights
dashboard.

Configure for framework profiling

Warning

In favor of Amazon SageMaker Profiler, SageMaker Debugger deprecates the framework
profiling feature starting from TensorFlow 2.11 and PyTorch 2.0. You can still use the
feature in the previous versions of the frameworks and SDKs as follows.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3462

Amazon SageMaker Developer Guide

• SageMaker Python SDK <= v2.130.0

• PyTorch >= v1.6.0, < v2.0

• TensorFlow >= v2.3.1, < v2.11

See also March 16, 2023.

To enable Debugger framework profiling, configure the framework_profile_params parameter
when you construct an estimator. Debugger framework profiling collects framework metrics,
such as data from initialization stage, data loader processes, Python operators of deep learning
frameworks and training scripts, detailed profiling within and between steps, with cProfile or
Pyinstrument options. Using the FrameworkProfile class, you can configure custom framework
profiling options.

Note

Before getting started with Debugger framework profiling, verify that the framework
used to build your model is supported by Debugger for framework profiling. For more
information, see Supported Frameworks and Algorithms.
Debugger saves the framework metrics in a default S3 bucket. The format of the default
S3 bucket URI is s3://sagemaker-<region>-<12digit_account_id>/<training-
job-name>/profiler-output/.

Start a training job with the default framework profiling

The following example code is the simplest profiler_config parameter setting to start the
default system monitoring and the default framework profiling. The FrameworkProfile class in
the following example code initiates the default framework profiling when a training job starts.
Debugger framework profiling includes the following options: detailed profiling, data loader
profiling, and Python profiling.

from sagemaker.debugger import ProfilerConfig, FrameworkProfile

profiler_config=ProfilerConfig(
 framework_profile_params=FrameworkProfile()
)

Monitor AWS compute resource utilization in SageMaker Studio Classic 3463

Amazon SageMaker Developer Guide

With this profiler_config parameter configuration, Debugger calls the default settings of
monitoring and profiling. Debugger monitors system metrics every 500 milliseconds; profiles the
fifth step with the detailed profiling option; the seventh step with the data loader profiling option;
and the ninth, tenth, and eleventh steps with the Python profiling option.

To find available profiling configuration options, the default parameter settings, and examples
of how to configure them, see Start a training job with the default system monitoring and
customized framework profiling with different profiling options and SageMaker Debugger APIs –
FrameworkProfile in the Amazon SageMaker Python SDK.

If you want to change the system monitoring interval and enable the default framework profiling,
you can specify the system_monitor_interval_millis parameter explicitly with the
framework_profile_params parameter. For example, to monitor every 1000 milliseconds and
enable the default framework profiling, use the following example code.

from sagemaker.debugger import ProfilerConfig, FrameworkProfile

profiler_config=ProfilerConfig(
 system_monitor_interval_millis=1000,
 framework_profile_params=FrameworkProfile()
)

For more information about the FrameworkProfile class, see SageMaker Debugger APIs –
FrameworkProfile in the Amazon SageMaker Python SDK.

Start a training job with the default system monitoring and customized framework profiling for
target steps or a target time range

If you want to specify target steps or target time intervals to profile your training job, you need to
specify parameters for the FrameworkProfile class. The following code examples show how to
specify the target ranges for profiling along with system monitoring.

• For a target step range

With the following example configuration, Debugger monitors the entire training job every 500
milliseconds (the default monitoring) and profiles a target step range from step 5 to step 15 (for
10 steps).

from sagemaker.debugger import ProfilerConfig, FrameworkProfile

profiler_config=ProfilerConfig(

Monitor AWS compute resource utilization in SageMaker Studio Classic 3464

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.FrameworkProfile
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.FrameworkProfile
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.FrameworkProfile
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.FrameworkProfile
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

 framework_profile_params=FrameworkProfile(start_step=5, num_steps=10)
)

With the following example configuration, Debugger monitors the entire training job every 1000
milliseconds and profiles a target step range from step 5 to step 15 (for 10 steps).

from sagemaker.debugger import ProfilerConfig, FrameworkProfile

profiler_config=ProfilerConfig(
 system_monitor_interval_millis=1000,
 framework_profile_params=FrameworkProfile(start_step=5, num_steps=10)
)

• For a target time range

With the following example configuration, Debugger monitors the entire training job every 500
milliseconds (the default monitoring) and profiles a target time range from the current Unix time
for 600 seconds.

import time
from sagemaker.debugger import ProfilerConfig, FrameworkProfile

profiler_config=ProfilerConfig(
 framework_profile_params=FrameworkProfile(start_unix_time=int(time.time()),
 duration=600)
)

With the following example configuration, Debugger monitors the entire training job every 1000
milliseconds and profiles a target time range from the current Unix time for 600 seconds.

import time
from sagemaker.debugger import ProfilerConfig, FrameworkProfile

profiler_config=ProfilerConfig(
 system_monitor_interval_millis=1000,
 framework_profile_params=FrameworkProfile(start_unix_time=int(time.time()),
 duration=600)
)

The framework profiling is performed for all of the profiling options at the target step or time
range.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3465

Amazon SageMaker Developer Guide

To find more information about available profiling options, see SageMaker Debugger APIs –
FrameworkProfile in the Amazon SageMaker Python SDK.

The next section shows you how to script the available profiling options.

Start a training job with the default system monitoring and customized framework profiling
with different profiling options

You can use the following profiling configuration classes to manage the framework profiling
options:

• DetailedProfilingConfig – Specify a target step or time range to profile framework operations
using the native framework profilers (TensorFlow profiler and PyTorch profiler). For example,
if using TensorFlow, the Debugger hooks enable the TensorFlow profiler to collect TensorFlow-
specific framework metrics. Detailed profiling enables you to profile all framework operators at a
pre-step (before the first step), within steps, and between steps of a training job.

Note

Detailed profiling might significantly increase GPU memory consumption. We do not
recommend enabling detailed profiling for more than a couple of steps.

• DataloaderProfilingConfig – Specify a target step or time range to profile deep learning
framework data loader processes. Debugger collects every data loader event of the frameworks.

Note

Data loader profiling might lower the training performance while collecting information
from data loaders. We don't recommend enabling data loader profiling for more than a
couple of steps.
Debugger is preconfigured to annotate data loader processes only for the AWS deep
learning containers. Debugger cannot profile data loader processes from any other
custom or external training containers.

• PythonProfilingConfig – Specify a target step or time range to profile Python functions. You can
also choose between two Python profilers: cProfile and Pyinstrument.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3466

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.FrameworkProfile
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.FrameworkProfile
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.DetailedProfilingConfig
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.DataloaderProfilingConfig
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.PythonProfilingConfig

Amazon SageMaker Developer Guide

• cProfile – The standard Python profiler. cProfile collects information for every Python operator
called during training. With cProfile, Debugger saves cumulative time and annotation for
each function call, providing complete detail about Python functions. In deep learning, for
example, the most frequently called functions might be the convolutional filters and backward
pass operators, and cProfile profiles every single of them. For the cProfile option, you can
further select a timer option: total time, CPU time, and off-CPU time. While you can profile
every function call executing on processors (both CPU and GPU) in CPU time, you can also
identify I/O or network bottlenecks with the off-CPU time option. The default is total time,
and Debugger profiles both CPU and off-CPU time. With cProfile, you are able to drill down to
every single functions when analyzing the profile data.

• Pyinstrument – Pyinstrument is a low-overhead Python profiler that works based on sampling.
With the Pyinstrument option, Debugger samples profiling events every millisecond. Because
Pyinstrument measures elapsed wall-clock time instead of CPU time, the Pyinstrument option
can be a better choice over the cProfile option for reducing profiling noise (filtering out
irrelevant function calls that are cumulatively fast) and capturing operators that are actually
compute intensive (cumulatively slow) for training your model. With Pyinstrument, you are
able to see a tree of function calls and better understand the structure and root cause of the
slowness.

Note

Enabling Python profiling might slow down the overall training time. cProfile profiles the
most frequently called Python operators at every call, so the processing time on profiling
increases with respect to the number of calls. For Pyinstrument, the cumulative profiling
time increases with respect to time because of its sampling mechanism.

The following example configuration shows the full structure when you use the different profiling
options with specified values.

import time
from sagemaker.debugger import (ProfilerConfig,
 FrameworkProfile,
 DetailedProfilingConfig,
 DataloaderProfilingConfig,
 PythonProfilingConfig,
 PythonProfiler, cProfileTimer)

Monitor AWS compute resource utilization in SageMaker Studio Classic 3467

Amazon SageMaker Developer Guide

profiler_config=ProfilerConfig(
 system_monitor_interval_millis=500,
 framework_profile_params=FrameworkProfile(
 detailed_profiling_config=DetailedProfilingConfig(
 start_step=5,
 num_steps=1
),
 dataloader_profiling_config=DataloaderProfilingConfig(
 start_step=7,
 num_steps=1
),
 python_profiling_config=PythonProfilingConfig(
 start_step=9,
 num_steps=1,
 python_profiler=PythonProfiler.CPROFILE,
 cprofile_timer=cProfileTimer.TOTAL_TIME
)
)
)

For more information about available profiling options, see DetailedProfilingConfig,
DataloaderProfilingConfig, and PythonProfilingConfig in the Amazon SageMaker Python SDK.

Updating Debugger system monitoring and framework profiling configuration while a training
job is running

If you want to activate or update the Debugger monitoring configuration for a training job that is
currently running, use the following SageMaker estimator extension methods:

• To activate Debugger system monitoring for a running training job and receive a Debugger
profiling report, use the following:

estimator.enable_default_profiling()

When you use the enable_default_profiling method, Debugger initiates the default
system monitoring and the ProfileReport built-in rule, which generates a comprehensive
profiling report at the end of the training job. This method can be called only if the current
training job is running without both Debugger monitoring and profiling.

For more information, see estimator.enable_default_profiling in the Amazon SageMaker Python
SDK.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3468

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.DetailedProfilingConfig
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.DataloaderProfilingConfig
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html#sagemaker.debugger.PythonProfilingConfig
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator.enable_default_profiling
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• To update system monitoring configuration, use the following:

estimator.update_profiler(
 system_monitor_interval_millis=500
)

For more information, see estimator.update_profiler in the Amazon SageMaker Python SDK.

Turn off Debugger

If you want to completely turn off Debugger, do one of the following:

• Before starting a training job, do the following:

To turn off profiling, include the disable_profiler parameter to your estimator and set it to
True.

Warning

If you disable it, you won't be able to view the comprehensive Studio Debugger insights
dashboard and the autogenerated profiling report.

To turn off debugging, set the debugger_hook_config parameter to False.

Warning

If you disable it, you won't be able to collect output tensors and cannot debug your
model parameters.

estimator=Estimator(
 ...
 disable_profiler=True
 debugger_hook_config=False
)

For more information about the Debugger-specific parameters, see SageMaker Estimator in the
Amazon SageMaker Python SDK.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3469

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator.update_profiler
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• While a training job is running, do the following:

To disable both monitoring and profiling while your training job is running, use the following
estimator classmethod:

estimator.disable_profiling()

To disable framework profiling only and keep system monitoring, use the update_profiler
method:

estimator.update_profiler(disable_framework_metrics=true)

For more information about the estimator extension methods, see the
estimator.disable_profiling and estimator.update_profiler classmethods in the Amazon
SageMaker Python SDK documentation.

Configure built-in profiler rules managed by Amazon SageMaker Debugger

The Amazon SageMaker Debugger built-in profiler rules analyze system metrics and framework
operations collected during the training of a model. Debugger offers the ProfilerRule API
operation that helps configure the rules to monitor training compute resources and operations
and to detect anomalies. For example, the profiling rules can help you detect whether there are
computational problems such as CPU bottlenecks, excessive I/O wait time, imbalanced workload
across GPU workers, and compute resource underutilization. To see a full list of available built-in
profiling rules, see List of Debugger built-in profiler rules.

Note

The built-in rules are provided through Amazon SageMaker processing containers and
fully managed by SageMaker Debugger at no additional cost. For more information about
billing, see the Amazon SageMaker Pricing page.

In the following topics, learn how to use the Debugger built-in rules.

Topics

• Use SageMaker Debugger built-in profiler rules with their default parameter settings

Monitor AWS compute resource utilization in SageMaker Studio Classic 3470

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator.disable_profiling
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator.update_profiler
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

• Use Debugger built-in profiler rules with custom parameter values

Use SageMaker Debugger built-in profiler rules with their default parameter settings

To add SageMaker Debugger built-in rules in your estimator, you need to configure a rules list
object. The following example code shows the basic structure of listing the SageMaker Debugger
built-in rules.

from sagemaker.debugger import Rule, ProfilerRule, rule_configs

rules=[
 ProfilerRule.sagemaker(rule_configs.BuiltInProfilerRuleName_1()),
 ProfilerRule.sagemaker(rule_configs.BuiltInProfilerRuleName_2()),
 ...
 ProfilerRule.sagemaker(rule_configs.BuiltInProfilerRuleName_n()),
 ... # You can also append more debugging rules in the
 Rule.sagemaker(rule_configs.*()) format.
]

estimator=Estimator(
 ...
 rules=rules
)

For a complete list of available built-in rules, see List of Debugger built-in profiler rules.

To use the profiling rules and inspect the computational performance and progress of your
training job, add the ProfilerReport rule of SageMaker Debugger. This rule activates all built-
in rules under the Debugger ProfilerRule ProfilerRule family. Furthermore, this rule generates
an aggregated profiling report. For more information, see Profiling Report Generated Using
SageMaker Debugger. You can use the following code to add the profiling report rule to your
training estimator.

from sagemaker.debugger import Rule, rule_configs

rules=[
 ProfilerRule.sagemaker(rule_configs.ProfilerReport())
]

When you start the training job with the ProfilerReport rule, Debugger collects resource
utilization data every 500 milliseconds. Debugger analyzes the resource utilization to identify

Monitor AWS compute resource utilization in SageMaker Studio Classic 3471

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-profiler-rules.html#profiler-report
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-profiler-rules.html#debugger-built-in-profiler-rules-ProfilerRule
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html

Amazon SageMaker Developer Guide

if your model is having bottleneck problems. If the rules detect training anomalies, the rule
evaluation status changes to IssueFound. You can set up automated actions, such as notifying
training issues and stopping training jobs using Amazon CloudWatch Events and AWS Lambda. For
more information, see Action on Amazon SageMaker Debugger Rules.

Use Debugger built-in profiler rules with custom parameter values

If you want to adjust the built-in rule parameter values and customize tensor collection
regex, configure the base_config and rule_parameters parameters for the
ProfilerRule.sagemaker and Rule.sagemaker class methods. In case of the
Rule.sagemaker class methods, you can also customize tensor collections through the
collections_to_save parameter. For instruction on how to use the CollectionConfig class,
see Configure Tensor Collections Using the CollectionConfig API.

Use the following configuration template for built-in rules to customize parameter values. By
changing the rule parameters as you want, you can adjust the sensitivity of the rules to be initiated.

• The base_config argument is where you call the built-in rule methods.

• The rule_parameters argument is to adjust the default key values of the built-in rules listed in
List of Debugger built-in profiler rules.

For more information about the Debugger rule class, methods, and parameters, see SageMaker
Debugger Rule class in the Amazon SageMaker Python SDK.

from sagemaker.debugger import Rule, ProfilerRule, rule_configs, CollectionConfig

rules=[
 ProfilerRule.sagemaker(
 base_config=rule_configs.BuiltInProfilerRuleName(),
 rule_parameters={
 "key": "value"
 }
)
]

The parameter descriptions and value customization examples are provided for each rule at List of
Debugger built-in profiler rules.

For a low-level JSON configuration of the Debugger built-in rules using the CreateTrainingJob
API, see Configure Debugger Using Amazon SageMaker API.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3472

https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html
https://sagemaker.readthedocs.io/en/stable/api/training/debugger.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

List of Debugger built-in profiler rules

Use the Debugger built-in profiler rules provided by Amazon SageMaker Debugger and analyze
metrics collected while training your models. The Debugger built-in rules monitor various common
conditions that are critical for the success of running a performant training job. You can call
the built-in profiler rules using Amazon SageMaker Python SDK or the low-level SageMaker API
operations. There's no additional cost for using the built-in rules. For more information about
billing, see the Amazon SageMaker Pricing page.

Note

The maximum numbers of built-in profiler rules that you can attach to a training job is
20. SageMaker Debugger fully manages the built-in rules and analyzes your training job
synchronously.

Important

To use the new Debugger features, you need to upgrade the SageMaker Python SDK
and the SMDebug client library. In your iPython kernel, Jupyter notebook, or JupyterLab
environment, run the following code to install the latest versions of the libraries and restart
the kernel.

import sys
import IPython
!{sys.executable} -m pip install -U sagemaker smdebug
IPython.Application.instance().kernel.do_shutdown(True)

Profiler rules

The following rules are the Debugger built-in rules that are callable using the
ProfilerRule.sagemaker classmethod.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3473

https://sagemaker.readthedocs.io
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Debugger built-in rule for generating the profiling report

Scope of Validity Built-in Rules

Profiling Report for any SageMaker training
job

• ProfilerReport

Debugger built-in rules for profiling hardware system resource utilization (system metrics)

Scope of Validity Built-in Rules

Generic system monitoring rules for any
SageMaker training job

• BatchSize

• CPUBottleneck

• GPUMemoryIncrease

• IOBottleneck

• LoadBalancing

• LowGPUUtilization

• OverallSystemUsage

Debugger built-in rules for profiling framework metrics

Scope of Validity Built-in Rules

Profiling rules for deep learning frameworks
(TensorFlow and PyTorch)

• MaxInitializationTime

• OverallFrameworkMetrics

• StepOutlier

Warning

In favor of Amazon SageMaker Profiler, SageMaker Debugger deprecates the framework
profiling feature starting from TensorFlow 2.11 and PyTorch 2.0. You can still use the
feature in the previous versions of the frameworks and SDKs as follows.

• SageMaker Python SDK <= v2.130.0

• PyTorch >= v1.6.0, < v2.0

Monitor AWS compute resource utilization in SageMaker Studio Classic 3474

Amazon SageMaker Developer Guide

• TensorFlow >= v2.3.1, < v2.11

See also March 16, 2023.

To use the built-in rules with default parameter values – use the following configuration format:

from sagemaker.debugger import Rule, ProfilerRule, rule_configs

rules = [
 ProfilerRule.sagemaker(rule_configs.BuiltInRuleName_1()),
 ProfilerRule.sagemaker(rule_configs.BuiltInRuleName_2()),
 ...
 ProfilerRule.sagemaker(rule_configs.BuiltInRuleName_n())
]

To use the built-in rules with customizing the parameter values – use the following configuration
format:

from sagemaker.debugger import Rule, ProfilerRule, rule_configs

rules = [
 ProfilerRule.sagemaker(
 base_config=rule_configs.BuiltInRuleName(),
 rule_parameters={
 "key": "value"
 }
)
]

To find available keys for the rule_parameters parameter, see the parameter description tables.

Sample rule configuration codes are provided for each built-in rule below the parameter
description tables.

• For a full instruction and examples of using the Debugger built-in rules, see Debugger Built-in
Rules Example Code.

• For a full instruction on using the built-in rules with the low-level SageMaker API operations, see
Configure Debugger Using Amazon SageMaker API.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3475

Amazon SageMaker Developer Guide

ProfilerReport

The ProfilerReport rule invokes all of the built-in rules for monitoring and profiling. It creates
a profiling report and updates when the individual rules are triggered. You can download a
comprehensive profiling report while a training job is running or after the training job is complete.
You can adjust the rule parameter values to customize sensitivity of the built-in monitoring and
profiling rules. The following example code shows the basic format to adjust the built-in rule
parameters through the ProfilerReport rule.

rules=[
 ProfilerRule.sagemaker(
 rule_configs.ProfilerReport(
 <BuiltInRuleName>_<parameter_name> = value
)
)
]

If you trigger this ProfilerReport rule without any customized parameter as shown in the following
example code, then the ProfilerReport rule triggers all of the built-in rules for monitoring and
profiling with their default parameter values.

rules=[ProfilerRule.sagemaker(rule_configs.ProfilerReport())]

The following example code shows how to specify and adjust the CPUBottleneck rule's
cpu_threshold parameter and the IOBottleneck rule's threshold parameter.

rules=[
 ProfilerRule.sagemaker(
 rule_configs.ProfilerReport(
 CPUBottleneck_cpu_threshold = 90,
 IOBottleneck_threshold = 90
)
)
]

To explore what's in the profiler report, see SageMaker Debugger Profiling Report. Also, because
this rule activates all of the profiling rules, you can also check the rule analysis status using the
SageMaker Debugger UI in SageMaker Studio Experiments.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3476

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio.html

Amazon SageMaker Developer Guide

Parameter Descriptions for the OverallSystemUsage Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

<BuiltInRuleName>_<paramete
r_name>

Customizable parameter to adjust threshold
s of other built-in monitoring and profiling
rules.

Optional

Default value: None

BatchSize

The BatchSize rule helps detect if GPU is underutilized due to a small batch size. To detect this
issue, this rule monitors the average CPU utilization, GPU utilization, and GPU memory utilization.
If utilization on CPU, GPU, and GPU memory is low on average, it may indicate that the training job
can either run on a smaller instance type or can run with a bigger batch size. This analysis does not
work for frameworks that heavily overallocate memory. However, increasing the batch size can lead
to processing or data loading bottlenecks because more data preprocessing time is required in each
iteration.

Parameter Descriptions for the BatchSize Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Monitor AWS compute resource utilization in SageMaker Studio Classic 3477

Amazon SageMaker Developer Guide

Parameter Name Description

Valid values: String

cpu_threshold_p95 Defines the threshold for 95th quantile of CPU
utilization in percentage.

Optional

Valid values: Integer

Default value: 70 (in percentage)

gpu_threshold_p95 Defines the threshold for 95th quantile of
GPU utilization in percentage.

Optional

Valid values: Integer

Default value: 70 (in percentage)

gpu_memory_threshold_p95 Defines the threshold for 95th quantile of
GPU memory utilization in percentage.

Optional

Valid values: Integer

Default values: 70 (in percentage)

Monitor AWS compute resource utilization in SageMaker Studio Classic 3478

Amazon SageMaker Developer Guide

Parameter Name Description

patience Defines the number of data points to skip
until the rule starts evaluation. The first
several steps of training jobs usually show
high volume of data processes, so keep the
rule patient and prevent it from being invoked
too soon with a given number of profiling data
that you specify with this parameter.

Optional

Valid values: Integer

Default values: 100

window Window size for computing quantiles.

Optional

Valid values: Integer

Default values: 500

scan_interval_us Time interval that timeline files are scanned.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

CPUBottleneck

The CPUBottleneck rule helps detect if GPU is underutilized due to CPU bottlenecks. Rule returns
True if number of CPU bottlenecks exceeds a predefined threshold.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3479

Amazon SageMaker Developer Guide

Parameter Descriptions for the CPUBottleneck Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold Defines the threshold for proportion of
bottlenecked time to the total training time.
If the proportion exceeds the percentage
specified to the threshold parameter, the rule
switches the rule status to True.

Optional

Valid values: Integer

Default value: 50 (in percentage)

gpu_threshold A threshold that defines low GPU utilization.

Optional

Valid values: Integer

Default value: 10 (in percentage)

cpu_threshold A threshold that defines high CPU utilization.

Optional

Valid values: Integer

Default values: 90 (in percentage)

patience Defines the number of data points to skip
until the rule starts evaluation. The first

Monitor AWS compute resource utilization in SageMaker Studio Classic 3480

Amazon SageMaker Developer Guide

Parameter Name Description

several steps of training jobs usually show
high volume of data processes, so keep the
rule patient and prevent it from being invoked
too soon with a given number of profiling data
that you specify with this parameter.

Optional

Valid values: Integer

Default values: 100

scan_interval_us Time interval with which timeline files are
scanned.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

GPUMemoryIncrease

The GPUMemoryIncrease rule helps detect a large increase in memory usage on GPUs.

Parameter Descriptions for the GPUMemoryIncrease Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

increase Defines the threshold for absolute memory
increase.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3481

Amazon SageMaker Developer Guide

Parameter Name Description

Optional

Valid values: Integer

Default value: 10 (in percentage)

patience Defines the number of data points to skip
until the rule starts evaluation. The first
several steps of training jobs usually show
high volume of data processes, so keep the
rule patient and prevent it from being invoked
too soon with a given number of profiling data
that you specify with this parameter.

Optional

Valid values: Integer

Default values: 100

window Window size for computing quantiles.

Optional

Valid values: Integer

Default values: 500

scan_interval_us Time interval that timeline files are scanned.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

Monitor AWS compute resource utilization in SageMaker Studio Classic 3482

Amazon SageMaker Developer Guide

IOBottleneck

This rule helps to detect if GPU is underutilized due to data IO bottlenecks. Rule returns True if
number of IO bottlenecks exceeds a predefined threshold.

Parameter Descriptions for the IOBottleneck Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold Defines the threshold when Rule to return
True.

Optional

Valid values: Integer

Default value: 50 (in percentage)

gpu_threshold A threshold that defines when GPU is
considered underutilized.

Optional

Valid values: Integer

Default value: 70 (in percentage)

io_threshold A threshold that defines high IO wait time.

Optional

Valid values: Integer

Default values: 50 (in percentage)

Monitor AWS compute resource utilization in SageMaker Studio Classic 3483

Amazon SageMaker Developer Guide

Parameter Name Description

patience Defines the number of data points to skip
until the rule starts evaluation. The first
several steps of training jobs usually show
high volume of data processes, so keep the
rule patient and prevent it from being invoked
too soon with a given number of profiling data
that you specify with this parameter.

Optional

Valid values: Integer

Default values: 1000

scan_interval_us Time interval that timeline files are scanned.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

LoadBalancing

The LoadBalancing rule helps detect issues in workload balancing among multiple GPUs.

Parameter Descriptions for the LoadBalancing Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold Defines the workload percentage.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3484

Amazon SageMaker Developer Guide

Parameter Name Description

Optional

Valid values: Integer

Default value: 0.5 (unitless proportion)

patience Defines the number of data points to skip
until the rule starts evaluation. The first
several steps of training jobs usually show
high volume of data processes, so keep the
rule patient and prevent it from being invoked
too soon with a given number of profiling data
that you specify with this parameter.

Optional

Valid values: Integer

Default values: 10

scan_interval_us Time interval that timeline files are scanned.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

LowGPUUtilization

The LowGPUUtilization rule helps detect if GPU utilization is low or suffers from fluctuations. This
is checked for each GPU on each worker. Rule returns True if 95th quantile is below threshold_p95
which indicates underutilization. Rule returns true if 95th quantile is above threshold_p95 and 5th
quantile is below threshold_p5 which indicates fluctuations.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3485

Amazon SageMaker Developer Guide

Parameter Descriptions for the LowGPUUtilization Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold_p95 A threshold for 95th quantile below which
GPU is considered to be underutilized.

Optional

Valid values: Integer

Default value: 70 (in percentage)

threshold_p5 A threshold for 5th quantile. Default is 10
percent.

Optional

Valid values: Integer

Default values: 10 (in percentage)

patience Defines the number of data points to skip
until the rule starts evaluation. The first
several steps of training jobs usually show
high volume of data processes, so keep the
rule patient and prevent it from being invoked
too soon with a given number of profiling data
that you specify with this parameter.

Optional

Valid values: Integer

Monitor AWS compute resource utilization in SageMaker Studio Classic 3486

Amazon SageMaker Developer Guide

Parameter Name Description

Default values: 1000

window Window size for computing quantiles.

Optional

Valid values: Integer

Default values: 500

scan_interval_us Time interval that timeline files are scanned.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

OverallSystemUsage

The OverallSystemUsage rule measures overall system usage per worker node. The rule currently
only aggregates values per node and computes their percentiles.

Parameter Descriptions for the OverallSystemUsage Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

scan_interval_us Time interval to scan timeline files.

Optional

Valid values: Integer

Monitor AWS compute resource utilization in SageMaker Studio Classic 3487

Amazon SageMaker Developer Guide

Parameter Name Description

Default values: 60000000 (in microseconds)

MaxInitializationTime

The MaxInitializationTime rule helps detect if the training initialization is taking too much time.
The rule waits until the first step is available.

Parameter Descriptions for the MaxInitializationTime Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

threshold Defines the threshold in minutes to wait for
the first step to become available.

Optional

Valid values: Integer

Default value: 20 (in minutes)

scan_interval_us Time interval with which timeline files are
scanned.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

Monitor AWS compute resource utilization in SageMaker Studio Classic 3488

Amazon SageMaker Developer Guide

OverallFrameworkMetrics

The OverallFrameworkMetrics rule summarizes the time spent on framework metrics, such as
forward and backward pass, and data loading.

Parameter Descriptions for the OverallFrameworkMetrics Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

scan_interval_us Time interval to scan timeline files.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

StepOutlier

The StepOutlier rule helps detect outliers in step durations. This rule returns True if there are
outliers with step durations larger than stddev sigmas of the entire step durations in a time range.

Parameter Descriptions for the StepOutlier Rule

Parameter Name Description

base_trial The base trial training job name. This
parameter is automatically set to the current
training job by Amazon SageMaker Debugger.

Required

Valid values: String

Monitor AWS compute resource utilization in SageMaker Studio Classic 3489

Amazon SageMaker Developer Guide

Parameter Name Description

stddev Defines a factor by which to multiply the
standard deviation. For example, the rule is
invoked by default when a step duration is
larger or smaller than 5 times the standard
deviation.

Optional

Valid values: Integer

Default value: 5 (in minutes)

mode Mode under which steps have been saved and
on which Rule should run on. Per default rule
will run on steps from EVAL and TRAIN phase

Optional

Valid values: Integer

Default value: 5 (in minutes)

n_outliers How many outliers to ignore before rule
returns True

Optional

Valid values: Integer

Default value: 10

scan_interval_us Time interval with which timeline files are
scanned.

Optional

Valid values: Integer

Default values: 60000000 (in microseconds)

Monitor AWS compute resource utilization in SageMaker Studio Classic 3490

Amazon SageMaker Developer Guide

Amazon SageMaker Debugger UI in Amazon SageMaker Studio Classic
Experiments

Use the Amazon SageMaker Debugger Insights dashboard in Amazon SageMaker Studio Classic
Experiments to analyze your model performance and system bottlenecks while running training
jobs on Amazon Elastic Compute Cloud (Amazon EC2) instances. Gain insights into your training
jobs and improve your model training performance and accuracy with the Debugger dashboards.
By default, Debugger monitors system metrics (CPU, GPU, GPU memory, network, and data I/
O) every 500 milliseconds and basic output tensors (loss and accuracy) every 500 iterations for
training jobs. You can also further customize Debugger configuration parameter values and adjust
the saving intervals through the Studio Classic UI or using the Amazon SageMaker Python SDK.

Important

If you're using an existing Studio Classic app, delete the app and restart to use the latest
Studio Classic features. For instructions on how to restart and update your Studio Classic
environment, see Update Amazon SageMaker Studio Classic.

Topics

• Open the Amazon SageMaker Debugger Insights dashboard

• Amazon SageMaker Debugger Insights dashboard controller

• Explore the Amazon SageMaker Debugger Insights dashboard

• Shut down the Amazon SageMaker Debugger Insights instance

Open the Amazon SageMaker Debugger Insights dashboard

In the SageMaker Debugger Insights dashboard in Studio Classic, you can see the compute resource
utilization, resource utilization, and system bottleneck information of your training job that runs on
Amazon EC2 instances in real time and after trainings

Note

The SageMaker Debugger Insights dashboard runs a Studio Classic application on an
ml.m5.4xlarge instance to process and render the visualizations. Each SageMaker
Debugger Insights tab runs one Studio Classic kernel session. Multiple kernel sessions for

Monitor AWS compute resource utilization in SageMaker Studio Classic 3491

https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-update.html

Amazon SageMaker Developer Guide

multiple SageMaker Debugger Insights tabs run on the single instance. When you close
a SageMaker Debugger Insights tab, the corresponding kernel session is also closed. The
Studio Classic application remains active and accrues charges for the ml.m5.4xlarge
instance usage. For information about pricing, see the Amazon SageMaker Pricing page.

Important

When you are done using the SageMaker Debugger Insights dashboard, you must shut
down the ml.m5.4xlarge instance to avoid accruing charges. For instructions on how to
shut down the instance, see Shut down the Amazon SageMaker Debugger Insights instance.

To open the SageMaker Debugger Insights dashboard

1. On the Studio Classic Home page, choose Experiments in the left navigation pane.

2. Search your training job in the Experiments page. If your training job is set up with an
Experiments run, the job should appear in the Experiments tab; if you didn't set up an
Experiments run, the job should appear in the Unassigned runs tab.

3. Choose (click) the link of the training job name to see the job details.

4. Under the OVERVIEW menu, choose Debuggger. This should show the following two sections.

• In the Debugger rules section, you can browse the status of the Debugger built-in rules
associated with the training job.

• In the Debugger insights section, you can find links to open SageMaker Debugger Insights
on the dashboard.

5. In the SageMaker Debugger Insights section, choose the link of the training job name to open
the SageMaker Debugger Insights dashboard. This opens a Debug [your-training-job-name]
window. In this window, Debugger provides an overview of the computational performance of
your training job on Amazon EC2 instances and helps you identify issues in compute resource
utilization.

You can also download an aggregated profiling report by adding the built-in ProfilerReport rule
of SageMaker Debugger. For more information, see Configure Built-in Profiler Rules and Profiling
Report Generated Using SageMaker Debugger.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3492

https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html#profiler-report
https://docs.aws.amazon.com/sagemaker/latest/dg/use-debugger-built-in-profiler-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html

Amazon SageMaker Developer Guide

Amazon SageMaker Debugger Insights dashboard controller

There are different components of the Debugger controller for monitoring and profiling. In this
guide, you learn about the Debugger controller components.

Note

The SageMaker Debugger Insights dashboard runs a Studio Classic app on an
ml.m5.4xlarge instance to process and render the visualizations. Each SageMaker
Debugger Insights tab runs one Studio Classic kernel session. Multiple kernel sessions for
multiple SageMaker Debugger Insights tabs run on the single instance. When you close
a SageMaker Debugger Insights tab, the corresponding kernel session is also closed. The
Studio Classic app remains active and accrues charges for the ml.m5.4xlarge instance
usage. For information about pricing, see the Amazon SageMaker Pricing page.

Important

When you are done using the SageMaker Debugger Insights dashboard, shut down the
ml.m5.4xlarge instance to avoid accruing charges. For instructions on how to shut down
the instance, see Shut down the Amazon SageMaker Debugger Insights instance.

SageMaker Debugger Insights controller UI

Using the Debugger controller located at the upper-left corner of the Insights dashboard, you can
refresh the dashboard, configure or update Debugger settings for monitoring system metrics, stop
a training job, and download a Debugger profiling report.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3493

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

• If you want to manually refresh the dashboard, choose the refresh button (the round arrow at
the upper-left corner) as shown in the preceding screenshot.

• The Monitoring toggle button is on by default for any SageMaker training job initiated using
the SageMaker Python SDK. If not activated, you can use the toggle button to start monitoring.
During monitoring, Debugger only collects resource utilization metrics to detect computational
problems such as CPU bottlenecks and GPU underutilization. For a complete list of resource
utilization problems that Debugger monitors, see Debugger built-in rules for profiling hardware
system resource utilization (system metrics).

• The Configure monitoring button opens a pop-up window that you can use to set or update the
data collection frequency and the S3 path to save the data.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3494

Amazon SageMaker Developer Guide

You can specify values for the following fields.

• S3 bucket URI: Specify the base S3 bucket URI.

• Collect monitoring data every: Select a time interval to collect system metrics. You can
choose one of the monitoring intervals from the dropdown list. Available intervals are 100
milliseconds, 200 milliseconds, 500 milliseconds (default), 1 second, 5 seconds, and 1 minute.

Note

If you choose one of the lower time intervals, you increase the granularity of resource
utilization metrics, so you can capture spikes and anomalies with a higher time
resolution. However, higher the resolution, larger the size of system metrics to
process. This might introduce additional overhead and impact the overall training and
processing time.

• Using the Stop training button, you can stop the training job when you find anomalies in
resource utilization.

• Using the Download report button, you can download an aggregated profiling report by using
the built-in ProfilerReport rule of SageMaker Debugger. The button is activated when you add
the built-in ProfilerReport rule to the estimator. For more information, see Configure Built-in
Profiler Rules and Profiling Report Generated Using SageMaker Debugger.

Explore the Amazon SageMaker Debugger Insights dashboard

When you initiate a SageMaker training job, SageMaker Debugger starts monitoring the resource
utilization of the Amazon EC2 instances by default. You can track the system utilization rates,
statistics overview, and built-in rule analysis through the Insights dashboard. This guide walks you
through the content of the SageMaker Debugger Insights dashboard under the following tabs:
System Metrics and Rules.

Note

The SageMaker Debugger Insights dashboard runs a Studio Classic application on an
ml.m5.4xlarge instance to process and render the visualizations. Each SageMaker
Debugger Insights tab runs one Studio Classic kernel session. Multiple kernel sessions for
multiple SageMaker Debugger Insights tabs run on the single instance. When you close
a SageMaker Debugger Insights tab, the corresponding kernel session is also closed. The

Monitor AWS compute resource utilization in SageMaker Studio Classic 3495

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html#profiler-report
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html#profiler-report
https://docs.aws.amazon.com/sagemaker/latest/dg/use-debugger-built-in-profiler-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/use-debugger-built-in-profiler-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html

Amazon SageMaker Developer Guide

Studio Classic application remains active and accrues charges for the ml.m5.4xlarge
instance usage. For information about pricing, see the Amazon SageMaker Pricing page.

Important

When you are done using the SageMaker Debugger Insights dashboard, shut down the
ml.m5.4xlarge instance to avoid accruing charges. For instructions on how to shut down
the instance, see Shut down the Amazon SageMaker Debugger Insights instance.

Important

In the reports, plots and recommendations are provided for informational purposes and
are not definitive. You are responsible for making your own independent assessment of the
information.

Topics

• System metrics

• Rules

System metrics

In the System Metrics tab, you can use the summary table and timeseries plots to understand
resource utilization.

Resource utilization summary

This summary table shows the statistics of compute resource utilization metrics of all nodes
(denoted as algo-n). The resource utilization metrics include the total CPU utilization, the total GPU
utilization, the total CPU memory utilization, the total GPU memory utilization, the total I/O wait
time, and the total network in bytes. The table shows the minimum and the maximum values, and
p99, p90, and p50 percentiles.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3496

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Resource utilization time series plots

Use the time series graphs to see more details of resource utilization and identify at what time
interval each instance shows any undesired utilization rate, such as low GPU utilization and CPU
bottlenecks that can cause a waste of the expensive instance.

The time series graph controller UI

The following screenshot shows the UI controller for adjusting the time series graphs.

• algo-1: Use this dropdown menu to choose the node that you want to look into.

• Zoom In: Use this button to zoom in the time series graphs and view shorter time intervals.

• Zoom Out: Use this button to zoom out the time series graphs and view wider time intervals.

• Pan Left: Move the time series graphs to an earlier time interval.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3497

Amazon SageMaker Developer Guide

• Pan Right: Move the time series graphs to a later time interval.

• Fix Timeframe: Use this check box to fix or bring back the time series graphs to show the whole
view from the first data point to the last data point.

CPU utilization and I/O wait time

The first two graphs show CPU utilization and I/O wait time over time. By default, the graphs show
the average of CPU utilization rate and I/O wait time spent on the CPU cores. You can select one
or more CPU cores by selecting the labels to graph them on single chart and compare utilization
across cores. You can drag and zoom in and out to have a closer look at specific time intervals.

GPU utilization and GPU memory utilization

The following graphs show GPU utilization and GPU memory utilization over time. By default,
the graphs show the mean utilization rate over time. You can select the GPU core labels to see
the utilization rate of each core. Taking the mean of utilization rate over the total number of GPU
cores shows the mean utilization of the entire hardware system resource. By looking at the mean
utilization rate, you can check the overall system resource usage of an Amazon EC2 instance. The

Monitor AWS compute resource utilization in SageMaker Studio Classic 3498

Amazon SageMaker Developer Guide

following figure shows an example training job on an ml.p3.16xlarge instance with 8 GPU cores.
You can monitor if the training job is well distributed, fully utilizing all GPUs.

Overall system utilization over time

The following heatmap shows an example of the entire system utilization of an ml.p3.16xlarge
instance over time, projected onto the two-dimensional plot. Every CPU and GPU core is listed in
the vertical axis, and the utilization is recorded over time with a color scheme, where the bright
colors represent low utilization and the darker colors represent high utilization. See the labeled
color bar on the right side of the plot to find out which color level corresponds to which utilization
rate.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3499

Amazon SageMaker Developer Guide

Rules

Use the Rules tab to find a summary of the profiling rule analysis on your training job. If the
profiling rule is activated with the training job, the text appears highlighted with the solid white
text. Inactive rules are dimmed in gray text. To activate these rules, follow instructions at the
section called “Configure built-in profiler rules”.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3500

Amazon SageMaker Developer Guide

Shut down the Amazon SageMaker Debugger Insights instance

When you are not using the SageMaker Debugger Insights dashboard, you should shut down the
app instance to avoid incurring additional fees.

To shut down the SageMaker Debugger Insights app instance in Studio Classic

Monitor AWS compute resource utilization in SageMaker Studio Classic 3501

Amazon SageMaker Developer Guide

1. In Studio Classic, select the Running Instances and Kernels icon (

).

2. Under the RUNNING APPS list, look for the sagemaker-debugger-1.0 app. Select the shutdown
icon (

)
next to the app. The SageMaker Debugger Insights dashboards run on an ml.m5.4xlarge
instance. This instance also disappears from the RUNNING INSTANCES when you shut down the
sagemaker-debugger-1.0 app.

SageMaker Debugger interactive report

Receive profiling reports autogenerated by Debugger. The Debugger report provide insights
into your training jobs and suggest recommendations to improve your model performance.
The following screenshot shows a collage of the Debugger profiling report. To learn more, see
SageMaker Debugger profiling report.

Note

You can download a Debugger reports while your training job is running or after the job
has finished. During training, Debugger concurrently updates the report reflecting the

Monitor AWS compute resource utilization in SageMaker Studio Classic 3502

Amazon SageMaker Developer Guide

current rules' evaluation status. You can download a complete Debugger report only after
the training job has completed.

Important

In the reports, plots and and recommendations are provided for informational purposes
and are not definitive. You are responsible for making your own independent assessment of
the information.

SageMaker Debugger profiling report

For any SageMaker training jobs, the SageMaker Debugger ProfilerReport rule invokes all of the
monitoring and profiling rules and aggregates the rule analysis into a comprehensive report.
Following this guide, download the report using the Amazon SageMaker Python SDK or the S3
console, and learn what you can interpret from the profiling results.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3503

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Important

In the report, plots and and recommendations are provided for informational purposes and
are not definitive. You are responsible for making your own independent assessment of the
information.

Download the SageMaker Debugger profiling report

Download the SageMaker Debugger profiling report while your training job is running or after the
job has finished using the Amazon SageMaker Python SDK and AWS Command Line Interface (CLI).

Note

To get the profiling report generated by SageMaker Debugger, you must use the built-in
ProfilerReport rule offered by SageMaker Debugger. To activate the rule with your training
job, see Configure Built-in Profiler Rules.

Tip

You can also download the report with a single click in the SageMaker Studio Debugger
insights dashboard. This doesn't require any additional scripting to download the report.
To find out how to download the report from Studio, see Open the Amazon SageMaker
Debugger Insights dashboard.

Download using SageMaker Python SDK and AWS CLI

1. Check the current job's default S3 output base URI.

estimator.output_path

2. Check the current job name.

estimator.latest_training_job.job_name

3. The Debugger profiling report is stored under <default-s3-output-base-uri>/
<training-job-name>/rule-output. Configure the rule output path as follows:

Monitor AWS compute resource utilization in SageMaker Studio Classic 3504

https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html#profiler-report
https://docs.aws.amazon.com/sagemaker/latest/dg/use-debugger-built-in-profiler-rules.html

Amazon SageMaker Developer Guide

rule_output_path = estimator.output_path +
 estimator.latest_training_job.job_name + "/rule-output"

4. To check if the report is generated, list directories and files recursively under the
rule_output_path using aws s3 ls with the --recursive option.

! aws s3 ls {rule_output_path} --recursive

This should return a complete list of files under an autogenerated folder that's named
as ProfilerReport-1234567890. The folder name is a combination of strings:
ProfilerReport and a unique 10-digit tag based on the Unix timestamp when the
ProfilerReport rule is initiated.

The profiler-report.html is an autogenerated profiling report by Debugger. The
remaining files are the built-in rule analysis components stored in JSON and a Jupyter
notebook that are used to aggregate them into the report.

5. Download the files recursively using aws s3 cp. The following command saves all of the
rule output files to the ProfilerReport-1234567890 folder under the current working
directory.

! aws s3 cp {rule_output_path} ./ --recursive

Tip

If using a Jupyter notebook server, run !pwd to double check the current working
directory.

6. Under the /ProfilerReport-1234567890/profiler-output directory, open
profiler-report.html. If using JupyterLab, choose Trust HTML to see the
autogenerated Debugger profiling report.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3505

Amazon SageMaker Developer Guide

7. Open the profiler-report.ipynb file to explore how the report is generated. You can
also customize and extend the profiling report using the Jupyter notebook file.

Download using Amazon S3 Console

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Search for the base S3 bucket. For example, if you haven't specified any base job
name, the base S3 bucket name should be in the following format: sagemaker-
<region>-111122223333. Look up the base S3 bucket through the Find bucket by name
field.

3. In the base S3 bucket, look up the training job name by specifying your job name prefix
into the Find objects by prefix input field. Choose the training job name.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3506

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon SageMaker Developer Guide

4. In the training job's S3 bucket, there must be three subfolders for training data collected by
Debugger: debug-output/, profiler-output/, and rule-output/. Choose rule-output/.

5. In the rule-output/ folder, choose ProfilerReport-1234567890, and choose profiler-
output/ folder. The profiler-output/ folder contains profiler-report.html (the
autogenerated profiling report in html), profiler-report.ipynb (a Jupyter notebook with
scripts that are used for generating the report), and a profiler-report/ folder (contains rule
analysis JSON files that are used as components of the report).

6. Select the profiler-report.html file, choose Actions, and Download.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3507

Amazon SageMaker Developer Guide

Monitor AWS compute resource utilization in SageMaker Studio Classic 3508

Amazon SageMaker Developer Guide

7. Open the downloaded profiler-report.html file in a web browser.

Note

If you started your training job without configuring the Debugger-specific parameters,
Debugger generates the report based only on the system monitoring rules because
the Debugger parameters are not configured to save framework metrics. To enable
framework metrics profiling and receive an extended Debugger profiling report, configure
the profiler_config parameter when constructing or updating SageMaker estimators.
To learn how to configure the profiler_config parameter before starting a training job,
see Configure for framework profiling.
To update the current training job and enable framework metrics profiling, see Update
Debugger Framework Profiling Configuration.

Debugger profiling report walkthrough

This section walks you through the Debugger profiling report section by section. The profiling
report is generated based on the built-in rules for monitoring and profiling. The report shows
result plots only for the rules that found issues.

Important

In the report, plots and and recommendations are provided for informational purposes and
are not definitive. You are responsible for making your own independent assessment of the
information.

Topics

• Training job summary

• System usage statistics

• Framework metrics summary

• Rules summary

• Analyzing the training loop – step durations

• GPU utilization analysis

Monitor AWS compute resource utilization in SageMaker Studio Classic 3509

Amazon SageMaker Developer Guide

• Batch size

• CPU bottlenecks

• I/O bottlenecks

• Load balancing in multi-GPU training

• GPU memory analysis

Training job summary

At the beginning of the report, Debugger provides a summary of your training job. In this section,
you can overview the time durations and timestamps at different training phases.

The summary table contains the following information:

• start_time – The exact time when the training job started.

• end_time – The exact time when the training job finished.

• job_duration_in_seconds – The total training time from the start_time to the end_time.

• training_loop_start – The exact time when the first step of the first epoch has started.

• training_loop_end – The exact time when the last step of the last epoch has finished.

• training_loop_duration_in_seconds – The total time between the training loop start time and
the training loop end time.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3510

Amazon SageMaker Developer Guide

• initialization_in_seconds – Time spent on initializing the training job. The initialization phase
covers the period from the start_time to the training_loop_start time. The initialization time is
spent on compiling the training script, starting the training script, creating and initializing the
model, initiating EC2 instances, and downloading training data.

• finalization_in_seconds – Time spent on finalizing the training job, such as finishing the model
training, updating the model artifacts, and closing the EC2 instances. The finalization phase
covers the period from the training_loop_end time to the end_time.

• initialization (%) – The percentage of time spent on initialization over the total
job_duration_in_seconds.

• training loop (%) – The percentage of time spent on training loop over the total
job_duration_in_seconds.

• finalization (%) – The percentage of time spent on finalization over the total
job_duration_in_seconds.

System usage statistics

In this section, you can see an overview of system utilization statistics.

The Debugger profiling report includes the following information:

Monitor AWS compute resource utilization in SageMaker Studio Classic 3511

Amazon SageMaker Developer Guide

• node – Lists the name of nodes. If using distributed training on multi nodes (multiple EC2
instances), the node names are in format of algo-n.

• metric – The system metrics collected by Debugger: CPU, GPU, CPU memory, GPU memory, I/O,
and Network metrics.

• unit – The unit of the system metrics.

• max – The maximum value of each system metric.

• p99 – The 99th percentile of each system utilization.

• p95 – The 95th percentile of each system utilization.

• p50 – The 50th percentile (median) of each system utilization.

• min – The minimum value of each system metric.

Framework metrics summary

In this section, the following pie charts show the breakdown of framework operations on CPUs and
GPUs.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3512

Amazon SageMaker Developer Guide

Each of the pie charts analyzes the collected framework metrics in various aspects as follows:

• Ratio between TRAIN/EVAL phase and others – Shows the ratio between time durations spent
on different training phases.

• Ratio between forward and backward pass – Shows the ratio between time durations spent on
forward and backward pass in the training loop.

• Ratio between CPU/GPU operators – Shows the ratio between time spent on operators running
on CPU or GPU, such as convolutional operators.

• General metrics recorded in framework – Shows the ratio between time spent on major
framework metrics, such as data loading, forward and backward pass.

Overview: CPU Operators

This section provides information of the CPU operators in detail. The table shows the percentage of
the time and the absolute cumulative time spent on the most frequently called CPU operators.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3513

Amazon SageMaker Developer Guide

Overview: GPU operators

This section provides information of the GPU operators in detail. The table shows the percentage
of the time and the absolute cumulative time spent on the most frequently called GPU operators.

Rules summary

In this section, Debugger aggregates all of the rule evaluation results, analysis, rule descriptions,
and suggestions.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3514

Amazon SageMaker Developer Guide

Analyzing the training loop – step durations

In this section, you can find a detailed statistics of step durations on each GPU core of each node.
Debugger evaluates mean, maximum, p99, p95, p50, and minimum values of step durations, and
evaluate step outliers. The following histogram shows the step durations captured on different
worker nodes and GPUs. You can enable or disable the histogram of each worker by choosing the
legends on the right side. You can check if there is a particular GPU that's causing step duration
outliers.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3515

Amazon SageMaker Developer Guide

GPU utilization analysis

This section shows the detailed statistics about GPU core utilization based on LowGPUUtilization
rule. It also summarizes the GPU utilization statistics, mean, p95, and p5 to determine if the
training job is underutilizing GPUs.

Batch size

This section shows the detailed statistics of total CPU utilization, individual GPU utilizations,
and GPU memory footprints. The BatchSize rule determines if you need to change the batch
size to better utilize the GPUs. You can check whether the batch size is too small resulting in
underutilization or too large causing overutilization and out of memory issues. In the plot,
the boxes show the p25 and p75 percentile ranges (filled with dark purple and bright yellow
respectively) from the median (p50), and the error bars show the 5th percentile for the lower
bound and 95th percentile for the upper bound.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3516

Amazon SageMaker Developer Guide

CPU bottlenecks

In this section, you can drill down into the CPU bottlenecks that the CPUBottleneck rule detected
from your training job. The rule checks if the CPU utilization is above cpu_threshold (90% by
default) and also if the GPU utilization is below gpu_threshold (10% by default).

Monitor AWS compute resource utilization in SageMaker Studio Classic 3517

Amazon SageMaker Developer Guide

The pie charts show the following information:

• Low GPU usage caused by CPU bottlenecks – Shows the ratio of data points between the
ones with GPU utilization above and below the threshold and the ones that matches the CPU
bottleneck criteria.

• Ratio between TRAIN/EVAL phase and others – Shows the ratio between time durations spent
on different training phases.

• Ratio between forward and backward pass – Shows the ratio between time durations spent on
forward and backward pass in the training loop.

• Ratio between CPU/GPU operators – Shows the ratio between time durations spent on GPUs
and CPUs by Python operators, such as data loader processes and forward and backward pass
operators.

• General metrics recorded in framework – Shows major framework metrics and the ratio
between time durations spent on the metrics.

I/O bottlenecks

In this section, you can find a summary of I/O bottlenecks. The rule evaluates the I/O wait time
and GPU utilization rates and monitors if the time spent on the I/O requests exceeds a threshold
percent of the total training time. It might indicate I/O bottlenecks where GPUs are waiting for
data to arrive from storage.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3518

Amazon SageMaker Developer Guide

Load balancing in multi-GPU training

In this section, you can identify workload balancing issue across GPUs.

GPU memory analysis

In this section, you can analyze the GPU memory utilization collected by the GPUMemoryIncrease
rule. In the plot, the boxes show the p25 and p75 percentile ranges (filled with dark purple and
bright yellow respectively) from the median (p50), and the error bars show the 5th percentile for
the lower bound and 95th percentile for the upper bound.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3519

Amazon SageMaker Developer Guide

Analyze data using the Debugger Python client library

While your training job is running or after it has completed, you can access the training data
collected by Debugger using the Amazon SageMaker Python SDK and the SMDebug client library.
The Debugger Python client library provides analysis and visualization tools that enable you to drill
down into your training job data.

To install the library and use its analysis tools (in a JupyterLab notebook or an iPython kernel)

! pip install -U smdebug

The following topics walk you through how to use the Debugger Python tools to visualize and
analyze the training data collected by Debugger.

Analyze system and framework metrics

• Access the profile data

• Plot the system metrics and framework metrics data

• Access the profiling data using the pandas data parsing tool

• Access the Python profiling stats data

• Merge timelines of multiple profile trace files

• Profiling data loaders

Access the profile data

The SMDebug TrainingJob class reads data from the S3 bucket where the system and framework
metrics are saved.

To set up a TrainingJob object and retrieve profiling event files of a training job

from smdebug.profiler.analysis.notebook_utils.training_job import TrainingJob
tj = TrainingJob(training_job_name, region)

Tip

You need to specify the training_job_name and region parameters to log to a training
job. There are two ways to specify the training job information:

Monitor AWS compute resource utilization in SageMaker Studio Classic 3520

https://sagemaker.readthedocs.io
https://github.com/awslabs/sagemaker-debugger/

Amazon SageMaker Developer Guide

• Use the SageMaker Python SDK while the estimator is still attached to the training job.

import sagemaker
training_job_name=estimator.latest_training_job.job_name
region=sagemaker.Session().boto_region_name

• Pass strings directly.

training_job_name="your-training-job-name-YYYY-MM-DD-HH-MM-SS-SSS"
region="us-west-2"

Note

By default, SageMaker Debugger collects system metrics to monitor hardware resource
utilization and system bottlenecks. Running the following functions, you might receive
error messages regarding unavailability of framework metrics. To retrieve framework
profiling data and gain insights into framework operations, you must enable framework
profiling.

• If you use SageMaker Python SDK to manipulate your training job request, pass the
framework_profile_params to the profiler_config argument of your estimator.
To learn more, see Configure SageMaker Debugger Framework Profiling.

• If you use Studio Classic, turn on profiling using the Profiling toggle button in the
Debugger insights dashboard. To learn more, see SageMaker Debugger Insights
Dashboard Controller.

To retrieve a description of the training job description and the S3 bucket URI where the metric
data are saved

tj.describe_training_job()
tj.get_config_and_profiler_s3_output_path()

To check if the system and framework metrics are available from the S3 URI

tj.wait_for_sys_profiling_data_to_be_available()

Monitor AWS compute resource utilization in SageMaker Studio Classic 3521

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-configure-framework-profiling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio-insights-controllers.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio-insights-controllers.html

Amazon SageMaker Developer Guide

tj.wait_for_framework_profiling_data_to_be_available()

To create system and framework reader objects after the metric data become available

system_metrics_reader = tj.get_systems_metrics_reader()
framework_metrics_reader = tj.get_framework_metrics_reader()

To refresh and retrieve the latest training event files

The reader objects have an extended method, refresh_event_file_list(), to retrieve the
latest training event files.

system_metrics_reader.refresh_event_file_list()
framework_metrics_reader.refresh_event_file_list()

Plot the system metrics and framework metrics data

You can use the system and algorithm metrics objects for the following visualization classes to plot
timeline graphs and histograms.

Note

To visualize the data with narrowed-down metrics in the following visualization object plot
methods, specify select_dimensions and select_events parameters. For example,
if you specify select_dimensions=["GPU"], the plot methods filter the metrics that
include the "GPU" keyword. If you specify select_events=["total"], the plot methods
filter the metrics that include the "total" event tags at the end of the metric names. If you
enable these parameters and give the keyword strings, the visualization classes return the
charts with filtered metrics.

• The MetricsHistogram class

from smdebug.profiler.analysis.notebook_utils.metrics_histogram import
 MetricsHistogram

metrics_histogram = MetricsHistogram(system_metrics_reader)
metrics_histogram.plot(
 starttime=0,

Monitor AWS compute resource utilization in SageMaker Studio Classic 3522

Amazon SageMaker Developer Guide

 endtime=system_metrics_reader.get_timestamp_of_latest_available_file(),
 select_dimensions=["CPU", "GPU", "I/O"], # optional
 select_events=["total"] # optional
)

• The StepTimelineChart class

from smdebug.profiler.analysis.notebook_utils.step_timeline_chart import
 StepTimelineChart

view_step_timeline_chart = StepTimelineChart(framework_metrics_reader)

• The StepHistogram class

from smdebug.profiler.analysis.notebook_utils.step_histogram import StepHistogram

step_histogram = StepHistogram(framework_metrics_reader)
step_histogram.plot(
 starttime=step_histogram.last_timestamp - 5 * 1000 * 1000,
 endtime=step_histogram.last_timestamp,
 show_workers=True
)

• The TimelineCharts class

from smdebug.profiler.analysis.notebook_utils.timeline_charts import TimelineCharts

view_timeline_charts = TimelineCharts(
 system_metrics_reader,
 framework_metrics_reader,
 select_dimensions=["CPU", "GPU", "I/O"], # optional
 select_events=["total"] # optional
)

view_timeline_charts.plot_detailed_profiler_data([700,710])

• The Heatmap class

from smdebug.profiler.analysis.notebook_utils.heatmap import Heatmap

view_heatmap = Heatmap(
 system_metrics_reader,
 framework_metrics_reader,

Monitor AWS compute resource utilization in SageMaker Studio Classic 3523

Amazon SageMaker Developer Guide

 select_dimensions=["CPU", "GPU", "I/O"], # optional
 select_events=["total"], # optional
 plot_height=450
)

Access the profiling data using the pandas data parsing tool

The following PandasFrame class provides tools to convert the collected profiling data to Pandas
data frame.

from smdebug.profiler.analysis.utils.profiler_data_to_pandas import PandasFrame

The PandasFrame class takes the tj object's S3 bucket output path, and its methods
get_all_system_metrics() get_all_framework_metrics() return system metrics and
framework metrics in the Pandas data format.

pf = PandasFrame(tj.profiler_s3_output_path)
system_metrics_df = pf.get_all_system_metrics()
framework_metrics_df = pf.get_all_framework_metrics(
 selected_framework_metrics=[
 'Step:ModeKeys.TRAIN',
 'Step:ModeKeys.GLOBAL'
]
)

Access the Python profiling stats data

The Python profiling provides framework metrics related to Python functions and operators in your
training scripts and the SageMaker deep learning frameworks.

Training Modes and Phases for Python Profiling

To profile specific intervals during training to partition statistics for each of these intervals,
Debugger provides tools to set modes and phases.

For training modes, use the following PythonProfileModes class:

from smdebug.profiler.python_profile_utils import PythonProfileModes

This class provides the following options:

Monitor AWS compute resource utilization in SageMaker Studio Classic 3524

Amazon SageMaker Developer Guide

• PythonProfileModes.TRAIN – Use if you want to profile the target steps in the training
phase. This mode option available only for TensorFlow.

• PythonProfileModes.EVAL – Use if you want to profile the target steps in the evaluation
phase. This mode option available only for TensorFlow.

• PythonProfileModes.PREDICT – Use if you want to profile the target steps in the prediction
phase. This mode option available only for TensorFlow.

• PythonProfileModes.GLOBAL – Use if you want to profile the target steps in the global
phase, which includes the previous three phases. This mode option available only for PyTorch.

• PythonProfileModes.PRE_STEP_ZERO – Use if you want to profile the target steps in the
initialization stage before the first training step of the first epoch starts. This phase includes
the initial job submission, uploading the training scripts to EC2 instances, preparing the EC2
instances, and downloading input data. This mode option available for both TensorFlow and
PyTorch.

• PythonProfileModes.POST_HOOK_CLOSE – Use if you want to profile the target steps in the
finalization stage after the training job has done and the Debugger hook is closed. This phase
includes profiling data while the training jobs are finalized and completed. This mode option
available for both TensorFlow and PyTorch.

For training phases, use the following StepPhase class:

from smdebug.profiler.analysis.utils.python_profile_analysis_utils import StepPhase

This class provides the following options:

• StepPhase.START – Use to specify the start point of the initialization phase.

• StepPhase.STEP_START – Use to specify the start step of the training phase.

• StepPhase.FORWARD_PASS_END – Use to specify the steps where the forward pass ends. This
option is available only for PyTorch.

• StepPhase.STEP_END – Use to specify the end steps in the training phase. This option is
available only for TensorFlow.

• StepPhase.END – Use to specify the ending point of the finalization (post-hook-close) phase. If
the callback hook is not closed, the finalization phase profiling does not occur.

Python Profiling Analysis Tools

Monitor AWS compute resource utilization in SageMaker Studio Classic 3525

Amazon SageMaker Developer Guide

Debugger supports the Python profiling with two profiling tools:

• cProfile – The standard python profiler. cProfile collects framework metrics on CPU time for
every function called when profiling was enabled.

• Pyinstrument – This is a low overhead Python profiler sampling profiling events every
milliseconds.

To learn more about the Python profiling options and what's collected, see Start a training job
with the default system monitoring and customized framework profiling with different profiling
options.

The following methods of the PythonProfileAnalysis, cProfileAnalysis,
PyinstrumentAnalysis classes are provided to fetch and analyze the Python profiling data.
Each function loads the latest data from the default S3 URI.

from smdebug.profiler.analysis.python_profile_analysis import PythonProfileAnalysis,
 cProfileAnalysis, PyinstrumentAnalysis

To set Python profiling objects for analysis, use the cProfileAnalysis or PyinstrumentAnalysis
classes as shown in the following example code. It shows how to set a cProfileAnalysis object,
and if you want to use PyinstrumentAnalysis, replace the class name.

python_analysis = cProfileAnalysis(
 local_profile_dir=tf_python_stats_dir,
 s3_path=tj.profiler_s3_output_path
)

The following methods are available for the cProfileAnalysis and PyinstrumentAnalysis
classes to fetch the Python profiling stats data:

• python_analysis.fetch_python_profile_stats_by_time(start_time_since_epoch_in_secs,
end_time_since_epoch_in_secs) – Takes in a start time and end time, and returns the
function stats of step stats whose start or end times overlap with the provided interval.

• python_analysis.fetch_python_profile_stats_by_step(start_step, end_step,
mode, start_phase, end_phase) – Takes in a start step and end step and returns the
function stats of all step stats whose profiled step satisfies start_step <= step <
end_step.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3526

Amazon SageMaker Developer Guide

• start_step and end_step (str) – Specify the start step and end step to fetch the Python
profiling stats data.

• mode (str) – Specify the mode of training job using the PythonProfileModes enumerator
class. The default is PythonProfileModes.TRAIN. Available options are provided in the
Training Modes and Phases for Python Profiling section.

• start_phase (str) – Specify the start phase in the target step(s) using the StepPhase
enumerator class. This parameter enables profiling between different phases of training. The
default is StepPhase.STEP_START. Available options are provided in the Training Modes and
Phases for Python Profiling section.

• end_phase (str) – Specify the end phase in the target step(s) using the StepPhase
enumerator class. This parameter sets up the end phase of training. Available options are as
same as the ones for the start_phase parameter. The default is StepPhase.STEP_END.
Available options are provided in the Training Modes and Phases for Python Profiling section.

• python_analysis.fetch_profile_stats_between_modes(start_mode, end_mode) –
Fetches stats from the Python profiling between the start and end modes.

• python_analysis.fetch_pre_step_zero_profile_stats() – Fetches the stats from the
Python profiling until step 0.

• python_analysis.fetch_post_hook_close_profile_stats() – Fetches stats from the
Python profiling after the hook is closed.

• python_analysis.list_profile_stats() – Returns a DataFrame of the Python profiling
stats. Each row holds the metadata for each instance of profiling and the corresponding stats file
(one per step).

• python_analysis.list_available_node_ids() – Returns a list the available node IDs for
the Python profiling stats.

The cProfileAnalysis class specific methods:

• fetch_profile_stats_by_training_phase() – Fetches and aggregates the Python
profiling stats for every possible combination of start and end modes. For example, if a training
and validation phases are done while detailed profiling is enabled, the combinations are
(PRE_STEP_ZERO, TRAIN), (TRAIN, TRAIN), (TRAIN, EVAL), (EVAL, EVAL), and
(EVAL, POST_HOOK_CLOSE). All stats files within each of these combinations are aggregated.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3527

Amazon SageMaker Developer Guide

• fetch_profile_stats_by_job_phase() – Fetches and aggregates the Python profiling stats
by job phase. The job phases are initialization (profiling until step 0), training_loop
(training and validation), and finalization (profiling after the hook is closed).

Merge timelines of multiple profile trace files

The SMDebug client library provide profiling analysis and visualization tools for merging timelines
of system metrics, framework metrics, and Python profiling data collected by Debugger.

Tip

Before proceeding, you need to set a TrainingJob object that will be utilized throughout
the examples in this page. For more information about setting up a TrainingJob object, see
Access the profile data.

The MergedTimeline class provides tools to integrate and correlate different profiling
information in a single timeline. After Debugger captures profiling data and annotations from
different phases of a training job, JSON files of trace events are saved in a default tracefolder
directory.

• For annotations in the Python layers, the trace files are saved in *pythontimeline.json.

• For annotations in the TensorFlow C++ layers, the trace files are saved in
*model_timeline.json.

• Tensorflow profiler saves events in a *trace.json.gz file.

Tip

If you want to list all of the JSON trace files, use the following AWS CLI command:

! aws s3 ls {tj.profiler_s3_output_path} --recursive | grep '\.json$'

As shown in the following animated screenshot, putting and aligning the trace events captured
from the different profiling sources in a single plot can provide an overview of the entire events
occurring in different phases of the training job.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3528

Amazon SageMaker Developer Guide

Tip

To interact with the merged timeline on the traicing app using a keyboard, use the W key for
zooming in, the A key for shifting to the left, the S key for zooming out, and the D key for
shifiting to the right.

The multiple event trace JSON files can be merged into one trace event JSON file
using the following MergedTimeline API operation and class method from the
smdebug.profiler.analysis.utils.merge_timelines module.

from smdebug.profiler.analysis.utils.merge_timelines import MergedTimeline

combined_timeline = MergedTimeline(path, file_suffix_filter, output_directory)
combined_timeline.merge_timeline(start, end, unit)

The MergedTimeline API operation passes the following parameters:

Monitor AWS compute resource utilization in SageMaker Studio Classic 3529

Amazon SageMaker Developer Guide

• path (str) – Specify a root folder (/profiler-output) that contains system
and framework profiling trace files. You can locate the profiler-output
using the SageMaker estimator classmethod or the TrainingJob object. For
example, estimator.latest_job_profiler_artifacts_path() or
tj.profiler_s3_output_path.

• file_suffix_filter (list) – Specify a list of file suffix filters to merge timelines.
Available suffiex filters are ["model_timeline.json", "pythontimeline.json",
"trace.json.gz"]. If this parameter is not manually specified, all of the trace files are
merged by default.

• output_directory (str) – Specify a path to save the merged timeline JSON file. The default is
to the directory specified for the path parameter.

The merge_timeline() classmethod passes the following parameters to execute the merging
process:

• start (int) – Specify start time (in microseconds and in Unix time format) or start step to merge
timelines.

• end (int) – Specify end time (in microseconds and in Unix time format) or end step to merge
timelines.

• unit (str) – Choose between "time" and "step". The default is "time".

Using the following example codes, execute the merge_timeline() method and download the
merged JSON file.

• Merge timeline with the "time" unit option. The following example code merges all available
trace files between the Unix start time (the absolute zero Unix time) and the current Unix time,
which means that you can merge the timelines for the entire training duration.

import time
from smdebug.profiler.analysis.utils.merge_timelines import MergedTimeline
from smdebug.profiler.profiler_constants import CONVERT_TO_MICROSECS

combined_timeline = MergedTimeline(tj.profiler_s3_output_path, output_directory="./")
combined_timeline.merge_timeline(0, int(time.time() * CONVERT_TO_MICROSECS))

• Merge timeline with the "step" unit option. The following example code merges all available
timelines between step 3 and step 9.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3530

Amazon SageMaker Developer Guide

from smdebug.profiler.analysis.utils.merge_timelines import MergedTimeline

combined_timeline = MergedTimeline(tj.profiler_s3_output_path, output_directory="./")
combined_timeline.merge_timeline(3, 9, unit="step")

Open the Chrome tracing app at chrome://tracing on a Chrome browser, and open the JSON
file. You can explore the output to plot the merged timeline.

Profiling data loaders

In PyTorch, data loader iterators, such as SingleProcessingDataLoaderIter and
MultiProcessingDataLoaderIter, are initiated at the beginning of every iteration over a
dataset. During the initialization phase, PyTorch turns on worker processes depending on the
configured number of workers, establishes data queue to fetch data and pin_memory threads.

To use the PyTorch data loader profiling analysis tool, import the following
PT_dataloader_analysis class:

from smdebug.profiler.analysis.utils.pytorch_dataloader_analysis import
 PT_dataloader_analysis

Pass the profiling data retrieved as a Pandas frame data object in the Access the profiling data
using the pandas data parsing tool section:

pt_analysis = PT_dataloader_analysis(pf)

The following functions are available for the pt_analysis object:

The SMDebug S3SystemMetricsReader class reads the system metrics from the S3 bucket
specified to the s3_trial_path parameter.

• pt_analysis.analyze_dataloaderIter_initialization()

The analysis outputs the median and maximum duration for these initializations. If there are
outliers, (i.e duration is greater than 2 * median), the function prints the start and end times for
those durations. These can be used to inspect system metrics during those time intervals.

The following list shows what analysis is available from this class method:

• Which type of data loader iterators were initialized.

Monitor AWS compute resource utilization in SageMaker Studio Classic 3531

Amazon SageMaker Developer Guide

• The number of workers per iterator.

• Inspect whether the iterator was initialized with or without pin_memory.

• Number of times the iterators were initialized during training.

• pt_analysis.analyze_dataloaderWorkers()

The following list shows what analysis is available from this class method:

• The number of worker processes that were spun off during the entire training.

• Median and maximum duration for the worker processes.

• Start and end time for the worker processes that are outliers.

• pt_analysis.analyze_dataloader_getnext()

The following list shows what analysis is available from this class method:

• Number of GetNext calls made during the training.

• Median and maximum duration in microseconds for GetNext calls.

• Start time, End time, duration and worker id for the outlier GetNext call duration.

• pt_analysis.analyze_batchtime(start_timestamp, end_timestamp,
select_events=[".*"], select_dimensions=[".*"])

Debugger collects the start and end times of all the GetNext calls. You can find the amount of
time spent by the training script on one batch of data. Within the specified time window, you
can identify the calls that are not directly contributing to the training. These calls can be from
the following operations: computing the accuracy, adding the losses for debugging or logging
purposes, and printing the debugging information. Operations like these can be compute
intensive or time consuming. We can identify such operations by correlating the Python profiler,
system metrics, and framework metrics.

The following list shows what analysis is available from this class method:

• Profile time spent on each data batch, BatchTime_in_seconds, by finding the difference
between start times of current and subsequent GetNext calls.

• Find the outliers in BatchTime_in_seconds and start and end time for those outliers.

• Obtain the system and framework metrics during those BatchTime_in_seconds
timestamps. This indicates where the time was spent.

• pt_analysis.plot_the_window()

Plots a timeline charts between a start timestamp and the end timestamp.
Monitor AWS compute resource utilization in SageMaker Studio Classic 3532

Amazon SageMaker Developer Guide

Release notes for profiling capabilities of Amazon SageMaker

See the following release notes to track the latest updates for profiling capabilities of Amazon
SageMaker.

December 14, 2023

Currency updates

SageMaker Profiler has added support for TensorFlow v2.13.0.

Breaking changes

This release involves a breaking change. The SageMaker Profiler Python package name is changed
from smppy to smprof. If you have been using the previous version of the package while you have
started using the latest SageMaker Framework Containers for TensorFlow listed in the following
section, make sure that you update the package name from smppy to smprof in the import
statement in your training script.

Migration to AWS Deep Learning Containers

This release of SageMaker Profiler passed benchmark testing and is migrated to the following AWS
Deep Learning Containers.

• TensorFlow v2.13.0

• TensorFlow v2.12.0

If you use the previous versions of the supported framework containers such TensorFlow v2.11.0,
the SageMaker Profiler Python package is still available as smppy. If you are uncertain which
version or the package name you should use, replace the import statement of the SageMaker
Profiler package with the following code snippet.

try:
 import smprof
except ImportError:
 # backward-compatability for TF 2.11 and PT 1.13.1 images
 import smppy as smprof

August 24, 2023

New features

Release notes 3533

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

Released Amazon SageMaker Profiler, a profiling and visualization capability of SageMaker to
deep dive into compute resources provisioned while training deep learning models and gain
visibility into operation-level details. SageMaker Profiler provides Python modules (smppy) for
adding annotations throughout PyTorch or TensorFlow training scripts and activating SageMaker
Profiler. You can access the modules through the SageMaker Python SDK and AWS Deep Learning
Containers. For any jobs run with the SageMaker Profiler Python modules, you can load the profile
data in the SageMaker Profiler UI application that provides a summary dashboard and a detailed
timeline. To learn more, see Use Amazon SageMaker Profiler to profile activities on AWS compute
resources.

This release of the SageMaker Profiler Python package is integrated into the following SageMaker
Framework Containers for PyTorch and TensorFlow.

• PyTorch v2.0.0

• PyTorch v1.13.1

• TensorFlow v2.12.0

• TensorFlow v2.11.0

Distributed training in Amazon SageMaker

SageMaker provides distributed training libraries and supports various distributed training options
for deep learning tasks such as computer vision (CV) and natural language processing (NLP). With
SageMaker’s distributed training libraries, you can run highly scalable and cost-effective custom
data parallel and model parallel deep learning training jobs. You can also use other distributed
training frameworks and packages such as PyTorch DistributedDataParallel (DDP), torchrun, MPI
(mpirun), and parameter server. Throughout the documentation, instructions and examples focus
on how to set up the distributed training options for deep learning tasks using the SageMaker
Python SDK.

Tip

To learn best practices for distributed computing of machine learning (ML) training and
processing jobs in general, see Distributed computing with SageMaker best practices.

Distributed training 3534

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

Before you get started

SageMaker Training supports distributed training on a single instance as well as multiple instances,
so you can run any size of training at scale. We recommend you to use the framework estimator
classes such as PyTorch and TensorFlow in the SageMaker Python SDK, which are the training
job launchers with various distributed training options. When you create an estimator object,
the object sets up distributed training infrastructure, runs the CreateTrainingJob API in the
backend, finds the Region where your current session is running, and pulls one of the pre-built
AWS deep learning container prepackaged with a number of libraries including deep learning
frameworks, distributed training frameworks, and the EFA driver. If you want to mount an FSx file
system to the training instances, you need to pass your VPC subnet and security group ID to the
estimator. Before running your distributed training job in SageMaker, read the following general
guidance on the basic infrastructure setup.

Availability zones and network backplane

When using multiple instances (also callednodes), it’s important to understand the network
that connects the instances, how they read the training data, and how they share information
between themselves. For example, when you run a distributed data-parallel training job, a number
of factors, such as communication between the nodes of a compute cluster for running the
AllReduce operation and data transfer between the nodes and data storage in Amazon Simple
Storage Service or Amazon FSx for Lustre, play a crucial role to achieve an optimal use of compute
resources and a faster training speed. To reduce communication overhead, make sure that you
configure instances, VPC subnet, and data storage in the same AWS Region and Availability Zone.

GPU instances with faster network and high-throughput storage

You can technically use any instances for distributed training. For cases where you need to run
multi-node distributed training jobs for training large models, such as large language models
(LLMs) and diffusion models, which require faster inter-node commutation, we recommend EFA-
enabled GPU instances supported by SageMaker. Especially, to achieve the most performant
distributed training job in SageMaker, we recommend P4d and P4de instances equipped with
NVIDIA A100 GPUs. These are also equipped with high-throughput low-latency local instance
storage and faster intra-node network. For data storage, we recommend Amazon FSx for Lustre
that provides high throughput for storing training datasets and model checkpoints.

Before you get started 3535

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html#pytorch-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
http://aws.amazon.com/about-aws/whats-new/2021/05/amazon-sagemaker-supports-elastic-fabric-adapter-distributed-training/
http://aws.amazon.com/about-aws/whats-new/2021/05/amazon-sagemaker-supports-elastic-fabric-adapter-distributed-training/
http://aws.amazon.com/ec2/instance-types/p4/
http://aws.amazon.com/ec2/instance-types/p4/
https://docs.aws.amazon.com/fsx/latest/LustreGuide/what-is.html

Amazon SageMaker Developer Guide

Get started with distributed training in Amazon SageMaker

If you’re already familiar with distributed training, choose one of the following options that
matches your preferred strategy or framework to get started. If you want to learn about
distributed training in general, see the section called “Basic distributed training concepts”.

The SageMaker distributed training libraries are optimized for the SageMaker training
environment, help adapt your distributed training jobs to SageMaker, and improve training speed
and throughput. The libraries offer both data parallel and model parallel training strategies.
They combine software and hardware technologies to improve inter-GPU and inter-node
communications, and extend SageMaker’s training capabilities with built-in options that require
minimal code changes to your training scripts.

Use the SageMaker distributed data parallelism (SMDDP) library

The SMDDP library improves communication between nodes with implementations of AllReduce
and AllGather collective communication operations that are optimized for AWS network
infrastructure and Amazon SageMaker ML instance topology. You can use the SMDDP library as
the backend of PyTorch-based distributed training packages: PyTorch distributed data parallel
(DDP), PyTorch fully sharded data parallelism (FSDP), DeepSpeed, and Megatron-DeepSpeed. The
following code example shows how to set a PyTorch estimator for launching a distributed training
job on two ml.p4d.24xlarge instances.

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 ...,
 instance_count=2,
 instance_type="ml.p4d.24xlarge",
 # Activate distributed training with SMDDP
 distribution={ "pytorchddp": { "enabled": True } } # mpirun, activates SMDDP
 AllReduce OR AllGather
 # distribution={ "torch_distributed": { "enabled": True } } # torchrun, activates
 SMDDP AllGather
 # distribution={ "smdistributed": { "dataparallel": { "enabled": True } } } #
 mpirun, activates SMDDP AllReduce OR AllGather
)

To learn how to prepare your training script and launch a distributed data-parallel training job on
SageMaker, see the section called “SageMaker distributed data parallelism library”.

Get started with distributed training in Amazon SageMaker 3536

https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-modify-sdp-pt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-modify-sdp-pt.html
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/fsdp.html
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed

Amazon SageMaker Developer Guide

Use the SageMaker model parallelism library (SMP)

SageMaker provides the SMP library and supports various distributed training techniques, such
as sharded data parallelism, pipelining, tensor parallelism, optimizer state sharding, and more. To
learn more about what the SMP library offers, see the section called “Core Features”.

To use SageMaker's model parallelism library, configure the distribution parameter of the
SageMaker framework estimators. Supported framework estimators are PyTorch and TensorFlow.
The following code example shows how to construct a framework estimator for distributed training
with the model parallelism library on two ml.p4d.24xlarge instances.

from sagemaker.framework import Framework

distribution={
 "smdistributed": {
 "modelparallel": {
 "enabled":True,
 "parameters": {
 ... # enter parameter key-value pairs here
 }
 },
 },
 "mpi": {
 "enabled" : True,
 ... # enter parameter key-value pairs here
 }
}

estimator = Framework(
 ...,
 instance_count=2,
 instance_type="ml.p4d.24xlarge",
 distribution=distribution
)

To learn how to adapt your training script, configure distribution parameters in the estimator
class, and launch a distributed training job, see SageMaker's model parallelism library (see also
Distributed Training APIs in the SageMaker Python SDK documentation).

Use open source distributed training frameworks

SageMaker also supports the following options to operate mpirun and torchrun in the backend.

Get started with distributed training in Amazon SageMaker 3537

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html#pytorch-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator
https://sagemaker.readthedocs.io/en/stable/api/training/distributed.html#the-sagemaker-distributed-model-parallel-library

Amazon SageMaker Developer Guide

• To use PyTorch DistributedDataParallel (DDP) in SageMaker with the mpirun backend, add
distribution={"pytorchddp": {"enabled": True}} to your PyTorch estimator. For
more information, see also PyTorch Distributed Training and SageMaker PyTorch Estimator's
distribution argument in the SageMaker Python SDK documentation.

Note

This option is available for PyTorch 1.12.0 and later.

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 ...,
 instance_count=2,
 instance_type="ml.p4d.24xlarge",
 distribution={"pytorchddp": {"enabled": True}} # runs mpirun in the backend
)

• SageMaker supports the PyTorch torchrun launcher for distributed training on GPU-based
Amazon EC2 instances, such as P3 and P4, as well as Trn1 powered by the AWS Trainium device.

To use PyTorch DistributedDataParallel (DDP) in SageMaker with the torchrun backend, add
distribution={"torch_distributed": {"enabled": True}} to the PyTorch estimator.

Note

This option is available for PyTorch 1.13.0 and later.

The following code snippet shows an example of constructing a SageMaker PyTorch estimator
to run distributed training on two ml.p4d.24xlarge instances with the torch_distributed
distribution option.

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 ...,
 instance_count=2,
 instance_type="ml.p4d.24xlarge",

Get started with distributed training in Amazon SageMaker 3538

https://pytorch.org/docs/master/generated/torch.nn.parallel.DistributedDataParallel.html
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#distributed-pytorch-training
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html#pytorch-estimator
https://pytorch.org/docs/stable/elastic/run.html
https://aws.amazon.com/machine-learning/trainium/
https://pytorch.org/docs/master/generated/torch.nn.parallel.DistributedDataParallel.html

Amazon SageMaker Developer Guide

 distribution={"torch_distributed": {"enabled": True}} # runs torchrun in the
 backend
)

For more information, see Distributed PyTorch Training and SageMaker PyTorch Estimator's
distribution argument in the SageMaker Python SDK documentation.

Notes for distributed training on Trn1

A Trn1 instance consists of up to 16 Trainium devices, and each Trainium device consists of two
NeuronCores. For specs of the AWS Trainium devices, see Trainium Architecture in the AWS
Neuron Documentation.

To train on the Trainium-powered instances, you only need to specify the Trn1 instance code,
ml.trn1.*, in string to the instance_type argument of the SageMaker PyTorch estimator
class. To find available Trn1 instance types, see AWS Trn1 Architecture in the AWS Neuron
documentation.

Note

SageMaker Training on Amazon EC2 Trn1 instances is currently available only for the
PyTorch framework in the AWS Deep Learning Containers for PyTorch Neuron starting
v1.11.0. To find a complete list of supported versions of PyTorch Neuron, see Neuron
Containers in the AWS Deep Learning Containers GitHub repository.

When you launch a training job on Trn1 instances using the SageMaker Python SDK, SageMaker
automatically picks up and runs the right container from Neuron Containers provided by AWS
Deep Learning Containers. The Neuron Containers are prepackaged with training environment
settings and dependencies for easier adaptation of your training job to the SageMaker Training
platform and Amazon EC2 Trn1 instances.

Note

To run your PyTorch training job on Trn1 instances with SageMaker, you should modify
your training script to initialize process groups with the xla backend and use PyTorch/
XLA. To support the XLA adoption process, the AWS Neuron SDK provides PyTorch
Neuron that uses XLA to make conversion of PyTorch operations to Trainium instructions.

Get started with distributed training in Amazon SageMaker 3539

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#distributed-pytorch-training
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html#pytorch-estimator
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/neuroncores-arch.html#neuroncores-v2-arch
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/trn1-arch.html#id2
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/trn1-arch.html#aws-trn1-arch
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers
https://pytorch.org/xla/release/1.12/index.html
https://pytorch.org/xla/release/1.12/index.html

Amazon SageMaker Developer Guide

To learn how to modify your training script, see Developer Guide for Training with
PyTorch Neuron (torch-neuronx) in the AWS Neuron Documentation.

For more information, see Distributed Training with PyTorch Neuron on Trn1 instances and
SageMaker PyTorch Estimator's distribution argument in the SageMaker Python SDK
documentation.

• To use MPI in SageMaker, add distribution={"mpi": {"enabled": True}} to your
estimator. The MPI distribution option is available for the following frameworks: MXNet, PyTorch,
and TensorFlow.

• To use a parameter server in SageMaker, add distribution={"parameter_server":
{"enabled": True}} to your estimator. The parameter server option is available for the
following frameworks: MXNet, PyTorch, and TensorFlow.

Tip

For more information about using the MPI and parameter server options per framework,
use the following links to the SageMaker Python SDK documentation.

• MXNet Distributed Training and SageMaker MXNet Estimator's distribution
argument

• PyTorch Distributed Training and SageMaker PyTorch Estimator's distribution
argument

• TensorFlow Distributed Training and SageMaker TensorFlow Estimator's
distribution argument.

Basic distributed training concepts

SageMaker’s distributed training libraries use the following distributed training terms and features.

Datasets and Batches

• Training Dataset: All of the data you use to train the model.

• Global batch size: The number of records selected from the training dataset in each iteration
to send to the GPUs in the cluster. This is the number of records over which the gradient is
computed at each iteration. If data parallelism is used, it is equal to the total number of model
replicas multiplied by the per-replica batch size: global batch size = (the number of

Basic distributed training concepts 3540

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuronx/programming-guide/training/pytorch-neuron-programming-guide.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuronx/programming-guide/training/pytorch-neuron-programming-guide.html
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#id24
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html#pytorch-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/using_mxnet.html#distributed-training
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/sagemaker.mxnet.html#mxnet-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#distributed-pytorch-training
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html#pytorch-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/using_tf.html#distributed-training
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator

Amazon SageMaker Developer Guide

model replicas) * (per-replica batch size). A single batch of global batch size is
often referred to as the mini-batch in machine learning literature.

• Per-replica batch size: When data parallelism is used, this is the number of records sent to each
model replica. Each model replica performs a forward and backward pass with this batch to
calculate weight updates. The resulting weight updates are synchronized (averaged) across all
replicas before the next set of per-replica batches are processed.

• Micro-batch: A subset of the mini-batch or, if hybrid model and data parallelism is used , it is a
subset of the per-replica sized batch . When you use SageMaker’s distributed model parallelism
library, each micro-batch is fed into the training pipeline one-by-one and follows an execution
schedule defined by the library's runtime.

Training

• Epoch: One training cycle through the entire dataset. It is common to have multiple iterations
per an epoch. The number of epochs you use in training is unique on your model and use case.

• Iteration: A single forward and backward pass performed using a global batch sized batch (a
mini-batch) of training data. The number of iterations performed during training is determined
by the global batch size and the number of epochs used for training. For example, if a dataset
includes 5,000 samples, and you use a global batch size of 500, it will take 10 iterations to
complete a single epoch.

• Learning rate: A variable that influences the amount that weights are changed in response to
the calculated error of the model. The learning rate plays an important role in the model’s ability
to converge as well as the speed and optimality of convergence.

Instances and GPUs

• Instances: An AWS machine learning compute instance. These are also referred to as nodes.

• Cluster size: When using SageMaker's distributed training library, this is the number of instances
multiplied by the number of GPUs in each instance. For example, if you use two ml.p3.8xlarge
instances in a training job, which have 4 GPUs each, the cluster size is 8. While increasing cluster
size can lead to faster training times, communication between instances must be optimized;
Otherwise, communication between the nodes can add overhead and lead to slower training
times. The SageMaker distributed training library is designed to optimize communication
between Amazon EC2 ML compute instances, leading to higher device utilization and faster
training times.

Basic distributed training concepts 3541

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-core-features.html#model-parallel-pipeline-execution
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-core-features.html#model-parallel-pipeline-execution
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Distributed Training Solutions

• Data parallelism: A strategy in distributed training where a training dataset is split up across
multiple GPUs in a compute cluster, which consists of multiple Amazon EC2 ML Instances. Each
GPU contains a replica of the model, receives different batches of training data, performs a
forward and backward pass, and shares weight updates with the other nodes for synchronization
before moving on to the next batch and ultimately another epoch.

• Model parallelism: A strategy in distributed training where the model partitioned across
multiple GPUs in a compute cluster, which consists of multiple Amazon EC2 ML Instances. The
model might be complex and have a large number of hidden layers and weights, making it
unable to fit in the memory of a single instance. Each GPU carries a subset of the model, through
which the data flows and the transformations are shared and compiled. The efficiency of model
parallelism, in terms of GPU utilization and training time, is heavily dependent on how the model
is partitioned and the execution schedule used to perform forward and backward passes.

• Pipeline Execution Schedule (Pipelining): The pipeline execution schedule determines the order
in which computations (micro-batches) are made and data is processed across devices during
model training. Pipelining is a technique to achieve true parallelization in model parallelism and
overcome the performance loss due to sequential computation by having the GPUs compute
simultaneously on different data samples. To learn more, see Pipeline Execution Schedule.

Advanced concepts

Machine Learning (ML) practitioners commonly face two scaling challenges when training models:
scaling model size and scaling training data. While model size and complexity can result in better
accuracy, there is a limit to the model size you can fit into a single CPU or GPU. Furthermore,
scaling model size may result in more computations and longer training times.

Not all models handle training data scaling equally well because they need to ingest all the
training data in memory for training. They only scale vertically, and to bigger and bigger instance
types. In most cases, scaling training data results in longer training times.

Deep Learning (DL) is a specific family of ML algorithms consisting of several layers of artificial
neural networks. The most common training method is with mini-batch Stochastic Gradient
Descent (SGD). In mini-batch SGD, the model is trained by conducting small iterative changes of
its coefficients in the direction that reduces its error. Those iterations are conducted on equally
sized subsamples of the training dataset called mini-batches. For each mini-batch, the model is
run in each record of the mini-batch, its error measured and the gradient of the error estimated.

Advanced concepts 3542

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-core-features.html#model-parallel-pipeline-execution

Amazon SageMaker Developer Guide

Then the average gradient is measured across all the records of the mini-batch and provides an
update direction for each model coefficient. One full pass over the training dataset is called an
epoch. Model trainings commonly consist of dozens to hundreds of epochs. Mini-batch SGD has
several benefits: First, its iterative design makes training time theoretically linear of dataset size.
Second, in a given mini-batch each record is processed individually by the model without need for
inter-record communication other than the final gradient average. The processing of a mini-batch
is consequently particularly suitable for parallelization and distribution.

Parallelizing SGD training by distributing the records of a mini-batch over different computing
devices is called data parallel distributed training, and is the most commonly used DL distribution
paradigm. Data parallel training is a relevant distribution strategy to scale the mini-batch size and
process each mini-batch faster. However, data parallel training comes with the extra complexity
of having to compute the mini-batch gradient average with gradients coming from all the workers
and communicating it to all the workers, a step called allreduce that can represent a growing
overhead, as the training cluster is scaled, and that can also drastically penalize training time if
improperly implemented or implemented over improper hardware subtracts.

Data parallel SGD still requires developers to be able to fit at least the model and a single record
in a computing device, such as a single CPU or GPU. When training very large models such as large
transformers in Natural Language Processing (NLP), or segmentation models over high-resolution
images, there may be situations in which this is not feasible. An alternative way to break up the
workload is to partition the model over multiple computing devices, an approach called model-
parallel distributed training.

Strategies

Distributed training is usually split by two approaches: data parallel and model parallel. Data
parallel is the most common approach to distributed training: You have a lot of data, batch it up,
and send blocks of data to multiple CPUs or GPUs (nodes) to be processed by the neural network
or ML algorithm, then combine the results. The neural network is the same on each node. A model
parallel approach is used with large models that won’t fit in a node’s memory in one piece; it breaks
up the model and places different parts on different nodes. In this situation, you need to send your
batches of data out to each node so that the data is processed on all parts of the model.

The terms network and model are often used interchangeably: A large model is really a large
network with many layers and parameters. Training with a large network produces a large model,
and loading the model back onto the network with all your pre-trained parameters and their
weights loads a large model into memory. When you break apart a model to split it across nodes,

Strategies 3543

Amazon SageMaker Developer Guide

you’re also breaking apart the underlying network. A network consists of layers, and to split up the
network, you put layers on different compute devices.

A common pitfall of naively splitting layers across devices is severe GPU under-utilization. Training
is inherently sequential in both forward and backward passes, and at a given time, only one
GPU can actively compute, while the others wait on the activations to be sent. Modern model
parallel libraries solve this problem by using pipeline execution schedules to improve device
utilization. However, only the Amazon SageMaker's distributed model parallel library includes
automatic model splitting. The two core features of the library, automatic model splitting and
pipeline execution scheduling, simplifies the process of implementing model parallelism by making
automated decisions that lead to efficient device utilization.

Train with data parallel and model parallel

If you are training with a large dataset, start with a data parallel approach. If you run out of
memory during training, you may want to switch to a model parallel approach, or try hybrid model
and data parallelism. You can also try the following to improve performance with data parallel:

• Change your model’s hyperparameters.

• Reduce the batch size.

• Keep reducing the batch size until it fits. If you reduce batch size to 1, and still run out of
memory, then you should try model-parallel training.

Try gradient compression (FP16, INT8):

• On NVIDIA TensorCore-equipped hardware, using mixed precision training creates both speed-up
and memory consumption reduction.

• SageMaker's distributed data parallelism library supports Automatic Mixed Precision (AMP)
out of the box. No extra action is needed to enable AMP other than the framework-level
modifications to your training script. If gradients are in FP16, the SageMaker data parallelism
library runs its AllReduce operation in FP16. For more information about implementing AMP
APIs to your training script, see the following resources:

• Frameworks - PyTorch in the NVIDIA Deep Learning Performance documentation

• Frameworks - TensorFlow in the NVIDIA Deep Learning Performance documentation

• Automatic Mixed Precision for Deep Learning in the NVIDIA Developer Docs

• Introducing native PyTorch automatic mixed precision for faster training on NVIDIA GPUs in
the PyTorch Blog

Strategies 3544

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#pytorch
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#tensorflow
https://developer.nvidia.com/automatic-mixed-precision
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/

Amazon SageMaker Developer Guide

• TensorFlow mixed precision APIs in the TensorFlow documentation

Try reducing the input size:

• Reduce the NLP sequence length if you increase the sequence link, need to adjust the batch size
down, or adjust the GPUs up to spread the batch.

• Reduce image resolution.

Check if you use batch normalization, since this can impact convergence. When you use distributed
training, your batch is split across GPUs and the effect of a much lower batch size can be a higher
error rate thereby disrupting the model from converging. For example, if you prototyped your
network on a single GPU with a batch size of 64, then scaled up to using four p3dn.24xlarge,
you now have 32 GPUs and your per-GPU batch size drops from 64 to 2. This will likely break the
convergence you saw with a single node.

Start with model-parallel training when:

• Your model does not fit on a single device.
• Due to your model size, you’re facing limitations in choosing larger batch sizes, such as if your

model weights take up most of your GPU memory and you are forced to choose a smaller,
suboptimal batch size.

To learn more about the SageMaker distributed libraries, see the following:

• Run distributed training with the SageMaker distributed data parallelism library

• (Archived) SageMaker model parallelism library v1.x

Optimize distributed training

Customize hyperparameters for your use case and your data to get the best scaling efficiency. In
the following discussion, we highlight some of the most impactful training variables and provide
references to state-of-the-art implementations so you can learn more about your options. Also, we
recommend that you refer to your preferred framework’s distributed training documentation.

• Apache MXNet distributed training
• PyTorch distributed training
• TensorFlow distributed training

Optimize distributed training 3545

https://www.tensorflow.org/guide/mixed_precision
https://mxnet.apache.org/versions/1.7/api/faq/distributed_training
https://pytorch.org/tutorials/beginner/dist_overview.html
https://www.tensorflow.org/guide/distributed_training

Amazon SageMaker Developer Guide

Batch Size

SageMaker distributed toolkits generally allow you to train on bigger batches. For example, if
a model fits within a single device but can only be trained with a small batch size, using either
model-parallel training or data parallel training enables you to experiment with larger batch sizes.

Be aware that batch size directly influences model accuracy by controlling the amount of noise
in the model update at each iteration. Increasing batch size reduces the amount of noise in the
gradient estimation, which can be beneficial when increasing from very small batches sizes, but can
result in degraded model accuracy as the batch size increases to large values.

Tip

Adjust your hyperparameters to ensure that your model trains to a satisfying convergence
as you increase its batch size.

A number of techniques have been developed to maintain good model convergence when batch is
increased.

Mini-batch size

In SGD, the mini-batch size quantifies the amount of noise present in the gradient estimation. A
small mini-batch results in a very noisy mini-batch gradient, which is not representative of the
true gradient over the dataset. A large mini-batch results in a mini-batch gradient close to the
true gradient over the dataset and potentially not noisy enough—likely to stay locked in irrelevant
minima.

To learn more about these techniques, see the following papers:

• Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour, Goya et al.

• PowerAI DDL, Cho et al.

• Scale Out for Large Minibatch SGD: Residual Network Training on ImageNet-1K with Improved
Accuracy and Reduced Time to Train, Codreanu et al.

• ImageNet Training in Minutes, You et al.

• Large Batch Training of Convolutional Networks, You et al.

• Large Batch Optimization for Deep Learning: Training BERT in 76 Minutes, You et al.

Optimize distributed training 3546

https://arxiv.org/pdf/1706.02677.pdf
https://arxiv.org/pdf/1708.02188.pdf
https://arxiv.org/pdf/1711.04291.pdf
https://arxiv.org/pdf/1711.04291.pdf
https://arxiv.org/pdf/1709.05011.pdf
https://arxiv.org/pdf/1708.03888.pdf
https://arxiv.org/pdf/1904.00962.pdf

Amazon SageMaker Developer Guide

• Accelerated Large Batch Optimization of BERT Pretraining in 54 minutes, Zheng et al.

• Deep Gradient Compression, Lin et al.

Scenarios

The following sections cover scenarios in which you may want to scale up training, and how you
can do so using AWS resources.

Scaling from a Single GPU to Many GPUs

The amount of data or the size of the model used in machine learning can create situations in
which the time to train a model is longer that you are willing to wait. Sometimes, the training
doesn’t work at all because the model or the training data is too large. One solution is to increase
the number of GPUs you use for training. On an instance with multiple GPUs, like a p3.16xlarge
that has eight GPUs, the data and processing is split across the eight GPUs. When you use
distributed training libraries, this can result in a near-linear speedup in the time it takes to train
your model. It takes slightly over 1/8 the time it would have taken on p3.2xlarge with one GPU.

Instance type GPUs

p3.2xlarge 1

p3.8xlarge 4

p3.16xlarge 8

p3dn.24xlarge 8

Note

The ml instance types used by SageMaker training have the same number of GPUs as the
corresponding p3 instance types. For example, ml.p3.8xlarge has the same number of
GPUs as p3.8xlarge - 4.

Scenarios 3547

https://arxiv.org/pdf/2006.13484.pdf
https://arxiv.org/abs/1712.01887

Amazon SageMaker Developer Guide

Scaling from a single instance to multiple instances

If you want to scale your training even further, you can use more instances. However, you should
choose a larger instance type before you add more instances. Review the previous table to see how
many GPUs are in each p3 instance type.

If you have made the jump from a single GPU on a p3.2xlarge to four GPUs on a p3.8xlarge,
but decide that you require more processing power, you may see better performance and incur
lower costs if you choose a p3.16xlarge before trying to increase instance count. Depending on
the libraries you use, when you keep your training on a single instance, performance is better and
costs are lower than a scenario where you use multiple instances.

When you are ready to scale the number of instances, you can do this with SageMaker Python
SDK estimator function by setting your instance_count. For example, you can set
instance_type = p3.16xlarge and instance_count = 2. Instead of the eight GPUs on a
single p3.16xlarge, you have 16 GPUs across two identical instances. The following chart shows
scaling and throughput starting with eight GPUs on a single instance and increasing to 64 instances
for a total of 256 GPUs.

Scenarios 3548

https://aws.amazon.com/blogs/machine-learning/scalable-multi-node-training-with-tensorflow/

Amazon SageMaker Developer Guide

Custom training scripts

While SageMaker makes it simple to deploy and scale the number of instances and GPUs,
depending on your framework of choice, managing the data and results can be very challenging,
which is why external supporting libraries are often used. This most basic form of distributed
training requires modification of your training script to manage the data distribution.

Scenarios 3549

Amazon SageMaker Developer Guide

SageMaker also supports Horovod and implementations of distributed training native to each
major deep learning framework. If you choose to use examples from these frameworks, you can
follow SageMaker’s container guide for Deep Learning Containers, and various example notebooks
that demonstrate implementations.

Run distributed training with the SageMaker distributed data
parallelism library

The SageMaker distributed data parallelism (SMDDP) library extends SageMaker training
capabilities on deep learning models with near-linear scaling efficiency by providing
implementations of collective communication operations optimized for AWS infrastructure.

When training large machine learning (ML) models, such as large language models (LLM) and
diffusion models, on a huge training dataset, ML practitioners use clusters of accelerators and
distributed training techniques to reduce the time to train or resolve memory constraints for
models that cannot fit in each GPU memory. ML practitioners often start with multiple accelerators
on a single instance and then scale to clusters of instances as their workload requirements increase.
As the cluster size increases, so does the communication overhead between multiple nodes, which
leads to drop in overall computational performance.

To address such overhead and memory problems, the SMDDP library offers the following.

• The SMDDP library optimizes training jobs for AWS network infrastructure and Amazon
SageMaker ML instance topology.

• The SMDDP library improves communication between nodes with implementations of
AllReduce and AllGather collective communication operations that are optimized for AWS
infrastructure.

To learn more about the details of the SMDDP library offerings, proceed to the section called
“Introduction to the SMDDP library”.

For more information about training with the model-parallel strategy offered by SageMaker, see
also (Archived) SageMaker model parallelism library v1.x.

Topics

• Introduction to the SageMaker distributed data parallelism library

• Supported frameworks, AWS Regions, and instances types

SageMaker distributed data parallelism library 3550

https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers.html
https://sagemaker-examples.readthedocs.io/en/latest/training/bring_your_own_container.html

Amazon SageMaker Developer Guide

• How to run a distributed training job with the SageMaker distributed data parallelism library

• Configuration tips for the SageMaker distributed data parallelism library

• Amazon SageMaker distributed data parallelism library FAQ

• Troubleshooting for distributed training in Amazon SageMaker

• SageMaker data parallelism library release notes

Introduction to the SageMaker distributed data parallelism library

The SageMaker distributed data parallelism (SMDDP) library is a collective communication library
that improves compute performance of distributed data parallel training. The SMDDP library
addresses communications overhead of the key collective communication operations by offering
the following.

1. The library offers AllReduce optimized for AWS. AllReduce is a key operation used for
synchronizing gradients across GPUs at the end of each training iteration during distributed data
training.

2. The library offers AllGather optimized for AWS. AllGather is another key operation used in
sharded data parallel training, which is a memory-efficient data parallelism technique offered
by popular libraries such as the SageMaker model parallelism (SMP) library, DeepSpeed Zero
Redundancy Optimizer (ZeRO), and PyTorch Fully Sharded Data Parallelism (FSDP).

3. The library performs optimized node-to-node communication by fully utilizing AWS network
infrastructure and the Amazon EC2 instance topology.

The SMDDP library can increase training speed by offering performance improvement as you scale
your training cluster, with near-linear scaling efficiency.

Note

The SageMaker distributed training libraries are available through the AWS deep learning
containers for PyTorch and Hugging Face within the SageMaker Training platform. To use
the libraries, you must use the SageMaker Python SDK or the SageMaker APIs through
SDK for Python (Boto3) or AWS Command Line Interface. Throughout the documentation,
instructions and examples focus on how to use the distributed training libraries with the
SageMaker Python SDK.

SageMaker distributed data parallelism library 3551

Amazon SageMaker Developer Guide

SMDDP collective communication operations optimized for AWS compute resources and
network infrastructure

The SMDDP library provides implementations of the AllReduce and AllGather collective
operations that are optimized for AWS compute resources and network infrastructure.

SMDDP AllReduce collective operation

The SMDDP library achieves optimal overlapping of the AllReduce operation with the backward
pass, significantly improving GPU utilization. It achieves near-linear scaling efficiency and faster
training speed by optimizing kernel operations between CPUs and GPUs. The library performs
AllReduce in parallel while GPU is computing gradients without taking away additional GPU
cycles, which makes the library to achieve faster training.

• Leverages CPUs: The library uses CPUs to AllReduce gradients, offloading this task from the
GPUs.

• Improved GPU usage: The cluster’s GPUs focus on computing gradients, improving their
utilization throughout training.

The following is the high-level workflow of the SMDDP AllReduce operation.

1. The library assigns ranks to GPUs (workers).

2. At each iteration, the library divides each global batch by the total number of workers (world
size) and assigns small batches (batch shards) to the workers.

• The size of the global batch is (number of nodes in a cluster) * (number of GPUs
per node) * (per batch shard).

• A batch shard (small batch) is a subset of dataset assigned to each GPU (worker) per iteration.

3. The library launches a training script on each worker.

4. The library manages copies of model weights and gradients from the workers at the end of
every iteration.

5. The library synchronizes model weights and gradients across the workers to aggregate a single
trained model.

The following architecture diagram shows an example of how the library sets up data parallelism
for a cluster of 3 nodes.

SageMaker distributed data parallelism library 3552

Amazon SageMaker Developer Guide

SMDDP AllGather collective operation

AllGather is a collective operation where each worker starts with an input buffer, and then
concatenates or gathers the input buffers from all other workers into an output buffer.

Note

The SMDDP AllGather collective operation is available in smdistributed-
dataparallel>=2.0.1 and AWS Deep Learning Containers (DLC) for PyTorch v2.0.1 and
later.

AllGather is heavily used in distributed training techniques such as sharded data parallelism
where each individual worker holds a fraction of a model, or a sharded layer. The workers call
AllGather before forward and backward passes to reconstruct the sharded layers. The forward

SageMaker distributed data parallelism library 3553

Amazon SageMaker Developer Guide

and backward passes continue onward after the parameters are all gathered. During the backward
pass, each worker also calls ReduceScatter to collect (reduce) gradients and break (scatter) them
into gradient shards to update the corresponding sharded layer. For more details on the role of
these collective operations in sharded data parallelism, see the SMP library's implementati on of
sharded data parallelism, ZeRO in the DeepSpeed documentation, and the blog about PyTorch
Fully Sharded Data Parallelism.

Because collective operations like AllGather are called in every iteration, they are the main
contributors to GPU communication overhead. Faster computation of these collective operations
directly translates to a shorter training time with no side effects on convergence. To achieve this,
the SMDDP library offers AllGather optimized for P4d instances.

SMDDP AllGather uses the following techniques to improve computational performance on P4d
instances.

1. It transfers data between instances (inter-node) through the Elastic Fabric Adapter (EFA)
network with a mesh topology. EFA is the AWS low-latency and high-throughput network
solution. A mesh topology for inter-node network communication is more tailored to the
characteristics of EFA and AWS network infrastructure. Compared to the NCCL ring or tree
topology that involves multiple packet hops, SMDDP avoids accumulating latency from multiple
hops as it only needs one hop. SMDDP implements a network rate control algorithm that
balances the workload to each communication peer in a mesh topology and achieves a higher
global network throughput.

2. It adopts low-latency GPU memory copy library based on NVIDIA GPUDirect RDMA technology
(GDRCopy) to coordinate local NVLink and EFA network traffic. GDRCopy, a low-latency GPU
memory copy library offered by NVIDIA, provides low-latency communication between CPU
processes and GPU CUDA kernels. With this technology, the SMDDP library is able to pipeline the
intra-node and inter-node data movement.

3. It reduces the usage of GPU streaming multiprocessors to increase compute power for running
model kernels. P4d and P4de instances are equipped with NVIDIA A100 GPUs, which each have
108 streaming multiprocessors. While NCCL takes up to 24 streaming multiprocessors to run
collective operations, SMDDP uses fewer than 9 streaming multiprocessors. Model compute
kernels pick up the saved streaming multiprocessors for faster computation.

SageMaker distributed data parallelism library 3554

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-sharded-data-parallelism.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-sharded-data-parallelism.html
https://deepspeed.readthedocs.io/en/latest/zero3.html#
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/hpc/efa/
https://github.com/NVIDIA/gdrcopy
https://github.com/NVIDIA/gdrcopy

Amazon SageMaker Developer Guide

Supported frameworks, AWS Regions, and instances types

Before using the SageMaker distributed data parallelism (SMDDP) library, check what are the
supported ML frameworks and instance types and if there are enough quotas in your AWS account
and AWS Region.

Supported frameworks

The following tables show the deep learning frameworks and their versions that SageMaker
and SMDDP support. The SMDDP library is available in SageMaker Framework Containers,
integrated in Docker containers distributed by the SageMaker model parallelism (SMP) library v2,
or downloadable as a binary file.

Note

To check the latest updates and release notes of the SMDDP library, see the the section
called “Release notes”.

Topics

• PyTorch

• PyTorch Lightning

• Hugging Face Transformers

• TensorFlow (deprecated)

PyTorch

PyTorch version SMDDP library
version

SageMaker
Framework
Container
images pre-
installed with
SMDDP

SMP Docker
images pre-
installed with
SMDDP

URL of the
binary file**

v2.2.0 smdistrib
uted-data

Currently not
available

658645717
510.dkr.e
cr.<region>.amazonaw

https://s
mdatapara
llel.s3.a

SageMaker distributed data parallelism library 3555

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

PyTorch version SMDDP library
version

SageMaker
Framework
Container
images pre-
installed with
SMDDP

SMP Docker
images pre-
installed with
SMDDP

URL of the
binary file**

parallel=
=v2.2.0

s.com/smd
istributed-
modelparallel:2.
2.0-gpu-py310-
cu121

mazonaws.
com/binary/
pytorch/2.2.0/
cu121/2024-
03-04/smd
istribute
d_datapar
allel-2.2.0-
cp310-cp310-lin
ux_x86_64.whl

v2.1.0 smdistrib
uted-data
parallel=
=v2.1.0

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-
training:2.1.
0-gpu-py3
10-cu121-
ubuntu20.04-
sagemaker

658645717
510.dkr.e
cr.<region>.amazonaw
s.com/smd
istributed-
modelparallel:2.
1.2-gpu-py310-
cu121

https://s
mdatapara
llel.s3.a
mazonaws.
com/binary/
pytorch/2.1.0/
cu121/2024-
02-04/smd
istribute
d_datapar
allel-2.1.0-
cp310-cp310-lin
ux_x86_64.whl

SageMaker distributed data parallelism library 3556

Amazon SageMaker Developer Guide

PyTorch version SMDDP library
version

SageMaker
Framework
Container
images pre-
installed with
SMDDP

SMP Docker
images pre-
installed with
SMDDP

URL of the
binary file**

v2.0.1 smdistrib
uted-data
parallel=
=v2.0.1

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-
training:2.0.
1-gpu-py3
10-cu118-
ubuntu20.04-
sagemaker

Not available https://s
mdatapara
llel.s3.a
mazonaws.
com/binary/
pytorch/2.0.1/
cu118/2023-
12-07/smd
istribute
d_datapar
allel-2.0.2-
cp310-cp310-lin
ux_x86_64.whl

v2.0.0 smdistrib
uted-data
parallel=
=v1.8.0

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-
training:2.0.
0-gpu-py3
10-cu118-
ubuntu20.04-
sagemaker

Not available https://s
mdatapara
llel.s3.a
mazonaws.
com/binary/
pytorch/2.0.0/
cu118/2023-
03-20/smd
istribute
d_datapar
allel-1.8.0-
cp310-cp310-lin
ux_x86_64.whl

SageMaker distributed data parallelism library 3557

Amazon SageMaker Developer Guide

PyTorch version SMDDP library
version

SageMaker
Framework
Container
images pre-
installed with
SMDDP

SMP Docker
images pre-
installed with
SMDDP

URL of the
binary file**

v1.13.1 smdistrib
uted-data
parallel=
=v1.7.0

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-
training:1.13
.1-gpu-py
39-cu117-
ubuntu20.04-
sagemaker

Not available https://s
mdatapara
llel.s3.a
mazonaws.
com/binary/
pytorch/1.13.1/
cu117/2023
-01-09/sm
distribut
ed_datapa
rallel-1.7.0-
cp39-cp39-linu
x_x86_64.whl

v1.12.1 smdistrib
uted-data
parallel=
=v1.6.0

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-
training:1.12
.1-gpu-py
38-cu113-
ubuntu20.04-
sagemaker

Not available https://s
mdatapara
llel.s3.a
mazonaws.
com/binary/
pytorch/1.12.1/
cu113/2022
-12-05/sm
distribut
ed_datapa
rallel-1.6.0-
cp38-cp38-linu
x_x86_64.whl

SageMaker distributed data parallelism library 3558

Amazon SageMaker Developer Guide

PyTorch version SMDDP library
version

SageMaker
Framework
Container
images pre-
installed with
SMDDP

SMP Docker
images pre-
installed with
SMDDP

URL of the
binary file**

v1.12.0 smdistrib
uted-data
parallel=
=v1.5.0

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-
training:1.12
.0-gpu-py
38-cu113-
ubuntu20.04-
sagemaker

Not available https://s
mdatapara
llel.s3.a
mazonaws.
com/binary/
pytorch/1.12.0/
cu113/2022
-07-01/sm
distribut
ed_datapa
rallel-1.5.0-
cp38-cp38-linu
x_x86_64.whl

v1.11.0 smdistrib
uted-data
parallel=
=v1.4.1

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-
training:1.11
.0-gpu-py
38-cu113-
ubuntu20.04-
sagemaker

Not available https://s
mdatapara
llel.s3.a
mazonaws.
com/binary/
pytorch/1.11.0/
cu113/2022
-04-14/sm
distribut
ed_datapa
rallel-1.4.1-
cp38-cp38-linu
x_x86_64.whl

SageMaker distributed data parallelism library 3559

Amazon SageMaker Developer Guide

** The URLs of the binary files are for installing the SMDDP library in custom containers. For more
information, see Create your own Docker container with the SageMaker distributed data parallel
library.

Note

The SMDDP library is available in AWS Regions where the SageMaker Framework
Containers and the SMP Docker images are in service.

Note

The SMDDP library v1.4.0 and later works as a backend of PyTorch distributed
(torch.distributed) data parallelism (torch.parallel.DistributedDataParallel). In accordance
with the change, the following smdistributed APIs for the PyTorch distributed package have
been deprecated.

• smdistributed.dataparallel.torch.distributed is deprecated. Use the
torch.distributed package instead.

• smdistributed.dataparallel.torch.parallel.DistributedDataParallel is
deprecated. Use the torch.nn.parallel.DistributedDataParallel API instead.

If you need to use the previous versions of the library (v1.3.0 or before), see the archived
SageMaker distributed data parallelism documentation in the SageMaker Python SDK
documentation.

PyTorch Lightning

The SMDDP library is available for PyTorch Lightning in the following SageMaker Framework
Containers for PyTorch and the SMP Docker containers.

PyTorch Lightning v2

SageMaker distributed data parallelism library 3560

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://sagemaker.readthedocs.io/en/stable/api/training/sdp_versions/latest/smd_data_parallel_pytorch.html#pytorch-api
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://sagemaker.readthedocs.io/en/stable/api/training/sdp_versions/latest.html#documentation-archive
https://sagemaker.readthedocs.io/en/stable/api/training/sdp_versions/latest.html#documentation-archive

Amazon SageMaker Developer Guide

PyTorch
Lightning
version

PyTorch
version

SMDDP
library
version

SageMaker
Framework
Container
images pre-
installed
with SMDDP

SMP Docker
images pre-
installed
with SMDDP

URL of the
binary file**

2.2.0 2.2.0 smdistrib
uted-data
parallel=
=v2.2.0

Currently not
available

658645717
510.dkr.e
cr.<region>.amazonaw
s.com/smd
istributed-
modelpa
rallel:2.2.0-
gpu-py310-
cu121

https://s
mdatapara
llel.s3.a
mazonaws.
com/binar
y/pytorch
/2.2.0/cu
121/2024-
03-04/smd
istribute
d_datapar
allel-2.2
.0-cp310-
cp310-lin
ux_x86_64
.whl

2.1.2 2.1.0 smdistrib
uted-data
parallel=
=v2.1.0

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pyt
orch-trai
ning:2.1.
0-gpu-py3
10-cu121-
ubuntu20.
04-sagema
ker

658645717
510.dkr.e
cr.<region>.amazonaw
s.com/smd
istributed-
modelpa
rallel:2.1.2-
gpu-py310-
cu121

https://s
mdatapara
llel.s3.a
mazonaws.
com/binar
y/pytorch
/2.1.0/cu
121/2024-
02-04/smd
istribute
d_datapar
allel-2.1

SageMaker distributed data parallelism library 3561

Amazon SageMaker Developer Guide

PyTorch
Lightning
version

PyTorch
version

SMDDP
library
version

SageMaker
Framework
Container
images pre-
installed
with SMDDP

SMP Docker
images pre-
installed
with SMDDP

URL of the
binary file**

.0-cp310-
cp310-lin
ux_x86_64
.whl

2.1.0 2.0.1 smdistrib
uted-data
parallel=
=v2.0.1

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pyt
orch-trai
ning:2.0.
1-gpu-py3
10-cu118-
ubuntu20.
04-sagema
ker

Not available https://s
mdatapara
llel.s3.a
mazonaws.
com/binar
y/pytorch
/2.0.1/cu
118/2023-
12-07/smd
istribute
d_datapar
allel-2.0
.2-cp310-
cp310-lin
ux_x86_64
.whl

PyTorch Lightning v1

SageMaker distributed data parallelism library 3562

Amazon SageMaker Developer Guide

PyTorch
Lightning
version

PyTorch version SMDDP library
version

SageMaker
Framework
Container
images pre-
installed with
SMDDP

URL of the
binary file**

1.7.2

1.7.0

1.6.4

1.6.3

1.5.10

1.12.0 smdistrib
uted-data
parallel=
=v1.5.0

763104351
884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-
training:1.12
.0-gpu-py
38-cu113-
ubuntu20.04-
sagemaker

https://s
mdatapara
llel.s3.a
mazonaws.
com/binary/
pytorch/1.12.0/
cu113/2022
-07-01/sm
distribut
ed_datapa
rallel-1.5.0-
cp38-cp38-linu
x_x86_64.whl

** The URLs of the binary files are for installing the SMDDP library in custom containers. For more
information, see Create your own Docker container with the SageMaker distributed data parallel
library.

Note

PyTorch Lightning and its utility libraries such as Lightning Bolts are not preinstalled in the
PyTorch DLCs. When you construct a SageMaker PyTorch estimator and submit a training
job request in Step 2, you need to provide requirements.txt to install pytorch-
lightning and lightning-bolts in the SageMaker PyTorch training container.

requirements.txt
pytorch-lightning
lightning-bolts

SageMaker distributed data parallelism library 3563

https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html#data-parallel-framework-estimator

Amazon SageMaker Developer Guide

For more information about specifying the source directory to place the
requirements.txt file along with your training script and a job submission, see Using
third-party libraries in the Amazon SageMaker Python SDK documentation.

Hugging Face Transformers

The AWS Deep Learning Containers for Hugging Face use the SageMaker Training Containers for
PyTorch and TensorFlow as their base images. To look up the Hugging Face Transformers library
versions and paired PyTorch and TensorFlow versions, see the latest Hugging Face Containers and
the Prior Hugging Face Container Versions.

TensorFlow (deprecated)

Important

The SMDDP library discontinued support for TensorFlow and is no longer available in DLCs
for TensorFlow later than v2.11.0. The following table lists previous DLCs for TensorFlow
with the SMDDP library installed.

TensorFlow version SMDDP library version

2.9.1, 2.10.1, 2.11.0 smdistributed-dataparallel=
=v1.4.1

2.8.3 smdistributed-dataparallel=
=v1.3.0

AWS Regions

The SMDDP library is available in all of the AWS Regions where the AWS Deep Learning Containers
for SageMaker and the SMP Docker images are in service.

Supported instance types

The SMDDP library requires one of the following instance types.

SageMaker distributed data parallelism library 3564

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#id12
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#id12
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#prior-hugging-face-container-versions
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

Instance type

ml.p4d.24xlarge

ml.p4de.24xlarge

Tip

To properly run distributed training on the EFA-enabled instance types, you should enables
traffic between the instances by setting up the security group of your VPC to allow all
inbound and outbound traffic to and from the security group itself. To learn how to set up
the security group rules, see Step 1: Prepare an EFA-enabled security group in the Amazon
EC2 User Guide.

Important

The SMDDP library discontinued support for P3 instances. The SMDDP library supports
instance types that are equipped with NVIDIA A100 GPUs and EFA.

For specs of the instance types, see the Accelerated Computing section in the Amazon EC2
Instance Types page. For information about instance pricing, see Amazon SageMaker Pricing.

If you encountered an error message similar to the following, follow the instructions at Request a
service quota increase for SageMaker resources.

ResourceLimitExceeded: An error occurred (ResourceLimitExceeded) when calling
the CreateTrainingJob operation: The account-level service limit 'ml.p3dn.24xlarge
for training job usage' is 0 Instances, with current utilization of 0 Instances
and a request delta of 1 Instances.
Please contact AWS support to request an increase for this limit.

How to run a distributed training job with the SageMaker distributed data
parallelism library

The SageMaker distributed data parallelism (SMDDP) library is designed for ease of use and to
provide seamless integration with PyTorch.

SageMaker distributed data parallelism library 3565

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure

Amazon SageMaker Developer Guide

When training a deep learning model with the SMDDP library on SageMaker, you can focus on
writing your training script and model training.

To get started, import the SMDDP library to use its collective operations optimized for AWS. The
following topics provide instructions on what to add to your training script depending on which
collective operation you want to optimize.

Topics

• Step 1: Adapt your training script to use the SMDDP collective operations

• Step 2: Launch a distributed training job using the SageMaker Python SDK

Step 1: Adapt your training script to use the SMDDP collective operations

The training script examples provided in this section are simplified and highlight only the required
changes to enable the SageMaker distributed data parallelism (SMDDP) library in your training
script. For end-to-end Jupyter notebook examples that demonstrate how to run a distributed
training job with the SMDDP library, see Amazon SageMaker Distributed Training Notebook
Examples.

Topics

• Use the SMDDP library in your PyTorch training script

• Use the SMDDP library in your PyTorch Lightning training script

• Use the SMDDP library in your TensorFlow training script (deprecated)

Use the SMDDP library in your PyTorch training script

Starting from the SageMaker distributed data parallelism (SMDDP) library v1.4.0, you can use the
library as a backend option for the PyTorch distributed package. To use the SMDDP AllReduce
and AllGather collective operations, you only need to import the SMDDP library at the beginning
of your training script and set SMDDP as the the backend of PyTorch distributed modules during
process group initialization. With the single line of backend specification, you can keep all the
native PyTorch distributed modules and the entire training script unchanged. The following code
snippets show how to use the SMDDP library as the backend of PyTorch-based distributed training
packages: PyTorch distributed data parallel (DDP), PyTorch fully sharded data parallelism (FSDP),
DeepSpeed, and Megatron-DeepSpeed.

SageMaker distributed data parallelism library 3566

https://pytorch.org/tutorials/beginner/dist_overview.html
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/fsdp.html
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed

Amazon SageMaker Developer Guide

For PyTorch DDP or FSDP

Initialize the process group as follows.

import torch.distributed as dist
import smdistributed.dataparallel.torch.torch_smddp

dist.init_process_group(backend="smddp")

Note

(For PyTorch DDP jobs only) The smddp backend currently does not support creating
subprocess groups with the torch.distributed.new_group() API. You also cannot
use the smddp backend concurrently with other process group backends such as NCCL and
Gloo.

For DeepSpeed or Megatron-DeepSpeed

Initialize the process group as follows.

import deepspeed
import smdistributed.dataparallel.torch.torch_smddp

deepspeed.init_distributed(dist_backend="smddp")

Note

To use SMDDP AllGather with the mpirun-based launchers (smdistributed and
pytorchddp) in the section called “Step 2: Launch a distributed training job”, you also
need to set the following environment variable in your training script.

export SMDATAPARALLEL_OPTIMIZE_SDP=true

For general guidance on writing a PyTorch FSDP training script, see Advanced Model Training with
Fully Sharded Data Parallel (FSDP) in the PyTorch documentation.

SageMaker distributed data parallelism library 3567

https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html
https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html

Amazon SageMaker Developer Guide

For general guidance on writing a PyTorch DDP training script, see Getting started with distributed
data parallel in the PyTorch documentation.

After you have completed adapting your training script, proceed to Step 2: Launch a distributed
training job using the SageMaker Python SDK.

Use the SMDDP library in your PyTorch Lightning training script

If you want to bring your PyTorch Lightning training script and run a distributed data parallel
training job in SageMaker, you can run the training job with minimal changes in your training
script. The necessary changes include the following: import the smdistributed.dataparallel
library’s PyTorch modules, set up the environment variables for PyTorch Lightning to accept the
SageMaker environment variables that are preset by the SageMaker training toolkit, and activate
the SMDDP library by setting the process group backend to "smddp". To learn more, walk through
the following instructions that break down the steps with code examples.

Note

The PyTorch Lightning support is available in the SageMaker data parallel library v1.5.0 and
later.

PyTorch Lightning == v2.1.0 and PyTorch == 2.0.1

1. Import the pytorch_lightning library and the smdistributed.dataparallel.torch
modules.

import lightning as pl
import smdistributed.dataparallel.torch.torch_smddp

2. Instantiate the LightningEnvironment.

from lightning.fabric.plugins.environments.lightning import LightningEnvironment

env = LightningEnvironment()
env.world_size = lambda: int(os.environ["WORLD_SIZE"])
env.global_rank = lambda: int(os.environ["RANK"])

3. For PyTorch DDP – Create an object of the DDPStrategy class with "smddp" for
process_group_backend and "gpu" for accelerator, and pass that to the Trainer class.

SageMaker distributed data parallelism library 3568

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch-lightning.readthedocs.io/en/latest/starter/introduction.html
https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.plugins.environments.LightningEnvironment.html
https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.strategies.DDPStrategy.html
https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html

Amazon SageMaker Developer Guide

import lightning as pl
from lightning.pytorch.strategies import DDPStrategy

ddp = DDPStrategy(
 cluster_environment=env,
 process_group_backend="smddp",
 accelerator="gpu"
)

trainer = pl.Trainer(
 max_epochs=200,
 strategy=ddp,
 devices=num_gpus,
 num_nodes=num_nodes
)

For PyTorch FSDP – Create an object of the FSDPStrategy class (with wrapping policy of choice)
with "smddp" for process_group_backend and "gpu" for accelerator, and pass that to
the Trainer class.

import lightning as pl
from lightning.pytorch.strategies import FSDPStrategy

from functools import partial
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy

policy = partial(
 size_based_auto_wrap_policy,
 min_num_params=10000
)

fsdp = FSDPStrategy(
 auto_wrap_policy=policy,
 process_group_backend="smddp",
 cluster_environment=env
)

trainer = pl.Trainer(
 max_epochs=200,
 strategy=fsdp,
 devices=num_gpus,

SageMaker distributed data parallelism library 3569

https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.strategies.FSDPStrategy.html
https://pytorch.org/docs/stable/fsdp.html
https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html

Amazon SageMaker Developer Guide

 num_nodes=num_nodes
)

After you have completed adapting your training script, proceed to Step 2: Launch a distributed
training job using the SageMaker Python SDK.

Note

When you construct a SageMaker PyTorch estimator and submit a training job request
in the section called “Step 2: Launch a distributed training job”, you need to provide
requirements.txt to install pytorch-lightning and lightning-bolts in the
SageMaker PyTorch training container.

requirements.txt
pytorch-lightning
lightning-bolts

For more information about specifying the source directory to place the
requirements.txt file along with your training script and a job submission, see Using
third-party libraries in the Amazon SageMaker Python SDK documentation.

Use the SMDDP library in your TensorFlow training script (deprecated)

Important

The SMDDP library discontinued support for TensorFlow and is no longer available in DLCs
for TensorFlow later than v2.11.0. To find previous TensorFlow DLCs with the SMDDP
library installed, see the section called “Supported frameworks”.

The following steps show you how to modify a TensorFlow training script to utilize SageMaker's
distributed data parallel library.

The library APIs are designed to be similar to Horovod APIs. For additional details on each API
that the library offers for TensorFlow, see the SageMaker distributed data parallel TensorFlow API
documentation.

SageMaker distributed data parallelism library 3570

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#id12
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#id12
https://sagemaker.readthedocs.io/en/stable/api/training/smd_data_parallel.html#api-documentation
https://sagemaker.readthedocs.io/en/stable/api/training/smd_data_parallel.html#api-documentation

Amazon SageMaker Developer Guide

Note

SageMaker distributed data parallel is adaptable to TensorFlow training scripts composed
of tf core modules except tf.keras modules. SageMaker distributed data parallel does
not support TensorFlow with Keras implementation.

Note

The SageMaker distributed data parallelism library supports Automatic Mixed Precision
(AMP) out of the box. No extra action is needed to enable AMP other than the framework-
level modifications to your training script. If gradients are in FP16, the SageMaker data
parallelism library runs its AllReduce operation in FP16. For more information about
implementing AMP APIs to your training script, see the following resources:

• Frameworks - TensorFlow in the NVIDIA Deep Learning Performance documentation

• Automatic Mixed Precision for Deep Learning in the NVIDIA Developer Docs

• TensorFlow mixed precision APIs in the TensorFlow documentation

1. Import the library's TensorFlow client and initialize it.

import smdistributed.dataparallel.tensorflow as sdp
sdp.init()

2. Pin each GPU to a single smdistributed.dataparallel process with local_rank—
this refers to the relative rank of the process within a given node. The
sdp.tensorflow.local_rank() API provides you with the local rank of the device. The
leader node is rank 0, and the worker nodes are rank 1, 2, 3, and so on. This is invoked in the
following code block as sdp.local_rank(). set_memory_growth is not directly related to
SageMaker distributed, but must be set for distributed training with TensorFlow.

gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
 tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
 tf.config.experimental.set_visible_devices(gpus[sdp.local_rank()], 'GPU')

SageMaker distributed data parallelism library 3571

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#tensorflow
https://developer.nvidia.com/automatic-mixed-precision
https://www.tensorflow.org/guide/mixed_precision

Amazon SageMaker Developer Guide

3. Scale the learning rate by the number of workers. The sdp.tensorflow.size() API
provides you the number of workers in the cluster. This is invoked in the following code block
as sdp.size().

learning_rate = learning_rate * sdp.size()

4. Use the library’s DistributedGradientTape to optimize AllReduce operations during
training. This wraps tf.GradientTape.

with tf.GradientTape() as tape:
 output = model(input)
 loss_value = loss(label, output)

SageMaker data parallel: Wrap tf.GradientTape with the library's
 DistributedGradientTape
tape = sdp.DistributedGradientTape(tape)

5. Broadcast the initial model variables from the leader node (rank 0) to all the worker
nodes (ranks 1 through n). This is needed to ensure a consistent initialization across all
the worker ranks. Use the sdp.tensorflow.broadcast_variables API after the
model and optimizer variables are initialized. This is invoked in the following code block as
sdp.broadcast_variables().

sdp.broadcast_variables(model.variables, root_rank=0)
sdp.broadcast_variables(opt.variables(), root_rank=0)

6. Finally, modify your script to save checkpoints only on the leader node. The leader node has a
synchronized model. This also avoids worker nodes overwriting the checkpoints and possibly
corrupting the checkpoints.

if sdp.rank() == 0:
 checkpoint.save(checkpoint_dir)

The following is an example TensorFlow training script for distributed training with the library.

import tensorflow as tf

SageMaker data parallel: Import the library TF API
import smdistributed.dataparallel.tensorflow as sdp

SageMaker distributed data parallelism library 3572

Amazon SageMaker Developer Guide

SageMaker data parallel: Initialize the library
sdp.init()

gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
 tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
 # SageMaker data parallel: Pin GPUs to a single library process
 tf.config.experimental.set_visible_devices(gpus[sdp.local_rank()], 'GPU')

Prepare Dataset
dataset = tf.data.Dataset.from_tensor_slices(...)

Define Model
mnist_model = tf.keras.Sequential(...)
loss = tf.losses.SparseCategoricalCrossentropy()

SageMaker data parallel: Scale Learning Rate
LR for 8 node run : 0.000125
LR for single node run : 0.001
opt = tf.optimizers.Adam(0.000125 * sdp.size())

@tf.function
def training_step(images, labels, first_batch):
 with tf.GradientTape() as tape:
 probs = mnist_model(images, training=True)
 loss_value = loss(labels, probs)

 # SageMaker data parallel: Wrap tf.GradientTape with the library's
 DistributedGradientTape
 tape = sdp.DistributedGradientTape(tape)

 grads = tape.gradient(loss_value, mnist_model.trainable_variables)
 opt.apply_gradients(zip(grads, mnist_model.trainable_variables))

 if first_batch:
 # SageMaker data parallel: Broadcast model and optimizer variables
 sdp.broadcast_variables(mnist_model.variables, root_rank=0)
 sdp.broadcast_variables(opt.variables(), root_rank=0)

 return loss_value

...

SageMaker distributed data parallelism library 3573

Amazon SageMaker Developer Guide

SageMaker data parallel: Save checkpoints only from master node.
if sdp.rank() == 0:
 checkpoint.save(checkpoint_dir)

After you have completed adapting your training script, move on to Step 2: Launch a distributed
training job using the SageMaker Python SDK.

Step 2: Launch a distributed training job using the SageMaker Python SDK

To run a distributed training job with your adapted script from the section called “Step 1: Adapt
your training script to use the SMDDP collective operations”, use the SageMaker Python SDK's
framework or generic estimators by specifying the prepared training script as an entry point script
and the distributed training configuration.

This page walks you through how to use the SageMaker Python SDK in two ways.

• If you want to achieve a quick adoption of your distributed training job in SageMaker, configure
a SageMaker PyTorch or TensorFlow framework estimator class. The framework estimator
picks up your training script and automatically matches the right image URI of the pre-built
PyTorch or TensorFlow Deep Learning Containers (DLC), given the value specified to the
framework_version parameter.

• If you want to extend one of the pre-built containers or build a custom container to create your
own ML environment with SageMaker, use the SageMaker generic Estimator class and specify
the image URI of the custom Docker container hosted in your Amazon Elastic Container Registry
(Amazon ECR).

Your training datasets should be stored in Amazon S3 or Amazon FSx for Lustre in the AWS Region
in which you are launching your training job. If you use Jupyter notebooks, you should have a
SageMaker notebook instance or a SageMaker Studio Classic app running in the same AWS Region.
For more information about storing your training data, see the SageMaker Python SDK data inputs
documentation.

Tip

We recommend that you use Amazon FSx for Lustre instead of Amazon S3 to improve
training performance. Amazon FSx has higher throughput and lower latency than Amazon
S3.

SageMaker distributed data parallelism library 3574

https://sagemaker.readthedocs.io/en/stable/api/training/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html#sagemaker.pytorch.estimator.PyTorch
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://docs.aws.amazon.com/fsx/latest/LustreGuide/what-is.html
https://sagemaker.readthedocs.io/en/stable/overview.html#use-file-systems-as-training-input

Amazon SageMaker Developer Guide

Tip

To properly run distributed training on the EFA-enabled instance types, you should enables
traffic between the instances by setting up the security group of your VPC to allow all
inbound and outbound traffic to and from the security group itself. To learn how to set up
the security group rules, see Step 1: Prepare an EFA-enabled security group in the Amazon
EC2 User Guide.

Choose one of the following topics for instructions on how to run a distributed training job of
your training script. After you launch a training job, you can monitor system utilization and model
performance using Use Amazon SageMaker Debugger to debug and improve model performance
or Amazon CloudWatch.

While you follow instructions in the following topics to learn more about technical details, we also
recommend that you try the Amazon SageMaker Distributed Training Notebook Examples to get
started.

Topics

• Using framework estimators in the SageMaker Python SDK

• Using the SageMaker generic estimator to extend prebuilt containers

• Create your own Docker container with the SageMaker distributed data parallel library

Using framework estimators in the SageMaker Python SDK

You can launch distributed training by adding the distribution argument to the SageMaker
framework estimators, PyTorch or TensorFlow. For more details, choose one of the frameworks
supported by the SageMaker distributed data parallelism (SMDDP) library from the following
selections.

PyTorch

The following launcher options are available for launching PyTorch distributed training.

• pytorchddp – This option runs mpirun and sets up environment variables needed for
running PyTorch distributed training on SageMaker. To use this option, pass the following
dictionary to the distribution parameter.

SageMaker distributed data parallelism library 3575

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html#sagemaker.pytorch.estimator.PyTorch
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator

Amazon SageMaker Developer Guide

{ "pytorchddp": { "enabled": True } }

• torch_distributed – This option runs torchrun and sets up environment variables
needed for running PyTorch distributed training on SageMaker. To use this option, pass the
following dictionary to the distribution parameter.

{ "torch_distributed": { "enabled": True } }

• smdistributed – This option also runs mpirun but with smddprun that sets up
environment variables needed for running PyTorch distributed training on SageMaker.

{ "smdistributed": { "dataparallel": { "enabled": True } } }

If you chose to replace NCCL AllGather to SMDDP AllGather, you can use all three options.
Choose one option that fits with your use case.

If you chose to replace NCCL AllReduce with SMDDP AllReduce, you should choose one of
the mpirun-based options: smdistributed or pytorchddp. You can also add additional MPI
options as follows.

{
 "pytorchddp": {
 "enabled": True,
 "custom_mpi_options": "-verbose -x NCCL_DEBUG=VERSION"
 }
}

{
 "smdistributed": {
 "dataparallel": {
 "enabled": True,
 "custom_mpi_options": "-verbose -x NCCL_DEBUG=VERSION"
 }
 }
}

The following code sample shows the basic structure of a PyTorch estimator with distributed
training options.

SageMaker distributed data parallelism library 3576

Amazon SageMaker Developer Guide

from sagemaker.pytorch import PyTorch

pt_estimator = PyTorch(
 base_job_name="training_job_name_prefix",
 source_dir="subdirectory-to-your-code",
 entry_point="adapted-training-script.py",
 role="SageMakerRole",
 py_version="py310",
 framework_version="2.0.1",

 # For running a multi-node distributed training job, specify a value greater
 than 1
 # Example: 2,3,4,..8
 instance_count=2,

 # Instance types supported by the SageMaker data parallel library:
 # ml.p4d.24xlarge, ml.p4de.24xlarge
 instance_type="ml.p4d.24xlarge",

 # Activate distributed training with SMDDP
 distribution={ "pytorchddp": { "enabled": True } } # mpirun, activates SMDDP
 AllReduce OR AllGather
 # distribution={ "torch_distributed": { "enabled": True } } # torchrun,
 activates SMDDP AllGather
 # distribution={ "smdistributed": { "dataparallel": { "enabled": True } } } #
 mpirun, activates SMDDP AllReduce OR AllGather
)

pt_estimator.fit("s3://bucket/path/to/training/data")

Note

PyTorch Lightning and its utility libraries such as Lightning Bolts are not preinstalled in
the SageMaker PyTorch DLCs. Create the following requirements.txt file and save in
the source directory where you save the training script.

requirements.txt
pytorch-lightning
lightning-bolts

For example, the tree-structured directory should look like the following.

SageMaker distributed data parallelism library 3577

Amazon SageMaker Developer Guide

pytorch_training_launcher_jupyter_notebook.ipynb
sub-folder-for-your-code
 ### adapted-training-script.py
 ### requirements.txt

For more information about specifying the source directory to place the
requirements.txt file along with your training script and a job submission, see Using
third-party libraries in the Amazon SageMaker Python SDK documentation.

Considerations for activating SMDDP collective operations and using the right distributed
training launcher options

• SMDDP AllReduce and SMDDP AllGather are not mutually compatible at present.

• SMDDP AllReduce is activated by default when using smdistributed or pytorchddp,
which are mpirun-based launchers, and NCCL AllGather is used.

• SMDDP AllGather is activated by default when using torch_distributed launcher, and
AllReduce falls back to NCCL.

• SMDDP AllGather can also be activated when using the mpirun-based launchers with an
additional environment variable set as follows.

export SMDATAPARALLEL_OPTIMIZE_SDP=true

TensorFlow

Important

The SMDDP library discontinued support for TensorFlow and is no longer available
in DLCs for TensorFlow later than v2.11.0. To find previous TensorFlow DLCs with the
SMDDP library installed, see the section called “TensorFlow (deprecated)”.

from sagemaker.tensorflow import TensorFlow

tf_estimator = TensorFlow(
 base_job_name = "training_job_name_prefix",

SageMaker distributed data parallelism library 3578

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#id12
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#id12

Amazon SageMaker Developer Guide

 entry_point="adapted-training-script.py",
 role="SageMakerRole",
 framework_version="2.11.0",
 py_version="py38",

 # For running a multi-node distributed training job, specify a value greater
 than 1
 # Example: 2,3,4,..8
 instance_count=2,

 # Instance types supported by the SageMaker data parallel library:
 # ml.p4d.24xlarge, ml.p3dn.24xlarge, and ml.p3.16xlarge
 instance_type="ml.p3.16xlarge",

 # Training using the SageMaker data parallel distributed training strategy
 distribution={ "smdistributed": { "dataparallel": { "enabled": True } } }
)

tf_estimator.fit("s3://bucket/path/to/training/data")

Using the SageMaker generic estimator to extend prebuilt containers

You can customize SageMaker prebuilt containers or extend them to handle any additional
functional requirements for your algorithm or model that the prebuilt SageMaker Docker image
doesn't support. For an example of how you can extend a pre-built container, see Extend a Prebuilt
Container.

To extend a prebuilt container or adapt your own container to use the library, you must use one of
the images listed in Supported frameworks.

Note

From TensorFlow 2.4.1 and PyTorch 1.8.1, SageMaker framework DLCs supports EFA-
enabled instance types. We recommend that you use the DLC images that contain
TensorFlow 2.4.1 or later and PyTorch 1.8.1 or later.

For example, if you use PyTorch, your Dockerfile should contain a FROM statement similar to the
following:

SageMaker PyTorch image

SageMaker distributed data parallelism library 3579

https://docs.aws.amazon.com/sagemaker/latest/dg/prebuilt-containers-extend.html
https://docs.aws.amazon.com/sagemaker/latest/dg/prebuilt-containers-extend.html

Amazon SageMaker Developer Guide

FROM 763104351884.dkr.ecr.<aws-region>.amazonaws.com/pytorch-training:<image-tag>

ENV PATH="/opt/ml/code:${PATH}"

this environment variable is used by the SageMaker PyTorch container to determine our
 user code directory.
ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code

/opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory
 to store your user code.
COPY train.py /opt/ml/code/train.py

Defines cifar10.py as script entrypoint
ENV SAGEMAKER_PROGRAM train.py

You can further customize your own Docker container to work with SageMaker using the
SageMaker Training toolkit and the binary file of the SageMaker distributed data parallel library. To
learn more, see the instructions in the following section.

Create your own Docker container with the SageMaker distributed data parallel library

To build your own Docker container for training and use the SageMaker data parallel library,
you must include the correct dependencies and the binary files of the SageMaker distributed
parallel libraries in your Dockerfile. This section provides instructions on how to create a complete
Dockerfile with the minimum set of dependencies for distributed training in SageMaker using the
data parallel library.

Note

This custom Docker option with the SageMaker data parallel library as a binary is available
only for PyTorch.

To create a Dockerfile with the SageMaker training toolkit and the data parallel library

1. Start with a Docker image from NVIDIA CUDA. Use the cuDNN developer versions that contain
CUDA runtime and development tools (headers and libraries) to build from the PyTorch source
code.

FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04

SageMaker distributed data parallelism library 3580

https://github.com/aws/sagemaker-training-toolkit
https://hub.docker.com/r/nvidia/cuda
https://github.com/pytorch/pytorch#from-source
https://github.com/pytorch/pytorch#from-source

Amazon SageMaker Developer Guide

Tip

The official AWS Deep Learning Container (DLC) images are built from the NVIDIA
CUDA base images. If you want to use the prebuilt DLC images as references while
following the rest of the instructions, see the AWS Deep Learning Containers for PyTorch
Dockerfiles.

2. Add the following arguments to specify versions of PyTorch and other packages. Also, indicate
the Amazon S3 bucket paths to the SageMaker data parallel library and other software to use
AWS resources, such as the Amazon S3 plug-in.

To use versions of the third party libraries other than the ones provided in the following code
example, we recommend you look into the official Dockerfiles of AWS Deep Learning Container
for PyTorch to find versions that are tested, compatible, and suitable for your application.

To find URLs for the SMDATAPARALLEL_BINARY argument, see the lookup tables at Supported
frameworks.

ARG PYTORCH_VERSION=1.10.2
ARG PYTHON_SHORT_VERSION=3.8
ARG EFA_VERSION=1.14.1
ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/
${PYTORCH_VERSION}/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-
linux_x86_64.whl
ARG PT_S3_WHL_GPU=https://aws-s3-plugin.s3.us-west-2.amazonaws.com/
binaries/0.0.1/1c3e69e/awsio-0.0.1-cp38-cp38-manylinux1_x86_64.whl
ARG CONDA_PREFIX="/opt/conda"
ARG BRANCH_OFI=1.1.3-aws

3. Set the following environment variables to properly build SageMaker training components and
run the data parallel library. You use these variables for the components in the subsequent
steps.

Set ENV variables required to build PyTorch
ENV TORCH_CUDA_ARCH_LIST="7.0+PTX 8.0"
ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all"
ENV NCCL_VERSION=2.10.3

Add OpenMPI to the path.
ENV PATH /opt/amazon/openmpi/bin:$PATH

SageMaker distributed data parallelism library 3581

https://hub.docker.com/r/nvidia/cuda
https://hub.docker.com/r/nvidia/cuda
https://github.com/aws/deep-learning-containers/tree/master/pytorch
https://github.com/aws/deep-learning-containers/tree/master/pytorch
https://github.com/aws/deep-learning-containers/tree/master/pytorch/training/docker
https://github.com/aws/deep-learning-containers/tree/master/pytorch/training/docker

Amazon SageMaker Developer Guide

Add Conda to path
ENV PATH $CONDA_PREFIX/bin:$PATH

Set this enviroment variable for SageMaker to launch SMDDP correctly.
ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main

Add enviroment variable for processes to be able to call fork()
ENV RDMAV_FORK_SAFE=1

Indicate the container type
ENV DLC_CONTAINER_TYPE=training

Add EFA and SMDDP to LD library path
ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/
smdistributed/dataparallel/lib:$LD_LIBRARY_PATH"
ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH

4. Install or update curl, wget, and git to download and build packages in the subsequent steps.

RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \
 apt-get update && apt-get install -y --no-install-recommends \
 curl \
 wget \
 git \
 && rm -rf /var/lib/apt/lists/*

5. Install Elastic Fabric Adapter (EFA) software for Amazon EC2 network communication.

RUN DEBIAN_FRONTEND=noninteractive apt-get update
RUN mkdir /tmp/efa \
 && cd /tmp/efa \
 && curl --silent -O https://efa-installer.amazonaws.com/aws-efa-installer-
${EFA_VERSION}.tar.gz \
 && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \
 && cd aws-efa-installer \
 && ./efa_installer.sh -y --skip-kmod -g \
 && rm -rf /tmp/efa

6. Install Conda to handle package management.

RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/
Miniconda3-latest-Linux-x86_64.sh && \

SageMaker distributed data parallelism library 3582

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.conda.io/en/latest/

Amazon SageMaker Developer Guide

 chmod +x ~/miniconda.sh && \
 ~/miniconda.sh -b -p $CONDA_PREFIX && \
 rm ~/miniconda.sh && \
 $CONDA_PREFIX/bin/conda install -y python=${PYTHON_SHORT_VERSION} conda-build
 pyyaml numpy ipython && \
 $CONDA_PREFIX/bin/conda clean -ya

7. Get, build, and install PyTorch and its dependencies. We build PyTorch from the source code
because we need to have control of the NCCL version to guarantee compatibility with the AWS
OFI NCCL plug-in.

a. Following the steps in the PyTorch official dockerfile, install build dependencies and set up
ccache to speed up recompilation.

RUN DEBIAN_FRONTEND=noninteractive \
 apt-get install -y --no-install-recommends \
 build-essential \
 ca-certificates \
 ccache \
 cmake \
 git \
 libjpeg-dev \
 libpng-dev \
 && rm -rf /var/lib/apt/lists/*

Setup ccache
RUN /usr/sbin/update-ccache-symlinks
RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache

b. Install PyTorch’s common and Linux dependencies.

Common dependencies for PyTorch
RUN conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake
 cffi typing_extensions future six requests dataclasses

Linux specific dependency for PyTorch
RUN conda install -c pytorch magma-cuda113

c. Clone the PyTorch GitHub repository.

RUN --mount=type=cache,target=/opt/ccache \
 cd / \

SageMaker distributed data parallelism library 3583

https://github.com/pytorch/pytorch#from-source
https://github.com/aws/aws-ofi-nccl
https://github.com/aws/aws-ofi-nccl
https://github.com/pytorch/pytorch/blob/master/Dockerfile
https://ccache.dev/
https://github.com/pytorch/pytorch#install-dependencies
https://github.com/pytorch/pytorch

Amazon SageMaker Developer Guide

 && git clone --recursive https://github.com/pytorch/pytorch -b v
${PYTORCH_VERSION}

d. Install and build a specific NCCL version. To do this, replace the content in the PyTorch’s
default NCCL folder (/pytorch/third_party/nccl) with the specific NCCL version from
the NVIDIA repository. The NCCL version was set in the step 3 of this guide.

RUN cd /pytorch/third_party/nccl \
 && rm -rf nccl \
 && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \
 && cd nccl \
 && make -j64 src.build CUDA_HOME=/usr/local/cuda NVCC_GENCODE="-
gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_80,code=sm_80" \
 && make pkg.txz.build \
 && tar -xvf build/pkg/txz/nccl_*.txz -C $CONDA_PREFIX --strip-components=1

e. Build and install PyTorch. This process usually takes slightly more than 1 hour to complete. It
is built using the NCCL version downloaded in a previous step.

RUN cd /pytorch \
 && CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \
 python setup.py install \
 && rm -rf /pytorch

8. Build and install AWS OFI NCCL plugin. This enables libfabric support for the SageMaker data
parallel library.

RUN DEBIAN_FRONTEND=noninteractive apt-get update \
 && apt-get install -y --no-install-recommends \
 autoconf \
 automake \
 libtool
RUN mkdir /tmp/efa-ofi-nccl \
 && cd /tmp/efa-ofi-nccl \
 && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \
 && cd aws-ofi-nccl \
 && ./autogen.sh \
 && ./configure --with-libfabric=/opt/amazon/efa \
 --with-mpi=/opt/amazon/openmpi \
 --with-cuda=/usr/local/cuda \
 --with-nccl=$CONDA_PREFIX \
 && make \

SageMaker distributed data parallelism library 3584

https://developer.nvidia.com/nccl
https://github.com/aws/aws-ofi-nccl
https://github.com/ofiwg/libfabric

Amazon SageMaker Developer Guide

 && make install \
 && rm -rf /tmp/efa-ofi-nccl

9. Build and install TorchVision.

RUN pip install --no-cache-dir -U \
 packaging \
 mpi4py==3.0.3
RUN cd /tmp \
 && git clone https://github.com/pytorch/vision.git -b v0.9.1 \
 && cd vision \
 && BUILD_VERSION="0.9.1+cu111" python setup.py install \
 && cd /tmp \
 && rm -rf vision

10.Install and configure OpenSSH. OpenSSH is required for MPI to communicate between
containers. Allow OpenSSH to talk to containers without asking for confirmation.

RUN apt-get update \
 && apt-get install -y --allow-downgrades --allow-change-held-packages --no-
install-recommends \
 && apt-get install -y --no-install-recommends openssh-client openssh-server \
 && mkdir -p /var/run/sshd \
 && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/
ssh_config.new \
 && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \
 && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \
 && rm -rf /var/lib/apt/lists/*

Configure OpenSSH so that nodes can communicate with each other
RUN mkdir -p /var/run/sshd && \
 sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /
etc/pam.d/sshd
RUN rm -rf /root/.ssh/ && \
 mkdir -p /root/.ssh/ && \
 ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \
 cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \
 && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config

11.Install the PT S3 plug-in to efficiently access datasets in Amazon S3.

RUN pip install --no-cache-dir -U ${PT_S3_WHL_GPU}

SageMaker distributed data parallelism library 3585

https://github.com/pytorch/vision.git

Amazon SageMaker Developer Guide

RUN mkdir -p /etc/pki/tls/certs && cp /etc/ssl/certs/ca-certificates.crt /etc/pki/
tls/certs/ca-bundle.crt

12.Install the libboost library. This package is needed for networking the asynchronous IO
functionality of the SageMaker data parallel library.

WORKDIR /
RUN wget https://sourceforge.net/projects/boost/files/boost/1.73.0/
boost_1_73_0.tar.gz/download -O boost_1_73_0.tar.gz \
 && tar -xzf boost_1_73_0.tar.gz \
 && cd boost_1_73_0 \
 && ./bootstrap.sh \
 && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-
fPIC install || true \
 && cd .. \
 && rm -rf boost_1_73_0.tar.gz \
 && rm -rf boost_1_73_0 \
 && cd ${CONDA_PREFIX}/include/boost

13.Install the following SageMaker tools for PyTorch training.

WORKDIR /root
RUN pip install --no-cache-dir -U \
 smclarify \
 "sagemaker>=2,<3" \
 sagemaker-experiments==0.* \
 sagemaker-pytorch-training

14.Finally, install the SageMaker data parallel binary and the remaining dependencies.

RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \
 apt-get update && apt-get install -y --no-install-recommends \
 jq \
 libhwloc-dev \
 libnuma1 \
 libnuma-dev \
 libssl1.1 \
 libtool \
 hwloc \
 && rm -rf /var/lib/apt/lists/*

RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}

SageMaker distributed data parallelism library 3586

https://www.boost.org/

Amazon SageMaker Developer Guide

15.After you finish creating the Dockerfile, see Adapting Your Own Training Container to learn how
to build the Docker container, host it in Amazon ECR, and run a training job using the SageMaker
Python SDK.

The following example code shows a complete Dockerfile after combining all the previous code
blocks.

This file creates a docker image with minimum dependencies to run SageMaker data
 parallel training
FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04

Set appropiate versions and location for components
ARG PYTORCH_VERSION=1.10.2
ARG PYTHON_SHORT_VERSION=3.8
ARG EFA_VERSION=1.14.1
ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/
${PYTORCH_VERSION}/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-
linux_x86_64.whl
ARG PT_S3_WHL_GPU=https://aws-s3-plugin.s3.us-west-2.amazonaws.com/
binaries/0.0.1/1c3e69e/awsio-0.0.1-cp38-cp38-manylinux1_x86_64.whl
ARG CONDA_PREFIX="/opt/conda"
ARG BRANCH_OFI=1.1.3-aws

Set ENV variables required to build PyTorch
ENV TORCH_CUDA_ARCH_LIST="3.7 5.0 7.0+PTX 8.0"
ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all"
ENV NCCL_VERSION=2.10.3

Add OpenMPI to the path.
ENV PATH /opt/amazon/openmpi/bin:$PATH

Add Conda to path
ENV PATH $CONDA_PREFIX/bin:$PATH

Set this enviroment variable for SageMaker to launch SMDDP correctly.
ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main

Add enviroment variable for processes to be able to call fork()
ENV RDMAV_FORK_SAFE=1

Indicate the container type
ENV DLC_CONTAINER_TYPE=training

SageMaker distributed data parallelism library 3587

https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html

Amazon SageMaker Developer Guide

Add EFA and SMDDP to LD library path
ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/
smdistributed/dataparallel/lib:$LD_LIBRARY_PATH"
ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH

Install basic dependencies to download and build other dependencies
RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \
 apt-get update && apt-get install -y --no-install-recommends \
 curl \
 wget \
 git \
 && rm -rf /var/lib/apt/lists/*

Install EFA.
This is required for SMDDP backend communication
RUN DEBIAN_FRONTEND=noninteractive apt-get update
RUN mkdir /tmp/efa \
 && cd /tmp/efa \
 && curl --silent -O https://efa-installer.amazonaws.com/aws-efa-installer-
${EFA_VERSION}.tar.gz \
 && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \
 && cd aws-efa-installer \
 && ./efa_installer.sh -y --skip-kmod -g \
 && rm -rf /tmp/efa

Install Conda
RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-
latest-Linux-x86_64.sh && \
 chmod +x ~/miniconda.sh && \
 ~/miniconda.sh -b -p $CONDA_PREFIX && \
 rm ~/miniconda.sh && \
 $CONDA_PREFIX/bin/conda install -y python=${PYTHON_SHORT_VERSION} conda-build
 pyyaml numpy ipython && \
 $CONDA_PREFIX/bin/conda clean -ya

Install PyTorch.
Start with dependencies listed in official PyTorch dockerfile
https://github.com/pytorch/pytorch/blob/master/Dockerfile
RUN DEBIAN_FRONTEND=noninteractive \
 apt-get install -y --no-install-recommends \
 build-essential \
 ca-certificates \
 ccache \

SageMaker distributed data parallelism library 3588

Amazon SageMaker Developer Guide

 cmake \
 git \
 libjpeg-dev \
 libpng-dev && \
 rm -rf /var/lib/apt/lists/*

Setup ccache
RUN /usr/sbin/update-ccache-symlinks
RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache

Common dependencies for PyTorch
RUN conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake cffi
 typing_extensions future six requests dataclasses

Linux specific dependency for PyTorch
RUN conda install -c pytorch magma-cuda113

Clone PyTorch
RUN --mount=type=cache,target=/opt/ccache \
 cd / \
 && git clone --recursive https://github.com/pytorch/pytorch -b v${PYTORCH_VERSION}
Note that we need to use the same NCCL version for PyTorch and OFI plugin.
To enforce that, install NCCL from source before building PT and OFI plugin.

Install NCCL.
Required for building OFI plugin (OFI requires NCCL's header files and library)
RUN cd /pytorch/third_party/nccl \
 && rm -rf nccl \
 && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \
 && cd nccl \
 && make -j64 src.build CUDA_HOME=/usr/local/cuda NVCC_GENCODE="-
gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_80,code=sm_80" \
 && make pkg.txz.build \
 && tar -xvf build/pkg/txz/nccl_*.txz -C $CONDA_PREFIX --strip-components=1

Build and install PyTorch.
RUN cd /pytorch \
 && CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \
 python setup.py install \
 && rm -rf /pytorch

RUN ccache -C

Build and install OFI plugin. \

SageMaker distributed data parallelism library 3589

Amazon SageMaker Developer Guide

It is required to use libfabric.
RUN DEBIAN_FRONTEND=noninteractive apt-get update \
 && apt-get install -y --no-install-recommends \
 autoconf \
 automake \
 libtool
RUN mkdir /tmp/efa-ofi-nccl \
 && cd /tmp/efa-ofi-nccl \
 && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \
 && cd aws-ofi-nccl \
 && ./autogen.sh \
 && ./configure --with-libfabric=/opt/amazon/efa \
 --with-mpi=/opt/amazon/openmpi \
 --with-cuda=/usr/local/cuda \
 --with-nccl=$CONDA_PREFIX \
 && make \
 && make install \
 && rm -rf /tmp/efa-ofi-nccl

Build and install Torchvision
RUN pip install --no-cache-dir -U \
 packaging \
 mpi4py==3.0.3
RUN cd /tmp \
 && git clone https://github.com/pytorch/vision.git -b v0.9.1 \
 && cd vision \
 && BUILD_VERSION="0.9.1+cu111" python setup.py install \
 && cd /tmp \
 && rm -rf vision

Install OpenSSH.
Required for MPI to communicate between containers, allow OpenSSH to talk to
 containers without asking for confirmation
RUN apt-get update \
 && apt-get install -y --allow-downgrades --allow-change-held-packages --no-
install-recommends \
 && apt-get install -y --no-install-recommends openssh-client openssh-server \
 && mkdir -p /var/run/sshd \
 && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/
ssh_config.new \
 && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \
 && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \
 && rm -rf /var/lib/apt/lists/*
Configure OpenSSH so that nodes can communicate with each other

SageMaker distributed data parallelism library 3590

Amazon SageMaker Developer Guide

RUN mkdir -p /var/run/sshd && \
 sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -
i /etc/pam.d/sshd
RUN rm -rf /root/.ssh/ && \
 mkdir -p /root/.ssh/ && \
 ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \
 cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \
 && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config

Install PT S3 plugin.
Required to efficiently access datasets in Amazon S3
RUN pip install --no-cache-dir -U ${PT_S3_WHL_GPU}
RUN mkdir -p /etc/pki/tls/certs && cp /etc/ssl/certs/ca-certificates.crt /etc/pki/tls/
certs/ca-bundle.crt

Install libboost from source.
This package is needed for smdataparallel functionality (for networking asynchronous
 IO).
WORKDIR /
RUN wget https://sourceforge.net/projects/boost/files/boost/1.73.0/boost_1_73_0.tar.gz/
download -O boost_1_73_0.tar.gz \
 && tar -xzf boost_1_73_0.tar.gz \
 && cd boost_1_73_0 \
 && ./bootstrap.sh \
 && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-fPIC
 install || true \
 && cd .. \
 && rm -rf boost_1_73_0.tar.gz \
 && rm -rf boost_1_73_0 \
 && cd ${CONDA_PREFIX}/include/boost

Install SageMaker PyTorch training.
WORKDIR /root
RUN pip install --no-cache-dir -U \
 smclarify \
 "sagemaker>=2,<3" \
 sagemaker-experiments==0.* \
 sagemaker-pytorch-training

Install SageMaker data parallel binary (SMDDP)
Start with dependencies
RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \
 apt-get update && apt-get install -y --no-install-recommends \
 jq \

SageMaker distributed data parallelism library 3591

Amazon SageMaker Developer Guide

 libhwloc-dev \
 libnuma1 \
 libnuma-dev \
 libssl1.1 \
 libtool \
 hwloc \
 && rm -rf /var/lib/apt/lists/*

Install SMDDP
RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}

Tip

For more general information about creating a custom Dockerfile for training in SageMaker,
see Use Your Own Training Algorithms.

Tip

If you want to extend the custom Dockerfile to incorporate the SageMaker model parallel
library, see Create Your Own Docker Container with the SageMaker Distributed Model
Parallel Library.

Configuration tips for the SageMaker distributed data parallelism library

Review the following tips before using the SageMaker distributed data parallelism (SMDDP) library.
This list includes tips that are applicable across frameworks.

Topics

• Data preprocessing

• Single versus multiple nodes

• Debug scaling efficiency with Debugger

• Batch size

• Custom MPI options

• Use Amazon FSx and set up an optimal storage and throughput capacity

SageMaker distributed data parallelism library 3592

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html

Amazon SageMaker Developer Guide

Data preprocessing

If you preprocess data during training using an external library that utilizes the CPU, you may run
into a CPU bottleneck because SageMaker distributed data parallel uses the CPU for AllReduce
operations. You may be able to improve training time by moving preprocessing steps to a library
that uses GPUs or by completing all preprocessing before training.

Single versus multiple nodes

We recommend that you use this library with multiple nodes. The library can be used with
a single-host, multi-device setup (for example, a single ML compute instance with multiple
GPUs); however, when you use two or more nodes, the library’s AllReduce operation gives you
significant performance improvement. Also, on a single host, NVLink already contributes to in-node
AllReduce efficiency.

Debug scaling efficiency with Debugger

You can use Amazon SageMaker Debugger to monitor and visualize CPU and GPU utilization
and other metrics of interest during training. You can use Debugger built-in rules to monitor
computational performance issues, such as CPUBottleneck, LoadBalancing, and
LowGPUUtilization. You can specify these rules with Debugger configurations when you define
an Amazon SageMaker Python SDK estimator. If you use AWS CLI and AWS SDK for Python (Boto3)
for training on SageMaker, you can enable Debugger as shown in Configure SageMaker Debugger
Using Amazon SageMaker API.

To see an example using Debugger in a SageMaker training job, you can reference one of the
notebook examples in the SageMaker Notebook Examples GitHub repository. To learn more about
Debugger, see Amazon SageMaker Debugger.

Batch size

In distributed training, as more nodes are added, batch sizes should increase proportionally. To
improve convergence speed as you add more nodes to your training job and increase the global
batch size, increase the learning rate.

One way to achieve this is by using a gradual learning rate warmup where the learning rate is
ramped up from a small to a large value as the training job progresses. This ramp avoids a sudden
increase of the learning rate, allowing healthy convergence at the start of training. For example,
you can use a Linear Scaling Rule where each time the mini-batch size is multiplied by k, the

SageMaker distributed data parallelism library 3593

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-configuration-for-debugging.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-debugger
https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html

Amazon SageMaker Developer Guide

learning rate is also multiplied by k. To learn more about this technique, see the research paper,
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, Sections 2 and 3.

Custom MPI options

The SageMaker distributed data parallel library employs Message Passing Interface (MPI), a popular
standard for managing communication between nodes in a high-performance cluster, and uses
NVIDIA’s NCCL library for GPU-level communication. When you use the data parallel library with
a TensorFlow or Pytorch Estimator, the respective container sets up the MPI environment and
executes the mpirun command to start jobs on the cluster nodes.

You can set custom MPI operations using the custom_mpi_options parameter in the
Estimator. Any mpirun flags passed in this field are added to the mpirun command and
executed by SageMaker for training. For example, you may define the distribution parameter
of an Estimator using the following to use the NCCL_DEBUG variable to print the NCCL version at
the start of the program:

distribution = {'smdistributed':{'dataparallel':{'enabled': True, "custom_mpi_options":
 "-verbose -x NCCL_DEBUG=VERSION"}}}

Use Amazon FSx and set up an optimal storage and throughput capacity

When training a model on multiple nodes with distributed data parallelism, it is highly
recommended to use FSx for Lustre. Amazon FSx is a scalable and high-performance storage
service that supports shared file storage with a faster throughput. Using Amazon FSx storage at
scale, you can achieve a faster data loading speed across the compute nodes.

Typically, with distributed data parallelism, you would expect that the total training throughput
scales near-linearly with the number of GPUs. However, if you use suboptimal Amazon FSx storage,
the training performance might slow down due to a low Amazon FSx throughput.

For example, if you use the SCRATCH_2 deployment type of Amazon FSx file system with the
minimum 1.2 TiB storage capacity, the I/O throughput capacity is 240 MB/s. Amazon FSx storage
works in a way that you can assign physical storage devices, and the more devices assigned, the
larger throughput you get. The smallest storage increment for the SRATCH_2 type is 1.2 TiB, and
the corresponding throughput gain is 240 MB/s.

Assume that you have a model to train on a 4-node cluster over a 100 GB data set. With a given
batch size that’s optimized to the cluster, assume that the model can complete one epoch in about

SageMaker distributed data parallelism library 3594

https://arxiv.org/pdf/1706.02677.pdf
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html#nccl-debug
https://docs.aws.amazon.com/fsx/latest/LustreGuide/what-is.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/performance.html#fsx-aggregate-perf

Amazon SageMaker Developer Guide

30 seconds. In this case, the minimum required I/O speed is approximately 3 GB/s (100 GB / 30
s). This is apparently a much higher throughput requirement than 240 MB/s. With such a limited
Amazon FSx capacity, scaling your distributed training job up to larger clusters might aggravate I/O
bottleneck problems; model training throughput might improve in later epochs as cache builds up,
but Amazon FSx throughput can still be a bottleneck.

To alleviate such I/O bottleneck problems, you should increase the Amazon FSx storage size
to obtain a higher throughput capacity. Typically, to find an optimal I/O throughput, you may
experiment with different Amazon FSx throughput capacities, assigning an equal to or slightly
lower throughput than your estimate, until you find that it is sufficient to resolve the I/O
bottleneck problems. In case of the aforementioned example, Amazon FSx storage with 2.4 GB/s
throughput and 67 GB RAM cache would be sufficient. If the file system has an optimal throughput,
the model training throughput should reach maximum either immediately or after the first epoch
as cache has built up.

To learn more about how to increase Amazon FSx storage and deployment types, see the following
pages in the Amazon FSx for Lustre documentation:

• How to increase storage capacity

• Aggregate file system performance

Amazon SageMaker distributed data parallelism library FAQ

Use the following to find answers to commonly asked questions about the SMDDP library.

Q: When using the library, how are the allreduce-supporting CPU instances managed? Do I
have to create heterogeneous CPU-GPU clusters, or does the SageMaker service create extra C5s
for jobs that use the SMDDP library?

The SMDDP library only supports GPU instances, more specificcally, P4d and P4de instances with
NVIDIA A100 GPUs and EFA. No additional C5 or CPU instances are launched; if your SageMaker
training job is on an 8-node P4d cluster, only 8 ml.p4d.24xlarge instances are used. No
additional instances are provisioned.

Q: I have a training job taking 5 days on a single ml.p3.24xlarge instance with a set of
hyperparameters H1 (learning rate, batch size, optimizer, etc). Is using SageMaker's data
parallelism library and a five-time bigger cluster enough to achieve an approximate five-
time speedup? Or do I have to revisit its training hyperparameters after activating the SMDDP
library?

SageMaker distributed data parallelism library 3595

https://docs.aws.amazon.com/fsx/latest/LustreGuide/managing-storage-capacity.html#increase-storage-capacity
https://docs.aws.amazon.com/fsx/latest/LustreGuide/performance.html#fsx-aggregate-perf

Amazon SageMaker Developer Guide

The library changes the overall batch size. The new overall batch size is scaled linearly with the
number of training instances used. As a result of this, hyperparameters, such as learning rate, have
to be changed to ensure convergence.

Q: Does the SMDDP library support Spot?

Yes. You can use managed spot training. You specify the path to the checkpoint file in the
SageMaker training job. You save and restore checkpoints in their training script as mentioned in
the last steps of the section called “TensorFlow (deprecated)” and the section called “PyTorch”.

Q: Is the SMDDP library relevant in a single-host, multi-device setup?

The library can be used in single-host multi-device training but the library offers performance
improvements only in multi-host training.

Q: Where should the training dataset be stored?

The training dataset can be stored in an Amazon S3 bucket or on an Amazon FSx drive. See this
document for various supported input file systems for a training job.

Q: When using the SMDDP library, is it mandatory to have training data in FSx for Lustre? Can
Amazon EFS and Amazon S3 be used?

We generally recommend you use Amazon FSx because of its lower latency and higher throughput.
If you prefer, you can use Amazon EFS or Amazon S3.

Q: Can the library be used with CPU nodes?

No. To find instance types supported by the SMDDP library, see the section called “Supported
instance types”.

Q: What frameworks and framework versions are currently supported by the SMDDP library at
launch?

the SMDDP library currently supports PyTorch v1.6.0 or later and TensorFlow v2.3.0 or later. It
doesn't support TensorFlow 1.x. For more information about which version of the SMDDP library is
packaged within AWS deep learning containers, see Release Notes for Deep Learning Containers.

Q: Does the library support AMP?

Yes, the SMDDP library supports Automatic Mixed Precision (AMP) out of the box. No extra action
is needed to use AMP other than the framework-level modifications to your training script. If
gradients are in FP16, the SageMaker data parallelism library runs its AllReduce operation

SageMaker distributed data parallelism library 3596

https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html#sagemaker.inputs.FileSystemInput
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html

Amazon SageMaker Developer Guide

in FP16. For more information about implementing AMP APIs to your training script, see the
following resources:

• Frameworks - PyTorch in the NVIDIA Deep Learning Performace documentation
• Frameworks - TensorFlow in the NVIDIA Deep Learning Performace documentation
• Automatic Mixed Precision for Deep Learning in the NVIDIA Developer Docs
• Introducing native PyTorch automatic mixed precision for faster training on NVIDIA GPUs in the

PyTorch Blog
• TensorFlow mixed precision APIs in the TensorFlow documentation

Q: How do I identify if my distributed training job is slowed down due to I/O bottleneck?

With a larger cluster, the training job requires more I/O throughput, and therefore the training
throughput might take longer (more epochs) to ramp up to the maximum performance. This
indicates that I/O is being bottlenecked and cache is harder to build up as you scale nodes up
(higher throughput requirement and more complex network topology). For more information
about monitoring the Amazon FSx throughput on CloudWatch, see Monitoring FSx for Lustre in the
FSx for Lustre User Guide.

Q: How do I resolve I/O bottlenecks when running a distributed training job with data
parallelism?

We highly recommend that you use Amazon FSx as your data channel if you are using Amazon S3.
If you are already using Amazon FSx but still having I/O bottleneck problems, you might have set
up your Amazon FSx file system with a low I/O throughput and a small storage capacity. For more
information about how to estimate and choose the right size of I/O throughput capacity, see Use
Amazon FSx and set up an optimal storage and throughput capacity.

Q: (For the library v1.4.0 or later) How do I resolve the Invalid backend error while
initializing process group.

If you encounter the error message ValueError: Invalid backend: 'smddp'
when calling init_process_group, this is due to the breaking change in the
SMDDP library v1.4.0 and later. You must import the PyTorch client of the library,
smdistributed.dataparallel.torch.torch_smddp, which registers smddp as a backend for
PyTorch. To learn more, see the section called “PyTorch”.

Q: (For the SMDDP library v1.4.0 or later) I would like to call the collective primitives of the
torch.distributed interface. Which primitives does the smddp backend support?

SageMaker distributed data parallelism library 3597

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#pytorch
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#tensorflow
https://developer.nvidia.com/automatic-mixed-precision
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
https://www.tensorflow.org/guide/mixed_precision
https://docs.aws.amazon.com/fsx/latest/LustreGuide/monitoring_overview.html
https://pytorch.org/docs/stable/distributed.html

Amazon SageMaker Developer Guide

In v1.4.0, the SMDDP library supports all_reduce, broadcast, reduce, all_gather, and
barrier of of the torch.distributed interface.

Q: (For the SMDDP library v1.4.0 or later) Does this new API work with other custom DDP
classes or libraries like Apex DDP?

The SMDDP library is tested with other third-party distributed data parallel libraries and
framework implementations that use the torch.distribtued modules. Using the SMDDP library
with custom DDP classes works as long as the collective operations used by the custom DDP classes
are supported by the SMDDP library. See the preceding question for a list of supported collectives.
If you have these use cases and need further support, reach out to the SageMaker team through
the AWS Support Center or AWS Developer Forums for Amazon SageMaker.

Q: Does the SMDDP library support the bring-your-own-container (BYOC) option? If so, how do
I install the library and run a distributed training job by writing a custom Dockerfile?

If you want to integrate the SMDDP library and its minimum dependencies into your own Docker
container, BYOC is the right approach. You can build your own container using the binary file of
the library. The recommended process is to write a custom Dockerfile with the library and its
dependencies, build the Docker container, host it in Amazon ECR, and use the ECR image URI to
launch a training job using the SageMaker generic estimator class. For more instructions on how
to prepare a custom Dockerfile for distributed training in SageMaker with the SMDDP library, see
Create your own Docker container with the SageMaker distributed data parallel library.

Troubleshooting for distributed training in Amazon SageMaker

If you have problems in running a training job when you use the library, use the following list to
try to troubleshoot. If you need further support, reach out to the SageMaker team through AWS
Support Center or AWS Developer Forums for Amazon Amazon SageMaker.

Topics

• Using SageMaker distributed data parallel with Amazon SageMaker Debugger and checkpoints

• An unexpected prefix attached to model parameter keys

• SageMaker distributed training job stalling during initialization

• SageMaker distributed training job stalling at the end of training

• Observing scaling efficiency degradation due to Amazon FSx throughput bottlenecks

• SageMaker distributed training job with PyTorch returns deprecation warnings

SageMaker distributed data parallelism library 3598

https://console.aws.amazon.com/support/
https://forums.aws.amazon.com/forum.jspa?forumID=285
https://console.aws.amazon.com/support/
https://console.aws.amazon.com/support/
https://forums.aws.amazon.com/forum.jspa?forumID=285

Amazon SageMaker Developer Guide

Using SageMaker distributed data parallel with Amazon SageMaker Debugger and checkpoints

To monitor system bottlenecks, profile framework operations, and debug model output tensors for
training jobs with SageMaker distributed data parallel, use Amazon SageMaker Debugger.

However, when you use SageMaker Debugger, SageMaker distributed data parallel, and SageMaker
checkpoints, you might see an error that looks like the following example.

SMDebug Does Not Currently Support Distributed Training Jobs With Checkpointing Enabled

This is due to an internal error between Debugger and checkpoints, which occurs when you enable
SageMaker distributed data parallel.

• If you enable all three features, SageMaker Python SDK automatically turns off Debugger by
passing debugger_hook_config=False, which is equivalent to the following framework
estimator example.

bucket=sagemaker.Session().default_bucket()
base_job_name="sagemaker-checkpoint-test"
checkpoint_in_bucket="checkpoints"

The S3 URI to store the checkpoints
checkpoint_s3_bucket="s3://{}/{}/{}".format(bucket, base_job_name,
 checkpoint_in_bucket)

estimator = TensorFlow(
 ...

 distribution={"smdistributed": {"dataparallel": { "enabled": True }}},
 checkpoint_s3_uri=checkpoint_s3_bucket,
 checkpoint_local_path="/opt/ml/checkpoints",
 debugger_hook_config=False
)

• If you want to keep using both SageMaker distributed data parallel and SageMaker Debugger,
a workaround is manually adding checkpointing functions to your training script instead of
specifying the checkpoint_s3_uri and checkpoint_local_path parameters from the
estimator. For more information about setting up manual checkpointing in a training script, see
Saving Checkpoints.

SageMaker distributed data parallelism library 3599

Amazon SageMaker Developer Guide

An unexpected prefix attached to model parameter keys

For PyTorch distributed training jobs, an unexpected prefix (model for example) might be attached
to state_dict keys (model parameters). The SageMaker data parallel library does not directly
alter or prepend any model parameter names when PyTorch training jobs save model artifacts.
The PyTorch's distributed training changes the names in the state_dict to go over the network,
prepending the prefix. If you encounter any model failure problem due to different parameter
names while you are using the SageMaker data parallel library and checkpointing for PyTorch
training, adapt the following example code to remove the prefix at the step you load checkpoints
in your training script.

state_dict = {k.partition('model.')[2]:state_dict[k] for k in state_dict.keys()}

This takes each state_dict key as a string value, separates the string at the first occurrence of
'model.', and takes the third list item (with index 2) of the partitioned string.

For more information about the prefix issue, see a discussion thread at Prefix parameter names in
saved model if trained by multi-GPU? in the PyTorch discussion forum.

For more information about the PyTorch methods for saving and loading models, see Saving &
Loading Model Across Devices in the PyTorch documentation.

SageMaker distributed training job stalling during initialization

If your SageMaker distributed data parallel training job stalls during initialization when using EFA-
enabled instances, this might be due to a misconfiguration in the security group of the VPC subnet
that's used for the training job. EFA requires a proper security group configuration to enable traffic
between the nodes.

To configure inbound and outbound rules for the security group

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. Choose Security Groups in the left navigation pane.

3. Select the security group that's tied to the VPC subnet you use for training.

4. In the Details section, copy the Security group ID.

5. On the Inbound rules tab, choose Edit inbound rules.

6. On the Edit inbound rules page, do the following:

SageMaker distributed data parallelism library 3600

https://discuss.pytorch.org/t/prefix-parameter-names-in-saved-model-if-trained-by-multi-gpu/494
https://discuss.pytorch.org/t/prefix-parameter-names-in-saved-model-if-trained-by-multi-gpu/494
https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-across-devices
https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-across-devices
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon SageMaker Developer Guide

a. Choose Add rule.

b. For Type, choose All traffic.

c. For Source, choose Custom, paste the security group ID into the search box, and select the
security group that pops up.

7. Choose Save rules to finish configuring the inbound rule for the security group.

8. On the Outbound rules tab, choose Edit outbound rules.

9. Repeat the step 6 and 7 to add the same rule as an outbound rule.

After you complete the preceding steps for configuring the security group with the inbound and
outbound rules, re-run the training job and verify if the stalling issue is resolved.

For more information about configuring security groups for VPC and EFA, see Security groups for
your VPC and Elastic Fabric Adapter.

SageMaker distributed training job stalling at the end of training

One of the root causes of stalling issues at the end of training is a mismatch in the number of
batches that are processed per epoch across different ranks. All workers (GPUs) synchronize their
local gradients in the backward pass to ensure they all have the same copy of the model at the end
of the batch iteration. If the batch sizes are unevenly assigned to different worker groups during
the final epoch of training, the training job stalls. For example, while a group of workers (group
A) finishes processing all batches and exits the training loop, another group of workers (group B)
starts processing another batch and still expects communication from group A to synchronize the
gradients. This causes group B to wait for group A, which already completed training and does not
have any gradients to synchronize.

Therefore, when setting up your training dataset, it is important that each worker gets the same
number of data samples so that each worker goes through the same number of batches while
training. Make sure each rank gets the same number of batches to avoid this stalling issue.

Observing scaling efficiency degradation due to Amazon FSx throughput bottlenecks

One potential cause of lowered scaling efficiency is the FSx throughput limit. If you observe a
sudden drop in scaling efficiency when you switch to a larger training cluster, try using a larger
FSx for Lustre file system with a higher throughput limit. For more information, see Aggregate file
system performance and Managing storage and throughput capacity in the Amazon FSx for Lustre
User Guide.

SageMaker distributed data parallelism library 3601

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/performance.html#fsx-aggregate-perf
https://docs.aws.amazon.com/fsx/latest/LustreGuide/performance.html#fsx-aggregate-perf
https://docs.aws.amazon.com/fsx/latest/LustreGuide/managing-storage-capacity.html

Amazon SageMaker Developer Guide

SageMaker distributed training job with PyTorch returns deprecation warnings

Since v1.4.0, the SageMaker distributed data parallelism library works as a backend of PyTorch
distributed. Because of the breaking change of using the library with PyTorch, you might encounter
a warning message that the smdistributed APIs for the PyTorch distributed package are
deprecated. The warning message should be similar to the following:

smdistributed.dataparallel.torch.dist is deprecated in the SageMaker distributed data
 parallel library v1.4.0+.
Please use torch.distributed and specify 'smddp' as a backend when initializing process
 group as follows:
torch.distributed.init_process_group(backend='smddp')
For more information, see the library's API documentation at
https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-modify-sdp-pt.html

In v1.4.0 and later, the library only needs to be imported once at the top of your training script and
set as the backend during the PyTorch distributed initialization. With the single line of backend
specification, you can keep your PyTorch training script unchanged and directly use the PyTorch
distributed modules. See Use the SMDDP library in your PyTorch training script to learn about the
breaking changes and the new way to use the library with PyTorch.

SageMaker data parallelism library release notes

See the following release notes to track the latest updates for the SageMaker distributed data
parallelism (SMDDP) library.

The SageMaker distributed data parallelism library v2.2.0

Date: March 4, 2024

New features

• Added support for PyTorch v2.2.0 with CUDA v12.1.

Integration into Docker containers distributed by the SageMaker model parallelism (SMP)
library

This version of the SMDDP library is migrated to the section called “SMP v2.2.0”.

658645717510.dkr.ecr.<region>.amazonaws.com/smdistributed-modelparallel:2.2.0-gpu-
py310-cu121

SageMaker distributed data parallelism library 3602

Amazon SageMaker Developer Guide

For Regions where the SMP Docker images are available, see the section called “AWS Regions”.

Binary file of this release

You can download or install the library using the following URL.

https://smdataparallel.s3.amazonaws.com/binary/pytorch/2.2.0/cu121/2024-03-04/
smdistributed_dataparallel-2.2.0-cp310-cp310-linux_x86_64.whl

The SageMaker distributed data parallelism library v2.1.0

Date: March 1, 2024

New features

• Added support for PyTorch v2.1.0 with CUDA v12.1.

Bug fixes

• Fixed the CPU memory leak issue in SMDDP v2.0.1.

Integration into SageMaker Framework Containers

This version of the SMDDP library passed benchmark testing and is migrated to the following
SageMaker Framework Container.

• PyTorch v2.1.0

763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:2.1.0-gpu-py310-cu121-
ubuntu20.04-sagemaker

Integration into Docker containers distributed by the SageMaker model parallelism (SMP)
library

This version of the SMDDP library is migrated to the section called “SMP v2.1.0”.

658645717510.dkr.ecr.<region>.amazonaws.com/smdistributed-modelparallel:2.1.2-gpu-
py310-cu121

For Regions where the SMP Docker images are available, see the section called “AWS Regions”.

SageMaker distributed data parallelism library 3603

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

Binary file of this release

You can download or install the library using the following URL.

https://smdataparallel.s3.amazonaws.com/binary/pytorch/2.1.0/cu121/2024-02-04/
smdistributed_dataparallel-2.1.0-cp310-cp310-linux_x86_64.whl

The SageMaker distributed data parallelism library v2.0.1

Date: December 7, 2023

New features

• Added a new SMDDP-implementation of AllGather collective operation optimized for AWS
compute resources and network infrastructure. To learn more, see the section called “SMDDP
AllGather collective operation”.

• The SMDDP AllGather collective operation is compatible with PyTorch FSDP and DeepSpeed.
To learn more, see the section called “PyTorch”.

• Added support for PyTorch v2.0.1

Known issues

• There's a CPU memory leak issue from a gradual CPU memory increase while training with
SMDDP AllReduce in DDP mode.

Integration into SageMaker Framework Containers

This version of the SMDDP library passed benchmark testing and is migrated to the following
SageMaker Framework Container.

• PyTorch v2.0.1

763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:2.0.1-gpu-py310-cu118-
ubuntu20.04-sagemaker

Binary file of this release

You can download or install the library using the following URL.

SageMaker distributed data parallelism library 3604

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

https://smdataparallel.s3.amazonaws.com/binary/pytorch/2.0.1/cu118/2023-12-07/
smdistributed_dataparallel-2.0.2-cp310-cp310-linux_x86_64.whl

Other changes

• Starting from this release, documentation for the SMDDP library is fully available in this Amazon
SageMaker Developer Guide. In favor of the complete developer guide for SMDDP v2 housed in
the Amazon SageMaker Developer Guide, documentation for the additional reference for SMDDP
v1.x in the SageMaker Python SDK documentation is no longer supported. If you still need SMP
v1.x documentation, see the following snapshot of the documentation at SageMaker Python SDK
v2.212.0 documentation.

SageMaker model parallelism library v2

Note

Since the release of the SageMaker model parallelism (SMP) library v2.0.0 on December 19,
2023, this documentation is renewed for the SMP library v2. For previous versions of the
SMP library, see the section called “(Archived) SageMaker model parallelism library v1.x”.

The Amazon SageMaker model parallelism library is a capability of SageMaker that enables high
performance and optimized large scale training on SageMaker accelerate compute instances. The
the section called “Core features of SMP v2” include techniques and optimizations to accelerate
and simplify large model training, such as hybrid sharded data parallelism, tensor parallelism,
activation checkpointing, and activation offloading. You can use the SMP library to accelerate
the training and fine-tuning of large language models (LLMs), large vision models (LVMs), and
foundation models (FMs) with hundreds of billions of parameters.

The SageMaker model parallelism library v2 (SMP v2) aligns the library’s APIs and methods
with open source PyTorch Fully Sharded Data Parallelism (FSDP), which gives you the benefit of
SMP performance optimizations with minimal code changes. With SMP v2, you can improve the
computational performance of training a state-of-the-art large model on SageMaker by bringing
your PyTorch FSDP training scripts to SageMaker.

You can use SMP v2 for the general SageMaker Training jobs and distributed training workloads on
the section called “SageMaker HyperPod” clusters.

SageMaker model parallelism library v2 3605

https://sagemaker.readthedocs.io/en/stable/api/training/smd_data_parallel.html
https://sagemaker.readthedocs.io/en/stable/api/training/smd_data_parallel.html
https://sagemaker.readthedocs.io/en/v2.212.0/api/training/distributed.html#the-sagemaker-distributed-data-parallel-library
https://sagemaker.readthedocs.io/en/v2.212.0/api/training/distributed.html#the-sagemaker-distributed-data-parallel-library

Amazon SageMaker Developer Guide

Topics

• Introduction to model parallelism

• Supported frameworks and AWS Regions

• Get started with the SageMaker model parallelism library v2

• Core features of the SageMaker model parallelism library v2

• SageMaker distributed model parallelism best practices

• The SageMaker model parallel library v2 reference

• Release notes for the SageMaker model parallelism library

• (Archived) SageMaker model parallelism library v1.x

Introduction to model parallelism

Model parallelism is a distributed training method in which the deep learning (DL) model is
partitioned across multiple GPUs and instances. The SageMaker model parallel library v2 (SMP v2)
is compatible with the native PyTorch APIs and capabilities. This makes it convenient for you to
adapt your PyTorch Fully Sharded Data Parallel (FSDP) training script to the SageMaker Training
platform and take advantage of the performance improvement that SMP v2 provides.

This introduction page provides a high-level overview about model parallelism and a description
of how it can help overcome issues that arise when training deep learning (DL) models that are
typically very large in size. It also provides examples of what the SageMaker model parallel library
offers to help manage model parallel strategies and memory consumption.

What is model parallelism?

Increasing the size of deep learning models (layers and parameters) yields better accuracy for
complex tasks such as computer vision and natural language processing. However, there is a limit
to the maximum model size you can fit in the memory of a single GPU. When training DL models,
GPU memory limitations can be bottlenecks in the following ways:

• They limit the size of the model that you can train, because the memory footprint of a model
scales proportionally to the number of parameters.

• They limit the per-GPU batch size during training, driving down GPU utilization and training
efficiency.

SageMaker model parallelism library v2 3606

Amazon SageMaker Developer Guide

To overcome the limitations associated with training a model on a single GPU, SageMaker provides
the model parallel library to help distribute and train DL models efficiently on multiple compute
nodes. Furthermore, with the library, you can achieve optimized distributed training using EFA-
supported devices, which enhance the performance of inter-node communication with low latency,
high throughput, and OS bypass.

Estimate memory requirements before using model parallelism

Before you use the SageMaker model parallel library, consider the following to get a sense of the
memory requirements of training large DL models.

For a training job that uses automatic mixed precision such as float16 (FP16) or bfloat16 (BF16)
and Adam optimizers, the required GPU memory per parameter is about 20 bytes, which we can
break down as follows:

• An FP16 or BF16 parameter ~ 2 bytes

• An FP16 or BF16 gradient ~ 2 bytes

• An FP32 optimizer state ~ 8 bytes based on the Adam optimizers

• An FP32 copy of parameter ~ 4 bytes (needed for the optimizer apply (OA) operation)

• An FP32 copy of gradient ~ 4 bytes (needed for the OA operation)

Even for a relatively small DL model with 10 billion parameters, it can require at least 200GB of
memory, which is much larger than the typical GPU memory (for example, NVIDIA A100 with
40GB/80GB memory) available on a single GPU. On top of the memory requirements for model
and optimizer states, there are other memory consumers such as activations generated in the
forward pass. The memory required can be a lot greater than 200GB.

For distributed training, we recommend that you use Amazon EC2 P4 and P5 instances that have
NVIDIA A100 and H100 Tensor Core GPUs respectively. For more details about specifications
such as CPU cores, RAM, attached storage volume, and network bandwidth, see the Accelerated
Computing section in the Amazon EC2 Instance Types page. For instance types that SMP v2
supports, see the section called “Supported instance types”.

Even with the accelerated computing instances, models with about 10 billion parameters such
as Megatron-LM and T5, and even larger models with hundreds of billions of parameters such as
GPT-3, cannot fit model replicas in each GPU device.

SageMaker model parallelism library v2 3607

https://aws.amazon.com/ec2/instance-types/

Amazon SageMaker Developer Guide

How the library employs model parallelism and memory saving techniques

The library consists of various types of model parallelism features and memory-saving features
such as optimizer state sharding, activation checkpointing, and activation offloading. All these
techniques can be combined to efficiently train large models that consist of hundreds of billions of
parameters.

Topics

• Sharded data parallelism

• Tensor parallelism

• Activation checkpointing and offloading

• Choosing the right techniques for your model

Sharded data parallelism

Sharded data parallelism is a memory-saving distributed training technique that splits the state of
a model (model parameters, gradients, and optimizer states) across GPUs within a data-parallel
group.

SageMaker implements sharded data parallelism through FSDP, and extends it to implement the
scale aware hybrid sharding strategy discussed in the blog post Near-linear scaling of gigantic-
model training on AWS.

You can apply sharded data parallelism to your model as a standalone strategy. Furthermore, if
you are using the most performant GPU instances equipped with NVIDIA A100 Tensor Core GPUs,
ml.p4d.24xlarge and ml.p4de.24xlarge, you can take the advantage of improved training
speed from the AllGather operation offered by the SageMaker data parallelism (SMDDP) library.

To dive deep into sharded data parallelism and learn how to set it up or use a combination of
sharded data parallelism with other techniques like tensor parallelism and mixed precision training,
see the section called “Hybrid sharded data parallelism”.

Tensor parallelism

Tensor parallelism splits individual layers, or nn.Modules, across devices to run in parallel. The
following figure shows the simplest example of how the SMP library splits a model with four layers
to achieve two-way tensor parallelism ("tensor_parallel_degree": 2). In the following

SageMaker model parallelism library v2 3608

https://www.amazon.science/blog/near-linear-scaling-of-gigantic-model-training-on-aws
https://www.amazon.science/blog/near-linear-scaling-of-gigantic-model-training-on-aws

Amazon SageMaker Developer Guide

figure, the notations for model parallel group, tensor parallel group, and data parallel group are
MP_GROUP, TP_GROUP, and DP_GROUP respectively. The layers of each model replica are bisected
and distributed into two GPUs. The library manages communication across the tensor-distributed
model replicas.

To dive deep into tensor parallelism and other memory-saving features for PyTorch, and to learn
how to set a combination of the core features, see the section called “Tensor parallelism”.

Activation checkpointing and offloading

To save GPU memory, the library supports activation checkpointing to avoid storing internal
activations in the GPU memory for user-specified modules during the forward pass. The library
recomputes these activations during the backward pass. In addition, with activation offloading, it
offloads the stored activations to CPU memory and fetches them back to GPU during the backward
pass to further reduce the activation memory footprint. For more information about how to use
these features, see the section called “Activation checkpointing” and the section called “Activation
offloading”.

SageMaker model parallelism library v2 3609

Amazon SageMaker Developer Guide

Choosing the right techniques for your model

For more information about choosing the right techniques and configurations, see the section
called “Best practices”.

Supported frameworks and AWS Regions

Before using the SageMaker model parallelism library v2 (SMP v2), check the supported
frameworks and instance types and determine if there are enough quotas in your AWS account and
AWS Region.

Note

To check the latest updates and release notes of the library, see the section called “Release
notes”.

Supported frameworks

SMP v2 supports the following deep learning frameworks and available through SMP Docker
containers and an SMP Conda channel. When you use the framework estimator classes in
the SageMaker Python SDK and specify distribution configuration to use SMP v2, SageMaker
automatically picks up the SMP Docker containers. To use SMP v2, we recommend that you always
keep the SageMaker Python SDK up to date in your development environment.

PyTorch versions that the SageMaker model parallelism library supports

PyTorch version SageMaker model paralleli
sm library version

SMP Docker image URI

v2.2.0 smdistributed-mode
lparallel==v2.2.0

658645717510.dkr.e
cr. us-west-2
.amazonaws.com/smd

istributed-modelpa
rallel:2.2.0-gpu-p
y310-cu121

v2.1.2 smdistributed-mode
lparallel==v2.1.0

658645717510.dkr.e
cr. us-west-2

SageMaker model parallelism library v2 3610

Amazon SageMaker Developer Guide

PyTorch version SageMaker model paralleli
sm library version

SMP Docker image URI

.amazonaws.com/smd
istributed-modelpa
rallel:2.1.2-gpu-p
y310-cu121

v2.0.1 smdistributed-mode
lparallel==v2.0.0

658645717510.dkr.e
cr. us-west-2
.amazonaws.com/smd

istributed-modelpa
rallel:2.0.1-gpu-p
y310-cu121

SMP Conda channel

The following S3 bucket is a public Conda channel hosted by the SMP service team. If you want to
install the SMP v2 library in an environment such as SageMaker HyperPod clusters, use this Conda
channel to properly install the SMP library.

https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/smp-v2/

For more information about Conda channels in general, see Channels in the Conda documentation.

Note

To find previous versions of the SMP library v1.x and pre-packaged DLCs, see the section
called “Supported Frameworks” in the SMP v1 documentation.

Use SMP v2 with open source libraries

The SMP v2 library works with other PyTorch-based open source libraries such as PyTorch
Lightning, Hugging Face Transformers, and Hugging Face Accelerate, because SMP v2 is compatible
with the PyTorch FSDP APIs. If you have further questions on using the SMP library with other third
party libraries, contact the SMP service team at sm-model-parallel-feedback@amazon.com.

SageMaker model parallelism library v2 3611

https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html

Amazon SageMaker Developer Guide

AWS Regions

SMP v2 is available in the following AWS Regions. If you'd like to use the SMP Docker image URIs or
the SMP Conda channel, check the following list and choose the AWS Region matching with yours,
and update the image URI or the channel URL accordingly.

• ap-northeast-1

• ap-northeast-2

• ap-northeast-3

• ap-south-1

• ap-southeast-1

• ap-southeast-2

• ca-central-1

• eu-central-1

• eu-north-1

• eu-west-1

• eu-west-2

• eu-west-3

• sa-east-1

• us-east-1

• us-east-2

• us-west-1

• us-west-2

Supported instance types

SMP v2 requires one of the following ML instance types.

Instance type

ml.p4d.24xlarge

ml.p4de.24xlarge

ml.p5.48xlarge

SageMaker model parallelism library v2 3612

Amazon SageMaker Developer Guide

Tip

Starting from SMP v2.2.0 supporting PyTorch v2.2.0 and later, the section called “Mixed
precision training with FP8 on P5 instances using Transformer Engine” is available.

For specs of the SageMaker machine learning instance types in general, see the Accelerated
Computing section in the Amazon EC2 Instance Types page. For information about instance
pricing, see Amazon SageMaker Pricing.

If you encountered an error message similar to the following, follow the instructions at Requesting
a quota increase in the AWS Service Quotas User Guide.

ResourceLimitExceeded: An error occurred (ResourceLimitExceeded) when calling
 the CreateTrainingJob operation: The account-level service limit 'ml.p3dn.24xlarge
 for training job usage' is 0 Instances, with current utilization of 0 Instances
 and a request delta of 1 Instances.
 Please contact AWS support to request an increase for this limit.

Get started with the SageMaker model parallelism library v2

On this page, you'll learn how to use the SageMaker model parallelism library v2 APIs and get
started with running a PyTorch Fully Sharded Data Parallel (FSDP) training job in the SageMaker
Training platform or on a SageMaker HyperPod cluster.

There are various scenarios for running a PyTorch training job with SMP v2.

1. For SageMaker training, use one of the pre-built SageMaker Framework Containers for PyTorch
v2.0.1 and later, which are pre-packaged with SMP v2.

2. Use the SMP v2 binary file to set up a Conda environment for running a distributed training
workload on a SageMaker HyperPod cluster.

3. Extend the pre-built SageMaker Framework Containers for PyTorch v2.0.1 and later to install
any additional functional requirements for your use case. To learn how to extend a pre-built
container, see Extend a Pre-built Container.

4. You can also bring your own Docker container and manually set up all SageMaker Training
environment using the SageMaker Training toolkit and install the SMP v2 binary file. This is the
least recommended option due to the complexity of dependencies. To learn how to run your
own Docker container, see Adapting Your Own Training Container.

SageMaker model parallelism library v2 3613

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://github.com/aws/sagemaker-training-toolkit
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html

Amazon SageMaker Developer Guide

This getting started guide covers the first two scenarios.

Topics

• Step 1: Adapt your PyTorch FSDP training script

• Step 2: Launch a training job

Step 1: Adapt your PyTorch FSDP training script

To activate and configure the SMP v2 library, start with importing and adding the
torch.sagemaker.init() module at the top of the script. This module takes in the SMP
configuration dictionary of the section called “SMP v2 core feature configuration parameters” that
you'll prepare in the section called “Step 2: Launch a training job”. Also, for using the various core
features offered by SMP v2, you might need to make few more changes to adapt your training
script. More detailed instructions on adapting your training script for using the SMP v2 core
features are provided at the section called “Core features of SMP v2”.

SageMaker Training

In your training script, add the following two lines of code, which is the minimal requirement
to start training with SMP v2. In the section called “Step 2: Launch a training job”, you’ll set
up an object of the SageMaker PyTorch estimator class with an SMP configuration dictionary
through the distribution argument of the estimator class.

import torch.sagemaker as tsm
tsm.init()

Note

You can also directly pass a configuration dictionary of the the section called “SMP v2
core feature configuration parameters” to the torch.sagemaker.init() module.
However, the parameters passed to the PyTorch estimator in the section called
“Step 2: Launch a training job” take priority and override the ones specified to the
torch.sagemaker.init() module.

SageMaker model parallelism library v2 3614

Amazon SageMaker Developer Guide

SageMaker HyperPod

In your training script, add the following two lines of code. In the section called “Step 2: Launch
a training job”, you’ll set up a smp_config.json file for setting up SMP configurations
in JSON format, and upload it to a storage or a file system mapped with your SageMaker
HyperPod cluster. We recommend that you keep the configuration file under the same directory
where you upload your training script.

import torch.sagemaker as tsm
tsm.init("/dir_to_training_files/smp_config.json")

Note

You can also directly pass a configuration dictionary of the the section called “SMP v2
core feature configuration parameters” into the torch.sagemaker.init() module.

Step 2: Launch a training job

Learn how to configure SMP distribution options for launching a PyTorch FSDP training job with
SMP core features.

SageMaker Training

When you set up a training job launcher object of the PyTorch framework estimator class in
the SageMaker Python SDK, configure the section called “SMP v2 core feature configuration
parameters” through distribution argument as follows.

Note

The distribution configuration for SMP v2 is integrated in the SageMaker Python
SDK starting from v2.200. Make sure that you use the SageMaker Python SDK v2.200 or
later.

Note

In SMP v2, you should configure smdistributed with torch_distributed
for the distribution argument of the SageMaker PyTorch estimator. With

SageMaker model parallelism library v2 3615

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html

Amazon SageMaker Developer Guide

torch_distributed, SageMaker runs torchrun, which is the default multi-node job
launcher of PyTorch Distributed.

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 # Pass the training script you adapted with SMP from Step 1
 entry_point="your-training-script.py",
 ... # Configure other required and optional parameters
 distribution={
 "torch_distributed": { "enabled": True },
 "smdistributed": {
 "modelparallel": {
 "enabled": True,
 "parameters": {
 "hybrid_shard_degree": Integer,
 "sm_activation_offloading": Boolean,
 "activation_loading_horizon": Integer,
 "fsdp_cache_flush_warnings": Boolean,
 "allow_empty_shards": Boolean,
 "tensor_parallel_degree": Integer,
 "tensor_parallel_seed": Integer
 }
 }
 }
 }
)

SageMaker HyperPod

Before you start, make sure if the following prerequisites are met.

• An Amazon FSx shared directory mounted (/fsx) to your HyperPod cluster.

• Conda installed in the FSx shared directory. To learn how to install Conda, use the instructions
at Installing on Linux in the Conda User Guide.

• cuda11.8 or cuda12.1 installed on your HyperPod cluster head and compute nodes.

If the prerequisites are all met, proceed to the following instructions on launching a workload
with SMP v2 on a HyperPod cluster.

SageMaker model parallelism library v2 3616

https://pytorch.org/tutorials/beginner/dist_overview.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html

Amazon SageMaker Developer Guide

1. Prepare an smp_config.json file that contains a dictionary of the section called
“SMP v2 core feature configuration parameters”. Make sure that you upload this
JSON file to where you store your training script, or the path you specified to the
torch.sagemaker.init() module in Step 1. If you’ve already passed the configuration
dictionary to the torch.sagemaker.init() module in the training script in Step 1, you
can skip this step.

// smp_config.json
{
 "hybrid_shard_degree": Integer,
 "sm_activation_offloading": Boolean,
 "activation_loading_horizon": Integer,
 "fsdp_cache_flush_warnings": Boolean,
 "allow_empty_shards": Boolean,
 "tensor_parallel_degree": Integer,
 "tensor_parallel_seed": Integer
}

2. Upload the smp_config.json file to a directory in your file system. The directory path
must match with the path you specified in Step 1. If you’ve already passed the configuration
dictionary to the torch.sagemaker.init() module in the training script, you can skip this
step.

3. On the compute node of your HyperPod instance, start a terminal session with the following
command.

sudo su -l ubuntu

4. Create a Conda environment on the compute node.

Run on compute node
SMP_CUDA_VER=<11.8 or 12.1>

source /fsx/<path to miniconda>/miniconda3/bin/activate

export ENV_PATH=/fsx/<path to miniconda>/miniconda3/envs/<ENV NAME>
conda create -p ${ENV_PATH} python=3.10

conda activate ${ENV_PATH}

Verify aws-cli is installed: Expect something like "aws-cli/2.15.0*"
aws ‐‐version

SageMaker model parallelism library v2 3617

Amazon SageMaker Developer Guide

Install aws-cli if not already installed
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-
install.html#cliv2-linux-install

conda install pytorch="2.0.1=sm_py3.10_cuda${SMP_CUDA_VER}*" packaging ‐‐override-
channels \
 -c https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/
smp-2.0.0-pt-2.0.1/2023-12-11/smp-v2/ \
 -c pytorch -c numba/label/dev \
 -c nvidia -c conda-forge

Install dependencies of the script as below
python -m pip install packaging transformers==4.31.0 accelerate ninja tensorboard
 h5py datasets \
 && python -m pip install expecttest hypothesis \
 && python -m pip install "flash-attn>=2.0.4" ‐‐no-build-isolation

Install SMDDP wheel (only run for cuda11.8)
SMDDP_WHL="smdistributed_dataparallel-2.0.2-cp310-cp310-linux_x86_64.whl" \
 && wget -q https://smdataparallel.s3.amazonaws.com/binary/pytorch/2.0.1/
cu118/2023-12-07/${SMDDP_WHL} \
 && pip install ‐‐force ${SMDDP_WHL} \
 && rm ${SMDDP_WHL}

cuDNN installation for TransformerEngine installation for cuda11.8
Please download from below link, you need to agree to terms
https://developer.nvidia.com/downloads/compute/cudnn/secure/8.9.5/
local_installers/11.x/cudnn-linux-x86_64-8.9.5.30_cuda11-archive.tar.xz

tar xf cudnn-linux-x86_64-8.9.5.30_cuda11-archive.tar.xz \
 && rm -rf /usr/local/cuda-$SMP_CUDA_VER/include/cudnn* /usr/local/cuda-
$SMP_CUDA_VER/lib/cudnn* \
 && cp ./cudnn-linux-x86_64-8.9.5.30_cuda11-archive/include/* /usr/local/cuda-
$SMP_CUDA_VER/include/ \
 && cp ./cudnn-linux-x86_64-8.9.5.30_cuda11-archive/lib/* /usr/local/cuda-
$SMP_CUDA_VER/lib/ \
 && rm -rf cudnn-linux-x86_64-8.9.5.30_cuda11-archive.tar.xz \
 && rm -rf cudnn-linux-x86_64-8.9.5.30_cuda11-archive/

Please download from below link, you need to agree to terms
https://developer.download.nvidia.com/compute/cudnn/secure/8.9.7/
local_installers/12.x/cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz \
cuDNN installation for TransformerEngine installation for cuda12.1
tar xf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz \

SageMaker model parallelism library v2 3618

Amazon SageMaker Developer Guide

 && rm -rf /usr/local/cuda-$SMP_CUDA_VER/include/cudnn* /usr/local/cuda-
$SMP_CUDA_VER/lib/cudnn* \
 && cp ./cudnn-linux-x86_64-8.9.7.29_cuda12-archive/include/* /usr/local/cuda-
$SMP_CUDA_VER/include/ \
 && cp ./cudnn-linux-x86_64-8.9.7.29_cuda12-archive/lib/* /usr/local/cuda-
$SMP_CUDA_VER/lib/ \
 && rm -rf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz \
 && rm -rf cudnn-linux-x86_64-8.9.7.29_cuda12-archive/

TransformerEngine installation
export CUDA_HOME=/usr/local/cuda-$SMP_CUDA_VER
export CUDNN_PATH=/usr/local/cuda-$SMP_CUDA_VER/lib
export CUDNN_LIBRARY=/usr/local/cuda-$SMP_CUDA_VER/lib
export CUDNN_INCLUDE_DIR=/usr/local/cuda-$SMP_CUDA_VER/include
export PATH=/usr/local/cuda-$SMP_CUDA_VER/bin:$PATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-$SMP_CUDA_VER/lib

python -m pip install ‐‐no-build-isolation git+https://github.com/NVIDIA/
TransformerEngine.git@v1.0

5. Run a test training job.

a. In the shared file system (/fsx), clone the Awsome Distributed Training GitHub repository,
and go to the 3.test_cases/11.modelparallel folder.

git clone https://github.com/aws-samples/awsome-distributed-training/
cd awsome-distributed-training/3.test_cases/11.modelparallel

b. Submit a job using sbatch as follows.

conda activate <ENV_PATH>
sbatch -N 16 conda_launch.sh

If the job submission is successful, the output message of this sbatch command should
be similar to Submitted batch job ABCDEF.

c. Check the log file in the current directory under logs/.

tail -f ./logs/fsdp_smp_ABCDEF.out

SageMaker model parallelism library v2 3619

https://github.com/aws-samples/awsome-distributed-training/

Amazon SageMaker Developer Guide

Core features of the SageMaker model parallelism library v2

The Amazon SageMaker model parallelism library v2 (SMP v2) offers distribution strategies
and memory-saving techniques, such as sharded data parallelism, tensor parallelism, and
checkpointing. The model parallelism strategies and techniques offered by SMP v2 help distribute
large models across multiple devices while optimizing training speed and memory consumption.
SMP v2 also provides a Python package torch.sagemaker to help adapt your training script with
few lines of code change.

This guide follows the basic two-step flow introduced in the section called “Get started with SMP
v2”. To dive deep into the core features of SMP v2 and how to use them, see the following topics.

Note

These core features are available in SMP v2.0.0 and later and the SageMaker Python SDK
v2.200.0 and later, and works for PyTorch v2.0.1 and later. To check the versions of the
packages, see the section called “Supported frameworks and AWS Regions”.

Topics

• Hybrid sharded data parallelism

• Compatibility with the SMDDP library optimized for AWS infrastructure

• Mixed precision training

• Delayed parameter initialization

• Activation checkpointing

• Activation offloading

• Tensor parallelism

• Fine-tuning

• FlashAttention

• Save and load checkpoints while using SMP

Hybrid sharded data parallelism

Sharded data parallelism is a memory-saving distributed training technique that splits the state
of a model (model parameters, gradients, and optimizer states) across devices. This helps you fit
a larger model or increase the batch size using the freed-up GPU memory. The SMP library offers

SageMaker model parallelism library v2 3620

Amazon SageMaker Developer Guide

a capability of running sharded data parallelism with PyTorch Fully Sharded Data Parallel (FSDP).
PyTorch FSDP by default shards across the whole set of GPUs being used. In SMP v2, the library
offers this sharded data parallelism on top of PyTorch FSDP by extending PyTorch hybrid sharding
(HYBRID_SHARD), which is one of the sharding strategies provided by PyTorch FSDP: FULL_SHARD,
SHARD_GRAD_OP, HYBRID_SHARD, _HYBRID_SHARD_ZERO2. Extending hybrid sharding in this
manner helps implement scale-aware-sharding as described in the blog Near-linear scaling of
gigantic-model training on AWS for PyTorch FSDP.

The SMP library makes it easy to use HYBRID_SHARD and _HYBRID_SHARD_ZERO2 across
any configurable number of GPUs, extending the native PyTorch FSDP that supports sharding
across a single node (HYBRID_SHARD) or all GPUs (FULL_SHARD). PyTorch FSDP calls can
stay as is, and you only need to add the hybrid_shard_degree argument to the SMP
configuration, as shown in the following code example. You don't need to change the value of
the sharding_strategy argument in the PyTorch FSDP wrapper around your PyTorch model.
You can pass ShardingStrategy.HYBRID_SHARD as the value. Alternatively, the SMP library
overrides the strategy in the script and sets it to ShardingStrategy.HYBRID_SHARD if you
specify a value equal to or greater than 2 to the hybrid_shard_degree parameter.

The following code snippets show how to add the SMP initialization module
torch.sagemaker.init() to your training script and set up the SMP configuration dictionary
in JSON format for training job launcher while following the two-step process introduced in the
section called “Get started with SMP v2”. You don’t need to make any changes to your PyTorch
model or PyTorch FSDP configuration. For more information about the hybrid_shard_degree
parameter, see the section called “SMP v2 core feature configuration parameters”.

SMP configuration dictionary

{ "hybrid_shard_degree": 16 }

In training script

import torch.sagemaker as tsm
tsm.init()

Set up a PyTorch model
model = ...

Wrap the PyTorch model using the PyTorch FSDP module
model = FSDP(
 model,

SageMaker model parallelism library v2 3621

https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.ShardingStrategy
https://www.amazon.science/blog/near-linear-scaling-of-gigantic-model-training-on-aws
https://www.amazon.science/blog/near-linear-scaling-of-gigantic-model-training-on-aws
https://pytorch.org/docs/stable/fsdp.html#module-torch.distributed.fsdp

Amazon SageMaker Developer Guide

 ...
)

Optimizer needs to be created after FSDP wrapper
optimizer = ...

Compatibility with the SMDDP library optimized for AWS infrastructure

You can use the SageMaker model parallelism library v2 (SMP v2) in conjunction with the
SageMaker distributed data parallelism (SMDDP) library that offers the AllGather collective
communication operation optimized for AWS infrastructure. In distributed training, collective
communication operations are designed for synchronizing multiple GPU workers and exchange
information between them. AllGather is one of the core collective communication operations
typically used in sharded data parallelism. To learn more about the SMDDP AllGather operation,
see the section called “SMDDP AllGather collective operation” Optimizing such collective
communication operations would directly contribute to a faster end-to-end training without side
effects on convergence.

Note

The SMDDP library supports P4 and P4de instances (see also the section called “Supported
frameworks, AWS Regions, and instances types” by the SMDDP library).

The SMDDP library integrates natively with PyTorch through the process group layer. To use the
SMDDP library, you only need to add two lines of code to your training script. It supports any
training frameworks such as SageMaker Model Parallelism Library, PyTorch FSDP, and DeepSpeed.

To activate SMDDP and use its AllGather operation, you need to add two lines of code to your
training script as part of the section called “Step 1: Adapt your PyTorch FSDP training script”. Note
that you need to initialize PyTorch Distributed with the SMDDP backend first, and then run the SMP
initialization.

import torch.distributed as dist

Initialize with SMDDP
import smdistributed.dataparallel.torch.torch_smddp
dist.init_process_group(backend="smddp") # Replacing "nccl"

 # Initialize with SMP

SageMaker model parallelism library v2 3622

https://pytorch.org/docs/stable/distributed.html

Amazon SageMaker Developer Guide

import torch.sagemaker as tsm
tsm.init()

SageMaker Framework Containers for PyTorch (see also the section called “Supported frameworks
and AWS Regions” by SMP v2 and the section called “Supported frameworks, AWS Regions, and
instances types” by the SMDDP library) are pre-packaged with the SMP binary and the SMDDP
binary. To learn more about the SMDDP library, see the section called “SageMaker distributed data
parallelism library”.

Mixed precision training

The SageMaker model parallelism (SMP) library v2 supports mixed precision training out of the
box by integrating with open source frameworks such as PyTorch FSDP and Transformer Engine. To
learn more, see the following topics.

Topics

• Mixed precision training with FP8 on P5 instances using Transformer Engine

• Mixed precision training with half-precision data types using PyTorch FSDP

Mixed precision training with FP8 on P5 instances using Transformer Engine

Starting from the SageMaker model parallelism (SMP) library v2.2.0, it integrates with Transformer
Engine and supports FP8 mixed precision training out of the box, keeping compatibility with
PyTorch FSDP MixedPrecision. This means that you can utilize both PyTorch FSDP for mixed
precision training and Transformer Engine for FP8 training. For model layers not supported by
Transformer Engine's FP8 training feature, it falls back to PyTorch FSDP mixed precision.

Note

SMP v2 offers FP8 support for the following Hugging Face Transformer models.

• GPT-NeoX

• Llama 2

Note

This FP8 training on P5 feature is available in the following combination of libraries of
SageMaker and the PyTorch library.

SageMaker model parallelism library v2 3623

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://docs.nvidia.com/deeplearning/transformer-engine/index.html
https://docs.nvidia.com/deeplearning/transformer-engine/index.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.MixedPrecision

Amazon SageMaker Developer Guide

• SMP v2.2.0 and later

• the SageMaker Python SDK v2.212.0 and later

• PyTorch v2.2.0 and later

FP8 (an 8-bit floating point precision) is a data type that has emerged as another paradigm
to accelerate deep learning training of LLM models. With the release of NVIDIA H100 GPUs
supporting FP8 data types, you can take the advantages from the performance improvements on
P5 instances equipped with the H100 GPUs, as you can accelerate distributed training with FP8
mixed precision training.

The FP8 data type further branches down to E4M3 and E5M2 formats. E4M3 offers a better
precision, has a limited dynamic range, and is ideal for the forward pass in model training.
E5M2 has a broader dynamic range, but reduced precision, and is better suited for the backward
pass, where precision is less critical and a wider dynamic range becomes beneficial. Hence, we
recommend you to use the hybrid FP8 strategy recipe to leverage these characteristics effectively.

For half-precision data types (FP16 and BF16), global loss-scaling techniques such as static loss-
scaling or dynamic loss-scaling handle convergence issues that arise from information loss due to
rounding gradients in half-precision. However, the dynamic range of FP8 is even narrower, and the
global loss scaling techniques are not sufficient. At this point, we need a finer-grained per-tensor
scaling technique. Delayed scaling is a strategy that selects a scaling factor based on the maximum
absolute values observed in a number of tensors form previous iterations. There's a trade-off in this
strategy, however; it allows to gain the full performance benefits of FP8 computation but requires
memory for keeping the maximum value history of tensors. To learn more about the delayed
scaling strategy in general, see the paper FP8 Formats for Deep Learning.

In practice, using FP8 is helpful in all scenarios of training on P5 instances. We strongly recommend
enabling FP8 whenever possible for enhancing training performance.

To run FP8 training with SMP v2 on P5 instances of SageMaker (ml.p5.48xlarge), because
SMP v2 supports Transformer Engine out of the box, the only thing you need to do is to import
torch.sagemaker in your training script and keep using the native Transformer Engine Python
package. To learn more about using Transformer Engine for FP8 training in general, see Using FP8
with Transformer Engine in the NVIDIA Transformer Engine documentation. The following code
snippet shows how the code lines for importing the SMP library and setting up FP8 in your training
script should look.

SageMaker model parallelism library v2 3624

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html#FP8-recipe
https://arxiv.org/pdf/2209.05433.pdf
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html

Amazon SageMaker Developer Guide

import torch.sagemaker as tsm
import transformer_engine.pytorch as te
from transformer_engine.common.recipe import DelayedScaling, Format

Enable E4M3 during forward pass, E5M2 during backward pass.
fp8_format = Format.HYBRID

Create an FP8 recipe.
fp8_recipe = DelayedScaling(fp8_format=fp8_format, amax_history_len=32,
 amax_compute_algo="max")

Enable FP8 autocasting.
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe,
 fp8_group=tsm.state.world_process_group):
 out = model(inp)

loss = out.sum()
loss.backward()

To find a practical example of FP8 training with SMP v2 on P5 instances, see the example notebook
at Accelerate SageMaker PyTorch FSDP Training of Llama-v2 (or GPT-NeoX) with FP8 on P5
instances.

Mixed precision training with half-precision data types using PyTorch FSDP

SMP v2 supports PyTorch FSDP MixedPrecision for training jobs on P4 and P5 instances.
PyTorch FSDP provides various configurations for mixed precision for both performance
improvement and memory reduction.

Note

This mixed precision training with PyTorch FSDP feature is available in the following
combination of libraries of SageMaker and the PyTorch library.

• SMP v2.0.0 and later

• the SageMaker Python SDK v2.200.0 and later

• PyTorch v2.0.1 and later

SageMaker model parallelism library v2 3625

https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel_v2/llama_v2/smp-train-llama-fsdp-tp-fp8.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel_v2/llama_v2/smp-train-llama-fsdp-tp-fp8.ipynb
https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.MixedPrecision

Amazon SageMaker Developer Guide

The standard way to configure a model for mixed precision is to create the model in float32,
and then allow FSDP to cast the parameters to float16 or bfloat16 on the fly by passing a
MixedPrecision policy as shown in the following code snippet. For more information about
options to change the dtype for parameters, reduction, or buffers for mixed precision in PyTorch,
see PyTorch FSDP MixedPrecision API in the PyTorch documentation.

Native PyTorch API
from torch.distributed.fsdp import MixedPrecision

dtype = torch.bfloat16
mixed_precision_policy = MixedPrecision(
 param_dtype=dtype, reduce_dtype=dtype, buffer_dtype=dtype
)

model = FSDP(
 model,
 ...,
 mixed_precision=mixed_precision_policy
)

Note that certain models (such as the Hugging Face Transformers Llama model) expect buffers as
float32. To use float32, replace torch.bfloat16 with torch.float32 in the line defining
the dtype object.

Delayed parameter initialization

Initialization of a large model for training is not always possible with the limited GPU memory. To
resolve this problem of insufficient GPU memory, you can initialize the model on CPU memory.
However, for larger models with more than 20 or 40 billion parameters, even CPU memory might
not be enough. For such case, we recommend that you initialize the model on what PyTorch
calls a meta device, which allows the creation of tensors without any data attached to them. A
tensor on a meta device only needs the shape information, and this allows to create a large model
with its parameters on meta devices. Hugging Face Accelerate provides the context manager
init_empty_weights to help create such model on meta devices while initializing the buffers
on a regular device. Before training starts, PyTorch FSDP initializes the model parameters. This
delayed parameter initialization feature of SMP v2 delays this creation of model parameters to
happen after PyTorch FSDP performs parameter sharding. PyTorch FSDP accepts a parameter
initialization function (param_init_fn) when sharding the modules, and it calls param_init_fn
for each module. The param_init_fn API takes a module as an argument and initializes all the
parameters in it, not including the parameters of any child module. Note that this behavior differs

SageMaker model parallelism library v2 3626

https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.MixedPrecision
https://huggingface.co/docs/accelerate/index

Amazon SageMaker Developer Guide

from the native PyTorch v2.0.1 which has a bug causing the parameters to be initialized multiple
times.

SMP v2 provides the the section called
“torch.sagemaker.delayed_param.DelayedParamIniter” API for applying delayed
parameter initialization.

The following code snippets show how to apply the
torch.sagemaker.delayed_param.DelayedParamIniter API to your training script.

Assume that you have a PyTorch FSDP training script as follows.

Creation of model on meta device
from accelerate import init_empty_weights
with init_empty_weights():
 model = create_model()

Define a param init fn, below is an example for Hugging Face GPTNeoX.
def init_weights(module):
 d = torch.cuda.current_device()
 # Note that below doesn't work if you have buffers in the model
 # buffers will need to reinitialized after this call
 module.to_empty(device=d, recurse=False)
 if isinstance(module, (nn.Linear, Conv1D)):
 module.weight.data.normal_(mean=0.0, std=args.initializer_range)
 if module.bias:
 module.bias.data.zero_()
 elif isinstance(module, nn.Embedding):
 module.weight.data.normal_(mean=0.0, std=args.initializer_range)
 if module.padding_idx:
 module.weight.data[module.padding_idx].zero_()
 elif isinstance(module, nn.LayerNorm):
 module.bias.data.zero_()
 module.weight.data.fill_(1.0)

Changes to FSDP wrapper.
model = FSDP(
 model,
 ...,
 param_init_fn=init_weights
)

At this point model is initialized and sharded for sharded data parallelism.

SageMaker model parallelism library v2 3627

Amazon SageMaker Developer Guide

Note that the delayed parameter initialization approach is not model agnostic. To
resolve this issue, you need to write an init_weights function as shown in the
preceding example to match the initialization in the original model definition, and it
should cover all the parameters of the model. To simplify this process of preparing such
init_weights function, SMP v2 implements this initialization function for the following
models: GPT-2, GPT-J, GPT-NeoX, and Llama from Hugging Face Transformers. The
torch.sagemaker.delayed_param.DelayedParamIniter API also works with the SMP
tensor parallel implementation,
torch.sagemaker.tensor_parallel.transformer.TransformerLMHead model, that you
can call after the the section called “torch.sagemaker.transform” API call.

Using the torch.sagemaker.delayed_param.DelayedParamIniter API, you can adapt
your PyTorch FSDP script as follows. After creating a model with empty weights, register the
torch.sagemaker.delayed_param.DelayedParamIniter API to the model, and define an
object of it. Pass the object to the param_init_fn of the PyTorch FSDP class.

from torch.sagemaker.delayed_param import DelayedParamIniter
from accelerate import init_empty_weights

with init_empty_weights():
 model = create_model()

delayed_initer = DelayedParamIniter(model)

with delayed_initer.validate_params_and_buffers_inited():
 model = FSDP(
 model,
 ...,
 param_init_fn=delayed_initer.get_param_init_fn()
)

Notes on tied weights

When training models with tied weights, we need to take special care to tie the weights after
initializing the weights with delayed parameter initialization. PyTorch FSDP does not have a
mechanism to tie the weights after initializing them using param_init_fn as above. To address
such cases we added API to allow a post_init_hook_fn, which can be used to tie the weights.
You can pass any function in there which accepts the module as argument, but we also have a
predefined post_param_init_fn defined in DelayedParamIniter which calls tie_weights

SageMaker model parallelism library v2 3628

Amazon SageMaker Developer Guide

method of the module if it exists. Note that it’s safe to always pass in post_param_init_fn even
if there’s no tie_weights method for the module.

with delayed_initer.validate_params_and_buffers_inited():
 model = FSDP(
 model,
 ...,
 param_init_fn=delayed_initer.get_param_init_fn(),
 post_param_init_fn=delayed_initer.get_post_param_init_fn()
)

Activation checkpointing

Activation checkpointing is a technique to reduce memory usage by clearing activations of certain
layers and recomputing them during the backward pass. Effectively, this trades extra computation
time for reducing memory usage. If a module is checkpointed, at the end of a forward pass, only
the initial inputs to the module and final outputs from the module stay in memory. PyTorch
releases any intermediate tensors that are part of the computation inside that module during the
forward pass. During the backward pass of the checkpointed modules, PyTorch recomputes these
tensors. At this point, the layers beyond this checkpointed module have finished their backward
pass, so the peak memory usage with checkpointing becomes lower.

SMP v2 supports the PyTorch activation checkpointing module,
apply_activation_checkpointing. The following are examples of activation checkpointing of
the Hugging Face GPT-NeoX model.

Checkpointing Transformer layers of the Hugging Face GPT-NeoX model

from transformers.models.gpt_neox import GPTNeoXLayer
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
 apply_activation_checkpointing
)

check_fn receives a module as the arg,
and it needs to return whether the module is to be checkpointed
def is_transformer_layer(module):
 from transformers.models.gpt_neox import GPTNeoXLayer
 return isinstance(submodule, GPTNeoXLayer)

apply_activation_checkpointing(model, check_fn=is_transformer_layer)

SageMaker model parallelism library v2 3629

https://pytorch.org/blog/scaling-multimodal-foundation-models-in-torchmultimodal-with-pytorch-distributed/#activation-checkpointing

Amazon SageMaker Developer Guide

Checkpointing every other Transformer layer of the Hugging Face GPT-NeoX model

check_fn receives a module as arg,
and it needs to return whether the module is to be checkpointed
here we define that function based on global variable (transformer_layers)
from transformers.models.gpt_neox import GPTNeoXLayer
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
 apply_activation_checkpointing
)

transformer_layers = [
 m for m model.modules() if isinstance(m, GPTNeoXLayer)
]

def is_odd_transformer_layer(module):
 return transformer_layers.index(module) % 2 == 0

apply_activation_checkpointing(model, check_fn=is_odd_transformer_layer)

Alternatively, PyTorch also has the torch.utils.checkpoint module for checkpointing, which
is used by a subset of Hugging Face Transformers models. This module also works with SMP v2.
However, it requires you to have access to the model definition for adding the checkpoint wrapper.
Therefore, we recommend you to use the apply_activation_checkpointing method.

Activation offloading

Important

In SMP v2.2.0, the activation offloading functionality of the SMP library doesn't work. Use
the native PyTorch activation offloading instead.

Typically, the forward pass computes activations at each layer and keeps them in GPU memory
until the backward pass for the corresponding layer finishes. Offloading these tensors to CPU
memory after the forward pass and fetching them back to GPU when they are needed for the
backward pass of the layer can save substantial GPU memory usage. PyTorch supports offloading
activations, but the implementation causes GPUs to be idle while activations are fetched back from
CPU during backward pass. This causes a major performance degradation when using activation
offloading.

SageMaker model parallelism library v2 3630

Amazon SageMaker Developer Guide

SMP v2 improves this activation offloading, and it pre-fetches activations ahead of time before
the activations are needed for the GPU to start backward pass on those activations. This pre-
fetching feature helps training progresses be more efficiently run without idle GPUs, which results
in offering benefits from lower memory usage without a performance degradation.

You can keep the native PyTorch modules for offloading activations in your training script. The
following is an example structure of applying the SMP activation offloading feature in your script.
Note that activation offloading is applicable only when used together with the section called
“Activation checkpointing”. To learn more about the native PyTorch checkpoint tools for activation
offloading, see also the checkpoint_wrapper.py in the PyTorch GitHub repository and Activation
Checkpointing in the PyTorch blog Scaling Multi-modal Foundation Models in TorchMultimodal with
PyTorch Distributed.

To apply the SMP activation offloading feature on PyTorch activation checkpointing, add the
sm_activation_offloading and activation_loading_horizon parameters to the SMP
configuration dictionary during the section called “Step 2: Launch a training job”.

The following code snippets show how to add the SMP initialization module
torch.sagemaker.init() to your training script and set up the SMP configuration
dictionary in JSON format for training job launcher while following the two-step process
introduced in the section called “Get started with SMP v2”. You don’t need to make any
changes to your PyTorch model or PyTorch FSDP configuration. For more information about the
sm_activation_offloading and activation_loading_horizon parameters, see the section
called “SMP v2 core feature configuration parameters”.

SMP configuration

{
 "activation_loading_horizon": 2,
 "sm_activation_offloading": True
}

In training script

Note

While activating the SMP activation offloading feature, make sure that you also use the
PyTorch offload_wrapper function and apply it to the root module. The SMP activation

SageMaker model parallelism library v2 3631

https://github.com/pytorch/pytorch/blob/v2.0.1/torch/distributed/algorithms/_checkpoint/checkpoint_wrapper.py#L171
https://pytorch.org/blog/scaling-multimodal-foundation-models-in-torchmultimodal-with-pytorch-distributed/#activation-checkpointing
https://pytorch.org/blog/scaling-multimodal-foundation-models-in-torchmultimodal-with-pytorch-distributed/#activation-checkpointing
https://pytorch.org/blog/scaling-multimodal-foundation-models-in-torchmultimodal-with-pytorch-distributed/#activation-checkpointing
https://pytorch.org/docs/stable/fsdp.html#module-torch.distributed.fsdp

Amazon SageMaker Developer Guide

offloading feature uses the root module to determine when forward pass is done to start
pre-fetching.

import torch.sagemaker as tsm
tsm.init()

Native PyTorch module for activation offloading
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
 apply_activation_checkpointing,
 offload_wrapper,
)

model = FSDP(...)

Activation offloading requires activation checkpointing.
apply_activation_checkpointing(
 model,
 check_fn=checkpoint_transformer_layers_policy,
)

model = offload_wrapper(model)

Tensor parallelism

Tensor parallelism is a type of model parallelism in which specific model weights, gradients, and
optimizer states are split across devices. In contrast to pipeline parallelism, which keeps individual
weights intact but partitions the set of weights, gradients, or optimizer across devices, tensor
parallelism shards individual weights. This typically involves distributed computation of specific
operations, modules, or layers of the model.

Tensor parallelism is required in cases in which a single parameter consumes most of the GPU
memory (such as large embedding tables with a large vocabulary size or a large softmax layer with
a large number of classes). In this case, treating this large tensor or operation as an atomic unit is
inefficient and impedes balance of the memory load.

SMP v2 integrates with Transformer Engine for the implementation for tensor parallelism, and
runs on top of PyTorch FSDP APIs. You can enable PyTorch FSDP and SMP tensor parallelism
simultaneously, and determine the best model parallelism for best performance.

In practice, tensor parallelism is especially helpful in the following scenarios.

SageMaker model parallelism library v2 3632

https://docs.nvidia.com/deeplearning/transformer-engine/index.html

Amazon SageMaker Developer Guide

• When training with long context lengths as that leads to high activation memory with FSDP
alone.

• When training with really large clusters on which the global batch size exceeds desired limits.

Hugging Face Transformer models compatible with the SMP tensor parallelism

SMP v2 currently offers tensor parallelism support for the following Hugging Face transformer
models.

• GPT-NeoX

• Llama 2

For reference configuration for applying tensor parallelism on these models, see the section called
“Configuration tips”.

Configure tensor parallelism

For tensor_parallel_degree, you select a value for the degree of tensor parallelism. The
value must evenly divide the number of GPUs in your cluster. For example, to shard your model
while using an instance with 8 GPUs, choose 2, 4, or 8. We recommend that you start with a small
number, and gradually increase it until the model fits in the GPU memory.

The following code snippets show how to add the SMP initialization module
torch.sagemaker.init() to your training script and set up the SMP configuration
dictionary in JSON format for training job launcher while following the two-step process
introduced in the section called “Get started with SMP v2”. You don’t need to make any
changes to your PyTorch model or PyTorch FSDP configuration. For more information about the
tensor_parallel_degree and tensor_parallel_seed parameters, see the section called
“SMP v2 core feature configuration parameters”.

SMP configuration

{
 "tensor_parallel_degree": 8,
 "tensor_parallel_seed": 0
}

In your training script

SageMaker model parallelism library v2 3633

https://pytorch.org/docs/stable/fsdp.html#module-torch.distributed.fsdp

Amazon SageMaker Developer Guide

Initialize with torch.sagemaker.init() to activate SMP v2 and wrap your model with the the
section called “torch.sagemaker.transform” API.

import torch.sagemaker as tsm
tsm.init()

from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_config(..)
model = tsm.transform(model)

Saving and loading Hugging Face Transformer checkpoints

After the SMP library transforms a model, it changes the state dictionary (state_dict) of
the model. This means that the model becomes incompatible with the original Hugging Face
Transformer checkpointing functionalities. To handle this, the SMP library provides APIs to save
checkpoints from a transformed model in Hugging Face Transformer representation, and the
torch.sagemaker.transform API to load a Hugging Face Transformer model checkpoint for
fine-tuning.

For more information about saving checkpoints while using the tensor parallelism feature of SMP
v2, see the section called “Save and load checkpoints while using SMP”.

For more information about fine-tuning a model applying the tensor parallelism feature of SMP v2,
see the section called “Fine-tuning”.

Fine-tuning

Fine-tuning is a process of continuously training pre-trained models to improve performance for
specific use cases.

Fine-tuning small models that fit fully on a single GPU, or those that fit 8 copies of model fully
on CPUs is straightforward. It requires no special change to regular FSDP training. In the realm
of models larger than this, you need to consider using the delayed parameter initialization
functionality, which can be tricky.

To address this, the SMP library loads the full model on one of the ranks while the rest of the ranks
create models with empty weights on a meta device. Then, PyTorch FSDP initializes the weights on
non-zero ranks using the init_weights function, and synchronizes the weights on all ranks to
the weights on the 0th rank with sync_module_states set to True. The following code snippet
shows how you should set it up in your training script.

SageMaker model parallelism library v2 3634

Amazon SageMaker Developer Guide

import torch.distributed as dist
from transformers import AutoModelForCasalLM
from accelerate import init_empty_weights
from torch.sagemaker.delayed_param import DelayedParamIniter

if dist.get_rank() == 0:
 model = AutoModelForCasalLM.from_pretrained(..., low_cpu_mem_usage=True)
else:
 with init_empty_weights():
 model = AutoModelForCasalLM.from_config(AutoConfig.from_pretrained(...))
 delayed_initer = DelayedParamIniter(model)

model = FSDP(
 model,
 ...,
 sync_module_states=True,
 param_init_fn=delayed_initer.get_param_init_fn() if dist.get_rank() > 0 else None
)

Fine-tuning a pre-trained Hugging Face Transformer model with SMP tensor parallelism

This section discusses loading Transformer models for two use cases: fine-tuning small Transformer
models and fine-tuning large Transformer models. For smaller models without delayed parameter
initialization, wrap the model with the torch.sagemaker.transform API before wrapping it
with PyTorch FSDP.

import functools
from transformers import AutoModelForCausalLM
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.sagemaker import transform

model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf",
 low_cpu_mem_usage=True)

Transform model while loading state dictionary from rank 0.
tp_model = transform(model, load_state_dict_from_rank0=True)

Wrap with FSDP.
model = FSDP(
 tp_model,
 ...

SageMaker model parallelism library v2 3635

Amazon SageMaker Developer Guide

 sync_module_states=True,
)

For larger models, the preceding approach causes to run out of CPU memory. We
recommend that you use delayed parameter initialization to avoid such CPU memory
issues. In this case, you can apply the torch.sagemaker.transform API and the
torch.sagemaker.delayed_param.DelayedParamIniter API as shown in the following code
example.

from transformers import AutoModelForCausalLM
from torch.sagemaker import transform
from torch.sagemaker.delayed_param import DelayedParamIniter

Create one instance of model without delayed param
on CPU, on one rank.
if dist.get_rank() == 0:
 model = AutoModelForCasalLM.from_pretrained(...,low_cpu_mem_usage=True)
else:
 with init_empty_weights():
 model = AutoModelForCasalLM.from_config(AutoConfig.from_pretrained(...))

Transform model while loading state dictionary from rank 0
model = transform(model, load_state_dict_from_rank0=True)

if dist.get_rank() != 0: # For fine-tuning, delayed parameter on non-zero ranks
 delayed_initer = DelayedParamIniter(model)
else:
 delayed_initer = None

with (
 delayed_initer.validate_params_and_buffers_inited() if delayed_initer else
 nullcontext()
):
 # Wrap the model with FSDP
 model = FSDP(
 model,
 ...,
 sync_module_states=True,
 param_init_fn=delayed_initer.get_param_init_fn() if delayed_initer else None
)

SageMaker model parallelism library v2 3636

Amazon SageMaker Developer Guide

FlashAttention

SMP v2 supports FlashAttention kernels and makes it easy to apply them to various scenarios for
Hugging Face Transformer models. Note that if you use FlashAttention package v2.0 or later, SMP
uses FlashAttention v2; however, the Triton flash attention defaults to the flash attention kernel in
FlashAttention v1.x, making it exclusively supported in FlashAttention v1.

The module (nn.Module) is a low level API that defines the attention layers of a model. It should
be applied right after model creation, from the AutoModelForCausalLM.from_config() API
for example, and before the model is being transformed or wrapped with FSDP.

Use FlashAttention kernels for self attention

The following code snippet shows how to use the the section called
“torch.sagemaker.nn.attn.FlashSelfAttention” API provided by SMP v2.

def new_attn(self, q, k, v, attention_mask=None, head_mask=None):
 return (
 self.flashmod((q, k, v), causal=True, cast_dtype=torch.bfloat16, layout="b h s
 d"),
 None,
)

for layer in model.gpt_neox.layers:
 layer.attention.flash_mod = torch.sagemaker.nn.attn.FlashSelfAttention()
 layer.attention._attn = functools.partial(new_attn, layer.attention)

Use FlashAttention kernels for grouped-query attention

SMP v2 also supports FlashAttention kernels for grouped-query attention (GQA) and makes it
easy to apply them to various scenarios for Hugging Face Transformer models. Different from
original attention architecture, GQA equally partitions query heads into groups, and query heads
in the same group share the same key and value heads. Therefore, q and kv heads are passed into
forward call separately. Note: The number of q heads needs to be divisible by the number of kv
heads.

Example of using FlashGroupedQueryAttention

The following code snippet shows how to use the the section called
“torch.sagemaker.nn.attn.FlashGroupedQueryAttention” API provided by SMP v2.

SageMaker model parallelism library v2 3637

https://github.com/HazyResearch/flash-attention
https://github.com/HazyResearch/flash-attention

Amazon SageMaker Developer Guide

from transformers.models.llama.modeling_llama import LlamaAttention
from torch.sagemaker.nn.attn import FlashGroupedQueryAttention

class LlamaFlashAttention(LlamaAttention):
 def __init__(self, config: LlamaConfig):
 super().__init__(config)

 self.flash_attn = FlashGroupedQueryAttention(
 attention_dropout_prob=0.0,
)

 def forward(
 self,
 hidden_states: torch.Tensor,
 attention_mask: Optional[torch.Tensor] = None,
 position_ids: Optional[torch.LongTensor] = None,
 ...
):
 query_states = self.q_proj(hidden_states)
 key_states = self.k_proj(hidden_states)
 value_states = self.v_proj(hidden_states)
 ...
 kv = (key_states, value_states)
 attn_output = self.flash_attn(
 query_states,
 kv,
 attn_mask=attention_mask,
 causal=True,
 layout="b h s d",
)
 ...
 attn_output = self.o_proj(attn_output)
 ...
 return attn_output

The SMP library also provides the section called
“torch.sagemaker.nn.huggingface.llama_flashattn.LlamaFlashAttention”, which
uses the the section called “torch.sagemaker.nn.attn.FlashGroupedQueryAttention”
API at low level. Hugging Face Transformers has a similar implementation called
LlamaFlashAttention2 from v4.36.0. The following code snippet shows how to use the SMP
v2 LlamaFlashAttention API or the Transformers LlamaFlashAttention2 API to replace the
attention layers of an existing Llama model.

SageMaker model parallelism library v2 3638

https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py

Amazon SageMaker Developer Guide

from torch.sagemaker.nn.huggingface.llama_flashattn import LlamaFlashAttention
from transformers.models.llama.modeling_llama import LlamaFlashAttention2

flash_attn_class = LlamaFlashAttention # or flash_attn_class = LlamaFlashAttention2

attn_name = "self_attn"
for layer in model.model.layers:
 prev_layer = getattr(layer, attn_name)
 setattr(layer, attn_name, flash_attn_class(model.config))

Save and load checkpoints while using SMP

The SMP library supports PyTorch APIs for checkpoints, and provides APIs that help checkpoint
properly while using the SMP library.

PyTorch FSDP supports three types of checkpoints: full, sharded and local. These serve different
purposes. Full checkpoint should ideally be used only when exporting the model after training
finishes, because it’s expensive to generate a full checkpoint. Sharded checkpoint is the
recommended approach for saving and loading checkpoints during training. Using sharded
checkpoints you can also change the cluster size when resuming training. Local checkpoints are
more restrictive. With local checkpoints, you need to resume training with same number of GPUs
and currently it’s not supported when using tensor parallelism with SMP. Note that checkpoints by
FSDP require writing to a shared network file system, such as FSx.

Sharded checkpoints

The following procedure highlights what you need to do to adapt your training script to save and
load sharded checkpoints with or without the SMP tensor parallelism feature.

1. Import the SMP torch.sagemaker package.

import torch.sagemaker as tsm

2. Set up auxiliary variables to save and load checkpoints.

a. Set up a coordinator rank for performing communicative collective operations such as
AllReduce.

coordinator_rank: int = min(dist.get_process_group_ranks(model.process_group))

SageMaker model parallelism library v2 3639

Amazon SageMaker Developer Guide

b. Using the torch.sagemaker.state enumerations, set up the action rank to determine
whether to let the ranks take part in checkpointing. And add an if statement for saving
checkpoints depending on the usage of SMP v2 tensor parallelism.

action_rank: bool = global_rank < (tsm.state.hybrid_shard_degree *
 tsm.state.tp_size)

if tsm.state.tp_size > 1:
 # Tensor parallel groups will have their own sub directories.
 sub_dir = f"tp{tsm.state.tp_size}-{tsm.state.tp_rank}"
else:
 sub_dir = ""

3. Keep using the PyTorch FSDP checkpoint APIs as is.

The following code example shows a full PyTorch FSDP training script with the FSDP checkpoint
APIs.

import torch.distributed as dist
from torch.distributed.checkpoint.optimizer import (
 load_sharded_optimizer_state_dict
)
from torch.distributed.fsdp import (
 FullyShardedDataParallel as FSDP,
 StateDictType
)
import torch.sagemaker as tsm

sharding_strategy, state_dict_type = ..., ...
global_rank = dist.get_rank()

0. Auxiliary variables to save and load checkpoints.

Used when performing comm collectives such as allreduce.
coordinator_rank: int = min(dist.get_process_group_ranks(model.process_group))

To determine whether to take part in checkpointing.
action_rank: bool = global_rank < (tsm.state.hybrid_shard_degree * tsm.state.tp_size)

if tsm.state.tp_size > 1:
 # Tensor parallel groups will have their own sub directories.
 sub_dir = f"tp{tsm.state.tp_size}-{tsm.state.tp_rank}"

SageMaker model parallelism library v2 3640

Amazon SageMaker Developer Guide

else:
 sub_dir = ""

1. Save checkpoints.
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
 state_dict = {
 "model": model.state_dict(),
 "optimizer": FSDP.optim_state_dict(model, optimizer),
 # Potentially add more customized state dicts.
 }

 # Save from one single replication group.
 if action_rank:
 dist.checkpoint.save_state_dict(
 state_dict=state_dict,
 storage_writer=dist.checkpoint.FileSystemWriter(os.path.join(save_dir,
 sub_dir)),
 process_group=model.process_group,
 coordinator_rank=coordinator_rank,
)

2. Load checkpoints.
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
 # 2.1 Load model and everything else except the optimizer.
 state_dict = {
 # All states except optimizer state can be passed here.
 "model": model.state_dict()
 }

 dist.checkpoint.load_state_dict(
 state_dict=state_dict,
 storage_reader=dist.checkpoint.FileSystemReader(os.path.join(load_dir,
 sub_dir)),
 process_group=model.process_group,
 coordinator_rank=coordinator_rank,
)
 model.load_state_dict(state_dict["model"])
 # Potentially process more customized and non-optimizer dict states.

 # 2.2 Load optimizer.
 optim_state = load_sharded_optimizer_state_dict(
 model_state_dict=state_dict["model"],
 optimizer_key="optimizer",

SageMaker model parallelism library v2 3641

Amazon SageMaker Developer Guide

 storage_reader=dist.checkpoint.FileSystemReader(os.path.join(load_dir,
 sub_dir)),
 process_group=model.process_group,
)
 flattened_optimizer_state = FSDP.optim_state_dict_to_load(
 optim_state["optimizer"], model, optimizer, group=model.process_group,
)
 optimizer.load_state_dict(flattened_optimizer_state)

Full model checkpoints

At the end of training, you can save a full checkpoint that combines all shards of a model into a
single model checkpoint file. The SMP library fully supports the PyTorch full model checkpoints
API, so you don't need to make any changes.

Note that if you use the SMP the section called “Tensor parallelism”, the SMP library transforms
the model. When checkpointing the full model in this case, the SMP library translates the model
back to the Hugging Face Transformers checkpoint format by default.

In cases where you train with the SMP tensor parallelism and turn off the SMP translation process,
you can use the translate_on_save argument of the PyTorch FullStateDictConfig API
to switch the SMP auto-translation on or off as needed. For example, if you are focusing on
training a model, you don’t need to add the translation process which adds overhead. In that
case, we recommend you to set translate_on_save=False. Also, if you plan to keep using
the SMP translation of the model for further training in future, you can switch it off to save the
SMP translation of the model for later use. Translating the model back to the Hugging Face
Transformers model checkpoint format is needed when you wrap up the training of your model
and use that for inference.

from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import FullStateDictConfig
import torch.sagemaker as tsm

Save checkpoints.
with FSDP.state_dict_type(
 model,
 StateDictType.FULL_STATE_DICT,
 FullStateDictConfig(
 rank0_only=True, offload_to_cpu=True,
 # Default value is to translate back to Hugging Face Transformers format,
 # when saving full checkpoints for models trained with SMP tensor parallelism.

SageMaker model parallelism library v2 3642

Amazon SageMaker Developer Guide

 # translate_on_save=True
),
):
 state_dict = model.state_dict()
 if dist.get_rank() == 0:
 logger.info("Processed state dict to save. Starting write to disk now.")
 os.makedirs(save_dir, exist_ok=True)
 # This name is needed for HF from_pretrained API to work.
 torch.save(state_dict, os.path.join(save_dir, "pytorch_model.bin"))
 hf_model_config.save_pretrained(save_dir)
 dist.barrier()

Note that the option FullStateDictConfig(rank0_only=True, offload_to_cpu=True)
is to gather the model on the CPU of the 0th rank device to save memory when training large
models.

To load the model back for inference, you do so as shown in the following code example. Note
that the class AutoModelForCausalLM might change to other factor builder classes in Hugging
Face Transformers, such as AutoModelForSeq2SeqLM, depending on your model. For more
information, see Hugging Face Transformers documentation.

from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(save_dir)

SageMaker distributed model parallelism best practices

Use the following guidelines when you run a distributed training job with the SageMaker model
parallel library v2 (SMP v2).

Setting up the right configuration for distributed training

To estimate and find the best starting point to apply distributed training techniques that SMP v2
provides, review the following list. Each list item discusses the advantage of using the the section
called “Core features of SMP v2” along with potential tradeoffs.

Configuration tips

This section provides guidelines on how to decide on the best model configurations for optimal
throughput with global batch size requirements.

First, we recommend the following setups regardless of the size of your model.

SageMaker model parallelism library v2 3643

https://huggingface.co/docs/transformers/v4.36.1/en/model_doc/auto#natural-language-processing

Amazon SageMaker Developer Guide

1. Use the most powerful instance type that you can use.

2. Turn on mixed precision all the time, as it provides substantial benefits for performance and
memory reduction. We recommend you to use bfloat16 as it's more precise than float16.

3. Turn on the SageMaker distributed data parallelism library (instead of using NCCL) whenever
it’s applicable, as shown in the section called “Compatibility with the SMDDP library”. One
exception is for tensor-parallelism-only use cases (hybrid_shard_degree = 1 and
tensor_paralle_degree > 1).

4. If your model has more than about 60 billion parameters, we recommend using the section
called “Delayed parameter initialization”. You can also use delayed parameter initialization to
speed up the initialization for any model.

5. We recommend you to enable the section called “Activation checkpointing”.

Depending on the size of you model, we recommend that you start with the following guidance.

1. Use sharded data parallelism.

a. Depending on the batch size you intend to fit in the GPU memory, choose the appropriate
sharded data parallel degree. Normally, you should start with the lowest degree to fit your
model in the GPU memory while minimizing overhead from network communication. If
you see a warning that cache flushes are happening, we recommend that you increase the
sharding degree.

b. Determine world_size based on the maximum local batch size and required global batch
size, if any.

c. You can experiment with activation offloading. Depending on scenarios, it can address
your memory needs without having to increase the sharding degree, which means less
communication.

2. Use sharded data parallelism of PyTorch FSDP and tensor parallelism of SMP v2 simultaneously,
as introduced in the section called “Tensor parallelism”.

a. When training on large clusters, with FSDP alone the global batch size can become too large,
causing convergence issues for the model. Typically, most research work keeps the batch size
under 4 million tokens. In this case, you can resolve the problem by composing PyTorch FSDP
with tensor parallelism of SMP v2 to reduce the batch size.

For example, if you have 256 nodes and sequence length 4096, even a batch size of 1 per
GPU leads to global batch size of 8M tokens. However, when you use tensor parallelism with

SageMaker model parallelism library v2 3644

Amazon SageMaker Developer Guide

degree 2 and batch size of 1 per tensor parallel group, this becomes 1/2 batch size per GPU,
which translates to 4 million tokens.

b. When training with long context lengths such as 8k, 16k activation memory can become very
high. FSDP doesn't shard activations, and activations can cause GPUs to go out of memory. In
such scenarios, you can train efficiently by composing PyTorch FSDP with tensor parallelism of
SMP v2.

Reference configurations

The SageMaker model parallelism training team provides the following reference points based on
experiments with the Llama 2 model transformed to the SMP transformer model using the section
called “torch.sagemaker.transform”, and trained on ml.p4d.24xlarge instance(s) with
sequence length 4096 and mixed precision (FP16 or BF16).

Model Model
size (the
number
of model
parameter
s)

The
number
of
instances

Sharded
data
parallel
degree

Tensor
parallel
degree

Activatio
n
checkpoin
ting

Activatio
n
offloadin
g

Batch
size

7B 1 8 1 TRUE FALSE 4

70B 32 256 1 TRUE FALSE 2

Llama 2

175B 64 128 4 TRUE TRUE 6

You can extrapolate from the preceding configurations to estimate GPU memory usage for your
model configuration. For example, if you increase the sequence length for a 10-billion-parameter
model or increase the size of the model to 20 billion, you might want to lower batch size first. If
the model still doesn’t fit, try increasing the degree of tensor parallelism.

Monitoring and logging a training job using the SageMaker console and Amazon CloudWatch

To monitor system-level metrics such as CPU memory utilization, GPU memory utilization, and
GPU utilization, use visualization provided through the SageMaker console.

1. In the left navigation pane, choose Training.

SageMaker model parallelism library v2 3645

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

2. Choose Training jobs.

3. In the main pane, choose the training job name for which you want to see more details.

4. Browse the main pane and find the Monitor section to see the automated visualization.

5. To see training job logs, choose View logs in the Monitor section. You can access the distributed
training job logs of the training job in CloudWatch. If you launched multi-node distributed
training, you should see multiple log streams with tags in the format of algo-n-1234567890.
The algo-1 log stream tracks training logs from the main (0th) node.

For more information, see Monitor and Analyze Training Jobs Using Amazon CloudWatch Metrics.

Permissions

To run a SageMaker training job with model parallelism, make sure you have the right permissions
in your IAM role, such as the following:

• To use FSx for Lustre, add AmazonFSxFullAccess.

• To use Amazon S3 as a data channel, add AmazonS3FullAccess.

• To use Docker, build your own container, and push it to Amazon ECR, add
AmazonEC2ContainerRegistryFullAccess.

• To have a full access to use the entire suite of SageMaker features, add
AmazonSageMakerFullAccess.

The SageMaker model parallel library v2 reference

The following are references for the SageMaker model parallel library v2 (SMP v2).

Topics

• SMP v2 core feature configuration parameters

• Reference for the SMP v2 torch.sagemaker package

• Upgrade from SMP v1 to SMP v2

SMP v2 core feature configuration parameters

The following is a complete list of parameters to activate and configure the the section called
“Core features of SMP v2”. These must be written in JSON format and passed to the PyTorch
estimator in the SageMaker Python SDK or saved as a JSON file for SageMaker HyperPod.

SageMaker model parallelism library v2 3646

https://aws.amazon.com/fsx/
https://console.aws.amazon.com/iam/home#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonFSxFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonS3FullAccess
https://console.aws.amazon.com/iam/home#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonEC2ContainerRegistryFullAccess
https://console.aws.amazon.com/iam/home%23/policies/iam/home%23/policies/arn%253Aaws%253Aiam%253A%253Aaws%253Apolicy%252FAmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

{
 "hybrid_shard_degree": Integer,
 "sm_activation_offloading": Boolean,
 "activation_loading_horizon": Integer,
 "fsdp_cache_flush_warnings": Boolean,
 "allow_empty_shards": Boolean,
 "tensor_parallel_degree": Integer,
 "tensor_parallel_seed": Integer
}

• hybrid_shard_degree (Integer) – Specifies a sharded parallelism degree. The value must be
an integer between 0 and world_size. The default value is 0.

• If set to 0, it falls back to the native PyTorch implementation and API in the script
when tensor_parallel_degree is 1. Otherwise, it computes the largest possible
hybrid_shard_degree based on tensor_parallel_degree and world_size. When
falling back to the native PyTorch FSDP use cases, if FULL_SHARD is the strategy you use,
it shards across the whole cluster of GPUs. If HYBRID_SHARD or _HYBRID_SHARD_ZERO2
was the strategy, it is equivalent to hybrid_shard_degree of 8. When tensor parallelism is
enabled, it shards based on the revised hybrid_shard_degree.

• If set to 1, it falls back to the native PyTorch implementation and API for NO_SHARD in the
script when tensor_parallel_degree is 1. Otherwise, it's equivalent to NO_SHARD within
any given tensor parallel groups.

• If set to an integer between 2 and world_size, sharding happens across the specified
number of GPUs. If you don't set up sharding_strategy in the FSDP script, it gets
overridden to HYBRID_SHARD. If you set _HYBRID_SHARD_ZERO2, the sharding_strategy
you specify is used.

• sm_activation_offloading (Boolean) – Specifies whether to enable the
SMP activation offloading implementation. If False, offloading uses the
native PyTorch implementation. If True, it uses the SMP activation offloading
implementation. You also need to use the PyTorch activation offload wrapper
(torch.distributed.algorithms._checkpoint.checkpoint_wrapper.offload_wrapper)
in your script. To learn more, see the section called “Activation offloading”. The default value is
True.

• activation_loading_horizon (Integer) – An integer specifying the activation offloading
horizon type for FSDP. This is the maximum number of checkpointed or offloaded layers

SageMaker model parallelism library v2 3647

Amazon SageMaker Developer Guide

whose inputs can be in the GPU memory simultaneously. To learn more, see the section called
“Activation offloading”. The input value must be a positive integer. The default value is 2.

• fsdp_cache_flush_warnings (Boolean) – Detects and warns if cache flushes happen in the
PyTorch memory manager, because they can degrade computational performance. The default
value is True.

• allow_empty_shards (Boolean) – Whether to allow empty shards when sharding tensors
if tensor is not divisible. This is an experimental fix for crash during checkpointing in certain
scenarios. Disabling this falls back to the original PyTorch behavior. The default value is False.

• tensor_parallel_degree (Integer) – Specifies a tensor parallelism degree. The value
must be between 1 and world_size. The default value is 1. Passing a value greater than 1
does not enable tensor parallelism automatically. You also need to use the the section called
“torch.sagemaker.transform” API to wrap the model in your training script. To learn more,
see the section called “Tensor parallelism”.

• tensor_parallel_seed (Integer) – A seed number for the random operations in tensor-
parallel distributed modules. This seed will be added to the tensor parallel rank to set the actual
seed for each rank. It is unique for each tensor parallel rank. SMP v2 makes sure that random
number generation across tensor parallel ranks matches the non-tensor parallelism case. To
learn more, see the section called “Tensor parallelism”.

Reference for the SMP v2 torch.sagemaker package

This section is a reference for the torch.sagemaker package provided by SMP v2.

Topics

• torch.sagemaker.delayed_param.DelayedParamIniter

• torch.sagemaker.nn.attn.FlashSelfAttention

• torch.sagemaker.nn.attn.FlashGroupedQueryAttention

• torch.sagemaker.nn.huggingface.llama_flashattn.LlamaFlashAttention

• torch.sagemaker.transform

• torch.sagemaker util functions and properties

torch.sagemaker.delayed_param.DelayedParamIniter

An API for applying the section called “Delayed parameter initialization” to a PyTorch model.

SageMaker model parallelism library v2 3648

Amazon SageMaker Developer Guide

class torch.sagemaker.delayed_param.DelayedParamIniter(
 model: nn.Module,
 init_method_using_config : Callable = None,
 verbose: bool = False,
)

Parameters

• model (nn.Module) – A PyTorch model to wrap and apply the delayed parameter initialization
functionality of SMP v2.

• init_method_using_config (Callable) – If you use the tensor parallel implementation of
SMP v2 or supported the section called “Hugging Face Transformer models compatible with the
SMP tensor parallelism”, keep this parameter at the default value, which is None. By default,
the DelayedParamIniter API finds out how to initialize the given model correctly. For any
other models, you need to create a custom parameter initialization function and add it to your
script. The following code snippet is the default init_method_using_config function that
SMP v2 implemented for the the section called “Hugging Face Transformer models compatible
with the SMP tensor parallelism”. Use the following code snippet as a reference for creating
your own initialization configuration function, adding it to your script, and passing it to the
init_method_using_config parameter of the SMP DelayedParamIniter API.

from torch.sagemaker.utils.module_utils import empty_module_params,
 move_buffers_to_device

Define a custom init config function.
def custom_init_method_using_config(module):
 d = torch.cuda.current_device()
 empty_module_params(module, device=d)
 if isinstance(module, (nn.Linear, Conv1D)):
 module.weight.data.normal_(mean=0.0, std=config.initializer_range)
 if module.bias is not None:
 module.bias.data.zero_()
 elif isinstance(module, nn.Embedding):
 module.weight.data.normal_(mean=0.0, std=config.initializer_range)
 if module.padding_idx is not None:
 module.weight.data[module.padding_idx].zero_()
 elif isinstance(module, nn.LayerNorm):
 module.weight.data.fill_(1.0)
 module.bias.data.zero_()
 elif isinstance(module, LlamaRMSNorm):

SageMaker model parallelism library v2 3649

Amazon SageMaker Developer Guide

 module.weight.data.fill_(1.0)
 move_buffers_to_device(module, device=d)

delayed_initer = DelayedParamIniter(model,
 init_method_using_config=custom_init_method_using_config)

For more information about the torch.sagemaker.module_util functions in the preceding
code snippet, see the section called “torch.sagemaker util functions and properties”.

• verbose (Boolean) – Whether to enable more detailed logging during initialization and
validation. The default value is False.

Methods

• get_param_init_fn() – Returns the parameter initialization function that you can pass to the
param_init_fn argument of the PyTorch FSDP wrapper class.

• get_post_param_init_fn() – Returns the parameter initialization function that you can
pass to the post_param_init_fn argument of the PyTorch FSDP wrapper class. This is
needed when you have tied weights in the model. The model must implement the method
tie_weights. For more information, see the Notes on tied weight in the section called
“Delayed parameter initialization”.

• count_num_params (module: nn.Module, *args: Tuple[nn.Parameter])
– Tracks how many parameters are being initialized by the parameter initialization
function. This helps implement the following validate_params_and_buffers_inited
method. You usually don’t need to call this function explicitly, because the
validate_params_and_buffers_inited method implicitly calls this method in the backend.

• validate_params_and_buffers_inited (enabled: bool=True) – This is a context
manager that helps validate that the number of parameters initialized matches the total number
of parameters in the model. It also validates that all parameters and buffers are now on GPU
devices instead of meta devices. It raises AssertionErrors if these conditions are not met. This
context manager is only optional and you're not required to use this context manager to initialize
parameters.

torch.sagemaker.nn.attn.FlashSelfAttention

An API for using the section called “FlashAttention” with SMP v2.

class torch.sagemaker.nn.attn.FlashSelfAttention(

SageMaker model parallelism library v2 3650

Amazon SageMaker Developer Guide

 attention_dropout_prob: float = 0.0,
 scale: Optional[float] = None,
 triton_flash_attention: bool = False,
 use_alibi: bool = False,
)

Parameters

• attention_dropout_prob (float) – The dropout probability to apply to attention. The default
value is 0.0.

• scale (float) – If passed, this scale factor will be applied for softmax. If set to None (which is
also the default value), the scale factor is 1 / sqrt(attention_head_size). The default
value is None.

• triton_flash_attention (bool) – If passed, Triton implementation of flash attention will
be used. This is necessary to supports Attention with Linear Biases (ALiBi) (see the following
use_alibi parameter). This version of the kernel doesn’t support dropout. The default value is
False.

• use_alibi (bool) – If passed, it enables Attention with Linear Biases (ALiBi) using the mask
provided. When using ALiBi, it needs an attention mask prepared as follows. The default value is
False.

def generate_alibi_attn_mask(attention_mask, batch_size, seq_length,
 num_attention_heads, alibi_bias_max=8):
 device, dtype = attention_mask.device, attention_mask.dtype
 alibi_attention_mask = torch.zeros(
 1, num_attention_heads, 1, seq_length, dtype=dtype, device=device
)

 alibi_bias = torch.arange(1 - seq_length, 1, dtype=dtype, device=device).view(
 1, 1, 1, seq_length
)
 m = torch.arange(1, num_attention_heads + 1, dtype=dtype, device=device)
 m.mul_(alibi_bias_max / num_attention_heads)
 alibi_bias = alibi_bias * (1.0 / (2 ** m.view(1, num_attention_heads, 1, 1)))

 alibi_attention_mask.add_(alibi_bias)
 alibi_attention_mask = alibi_attention_mask[..., :seq_length, :seq_length]
 if attention_mask is not None and attention_mask.bool().any():
 alibi_attention_mask.masked_fill(
 attention_mask.bool().view(batch_size, 1, 1, seq_length), float("-inf")

SageMaker model parallelism library v2 3651

Amazon SageMaker Developer Guide

)

 return alibi_attention_mask

Methods

• forward(self, qkv, attn_mask=None, causal=False, cast_dtype=None,
layout="b h s d") – A regular PyTorch module function. When a module(x) is called, SMP
runs this function automatically.

• qkv – torch.Tensor of the following form: (batch_size x seqlen x (3 x
num_heads) x head_size) or (batch_size, (3 x num_heads) x seqlen x
head_size), a tuple of torch.Tensors each of which might be of shape (batch_size
x seqlen x num_heads x head_size), or (batch_size x num_heads x seqlen x
head_size). An appropriate layout arg must be passed based on the shape.

• attn_mask – torch.Tensor of the following form (batch_size x 1 x 1 x seqlen).
To enable this attention mask parameter, it requires triton_flash_attention=True and
use_alibi=True. To learn how to generate an attention mask using this method, see the
code examples at the section called “FlashAttention”. The default value is None.

• causal – When set to False, which is the default value of the argument, no mask is applied.
When set to True, the forward method uses the standard lower triangular mask. The default
value is False.

• cast_dtype – When set to a particular dtype, it casts the qkv tensors to that dtype before
attn. This is useful for implementations such as the Hugging Face Transformer GPT-NeoX
model, which has q and k with fp32 after rotary embeddings. If set to None, no cast is
applied. The default value is None.

• layout (string) – Available values are b h s d or b s h d. This should be set to the layout
of qkv tensors passed, so appropriate transformations can be applied for attn. The default
value is b h s d.

Returns

A single torch.Tensor with shape (batch_size x num_heads x seq_len x head_size).

SageMaker model parallelism library v2 3652

Amazon SageMaker Developer Guide

torch.sagemaker.nn.attn.FlashGroupedQueryAttention

An API for using FlashGroupedQueryAttention with SMP v2. To learn more about the usage of
this API, see the section called “Use FlashAttention kernels for grouped-query attention”.

class torch.sagemaker.nn.attn.FlashGroupedQueryAttention(
 attention_dropout_prob: float = 0.0,
 scale: Optional[float] = None,
)

Parameters

• attention_dropout_prob (float) – The dropout probability to apply to attention. The default
value is 0.0.

• scale (float) – If passed, this scale factor is applied for softmax. If set to None, 1 /
sqrt(attention_head_size) is used as the scale factor. The default value is None.

Methods

• forward(self, q, kv, causal=False, cast_dtype=None, layout="b s h d")
– A regular PyTorch module function. When a module(x) is called, SMP runs this function
automatically.

• q – torch.Tensor of the following form (batch_size x seqlen x num_heads x
head_size) or (batch_size x num_heads x seqlen x head_size). Appropriate
layout arg must be passed based on the shape.

• kv – torch.Tensor of the following form (batch_size x seqlen x (2 x num_heads)
x head_size) or (batch_size, (2 x num_heads) x seqlen x head_size), or a
tuple of two torch.Tensors, each of which might be of shape (batch_size x seqlen x
num_heads x head_size) or (batch_size x num_heads x seqlen x head_size).
Appropriate layout argument must also be passed based on the shape.

• causal – When set to False, which is the default value of the argument, no mask is applied.
When set to True, the forward method uses the standard lower triangular mask. The default
value is False.

• cast_dtype – When set to a particular dtype, it casts the qkv tensors to that dtype before
attn. This is useful for implementations such as Hugging Face Transformers GPT-NeoX, which
has q,k with fp32 after rotary embeddings. If set to None, no cast is applied. The default
value is None.

SageMaker model parallelism library v2 3653

Amazon SageMaker Developer Guide

• layout (string) – Available values are "b h s d" or "b s h d". This should be set to the
layout of qkv tensors passed, so appropriate transformations can be applied for attn. The
default value is "b h s d".

Returns

Returns a single torch.Tensor (batch_size x num_heads x seq_len x head_size)
that represents the output of attention computation.

torch.sagemaker.nn.huggingface.llama_flashattn.LlamaFlashAttention

An API that supports FlashAttention for the Llama model. This API uses the the section called
“torch.sagemaker.nn.attn.FlashGroupedQueryAttention” API at low level. To learn how
to use this, see the section called “Use FlashAttention kernels for grouped-query attention”.

class torch.sagemaker.nn.huggingface.llama_flashattn.LlamaFlashAttention(
 config: LlamaConfig
)

Parameters

• config – A FlashAttention configuration for the Llama model.

Methods

• forward(self, hidden_states, attention_mask, position_ids,
past_key_value, output_attentions, use_cache)

• hidden_states (torch.Tensor) – Hidden states of a tensor in form of (batch_size x
seq_len x num_heads x head_size).

• attention_mask (torch.LongTensor) – Mask to avoid performing attention on padding
token indices in form of (batch_size x seqlen). The default value is None.

• position_ids (torch.LongTensor) – When not being None, it is in form of (batch_size
x seqlen), indicating the indices of positions of each input sequence token in the position
embeddings. The default value is None.

• past_key_value (Cache) – Pre-computed hidden-states (key and values in the self-attention
blocks and in the cross-attention blocks). The default value is None.

SageMaker model parallelism library v2 3654

Amazon SageMaker Developer Guide

• output_attentions (bool) – Indicates whether to return the attentions tensors of all
attention layers. The default value is False.

• use_cache (bool) – Indicates whether to return past_key_values key value states. The
default value is False.

Returns

Returns a single torch.Tensor (batch_size x num_heads x seq_len x head_size)
that represents the output of attention computation.

torch.sagemaker.transform

SMP v2 provides this torch.sagemaker.transform() API for transforming Hugging Face
Transformer models to SMP model implementations and enabling the SMP tensor parallelism.

torch.sagemaker.transform(
 model: nn.Module,
 device: Optional[torch.device] = None,
 dtype: Optional[torch.dtype] = None,
 config: Optional[Dict] = None,
 load_state_dict_from_rank0: bool = False
)

SMP v2 maintains transformation policies for the the section called “Hugging Face Transformer
models compatible with the SMP tensor parallelism” by converting the configuration of the
Hugging Face Transformer models to the SMP transformer configuration.

Parameters

• model (torch.nn.Module) – A model from the section called “Hugging Face Transformer
models compatible with the SMP tensor parallelism” to transform and apply the tensor
parallelism feature of the SMP library.

• device (torch.device) – If passed, a new model is created on this device. If the original
module has any parameter on meta device (see the section called “Delayed parameter
initialization”), then the transformed module will also be created on meta device, ignoring the
argument passed here. The default value is None.

• dtype (torch.dtype) – If passed, sets this as the dtype context manager for the creation of the
model and creates a model with this dtype. This is typically unnecessary, as we want to create

SageMaker model parallelism library v2 3655

Amazon SageMaker Developer Guide

the model with fp32 when using MixedPrecision, and fp32 is the default dtype in PyTorch.
The default value is None.

• config (dict) – This is a dictionary for configuring the SMP transformer. The following are the
available keys. The default value is None.

• sequence_parallel (Boolean) – A Boolean specifying whether to use sequence parallelism.
Sequence parallelism partitions input sequences along the sequence dimensions to improve
memory efficiency. The default value is True.

• load_state_dict_from_rank0 (Boolean) – By default, this module creates a new instance
of the model with new weights. When this argument is set to True, SMP tries to load the state
dictionary of the original PyTorch model from the 0th rank into transformed model for the
tensor parallel group that the 0th rank is part of. When this is set to True, rank 0 can’t have any
parameters on meta device. Only the first tensor parallel group populates the weights from the
0th rank after this transform call. You need to set sync_module_states to True in the FSDP
wrapper to get these weights from the first tensor parallel group to all other processes. With this
activated, the SMP library loads the state dictionary from the original model. The SMP library
takes the state_dict of the model before transform, converts it to match the structure of the
transformed model, shards it for each tensor parallel rank, communicates this state from the
0th rank to other ranks in the tensor parallel group that the 0th rank is part of, and loads it. The
default value is False.

Returns

Returns a transformed model that you can wrap with PyTorch FSDP. When
load_state_dict_from_rank0 is set to True, the tensor parallel group that involves rank 0
has weights loaded from the original state dictionary on rank 0. When using the section called
“Delayed parameter initialization” on the original model, only these ranks have the actual tensors
on CPUs for the parameters and buffers of the transformed model. The rest of the ranks continue
to have the parameters and buffers on the meta device to save memory.

torch.sagemaker util functions and properties

torch.sagemaker util functions

• torch.sagemaker.init(config: Optional[Union[str, Dict[str, Any]]] = None)
-> None – Initializes the PyTorch training job with SMP.

• torch.sagemaker.is_initialized() -> bool – Checks whether the training job is
initialized with SMP. When falling back to the native PyTorch while the job is initialized with

SageMaker model parallelism library v2 3656

Amazon SageMaker Developer Guide

SMP, some of the properties are not relevant and become None, as indicated in the following
Properties list.

• torch.sagemaker.utils.module_utils.empty_module_params(module: nn.Module,
device: Optional[torch.device] = None, recurse: bool = False) ->
nn.Module – Creates empty parameters on the given device if any, and it can be recursive for
all nested modules if specified.

• torch.sagemaker.utils.module_utils.move_buffers_to_device(module:
nn.Module, device: torch.device, recurse: bool = False) -> nn.Module –
Moves module buffers to the given device, and it can be recursive for all nested modules if
specified.

Properties

torch.sagemaker.state holds multiple useful properties after the initialization of SMP with
torch.sagemaker.init.

• torch.sagemaker.state.hybrid_shard_degree (int) – The sharded data parallelism
degree, a copy from user input in the SMP configuration passed to torch.sagemaker.init().
To learn more, see the section called “Get started with SMP v2”.

• torch.sagemaker.state.rank (int) – The global rank for the device, in the range of [0,
world_size).

• torch.sagemaker.state.rep_rank_process_group
(torch.distributed.ProcessGroup) – The process group including all devices
with the same replication rank. Note the subtle but fundamental difference with
torch.sagemaker.state.tp_process_group. When falling back to native PyTorch, it
returns None.

• torch.sagemaker.state.tensor_parallel_degree (int) – The tensor parallelism degree,
a copy from user input in the SMP configuration passed to torch.sagemaker.init(). To learn
more, see the section called “Get started with SMP v2”.

• torch.sagemaker.state.tp_size (int) – An alias to
torch.sagemaker.state.tensor_parallel_degree.

• torch.sagemaker.state.tp_rank (int) – The tensor parallelism rank for the device in
the range of [0, tp_size), determined by the tensor parallelism degree and the ranking
mechanism.

SageMaker model parallelism library v2 3657

Amazon SageMaker Developer Guide

• torch.sagemaker.state.tp_process_group (torch.distributed.ProcessGroup) –
The tensor parallel process group including all devices with the same rank in other dimensions
(for example, sharded data parallelism and replication) but unique tensor parallel ranks. When
falling back to native PyTorch, it returns None.

• torch.sagemaker.state.world_size (int) – The total number of devices used in training.

Upgrade from SMP v1 to SMP v2

To move from SMP v1 to SMP v2, you must make script changes to remove the SMP v1 APIs and
apply the SMP v2 APIs. Instead of starting from your SMP v1 script, we recommend you start from
a PyTorch FSDP script, and follow the instructions at the section called “Get started with SMP v2”.

To bring SMP v1 models to SMP v2, in SMP v1 you must collect the full model state dictionary
and apply the translation functions on the model state dictionary to convert it into the Hugging
Face Transformers model checkpoint format. Then in SMP v2, as discussed in the section called
“Save and load checkpoints while using SMP”, you can load the Hugging Face Transformers model
checkpoints, and then continue with using the PyTorch checkpoint APIs with SMP v2. To use SMP
with your PyTorch FSDP model, make sure that you move to SMP v2 and make changes to your
training script to use PyTorch FSDP and other latest features.

import smdistributed.modelparallel.torch as smp

Create model
model = ...
model = smp.DistributedModel(model)

Run training
...

Save v1 full checkpoint
if smp.rdp_rank() == 0:
 model_dict = model.state_dict(gather_to_rank0=True) # save the full model
 # Get the corresponding translation function in smp v1 and translate
 if model_type == "gpt_neox":
 from smdistributed.modelparallel.torch.nn.huggingface.gptneox import
 translate_state_dict_to_hf_gptneox
 translated_state_dict = translate_state_dict_to_hf_gptneox(state_dict,
 max_seq_len=None)

 # Save the checkpoint

SageMaker model parallelism library v2 3658

Amazon SageMaker Developer Guide

 checkpoint_path = "checkpoint.pt"
 if smp.rank() == 0:
 smp.save(
 {"model_state_dict": translated_state_dict},
 checkpoint_path,
 partial=False,
)

To find available translation functions in SMP v1, see the section called “Support for Hugging Face
Transformer Models”.

For instruction on model checkpoints saving and loading in SMP v2, see the section called “Save
and load checkpoints while using SMP”.

Release notes for the SageMaker model parallelism library

See the following release notes to track the latest updates for the SageMaker model parallelism
(SMP) library. If you have further questions about the SMP library, contact the SMP service team at
sm-model-parallel-feedback@amazon.com.

The SageMaker model parallelism library v2.2.0

Date: March 7, 2024

New Features

• Added support for FP8 training of the following Hugging Face transformer models on P5
instances with Transformer Engine integration.

• GPT-NeoX

• Llama 2

Bug Fixes

• Fixed a bug where tensors were not guaranteed to be contiguous before the AllGather
collective call during tensor parallelism training.

Currency Updates

• Added support for PyTorch v2.2.0.

SageMaker model parallelism library v2 3659

Amazon SageMaker Developer Guide

• Upgraded the SMDDP library to v2.2.0.

• Upgraded the FlashAttention library to v2.3.3.

• Upgraded the NCCL library to v2.19.4.

Deprecation

• Discontinued support for Transformer Engine versions before v1.2.0.

Known issues

• The SMP the section called “Activation offloading” feature currently does not work. Use the
native PyTorch activation offloading instead.

Other changes

• Included a patch to fix the performance regression discussed in the issue thread at https://
github.com/pytorch/pytorch/issues/117748 in the PyTorch GitHub repository.

SMP Docker container

The SMP library team distributes Docker containers in replacement of the SageMaker PyTorch
framework containers. If you use the PyTorch estimator class in the SageMaker Python SDK and
specify distribution configuration to use SMP v2, SageMaker automatically picks up the SMP
Docker containers. To use this release of SMP v2, upgrade your SageMaker Python SDK to v2.212.0
or later.

• SMP Docker container for PyTorch v2.2.0 with CUDA v12.1

658645717510.dkr.ecr.us-west-2.amazonaws.com/smdistributed-modelparallel:2.2.0-gpu-
py310-cu121

• Available for P4d, P4de, and P5 instances

• Pre-installed packages in this Docker container

• The SMDDP library v2.2.0

• CUDNN v8.9.5.29

• FlashAttention v2.3.3

SageMaker model parallelism library v2 3660

https://github.com/pytorch/pytorch/issues/117748
https://github.com/pytorch/pytorch/issues/117748

Amazon SageMaker Developer Guide

• TransformerEngine v1.2.1

• Hugging Face Transformers v4.37.1

• Hugging Face Datasets library v2.16.1

• EFA v1.30.0

• NCCL v2.19.4

The SageMaker model parallelism library v2.1.0

Date: February 6, 2024

Currency Updates

• Added support for PyTorch v2.1.2.

Deprecation

• Discontinued support for Hugging Face Transformers v4.31.0.

Known issues

• An issue is discovered that fine-tuning of the Hugging Face Llama 2 model with
attn_implementation=flash_attention_2 and FSDP causes the model to diverge. For
reference, see the issue ticket in the Hugging Face Transformers GitHub repository. To avoid the
divergence issue, use attn_implementation=sdpa. Alternatively, use the SMP transformer
model implementation by setting up use_smp_implementation=True.

SMP Docker container

The SMP library team distributes Docker containers in replacement of the SageMaker PyTorch
framework containers. If you use the PyTorch estimator class in the SageMaker Python SDK and
specify distribution configuration to use SMP v2, SageMaker automatically picks up the SMP
Docker containers. To use this release of SMP v2, upgrade your SageMaker Python SDK to v2.207.0
or later.

• SMP Docker container for PyTorch v2.1.2 with CUDA v12.1

SageMaker model parallelism library v2 3661

https://github.com/huggingface/transformers/issues/28826

Amazon SageMaker Developer Guide

658645717510.dkr.ecr.us-west-2.amazonaws.com/smdistributed-modelparallel:2.1.2-gpu-
py310-cu121

• Available for P4d, P4de, and P5 instances

• Pre-installed packages in this Docker container

• The SMDDP library v2.1.0

• CUDNN v8.9.5.29

• FlashAttention v2.3.3

• TransformerEngine v1.2.1

• Hugging Face Transformers v4.37.1

• Hugging Face Datasets library v2.16.1

• EFA v1.30.0

SMP Conda channel

The following S3 bucket is a public Conda channel hosted by the SMP service team. If you want
to install the SMP v2 library in an environment of highly customizable compute resources such as
SageMaker HyperPod clusters, use this Conda channel to properly install the SMP library.

• https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/
smp-v2/

For more information about Conda channels in general, see Channels in the Conda documentation.

The SageMaker model parallelism library v2.0.0

Date: December 19, 2023

New features

Released the SageMaker model parallelism (SMP) library v2.0.0 with the following new offerings.

• A new torch.sagemaker package, entirely revamped from the previous
smdistributed.modelparallel.torch package in SMP v1.x.

• Support for PyTorch 2.0.1.

• Support for PyTorch FSDP.

SageMaker model parallelism library v2 3662

https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html

Amazon SageMaker Developer Guide

• Tensor parallelism implementation by integrating with the Transformer Engine library.

• Support for both SageMaker Training and SageMaker HyperPod.

Breaking changes

• SMP v2 revamped the APIs entirely and provides the torch.sagemaker package. Mostly,
you only need to initialize with the torch.sagemaker.init() module and pass model
parallel configuration parameters. With this new package, you can significantly simplify code
modifications in your training script. To learn more about adapting your training script to use
SMP v2, see the section called “Get started with SMP v2”.

• If you've used SMP v1 for training Hugging Face Transformer models and want to reuse the
models in SMP v2, see the section called “Upgrade from SMP v1 to SMP v2”.

• For PyTorch FSDP training, you should use SMP v2.

Known issues

• Activation checkpointing currently only works with the following wrapping policies with FSDP.

• auto_wrap_policy = functools.partial(transformer_auto_wrap_policy, ...)

• To use the section called “Activation offloading”, FSDP activation checkpointing type must be
REENTRANT.

• When running with tensor parallel enabled with the sharded data parallel degree set to 1, you
must use backend = nccl. The smddp backend option is not supported in this scenario.

• Transformer Engine is required to use PyTorch with the SMP library even when not using tensor
parallelism.

Other changes

• Starting from this release, the documentation for the SageMaker model parallelism library is
fully available in this Amazon SageMaker Developer Guide. In favor of this complete developer
guide for SMP v2 in the Amazon SageMaker Developer Guide, the additional reference for
SMP v1.x in the SageMaker Python SDK documentation is deprecated. If you still need the
documentation for SMP v1.x, the developer guide for SMP v1.x is available at the section called
“(Archived) SageMaker model parallelism library v1.x”, and the SMP Python library v1.x reference
is available in the SageMaker Python SDK v2.199.0 documentation.

SageMaker model parallelism library v2 3663

https://docs.nvidia.com/deeplearning/transformer-engine/index.html
https://pytorch.org/docs/stable/checkpoint.html
https://docs.nvidia.com/deeplearning/transformer-engine/index.html
https://sagemaker.readthedocs.io/en/stable/api/training/distributed.html#the-sagemaker-distributed-model-parallel-library
https://sagemaker.readthedocs.io/en/stable/api/training/distributed.html#the-sagemaker-distributed-model-parallel-library
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.html

Amazon SageMaker Developer Guide

Deprecations

• Discontinued support for TensorFlow.

• There is no pipeline parallelism support in SMP v2.

• There is no support for the DeepSpeed library in favor of native PyTorch FSDP.

SMP Docker container

The SMP library team distributes Docker containers in replacement of the SageMaker PyTorch
framework containers. If you use the PyTorch estimator class in the SageMaker Python SDK and
specify distribution configuration to use SMP v2, SageMaker automatically picks up the SMP
Docker containers. To use this release of SMP v2, upgrade your SageMaker Python SDK to v2.207.0
or later.

• SMP Docker container for PyTorch v2.0.1 with CUDA v12.1

658645717510.dkr.ecr.us-west-2.amazonaws.com/smdistributed-modelparallel:2.0.1-gpu-
py310-cu121

(Archived) SageMaker model parallelism library v1.x

Important

As of December 19, 2023, the SageMaker model parallelism (SMP) library v2 is released.
In favor of the SMP library v2, the SMP v1 capabilites are no longer supported in future
releases. The following section and topics are archived and specific to using the SMP library
v1. For information about using the SMP library v2, see the section called “SageMaker
model parallelism library v2”.

Use Amazon SageMaker's model parallel library to train large deep learning (DL) models that are
difficult to train due to GPU memory limitations. The library automatically and efficiently splits a
model across multiple GPUs and instances. Using the library, you can achieve a target prediction
accuracy faster by efficiently training larger DL models with billions or trillions of parameters.

SageMaker model parallelism library v2 3664

Amazon SageMaker Developer Guide

You can use the library to automatically partition your own TensorFlow and PyTorch models across
multiple GPUs and multiple nodes with minimal code changes. You can access the library's API
through the SageMaker Python SDK.

Use the following sections to learn more about model parallelism and the SageMaker model
parallel library. This library's API documentation is located at Distributed Training APIs in the
SageMaker Python SDK v2.199.0 documentation.

Topics

• Introduction to Model Parallelism

• Supported Frameworks and AWS Regions

• Core Features of the SageMaker Model Parallelism Library

• Run a SageMaker Distributed Training Job with Model Parallelism

• Checkpointing and Fine-Tuning a Model with Model Parallelism

• SageMaker Distributed Model Parallelism Best Practices

• The SageMaker Distributed Model Parallelism Library Configuration Tips and Pitfalls

• Model Parallel Troubleshooting

Introduction to Model Parallelism

Model parallelism is a distributed training method in which the deep learning model is partitioned
across multiple devices, within or across instances. This introduction page provides a high-level
overview about model parallelism, a description of how it can help overcome issues that arise when
training DL models that are typically very large in size, and examples of what the SageMaker model
parallel library offers to help manage model parallel strategies as well as memory consumption.

What is Model Parallelism?

Increasing the size of deep learning models (layers and parameters) yields better accuracy for
complex tasks such as computer vision and natural language processing. However, there is a limit
to the maximum model size you can fit in the memory of a single GPU. When training DL models,
GPU memory limitations can be bottlenecks in the following ways:

• They limit the size of the model you can train, since the memory footprint of a model scales
proportionally to the number of parameters.

• They limit the per-GPU batch size during training, driving down GPU utilization and training
efficiency.

SageMaker model parallelism library v2 3665

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html

Amazon SageMaker Developer Guide

To overcome the limitations associated with training a model on a single GPU, SageMaker provides
the model parallel library to help distribute and train DL models efficiently on multiple compute
nodes. Furthermore, with the library, you can achieve most optimized distributed training using
EFA-supported devices, which enhance the performance of inter-node communication with low
latency, high throughput, and OS bypass.

Estimate Memory Requirements Before Using Model Parallelism

Before you use the SageMaker model parallel library, consider the following to get a sense of the
memory requirements of training large DL models.

For a training job that uses AMP (FP16) and Adam optimizers, the required GPU memory per
parameter is about 20 bytes, which we can break down as follows:

• An FP16 parameter ~ 2 bytes

• An FP16 gradient ~ 2 bytes

• An FP32 optimizer state ~ 8 bytes based on the Adam optimizers

• An FP32 copy of parameter ~ 4 bytes (needed for the optimizer apply (OA) operation)

• An FP32 copy of gradient ~ 4 bytes (needed for the OA operation)

Even for a relatively small DL model with 10 billion parameters, it can require at least 200GB of
memory, which is much larger than the typical GPU memory (for example, NVIDIA A100 with
40GB/80GB memory and V100 with 16/32 GB) available on a single GPU. Note that on top of the
memory requirements for model and optimizer states, there are other memory consumers such as
activations generated in the forward pass. The memory required can be a lot greater than 200GB.

For distributed training, we recommend that you use Amazon EC2 P3 and P4 instances that have
NVIDIA V100 and A100 Tensor Core GPUs respectively. For more details about specifications
such as CPU cores, RAM, attached storage volume, and network bandwidth, see the Accelerated
Computing section in the Amazon EC2 Instance Types page.

Even with the accelerated computing instances, it is obvious that models with about 10 billion
parameters such as Megatron-LM and T5 and even larger models with hundreds of billions of
parameters such as GPT-3 cannot fit model replicas in each GPU device.

How the Library Employs Model Parallelism and Memory Saving Techniques

The library consists of various types of model parallelism features and memory-saving features
such as optimizer state sharding, activation checkpointing, and activation offloading. All these

SageMaker model parallelism library v2 3666

https://aws.amazon.com/ec2/instance-types/

Amazon SageMaker Developer Guide

techniques can be combined to efficiently train large models that consist of hundreds of billions of
parameters.

Topics

• Sharded data parallelism (available for PyTorch)

• Pipeline parallelism (available for PyTorch and TensorFlow)

• Tensor parallelism (available for PyTorch)

• Optimizer state sharding (available for PyTorch)

• Activation offloading and checkpointing (available for PyTorch)

• Choosing the right techniques for your model

Sharded data parallelism (available for PyTorch)

Sharded data parallelism is a memory-saving distributed training technique that splits the state of
a model (model parameters, gradients, and optimizer states) across GPUs within a data-parallel
group.

SageMaker implements sharded data parallelism through the implementation of MiCS, which is a
library that minimizes communication scale and discussed in the blog post Near-linear scaling of
gigantic-model training on AWS.

You can apply sharded data parallelism to your model as a stand-alone strategy. Furthermore, if
you are using the most performant GPU instances equipped with NVIDIA A100 Tensor Core GPUs,
ml.p4d.24xlarge, you can take the advantage of improved training speed from the AllGather
operation offered by SMDDP Collectives.

To dive deep into sharded data parallelism and learn how to set it up or use a combination of
sharded data parallelism with other techniques like tensor parallelism and FP16 training, see the
section called “Sharded Data Parallelism”.

Pipeline parallelism (available for PyTorch and TensorFlow)

Pipeline parallelism partitions the set of layers or operations across the set of devices,
leaving each operation intact. When you specify a value for the number of model partitions
(pipeline_parallel_degree), the total number of GPUs (processes_per_host) must be
divisible by the number of the model partitions. To set this up properly, you have to specify the
correct values for the pipeline_parallel_degree and processes_per_host parameters. The
simple math is as follows:

SageMaker model parallelism library v2 3667

https://www.amazon.science/blog/near-linear-scaling-of-gigantic-model-training-on-aws
https://www.amazon.science/blog/near-linear-scaling-of-gigantic-model-training-on-aws

Amazon SageMaker Developer Guide

(pipeline_parallel_degree) x (data_parallel_degree) = processes_per_host

The library takes care of calculating the number of model replicas (also called
data_parallel_degree) given the two input parameters you provide.

For example, if you set "pipeline_parallel_degree": 2 and "processes_per_host": 8
to use an ML instance with eight GPU workers such as ml.p3.16xlarge, the library automatically
sets up the distributed model across the GPUs and four-way data parallelism. The following image
illustrates how a model is distributed across the eight GPUs achieving four-way data parallelism
and two-way pipeline parallelism. Each model replica, where we define it as a pipeline parallel
group and label it as PP_GROUP, is partitioned across two GPUs. Each partition of the model is
assigned to four GPUs, where the four partition replicas are in a data parallel group and labeled as
DP_GROUP. Without tensor parallelism, the pipeline parallel group is essentially the model parallel
group.

SageMaker model parallelism library v2 3668

Amazon SageMaker Developer Guide

SageMaker model parallelism library v2 3669

Amazon SageMaker Developer Guide

To dive deep into pipeline parallelism, see Core Features of the SageMaker Model Parallelism
Library.

To get started with running your model using pipeline parallelism, see Run a SageMaker
Distributed Training Job with the SageMaker Model Parallel Library.

Tensor parallelism (available for PyTorch)

Tensor parallelism splits individual layers, or nn.Modules, across devices, to be run in parallel.
The following figure shows the simplest example of how the library splits a model with four
layers to achieve two-way tensor parallelism ("tensor_parallel_degree": 2). The layers of
each model replica are bisected and distributed into two GPUs. In this example case, the model
parallel configuration also includes "pipeline_parallel_degree": 1 and "ddp": True (uses
PyTorch DistributedDataParallel package in the background), so the degree of data parallelism
becomes eight. The library manages communication across the tensor-distributed model replicas.

SageMaker model parallelism library v2 3670

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-use-api.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-use-api.html

Amazon SageMaker Developer Guide

The usefulness of this feature is in the fact that you can select specific layers or a subset of layers
to apply tensor parallelism. To dive deep into tensor parallelism and other memory-saving features
for PyTorch, and to learn how to set a combination of pipeline and tensor parallelism, see Tensor
Parallelism.

Optimizer state sharding (available for PyTorch)

To understand how the library performs optimizer state sharding, consider a simple example model
with four layers. The key idea in optimizing state sharding is you don't need to replicate your
optimizer state in all of your GPUs. Instead, a single replica of the optimizer state is sharded across
data-parallel ranks, with no redundancy across devices. For example, GPU 0 holds the optimizer
state for layer one, the next GPU 1 holds the optimizer state for L2, and so on. The following
animated figure shows a backward propagation with the optimizer state sharding technique. At the
end of the backward propagation, there's compute and network time for the optimizer apply
(OA) operation to update optimizer states and the all-gather (AG) operation to update the
model parameters for the next iteration. Most importantly, the reduce operation can overlap with
the compute on GPU 0, resulting in a more memory-efficient and faster backward propagation. In
the current implementation, AG and OA operations do not overlap with compute. It can result in
an extended computation during the AG operation, so there might be a tradeoff.

SageMaker model parallelism library v2 3671

Amazon SageMaker Developer Guide

For more information about how to use this feature, see Optimizer State Sharding.

Activation offloading and checkpointing (available for PyTorch)

To save GPU memory, the library supports activation checkpointing to avoid storing internal
activations in the GPU memory for user-specified modules during the forward pass. The library
recomputes these activations during the backward pass. In addition, the activation offloading
feature offloads the stored activations to CPU memory and fetches back to GPU during the
backward pass to further reduce activation memory footprint. For more information about how to
use these features, see Activation Checkpointing and Activation Offloading.

SageMaker model parallelism library v2 3672

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-optimizer-state-sharding.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-activation-checkpointing.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-activation-offloading.html

Amazon SageMaker Developer Guide

Choosing the right techniques for your model

For more information about choosing the right techniques and configurations, see SageMaker
Distributed Model Parallel Best Practices and Configuration Tips and Pitfalls.

Supported Frameworks and AWS Regions

Before using the SageMaker model parallelism library, check the supported frameworks and
instance types, and determine if there are enough quotas in your AWS account and AWS Region.

Note

To check the latest updates and release notes of the library, see the SageMaker Model
Parallel Release Notes in the SageMaker Python SDK documentation.

Supported Frameworks

The SageMaker model parallelism library supports the following deep learning frameworks and is
available in AWS Deep Learning Containers (DLC) or downloadable as a binary file.

PyTorch versions supported by SageMaker and the SageMaker model parallelism library

PyTorch version SageMaker model
parallelism library
version

smdistributed-
modelparallel

 integrated DLC
image URI

URL of the binary
file**

v2.0.0 smdistributed-
modelparallel
==v1.15.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:2.0.
0-gpu-py310-
cu118-ubuntu20.
04-sagemaker

https://sagemaker-
distributed-model-
parallel.s3.us-wes
t-2.amazonaws.com/
pytorch-2.0.0/buil
d-artifacts/2023-0
4-14-20-14/smdistr
ibuted_modelparall
el-1.15.0-cp310-cp
310-linux_x86_64.w
hl

SageMaker model parallelism library v2 3673

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-best-practices.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-best-practices.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-customize-tips-pitfalls.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.html

Amazon SageMaker Developer Guide

PyTorch version SageMaker model
parallelism library
version

smdistributed-
modelparallel

 integrated DLC
image URI

URL of the binary
file**

v1.13.1 smdistributed-
modelparallel
==v1.15.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:1.13
.1-gpu-py39-
cu117-ubuntu20.
04-sagemaker

https://sagemaker-
distributed-model-
parallel.s3.us-wes
t-2.amazonaws.com/
pytorch-1.13.1/bui
ld-artifacts/2023-
04-17-15-49/smdist
ributed_modelparal
lel-1.15.0-cp39-cp39-
linux_x86_64.whl

v1.12.1 smdistributed-
modelparallel
==v1.13.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:1.12
.1-gpu-py38-
cu113-ubuntu20.
04-sagemaker

https://sagemaker-
distributed-model-
parallel.s3.us-wes
t-2.amazonaws.com/
pytorch-1.12.1/bui
ld-artifacts/2022-
12-08-21-34/smdist
ributed_modelparal
lel-1.13.0-cp38-cp38-
linux_x86_64.whl

v1.12.0 smdistributed-
modelparallel
==v1.11.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:1.12
.0-gpu-py38-
cu113-ubuntu20.
04-sagemaker

https://sagemaker-
distributed-model-
parallel.s3.us-wes
t-2.amazonaws.com/
pytorch-1.12.0/bui
ld-artifacts/2022-
08-12-16-58/smdist
ributed_modelparal
lel-1.11.0-cp38-cp38-
linux_x86_64.whl

SageMaker model parallelism library v2 3674

Amazon SageMaker Developer Guide

PyTorch version SageMaker model
parallelism library
version

smdistributed-
modelparallel

 integrated DLC
image URI

URL of the binary
file**

v1.11.0 smdistributed-
modelparallel
==v1.10.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:1.11
.0-gpu-py38-
cu113-ubuntu20.
04-sagemaker

https://sagemaker-
distributed-model-
parallel.s3.us-wes
t-2.amazonaws.com/
pytorch-1.11.0/bui
ld-artifacts/2022-
07-11-19-23/smdist
ributed_modelparal
lel-1.10.0-cp38-cp38-
linux_x86_64.whl

v1.10.2 smdistributed-
modelparallel
==v1.7.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:1.10
.2-gpu-py38-
cu113-ubuntu20.
04-sagemaker

-

v1.10.0 smdistributed-
modelparallel
==v1.5.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:1.10
.0-gpu-py38-
cu113-ubuntu20.
04-sagemaker

-

SageMaker model parallelism library v2 3675

Amazon SageMaker Developer Guide

PyTorch version SageMaker model
parallelism library
version

smdistributed-
modelparallel

 integrated DLC
image URI

URL of the binary
file**

v1.9.1 smdistributed-
modelparallel
==v1.4.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:1.9.
1-gpu-py3
8-cu111-u
buntu20.04

-

v1.8.1* smdistributed-
modelparallel
==v1.6.0

763104351
884.dkr.e
cr. <region>.amazonaw
s.com/pytorch-
training:1.8.
1-gpu-py3
6-cu111-u
buntu18.04

-

Note

The SageMaker model parallelism library v1.6.0 and later provides extended features for
PyTorch. For more information, see Core Features of the SageMaker Model Parallelism
Library.

** The URLs of the binary files are for installing the SageMaker model parallelism library in custom
containers. For more information, see the section called “Create Your Own Docker Container with
the Library”.

SageMaker model parallelism library v2 3676

Amazon SageMaker Developer Guide

TensorFlow versions supported by SageMaker and the SageMaker model parallelism library

TensorFlow version SageMaker model paralleli
sm library version

smdistributed-mode
lparallel integrated
DLC image URI

v2.6.0 smdistributed-mode
lparallel==v1.4.0

763104351884.dkr.e
cr. <region>.amazonaw
s.com/tensorflow-t
raining:2.6.0-gpu-
py38-cu112-ubuntu2
0.04

v2.5.1 smdistributed-mode
lparallel==v1.4.0

763104351884.dkr.e
cr. <region>.amazonaw
s.com/tensorflow-t
raining:2.5.1-gpu-
py37-cu112-ubuntu1
8.04

Hugging Face Transformers versions supported by SageMaker and the SageMaker distributed
data parallel library

The AWS Deep Learning Containers for Hugging Face use the SageMaker Training Containers for
PyTorch and TensorFlow as their base images. To look up the Hugging Face Transformers library
versions and paired PyTorch and TensorFlow versions, see the latest Hugging Face Containers and
the Prior Hugging Face Container Versions.

AWS Regions

The SageMaker data parallel library is available in all of the AWS Regions where the AWS Deep
Learning Containers for SageMaker are in service. For more information, see Available Deep
Learning Containers Images.

Supported Instance Types

The SageMaker model parallelism library requires one of the following ML instance types.

SageMaker model parallelism library v2 3677

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#prior-hugging-face-container-versions
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#available-deep-learning-containers-images
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#available-deep-learning-containers-images

Amazon SageMaker Developer Guide

Instance type

ml.g4dn.12xlarge

ml.p3.16xlarge

ml.p3dn.24xlarge

ml.p4d.24xlarge

ml.p4de.24xlarge

For specs of the instance types, see the Accelerated Computing section in the Amazon EC2
Instance Types page. For information about instance pricing, see Amazon SageMaker Pricing.

If you encountered an error message similar to the following, follow the instructions at Request a
service quota increase for SageMaker resources.

ResourceLimitExceeded: An error occurred (ResourceLimitExceeded) when calling
 the CreateTrainingJob operation: The account-level service limit 'ml.p3dn.24xlarge
 for training job usage' is 0 Instances, with current utilization of 0 Instances
 and a request delta of 1 Instances.
 Please contact AWS support to request an increase for this limit.

Core Features of the SageMaker Model Parallelism Library

Amazon SageMaker's model parallelism library offers distribution strategies and memory-saving
techniques, such as sharded data parallelism, tensor parallelism, model partitioning by layers for
pipeline scheduling, and checkpointing. The model parallelism strategies and techniques help
distribute large models across multiple devices while optimizing training speed and memory
consumption. The library also provides Python helper functions, context managers, and wrapper
functions to adapt your training script for automated or manual partitioning of your model.

When you implement model parallelism to your training job, you keep the same two-step workflow
shown in the Run a SageMaker Distributed Training Job with Model Parallelism section. For
adapting your training script, you'll add zero or few additional code lines to your training script.
For launching a training job of the adapted training script, you'll need to set the distribution
configuration parameters to activate the memory-saving features or to pass values for the degree
of parallelism.

SageMaker model parallelism library v2 3678

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-use-api.html

Amazon SageMaker Developer Guide

To get started with examples, see the following Jupyter notebooks that demonstrate how to use
the SageMaker model parallelism library.

• PyTorch example notebooks

• TensorFlow example notebooks

To dive deep into the core features of the library, see the following topics.

Note

The SageMaker distributed training libraries are available through the AWS deep learning
containers for PyTorch, Hugging Face, and TensorFlow within the SageMaker Training
platform. To utilize the features of the distributed training libraries, we recommend that
you use the SageMaker Python SDK. You can also manually configure in JSON request
syntax if you use SageMaker APIs through SDK for Python (Boto3) or AWS Command Line
Interface. Throughout the documentation, instructions and examples focus on how to use
the distributed training libraries with the SageMaker Python SDK.

Important

The SageMaker model parallelism library supports all the core features for PyTorch, and
supports pipeline parallelism for TensorFlow.

Topics

• Sharded Data Parallelism

• Pipelining a Model

• Tensor Parallelism

• Optimizer State Sharding

• Activation Checkpointing

• Activation Offloading

• FP16 Training with Model Parallelism

• Support for FlashAttention

SageMaker model parallelism library v2 3679

https://github.com/aws/amazon-sagemaker-examples/tree/main/training/distributed_training/pytorch/model_parallel
https://github.com/aws/amazon-sagemaker-examples/tree/main/training/distributed_training/tensorflow/model_parallel/mnist

Amazon SageMaker Developer Guide

Sharded Data Parallelism

Sharded data parallelism is a memory-saving distributed training technique that splits the state of
a model (model parameters, gradients, and optimizer states) across GPUs in a data parallel group.

Note

Sharded data parallelism is available for PyTorch in the SageMaker model parallelism
library v1.11.0 and later.

When scaling up your training job to a large GPU cluster, you can reduce the per-GPU memory
footprint of the model by sharding the training state of the model over multiple GPUs. This returns
two benefits: you can fit larger models, which would otherwise run out of memory with standard
data parallelism, or you can increase the batch size using the freed-up GPU memory.

The standard data parallelism technique replicates the training states across the GPUs in the data
parallel group, and performs gradient aggregation based on the AllReduce operation. Sharded
data parallelism modifies the standard data-parallel distributed training procedure to account for
the sharded nature of the optimizer states. A group of ranks over which the model and optimizer
states are sharded is called a sharding group. The sharded data parallelism technique shards the
trainable parameters of a model and corresponding gradients and optimizer states across the GPUs
in the sharding group.

SageMaker achieves sharded data parallelism through the implementation of MiCS, which is
discussed in the AWS blog post Near-linear scaling of gigantic-model training on AWS. In this
implementation, you can set the sharding degree as a configurable parameter, which must be
less than the data parallelism degree. During each forward and backward pass, MiCS temporarily
recombines the model parameters in all GPUs through the AllGather operation. After the
forward or backward pass of each layer, MiCS shards the parameters again to save GPU memory.
During the backward pass, MiCS reduces gradients and simultaneously shards them across GPUs
through the ReduceScatter operation. Finally, MiCS applies the local reduced and sharded
gradients to their corresponding local parameter shards, using the local shards of optimizer states.
To bring down communication overhead, the SageMaker model parallelism library prefetches the
upcoming layers in the forward or backward pass, and overlaps the network communication with
the computation.

The training state of the model is replicated across the sharding groups. This means that before
gradients are applied to the parameters, the AllReduce operation must take place across the

SageMaker model parallelism library v2 3680

https://www.amazon.science/blog/near-linear-scaling-of-gigantic-model-training-on-aws

Amazon SageMaker Developer Guide

sharding groups, in addition to the ReduceScatter operation that takes place within the sharding
group.

In effect, sharded data parallelism introduces a tradeoff between the communication overhead
and GPU memory efficiency. Using sharded data parallelism increases the communication cost, but
the memory footprint per GPU (excluding the memory usage due to activations) is divided by the
sharded data parallelism degree, thus larger models can be fit in the GPU cluster.

Selecting the degree of sharded data parallelism

When you select a value for the degree of sharded data parallelism, the value must evenly divide
the degree of data parallelism. For example, for an 8-way data parallelism job, choose 2, 4, or 8
for the sharded data parallelism degree. While choosing the sharded data parallelism degree, we
recommend that you start with a small number, and gradually increase it until the model fits in the
memory together with the desired batch size.

Selecting the batch size

After setting up sharded data parallelism, make sure you find the most optimal training
configuration that can successfully run on the GPU cluster. For training large language models
(LLM), start from the batch size 1, and gradually increase it until you reach the point to receive the
out-of-memory (OOM) error. If you encounter the OOM error even with the smallest batch size,
apply a higher degree of sharded data parallelism or a combination of sharded data parallelism
and tensor parallelism.

Topics

• How to apply sharded data parallelism to your training job

• Reference configurations

• Sharded data parallelism with SMDDP Collectives

• Mixed precision training with sharded data parallelism

• Sharded data parallelism with tensor parallelism

• Tips and considerations for using sharded data parallelism

How to apply sharded data parallelism to your training job

To get started with sharded data parallelism, apply required modifications to your training
script, and set up the SageMaker PyTorch estimator with the sharded-data-parallelism-specific
parameters. Also consider to take reference values and example notebooks as a starting point.

SageMaker model parallelism library v2 3681

Amazon SageMaker Developer Guide

Adapt your PyTorch training script

Follow the instructions at Step 1: Modify a PyTorch Training Script to wrap the model and
optimizer objects with the smdistributed.modelparallel.torch wrappers of the
torch.nn.parallel and torch.distributed modules.

(Optional) Additional modification to register external model parameters

If your model is built with torch.nn.Module and uses parameters that is not defined within
the module class, you should register them to the module manually for SMP to gather the full
parameters while . To register parameters to a module, use smp.register_parameter(module,
parameter).

class Module(torch.nn.Module):
 def __init__(self, *args):
 super().__init__(self, *args)
 self.layer1 = Layer1()
 self.layer2 = Layer2()
 smp.register_parameter(self, self.layer1.weight)

 def forward(self, input):
 x = self.layer1(input)
 # self.layer1.weight is required by self.layer2.forward
 y = self.layer2(x, self.layer1.weight)
 return y

Set up the SageMaker PyTorch estimator

When configuring a SageMaker PyTorch estimator in the section called “Step 2: Launch a Training
Job”, add the parameters for sharded data parallelism.

To turn on sharded data parallelism, add the sharded_data_parallel_degree parameter to
the SageMaker PyTorch Estimator. This parameter specifies the number of GPUs over which the
training state is sharded. The value for sharded_data_parallel_degree must be an integer
between one and the data parallelism degree and must evenly divide the data parallelism degree.
Note that the library automatically detects the number of GPUs so thus the data parallel degree.
The following additional parameters are available for configuring sharded data parallelism.

• "sdp_reduce_bucket_size" (int, default: 5e8) – Specifies the size of PyTorch DDP gradient
buckets in number of elements of the default dtype.

SageMaker model parallelism library v2 3682

https://pytorch.org/docs/stable/notes/ddp.html#internal-design
https://pytorch.org/docs/stable/notes/ddp.html#internal-design

Amazon SageMaker Developer Guide

• "sdp_param_persistence_threshold" (int, default: 1e6) – Specifies the size of a parameter
tensor in number of elements that can persist at each GPU. Sharded data parallelism splits
each parameter tensor across GPUs of a data parallel group. If the number of elements in the
parameter tensor is smaller than this threshold, the parameter tensor is not split; this helps
reduce communication overhead because the parameter tensor is replicated across data-parallel
GPUs.

• "sdp_max_live_parameters" (int, default: 1e9) – Specifies the maximum number of
parameters that can simultaneously be in a recombined training state during the forward and
backward pass. Parameter fetching with the AllGather operation pauses when the number of
active parameters reaches the given threshold. Note that increasing this parameter increases the
memory footprint.

• "sdp_hierarchical_allgather" (bool, default: True) – If set to True, the AllGather
operation runs hierarchically: it runs within each node first, and then runs across nodes. For
multi-node distributed training jobs, the hierarchical AllGather operation is automatically
activated.

• "sdp_gradient_clipping" (float, default: 1.0) – Specifies a threshold for gradient clipping
the L2 norm of the gradients before propagating them backward through the model parameters.
When sharded data parallelism is activated, gradient clipping is also activated. The default
threshold is 1.0. Adjust this parameter if you have the exploding gradients problem.

The following code shows an example of how to configure sharded data parallelism.

import sagemaker
from sagemaker.pytorch import PyTorch

smp_options = {
 "enabled": True,
 "parameters": {
 # "pipeline_parallel_degree": 1, # Optional, default is 1
 # "tensor_parallel_degree": 1, # Optional, default is 1
 "ddp": True,
 # parameters for sharded data parallelism
 "sharded_data_parallel_degree": 2, # Add this to activate sharded
 data parallelism
 "sdp_reduce_bucket_size": int(5e8), # Optional
 "sdp_param_persistence_threshold": int(1e6), # Optional
 "sdp_max_live_parameters": int(1e9), # Optional
 "sdp_hierarchical_allgather": True, # Optional

SageMaker model parallelism library v2 3683

Amazon SageMaker Developer Guide

 "sdp_gradient_clipping": 1.0 # Optional
 }
}

mpi_options = {
 "enabled" : True, # Required
 "processes_per_host" : 8 # Required
}

smp_estimator = PyTorch(
 entry_point="your_training_script.py", # Specify your train script
 role=sagemaker.get_execution_role(),
 instance_count=1,
 instance_type='ml.p3.16xlarge',
 framework_version='1.13.1',
 py_version='py3',
 distribution={
 "smdistributed": {"modelparallel": smp_options},
 "mpi": mpi_options
 },
 base_job_name="sharded-data-parallel-job"
)

smp_estimator.fit('s3://my_bucket/my_training_data/')

Reference configurations

The SageMaker distributed training team provides the following reference configurations that you
can use as a starting point. You can extrapolate from the following configurations to experiment
and estimate the GPU memory usage for your model configuration.

Sharded data parallelism with SMDDP Collectives

Model/the
number of
parameter
s

Num
instances

Instance
type

Sequence
length

Global
batch size

Mini batch
size

Sharded
data
parallel
degree

GPT-
NEOX-20B

2 ml.p4d.24
xlarge

2048 64 4 16

SageMaker model parallelism library v2 3684

Amazon SageMaker Developer Guide

Model/the
number of
parameter
s

Num
instances

Instance
type

Sequence
length

Global
batch size

Mini batch
size

Sharded
data
parallel
degree

GPT-
NEOX-20B

8 ml.p4d.24
xlarge

2048 768 12 32

For example, if you increase the sequence length for a 20-billion-parameter model or increase
the size of the model to 65 billion parameters, you need to try reducing the batch size first. If the
model still doesn’t fit with the smallest batch size (the batch size of 1), try increasing the degree of
model parallelism.

Sharded data parallelism with tensor parallelism and NCCL Collectives

Model/
the
number
of
parameter
s

Num
instances

Instance
type

Sequence
length

Global
batch
size

Mini
batch
size

Sharded
data
parallel
degree

Tensor
parallel
degree

Activatio
n
offloadin
g

GPT-
NEOX-
65B

64 ml.p4d.24
xlarge

2048 512 8 16 8 Y

GPT-
NEOX-
65B

64 ml.p4d.24
xlarge

4096 512 2 64 2 Y

The combined usage of sharded data parallelism and tensor parallelism is useful when you want
to fit a large language model (LLM) into a large-scale cluster while using text data with a longer
sequence length, which leads to use a smaller batch size, and consequently handling the GPU
memory usage to train LLMs against longer text sequences. To learn more, see the section called
“Sharded data parallelism with tensor parallelism”.

SageMaker model parallelism library v2 3685

Amazon SageMaker Developer Guide

For case studies, benchmarks, and more configuration examples, see the blog post New
performance improvements in Amazon SageMaker model parallel library.

Sharded data parallelism with SMDDP Collectives

The SageMaker data parallelism library offers collective communication primitives (SMDDP
collectives) optimized for the AWS infrastructure. It achieves optimization by adopting an all-to-
all-type communication pattern by making use of Elastic Fabric Adapter (EFA), resulting in high-
throughput and less latency-sensitive collectives, offloading the communication-related processing
to the CPU, and freeing up GPU cycles for computation. On large clusters, SMDDP Collectives can
offer improvements in distributed training performance by up to 40% compared to NCCL. For
case studies and benchmark results, see the blog New performance improvements in the Amazon
SageMaker model parallelism library.

Note

Sharded data parallelism with SMDDP Collectives is available in the SageMaker model
parallelism library v1.13.0 and later, and the SageMaker data parallelism library v1.6.0
and later. See also Supported configurations to use sharded data parallelism with SMDDP
Collectives.

In sharded data parallelism, which is a commonly used technique in large-scale distributed training,
the AllGather collective is used to reconstitute the sharded layer parameters for forward and
backward pass computations, in parallel with GPU computation. For large models, performing the
AllGather operation efficiently is critical to avoid GPU bottleneck problems and slowing down
training speed. When sharded data parallelism is activated, SMDDP Collectives drops into these
performance-critical AllGather collectives, improving training throughput.

Train with SMDDP Collectives

When your training job has sharded data parallelism activated and meets the Supported
configurations, SMDDP Collectives are automatically activated. Internally, SMDDP Collectives
optimize the AllGather collective to be performant on the AWS infrastructure and falls back
to NCCL for all other collectives. Furthermore, under unsupported configurations, all collectives,
including AllGather, automatically use the NCCL backend.

Since the SageMaker model parallelism library version 1.13.0, the "ddp_dist_backend"
parameter is added to the modelparallel options. The default value for this configuration

SageMaker model parallelism library v2 3686

https://aws.amazon.com/blogs/machine-learning/new-performance-improvements-in-amazon-sagemaker-model-parallel-library/
https://aws.amazon.com/blogs/machine-learning/new-performance-improvements-in-amazon-sagemaker-model-parallel-library/
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/blogs/machine-learning/new-performance-improvements-in-amazon-sagemaker-model-parallel-library/
https://aws.amazon.com/blogs/machine-learning/new-performance-improvements-in-amazon-sagemaker-model-parallel-library/

Amazon SageMaker Developer Guide

parameter is "auto", which uses SMDDP Collectives whenever possible, and falls back to NCCL
otherwise. To force the library to always use NCCL, specify "nccl" to the "ddp_dist_backend"
configuration parameter.

The following code example shows how to set up a PyTorch estimator using the sharded data
parallelism with the "ddp_dist_backend" parameter, which is set to "auto" by default and,
therefore, optional to add.

import sagemaker
from sagemaker.pytorch import PyTorch

smp_options = {
 "enabled":True,
 "parameters": {
 "partitions": 1,
 "ddp": True,
 "sharded_data_parallel_degree": 64
 "bf16": True,
 "ddp_dist_backend": "auto" # Specify "nccl" to force to use NCCL.
 }
}

mpi_options = {
 "enabled" : True, # Required
 "processes_per_host" : 8 # Required
}

smd_mp_estimator = PyTorch(
 entry_point="your_training_script.py", # Specify your train script
 source_dir="location_to_your_script",
 role=sagemaker.get_execution_role(),
 instance_count=8,
 instance_type='ml.p4d.24xlarge',
 framework_version='1.13.1',
 py_version='py3',
 distribution={
 "smdistributed": {"modelparallel": smp_options},
 "mpi": mpi_options
 },
 base_job_name="sharded-data-parallel-demo",
)

SageMaker model parallelism library v2 3687

Amazon SageMaker Developer Guide

smd_mp_estimator.fit('s3://my_bucket/my_training_data/')

Supported configurations

The AllGather operation with SMDDP Collectives are activated in training jobs when all the
following configuration requirements are met.

• The sharded data parallelism degree greater than 1

• Instance_count greater than 1

• Instance_type equal to ml.p4d.24xlarge

• SageMaker training container for PyTorch v1.12.1 or later

• The SageMaker data parallelism library v1.6.0 or later

• The SageMaker model parallelism library v1.13.0 or later

Performance and memory tuning

SMDDP Collectives utilize additional GPU memory. There are two environment variables to
configure the GPU memory usage depending on different model training use cases.

• SMDDP_AG_SCRATCH_BUFFER_SIZE_BYTES – During the SMDDP AllGather operation,
the AllGather input buffer is copied into a temporary buffer for inter-node communication.
The SMDDP_AG_SCRATCH_BUFFER_SIZE_BYTES variable controls the size (in bytes) of this
temporary buffer. If the size of the temporary buffer is smaller than the AllGather input buffer
size, the AllGather collective falls back to use NCCL.

• Default value: 16 * 1024 * 1024 (16 MB)

• Acceptable values: any multiple of 8192

• SMDDP_AG_SORT_BUFFER_SIZE_BYTES – The SMDDP_AG_SORT_BUFFER_SIZE_BYTES
variable is to size the temporary buffer (in bytes) to hold data gathered from inter-
node communication. If the size of this temporary buffer is smaller than 1/8 *
sharded_data_parallel_degree * AllGather input size, the AllGather collective
falls back to use NCCL.

• Default value: 128 * 1024 * 1024 (128 MB)

• Acceptable values: any multiple of 8192

SageMaker model parallelism library v2 3688

Amazon SageMaker Developer Guide

Tuning guidance on the buffer size variables

The default values for the environment variables should work well for most use cases. We
recommend tuning these variables only if training runs into the out-of-memory (OOM) error.

The following list discusses some tuning tips to reduce the GPU memory footprint of SMDDP
Collectives while retaining the performance gain from them.

• Tuning SMDDP_AG_SCRATCH_BUFFER_SIZE_BYTES

• The AllGather input buffer size is smaller for smaller models. Hence, the required size
for SMDDP_AG_SCRATCH_BUFFER_SIZE_BYTES can be smaller for models with fewer
parameters.

• The AllGather input buffer size decreases as sharded_data_parallel_degree
increases, because the model gets sharded across more GPUs. Hence, the required size for
SMDDP_AG_SCRATCH_BUFFER_SIZE_BYTES can be smaller for training jobs with large values
for sharded_data_parallel_degree.

• Tuning SMDDP_AG_SORT_BUFFER_SIZE_BYTES

• The amount of data gathered from inter-node communication is less for models with fewer
parameters. Hence, the required size for SMDDP_AG_SORT_BUFFER_SIZE_BYTES can be
smaller for such models with fewer number of parameters.

Some collectives might fall back to use NCCL; hence, you might not get the performance
gain from the optimized SMDDP collectives. If additional GPU memory is available for use,
you can consider increasing the values of SMDDP_AG_SCRATCH_BUFFER_SIZE_BYTES and
SMDDP_AG_SORT_BUFFER_SIZE_BYTES to benefit from the performance gain.

The following code shows how you can configure the environment variables by appending them to
mpi_options in the distribution parameter for the PyTorch estimator.

import sagemaker
from sagemaker.pytorch import PyTorch

smp_options = {
 # All modelparallel configuration options go here
}

mpi_options = {
 "enabled" : True, # Required
 "processes_per_host" : 8 # Required

SageMaker model parallelism library v2 3689

Amazon SageMaker Developer Guide

}

Use the following two lines to tune values of the environment variables for buffer
mpioptions += " -x SMDDP_AG_SCRATCH_BUFFER_SIZE_BYTES=8192"
mpioptions += " -x SMDDP_AG_SORT_BUFFER_SIZE_BYTES=8192"

smd_mp_estimator = PyTorch(
 entry_point="your_training_script.py", # Specify your train script
 source_dir="location_to_your_script",
 role=sagemaker.get_execution_role(),
 instance_count=8,
 instance_type='ml.p4d.24xlarge',
 framework_version='1.13.1',
 py_version='py3',
 distribution={
 "smdistributed": {"modelparallel": smp_options},
 "mpi": mpi_options
 },
 base_job_name="sharded-data-parallel-demo-with-tuning",
)

smd_mp_estimator.fit('s3://my_bucket/my_training_data/')

Mixed precision training with sharded data parallelism

To further save GPU memory with half-precision floating point numbers and sharded data
parallelism, you can activate 16-bit floating point format (FP16) or Brain floating point format
(BF16) by adding one additional parameter to the distributed training configuration.

Note

Mixed precision training with sharded data parallelism is available in the SageMaker model
parallelism library v1.11.0 and later.

For FP16 Training with Sharded Data Parallelism

To run FP16 training with sharded data parallelism, add "fp16": True" to the smp_options
configuration dictionary. In your training script, you can choose between the static and dynamic
loss scaling options through the smp.DistributedOptimizer module. For more information,
see the section called “FP16 Training with Model Parallelism”.

SageMaker model parallelism library v2 3690

https://en.wikichip.org/wiki/brain_floating-point_format

Amazon SageMaker Developer Guide

smp_options = {
 "enabled": True,
 "parameters": {
 "ddp": True,
 "sharded_data_parallel_degree": 2,
 "fp16": True
 }
}

For BF16 Training with Sharded Data Parallelism

The sharded data parallelism feature of SageMaker supports training in BF16 data type. The BF16
data type uses 8 bits to represent the exponent of a floating point number, while the FP16 data
type uses 5 bits. Preserving the 8 bits for the exponent allows to keep the same representation of
the exponent of a 32-bit single precision floating point (FP32) number. This makes the conversion
between FP32 and BF16 simpler and significantly less prone to cause overflow and underflow
issues that arise often in FP16 training, especially when training larger models. While both data
types use 16 bits in total, this increased representation range for the exponent in the BF16 format
comes at the expense of reduced precision. For training large models, this reduced precision is
often considered an acceptable trade-off for the range and training stability.

Note

Currently, BF16 training works only when sharded data parallelism is activated.

To run BF16 training with sharded data parallelism, add "bf16": True to the smp_options
configuration dictionary.

smp_options = {
 "enabled": True,
 "parameters": {
 "ddp": True,
 "sharded_data_parallel_degree": 2,
 "bf16": True
 }
}

SageMaker model parallelism library v2 3691

Amazon SageMaker Developer Guide

Sharded data parallelism with tensor parallelism

If you use sharded data parallelism and also need to reduce the global batch size, consider using
tensor parallelism with sharded data parallelism. When training a large model with sharded data
parallelism on a very large compute cluster (typically 128 nodes or beyond), even a small batch
size per GPU results in a very large global batch size. It might lead to convergence issues or low
computational performance issues. Reducing the batch size per GPU sometimes is not possible
with sharded data parallelism alone when a single batch is already large and cannot be reduced
further. In such cases, using sharded data parallelism in combination with tensor parallelism helps
reduce the global batch size.

Choosing the optimal sharded data parallel and tensor parallel degrees depends on the scale of the
model, the instance type, and the global batch size that is reasonable for the model to converge.
We recommend that you start from a low tensor parallel degree to fit the global batch size into
the compute cluster to resolve CUDA out-of-memory errors and achieve the best performance. See
the following two example cases to learn how the combination of tensor parallelism and sharded
data parallelism helps you adjust the global batch size by grouping GPUs for model parallelism,
resulting in a lower number of model replicas and a smaller global batch size.

Note

This feature is available from the SageMaker model parallelism library v1.15, and supports
PyTorch v1.13.1.

Note

This feature is available for the supported models by the tensor parallelism functionality
of the library. To find the list of the supported models, see Support for Hugging Face
Transformer Models. Also note that you need to pass tensor_parallelism=True to the
smp.model_creation argument while modifying your training script. To learn more, see
the training script train_gpt_simple.py in the SageMaker Examples GitHub repository.

Example 1

Assume that we want to train a model over a cluster of 1536 GPUs (192 nodes
with 8 GPUs in each), setting the degree of sharded data parallelism to 32

SageMaker model parallelism library v2 3692

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-tensor-parallelism.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-hugging-face.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-hugging-face.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt2/train_gpt_simple.py#L793

Amazon SageMaker Developer Guide

(sharded_data_parallel_degree=32) and the batch size per GPU to 1, where each batch has
a sequence length of 4096 tokens. In this case, there are 1536 model replicas, the global batch size
becomes 1536, and each global batch contains about 6 million tokens.

(1536 GPUs) * (1 batch per GPU) = (1536 global batches)
(1536 batches) * (4096 tokens per batch) = (6,291,456 tokens)

Adding tensor parallelism to it can lower the global batch size. One configuration example can
be setting the tensor parallel degree to 8 and the batch size per GPU to 4. This forms 192 tensor
parallel groups or 192 model replicas, where each model replica is distributed across 8 GPUs. The
batch size of 4 is the amount of training data per iteration and per tensor parallel group; that is,
each model replica consumes 4 batches per iteration. In this case, the global batch size becomes
768, and each global batch contains about 3 million tokens. Hence, the global batch size is reduced
by half compared to the previous case with sharded data parallelism only.

(1536 GPUs) / (8 tensor parallel degree) = (192 tensor parallelism groups)
(192 tensor parallelism groups) * (4 batches per tensor parallelism group) = (768
 global batches)
(768 batches) * (4096 tokens per batch) = (3,145,728 tokens)

Example 2

When both sharded data parallelism and tensor parallelism are activated, the library first applies
tensor parallelism and shards the model across this dimension. For each tensor parallel rank, the
data parallelism is applied as per sharded_data_parallel_degree.

For example, assume that we want to set 32 GPUs with a tensor parallel degree of 4 (forming
groups of 4 GPUs), a sharded data parallel degree of 4, ending up with a replication degree of
2. The assignment creates eight GPU groups based on the tensor parallel degree as follows:
(0,1,2,3), (4,5,6,7), (8,9,10,11), (12,13,14,15), (16,17,18,19), (20,21,22,23),
(24,25,26,27), (28,29,30,31). That is, four GPUs form one tensor parallel group. In this
case, the reduced data parallel group for the 0th rank GPUs of the tensor parallel groups would
be (0,4,8,12,16,20,24,28). The reduced data parallel group is sharded based on the
sharded data parallel degree of 4, resulting in two replication groups for data parallelism. GPUs
(0,4,8,12) form one sharding group, which collectively hold a complete copy of all parameters
for the 0th tensor parallel rank, and GPUs (16,20,24,28) form another such group. Other tensor
parallel ranks also have similar sharding and replication groups.

SageMaker model parallelism library v2 3693

Amazon SageMaker Developer Guide

Figure 1: Tensor parallelism groups for (nodes, sharded data parallel degree, tensor parallel degree)
= (4, 4, 4), where each rectangle represents a GPU with indices from 0 to 31. The GPUs form tensor
parallelism groups from TPG0 to TPG7. Replication groups are ({TPG0, TPG4}, {TPG1, TPG5}, {TPG2,
TPG6} and {TPG3, TPG7}); each replication group pair shares the same color but filled differently.

Figure 2: Sharded data parallelism groups for (nodes, sharded data parallel degree, tensor parallel
degree) = (4, 4, 4), where each rectangle represents a GPU with indices from 0 to 31. The GPUs
form sharded data parallelism groups from SDPG0 to SDPG7. Replication groups are ({SDPG0,
SDPG4}, {SDPG1, SDPG5}, {SDPG2, SDPG6} and {SDPG3, SDPG7}); each replication group pair shares
the same color but filled differently.

How to activate sharded data parallelism with tensor parallelism

To use sharded data parallelism with tensor parallelism, you need to set both
sharded_data_parallel_degree and tensor_parallel_degree in the configuration for
distribution while creating an object of the SageMaker PyTorch estimator class.

SageMaker model parallelism library v2 3694

Amazon SageMaker Developer Guide

You also need to activate prescaled_batch. This means that, instead of each GPU reading its
own batch of data, each tensor parallel group collectively reads a combined batch of the chosen
batch size. Effectively, instead of dividing the dataset into parts equal to the number of GPUs (or
data parallel size, smp.dp_size()), it divides into parts equal to the number of GPUs divided by
tensor_parallel_degree (also called reduced data parallel size, smp.rdp_size()). For more
details on prescaled batch, see Prescaled Batch in the SageMaker Python SDK documentation. See
also the example training script train_gpt_simple.py for GPT-2 in the SageMaker Examples
GitHub repository.

The following code snippet shows an example of creating a PyTorch estimator object based on the
aforementioned scenario in the section called “Example 2”.

mpi_options = "-verbose --mca orte_base_help_aggregate 0 "
smp_parameters = {
 "ddp": True,
 "fp16": True,
 "prescaled_batch": True,
 "sharded_data_parallel_degree": 4,
 "tensor_parallel_degree": 4
}

pytorch_estimator = PyTorch(
 entry_point="your_training_script.py",
 role=role,
 instance_type="ml.p4d.24xlarge",
 volume_size=200,
 instance_count=4,
 sagemaker_session=sagemaker_session,
 py_version="py3",
 framework_version="1.13.1",
 distribution={
 "smdistributed": {
 "modelparallel": {
 "enabled": True,
 "parameters": smp_parameters,
 }
 },
 "mpi": {
 "enabled": True,
 "processes_per_host": 8,
 "custom_mpi_options": mpi_options,
 },

SageMaker model parallelism library v2 3695

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#prescaled-batch
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt2/train_gpt_simple.py#L164

Amazon SageMaker Developer Guide

 },
 source_dir="source_directory_of_your_code",
 output_path=s3_output_location
)

Tips and considerations for using sharded data parallelism

Consider the following when using the SageMaker model parallelism library's sharded data
parallelism.

• Sharded data parallelism is compatible with FP16 training. To run FP16 training, see the the
section called “FP16 Training with Model Parallelism” section.

• Sharded data parallelism is compatible with tensor parallelism. The following items are what you
might need to consider for using sharded data parallelism with tensor parallelism.

• When using sharded data parallelism with tensor parallelism, the embedding layers
are also automatically distributed across the tensor parallel group. In other words, the
distribute_embedding parameter is automatically set to True. For more information
about tensor parallelism, see the section called “Tensor Parallelism”.

• Note that sharded data parallelism with tensor parallelism currently uses the NCCL collectives
as the backend of the distributed training strategy.

To learn more, see the the section called “Sharded data parallelism with tensor parallelism”
section.

• Sharded data parallelism currently is not compatible with pipeline parallelism or optimizer state
sharding. To activate sharded data parallelism, turn off optimizer state sharding and set the
pipeline parallel degree to 1.

• The activation checkpointing and activation offloading features are compatible with sharded
data parallelism.

• To use sharded data parallelism with gradient accumulation, set the
backward_passes_per_step argument to the number of accumulation steps while wrapping
your model with the smdistributed.modelparallel.torch.DistributedModel module.
This ensures that the gradient AllReduce operation across the model replication groups
(sharding groups) takes place at the boundary of gradient accumulation.

• You can checkpoint your models trained with sharded data parallelism using the library's
checkpointing APIs, smp.save_checkpoint and smp.resume_from_checkpoint. For
more information, see the section called “Checkpointing a distributed PyTorch model (for the
SageMaker model parallelism library v1.10.0 and later)”.

SageMaker model parallelism library v2 3696

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.DistributedModel

Amazon SageMaker Developer Guide

• The behavior of the delayed_parameter_initialization configuration parameter
changes under sharded data parallelism. When these two features are simultaneously turned
on, parameters are immediately initialized upon model creation in a sharded manner instead
of delaying the parameter initialization, so that each rank initializes and stores its own shard of
parameters.

• When sharded data parallelism is activated, the library performs gradient clipping internally
when the optimizer.step() call runs. You don't need to use utility APIs for gradient clipping,
such as torch.nn.utils.clip_grad_norm_(). To adjust the threshold value for gradient
clipping, you can set it through the sdp_gradient_clipping parameter for the distribution
parameter configuration when you construct the SageMaker PyTorch estimator, as shown in the
the section called “How to apply sharded data parallelism to your training job” section.

Pipelining a Model

One of the core features of SageMaker's model parallelism library is pipeline parallelism, which
determines the order in which computations are made and data is processed across devices during
model training. Pipelining is a technique to achieve true parallelization in model parallelism,
by having the GPUs compute simultaneously on different data samples, and to overcome the
performance loss due to sequential computation. When you use pipeline parallelism, training job is
executed in a pipelined fashion over microbatches to maximize GPU usage.

Note

Pipeline parallelism, also called model partitioning, is available for both PyTorch and
TensorFlow. For supported versions of the frameworks, see the section called “Supported
Frameworks and AWS Regions”.

Pipeline Execution Schedule

Pipelining is based on splitting a mini-batch into microbatches, which are fed into the training
pipeline one-by-one and follow an execution schedule defined by the library runtime. A microbatch
is a smaller subset of a given training mini-batch. The pipeline schedule determines which
microbatch is executed by which device for every time slot.

For example, depending on the pipeline schedule and the model partition, GPU i might perform
(forward or backward) computation on microbatch b while GPU i+1 performs computation on

SageMaker model parallelism library v2 3697

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.delay_param_initialization
https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html

Amazon SageMaker Developer Guide

microbatch b+1, thereby keeping both GPUs active at the same time. During a single forward or
backward pass, execution flow for a single microbatch might visit the same device multiple times,
depending on the partitioning decision. For instance, an operation that is at the beginning of the
model might be placed on the same device as an operation at the end of the model, while the
operations in between are on different devices, which means this device is visited twice.

The library offers two different pipeline schedules, simple and interleaved, which can be configured
using the pipeline parameter in the SageMaker Python SDK. In most cases, interleaved pipeline
can achieve better performance by utilizing the GPUs more efficiently.

Interleaved Pipeline

In an interleaved pipeline, backward execution of the microbatches is prioritized whenever
possible. This allows quicker release of the memory used for activations, using memory more
efficiently. It also allows for scaling the number of microbatches higher, reducing the idle time of
the GPUs. At steady-state, each device alternates between running forward and backward passes.
This means that the backward pass of one microbatch may run before the forward pass of another
microbatch finishes.

The preceding figure illustrates an example execution schedule for the interleaved pipeline over
2 GPUs. In the figure, F0 represents the forward pass for microbatch 0, and B1 represents the
backward pass for microbatch 1. Update represents the optimizer update of the parameters. GPU0
always prioritizes backward passes whenever possible (for instance, executes B0 before F2), which
allows for clearing of the memory used for activations earlier.

Simple Pipeline

A simple pipeline, by contrast, finishes running the forward pass for each microbatch before
starting the backward pass. This means that it only pipelines the forward pass and backward pass
stages within themselves. The following figure illustrates an example of how this works, over 2
GPUs.

SageMaker model parallelism library v2 3698

Amazon SageMaker Developer Guide

Pipelining Execution in Specific Frameworks

Use the following sections to learn about the framework-specific pipeline scheduling decisions
SageMaker's model parallelism library makes for TensorFlow and PyTorch.

Pipeline Execution with TensorFlow

The following image is an example of a TensorFlow graph partitioned by the model parallelism
library, using automated model splitting. When a graph is split, each resulting subgraph is
replicated B times (except for the variables), where B is the number of microbatches. In this figure,
each subgraph is replicated 2 times (B=2). An SMPInput operation is inserted at each input of a
subgraph, and an SMPOutput operation is inserted at each output. These operations communicate
with the library backend to transfer tensors to and from each other.

The following image is an example of 2 subgraphs split with B=2 with gradient operations added.
The gradient of a SMPInput op is a SMPOutput op, and vice versa. This enables the gradients to
flow backwards during back-propagation.

SageMaker model parallelism library v2 3699

Amazon SageMaker Developer Guide

This GIF demonstrates an example interleaved pipeline execution schedule with B=2 microbatches
and 2 subgraphs. Each device sequentially executes one of the subgraph replicas to improve GPU
utilization. As B grows larger, the fraction of idle time slots goes to zero. Whenever it is time to do
(forward or backward) computation on a specific subgraph replica, the pipeline layer signals to the
corresponding blue SMPInput operations to start executing.

Once the gradients from all microbatches in a single mini-batch are computed, the library
combines the gradients across microbatches, which can then be applied to the parameters.

Pipeline Execution with PyTorch

Conceptually, pipelining follows a similar idea in PyTorch. However, since PyTorch does not involve
static graphs and so the model parallelism library's PyTorch feature uses a more dynamic pipelining
paradigm.

As in TensorFlow, each batch is split into a number of microbatches, which are executed one at a
time on each device. However, the execution schedule is handled via execution servers launched on
each device. Whenever the output of a submodule that is placed on another device is needed on
the current device, an execution request is sent to the execution server of the remote device along
with the input tensors to the submodule. The server then executes this module with the given
inputs and returns the response to the current device.

Since the current device is idle during the remote submodule execution, the local execution for
the current microbatch pauses, and the library runtime switches execution to another microbatch

SageMaker model parallelism library v2 3700

Amazon SageMaker Developer Guide

which the current device can actively work on. The prioritization of microbatches is determined by
the chosen pipeline schedule. For an interleaved pipeline schedule, microbatches that are in the
backward stage of the computation are prioritized whenever possible.

Tensor Parallelism

Tensor parallelism is a type of model parallelism in which specific model weights, gradients, and
optimizer states are split across devices. In contrast to pipeline parallelism, which keeps individual
weights intact but partitions the set of weights, tensor parallelism splits individual weights. This
typically involves distributed computation of specific operations, modules, or layers of the model.

Tensor parallelism is required in cases in which a single parameter consumes most of the GPU
memory (such as large embedding tables with a large vocabulary size or a large softmax layer with
a large number of classes). In this case, treating this large tensor or operation as an atomic unit is
inefficient and impedes balance of the memory load.

Tensor parallelism is also useful for extremely large models in which a pure pipelining is simply
not enough. For example, with GPT-3-scale models that require partitioning over tens of instances,
a pure microbatch pipelining is inefficient because the pipeline depth becomes too high and the
overhead becomes prohibitively large.

Note

Tensor parallelism is available for PyTorch in the SageMaker model parallelism library
v1.6.0 and later.

Topics

• How Tensor Parallelism Works

• Run a SageMaker Distributed Model Parallel Training Job with Tensor Parallelism

• Support for Hugging Face Transformer Models

• Ranking Mechanism when Using a Combination of Pipeline Parallelism and Tensor Parallelism

How Tensor Parallelism Works

Tensor parallelism takes place at the level of nn.Modules; it partitions specific modules in the
model across tensor parallel ranks. This is in addition to the existing partition of the set of modules
used in pipeline parallelism.

SageMaker model parallelism library v2 3701

Amazon SageMaker Developer Guide

When a module is partitioned through tensor parallelism, its forward and backward propagation
are distributed. The library handles the necessary communication across devices to implement
the distributed execution of these modules. The modules are partitioned across multiple data
parallel ranks. Contrary to the traditional distribution of workloads, each data parallel rank does
not have the complete model replica when the library’s tensor parallelism is used. Instead, each
data parallel rank may have only a partition of the distributed modules, in addition to the entirety
of the modules that are not distributed.

Example: Consider tensor parallelism across data parallel ranks, where the degree of data
parallelism is 4 and the degree of tensor parallelism is 2. Assume that you have a data parallel
group that holds the following module tree, after partitioning the set of modules.

A
B
| ### E
| ### F
C
D
 ### G
 ### H

Assume that tensor parallelism is supported for the modules B, G, and H. One possible outcome of
tensor parallel partition of this model could be:

dp_rank 0 (tensor parallel rank 0): A, B:0, C, D, G:0, H
dp_rank 1 (tensor parallel rank 1): A, B:1, C, D, G:1, H
dp_rank 2 (tensor parallel rank 0): A, B:0, C, D, G:0, H
dp_rank 3 (tensor parallel rank 1): A, B:1, C, D, G:1, H

Each line represents the set of modules stored in that dp_rank, and the notation X:y represents
the yth fraction of the module X. Note the following:

1. Partitioning takes place across subsets of data parallel ranks, which we call TP_GROUP, not the
entire DP_GROUP, so that the exact model partition is replicated across dp_rank 0 and dp_rank
2, and similarly across dp_rank 1 and dp_rank 3.

2. The modules E and F are no longer part of the model, since their parent module B is partitioned,
and any execution that is normally a part of E and F takes place within the (partitioned) B
module.

SageMaker model parallelism library v2 3702

Amazon SageMaker Developer Guide

3. Even though H is supported for tensor parallelism, in this example it is not partitioned, which
highlights that whether to partition a module depends on user input. The fact that a module is
supported for tensor parallelism does not necessarily mean it is partitioned.

How the library adapts tensor parallelism to PyTorch nn.Linear module

When tensor parallelism is performed over data parallel ranks, a subset of the parameters,
gradients, and optimizer states are partitioned across the tensor parallel devices for the modules
that are partitioned. For the rest of the modules, the tensor parallel devices operate in a regular
data parallel manner. To execute the partitioned module, a device first collects the necessary parts
of all data samples across peer devices in the same tensor parallelism group. The device then
runs the local fraction of the module on all these data samples, followed by another round of
synchronization which both combines the parts of the output for each data sample and returns the
combined data samples to the GPUs from which the data sample first originated. The following
figure shows an example of this process over a partitioned nn.Linear module.

SageMaker model parallelism library v2 3703

Amazon SageMaker Developer Guide

The first figure shows a small model with a large nn.Linear module with data parallelism over
the two tensor parallelism ranks. The nn.Linear module is replicated into the two parallel ranks.

The second figure shows tensor parallelism applied on a larger model while splitting the
nn.Linear module. Each tp_rank holds half the linear module, and the entirety of the rest of
the operations. While the linear module runs, each tp_rank collects the relevant half of all data
samples and passes it through their half of the nn.Linear module. The result needs to be reduce-
scattered (with summation as the reduction operation) so that each rank has the final linear output
for their own data samples. The rest of the model runs in the typical data parallel manner.

Run a SageMaker Distributed Model Parallel Training Job with Tensor Parallelism

In this section, you learn:

• How to configure a SageMaker PyTorch estimator and the SageMaker model parallelism option
to use tensor parallelism.

• How to adapt your training script using the extended smdistributed.modelparallel
modules for tensor parallelism.

To learn more about the smdistributed.modelparallel modules, see the SageMaker model
parallel APIs in the SageMaker Python SDK documentation.

Topics

• Tensor parallelism alone

• Tensor parallelism combined with pipeline parallelism

Tensor parallelism alone

The following is an example of a distributed training option to activate tensor parallelism alone,
without pipeline parallelism. Configure the mpi_options and smp_options dictionaries to
specify distributed training options to the SageMaker PyTorch estimator.

Note

Extended memory-saving features are available through Deep Learning Containers for
PyTorch, which implements the SageMaker model parallelism library v1.6.0 or later.

SageMaker model parallelism library v2 3704

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html

Amazon SageMaker Developer Guide

Configure a SageMaker PyTorch estimator

mpi_options = {
 "enabled" : True,
 "processes_per_host" : 8, # 8 processes
 "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none "
}

smp_options = {
 "enabled":True,
 "parameters": {
 "pipeline_parallel_degree": 1, # alias for "partitions"
 "placement_strategy": "cluster",
 "tensor_parallel_degree": 4, # tp over 4 devices
 "ddp": True
 }
}

smp_estimator = PyTorch(
 entry_point='your_training_script.py', # Specify
 role=role,
 instance_type='ml.p3.16xlarge',
 sagemaker_session=sagemaker_session,
 framework_version='1.13.1',
 py_version='py36',
 instance_count=1,
 distribution={
 "smdistributed": {"modelparallel": smp_options},
 "mpi": mpi_options
 },
 base_job_name="SMD-MP-demo",
)

smp_estimator.fit('s3://my_bucket/my_training_data/')

Tip

To find a complete list of parameters for distribution, see Configuration Parameters for
Model Parallelism in the SageMaker Python SDK documentation.

Adapt your PyTorch training script

SageMaker model parallelism library v2 3705

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html

Amazon SageMaker Developer Guide

The following example training script shows how to adapt the SageMaker model
parallelism library to a training script. In this example, it is assumed that the script is
named your_training_script.py.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchnet.dataset import SplitDataset
from torchvision import datasets

import smdistributed.modelparallel.torch as smp

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.fc2(x)
 return F.log_softmax(x, 1)

def train(model, device, train_loader, optimizer):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 # smdistributed: Move input tensors to the GPU ID used by
 # the current process, based on the set_device call.
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.nll_loss(output, target, reduction="mean")
 loss.backward()

SageMaker model parallelism library v2 3706

Amazon SageMaker Developer Guide

 optimizer.step()

smdistributed: Initialize the backend
smp.init()

smdistributed: Set the device to the GPU ID used by the current process.
Input tensors should be transferred to this device.
torch.cuda.set_device(smp.local_rank())
device = torch.device("cuda")

smdistributed: Download only on a single process per instance.
When this is not present, the file is corrupted by multiple processes trying
to download and extract at the same time
if smp.local_rank() == 0:
 dataset = datasets.MNIST("../data", train=True, download=False)
smp.barrier()

smdistributed: Shard the dataset based on data parallel ranks
if smp.dp_size() > 1:
 partitions_dict = {f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size())}
 dataset = SplitDataset(dataset, partitions=partitions_dict)
 dataset.select(f"{smp.dp_rank()}")

train_loader = torch.utils.data.DataLoader(dataset, batch_size=64)

smdistributed: Enable tensor parallelism for all supported modules in the model
i.e., nn.Linear in this case. Alternatively, we can use
smp.set_tensor_parallelism(model.fc1, True)
to enable it only for model.fc1
with smp.tensor_parallelism():
 model = Net()

smdistributed: Use the DistributedModel wrapper to distribute the
modules for which tensor parallelism is enabled
model = smp.DistributedModel(model)

optimizer = optim.AdaDelta(model.parameters(), lr=4.0)
optimizer = smp.DistributedOptimizer(optimizer)

train(model, device, train_loader, optimizer)

SageMaker model parallelism library v2 3707

Amazon SageMaker Developer Guide

Tensor parallelism combined with pipeline parallelism

The following is an example of a distributed training option that enables tensor parallelism
combined with pipeline parallelism. Set up the mpi_options and smp_options parameters to
specify model parallel options with tensor parallelism when you configure a SageMaker PyTorch
estimator.

Note

Extended memory-saving features are available through Deep Learning Containers for
PyTorch, which implements the SageMaker model parallelism library v1.6.0 or later.

Configure a SageMaker PyTorch estimator

mpi_options = {
 "enabled" : True,
 "processes_per_host" : 8, # 8 processes
 "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none "
}

smp_options = {
 "enabled":True,
 "parameters": {
 "microbatches": 4,
 "pipeline_parallel_degree": 2, # alias for "partitions"
 "placement_strategy": "cluster",
 "tensor_parallel_degree": 2, # tp over 2 devices
 "ddp": True
 }
}

smp_estimator = PyTorch(
 entry_point='your_training_script.py', # Specify
 role=role,
 instance_type='ml.p3.16xlarge',
 sagemaker_session=sagemaker_session,
 framework_version='1.13.1',
 py_version='py36',
 instance_count=1,
 distribution={
 "smdistributed": {"modelparallel": smp_options},

SageMaker model parallelism library v2 3708

Amazon SageMaker Developer Guide

 "mpi": mpi_options
 },
 base_job_name="SMD-MP-demo",
)

smp_estimator.fit('s3://my_bucket/my_training_data/')

Adapt your PyTorch training script

The following example training script shows how to adapt the SageMaker model parallelism library
to a training script. Note that the training script now includes the smp.step decorator:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchnet.dataset import SplitDataset
from torchvision import datasets

import smdistributed.modelparallel.torch as smp

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.fc2(x)
 return F.log_softmax(x, 1)

smdistributed: Define smp.step. Return any tensors needed outside.

SageMaker model parallelism library v2 3709

Amazon SageMaker Developer Guide

@smp.step
def train_step(model, data, target):
 output = model(data)
 loss = F.nll_loss(output, target, reduction="mean")
 model.backward(loss)
 return output, loss

def train(model, device, train_loader, optimizer):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 # smdistributed: Move input tensors to the GPU ID used by
 # the current process, based on the set_device call.
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 # Return value, loss_mb is a StepOutput object
 _, loss_mb = train_step(model, data, target)

 # smdistributed: Average the loss across microbatches.
 loss = loss_mb.reduce_mean()

 optimizer.step()

smdistributed: Initialize the backend
smp.init()

smdistributed: Set the device to the GPU ID used by the current process.
Input tensors should be transferred to this device.
torch.cuda.set_device(smp.local_rank())
device = torch.device("cuda")

smdistributed: Download only on a single process per instance.
When this is not present, the file is corrupted by multiple processes trying
to download and extract at the same time
if smp.local_rank() == 0:
 dataset = datasets.MNIST("../data", train=True, download=False)
smp.barrier()

smdistributed: Shard the dataset based on data parallel ranks
if smp.dp_size() > 1:
 partitions_dict = {f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size())}
 dataset = SplitDataset(dataset, partitions=partitions_dict)
 dataset.select(f"{smp.dp_rank()}")

smdistributed: Set drop_last=True to ensure that batch size is always divisible

SageMaker model parallelism library v2 3710

Amazon SageMaker Developer Guide

by the number of microbatches
train_loader = torch.utils.data.DataLoader(dataset, batch_size=64, drop_last=True)

model = Net()

smdistributed: enable tensor parallelism only for model.fc1
smp.set_tensor_parallelism(model.fc1, True)

smdistributed: Use the DistributedModel container to provide the model
to be partitioned across different ranks. For the rest of the script,
the returned DistributedModel object should be used in place of
the model provided for DistributedModel class instantiation.
model = smp.DistributedModel(model)

optimizer = optim.AdaDelta(model.parameters(), lr=4.0)
optimizer = smp.DistributedOptimizer(optimizer)

train(model, device, train_loader, optimizer)

Support for Hugging Face Transformer Models

The SageMaker model parallelism library's tensor parallelism offers out-of-the-box support for the
following Hugging Face Transformer models:

• GPT-2, BERT, and RoBERTa (Available in the SageMaker model parallelism library v1.7.0 and
later)

• GPT-J (Available in the SageMaker model parallelism library v1.8.0 and later)

• GPT-Neo (Available in the SageMaker model parallelism library v1.10.0 and later)

Note

For any other Transformers models, you need to use the
smdistributed.modelparallel.torch.tp_register_with_module() API to apply tensor
parallelism.

Note

To use tensor parallelism for training Hugging Face Transformer models, make sure you
use Hugging Face Deep Learning Containers for PyTorch that has the SageMaker model

SageMaker model parallelism library v2 3711

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch_tensor_parallel.html#smdistributed.modelparallel.torch.tp_register_with_module

Amazon SageMaker Developer Guide

parallelism library v1.7.0 and later. For more information, see the SageMaker model
parallelism library release notes.

Supported Models Out of the Box

For the Hugging Face transformer models supported by the library out of the box, you
don't need to manually implement hooks to translate Transformer APIs to smdistributed
transformer layers. You can activate tensor parallelism by using the context manager
smdistributed.modelparallel.torch.tensor_parallelism() and wrapping the model by
smdistributed.modelparallel.torch.DistributedModel(). You don't need to manually register hooks
for tensor parallelism using the smp.tp_register API.

The state_dict translation functions between Hugging Face Transformers and
smdistributed.modelparallel can be accessed as follows.

• smdistributed.modelparallel.torch.nn.huggingface.gpt2.translate_state_dict_to_hf_gpt2(state_dict,
max_seq_len=None)

• smdistributed.modelparallel.torch.nn.huggingface.gpt2.translate_hf_state_dict_to_smdistributed_gpt2(state_dict)

• smdistributed.modelparallel.torch.nn.huggingface.bert.translate_state_dict_to_hf_bert(state_dict,
max_seq_len=None)

• smdistributed.modelparallel.torch.nn.huggingface.bert.translate_hf_state_dict_to_smdistributed_bert(state_dict)

• smdistributed.modelparallel.torch.nn.huggingface.roberta.translate_state_dict_to_hf_roberta(state_dict,
max_seq_len=None)

• smdistributed.modelparallel.torch.nn.huggingface.roberta.translate_hf_state_dict_to_smdistributed_roberta(state_dict)

• smdistributed.modelparallel.torch.nn.huggingface.gptj.translate_state_dict_to_hf_gptj(state_dict,
max_seq_len=None) (Available in the SageMaker model parallelism library v1.8.0 and later)

• smdistributed.modelparallel.torch.nn.huggingface.gptj.translate_hf_gptj_state_dict_to_smdistributed_gptj
(Available in the SageMaker model parallelism library v1.8.0 and later)

• smdistributed.modelparallel.torch.nn.huggingface.gptneo.translate_state_dict_to_hf_gptneo(state_dict,
max_seq_len=None) (Available in the SageMaker model parallelism library v1.10.0 and later)

• smdistributed.modelparallel.torch.nn.huggingface.gptneo.translate_hf_state_dict_to_smdistributed_gptneo(state_dict)
(Available in the SageMaker model parallelism library v1.10.0 and later)

Example usage of the GPT-2 translation function

SageMaker model parallelism library v2 3712

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch_tensor_parallel.html#smdistributed.modelparallel.torch.tensor_parallelism
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.DistributedModel

Amazon SageMaker Developer Guide

Start with wrapping the model as shown in the following code.

from transformers import AutoModelForCausalLM

with smp.tensor_parallelism():
 model = AutoModelForCausalLM.from_config(hf_gpt2_config)

model = smp.DistributedModel(model)

Given a state_dict from the DistributedModel object, you can load the weights into the
original Hugging Face GPT-2 model using the translate_state_dict_to_hf_gpt2 function as
shown in the following code.

from smdistributed.modelparallel.torch.nn.huggingface.gpt2 \
 import translate_state_dict_to_hf_gpt2
max_seq_len = 1024

[... code block for training ...]

if smp.rdp_rank() == 0:
 state_dict = dist_model.state_dict()
 hf_state_dict = translate_state_dict_to_hf_gpt2(state_dict, max_seq_len)

 # can now call model.load_state_dict(hf_state_dict) to the original HF model

Example usage of the RoBERTa translation function

Similarly, given a supported HuggingFace model state_dict, you can use the
translate_hf_state_dict_to_smdistributed function to convert it to a format readable
by smp.DistributedModel. This can be useful in transfer learning use cases, where a pre-trained
model is loaded into a smp.DistributedModel for model-parallel fine-tuning:

from smdistributed.modelparallel.torch.nn.huggingface.roberta \
 import translate_state_dict_to_smdistributed

model = AutoModelForMaskedLM.from_config(roberta_config)
model = smp.DistributedModel(model)

pretrained_model = AutoModelForMaskedLM.from_pretrained("roberta-large")
translated_state_dict =
 translate_state_dict_to_smdistributed(pretrained_model.state_dict())

SageMaker model parallelism library v2 3713

Amazon SageMaker Developer Guide

load the translated pretrained weights into the smp.DistributedModel
model.load_state_dict(translated_state_dict)

start fine-tuning...

Ranking Mechanism when Using a Combination of Pipeline Parallelism and Tensor Parallelism

This section explains how the ranking mechanism of model parallelism works with tensor
parallelism. This is extended from the Ranking Basics for Core Features of the SageMaker Model
Parallelism Library. With tensor parallelism, the library introduces three types of ranking and
process group APIs: smp.tp_rank() for tensor parallel rank, smp.pp_rank() for pipeline parallel
rank, and smp.rdp_rank() for reduced-data parallel rank. The corresponding communication
process groups are tensor parallel group (TP_GROUP), pipeline parallel group (PP_GROUP), and
reduced-data parallel group (RDP_GROUP). These groups are defined as follows:

• A tensor parallel group (TP_GROUP) is an evenly divisible subset of the data parallel group,
over which tensor parallel distribution of modules takes place. When the degree of pipeline
parallelism is 1, TP_GROUP is the same as model parallel group (MP_GROUP).

• A pipeline parallel group (PP_GROUP) is the group of processes over which pipeline parallelism
takes place. When the tensor parallelism degree is 1, PP_GROUP is the same as MP_GROUP.

• A reduced-data parallel group (RDP_GROUP) is a set of processes that hold both the same pipeline
parallelism partitions and the same tensor parallel partitions, and perform data parallelism
among themselves. This is called the reduced data parallel group because it is a subset of the
entire data parallelism group, DP_GROUP. For the model parameters that are distributed within
the TP_GROUP , the gradient allreduce operation is performed only for reduced-data parallel
group, while for the parameters that are not distributed, the gradient allreduce takes place
over the entire DP_GROUP.

• A model parallel group (MP_GROUP) refers to a group of processes that collectively store the
entire model. It consists of the union of the PP_GROUPs of all the ranks that are in the TP_GROUP
of the current process. When the degree of tensor parallelism is 1, MP_GROUP is equivalent
to PP_GROUP. It is also consistent with the existing definition of MP_GROUP from previous
smdistributed releases. Note that the current TP_GROUP is a subset of both the current
DP_GROUP and the current MP_GROUP.

To learn more about the communication process APIs in the SageMaker model parallelism library,
see the Common API and the PyTorch-specific APIs in the SageMaker Python SDK documentation.

SageMaker model parallelism library v2 3714

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#ranking-basics
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_common_api.html#
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html

Amazon SageMaker Developer Guide

This figure shows ranking mechanism, parameter distribution, and associated AllReduce operations
of tensor parallelism.

For example, consider process groups for a single node with 8 GPUs, where the degree of tensor
parallelism is 2, the degree of pipeline parallelism is 2, and the degree of data parallelism is 4. The
upper center part of the preceding figure shows an example of a model with 4 layers. The lower
left and lower right parts of figure illustrate the 4-layer model distributed across 4 GPUs using
both pipeline parallelism and tensor parallelism, where tensor parallelism is used for the middle
two layers. These two lower figures are simple copies to illustrate different group boundary lines.
The partitioned model is replicated for data parallelism across GPUs 0-3 and 4-7. The lower left
figure shows the definitions of MP_GROUP, PP_GROUP, and TP_GROUP. The lower right figure shows
RDP_GROUP, DP_GROUP, and WORLD over the same set of GPUs. The gradients for the layers and
layer slices that have the same color are allreduced together for data parallelism. For example,
the first layer (light blue) gets the allreduce operations across DP_GROUP, whereas the dark

SageMaker model parallelism library v2 3715

Amazon SageMaker Developer Guide

orange slice in the second layer only gets the allreduce operations within the RDP_GROUP of its
process. The bold dark red arrows represent tensors with the batch of its entire TP_GROUP.

GPU0: pp_rank 0, tp_rank 0, rdp_rank 0, dp_rank 0, mp_rank 0
GPU1: pp_rank 1, tp_rank 0, rdp_rank 0, dp_rank 0, mp_rank 1
GPU2: pp_rank 0, tp_rank 1, rdp_rank 0, dp_rank 1, mp_rank 2
GPU3: pp_rank 1, tp_rank 1, rdp_rank 0, dp_rank 1, mp_rank 3
GPU4: pp_rank 0, tp_rank 0, rdp_rank 1, dp_rank 2, mp_rank 0
GPU5: pp_rank 1, tp_rank 0, rdp_rank 1, dp_rank 2, mp_rank 1
GPU6: pp_rank 0, tp_rank 1, rdp_rank 1, dp_rank 3, mp_rank 2
GPU7: pp_rank 1, tp_rank 1, rdp_rank 1, dp_rank 3, mp_rank 3

In this example, pipeline parallelism occurs across the GPU pairs (0,1); (2,3); (4,5) and (6,7). In
addition, data parallelism (allreduce) takes place across GPUs 0, 2, 4, 6, and independently over
GPUs 1, 3, 5, 7. Tensor parallelism happens over subsets of DP_GROUPs, across the GPU pairs (0,2);
(1,3); (4,6) and (5,7).

Optimizer State Sharding

Optimizer state sharding is a useful memory-saving technique that shards the optimizer state (the
set of weights that describes the state of optimizer) across data parallel device groups. You can
use optimizer state sharding whenever you use a stateful optimizer (such as Adam) or an FP16
optimizer (which stores both FP16 and FP32 copies of the parameters).

Note

Optimizer state sharding is available for PyTorch in the SageMaker model parallelism
library v1.6.0 and later.

How to Use Optimizer State Sharding

You can turn on optimizer state sharding by setting "shard_optimizer_state": True in the
modelparallel configuration.

When this feature is turned on, the library partitions the set of model parameters based on
the data parallelism degree. The gradients corresponding to the ith partition get reduced only
at the ith data parallel rank. At the end of the first call to an smp.step decorator function,
the optimizer wrapped by smp.DistributedOptimizer redefines its parameters to be only

SageMaker model parallelism library v2 3716

Amazon SageMaker Developer Guide

limited to those parameters corresponding to the partition of the current data parallel rank. The
redefined parameters are called virtual parameters and share underlying storage with the original
parameters. During the first call to optimizer.step, the optimizer states are created based
on these redefined parameters, which are sharded because of the original partition. After the
optimizer update, the AllGather operation (as part of the optimizer.step call) runs across the
data parallel ranks to achieve consistent parameter states.

Tip

Optimizer state sharding can be useful when the degree of data parallelism is greater than
1 and the model has more than a billion parameters.
The degree of data parallelism is calculated by (processes_per_host *
instance_count / pipeline_parallel_degree), and the smp.dp_size() function
handles the sizing in the background.

Configure a SageMaker PyTorch estimator

mpi_options = {
 "enabled" : True,
 "processes_per_host" : 8, # 8 processes
 "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none "
}

smp_options = {
 "enabled":True,
 "parameters": {
 "microbatches": 4,
 "pipeline_parallel_degree": 2, # alias for "partitions"
 "placement_strategy": "cluster",
 "tensor_parallel_degree": 2, # tp over 2 devices
 "ddp": True,
 "shard_optimizer_state": True
 }
}

Adapt your PyTorch training script

See Adapt your PyTorch training script in the Tensor parallelism combined with pipeline parallelism
section. There’s no additional modification required for the script.

SageMaker model parallelism library v2 3717

Amazon SageMaker Developer Guide

Activation Checkpointing

Activation checkpointing (or gradient checkpointing) is a technique to reduce memory usage by
clearing activations of certain layers and recomputing them during a backward pass. Effectively,
this trades extra computation time for reduced memory usage. If a module is checkpointed,
at the end of a forward pass, the inputs to and outputs from the module stay in memory. Any
intermediate tensors that would have been part of the computation inside that module are freed
up during the forward pass. During the backward pass of checkpointed modules, these tensors
are recomputed. At this point, the layers beyond this checkpointed module have finished their
backward pass, so the peak memory usage with checkpointing can be lower.

Note

This feature is available for PyTorch in the SageMaker model parallelism library v1.6.0 and
later.

How to Use Activation Checkpointing

With smdistributed.modelparallel, you can use activation checkpointing at the granularity
of a module. For all torch.nn modules except torch.nn.Sequential, you can only checkpoint
a module tree if it lies within one partition from the perspective of pipeline parallelism. In case
of the torch.nn.Sequential module, each module tree inside the sequential module must
lie completely within one partition for activation checkpointing to work. When you use manual
partitioning, be aware of these restrictions.

When you use automated model partitioning, you can find the partitioning assignment logs
starting with Partition assignments: in the training job logs. If a module is partitioned
across multiple ranks (for example, with one descendant on one rank and another descendant on
a different rank), the library ignores the attempt to checkpoint the module and raises a warning
message that the module won't be checkpointed.

Note

The SageMaker model parallelism library supports both overlapping and non-overlapping
allreduce operation in combination with checkpointing.

SageMaker model parallelism library v2 3718

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-core-features.html#model-parallel-automated-model-splitting

Amazon SageMaker Developer Guide

Note

PyTorch’s native checkpointing API is not compatible with
smdistributed.modelparallel.

Example 1: The following sample code shows how to use activation checkpointing when you have
a model definition in your script.

import torch.nn as nn
import torch.nn.functional as F

from smdistributed.modelparallel.torch.patches.checkpoint import checkpoint

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = self.conv2(x)
 x = F.max_pool2d(x, 2)
 x = torch.flatten(x, 1)
 # This call of fc1 will be checkpointed
 x = checkpoint(self.fc1, x)
 x = self.fc2(x)
 return F.log_softmax(x, 1)

Example 2: The following sample code shows how to use activation checkpointing when you have
a sequential model in your script.

import torch.nn as nn
from smdistributed.modelparallel.torch.patches.checkpoint import checkpoint_sequential

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()

SageMaker model parallelism library v2 3719

Amazon SageMaker Developer Guide

 self.seq = nn.Sequential(
 nn.Conv2d(1,20,5),
 nn.ReLU(),
 nn.Conv2d(20,64,5),
 nn.ReLU()
)

 def forward(self, x):
 # This call of self.seq will be checkpointed
 x = checkpoint_sequential(self.seq, x)
 return F.log_softmax(x, 1)

Example 3: The following sample code shows how to use activation checkpointing when you
import a prebuilt model from a library, such as PyTorch and Hugging Face Transformers. Whether
you checkpoint sequential modules or not, do the following:

1. Wrap the model by smp.DistributedModel().

2. Define an object for sequential layers.

3. Wrap the sequential layer object by smp.set_activation_checkpointig().

import smdistributed.modelparallel.torch as smp
from transformers import AutoModelForCausalLM

smp.init()
model = AutoModelForCausalLM(*args, **kwargs)
model = smp.DistributedModel(model)

Call set_activation_checkpointing API
transformer_layers = model.module.module.module.transformer.seq_layers
smp.set_activation_checkpointing(
 transformer_layers, pack_args_as_tuple=True, strategy='each')

Activation Offloading

When activation checkpointing and pipeline parallelism are turned on and the number of
microbatches is greater than one, activation offloading is an additional feature that can further
reduce memory usage. Activation offloading asynchronously moves the checkpointed activations
corresponding to their microbatches that are not currently running in the CPU. Right before the
GPU needs the activations for the microbatch’s backward pass, this functionality prefetches the
offloaded activations back from the CPU.

SageMaker model parallelism library v2 3720

Amazon SageMaker Developer Guide

Note

This feature is available for PyTorch in the SageMaker model parallelism library v1.6.0 and
later.

How to Use Activation Offloading

Use activation offloading to reduce memory usage when the number of microbatches is greater
than 1, and activation checkpointing is turned on (see Activation Checkpointing). When the
activation checkpointing is not used, activation offloading has no effect. When it is used with only
one microbatch, it does not save memory.

To use activation offloading, set "offload_activations": True in the modelparallel
configuration.

Activation offloading moves the checkpointed activations in nn.Sequential modules to
CPU asynchronously. The data transfer over the PCIe link overlaps with GPU computation. The
offloading happens immediately, as soon as the forward pass for a particular checkpointed layer
is computed. The activations are loaded back to the GPU shortly before they are needed for
the backward pass of a particular microbatch. The CPU-GPU transfer similarly overlaps with
computation.

To adjust how early the activations are loaded back into the GPU, you can use the configuration
parameter "activation_loading_horizon" (default is set to 4, must be int larger than 0). A
larger activation loading horizon would cause the activations to be loaded back to the GPU earlier.
If the horizon is too large, the memory-saving impact of activation offloading might be diminished.
If the horizon is too small, the activations may not be loaded back in time, reducing the amount of
overlap and degrading performance.

Tip

Activation offloading can be useful for large models with over a hundred billion
parameters.

Configure a SageMaker PyTorch estimator

mpi_options = {

SageMaker model parallelism library v2 3721

Amazon SageMaker Developer Guide

 "enabled" : True,
 "processes_per_host" : 8, # 8 processes
 "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none "
}

smp_options = {
 "enabled":True,
 "parameters": {
 "microbatches": 4,
 "pipeline_parallel_degree": 2, # alias for "partitions"
 "placement_strategy": "cluster",
 "tensor_parallel_degree": 2, # tp over 2 devices
 "ddp": True,
 "offload_activations": True,
 "activation_loading_horizon": 4 # optional. default is 4.
 }
}

FP16 Training with Model Parallelism

For FP16 training, apply the following modifications to your training script and estimator.

Note

This feature is available for PyTorch in the SageMaker model parallelism library v1.10.0 and
later.

Adapt your PyTorch training script

1. Wrap your model using the smdistributed.modelparallel.torch.model_creation() context
manager.

fp16_training_script.py

import torch
import smdistributed.modelparallel.torch as smp

with smp.model_creation(
 dtype=torch.float16 if args.fp16 else torch.get_default_dtype()
):
 model = ...

SageMaker model parallelism library v2 3722

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.model_creation

Amazon SageMaker Developer Guide

Tip

If you are using tensor parallelism, add tensor_parallelism=smp.tp_size()
> 1 to the smp.model_creation context manager. Adding this line also helps
automatically detect whether tensor parallelism is activated or not.

with smp.model_creation(
 ... ,
 tensor_parallelism=smp.tp_size() > 1
):
 model = ...

2. When you wrap the optimizer with
smdistributed.modelparallel.torch.DistributedOptimizer, set either
the static_loss_scaling or dynamic_loss_scaling argument. By default,
static_loss_scaling is set to 1.0, and dynamic_loss_scaling is set to False. If you
set dynamic_loss_scale=True, you can feed dynamic loss scaling options as a dictionary
through the dynamic_loss_args argument. In most cases, we recommend you use dynamic
loss scaling with the default options. For more information, options, and examples of the
optimizer wrapper function, see the smdistributed.modelparallel.torch.DistributedOptimizer API.

The following code is an example of wrapping an Adadelta optimizer object with dynamic loss
scaling for FP16 training.

optimizer = torch.optim.Adadelta(...)
optimizer = smp.DistributedOptimizer(
 optimizer,
 static_loss_scale=None,
 dynamic_loss_scale=True,
 dynamic_loss_args={
 "scale_window": 1000,
 "min_scale": 1,
 "delayed_shift": 2
 }
)

Configure a SageMaker PyTorch estimator

SageMaker model parallelism library v2 3723

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed-modelparallel-torch-distributedoptimizer

Amazon SageMaker Developer Guide

Add the FP16 parameter ("fp16") to the distribution configuration for model parallelism when
creating a SageMaker PyTorch estimator object. For a complete list of the configuration parameters
for model parallelism, see Parameters for smdistributed.

from sagemaker.pytorch import PyTorch

smp_options = {
 "enabled": True,
 "parameters": {
 "microbatches": 4,
 "pipeline_parallel_degree": 2,
 "tensor_parallel_degree": 2,
 ...,

 "fp16": True
 }
}

fp16_estimator = PyTorch(
 entry_point="fp16_training_script.py", # Specify your train script
 ...,

 distribution={
 "smdistributed": {"modelparallel": smp_options},
 "mpi": {...}
 }
)

fp16_estimator.fit(...)

When FP16 training starts, the model and the optimizer are wrapped by FP16_Module and
FP16_Optimizer respectively, which are modified smdistributed versions of the Apex utils.
FP16_Module converts the model to FP16 dtype and deals with the forward pass in FP16.

Tip

You can apply gradient clipping by calling clip_master_grads before optimizer.step.

optimizer.clip_master_grads(max_norm) # max_norm(float or int): max norm of
 the gradients

SageMaker model parallelism library v2 3724

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#parameters-for-smdistributed
https://nvidia.github.io/apex/fp16_utils.html#apex-fp16-utils

Amazon SageMaker Developer Guide

Tip

When using torch.optim.lr_scheduler and FP16 training, you need to pass
optimizer.optimizer to the LR scheduler rather than the optimizer. See the following
example code.

from torch.optim.lr_scheduler import StepLR

scheduler = StepLR(
 optimizer.optimizer if smp.state.cfg.fp16 else optimizer,
 step_size=1,
 gamma=args.gamma
)

Support for FlashAttention

Support for FlashAttention is a feature of the library only applicable for the distributed transformer
model, which is a Transformer model wrapped by smp.DistributedModel() for model-parallel
training. This feature is also compatible with the section called “Tensor Parallelism”.

The FlashAttention library only supports models when attention_head_size is set to a value
that's a multiple of 8 and less than 128. Therefore, when you train a distributed transformer and
make sure that FlashAttention works properly, you should adjust parameters to make the attention
head size comply the requirements. For more information, see also Installation and features in the
FlashAttention GitHub repository.

For example, assume that you configure a Transformer model with hidden_width=864 and
num_heads=48. The head size of FlashAttention is calculated as attention_head_size =
hidden_width / num_heads = 864 / 48 = 18. To enable FlashAttention, you need to
adjust the num_heads parameter to 54, so that attention_head_size = hidden_width /
num_heads = 864 / 54 = 16, which is a multiple of 8.

Run a SageMaker Distributed Training Job with Model Parallelism

Learn how to run a model-parallel training job of your own training script using the SageMaker
Python SDK with the SageMaker model parallelism library.

There are three use-case scenarios for running a SageMaker training job.

SageMaker model parallelism library v2 3725

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed-modelparallel-torch-distributedmodel
https://github.com/HazyResearch/flash-attention
https://github.com/HazyResearch/flash-attention#installation-and-features

Amazon SageMaker Developer Guide

1. You can use one of the pre-built AWS Deep Learning Container for TensorFlow and PyTorch. This
option is recommended if it is the first time for you to use the model parallel library. To find a
tutorial for how to run a SageMaker model parallel training job, see the example notebooks at
PyTorch training with Amazon SageMaker's model parallelism library.

2. You can extend the pre-built containers to handle any additional functional requirements for
your algorithm or model that the pre-built SageMaker Docker image doesn't support. To find an
example of how you can extend a pre-built container, see Extend a Pre-built Container.

3. You can adapt your own Docker container to work with SageMaker using the SageMaker Training
toolkit. For an example, see Adapting Your Own Training Container.

For options 2 and 3 in the preceding list, refer to Extend a Pre-built Docker Container that Contains
SageMaker's Distributed Model Parallel Library to learn how to install the model parallel library in
an extended or customized Docker container.

In all cases, you launch your training job configuring a SageMaker TensorFlow or PyTorch
estimator to activate the library. To learn more, see the following topics.

Topics

• Step 1: Modify Your Own Training Script Using SageMaker's Distributed Model Parallel Library

• Step 2: Launch a Training Job Using the SageMaker Python SDK

Step 1: Modify Your Own Training Script Using SageMaker's Distributed Model Parallel Library

Use this section to learn how to customize your training script to use the core features of the
Amazon SageMaker model parallelism library. To use the library-specific API functions and
parameters, we recommend you use this documentation alongside the SageMaker model parallel
library APIs in the SageMaker Python SDK documentation.

The training script examples provided in these sections are simplified and designed to highlight the
required changes you must make to use the library. For end-to-end, runnable notebook examples
that demonstrate how to use a TensorFlow or PyTorch training script with the SageMaker model
parallelism library, see Amazon SageMaker Distributed Training Notebook Examples.

Topics

• Split the model of your training script using the SageMaker model parallelism library

• Modify a TensorFlow training script

SageMaker model parallelism library v2 3726

https://github.com/aws/amazon-sagemaker-examples/tree/main/training/distributed_training/pytorch/model_parallel
https://github.com/aws/sagemaker-training-toolkit
https://github.com/aws/sagemaker-training-toolkit
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html

Amazon SageMaker Developer Guide

• Modify a PyTorch Training Script

Split the model of your training script using the SageMaker model parallelism library

There are two ways to modify your training script to set up model splitting: automated splitting or
manual splitting.

Automated model splitting

When you use SageMaker's model parallelism library, you can take advantage of automated model
splitting, also referred to as automated model partitioning. The library uses a partitioning algorithm
that balances memory, minimizes communication between devices, and optimizes performance.
You can configure the automated partitioning algorithm to optimize for speed or memory.

Alternatively, you can use manual model splitting. We recommend automated model splitting,
unless you are very familiar with the model architecture and have a good idea of how to efficiently
partition your model.

How it works

Auto-partitioning occurs during the first training step, when the smp.step-decorated function
is first called. During this call, the library first constructs a version of the model on the CPU RAM
(to avoid GPU memory limitations), and then analyzes the model graph and makes a partitioning
decision. Based on this decision, each model partition is loaded on a GPU, and only then the first
step is executed. Because of these analysis and partitioning steps, the first training step might take
longer.

In either framework, the library manages the communication between devices through its own
backend, which is optimized for AWS infrastructure.

The auto-partition design adapts to the characteristics of the framework, and the library does
the partitioning at the granularity level that is more natural in each framework. For instance, in
TensorFlow, each specific operation can be assigned to a different device, whereas in PyTorch, the
assignment is done at the module level, where each module consists of multiple operations. The
follow section reviews the specifics of the design in each framework.

Automated model splitting with PyTorch

During the first training step, the model parallelism library internally runs a tracing step that
is meant to construct the model graph and determine the tensor and parameter shapes. After

SageMaker model parallelism library v2 3727

Amazon SageMaker Developer Guide

this tracing step, the library constructs a tree, which consists of the nested nn.Module objects
in the model, as well as additional data gathered from tracing, such as the amount of stored
nn.Parameters, and execution time for each nn.Module.

Next, the library traverses this tree from the root and runs a partitioning algorithm that assigns
each nn.Module to a device, which balances computational load (measured by module execution
time) and memory use (measured by the total stored nn.Parameter size and activations). If
multiple nn.Modules share the same nn.Parameter, then these modules are placed on the
same device to avoid maintaining multiple versions of the same parameter. Once the partitioning
decision is made, the assigned modules and weights are loaded to their devices.

For instructions on how to register the smp.step decorator to your PyTorch training script, see the
section called “Automated splitting with PyTorch”.

Automated model splitting with TensorFlow

The model parallelism library analyzes the sizes of the trainable variables and the graph structure,
and internally uses a graph partitioning algorithm. This algorithm comes up with a device
assignment for each operation, with the objective of minimizing the amount of communication
needed across devices, subject to two constraints:

• Balancing the number of variables stored in each device

• Balancing the number of operations executed in each device

If you specify speed for optimize (in the model parallelism parameters in the Python SDK),
the library tries to balance the number of operations and tf.Variable objects in each device.
Otherwise, it tries to balance the total size of tf.Variables.

Once the partitioning decision is made, the library creates a serialized representation of
the subgraph that each device needs to execute and imports them onto each device. While
partitioning, the library places operations that consume the same tf.Variable and operations
that are part of the same Keras layer onto the same device. It also respects the colocation
constraints imposed by TensorFlow. This means that, for example, if there are two Keras layers
that share a tf.Variable, then all operations that are part of these layers are placed on a single
device.

For instructions on how to register the smp.step decorator to your PyTorch training script, see the
section called “Automated splitting with TensorFlow”.

SageMaker model parallelism library v2 3728

Amazon SageMaker Developer Guide

Comparison of automated model splitting between frameworks

In TensorFlow, the fundamental unit of computation is a tf.Operation, and TensorFlow
represents the model as a directed acyclic graph (DAG) of tf.Operations, and therefore the
model parallelism library partitions this DAG so that each node goes to one device. Crucially,
tf.Operation objects are sufficiently rich with customizable attributes, and they are universal in
the sense that every model is guaranteed to consist of a graph of such objects.

PyTorch on the other hand, does not have an equivalent notion of operation that is sufficiently
rich and universal. The closest unit of computation in PyTorch that has these characteristics
is an nn.Module, which is at a much higher granularity level, and this is why the library does
partitioning at this level in PyTorch.

Manual Model Splitting

If you want to manually specify how to partition your model across devices, use the
smp.partition context manager. For instructions on how to set the context manager for manual
partitioning, see the following pages.

• the section called “Manual splitting with TensorFlow”

• the section called “Manual splitting with PyTorch”

To use this option after making modifications, in Step 2, you'll need to set auto_partition to
False, and define a default_partition in the framework estimator class of the SageMaker
Python SDK. Any operation that is not explicitly placed on a partition through the smp.partition
context manager is executed on the default_partition. In this case, the automated splitting
logic is bypassed, and each operation is placed based on your specification. Based on the resulting
graph structure, the model parallelism library creates a pipelined execution schedule automatically.

Modify a TensorFlow training script

In this section, you learn how to modify TensorFlow training scripts to configure the SageMaker
model parallelism library for auto-partitioning and manual partitioning. This selection of examples
also includes an example integrated with Horovod for hybrid model and data parallelism.

Note

To find which TensorFlow versions are supported by the library, see the section called
“Supported Frameworks and AWS Regions”.

SageMaker model parallelism library v2 3729

Amazon SageMaker Developer Guide

The required modifications you must make to your training script to use the library are listed in
Automated splitting with TensorFlow.

To learn how to modify your training script to use hybrid model and data parallelism with Horovod,
see Automated splitting with TensorFlow and Horovod for hybrid model and data parallelism.

If you want to use manual partitioning, also review Manual splitting with TensorFlow.

Tip

For end-to-end notebook examples that demonstrate how to use a TensorFlow training
script with the SageMaker model parallelism library, see TensorFlow Examples.

The following topics show examples of training scripts that you can use to configure SageMaker's
model parallelism library for auto-partitioning and manual partitioning TensorFlow models.

Note

Auto-partitioning is enabled by default. Unless otherwise specified, the example scripts use
auto-partitioning.

Topics

• Automated splitting with TensorFlow

• Automated splitting with TensorFlow and Horovod for hybrid model and data parallelism

• Manual splitting with TensorFlow

• Unsupported framework features

Automated splitting with TensorFlow

The following training script changes are required to run a TensorFlow model with SageMaker's
model parallelism library:

1. Import and initialize the library with smp.init().

2. Define a Keras model by inheriting from smp.DistributedModel instead of the Keras Model
class. Return the model outputs from the call method of the smp.DistributedModel object.
Be mindful that any tensors returned from the call method will be broadcast across model-

SageMaker model parallelism library v2 3730

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#smp.init
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_tensorflow.html

Amazon SageMaker Developer Guide

parallel devices, incurring communication overhead, so any tensors that are not needed outside
the call method (such as intermediate activations) should not be returned.

3. Set drop_remainder=True in tf.Dataset.batch() method. This is to ensure that the batch
size is always divisible by the number of microbatches.

4. Seed the random operations in the data pipeline using smp.dp_rank(), e.g., shuffle(ds,
seed=smp.dp_rank()) to ensure consistency of data samples across GPUs that hold different
model partitions.

5. Put the forward and backward logic in a step function and decorate it with smp.step.

6. Perform post-processing on the outputs across microbatches using StepOutput methods such
as reduce_mean. The smp.step function must have a return value that depends on the output
of smp.DistributedModel.

7. If there is an evaluation step, similarly place the forward logic inside an smp.step-decorated
function and post-process the outputs using StepOutput API.

To learn more about the SageMaker's model parallelism library API, refer to the API
documentation.

The following Python script is an example of a training script after the changes are made.

import tensorflow as tf

smdistributed: Import TF2.x API
import smdistributed.modelparallel.tensorflow as smp

smdistributed: Initialize
smp.init()

Download and load MNIST dataset.
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(
 "MNIST-data-%d" % smp.rank()
)
x_train, x_test = x_train / 255.0, x_test / 255.0

Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

smdistributed: If needed, seed the shuffle with smp.dp_rank(), and drop_remainder
in batching to make sure batch size is always divisible by number of microbatches

SageMaker model parallelism library v2 3731

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#StepOutput
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#smp.init
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#StepOutput
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html

Amazon SageMaker Developer Guide

train_ds = (
 tf.data.Dataset.from_tensor_slices((x_train, y_train))
 .shuffle(10000, seed=smp.dp_rank())
 .batch(256, drop_remainder=True)
)

smdistributed: Define smp.DistributedModel the same way as Keras sub-classing API
class MyModel(smp.DistributedModel):
 def __init__(self):
 super(MyModel, self).__init__()
 # define layers

 def call(self, x, training=None):
 # define forward pass and return the model output

model = MyModel()

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="train_accuracy")

smdistributed: Define smp.step. Return any tensors needed outside
@smp.step
def get_grads(images, labels):
 predictions = model(images, training=True)
 loss = loss_object(labels, predictions)

 grads = optimizer.get_gradients(loss, model.trainable_variables)
 return grads, loss, predictions

@tf.function
def train_step(images, labels):
 gradients, loss, predictions = get_grads(images, labels)

 # smdistributed: Accumulate the gradients across microbatches
 gradients = [g.accumulate() for g in gradients]
 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 # smdistributed: Merge predictions and average losses across microbatches
 train_accuracy(labels, predictions.merge())
 return loss.reduce_mean()

SageMaker model parallelism library v2 3732

Amazon SageMaker Developer Guide

for epoch in range(5):
 # Reset the metrics at the start of the next epoch
 train_accuracy.reset_states()
 for images, labels in train_ds:
 loss = train_step(images, labels)
 accuracy = train_accuracy.result()

If you are done preparing your training script, proceed to Step 2: Launch a Training Job Using the
SageMaker Python SDK. If you want to run a hybrid model and data parallel training job, continue
to the next section.

Automated splitting with TensorFlow and Horovod for hybrid model and data parallelism

You can use the SageMaker model parallelism library with Horovod for hybrid model and data
parallelism. To read more about how the library splits a model for hybrid parallelism, see Pipeline
parallelism (available for PyTorch and TensorFlow).

In this step, we focus on how to modify your training script to adapt the SageMaker model
parallelism library.

To properly set up your training script to pick up the hybrid parallelism configuration that you'll
set in Step 2: Launch a Training Job Using the SageMaker Python SDK, use the library's helper
functions, smp.dp_rank() and smp.mp_rank(), which automatically detect the data parallel
rank and model parallel rank respectively.

To find all MPI primitives the library supports, see MPI Basics in the SageMaker Python SDK
documentation.

The required changes needed in the script are:

• Adding hvd.allreduce

• Broadcasting variables after the first batch, as required by Horovod

• Seeding shuffling and/or sharding operations in the data pipeline with smp.dp_rank().

Note

When you use Horovod, you must not directly call hvd.init in your training script.
Instead, you'll have to set "horovod" to True in the SageMaker Python SDK
modelparallel parameters in Step 2: Launch a Training Job Using the SageMaker
Python SDK. This allows the library to internally initialize Horovod based on the device

SageMaker model parallelism library v2 3733

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#mpi-basics

Amazon SageMaker Developer Guide

assignments of model partitions. Calling hvd.init() directly in your training script can
cause problems.

Note

Using the hvd.DistributedOptimizer API directly in your training script might
result in a poor training performance and speed, because the API implicitly places the
AllReduce operation inside smp.step. We recommend you to use the model parallelism
library with Horovod by directly calling hvd.allreduce after calling accumulate()
or reduce_mean() on the gradients returned from smp.step, as will be shown in the
following example.

To learn more about the SageMaker's model parallelism library API, refer to the API
documentation.

import tensorflow as tf
import horovod.tensorflow as hvd

smdistributed: Import TF2.x API
import smdistributed.modelparallel.tensorflow as smp

smdistributed: Initialize
smp.init()

Download and load MNIST dataset.
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(
 "MNIST-data-%d" % smp.rank()
)
x_train, x_test = x_train / 255.0, x_test / 255.0

Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

smdistributed: Seed the shuffle with smp.dp_rank(), and drop_remainder
in batching to make sure batch size is always divisible by number of microbatches
train_ds = (
 tf.data.Dataset.from_tensor_slices((x_train, y_train))
 .shuffle(10000, seed=smp.dp_rank())

SageMaker model parallelism library v2 3734

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html

Amazon SageMaker Developer Guide

 .batch(256, drop_remainder=True)
)

smdistributed: Define smp.DistributedModel the same way as Keras sub-classing API
class MyModel(smp.DistributedModel):
 def __init__(self):
 super(MyModel, self).__init__()
 # define layers

 def call(self, x, training=None):
 # define forward pass and return model outputs

model = MyModel()

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="train_accuracy")

smdistributed: Define smp.step. Return any tensors needed outside
@smp.step
def get_grads(images, labels):
 predictions = model(images, training=True)
 loss = loss_object(labels, predictions)

 grads = optimizer.get_gradients(loss, model.trainable_variables)
 return grads, loss, predictions

@tf.function
def train_step(images, labels, first_batch):
 gradients, loss, predictions = get_grads(images, labels)

 # smdistributed: Accumulate the gradients across microbatches
 # Horovod: AllReduce the accumulated gradients
 gradients = [hvd.allreduce(g.accumulate()) for g in gradients]
 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 # Horovod: Broadcast the variables after first batch
 if first_batch:
 hvd.broadcast_variables(model.variables, root_rank=0)
 hvd.broadcast_variables(optimizer.variables(), root_rank=0)

 # smdistributed: Merge predictions across microbatches

SageMaker model parallelism library v2 3735

Amazon SageMaker Developer Guide

 train_accuracy(labels, predictions.merge())
 return loss.reduce_mean()

for epoch in range(5):
 # Reset the metrics at the start of the next epoch
 train_accuracy.reset_states()

 for batch, (images, labels) in enumerate(train_ds):
 loss = train_step(images, labels, tf.constant(batch == 0))

Manual splitting with TensorFlow

Use smp.partition context managers to place operations in specific partition. Any operation
not placed in any smp.partition contexts is placed in the default_partition. To learn more
about the SageMaker's model parallelism library API, refer to the API documentation.

import tensorflow as tf

smdistributed: Import TF2.x API.
import smdistributed.modelparallel.tensorflow as smp

smdistributed: Initialize
smp.init()

Download and load MNIST dataset.
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(
 "MNIST-data-%d" % smp.rank()
)
x_train, x_test = x_train / 255.0, x_test / 255.0

Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

smdistributed: If needed, seed the shuffle with smp.dp_rank(), and drop_remainder
in batching to make sure batch size is always divisible by number of microbatches.
train_ds = (
 tf.data.Dataset.from_tensor_slices((x_train, y_train))
 .shuffle(10000, seed=smp.dp_rank())
 .batch(256, drop_remainder=True)
)

SageMaker model parallelism library v2 3736

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html

Amazon SageMaker Developer Guide

smdistributed: Define smp.DistributedModel the same way as Keras sub-classing API.
class MyModel(smp.DistributedModel):
 def __init__(self):
 # define layers

 def call(self, x):
 with smp.partition(0):
 x = self.layer0(x)
 with smp.partition(1):
 return self.layer1(x)

model = MyModel()

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="train_accuracy")

smdistributed: Define smp.step. Return any tensors needed outside
@smp.step
def get_grads(images, labels):
 predictions = model(images, training=True)
 loss = loss_object(labels, predictions)

 grads = optimizer.get_gradients(loss, model.trainable_variables)
 return grads, loss, predictions

@tf.function
def train_step(images, labels):
 gradients, loss, predictions = get_grads(images, labels)

 # smdistributed: Accumulate the gradients across microbatches
 gradients = [g.accumulate() for g in gradients]
 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 # smdistributed: Merge predictions and average losses across microbatches
 train_accuracy(labels, predictions.merge())
 return loss.reduce_mean()

for epoch in range(5):
 # Reset the metrics at the start of the next epoch
 train_accuracy.reset_states()

SageMaker model parallelism library v2 3737

Amazon SageMaker Developer Guide

 for images, labels in train_ds:
 loss = train_step(images, labels)
 accuracy = train_accuracy.result()

Unsupported framework features

The following TensorFlow features are not supported by the library:

• tf.GradientTape() is currently not supported. You can use Optimizer.get_gradients()
or Optimizer.compute_gradients() instead to compute gradients.

• The tf.train.Checkpoint.restore() API is currently not supported. For checkpointing, use
smp.CheckpointManager instead, which provides the same API and functionality. Note that
checkpoint restores with smp.CheckpointManager should take place after the first step.

Modify a PyTorch Training Script

In this section, you learn how to modify PyTorch training scripts to configure the SageMaker model
parallelism library for auto-partitioning and manual partitioning.

Note

To find which PyTorch versions are supported by the library, see the section called
“Supported Frameworks and AWS Regions”.

Tip

For end-to-end notebook examples that demonstrate how to use a PyTorch training script
with the SageMaker model parallelism library, see PyTorch Examples.

Note that auto-partitioning is enabled by default. Unless otherwise specified, the following scripts
use auto-partitioning.

Topics

• Automated splitting with PyTorch

• Manual splitting with PyTorch

• Considerations

SageMaker model parallelism library v2 3738

Amazon SageMaker Developer Guide

• Unsupported framework features

Automated splitting with PyTorch

The following training script changes are required to run a PyTorch training script with SageMaker's
model parallelism library:

1. Import and initialize the library with smdistributed.modelparallel.torch.init().

2. Wrap the model with smdistributed.modelparallel.torch.DistributedModel. Be
mindful that any tensors returned from the forward method of the underlying nn.Module
object will be broadcast across model-parallel devices, incurring communication overhead, so
any tensors that are not needed outside the call method (such as intermediate activations)
should not be returned.

Note

For FP16 training, you need to use the
smdistributed.modelparallel.torch.model_creation() context manager to wrap the model.
For more information, see FP16 Training with Model Parallelism.

3. Wrap the optimizer with
smdistributed.modelparallel.torch.DistributedOptimizer.

Note

For FP16 training, you need to set up static or dynamic loss scaling. For more
information, see FP16 Training with Model Parallelism.

4. Use the returned DistributedModel object instead of a user model.

5. Put the forward and backward logic in a step function and decorate it with
smdistributed.modelparallel.torch.step.

6. Restrict each process to its own device through
torch.cuda.set_device(smp.local_rank()).

7. Move the input tensors to the GPU using the .to() API before the smp.step call (see example
below).

8. Replace torch.Tensor.backward and torch.autograd.backward with
DistributedModel.backward.

SageMaker model parallelism library v2 3739

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#smp.init
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_pytorch.html#smp.DistributedModel
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_pytorch.html#smp.DistributedOptimizer
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#smp.init

Amazon SageMaker Developer Guide

9. Perform post-processing on the outputs across microbatches using StepOutput methods such
as reduce_mean.

10.If there is an evaluation step, similarly place the forward logic inside an smp.step-decorated
function and post-process the outputs using StepOutput API.

11.Set drop_last=True in DataLoader. Alternatively, manually skip a batch in the training loop
if the batch size is not divisible by the number of microbatches.

To learn more about the SageMaker's model parallelism library API, refer to the API
documentation.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchnet.dataset import SplitDataset
from torchvision import datasets

import smdistributed.modelparallel.torch as smp

class GroupedNet(nn.Module):
 def __init__(self):
 super(GroupedNet, self).__init__()
 # define layers

 def forward(self, x):
 # define forward pass and return model outputs

smdistributed: Define smp.step. Return any tensors needed outside.
@smp.step
def train_step(model, data, target):
 output = model(data)
 loss = F.nll_loss(output, target, reduction="mean")
 model.backward(loss)
 return output, loss

def train(model, device, train_loader, optimizer):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 # smdistributed: Move input tensors to the GPU ID used by the current process,

SageMaker model parallelism library v2 3740

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#StepOutput
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_common_api.html#StepOutput
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html

Amazon SageMaker Developer Guide

 # based on the set_device call.
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 # Return value, loss_mb is a StepOutput object
 _, loss_mb = train_step(model, data, target)

 # smdistributed: Average the loss across microbatches.
 loss = loss_mb.reduce_mean()

 optimizer.step()

smdistributed: initialize the backend
smp.init()

smdistributed: Set the device to the GPU ID used by the current process.
Input tensors should be transferred to this device.
torch.cuda.set_device(smp.local_rank())
device = torch.device("cuda")

smdistributed: Download only on a single process per instance.
When this is not present, the file is corrupted by multiple processes trying
to download and extract at the same time
dataset = datasets.MNIST("../data", train=True, download=False)

smdistributed: Shard the dataset based on data-parallel ranks
if smp.dp_size() > 1:
 partitions_dict = {f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size())}
 dataset = SplitDataset(dataset, partitions=partitions_dict)
 dataset.select(f"{smp.dp_rank()}")

smdistributed: Set drop_last=True to ensure that batch size is always divisible
by the number of microbatches
train_loader = torch.utils.data.DataLoader(dataset, batch_size=64, drop_last=True)

model = GroupedNet()
optimizer = optim.Adadelta(model.parameters(), lr=4.0)

smdistributed: Use the DistributedModel container to provide the model
to be partitioned across different ranks. For the rest of the script,
the returned DistributedModel object should be used in place of
the model provided for DistributedModel class instantiation.
model = smp.DistributedModel(model)
optimizer = smp.DistributedOptimizer(optimizer)

SageMaker model parallelism library v2 3741

Amazon SageMaker Developer Guide

train(model, device, train_loader, optimizer)

Manual splitting with PyTorch

Use smp.partition context managers to place modules in specific devices. Any module
not placed in any smp.partition contexts is placed in the default_partition. The
default_partition needs to be provided if auto_partition is set to False. The modules
that are created within a specific smp.partition context are placed on the corresponding
partition.

To learn more about the SageMaker's model parallelism library API, refer to the API
documentation.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchnet.dataset import SplitDataset
from torchvision import datasets

import smdistributed.modelparallel.torch as smp

class GroupedNet(nn.Module):
 def __init__(self):
 super(GroupedNet, self).__init__()
 with smp.partition(0):
 # define child modules on device 0
 with smp.partition(1):
 # define child modules on device 1

 def forward(self, x):
 # define forward pass and return model outputs

smdistributed: Define smp.step. Return any tensors needed outside.
@smp.step
def train_step(model, data, target):
 output = model(data)
 loss = F.nll_loss(output, target, reduction="mean")
 model.backward(loss)
 return output, loss

SageMaker model parallelism library v2 3742

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/v1.2.0/smd_model_parallel_pytorch.html#smp.DistributedOptimizer
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel.html

Amazon SageMaker Developer Guide

def train(model, device, train_loader, optimizer):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 # smdistributed: Move input tensors to the GPU ID used by the current process,
 # based on the set_device call.
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 # Return value, loss_mb is a StepOutput object
 _, loss_mb = train_step(model, data, target)

 # smdistributed: Average the loss across microbatches.
 loss = loss_mb.reduce_mean()

 optimizer.step()

smdistributed: initialize the backend
smp.init()

smdistributed: Set the device to the GPU ID used by the current process.
Input tensors should be transferred to this device.
torch.cuda.set_device(smp.local_rank())
device = torch.device("cuda")

smdistributed: Download only on a single process per instance.
When this is not present, the file is corrupted by multiple processes trying
to download and extract at the same time
dataset = datasets.MNIST("../data", train=True, download=False)

smdistributed: Shard the dataset based on data-parallel ranks
if smp.dp_size() > 1:
 partitions_dict = {f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size())}
 dataset = SplitDataset(dataset, partitions=partitions_dict)
 dataset.select(f"{smp.dp_rank()}")

smdistributed: Set drop_last=True to ensure that batch size is always divisible
by the number of microbatches
train_loader = torch.utils.data.DataLoader(dataset, batch_size=64, drop_last=True)

model = GroupedNet()
optimizer = optim.Adadelta(model.parameters(), lr=4.0)

smdistributed: Use the DistributedModel container to provide the model
to be partitioned across different ranks. For the rest of the script,
the returned DistributedModel object should be used in place of

SageMaker model parallelism library v2 3743

Amazon SageMaker Developer Guide

the model provided for DistributedModel class instantiation.
model = smp.DistributedModel(model)
optimizer = smp.DistributedOptimizer(optimizer)

train(model, device, train_loader, optimizer)

Considerations

When you configure a PyTorch training script using SageMaker's model parallelism library, you
should be aware of the following:

• If you are using an optimization technique that relies on global gradient norms, for example
gradient norm from the entire model, such as some variants of LAMB optimizer or global
gradient clipping, you need to gather all the norms across the model partitions for correctness.
You can use the library’s communication basic data types to do this.

• All torch.Tensor arguments to the forward methods of the nn.Modules in your model must
be used in the computation of the module output. In other words, the library does not support
the case where there is a torch.Tensor argument to a module on which the module output
does not depend.

• The argument to the smp.DistributedModel.backward() call must depend
on all model outputs. In other words, there cannot be an output from the
smp.DistributedModel.forward call that is not used in the computation of the tensor that
is fed into the smp.DistributedModel.backward call.

• If there are torch.cuda.synchronize() calls in your code, you might need to call
torch.cuda.set_device(smp.local_rank()) immediately before the synchronize call.
Otherwise unnecessary CUDA contexts might be created in device 0, which will needlessly
consume memory.

• Since the library places nn.Modules on different devices, the modules in the model must
not depend on any global state that is modified inside smp.step. Any state that remains
fixed throughout training, or that is modified outside smp.step in a way that is visible to all
processes, is allowed.

• You don’t need to move the model to GPU (for example, using model.to(device)) when using
the library. If you try to move the model to GPU before the model is partitioned (before the first
smp.step call), the move call is ignored. The library automatically moves the part of the model
assigned to a rank to its GPU. Once training with the library starts, don’t move the model to CPU
and use it, as it won’t have correct parameters for modules not assigned to the partition held by
the process. If you want to retrain a model or use it for inference without the library after it was

SageMaker model parallelism library v2 3744

Amazon SageMaker Developer Guide

trained using the model parallelism library, the recommended way is to save the full model using
our checkpointing API and load it back to a regular PyTorch Module.

• If you have a list of modules such that output of one feeds into another, replacing that list with
nn.Sequential can significantly improve performance.

• The weight update (optimizer.step()) needs to happen outside of smp.step because that is
when the entire backward pass is done and gradients are ready. When using a hybrid model with
model and data parallelism, at this point, AllReduce of gradients is also guaranteed to finish.

• When using the library in combination with data parallelism, make sure that the number of
batches on all data parallel ranks is the same so that AllReduce does not hang waiting for a rank
which is not participating in the step.

• If you launch a training job using an ml.p4d instance type (such as ml.p4d.24xlarge), you must
set the data loader variable num_workers=0. For example, you may define your DataLoader as
follows:

dataloader = torch.utils.data.DataLoader(
 data,
 batch_size=batch_size,
 num_workers=0,
 pin_memory=True,
 drop_last=True,
 shuffle=shuffle,
)

• The inputs to smp.step must be the model inputs generated by DataLoader. This is because
smp.step internally splits the input tensors along the batch dimension and pipelines them. This
means that passing DataLoader itself to the smp.step function to generate the model inputs
inside does not work.

For example, if you define a DataLoader as follows:

train_loader = torch.utils.data.DataLoader(dataset, batch_size=64, drop_last=True)

You should access the model inputs generated by train_loader and pass those to an
smp.step decorated function. Do not pass train_loader directly to the smp.step function.

def train(model, device, train_loader, optimizer):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):

SageMaker model parallelism library v2 3745

Amazon SageMaker Developer Guide

 ...
 _, loss_mb = train_step(model, data, target)
 ...

@smp.step
def train_step(model, data, target):
 ...
 return output, loss

• The input tensors to smp.step must be moved to the current device using .to() API, which
must take place after the torch.cuda.set_device(local_rank()) call.

For example, you may define the train function as follows. This function adds data and
target to the current device using .to() API before using those input tensors to call
train_step.

def train(model, device, train_loader, optimizer):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 # smdistributed: Move input tensors to the GPU ID used by the current
 process,
 # based on the set_device call.
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 # Return value, loss_mb is a StepOutput object
 _, loss_mb = train_step(model, data, target)

 # smdistributed: Average the loss across microbatches.
 loss = loss_mb.reduce_mean()

 optimizer.step()

The input tensors to this smp.set decorated function have been moved to the current device
in the train function above. The model does not need to be moved to the current device. The
library automatically moves the part of the model assigned to a rank to its GPU.

@smp.step
def train_step(model, data, target):
 output = model(data)
 loss = F.nll_loss(output, target, reduction="mean")
 model.backward(loss)

SageMaker model parallelism library v2 3746

Amazon SageMaker Developer Guide

 return output, loss

Unsupported framework features

The following PyTorch features are unsupported by SageMaker's model parallelism library:

• If you use data parallelism with the native PyTorch DDP, the
torch.nn.parallel.DistributedDataParallel wrapper module is not supported by
the library. The library internally manages integrating with PyTorch DDP, including parameter
broadcast and gradient AllReduce. When using the library, module buffers are only broadcast
once at the start of training. If your model has module buffers that need to be synchronized
across data parallel groups at each step, you can do so through the torch.distributed API,
using the process group that can be obtained via smp.get_dp_process_group().

• For mixed precision training, the apex.amp module is not supported. The recommended way to
use the library with automatic mixed-precision is to use torch.cuda.amp, with the exception of
using smp.amp.GradScaler instead of the implementation in torch.

• torch.jit.ScriptModules or ScriptFunctions are not supported by
smp.DistributedModel.

• apex : FusedLayerNorm, FusedAdam, FusedLAMB, and FusedNovoGrad from apex are not
supported. You can use the library implementations of these through smp.optimizers and
smp.nn APIs instead.

Step 2: Launch a Training Job Using the SageMaker Python SDK

The SageMaker Python SDK supports managed training of models with ML frameworks such
as TensorFlow and PyTorch. To launch a training job using one of these frameworks, you define
a SageMaker TensorFlow estimator, a SageMaker PyTorch estimator, or a SageMaker generic
Estimator to use the modified training script and model parallelism configuration.

Topics

• Using the SageMaker TensorFlow and PyTorch Estimators

• Extend a Pre-built Docker Container that Contains SageMaker's Distributed Model Parallel
Library

• Create Your Own Docker Container with the SageMaker Distributed Model Parallel Library

SageMaker model parallelism library v2 3747

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://sagemaker.readthedocs.io/en/v2.199.0/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator
https://sagemaker.readthedocs.io/en/v2.199.0/frameworks/pytorch/sagemaker.pytorch.html#pytorch-estimator
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/estimators.html#sagemaker.estimator.Estimator

Amazon SageMaker Developer Guide

Using the SageMaker TensorFlow and PyTorch Estimators

The TensorFlow and PyTorch estimator classes contain the distribution parameter, which
you can use to specify configuration parameters for using distributed training frameworks. The
SageMaker model parallel library internally uses MPI for hybrid data and model parallelism, so you
must use the MPI option with the library.

The following template of a TensorFlow or PyTorch estimator shows how to configure the
distribution parameter for using the SageMaker model parallel library with MPI.

Using the SageMaker TensorFlow estimator

import sagemaker
from sagemaker.tensorflow import TensorFlow

smp_options = {
 "enabled":True, # Required
 "parameters": {
 "partitions": 2, # Required
 "microbatches": 4,
 "placement_strategy": "spread",
 "pipeline": "interleaved",
 "optimize": "speed",
 "horovod": True, # Use this for hybrid model and data parallelism
 }
}

mpi_options = {
 "enabled" : True, # Required
 "processes_per_host" : 8, # Required
 # "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none"
}

smd_mp_estimator = TensorFlow(
 entry_point="your_training_script.py", # Specify your train script
 source_dir="location_to_your_script",
 role=sagemaker.get_execution_role(),
 instance_count=1,
 instance_type='ml.p3.16xlarge',
 framework_version='2.6.3',
 py_version='py38',
 distribution={
 "smdistributed": {"modelparallel": smp_options},

SageMaker model parallelism library v2 3748

Amazon SageMaker Developer Guide

 "mpi": mpi_options
 },
 base_job_name="SMD-MP-demo",
)

smd_mp_estimator.fit('s3://my_bucket/my_training_data/')

Using the SageMaker PyTorch estimator

import sagemaker
from sagemaker.pytorch import PyTorch

smp_options = {
 "enabled":True,
 "parameters": { # Required
 "pipeline_parallel_degree": 2, # Required
 "microbatches": 4,
 "placement_strategy": "spread",
 "pipeline": "interleaved",
 "optimize": "speed",
 "ddp": True,
 }
}

mpi_options = {
 "enabled" : True, # Required
 "processes_per_host" : 8, # Required
 # "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none"
}

smd_mp_estimator = PyTorch(
 entry_point="your_training_script.py", # Specify your train script
 source_dir="location_to_your_script",
 role=sagemaker.get_execution_role(),
 instance_count=1,
 instance_type='ml.p3.16xlarge',
 framework_version='1.13.1',
 py_version='py38',
 distribution={
 "smdistributed": {"modelparallel": smp_options},
 "mpi": mpi_options
 },
 base_job_name="SMD-MP-demo",

SageMaker model parallelism library v2 3749

Amazon SageMaker Developer Guide

)

smd_mp_estimator.fit('s3://my_bucket/my_training_data/')

To enable the library, you need to pass configuration dictionaries to the "smdistributed" and
"mpi" keys through the distribution argument of the SageMaker estimator constructors.

Configuration parameters for SageMaker model parallelism

• For the "smdistributed" key, pass a dictionary with the "modelparallel" key and the
following inner dictionaries.

Note

Using "modelparallel" and "dataparallel" in one training job is not supported.

• "enabled" – Required. To enable model parallelism, set "enabled": True.

• "parameters" – Required. Specify a set of parameters for SageMaker model parallelism.

• For a complete list of common parameters, see Parameters for smdistributed in the
SageMaker Python SDK documentation.

For TensorFlow, see TensorFlow-specific Parameters.

For PyTorch, see PyTorch-specific Parameters.

• "pipeline_parallel_degree" (or "partitions" in smdistributed-
modelparallel<v1.6.0) – Required. Among the parameters for smdistributed, this
parameter is required to specify how many model partitions you want to split into.

Important

There is a breaking change in the parameter name. The
"pipeline_parallel_degree" parameter replaces the "partitions"
since smdistributed-modelparallel v1.6.0. For more information, see
Common Parameters for SageMaker model parallelism configuration and
SageMaker Distributed Model Parallel Release Notes in the SageMaker Python SDK
documentation.

SageMaker model parallelism library v2 3750

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#smdistributed-parameters
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#tensorflow-specific-parameters
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#pytorch-specific-parameters
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#smdistributed-parameters
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#common-parameters
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.html

Amazon SageMaker Developer Guide

• For the "mpi" key, pass a dictionary that contains the following:

• "enabled" – Required. Set True to launch the distributed training job with MPI.

• "processes_per_host" – Required. Specify the number of processes MPI should launch on
each host. In SageMaker, a host is a single Amazon EC2 ML instance. The SageMaker Python
SDK maintains a one-to-one mapping between processes and GPUs across model and data
parallelism. This means that SageMaker schedules each process on a single, separate GPU
and no GPU contains more than one process. If you are using PyTorch, you must restrict each
process to its own device through torch.cuda.set_device(smp.local_rank()). To learn
more, see Automated splitting with PyTorch.

Important

process_per_host must not be greater than the number of GPUs per instance and
typically will be equal to the number of GPUs per instance.

• "custom_mpi_options" (optional) – Use this key to pass any custom MPI options you might
need. If you do not pass any MPI custom options to the key, the MPI option is set by default to
the following flag.

--mca btl_vader_single_copy_mechanism none

Note

You do not need to explicitly specify this default flag to the key. If you explicitly specify
it, your distributed model parallel training job might fail with the following error:

The following MCA parameter has been listed multiple times on the command
 line:
MCA param: btl_vader_single_copy_mechanism MCA parameters can only be listed
 once
on a command line to ensure there is no ambiguity as to its value.
Please correct the situation and try again.

SageMaker model parallelism library v2 3751

Amazon SageMaker Developer Guide

Tip

If you launch a training job using an EFA-enabled instance type, such as
ml.p4d.24xlarge and ml.p3dn.24xlarge, use the following flag for best
performance:

-x FI_EFA_USE_DEVICE_RDMA=1 -x FI_PROVIDER=efa -x RDMAV_FORK_SAFE=1

To launch the training job using the estimator and your SageMaker model parallel configured
training script, run the estimator.fit() function.

Use the following resources to learn more about using the model parallelism features in the
SageMaker Python SDK:

• Use TensorFlow with the SageMaker Python SDK

• Use PyTorch with the SageMaker Python SDK

• We recommend you use a SageMaker notebook instance if you are new users. To see an example
of how you can launch a training job using a SageMaker notebook instance, see Amazon
SageMaker Distributed Training Notebook Examples.

• You can also submit a distributed training job from your machine using AWS CLI. To set up AWS
CLI on your machine, see set up your AWS credentials and Region for development.

Extend a Pre-built Docker Container that Contains SageMaker's Distributed Model Parallel
Library

To extend a pre-built container and use SageMaker's model parallelism library, you must use one
of the available AWS Deep Learning Containers (DLC) images for PyTorch or TensorFlow. The
SageMaker model parallelism library is included in the TensorFlow (2.3.0 and later) and PyTorch
(1.6.0 and later) DLC images with CUDA (cuxyz). For a complete list of DLC images, see Available
Deep Learning Containers Images in the AWS Deep Learning Containers GitHub repository.

SageMaker model parallelism library v2 3752

https://sagemaker.readthedocs.io/en/v2.199.0/frameworks/tensorflow/using_tf.html
https://sagemaker.readthedocs.io/en/v2.199.0/frameworks/pytorch/using_pytorch.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

Tip

We recommend that you use the image that contains the latest version of TensorFlow or
PyTorch to access the most up-to-date version of the SageMaker model parallelism library.

For example, your Dockerfile should contain a FROM statement similar to the following:

Use the SageMaker DLC image URI for TensorFlow or PyTorch
FROM aws-dlc-account-id.dkr.ecr.aws-region.amazonaws.com/framework-training:{framework-
version-tag}

Add your dependencies here
RUN ...

ENV PATH="/opt/ml/code:${PATH}"

this environment variable is used by the SageMaker container to determine our user
 code directory.
ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code

Additionally, when you define a PyTorch or TensorFlow estimator, you must specify that the
entry_point for your training script. This should be the same path identified with ENV
SAGEMAKER_SUBMIT_DIRECTORY in your Dockerfile.

Tip

You must push this Docker container to Amazon Elastic Container Registry (Amazon ECR)
and use the image URI (image_uri) to define a SageMaker estimator for training. For more
information, see Extend a Pre-built Container.

After you finish hosting the Docker container and retrieving the image URI of the container, create
a SageMaker PyTorch estimator object as follows. This example assumes that you have already
defined smp_options and mpi_options.

smd_mp_estimator = Estimator(
 entry_point="your_training_script.py",
 role=sagemaker.get_execution_role(),

SageMaker model parallelism library v2 3753

Amazon SageMaker Developer Guide

 instance_type='ml.p3.16xlarge',
 sagemaker_session=sagemaker_session,
 image_uri='your_aws_account_id.dkr.ecr.region.amazonaws.com/name:tag'
 instance_count=1,
 distribution={
 "smdistributed": smp_options,
 "mpi": mpi_options
 },
 base_job_name="SMD-MP-demo",
)

smd_mp_estimator.fit('s3://my_bucket/my_training_data/')

Create Your Own Docker Container with the SageMaker Distributed Model Parallel Library

To build your own Docker container for training and use the SageMaker model parallel library, you
must include the correct dependencies and the binary files of the SageMaker distributed parallel
libraries in your Dockerfile. This section provides the minimum set of code blocks you must include
to properly prepare a SageMaker training environment and the model parallel library in your own
Docker container.

Note

This custom Docker option with the SageMaker model parallel library as a binary is
available only for PyTorch.

To create a Dockerfile with the SageMaker training toolkit and the model parallel library

1. Start with one of the NVIDIA CUDA base images.

FROM <cuda-cudnn-base-image>

Tip

The official AWS Deep Learning Container (DLC) images are built from the NVIDIA CUDA
base images. We recommend you look into the official Dockerfiles of AWS Deep Learning
Container for PyTorch to find which versions of the libraries you need to install and
how to configure them. The official Dockerfiles are complete, benchmark tested, and
managed by the SageMaker and Deep Learning Container service teams. In the provided

SageMaker model parallelism library v2 3754

https://hub.docker.com/r/nvidia/cuda
https://hub.docker.com/r/nvidia/cuda
https://hub.docker.com/r/nvidia/cuda
https://github.com/aws/deep-learning-containers/tree/master/pytorch/training/docker
https://github.com/aws/deep-learning-containers/tree/master/pytorch/training/docker

Amazon SageMaker Developer Guide

link, choose the PyTorch version you use, choose the CUDA (cuxyz) folder, and choose
the Dockerfile ending with .gpu or .sagemaker.gpu.

2. To set up a distributed training environment, you need to install software for communication
and network devices, such as Elastic Fabric Adapter (EFA), NVIDIA Collective Communications
Library (NCCL), and Open MPI. Depending on the PyTorch and CUDA versions you choose, you
must install compatible versions of the libraries.

Important

Because the SageMaker model parallel library requires the SageMaker data parallel
library in the subsequent steps, we highly recommend that you follow the instructions at
Create your own Docker container with the SageMaker distributed data parallel library to
properly set up a SageMaker training environment for distributed training.

For more information about setting up EFA with NCCL and Open MPI, see Get started with EFA
and MPI and Get started with EFA and NCCL.

3. Add the following arguments to specify the URLs of the SageMaker distributed training
packages for PyTorch. The SageMaker model parallel library requires the SageMaker data
parallel library to use the cross-node Remote Direct Memory Access (RDMA).

ARG SMD_MODEL_PARALLEL_URL=https://sagemaker-distributed-model-parallel.s3.us-
west-2.amazonaws.com/pytorch-1.10.0/build-artifacts/2022-02-21-19-26/
smdistributed_modelparallel-1.7.0-cp38-cp38-linux_x86_64.whl
ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/
pytorch/1.10.2/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-
linux_x86_64.whl

4. Install dependencies that the SageMaker model parallel library requires.

a. Install the METIS library.

ARG METIS=metis-5.1.0

RUN rm /etc/apt/sources.list.d/* \
 && wget -nv http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/${METIS}.tar.gz \
 && gunzip -f ${METIS}.tar.gz \
 && tar -xvf ${METIS}.tar \
 && cd ${METIS} \

SageMaker model parallelism library v2 3755

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.open-mpi.org/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start-nccl.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Amazon SageMaker Developer Guide

 && apt-get update \
 && make config shared=1 \
 && make install \
 && cd .. \
 && rm -rf ${METIS}.tar* \
 && rm -rf ${METIS} \
 && rm -rf /var/lib/apt/lists/* \
 && apt-get clean

b. Install the RAPIDS Memory Manager library. This requires CMake 3.14 or later.

ARG RMM_VERSION=0.15.0

RUN wget -nv https://github.com/rapidsai/rmm/archive/v${RMM_VERSION}.tar.gz \
 && tar -xvf v${RMM_VERSION}.tar.gz \
 && cd rmm-${RMM_VERSION} \
 && INSTALL_PREFIX=/usr/local ./build.sh librmm \
 && cd .. \
 && rm -rf v${RMM_VERSION}.tar* \
 && rm -rf rmm-${RMM_VERSION}

5. Install the SageMaker model parallel library.

RUN pip install --no-cache-dir -U ${SMD_MODEL_PARALLEL_URL}

6. Install the SageMaker data parallel library.

RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}

7. Install the sagemaker-training toolkit. The toolkit contains the common functionality that's
necessary to create a container compatible with the SageMaker training platform and the
SageMaker Python SDK.

RUN pip install sagemaker-training

8. After you finish creating the Dockerfile, see Adapting Your Own Training Container to learn how
to build the Docker container and host it in Amazon ECR.

SageMaker model parallelism library v2 3756

https://github.com/rapidsai/rmm#rmm-rapids-memory-manager
https://cmake.org/
https://github.com/aws/sagemaker-training-toolkit
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html

Amazon SageMaker Developer Guide

Tip

For more general information about creating a custom Dockerfile for training in SageMaker,
see Use Your Own Training Algorithms.

Checkpointing and Fine-Tuning a Model with Model Parallelism

The SageMaker model parallelism library provides checkpointing APIs to save the model state and
the optimizer state split by the various model parallelism strategies, and to load checkpoints for
continuous training from where you want to restart training and fine-tune. The APIs also support
options to save the model and optimizer states partially or fully.

Topics

• Checkpointing a distributed model

• Fine-tuning a distributed model

Checkpointing a distributed model

Choose one of the following topics depending on the framework between PyTorch and TensorFlow
and the version of the SageMaker model parallelism library you use.

Topics

• Checkpointing a distributed PyTorch model (for the SageMaker model parallelism library v1.10.0
and later)

• Checkpointing a distributed PyTorch model (for the SageMaker model parallelism library
between v1.6.0 and v1.9.0)

• Checkpointing a distributed TensorFlow model

Checkpointing a distributed PyTorch model (for the SageMaker model parallelism library
v1.10.0 and later)

The SageMaker model parallelism library provides checkpoint APIs to save and load full or partial
checkpoints of the distributed model state and its optimizer state.

SageMaker model parallelism library v2 3757

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html

Amazon SageMaker Developer Guide

Note

This checkpointing method is recommended if you use PyTorch and the SageMaker model
parallelism library v1.10.0 or later.

Partial checkpointing

To save checkpoints of a model trained with model parallelism, use the
smdistributed.modelparallel.torch.save_checkpoint API with the partial
checkpointing option set to true (partial=True). This saves each model partition individually.
In addition to the model and the optimizer state, you can also save any additional custom data
through the user_content argument. The checkpointed model, optimizer, and user content are
saved as separate files. The save_checkpoint API call creates checkpoint folders in the following
structure.

- path
 - ${tag}_partial (folder for partial checkpoints)
 - model_rankinfo.pt
 - optimizer_rankinfo.pt
 - fp16_states_rankinfo.pt
 - user_content.pt
 - $tag (checkpoint file for full checkpoints)
 - user_content_$tag (user_content file for full checkpoints)
 - newest (a file that indicates the newest checkpoint)

To resume training from partial checkpoints, use the
smdistributed.modelparallel.torch.resume_from_checkpoint API with
partial=True, and specify the checkpoint directory and the tag used while saving the partial
checkpoints. Note that the actual loading of model weights happens after model partitioning,
during the first run of the smdistributed.modelparallel.torch.step-decorated training
step function.

When saving a partial checkpoint, the library also saves the model partition decision as files with
.pt file extension. Conversely, when resuming from the partial checkpoint, the library loads
the partition decision files together. Once the partition decision is loaded, you can't change the
partition.

The following code snippet shows how to set the checkpoint APIs in a PyTorch training script.

SageMaker model parallelism library v2 3758

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.save_checkpoint
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.resume_from_checkpoint

Amazon SageMaker Developer Guide

import smdistributed.modelparallel.torch as smp

model = ...
model = smp.DistributedModel(model)
optimizer = ...
optimizer = smp.DistributedOptimizer(optimizer)
user_content = ... # additional custom data
checkpoint_path = "/opt/ml/checkpoint/model_parallel"

Save a checkpoint.
smp.save_checkpoint(
 path=checkpoint_path,
 tag=f"total_steps{total_steps}",
 partial=True,
 model=model,
 optimizer=optimizer,
 user_content=user_content
 num_kept_partial_checkpoints=5
)

Load a checkpoint.
This automatically loads the most recently saved checkpoint.
smp_checkpoint = smp.resume_from_checkpoint(
 path=checkpoint_path,
 partial=True
)

Full checkpointing

To save the final model artifact for inference purposes, use the
smdistributed.modelparallel.torch.save_checkpoint API with partial=False, which
combines the model partitions to create a single model artifact. Note that this does not combine
the optimizer states.

To initialize training with particular weights, given a full model checkpoint, you can use
the smdistributed.modelparallel.torch.resume_from_checkpoint API with
partial=False. Note that this does not load optimizer states.

Note

With tensor parallelism, in general, the state_dict must be translated between
the original model implementation and the DistributedModel implementation.

SageMaker model parallelism library v2 3759

Amazon SageMaker Developer Guide

Optionally, you can provide the state_dict translation function as an argument to the
smdistributed.modelparallel.torch.resume_from_checkpoint. However,
for the section called “Supported Models Out of the Box”, the library takes care of this
translation automatically.

The following code shows an example of how to use the checkpoint APIs for fully checkpointing a
PyTorch model trained with model parallelism.

import smdistributed.modelparallel.torch as smp

model = ...
model = smp.DistributedModel(model)
optimizer = ...
optimizer = smp.DistributedOptimizer(optimizer)
user_content = ... # additional custom data
checkpoint_path = "/opt/ml/checkpoint/model_parallel"

Save a checkpoint.
smp.save_checkpoint(
 path=checkpoint_path,
 tag=f"total_steps{total_steps}",
 partial=False,
 model=model,
 optimizer=optimizer,
 user_content=user_content
 num_kept_partial_checkpoints=5
)

Load a checkpoint.
This automatically loads the most recently saved checkpoint.
smp_checkpoint = smp.resume_from_checkpoint(
 path=checkpoint_path,
 partial=False
)

SageMaker model parallelism library v2 3760

Amazon SageMaker Developer Guide

Checkpointing a distributed PyTorch model (for the SageMaker model parallelism library
between v1.6.0 and v1.9.0)

The SageMaker model parallelism library provides Python functions for saving partial or full
checkpoints for training jobs with tensor parallelism. The following procedure shows how to use
smp.save() and smp.load() to save and load a checkpoint when you use tensor parallelism.

Note

This checkpointing method is recommended if you use PyTorch, the section called “Tensor
Parallelism”, and the SageMaker model parallelism library between v1.6.0 and v1.9.0.

1. Prepare a model object and wrap it with the library's wrapper function
smp.DistributedModel().

model = MyModel(...)
model = smp.DistributedModel(model)

2. Prepare an optimizer for the model. A set of model parameters is an iterable argument
required by optimizer functions. To prepare a set of model parameters, you must process
model.parameters() to assign unique IDs to individual model parameters.

If there are parameters with duplicated IDs in the model parameter iterable, loading the
checkpointed optimizer state fails. To create an iterable of model parameters with unique IDs for
your optimizer, see the following:

unique_params = []
unique_params_set = set()
for p in model.parameters():
 if p not in unique_params_set:
 unique_params.append(p)
 unique_params_set.add(p)
del unique_params_set

optimizer = MyOpt(unique_params, ...)

3. Wrap the optimizer using the library's wrapper function smp.DistributedOptimizer().

optimizer = smp.DistributedOptimizer(optimizer)

SageMaker model parallelism library v2 3761

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.save
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.load

Amazon SageMaker Developer Guide

4. Save the model and the optimizer state using smp.save(). Depending on how you want to save
checkpoints, choose one of the following two options:

• Option 1: Save a partial model on each mp_rank for a single MP_GROUP.

model_dict = model.local_state_dict() # save a partial model
opt_dict = optimizer.local_state_dict() # save a partial optimizer state
Save the dictionaries at rdp_rank 0 as a checkpoint
if smp.rdp_rank() == 0:
 smp.save(
 {"model_state_dict": model_dict, "optimizer_state_dict": opt_dict},
 f"/checkpoint.pt",
 partial=True,
)

With tensor parallelism, the library saves checkpointed files named in the following format:
checkpoint.pt_{pp_rank}_{tp_rank}.

Note

With tensor parallelism, make sure you set the if statement as if smp.rdp_rank()
== 0 instead of if smp.dp_rank() == 0. When the optimizer state is sharded with
tensor parallelism, all reduced-data parallel ranks must save their own partition of the
optimizer state. Using a wrong if statement for checkpointing might result in a stalling
training job. For more information about using if smp.dp_rank() == 0 without
tensor parallelism, see General Instruction for Saving and Loading in the SageMaker
Python SDK documentation.

• Option 2: Save the full model.

if smp.rdp_rank() == 0:
 model_dict = model.state_dict(gather_to_rank0=True) # save the full model
 if smp.rank() == 0:
 smp.save(
 {"model_state_dict": model_dict},
 "/checkpoint.pt",
 partial=False,
)

SageMaker model parallelism library v2 3762

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.save
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#general-instruction-for-saving-and-loading

Amazon SageMaker Developer Guide

Note

Consider the following for full checkpointing:

• If you set gather_to_rank0=True, all ranks other than 0 return empty
dictionaries.

• For full checkpointing, you can only checkpoint the model. Full checkpointing of
optimizer states is currently not supported.

• The full model only needs to be saved at smp.rank() == 0.

5. Load the checkpoints using smp.load(). Depending on how you checkpointed in the previous
step, choose one of the following two options:

• Option 1: Load the partial checkpoints.

checkpoint = smp.load("/checkpoint.pt", partial=True)
model.load_state_dict(checkpoint["model_state_dict"], same_partition_load=False)
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])

You can set same_partition_load=True in model.load_state_dict() for a faster load,
if you know that the partition will not change.

• Option 2: Load the full checkpoints.

if smp.rdp_rank() == 0:
 checkpoint = smp.load("/checkpoint.pt", partial=False)
 model.load_state_dict(checkpoint["model_state_dict"])

The if smp.rdp_rank() == 0 condition is not required, but it can help avoid redundant
loading among different MP_GROUPs. Full checkpointing optimizer state dict is currently not
supported with tensor parallelism.

Checkpointing a distributed TensorFlow model

To save a TensorFlow model while training with model parallelism, use the following functions
provided by the SageMaker model parallelism library.

• smdistributed.modelparallel.tensorflow.DistributedModel.save_model

• smdistributed.modelparallel.tensorflow.CheckpointManager

SageMaker model parallelism library v2 3763

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.load
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_tensorflow.html#smp.DistributedModel.save_model
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_tensorflow.html#smp.CheckpointManager

Amazon SageMaker Developer Guide

Fine-tuning a distributed model

The fine-tuning needs to be configured in your training script. The following code snippet shows
an example structure of a training script using the AutoModelForCausalLM class of Hugging Face
Transformers with modifications for registering the smdistributed.model.parallel.torch
modules and settings for fine-tuning.

Note

Fine-tuning a distributed transformer (a Transformer model wrapped by
smp.DistributedModel()) with the smp.delayed_param_initialization function
activated requires the fine-tuning job to be configured with an FSx for Lustre file system.
In cases where you want to fine-tune a large-scale model with the delayed parameter
initialization option, you should set up an FSx for Lustre file system.

import argparse
from transformers import AutoModelForCausalLM
import smdistributed.modelparallel
import smdistributed.modelparallel.torch as smp

def parse_args():

 parser = argparse.ArgumentParser()

 # set an arg group for model
 model_grp = parser.add_argument_group(
 title="model", description="arguments to describe model configuration"
)

 ... # set up numerous args to parse from the configuration dictionary to the script
 for training

 # add arg for activating fine-tuning
 model_grp.add_argument(
 "--fine_tune",
 type=int,
 default=0,
 help="Fine-tune model from checkpoint or pretrained model",
)

SageMaker model parallelism library v2 3764

https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForCausalLM
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#smdistributed.modelparallel.torch.delay_param_initialization

Amazon SageMaker Developer Guide

def main():
 """Main function to train GPT."""
 args = parse_args()

 ... # parse numerous args

 if args.fine_tune > 0 and args.delayed_param > 0 and smp.rank() == 0:
 pretrained_model = AutoModelForCausalLM.from_pretrained(
 args.model_name or args.model_dir
)
 model_state_dict = pretrained_model.state_dict()
 path = os.path.join(args.model_dir, "fullmodel.pt")
 torch.save(model_state_dict, path)

 # create a Transformer model and wrap by smp.model_creation()
 # with options to configure model parallelism parameters offered by SageMaker
 with smp.model_creation(
 tensor_parallelism=smp.tp_size() > 1 or args.use_distributed_transformer > 0,
 zero_init=args.use_distributed_transformer == 0,
 dtype=dtype,
 distribute_embedding=args.sharded_data_parallel_degree > 1 and smp.tp_size() >
 1,
 use_alibi=args.alibi > 0,
 attention_in_fp32=args.attention_in_fp32 > 0,
 fp32_residual_addition=args.residual_addition_in_fp32 > 0,
 query_key_layer_scaling=args.query_key_layer_scaling > 0 and args.bf16 < 1,
 fused_softmax=args.fused_softmax > 0,
 fused_dropout=args.fused_dropout > 0,
 fused_bias_gelu=args.fused_bias_gelu > 0,
 flash_attention=args.flash_attention > 0,
):
 if args.fine_tune > 0 and args.delayed_param == 0:
 model = AutoModelForCausalLM.from_pretrained(
 args.model_name or args.model_dir
)
 else:
 model = AutoModelForCausalLM.from_config(model_config)

 # wrap the model by smp.DistributedModel() to apply SageMaker model parallelism
 model = smp.DistributedModel(
 model, trace_device="gpu", backward_passes_per_step=args.gradient_accumulation
)

SageMaker model parallelism library v2 3765

Amazon SageMaker Developer Guide

 # wrap the optimizer by smp.DistributedOptimizer() to apply SageMaker model
 parallelism
 optimizer= ... # define an optimizer
 optimizer = smp.DistributedOptimizer(
 optimizer,
 static_loss_scale=None,
 dynamic_loss_scale=True,
 dynamic_loss_args={"scale_window": 1000, "min_scale": 1, "delayed_shift": 2},
)

 # for fine-tuning, use smp.resume_from_checkpoint() to load a pre-trained model
 if args.fine_tune > 0 and args.delayed_param > 0:
 smp.resume_from_checkpoint(args.model_dir, tag="fullmodel.pt", partial=False)

For a complete example of training scripts and Jupyter notebooks, see the GPT-2 examples for
PyTorch in the SageMaker Examples GitHub repository.

SageMaker Distributed Model Parallelism Best Practices

Use the following guidelines when you run a distributed training job with the SageMaker model
parallel library.

Setting Up the Right Configuration for a Given Model

When scaling up a model, we recommend you to go over the following list in order. Each list item
discusses the advantage of using the library's techniques along with the tradeoffs that might arise.

Tip

If a model can fit well using a subset of the library's features, adding more model
parallelism or memory saving features does not usually improve performance.

Using large GPU instance types

• In the realm of model parallelism, it is best to use powerful instances with large GPU memories
to handle overhead from model parallelism operations such as partitioning models across
multiple GPUs. We recommend using ml.p4d or ml.p3dn instances for training large DL
models. These instances are also equipped with Elastic Fabric Adapter (EFA), which provides
higher network bandwidth and enables large-scale training with model parallelism.

SageMaker model parallelism library v2 3766

https://github.com/aws/amazon-sagemaker-examples/tree/main/training/distributed_training/pytorch/model_parallel/gpt2
https://github.com/aws/amazon-sagemaker-examples/tree/main/training/distributed_training/pytorch/model_parallel/gpt2

Amazon SageMaker Developer Guide

Sharding optimizer state

• The impact of sharding optimizer state depends on the number of data parallel ranks. Typically,
a higher degree of data parallelism (proportional to the size of compute node) can improve the
efficiency of memory usage.

When you want to downsize a cluster, make sure you check the optimizer state sharding
configuration. For example, a large DL model with optimizer state sharding that fits on a
compute cluster with 16 GPUs (for example, two P4d or P4de instances) might not always fit on
a node with 8 GPUs (for example, a single P4d or P4de instance). This is because the combined
memory of 8 GPUs is lower than the combined memory of 16 GPUs, and the required memory
per GPU for sharding over 8 GPUs is also higher than the memory per GPU for sharding over the
16-GPU scenario. As a result, the increased memory requirement might not fit into the smaller
cluster.

For more information, see Optimizer State Sharding.

Activation checkpointing

• Memory efficiency can be improved by using activation checkpointing for a group of
modules. The more you group the modules, the more efficient the memory usage.
When checkpointing sequential modules for layers, the strategy argument of the
smp.set_activation_checkpointing function groups the layers together for
checkpointing. For example, grouping two or more layers together for checkpointing is more
memory efficient than checkpointing one layer at a time, and this trades extra computation time
for reduced memory usage.

For more information, see Activation Checkpointing.

Tensor parallelism

• The degree of tensor parallelism should be a power of two (2, 4, 8, ..., 2n), where the maximum
degree must be equal to the number of GPUs per node. For example, if you use a node with
8 GPUs, possible numbers for the degree of tensor parallelism are 2, 4, and 8. We don’t
recommend arbitrary numbers (such as 3, 5, 6, and 7) for the degree of tensor parallelism. When
you use multiple nodes, misconfiguring the degree of tensor parallelism might result in running
tensor parallelism across the nodes; this adds significant overhead from communication of
activations across the nodes and can become computationally expensive.

SageMaker model parallelism library v2 3767

Amazon SageMaker Developer Guide

For more information, see Tensor Parallelism.

Pipeline parallelism across nodes

• You can run pipeline parallelism both within a single node and across multiple nodes. When you
use pipeline parallelism in combination with tensor parallelism, we recommend running pipeline
parallelism across multiple nodes and keeping tensor parallelism within individual nodes.

• Pipeline parallelism comes with the following three knobs: microbatches,
active_microbatches, and prescaled_batch.

• When you use tensor parallelism with pipeline parallelism, we recommend activating
prescaled_batch so that the batch size per model parallel group can be increased for
efficient pipelining. With prescaled_batch activated, the batch size set in the training script
becomes tp_size times the batch size set for each rank without prescaled_batch.

• Increasing the number of microbatches helps achieve efficient pipelining and better
performance. Note that the effective microbatch size is the batch size divided by number of
microbatches. If you increase the number of microbatches while keeping batch size constant,
each microbatch processes fewer samples.

• The number of active_microbatches is the maximum number of microbatches
that are simultaneously in process during pipelining. For each active microbatch in
process, its activations and gradients take up GPU memory. Therefore, increasing
active_microbatches takes up more GPU memory.

• If both GPU and GPU memory are underutilized, increase active_microbatches for better
parallelization during pipelining.

• For more information about how to use tensor parallelism with pipeline parallelism, see Tensor
parallelism combined with pipeline parallelism.

• To find descriptions of the aforementioned parameters, see Parameters for smdistributed in
the SageMaker Python SDK documentation.

Offloading activations to CPU

• Make sure that this is used in combination with activation checkpointing and pipeline
parallelism. To ensure that the offloading and preloading happen in the background, specify a
value greater than 1 to the microbatches parameter.

SageMaker model parallelism library v2 3768

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smd_model_parallel_general.html#parameters-for-smdistributed

Amazon SageMaker Developer Guide

• When offloading activations, you might be able to increase active_microbatches and
sometimes match with the total number of microbatches. This depends on which modules are
checkpointed and how the model is partitioned.

For more information, see Activation Offloading.

Reference configurations

The SageMaker model parallelism training team provides the following reference points based on
experiments with the GPT-2 model, the sequence length of 512, and the vocabulary size of 50,000.

The
number
of model
parameter
s

Instance
type

Pipeline
paralleli
sm

Tensor
paralleli
sm

Optimizer
state
sharding

Activatio
n
checkpoin
ting

Prescaled
batch

Batch
size

10 billion 16
ml.p4d.24
xlarge

1 4 True Each
transform
er layer

True batch_siz
e=40

30 billion 16
ml.p4d.24
xlarge

1 8 True Each
transform
er layer

True batch_siz
e=32

60 billion 32
ml.p4d.24
xlarge

2 8 True Each
transform
er layer

True batch_siz
e=56 ,
microbatc
hes=4 ,
active_mi
crobatche
s=2

You can extrapolate from the preceding configurations to estimate GPU memory usage for your
model configuration. For example, if you increase the sequence length for a 10-billion-parameter
model or increase the size of the model to 20 billion, you might want to lower batch size first. If
the model still doesn’t fit, try increasing the degree of tensor parallelism.

SageMaker model parallelism library v2 3769

Amazon SageMaker Developer Guide

Modifying Your Training Script

• Before you use the SageMaker model parallel library’s features in your training script, review The
SageMaker Distributed Model Parallelism Library Configuration Tips and Pitfalls.

• To launch a training job faster, use the SageMaker local mode. This helps you quickly run a
training job locally on a SageMaker notebook instance. Depending on the scale of the ML
instance on which your SageMaker notebook instance is running, you might need to adjust the
size of your model by changing the model configurations, such as the hidden width, number of
transformer layers, and attention heads. Validate if the reduced model runs well on the notebook
instance before using a large cluster for training the full model.

Monitoring and Logging a Training Job Using the SageMaker Console and Amazon CloudWatch

To monitor system-level metrics such as CPU memory utilization, GPU memory utilization, and
GPU utilization, use visualization provided through the SageMaker console.

1. In the left navigation pane, choose Training.

2. Choose Training jobs.

3. In the main pane, choose the training job name for which you want to see more details.

4. Browse the main pane and find the Monitor section to see the automated visualization.

5. To see training job logs, choose View logs in the Monitor section. You can access the distributed
training job logs of the training job in CloudWatch. If you launched multi-node distributed
training, you should see multiple log streams with tags in the format of algo-n-1234567890.
The algo-1 log stream tracks training logs from the main (0th) node.

For more information, see Monitor and Analyze Training Jobs Using Amazon CloudWatch Metrics.

Permissions

To run a SageMaker training job with model parallelism or the SageMaker distributed training
example notebooks, make sure you have the right permissions in your IAM role, such as the
following:

• To use FSx for Lustre, add AmazonFSxFullAccess.

• To use Amazon S3 as a data channel, add AmazonS3FullAccess.

• To use Docker, build your own container, and push it to Amazon ECR, add
AmazonEC2ContainerRegistryFullAccess.

SageMaker model parallelism library v2 3770

https://sagemaker.readthedocs.io/en/v2.199.0/overview.html?highlight=local%20mode#local-mode
https://console.aws.amazon.com/sagemaker/
https://sagemaker-examples.readthedocs.io/en/latest/training/distributed_training/index.html
https://sagemaker-examples.readthedocs.io/en/latest/training/distributed_training/index.html
https://aws.amazon.com/fsx/
https://console.aws.amazon.com/iam/home#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonFSxFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonS3FullAccess
https://console.aws.amazon.com/iam/home#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonEC2ContainerRegistryFullAccess

Amazon SageMaker Developer Guide

• To have a full access to use the entire suite of SageMaker features, add
AmazonSageMakerFullAccess.

The SageMaker Distributed Model Parallelism Library Configuration Tips and Pitfalls

Review the following tips and pitfalls before using Amazon SageMaker's model parallelism library.
This list includes tips that are applicable across frameworks. For TensorFlow and PyTorch specific
tips, see Modify a TensorFlow training script and Modify a PyTorch Training Script, respectively.

Batch Size and Number of Microbatches

• The library is most efficient when the batch size is increased. For use cases where the model fits
within a single device, but can only be trained with a small batch size, batch size can and should
be increased after the library is integrated. Model parallelism saves memory for large models,
enabling you to train using batch sizes that previously did not fit in memory.

• Choosing a number of microbatches that is too small or too large can lower performance. The
library executes each microbatch sequentially in each device, so microbatch size (batch size
divided by number of microbatches) must be large enough to fully utilize each GPU. At the
same time, pipeline efficiency increases with the number of microbatches, so striking the right
balance is important. Typically, a good starting point is to try 2 or 4 microbatches, increasing
the batch size to the memory limit, and then experiment with larger batch sizes and numbers
of microbatches. As the number of microbatches is increased, larger batch sizes might become
feasible if an interleaved pipeline is used.

• Your batch size must be always divisible by the number of microbatches. Note that depending
on the size of the dataset, sometimes the last batch of every epoch can be of a smaller size than
the rest, and this smaller batch needs to be divisible by the number of microbatches as well. If it
is not, you can set drop_remainder=True in the tf.Dataset.batch() call (in TensorFlow),
or set drop_last=True in DataLoader (in PyTorch), so that this last, small batch is not used.
If you are using a different API for the data pipeline, you might need to manually skip the last
batch whenever it is not divisible by the number of microbatches.

Manual Partitioning

• If you use manual partitioning, be mindful of the parameters that are consumed by multiple
operations and modules in your model, such as the embedding table in transformer
architectures. Modules that share the same parameter must be placed in the same device for
correctness. When auto-partitioning is used, the library automatically enforces this constraint.

SageMaker model parallelism library v2 3771

https://console.aws.amazon.com/iam/home%23/policies/iam/home%23/policies/arn%253Aaws%253Aiam%253A%253Aaws%253Apolicy%252FAmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

Data Preparation

• If the model takes multiple inputs, make sure you seed the random operations in your data
pipeline (e.g., shuffling) with smp.dp_rank(). If the dataset is being deterministically sharded
across data parallel devices, make sure that the shard is indexed by smp.dp_rank(). This is to
make sure that the order of the data seen on all ranks that form a model partition is consistent.

Returning Tensors from smp.DistributedModel

• Any tensor that is returned from the smp.DistributedModel.call (for TensorFlow) or
smp.DistributedModel.forward (for PyTorch) function is broadcast to all other ranks, from
the rank that computed that particular tensor. As a result, any tensor that is not needed outside
the call and forward methods (intermediate activations, for example) should not be returned, as
this causes needless communication and memory overhead and hurts performance.

The @smp.step Decorator

• If an smp.step-decorated function has a tensor argument that does not have a batch
dimension, the argument name must be provided in the non_split_inputs list when calling
smp.step. This prevents the library from attempting to split the tensor into microbatches. For
more information see smp.step in the API documentation.

Delaying Parameter Initialization

For very large models over 100 billion parameters, weight initialization through the CPU
memory might result in an out-of-memory error. To get around this, the library offers
smp.delay_param_initialization context manager. This delays the physical allocation of
parameters until they move to GPU during the first execution of a smp.step-decorated function.
This avoids unnecessary memory usage of the CPU during the initialization of training. Use the
context manager when you create a model object as shown in the following code.

with smp.delay_param_initialization(enabled=True):
 model = MyModel()

SageMaker model parallelism library v2 3772

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_common_api.html

Amazon SageMaker Developer Guide

Tensor Parallelism for PyTorch

• If you are using a seed for deterministic results, set the seed based on smp.dp_rank() (for
example, torch.manual_seed(42 + smp.dp_rank())). If you do not do this, different
partitions of an nn.Parameter are initialized in the same way, impacting convergence.

• SageMaker’s model parallelism library uses NCCL to implement collectives needed for the
distribution of the modules. Especially for smaller models, if too many NCCL calls are scheduled
on the GPU at the same time, memory usage might increase because of additional space used
by NCCL. To counteract this, smp throttles the NCCL calls so that the number of ongoing NCCL
operations at any given time is less than or equal to a given limit. The default limit is 8, but this
can be adjusted using the environment variable SMP_NCCL_THROTTLE_LIMIT. If you observe
more memory usage than you expect while using tensor parallelism, you can try reducing
this limit. However, choosing a limit that is too small might cause throughput loss. To disable
throttling altogether, you can set SMP_NCCL_THROTTLE_LIMIT=-1.

• The following identity, which holds when the degree of tensor parallelism is 1, does not hold
when the degree of tensor parallelism is greater than 1: smp.mp_size() * smp.dp_size()
== smp.size(). This is because the tensor parallel group is part of both the model parallelism
group and the data parallelism group. If your code has existing references to mp_rank, mp_size,
MP_GROUP, and so on, and if you want to work with only the pipeline parallel group, you might
need to replace the references with smp.pp_size(). The following identities are always true:

• smp.mp_size() * smp.rdp_size() == smp.size()

• smp.pp_size() * smp.dp_size() == smp.size()

• smp.pp_size() * smp.tp_size() * smp.rdp_size() == smp.size()

• Since the smp.DistributedModel wrapper modifies the model parameters when tensor
parallelism is enabled, the optimizer should be created after calling smp.DistributedModel,
with the distributed parameters. For example, the following does not work:

WRONG
model = MyModel()
optimizer = SomeOptimizer(model.parameters())
model = smp.DistributedModel(model) # optimizer now has outdated parameters!

Instead, the optimizer should be created with the parameters of the smp.DistributedModel
as follows:

CORRECT

SageMaker model parallelism library v2 3773

Amazon SageMaker Developer Guide

model = smp.DistributedModel(MyModel())
optimizer = SomeOptimizer(model.optimizers())

• When a module is replaced with its distributed counterpart through tensor parallelism, the
distributed module does not inherit its weights from the original module, and initializes new
weights. This means that, for instance, if the weights need to be initialized in a particular
call (for example, through a load_state_dict call), this needs to happen after the
smp.DistributedModel call, once the module distribution takes place.

• When accessing the parameters of distributed modules directly, note that the weight does not
have the same shape as the original module. For instance,

with smp.tensor_parallelism():
 linear = nn.Linear(60, 60)

will pass
assert tuple(linear.weight.shape) == (60, 60)

distributed_linear = smp.DistributedModel(linear)

will fail. the number of input channels will have been divided by smp.tp_size()
assert tuple(distributed_linear.module.weight.shape) == (60, 60)

• Using torch.utils.data.distributed.DistributedSampler is strongly recommended
for tensor parallelism. This ensures that every data parallel rank receives the same number of
data samples, which prevents hangs that might result from different dp_ranks taking a different
number of steps.

• If you use the join API of PyTorch's DistributedDataParallel class to handle cases in
which different data parallel ranks have different numbers of batches, you still need to make
sure that ranks that are in the same TP_GROUP have the same number of batches; otherwise the
communication collectives used in distributed execution of modules may hang. Ranks that are in
different TP_GROUPs can have different numbers of batches, as long as join API is used.

• If you want to checkpoint your model and use tensor parallelism, consider the following:

• To avoid stalling and race conditions while saving and loading models when you use tensor
parallelism, make sure you call appropriate functions from the following model and optimizer
states inside a reduced-data parallelism rank.

• If you are transitioning an existing pipeline parallel script and enabling tensor parallel for
the script, ensure that you modify any if smp.dp_rank() == 0 block used for saving and

SageMaker model parallelism library v2 3774

Amazon SageMaker Developer Guide

loading with if smp.rdp_rank() == 0 blocks. Otherwise, it might cause your training job
to stall.

For more information about checkpointing a model with tensor parallelism, see the section
called “Checkpointing a distributed model”.

Model Parallel Troubleshooting

If you run into an error, you can use the following list to try to troubleshoot your training job. If the
problem persists, contact AWS Support.

Topics

• Considerations for Using SageMaker Debugger with the SageMaker Model Parallelism Library

• Saving Checkpoints

• Convergence Using Model Parallel and TensorFlow

• Stalling or Crashing Distributed Training Jobs

• Receiving NCCL Error for a PyTorch Training Job

• Receiving RecursionError for a PyTorch Training Job

Considerations for Using SageMaker Debugger with the SageMaker Model Parallelism Library

SageMaker Debugger is not available for the SageMaker model parallelism library. Debugger is
enabled by default for all SageMaker TensorFlow and PyTorch training jobs, and you might see an
error that looks like the following:

FileNotFoundError: [Errno 2] No such file or directory: '/opt/ml/checkpoints/
metadata.json.sagemaker-uploading

To fix this issue, disable Debugger by passing debugger_hook_config=False when creating a
framework estimator as shown in the following example.

bucket=sagemaker.Session().default_bucket()
base_job_name="sagemaker-checkpoint-test"
checkpoint_in_bucket="checkpoints"

The S3 URI to store the checkpoints
checkpoint_s3_bucket="s3://{}/{}/{}".format(bucket, base_job_name,
 checkpoint_in_bucket)

SageMaker model parallelism library v2 3775

https://aws.amazon.com/premiumsupport

Amazon SageMaker Developer Guide

estimator = TensorFlow(
 ...

 distribution={"smdistributed": {"modelparallel": { "enabled": True }}},
 checkpoint_s3_uri=checkpoint_s3_bucket,
 checkpoint_local_path="/opt/ml/checkpoints",
 debugger_hook_config=False
)

Saving Checkpoints

You might run into the following error when saving checkpoints of a large model on SageMaker:

InternalServerError: We encountered an internal error. Please try again

This could be caused by a SageMaker limitation while uploading the local checkpoint to Amazon
S3 during training. To disable checkpointing in SageMaker, use the following example to explicitly
upload the checkpoints.

If you run into the preceding error, do not use checkpoint_s3_uri with the SageMaker
estimator call. While saving checkpoints for larger models, we recommend saving checkpoints to
a custom directory and passing the same to the helper function (as a local_path argument).

import os

def aws_s3_sync(source, destination):
 """aws s3 sync in quiet mode and time profile"""
 import time, subprocess
 cmd = ["aws", "s3", "sync", "--quiet", source, destination]
 print(f"Syncing files from {source} to {destination}")
 start_time = time.time()
 p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 p.wait()
 end_time = time.time()
 print("Time Taken to Sync: ", (end_time-start_time))
 return

def sync_local_checkpoints_to_s3(local_path="/opt/ml/checkpoints",
 s3_uri=os.path.dirname(os.path.dirname(os.getenv('SM_MODULE_DIR', '')))+'/
checkpoints'):
 """ sample function to sync checkpoints from local path to s3 """

SageMaker model parallelism library v2 3776

Amazon SageMaker Developer Guide

 import boto3
 #check if local path exists
 if not os.path.exists(local_path):
 raise RuntimeError("Provided local path {local_path} does not exist. Please
 check")

 #check if s3 bucket exists
 s3 = boto3.resource('s3')
 if not s3_uri.startswith("s3://"):
 raise ValueError(f"Provided s3 uri {s3_uri} is not valid.")

 s3_bucket = s3_uri.replace('s3://','').split('/')[0]
 print(f"S3 Bucket: {s3_bucket}")
 try:
 s3.meta.client.head_bucket(Bucket=s3_bucket)
 except Exception as e:
 raise e
 aws_s3_sync(local_path, s3_uri)
 return

def sync_s3_checkpoints_to_local(local_path="/opt/ml/checkpoints",
 s3_uri=os.path.dirname(os.path.dirname(os.getenv('SM_MODULE_DIR', '')))+'/
checkpoints'):
 """ sample function to sync checkpoints from s3 to local path """

 import boto3
 #try to create local path if it does not exist
 if not os.path.exists(local_path):
 print(f"Provided local path {local_path} does not exist. Creating...")
 try:
 os.makedirs(local_path)
 except Exception as e:
 raise RuntimeError(f"Failed to create {local_path}")

 #check if s3 bucket exists
 s3 = boto3.resource('s3')
 if not s3_uri.startswith("s3://"):
 raise ValueError(f"Provided s3 uri {s3_uri} is not valid.")

 s3_bucket = s3_uri.replace('s3://','').split('/')[0]
 print(f"S3 Bucket: {s3_bucket}")
 try:
 s3.meta.client.head_bucket(Bucket=s3_bucket)

SageMaker model parallelism library v2 3777

Amazon SageMaker Developer Guide

 except Exception as e:
 raise e
 aws_s3_sync(s3_uri, local_path)
 return

Usage of helper functions:

#base_s3_uri - user input s3 uri or save to model directory (default)
#curr_host - to save checkpoints of current host
#iteration - current step/epoch during which checkpoint is saved

save checkpoints on every node using local_rank
if smp.local_rank() == 0:
 base_s3_uri = os.path.dirname(os.path.dirname(os.getenv('SM_MODULE_DIR', '')))
 curr_host = os.environ['SM_CURRENT_HOST']
 full_s3_uri = f'{base_s3_uri}/checkpoints/{curr_host}/{iteration}'
 sync_local_checkpoints_to_s3(local_path=checkpoint_dir, s3_uri=full_s3_uri)

Convergence Using Model Parallel and TensorFlow

When you use SageMaker multi-node training with TensorFlow and the model parallelism library,
the loss may not converge as expected because the order of training input files may be different on
each node. This may cause different ranks in the same model parallel group to work on different
input files, causing inconsistencies. To prevent this, ensure the input files are ordered the same way
in all the ranks before they get converted to TensorFlow datasets. One way to achieve this is to sort
the input file names in the training script.

Stalling or Crashing Distributed Training Jobs

If your training job has stalling, crashing, or not responding issues, read the following
troubleshooting items to identify what's the cause of the issue. If you need any further support,
reach out to the SageMaker distributed training team through AWS Support.

• If you see a distributed training job stalling at the NCCL initialization step, consider the
following:

• If you are using one of the EFA-enabled instances (ml.p4d or ml.p3dn instances) with a
custom VPC and its subnet, ensure that the security group used has inbound and outbound
connections for all ports to and from the same SG. You also generally need outbound
connections to any IP as a separate rule (for internet access). To find instructions on how to

SageMaker model parallelism library v2 3778

https://aws.amazon.com/premiumsupport

Amazon SageMaker Developer Guide

add inbound and outbound rules for EFA communication, refer to SageMaker distributed
training job stalling during initialization.

• If you see a distributed training job stalling when checkpointing the full model, this might
be because the state_dict() call on the model or optimizer was not made on all ranks
with rdp_rank()==0 (when using tensor parallelism) or dp_rank()==0 (when using only
pipeline parallelism). These ranks need to communicate to construct the checkpoint to
be saved. Similar stalling issues can also happen when checkpointing partial optimizer if
shard_optimizer_state is enabled.

For more information about checkpointing a model with model parallelism, see General
Instruction for Saving and Loading and Checkpointing a distributed PyTorch model (for the
SageMaker model parallelism library between v1.6.0 and v1.9.0).

• If the training job crashes with a CUDA Out of Memory error, this means that the distributed
training configuration needs to be adjusted to fit the model on the GPU cluster. For more
information and best practices, see Setting Up the Right Configuration for a Given Model.

• If the training job crashes with an uncorrectable ECC error, this means that one of the GPUs in
the cluster has gone bad. If you need technical support, share the job ARN with the AWS team
and restart your training job from a checkpoint if possible.

• In rare cases, a job configuration that worked previously but is close to the limits of GPU memory
might fail later with a different cluster due to a CUDA Out of Memory error. This could be
because some GPU has lower available memory than usual due to ECC errors.

• Network timeout crash might happen when running a multinode job which doesn’t use
all GPUs in the node. To get around this, use all GPUs on the node by ensuring that the
processes_per_host parameter is set to the number of GPUs in each instance. For
example, this is processes_per_host=8 for ml.p3.16xlarge, ml.p3dn.24xlarge, and
ml.p4d.24xlarge instances.

• If you find that your training job takes a long time during the data downloading stage, make sure
the Amazon S3 path you provided to checkpoint_s3_uri for the SageMaker Estimator class
is unique for the current training job. If this path is reused across multiple training jobs running
simultaneously, all those checkpoints are uploaded and downloaded to the same Amazon S3
path and might significantly increase checkpoint loading time.

• Use FSx for Lustre when you deal with large data and models.

• If your dataset is large and fetching it takes a long time, we recommend keeping your dataset
in FSx for Lustre.

SageMaker model parallelism library v2 3779

https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#general-instruction-for-saving-and-loading
https://sagemaker.readthedocs.io/en/v2.199.0/api/training/smp_versions/latest/smd_model_parallel_pytorch.html#general-instruction-for-saving-and-loading
https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html
https://aws.amazon.com/fsx/lustre/

Amazon SageMaker Developer Guide

• When training models are beyond 10 billion parameters, we recommend using FSx for Lustre
for checkpointing.

• After you create a file system, make sure to wait for the status to become available before
starting a training job using it.

Receiving NCCL Error for a PyTorch Training Job

If you encountered the following error, it might be due to a process running out of GPU memory.

NCCL error in: ../torch/lib/c10d/ProcessGroupNCCL.cpp:825, unhandled system error, NCCL
 version 2.7.8
ncclSystemError: System call (socket, malloc, munmap, etc) failed.

You can resolve this by reducing the batch size or active_microbatches. If auto partitioning is
not resulting in a well-balanced partitioning, you might have to consider manual partitioning. For
more information, see Pipeline parallelism across nodes.

Receiving RecursionError for a PyTorch Training Job

The library does not support calling super.forward() inside a module's forward call. If you use
super.forward(), you might receive the following error message.

RecursionError: maximum recursion depth exceeded

To fix the error, instead of calling super.forward(), you should call
super()._orig_forward().

Amazon SageMaker Distributed Training Notebook Examples

The following case studies and notebooks provide examples of implementing the SageMaker
distributed training libraries for the supported deep learning frameworks (PyTorch, TensorFlow,
and HuggingFace) and models, such as CNN and MaskRCNN for vision, and BERT for natural
language processing.

These notebooks are provided in the SageMaker examples GitHub repository. You can also browse
them on the SageMaker examples website.

Blogs and Case Studies

The following blogs discuss case studies about using the SageMaker distributed training libraries.

SageMaker Distributed Training Notebook Examples 3780

https://github.com/aws/amazon-sagemaker-examples/tree/master/training/distributed_training/
https://sagemaker-examples.readthedocs.io/en/latest/training/distributed_training/index.html

Amazon SageMaker Developer Guide

The SageMaker data parallelism library

• Enable faster training with Amazon SageMaker data parallel library, AWS Machine Learning Blog
(December 05, 2023)

• How I trained 10TB for Stable Diffusion on SageMaker in Medium (November 29, 2022)

• Run PyTorch Lightning and native PyTorch DDP on Amazon SageMaker Training, featuring
Amazon Search , AWS Machine Learning Blog (August 18, 2022)

• Training YOLOv5 on AWS with PyTorch and the SageMaker distributed data parallel library,
Medium (May 6, 2022)

• Speed up EfficientNet model training on SageMaker with PyTorch and the SageMaker distributed
data parallel library, Medium (March 21, 2022)

• Speed up EfficientNet training on AWS with the SageMaker distributed data parallel library,
Towards Data Science (January 12, 2022)

• Hyundai reduces ML model training time for autonomous driving models using Amazon
SageMaker, AWS Machine Learning Blog (June 25, 2021)

• Distributed Training: Train BART/T5 for Summarization using Transformers and Amazon
SageMaker, the Hugging Face website (April 8, 2021)

The SageMaker model parallelism library

• New performance improvements in the Amazon SageMaker model parallelism library, AWS
Machine Learning Blog (December 16, 2022)

• Train gigantic models with near-linear scaling using sharded data parallelism on Amazon
SageMaker, AWS Machine Learning Blog (October 31, 2022)

PyTorch Examples

The SageMaker data parallelism library

• CNN with PyTorch and the SageMaker data parallelism library

• BERT with PyTorch and the SageMaker data parallelism library

The SageMaker model parallelism library

SageMaker Distributed Training Notebook Examples 3781

https://aws.amazon.com/blogs/machine-learning/enable-faster-training-with-amazon-sagemaker-data-parallel-library/
https://medium.com/@emilywebber/how-i-trained-10tb-for-stable-diffusion-on-sagemaker-39dcea49ce32
https://aws.amazon.com/blogs/machine-learning/run-pytorch-lightning-and-native-pytorch-ddp-on-amazon-sagemaker-training-featuring-amazon-search/
https://aws.amazon.com/blogs/machine-learning/run-pytorch-lightning-and-native-pytorch-ddp-on-amazon-sagemaker-training-featuring-amazon-search/
https://medium.com/@sitecao/training-yolov5-on-aws-with-pytorch-and-sagemaker-distributed-data-parallel-library-a196ab01409b
https://medium.com/@dangmz/speed-up-efficientnet-model-training-on-amazon-sagemaker-with-pytorch-and-sagemaker-distributed-dae4b048c01a
https://medium.com/@dangmz/speed-up-efficientnet-model-training-on-amazon-sagemaker-with-pytorch-and-sagemaker-distributed-dae4b048c01a
https://towardsdatascience.com/speed-up-efficientnet-training-on-aws-by-up-to-30-with-sagemaker-distributed-data-parallel-library-2dbf6d1e18e8
https://aws.amazon.com/blogs/machine-learning/hyundai-reduces-training-time-for-autonomous-driving-models-using-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/hyundai-reduces-training-time-for-autonomous-driving-models-using-amazon-sagemaker/
https://huggingface.co/blog/sagemaker-distributed-training-seq2seq
https://huggingface.co/blog/sagemaker-distributed-training-seq2seq
https://aws.amazon.com/blogs/machine-learning/new-performance-improvements-in-amazon-sagemaker-model-parallel-library/
https://aws.amazon.com/blogs/machine-learning/train-gigantic-models-with-near-linear-scaling-using-sharded-data-parallelism-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/train-gigantic-models-with-near-linear-scaling-using-sharded-data-parallelism-on-amazon-sagemaker/
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/data_parallel/mnist/pytorch_smdataparallel_mnist_demo.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/data_parallel/bert/pytorch_smdataparallel_bert_demo.ipynb

Amazon SageMaker Developer Guide

• Train GPT-2 with near-linear scaling using the sharded data parallelism technique in the
SageMaker model parallelism library

• Fine-tune GPT-2 with near-linear scaling using sharded data parallelism technique in the
SageMaker model parallelism library

• Train GPT-NeoX-20B with near-linear scaling using the sharded data parallelism technique in the
SageMaker model parallelism library

• Train GPT-J 6B using the sharded data parallelism and tensor parallelism techniques in the
SageMaker model parallelism library

• Train FLAN-T5 with near-linear scaling using sharded data parallelism technique in the
SageMaker model parallelism library

• Train Falcon with near-linear scaling using sharded data parallelism technique in the SageMaker
model parallelism library

TensorFlow Examples

The SageMaker data parallelism library

• CNN with TensorFlow 2.3.1 and the SageMaker data parallelism library

• BERT with TensorFlow 2.3.1 and the SageMaker data parallelism library

The SageMaker model parallelism library

• CNN with TensorFlow 2.3.1 and the SageMaker model parallelism library

HuggingFace Examples

The following HuggingFace on SageMaker examples are available in the HuggingFace notebooks
repository.

The SageMaker data parallelism library

• HuggingFace Distributed Data Parallel Training in PyTorch on SageMaker - Distributed Question
Answering

• HuggingFace Distributed Data Parallel Training in PyTorch on SageMaker - Distributed Text
Summarization

• HuggingFace Distributed Data Parallel Training in TensorFlow on SageMaker

SageMaker Distributed Training Notebook Examples 3782

https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt2/smp-train-gpt-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt2/smp-train-gpt-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt2/smp-fine-tune-gpt-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt2/smp-fine-tune-gpt-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt-neox/smp-train-gpt-neox-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt-neox/smp-train-gpt-neox-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt-j/smp-train-gptj-sharded-data-parallel-tp.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/gpt-j/smp-train-gptj-sharded-data-parallel-tp.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/flan-t5/smp-train-t5-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/flan-t5/smp-train-t5-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/falcon/smp-train-falcon-sharded-data-parallel.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/pytorch/model_parallel/falcon/smp-train-falcon-sharded-data-parallel.ipynb
https://sagemaker-examples.readthedocs.io/en/latest/training/distributed_training/tensorflow/data_parallel/mnist/tensorflow2_smdataparallel_mnist_demo.html
https://sagemaker-examples.readthedocs.io/en/latest/training/distributed_training/tensorflow/data_parallel/bert/tensorflow2_smdataparallel_bert_demo.html
https://sagemaker-examples.readthedocs.io/en/latest/training/distributed_training/tensorflow/model_parallel/mnist/tensorflow_smmodelparallel_mnist.html
https://github.com/huggingface/notebooks/tree/master/sagemaker
https://github.com/huggingface/notebooks/tree/master/sagemaker
https://github.com/huggingface/notebooks/blob/master/sagemaker/03_distributed_training_data_parallelism/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/03_distributed_training_data_parallelism/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/08_distributed_summarization_bart_t5/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/08_distributed_summarization_bart_t5/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/07_tensorflow_distributed_training_data_parallelism/sagemaker-notebook.ipynb

Amazon SageMaker Developer Guide

The SageMaker model parallelism library

• HuggingFace with TensorFlow Distributed model parallelism library Training on SageMaker

How to Access or Download the SageMaker Distributed Training Notebook
Examples

Follow instructions to access or download the SageMaker distributed training example notebooks.

Option 1: Use a SageMaker notebook instance

To use the aforementioned examples, we recommend that you use an Amazon SageMaker
notebook instance. A notebook instance runs Jupyter Notebook and JupyterServer apps on
Amazon EC2 instances, which are optimized for machine learning. If you do not have an active
notebook instance, follow the instructions in Create a Notebook Instance in the SageMaker
developer guide to create one.

After you have created an instance, in the Notebook instances page of the SageMaker console, do
the following:

1. Open JupyterLab.

2. Select the examples icon

()
in the left tray.

3. Browse the examples for Training and look for notebooks titled Distributed Data Parallel or
Distributed Model Parallel.

Option 2: Clone the SageMaker example repository to SageMaker Studio or notebook instance

To download and use the aforementioned example notebooks, do the following to clone the
example GitHub repositories:

1. Open a terminal.

2. In the command line, navigate to the SageMaker folder.

cd SageMaker

3. Clone the SageMaker examples GitHub repository.

SageMaker Distributed Training Notebook Examples 3783

https://github.com/huggingface/notebooks/blob/master/sagemaker/04_distributed_training_model_parallelism/sagemaker-notebook.ipynb
https://github.com/aws/amazon-sagemaker-examples.git

Amazon SageMaker Developer Guide

git clone https://github.com/aws/amazon-sagemaker-examples.git

Note

To download the HuggingFace example notebooks, clone the HuggingFace notebooks
GitHub repository:

git clone https://github.com/huggingface/notebooks huggingface-notebooks

4. In the JupyterLab interface, navigate into the amazon-sagemaker-examples folder.

5. In the training/distributed_training folder, there are folders for frameworks, and
in each of these, there are folders for data_parallel and model_parallel. Choose the
example of your choice and follow the instructions to launch distributed training with an
SageMaker distributed training library.

Distributed computing with SageMaker best practices

This best practices page presents various flavors of distributed computing for machine learning
(ML) jobs in general. The term distributed computing in this page encompasses distributed training
for machine learning tasks and parallel computing for data processing, data generation, feature
engineering, and reinforcement learning. In this page, we discuss about common challenges in
distributed computing, and available options in SageMaker Training and SageMaker Processing. For
additional reading materials about distributed computing, see What Is Distributed Computing?.

You can configure ML tasks to run in a distributed manner across multiple nodes (instances),
accelerators (NVIDIA GPUs, AWS Trainium chips), and vCPU cores. By running distributed
computation, you can achieve a variety of goals such as computing operations faster, handling
large datasets, or training large ML models.

The following list covers common challenges that you might face when you run an ML training job
at scale.

• You need to make decisions on how to distribute computation depending on ML tasks, software
libraries you want to use, and compute resources.

• Not all ML tasks are straightforward to distribute. Also, not all ML libraries support distributed
computation.

Distributed computing with SageMaker best practices 3784

https://github.com/huggingface/notebooks
https://github.com/huggingface/notebooks
https://aws.amazon.com/what-is/distributed-computing/

Amazon SageMaker Developer Guide

• Distributed computation might not always result in a linear increase in compute efficiency. In
particular, you need to identify if data I/O and inter-GPU communication have bottlenecks or
cause overhead.

• Distributed computation might disturb numerical processes and change model accuracy.
Specifically to data-parallel neural network training, when you change the global batch
size while scaling up to a larger compute cluster, you also need to adjust the learning rate
accordingly.

SageMaker provides distributed training solutions to ease such challenges for various use cases.
Choose one of the following options that best fits your use case.

Topics

• Option 1: Use a SageMaker built-in algorithm that supports distributed training

• Option 2: Run a custom ML code in the SageMaker managed training or processing environment

• Option 3: Write your own custom distributed training code

• Option 4: Launch multiple jobs in parallel or sequentially

Option 1: Use a SageMaker built-in algorithm that supports distributed training

SageMaker provides built-in algorithms that you can use out of the box through the SageMaker
console or the SageMaker Python SDK. Using the built-in algorithms, you don’t need to spend
time for code customization, understanding science behind the models, or running Docker on
provisioned Amazon EC2 instances.

A subset of the SageMaker built-in algorithms support distributed training. To check if the
algorithm of your choice supports distributed training, see the Parallelizable column in the
Common Information About Built-in Algorithms table. Some of the algorithms support multi-
instance distributed training, while the rest of the parallelizable algorithms support parallelization
across multiple GPUs in a single instance, as indicated in the Parallelizable column.

Option 2: Run a custom ML code in the SageMaker managed training or
processing environment

SageMaker jobs can instantiate distributed training environment for specific use cases and
frameworks. This environment acts as a ready-to-use whiteboard, where you can bring and run
your own ML code.

Distributed computing with SageMaker best practices 3785

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/common-info-all-im-models.html

Amazon SageMaker Developer Guide

If your ML code uses a deep learning framework

You can launch distributed training jobs using the Deep Learning Containers (DLC) for SageMaker
Training, which you can orchestrate either through the dedicated Python modules in the
SageMaker Python SDK, or through the SageMaker APIs with AWS CLI, AWS SDK for Python
(Boto3). SageMaker provides training containers for machine learning frameworks, including
PyTorch, TensorFlow, Hugging Face Transformers, and Apache MXNet. You have two options to
write deep learning code for distributed training.

• The SageMaker distributed training libraries

The SageMaker distributed training libraries propose AWS-managed code for neural network
data parallelism and model parallelism. SageMaker distributed training also comes with launcher
clients built into the SageMaker Python SDK, and you don’t need to author parallel launch code.
To learn more, see SageMaker's data parallelism library and SageMaker's model parallelism
library.

• Open-source distributed training libraries

Open source frameworks have their own distribution mechanisms such as
DistributedDataParallelism (DDP) in PyTorch or tf.distribute modules in TensorFlow. You
can choose to run these distributed training frameworks in the SageMaker-managed framework
containers. For example, the sample code for training MaskRCNN in SageMaker shows how
to use both PyTorch DDP in the SageMaker PyTorch framework container and Horovod in the
SageMaker TensorFlow framework container.

SageMaker ML containers also come with MPI preinstalled, so you can parallelize your entry point
script using mpi4py. Using the MPI integrated training containers is a great option when you
launch a third-party distributed training launcher or write ad-hoc parallel code in the SageMaker
managed training environment.

Notes for data-parallel neural network training on GPUs

• Scale to multi-GPU and multi-machine parallelism when appropriate

We often run neural network training jobs on multiple-CPU or multiple-GPU instances. Each
GPU-based instance usually contains multiple GPU devices. Consequently, distributed GPU
computing can happen either within a single GPU instance with multiple GPUs (single-node
multi-GPU training), or across multiple GPU instances with multiple GPU cores in each (multi-
node multi-GPU training). Single-instance training is easier to write code and debug, and

Distributed computing with SageMaker best practices 3786

https://github.com/aws/deep-learning-containers
http://sagemaker.readthedocs.io/
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/index.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel.html
https://pytorch.org/docs/stable/notes/ddp.html
https://github.com/aws-samples/amazon-sagemaker-cv
https://horovod.readthedocs.io/en/stable/
https://github.com/aws/amazon-sagemaker-examples/blob/main/training/distributed_training/mpi_on_sagemaker/intro/mpi_demo.ipynb
https://mpi4py.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

the intra-node GPU-to-GPU throughput is usually faster than the inter-node GPU-to-GPU
throughput. Therefore, it is a good idea to scale data parallelism vertically first (use one GPU
instance with multiple GPUs) and expand to multiple GPU instances if needed. This might not
apply to cases where the CPU budget is high (for example, a massive workload for data pre-
processing) and when the CPU-to-GPU ratio of a multi-GPU instance is too low. In all cases, you
need to experiment with different combinations of instance types based on your own ML training
needs and workload.

• Monitor the quality of convergence

When training a neural network with data parallelism, increasing the number of GPUs while
keeping the mini-batch size per GPU constant leads to increasing the size of global mini-
batch for the mini-batch stochastic gradient descent (MSGD) process. The size of mini-batches
for MSGD is known to impact the descent noise and convergence. For properly scaling while
preserving accuracy, you need to adjust other hyperparameters such as the learning rate [Goyal
et al. (2017)].

• Monitor I/O bottlenecks

As you increase the number of GPUs, the throughput for reading and writing storage should also
increase. Make sure that your data source and pipeline don’t become bottlenecks.

• Modify your training script as needed

Training scripts written for single-GPU training must be modified for multi-node multi-GPU
training. In most data parallelism libraries, script modification is required to do the following.

• Assign batches of training data to each GPU.

• Use an optimizer that can deal with gradient computation and parameter updates across
multiple GPUs.

• Assign responsibility of checkpointing to a specific host and GPU.

If your ML code involves tabular data processing

PySpark is a Python frontend of Apache Spark, which is an open-source distributed computing
framework. PySpark has been widely adopted for distributed tabular data processing for large-
scale production workloads. If you want to run tabular data processing code, consider using
the SageMaker Processing PySpark containers and running parallel jobs. You can also run data
processing jobs in parallel using SageMaker Training and SageMaker Processing APIs in Amazon
SageMaker Studio Classic, which is integrated with Amazon EMR and AWS Glue.

Distributed computing with SageMaker best practices 3787

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677
https://docs.aws.amazon.com/sagemaker/latest/dg/use-spark-processing-container.html
https://aws.amazon.com/blogs/machine-learning/part-1-create-and-manage-amazon-emr-clusters-from-sagemaker-studio-to-run-interactive-spark-and-ml-workloads/
https://aws.amazon.com/about-aws/whats-new/2022/09/sagemaker-studio-supports-glue-interactive-sessions/?nc1=h_ls

Amazon SageMaker Developer Guide

Option 3: Write your own custom distributed training code

When you submit a training or processing job to SageMaker, SageMaker Training and SageMaker
Processing APIs launch Amazon EC2 compute instances. You can customize training and processing
environment in the instances by running your own Docker container or installing additional
libraries in the AWS managed containers. For more information about Docker with SageMaker
Training, see Adapting your own Docker container to work with SageMaker and Create a container
with your own algorithms and models. For more information about Docker with SageMaker
Processing, see Use Your Own Processing Code.

Every SageMaker training job environment contains a configuration file at /opt/ml/input/
config/resourceconfig.json, and every SageMaker processing job environment contains
a similar configuration file at /opt/ml/config/resourceconfig.json. Your code can read
this file to find hostnames and establish inter-node communications. To learn more, including
the schema of the JSON file, see Distributed Training Configuration and How Amazon SageMaker
Processing Configures Your Processing Container. You can also install and use third-party
distributed computing libraries such as Ray or DeepSpeed in SageMaker.

You can also use SageMaker Training and SageMaker Processing to run custom distributed
computations that do not require inter-worker communication. In the computing literature, those
tasks are often described as embarrassingly parallel or share-nothing. Examples include parallel
processing of data files, training models in parallel on different configurations, or running batch
inference on a collection of records. You can trivially parallelize such share-nothing use cases with
Amazon SageMaker. When you launch a SageMaker Training or SageMaker Processing job on a
cluster with multiple nodes, SageMaker by default replicates and launches your training code
(in Python or Docker) on all the nodes. Tasks requiring random spread of input data across such
multiple nodes can be facilitated by setting S3DataDistributionType=ShardedByS3Key in the
data input configuration of the SageMaker TrainingInput API.

Option 4: Launch multiple jobs in parallel or sequentially

You can also distribute an ML compute workflow into smaller parallel or sequential compute tasks,
each represented by its own SageMaker Training or SageMaker Processing job. Splitting a task into
multiple jobs can be beneficial for the following situations or tasks:

• When you have specific data channels and metadata entries (such as hyperparameters, model
configuration, or instance types) for each sub-tasks.

• When you implement retry steps at a sub-task level.

Distributed computing with SageMaker best practices 3788

https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-adapt-your-own.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-create.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-create.html
https://docs.aws.amazon.com/sagemaker/latest/dg/use-your-own-processing-code.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html#your-algorithms-training-algo-running-container-dist-training
https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-container.html#byoc-config
https://docs.aws.amazon.com/sagemaker/latest/dg/build-your-own-processing-container.html#byoc-config
https://github.com/aws-samples/aws-samples-for-ray/tree/main/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/model-train-storage.html

Amazon SageMaker Developer Guide

• When you vary the configuration of the sub-tasks over the course of the workload, such as when
training on increasing batch sizes.

• When you need to run an ML task that takes longer than the maximum training time allowed for
a single training job (28 days maximum).

• When different steps of a compute workflow require different instance types.

For the specific case of hyperparameter search, use SageMaker Automated Model Tuning.
SageMaker Automated Model Tuning is a serverless parameter search orchestrator that launches
multiple training jobs on your behalf, according to a search logic that can be random, Bayesian, or
HyperBand.

Additionally, to orchestrate multiple training jobs, you can also consider workflow orchestration
tools, such as SageMaker Pipelines, AWS Step Functions, and Apache Airflow supported by Amazon
Managed Workflows for Apache Airflow (MWAA) and SageMaker Workflows.

Amazon SageMaker Training Compiler

Use Amazon SageMaker Training Compiler to train deep learning (DL) models faster on scalable
GPU instances managed by SageMaker.

What Is SageMaker Training Compiler?

State-of-the-art deep learning (DL) models consist of complex multi-layered neural networks
with billions of parameters that can take thousands of GPU hours to train. Optimizing such
models on training infrastructure requires extensive knowledge of DL and systems engineering;
this is challenging even for narrow use cases. Although there are open-source implementations
of compilers that optimize the DL training process, they can lack the flexibility to integrate DL
frameworks with some hardware such as GPU instances.

SageMaker Training Compiler is a capability of SageMaker that makes these hard-to-implement
optimizations to reduce training time on GPU instances. The compiler optimizes DL models to
accelerate training by more efficiently using SageMaker machine learning (ML) GPU instances.
SageMaker Training Compiler is available at no additional charge within SageMaker and can help
reduce total billable time as it accelerates training.

Training Compiler 3789

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-pipelines/index.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-sagemaker.html
https://aws.amazon.com/managed-workflows-for-apache-airflow/
https://aws.amazon.com/managed-workflows-for-apache-airflow/
https://sagemaker.readthedocs.io/en/stable/workflows/airflow/using_workflow.html

Amazon SageMaker Developer Guide

SageMaker Training Compiler is integrated into the AWS Deep Learning Containers (DLCs). Using
the SageMaker Training Compiler–enabled AWS DLCs, you can compile and optimize training
jobs on GPU instances with minimal changes to your code. Bring your deep learning models to
SageMaker and enable SageMaker Training Compiler to accelerate the speed of your training job
on SageMaker ML instances for accelerated computing.

How It Works

SageMaker Training Compiler converts DL models from their high-level language representation
to hardware-optimized instructions. Specifically, SageMaker Training Compiler applies graph-level
optimizations, dataflow-level optimizations, and backend optimizations to produce an optimized
model that efficiently uses hardware resources. As a result, you can train your models faster than
when you train them without compilation.

It is a two-step process to activate SageMaker Training Compiler for your training job:

1. Bring your own DL script and, if needed, adapt to compile and train with SageMaker Training
Compiler. To learn more, see Bring Your Own Deep Learning Model.

2. Create a SageMaker estimator object with the compiler configuration parameter using the
SageMaker Python SDK.

a. Turn on SageMaker Training Compiler by adding
compiler_config=TrainingCompilerConfig() to the SageMaker estimator class.

b. Adjust hyperparameters (batch_size and learning_rate) to maximize the benefit that
SageMaker Training Compiler provides.

How It Works 3790

Amazon SageMaker Developer Guide

Compilation through SageMaker Training Compiler changes the memory footprint of the
model. Most commonly, this manifests as a reduction in memory utilization and a consequent
increase in the largest batch size that can fit on the GPU. In some cases, the compiler
intelligently promotes caching which leads to a decrease in the largest batch size that can fit
on the GPU. Note that if you want to change the batch size, you must adjust the learning rate
appropriately.

For a reference for batch_size tested for popular models, see Tested Models.

When you adjust the batch size, you also have to adjust the learning_rate appropriately.
For best practices for adjusting the learning rate along with the change in batch size, see the
section called “Best Practices and Considerations”.

c. By running the estimator.fit() class method, SageMaker compiles your model and starts
the training job.

For instructions on how to launch a training job, see Enable SageMaker Training Compiler.

SageMaker Training Compiler does not alter the final trained model, while allowing you to
accelerate the training job by more efficiently using the GPU memory and fitting a larger batch size
per iteration. The final trained model from the compiler-accelerated training job is identical to the
one from the ordinary training job.

Tip

SageMaker Training Compiler only compiles DL models for training on supported GPU
instances managed by SageMaker. To compile your model for inference and deploy it to run
anywhere in the cloud and at the edge, use SageMaker Neo compiler.

Topics

• Supported Frameworks, AWS Regions, Instance Types, and Tested Models

• Bring Your Own Deep Learning Model

• Enable SageMaker Training Compiler

• SageMaker Training Compiler Example Notebooks and Blogs

• SageMaker Training Compiler Best Practices and Considerations

• SageMaker Training Compiler FAQ

How It Works 3791

https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-support.html#training-compiler-supported-instance-types
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-support.html#training-compiler-supported-instance-types
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

Amazon SageMaker Developer Guide

• SageMaker Training Compiler Troubleshooting

• Amazon SageMaker Training Compiler Release Notes

Supported Frameworks, AWS Regions, Instance Types, and Tested
Models

Before using SageMaker Training Compiler, check if your framework of choice is supported, the
instance types are available in your AWS account, and your AWS account is in one of the supported
AWS Regions.

Note

SageMaker Training Compiler is available in the SageMaker Python SDK v2.70.0 or later.

Supported Frameworks

SageMaker Training Compiler supports the following deep learning frameworks and is available
through AWS Deep Learning Containers.

Topics

• PyTorch

• TensorFlow

PyTorch

Framework Framework version Deep Learning
Container URI

Extendable for
Docker customiza
tion

PyTorch PyTorch v1.13.1 763104351884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-trco
mp-training:1.12.0-
gpu-py38-cu113-ub

No

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3792

Amazon SageMaker Developer Guide

Framework Framework version Deep Learning
Container URI

Extendable for
Docker customiza
tion

untu20.04-sagemake
r

PyTorch v1.12.0 763104351884.dkr.e
cr.<region>.amazonaw
s.com/pytorch-trco
mp-training:1.13.1-
gpu-py39-cu117-ub
untu20.04-sagemake
r

No

Transformers v4.21.1

PyTorch v1.11.0

763104351884.dkr.e
cr.<region>.amazonaw
s.com/huggingface-
pytorch-trcomp-tra
ining:1.11.0-trans
formers4.21.1-gpu-
py38-cu113-ubuntu2
0.04

NoPyTorch with
Hugging Face
Transformers

Transformers v4.17.0

PyTorch v1.10.2

763104351884.dkr.e
cr.<region>.amazonaw
s.com/huggingface-
pytorch-trcomp-tra
ining:1.10.2-trans
formers4.17.0-gpu-
py38-cu113-ubuntu2
0.04

No

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3793

Amazon SageMaker Developer Guide

Framework Framework version Deep Learning
Container URI

Extendable for
Docker customiza
tion

Transformers v4.11.0

PyTorch v1.9.0

763104351884.dkr.e
cr.<region>.amazonaw
s.com/huggingface-
pytorch-training-c
omp:1.9.0-transfor
mers4.11.0-gpu-py3
8-cu111-ubuntu20.0
4

No

TensorFlow

Framework Framework version Deep Learning
Container URI

Extendable for
Docker customiza
tion

TensorFlow v2.11.0 763104351884.dkr.e
cr.<region>.amazonaw
s.com/tensorflow-t
raining:2.11.0-gpu-
py39-cu112-ubuntu
20.04-sagemaker

Yes

TensorFlow v2.10.0 763104351884.dkr.e
cr.<region>.amazonaw
s.com/tensorflow-t
raining:2.10.0-gpu-
py39-cu112-ubuntu
20.04-sagemaker

Yes

TensorFlow

TensorFlow v2.9.1 763104351884.dkr.e
cr.<region>.amazonaw
s.com/tensorflow-

Yes

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3794

Amazon SageMaker Developer Guide

Framework Framework version Deep Learning
Container URI

Extendable for
Docker customiza
tion

training:2.9.1-gpu-
py39-cu112-ubuntu2
0.04-sagemaker

Transformers v4.17.0

TensorFlow v2.6.3

763104351884.dkr.e
cr.<region>.amazonaw
s.com/huggingface-
tensorflow-trcomp-
training:2.6.3-tra
nsformers4.17.0-gp
u-py38-cu112-ubunt
u20.04

NoTensorFlow with
Hugging Face
Transformers

Transformers v4.11.0

TensorFlow v2.5.1

763104351884.dkr.e
cr.<region>.amazonaw
s.com/huggingface-
tensorflow-trainin
g-comp:2.5.1-trans
formers4.11.0-gpu-
py37-cu112-ubuntu1
8.04

No

For more information, see Available Images in the AWS Deep Learning Containers GitHub repository.

AWS Regions

The SageMaker Training Compiler Containers are available in the AWS Regions where AWS Deep
Learning Containers are in service except the China regions.

Supported Instance Types

SageMaker Training Compiler is tested on and supports the following ML instance types.

• P4 instances

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3795

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-training-compiler-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

• P3 instances

• G4dn instances

• G5 instances

For specs of the instance types, see the Accelerated Computing section in the Amazon EC2
Instance Types page. For information about instance pricing, see Amazon SageMaker Pricing.

If you encountered an error message similar to the following, follow the instructions at Request a
service quota increase for SageMaker resources.

ResourceLimitExceeded: An error occurred (ResourceLimitExceeded) when calling
the CreateTrainingJob operation: The account-level service limit 'ml.p3dn.24xlarge
for training job usage' is 0 Instances, with current utilization of 0 Instances
and a request delta of 1 Instances.
Please contact AWS support to request an increase for this limit.

Tested Models

The following table includes a list of the models that have been tested with SageMaker Training
Compiler. For reference, the largest batch size that is able to fit into memory is also included
alongside other training parameters. SageMaker Training Compiler can change the memory
footprint of the model training process; as a result, a larger batch size can often be used during
the training process, further decreasing total training time. In some cases, SageMaker Training
Compiler intelligently promotes caching which leads to a decrease in the largest batch size that
can fit on the GPU. You must retune your model hyperparameters and find an optimal batch size
for your case. To save time, use the following reference tables to look up a batch size that can be a
good starting point for your use case.

Note

The batch sizes are local batch size that fit into each individual GPU in the respective
instance type. You should also adjust the learning rate when changing the batch size.

PyTorch 1.13.1

Natural language processing (NLP) models

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3796

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html#service-limit-increase-request-procedure

Amazon SageMaker Developer Guide

The following models are tested for training jobs for all combinations of single-node and multi-
node with single or multi GPU cores and Automatic Mixed Precision (AMP) as indicated.

Single-node/multi-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Sequence
Length

Batch size
for native
framework
s

Batch
size for
SageMaker
Training
Compiler

albert-ba
se-v2

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 128 80 192

albert-ba
se-v2

wikitext-2-
raw-v1

g5.4xlarge float16 128 128 332

albert-ba
se-v2

wikitext-2-
raw-v1

p3.2xlarge float16 128 80 224

bert-base-
uncased

wikitext-2-
raw-v1

g5.4xlarge float16 128 160 288

camembert
-base

wikitext-2-
raw-v1

g5.4xlarge float16 128 160 280

distilber
t-base-un
cased

wikitext-2-
raw-v1

g5.4xlarge float16 128 240 472

distilgpt2 wikitext-2-
raw-v1

g4dn.16xl
arge

float16 128 77 128

distilgpt2 wikitext-2-
raw-v1

g5.4xlarge float16 128 138 390

distilgpt2 wikitext-2-
raw-v1

p3.2xlarge float16 128 96 256

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3797

Amazon SageMaker Developer Guide

Single-node/multi-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Sequence
Length

Batch size
for native
framework
s

Batch
size for
SageMaker
Training
Compiler

distilrob
erta-base

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 128 96 192

distilrob
erta-base

wikitext-2-
raw-v1

g5.4xlarge float16 128 171 380

distilrob
erta-base

wikitext-2-
raw-v1

p3.2xlarge float16 128 112 256

gpt2 wikitext-2-
raw-v1

g4dn.16xl
arge

float16 128 52 152

gpt2 wikitext-2-
raw-v1

g5.4xlarge float16 128 84 240

gpt2 wikitext-2-
raw-v1

p3.2xlarge float16 128 58 164

microsoft
/deberta-
base

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 128 48 128

microsoft
/deberta-
base

wikitext-2-
raw-v1

g5.4xlarge float16 128 84 207

microsoft
/deberta-
base

wikitext-2-
raw-v1

p3.2xlarge float16 128 53 133

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3798

Amazon SageMaker Developer Guide

Single-node/multi-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Sequence
Length

Batch size
for native
framework
s

Batch
size for
SageMaker
Training
Compiler

roberta-b
ase

wikitext-2-
raw-v1

g5.4xlarge float16 128 125 224

xlm-rober
ta-base

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 128 16 31

xlm-rober
ta-base

wikitext-2-
raw-v1

p3.2xlarge float16 128 18 50

xlnet-base-
cased

wikitext-2-
raw-v1

g5.4xlarge float16 128 128 240

bert-base-
uncased

wikitext-
103-v1

g5.48xlar
ge

float16 512 29 50

distilber
t-base-un
cased

wikitext-
103-v1

g5.48xlar
ge

float16 512 45 64

gpt2 wikitext-
103-v1

g5.48xlar
ge

float16 512 18 45

roberta-b
ase

wikitext-
103-v1

g5.48xlar
ge

float16 512 23 44

gpt2 wikitext-
103-v1

p4d.24xla
rge

float16 512 36 64

Computer Vision (CV) models

Tested using TensorFlow Model Garden with Automatic Mixed Precision (AMP) as indicated.

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3799

https://github.com/tensorflow/models

Amazon SageMaker Developer Guide

Single/multi-node single/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

ResNet152 food101 g4dn.16xl
arge

float16 128 144

ResNet152 food101 g5.4xlarge float16 128 192

ResNet152 food101 p3.2xlarge float16 152 156

ViT food101 g4dn.16xl
arge

float16 512 512

ViT food101 g5.4xlarge float16 992 768

ViT food101 p3.2xlarge float16 848 768

PyTorch 1.12.0

Natural language processing (NLP) models

The following models are tested for training jobs for all combinations of single-node and multi-
node with single or multi GPU cores and Automatic Mixed Precision (AMP) as indicated.

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3800

Amazon SageMaker Developer Guide

Single-node/multi-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Sequence
Length

Batch size
for native
framework
s

Batch
size for
SageMaker
Training
Compiler

albert-ba
se-v2

wikitext-2-
raw-v1

ml.g5.2xl
arge

float16 128 128 248

bert-base-
uncased

wikitext-2-
raw-v1

ml.g5.2xl
arge

float16 128 160 288

camembert
-base

wikitext-2-
raw-v1

ml.g5.2xl
arge

float16 128 160 279

camembert
-base

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 128 105 164

distilgpt2 wikitext-2-
raw-v1

ml.g5.2xl
arge

float16 128 136 256

distilgpt2 wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 128 80 118

gpt2 wikitext-2-
raw-v1

ml.g5.2xl
arge

float16 128 84 240

gpt2 wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 128 80 119

microsoft
/deberta-
base

wikitext-2-
raw-v1

ml.g5.2xl
arge

float16 128 93 197

microsoft
/deberta-
base

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 128 113 130

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3801

Amazon SageMaker Developer Guide

Single-node/multi-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Sequence
Length

Batch size
for native
framework
s

Batch
size for
SageMaker
Training
Compiler

roberta-b
ase

wikitext-2-
raw-v1

ml.g5.2xl
arge

float16 128 125 224

roberta-b
ase

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 128 78 112

xlnet-base-
cased

wikitext-2-
raw-v1

ml.g5.2xl
arge

float16 128 138 240

bert-base-
uncased

wikitext-
103-v1

ml.p4d.24
xlarge

float16 512 52

distilber
t-base-un
cased

wikitext-
103-v1

ml.p4d.24
xlarge

float16 512 160

gpt2 wikitext-
103-v1

ml.p4d.24
xlarge

float16 512 25

roberta-b
ase

wikitext-
103-v1

ml.p4d.24
xlarge

float16 512 64

TensorFlow 2.11.0

Computer Vision (CV) models

Tested using TensorFlow Model Garden with Automatic Mixed Precision (AMP) as indicated.

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3802

https://github.com/tensorflow/models

Amazon SageMaker Developer Guide

Single/multi-node single/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

MaskRCNN-
ResNet50-
FPN

COCO-2017 ml.g5.2xlarge float16 6 8

MaskRCNN-
ResNet50-
FPN

COCO-2017 ml.p3.2xlarge float16 4 6

ResNet50 ImageNet ml.g5.2xlarge float16 192 256

ResNet50 ImageNet ml.p3.2xlarge float16 256 256

ResNet101 ImageNet ml.g5.2xlarge float16 128 256

ResNet101 ImageNet ml.p3.2xlarge float16 128 128

ResNet152 ImageNet ml.g5.2xlarge float16 128 224

ResNet152 ImageNet ml.p3.2xlarge float16 128 128

VisionTra
nsformer

ImageNet ml.g5.2xlarge float16 112 144

VisionTra
nsformer

ImageNet ml.p3.2xlarge float16 96 128

Natural Language Processing (NLP) models

Tested using Transformer models with Sequence_Len=128 and Automatic Mixed Precision (AMP)
as indicated.

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3803

https://github.com/huggingface/transformers

Amazon SageMaker Developer Guide

Single/multi-node single/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

albert-base-
v2

wikitext-2-
raw-v1

ml.g5.2xlarge float16 160 197

albert-base-
v2

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 95 127

bert-base-
uncased

wikitext-2-
raw-v1

ml.g5.2xlarge float16 160 128

bert-base-
uncased

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 104 111

bert-large-
uncased

wikitext-2-
raw-v1

ml.g5.2xlarge float16 65 48

bert-large-
uncased

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 40 35

camembert-
base

wikitext-2-
raw-v1

ml.g5.2xlarge float16 128 162

camembert-
base

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 105 111

distilbert-
base-uncased

wikitext-2-
raw-v1

ml.g5.2xlarge float16 256 264

distilbert-
base-uncased

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 128 169

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3804

Amazon SageMaker Developer Guide

Single/multi-node single/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

gpt2 wikitext-2-
raw-v1

ml.g5.2xlarge float16 128 120

gpt2 wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 80 83

jplu/tf-xlm-
roberta-base

wikitext-2-
raw-v1

ml.g5.2xlarge float16 32 32

jplu/tf-xlm-
roberta-base

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 32 36

microsoft/
mpnet-base

wikitext-2-
raw-v1

ml.g5.2xlarge float16 144 160

microsoft/
mpnet-base

wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 106 110

roberta-base wikitext-2-
raw-v1

ml.g5.2xlarge float16 128 128

roberta-base wikitext-2-
raw-v1

ml.p3.2xl
arge

float16 72 98

albert-base-
v2

wikitext-2-
raw-v1

ml.g5.48x
large

float16 128 192

albert-base-
v2

wikitext-2-
raw-v1

ml.p3.16x
large

float16 95 96

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3805

Amazon SageMaker Developer Guide

Single/multi-node single/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

distilbert-
base-uncased

wikitext-2-
raw-v1

ml.g5.48x
large

float16 256 256

distilbert-
base-uncased

wikitext-2-
raw-v1

ml.p3.16x
large

float16 140 184

google/el
ectra-small-
discriminator

wikitext-2-
raw-v1

ml.g5.48x
large

float16 256 384

google/el
ectra-small-
discriminator

wikitext-2-
raw-v1

ml.p3.16x
large

float16 256 268

gpt2 wikitext-2-
raw-v1

ml.g5.48x
large

float16 116 116

gpt2 wikitext-2-
raw-v1

ml.p3.16x
large

float16 85 83

gpt2 wikitext-2-
raw-v1

ml.p4d.24
xlarge

float16 94 110

microsoft/
mpnet-base

wikitext-2-
raw-v1

ml.g5.48x
large

float16 187 164

microsoft/
mpnet-base

wikitext-2-
raw-v1

ml.p3.16x
large

float16 106 111

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3806

Amazon SageMaker Developer Guide

TensorFlow 2.10.0

Computer Vision (CV) models

Tested using TensorFlow Model Garden with Automatic Mixed Precision (AMP) as indicated.

Single-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

Detection
Transformer-
ResNet50

COCO-2017 ml.g4dn.2
xlarge

float32 2 4

Detection
Transformer-
ResNet50

COCO-2017 ml.g5.2xlarge float32 3 6

Detection
Transformer-
ResNet50

COCO-2017 ml.p3.2xlarge float32 2 4

MaskRCNN-
ResNet50-
FPN

COCO-2017 ml.g4dn.2
xlarge

float16 4 6

MaskRCNN-
ResNet50-
FPN

COCO-2017 ml.g5.2xlarge float16 6 8

MaskRCNN-
ResNet50-
FPN

COCO-2017 ml.g5.48x
large

float16 48 64

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3807

https://github.com/tensorflow/models

Amazon SageMaker Developer Guide

Single-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

MaskRCNN-
ResNet50-
FPN

COCO-2017 ml.p3.2xlarge float16 4 6

ResNet50 ImageNet ml.g4dn.2
xlarge

float16 224 256

ResNet50 ImageNet ml.g5.2xlarge float16 192 160

ResNet50 ImageNet ml.g5.48x
large

float16 2048 2048

ResNet50 ImageNet ml.p3.2xlarge float16 224 160

ResNet101 ImageNet ml.g4dn.2
xlarge

float16 160 128

ResNet101 ImageNet ml.g5.2xlarge float16 192 256

ResNet101 ImageNet ml.g5.48x
large

float16 2048 2048

ResNet101 ImageNet ml.p3.2xlarge float16 160 224

ResNet152 ImageNet ml.g4dn.2
xlarge

float16 128 128

ResNet152 ImageNet ml.g5.2xlarge float16 192 224

ResNet152 ImageNet ml.g5.48x
large

float16 1536 1792

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3808

Amazon SageMaker Developer Guide

Single-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

ResNet152 ImageNet ml.p3.2xlarge float16 128 160

VisionTra
nsformer

ImageNet ml.g4dn.2
xlarge

float16 80 128

VisionTra
nsformer

ImageNet ml.g5.2xlarge float16 112 144

VisionTra
nsformer

ImageNet ml.g5.48x
large

float16 896 1152

VisionTra
nsformer

ImageNet ml.p3.2xlarge float16 80 128

Natural Language Processing (NLP) models

Tested using Transformer models with Sequence_Len=128 and Automatic Mixed Precision (AMP)
as indicated.

Single-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

albert-base-
v2

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 128 112

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3809

https://github.com/huggingface/transformers

Amazon SageMaker Developer Guide

Single-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

albert-base-
v2

wikitext-2-
raw-v1

p3.2xlarge float16 128 128

albert-base-
v2

wikitext-2-
raw-v1

p3.8xlarge float16 128 135

albert-base-
v2

wikitext-2-
raw-v1

g5.4xlarge float16 128 191

bert-base-
uncased

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 64 94

bert-base-
uncased

wikitext-2-
raw-v1

p3.2xlarge float16 96 101

bert-base-
uncased

wikitext-2-
raw-v1

p3.8xlarge float16 96 96

bert-base-
uncased

wikitext-2-
raw-v1

g5.4xlarge float16 128 128

bert-large-
uncased

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 35 21

bert-large-
uncased

wikitext-2-
raw-v1

p3.2xlarge float16 39 26

bert-large-
uncased

wikitext-2-
raw-v1

g5.4xlarge float16 60 50

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3810

Amazon SageMaker Developer Guide

Single-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

camembert-
base

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 96 90

camembert-
base

wikitext-2-
raw-v1

p3.2xlarge float16 96 98

camembert-
base

wikitext-2-
raw-v1

p3.8xlarge float16 96 96

camembert-
base

wikitext-2-
raw-v1

g5.4xlarge float16 128 128

distilbert-
base-uncased

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 256 160

distilbert-
base-uncased

wikitext-2-
raw-v1

p3.2xlarge float16 128 176

distilbert-
base-uncased

wikitext-2-
raw-v1

p3.8xlarge float16 128 160

distilbert-
base-uncased

wikitext-2-
raw-v1

g5.4xlarge float16 256 258

google_el
ectra-small-
discriminator

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 256 216

google_el
ectra-small-
discriminator

wikitext-2-
raw-v1

p3.2xlarge float16 256 230

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3811

Amazon SageMaker Developer Guide

Single-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

google_el
ectra-small-
discriminator

wikitext-2-
raw-v1

p3.8xlarge float16 256 224

google_el
ectra-small-
discriminator

wikitext-2-
raw-v1

g5.4xlarge float16 256 320

gpt2 wikitext-2-
raw-v1

g4dn.16xl
arge

float16 80 64

gpt2 wikitext-2-
raw-v1

p3.2xlarge float16 80 77

gpt2 wikitext-2-
raw-v1

p3.8xlarge float16 80 72

gpt2 wikitext-2-
raw-v1

g5.4xlarge float16 128 120

jplu_tf-xlm-
roberta-base

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 28 24

jplu_tf-xlm-
roberta-base

wikitext-2-
raw-v1

p3.2xlarge float16 32 24

jplu_tf-xlm-
roberta-base

wikitext-2-
raw-v1

p3.8xlarge float16 32 26

jplu_tf-xlm-
roberta-base

wikitext-2-
raw-v1

g5.4xlarge float16 66 52

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3812

Amazon SageMaker Developer Guide

Single-node single-GPU/multi-GPU

Model Dataset Instance
type

Precision Batch size
for native
frameworks

Batch
size for
SageMaker
Training
Compiler

microsoft
_mpnet-base

wikitext-2-
raw-v1

g4dn.16xl
arge

float16 96 92

microsoft
_mpnet-base

wikitext-2-
raw-v1

p3.2xlarge float16 96 101

microsoft
_mpnet-base

wikitext-2-
raw-v1

p3.8xlarge float16 96 101

microsoft
_mpnet-base

wikitext-2-
raw-v1

g5.4xlarge float16 128 152

roberta-base wikitext-2-
raw-v1

g4dn.16xl
arge

float16 64 72

roberta-base wikitext-2-
raw-v1

p3.2xlarge float16 64 84

roberta-base wikitext-2-
raw-v1

p3.8xlarge float16 64 86

roberta-base wikitext-2-
raw-v1

g5.4xlarge float16 128 128

TensorFlow 2.9.1

Tested using TensorFlow Model Garden with Automatic Mixed Precision (AMP).

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3813

https://github.com/tensorflow/models

Amazon SageMaker Developer Guide

Single-node single-GPU/multi-GPU

Model Dataset Instance type Batch size
for native
frameworks

Batch size for
SageMaker
Training
Compiler

ResNet50 ImageNet ml.g4dn.2xlarge 192 256*

ml.g4dn.2xlarge 128 160

ml.g5.2xlarge 224 256*

ResNet101 ImageNet

ml.p3.16xlarge 1536 1792

ml.g5.2xlarge 192 224

ml.p3.2xlarge 160 160

ResNet152 ImageNet

ml.p3.16xlarge 1024 1280

ml.g4dn.2xlarge 80 128*

ml.g5.2xlarge 112 128*

ml.p3.2xlarge 56 128*

VisionTra
nsformer

ImageNet

ml.p3.16xlarge 640 1024*

ml.g4dn.2xlarge 2 2

ml.g5.2xlarge 3 6

ml.p3.2xlarge 2 4

Detection
Transformer-
ResNet50

COCO-2017

ml.p3.16xlarge 8 32

ml.g4dn.2xlarge 4 4MaskRCNN-
ResNet50-FPN

COCO-2017

ml.g5.2xlarge 6 8

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3814

Amazon SageMaker Developer Guide

Single-node single-GPU/multi-GPU

Model Dataset Instance type Batch size
for native
frameworks

Batch size for
SageMaker
Training
Compiler

ml.p3.2xlarge 4 6

* The batch sizes marked with the asterisk symbol (*) indicate the largest batch size tested by the
SageMaker Training Compiler developer team. For the marked cells, the instance may be able to fit
a larger batch size than what is indicated.

Transformers 4.21.1 with PyTorch 1.11.0

Tested with Sequence_Len=512 and Automatic Mixed Precision (AMP).

Single-node single-GPU

Model Dataset Instance
type

Instance
count

Batch size
for native
frameworks

Batch size
for Training
Compiler

ml.g4dn.2
xlarge

1 14 28

ml.g5.2xlarge 1 18 40

albert-base-
v2

wikitext-2

ml.p3.2xlarge 1 14 32

ml.g4dn.2
xlarge

1 12 24

ml.g5.2xlarge 1 28 44

bert-base-
cased

wikitext-2

ml.p3.2xlarge 1 16 20

camembert-
base

wikitext-2 ml.g4dn.2
xlarge

1 16 28

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3815

Amazon SageMaker Developer Guide

Single-node single-GPU

Model Dataset Instance
type

Instance
count

Batch size
for native
frameworks

Batch size
for Training
Compiler

ml.g5.2xlarge 1 24 40

ml.p3.2xlarge 1 16 24

ml.g4dn.2
xlarge

1 28 52

ml.g5.2xlarge 1 40 76

wikitext-2

ml.p3.2xlarge 1 32 48

distilbert-
base-uncased

wikitext-103-
v1

ml.p4d.24
xlarge

4 82 160

ml.g4dn.2
xlarge

1 6 18

ml.g5.2xlarge 1 12 28

distilgpt2 wikitext-2

ml.p3.2xlarge 1 6 16

ml.g4dn.2
xlarge

1 20 40

ml.g5.2xlarge 1 28 56

distilroberta-
base

wikitext-2

ml.p3.2xlarge 1 24 40

ml.g4dn.2
xlarge

1 4 8

ml.g5.2xlarge 1 6 14

EleutherA
I/gpt-neo
-125M

wikitext-2

ml.p3.2xlarge 1 4 10

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3816

Amazon SageMaker Developer Guide

Single-node single-GPU

Model Dataset Instance
type

Instance
count

Batch size
for native
frameworks

Batch size
for Training
Compiler

ml.g4dn.2
xlarge

1 4 8

ml.g5.2xlarge 1 6 16

wikitext-2

ml.p3.2xlarge 1 4 10

gpt2

wikitext-103-
v1

ml.p4d.24
xlarge

4 13 25

ml.g4dn.2
xlarge

1 12 20

ml.g5.2xlarge 1 24 36

wikitext-2

ml.p3.2xlarge 1 12 20

roberta-base

wikitext-103-
v1

ml.p4d.24
xlarge

4 36 64

ml.g4dn.2
xlarge

1 2 6

ml.g5.2xlarge 1 2 10

xlnet-base-
cased

wikitext-2

ml.p3.2xlarge 1 2 8

2 32 64

4 32 64

8 32 64

bert-base-
uncased

wikitext-103-
v1

ml.p4d.24
xlarge

16 32 64

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3817

Amazon SageMaker Developer Guide

Single-node single-GPU

Model Dataset Instance
type

Instance
count

Batch size
for native
frameworks

Batch size
for Training
Compiler

roberta-large wikitext-103-
v1

ml.p4d.24
xlarge

4 16 24

microsoft/
deberta-v3-
base

wikitext-103-
v1

ml.p4d.24
xlarge

16 9 23

Transformers 4.17.0 with PyTorch 1.10.2

Tested with Sequence_Len=512 and Automatic Mixed Precision (AMP).

Single-node single-GPU

Model Instance type Batch size for native
frameworks

Batch size for
Training Compiler

ml.p3.2xlarge 14 28albert-base-v2

ml.g4dn.2xlarge 14 24

ml.p3.2xlarge 16 24bert-base-cased

ml.g4dn.2xlarge 12 24

ml.p3.2xlarge 16 24bert-base-uncased

ml.g4dn.2xlarge 12 28

ml.p3.2xlarge 12 24camembert-base

ml.g4dn.2xlarge 12 28

distilbert-base-un
cased

ml.p3.2xlarge 28 48

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3818

Amazon SageMaker Developer Guide

Single-node single-GPU

Model Instance type Batch size for native
frameworks

Batch size for
Training Compiler

ml.g4dn.2xlarge 24 52

ml.p3.2xlarge 6 12distilgpt2

ml.g4dn.2xlarge 6 14

ml.p3.2xlarge 20 40distilroberta-base

ml.g4dn.2xlarge 12 40

ml.p3.2xlarge 2 10EleutherAI/gpt-neo
-125M

ml.g4dn.2xlarge 2 8

ml.p3.2xlarge 2 6facebook/bart-base

ml.g4dn.2xlarge 2 6

ml.p3.2xlarge 4 8gpt2

ml.g4dn.2xlarge 2 8

ml.p3.2xlarge 12 20roberta-base

ml.g4dn.2xlarge 12 20

ml.p3.2xlarge 2 8xlnet-base-cased

ml.g4dn.2xlarge 4 6

Transformers 4.11.0 with PyTorch 1.9.0

Tested with Sequence_Len=512 and Automatic Mixed Precision (AMP).

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3819

Amazon SageMaker Developer Guide

Single-node single-GPU

Model Instance type Batch size for native Batch size for
Training Compiler

albert-base-v2 ml.p3.2xlarge 12 32

bert-base-cased ml.p3.2xlarge 14 24

bert-base-chinese ml.p3.2xlarge 16 24

bert-base-multilin
gual-cased

ml.p3.2xlarge 4 16

bert-base-multilin
gual-uncased

ml.p3.2xlarge 8 16

bert-base-uncased ml.p3.2xlarge 12 24

cl-tohoku/bert-bas
e-japanese-whole-w
ord-masking

ml.p3.2xlarge 12 24

cl-tohoku/bert-base-
japanese

ml.p3.2xlarge 12 24

distilbert-base-un
cased

ml.p3.2xlarge 28 32

distilbert-base-un
cased-finetuned-ss
t-2-english

ml.p3.2xlarge 28 32

distilgpt2 ml.p3.2xlarge 16 32

facebook/bart-base ml.p3.2xlarge 4 8

gpt2 ml.p3.2xlarge 6 20

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3820

Amazon SageMaker Developer Guide

Single-node single-GPU

Model Instance type Batch size for native Batch size for
Training Compiler

nreimers/MiniLMv2-
L6-H384-distilled-
from-RoBERTa-Large

ml.p3.2xlarge 20 32

roberta-base ml.p3.2xlarge 12 20

Single-node multi-GPU

Model Instance type Batch size for native Batch size for
Training Compiler

bert-base-chinese ml.p3.8xlarge 16 26

bert-base-multilin
gual-cased

ml.p3.8xlarge 6 16

bert-base-multilin
gual-uncased

ml.p3.8xlarge 6 16

bert-base-uncased ml.p3.8xlarge 14 24

distilbert-base-un
cased

ml.p3.8xlarge 14 32

distilgpt2 ml.p3.8xlarge 6 32

facebook/bart-base ml.p3.8xlarge 8 16

gpt2 ml.p3.8xlarge 8 20

roberta-base ml.p3.8xlarge 12 20

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3821

Amazon SageMaker Developer Guide

Transformers 4.17.0 with TensorFlow 2.6.3

Tested with Sequence_Len=128 and Automatic Mixed Precision (AMP).

Model Instance type Batch size for native
frameworks

Batch size for
Training Compiler

albert-base-v2 ml.g4dn.16xlarge 136 208

albert-base-v2 ml.g5.4xlarge 219 312

albert-base-v2 ml.p3.2xlarge 152 208

albert-base-v2 ml.p3.8xlarge 152 192

bert-base-uncased ml.g4dn.16xlarge 120 101

bert-base-uncased ml.g5.4xlarge 184 160

bert-base-uncased ml.p3.2xlarge 128 108

bert-large-uncased ml.g4dn.16xlarge 37 28

bert-large-uncased ml.g5.4xlarge 64 55

bert-large-uncased ml.p3.2xlarge 40 32

camembert-base ml.g4dn.16xlarge 96 100

camembert-base ml.g5.4xlarge 190 160

camembert-base ml.p3.2xlarge 129 108

camembert-base ml.p3.8xlarge 128 104

distilbert-base-un
cased

ml.g4dn.16xlarge 210 160

distilbert-base-un
cased

ml.g5.4xlarge 327 288

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3822

Amazon SageMaker Developer Guide

Model Instance type Batch size for native
frameworks

Batch size for
Training Compiler

distilbert-base-un
cased

ml.p3.2xlarge 224 196

distilbert-base-un
cased

ml.p3.8xlarge 192 182

google_electra-small-
discriminator

ml.g4dn.16xlarge 336 288

google_electra-small-
discriminator

ml.g5.4xlarge 504 384

google_electra-small-
discriminator

ml.p3.2xlarge 352 323

gpt2 ml.g4dn.16xlarge 89 64

gpt2 ml.g5.4xlarge 140 146

gpt2 ml.p3.2xlarge 94 96

gpt2 ml.p3.8xlarge 96 88

jplu_tf-xlm-roberta-
base

ml.g4dn.16xlarge 52 16

jplu_tf-xlm-roberta-
base

ml.g5.4xlarge 64 44

microsoft_mpnet-ba
se

ml.g4dn.16xlarge 120 100

microsoft_mpnet-ba
se

ml.g5.4xlarge 192 160

microsoft_mpnet-ba
se

ml.p3.2xlarge 128 104

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3823

Amazon SageMaker Developer Guide

Model Instance type Batch size for native
frameworks

Batch size for
Training Compiler

microsoft_mpnet-ba
se

ml.p3.8xlarge 130 92

roberta-base ml.g4dn.16xlarge 108 64

roberta-base ml.g5.4xlarge 176 142

roberta-base ml.p3.2xlarge 118 100

roberta-base ml.p3.8xlarge 112 88

Transformers 4.11.0 with TensorFlow 2.5.1

Tested with Sequence_Len=128 and Automatic Mixed Precision (AMP).

Single-node single-GPU

Model Instance type Batch size for native Batch size for
Training Compiler

albert-base-v2 ml.p3.2xlarge 128 128

bart-base ml.p3.2xlarge 12 64

bart-large ml.p3.2xlarge 4 28

bert-base-cased ml.p3.2xlarge 16 128

bert-base-chinese ml.p3.2xlarge 16 128

bert-base-multilin
gual-cased

ml.p3.2xlarge 12 64

bert-base-multilin
gual-uncased

ml.p3.2xlarge 16 96

bert-base-uncased ml.p3.2xlarge 16 96

Supported Frameworks, AWS Regions, Instance Types, and Tested Models 3824

Amazon SageMaker Developer Guide

Single-node single-GPU

Model Instance type Batch size for native Batch size for
Training Compiler

bert-large-uncased ml.p3.2xlarge 4 24

cl-tohoku/bert-base-
japanese

ml.p3.2xlarge 16 128

cl-tohoku/bert-bas
e-japanese-whole-w
ord-masking

ml.p3.2xlarge 16 128

distilbert-base-sst2 ml.p3.2xlarge 32 128

distilbert-base-un
cased

ml.p3.2xlarge 32 128

distilgpt2 ml.p3.2xlarge 32 128

gpt2 ml.p3.2xlarge 12 64

gpt2-large ml.p3.2xlarge 2 24

jplu/tf-xlm-roberta-
base

ml.p3.2xlarge 12 32

roberta-base ml.p3.2xlarge 4 64

roberta-large ml.p3.2xlarge 4 64

t5-base ml.p3.2xlarge 64 64

t5-small ml.p3.2xlarge 128 128

Bring Your Own Deep Learning Model

This guide walks you through how to adapt your training script for a compiler-accelerated training
job. The preparation of your training script depends on the following:

Bring Your Own Deep Learning Model 3825

Amazon SageMaker Developer Guide

• Training settings such as single-core or distributed training.

• Frameworks and libraries that you use to create the training script.

Choose one of the following topics depending on the framework you use.

Topics

• PyTorch

• TensorFlow

Note

After you finish preparing your training script, you can run a SageMaker training job using
the SageMaker framework estimator classes. For more information, see the previous topic
at Enable SageMaker Training Compiler.

PyTorch

Bring your own PyTorch model to SageMaker, and run the training job with SageMaker Training
Compiler.

Topics

• PyTorch Models with Hugging Face Transformers

PyTorch Models with Hugging Face Transformers

PyTorch models with Hugging Face Transformers are based on PyTorch's torch.nn.Module API.
Hugging Face Transformers also provides Trainer and pretrained model classes for PyTorch to
help reduce the effort for configuring natural language processing (NLP) models. After preparing
your training script, you can launch a training job using the SageMaker PyTorch or HuggingFace
estimator with the SageMaker Training Compiler configuration when you'll proceed to the next
topic at Enable SageMaker Training Compiler.

Tip

When you create a tokenizer for an NLP model using Transformers in your training script,
make sure that you use a static input tensor shape by specifying padding='max_length'.

Bring Your Own Deep Learning Model 3826

https://huggingface.co/docs/transformers/index
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://huggingface.co/docs/transformers/main_classes/trainer

Amazon SageMaker Developer Guide

Do not use padding='longest' because padding to the longest sequence in the batch
can change the tensor shape for each training batch. The dynamic input shape can trigger
recompilation of the model and might increase total training time. For more information
about padding options of the Transformers tokenizers, see Padding and truncation in the
Hugging Face Transformers documentation.

Topics

• Large Language Models Using the Hugging Face Transformers Trainer Class

• Large Language Models Using PyTorch Directly (without the Hugging Face Transformers Trainer
API)

Large Language Models Using the Hugging Face Transformers Trainer Class

If you use the transformers library’s Trainer class, you don’t need to make any additional changes
to your training script. SageMaker Training Compiler automatically compiles your Trainer model if
you enable it through the estimator class. The following code shows the basic form of a PyTorch
training script with Hugging Face Trainer API.

from transformers import Trainer, TrainingArguments

training_args=TrainingArguments(**kwargs)
trainer=Trainer(args=training_args, **kwargs)

Topics

• For single GPU training

• For distributed training

• Best Practices to Use SageMaker Training Compiler with Trainer

For single GPU training

You don't need to change your code when you use the transformers.Trainer class.

For distributed training

PyTorch v1.11.0 and later

Bring Your Own Deep Learning Model 3827

https://huggingface.co/docs/transformers/pad_truncation
https://huggingface.co/docs/transformers/main_classes/trainer

Amazon SageMaker Developer Guide

To run distributed training with SageMaker Training Compiler, you must add the following
_mp_fn() function in your training script and wrap the main() function. It redirects
the _mp_fn(index) function calls from the SageMaker distributed runtime for PyTorch
(pytorchxla) to the main() function of your training script.

def _mp_fn(index):
 main()

This function accepts the index argument to indicate the rank of the current GPU in the cluster
for distributed training. To find more example scripts, see the Hugging Face Transformers language
modeling example scripts.

For Transformers v4.17 and before with PyTorch v1.10.2 and before

SageMaker Training Compiler uses an alternate mechanism for launching a distributed training
job, and you don't need to make any modification in your training script. Instead, SageMaker
Training Compiler requires you to pass a SageMaker distributed training launcher script to the
entry_point argument and pass your training script to the hyperparameters argument in the
SageMaker Hugging Face estimator.

Best Practices to Use SageMaker Training Compiler with Trainer

• Make sure that you use SyncFree optimizers by setting the optim argument to
adamw_torch_xla while setting up transformers.TrainingArgument. See also Optimizer in the
Hugging Face Transformers documentation.

• Ensure that the throughput of the data processing pipeline is higher than the
training throughput. You can tweak the dataloader_num_workers and
preprocessing_num_workers arguments of the transformers.TrainingArgument class to
achieve this. Typically, these need to be greater than or equal to the number of GPUs but less
than the number of CPUs.

After you have completed adapting your training script, proceed to the section called “Run PyTorch
Training Jobs with Training Compiler”.

Bring Your Own Deep Learning Model 3828

https://github.com/huggingface/transformers/blob/v4.21.1/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/blob/v4.21.1/examples/pytorch/language-modeling
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments
https://huggingface.co/docs/transformers/v4.23.1/en/perf_train_gpu_one#optimizer
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments

Amazon SageMaker Developer Guide

Large Language Models Using PyTorch Directly (without the Hugging Face Transformers Trainer
API)

If you have a training script that uses PyTorch directly, you need to make additional changes to
your PyTorch training script to implement PyTorch/XLA. Follow the instructions to modify your
script to properly set up the PyTorch/XLA primatives.

Topics

• For single GPU training

• For distributed training

• Best Practices to Use SageMaker Training Compiler with PyTorch/XLA

For single GPU training

1. Import the optimization libraries.

import torch_xla
import torch_xla.core.xla_model as xm

2. Change the target device to be XLA instead of torch.device("cuda")

device=xm.xla_device()

3. If you're using PyTorch's Automatic Mixed Precision (AMP), do the following:

a. Replace torch.cuda.amp with the following:

import torch_xla.amp

b. Replace torch.optim.SGD and torch.optim.Adam with the following:

import torch_xla.amp.syncfree.Adam as adam
import torch_xla.amp.syncfree.SGD as SGD

c. Replace torch.cuda.amp.GradScaler with the following:

import torch_xla.amp.GradScaler as grad_scaler

4. If you're not using AMP, replace optimizer.step() with the following:

Bring Your Own Deep Learning Model 3829

https://pytorch.org/docs/stable/amp.html

Amazon SageMaker Developer Guide

xm.optimizer_step(optimizer)

5. If you're using a distributed dataloader, wrap your dataloader in the PyTorch/XLA's
ParallelLoader class:

import torch_xla.distributed.parallel_loader as pl
parallel_loader=pl.ParallelLoader(dataloader, [device]).per_device_loader(device)

6. Add mark_step at the end of the training loop when you're not using parallel_loader:

xm.mark_step()

7. To checkpoint your training, use the PyTorch/XLA's model checkpoint method:

xm.save(model.state_dict(), path_to_save)

After you have completed adapting your training script, proceed to the section called “Run PyTorch
Training Jobs with Training Compiler”.

For distributed training

In addition to the changes listed in the previous For single GPU training section, add the following
changes to properly distribute workload across GPUs.

1. If you're using AMP, add all_reduce after scaler.scale(loss).backward():

gradients=xm._fetch_gradients(optimizer)
xm.all_reduce('sum', gradients, scale=1.0/xm.xrt_world_size())

2. If you need to set variables for local_ranks and world_size, use similar code to the
following:

local_rank=xm.get_local_ordinal()
world_size=xm.xrt_world_size()

3. For any world_size (num_gpus_per_node*num_nodes) greater than 1, you must define a
train sampler which should look similar to the following:

import torch_xla.core.xla_model as xm

Bring Your Own Deep Learning Model 3830

Amazon SageMaker Developer Guide

if xm.xrt_world_size() > 1:
 train_sampler=torch.utils.data.distributed.DistributedSampler(
 train_dataset,
 num_replicas=xm.xrt_world_size(),
 rank=xm.get_ordinal(),
 shuffle=True
)

train_loader=torch.utils.data.DataLoader(
 train_dataset,
 batch_size=args.batch_size,
 sampler=train_sampler,
 drop_last=args.drop_last,
 shuffle=False if train_sampler else True,
 num_workers=args.num_workers
)

4. Make the following changes to make sure you use the parallel_loader provided by the
torch_xla distributed module.

import torch_xla.distributed.parallel_loader as pl
train_device_loader=pl.MpDeviceLoader(train_loader, device)

The train_device_loader functions like a regular PyTorch loader as follows:

for step, (data, target) in enumerate(train_device_loader):
 optimizer.zero_grad()
 output=model(data)
 loss=torch.nn.NLLLoss(output, target)
 loss.backward()

With all of these changes, you should be able to launch distributed training with any PyTorch
model without the Transformer Trainer API. Note that these instructions can be used for both
single-node multi-GPU and multi-node multi-GPU.

5. For PyTorch v1.11.0 and later

To run distributed training with SageMaker Training Compiler, you must add the following
_mp_fn() function in your training script and wrap the main() function. It redirects
the _mp_fn(index) function calls from the SageMaker distributed runtime for PyTorch
(pytorchxla) to the main() function of your training script.

Bring Your Own Deep Learning Model 3831

Amazon SageMaker Developer Guide

def _mp_fn(index):
 main()

This function accepts the index argument to indicate the rank of the current GPU in the cluster
for distributed training. To find more example scripts, see the Hugging Face Transformers
language modeling example scripts.

For Transformers v4.17 and before with PyTorch v1.10.2 and before

SageMaker Training Compiler uses an alternate mechanism for launching a distributed
training job and requires you to pass a SageMaker distributed training launcher script to the
entry_point argument and pass your training script to the hyperparameters argument in
the SageMaker Hugging Face estimator.

After you have completed adapting your training script, proceed to the section called “Run PyTorch
Training Jobs with Training Compiler”.

Best Practices to Use SageMaker Training Compiler with PyTorch/XLA

If you want to leverage the SageMaker Training Compiler on your native PyTorch training script,
you may want to first get familiar with PyTorch on XLA devices. The following sections list some
best practices to enable XLA for PyTorch.

Note

This section for best practices assumes that you use the following PyTorch/XLA modules:

import torch_xla.core.xla_model as xm
import torch_xla.distributed.parallel_loader as pl

Understand the lazy mode in PyTorch/XLA

One significant difference between PyTorch/XLA and native PyTorch is that the PyTorch/XLA
system runs in lazy mode while the native PyTorch runs in eager mode. Tensors in lazy mode
are placeholders for building the computational graph until they are materialized after the
compilation and evaluation are complete. The PyTorch/XLA system builds the computational graph
on the fly when you call PyTorch APIs to build the computation using tensors and operators. The

Bring Your Own Deep Learning Model 3832

https://github.com/huggingface/transformers/blob/v4.21.1/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/blob/v4.21.1/examples/pytorch/language-modeling
https://pytorch.org/xla/release/1.9/index.html

Amazon SageMaker Developer Guide

computational graph gets compiled and executed when xm.mark_step() is called explicitly or
implicitly by pl.MpDeviceLoader/pl.ParallelLoader, or when you explicitly request the
value of a tensor such as by calling loss.item() or print(loss).

Minimize the number of compilation-and-executions using pl.MpDeviceLoader/
pl.ParallelLoader and xm.step_closure

For best performance, you should keep in mind the possible ways to initiate compilation-
and-executions as described in Understand the lazy mode in PyTorch/XLA and should try to
minimize the number of compilation-and-executions. Ideally, only one compilation-and-execution
is necessary per training iteration and is initiated automatically by pl.MpDeviceLoader/
pl.ParallelLoader. The MpDeviceLoader is optimized for XLA and should always be used
if possible for best performance. During training, you might want to examine some intermediate
results such as loss values. In such case, the printing of lazy tensors should be wrapped using
xm.add_step_closure() to avoid unnecessary compilation-and-executions.

Use AMP and syncfree optimizers

Training in Automatic Mixed Precision (AMP) mode significantly accelerates your training speed
by leveraging the Tensor cores of NVIDIA GPUs. SageMaker Training Compiler provides syncfree
optimizers that are optimized for XLA to improve AMP performance. Currently, the following three
syncfree optimizers are available and should be used if possible for best performance.

torch_xla.amp.syncfree.SGD
torch_xla.amp.syncfree.Adam
torch_xla.amp.syncfree.AdamW

These syncfree optimizers should be paired with torch_xla.amp.GradScaler for gradient
scaling/unscaling.

Tip

Starting PyTorch 1.13.1, SageMaker Training Compiler improves performance by letting
PyTorch/XLA to automatically override the optimizers (such as SGD, Adam, AdamW)
in torch.optim or transformers.optimization with the syncfree versions of
them in torch_xla.amp.syncfree (such as torch_xla.amp.syncfree.SGD,
torch_xla.amp.syncfree.Adam, torch_xla.amp.syncfree.AdamW). You don't need
to change those code lines where you define optimizers in your training script.

Bring Your Own Deep Learning Model 3833

Amazon SageMaker Developer Guide

TensorFlow

Bring your own TensorFlow model to SageMaker, and run the training job with SageMaker Training
Compiler.

TensorFlow Models

SageMaker Training Compiler automatically optimizes model training workloads that are built on
top of the native TensorFlow API or the high-level Keras API.

Tip

For preprocessing your input dataset, ensure that you use a static input shape. Dynamic
input shape can initiate recompilation of the model and might increase total training time.

Using Keras (Recommended)

For the best compiler acceleration, we recommend using models that are subclasses of TensorFlow
Keras (tf.keras.Model).

For single GPU training

There's no additional change you need to make in the training script.

Without Keras

SageMaker Training Compiler does not support eager execution in TensorFlow. Accordingly,
you should wrap your model and training loops with the TensorFlow function decorator
(@tf.function) to leverage compiler acceleration.

SageMaker Training Compiler performs a graph-level optimization, and uses the decorator to make
sure your TensorFlow functions are set to run in graph mode.

For single GPU training

TensorFlow 2.0 or later has the eager execution on by default, so you should add the
@tf.function decorator in front of every function that you use for constructing a TensorFlow
model.

Bring Your Own Deep Learning Model 3834

https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/guide/intro_to_graphs

Amazon SageMaker Developer Guide

TensorFlow Models with Hugging Face Transformers

TensorFlow models with Hugging Face Transformers are based on TensorFlow's tf.keras.Model API.
Hugging Face Transformers also provides pretrained model classes for TensorFlow to help reduce
the effort for configuring natural language processing (NLP) models. After creating your own
training script using the Transformers library, you can run the training script using the SageMaker
HuggingFace estimator with the SageMaker Training Compiler configuration class as shown in the
previous topic at Run TensorFlow Training Jobs with SageMaker Training Compiler.

SageMaker Training Compiler automatically optimizes model training workloads that are built on
top of the native TensorFlow API or the high-level Keras API, such as the TensorFlow transformer
models.

Tip

When you create a tokenizer for an NLP model using Transformers in your training script,
make sure that you use a static input tensor shape by specifying padding='max_length'.
Do not use padding='longest' because padding to the longest sequence in the batch
can change the tensor shape for each training batch. The dynamic input shape can initiate
recompilation of the model and might increase total training time. For more information
about padding options of the Transformers tokenizers, see Padding and truncation in the
Hugging Face Transformers documentation.

Topics

• Using Keras

• Without Keras

Using Keras

For the best compiler acceleration, we recommend using models that are subclasses of TensorFlow
Keras (tf.keras.Model). As noted in the Quick tour page in the Hugging Face Transformers
documentation, you can use the models as regular TensorFlow Keras models.

For single GPU training

There's no additional change you need to make in the training script.

Bring Your Own Deep Learning Model 3835

https://huggingface.co/docs/transformers/index
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://huggingface.co/docs/transformers/pad_truncation
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://huggingface.co/docs/transformers/quicktour

Amazon SageMaker Developer Guide

For distributed training

SageMaker Training Compiler acceleration works transparently for multi-GPU workloads
when the model is constructed and trained using Keras APIs within the scope of
tf.distribute.Strategy.scope() call.

1. Choose the right distributed training strategy.

a. For single-node multi-GPU, use tf.distribute.MirroredStrategy to set the strategy.

strategy = tf.distribute.MirroredStrategy()

b. For multi-node multi-GPU, add the following code to properly set the TensorFlow distributed
training configuration before creating the strategy.

def set_sm_dist_config():
 DEFAULT_PORT = '8890'
 DEFAULT_CONFIG_FILE = '/opt/ml/input/config/resourceconfig.json'
 with open(DEFAULT_CONFIG_FILE) as f:
 config = json.loads(f.read())
 current_host = config['current_host']
 tf_config = {
 'cluster': {
 'worker': []
 },
 'task': {'type': 'worker', 'index': -1}
 }
 for i, host in enumerate(config['hosts']):
 tf_config['cluster']['worker'].append("%s:%s" % (host, DEFAULT_PORT))
 if current_host == host:
 tf_config['task']['index'] = i
 os.environ['TF_CONFIG'] = json.dumps(tf_config)

set_sm_dist_config()

Use tf.distribute.MultiWorkerMirroredStrategy to set the strategy.

strategy = tf.distribute.MultiWorkerMirroredStrategy()

2. Using the strategy of your choice, wrap the model.

with strategy.scope():

Bring Your Own Deep Learning Model 3836

https://www.tensorflow.org/api_docs/python/tf/distribute/Strategy

Amazon SageMaker Developer Guide

 # create a model and do fit

Without Keras

If you want to bring custom models with custom training loops using TensorFlow without
Keras, you should wrap the model and the training loop with the TensorFlow function decorator
(@tf.function) to leverage compiler acceleration.

SageMaker Training Compiler performs a graph-level optimization, and uses the decorator to make
sure your TensorFlow functions are set to run in graph mode.

For single GPU training

TensorFlow 2.0 or later has the eager execution on by default, so you should add the
@tf.function decorator in front of every function that you use for constructing a TensorFlow
model.

For distributed training

In addition to the changes needed for Using Keras for distributed training, you need to ensure
that functions to be run on each GPU are annotated with @tf.function, while cross-GPU
communication functions are not annotated. An example training code should look like the
following:

@tf.function()
def compiled_step(inputs, outputs):
 with tf.GradientTape() as tape:
 pred=model(inputs, training=True)
 total_loss=loss_object(outputs, pred)/args.batch_size
 gradients=tape.gradient(total_loss, model.trainable_variables)
 return total_loss, pred, gradients

def train_step(inputs, outputs):
 total_loss, pred, gradients=compiled_step(inputs, outputs)
 if args.weight_decay > 0.:
 gradients=[g+v*args.weight_decay for g,v in zip(gradients,
 model.trainable_variables)]

 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 train_loss.update_state(total_loss)

Bring Your Own Deep Learning Model 3837

https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-tensorflow-models.html#training-compiler-tensorflow-models-transformers-keras

Amazon SageMaker Developer Guide

 train_accuracy.update_state(outputs, pred)

@tf.function()
def train_step_dist(inputs, outputs):
 strategy.run(train_step, args= (inputs, outputs))

Note that this instruction can be used for both single-node multi-GPU and multi-node multi-GPU.

Enable SageMaker Training Compiler

SageMaker Training Compiler is built into the SageMaker Python SDK and AWS Deep Learning
Containers so that you don’t need to change your workflows to enable Training Compiler. Choose
one of the following topics that matches with your use case.

Topics

• Run PyTorch Training Jobs with SageMaker Training Compiler

• Run TensorFlow Training Jobs with SageMaker Training Compiler

Run PyTorch Training Jobs with SageMaker Training Compiler

You can use any of the SageMaker interfaces to run a training job with SageMaker Training
Compiler: Amazon SageMaker Studio Classic, Amazon SageMaker notebook instances, AWS SDK for
Python (Boto3), and AWS Command Line Interface.

Topics

• Using the SageMaker Python SDK

• Using the SageMaker CreateTrainingJob API Operation

Using the SageMaker Python SDK

SageMaker Training Compiler for PyTorch is available through the SageMaker PyTorch
and HuggingFace framework estimator classes. To turn on SageMaker Training Compiler,
add the compiler_config parameter to the SageMaker estimators. Import the
TrainingCompilerConfig class and pass an instance of it to the compiler_config parameter.
The following code examples show the structure of SageMaker estimator classes with SageMaker
Training Compiler turned on.

Enable Training Compiler 3838

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/sagemaker.huggingface.html#hugging-face-estimator

Amazon SageMaker Developer Guide

Tip

To get started with prebuilt models provided by PyTorch or Transformers, try using the
batch sizes provided in the reference table at Tested Models.

Note

The native PyTorch support is available in the SageMaker Python SDK v2.121.0 and later.
Make sure that you update the SageMaker Python SDK accordingly.

Note

Starting PyTorch v1.12.0, SageMaker Training Compiler containers for PyTorch are
available. Note that the SageMaker Training Compiler containers for PyTorch are not
prepackaged with Hugging Face Transformers. If you need to install the library in the
container, make sure that you add the requirements.txt file under the source directory
when submitting a training job.
For PyTorch v1.11.0 and before, use the previous versions of the SageMaker Training
Compiler containers for Hugging Face and PyTorch.
For a complete list of framework versions and corresponding container information, see the
section called “Supported Frameworks”.

For information that fits your use case, see one of the following options.

For single GPU training

PyTorch v1.12.0 and later

To compile and train a PyTorch model, configure a SageMaker PyTorch estimator with
SageMaker Training Compiler as shown in the following code example.

Note

This native PyTorch support is available in the SageMaker Python SDK v2.120.0 and
later. Make sure that you update the SageMaker Python SDK.

Enable Training Compiler 3839

Amazon SageMaker Developer Guide

from sagemaker.pytorch import PyTorch, TrainingCompilerConfig

the original max batch size that can fit into GPU memory without compiler
batch_size_native=12
learning_rate_native=float('5e-5')

an updated max batch size that can fit into GPU memory with compiler
batch_size=64

update learning rate
learning_rate=learning_rate_native/batch_size_native*batch_size

hyperparameters={
 "n_gpus": 1,
 "batch_size": batch_size,
 "learning_rate": learning_rate
}

pytorch_estimator=PyTorch(
 entry_point='train.py',
 source_dir='path-to-requirements-file', # Optional. Add this if need to install
 additional packages.
 instance_count=1,
 instance_type='ml.p3.2xlarge',
 framework_version='1.13.1',
 py_version='py3',
 hyperparameters=hyperparameters,
 compiler_config=TrainingCompilerConfig(),
 disable_profiler=True,
 debugger_hook_config=False
)

pytorch_estimator.fit()

Hugging Face Transformers with PyTorch v1.11.0 and before

To compile and train a transformer model with PyTorch, configure a SageMaker Hugging Face
estimator with SageMaker Training Compiler as shown in the following code example.

from sagemaker.huggingface import HuggingFace, TrainingCompilerConfig

the original max batch size that can fit into GPU memory without compiler
batch_size_native=12

Enable Training Compiler 3840

Amazon SageMaker Developer Guide

learning_rate_native=float('5e-5')

an updated max batch size that can fit into GPU memory with compiler
batch_size=64

update learning rate
learning_rate=learning_rate_native/batch_size_native*batch_size

hyperparameters={
 "n_gpus": 1,
 "batch_size": batch_size,
 "learning_rate": learning_rate
}

pytorch_huggingface_estimator=HuggingFace(
 entry_point='train.py',
 instance_count=1,
 instance_type='ml.p3.2xlarge',
 transformers_version='4.21.1',
 pytorch_version='1.11.0',
 hyperparameters=hyperparameters,
 compiler_config=TrainingCompilerConfig(),
 disable_profiler=True,
 debugger_hook_config=False
)

pytorch_huggingface_estimator.fit()

To prepare your training script, see the following pages.

• For single GPU training of a PyTorch model using Hugging Face Transformers' Trainer API

• For single GPU training of a PyTorch model without Hugging Face Transformers' Trainer API

To find end-to-end examples, see the following notebooks:

• Compile and Train a Hugging Face Transformers Trainer Model for Question and Answering
with the SQuAD dataset

• Compile and Train a Hugging Face Transformer BERT Model with the SST Dataset using
SageMaker Training Compiler

• Compile and Train a Binary Classification Trainer Model with the SST2 Dataset for Single-
Node Single-GPU Training

Enable Training Compiler 3841

https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/transformers/main_classes/trainer.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_single_gpu_single_node/albert-base-v2/albert-base-v2.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_single_gpu_single_node/albert-base-v2/albert-base-v2.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_single_gpu_single_node/bert-base-cased/bert-base-cased-single-node-single-gpu.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_single_gpu_single_node/bert-base-cased/bert-base-cased-single-node-single-gpu.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_single_gpu_single_node/roberta-base/roberta-base.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_single_gpu_single_node/roberta-base/roberta-base.html

Amazon SageMaker Developer Guide

For distributed training

PyTorch v1.12

For PyTorch v1.12, you can run distributed training with SageMaker Training Compiler by
adding the pytorch_xla option specified to the distribution parameter of the SageMaker
PyTorch estimator class.

Note

This native PyTorch support is available in the SageMaker Python SDK v2.121.0 and
later. Make sure that you update the SageMaker Python SDK.

from sagemaker.pytorch import PyTorch, TrainingCompilerConfig

choose an instance type, specify the number of instances you want to use,
and set the num_gpus variable the number of GPUs per instance.
instance_count=1
instance_type='ml.p3.8xlarge'
num_gpus=4

the original max batch size that can fit to GPU memory without compiler
batch_size_native=16
learning_rate_native=float('5e-5')

an updated max batch size that can fit to GPU memory with compiler
batch_size=26

update learning rate
learning_rate=learning_rate_native/
batch_size_native*batch_size*num_gpus*instance_count

hyperparameters={
 "n_gpus": num_gpus,
 "batch_size": batch_size,
 "learning_rate": learning_rate
}

pytorch_estimator=PyTorch(
 entry_point='your_training_script.py',

Enable Training Compiler 3842

Amazon SageMaker Developer Guide

 source_dir='path-to-requirements-file', # Optional. Add this if need to install
 additional packages.
 instance_count=instance_count,
 instance_type=instance_type,
 framework_version='1.13.1',
 py_version='py3',
 hyperparameters=hyperparameters,
 compiler_config=TrainingCompilerConfig(),
 distribution ={'pytorchxla' : { 'enabled': True }},
 disable_profiler=True,
 debugger_hook_config=False
)

pytorch_estimator.fit()

Tip

To prepare your training script, see PyTorch

Transformers v4.21 with PyTorch v1.11

For PyTorch v1.11 and later, SageMaker Training Compiler is available for distributed training
with the pytorch_xla option specified to the distribution parameter.

from sagemaker.huggingface import HuggingFace, TrainingCompilerConfig

choose an instance type, specify the number of instances you want to use,
and set the num_gpus variable the number of GPUs per instance.
instance_count=1
instance_type='ml.p3.8xlarge'
num_gpus=4

the original max batch size that can fit to GPU memory without compiler
batch_size_native=16
learning_rate_native=float('5e-5')

an updated max batch size that can fit to GPU memory with compiler
batch_size=26

update learning rate

Enable Training Compiler 3843

Amazon SageMaker Developer Guide

learning_rate=learning_rate_native/
batch_size_native*batch_size*num_gpus*instance_count

hyperparameters={
 "n_gpus": num_gpus,
 "batch_size": batch_size,
 "learning_rate": learning_rate
}

pytorch_huggingface_estimator=HuggingFace(
 entry_point='your_training_script.py',
 instance_count=instance_count,
 instance_type=instance_type,
 transformers_version='4.21.1',
 pytorch_version='1.11.0',
 hyperparameters=hyperparameters,
 compiler_config=TrainingCompilerConfig(),
 distribution ={'pytorchxla' : { 'enabled': True }},
 disable_profiler=True,
 debugger_hook_config=False
)

pytorch_huggingface_estimator.fit()

Tip

To prepare your training script, see the following pages.

• For distributed training of a PyTorch model using Hugging Face Transformers' Trainer
API

• For distributed training of a PyTorch model without Hugging Face Transformers'
Trainer API

Transformers v4.17 with PyTorch v1.10.2 and before

For the supported version of PyTorch v1.10.2 and before, SageMaker Training Compiler requires
an alternate mechanism for launching a distributed training job. To run distributed training,
SageMaker Training Compiler requires you to pass a SageMaker distributed training launcher
script to the entry_point argument, and pass your training script to the hyperparameters

Enable Training Compiler 3844

https://huggingface.co/transformers/main_classes/trainer.html
https://huggingface.co/transformers/main_classes/trainer.html
https://huggingface.co/transformers/main_classes/trainer.html

Amazon SageMaker Developer Guide

argument. The following code example shows how to configure a SageMaker Hugging Face
estimator applying the required changes.

from sagemaker.huggingface import HuggingFace, TrainingCompilerConfig

choose an instance type, specify the number of instances you want to use,
and set the num_gpus variable the number of GPUs per instance.
instance_count=1
instance_type='ml.p3.8xlarge'
num_gpus=4

the original max batch size that can fit to GPU memory without compiler
batch_size_native=16
learning_rate_native=float('5e-5')

an updated max batch size that can fit to GPU memory with compiler
batch_size=26

update learning rate
learning_rate=learning_rate_native/
batch_size_native*batch_size*num_gpus*instance_count

training_script="your_training_script.py"

hyperparameters={
 "n_gpus": num_gpus,
 "batch_size": batch_size,
 "learning_rate": learning_rate,
 "training_script": training_script # Specify the file name of your training
 script.
}

pytorch_huggingface_estimator=HuggingFace(
 entry_point='distributed_training_launcher.py', # Specify the distributed
 training launcher script.
 instance_count=instance_count,
 instance_type=instance_type,
 transformers_version='4.17.0',
 pytorch_version='1.10.2',
 hyperparameters=hyperparameters,
 compiler_config=TrainingCompilerConfig(),
 disable_profiler=True,
 debugger_hook_config=False

Enable Training Compiler 3845

Amazon SageMaker Developer Guide

)

pytorch_huggingface_estimator.fit()

The launcher script should look like the following. It wraps your training script and configures
the distributed training environment depending on the size of the training instance of your
choice.

distributed_training_launcher.py

#!/bin/python

import subprocess
import sys

if __name__ == "__main__":
 arguments_command = " ".join([arg for arg in sys.argv[1:]])
 """
 The following line takes care of setting up an inter-node communication
 as well as managing intra-node workers for each GPU.
 """
 subprocess.check_call("python -m torch_xla.distributed.sm_dist " +
 arguments_command, shell=True)

Tip

To prepare your training script, see the following pages.

• For distributed training of a PyTorch model using Hugging Face Transformers' Trainer
API

• For distributed training of a PyTorch model without Hugging Face Transformers'
Trainer API

Tip

To find end-to-end examples, see the following notebooks:

• Compile and Train the GPT2 Model using the Transformers Trainer API with the SST2
Dataset for Single-Node Multi-GPU Training

Enable Training Compiler 3846

https://huggingface.co/transformers/main_classes/trainer.html
https://huggingface.co/transformers/main_classes/trainer.html
https://huggingface.co/transformers/main_classes/trainer.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling-multi-gpu-single-node.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling-multi-gpu-single-node.html

Amazon SageMaker Developer Guide

• Compile and Train the GPT2 Model using the Transformers Trainer API with the SST2
Dataset for Multi-Node Multi-GPU Training

The following list is the minimal set of parameters required to run a SageMaker training job with
the compiler.

Note

When using the SageMaker Hugging Face estimator, you must specify the
transformers_version, pytorch_version, hyperparameters, and
compiler_config parameters to enable SageMaker Training Compiler. You cannot
use image_uri to manually specify the Training Compiler integrated Deep Learning
Containers that are listed at Supported Frameworks.

• entry_point (str) – Required. Specify the file name of your training script.

Note

To run a distributed training with SageMaker Training Compiler and PyTorch v1.10.2 and
before, specify the file name of a launcher script to this parameter. The launcher script
should be prepared to wrap your training script and configure the distributed training
environment. For more information, see the following example notebooks:

• Compile and Train the GPT2 Model using the Transformers Trainer API with the SST2
Dataset for Single-Node Multi-GPU Training

• Compile and Train the GPT2 Model using the Transformers Trainer API with the SST2
Dataset for Multi-Node Multi-GPU Training

• source_dir (str) – Optional. Add this if need to install additional packages. To install packages,
you need to prapare a requirements.txt file under this directory.

• instance_count (int) – Required. Specify the number of instances.

• instance_type (str) – Required. Specify the instance type.

• transformers_version (str) – Required only when using the SageMaker Hugging Face
estimator. Specify the Hugging Face Transformers library version supported by SageMaker
Training Compiler. To find available versions, see Supported Frameworks.

Enable Training Compiler 3847

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_multiple_node/language-modeling-multi-gpu-multi-node.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_multiple_node/language-modeling-multi-gpu-multi-node.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling-multi-gpu-single-node.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_single_node/language-modeling-multi-gpu-single-node.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_multiple_node/language-modeling-multi-gpu-multi-node.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/huggingface/pytorch_multiple_gpu_multiple_node/language-modeling-multi-gpu-multi-node.html

Amazon SageMaker Developer Guide

• framework_version or pytorch_version (str) – Required. Specify the PyTorch version
supported by SageMaker Training Compiler. To find available versions, see Supported
Frameworks.

Note

When using the SageMaker Hugging Face estimator, you must specify both
transformers_version and pytorch_version.

• hyperparameters (dict) – Optional. Specify hyperparameters for the training job, such as
n_gpus, batch_size, and learning_rate. When you enable SageMaker Training Compiler,
try larger batch sizes and adjust the learning rate accordingly. To find case studies of using the
compiler and adjusted batch sizes to improve training speed, see the section called “Tested
Models” and SageMaker Training Compiler Example Notebooks and Blogs.

Note

To run a distributed training with SageMaker Training Compiler and PyTorch v1.10.2 and
before, you need to add an additional parameter, "training_script", to specify your
training script, as shown in the preceding code example.

• compiler_config (TrainingCompilerConfig object) – Required to activate SageMaker Training
Compiler. Include this parameter to turn on SageMaker Training Compiler. The following are
parameters for the TrainingCompilerConfig class.

• enabled (bool) – Optional. Specify True or False to turn on or turn off SageMaker Training
Compiler. The default value is True.

• debug (bool) – Optional. To receive more detailed training logs from your compiler-
accelerated training jobs, change it to True. However, the additional logging might add
overhead and slow down the compiled training job. The default value is False.

• distribution (dict) – Optional. To run a distributed training job with SageMaker Training
Compiler, add distribution = { 'pytorchxla' : { 'enabled': True }}.

Warning

If you turn on SageMaker Debugger, it might impact the performance of SageMaker
Training Compiler. We recommend that you turn off Debugger when running SageMaker

Enable Training Compiler 3848

Amazon SageMaker Developer Guide

Training Compiler to make sure there's no impact on performance. For more information,
see the section called “Considerations”. To turn the Debugger functionalities off, add the
following two arguments to the estimator:

disable_profiler=True,
debugger_hook_config=False

If the training job with the compiler is launched successfully, you receive the following logs during
the job initialization phase:

• With TrainingCompilerConfig(debug=False)

Found configuration for Training Compiler
Configuring SM Training Compiler...

• With TrainingCompilerConfig(debug=True)

Found configuration for Training Compiler
Configuring SM Training Compiler...
Training Compiler set to debug mode

Using the SageMaker CreateTrainingJob API Operation

SageMaker Training Compiler configuration options must be specified through the
AlgorithmSpecification and HyperParameters field in the request syntax for the
CreateTrainingJob API operation.

"AlgorithmSpecification": {
 "TrainingImage": "<sagemaker-training-compiler-enabled-dlc-image>"
},

"HyperParameters": {
 "sagemaker_training_compiler_enabled": "true",
 "sagemaker_training_compiler_debug_mode": "false",
 "sagemaker_pytorch_xla_multi_worker_enabled": "false" // set to "true" for
 distributed training
}

Enable Training Compiler 3849

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

To find a complete list of deep learning container image URIs that have SageMaker Training
Compiler implemented, see Supported Frameworks.

Run TensorFlow Training Jobs with SageMaker Training Compiler

You can use any of the SageMaker interfaces to run a training job with SageMaker Training
Compiler: Amazon SageMaker Studio Classic, Amazon SageMaker notebook instances, AWS SDK for
Python (Boto3), and AWS Command Line Interface.

Topics

• Using the SageMaker Python SDK

• Using the SageMaker Python SDK and Extending SageMaker Framework Deep Learning
Containers

• Enable SageMaker Training Compiler Using the SageMaker CreateTrainingJob API Operation

Using the SageMaker Python SDK

To turn on SageMaker Training Compiler, add the compiler_config parameter to the SageMaker
TensorFlow or Hugging Face estimator. Import the TrainingCompilerConfig class and pass
an instance of it to the compiler_config parameter. The following code examples show the
structure of the SageMaker estimator classes with SageMaker Training Compiler turned on.

Tip

To get started with prebuilt models provided by the TensorFlow and Transformers libraries,
try using the batch sizes provided in the reference table at Tested Models.

Note

SageMaker Training Compiler for TensorFlow is available through the SageMaker
TensorFlow and Hugging Face framework estimators.

For information that fits your use case, see one of the following options.

Enable Training Compiler 3850

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/sagemaker.huggingface.html#hugging-face-estimator

Amazon SageMaker Developer Guide

For single GPU training

TensorFlow

from sagemaker.tensorflow import TensorFlow, TrainingCompilerConfig

the original max batch size that can fit into GPU memory without compiler
batch_size_native=12
learning_rate_native=float('5e-5')

an updated max batch size that can fit into GPU memory with compiler
batch_size=64

update the global learning rate
learning_rate=learning_rate_native/batch_size_native*batch_size

hyperparameters={
 "n_gpus": 1,
 "batch_size": batch_size,
 "learning_rate": learning_rate
}

tensorflow_estimator=TensorFlow(
 entry_point='train.py',
 instance_count=1,
 instance_type='ml.p3.2xlarge',
 framework_version='2.9.1',
 hyperparameters=hyperparameters,
 compiler_config=TrainingCompilerConfig(),
 disable_profiler=True,
 debugger_hook_config=False
)

tensorflow_estimator.fit()

To prepare your training script, see the following pages.

• For single GPU training of a model constructed using TensorFlow Keras (tf.keras.*).

• For single GPU training of a model constructed using TensorFlow modules (tf.* excluding
the TensorFlow Keras modules).

Enable Training Compiler 3851

Amazon SageMaker Developer Guide

Hugging Face Estimator with TensorFlow

from sagemaker.huggingface import HuggingFace, TrainingCompilerConfig

the original max batch size that can fit into GPU memory without compiler
batch_size_native=12
learning_rate_native=float('5e-5')

an updated max batch size that can fit into GPU memory with compiler
batch_size=64

update the global learning rate
learning_rate=learning_rate_native/batch_size_native*batch_size

hyperparameters={
 "n_gpus": 1,
 "batch_size": batch_size,
 "learning_rate": learning_rate
}

tensorflow_huggingface_estimator=HuggingFace(
 entry_point='train.py',
 instance_count=1,
 instance_type='ml.p3.2xlarge',
 transformers_version='4.21.1',
 tensorflow_version='2.6.3',
 hyperparameters=hyperparameters,
 compiler_config=TrainingCompilerConfig(),
 disable_profiler=True,
 debugger_hook_config=False
)

tensorflow_huggingface_estimator.fit()

To prepare your training script, see the following pages.

• For single GPU training of a TensorFlow Keras model with Hugging Face Transformers

• For single GPU training of a TensorFlow model with Hugging Face Transformers

Enable Training Compiler 3852

Amazon SageMaker Developer Guide

For distributed training

Hugging Face Estimator with TensorFlow

from sagemaker.huggingface import HuggingFace, TrainingCompilerConfig

choose an instance type, specify the number of instances you want to use,
and set the num_gpus variable the number of GPUs per instance.
instance_count=1
instance_type='ml.p3.8xlarge'
num_gpus=4

the original max batch size that can fit to GPU memory without compiler
batch_size_native=16
learning_rate_native=float('5e-5')

an updated max batch size that can fit to GPU memory with compiler
batch_size=26

update learning rate
learning_rate=learning_rate_native/
batch_size_native*batch_size*num_gpus*instance_count

hyperparameters={
 "n_gpus": num_gpus,
 "batch_size": batch_size,
 "learning_rate": learning_rate
}

tensorflow_huggingface_estimator=HuggingFace(
 entry_point='train.py',
 instance_count=instance_count,
 instance_type=instance_type,
 transformers_version='4.21.1',
 tensorflow_version='2.6.3',
 hyperparameters=hyperparameters,
 compiler_config=TrainingCompilerConfig(),
 disable_profiler=True,
 debugger_hook_config=False
)

tensorflow_huggingface_estimator.fit()

Enable Training Compiler 3853

Amazon SageMaker Developer Guide

Tip

To prepare your training script, see the following pages.

• For distributed training of a TensorFlow Keras model with Hugging Face Transformers

• For distributed training of a TensorFlow model with Hugging Face Transformers

The following list is the minimal set of parameters required to run a SageMaker training job with
the compiler.

Note

When using the SageMaker Hugging Face estimator, you must specify the
transformers_version, tensorflow_version, hyperparameters, and
compiler_config parameters to enable SageMaker Training Compiler. You cannot
use image_uri to manually specify the Training Compiler integrated Deep Learning
Containers that are listed at Supported Frameworks.

• entry_point (str) – Required. Specify the file name of your training script.

• instance_count (int) – Required. Specify the number of instances.

• instance_type (str) – Required. Specify the instance type.

• transformers_version (str) – Required only when using the SageMaker Hugging Face
estimator. Specify the Hugging Face Transformers library version supported by SageMaker
Training Compiler. To find available versions, see Supported Frameworks.

• framework_version or tensorflow_version (str) – Required. Specify the TensorFlow
version supported by SageMaker Training Compiler. To find available versions, see Supported
Frameworks.

Note

When using the SageMaker TensorFlow estimator, you must specify
framework_version.
When using the SageMaker Hugging Face estimator, you must specify both
transformers_version and tensorflow_version.

Enable Training Compiler 3854

Amazon SageMaker Developer Guide

• hyperparameters (dict) – Optional. Specify hyperparameters for the training job, such as
n_gpus, batch_size, and learning_rate. When you enable SageMaker Training Compiler,
try larger batch sizes and adjust the learning rate accordingly. To find case studies of using the
compiler and adjusted batch sizes to improve training speed, see the section called “Tested
Models” and SageMaker Training Compiler Example Notebooks and Blogs.

• compiler_config (TrainingCompilerConfig object) – Required. Include this parameter
to turn on SageMaker Training Compiler. The following are parameters for the
TrainingCompilerConfig class.

• enabled (bool) – Optional. Specify True or False to turn on or turn off SageMaker Training
Compiler. The default value is True.

• debug (bool) – Optional. To receive more detailed training logs from your compiler-
accelerated training jobs, change it to True. However, the additional logging might add
overhead and slow down the compiled training job. The default value is False.

Warning

If you turn on SageMaker Debugger, it might impact the performance of SageMaker
Training Compiler. We recommend that you turn off Debugger when running SageMaker
Training Compiler to make sure there's no impact on performance. For more information,
see the section called “Considerations”. To turn the Debugger functionalities off, add the
following two arguments to the estimator:

disable_profiler=True,
debugger_hook_config=False

If the training job with the compiler is launched successfully, you receive the following logs during
the job initialization phase:

• With TrainingCompilerConfig(debug=False)

Found configuration for Training Compiler
Configuring SM Training Compiler...

• With TrainingCompilerConfig(debug=True)

Found configuration for Training Compiler

Enable Training Compiler 3855

Amazon SageMaker Developer Guide

Configuring SM Training Compiler...
Training Compiler set to debug mode

Using the SageMaker Python SDK and Extending SageMaker Framework Deep Learning
Containers

AWS Deep Learning Containers (DLC) for TensorFlow use adapted versions of TensorFlow that
include changes on top of the open-source TensorFlow framework. The SageMaker Framework
Deep Learning Containers are optimized for the underlying AWS infrastructure and Amazon
SageMaker. With the advantage of using the DLCs, SageMaker Training Compiler integration adds
more performance improvements over the native TensorFlow. Furthermore, you can create a
custom training container by extending the DLC image.

Note

This Docker customization feature is currently available only for TensorFlow.

To extend and customize the SageMaker TensorFlow DLCs for your use-case, use the following
instructions.

Create a Dockerfile

Use the following Dockerfile template to extend the SageMaker TensorFlow DLC. You must use
the SageMaker TensorFlow DLC image as the base image of your Docker container. To find the
SageMaker TensorFlow DLC image URIs, see Supported Frameworks.

SageMaker TensorFlow Deep Learning Container image
FROM 763104351884.dkr.ecr.<aws-region>.amazonaws.com/tensorflow-training:<image-tag>

ENV PATH="/opt/ml/code:${PATH}"

This environment variable is used by the SageMaker container
to determine user code directory.
ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code

Add more code lines to customize for your use-case
...

For more information, see Step 2: Create and upload the Dockerfile and Python training scripts.

Enable Training Compiler 3856

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-support.html#training-compiler-supported-frameworks
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html#byoc-training-step2

Amazon SageMaker Developer Guide

Consider the following pitfalls when extending SageMaker Framework DLCs:

• Do not explicitly uninstall or change the version of TensorFlow packages in SageMaker
containers. Doing so causes the AWS optimized TensorFlow packages to be overwritten by open-
source TensorFlow packages, which might result in performance degradation.

• Watch out for packages that have a particular TensorFlow version or flavor as a dependency.
These packages might implicitly uninstall the AWS optimized TensorFlow and install open-source
TensorFlow packages.

For example, there’s a known issue that the tensorflow/models and tensorflow/text libraries
always attempt to reinstall open source TensorFlow. If you need to install these libraries to choose
a specific version for your use case, we recommend that you look into the SageMaker TensorFlow
DLC Dockerfiles for v2.9 or later. The paths to the Dockerfiles are typically in the following
format: tensorflow/training/docker/<tensorflow-version>/py3/<cuda-version>/
Dockerfile.gpu. In the Dockerfiles, you should find the code lines to reinstall AWS managed
TensorFlow binary (specified to the TF_URL environment variable) and other dependencies in
order. The reinstallation section should look like the following example:

tf-models does not respect existing installations of TensorFlow
and always installs open source TensorFlow

RUN pip3 install --no-cache-dir -U \
 tf-models-official==x.y.z

RUN pip3 uninstall -y tensorflow tensorflow-gpu \
 ; pip3 install --no-cache-dir -U \
 ${TF_URL} \
 tensorflow-io==x.y.z \
 tensorflow-datasets==x.y.z

Build and push to ECR

To build and push your Docker container to Amazon ECR, follow the instructions in the following
links:

• Step 3: Build the container

• Step 4: Test the container

• Step 5: Push the container to Amazon ECR

Enable Training Compiler 3857

https://github.com/tensorflow/models
https://github.com/tensorflow/text
https://github.com/tensorflow/models/issues/9267
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html#byoc-training-step3
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html#byoc-training-step4
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html#byoc-training-step5

Amazon SageMaker Developer Guide

Run using the SageMaker Python SDK Estimator

Use the SageMaker TensorFlow framework estimator as usual. You must specify image_uri to use
the new container you hosted in Amazon ECR.

import sagemaker, boto3
from sagemaker import get_execution_role
from sagemaker.tensorflow import TensorFlow, TrainingCompilerConfig

account_id = boto3.client('sts').get_caller_identity().get('Account')
ecr_repository = 'tf-custom-container-test'
tag = ':latest'

region = boto3.session.Session().region_name

uri_suffix = 'amazonaws.com'

byoc_image_uri = '{}.dkr.ecr.{}.{}/{}'.format(
 account_id, region, uri_suffix, ecr_repository + tag
)

byoc_image_uri
This should return something like
111122223333.dkr.ecr.us-east-2.amazonaws.com/tf-custom-container-test:latest

estimator = TensorFlow(
 image_uri=image_uri,
 role=get_execution_role(),
 base_job_name='tf-custom-container-test-job',
 instance_count=1,
 instance_type='ml.p3.8xlarge'
 compiler_config=TrainingCompilerConfig(),
 disable_profiler=True,
 debugger_hook_config=False
)

Start training
estimator.fit()

Enable Training Compiler 3858

Amazon SageMaker Developer Guide

Enable SageMaker Training Compiler Using the SageMaker CreateTrainingJob API Operation

SageMaker Training Compiler configuration options must be specified through the
AlgorithmSpecification and HyperParameters field in the request syntax for the
CreateTrainingJob API operation.

"AlgorithmSpecification": {
 "TrainingImage": "<sagemaker-training-compiler-enabled-dlc-image>"
},

"HyperParameters": {
 "sagemaker_training_compiler_enabled": "true",
 "sagemaker_training_compiler_debug_mode": "false"
}

To find a complete list of deep learning container image URIs that have SageMaker Training
Compiler implemented, see Supported Frameworks.

SageMaker Training Compiler Example Notebooks and Blogs

The following blogs, case studies, and notebooks provide examples of how to implement
SageMaker Training Compiler.

Example notebooks are provided in the SageMaker examples GitHub repository, and you can also
browse them on the SageMaker examples website.

Blogs and Case Studies

The following blogs discuss case studies about using SageMaker Training Compiler.

• New – Introducing SageMaker Training Compiler

• Hugging Face Transformers BERT fine-tuning using Amazon SageMaker Training Compiler

• Speed up Hugging Face Training Jobs on AWS by Up to 50% with SageMaker Training Compiler

Examples Notebooks

To find examples of using SageMaker Training Compiler, see the Training Compiler page in the
Amazon SageMaker Example Read the Docs website.

Example Notebooks and Blogs 3859

https://amazonaws.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-training-compiler
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/index.html
https://aws.amazon.com/blogs/aws/new-introducing-sagemaker-training-compiler/
https://www.philschmid.de/huggingface-amazon-sagemaker-training-compiler
https://towardsdatascience.com/speed-up-hugging-face-training-jobs-on-aws-by-up-to-50-with-sagemaker-training-compiler-9ad2ac5b0eb
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-training-compiler/index.html

Amazon SageMaker Developer Guide

SageMaker Training Compiler Best Practices and Considerations

Review the following best practices and considerations when using SageMaker Training Compiler.

Best Practices

Use the following guidelines to achieve the best results when you run training jobs with SageMaker
Training Compiler.

General Best Practices

• Make sure that you use one of the Supported Instance Types and Tested Models.

• When you create a tokenizer for an NLP model using the Hugging Face Transformers library
in your training script, make sure that you use a static input tensor shape by specifying
padding='max_length'. Do not use padding='longest' because padding to the longest
sequence in the batch can change the tensor shape for each training batch. The dynamic input
shape can initiate recompilation of the model and might increase total training time. For more
information about padding options of the Transformers tokenizers, see Padding and truncation
in the Hugging Face Transformers documentation.

• Measure GPU memory utilization to make sure that you use the maximum batch size that can
fit into the GPU memory. Amazon SageMaker Training Compiler reduces the memory footprint
of your model during training, which typically allows you to fit a larger batch_size in the GPU
memory. Using a larger batch_size results in a better GPU utilization and reduces the total
training time.

When you adjust the batch size, you also have to adjust the learning_rate appropriately. For
example, if you increased the batch size by a factor of k, you need to adjust learning_rate
linearly (simple multiplication by k) or multiply by the square root of k. This is to achieve the
same or similar convergence behavior in the reduced training time. For reference of batch_size
tested for popular models, see Tested Models.

• To debug the compiler-accelerated training job, enable the debug flag in the compiler_config
parameter. This enables SageMaker to put the debugging logs into SageMaker training job logs.

huggingface_estimator=HuggingFace(
 ...
 compiler_config=TrainingCompilerConfig(debug=True)
)

Best Practices and Considerations 3860

https://huggingface.co/docs/transformers/pad_truncation

Amazon SageMaker Developer Guide

Note that if you enable full debugging of the training job with the compiler, this might add some
overhead.

Best Practices for PyTorch

• If you bring a PyTorch model and want to checkpoint it, make sure you use PyTorch/XLA's model
save function to properly checkpoint your model. For more information about the function, see
torch_xla.core.xla_model.save in the PyTorch on XLA Devices documentation.

To learn how to add the modifications to your PyTorch script, see Large Language Models Using
PyTorch Directly (without the Hugging Face Transformers Trainer API).

For more information about the actual application of using the model save function, see
Checkpoint Writing and Loading in the Hugging Face on PyTorch/XLA TPUs: Faster and cheaper
training blog.

• To achieve the most optimal training time for distributed training, consider the following.

• Use instances with multiple GPUs instead of using single-gpu instances. For example, a single
ml.p3dn.24xlarge instance has faster training time compared to 8 x ml.p3.2xlarge
instances.

• Use instances with EFA support such as ml.p3dn.24xlarge and ml.p4d.24xlarge. These
instance types have accelerated networking speed and reduce training time.

• Tune the preprocessing_num_workers parameter for datasets, so that model training is
not delayed by slow preprocessing.

Considerations

Consider the following when using SageMaker Training Compiler.

Performance degradation due to logging, checkpointing, and profiling

• Avoid logging, checkpointing, and profiling model tensors that lead to explicit evaluations. To
understand what an explicit evaluation is, consider the following code compiling example.

a = b+c
e = a+d

A compiler interprets the code as follows and reduces the memory footprint for the variable a:

Best Practices and Considerations 3861

https://pytorch.org/xla/release/1.9/index.html#torch_xla.core.xla_model.save
https://huggingface.co/blog/pytorch-xla#checkpoint-writing-and-loading

Amazon SageMaker Developer Guide

e = b+c+d

Now consider the following case in which the code is changed to add a print function for the
variable a.

a = b+c
e = a+d
print(a)

The compiler makes an explicit evaluation of the variable a as follows.

e = b+c+d
a = b+c # Explicit evaluation
print(a)

In PyTorch, for example, avoid using torch.tensor.items(), which might introduce explicit
evaluations. In deep learning, such explicit evaluations can cause overhead because they break
fused operations in a compilation graph of a model and lead to recomputation of the tensors.

If you still want to periodically evaluate the model during training while using SageMaker
Training Compiler, we recommend logging and checkpointing at a lower frequency to reduce
overhead due to explicit evaluations. For example, log every 10 epochs instead of every epoch.

• Graph compilation runs during the first few steps of training. As a result, the first few steps
are expected to be exceptionally slow. However, this is a one-time compilation cost and can be
amortized by training for a longer duration because compilation makes future steps much faster.
The initial compilation overhead depends on the size of the model, the size of the input tensors,
and the distribution of input tensor shapes.

Incorrect use of the PyTorch/XLA APIs when using PyTorch directly

PyTorch/XLA defines a set of APIs to replace some of the existing PyTorch training APIs. Failing to
use them properly leads PyTorch training to fail.

• One of the most typical errors when compiling a PyTorch model is due to a wrong device type
for operators and tensors. To properly compile a PyTorch model, make sure you use XLA devices
(xm.xla_device()) instead of using CUDA or mixing CUDA devices and XLA devices.

• mark_step() is a barrier just for XLA. Failing to set it correctly causes a training job to stall.

Best Practices and Considerations 3862

https://pytorch.org/docs/stable/generated/torch.Tensor.item.html
https://pytorch.org/xla/release/1.9/index.html

Amazon SageMaker Developer Guide

• PyTorch/XLA provides additional distributed training APIs. Failing to program the APIs properly
causes gradients to be collected incorrectly, which causes a training convergence failure.

To properly set up your PyTorch script and avoid the aforementioned incorrect API uses, see Large
Language Models Using PyTorch Directly (without the Hugging Face Transformers Trainer API).

SageMaker Training Compiler FAQ

Use the following FAQ items to find answers to commonly asked questions about SageMaker
Training Compiler.

Q. How do I know SageMaker Training Compiler is working?

If you successfully launched your training job with SageMaker Training Compiler, you receive the
following log messages:

• With TrainingCompilerConfig(debug=False)

Found configuration for Training Compiler
Configuring SM Training Compiler...

• With TrainingCompilerConfig(debug=True)

Found configuration for Training Compiler
Configuring SM Training Compiler...
Training Compiler set to debug mode

Q. Which models does SageMaker Training Compiler accelerate?

SageMaker Training Compiler supports the most popular deep learning models from the Hugging
Face transformers library. With most of the operators that the compiler supports, these models
can be trained faster with SageMaker Training Compiler. Compilable models include but are not
limited to the following: bert-base-cased, bert-base-chinese, bert-base-uncased,
distilbert-base-uncased, distilbert-base-uncased-finetuned-sst-2-english,
gpt2, roberta-base, roberta-large, t5-base, and xlm-roberta-base. The compiler works
with most DL operators and data structures and can accelerate many other DL models beyond
those that have been tested.

Q. What happens if I enable SageMaker Training Compiler with a model that isn't tested?

Training Compiler FAQ 3863

Amazon SageMaker Developer Guide

For an untested model, you might need to first modify the training script to be compatible with
SageMaker Training Compiler. For more information, see Bring Your Own Deep Learning Model and
follow the instructions on how to prepare your training script.

Once you have updated your training script, you can start the training job. The compiler proceeds
to compile the model. However, training speed may not increase and might even decrease relative
to the baseline with an untested model. You might need to retune training parameters such as
batch_size and learning_rate to achieve any speedup benefits.

If compilation of the untested model fails, the compiler returns an error. See SageMaker Training
Compiler Troubleshooting for detailed information about the failure types and error messages.

Q. Will I always get a faster training job with SageMaker Training Compiler?

No, not necessarily. First, SageMaker Training Compiler adds some compilation overhead before
the ongoing training process can be accelerated. The optimized training job must run sufficiently
long to amortize and make up for this incremental compilation overhead at the beginning of the
training job.

Additionally, as with any model training process, training with suboptimal parameters can increase
training time. SageMaker Training Compiler can change the characteristics of the training job by,
for example, changing the memory footprint of the job. Because of these differences, you might
need to retune your training job parameters to speed up training. A reference table specifying
the best performing parameters for training jobs with different instance types and models can be
found at Tested Models.

Finally, some code in a training script might add additional overhead or disrupt the compiled
computation graph and slow training. If working with a customized or untested model, see the
instructions at Best Practices to Use SageMaker Training Compiler with PyTorch/XLA.

Q. Can I always use a larger batch size with SageMaker Training Compiler?

Batch size increases in most, but not all, cases. The optimizations made by SageMaker Training
Compiler can change the characteristics of your training job, such as the memory footprint.
Typically, a Training Compiler job occupies less memory than an uncompiled training job with the
native framework, which allows for a larger batch size during training. A larger batch size, and a
corresponding adjustment to the learning rate, increases training throughput and can decrease
total training time.

However, there could be cases where SageMaker Training Compiler might actually increase memory
footprint based on its optimization scheme. The compiler uses an analytical cost model to predict

Training Compiler FAQ 3864

Amazon SageMaker Developer Guide

the execution schedule with the lowest cost of execution for any compute-intensive operator. This
model could find an optimal schedule that increases memory use. In this case, you won’t be able to
increase batch sizes, but your sample throughput is still higher.

Q. Does SageMaker Training Compiler work with other SageMaker training features, such as the
SageMaker distributed training libraries and SageMaker Debugger?

SageMaker Training Compiler is currently not compatible with SageMaker’s distributed training
libraries.

SageMaker Training Compiler is compatible with SageMaker Debugger, but Debugger might
degrade computational performance by adding overhead.

Q. Does SageMaker Training Compiler support custom containers (bring your own container)?

SageMaker Training Compiler is provided through AWS Deep Learning Containers, and you
can extend a subset of the containers to customize for your use-case. Containers that are
extended from AWS DLCs are supported by SageMaker Training Compiler. For more information,
see Supported Frameworks and Using the SageMaker Python SDK and Extending SageMaker
Framework Deep Learning Containers. If you need further support, reach out to the SageMaker
team through AWS Support or AWS Developer Forums for Amazon SageMaker.

SageMaker Training Compiler Troubleshooting

If you run into an error, you can use the following list to try to troubleshoot your training job. If you
need further support, reach out to the SageMaker team through AWS Support or AWS Developer
Forums for Amazon SageMaker.

Training job is not converging as expected when compared to the native
framework training job

Convergence issues range from “the model is not learning when SageMaker Training Compiler is
turned on” to “the model is learning but slower than the native framework”. In this troubleshooting
guide, we assume your convergence is fine without SageMaker Training Compiler (in the native
framework) and consider this the baseline.

When faced with such convergence issues, the first step is to identify if the issue is limited to
distributed training or stems from single-GPU training. Distributed training with SageMaker
Training Compiler is an extension of single-GPU training with additional steps.

Troubleshooting 3865

https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-support.html#training-compiler-supported-frameworks
https://console.aws.amazon.com/support/
https://forums.aws.amazon.com/forum.jspa?forumID=285
https://console.aws.amazon.com/support/
https://forums.aws.amazon.com/forum.jspa?forumID=285
https://forums.aws.amazon.com/forum.jspa?forumID=285

Amazon SageMaker Developer Guide

1. Set up a cluster with multiple instances or GPUs.

2. Distribute input data to all workers.

3. Synchronize the model updates from all workers.

Therefore, any convergence issue in single-GPU training propagates to distributed training with
multiple workers.

Troubleshooting 3866

Amazon SageMaker Developer Guide

Troubleshooting 3867

Amazon SageMaker Developer Guide

A flow chart to troubleshoot convergence issues in training jobs when using SageMaker Training
Compiler. Descriptions are in the following sections.

Convergence issues occurring in single-GPU training

If your convergence issue stems from single-GPU training, this is likely due to improper settings for
hyperparameters or the torch_xla APIs.

Check the hyperparameters

Training with SageMaker Training Compiler leads to change in the memory footprint of a model.
The compiler intelligently arbitrates between re-use and re-compute leading to a corresponding
increase or decrease in memory consumption. To leverage this, it is essential to re-tune the
batch size and associated hyperparameters when migrating a training job to SageMaker Training
Compiler. However, incorrect hyperparameter settings often cause oscillation in training loss and
possibly a slower convergence as a result. In rare cases, aggressive hyperparameters might result in
the model not learning (the training loss metric doesn’t decrease or returns NaN). To identify if the
convergence issue is due to the hyperparameters, do a side-by-side test of two training jobs with
and without SageMaker Training Compiler while keeping all the hyperparameters the same.

Check if the torch_xla APIs are properly set up for single-GPU training

If the convergence issue persists with the baseline hyperparameters, you need to check
if there’s any improper usage of the torch_xla APIs, specifically the ones for updating
the model. Fundamentally, torch_xla continues to accumulate instructions (deferring
execution) in the form of graph until it is explicitly instructed to run the accumulated graph.
The torch_xla.core.xla_model.mark_step() function facilitates the execution of the
accumulated graph. The graph execution should be synchronized using this function after each
model update and before printing and logging any variables. If it lacks the synchronization step,
the model might use stale values from memory during prints, logs, and the subsequent forward
passes, instead of using the most recent values that have to be synchronized after every iteration
and model update.

It can be more complicated when using SageMaker Training Compiler with gradient scaling
(possibly from the use of AMP) or gradient clipping techniques. The appropriate order of gradient
computation with AMP is as follows.

1. Gradient computation with scaling

2. Gradient un-scaling, gradient clipping, and then scaling

3. Model update

Troubleshooting 3868

Amazon SageMaker Developer Guide

4. Synchronizing the graph execution with mark_step()

To find the right APIs for the operations mentioned in the list, see the guide for migrating your
training script to SageMaker Training Compiler.

Consider using Automatic Model Tuning

If the convergence issue arises when re-tuning the batch size and associated hyperparameters
such as the learning rate while using SageMaker Training Compiler, consider using Automatic
Model Tuning to tune your hyperparameters. You can refer to the example notebook on tuning
hyperparameters with SageMaker Training Compiler.

Convergence issues occurring in distributed training

If your convergence issue persists in distributed training, this is likely due to improper settings for
weight initialization or the torch_xla APIs.

Check weight initialization across the workers

If the convergence issue arises when running a distributed training job with multiple workers,
ensure there is a uniform deterministic behavior across all workers by setting a constant seed
where applicable. Beware of techniques such as weight initialization, which involves randomization.
Each worker might end up training a different model in the absence of a constant seed.

Check if the torch_xla APIs are properly set up for distributed training

If the issue still persists, this is likely due to improper use of the torch_xla APIs for distributed
training. Make sure that you add the following in your estimator to set up a cluster for distributed
training with SageMaker Training Compiler.

distribution={'torchxla': {'enabled': True}}

This should be accompanied by a function _mp_fn(index) in your training script, which is invoked
once per worker. Without the mp_fn(index) function, you might end up letting each of the
workers train the model independently without sharing model updates.

Next, make sure that you use the
torch_xla.distributed.parallel_loader.MpDeviceLoader API along with the
distributed data sampler, as guided in the documentation about migrating your training script to
SageMaker Training Compiler, as in the following example.

Troubleshooting 3869

https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-pytorch-models.html
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-pytorch-models.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-training-compiler/tensorflow/single_gpu_single_node/hyper-parameter-tuning.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-training-compiler/tensorflow/single_gpu_single_node/hyper-parameter-tuning.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-pytorch-models.html
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-pytorch-models.html

Amazon SageMaker Developer Guide

torch.utils.data.distributed.DistributedSampler()

This ensures that the input data is properly distributed across all workers.

Finally, to synchronize model updates from all workers, use
torch_xla.core.xla_model._fetch_gradients to gather gradients from all workers and
torch_xla.core.xla_model.all_reduce to combine all the gathered gradients into a single
update.

It can be more complicated when using SageMaker Training Compiler with gradient scaling
(possibly from use of AMP) or gradient clipping techniques. The appropriate order of gradient
computation with AMP is as follows.

1. Gradient computation with scaling

2. Gradient synchronization across all workers

3. Gradient un-scaling, gradient clipping, and then gradient scaling

4. Model update

5. Synchronizing the graph execution with mark_step()

Note that this checklist has an additional item for synchronizing all workers, compared to the
checklist for single-GPU training.

Training job fails due to missing PyTorcl/XLA configuration

If a training job fails with the Missing XLA configuration error message, it might be due to a
misconfiguration in the number of GPUs per instance that you use.

XLA requires additional environment variables to compile the training job. The most common
missing environment variable is GPU_NUM_DEVICES. For the compiler to work properly, you must
set this environment variable equal to the number of GPUs per instance.

There are three approaches to set the GPU_NUM_DEVICES environment variable:

• Approach 1 – Use the environment argument of the SageMaker estimator class. For example, if
you use an ml.p3.8xlarge instance that has four GPUs, do the following:

Using the SageMaker Python SDK's HuggingFace estimator

hf_estimator=HuggingFace(

Troubleshooting 3870

Amazon SageMaker Developer Guide

 ...
 instance_type="ml.p3.8xlarge",
 hyperparameters={...},
 environment={
 ...
 "GPU_NUM_DEVICES": "4" # corresponds to number of GPUs on the specified
 instance
 },
)

• Approach 2 – Use the hyperparameters argument of the SageMaker estimator class and parse
it in your training script.

1. To specify the number of GPUs, add a key-value pair to the hyperparameters argument.

For example, if you use an ml.p3.8xlarge instance that has four GPUs, do the following:

Using the SageMaker Python SDK's HuggingFace estimator

hf_estimator=HuggingFace(
 ...
 entry_point = "train.py"
 instance_type= "ml.p3.8xlarge",
 hyperparameters = {
 ...
 "n_gpus": 4 # corresponds to number of GPUs on specified instance
 }
)
hf_estimator.fit()

2. In your training script, parse the n_gpus hyperparameter and specify it as an input for the
GPU_NUM_DEVICES environment variable.

train.py
import os, argparse

if __name__ == "__main__":
 parser = argparse.ArgumentParser()
 ...
 # Data, model, and output directories
 parser.add_argument("--output_data_dir", type=str,
 default=os.environ["SM_OUTPUT_DATA_DIR"])
 parser.add_argument("--model_dir", type=str,
 default=os.environ["SM_MODEL_DIR"])

Troubleshooting 3871

Amazon SageMaker Developer Guide

 parser.add_argument("--training_dir", type=str,
 default=os.environ["SM_CHANNEL_TRAIN"])
 parser.add_argument("--test_dir", type=str,
 default=os.environ["SM_CHANNEL_TEST"])
 parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"])

 args, _ = parser.parse_known_args()

 os.environ["GPU_NUM_DEVICES"] = args.n_gpus

• Approach 3 – Hard-code the GPU_NUM_DEVICES environment variable in your training script.
For example, add the following to your script if you use an instance that has four GPUs.

train.py

import os
os.environ["GPU_NUM_DEVICES"] = 4

Tip

To find the number of GPU devices on machine learning instances that you want to use, see
Accelerated Computing in the Amazon EC2 Instance Types page.

SageMaker Training Compiler doesn't reduce the total training time

If the total training time does not decrease with SageMaker Training Compiler, we highly
recommend you to go over the SageMaker Training Compiler Best Practices and Considerations
page to check your training configuration, padding strategy for the input tensor shape, and
hyperparameters.

Amazon SageMaker Training Compiler Release Notes

See the following release notes to track the latest updates for Amazon SageMaker Training
Compiler.

Release Notes 3872

https://aws.amazon.com/ec2/instance-types/#Accelerated_Computing

Amazon SageMaker Developer Guide

SageMaker Training Compiler Release Notes: February 13, 2023

Currency Updates

• Added support for PyTorch v1.13.1

Bug Fixes

• Fixed a race condition issue on GPU which was causing NAN loss in some models like vision
transformer (ViT) models.

Other Changes

• SageMaker Training Compiler improves performance by letting PyTorch/
XLA to automatically override the optimizers (such as SGD, Adam, AdamW) in
torch.optim or transformers.optimization with the syncfree versions of
them in torch_xla.amp.syncfree (such as torch_xla.amp.syncfree.SGD,
torch_xla.amp.syncfree.Adam, torch_xla.amp.syncfree.AdamW). You don't need to
change those code lines where you define optimizers in your training script.

Migration to AWS Deep Learning Containers

This release passed benchmark testing and is migrated to the following AWS Deep Learning
Container:

• PyTorch v1.13.1

763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-trcomp-training:1.13.1-gpu-py39-
cu117-ubuntu20.04-sagemaker

To find a complete list of the prebuilt containers with Amazon SageMaker Training Compiler, see
Supported Frameworks, AWS Regions, Instance Types, and Tested Models.

SageMaker Training Compiler Release Notes: January 9, 2023

Breaking Changes

Release Notes 3873

Amazon SageMaker Developer Guide

• tf.keras.optimizers.Optimizer points to a new optimizer in TensorFlow 2.11.0 and later.
The old optimizers are moved to tf.keras.optimizers.legacy. You might encounter job
failure due to the breaking change when you do the following.

• Load checkpoints from an old optimizer. We recommend you to switch to use the legacy
optimizers.

• Use TensorFlow v1. We recommend you to migrate to TensorFlow v2, or switch to the legacy
optimizers if you need to continue using TensorFlow v1.

For more detailed list of breaking changes from the optimizer changes, see the official
TensorFlow v2.11.0 release notes in the TensorFlow GitHub repository.

Migration to AWS Deep Learning Containers

This release passed benchmark testing and is migrated to the following AWS Deep Learning
Container:

• TensorFlow v2.11.0

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training:2.11.0-gpu-py39-
cu112-ubuntu20.04-sagemaker

To find a complete list of the prebuilt containers with Amazon SageMaker Training Compiler, see
Supported Frameworks, AWS Regions, Instance Types, and Tested Models.

SageMaker Training Compiler Release Notes: December 8, 2022

Bug Fixes

• Fixed the seed for PyTorch training jobs starting PyTorch v1.12 to ensure that there is no
discrepancy in model initialization across different processes. See also PyTorch Reproducibility.

• Fixed the issue causing PyTorch distributed training jobs on G4dn and G5 instances to not default
to communication through PCIe.

Known Issues

• Improper use of PyTorch/XLA APIs in Hugging Face’s vision transformers might lead to
convergence issues.

Release Notes 3874

https://github.com/tensorflow/tensorflow/releases/tag/v2.11.0
https://github.com/tensorflow/tensorflow/releases/tag/v2.11.0
https://pytorch.org/docs/stable/notes/randomness.html
https://en.wikipedia.org/wiki/PCI_Express

Amazon SageMaker Developer Guide

Other Changes

• When using the Hugging Face Transformers Trainer class, make sure that you use SyncFree
optimizers by setting the optim argument to adamw_torch_xla. For more information, see
Large Language Models Using the Hugging Face Transformers Trainer Class. See also Optimizer
in the Hugging Face Transformers documentation.

Migration to AWS Deep Learning Containers

This release passed benchmark testing and is migrated to the following AWS Deep Learning
Container:

• PyTorch v1.12.0

763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-trcomp-training:1.12.0-gpu-py38-
cu113-ubuntu20.04-sagemaker

To find a complete list of the prebuilt containers with Amazon SageMaker Training Compiler, see
Supported Frameworks, AWS Regions, Instance Types, and Tested Models.

SageMaker Training Compiler Release Notes: October 4, 2022

Currency Updates

• Added support for TensorFlow v2.10.0.

Other Changes

• Added Hugging Face NLP models using the Transformers library to TensorFlow framework tests.
To find the tested Transformer models, see the section called “Tested Models”.

Migration to AWS Deep Learning Containers

This release passed benchmark testing and is migrated to the following AWS Deep Learning
Container:

• TensorFlow v2.10.0

Release Notes 3875

https://huggingface.co/docs/transformers/v4.23.1/en/perf_train_gpu_one#optimizer

Amazon SageMaker Developer Guide

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training:2.10.0-gpu-py39-
cu112-ubuntu20.04-sagemaker

To find a complete list of the prebuilt containers with Amazon SageMaker Training Compiler, see
Supported Frameworks, AWS Regions, Instance Types, and Tested Models.

SageMaker Training Compiler Release Notes: September 1, 2022

Currency Updates

• Added support for Hugging Face Transformers v4.21.1 with PyTorch v1.11.0.

Improvements

• Implemented a new distributed training launcher mechanism to activate SageMaker Training
Compiler for Hugging Face Transformer models with PyTorch. To learn more, see Run PyTorch
Training Jobs with SageMaker Training Compiler for Distributed Training.

• Integrated with EFA to improve the collective communication in distributed training.

• Added support for G5 instances for PyTorch training jobs. For more information, see the section
called “Supported Frameworks, AWS Regions, Instance Types, and Tested Models”.

Migration to AWS Deep Learning Containers

This release passed benchmark testing and is migrated to the following AWS Deep Learning
Container:

• HuggingFace v4.21.1 with PyTorch v1.11.0

763104351884.dkr.ecr.us-west-2.amazonaws.com/huggingface-pytorch-trcomp-
training:1.11.0-transformers4.21.1-gpu-py38-cu113-ubuntu20.04

To find a complete list of the prebuilt containers with Amazon SageMaker Training Compiler, see
Supported Frameworks, AWS Regions, Instance Types, and Tested Models.

Release Notes 3876

https://github.com/aws/deep-learning-containers/releases/tag/v1.0-trcomp-hf-4.21.1-pt-1.11.0-tr-gpu-py38

Amazon SageMaker Developer Guide

SageMaker Training Compiler Release Notes: June 14, 2022

New Features

• Added support for TensorFlow v2.9.1. SageMaker Training Compiler fully supports compiling
TensorFlow modules (tf.*) and TensorFlow Keras modules (tf.keras.*).

• Added support for custom containers created by extending AWS Deep Learning Containers
for TensorFlow. For more information, see Enable SageMaker Training Compiler Using the
SageMaker Python SDK and Extending SageMaker Framework Deep Learning Containers.

• Added support for G5 instances for TensorFlow training jobs.

Migration to AWS Deep Learning Containers

This release passed benchmark testing and is migrated to the following AWS Deep Learning
Container:

• TensorFlow 2.9.1

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training:2.9.1-gpu-py39-cu112-
ubuntu20.04-sagemaker

To find a complete list of the pre-built containers with Amazon SageMaker Training Compiler, see
Supported Frameworks, AWS Regions, Instance Types, and Tested Models.

SageMaker Training Compiler Release Notes: April 26, 2022

Improvements

• Added support for all of the AWS Regions where AWS Deep Learning Containers are in service
except the China regions.

SageMaker Training Compiler Release Notes: April 12, 2022

Currency Updates

• Added support for Hugging Face Transformers v4.17.0 with TensorFlow v2.6.3 and PyTorch
v1.10.2.

Release Notes 3877

https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

SageMaker Training Compiler Release Notes: February 21, 2022

Improvements

• Completed benchmark test and confirmed training speed-ups on the ml.g4dn instance types. To
find a complete list of tested ml instances, see Supported Instance Types.

SageMaker Training Compiler Release Notes: December 01, 2021

New Features

• Launched Amazon SageMaker Training Compiler at AWS re:Invent 2021.

Migration to AWS Deep Learning Containers

• Amazon SageMaker Training Compiler passed benchmark testing and is migrated to AWS Deep
Learning Containers. To find a complete list of the prebuilt containers with Amazon SageMaker
Training Compiler, see Supported Frameworks, AWS Regions, Instance Types, and Tested Models.

Access Training Data

When you create a training job, you specify the location of a training dataset and an input mode
for accessing the dataset. For data location, Amazon SageMaker supports Amazon Simple Storage
Service (Amazon S3), Amazon Elastic File System (Amazon EFS), and Amazon FSx for Lustre. The
input modes determine whether to stream data files of the dataset in real time or download the
whole dataset at the start of the training job.

Note

Your input dataset must be in the same AWS Region as your training job.

SageMaker Input Modes and AWS Cloud Storage

This section summarizes SageMaker input modes for Amazon S3 and file systems in Amazon EFS
and Amazon FSx for Lustre.

Access Training Data 3878

Amazon SageMaker Developer Guide

• File mode presents a file system view of the dataset to the training container. This is the default
input mode if you don't explicitly specify one of the other two options. If you use file mode,
SageMaker downloads the training data from the storage location to a local directory in the
Docker container. Training starts after the full dataset has been downloaded. In file mode, the
training instance must have enough storage space to fit the entire dataset. File mode download
speed depends on the size of dataset, the average size of files, and the number of files. You can
configure the dataset for file mode by providing either an Amazon S3 prefix, manifest file, or
augmented manifest file. You should use an S3 prefix when all your dataset files are located
within a common S3 prefix. File mode is compatible with SageMaker local mode (starting a
SageMaker training container interactively in seconds). For distributed training, you can shard the
dataset across multiple instances with the ShardedByS3Key option.

• Fast file mode provides file system access to an Amazon S3 data source while leveraging the
performance advantage of pipe mode. At the start of training, fast file mode identifies the data
files but does not download them. Training can start without waiting for the entire dataset to
download. This means that the training startup takes less time when there are fewer files in the
Amazon S3 prefix provided.

SageMaker Input Modes and AWS Cloud Storage 3879

https://sagemaker.readthedocs.io/en/stable/overview.html#local-mode

Amazon SageMaker Developer Guide

In contrast to pipe mode, fast file mode works with random access to the data. However, it works
best when data is read sequentially. Fast file mode doesn't support augmented manifest files.

Fast file mode exposes S3 objects using a POSIX-compliant file system interface, as if the files
are available on the local disk of your training instance. It streams S3 content on demand as
your training script consumes data. This means that your dataset no longer needs to fit into
the training instance storage space as a whole, and you don't need to wait for the dataset
to be downloaded to the training instance before training starts. Fast file currently supports
S3 prefixes only (it does not support manifest and augmented manifest). Fast file mode is
compatible with SageMaker local mode.

• Pipe mode streams data directly from an Amazon S3 data source. Streaming can provide faster
start times and better throughput than file mode.

When you stream the data directly, you can reduce the size of the Amazon EBS volumes used by
the training instance. Pipe mode needs only enough disk space to store the final model artifacts.

It is another streaming mode that is largely replaced by the newer and simpler-to-use fast file
mode. In pipe mode, data is pre-fetched from Amazon S3 at high concurrency and throughput,
and streamed into a named pipe, which also known as a First-In-First-Out (FIFO) pipe for its
behavior. Each pipe may only be read by a single process. A SageMaker specific extension to
TensorFlow conveniently integrates Pipe mode into the native TensorFlow data loader for
streaming text, TFRecords, or RecordIO file formats. Pipe mode also supports managed sharding
and shuffling of data.

• Amazon S3 Express One Zone is a high-performance, single Availability Zone storage class
that can deliver consistent, single-digit millisecond data access for the most latency-sensitive
applications including SageMaker model training. Amazon S3 Express One Zone allows
customers to collocate their object storage and compute resources in a single AWS Availability
Zone, optimizing both compute performance and costs with increased data processing speed. To
further increase access speed and support hundreds of thousands of requests per second, data is
stored in a new bucket type, an Amazon S3 directory bucket.

SageMaker model training supports high-performance Amazon S3 Express One Zone directory
buckets as a data input location for file mode, fast file mode, and pipe mode. To use Amazon
S3 Express One Zone, input the location of the Amazon S3 Express One Zone directory bucket
instead of an Amazon S3 bucket. Provide the ARN for the IAM role with the required access
control and permissions policy. Refer to AmazonSageMakerFullAccesspolicy for details. For more
information, see Amazon S3 Express One Zone.

SageMaker Input Modes and AWS Cloud Storage 3880

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/using_tf.html#training-with-pipe-mode-using-pipemodedataset
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html

Amazon SageMaker Developer Guide

• Amazon FSx for Lustre – FSx for Lustre can scale to hundreds of gigabytes of throughput and
millions of IOPS with low-latency file retrieval. When starting a training job, SageMaker mounts
the FSx for Lustre file system to the training instance file system, then starts your training script.
Mounting itself is a relatively fast operation that doesn't depend on the size of the dataset
stored in FSx for Lustre.

To access FSx for Lustre, your training job must connect to an Amazon Virtual Private Cloud
(VPC), which requires DevOps setup and involvement. To avoid data transfer costs, the file
system uses a single Availability Zone, and you need to specify a VPC subnet which maps to this
Availability Zone ID when running the training job.

• Amazon EFS – To use Amazon EFS as a data source, the data must already reside in Amazon
EFS prior to training. SageMaker mounts the specified Amazon EFS file system to the training
instance, then starts your training script. Your training job must connect to a VPC to access
Amazon EFS.

Tip

To learn more about how to specify your VPC configuration to SageMaker estimators, see
Use File Systems as Training Inputs in the SageMaker Python SDK documentation.

Choosing Data Input Mode Using the SageMaker Python SDK

SageMaker Python SDK provides the generic Estimator class and its variations for ML frameworks
for launching training jobs. You can specify one of the data input modes while configuring the
SageMaker Estimator class or the Estimator.fit method. The following code templates show
the two ways to specify input modes.

To specify the input mode using the Estimator class

from sagemaker.estimator import Estimator
from sagemaker.inputs import TrainingInput

estimator = Estimator(
 checkpoint_s3_uri='s3://my-bucket/checkpoint-destination/',
 output_path='s3://my-bucket/output-path/',
 base_job_name='job-name',
 input_mode='File' # Available options: File | Pipe | FastFile
 ...

Choosing Data Input Mode Using the SageMaker Python SDK 3881

https://sagemaker.readthedocs.io/en/stable/overview.html?highlight=VPC#use-file-systems-as-training-inputs
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/index.html

Amazon SageMaker Developer Guide

)

Run the training job
estimator.fit(
 inputs=TrainingInput(s3_data="s3://my-bucket/my-data/train")
)

For more information, see the sagemaker.estimator.Estimator class in the SageMaker Python SDK
documentation.

To specify the input mode through the Estimator fit method

from sagemaker.estimator import Estimator
from sagemaker.inputs import TrainingInput

estimator = Estimator(
 checkpoint_s3_uri='s3://my-bucket/checkpoint-destination/',
 output_path='s3://my-bucket/output-path/',
 base_job_name='job-name',
 ...
)

Run the training job
estimator.fit(
 inputs=TrainingInput(
 s3_data="s3://my-bucket/my-data/train",
 input_mode='File' # Available options: File | Pipe | FastFile
)
)

For more information, see the sagemaker.estimator.Estimator.fit class method and the
sagemaker.inputs.TrainingInput class in the SageMaker Python SDK documentation.

Tip

To learn more about how to configure Amazon FSx for Lustre or Amazon EFS with your VPC
configuration using the SageMaker Python SDK estimators, see Use File Systems as Training
Inputs in the SageMaker Python SDK documentation.

Choosing Data Input Mode Using the SageMaker Python SDK 3882

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator.fit
https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html#sagemaker.inputs.TrainingInput
https://sagemaker.readthedocs.io/en/stable/overview.html?highlight=VPC#use-file-systems-as-training-inputs
https://sagemaker.readthedocs.io/en/stable/overview.html?highlight=VPC#use-file-systems-as-training-inputs

Amazon SageMaker Developer Guide

Tip

The data input mode integrations with Amazon S3, Amazon EFS, and FSx for Lustre are
recommended ways to optimally configure data source for the best practices. You can
strategically improve data loading performance using the SageMaker managed storage
options and input modes, but it's not strictly constrained. You can write your own data
reading logic directly in your training container. For example, you can set to read from a
different data source, write your own S3 data loader class, or use third-party frameworks'
data loading functions within your training script. However, you must make sure that you
specify the right paths that SageMaker can recognize.

Tip

If you use a custom training container, make sure you install the SageMaker training toolkit
that helps set up the environment for SageMaker training jobs. Otherwise, you must
specify the environment variables explicitly in your Dockerfile. For more information, see
Create a container with your own algorithms and models.

For more information about how to set the data input modes using the low-level SageMaker APIs,
see How Amazon SageMaker Provides Training Information, the CreateTrainingJob API, and the
TrainingInputMode in AlgorithmSpecification.

Configure Data Input Channel to Use Amazon FSx for Lustre

Learn how to use Amazon FSx for Lustre as your data source for higher throughput and faster
training by reducing the time for data loading.

Sync Amazon S3 and Amazon FSx for Lustre

To link your Amazon S3 to Amazon FSx for Lustre and upload your training datasets, do the
following.

1. Prepare your dataset and upload to an Amazon S3 bucket. For example, assume that the
Amazon S3 paths for a train dataset and a test dataset are in the following format.

s3://my-bucket/data/train

Configure Data Input Channel to Use Amazon FSx for Lustre 3883

https://github.com/aws/sagemaker-training-toolkit
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-create.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html

Amazon SageMaker Developer Guide

s3://my-bucket/data/test

2. To create an FSx for Lustre file system linked with the Amazon S3 bucket with the training data,
follow the steps at Linking your file system to an Amazon S3 bucket in the Amazon FSx for
Lustre User Guide. Make sure that you add an endpoint to your VPC allowing Amazon S3 access.
For more information, see the section called “Create an Amazon S3 VPC Endpoint”. When you
specify Data repository path, provide the Amazon S3 bucket URI of the folder that contains
your datasets. For example, based on the example S3 paths in step 1, the data repository path
should be the following.

s3://my-bucket/data

3. After the FSx for Lustre file system is created, check the configuration information by running
the following commands.

aws fsx describe-file-systems && \
aws fsx describe-data-repository-association

These commands return FileSystemId, MountName, FileSystemPath, and
DataRepositoryPath. For example, the outputs should look like the following.

Output of aws fsx describe-file-systems
"FileSystemId": "fs-0123456789abcdef0"
"MountName": "1234abcd"

Output of aws fsx describe-data-repository-association
"FileSystemPath": "/ns1",
"DataRepositoryPath": "s3://my-bucket/data/"

After the sync between Amazon S3 and Amazon FSx has completed, your datasets are saved in
Amazon FSx in the following directories.

/ns1/train # synced with s3://my-bucket/data/train
/ns1/test # synced with s3://my-bucket/data/test

Configure Data Input Channel to Use Amazon FSx for Lustre 3884

https://docs.aws.amazon.com/fsx/latest/LustreGuide/create-dra-linked-data-repo.html

Amazon SageMaker Developer Guide

Set the Amazon FSx file system path as the data input channel for SageMaker
training

The following procedures walk you through the process of setting the Amazon FSx file system as
the data source for SageMaker training jobs.

Using the SageMaker Python SDK

To properly set the Amazon FSx file system as the data source, configure the SageMaker
estimator classes and FileSystemInput using the following instruction.

1. Configure a FileSystemInput class object.

from sagemaker.inputs import FileSystemInput

train_fs = FileSystemInput(
 file_system_id="fs-0123456789abcdef0",
 file_system_type="FSxLustre",
 directory_path="/1234abcd/ns1/",
 file_system_access_mode="ro",
)

Tip

When you specify directory_path, make sure that you provide the Amazon FSx file
system path starting with MountName.

2. Configure a SageMaker estimator with the VPC configuration used for the Amazon FSx file
system.

from sagemaker.estimator import Estimator

estimator = Estimator(
 ...
 role="your-iam-role-with-access-to-your-fsx",
 subnets=["subnet-id"], # Should be the same as the subnet used for Amazon FSx
 security_group_ids="security-group-id"
)

3. Launch the training job by running the estimator.fit method with the Amazon FSx file system.

Configure Data Input Channel to Use Amazon FSx for Lustre 3885

Amazon SageMaker Developer Guide

estimator.fit(train_fs)

To find more code examples, see Use File Systems as Training Inputs in the SageMaker Python
SDK documentation.

Using the SageMaker CreateTrainingJob API

As part of the CreateTrainingJob request JSON, configure InputDataConfig as follows.

"InputDataConfig": [
 {
 "ChannelName": "string",
 "DataSource": {
 "FileSystemDataSource": {
 "DirectoryPath": "/1234abcd/ns1/",
 "FileSystemAccessMode": "ro",
 "FileSystemId": "fs-0123456789abcdef0",
 "FileSystemType": "FSxLustre"
 }
 }
 }
],

Tip

When you specify DirectoryPath, make sure that you provide the Amazon FSx file
system path starting with MountName.

Tips and Considerations When Configuring FSx for Lustre

1. When you use EFA-enabled instances such as P4d and P3dn, make sure that you set appropriate
inbound and output rules in the security group. Specially, opening up these ports is necessary
for SageMaker to access the Amazon FSx file system in the training job. To learn more, see File
System Access Control with Amazon VPC.

2. Make sure the IAM Role used to launch the SageMaker training job has access to Amazon FSx.

Configure Data Input Channel to Use Amazon FSx for Lustre 3886

https://sagemaker.readthedocs.io/en/stable/overview.html#use-file-systems-as-training-inputs
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/limit-access-security-groups.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/limit-access-security-groups.html

Amazon SageMaker Developer Guide

Best Practices for Choosing Data Source and Input Mode

The best data source for your training job depends on workload characteristics such as the size
of the dataset, the file format, the average size of files, the training duration, a sequential or
random data loader read pattern, and how fast your model can consume the training data. The
following best practices provide guidelines to get started with the most suitable input mode and
data storage for your use case.

This flowchart summarizes and visualizes best practices of choosing the best storage as the data
source and input file mode. All of the cases in the flowchart are described in the following sections.

Best Practices for Choosing Data Source and Input Mode 3887

Amazon SageMaker Developer Guide

When to use Amazon EFS

If your dataset is stored in Amazon Elastic File System, you might have a preprocessing or
annotations application that uses Amazon EFS for storage. You can run a training job configured
with a data channel that points to the Amazon EFS file system. For more information, see Speed up
training on Amazon SageMaker using Amazon FSx for Lustre and Amazon EFS file systems. If you
cannot achieve better performance, check your optimization options following the Amazon Elastic
File System performance guide or consider using different input modes or data storage.

Use file mode for small datasets

If the dataset is stored in Amazon Simple Storage Service and its overall volume is relatively small
(for example, less than 50-100 GB), try using file mode. The overhead of downloading a 50 GB
dataset can vary based on the total number of files. For example, it takes about 5 minutes if a
dataset is chunked into 100 MB shards. Whether this startup overhead is acceptable primarily
depends on the overall duration of your training job, because a longer training phase means a
proportionally smaller download phase.

Serializing many small files

If your dataset size is small (less than 50-100 GB), but is made up of many small files (less than 50
MB per file), the file mode download overhead grows, because each file needs to be downloaded
individually from Amazon Simple Storage Service to the training instance volume. To reduce this
overhead and data traversal time in general, consider serializing groups of such small files into
fewer larger file containers (such as 150 MB per file) by using file formats, such as TFRecord for
TensorFlow, WebDataset for PyTorch, and RecordIO for MXNet.

When to use fast file mode

For larger datasets with larger files (more than 50 MB per file), the first option is to try fast file
mode, which is more straightforward to use than FSx for Lustre because it doesn't require creating
a file system, or connecting to a VPC. Fast file mode is ideal for large file containers (more than 150
MB), and might also do well with files more than 50 MB. Because fast file mode provides a POSIX
interface, it supports random reads (reading non-sequential byte-ranges). However, this is not the
ideal use case, and your throughput might be lower than with the sequential reads. However, if
you have a relatively large and computationally intensive ML model, fast file mode might still be
able to saturate the effective bandwidth of the training pipeline and not result in an IO bottleneck.
You'll need to experiment and see. To switch from file mode to fast file mode (and back), just add

Best Practices for Choosing Data Source and Input Mode 3888

https://aws.amazon.com/blogs/machine-learning/speed-up-training-on-amazon-sagemaker-using-amazon-efs-or-amazon-fsx-for-lustre-file-systems/
https://aws.amazon.com/blogs/machine-learning/speed-up-training-on-amazon-sagemaker-using-amazon-efs-or-amazon-fsx-for-lustre-file-systems/
https://docs.aws.amazon.com/efs/latest/ug/performance.html#performance-overview
https://docs.aws.amazon.com/efs/latest/ug/performance.html#performance-overview
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://webdataset.github.io/webdataset/
https://mxnet.apache.org/versions/1.8.0/api/faq/recordio

Amazon SageMaker Developer Guide

(or remove) the input_mode='FastFile' parameter while defining your input channel using the
SageMaker Python SDK:

sagemaker.inputs.TrainingInput(S3_INPUT_FOLDER, input_mode = 'FastFile')

When to use Amazon FSx for Lustre

If your dataset is too large for file mode, has many small files that you can't serialize easily, or uses
a random read access pattern, FSx for Lustre is a good option to consider. Its file system scales
to hundreds of gigabytes per second (GB/s) of throughput and millions of IOPS, which is ideal
when you have many small files. However, note that there might be the cold start issue due to lazy
loading and the overhead of setting up and initializing the FSx for Lustre file system.

Tip

To learn more, see Choose the best data source for your Amazon SageMaker training
job. This AWS machine learning blog further discusses case studies and performance
benchmark of data sources and input modes.

Train Using a Heterogeneous Cluster

Using the heterogeneous cluster feature of SageMaker Training, you can run a training job with
multiple types of ML instances for a better resource scaling and utilization for different ML training
tasks and purposes. For example, if your training job on a cluster with GPU instances suffers low
GPU utilization and CPU bottleneck problems due to CPU-intensive tasks, using a heterogeneous
cluster can help offload CPU-intensive tasks by adding more cost-efficient CPU instance groups,
resolve such bottleneck problems, and achieve a better GPU utilization.

Note

This feature is available in the SageMaker Python SDK v2.98.0 and later.

Train Using a Heterogeneous Cluster 3889

https://aws.amazon.com/blogs/machine-learning/choose-the-best-data-source-for-your-amazon-sagemaker-training-job/
https://aws.amazon.com/blogs/machine-learning/choose-the-best-data-source-for-your-amazon-sagemaker-training-job/

Amazon SageMaker Developer Guide

Note

This feature is available through the SageMaker PyTorch and TensorFlow framework
estimator classes. Supported frameworks are PyTorch v1.10 or later and TensorFlow v2.6 or
later.

Topics

• How to Configure a Heterogeneous Cluster

• Distributed Training with a Heterogeneous Cluster

• Modify Your Training Script to Assign Instance Groups

• Considerations

• Examples, Blogs, and Case Studies

How to Configure a Heterogeneous Cluster

This section provides instructions on how to run a training job using a heterogeneous cluster that
consists of multiple instance types.

Topics

• Using the SageMaker Python SDK

• Using the Low-Level SageMaker APIs

Using the SageMaker Python SDK

Follow instructions on how to configure instance groups for a heterogeneous cluster using the
SageMaker Python SDK.

1. To configure instance groups of a heterogeneous cluster for a training job, use the
sagemaker.instance_group.InstanceGroup class. You can specify a custom name for
each instance group, the instance type, and the number of instances for each instance group. For
more information, see sagemaker.instance_group.InstanceGroup in the SageMaker Python SDK
documentation.

How to Configure a Heterogeneous Cluster 3890

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator
https://sagemaker.readthedocs.io/en/stable/api/utility/instance_group.html

Amazon SageMaker Developer Guide

Note

For more information about available instance types and the maximum number
of instance groups that you can configure in a heterogeneous cluster, see the
InstanceGroup API reference.

The following code example shows how to set up two instance groups that consists
of two ml.c5.18xlarge CPU-only instances named instance_group_1 and one
ml.p3dn.24xlarge GPU instance named instance_group_2, as shown in the following
diagram.

The preceding diagram shows a conceptual example of how pre-training processes, such as data
preprocessing, can be assigned to the CPU instance group and stream the preprocessed data to
the GPU instance group.

from sagemaker.instance_group import InstanceGroup

instance_group_1 = InstanceGroup(
 "instance_group_1", "ml.c5.18xlarge", 2
)
instance_group_2 = InstanceGroup(
 "instance_group_2", "ml.p3dn.24xlarge", 1
)

2. Using the instance group objects, set up training input channels and assign instance
groups to the channels through the instance_group_names argument of the
sagemaker.inputs.TrainingInput class. The instance_group_names argument accepts a list of
strings of instance group names.

How to Configure a Heterogeneous Cluster 3891

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InstanceGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InstanceGroup.html
https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html

Amazon SageMaker Developer Guide

The following example shows how to set two training input channels and assign the instance
groups created in the example of the previous step. You can also specify Amazon S3 bucket
paths to the s3_data argument for the instance groups to process data for your usage
purposes.

from sagemaker.inputs import TrainingInput

training_input_channel_1 = TrainingInput(
 s3_data_type='S3Prefix', # Available Options: S3Prefix | ManifestFile |
 AugmentedManifestFile
 s3_data='s3://your-training-data-storage/folder1',
 distribution='FullyReplicated', # Available Options: FullyReplicated |
 ShardedByS3Key
 input_mode='File', # Available Options: File | Pipe | FastFile
 instance_groups=["instance_group_1"]
)

training_input_channel_2 = TrainingInput(
 s3_data_type='S3Prefix',
 s3_data='s3://your-training-data-storage/folder2',
 distribution='FullyReplicated',
 input_mode='File',
 instance_groups=["instance_group_2"]
)

For more information about the arguments of TrainingInput, see the following links.

• The sagemaker.inputs.TrainingInput class in the SageMaker Python SDK documentation

• The S3DataSource API in the SageMaker API Reference

3. Configure a SageMaker estimator with the instance_groups argument as shown in the
following code example. The instance_groups argument accepts a list of InstanceGroup
objects.

PyTorch

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 ...
 entry_point='my-training-script.py',
 framework_version='x.y.z', # 1.10.0 or later

How to Configure a Heterogeneous Cluster 3892

https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html

Amazon SageMaker Developer Guide

 py_version='pyxy',
 job_name='my-training-job-with-heterogeneous-cluster',
 instance_groups=[instance_group_1, instance_group_2]
)

TensorFlow

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(
 ...
 entry_point='my-training-script.py',
 framework_version='x.y.z', # 2.6.0 or later
 py_version='pyxy',
 job_name='my-training-job-with-heterogeneous-cluster',
 instance_groups=[instance_group_1, instance_group_2]
)

Note

The instance_type and instance_count argument pair and the instance_groups
argument of the SageMaker estimator class are mutually exclusive. For homogeneous
cluster training, use the instance_type and instance_count argument pair. For
heterogeneous cluster training, use instance_groups.

Note

To find a complete list of available framework containers, framework versions, and
Python versions, see SageMaker Framework Containers in the AWS Deep Learning
Container GitHub repository.

4. Configure the estimator.fit method with the training input channels configured with the
instance groups and start the training job.

estimator.fit(
 inputs={
 'training': training_input_channel_1,
 'dummy-input-channel': training_input_channel_2
 }

How to Configure a Heterogeneous Cluster 3893

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

)

Using the Low-Level SageMaker APIs

If you use the AWS Command Line Interface or AWS SDK for Python (Boto3) and want to use low-
level SageMaker APIs for submitting a training job request with a heterogeneous cluster, see the
following API references.

• CreateTrainingJob

• ResourceConfig

• InstanceGroup

• S3DataSource

Distributed Training with a Heterogeneous Cluster

Through the distribution argument of the SageMaker estimator class, you can assign a specific
instance group to run distributed training. For example, assume that you have the following two
instance groups and want to run multi-GPU training on one of them.

from sagemaker.instance_group import InstanceGroup

instance_group_1 = InstanceGroup("instance_group_1", "ml.c5.18xlarge", 1)
instance_group_2 = InstanceGroup("instance_group_2", "ml.p3dn.24xlarge", 2)

You can set the distributed training configuration for one of the instance groups. For example, the
following code examples show how to assign training_group_2 with two ml.p3dn.24xlarge
instances to the distributed training configuration.

Note

Currently, only one instance group of a heterogeneous cluster can be specified to the
distribution configuration.

With MPI

Distributed Training with a Heterogeneous Cluster 3894

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InstanceGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html

Amazon SageMaker Developer Guide

PyTorch

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 ...
 instance_groups=[instance_group_1, instance_group_2],
 distribution={
 "mpi": {
 "enabled": True, "processes_per_host": 8
 },
 "instance_groups": [instance_group_2]
 }
)

TensorFlow

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(
 ...
 instance_groups=[instance_group_1, instance_group_2],
 distribution={
 "mpi": {
 "enabled": True, "processes_per_host": 8
 },
 "instance_groups": [instance_group_2]
 }
)

With the SageMaker data parallel library

PyTorch

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 ...
 instance_groups=[instance_group_1, instance_group_2],
 distribution={
 "smdistributed": {
 "dataparallel": {

Distributed Training with a Heterogeneous Cluster 3895

Amazon SageMaker Developer Guide

 "enabled": True
 }
 },
 "instance_groups": [instance_group_2]
 }
)

TensorFlow

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(
 ...
 instance_groups=[instance_group_1, instance_group_2],
 distribution={
 "smdistributed": {
 "dataparallel": {
 "enabled": True
 }
 },
 "instance_groups": [instance_group_2]
 }
)

Note

When using the SageMaker data parallel library, make sure the instance group consists of
the supported instance types by the library.

For more information about the SageMaker data parallel library, see SageMaker Data Parallel
Training.

With the SageMaker model parallel library

PyTorch

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 ...

Distributed Training with a Heterogeneous Cluster 3896

https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-data-parallel-support.html#distributed-data-parallel-supported-instance-types
https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel.html

Amazon SageMaker Developer Guide

 instance_groups=[instance_group_1, instance_group_2],
 distribution={
 "smdistributed": {
 "modelparallel": {
 "enabled":True,
 "parameters": {
 ... # SageMaker model parallel parameters
 }
 }
 },
 "instance_groups": [instance_group_2]
 }
)

TensorFlow

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(
 ...
 instance_groups=[instance_group_1, instance_group_2],
 distribution={
 "smdistributed": {
 "modelparallel": {
 "enabled":True,
 "parameters": {
 ... # SageMaker model parallel parameters
 }
 }
 },
 "instance_groups": [instance_group_2]
 }
)

For more information about the SageMaker model parallel library, see SageMaker Model Parallel
Training.

Modify Your Training Script to Assign Instance Groups

With the heterogeneous cluster configuration in the previous sections, you have prepared the
SageMaker training environment and instances for your training job. To further assign the instance

Modify Your Training Script to Assign Instance Groups 3897

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel.html

Amazon SageMaker Developer Guide

groups to certain training and data processing tasks, the next step is to modify your training script.
By default, the training job simply makes training script replicas for all nodes regardless the size of
the instance, and this might lead to performance loss.

For example, if you mix CPU instances and GPU instances in a heterogeneous cluster while passing
a deep neural network training script to the entry_point argument of the SageMaker estimator,
the entry_point script is replicated to each instance. This means that, without proper task
assignments, CPU instances also run the entire script and start the training job that’s designed for
distributed training on GPU instances. Therefore, you must make changes in specific processing
functions that you want to offload and run on the CPU instances. You can use the SageMaker
environment variables to retrieve the information of the heterogeneous cluster and let specific
processes to run accordingly.

Query instance group information during the initialization phase of a SageMaker
training job

When your training job starts, your training script reads SageMaker training environment
information that includes heterogeneous cluster configuration. The configuration contains
information such as the current instance groups, the current hosts in each group, and in which
group the current host resides.

You can retrieve instance group information in the following ways.

(Recommended) Reading instance group information with the SageMaker training toolkit

Use the environment Python module that the SageMaker training toolkit library provides. The
toolkit library is preinstalled in the SageMaker framework containers for TensorFlow and PyTorch,
so you don’t need an additional installation step when using the prebuilt containers. This is the
recommended way to retrieve the SageMaker environment variables with fewer code changes in
your training script.

from sagemaker_training import environment

env = environment.Environment()

Environment variables related to general SageMaker training and heterogeneous clusters:

• env.is_hetero – Returns a Boolean result whether a heterogeneous cluster is configured or
not.

• env.current_host – Returns the current host.

Modify Your Training Script to Assign Instance Groups 3898

https://github.com/aws/sagemaker-training-toolkit
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

• env.current_instance_type – Returns the type of instance of the current host.

• env.current_instance_group – Returns the name of the current instance group.

• env.current_instance_group_hosts – Returns a list of hosts in current instance group.

• env.instance_groups – Returns a list of instance group names used for training.

• env.instance_groups_dict – Returns the entire heterogeneous cluster configuration of the
training job.

• env.distribution_instance_groups – Returns a list of instance groups assigned to the
distribution parameter of the SageMaker estimator class.

• env.distribution_hosts – Returns a list of hosts belonging to the instance groups assigned
to the distribution parameter of the SageMaker estimator class.

For example, consider the following example of a heterogeneous cluster that consists of two
instance groups.

from sagemaker.instance_group import InstanceGroup

instance_group_1 = InstanceGroup(
 "instance_group_1", "ml.c5.18xlarge", 1)
instance_group_2 = InstanceGroup(
 "instance_group_2", "ml.p3dn.24xlarge", 2)

The output of env.instance_groups_dict of the example heterogeneous cluster should be
similar to the following.

{
 "instance_group_1": {
 "hosts": [
 "algo-2"
],
 "instance_group_name": "instance_group_1",
 "instance_type": "ml.c5.18xlarge"
 },
 "instance_group_2": {
 "hosts": [
 "algo-3",
 "algo-1"
],
 "instance_group_name": "instance_group_2",

Modify Your Training Script to Assign Instance Groups 3899

Amazon SageMaker Developer Guide

 "instance_type": "ml.p3dn.24xlarge"
 }
}

(Optional) Reading instance group information from the resource configuration JSON file

If you prefer to retrieve the environment variables in JSON format, you can directly use the
resource configuration JSON file. The JSON file in a SageMaker training instance is located at /
opt/ml/input/config/resourceconfig.json by default.

file_path = '/opt/ml/input/config/resourceconfig.json'
config = read_file_as_json(file_path)
print(json.dumps(config, indent=4, sort_keys=True))

Considerations

Consider the following items when using the heterogeneous cluster feature.

• All instance groups share the same Docker image and training script. Therefore, your training
script should be modified to detect which instance group it belongs to and fork execution
accordingly.

• The heterogeneous cluster feature is not supported in SageMaker local mode.

• The Amazon CloudWatch log streams of a heterogeneous cluster training job are not grouped by
instance groups. You need to figure out from the logs which nodes are in which group.

• The heterogeneous cluster feature is available through the SageMaker PyTorch and TensorFlow
framework estimator classes. Supported frameworks are PyTorch v1.10 or later and TensorFlow
v2.6 or later. To find a complete list of available framework containers, framework versions, and
Python versions, see SageMaker Framework Containers in the AWS Deep Learning Container
GitHub repository.

• A distributed training strategy can be applied only to one instance group.

Examples, Blogs, and Case Studies

The following blog discusses case studies about using the SageMaker heterogeneous cluster
training.

• Improve price performance of your model training using Amazon SageMaker heterogeneous
clusters (Oct 27, 2022)

Considerations 3900

https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-estimator
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://aws.amazon.com/blogs/machine-learning/improve-price-performance-of-your-model-training-using-amazon-sagemaker-heterogeneous-clusters/
https://aws.amazon.com/blogs/machine-learning/improve-price-performance-of-your-model-training-using-amazon-sagemaker-heterogeneous-clusters/

Amazon SageMaker Developer Guide

Use Incremental Training in Amazon SageMaker

Over time, you might find that a model generates inference that are not as good as they were in
the past. With incremental training, you can use the artifacts from an existing model and use an
expanded dataset to train a new model. Incremental training saves both time and resources.

Use incremental training to:

• Train a new model using an expanded dataset that contains an underlying pattern that was not
accounted for in the previous training and which resulted in poor model performance.

• Use the model artifacts or a portion of the model artifacts from a popular publicly available
model in a training job. You don't need to train a new model from scratch.

• Resume a training job that was stopped.

• Train several variants of a model, either with different hyperparameter settings or using different
datasets.

For more information about training jobs, see Train a Model with Amazon SageMaker.

You can train incrementally using the SageMaker console or the Amazon SageMaker Python SDK.

Important

Only three built-in algorithms currently support incremental training: Object Detection -
MXNet, Image Classification - MXNet, and Semantic Segmentation Algorithm.

Topics

• Perform Incremental Training (Console)

• Perform Incremental Training (API)

Perform Incremental Training (Console)

To complete this procedure, you need:

• The Amazon Simple Storage Service (Amazon S3) bucket URI where you've stored the training
data.

Use Incremental Training 3901

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• The S3 bucket URI where you want to store the output of the job.

• The Amazon Elastic Container Registry path where the training code is stored. For more
information, see Docker Registry Paths and Example Code.

• The URL of the S3 bucket where you've stored the model artifacts that you want to use in
incremental training. To find the URL for the model artifacts, see the details page of the training
job used to create the model. To find the details page, in the SageMaker console, choose
Inference, choose Models, and then choose the model.

To restart a stopped training job, use the URL to the model artifacts that are stored in the details
page as you would with a model or a completed training job.

To perform incremental training (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Training, then choose Training jobs.

3. Choose Create training job.

4. Provide a name for the training job. The name must be unique within an AWS Region in an
AWS account. The training job name must have 1 to 63 characters. Valid characters: a-z, A-Z,
0-9, and . : + = @ _ % - (hyphen).

5. Choose the algorithm that you want to use. For information about algorithms, see Use
Amazon SageMaker Built-in Algorithms or Pre-trained Models.

6. (Optional) For Resource configuration, either leave the default values or increase the resource
consumption to reduce computation time.

a. (Optional) For Instance type, choose the ML compute instance type that you want to use.
In most cases, ml.m4.xlarge is sufficient.

b. For Instance count, use the default, 1.

c. (Optional) For Additional volume per instance (GB), choose the size of the ML storage
volume that you want to provision. In most cases, you can use the default, 1. If you are
using a large dataset, use a larger size.

7. Provide information about the input data for the training dataset.

a. For Channel name, either leave the default (train) or enter a more meaningful name for
the training dataset, such as expanded-training-dataset.

b. For InputMode, choose File. For incremental training, you need to use file input mode.

Perform Incremental Training (Console) 3902

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

c. For S3 data distribution type, choose FullyReplicated. This causes each ML compute
instance to use a full replicate of the expanded dataset when training incrementally.

d. If the expanded dataset is uncompressed, set the Compression type to None. If the
expanded dataset is compressed using Gzip, set it to Gzip.

e. (Optional) If you are using File input mode, leave Content type empty. For Pipe input
mode, specify the appropriate MIME type. Content type is the multipurpose internet mail
extension (MIME) type of the data.

f. For Record wrapper, if the dataset is saved in RecordIO format, choose RecordIO. If your
dataset is not saved as a RecordIO formatted file, choose None.

g. For S3 data type, if the dataset is stored as a single file, choose S3Prefix. If the dataset is
stored as several files in a folder, choose Manifest.

h. For S3 location, provide the URL to the path where you stored the expanded dataset.

i. Choose Done.

8. To use model artifacts in a training job, you need to add a new channel and provide the
needed information about the model artifacts.

a. For Input data configuration, choose Add channel.

b. For Channel name, enter model to identify this channel as the source of the model
artifacts.

c. For InputMode, choose File. Model artifacts are stored as files.

d. For S3 data distribution type, choose FullyReplicated. This indicates that each ML
compute instance should use all of the model artifacts for training.

e. For Compression type, choose None because we are using a model for the channel.

f. Leave Content type empty. Content type is the multipurpose internet mail extension
(MIME) type of the data. For model artifacts, we leave it empty.

g. Set Record wrapper to None because model artifacts are not stored in RecordIO format.

h. For S3 data type, if you are using a built-in algorithm or an algorithm that stores the
model as a single file, choose S3Prefix. If you are using an algorithm that stores the model
as several files, choose Manifest.

i. For S3 location, provide the URL to the path where you stored the model artifacts.
Typically, the model is stored with the name model.tar.gz. To find the URL for the
model artifacts, in the navigation pane, choose Inference, then choose Models. From the
list of models, choose a model to display its details page. The URL for the model artifacts
is listed under Primary container .

Perform Incremental Training (Console) 3903

Amazon SageMaker Developer Guide

j. Choose Done.

9. For Output data configuration, provide the following information:

a. For S3 location, type the path to the S3 bucket where you want to store the output data.

b. (Optional) For Encryption key, you can add your AWS Key Management Service (AWS
KMS) encryption key to encrypt the output data at rest. Provide the key ID or its Amazon
Resource Number (ARN). For more information, see KMS-Managed Encryption Keys.

10. (Optional) For Tags, add one or more tags to the training job. A tag is metadata that you can
define and assign to AWS resources. In this case, you can use tags to help you manage your
training jobs. A tag consists of a key and a value, which you define. For example, you might
want to create a tag with Project as a key and a value referring to a project that is related to
the training job, such as Home value forecasts.

11. Choose Create training job. SageMaker creates and runs training job.

After the training job has completed, the newly trained model artifacts are stored under the S3
output path that you provided in the Output data configuration field. To deploy the model to get
predictions, see Step 5: Deploy the Model to Amazon EC2.

Perform Incremental Training (API)

This example shows how to use SageMaker APIs to train a model using the SageMaker image
classification algorithm and the Caltech 256 Image Dataset, then train a new model using the first
one. It uses Amazon S3 for input and output sources. Please see the incremental training sample
notebook for more details on using incremental training.

Note

In this example we used the original datasets in the incremental training, however you can
use different datasets, such as ones that contain newly added samples. Upload the new
datasets to S3 and make adjustments to the data_channels variable used to train the
new model.

Get an AWS Identity and Access Management (IAM) role that grants required permissions and
initialize environment variables:

import sagemaker

Perform Incremental Training (API) 3904

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://data.caltech.edu/records/nyy15-4j048
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-incremental-training-highlevel.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-incremental-training-highlevel.html

Amazon SageMaker Developer Guide

from sagemaker import get_execution_role

role = get_execution_role()
print(role)

sess = sagemaker.Session()

bucket=sess.default_bucket()
print(bucket)
prefix = 'ic-incr-training'

Get the training image for the image classification algorithm:

from sagemaker.amazon.amazon_estimator import get_image_uri

training_image = get_image_uri(sess.boto_region_name, 'image-classification',
 repo_version="latest")
#Display the training image
print (training_image)

Download the training and validation datasets, then upload them to Amazon Simple Storage
Service (Amazon S3):

import os
import urllib.request
import boto3

Define a download function
def download(url):
 filename = url.split("/")[-1]
 if not os.path.exists(filename):
 urllib.request.urlretrieve(url, filename)

Download the caltech-256 training and validation datasets
download('http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec')
download('http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec')

Create four channels: train, validation, train_lst, and validation_lst
s3train = 's3://{}/{}/train/'.format(bucket, prefix)
s3validation = 's3://{}/{}/validation/'.format(bucket, prefix)

Upload the first files to the train and validation channels
!aws s3 cp caltech-256-60-train.rec $s3train --quiet

Perform Incremental Training (API) 3905

Amazon SageMaker Developer Guide

!aws s3 cp caltech-256-60-val.rec $s3validation --quiet

Define the training hyperparameters:

Define hyperparameters for the estimator
hyperparams = { "num_layers": "18",
 "resize": "32",
 "num_training_samples": "50000",
 "num_classes": "10",
 "image_shape": "3,28,28",
 "mini_batch_size": "128",
 "epochs": "3",
 "learning_rate": "0.1",
 "lr_scheduler_step": "2,3",
 "lr_scheduler_factor": "0.1",
 "augmentation_type": "crop_color",
 "optimizer": "sgd",
 "momentum": "0.9",
 "weight_decay": "0.0001",
 "beta_1": "0.9",
 "beta_2": "0.999",
 "gamma": "0.9",
 "eps": "1e-8",
 "top_k": "5",
 "checkpoint_frequency": "1",
 "use_pretrained_model": "0",
 "model_prefix": "" }

Create an estimator object and train the first model using the training and validation datasets:

Fit the base estimator
s3_output_location = 's3://{}/{}/output'.format(bucket, prefix)
ic = sagemaker.estimator.Estimator(training_image,
 role,
 instance_count=1,
 instance_type='ml.p2.xlarge',
 volume_size=50,
 max_run=360000,
 input_mode='File',
 output_path=s3_output_location,
 sagemaker_session=sess,
 hyperparameters=hyperparams)

Perform Incremental Training (API) 3906

Amazon SageMaker Developer Guide

train_data = sagemaker.inputs.TrainingInput(s3train, distribution='FullyReplicated',
 content_type='application/x-recordio',
 s3_data_type='S3Prefix')
validation_data = sagemaker.inputs.TrainingInput(s3validation,
 distribution='FullyReplicated',
 content_type='application/x-recordio',
 s3_data_type='S3Prefix')

data_channels = {'train': train_data, 'validation': validation_data}

ic.fit(inputs=data_channels, logs=True)

To use the model to incrementally train another model, create a new estimator object and use the
model artifacts (ic.model_data, in this example) for the model_uri input argument:

Given the base estimator, create a new one for incremental training
incr_ic = sagemaker.estimator.Estimator(training_image,
 role,
 instance_count=1,
 instance_type='ml.p2.xlarge',
 volume_size=50,
 max_run=360000,
 input_mode='File',
 output_path=s3_output_location,
 sagemaker_session=sess,
 hyperparameters=hyperparams,
 model_uri=ic.model_data) # This parameter will
 ingest the previous job's model as a new channel
incr_ic.fit(inputs=data_channels, logs=True)

After the training job has completed, the newly trained model artifacts are stored under the S3
output path that you provided in Output_path. To deploy the model to get predictions, see
Step 5: Deploy the Model to Amazon EC2.

Use Managed Spot Training in Amazon SageMaker

Amazon SageMaker makes it easy to train machine learning models using managed Amazon EC2
Spot instances. Managed spot training can optimize the cost of training models up to 90% over on-
demand instances. SageMaker manages the Spot interruptions on your behalf.

Use Managed Spot Training 3907

Amazon SageMaker Developer Guide

Managed Spot Training uses Amazon EC2 Spot instance to run training jobs instead of on-demand
instances. You can specify which training jobs use spot instances and a stopping condition that
specifies how long SageMaker waits for a job to run using Amazon EC2 Spot instances. Metrics and
logs generated during training runs are available in CloudWatch.

Amazon SageMaker automatic model tuning, also known as hyperparameter tuning, can use
managed spot training. For more information on automatic model tuning, see Perform Automatic
Model Tuning with SageMaker.

Spot instances can be interrupted, causing jobs to take longer to start or finish. You can configure
your managed spot training job to use checkpoints. SageMaker copies checkpoint data from a local
path to Amazon S3. When the job is restarted, SageMaker copies the data from Amazon S3 back
into the local path. The training job can then resume from the last checkpoint instead of restarting.
For more information about checkpointing, see Use checkpoints in Amazon SageMaker.

Note

Unless your training job will complete quickly, we recommend you use checkpointing with
managed spot training. SageMaker built-in algorithms and marketplace algorithms that do
not checkpoint are currently limited to a MaxWaitTimeInSeconds of 3600 seconds (60
minutes).

Topics

• Using Managed Spot Training

• Managed Spot Training Lifecycle

Using Managed Spot Training

To use managed spot training, create a training job. Set EnableManagedSpotTraining
to True and specify the MaxWaitTimeInSeconds. MaxWaitTimeInSeconds must be
larger than MaxRuntimeInSeconds. For more information about creating a training job, see
DescribeTrainingJob.

You can calculate the savings from using managed spot training using the formula (1 -
(BillableTimeInSeconds / TrainingTimeInSeconds)) * 100. For example, if
BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, this means that your

Using Managed Spot Training 3908

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html

Amazon SageMaker Developer Guide

training job ran for 500 seconds, but you were billed for only 100 seconds. Your savings is (1 -
(100 / 500)) * 100 = 80%.

To learn how to run training jobs on Amazon SageMaker spot instances and how managed spot
training works and reduces the billable time, see the following example notebooks:

• Managed Spot Training with TensorFlow

• Managed Spot Training with PyTorch

• Managed Spot Training with XGBoost

• Managed Spot Training with MXNet

• Amazon SageMaker Managed Spot Training Examples GitHub repository

Managed Spot Training Lifecycle

You can monitor a training job using TrainingJobStatus and SecondaryStatus returned by
DescribeTrainingJob. The list below shows how TrainingJobStatus and SecondaryStatus
values change depending on the training scenario:

• Spot instances acquired with no interruption during training

1. InProgress: Starting↠ Downloading ↠ Training ↠ Uploading

• Spot instances interrupted once. Later, enough spot instances were acquired to finish the
training job.

1. InProgress: Starting ↠ Downloading ↠ Training ↠ Interrupted ↠ Starting ↠
Downloading ↠ Training ↠ Uploading

• Spot instances interrupted twice and MaxWaitTimeInSeconds exceeded.

1. InProgress: Starting ↠ Downloading ↠ Training ↠ Interrupted ↠ Starting ↠
Downloading ↠ Training ↠ Interrupted ↠ Downloading ↠ Training

2. Stopping: Stopping

3. Stopped: MaxWaitTimeExceeded

• Spot instances were never launched.

1. InProgress: Starting

2. Stopping: Stopping

3. Stopped: MaxWaitTimeExceeded
Managed Spot Training Lifecycle 3909

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/managed_spot_training_tensorflow_estimator/managed_spot_training_tensorflow_estimator.html
https://github.com/aws-samples/amazon-sagemaker-managed-spot-training/blob/main/pytorch_managed_spot_training_checkpointing/pytorch_managed_spot_training_checkpointing.ipynb
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_managed_spot_training.html
https://github.com/aws/amazon-sagemaker-examples-community/blob/215215eb25b40eadaf126d055dbb718a245d7603/training/sagemaker-debugger/mxnet-spot-training-with-sagemakerdebugger.ipynb#L41
https://github.com/aws-samples/amazon-sagemaker-managed-spot-training
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html

Amazon SageMaker Developer Guide

Train Using SageMaker Managed Warm Pools

SageMaker managed warm pools let you retain and reuse provisioned infrastructure after
the completion of a training job to reduce latency for repetitive workloads, such as iterative
experimentation or running many jobs consecutively. Subsequent training jobs that match
specified parameters run on the retained warm pool infrastructure, which speeds up start times by
reducing the time spent provisioning resources.

Important

SageMaker managed warm pools are a billable resource. For more information, see Billing.

Topics

• How it works

• Warm pool resource limits

• How to use SageMaker managed warm pools

• Considerations

How it works

To use SageMaker managed warm pools and reduce latency between similar consecutive
training jobs, create a training job that specifies a KeepAlivePeriodInSeconds value in its
ResourceConfig. This value represents the duration of time in seconds to retain configured
resources in a warm pool for subsequent training jobs. If you need to run several training jobs
using similar configurations, you can further reduce latency and billable time by using a dedicated
persistent cache directory to store and re-use your information in a different job.

Topics

• Warm pool lifecycle

• Warm pool creation

• Matching training jobs

• Maximum warm pool duration

• Using persistent cache

Use Managed Warm Pools 3910

Amazon SageMaker Developer Guide

• Billing

Warm pool lifecycle

1. Create an initial training job with a KeepAlivePeriodInSeconds value greater than 0. When
you run this first training job, this “cold-starts” a cluster with typical startup times.

2. When the first training job completes, the provisioned resources are kept alive in a warm pool
for the period specified in the KeepAlivePeriodInSeconds value. As long as the cluster is
healthy and the warm pool is within the specified KeepAlivePeriodInSeconds, then the
warm pool status is Available.

3. The warm pool stays Available until it either identifies a matching training job for reuse or it
exceeds the specified KeepAlivePeriodInSeconds and is terminated. The maximum length
of time allowed for the KeepAlivePeriodInSeconds is 3600 seconds (60 minutes). If the
warm pool status is Terminated, then this is the end of the warm pool lifecycle.

4. If the warm pool identifies a second training job with matching specifications such as instance
count or instance type, then the warm pool moves from the first training job to the second
training job for reuse. The status of the first training job warm pool becomes Reused. This is the
end of the warm pool lifecycle for the first training job.

5. The status of the second training job that reused the warm pool becomes InUse.
After the second training job completes, the warm pool is Available for the
KeepAlivePeriodInSeconds duration specified in the second training job. A warm pool can
continue moving to subsequent matching training jobs for a maximum of 28 days.

6. If the warm pool is no longer available to reuse, the warm pool status is Terminated. Warm
pools are no longer available if they are terminated by a user, for a patch update, or for
exceeding the specified KeepAlivePeriodInSeconds.

For more information on warm pool status options, see WarmPoolStatus in the Amazon SageMaker
API Reference.

Warm pool creation

If an initial training job successfully completes and has a KeepAlivePeriodInSeconds value
greater than 0, this creates a warm pool. If you stop a training job after a cluster is already
launched, a warm pool is still retained. If the training job fails due to an algorithm or client error, a
warm pool is still retained. If the training job fails for any other reason that might compromise the
health of the cluster, then the warm pool is not created.

How it works 3911

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_WarmPoolStatus.html

Amazon SageMaker Developer Guide

To verify successful warm pool creation, check the warm pool status of your training job. If a warm
pool successfully provisions, the warm pool status is Available. If a warm pool fails to provision,
the warm pool status is Terminated.

Matching training jobs

For a warm pool to persist, it must find a matching training job within the time specified in the
KeepAlivePeriodInSeconds value. The next training job is a match if the following values are
identical:

• RoleArn

• ResourceConfig values:

• InstanceCount

• InstanceType

• VolumeKmsKeyId

• VolumeSizeInGB

• VpcConfig values:

• SecurityGroupIds

• Subnets

• EnableInterContainerTrafficEncryption

• EnableNetworkIsolation

All of these values must be the same for a warm pool to move to a subsequent training job for
reuse.

Maximum warm pool duration

The maximum KeepAlivePeriodInSeconds for a single training job is 3600 seconds (60
minutes) and the maximum length of time that a warm pool cluster can continue running
consecutive training jobs is 28 days.

Each subsequent training job must also specify a KeepAlivePeriodInSeconds value. When the
warm pool moves to the next training job, it inherits the new KeepAlivePeriodInSeconds value
specified in that training job’s ResourceConfig. In this way, you can keep a warm pool moving
from training job to training job for a maximum of 28 days.

How it works 3912

Amazon SageMaker Developer Guide

If no KeepAlivePeriodInSeconds is specified, then the warm pool spins down after the training
job completes.

Using persistent cache

When you create a warm pool, SageMaker mounts a special directory on the volume that will
persist throughout the lifecycle of the warm pool. This directory can also be used to store
information that you want to re-use in another job.

Using persistent cache can reduce latency and billable time over using warm pools alone for jobs
that require the following:

• multiple interactions with similar configurations

• incremental training jobs

• hyperparameter optimization

For example, you can avoid downloading the same Python dependencies on repeated runs by
setting up a pip cache directory inside the persistent cache directory. You are fully responsible for
managing the contents of this directory. The following are examples of types of information that
you can put in your persistent cache to help reduce your latency and billable time.

• Dependencies managed by pip.

• Dependencies managed by conda.

• Checkpoint information.

• Any additional information generated during training.

The location of the persistent cache is /opt/ml/sagemaker/warmpoolcache. The environment
variable SAGEMAKER_MANAGED_WARMPOOL_CACHE_DIRECTORY points to the location of the
persistent cache directory.

The following code example shows you how to set up a warm pool and use persistent cache to
store your pip dependencies for use in a subsequent job. The subsequent job must run within the
time frame given by the parameter keep_alive_period_in_seconds.

import sagemakerfrom sagemaker import get_execution_rolefrom sagemaker.tensorflow
 import TensorFlow
Creates a SageMaker session and gets execution role
session = sagemaker.Session()

How it works 3913

https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html

Amazon SageMaker Developer Guide

role = get_execution_role()
Creates an example estimator
estimator = TensorFlow(
 ...
 entry_point='my-training-script.py',
 source_dir='code',
 role=role,
 model_dir='model_dir',
 framework_version='2.2',
 py_version='py37',
 job_name='my-training-job-1',
 instance_type='ml.g4dn.xlarge',
 instance_count=1,
 volume_size=250,
 hyperparameters={
"batch-size": 512,
 "epochs": 1,
 "learning-rate": 1e-3,
 "beta_1": 0.9,
 "beta_2": 0.999,
 },
 keep_alive_period_in_seconds=1800,
 environment={"PIP_CACHE_DIR": "/opt/ml/sagemaker/warmpoolcache/pip"}
)

In the previous code example, using the environment parameter exports the environment variable
PIP_CACHE_DIRECTORY to point to the directory /opt/ml/sagemaker/warmpoolcache/pip.
Exporting this environment variable will change where pip stores its cache to the new location. Any
directory, including nested directories, that you create inside the persistent cache directory will be
available for re-use during a subsequent training run. In the previous code example, a directory
called pip is changed to be the default location to cache any dependencies installed using pip.

The persistent cache location may also be accessed from within your Python training script using
the environment variable as shown in the following code example.

import os
import shutil
if __name__ == '__main__':
 PERSISTED_DIR = os.environ["SAGEMAKER_MANAGED_WARMPOOL_CACHE_DIRECTORY"]

 # create a file to be persisted
 open(os.path.join(PERSISTED_DIR, "test.txt"), 'a').close()

How it works 3914

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#estimators

Amazon SageMaker Developer Guide

 # create a directory to be persisted
 os.mkdir(os.path.join(PERSISTED_DIR, "test_dir"))

 # Move a file to be persisted
 shutil.move("path/of/your/file.txt", PERSISTED_DIR)

Billing

SageMaker managed warm pools are a billable resource. Retrieve the warm pool status for
your training job to check the billable time for your warm pools. You can check the warm
pool status either through the Using the Amazon SageMaker console or directly through the
DescribeTrainingJob API command. For more information, see WarmPoolStatus in the Amazon
SageMaker API Reference.

Note

After the time specified by the parameter KeepAlivePeriodInSeconds has ended, both
the warm pool and persistent cache will shut down, and the contents will be deleted.

Warm pool resource limits

To get started, you must first request a service limit increase for SageMaker managed warm pools.
The default resource limit for warm pools is 0.

If a training job is created with KeepAlivePeriodInSeconds specified, but you did not request
a warm pool limit increase, then a warm pool is not retained after the completion of the training
job. A warm pool is only created if your warm pool limit has sufficient resources. After a warm
pool is created, the resources are released when they move to a matching training job or if the
KeepAlivePeriodInSeconds expires (if the warm pool status is Reused or Terminated).

Request a warm pool quota increase

Request a warm pool quota increase using the AWS Service Quotas console.

Warm pool resource limits 3915

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_WarmPoolStatus.html

Amazon SageMaker Developer Guide

Note

All warm pool instance usage counts toward your SageMaker training resource limit.
Increasing your warm pool resource limit does not increase your instance limit, but
allocates a subset of your resource limit to warm pool training.

1. Open the AWS Service Quotas console.

2. On the left-hand navigation panel, choose AWS services.

3. Search for and choose Amazon SageMaker.

4. Search for the keyword warm pool to see all available warm pool service quotas.

5. Find the instance type for which you want to increase your warm pool quota, select the warm
pool service quota for that instance type, and choose Request quota increase.

6. Enter your requested instance limit number under Change quota value. The new value must be
greater than the current Applied quota value.

7. Choose Request.

There is a limit on the number of instances that you can retain for each account, which is
determined by instance type. You can check your resource limits in the AWS Service Quotas console
or directly using the list-service-quotas AWS CLI command. For more information on AWS Service
Quotas, see Requesting a quota increase in the Service Quotas User Guide.

You can also use AWS Support Center to request a warm pool quota increase. For a list of available
instance types according to Region, see Amazon SageMaker Pricing and choose Training in the On-
Demand Pricing table.

How to use SageMaker managed warm pools

You can use SageMaker managed warm pools through the SageMaker Python SDK,
the Amazon SageMaker console, or through the low-level APIs. Administrators can
optionally use the sagemaker:KeepAlivePeriod condition key to further restrict the
KeepAlivePeriodInSeconds limits for certain users or groups.

Topics

• Using the SageMaker Python SDK

• Using the Amazon SageMaker console

How to use SageMaker managed warm pools 3916

https://console.aws.amazon.com/servicequotas/home/
https://console.aws.amazon.com/servicequotas/home/
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/list-service-quotas.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://support.console.aws.amazon.com
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

• Using the low-level SageMaker APIs

• IAM condition key

Using the SageMaker Python SDK

Create, update, or terminate warm pools using the SageMaker Python SDK.

Note

This feature is available in the SageMaker Python SDK v2.110.0 and later.

Topics

• Create a warm pool

• Update a warm pool

• Terminate a warm pool

Create a warm pool

To create a warm pool, use the SageMaker Python SDK to create an estimator with a
keep_alive_period_in_seconds value greater than 0 and call fit(). When the training job
completes, a warm pool is retained. For more information on training scripts and estimators, see
Train a Model with the SageMaker Python SDK. If your script does not create a warm pool, see
Warm pool creation for possible explanations.

import sagemaker
from sagemaker import get_execution_role
from sagemaker.tensorflow import TensorFlow

Creates a SageMaker session and gets execution role
session = sagemaker.Session()
role = get_execution_role()

Creates an example estimator
estimator = TensorFlow(
 ...
 entry_point='my-training-script.py',
 source_dir='code',

How to use SageMaker managed warm pools 3917

https://pypi.org/project/sagemaker/2.110.0/
https://sagemaker.readthedocs.io/en/stable/overview.html#train-a-model-with-the-sagemaker-python-sdk

Amazon SageMaker Developer Guide

 role=role,
 model_dir='model_dir',
 framework_version='2.2',
 py_version='py37',
 job_name='my-training-job-1',
 instance_type='ml.g4dn.xlarge',
 instance_count=1,
 volume_size=250,
 hyperparameters={
 "batch-size": 512,
 "epochs": 1,
 "learning-rate": 1e-3,
 "beta_1": 0.9,
 "beta_2": 0.999,
 },
 keep_alive_period_in_seconds=1800,
)

Starts a SageMaker training job and waits until completion
estimator.fit('s3://my_bucket/my_training_data/')

Next, create a second matching training job. In this example, we create my-training-job-2,
which has all of the necessary attributes to match with my-training-job-1, but has a different
hyperparameter for experimentation. The second training job reuses the warm pool and starts up
faster than the first training job. The following code example uses a Tensorflow estimator. The
warm pool feature can be used with any training algorithm that runs on Amazon SageMaker. For
more information on which attributes need to match, see Matching training jobs.

Creates an example estimator
estimator = TensorFlow(
 ...
 entry_point='my-training-script.py',
 source_dir='code',
 role=role,
 model_dir='model_dir',
 framework_version='py37',
 py_version='pyxy',
 job_name='my-training-job-2',
 instance_type='ml.g4dn.xlarge',
 instance_count=1,
 volume_size=250,
 hyperparameters={

How to use SageMaker managed warm pools 3918

Amazon SageMaker Developer Guide

 "batch-size": 512,
 "epochs": 2,
 "learning-rate": 1e-3,
 "beta_1": 0.9,
 "beta_2": 0.999,
 },
 keep_alive_period_in_seconds=1800,
)

Starts a SageMaker training job and waits until completion
estimator.fit('s3://my_bucket/my_training_data/')

Check the warm pool status of both training jobs to confirm that the warm pool is Reused for my-
training-job-1 and InUse for my-training-job-2.

Note

Training job names have date/time suffixes. The example training job names my-
training-job-1 and my-training-job-2 should be replaced with actual training job
names. You can use the estimator.latest_training_job.job_name command to
fetch the actual training job name.

session.describe_training_job('my-training-job-1')
session.describe_training_job('my-training-job-2')

The result of describe_training_job provides all details about a given training job. Find the
WarmPoolStatus attribute to check information about a training job’s warm pool. Your output
should look similar to the following example:

Warm pool status for training-job-1
...
'WarmPoolStatus': {'Status': 'Reused',
 'ResourceRetainedBillableTimeInSeconds': 1000,
 'ReusedByName': my-training-job-2}
...

Warm pool status for training-job-2
...
'WarmPoolStatus': {'Status': 'InUse'}

How to use SageMaker managed warm pools 3919

Amazon SageMaker Developer Guide

...

Update a warm pool

When the training job is complete and the warm pool status is Available, then you can update
the KeepAlivePeriodInSeconds value.

session.update_training_job(job_name,
 resource_config={"KeepAlivePeriodInSeconds":3600})

Terminate a warm pool

To manually terminate a warm pool, set the KeepAlivePeriodInSeconds value to 0.

session.update_training_job(job_name, resource_config={"KeepAlivePeriodInSeconds":0})

The warm pool automatically terminates when it exceeds the designated
KeepAlivePeriodInSeconds value or if there is a patch update for the cluster.

Using the Amazon SageMaker console

Through the console, you can create a warm pool, release a warm pool, or check the warm pool
status and billable time of specific training jobs. You can also see which matching training job
reused a warm pool.

1. Open the Amazon SageMaker console and choose Training jobs from the navigation pane. If
applicable, the warm pool status of each training job is visible in the Warm pool status column
and the time left for an active warm pool is visible in the Time left column.

2. To create a training job that uses a warm pool from the console, choose Create training job.
Then, be sure to specify a value for the Keep alive period field when configuring your training
job resources. This value must be an integer between 1 and 3600, which represents duration of
time in seconds.

3. To release a warm pool from the console, select a specific training job and choose Release
cluster from the Actions dropdown menu.

4. To see more information about a warm pool, choose a training job name. In the job details
page, scroll down to the Warm pool status section to find the warm pool status, the time left
if the warm pool status is Available, the warm pool billable seconds, and the name of the
training job that reused the warm pool if the warm pool status is Reused.

How to use SageMaker managed warm pools 3920

https://console.aws.amazon.com/ec2/

Amazon SageMaker Developer Guide

Using the low-level SageMaker APIs

Use SageMaker managed warm pools with either the SageMaker API or the AWS CLI.

SageMaker API

Set up SageMaker managed warm pools using the SageMaker API with the following commands:

• CreateTrainingJob

• UpdateTrainingJob

• ListTrainingJobs

• DescribeTrainingJob

AWS CLI

Set up SageMaker managed warm pools using the AWS CLI with the following commands:

• create-training-job

• update-training-job

• list-training-jobs

• describe-training-job

IAM condition key

Administrators can optionally use the sagemaker:KeepAlivePeriod condition key to further
restrict the KeepAlivePeriodInSeconds limits for certain users or groups. SageMaker managed
warm pools are limited to a KeepAlivePeriodInSeconds value of 3600 seconds (60 minutes),
but administrators can lower this limit if needed.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceKeepAlivePeriodLimit",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob"
],

How to use SageMaker managed warm pools 3921

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/create-training-job.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-training-job.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/list-training-jobs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/describe-training-job.html

Amazon SageMaker Developer Guide

 "Resource": "*",
 "Condition": {
 "NumericLessThanIfExists": {
 "sagemaker:KeepAlivePeriod": 1800
 }
 }
 }
]
}

For more information, see Condition keys for Amazon SageMaker in the Service Authorization
Reference.

Considerations

Consider the following items when using SageMaker managed warm pools.

• SageMaker managed warm pools cannot be used with heterogeneous cluster training.

• SageMaker managed warm pools cannot be used with spot instances.

• SageMaker managed warm pools are limited to a KeepAlivePeriodInSeconds value of 3600
seconds (60 minutes).

• If a warm pool continues to successfully match training jobs within the specified
KeepAlivePeriodInSeconds value, the cluster can only continue running for a maximum of
28 days.

Monitor and Analyze Training Jobs Using Amazon CloudWatch
Metrics

An Amazon SageMaker training job is an iterative process that teaches a model to make predictions
by presenting examples from a training dataset. Typically, a training algorithm computes several
metrics, such as training error and prediction accuracy. These metrics help diagnose whether the
model is learning well and will generalize well for making predictions on unseen data. The training
algorithm writes the values of these metrics to logs, which SageMaker monitors and sends to
Amazon CloudWatch in real time. To analyze the performance of your training job, you can view
graphs of these metrics in CloudWatch. When a training job has completed, you can also get a list
of the metric values that it computes in its final iteration by calling the DescribeTrainingJob
operation.

Considerations 3922

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html#amazonsagemaker-policy-keys
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html

Amazon SageMaker Developer Guide

Note

Amazon CloudWatch supports high-resolution custom metrics, and its finest resolution is
1 second. However, the finer the resolution, the shorter the lifespan of the CloudWatch
metrics. For the 1-second frequency resolution, the CloudWatch metrics are available for
3 hours. For more information about the resolution and the lifespan of the CloudWatch
metrics, see GetMetricStatistics in the Amazon CloudWatch API Reference.

Tip

If you want to profile your training job with a finer resolution down to 100-millisecond (0.1
second) granularity and store the training metrics indefinitely in Amazon S3 for custom
analysis at any time, consider using Amazon SageMaker Debugger. SageMaker Debugger
provides built-in rules to automatically detect common training issues; it detects hardware
resource utilization issues (such as CPU, GPU, and I/O bottlenecks) and non-converging
model issues (such as overfit, vanishing gradients, and exploding tensors). SageMaker
Debugger also provides visualizations through Studio Classic and its profiling report.
To explore the Debugger visualizations, see SageMaker Debugger Insights Dashboard
Walkthrough, Debugger Profiling Report Walkthrough, and Analyze Data Using the
SMDebug Client Library.

Topics

• Defining Training Metrics

• Monitoring Training Job Metrics (CloudWatch Console)

• Monitoring Training Job Metrics (SageMaker Console)

• Example: Viewing a Training and Validation Curve

Defining Training Metrics

SageMaker automatically parses training job logs and sends training metrics to CloudWatch.
By default, SageMaker sends system resource utilization metrics listed in SageMaker Jobs and
Endpoint Metrics. If you want SageMaker to parse logs and send custom metrics from a training job
of your own algorithm to CloudWatch, you need to specify metrics definitions by passing the name
of metrics and regular expressions when you configure a SageMaker training job request.

Defining Training Metrics 3923

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio-insights-walkthrough.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio-insights-walkthrough.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html#debugger-profiling-report-walkthrough
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-analyze-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-analyze-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-jobs
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-jobs

Amazon SageMaker Developer Guide

You can specify the metrics that you want to track using the SageMaker console, the SageMaker
Python SDK, or the low-level SageMaker API.

If you are using your own algorithm, do the following:

• Make sure that the algorithm writes the metrics that you want to capture to logs.

• Define a regular expression that accurately searches the logs to capture the values of the metrics
that you want to send to CloudWatch.

For example, suppose your algorithm emits the following metrics for training error and validation
error:

Train_error=0.138318; Valid_error=0.324557;

If you want to monitor both of those metrics in CloudWatch, the dictionary for the metric
definitions should look like the following example:

[
 {
 "Name": "train:error",
 "Regex": "Train_error=(.*?);"
 },
 {
 "Name": "validation:error",
 "Regex": "Valid_error=(.*?);"
 }
]

In the regex for the train:error metric defined in the preceding example, the first part of the
regex finds the exact text "Train_error=", and the expression (.*?); captures any characters until
the first semicolon character appears. In this expression, the parenthesis tell the regex to capture
what is inside them, . means any character, * means zero or more, and ? means capture only until
the first instance of the ; character.

Define Metrics Using the SageMaker Python SDK

Define the metrics that you want to send to CloudWatch by specifying a list of metric names and
regular expressions as the metric_definitions argument when you initialize an Estimator

Defining Training Metrics 3924

https://github.com/aws/sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk

Amazon SageMaker Developer Guide

object. For example, if you want to monitor both the train:error and validation:error
metrics in CloudWatch, your Estimator initialization would look like the following example:

import sagemaker
from sagemaker.estimator import Estimator

estimator = Estimator(
 image_uri="your-own-image-uri",
 role=sagemaker.get_execution_role(),
 sagemaker_session=sagemaker.Session(),
 instance_count=1,
 instance_type='ml.c4.xlarge',
 metric_definitions=[
 {'Name': 'train:error', 'Regex': 'Train_error=(.*?);'},
 {'Name': 'validation:error', 'Regex': 'Valid_error=(.*?);'}
]
)

For more information about training by using Amazon SageMaker Python SDK estimators, see
Sagemaker Python SDK on GitHub.

Define Metrics Using the SageMaker Console

If you choose the Your own algorithm container in ECR option as your algorithm source in the
SageMaker console when you create a training job, add the metric definitions in the Metrics
section. The following screenshot shows how it should look after you add the example metric
names and the corresponding regular expressions.

Defining Training Metrics 3925

https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview
https://github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview

Amazon SageMaker Developer Guide

Define Metrics Using the Low-level SageMaker API

Define the metrics that you want to send to CloudWatch by specifying a list of metric names
and regular expressions in the MetricDefinitions field of the AlgorithmSpecification
input parameter that you pass to the CreateTrainingJob operation. For example, if you
want to monitor both the train:error and validation:error metrics in CloudWatch, your
AlgorithmSpecification would look like the following example:

Defining Training Metrics 3926

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

"AlgorithmSpecification": {
 "TrainingImage": your-own-image-uri,
 "TrainingInputMode": "File",
 "MetricDefinitions" : [
 {
 "Name": "train:error",
 "Regex": "Train_error=(.*?);"
 },
 {
 "Name": "validation:error",
 "Regex": "Valid_error=(.*?);"
 }
]
}

For more information about defining and running a training job by using the low-level SageMaker
API, see CreateTrainingJob.

Monitoring Training Job Metrics (CloudWatch Console)

You can monitor the metrics that a training job emits in real time in the CloudWatch console.

To monitor training job metrics (CloudWatch console)

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch.

2. Choose Metrics, then choose /aws/sagemaker/TrainingJobs.

3. Choose TrainingJobName.

4. On the All metrics tab, choose the names of the training metrics that you want to monitor.

5. On the Graphed metrics tab, configure the graph options. For more information about using
CloudWatch graphs, see Graph Metrics in the Amazon CloudWatch User Guide.

Monitoring Training Job Metrics (SageMaker Console)

You can monitor the metrics that a training job emits in real time by using the SageMaker console.

To monitor training job metrics (SageMaker console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker.

2. Choose Training jobs, then choose the training job whose metrics you want to see.

Monitoring Training Job Metrics (CloudWatch Console) 3927

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://console.aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/graph_metrics.html
https://console.aws.amazon.com/sagemaker

Amazon SageMaker Developer Guide

3. Choose TrainingJobName.

4. In the Monitor section, you can review the graphs of instance utilization and algorithm
metrics.

Monitoring Training Job Metrics (SageMaker Console) 3928

Amazon SageMaker Developer Guide

Example: Viewing a Training and Validation Curve

Typically, you split the data on which you train your model into training and validation datasets.
You use the training set to train the model parameters that are used to make predictions on the
training dataset. Then you test how well the model makes predictions by calculating predictions
for the validation set. To analyze the performance of a training job, you commonly plot a training
curve against a validation curve.

Viewing a graph that shows the accuracy for both the training and validation sets over time can
help you to improve the performance of your model. For example, if training accuracy continues
to increase over time, but, at some point, validation accuracy starts to decrease, you are likely
overfitting your model. To address this, you can make adjustments to your model, such as
increasing regularization.

For this example, you can use the Image-classification-full-training example in the Example
notebooks section of your SageMaker notebook instance. If you don't have a SageMaker notebook
instance, create one by following the instructions at Step 1: Create an Amazon SageMaker
Notebook Instance. If you prefer, you can follow along with the End-to-End Multiclass Image
Classification Example in the example notebook on GitHub. You also need an Amazon S3 bucket to
store the training data and for the model output.

To view training and validation error curves

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker.

2. Choose Notebooks, and then choose Notebook instances.

3. Choose the notebook instance that you want to use, and then choose Open.

4. On the dashboard for your notebook instance, choose SageMaker Examples.

5. Expand the Introduction to Amazon Algorithms section, and then choose Use next to Image-
classification-fulltraining.ipynb.

6. Choose Create copy. SageMaker creates an editable copy of the Image-classification-
fulltraining.ipynb notebook in your notebook instance.

7. Run all of the cells in the notebook up to the Inference section. You don't need to deploy an
endpoint or get inference for this example.

8. After the training job starts, open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch.

9. Choose Metrics, then choose /aws/sagemaker/TrainingJobs.

Example: Viewing a Training and Validation Curve 3929

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#regularization
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.html
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch

Amazon SageMaker Developer Guide

10. Choose TrainingJobName.

11. On the All metrics tab, choose the train:accuracy and validation:accuracy metrics for the
training job that you created in the notebook.

12. On the graph, choose an area that the metric's values to zoom in. You should see something
like the following example.

Use Amazon SageMaker Training Storage Paths for Training
Datasets, Checkpoints, Model Artifacts, and Outputs

This page provides a high-level summary of how the SageMaker training platform manages
storage paths for training datasets, model artifacts, checkpoints, and outputs between AWS cloud
storage and training jobs in SageMaker. Throughout this guide, you learn to identify the default
paths set by the SageMaker platform and how the data channels can be streamlined with your data
sources in Amazon Simple Storage Service (Amazon S3), FSx for Lustre, and Amazon EFS. For more
information about various data channel input modes and storage options, see Access Training Data.

Topics

• Overview

• Uncompressed model output

• Tips and Considerations for Setting Up Storage Paths

• SageMaker Environment Variables and Default Paths for Training Storage Locations

Use Training Storage Paths 3930

Amazon SageMaker Developer Guide

Overview

The following diagram shows the simplest example of how SageMaker manages input and output
paths when you run a training job using the SageMaker Python SDK Estimator class and its fit
method. It's based on using file mode as the data access strategy and Amazon S3 as the data
source for the training input channels.

This figure shows an overview of how SageMaker pairs storage paths between an Amazon S3
bucket as the data source and the SageMaker training instance based on how the paths are
specified in a SageMaker estimator class. More information about the paths, how they read from
or write to the paths, and purposes of the paths are described in the following section the section
called “SageMaker Environment Variables and Default Paths for Training Storage Locations”.

You can use OutputDataConfig in the CreateTrainingJob API to find where your S3 bucket is
located. Use the ModelArtifacts API to find the S3 location that contains your model artifacts. See
the abalone_build_train_deploy notebook for an example of output paths and how they are used
in API calls.

For more information and examples of how SageMaker manages data source, input modes, and
local paths in SageMaker training instances, see Access Training Data.

Overview 3931

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator.fit
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelArtifacts.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-pipelines/tabular/abalone_build_train_deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html

Amazon SageMaker Developer Guide

Uncompressed model output

SageMaker stores your model in /opt/ml/model and your data in /opt/ml/output/data. After
the model and data are written to those locations, they're uploaded to your Amazon S3 bucket as
compressed files by default.

You can save time on large data file compression by uploading model and data outputs to your S3
bucket as uncompressed files. To do this, create a training job in uncompressed upload mode by
using either the AWS Command Line Interface (AWS CLI) or the SageMaker Python SDK.

The following code example shows how to create a training job in uncompressed upload mode
when using the AWS CLI. To enable uncompressed upload mode, set CompressionType field in
the OutputDataConfig API to NONE.

{
 "TrainingJobName": "uncompressed_model_upload",
 ...
 "OutputDataConfig": {
 "S3OutputPath": "s3://DOC-EXAMPLE-BUCKET/uncompressed_upload/output",
 "CompressionType": "NONE"
 },
 ...
}

The following code example shows you how to create a training job in uncompressed upload mode
using the SageMaker Python SDK.

import sagemaker
from sagemaker.estimator import Estimator

estimator = Estimator(
 image_uri="your-own-image-uri",
 role=sagemaker.get_execution_role(),
 sagemaker_session=sagemaker.Session(),
 instance_count=1,
 instance_type='ml.c4.xlarge',
 disable_output_compression=True
)

Uncompressed model output 3932

Amazon SageMaker Developer Guide

Tips and Considerations for Setting Up Storage Paths

Consider the following items when setting up storage paths for training jobs in SageMaker.

• If you want to store training artifacts for distributed training in the /opt/ml/output/data
directory, you must properly append subdirectories or use unique file names for the artifacts
through your model definition or training script. If the subdirectories and file names are not
properly configured, all of the distributed training workers might write outputs to the same file
name in the same output path in Amazon S3.

• If you use a custom training container, make sure you install the SageMaker Training Toolkit
that helps set up the environment for SageMaker training jobs. Otherwise, you must specify the
environment variables explicitly in your Dockerfile. For more information, see Create a container
with your own algorithms and models.

• When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon
EBS gp2 storage. Available storage is fixed to the NVMe-type instance's storage capacity.
SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and
outputs to use the entire capacity of the instance storage. For example, ML instance families
with the NVMe-type instance storage include ml.p4d, ml.g4dn, and ml.g5. When using an ML
instance with the EBS-only storage option and without instance storage, you must define the
size of EBS volume through the volume_size parameter in the SageMaker estimator class (or
VolumeSizeInGB if you are using the ResourceConfig API). For example, ML instance families
that use EBS volumes include ml.c5 and ml.p2. To look up instance types and their instance
storage types and volumes, see Amazon EC2 Instance Types.

• The default paths for SageMaker training jobs are mounted to Amazon EBS volumes or NVMe
SSD volumes of the ML instance. When you adapt your training script to SageMaker, make sure
that you use the default paths listed in the previous topic about the section called “SageMaker
Environment Variables and Default Paths for Training Storage Locations”. We recommend that
you use the /tmp directory as a scratch space for temporarily storing any large objects during
training. This means that you must not use directories that are mounted to small disk space
allocated for system, such as /user and /home, to avoid out-of-space errors.

To learn more, see the AWS machine learning blog Choose the best data source for your Amazon
SageMaker training job that further discusses case studies and performance benchmarks of data
sources and input modes.

Tips and Considerations for Setting Up Storage Paths 3933

https://github.com/aws/sagemaker-training-toolkit
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-create.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-create.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/blogs/machine-learning/choose-the-best-data-source-for-your-amazon-sagemaker-training-job/
https://aws.amazon.com/blogs/machine-learning/choose-the-best-data-source-for-your-amazon-sagemaker-training-job/

Amazon SageMaker Developer Guide

SageMaker Environment Variables and Default Paths for Training
Storage Locations

The following table summarizes input and output paths for training datasets, checkpoints, model
artifacts, and outputs, managed by the SageMaker training platform.

Local
path in
SageMaker
training
instance

SageMaker
environme
nt
variable

Purpose Read
from S3
during
start

Read
from S3
during
Spot-
restart

Writes
to S3
during
training

Writes to
S3 when
job is
terminate
d

/opt/
ml/i
nput/
data
/ channel_n
ame 1

SM_CHANNE
L_CHANNEL_N
AME

Reading training
data from the
input channels
specified through the
SageMaker Python
SDK Estimator class
or the CreateTra
iningJob API
operation. For more
information about
how to specify it in
your training script
using the SageMaker
Python SDK, see
Prepare a Training
script.

Yes Yes No No

/opt/
ml/o
utput/
data 2

SM_OUTPUT
_DIR

Saving outputs such
as loss, accuracy,
intermediate layers,
weights, gradients,
bias, and TensorBoa
rd-compatible
outputs. You can also
save any arbitrary

No No No Yes

SageMaker Environment Variables and Default Paths for Training Storage Locations 3934

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://sagemaker.readthedocs.io/en/stable/overview.html?highlight=VPC#prepare-a-training-script
https://sagemaker.readthedocs.io/en/stable/overview.html?highlight=VPC#prepare-a-training-script

Amazon SageMaker Developer Guide

Local
path in
SageMaker
training
instance

SageMaker
environme
nt
variable

Purpose Read
from S3
during
start

Read
from S3
during
Spot-
restart

Writes
to S3
during
training

Writes to
S3 when
job is
terminate
d

output you’d like
using this path. Note
that this is a different
path from the one
for storing the final
model artifact /opt/
ml/model/ .

/opt/
ml/m
odel 3

SM_MODEL_
DIR

Storing the final
model artifact. This
is also the path
from where the
model artifact is
deployed for Real-
time inference in
SageMaker Hosting.

No No No Yes

/opt/
ml/c
heckpoint
s 4

- Saving model
checkpoints (the
state of model) to
resume training
from a certain
point, and recover
from unexpected
or Managed Spot
Training interrupt
ions.

Yes Yes Yes No

SageMaker Environment Variables and Default Paths for Training Storage Locations 3935

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html

Amazon SageMaker Developer Guide

Local
path in
SageMaker
training
instance

SageMaker
environme
nt
variable

Purpose Read
from S3
during
start

Read
from S3
during
Spot-
restart

Writes
to S3
during
training

Writes to
S3 when
job is
terminate
d

/opt/
ml/c
ode

SAGEMAKER
_SUBMIT_D
IRECTORY

Copying training
scripts, additiona
l libraries, and
dependencies.

Yes Yes No No

/tmp - Reading or writing
to /tmp as a scratch
space.

No No No No

1 channel_name is the place to specify user-defined channel names for training data inputs.
Each training job can contain several data input channels. You can specify up to 20 training input
channels per training job. Note that the data downloading time from the data channels is counted
to the billable time. For more information about data input paths, see How Amazon SageMaker
Provides Training Information. Also, there are three types of data input modes that SageMaker
supports: file, FastFile, and pipe mode. To learn more about the data input modes for training in
SageMaker, see Access Training Data.

2 SageMaker compresses and writes training artifacts to TAR files (tar.gz). Compression and
uploading time is counted to the billable time. For more information, see How Amazon SageMaker
Processes Training Output.

3 SageMaker compresses and writes the final model artifact to a TAR file (tar.gz). Compression
and uploading time is counted to the billable time. For more information, see How Amazon
SageMaker Processes Training Output.

4 Sync with Amazon S3 during training. Write as is without compressing to TAR files. For more
information, see Use Checkpoints in Amazon SageMaker.

SageMaker Environment Variables and Default Paths for Training Storage Locations 3936

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-output.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-output.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-output.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-output.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-checkpoints.html

Amazon SageMaker Developer Guide

Provide Dataset Metadata to Training Jobs with an Augmented
Manifest File

To include metadata with your dataset in a training job, use an augmented manifest file. When
using an augmented manifest file, your dataset must be stored in Amazon Simple Storage Service
(Amazon S3), and you must configure your training job to use the dataset stored there. You specify
the location and format of this dataset for one or more Channel. Augmented manifests can only
support Pipe input mode. See the section, InputMode in Channel to learn more about pipe input
mode.

When specifying a channel's parameters, you specify a path to the file, called a S3Uri. Amazon
SageMaker interprets this URI based on the specified S3DataType in S3DataSource. The
AugmentedManifestFile option defines a manifest format that includes metadata with the
input data. Using an augmented manifest file is an alternative to preprocessing when you have
labeled data. For training jobs using labeled data, you typically need to preprocess the dataset to
combine input data with metadata before training. If your training dataset is large, preprocessing
can be time consuming and expensive.

Augmented Manifest File Format

An augmented manifest file must be formatted in JSON Lines format. In JSON Lines format, each
line in the file is a complete JSON object followed by a newline separator.

During training, SageMaker parses each JSON line and sends some or all of its attributes on
to the training algorithm. You specify which attribute contents to pass and the order in which
to pass them with the AttributeNames parameter of the CreateTrainingJob API. The
AttributeNames parameter is an ordered list of attribute names that SageMaker looks for in the
JSON object to use as training input.

For example, if you list ["line", "book"] for AttributeNames, the input data must include
the attribute names of line and book in the specified order. For this example, the following
augmented manifest file content is valid:

{"author": "Herman Melville", "line": "Call me Ishmael", "book": "Moby Dick"}
{"line": "It was love at first sight.", "author": "Joseph Heller", "book": "Catch-22"}

SageMaker ignores unlisted attribute names even if they precede, follow, or are in between listed
attributes.

Use Augmented Manifest Files 3937

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html
http://jsonlines.org/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

When using augmented manifest files, observe the following guidelines:

• The order of the attributes listed in the AttributeNames parameter determines the order of
the attributes passed to the algorithm in the training job.

• The listed AttributeNames can be a subset of all of the attributes in the JSON line. SageMaker
ignores unlisted attributes in the file.

• You can specify any type of data allowed by the JSON format in AttributeNames, including
text, numerical, data arrays, or objects.

• To include an S3 URI as an attribute name, add the suffix -ref to it.

If an attribute name contains the suffix -ref, the attribute's value must be an S3 URI to a data file
that is accessible to the training job. For example, if AttributeNames contains ["image-ref",
"is-a-cat"], the following example shows a valid augmented manifest file:

{"image-ref": "s3://mybucket/sample01/image1.jpg", "is-a-cat": 1}
{"image-ref": "s3://mybucket/sample02/image2.jpg", "is-a-cat": 0}

In case of the first JSON line of this manifest file, SageMaker retrieves the image1.jpg file from
s3://mybucket/sample01/ and the string representation of the is-a-cat attribute "1" for
image classification.

Tip

To create an augmented manifest file, use Amazon SageMaker Ground Truth and create a
labeling job. For more information about the output from a labeling job, see Output Data.

Stream Augmented Manifest File Data

Augmented manifest format enables you to do training in Pipe mode using files without needing
to create RecordIO files. You need to specify both train and validation channels as values for the
InputDataConfig parameter of the CreateTrainingJob request. Augmented manifest files are
supported only for channels using Pipe input mode. For each channel, the data is extracted from
its augmented manifest file and streamed (in order) to the algorithm through the channel's named
pipe. Pipe mode uses the first in first out (FIFO) method, so records are processed in the order in
which they are queued. For information about Pipe input mode, see Input Mode.

Stream Augmented Manifest File Data 3938

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html#SageMaker-Type-Channel-InputMode

Amazon SageMaker Developer Guide

Attribute names with a "-ref" suffix point to preformatted binary data. In some cases, the
algorithm knows how to parse the data. In other cases, you might need to wrap the data so that
records are delimited for the algorithm. If the algorithm is compatible with RecordIO-formatted
data, specifying RecordIO for RecordWrapperType solves this issue. If the algorithm is not
compatible with RecordIO format, specify None for RecordWrapperType and make sure that
your data is parsed correctly for your algorithm.

Using the ["image-ref", "is-a-cat"] example, if you use RecordIO wrapping, the following
stream of data is sent to the queue:

recordio_formatted(s3://mybucket/foo/
image1.jpg)recordio_formatted("1")recordio_formatted(s3://mybucket/bar/
image2.jpg)recordio_formatted("0")

Images that are not wrapped with RecordIO format, are streamed with the corresponding is-
a-cat attribute value as one record. This can cause a problem because the algorithm might not
delimit the images and attributes correctly. For more information about using augmented manifest
files for image classification, see Train with Augmented Manifest Image Format.

With augmented manifest files and Pipe mode in general, size limits of the EBS volume do not
apply. This includes settings that otherwise must be within the EBS volume size limit such as
S3DataDistributionType . For more information about Pipe mode and how to use it, see Using
Your Own Training Algorithms - Input Data Configuration.

Use an Augmented Manifest File (Console)

To complete this procedure, you need:

• The URL of the S3 bucket where you've stored the augmented manifest file.

• To store the data that is listed in the augmented manifest file in an S3 bucket.

• The URL of the S3 bucket where you want to store the output of the job.

To use an augmented manifest file in a training job (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Training, then choose Training jobs.

3. Choose Create training job.

Use an Augmented Manifest File (Console) 3939

https://mxnet.apache.org/api/architecture/note_data_loading#data-format
https://mxnet.apache.org/api/architecture/note_data_loading#data-format
https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html#IC-augmented-manifest-training
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html#SageMaker-Type-S3DataSource-S3DataDistributionType
your-algorithms-training-algo.html#your-algorithms-training-algo-running-container-inputdataconfig
your-algorithms-training-algo.html#your-algorithms-training-algo-running-container-inputdataconfig
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. Provide a name for the training job. The name must be unique within an AWS Region in an
AWS account. It can have 1 to 63 characters. Valid characters: a-z, A-Z, 0-9, and . : + = @ _ % -
(hyphen).

5. Choose the algorithm that you want to use. For information about supported built-in
algorithms, see Use Amazon SageMaker Built-in Algorithms or Pre-trained Models. If you want
to use a custom algorithm, make sure that it is compatible with Pipe mode.

6. (Optional) For Resource configuration, either accept the default values or, to reduce
computation time, increase the resource consumption.

a. (Optional) For Instance type, choose the ML compute instance type that you want to use.
In most cases, ml.m4.xlarge is sufficient.

b. For Instance count, use the default, 1.

c. (Optional) For Additional volume per instance (GB), choose the size of the ML storage
volume that you want to provision. In most cases, you can use the default, 1. If you are
using a large dataset, use a larger size.

7. Provide information about the input data for the training dataset.

a. For Channel name, either accept the default (train) or enter a more meaningful name,
such as training-augmented-manifest-file.

b. For InputMode, choose Pipe.

c. For S3 data distribution type, choose FullyReplicated. When training incrementally, fully
replicating causes each ML compute instance to use a complete copy of the expanded
dataset. For neural-based algorithms, such as Neural Topic Model (NTM) Algorithm,
choose ShardedByS3Key.

d. If the data specified in the augmented manifest file is uncompressed, set the Compression
type to None. If the data is compressed using gzip, set it to Gzip.

e. (Optional) For Content type, specify the appropriate MIME type. Content type is the
multipurpose internet mail extension (MIME) type of the data.

f. For Record wrapper, if the dataset specified in the augmented manifest file is saved in
RecordIO format, choose RecordIO. If your dataset is not saved as a RecordIO-formatted
file, choose None.

g. For S3 data type, choose AugmentedManifestFile.

h. For S3 location, provide the path to the bucket where you stored the augmented manifest
file.

Use an Augmented Manifest File (Console) 3940

Amazon SageMaker Developer Guide

i. For AugmentedManifestFile attribute names, specify the name of an attribute that you
want to use. The attribute name must be present within the augmented manifest file, and
is case-sensitive.

j. (Optional) To add more attribute names, choose Add row and specify another attribute
name for each attribute.

k. (Optional) To adjust the order of attribute names, choose the up or down buttons next to
the names. When using an augmented manifest file, the order of the specified attribute
names is important.

l. Choose Done.

8. For Output data configuration, provide the following information:

a. For S3 location, type the path to the S3 bucket where you want to store the output data.

b. (Optional) You can use your AWS Key Management Service (AWS KMS) encryption key
to encrypt the output data at rest. For Encryption key, provide the key ID or its Amazon
Resource Number (ARN). For more information, see KMS-Managed Encryption Keys.

9. (Optional) For Tags, add one or more tags to the training job. A tag is metadata that you can
define and assign to AWS resources. In this case, you can use tags to help you manage your
training jobs. A tag consists of a key and a value, which you define. For example, you might
want to create a tag with Project as a key and a value that refers to a project that is related
to the training job, such as Home value forecasts.

10. Choose Create training job. SageMaker creates and runs the training job.

After the training job has finished, SageMaker stores the model artifacts in the bucket whose path
you provided for S3 output path in the Output data configuration field. To deploy the model to
get predictions, see Step 5: Deploy the Model to Amazon EC2.

Use an Augmented Manifest File (API)

The following shows how to train a model with an augmented manifest file using the SageMaker
high-level Python library:

import sagemaker

Create a model object set to using "Pipe" mode.
model = sagemaker.estimator.Estimator(
 training_image,

Use an Augmented Manifest File (API) 3941

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

Amazon SageMaker Developer Guide

 role,
 instance_count=1,
 instance_type='ml.p3.2xlarge',
 volume_size = 50,
 max_run = 360000,
 input_mode = 'Pipe',
 output_path=s3_output_location,
 sagemaker_session=session
)

Create a train data channel with S3_data_type as 'AugmentedManifestFile' and
 attribute names.
train_data = sagemaker.inputs.TrainingInput(
 your_augmented_manifest_file,
 distribution='FullyReplicated',
 content_type='application/x-recordio',
 s3_data_type='AugmentedManifestFile',
 attribute_names=['source-ref', 'annotations'],
 input_mode='Pipe',
 record_wrapping='RecordIO'
)

data_channels = {'train': train_data}

Train a model.
model.fit(inputs=data_channels, logs=True)

After the training job has finished, SageMaker stores the model artifacts in the bucket whose path
you provided for S3 output path in the Output data configuration field. To deploy the model to
get predictions, see Step 5: Deploy the Model to Amazon EC2.

Use checkpoints in Amazon SageMaker

Use checkpoints in Amazon SageMaker to save the state of machine learning (ML) models during
training. Checkpoints are snapshots of the model and can be configured by the callback functions
of ML frameworks. You can use the saved checkpoints to restart a training job from the last saved
checkpoint.

Using checkpoints, you can do the following:

• Save your model snapshots under training due to an unexpected interruption to the training job
or instance.

Use Checkpoints 3942

Amazon SageMaker Developer Guide

• Resume training the model in the future from a checkpoint.

• Analyze the model at intermediate stages of training.

• Use checkpoints with S3 Express One Zone for increased access speeds.

• Use checkpoints with SageMaker managed spot training to save on training costs.

The SageMaker training mechanism uses training containers on Amazon EC2 instances, and the
checkpoint files are saved under a local directory of the containers (the default is /opt/ml/
checkpoints). SageMaker provides the functionality to copy the checkpoints from the local
path to Amazon S3 and automatically syncs the checkpoints in that directory with S3. Existing
checkpoints in S3 are written to the SageMaker container at the start of the job, enabling jobs to
resume from a checkpoint. Checkpoints added to the S3 folder after the job has started are not
copied to the training container. SageMaker also writes new checkpoints from the container to S3
during training. If a checkpoint is deleted in the SageMaker container, it will also be deleted in the
S3 folder.

You can use checkpoints in Amazon SageMaker with the Amazon S3 Express One Zone storage
class (S3 Express One Zone) for faster access to checkpoints. When you enable checkpointing and
specify the S3 URI for your checkpoint storage destination, you can provide an S3 URI for a folder
in either an S3 general purpose bucket or an S3 directory bucket. For more information on S3
Express One Zone and S3 directory buckets, see What is S3 Express One Zone.

If you are using checkpoints with SageMaker managed spot training, SageMaker manages
checkpointing your model training on a spot instance and resuming the training job on the next
spot instance. With SageMaker managed spot training, you can significantly reduce the billable
time for training ML models. For more information, see Use Managed Spot Training in Amazon
SageMaker.

Topics

• Checkpoints for frameworks and algorithms in SageMaker

• Enable checkpointing

• Browse checkpoint files

• Resume training from a checkpoint

• Cluster repairs for GPU errors

• Considerations for checkpointing

Use Checkpoints 3943

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html

Amazon SageMaker Developer Guide

Checkpoints for frameworks and algorithms in SageMaker

Use checkpoints to save snapshots of ML models built on your preferred frameworks within
SageMaker.

SageMaker frameworks and algorithms that support checkpointing

SageMaker supports checkpointing for AWS Deep Learning Containers and a subset of built-in
algorithms without requiring training script changes. SageMaker saves the checkpoints to the
default local path '/opt/ml/checkpoints' and copies them to Amazon S3.

• Deep Learning Containers: TensorFlow, PyTorch, MXNet, and HuggingFace

Note

If you are using the HuggingFace framework estimator, you need to specify a checkpoint
output path through hyperparameters. For more information, see Run training on
Amazon SageMaker in the HuggingFace documentation.

• Built-in algorithms: Image Classification, Object Detection, Semantic Segmentation, and XGBoost
(0.90-1 or later)

Note

If you are using the XGBoost algorithm in framework mode (script mode), you need to
bring an XGBoost training script with checkpointing that's manually configured. For more
information about the XGBoost training methods to save model snapshots, see Training
XGBoost in the XGBoost Python SDK documentation.

If a pre-built algorithm that does not support checkpointing is used in a managed spot training job,
SageMaker does not allow a maximum wait time greater than an hour for the job in order to limit
wasted training time from interrupts.

For custom training containers and other frameworks

If you are using your own training containers, training scripts, or other frameworks not listed in
the previous section, you must properly set up your training script using callbacks or training
APIs to save checkpoints to the local path ('/opt/ml/checkpoints') and load from the local

Frameworks and algorithms 3944

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/sagemaker.mxnet.html
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/sagemaker.huggingface.html
https://huggingface.co/transformers/sagemaker.html#spot-instances
https://huggingface.co/transformers/sagemaker.html#spot-instances
https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html
https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection.html
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://xgboost.readthedocs.io/en/latest/python/python_intro.html#training
https://xgboost.readthedocs.io/en/latest/python/python_intro.html#training

Amazon SageMaker Developer Guide

path in your training script. SageMaker estimators can sync up with the local path and save the
checkpoints to Amazon S3.

Enable checkpointing

After you enable checkpointing, SageMaker saves checkpoints to Amazon S3 and syncs your
training job with the checkpoint S3 bucket. You can use either S3 general purpose or S3 directory
buckets for your checkpoint S3 bucket.

The following example shows how to configure checkpoint paths when you construct
a SageMaker estimator. To enable checkpointing, add the checkpoint_s3_uri and
checkpoint_local_path parameters to your estimator.

The following example template shows how to create a generic SageMaker estimator and
enable checkpointing. You can use this template for the supported algorithms by specifying the
image_uri parameter. To find Docker image URIs for algorithms with checkpointing supported
by SageMaker, see Docker Registry Paths and Example Code. You can also replace estimator and
Estimator with other SageMaker frameworks' estimator parent classes and estimator classes,
such as TensorFlow, PyTorch, MXNet, HuggingFace and XGBoost.

import sagemaker
from sagemaker.estimator import Estimator

bucket=sagemaker.Session().default_bucket()
base_job_name="sagemaker-checkpoint-test"
checkpoint_in_bucket="checkpoints"

Enable checkpointing 3945

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/using_tf.html#create-an-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#create-an-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/using_mxnet.html#create-an-estimator
https://huggingface.co/docs/sagemaker/train#create-a-hugging-face-estimator
https://sagemaker.readthedocs.io/en/stable/frameworks/xgboost/using_xgboost.html#create-an-estimator

Amazon SageMaker Developer Guide

The S3 URI to store the checkpoints
checkpoint_s3_bucket="s3://{}/{}/{}".format(bucket, base_job_name,
 checkpoint_in_bucket)

The local path where the model will save its checkpoints in the training container
checkpoint_local_path="/opt/ml/checkpoints"

estimator = Estimator(
 ...
 image_uri="<ecr_path>/<algorithm-name>:<tag>" # Specify to use built-in algorithms
 output_path=bucket,
 base_job_name=base_job_name,

 # Parameters required to enable checkpointing
 checkpoint_s3_uri=checkpoint_s3_bucket,
 checkpoint_local_path=checkpoint_local_path
)

The following two parameters specify paths for checkpointing:

• checkpoint_local_path – Specify the local path where the model saves the checkpoints
periodically in a training container. The default path is set to '/opt/ml/checkpoints'. If you
are using other frameworks or bringing your own training container, ensure that your training
script's checkpoint configuration specifies the path to '/opt/ml/checkpoints'.

Note

We recommend specifying the local paths as '/opt/ml/checkpoints' to be consistent
with the default SageMaker checkpoint settings. If you prefer to specify your own local
path, make sure you match the checkpoint saving path in your training script and the
checkpoint_local_path parameter of the SageMaker estimators.

• checkpoint_s3_uri – The URI to an S3 bucket where the checkpoints are stored in real time.
You can specify either an S3 general purpose or S3 directory bucket to store your checkpoints.
For more information on S3 directory buckets, see Directory buckets in the Amazon Simple
Storage Service User Guide.

To find a complete list of SageMaker estimator parameters, see the Estimator API in the Amazon
SageMaker Python SDK documentation.

Enable checkpointing 3946

https://docs.aws.amazon.com/AmazonS3/latest/userguide/directory-buckets-overview.html
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Browse checkpoint files

Locate checkpoint files using the SageMaker Python SDK and the Amazon S3 console.

To find the checkpoint files programmatically

To retrieve the S3 bucket URI where the checkpoints are saved, check the following estimator
attribute:

estimator.checkpoint_s3_uri

This returns the S3 output path for checkpoints configured while requesting the
CreateTrainingJob request. To find the saved checkpoint files using the S3 console, use the
following procedure.

To find the checkpoint files from the S3 console

1. Sign in to the AWS Management Console and open the SageMaker console at https://
console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Training jobs.

3. Choose the link to the training job with checkpointing enabled to open Job settings.

4. On the Job settings page of the training job, locate the Checkpoint configuration section.

5. Use the link to the S3 bucket to access the checkpoint files.

Resume training from a checkpoint

To resume a training job from a checkpoint, run a new estimator with the same
checkpoint_s3_uri that you created in the Enable checkpointing section. Once the training has

Browse checkpoint files 3947

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

resumed, the checkpoints from this S3 bucket are restored to checkpoint_local_path in each
instance of the new training job. Ensure that the S3 bucket is in the same Region as that of the
current SageMaker session.

Cluster repairs for GPU errors

If you are running a training job that fails on a GPU, SageMaker will run a GPU health check to see
whether the failure is related to a GPU issue. SageMaker takes the following actions based on the
health check results:

• If the error is recoverable, and can be fixed by rebooting the instance or resetting the GPU,
SageMaker will reboot the instance.

• If the error is not recoverable, and caused by a GPU that needs to be replaced, SageMaker will
replace the instance.

The instance is either replaced or rebooted as part of a SageMaker cluster repair process. During
this process, you will see the following message in your training job status:

Repairing training cluster due to hardware failure

SageMaker will attempt to repair the cluster up to 10 times. If the cluster repair is successful,
SageMaker will automatically restart the training job from the previous checkpoint. If the cluster
repair fails, the training job will also fail. You are not billed for the cluster repair process. Cluster
repairs will not initiate unless your training job fails. If a GPU issue is detected for a warmpool
cluster, the cluster will enter into repair mode to either reboot or replace the faulty instance. After
repair, the cluster can still be used as a warmpool cluster.

Cluster repairs for GPU errors 3948

Amazon SageMaker Developer Guide

The previously described cluster and instance repair process is depicted in the following diagram:

Considerations for checkpointing

Consider the following when using checkpoints in SageMaker.

• To avoid overwrites in distributed training with multiple instances, you must manually configure
the checkpoint file names and paths in your training script. The high-level SageMaker checkpoint
configuration specifies a single Amazon S3 location without additional suffixes or prefixes to tag
checkpoints from multiple instances.

Considerations for checkpointing 3949

Amazon SageMaker Developer Guide

• The SageMaker Python SDK does not support high-level configuration for checkpointing
frequency. To control the checkpointing frequency, modify your training script using the
framework's model save functions or checkpoint callbacks.

• If you use SageMaker checkpoints with SageMaker Debugger and SageMaker distributed and are
facing issues, see the following pages for troubleshooting and considerations.

• Considerations for Amazon SageMaker Debugger

• Troubleshooting for distributed training in Amazon SageMaker

• Model Parallel Troubleshooting

Considerations for checkpointing 3950

Amazon SageMaker Developer Guide

Deploy models for inference

With Amazon SageMaker, you can deploy your machine learning (ML) models to make predictions,
also known as inference. SageMaker provides a broad selection of ML infrastructure and model
deployment options to help meet all your ML inference needs. It is a fully managed service and
integrates with MLOps tools, so you can scale your model deployment, reduce inference costs,
manage models more effectively in production, and reduce operational burden.

After you’ve built and trained a machine learning model, you can use SageMaker Inference to start
getting predictions, or inferences, from your model. With SageMaker Inference, you can either set
up an endpoint that returns inferences or run batch inferences from your model.

To get started with SageMaker Inference, see the following sections and review the Inference
options to determine which feature best fits your use case.

You can refer to the Resources section for more troubleshooting and reference information, blogs
and examples to help you get started, and common FAQs.

Topics

• Before you begin

• Steps for model deployment

• Inference options

• Advanced endpoint options

• Bring your own model

• Next steps

Before you begin

These topics assume that you have built and trained one or more machine learning models and
are ready to deploy them. You don't need to train your model in SageMaker in order to deploy
your model in SageMaker and get inferences. If you don't have your own model, you can also use
SageMaker’s built-in algorithms or pre-trained models.

If you are new to SageMaker and haven't picked out a model to deploy, work through the steps in
the Get Started with Amazon SageMaker tutorial to familiarize yourself with an example of how

Before you begin 3951

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs.html

Amazon SageMaker Developer Guide

SageMaker manages the data science process and how it handles model deployment. For more
information about training a model, see Train Models.

For additional information, reference, and examples, see the Resources.

Steps for model deployment

For inference endpoints, the general workflow consists of the following:

• Create a model in SageMaker Inference by pointing to model artifacts stored in Amazon S3 and a
container image.

• Select an inference option. For more information, see Inference options.

• Create a SageMaker Inference endpoint configuration by choosing the instance type and
number of instances you need behind the endpoint. You can use Amazon SageMaker Inference
Recommender to get recommendations for instance types. For Serverless Inference, you only
need to provide the memory configuration you need based on your model size.

• Create a SageMaker Inference endpoint.

• Invoke your endpoint to receive an inference as a response.

The following diagram shows the preceding workflow.

Steps for model deployment 3952

https://docs.aws.amazon.com/sagemaker/latest/dg/train-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html

Amazon SageMaker Developer Guide

You can perform these actions using the AWS console, the AWS SDKs, the SageMaker Python SDK,
AWS CloudFormation or the AWS CLI.

For batch inference with batch transform, point to your model artifacts and input data and create
a batch inference job. Instead of hosting an endpoint for inference, SageMaker outputs your
inferences to an Amazon S3 location of your choice.

Inference options

SageMaker provides multiple inference options so that you can pick the option that best suits your
workload:

• Real-Time Inference: Real-time inference is ideal for online inferences that have low latency
or high throughput requirements. Use real-time inference for a persistent and fully managed
endpoint (REST API) that can handle sustained traffic, backed by the instance type of your choice.
Real-time inference can support payload sizes up to 6 MB and processing times of 60 seconds.

• Serverless Inference: Serverless inference is ideal when you have intermittent or unpredictable
traffic patterns. SageMaker manages all of the underlying infrastructure, so there’s no need to
manage instances or scaling policies. You pay only for what you use and not for idle time. It can
support payload sizes up to 4 MB and processing times up to 60 seconds.

• Batch Transform: Batch transform is suitable for offline processing when large amounts of data
are available upfront and you don’t need a persistent endpoint. You can also use batch transform
for pre-processing datasets. It can support large datasets that are GBs in size and processing
times of days.

• Asynchronous Inference: Asynchronous inference is ideal when you want to queue requests and
have large payloads with long processing times. Asynchronous Inference can support payloads
up to 1 GB and long processing times up to one hour. You can also scale down your endpoint to 0
when there are no requests to process.

The following diagram shows the preceding information in a flowchart and can help you choose
the option that best fits your use case.

Inference options 3953

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference.html

Amazon SageMaker Developer Guide

Advanced endpoint options

With real-time inference, you can further optimize for performance and cost with the following
advanced inference options:

• If you have multiple models that use the same framework and can share a container, then use
Host multiple models in one container behind one endpoint. This option helps you optimize
costs by improving endpoint utilization and reducing deployment overhead.

• If you have multiple models that use different frameworks and require their own containers, then
use Host multiple models which use different containers behind one endpoint. With this option,
you get many of the benefits of Multi-Model Endpoints and can deploy a variety of frameworks
and models.

• If you want to host models with pre-processing and post-processing logic behind an endpoint,
then use Serial Inference Pipelines. Inference pipelines are fully managed by SageMaker and
provide lower latency because all of the containers are hosted on the same Amazon EC2
instances.

Advanced endpoint options 3954

https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html

Amazon SageMaker Developer Guide

Bring your own model

To use an existing Docker container in SageMaker, see Adapting your own Docker container to work
with SageMaker.

To create a new Docker container and receive more advanced guidance on how to run your own
inference code, see the following links.

• To run your own inference code hosting services, see Use Your Own Inference Code with Hosting
Services.

• To run your own inference code for batch inference, see Use Your Own Inference Code with Batch
Transform.

Next steps

After you have an endpoint and understand the general inference workflow, you can use the
following features within SageMaker Inference to improve your inference workflow.

Monitoring

To track your model over time through metrics such as model accuracy and drift, you can use
Model Monitor. With Model Monitor, you can set alerts that notify you when there are deviations
in your model’s quality. To learn more, see the Model Monitor documentation. To learn more about
tools that can be used to monitor model deployments and events that change your endpoint, see
Monitor Amazon SageMaker. For example, you can monitor your endpoint’s health through metrics
such as invocation errors and model latency using Amazon CloudWatch metrics. The SageMaker
endpoint invocation metrics can provide you with valuable information about your endpoint’s
performance.

CI/CD for model deployment

To put together machine learning solutions in SageMaker, you can use SageMaker MLOps. You can
use this feature to automate the steps in your machine learning workflow and practice CI/CD. You
can use MLOps Project Templates to help with the setup and implementation of SageMaker MLOps
projects. SageMaker also supports using your own third-party Git repo for creating a CI/CD system.

For your ML pipelines, use Model Registry to manage your model versions and the deployment and
automation of your models.

Bring your own model 3955

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-overview.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-templates.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-walkthrough-3rdgit.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html

Amazon SageMaker Developer Guide

Deployment guardrails

If you want to update your model while it’s in production without impacting production, you
can use deployment guardrails. Deployment guardrails are a set of model deployment options
in SageMaker Inference to update your machine learning models in production. Using the fully
managed deployment options, you can control the switch from the current model in production
to a new one. Traffic shifting modes give you granular control over the traffic shifting process,
and built-in safeguards like auto-rollbacks help you catch issues early on. To learn more about
deployment guardrails, see the deployment guardrails documentation.

Inferentia

If you need to run large scale machine learning and deep learning applications for use cases such
as image or speech recognition, natural language processing (NLP), personalization, forecasting, or
fraud detection, you can use an Inf1 instance with a real-time endpoint.

Inf1 instances are built to support machine learning inference applications and feature the AWS
Inferentia chips. Inf1 instances provide higher throughput and lower cost per inference than GPU-
based instances.

To deploy a model on Inf1 instances, compile your model with SageMaker Neo and choose an
Inf1 instance for your deployment option. To learn more, see Optimize model performance using
SageMaker Neo.

Optimize model performance

SageMaker provides features to manage resources and optimize inference performance when
deploying machine learning models. You can use SageMaker’s built-in algorithms and pre-built
models, as well as prebuilt Docker images, which are developed for machine learning. To train
TensorFlow, Apache MXNet, PyTorch, ONNX, and XGBoost models once and optimize them to
deploy on ARM, Intel, and Nvidia processors, see Optimize model performance using SageMaker
Neo.

Autoscaling

If you have varying amounts of traffic to your endpoints, you might want to try autoscaling.
For example, during peak hours, you might require more instances to process requests, but
during periods of low traffic, you might want to reduce your use of computing resources. To

Deployment guardrails 3956

https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-prebuilt.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

Amazon SageMaker Developer Guide

dynamically adjust the number of instances provisioned in response to changes in your workload,
see Automatically Scale Amazon SageMaker Models.

If you have unpredictable traffic patterns or don’t want to set up scaling policies, you can
also use Serverless Inference for an endpoint where SageMaker manages autoscaling for you.
During periods of low traffic, SageMaker scales down your endpoint, and if traffic increases,
then SageMaker scales your endpoint up. For more information, see the Serverless Inference
documentation.

Deploy a Model in Amazon SageMaker

After you train your machine learning model, you can deploy it using Amazon SageMaker to get
predictions in any of the following ways, depending on your use case:

• For persistent, real-time endpoints that make one prediction at a time, use SageMaker real-time
hosting services. See Real-time inference.

• Workloads that have idle periods between traffic spurts and can tolerate cold starts, use
Serverless Inference. See Serverless Inference.

• Requests with large payload sizes up to 1GB, long processing times, and near real-time latency
requirements, use Amazon SageMaker Asynchronous Inference. See Asynchronous inference.

• To get predictions for an entire dataset, use SageMaker batch transform. See Use Batch
Transform.

SageMaker also provides features to manage resources and optimize inference performance when
deploying machine learning models:

• To manage models on edge devices so that you can optimize, secure, monitor, and maintain
machine learning models on fleets of edge devices such as smart cameras, robots, personal
computers, and mobile devices, see Deploy models at the edge with SageMaker Edge Manager.

• To optimize Gluon, Keras, MXNet, PyTorch, TensorFlow, TensorFlow-Lite, and ONNX models for
inference on Android, Linux, and Windows machines based on processors from Ambarella, ARM,
Intel, Nvidia, NXP, Qualcomm, Texas Instruments, and Xilinx, see Optimize model performance
using Neo.

For more information about all deployment options, see Deploy models for inference.

Model Deployment 3957

Amazon SageMaker Developer Guide

Create a model in Amazon SageMaker with ModelBuilder

Preparing your model for deployment on a SageMaker endpoint requires multiple steps, including
choosing a model image, setting up the endpoint configuration, coding your serialization and
deserialization functions to transfer data to and from server and client, identifying model
dependencies, and uploading them to Amazon S3. ModelBuilder can reduce the complexity of
initial setup and deployment to help you create a deployable model in a single step.

ModelBuilder performs the following tasks for you:

• Converts machine learning models trained using various frameworks like XGBoost or PyTorch
into deployable models in one step.

• Performs automatic container selection based on the model framework so you don’t have to
manually specify your container. You can still bring your own container by passing your own URI
to ModelBuilder.

• Handles the serialization of data on the client side before sending it to the server for inference
and deserialization of the results returned by the server. Data is correctly formatted without
manual processing.

• Enables automatic capture of dependencies and packages the model according to model server
expectations. ModelBuilder's automatic capture of dependencies is a best-effort approach to
dynamically load dependencies. (We recommend that you test the automated capture locally and
update the dependencies to meet your needs.)

• For large language model (LLM) use cases, optionally performs local parameter tuning of serving
properties that can be deployed for better performance when hosting on a SageMaker endpoint.

• Supports most of the popular model servers and containers like TorchServe, Triton, DJLServing
and TGI container.

Build your model with ModelBuilder

ModelBuilder is a Python class that takes a framework model, such as XGBoost or PyTorch, or
a user-specified inference specification and converts it into a deployable model. ModelBuilder
provides a build function that generates the artifacts for deployment. The model artifact
generated is specific to the model server, which you can also specify as one of the inputs. For more
details about the ModelBuilder class, see ModelBuilder.

Model creation with ModelBuilder 3958

https://sagemaker.readthedocs.io/en/stable/api/inference/model_builder.html#sagemaker.serve.builder.model_builder.ModelBuilder

Amazon SageMaker Developer Guide

The following diagram illustrates the overall model creation workflow when you use
ModelBuilder. ModelBuilder accepts a model or inference specification along with your
schema to create a deployable model that you can test locally before deployment.

ModelBuilder can handle any customization you want to apply. However, to deploy a framework
model, the model builder expects at minimum a model, sample input and output, and the role. In
the following code example, ModelBuilder is called with a framework model and an instance of
SchemaBuilder with minimum arguments (to infer the corresponding functions for serializing
and deserializing the endpoint input and output). No container is specified and no packaged
dependencies are passed—SageMaker automatically infers these resources when you build your
model.

from sagemaker.serve.builder.model_builder import ModelBuilder
from sagemaker.serve.builder.schema_builder import SchemaBuilder

model_builder = ModelBuilder(
 model=model,
 schema_builder=SchemaBuilder(input, output),
 role_arn="execution-role",
)

The following code sample invokes ModelBuilder with an inference specification (as an
InferenceSpec instance) instead of a model, with additional customization. In this case, the
call to model builder includes a path to store model artifacts and also turns on autocapture of
all available dependencies. For additional details about InferenceSpec, see Customize model
loading and handling of requests.

model_builder = ModelBuilder(
 mode=Mode.LOCAL_CONTAINER,
 model_path=model-artifact-directory,
 inference_spec=your-inference-spec,

Build your model with ModelBuilder 3959

Amazon SageMaker Developer Guide

 schema_builder=SchemaBuilder(input, output),
 role_arn=execution-role,
 dependencies={"auto": True}
)

Define serialization and deserialization methods

When invoking a SageMaker endpoint, the data is sent through HTTP payloads with different
MIME types. For example, an image sent to the endpoint for inference needs to be converted to
bytes at the client side and sent through an HTTP payload to the endpoint. When the endpoint
receives the payload, it needs to deserialize the byte string back to the data type that is expected
by the model (also known as server-side deserialization). After the model finishes prediction, the
results also need to be serialized to bytes that can be sent back through the HTTP payload to
the user or the client. Once the client receives the response byte data, it needs to perform client-
side deserialization to convert the bytes data back to the expected data format, such as JSON. At
minimum, you need to convert data for the following tasks:

1. Inference request serialization (handled by the client)

2. Inference request deserialization (handled by the server or algorithm)

3. Invoking the model against the payload and send response payload back

4. Inference response serialization (handled by the server or algorithm)

5. Inference response deserialization (handled by the client)

The following diagram shows the serialization and deserialization processes that occur when you
invoke the endpoint.

Define serialization and deserialization methods 3960

Amazon SageMaker Developer Guide

When you supply sample input and output to SchemaBuilder, the schema builder generates the
corresponding marshalling functions for serializing and deserializing the input and output. You can
further customize your serialization functions with CustomPayloadTranslator. But for most
cases, a simple serializer such as the following would work:

input = "How is the demo going?"
output = "Comment la démo va-t-elle?"
schema = SchemaBuilder(input, output)

For further details about SchemaBuilder, see SchemaBuilder.

The following code snippet outlines an example where you want to customize both serialization
and deserialization functions at the client and server sides. You can define your own request
and response translators with CustomPayloadTranslator and pass these translators to
SchemaBuilder.

By including the inputs and outputs with the translators, the model builder can extract the data
format the model expects. For example, suppose the sample input is a raw image, and your custom
translators crop the image and send the cropped image to the server as a tensor. ModelBuilder
needs both the raw input and any custom preprocessing or postprocessing code to derive a method
to convert data on both the client and server sides.

from sagemaker.serve import CustomPayloadTranslator

request translator
class MyRequestTranslator(CustomPayloadTranslator):
 # This function converts the payload to bytes - happens on client side
 def serialize_payload_to_bytes(self, payload: object) -> bytes:
 # converts the input payload to bytes

 return //return object as bytes

 # This function converts the bytes to payload - happens on server side
 def deserialize_payload_from_stream(self, stream) -> object:
 # convert bytes to in-memory object

 return //return in-memory object

response translator
class MyResponseTranslator(CustomPayloadTranslator):
 # This function converts the payload to bytes - happens on server side

Define serialization and deserialization methods 3961

https://sagemaker.readthedocs.io/en/stable/api/inference/model_builder.html#sagemaker.serve.builder.schema_builder.SchemaBuilder

Amazon SageMaker Developer Guide

 def serialize_payload_to_bytes(self, payload: object) -> bytes:
 # converts the response payload to bytes

 return //return object as bytes

 # This function converts the bytes to payload - happens on client side
 def deserialize_payload_from_stream(self, stream) -> object:
 # convert bytes to in-memory object

 return //return in-memory object

You pass in the sample input and output along with the previously-defined custom translators
when you create the SchemaBuilder object, as shown in the following example:

my_schema = SchemaBuilder(
 sample_input=image,
 sample_output=output,
 input_translator=MyRequestTranslator(),
 output_translator=MyResponseTranslator()
)

Then you pass in the sample input and output, along with the custom translators defined
previously, to the SchemaBuilder object.

my_schema = SchemaBuilder(
 sample_input=image,
 sample_output=output,
 input_translator=MyRequestTranslator(),
 output_translator=MyResponseTranslator()
)

The following sections explain in detail how to build your model with ModelBuilder and use its
supporting classes to customize the experience for your use case.

Topics

• Customize model loading and handling of requests

• Build your model and deploy

• Bring your own container (BYOC)

• Using ModelBuilder in local mode

• ModelBuilder examples

Define serialization and deserialization methods 3962

Amazon SageMaker Developer Guide

Customize model loading and handling of requests

Providing your own inference code through InferenceSpec offers an additional layer of
customization. With InferenceSpec, you can customize how the model is loaded and how
it handles incoming inference requests, bypassing its default loading and inference handling
mechanisms. This flexibility is particularly beneficial when working with non-standard models
or custom inference pipelines. You can customize the invoke method to control how the model
preprocesses and postprocesses incoming requests. The invoke method ensures that the model
handles inference requests correctly. The following example uses InferenceSpec to generate
a model with the HuggingFace pipeline. For further details about InferenceSpec, refer to the
InferenceSpec.

from sagemaker.serve.spec.inference_spec import InferenceSpec
from transformers import pipeline

class MyInferenceSpec(InferenceSpec):
 def load(self, model_dir: str):
 return pipeline("translation_en_to_fr", model="t5-small")

 def invoke(self, input, model):
 return model(input)

inf_spec = MyInferenceSpec()

model_builder = ModelBuilder(
 inference_spec=your-inference-spec,
 schema_builder=SchemaBuilder(X_test, y_pred)
)

The following example illustrates a more customized variation of a previous example. A
model is defined with an inference specification that has dependencies. In this case, the code
in the inference specification is dependent on the lang-segment package. The argument for
dependencies contains a statement that directs the builder to install lang-segment using Git.
Since the model builder is directed by the user to custom install a dependency, the auto key is
False to turn off autocapture of dependencies.

model_builder = ModelBuilder(
 mode=Mode.LOCAL_CONTAINER,
 model_path=model-artifact-directory,
 inference_spec=your-inference-spec,

Customize model loading and handling of requests 3963

https://sagemaker.readthedocs.io/en/stable/api/inference/model_builder.html#sagemaker.serve.spec.inference_spec.InferenceSpec

Amazon SageMaker Developer Guide

 schema_builder=SchemaBuilder(input, output),
 role_arn=execution-role,
 dependencies={"auto": False, "custom": ["-e git+https://github.com/luca-medeiros/
lang-segment-anything.git#egg=lang-sam"],}
)

Build your model and deploy

Call the build function to create your deployable model. This step creates inference code (as
inference.py) in your working directory with the code necessary to create your schema, run
serialization and deserialization of inputs and outputs, and run other user-specified custom logic.

As an integrity check, SageMaker packages and pickles the necessary files for deployment as part
of the ModelBuilder build function. During this process, SageMaker also creates HMAC signing
for the pickle file and adds the secret key in the CreateModel API as an environment variable during
deploy (or create). The endpoint launch uses the environment variable to validate the integrity
of the pickle file.

Build the model according to the model server specification and save it as files in
 the working directory
model = model_builder.build()

Deploy your model with the model’s existing deploy method. In this step, SageMaker sets
up an endpoint to host your model as it starts making predictions on incoming requests.
Although the ModelBuilder infers the endpoint resources needed to deploy your model, you
can override those estimates with your own parameter values. The following example directs
SageMaker to deploy the model on a single ml.c6i.xlarge instance. A model constructed from
ModelBuilder enables live logging during deployment as an added feature.

predictor = model.deploy(
 initial_instance_count=1,
 instance_type="ml.c6i.xlarge"
)

If you want more fine-grained control over the endpoint resources assigned to your model, you
can use a ResourceRequirements object. With the ResourceRequirements object, you can
request a minimum number of CPUs, accelerators, and copies of models you want to deploy. You
can also request a minimum and maximum bound of memory (in MB). To use this feature, you need
to specify your endpoint type as EndpointType.INFERENCE_COMPONENT_BASED. The following

Build your model and deploy 3964

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

example requests four accelerators, a minimum memory size of 1024 MB, and one copy of your
model to be deployed to an endpoint of type EndpointType.INFERENCE_COMPONENT_BASED.

resource_requirements = ResourceRequirements(
 requests={
 "num_accelerators": 4,
 "memory": 1024,
 "copies": 1,
 },
 limits={},
)
predictor = model.deploy(
 mode=Mode.SAGEMAKER_ENDPOINT,
 endpoint_type=EndpointType.INFERENCE_COMPONENT_BASED,
 resources=resource_requirements,
 role="role"
)

Bring your own container (BYOC)

If you want to bring your own container (extended from a SageMaker container), you can also
specify the image URI as shown in the following example. You also need to identify the model
server that corresponds to the image for ModelBuilder to generate artifacts specific to the
model server.

model_builder = ModelBuilder(
 model=model,
 model_server=ModelServer.TORCHSERVE,
 schema_builder=SchemaBuilder(X_test, y_pred),
 image_uri="123123123123.dkr.ecr.ap-southeast-2.amazonaws.com/byoc-image:xgb-1.7-1")
)

Using ModelBuilder in local mode

You can deploy your model locally by using the mode argument to switch between local testing
and deployment to an endpoint. You need to store the model artifacts in the working directory, as
shown in the following snippet:

model = XGBClassifier()
model.fit(X_train, y_train)

Bring your own container (BYOC) 3965

Amazon SageMaker Developer Guide

model.save_model(model_dir + "/my_model.xgb")

Pass the model object, a SchemaBuilder instance, and set mode to Mode.LOCAL_CONTAINER.
When you call the build function, ModelBuilder automatically identifies the supported
framework container and scans for dependencies. The following example demonstrates model
creation with an XGBoost model in local mode.

model_builder_local = ModelBuilder(
 model=model,
 schema_builder=SchemaBuilder(X_test, y_pred),
 role_arn=execution-role,
 mode=Mode.LOCAL_CONTAINER
)
xgb_local_builder = model_builder_local.build()

Call the deploy function to deploy locally, as shown in the following snippet. If you specify
parameters for instance type or count, these arguments are ignored.

predictor_local = xgb_local_builder.deploy()

Troubleshooting local mode

Depending on your individual local setup, you may encounter difficulties running ModelBuilder
smoothly in your environment. See the following list for some issues you may face and how to
resolve them.

• Already already in use: You may encounter an Address already in use error. In this case, it
is possible that a Docker container is running on that port or another process is utilizing it. You
can follow the approach outlined in Linux documentation to identify the process and gracefully
redirect your local process from port 8080 to another port or clean up the Docker instance.

• IAM Permission Issue: You might encounter a permission issue when trying to pull an Amazon
ECR image or access Amazon S3. In this case, navigate to the execution role of the notebook or
Studio Classic instance to verify the policy for SageMakerFullAccess or the respective API
permissions.

• EBS volume capacity issue: If you deploy a large language model (LLM), you might run out of
space while running Docker in local mode or experience space limitations for the Docker cache.
In this case, you can try to move your Docker volume to a filesystem that has enough space. To
move your Docker volume, complete the following steps:

Using ModelBuilder in local mode 3966

https://www.cyberciti.biz/faq/what-process-has-open-linux-port/

Amazon SageMaker Developer Guide

1. Open a terminal and run df to display disk usage, as shown in the following output:

(python3) sh-4.2$ df
Filesystem 1K-blocks Used Available Use% Mounted on
devtmpfs 195928700 0 195928700 0% /dev
tmpfs 195939296 0 195939296 0% /dev/shm
tmpfs 195939296 1048 195938248 1% /run
tmpfs 195939296 0 195939296 0% /sys/fs/cgroup
/dev/nvme0n1p1 141545452 135242112 6303340 96% /
tmpfs 39187860 0 39187860 0% /run/user/0
/dev/nvme2n1 264055236 76594068 176644712 31% /home/ec2-user/SageMaker
tmpfs 39187860 0 39187860 0% /run/user/1002
tmpfs 39187860 0 39187860 0% /run/user/1001
tmpfs 39187860 0 39187860 0% /run/user/1000

2. Move the default Docker directory from /dev/nvme0n1p1 to /dev/nvme2n1 so you can
fully utilize the 256 GB SageMaker volume. For more details, see documentation about how
to move your Docker directory.

3. Stop Docker with the following command:

sudo service docker stop

4. Add a daemon.json to /etc/docker or append the following JSON blob to the existing
one.

{
 "data-root": "/home/ec2-user/SageMaker/{created_docker_folder}"
}

5. Move the Docker directory in /var/lib/docker to /home/ec2-user/SageMaker with
the following command:

sudo rsync -aP /var/lib/docker/ /home/ec2-user/SageMaker/{created_docker_folder}

6. Start Docker with the following command:

sudo service docker start

7. Clean trash with the following command:

Using ModelBuilder in local mode 3967

https://www.guguweb.com/2019/02/07/how-to-move-docker-data-directory-to-another-location-on-ubuntu/

Amazon SageMaker Developer Guide

cd /home/ec2-user/SageMaker/.Trash-1000/files/*
sudo rm -r *

8. If you are using a SageMaker notebook instance, you can follow the steps in the Docker prep
file to prepare Docker for local mode.

ModelBuilder examples

For more examples of using ModelBuilder to build your models, see ModelBuilder sample
notebooks.

Validate a Machine Learning Model

After training a model, evaluate it to determine whether its performance and accuracy enable you
to achieve your business goals. You might generate multiple models using different methods and
evaluate each. For example, you could apply different business rules for each model, and then
apply various measures to determine each model's suitability. You might consider whether your
model needs to be more sensitive than specific (or vice versa).

You can evaluate your model using historical data (offline) or live data:

• Offline testing—Use historical, not live, data to send requests to the model for inferences.

Deploy your trained model to an alpha endpoint, and use historical data to send inference
requests to it. To send the requests, use a Jupyter notebook in your Amazon SageMaker
notebook instance and either the AWS SDK for Python (Boto) or the high-level Python library
provided by SageMaker.

• Online testing with live data—SageMaker supports A/B testing for models in production by
using production variants. Production variants are models that use the same inference code and
are deployed on the same SageMaker endpoint. You configure the production variants so that
a small portion of the live traffic goes to the model that you want to validate. For example, you
might choose to send 10% of the traffic to a model variant for evaluation. After you are satisfied
with the model's performance, you can route 100% traffic to the updated model. For an example
of testing models in production, see Production variants.

For more information, see articles and books about how to evaluate models, for example,
Evaluating Machine Learning Models.

ModelBuilder examples 3968

https://github.com/melanie531/amazon-sagemaker-pytorch-lightning-distributed-training/blob/main/prepare-docker.sh
https://github.com/melanie531/amazon-sagemaker-pytorch-lightning-distributed-training/blob/main/prepare-docker.sh
https://github.com/aws-samples/sagemaker-hosting/blob/main/SageMaker-Model-Builder
https://github.com/aws-samples/sagemaker-hosting/blob/main/SageMaker-Model-Builder
http://www.oreilly.com/data/free/evaluating-machine-learning-models.csp

Amazon SageMaker Developer Guide

Options for offline model evaluation include:

• Validating using a holdout set—Machine learning practitioners often set aside a part of the
data as a "holdout set." They don’t use this data for model training.

With this approach, you evaluate how well your model provides inferences on the holdout set.
You then assess how effectively the model generalizes what it learned in the initial training, as
opposed to using model memory. This approach to validation gives you an idea of how often the
model is able to infer the correct answer.

In some ways, this approach is similar to teaching elementary school students. First, you provide
them with a set of examples to learn, and then test their ability to generalize from their learning.
With homework and tests, you pose problems that were not included in the initial learning and
determine whether they are able to generalize effectively. Students with perfect memories could
memorize the problems, instead of learning the rules.

Typically, the holdout dataset is of 20-30% of the training data.

• k-fold validation—In this validation approach, you split the example dataset into k parts. You
treat each of these parts as a holdout set for k training runs, and use the other k-1 parts as the
training set for that run. You produce k models using a similar process, and aggregate the models
to generate your final model. The value k is typically in the range of 5-10.

Amazon SageMaker Inference Recommender

Amazon SageMaker Inference Recommender is a capability of Amazon SageMaker that reduces
the time required to get machine learning (ML) models in production by automating load
testing and model tuning across SageMaker ML instances. You can use Inference Recommender
to deploy your model to a real-time or serverless inference endpoint that delivers the best
performance at the lowest cost. Inference Recommender helps you select the best instance type
and configuration (such as instance count, container parameters, and model optimizations) or
serverless configuration (such as max concurrency and memory size) for your ML models and
workloads.

Get an endpoint inference recommendation 3969

Amazon SageMaker Developer Guide

Amazon SageMaker Inference Recommender only charges you for the instances used while your
jobs are executing.

How it Works

To use Amazon SageMaker Inference Recommender, you can either create a SageMaker model or
register a model to the SageMaker model registry with your model artifacts. Use the AWS SDK
for Python (Boto3) or the SageMaker console to run benchmarking jobs for different SageMaker
endpoint configurations. Inference Recommender jobs help you collect and visualize metrics across
performance and resource utilization to help you decide on which endpoint type and configuration
to choose.

How to Get Started

If you are a first-time user of Amazon SageMaker Inference Recommender, we recommend that you
do the following:

1. Read through the Prerequisites section to make sure you have satisfied the requirements to use
Amazon SageMaker Inference Recommender.

2. Read through the Recommendation jobs section to launch your first Inference Recommender
recommendation jobs.

3. Explore the introductory Amazon SageMaker Inference Recommender Jupyter notebook
example, or review the example notebooks in the following section.

Example notebooks

The following example Jupyter notebooks can help you with the workflows for multiple use cases
in Inference Recommender:

• If you want an introductory notebook that benchmarks a TensorFlow model, see the SageMaker
Inference Recommender TensorFlow notebook.

• If you want to benchmark a HuggingFace model, see the SageMaker Inference Recommender for
HuggingFace notebook.

• If you want to benchmark an XGBoost model, see the SageMaker Inference Recommender
XGBoost notebook.

• If you want to review CloudWatch metrics for your Inference Recommender jobs, see the
SageMaker Inference Recommender CloudWatch metrics notebook.

How it Works 3970

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-inference-recommender/inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/huggingface-inference-recommender/huggingface-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/huggingface-inference-recommender/huggingface-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/xgboost/xgboost-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/xgboost/xgboost-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/tensorflow-cloudwatch/tf-cloudwatch-inference-recommender.ipynb

Amazon SageMaker Developer Guide

Prerequisites

To use Amazon SageMaker Inference Recommender, first make sure you have met the prerequisites
in the following list. As an example, we show how to use a PyTorch (v1.7.1) ResNet-18 pre-trained
model for both types of Amazon SageMaker Inference Recommender recommendation jobs. The
examples shown use the AWS SDK for Python (Boto3).

Note

• The following code examples use Python. Remove the ! prefix character if you run any of
the following code samples in your terminal or AWS CLI.

• You can run the following examples with the Python 3 (TensorFlow 2.6 Python 3.8 CPU
Optimized) kernel in an Amazon SageMaker Studio notebook. For more information
about Studio, see Amazon SageMaker Studio.

1. Create an IAM role for Amazon SageMaker.

Create an IAM role for Amazon SageMaker that has the AmazonSageMakerFullAccess IAM
managed policy attached.

2. Set up your environment.

Import dependencies and create variables for your AWS Region, your SageMaker IAM role
(from Step 1), and the SageMaker client.

!pip install --upgrade pip awscli botocore boto3 --quiet
from sagemaker import get_execution_role, Session, image_uris
import boto3

region = boto3.Session().region_name
role = get_execution_role()
sagemaker_client = boto3.client("sagemaker", region_name=region)
sagemaker_session = Session()

3. (Optional) Review existing models benchmarked by Inference Recommender.

Inference Recommender benchmarks models from popular model zoos. Inference
Recommender supports your model even if it is not already benchmarked.

Prerequisites 3971

Amazon SageMaker Developer Guide

Use ListModelMetaData to get a response object that lists the domain, framework, task, and
model name of machine learning models found in common model zoos.

You use the domain, framework, framework version, task, and model name in later steps
to both select an inference Docker image and register your model with SageMaker Model
Registry. The following demonstrates how to list model metadata with SDK for Python
(Boto3):

list_model_metadata_response=sagemaker_client.list_model_metadata()

The output includes model summaries (ModelMetadataSummaries) and response metadata
(ResponseMetadata) similar to the following example:

{
 'ModelMetadataSummaries': [{
 'Domain': 'NATURAL_LANGUAGE_PROCESSING',
 'Framework': 'PYTORCH:1.6.0',
 'Model': 'bert-base-cased',
 'Task': 'FILL_MASK'
 },
 {
 'Domain': 'NATURAL_LANGUAGE_PROCESSING',
 'Framework': 'PYTORCH:1.6.0',
 'Model': 'bert-base-uncased',
 'Task': 'FILL_MASK'
 },
 {
 'Domain': 'COMPUTER_VISION',
 'Framework': 'MXNET:1.8.0',
 'Model': 'resnet18v2-gluon',
 'Task': 'IMAGE_CLASSIFICATION'
 },
 {
 'Domain': 'COMPUTER_VISION',
 'Framework': 'PYTORCH:1.6.0',
 'Model': 'resnet152',
 'Task': 'IMAGE_CLASSIFICATION'
 }],
 'ResponseMetadata': {
 'HTTPHeaders': {
 'content-length': '2345',

Prerequisites 3972

Amazon SageMaker Developer Guide

 'content-type': 'application/x-amz-json-1.1',
 'date': 'Tue, 19 Oct 2021 20:52:03 GMT',
 'x-amzn-requestid': 'xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx'
 },
 'HTTPStatusCode': 200,
 'RequestId': 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx',
 'RetryAttempts': 0
 }
}

For this demo, we use a PyTorch (v1.7.1) ResNet-18 model to perform image classification. The
following Python code sample stores the framework, framework version, domain, and task
into variables for later use:

ML framework details
framework = 'pytorch'
framework_version = '1.7.1'

ML model details
ml_domain = 'COMPUTER_VISION'
ml_task = 'IMAGE_CLASSIFICATION'

4. Upload your machine learning model to Amazon S3.

Use this PyTorch (v1.7.1) ResNet-18 model if you do not have a pre-trained machine learning
model:

Optional: Download a sample PyTorch model
import torch
from torchvision import models, transforms, datasets

Create an example input for tracing
image = torch.zeros([1, 3, 256, 256], dtype=torch.float32)

Load a pretrained resnet18 model from TorchHub
model = models.resnet18(pretrained=True)

Tell the model we are using it for evaluation (not training). Note this is
 required for Inferentia compilation.
model.eval()
model_trace = torch.jit.trace(model, image)

Prerequisites 3973

Amazon SageMaker Developer Guide

Save your traced model
model_trace.save('model.pth')

Download a sample inference script inference.py. Create a code directory and move the
inference script to the code directory.

Download the inference script
!wget https://aws-ml-blog-artifacts.s3.us-east-2.amazonaws.com/inference.py

move it into a code/ directory
!mkdir code
!mv inference.py code/

Amazon SageMaker requires pre-trained machine learning models to be packaged as a
compressed TAR file (*.tar.gz). Compress your model and inference script to satisfy this
requirement:

!tar -czf test.tar.gz model.pth code/inference.py

When your endpoint is provisioned, the files in the archive are extracted to /opt/ml/model/
on the endpoint.

After you compress your model and model artifacts as a .tar.gz file, upload them to your
Amazon S3 bucket. The following example demonstrates how to upload your model to
Amazon S3 using the AWS CLI:

!aws s3 cp test.tar.gz s3://{your-bucket}/models/

5. Select a prebuilt Docker inference image or create your own Inference Docker Image.

SageMaker provides containers for its built-in algorithms and prebuilt Docker images for
some of the most common machine learning frameworks, such as Apache MXNet, TensorFlow,
PyTorch, and Chainer. For a full list of the available SageMaker images, see Available Deep
Learning Containers Images.

If none of the existing SageMaker containers meet your needs and you don't have an existing
container of your own, create a new Docker image. See Use your own inference code for
information about how to create your Docker image.

Prerequisites 3974

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

The following demonstrates how to retrieve a PyTorch version 1.7.1 inference image using the
SageMaker Python SDK:

from sagemaker import image_uris

Uncomment and replace with your own values if you did not define
these variables a previous step.
#framework = 'pytorch'
#framework_version = '1.7.1'

Note: you can use any CPU-based instance here,
this is just to set the arch as CPU for the Docker image
instance_type = 'ml.m5.2xlarge'

image_uri = image_uris.retrieve(framework,
 region,
 version=framework_version,
 py_version='py3',
 instance_type=instance_type,
 image_scope='inference')

For a list of available SageMaker Instances, see Amazon SageMaker Pricing.

6. Create a sample payload archive.

Create an archive that contains individual files that the load testing tool can send to your
SageMaker endpoints. Your inference code must be able to read the file formats from the
sample payload.

The following downloads a .jpg image that this example uses in a later step for the ResNet-18
model.

!wget https://cdn.pixabay.com/photo/2020/12/18/05/56/flowers-5841251_1280.jpg

Compress the sample payload as a tarball:

!tar -cvzf payload.tar.gz flowers-5841251_1280.jpg

Upload the sample payload to Amazon S3 and note the Amazon S3 URI:

Prerequisites 3975

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

!aws s3 cp payload.tar.gz s3://{bucket}/models/

You need the Amazon S3 URI in a later step, so store it in a variable:

bucket_prefix='models'
bucket = '<your-bucket-name>' # Provide the name of your S3 bucket
payload_s3_key = f"{bucket_prefix}/payload.tar.gz"
sample_payload_url= f"s3://{bucket}/{payload_s3_key}"

7. Prepare your model input for the recommendations job

For the last prerequisite, you have two options to prepare your model input. You can either
register your model with SageMaker Model Registry, which you can use to catalog models for
production, or you can create a SageMaker model and specify it in the ContainerConfig
field when creating a recommendations job. The first option is best if you want to take
advantage of the features that Model Registry provides, such as managing model versions and
automating model deployment. The second option is ideal if you want to get started quickly.
For the first option, go to step 7. For the second option, skip step 7 and go to step 8.

8. Option 1: Register your model in the model registry

With SageMaker Model Registry, you can catalog models for production, manage model
versions, associate metadata (such as training metrics) with a model, manage the approval
status of a model, deploy models to production, and automate model deployment with CI/CD.

When you use SageMaker Model Registry to track and manage your models, they are
represented as a versioned model package within model package groups. Unversioned model
packages are not part of a model group. Model package groups hold multiple versions or
iterations of a model. Though it is not required to create them for every model in the registry,
they help organize various models that all have the same purpose and provide automatic
versioning.

To use Amazon SageMaker Inference Recommender, you must have a versioned
model package. You can create a versioned model package programmatically with
the AWS SDK for Python (Boto3) or with Amazon SageMaker Studio Classic. To create
a versioned model package programmatically, first create a model package group
with the CreateModelPackageGroup API. Next, create a model package using the
CreateModelPackage API. Calling this method makes a versioned model package.

Prerequisites 3976

https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html

Amazon SageMaker Developer Guide

See Create a Model Group and Register a Model Version for detailed instructions about how
to programmatically and interactively create a model package group and how to create a
versioned model package, respectively, with the AWS SDK for Python (Boto3) and Amazon
SageMaker Studio Classic.

The following code sample demonstrates how to create a versioned model package using the
AWS SDK for Python (Boto3).

Note

You do not need to approve the model package to create an Inference Recommender
job.

a. Create a model package group

Create a model package group with the CreateModelPackageGroup API. Provide a
name to the model package group for the ModelPackageGroupName and optionally
provide a description of the model package in the ModelPackageGroupDescription
field.

model_package_group_name = '<INSERT>'
model_package_group_description = '<INSERT>'

model_package_group_input_dict = {
 "ModelPackageGroupName" : model_package_group_name,
 "ModelPackageGroupDescription" : model_package_group_description,
}

model_package_group_response =
 sagemaker_client.create_model_package_group(**model_package_group_input_dict)

See the Amazon SageMaker API Reference Guide for a full list of optional and required
arguments you can pass to CreateModelPackageGroup.

Create a model package by specifying a Docker image that runs your inference
code and the Amazon S3 location of your model artifacts and provide values for
InferenceSpecification. InferenceSpecification should contain information

Prerequisites 3977

https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackageGroup.html

Amazon SageMaker Developer Guide

about inference jobs that can be run with models based on this model package, including
the following:

• The Amazon ECR paths of images that run your inference code.

• (Optional) The instance types that the model package supports for transform jobs and
real-time endpoints used for inference.

• The input and output content formats that the model package supports for inference.

In addition, you must specify the following parameters when you create a model package:

• Domain: The machine learning domain of your model package and its components.
Common machine learning domains include computer vision and natural language
processing.

• Task: The machine learning task your model package accomplishes. Common machine
learning tasks include object detection and image classification. Specify "OTHER" if
none of the tasks listed in the API Reference Guide satisfy your use case. See the Task
API field descriptions for a list of supported machine learning tasks.

• SamplePayloadUrl: The Amazon Simple Storage Service (Amazon S3) path where the
sample payload are stored. This path must point to a single GZIP compressed TAR
archive (.tar.gz suffix).

• Framework: The machine learning framework of the model package container image.

• FrameworkVersion: The framework version of the model package container image.

If you provide an allow list of instance types to use to generate inferences in real-time for
the SupportedRealtimeInferenceInstanceTypes, Inference Recommender limits the search
space for instance types during a Default job. Use this parameter if you have budget
constraints or know there's a specific set of instance types that can support your model
and container image.

In a previous step, we downloaded a pre-trained ResNet18 model and stored it in an
Amazon S3 bucket in a directory called models. We retrieved a PyTorch (v1.7.1) Deep
Learning Container inference image and stored the URI in a variable called image_uri.
Use those variables in the following code sample to define a dictionary used as input to
the CreateModelPackage API.

Provide the Amazon S3 URI of your compressed tarfile

Prerequisites 3978

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html#sagemaker-CreateModelPackage-request-Domain
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html#sagemaker-CreateModelPackage-request-Task
https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html#sagemaker-CreateModelPackage-request-Task
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html#sagemaker-CreateModelPackage-request-SamplePayloadUrl
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelPackageContainerDefinition.html#sagemaker-Type-ModelPackageContainerDefinition-Framework
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelPackageContainerDefinition.html#sagemaker-Type-ModelPackageContainerDefinition-FrameworkVersion
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InferenceSpecification.html#sagemaker-Type-InferenceSpecification-SupportedRealtimeInferenceInstanceTypes
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html

Amazon SageMaker Developer Guide

so that Model Registry knows where to find your model artifacts
bucket_prefix='models'
bucket = '<your-bucket-name>' # Provide the name of your S3 bucket
model_s3_key = f"{bucket_prefix}/test.tar.gz"
model_url= f"s3://{bucket}/{model_s3_key}"

Similar open source model to the packaged model
The name of the ML model as standardized by common model zoos
nearest_model_name = 'resnet18'

The supported MIME types for input and output data. In this example,
we are using images as input.
input_content_type='image/jpeg'

Optional - provide a description of your model.
model_package_description = '<INSERT>'

Uncomment if you did not store the domain and task in an earlier
step
#ml_domain = 'COMPUTER_VISION'
#ml_task = 'IMAGE_CLASSIFICATION'

Uncomment if you did not store the framework and framework version
in a previous step.
#framework = 'PYTORCH'
#framework_version = '1.7.1'

Optional: Used for optimizing your model using SageMaker Neo
PyTorch uses NCHW format for images
data_input_configuration = "[[1,3,256,256]]"

Create a dictionary to use as input for creating a model pacakge group
model_package_input_dict = {
 "ModelPackageGroupName" : model_package_group_name,
 "ModelPackageDescription" : model_package_description,
 "Domain": ml_domain,
 "Task": ml_task,
 "SamplePayloadUrl": sample_payload_url,
 "InferenceSpecification": {
 "Containers": [
 {
 "Image": image_uri,
 "ModelDataUrl": model_url,

Prerequisites 3979

Amazon SageMaker Developer Guide

 "Framework": framework.upper(),
 "FrameworkVersion": framework_version,
 "NearestModelName": nearest_model_name,
 "ModelInput": {"DataInputConfig":
 data_input_configuration}
 }
],
 "SupportedContentTypes": [input_content_type]
 }
 }

b. Create a model package

Use the CreateModelPackage API to create a model package. Pass the input dictionary
defined in the previous step:

model_package_response =
 sagemaker_client.create_model_package(**model_package_input_dict)

You need the model package ARN to use Amazon SageMaker Inference Recommender.
Note the ARN of the model package or store it in a variable:

model_package_arn = model_package_response["ModelPackageArn"]

print('ModelPackage Version ARN : {}'.format(model_package_arn))

9. Option 2: Create a model and configure the ContainerConfig field

Use this option if you want to start an inference recommendations job and don't need to
register your model in the Model Registry. In the following steps, you create a model in
SageMaker and configure the ContainerConfig field as input for the recommendations job.

a. Create a model

Create a model with the CreateModel API. For an example that calls this method when
deploying a model to SageMaker Hosting, see Create a Model (AWS SDK for Python
(Boto3)).

In a previous step, we downloaded a pre-trained ResNet18 model and stored it in an
Amazon S3 bucket in a directory called models. We retrieved a PyTorch (v1.7.1) Deep
Learning Container inference image and stored the URI in a variable called image_uri.

Prerequisites 3980

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html#realtime-endpoints-deployment-create-model
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html#realtime-endpoints-deployment-create-model

Amazon SageMaker Developer Guide

We use those variables in the following code example where we define a dictionary used
as input to the CreateModel API.

model_name = '<name_of_the_model>'
Role to give SageMaker permission to access AWS services.
sagemaker_role= "arn:aws:iam::<region>:<account>:role/*"

Provide the Amazon S3 URI of your compressed tarfile
so that Model Registry knows where to find your model artifacts
bucket_prefix='models'
bucket = '<your-bucket-name>' # Provide the name of your S3 bucket
model_s3_key = f"{bucket_prefix}/test.tar.gz"
model_url= f"s3://{bucket}/{model_s3_key}"

#Create model
create_model_response = sagemaker_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = sagemaker_role,
 PrimaryContainer = {
 'Image': image_uri,
 'ModelDataUrl': model_url,
 })

b. Configure the ContainerConfig field

Next, you must configure the ContainerConfig field with the model you just created and
specify the following parameters in it:

• Domain: The machine learning domain of the model and its components, such as
computer vision or natural language processing.

• Task: The machine learning task that the model accomplishes, such as image
classification or object detection.

• PayloadConfig: The configuration for the payload for a recommendation job. For
more information about the subfields, see RecommendationJobPayloadConfig.

• Framework: The machine learning framework of the container image, such as PyTorch.

• FrameworkVersion: The framework version of the container image.

• (Optional) SupportedInstanceTypes: A list of the instance types that are used to
generate inferences in real-time.

Prerequisites 3981

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html#sagemaker-CreateModel-request-ModelName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RecommendationJobInputConfig.html#sagemaker-Type-RecommendationJobInputConfig-ContainerConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RecommendationJobPayloadConfig.html#sagemaker-Type-RecommendationJobPayloadConfig-SamplePayloadUrl

Amazon SageMaker Developer Guide

If you use the SupportedInstanceTypes parameter, Inference Recommender limits
the search space for instance types during a Default job. Use this parameter if you have
budget constraints or know there's a specific set of instance types that can support your
model and container image.

In the following code example, we use the previously defined parameters,
along with NearestModelName, to define a dictionary used as input to the
CreateInferenceRecommendationsJob API.

Uncomment if you did not store the domain and task in a previous step
#ml_domain = 'COMPUTER_VISION'
#ml_task = 'IMAGE_CLASSIFICATION'

Uncomment if you did not store the framework and framework version in a
 previous step
#framework = 'PYTORCH'
#framework_version = '1.7.1'

The name of the ML model as standardized by common model zoos
nearest_model_name = 'resnet18'

The supported MIME types for input and output data. In this example,
we are using images as input
input_content_type='image/jpeg'

Optional: Used for optimizing your model using SageMaker Neo
PyTorch uses NCHW format for images
data_input_configuration = "[[1,3,256,256]]"

Create a dictionary to use as input for creating an inference recommendation
 job
container_config = {
 "Domain": ml_domain,
 "Framework": framework.upper(),
 "FrameworkVersion": framework_version,
 "NearestModelName": nearest_model_name,
 "PayloadConfig": {
 "SamplePayloadUrl": sample_payload_url,
 "SupportedContentTypes": [input_content_type]
 },
 "DataInputConfig": data_input_configuration

Prerequisites 3982

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html

Amazon SageMaker Developer Guide

 "Task": ml_task,
 }

Recommendation jobs

Amazon SageMaker Inference Recommender can make two types of recommendations:

1. Inference recommendations (Default job type) run a set of load tests on the recommended
instance types. You can also load test for a serverless endpoint.. You only need to provide a
model package Amazon Resource Name (ARN) to launch this type of recommendation job.
Inference recommendation jobs complete within 45 minutes.

2. Endpoint recommendations (Advanced job type) are based on a custom load test where you
select your desired ML instances or a serverless endpoint, provide a custom traffic pattern, and
provide requirements for latency and throughput based on your production requirements. This
job takes an average of 2 hours to complete depending on the job duration set and the total
number of inference configurations tested.

Both types of recommendations use the same APIs to create, describe, and stop jobs. The output
is a list of instance configuration recommendations with associated environment variables, cost,
throughput, and latency metrics. Recommendation jobs also provide an initial instance count,
which you can use to configure an autoscaling policy. To differentiate between the two types
of jobs, when you’re creating a job through either the SageMaker console or the APIs, specify
Default to create preliminary endpoint recommendations and Advanced for custom load testing
and endpoint recommendations.

Note

You do not need to do both types of recommendation jobs in your own workflow. You can
do either independently of the other.

Inference Recommender can also provide you with a list of prospective instances, or the top five
instance types that are optimized for cost, throughput and latency for model deployment, along
with a confidence score. You can choose these instances when deploying your model. Inference
Recommender automatically performs benchmarking against your model for you to provide the
prospective instances. Since these are preliminary recommendations, we recommend that you
run further instance recommendation jobs to get more accurate results. To view the prospective

Recommendation jobs 3983

Amazon SageMaker Developer Guide

instances, go to your SageMaker model details page. For more information, see Get instant
prospective instances.

Topics

• Get instant prospective instances

• Get an inference recommendation

• Get an inference recommendation for an existing endpoint

• Get compiled recommendations with Neo

• Interpret recommendation results

• Get autoscaling policy recommendations

• Run a custom load test

• Troubleshoot Inference Recommender errors

Get instant prospective instances

Inference Recommender can also provide you with a list of prospective instances, or instance
types that might be suitable for your model, on your SageMaker model details page. Inference
Recommender automatically performs preliminary benchmarking against your model for you
to provide the top five prospective instances. Since these are preliminary recommendations, we
recommend that you run further instance recommendation jobs to get more accurate results.

You can view a list of prospective instances for your model either programmatically by using the
DescribeModel API, the SageMaker Python SDK, or the SageMaker console.

Note

You won’t get prospective instances for models that you created in SageMaker before this
feature became available.

To view the prospective instances for your model through the console, do the following:

1. Go to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Inference, and then choose Models.

3. From the list of models, choose your model.

Recommendation jobs 3984

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModel.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

On the details page for your model, go to the Prospective instances to deploy model section. The
following screenshot shows this section.

In this section, you can view the prospective instances that are optimized for cost, throughput, and
latency for model deployment, along with additional information for each instance type such as
the memory size, CPU and GPU count, and cost per hour.

If you decide that you want to benchmark a sample payload and run a full inference
recommendation job for your model, you can start a default inference recommendation job from
this page. To start a default job through the console, do the following:

1. On your model details page in the Prospective instances to deploy model section, choose
Run Inference recommender job.

2. In the dialog box that pops up, for S3 bucket for benchmarking payload, enter the Amazon
S3 location where you’ve stored a sample payload for your model.

3. For Payload content type, enter the MIME types for your payload data.

4. (Optional) In the Model compilation using SageMaker Neo section, for the Data input
configuration, enter a data shape in dictionary format.

5. Choose Run job.

Inference Recommender starts the job, and you can view the job and its results from the Inference
recommender list page in the SageMaker console.

If you want to run an advanced job and perform custom load tests, or if you want to configure
additional settings and parameters for your job, see Run a custom load test.

Recommendation jobs 3985

Amazon SageMaker Developer Guide

Get an inference recommendation

Inference recommendation jobs run a set of load tests on recommended instance types or a
serverless endpoint. Inference recommendation jobs use performance metrics that are based on
load tests using the sample data you provided during model version registration.

Note

Before you create an Inference Recommender recommendation job, make sure you have
satisfied the Prerequisites.

The following demonstrates how to use Amazon SageMaker Inference Recommender to create an
inference recommendation based on your model type using the AWS SDK for Python (Boto3), AWS
CLI, and Amazon SageMaker Studio Classic, and the SageMaker console

Create an inference recommendation

Create an inference recommendation programmatically using the AWS SDK for Python (Boto3) or
the AWS CLI, or interactively using Studio Classic or the SageMaker console. Specify a job name for
your inference recommendation, an AWS IAM role ARN, an input configuration, and either a model
package ARN when you registered your model with the model registry, or your model name and a
ContainerConfig dictionary from when you created your model in the Prerequisites section.

AWS SDK for Python (Boto3)

Use the CreateInferenceRecommendationsJob API to start an inference recommendation
job. Set the JobType field to 'Default' for inference recommendation jobs. In addition,
provide the following:

• The Amazon Resource Name (ARN) of an IAM role that enables Inference Recommender to
perform tasks on your behalf. Define this for the RoleArn field.

• A model package ARN or model name. Inference Recommender supports either one model
package ARN or a model name as input. Specify one of the following:

• The ARN of the versioned model package you created when you registered your model
with SageMaker model registry. Define this for ModelPackageVersionArn in the
InputConfig field.

• The name of the model you created. Define this for ModelName in the InputConfig
field. Also, provide the ContainerConfig dictionary, which includes the required fields

Recommendation jobs 3986

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html

Amazon SageMaker Developer Guide

that need to be provided with the model name. Define this for ContainerConfig in
the InputConfig field. In the ContainerConfig, you can also optionally specify the
SupportedEndpointType field as either RealTime or Serverless. If you specify this
field, Inference Recommender returns recommendations for only that endpoint type. If
you don't specify this field, Inference Recommender returns recommendations for both
endpoint types.

• A name for your Inference Recommender recommendation job for the JobName field. The
Inference Recommender job name must be unique within the AWS Region and within your
AWS account.

Import the AWS SDK for Python (Boto3) package and create a SageMaker client object using
the client class. If you followed the steps in the Prerequisites section, only specify one of the
following:

• Option 1: If you would like to create an inference recommendations job with a model package
ARN, then store the model package group ARN in a variable named model_package_arn.

• Option 2: If you would like to create an inference recommendations job with a model name
and ContainerConfig, store the model name in a variable named model_name and the
ContainerConfig dictionary in a variable named container_config.

Create a low-level SageMaker service client.
import boto3
aws_region = '<INSERT>'
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Provide only one of model package ARN or model name, not both.
Provide your model package ARN that was created when you registered your
model with Model Registry
model_package_arn = '<INSERT>'
Uncomment if you would like to create an inference recommendations job with a
model name instead of a model package ARN, and comment out model_package_arn
 above
Provide your model name
model_name = '<INSERT>'
Provide your container config
container_config = '<INSERT>'

Provide a unique job name for SageMaker Inference Recommender job

Recommendation jobs 3987

Amazon SageMaker Developer Guide

job_name = '<INSERT>'

Inference Recommender job type. Set to Default to get an initial recommendation
job_type = 'Default'

Provide an IAM Role that gives SageMaker Inference Recommender permission to
access AWS services
role_arn = 'arn:aws:iam::<account>:role/*'

sagemaker_client.create_inference_recommendations_job(
 JobName = job_name,
 JobType = job_type,
 RoleArn = role_arn,
 # Provide only one of model package ARN or model name, not both.
 # If you would like to create an inference recommendations job with a model
 name,
 # uncomment ModelName and ContainerConfig, and comment out
 ModelPackageVersionArn.
 InputConfig = {
 'ModelPackageVersionArn': model_package_arn
 # 'ModelName': model_name,
 # 'ContainerConfig': container_config
 }
)

See the Amazon SageMaker API Reference Guide for a full list of optional and required
arguments you can pass to CreateInferenceRecommendationsJob.

AWS CLI

Use the create-inference-recommendations-job API to start an inference
recommendation job. Set the job-type field to 'Default' for inference recommendation
jobs. In addition, provide the following:

• The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker Inference
Recommender to perform tasks on your behalf. Define this for the role-arn field.

• A model package ARN or model name. Inference Recommender supports either one model
package ARN or a model name as input. Specify one of the following

• The ARN of the versioned model package you created when you registered your model with
Model Registry. Define this for ModelPackageVersionArn in the input-config field.

Recommendation jobs 3988

https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html

Amazon SageMaker Developer Guide

• The name of the model you created. Define this for ModelName in the input-config
field. Also, provide the ContainerConfig dictionary which includes the required fields
that need to be provided with the model name. Define this for ContainerConfig in
the input-config field. In the ContainerConfig, you can also optionally specify the
SupportedEndpointType field as either RealTime or Serverless. If you specify this
field, Inference Recommender returns recommendations for only that endpoint type. If
you don't specify this field, Inference Recommender returns recommendations for both
endpoint types.

• A name for your Inference Recommender recommendation job for the job-name field. The
Inference Recommender job name must be unique within the AWS Region and within your
AWS account.

To create an inference recommendation jobs with a model package ARN, use the following
example:

aws sagemaker create-inference-recommendations-job
 --region <region>\
 --job-name <job_name>\
 --job-type Default\
 --role-arn arn:aws:iam::<account:role/*>\
 --input-config "{
 \"ModelPackageVersionArn\": \"arn:aws:sagemaker:<region:account:role/*>\",
 }"

To create an inference recommendation jobs with a model name and ContainerConfig, use
the following example. The example uses the SupportedEndpointType field to specify that
we only want to return real-time inference recommendations:

aws sagemaker create-inference-recommendations-job
 --region <region>\
 --job-name <job_name>\
 --job-type Default\
 --role-arn arn:aws:iam::<account:role/*>\
 --input-config "{
 \"ModelName\": \"model-name\",
 \"ContainerConfig\" : {
 \"Domain\": \"COMPUTER_VISION\",
 \"Framework\": \"PYTORCH\",
 \"FrameworkVersion\": \"1.7.1\",

Recommendation jobs 3989

Amazon SageMaker Developer Guide

 \"NearestModelName\": \"resnet18\",
 \"PayloadConfig\":
 {
 \"SamplePayloadUrl\": \"s3://{bucket}/{payload_s3_key}\",
 \"SupportedContentTypes\": [\"image/jpeg\"]
 },
 \"SupportedEndpointType\": \"RealTime\",
 \"DataInputConfig\": \"[[1,3,256,256]]\",
 \"Task\": \"IMAGE_CLASSIFICATION\",
 },
 }"

Amazon SageMaker Studio Classic

Create an inference recommendation job in Studio Classic.

1. In your Studio Classic application, choose the home icon

().

2. In the left sidebar of Studio Classic, choose Models.

3. Choose Model Registry from the dropdown list to display models you have registered with
the model registry.

The left panel displays a list of model groups. The list includes all the model groups
registered with the model registry in your account, including models registered outside of
Studio Classic.

4. Select the name of your model group. When you select your model group, the right pane of
Studio Classic displays column heads such as Versions and Setting.

If you have one or more model packages within your model group, you see a list of those
model packages within the Versions column.

5. Choose the Inference recommender column.

6. Choose an IAM role that grants Inference Recommender permission to access AWS services.
You can create a role and attach the AmazonSageMakerFullAccess IAM managed policy
to accomplish this. Or you can let Studio Classic create a role for you.

7. Choose Get recommendations.

The inference recommendation can take up to 45 minutes.

Recommendation jobs 3990

Amazon SageMaker Developer Guide

Warning

Do not close this tab. If you close this tab, you cancel the instance recommendation
job.

SageMaker console

Create an instance recommendation job through the SageMaker console by doing the following:

1. Go to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Inference, and then choose Inference recommender.

3. On the Inference recommender jobs page, choose Create job.

4. For Step 1: Model configuration, do the following:

a. For Job type, choose Default recommender job.

b. If you’re using a model registered in the SageMaker model registry, then turn on the
Choose a model from the model registry toggle and do the following:

i. From the Model group dropdown list, choose the model group in SageMaker
model registry where your model is located.

ii. From the Model version dropdown list, choose the desired version of your model.

c. If you’re using a model that you’ve created in SageMaker, then turn off the Choose a
model from the model registry toggle and do the following:

• For the Model name field, enter the name of your SageMaker model.

d. From the IAM role dropdown list, you can select an existing AWS IAM role that has
the necessary permissions to create an instance recommendation job. Alternatively,
if you don’t have an existing role, you can choose Create a new role to open the role
creation pop-up, and SageMaker adds the necessary permissions to the new role that
you create.

e. For S3 bucket for benchmarking payload, enter the Amazon S3 path to your
sample payload archive, which should contain sample payload files that Inference
Recommender uses to benchmark your model on different instance types.

f. For Payload content type, enter the MIME types of your sample payload data.

Recommendation jobs 3991

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

g. (Optional) If you turned off the Choose a model from the model registry toggle and
specified a SageMaker model, then for Container configuration, do the following:

i. For the Domain dropdown list, select the machine learning domain of the model,
such as computer vision, natural language processing, or machine learning.

ii. For the Framework dropdown list, select the framework of your container, such as
TensorFlow or XGBoost.

iii. For Framework version, enter the framework version of your container image.

iv. For the Nearest model name dropdown list, select the pre-trained model that
mostly closely matches your own.

v. For the Task dropdown list, select the machine learning task that the model
accomplishes, such as image classification or regression.

h. (Optional) For Model compilation using SageMaker Neo, you can configure the
recommendation job for a model that you’ve compiled using SageMaker Neo. For Data
input configuration, enter the correct input data shape for your model in a format
similar to {'input':[1,1024,1024,3]}.

i. Choose Next.

5. For Step 2: Instances and environment parameters, do the following:

a. (Optional) For Select instances for benchmarking, you can select up to 8 instance
types that you want to benchmark. If you don’t select any instances, Inference
Recommender considers all instance types.

b. Choose Next.

6. For Step 3: Job parameters, do the following:

a. (Optional) For the Job name field, enter a name for your instance recommendation
job. When you create the job, SageMaker appends a timestamp to the end of this
name.

b. (Optional) For the Job description field, enter a description for the job.

c. (Optional) For the Encryption key dropdown list, choose an AWS KMS key by name or
enter its ARN to encrypt your data.

d. (Optional) For Max test duration (s), enter the maximum number of seconds you want
each test to run for.

Recommendation jobs 3992

Amazon SageMaker Developer Guide

e. (Optional) For Max invocations per minute, enter the maximum number of requests
per minute the endpoint can reach before stopping the recommendation job. After
reaching this limit, SageMaker ends the job.

f. (Optional) For P99 Model latency threshold (ms), enter the model latency percentile
in milliseconds.

g. Choose Next.

7. For Step 4: Review job, review your configurations and then choose Submit.

Get your inference recommendation job results

Collect the results of your inference recommendation job programmatically with AWS SDK for
Python (Boto3), the AWS CLI, Studio Classic, or the SageMaker console.

AWS SDK for Python (Boto3)

Once an inference recommendation is complete, you can use
DescribeInferenceRecommendationsJob to get the job details and recommendations.
Provide the job name that you used when you created the inference recommendation job.

job_name='<INSERT>'
response = sagemaker_client.describe_inference_recommendations_job(
 JobName=job_name)

Print the response object. The previous code sample stored the response in a variable named
response.

print(response['Status'])

This returns a JSON response similar to the following example. Note that this example shows
the recommended instance types for real-time inference (for an example showing serverless
inference recommendations, see the example after this one).

{
 'JobName': 'job-name',
 'JobDescription': 'job-description',
 'JobType': 'Default',
 'JobArn': 'arn:aws:sagemaker:region:account-id:inference-recommendations-
job/resource-id',
 'Status': 'COMPLETED',

Recommendation jobs 3993

Amazon SageMaker Developer Guide

 'CreationTime': datetime.datetime(2021, 10, 26, 20, 4, 57, 627000,
 tzinfo=tzlocal()),
 'LastModifiedTime': datetime.datetime(2021, 10, 26, 20, 25, 1, 997000,
 tzinfo=tzlocal()),
 'InputConfig': {
 'ModelPackageVersionArn': 'arn:aws:sagemaker:region:account-
id:model-package/resource-id',
 'JobDurationInSeconds': 0
 },
 'InferenceRecommendations': [{
 'Metrics': {
 'CostPerHour': 0.20399999618530273,
 'CostPerInference': 5.246913588052848e-06,
 'MaximumInvocations': 648,
 'ModelLatency': 263596
 },
 'EndpointConfiguration': {
 'EndpointName': 'endpoint-name',
 'VariantName': 'variant-name',
 'InstanceType': 'ml.c5.xlarge',
 'InitialInstanceCount': 1
 },
 'ModelConfiguration': {
 'Compiled': False,
 'EnvironmentParameters': []
 }
 },
 {
 'Metrics': {
 'CostPerHour': 0.11500000208616257,
 'CostPerInference': 2.92620870823157e-06,
 'MaximumInvocations': 655,
 'ModelLatency': 826019
 },
 'EndpointConfiguration': {
 'EndpointName': 'endpoint-name',
 'VariantName': 'variant-name',
 'InstanceType': 'ml.c5d.large',
 'InitialInstanceCount': 1
 },
 'ModelConfiguration': {
 'Compiled': False,
 'EnvironmentParameters': []
 }

Recommendation jobs 3994

Amazon SageMaker Developer Guide

 },
 {
 'Metrics': {
 'CostPerHour': 0.11500000208616257,
 'CostPerInference': 3.3625731248321244e-06,
 'MaximumInvocations': 570,
 'ModelLatency': 1085446
 },
 'EndpointConfiguration': {
 'EndpointName': 'endpoint-name',
 'VariantName': 'variant-name',
 'InstanceType': 'ml.m5.large',
 'InitialInstanceCount': 1
 },
 'ModelConfiguration': {
 'Compiled': False,
 'EnvironmentParameters': []
 }
 }],
 'ResponseMetadata': {
 'RequestId': 'request-id',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {
 'x-amzn-requestid': 'x-amzn-requestid',
 'content-type': 'content-type',
 'content-length': '1685',
 'date': 'Tue, 26 Oct 2021 20:31:10 GMT'
 },
 'RetryAttempts': 0
 }
}

The first few lines provide information about the inference recommendation job itself. This
includes the job name, role ARN, and creation and deletion times.

The InferenceRecommendations dictionary contains a list of Inference Recommender
inference recommendations.

The EndpointConfiguration nested dictionary contains the instance type (InstanceType)
recommendation along with the endpoint and variant name (a deployed AWS machine learning
model) that was used during the recommendation job. You can use the endpoint and variant
name for monitoring in Amazon CloudWatch Events. See Monitor Amazon SageMaker with
Amazon CloudWatch for more information.

Recommendation jobs 3995

Amazon SageMaker Developer Guide

The Metrics nested dictionary contains information about the estimated cost per hour
(CostPerHour) for your real-time endpoint in US dollars, the estimated cost per inference
(CostPerInference) in US dollars for your real-time endpoint, the expected maximum
number of InvokeEndpoint requests per minute sent to the endpoint (MaxInvocations),
and the model latency (ModelLatency), which is the interval of time (in microseconds) that
your model took to respond to SageMaker. The model latency includes the local communication
times taken to send the request and to fetch the response from the container of a model and
the time taken to complete the inference in the container.

The following example shows the InferenceRecommendations part of the response for an
inference recommendations job configured to return serverless inference recommendations:

"InferenceRecommendations": [
 {
 "EndpointConfiguration": {
 "EndpointName": "value",
 "InitialInstanceCount": value,
 "InstanceType": "value",
 "VariantName": "value",
 "ServerlessConfig": {
 "MaxConcurrency": value,
 "MemorySizeInMb": value
 }
 },
 "InvocationEndTime": value,
 "InvocationStartTime": value,
 "Metrics": {
 "CostPerHour": value,
 "CostPerInference": value,
 "CpuUtilization": value,
 "MaxInvocations": value,
 "MemoryUtilization": value,
 "ModelLatency": value,
 "ModelSetupTime": value
 },
 "ModelConfiguration": {
 "Compiled": "False",
 "EnvironmentParameters": [],
 "InferenceSpecificationName": "value"
 },
 "RecommendationId": "value"
 }

Recommendation jobs 3996

Amazon SageMaker Developer Guide

]

You can interpret the recommendations for serverless inference similarly to the results for
real-time inference, with the exception of the ServerlessConfig, which tells you the
metrics returned for a serverless endpoint with the given MemorySizeInMB and when
MaxConcurrency = 1. To increase the throughput possible on the endpoint, increase the
value of MaxConcurrency linearly. For example, if the inference recommendation shows
MaxInvocations as 1000, then increasing MaxConcurrency to 2 would support 2000
MaxInvocations. Note that this is true only up to a certain point, which can vary based on
your model and code. Serverless recommendations also measure the metric ModelSetupTime,
which measures (in microseconds) the time it takes to launch computer resources on a
serverless endpoint. For more information about setting up serverless endpoints, see the
Serverless Inference documentation.

AWS CLI

Once an inference recommendation is complete, you can use describe-inference-
recommendations-job to get the job details and recommended instance types. Provide the
job name that you used when you created the inference recommendation job.

aws sagemaker describe-inference-recommendations-job\
 --job-name <job-name>\
 --region <aws-region>

The JSON response similar should resemble the following example. Note that this example
shows the recommended instance types for real-time inference (for an example showing
serverless inference recommendations, see the example after this one).

{
 'JobName': 'job-name',
 'JobDescription': 'job-description',
 'JobType': 'Default',
 'JobArn': 'arn:aws:sagemaker:region:account-id:inference-recommendations-
job/resource-id',
 'Status': 'COMPLETED',
 'CreationTime': datetime.datetime(2021, 10, 26, 20, 4, 57, 627000,
 tzinfo=tzlocal()),
 'LastModifiedTime': datetime.datetime(2021, 10, 26, 20, 25, 1, 997000,
 tzinfo=tzlocal()),
 'InputConfig': {

Recommendation jobs 3997

https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html

Amazon SageMaker Developer Guide

 'ModelPackageVersionArn': 'arn:aws:sagemaker:region:account-
id:model-package/resource-id',
 'JobDurationInSeconds': 0
 },
 'InferenceRecommendations': [{
 'Metrics': {
 'CostPerHour': 0.20399999618530273,
 'CostPerInference': 5.246913588052848e-06,
 'MaximumInvocations': 648,
 'ModelLatency': 263596
 },
 'EndpointConfiguration': {
 'EndpointName': 'endpoint-name',
 'VariantName': 'variant-name',
 'InstanceType': 'ml.c5.xlarge',
 'InitialInstanceCount': 1
 },
 'ModelConfiguration': {
 'Compiled': False,
 'EnvironmentParameters': []
 }
 },
 {
 'Metrics': {
 'CostPerHour': 0.11500000208616257,
 'CostPerInference': 2.92620870823157e-06,
 'MaximumInvocations': 655,
 'ModelLatency': 826019
 },
 'EndpointConfiguration': {
 'EndpointName': 'endpoint-name',
 'VariantName': 'variant-name',
 'InstanceType': 'ml.c5d.large',
 'InitialInstanceCount': 1
 },
 'ModelConfiguration': {
 'Compiled': False,
 'EnvironmentParameters': []
 }
 },
 {
 'Metrics': {
 'CostPerHour': 0.11500000208616257,
 'CostPerInference': 3.3625731248321244e-06,

Recommendation jobs 3998

Amazon SageMaker Developer Guide

 'MaximumInvocations': 570,
 'ModelLatency': 1085446
 },
 'EndpointConfiguration': {
 'EndpointName': 'endpoint-name',
 'VariantName': 'variant-name',
 'InstanceType': 'ml.m5.large',
 'InitialInstanceCount': 1
 },
 'ModelConfiguration': {
 'Compiled': False,
 'EnvironmentParameters': []
 }
 }],
 'ResponseMetadata': {
 'RequestId': 'request-id',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {
 'x-amzn-requestid': 'x-amzn-requestid',
 'content-type': 'content-type',
 'content-length': '1685',
 'date': 'Tue, 26 Oct 2021 20:31:10 GMT'
 },
 'RetryAttempts': 0
 }
}

The first few lines provide information about the inference recommendation job itself. This
includes the job name, role ARN, creation, and deletion time.

The InferenceRecommendations dictionary contains a list of Inference Recommender
inference recommendations.

The EndpointConfiguration nested dictionary contains the instance type (InstanceType)
recommendation along with the endpoint and variant name (a deployed AWS machine learning
model) used during the recommendation job. You can use the endpoint and variant name for
monitoring in Amazon CloudWatch Events. See Monitor Amazon SageMaker with Amazon
CloudWatch for more information.

The Metrics nested dictionary contains information about the estimated cost per hour
(CostPerHour) for your real-time endpoint in US dollars, the estimated cost per inference
(CostPerInference) in US dollars for your real-time endpoint, the expected maximum

Recommendation jobs 3999

Amazon SageMaker Developer Guide

number of InvokeEndpoint requests per minute sent to the endpoint (MaxInvocations),
and the model latency (ModelLatency), which is the interval of time (in milliseconds) that
your model took to respond to SageMaker. The model latency includes the local communication
times taken to send the request and to fetch the response from the container of a model and
the time taken to complete the inference in the container.

The following example shows the InferenceRecommendations part of the response for an
inference recommendations job configured to return serverless inference recommendations:

"InferenceRecommendations": [
 {
 "EndpointConfiguration": {
 "EndpointName": "value",
 "InitialInstanceCount": value,
 "InstanceType": "value",
 "VariantName": "value",
 "ServerlessConfig": {
 "MaxConcurrency": value,
 "MemorySizeInMb": value
 }
 },
 "InvocationEndTime": value,
 "InvocationStartTime": value,
 "Metrics": {
 "CostPerHour": value,
 "CostPerInference": value,
 "CpuUtilization": value,
 "MaxInvocations": value,
 "MemoryUtilization": value,
 "ModelLatency": value,
 "ModelSetupTime": value
 },
 "ModelConfiguration": {
 "Compiled": "False",
 "EnvironmentParameters": [],
 "InferenceSpecificationName": "value"
 },
 "RecommendationId": "value"
 }
]

Recommendation jobs 4000

Amazon SageMaker Developer Guide

You can interpret the recommendations for serverless inference similarly to the results for
real-time inference, with the exception of the ServerlessConfig, which tells you the
metrics returned for a serverless endpoint with the given MemorySizeInMB and when
MaxConcurrency = 1. To increase the throughput possible on the endpoint, increase the
value of MaxConcurrency linearly. For example, if the inference recommendation shows
MaxInvocations as 1000, then increasing MaxConcurrency to 2 would support 2000
MaxInvocations. Note that this is true only up to a certain point, which can vary based on
your model and code. Serverless recommendations also measure the metric ModelSetupTime,
which measures (in microseconds) the time it takes to launch computer resources on a
serverless endpoint. For more information about setting up serverless endpoints, see the
Serverless Inference documentation.

Amazon SageMaker Studio Classic

The inference recommendations populate in a new Inference recommendations tab within
Studio Classic. It can take up to 45 minutes for the results to show up. This tab contains Results
and Details column headings.

The Details column provides information about the inference recommendation job, such as the
name of the inference recommendation, when the job was created (Creation time), and more. It
also provides Settings information, such as the maximum number of invocations that occurred
per minute and information about the Amazon Resource Names used.

The Results column provides a Deployment goals and SageMaker recommendations
window in which you can adjust the order that the results are displayed based on deployment
importance. There are three dropdown menus that you can use to provide the level of
importance of the Cost, Latency, and Throughput for your use case. For each goal (cost,
latency, and throughput), you can set the level of importance: Lowest Importance, Low
Importance, Moderate importance, High importance, or Highest importance.

Based on your selections of importance for each goal, Inference Recommender displays its top
recommendation in the SageMaker recommendation field on the right of the panel, along
with the estimated cost per hour and inference request. It also provides information about the
expected model latency, maximum number of invocations, and the number of instances. For
serverless recommendations, you can see the ideal values for the maximum concurrency and
endpoint memory size.

In addition to the top recommendation displayed, you can also see the same information
displayed for all instances that Inference Recommender tested in the All runs section.

Recommendation jobs 4001

https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html

Amazon SageMaker Developer Guide

SageMaker console

You can view your instance recommendation jobs in the SageMaker console by doing the
following:

1. Go to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Inference, and then choose Inference recommender.

3. On the Inference recommender jobs page, choose the name of your inference
recommendation job.

On the details page for your job, you can view the Inference recommendations, which are the
instance types SageMaker recommends for your model, as shown in the following screenshot.

In this section, you can compare the instance types by various factors such as Model latency,
Cost per hour, Cost per inference, and Invocations per minute.

On this page, you can also view the configurations you specified for your job. In the Monitor
section, you can view the Amazon CloudWatch metrics that were logged for each instance type.
To learn more about interpreting these metrics, see Interpret results.

For more information about interpreting the results of your recommendation job, see Interpret
recommendation results.

Stop your inference recommendation

You might want to stop a job that is currently running if you began a job by mistake or no
longer need to run the job. Stop your Inference Recommender inference recommendation jobs
programmatically with the StopInferenceRecommendationsJob API or with Studio Classic.

Recommendation jobs 4002

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender-interpret-results.html

Amazon SageMaker Developer Guide

AWS SDK for Python (Boto3)

Specify the name of the inference recommendation job for the JobName field:

sagemaker_client.stop_inference_recommendations_job(
 JobName='<INSERT>'
)

AWS CLI

Specify the job name of the inference recommendation job for the job-name flag:

aws sagemaker stop-inference-recommendations-job --job-name <job-name>

Amazon SageMaker Studio Classic

Close the tab in which you initiated the inference recommendation to stop your Inference
Recommender inference recommendation.

SageMaker console

To stop your instance recommendation job through the SageMaker console, do the following:

1. Go to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Inference, and then choose Inference recommender.

3. On the Inference recommender jobs page, select your instance recommendation job.

4. Choose Stop job.

5. In the dialog box that pops up, choose Confirm.

After stopping your job, the job’s Status should change to Stopping.

Get an inference recommendation for an existing endpoint

Inference recommendation jobs run a set of load tests on recommended instance types and an
existing endpoint. Inference recommendation jobs use performance metrics that are based on load
tests using the sample data you provided during model version registration.

You can benchmark and get inference recommendations for an existing SageMaker Inference
endpoint to help you improve the performance of your endpoint. The procedure of getting

Recommendation jobs 4003

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

recommendations for an existing SageMaker Inference endpoint is similar to the procedure for
getting inference recommendations without an endpoint. There are several feature exclusions to
take note of when benchmarking an existing endpoint:

• You can only use one existing endpoint per Inference Recommender job.

• You can only have one variant on your endpoint.

• You can’t use an endpoint that enables autoscaling.

• This functionality is only supported for Real-Time Inference.

• This functionality doesn’t support Real-Time Multi-Model Endpoints.

Warning

We strongly recommend that you don't run an Inference Recommender job on a production
endpoint that handles live traffic. The synthetic load during benchmarking can affect
your production endpoint and cause throttling or provide inaccurate benchmark results.
We recommend that you use a non-production or developer endpoint for comparison
purposes.

The following sections demonstrate how to use Amazon SageMaker Inference Recommender to
create an inference recommendation for an existing endpoint based on your model type using the
AWS SDK for Python (Boto3) and the AWS CLI.

Note

Before you create an Inference Recommender recommendation job, make sure you have
satisfied the Prerequisites.

Prerequisites

If you don’t already have a SageMaker Inference endpoint, you can either get an inference
recommendation without an endpoint, or you can create a Real-Time Inference endpoint by
following the instructions in Create your endpoint and deploy your model.

Recommendation jobs 4004

https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender-instance-recommendation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender-instance-recommendation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender-instance-recommendation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html

Amazon SageMaker Developer Guide

Create an inference recommendation job for an existing endpoint

Create an inference recommendation programmatically using AWS SDK for Python (Boto3), or
the AWS CLI. Specify a job name for your inference recommendation, the name of an existing
SageMaker Inference endpoint, an AWS IAM role ARN, an input configuration, and your model
package ARN from when you registered your model with the model registry.

AWS SDK for Python (Boto3)

Use the CreateInferenceRecommendationsJob API to get an inference recommendation.
Set the JobType field to 'Default' for inference recommendation jobs. In addition, provide
the following:

• Provide a name for your Inference Recommender recommendation job for the JobName field.
The Inference Recommender job name must be unique within the AWS Region and within
your AWS account.

• The Amazon Resource Name (ARN) of an IAM role that enables Inference Recommender to
perform tasks on your behalf. Define this for the RoleArn field.

• The ARN of the versioned model package you created when you registered your model with
the model registry. Define this for ModelPackageVersionArn in the InputConfig field.

• Provide the name of an existing SageMaker Inference endpoint that you want to benchmark
in Inference Recommender for Endpoints in the InputConfig field.

Import the AWS SDK for Python (Boto3) package and create a SageMaker client object using
the client class. If you followed the steps in the Prerequisites section, the model package group
ARN was stored in a variable named model_package_arn.

Create a low-level SageMaker service client.
import boto3
aws_region = '<region>'
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Provide your model package ARN that was created when you registered your
model with Model Registry
model_package_arn = '<model-package-arn>'

Provide a unique job name for SageMaker Inference Recommender job
job_name = '<job-name>'

Recommendation jobs 4005

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html

Amazon SageMaker Developer Guide

Inference Recommender job type. Set to Default to get an initial recommendation
job_type = 'Default'

Provide an IAM Role that gives SageMaker Inference Recommender permission to
access AWS services
role_arn = '<arn:aws:iam::<account>:role/*>'

Provide endpoint name for your endpoint that want to benchmark in Inference
 Recommender
endpoint_name = '<existing-endpoint-name>'

sagemaker_client.create_inference_recommendations_job(
 JobName = job_name,
 JobType = job_type,
 RoleArn = role_arn,
 InputConfig = {
 'ModelPackageVersionArn': model_package_arn,
 'Endpoints': [{'EndpointName': endpoint_name}]
 }
)

See the Amazon SageMaker API Reference Guide for a full list of optional and required
arguments you can pass to CreateInferenceRecommendationsJob.

AWS CLI

Use the create-inference-recommendations-job API to get an instance endpoint
recommendation. Set the job-type field to 'Default' for instance endpoint
recommendation jobs. In addition, provide the following:

• Provide a name for your Inference Recommender recommendation job for the job-name
field. The Inference Recommender job name must be unique within the AWS Region and
within your AWS account.

• The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker Inference
Recommender to perform tasks on your behalf. Define this for the role-arn field.

• The ARN of the versioned model package you created when you registered your model with
Model Registry. Define this for ModelPackageVersionArn in the input-config field.

• Provide the name of an existing SageMaker Inference endpoint that you want to benchmark
in Inference Recommender for Endpoints in the input-config field.

Recommendation jobs 4006

https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html

Amazon SageMaker Developer Guide

aws sagemaker create-inference-recommendations-job
 --region <region>\
 --job-name <job_name>\
 --job-type Default\
 --role-arn arn:aws:iam::<account:role/*>\
 --input-config "{
 \"ModelPackageVersionArn\": \"arn:aws:sagemaker:<region:account:role/*>\",
 \"Endpoints\": [{\"EndpointName\": <endpoint_name>}]
 }"

Get your inference recommendation job results

You can collect the results of your inference recommendation job programmatically with the
same procedure for standard inference recommendation jobs. For more information, see Get your
inference recommendation job results.

When you get inference recommendation job results for an existing endpoint, you should receive a
JSON response similar to the following:

{
 "JobName": "job-name",
 "JobType": "Default",
 "JobArn": "arn:aws:sagemaker:region:account-id:inference-recommendations-
job/resource-id",
 "RoleArn": "iam-role-arn",
 "Status": "COMPLETED",
 "CreationTime": 1664922919.2,
 "LastModifiedTime": 1664924208.291,
 "InputConfig": {
 "ModelPackageVersionArn": "arn:aws:sagemaker:region:account-id:model-
package/resource-id",
 "Endpoints": [
 {
 "EndpointName": "endpoint-name"
 }
]
 },
 "InferenceRecommendations": [
 {
 "Metrics": {
 "CostPerHour": 0.7360000014305115,
 "CostPerInference": 7.456940238625975e-06,

Recommendation jobs 4007

Amazon SageMaker Developer Guide

 "MaxInvocations": 1645,
 "ModelLatency": 171
 },
 "EndpointConfiguration": {
 "EndpointName": "sm-endpoint-name",
 "VariantName": "variant-name",
 "InstanceType": "ml.g4dn.xlarge",
 "InitialInstanceCount": 1
 },
 "ModelConfiguration": {
 "EnvironmentParameters": [
 {
 "Key": "TS_DEFAULT_WORKERS_PER_MODEL",
 "ValueType": "string",
 "Value": "4"
 }
]
 }
 }
],
 "EndpointPerformances": [
 {
 "Metrics": {
 "MaxInvocations": 184,
 "ModelLatency": 1312
 },
 "EndpointConfiguration": {
 "EndpointName": "endpoint-name"
 }
 }
]
}

The first few lines provide information about the inference recommendation job itself. This
includes the job name, role ARN, and creation and latest modification times.

The InferenceRecommendations dictionary contains a list of Inference Recommender inference
recommendations.

The EndpointConfiguration nested dictionary contains the instance type (InstanceType)
recommendation along with the endpoint and variant name (a deployed AWS machine learning
model) that was used during the recommendation job.

Recommendation jobs 4008

Amazon SageMaker Developer Guide

The Metrics nested dictionary contains information about the estimated cost per hour
(CostPerHour) for your real-time endpoint in US dollars, the estimated cost per inference
(CostPerInference) in US dollars for your real-time endpoint, the expected maximum number
of InvokeEndpoint requests per minute sent to the endpoint (MaxInvocations), and the model
latency (ModelLatency), which is the interval of time (in milliseconds) that your model took
to respond to SageMaker. The model latency includes the local communication times taken to
send the request and to fetch the response from the container of a model and the time taken to
complete the inference in the container.

The EndpointPerformances nested dictionary contains the name of your existing endpoint on
which the recommendation job was run (EndpointName) and the performance metrics for your
endpoint (MaxInvocations and ModelLatency).

Stop your instance endpoint recommendation

You might want to stop a job that is currently running if you began a job by mistake or no
longer need to run the job. You can stop your Inference Recommender recommendation job
programmatically with the same procedure for standard inference recommendation jobs. For more
information, see Stop your inference recommendation.

Get compiled recommendations with Neo

In Inference Recommender, you can compile your model with Neo and get endpoint
recommendations for your compiled model. SageMaker Neo is a service that can optimize your
model for a target hardware platform (that is, a specific instance type or environment). Optimizing
a model with Neo might improve the performance of your hosted model.

For Neo-supported frameworks and containers, Inference Recommender automatically suggests
Neo-optimized recommendations. To be eligible for Neo compilation, your input must meet the
following prerequisites:

• You are using a SageMaker owned DLC or XGBoost container.

• You are using a framework version supported by Neo. For the framework versions supported by
Neo, see Cloud Instances in the SageMaker Neo documentation.

• Neo requires that you provide a correct input data shape for your model. You can specify this
data shape as the DataInputConfig in the InferenceSpecification when you create a
model package. For information about the correct data shapes for each framework, see Prepare
Model for Compilation in the SageMaker Neo documentation.

Recommendation jobs 4009

https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/what-is-dlc.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelInput.html#sagemaker-Type-ModelInput-DataInputConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html#sagemaker-CreateModelPackage-request-InferenceSpecification
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-compilation-preparing-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-compilation-preparing-model.html

Amazon SageMaker Developer Guide

The following example shows how to specify the DataInputConfig field in the
InferenceSpecification, where data_input_configuration is a variable that contains
the data shape in dictionary format (for example, {'input':[1,1024,1024,3]}).

"InferenceSpecification": {
 "Containers": [
 {
 "Image": dlc_uri,
 "Framework": framework.upper(),
 "FrameworkVersion": framework_version,
 "NearestModelName": model_name,
 "ModelInput": {"DataInputConfig": data_input_configuration},
 }
],
 "SupportedContentTypes": input_mime_types, # required, must be non-null
 "SupportedResponseMIMETypes": [],
 "SupportedRealtimeInferenceInstanceTypes":
 supported_realtime_inference_types, # optional
 }

If these conditions are met in your request, then Inference Recommender runs scenarios for
both compiled and uncompiled versions of your model, giving you multiple recommendation
combinations to choose from. You can compare the configurations for compiled and uncompiled
versions of the same inference recommendation and determine which one best suits your use case.
The recommendations are ranked by cost per inference.

To get the Neo compilation recommendations, you don’t have to do any additional configuration
besides making sure that your input meets the preceding requirements. Inference Recommender
automatically runs Neo compilation on your model if your input meets the requirements, and you
receive a response that includes Neo recommendations.

If you run into errors during your Neo compilation, see Troubleshoot Neo Compilation Errors.

The following table is an example of a response you might get from an Inference Recommender
job that includes recommendations for compiled models. If the InferenceSpecificationName
field is None, then the recommendation is an uncompiled model. The last row, in which the value
for the InferenceSpecificationName field is neo-00011122-2333-4445-5566-677788899900,
is for a model compiled with Neo. The value in the field is the name of the Neo job used to compile
and optimize your model.

Recommendation jobs 4010

Amazon SageMaker Developer Guide

EndpointN
ame

InstanceT
ype

InitialIn
stanceCou
nt

Environme
ntParamet
ers

CostPerHo
ur

CostPerIn
ference

MaxInvoca
tions

ModelLate
ncy

Inference
Specifica
tionName

sm-
epc-ex
ample-000
111222

ml.c5.9xl
arge

1 [] 1.836 9.15E-07 33456 7 None

sm-
epc-ex
ample-111
222333

ml.c5.2xl
arge

1 [] 0.408 2.11E-07 32211 21 None

sm-
epc-ex
ample-222
333444

ml.c5.xla
rge

1 [] 0.204 1.86E-07 18276 92 None

sm-
epc-ex
ample-333
444555

ml.c5.xla
rge

1 [] 0.204 1.60E-07 21286 42 neo-00011
122-2333-
4445-5566
-67778889
9900

Get started

The general steps for creating an Inference Recommender job that includes Neo-optimized
recommendations are as follows:

• Prepare your ML model for compilation. For more information, see Prepare Model for
Compilation in the Neo documentation.

• Package your model in a model archive (.tar.gz file).

• Create a sample payload archive.

• Register your model in SageMaker Model Registry.

• Create an Inference Recommender job.

Recommendation jobs 4011

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-compilation-preparing-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-compilation-preparing-model.html

Amazon SageMaker Developer Guide

• View the results of the Inference Recommender job and choose a configuration.

• Debug compilation failures, if any. For more information, see Troubleshoot Neo Compilation
Errors.

For an example that demonstrates the previous workflow and how to get Neo-optimized
recommendations using XGBoost, see the following example notebook. For an example that
show how to get Neo-optimized recommendations using TensorFlow, see the following example
notebook.

Interpret recommendation results

Each Inference Recommender job result includes InstanceType, InitialInstanceCount, and
EnvironmentParameters, which are tuned environment variable parameters for your container
to improve its latency and throughput. The results also include performance and cost metrics such
as MaxInvocations, ModelLatency, CostPerHour, CostPerInference, CpuUtilization,
and MemoryUtilization.

In the table below we provide a description of these metrics. These metrics can help you narrow
down your search for the best endpoint configuration that suits your use case. For example, if your
motivation is overall price performance with an emphasis on throughput, then you should focus on
CostPerInference.

Metric Description Use case

ModelLatency The interval of time taken
by a model to respond as
viewed from SageMaker. This
interval includes the local
communication times taken
to send the request and to
fetch the response from the
container of a model and the
time taken to complete the
inference in the container.

Units: Milliseconds

Latency sensitive workloads
such as ad serving and
medical diagnosis

Recommendation jobs 4012

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/xgboost/xgboost-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/inference-recommender.ipynb

Amazon SageMaker Developer Guide

Metric Description Use case

MaximumInvocations The maximum number of
InvokeEndpoint requests
sent to a model endpoint in a
minute.

Units: None

Throughput-focused
workloads such as video
processing or batch inference

CostPerHour The estimated cost per hour
for your real-time endpoint.

Units: US Dollars

Cost sensitive workloads with
no latency deadlines

CostPerInference The estimated cost per
inference call for your real-
time endpoint.

Units: US Dollars

Maximize overall price
performance with a focus on
throughput

CpuUtilization The expected CPU utilizati
on at maximum invocations
per minute for the endpoint
instance.

Units: Percent

Understand instance health
during benchmarking by
having visibility into core CPU
utilization of the instance

MemoryUtilization The expected memory
utilization at maximum
invocations per minute for
the endpoint instance.

Units: Percent

Understand instance health
during benchmarking by
having visibility into core
memory utilization of the
instance

In some cases you might want to explore other SageMaker Endpoint Invocation metrics such as
CPUUtilization. Every Inference Recommender job result includes the names of endpoints spun
up during the load test. You can use CloudWatch to review the logs for these endpoints even after
they’ve been deleted.

Recommendation jobs 4013

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation

Amazon SageMaker Developer Guide

The following image is an example of CloudWatch metrics and charts you can review for a single
endpoint from your recommendation result. This recommendation result is from a Default job. The
way to interpret the scalar values from the recommendation results is that they are based on the
time point when the Invocations graph first begins to level out. For example, the ModelLatency
value reported is at the beginning of the plateau around 03:00:31.

For full descriptions of the CloudWatch metrics used in the preceding charts, see SageMaker
Endpoint Invocation metrics.

You can also see performance metrics like ClientInvocations and NumberOfUsers published
by Inference Recommender in the /aws/sagemaker/InferenceRecommendationsJobs
namespace. For a full list of metrics and descriptions published by Inference Recommender, see
SageMaker Inference Recommender Jobs Metrics.

Recommendation jobs 4014

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation

Amazon SageMaker Developer Guide

See the Amazon SageMaker Inference Recommender - CloudWatch Metrics Jupyter notebook in
the amazon-sagemaker-examples Github repository for an example of how to use the AWS SDK for
Python (Boto3) to explore CloudWatch metrics for your endpoints.

Get autoscaling policy recommendations

With Amazon SageMaker Inference Recommender, you can get recommendations for autoscaling
policies for your SageMaker endpoint based on your anticipated traffic pattern. If you’ve already
completed an inference recommendation job, you can provide the details of the job to get a
recommendation for an autoscaling policy that you can apply to your endpoint.

Inference Recommender benchmarks different values for each metric to determine the
ideal autoscaling configuration for your endpoint. The autoscaling recommendation returns
a recommended autoscaling policy for each metric that was defined in your inference
recommendation job. You can save the policies and apply them to your endpoint with the
PutScalingPolicy API.

To get started, review the following prerequisites.

Prerequisites

Before you begin, you must have completed a successful inference recommendation job. In the
following section, you can provide either an inference recommendation ID or the name of a
SageMaker endpoint that was benchmarked during an inference recommendation job.

To retrieve your recommendation job ID or endpoint name, you can either view the details of your
inference recommendation job in the SageMaker console, or you can use the RecommendationId
or EndpointName fields returned by the DescribeInferenceRecommendationsJob API.

Create an autoscaling configuration recommendation

To create an autoscaling recommendation policy, you can use the AWS SDK for Python (Boto3).

The following example shows the fields for the GetScalingConfigurationRecommendation API. Use
the following fields when you call the API:

• InferenceRecommendationsJobName – Enter the name of your inference recommendation
job.

• RecommendationId – Enter the ID of an inference recommendation from a recommendation
job. This is optional if you’ve specified the EndpointName field.

Recommendation jobs 4015

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/tensorflow-cloudwatch/tf-cloudwatch-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeInferenceRecommendationsJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetScalingConfigurationRecommendation.html

Amazon SageMaker Developer Guide

• EndpointName – Enter the name of an endpoint that was benchmarked during an inference
recommendation job. This is optional if you’ve specified the RecommendationId field.

• TargetCpuUtilizationPerCore – (Optional) Enter a percentage value of how much
utilization you want an instance on your endpoint to use before autoscaling. The default value if
you don’t specify this field is 50%.

• ScalingPolicyObjective – (Optional) An object where you specify your anticipated traffic
pattern.

• MinInvocationsPerMinute – (Optional) The minimum number of expected requests to your
endpoint per minute.

• MaxInvocationsPerMinute – (Optional) The maximum number of expected requests to
your endpoint per minute.

{
 "InferenceRecommendationsJobName": "string", // Required
 "RecommendationId": "string", // Optional, provide one of RecommendationId or
 EndpointName
 "EndpointName": "string", // Optional, provide one of RecommendationId or
 EndpointName
 "TargetCpuUtilizationPerCore": number, // Optional
 "ScalingPolicyObjective": { // Optional
 "MinInvocationsPerMinute": number,
 "MaxInvocationsPerMinute": number
 }
}

After submitting your request, you’ll receive a response with autoscaling policies defined for each
metric. See the following section for information about interpreting the response.

Review your autoscaling configuration recommendation results

The following example shows the response from the GetScalingConfigurationRecommendation
API:

{
 "InferenceRecommendationsJobName": "string",
 "RecommendationId": "string", // One of RecommendationId or EndpointName is shown
 "EndpointName": "string",
 "TargetUtilizationPercentage": Integer,
 "ScalingPolicyObjective": {

Recommendation jobs 4016

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetScalingConfigurationRecommendation.html

Amazon SageMaker Developer Guide

 "MinInvocationsPerMinute": Integer,
 "MaxInvocationsPerMinute": Integer
 },
 "Metric": {
 "ModelLatency": Integer,
 "InvocationsPerInstance": Integer
 },
 "DynamicScalingConfiguration": {
 "MinCapacity": number,
 "MaxCapacity": number,
 "ScaleInCooldown": number,
 "ScaleOutCooldown": number,
 "ScalingPolicies": [
 {
 "TargetTracking": {
 "MetricSpecification": {
 "Predefined" {
 "PredefinedMetricType": "string"
 },
 "Customized": {
 "MetricName": "string",
 "Namespace": "string",
 "Statistic": "string"
 }
 },
 "TargetValue": Double
 }
 }
]
 }
}

The InferenceRecommendationsJobName, RecommendationID or EndpointName,
TargetCpuUtilizationPerCore, and the ScalingPolicyObjective object fields are copied
from your initial request.

The Metric object lists the metrics that were benchmarked in your inference recommendation
job, along with a calculation of the values for each metric when the instance utilization would
be the same as the TargetCpuUtilizationPerCore value. This is useful for anticipating
the performance metrics on your endpoint when it scales in and out with the recommended
autoscaling policy. For example, consider if your instance utilization was 50% in your inference
recommendation job and your InvocationsPerInstance value was originally 4. If you specify

Recommendation jobs 4017

Amazon SageMaker Developer Guide

the TargetCpuUtilizationPerCore value to be 100% in your autoscaling recommendation
request, then the InvocationsPerInstance metric value returned in the response is 2 because
you anticipated allocating twice as much instance utilization.

The DynamicScalingConfiguration object returns the values that you should specify for the
TargetTrackingScalingPolicyConfiguration when you call the PutScalingPolicy API. This includes
the recommended minimum and maximum capacity values, the recommended scale in and
scale out cooldown times, and the ScalingPolicies object, which contains the recommended
TargetValue you should specify for each metric.

Run a custom load test

Amazon SageMaker Inference Recommender load tests conduct extensive benchmarks based on
production requirements for latency and throughput, custom traffic patterns, and either serverless
endpoints or real-time instances (up to 10) that you select.

The following sections demonstrate how to create, describe, and stop a load test programmatically
using the AWS SDK for Python (Boto3) and the AWS CLI, or interactively using Amazon SageMaker
Studio Classic or the SageMaker console.

Create a load test job

Create a load test programmatically using the AWS SDK for Python (Boto3), with the AWS CLI,
or interactively using Studio Classic or the SageMaker console. As with Inference Recommender
inference recommendations, specify a job name for your load test, an AWS IAM role ARN, an input
configuration, and your model package ARN from when you registered your model with the model
registry. Load tests require that you also specify a traffic pattern and stopping conditions.

AWS SDK for Python (Boto3)

Use the CreateInferenceRecommendationsJob API to create an Inference Recommender
load test. Specify Advanced for the JobType field and provide:

• A job name for your load test (JobName). The job name must be unique within your AWS
Region and within your AWS account.

• The Amazon Resource Name (ARN) of an IAM role that enables Inference Recommender to
perform tasks on your behalf. Define this for the RoleArn field.

• An endpoint configuration dictionary (InputConfig) where you specify the following:

• For TrafficPattern, specify either the phases or stairs traffic pattern. With the phases
traffic pattern, new users spawn every minute at the rate you specify. With the stairs traffic

Recommendation jobs 4018

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html#autoscaling-PutScalingPolicy-request-TargetTrackingScalingPolicyConfiguration
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html

Amazon SageMaker Developer Guide

pattern, new users spawn at timed intervals (or steps) at a rate you specify. Choose one of
the following:

• For TrafficType, specify PHASES. Then, for the Phases array, specify the
InitialNumberOfUsers (how many concurrent users to start with, with a minimum
of 1 and a maximum of 3), SpawnRate (the number of users to be spawned in a minute
for a specific phase of load testing, with a minimum of 0 and maximum of 3), and
DurationInSeconds (how long the traffic phase should be, with a minimum of 120 and
maximum of 3600).

• For TrafficType, specify STAIRS. Then, for the Stairs array, specify the
DurationInSeconds (how long the traffic phase should be, with a minimum of 120
and maximum of 3600), NumberOfSteps (how many intervals are used during the
phase), and UsersPerStep (how many users are added during each interval). Note that
the length of each step is the value of DurationInSeconds / NumberOfSteps. For
example, if your DurationInSeconds is 600 and you specify 5 steps, then each step is
120 seconds long.

Note

A user is defined as a system-generated actor that runs in a loop and invokes
requests to an endpoint as part of Inference Recommender. For a typical XGBoost
container running on an ml.c5.large instance, endpoints can reach 30,000
invocations per minute (500 tps) with just 15-20 users.

• For ResourceLimit, specify MaxNumberOfTests (the maximum number of
benchmarking load tests for an Inference Recommender job, with a minimum of 1
and a maximum of 10) and MaxParallelOfTests (the maximum number of parallel
benchmarking load tests for an Inference Recommender job, with a minimum of 1 and a
maximum of 10).

• For EndpointConfigurations, you can specify one of the following:

• The InstanceType field, where you specify the instance type on which you want to run
your load tests.

• The ServerlessConfig, in which you specify your ideal values for MaxConcurrency
and MemorySizeInMB for a serverless endpoint. For more information, see the
Serverless Inference documentation.

Recommendation jobs 4019

https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html

Amazon SageMaker Developer Guide

• A stopping conditions dictionary (StoppingConditions), where if any of the conditions are
met, the Inference Recommender job stops. For this example, specify the following fields in
the dictionary:

• For MaxInvocations, specify the maximum number of requests per minute expected for
the endpoint, with a minimum of 1 and a maximum of 30,000.

• For ModelLatencyThresholds, specify Percentile (the model latency percentile
threshold) and ValueInMilliseconds (the model latency percentile value in
milliseconds).

• (Optional) For FlatInvocations, you can specify whether to continue the load test
when the TPS (invocations per minute) rate flattens. A flattened TPS rate usually means
that the endpoint has reached capacity. However, you might want to continue monitoring
the endpoint under full capacity conditions. To continue the load test when this happens,
specify this value as Continue. Otherwise, the default value is Stop.

Create a low-level SageMaker service client.
import boto3
aws_region=<INSERT>
sagemaker_client=boto3.client('sagemaker', region=aws_region)

Provide a name to your recommendation based on load testing
load_test_job_name="<INSERT>"

Provide the name of the sagemaker instance type
instance_type="<INSERT>"

Provide the IAM Role that gives SageMaker permission to access AWS services
role_arn='arn:aws:iam::<account>:role/*'

Provide your model package ARN that was created when you registered your
model with Model Registry
model_package_arn='arn:aws:sagemaker:<region>:<account>:role/*'

sagemaker_client.create_inference_recommendations_job(
 JobName=load_test_job_name,
 JobType="Advanced",
 RoleArn=role_arn,
 InputConfig={
 'ModelPackageVersionArn': model_package_arn,
 "JobDurationInSeconds": 7200,

Recommendation jobs 4020

Amazon SageMaker Developer Guide

 'TrafficPattern' : {
 # Replace PHASES with STAIRS to use the stairs
 traffic pattern
 'TrafficType': 'PHASES',
 'Phases': [
 {
 'InitialNumberOfUsers': 1,
 'SpawnRate': 1,
 'DurationInSeconds': 120
 },
 {
 'InitialNumberOfUsers': 1,
 'SpawnRate': 1,
 'DurationInSeconds': 120
 }
]
 # Uncomment this section and comment out the Phases
 object above to use the stairs traffic pattern
 # 'Stairs' : {
 # 'DurationInSeconds': 240,
 # 'NumberOfSteps': 2,
 # 'UsersPerStep': 2
 # }
 },
 'ResourceLimit': {
 'MaxNumberOfTests': 10,
 'MaxParallelOfTests': 3
 },
 "EndpointConfigurations" : [{
 'InstanceType': 'ml.c5.xlarge'
 },
 {
 'InstanceType': 'ml.m5.xlarge'
 },
 {
 'InstanceType': 'ml.r5.xlarge'
 }]
 # Uncomment the ServerlessConfig and comment out
 the InstanceType field if you want recommendations for a serverless endpoint
 # "ServerlessConfig": {
 # "MaxConcurrency": value,
 # "MemorySizeInMB": value
 # }
 },

Recommendation jobs 4021

Amazon SageMaker Developer Guide

 StoppingConditions={
 'MaxInvocations': 1000,
 'ModelLatencyThresholds':[{
 'Percentile': 'P95',
 'ValueInMilliseconds': 100
 }],
 # Change 'Stop' to 'Continue' to let the load test
 continue if invocations flatten
 'FlatInvocations': 'Stop'
 }
)

See the Amazon SageMaker API Reference Guide for a full list of optional and required
arguments you can pass to CreateInferenceRecommendationsJob.

AWS CLI

Use the create-inference-recommendations-job API to create an Inference
Recommender load test. Specify Advanced for the JobType field and provide:

• A job name for your load test (job-name). The job name must be unique within your AWS
Region and within your AWS account.

• The Amazon Resource Name (ARN) of an IAM role that enables Inference Recommender to
perform tasks on your behalf. Define this for the role-arn field.

• An endpoint configuration dictionary (input-config) where you specify the following:

• For TrafficPattern, specify either the phases or stairs traffic pattern. With the phases
traffic pattern, new users spawn every minute at the rate you specify. With the stairs traffic
pattern, new users spawn at timed intervals (or steps) at a rate you specify. Choose one of
the following:

• For TrafficType, specify PHASES. Then, for the Phases array, specify the
InitialNumberOfUsers (how many concurrent users to start with, with a minimum
of 1 and a maximum of 3), SpawnRate (the number of users to be spawned in a minute
for a specific phase of load testing, with a minimum of 0 and maximum of 3), and
DurationInSeconds (how long the traffic phase should be, with a minimum of 120 and
maximum of 3600).

• For TrafficType, specify STAIRS. Then, for the Stairs array, specify the
DurationInSeconds (how long the traffic phase should be, with a minimum of 120
and maximum of 3600), NumberOfSteps (how many intervals are used during the
phase), and UsersPerStep (how many users are added during each interval). Note that

Recommendation jobs 4022

https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html

Amazon SageMaker Developer Guide

the length of each step is the value of DurationInSeconds / NumberOfSteps. For
example, if your DurationInSeconds is 600 and you specify 5 steps, then each step is
120 seconds long.

Note

A user is defined as a system-generated actor that runs in a loop and invokes
requests to an endpoint as part of Inference Recommender. For a typical XGBoost
container running on an ml.c5.large instance, endpoints can reach 30,000
invocations per minute (500 tps) with just 15-20 users.

• For ResourceLimit, specify MaxNumberOfTests (the maximum number of
benchmarking load tests for an Inference Recommender job, with a minimum of 1
and a maximum of 10) and MaxParallelOfTests (the maximum number of parallel
benchmarking load tests for an Inference Recommender job, with a minimum of 1 and a
maximum of 10).

• For EndpointConfigurations, you can specify one of the following:

• The InstanceType field, where you specify the instance type on which you want to run
your load tests.

• The ServerlessConfig, in which you specify your ideal values for MaxConcurrency
and MemorySizeInMB for a serverless endpoint.

• A stopping conditions dictionary (stopping-conditions), where if any of the conditions
are met, the Inference Recommender job stops. For this example, specify the following fields
in the dictionary:

• For MaxInvocations, specify the maximum number of requests per minute expected for
the endpoint, with a minimum of 1 and a maximum of 30,000.

• For ModelLatencyThresholds, specify Percentile (the model latency percentile
threshold) and ValueInMilliseconds (the model latency percentile value in
milliseconds).

• (Optional) For FlatInvocations, you can specify whether to continue the load test
when the TPS (invocations per minute) rate flattens. A flattened TPS rate usually means
that the endpoint has reached capacity. However, you might want to continue monitoring
the endpoint under full capacity conditions. To continue the load test when this happens,
specify this value as Continue. Otherwise, the default value is Stop.

Recommendation jobs 4023

Amazon SageMaker Developer Guide

aws sagemaker create-inference-recommendations-job\
 --region <region>\
 --job-name <job-name>\
 --job-type ADVANCED\
 --role-arn arn:aws:iam::<account>:role/*\
 --input-config \"{
 \"ModelPackageVersionArn\": \"arn:aws:sagemaker:<region>:<account>:role/*\",
 \"JobDurationInSeconds\": 7200,
 \"TrafficPattern\" : {
 # Replace PHASES with STAIRS to use the stairs traffic pattern
 \"TrafficType\": \"PHASES\",
 \"Phases\": [
 {
 \"InitialNumberOfUsers\": 1,
 \"SpawnRate\": 60,
 \"DurationInSeconds\": 300
 }
]
 # Uncomment this section and comment out the Phases object above to
 use the stairs traffic pattern
 # 'Stairs' : {
 # 'DurationInSeconds': 240,
 # 'NumberOfSteps': 2,
 # 'UsersPerStep': 2
 # }
 },
 \"ResourceLimit\": {
 \"MaxNumberOfTests\": 10,
 \"MaxParallelOfTests\": 3
 },
 \"EndpointConfigurations\" : [
 {
 \"InstanceType\": \"ml.c5.xlarge\"
 },
 {
 \"InstanceType\": \"ml.m5.xlarge\"
 },
 {
 \"InstanceType\": \"ml.r5.xlarge\"
 }
 # Use the ServerlessConfig and leave out the InstanceType fields if
 you want recommendations for a serverless endpoint
 # \"ServerlessConfig\": {

Recommendation jobs 4024

Amazon SageMaker Developer Guide

 # \"MaxConcurrency\": value,
 # \"MemorySizeInMB\": value
 # }
]
 }\"
 --stopping-conditions \"{
 \"MaxInvocations\": 1000,
 \"ModelLatencyThresholds\":[
 {
 \"Percentile\": \"P95\",
 \"ValueInMilliseconds\": 100
 }
],
 # Change 'Stop' to 'Continue' to let the load test continue if invocations
 flatten
 \"FlatInvocations\": \"Stop\"
 }\"

Amazon SageMaker Studio Classic

Create a load test with Studio Classic.

1. In your Studio Classic application, choose the home icon

().

2. In the left sidebar of Studio Classic, choose Deployments.

3. Choose Inference recommender from the dropdown list.

4. Choose Create inference recommender job. A new tab titled Create inference
recommender job opens.

5. Select the name of your model group from the dropdown Model group field. The list
includes all the model groups registered with the model registry in your account, including
models registered outside of Studio Classic.

6. Select a model version from the dropdown Model version field.

7. Choose Continue.

8. Provide a name for the job in the Name field.

9. (Optional) Provide a description of your job in the Description field.

10. Choose an IAM role that grants Inference Recommender permission to access AWS services.
You can create a role and attach the AmazonSageMakerFullAccess IAM managed policy
to accomplish this, or you can let Studio Classic create a role for you.

Recommendation jobs 4025

Amazon SageMaker Developer Guide

11. Choose Stopping Conditions to expand the available input fields. Provide a set of
conditions for stopping a deployment recommendation.

a. Specify the maximum number of requests per minute expected for the endpoint in the
Max Invocations Per Minute field.

b. Specify the model latency threshold in microseconds in the Model Latency Threshold
field. The Model Latency Threshold depicts the interval of time taken by a model
to respond as viewed from Inference Recommender. The interval includes the local
communication time taken to send the request and to fetch the response from the
model container and the time taken to complete the inference in the container.

12. Choose Traffic Pattern to expand the available input fields.

a. Set the initial number of virtual users by specifying an integer in the Initial Number of
Users field.

b. Provide an integer number for the Spawn Rate field. The spawn rate sets the number
of users created per second.

c. Set the duration for the phase in seconds by specifying an integer in the Duration
field.

d. (Optional) Add additional traffic patterns. To do so, choose Add.

13. Choose the Additional setting to reveal the Max test duration field. Specify, in seconds,
the maximum time a test can take during a job. New jobs are not scheduled after the
defined duration. This helps ensure jobs that are in progress are not stopped and that you
only view completed jobs.

14. Choose Continue.

15. Choose Selected Instances.

16. In the Instances for benchmarking field, choose Add instances to test. Select up to 10
instances for Inference Recommender to use for load testing.

17. Choose Additional settings.

a. Provide an integer that sets an upper limit on the number of tests a job can make for
the Max number of tests field. Note that each endpoint configuration results in a new
load test.

b. Provide an integer for the Max parallel test field. This setting defines an upper limit on
the number of load tests that can run in parallel.

18. Choose Submit.

Recommendation jobs 4026

Amazon SageMaker Developer Guide

The load test can take up to 2 hours.

Warning

Do not close this tab. If you close this tab, you cancel the Inference Recommender
load test job.

SageMaker console

Create a custom load test through the SageMaker console by doing the following:

1. Go to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Inference, and then choose Inference recommender.

3. On the Inference recommender jobs page, choose Create job.

4. For Step 1: Model configuration, do the following:

a. For Job type, choose Advanced recommender job.

b. If you’re using a model registered in the SageMaker model registry, then turn on the
Choose a model from the model registry toggle and do the following:

i. For the Model group dropdown list, choose the model group in SageMaker model
registry where your model is.

ii. For the Model version dropdown list, choose the desired version of your model.

c. If you’re using a model that you’ve created in SageMaker, then turn off the Choose a
model from the model registry toggle and do the following:

• For the Model name field, enter the name of your SageMaker model.

d. For IAM role, you can select an existing AWS IAM role that has the necessary
permissions to create an instance recommendation job. Alternatively, if you don’t have
an existing role, you can choose Create a new role to open the role creation pop-up,
and SageMaker adds the necessary permissions to the new role that you create.

e. For S3 bucket for benchmarking payload, enter the Amazon S3 path to your
sample payload archive, which should contain sample payload files that Inference
Recommender uses to benchmark your model on different instance types.

f. For Payload content type, enter the MIME types of your sample payload data.

Recommendation jobs 4027

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

g. For Traffic pattern, configure phases for the load test by doing the following:

i. For Initial number of users, specify how many concurrent users you want to start
with (with a minimum of 1 and a maximum of 3).

ii. For Spawn rate, specify the number of users to be spawned in a minute for the
phase (with a minimum of 0 and a maximum of 3).

iii. For Duration (seconds), specify how low the traffic phase should be in seconds
(with a minimum of 120 and a maximum of 3600).

h. (Optional) If you turned off the Choose a model from the model registry toggle and
specified a SageMaker model, then for Container configuration, do the following:

i. For the Domain dropdown list, select the machine learning domain of the model,
such as computer vision, natural language processing, or machine learning.

ii. For the Framework dropdown list, select the framework of your container, such as
TensorFlow or XGBoost.

iii. For Framework version, enter the framework version of your container image.

iv. For the Nearest model name dropdown list, select the pre-trained model that
mostly closely matches your own.

v. For the Task dropdown list, select the machine learning task that the model
accomplishes, such as image classification or regression.

i. (Optional) For Model compilation using SageMaker Neo, you can configure the
recommendation job for a model that you’ve compiled using SageMaker Neo. For Data
input configuration, enter the correct input data shape for your model in a format
similar to {'input':[1,1024,1024,3]}.

j. Choose Next.

5. For Step 2: Instances and environment parameters, do the following:

a. For Select instances for benchmarking, select up to 8 instance types that you want to
benchmark against.

b. (Optional) For Environment parameter ranges, you can specify environment
parameters that help optimize your model. Specify the parameters as Key and Value
pairs.

c. Choose Next.

6. For Step 3: Job parameters, do the following:

Recommendation jobs 4028

Amazon SageMaker Developer Guide

a. (Optional) For the Job name field, enter a name for your instance recommendation
job. When you create the job, SageMaker appends a timestamp to the end of this
name.

b. (Optional) For the Job description field, enter a description for the job.

c. (Optional) For the Encryption key dropdown list, choose an AWS KMS key by name or
enter its ARN to encrypt your data.

d. (Optional) For Max number of tests, enter the number of test that you want to run
during the recommendation job.

e. (Optional) For Max parallel tests, enter the maximum number of parallel tests that you
want to run during the recommendation job.

f. For Max test duration (s), enter the maximum number of seconds you want each test
to run for.

g. For Max invocations per minute, enter the maximum number of requests per minute
the endpoint can reach before stopping the recommendation job. After reaching this
limit, SageMaker ends the job.

h. For P99 Model latency threshold (ms), enter the model latency percentile in
milliseconds.

i. Choose Next.

7. For Step 4: Review job, review your configurations and then choose Submit.

Get your load test results

You can programmatically collect metrics across all load tests once the load tests are done with
AWS SDK for Python (Boto3), the AWS CLI, Studio Classic, or the SageMaker console.

AWS SDK for Python (Boto3)

Collect metrics with the DescribeInferenceRecommendationsJob API. Specify the job
name of the load test for the JobName field:

load_test_response = sagemaker_client.describe_inference_recommendations_job(
 JobName=load_test_job_name
)

Print the response object.

Recommendation jobs 4029

Amazon SageMaker Developer Guide

load_test_response['Status']

This returns a JSON response similar to the following example. Note that this example shows
the recommended instance types for real-time inference (for an example showing serverless
inference recommendations, see the example after this one).

{
 'JobName': 'job-name',
 'JobDescription': 'job-description',
 'JobType': 'Advanced',
 'JobArn': 'arn:aws:sagemaker:region:account-id:inference-recommendations-
job/resource-id',
 'Status': 'COMPLETED',
 'CreationTime': datetime.datetime(2021, 10, 26, 19, 38, 30, 957000,
 tzinfo=tzlocal()),
 'LastModifiedTime': datetime.datetime(2021, 10, 26, 19, 46, 31, 399000,
 tzinfo=tzlocal()),
 'InputConfig': {
 'ModelPackageVersionArn': 'arn:aws:sagemaker:region:account-id:model-
package/resource-id',
 'JobDurationInSeconds': 7200,
 'TrafficPattern': {
 'TrafficType': 'PHASES'
 },
 'ResourceLimit': {
 'MaxNumberOfTests': 100,
 'MaxParallelOfTests': 100
 },
 'EndpointConfigurations': [{
 'InstanceType': 'ml.c5d.xlarge'
 }]
 },
 'StoppingConditions': {
 'MaxInvocations': 1000,
 'ModelLatencyThresholds': [{
 'Percentile': 'P95',
 'ValueInMilliseconds': 100}
]},
 'InferenceRecommendations': [{
 'Metrics': {
 'CostPerHour': 0.6899999976158142,
 'CostPerInference': 1.0332434612791985e-05,

Recommendation jobs 4030

Amazon SageMaker Developer Guide

 'MaximumInvocations': 1113,
 'ModelLatency': 100000
 },
 'EndpointConfiguration': {
 'EndpointName': 'endpoint-name',
 'VariantName': 'variant-name',
 'InstanceType': 'ml.c5d.xlarge',
 'InitialInstanceCount': 3
 },
 'ModelConfiguration': {
 'Compiled': False,
 'EnvironmentParameters': []
 }
 }],
 'ResponseMetadata': {
 'RequestId': 'request-id',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {
 'x-amzn-requestid': 'x-amzn-requestid',
 'content-type': 'content-type',
 'content-length': '1199',
 'date': 'Tue, 26 Oct 2021 19:57:42 GMT'
 },
 'RetryAttempts': 0}
 }

The first few lines provide information about the load test job itself. This includes the job name,
role ARN, creation, and deletion time.

The InferenceRecommendations dictionary contains a list of Inference Recommender
inference recommendations.

The EndpointConfiguration nested dictionary contains the instance type (InstanceType)
recommendation along with the endpoint and variant name (a deployed AWS machine learning
model) used during the recommendation job. You can use the endpoint and variant name for
monitoring in Amazon CloudWatch Events. See Monitor Amazon SageMaker with Amazon
CloudWatch for more information.

The EndpointConfiguration nested dictionary also contains the instance count
(InitialInstanceCount) recommendation. This is the number of instances that
you should provision in the endpoint to meet the MaxInvocations specified in the
StoppingConditions. For example, if the InstanceType is ml.m5.large and the

Recommendation jobs 4031

Amazon SageMaker Developer Guide

InitialInstanceCount is 2, then you should provision 2 ml.m5.large instances for your
endpoint so that it can handle the TPS specified in the MaxInvocations stopping condition.

The Metrics nested dictionary contains information about the estimated cost per hour
(CostPerHour) for your real-time endpoint in US dollars, the estimated cost per inference
(CostPerInference) for your real-time endpoint, the maximum number of InvokeEndpoint
requests sent to the endpoint, and the model latency (ModelLatency), which is the interval
of time (in microseconds) that your model took to respond to SageMaker. The model latency
includes the local communication times taken to send the request and to fetch the response
from the model container and the time taken to complete the inference in the container.

The following example shows the InferenceRecommendations part of the response for a
load test job that was configured to return serverless inference recommendations:

"InferenceRecommendations": [
 {
 "EndpointConfiguration": {
 "EndpointName": "value",
 "InitialInstanceCount": value,
 "InstanceType": "value",
 "VariantName": "value",
 "ServerlessConfig": {
 "MaxConcurrency": value,
 "MemorySizeInMb": value
 }
 },
 "InvocationEndTime": value,
 "InvocationStartTime": value,
 "Metrics": {
 "CostPerHour": value,
 "CostPerInference": value,
 "CpuUtilization": value,
 "MaxInvocations": value,
 "MemoryUtilization": value,
 "ModelLatency": value,
 "ModelSetupTime": value
 },
 "ModelConfiguration": {
 "Compiled": "False",
 "EnvironmentParameters": [],
 "InferenceSpecificationName": "value"
 },

Recommendation jobs 4032

Amazon SageMaker Developer Guide

 "RecommendationId": "value"
 }
]

You can interpret the recommendations for serverless inference similarly to the results for
real-time inference, with the exception of the ServerlessConfig, which tells you the values
you specified for MaxConcurrency and MemorySizeInMB when setting up the load test.
Serverless recommendations also measure the metric ModelSetupTime, which measures (in
microseconds) the time it takes to launch compute resources on a serverless endpoint. For more
information about setting up serverless endpoints, see the Serverless Inference documentation.

AWS CLI

Collect metrics with the describe-inference-recommendations-job API. Specify the job
name of the load test for the job-name flag:

aws sagemaker describe-inference-recommendations-job --job-name <job-name>

This returns a response similar to the following example. Note that this example shows the
recommended instance types for real-time inference (for an example showing Serverless
Inference recommendations, see the example after this one).

{
 'JobName': 'job-name',
 'JobDescription': 'job-description',
 'JobType': 'Advanced',
 'JobArn': 'arn:aws:sagemaker:region:account-id:inference-recommendations-
job/resource-id',
 'Status': 'COMPLETED',
 'CreationTime': datetime.datetime(2021, 10, 26, 19, 38, 30, 957000,
 tzinfo=tzlocal()),
 'LastModifiedTime': datetime.datetime(2021, 10, 26, 19, 46, 31, 399000,
 tzinfo=tzlocal()),
 'InputConfig': {
 'ModelPackageVersionArn': 'arn:aws:sagemaker:region:account-id:model-
package/resource-id',
 'JobDurationInSeconds': 7200,
 'TrafficPattern': {
 'TrafficType': 'PHASES'
 },
 'ResourceLimit': {
 'MaxNumberOfTests': 100,

Recommendation jobs 4033

https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html

Amazon SageMaker Developer Guide

 'MaxParallelOfTests': 100
 },
 'EndpointConfigurations': [{
 'InstanceType': 'ml.c5d.xlarge'
 }]
 },
 'StoppingConditions': {
 'MaxInvocations': 1000,
 'ModelLatencyThresholds': [{
 'Percentile': 'P95',
 'ValueInMilliseconds': 100
 }]
 },
 'InferenceRecommendations': [{
 'Metrics': {
 'CostPerHour': 0.6899999976158142,
 'CostPerInference': 1.0332434612791985e-05,
 'MaximumInvocations': 1113,
 'ModelLatency': 100000
 },
 'EndpointConfiguration': {
 'EndpointName': 'endpoint-name',
 'VariantName': 'variant-name',
 'InstanceType': 'ml.c5d.xlarge',
 'InitialInstanceCount': 3
 },
 'ModelConfiguration': {
 'Compiled': False,
 'EnvironmentParameters': []
 }
 }],
 'ResponseMetadata': {
 'RequestId': 'request-id',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {
 'x-amzn-requestid': 'x-amzn-requestid',
 'content-type': 'content-type',
 'content-length': '1199',
 'date': 'Tue, 26 Oct 2021 19:57:42 GMT'
 },
 'RetryAttempts': 0
 }
 }

Recommendation jobs 4034

Amazon SageMaker Developer Guide

The first few lines provide information about the load test job itself. This includes the job name,
role ARN, creation, and deletion time.

The InferenceRecommendations dictionary contains a list of Inference Recommender
inference recommendations.

The EndpointConfiguration nested dictionary contains the instance type (InstanceType)
recommendation along with the endpoint and variant name (a deployed AWS machine learning
model) used during the recommendation job. You can use the endpoint and variant name for
monitoring in Amazon CloudWatch Events. See Monitor Amazon SageMaker with Amazon
CloudWatch for more information.

The Metrics nested dictionary contains information about the estimated cost per hour
(CostPerHour) for your real-time endpoint in US dollars, the estimated cost per inference
(CostPerInference) for your real-time endpoint, the maximum number of InvokeEndpoint
requests sent to the endpoint, and the model latency (ModelLatency), which is the interval
of time (in microseconds) that your model took to respond to SageMaker. The model latency
includes the local communication times taken to send the request and to fetch the response
from the model container and the time taken to complete the inference in the container.

The following example shows the InferenceRecommendations part of the response for a
load test job that was configured to return serverless inference recommendations:

"InferenceRecommendations": [
 {
 "EndpointConfiguration": {
 "EndpointName": "value",
 "InitialInstanceCount": value,
 "InstanceType": "value",
 "VariantName": "value",
 "ServerlessConfig": {
 "MaxConcurrency": value,
 "MemorySizeInMb": value
 }
 },
 "InvocationEndTime": value,
 "InvocationStartTime": value,
 "Metrics": {
 "CostPerHour": value,
 "CostPerInference": value,
 "CpuUtilization": value,
 "MaxInvocations": value,

Recommendation jobs 4035

Amazon SageMaker Developer Guide

 "MemoryUtilization": value,
 "ModelLatency": value,
 "ModelSetupTime": value
 },
 "ModelConfiguration": {
 "Compiled": "False",
 "EnvironmentParameters": [],
 "InferenceSpecificationName": "value"
 },
 "RecommendationId": "value"
 }
]

You can interpret the recommendations for serverless inference similarly to the results for
real-time inference, with the exception of the ServerlessConfig, which tells you the values
you specified for MaxConcurrency and MemorySizeInMB when setting up the load test.
Serverless recommendations also measure the metric ModelSetupTime, which measures
(in microseconds) the time it takes to launch computer resources on a serverless endpoint.
For more information about setting up serverless endpoints, see the Serverless Inference
documentation.

Amazon SageMaker Studio Classic

The recommendations populate in a new tab called Inference recommendations within Studio
Classic. It can take up to 2 hours for the results to show up. This tab contains Results and
Details columns.

The Details column provides information about the load test job, such as the name given
to the load test job, when the job was created (Creation time), and more. It also contains
Settings information, such as the maximum number of invocation that occurred per minute and
information about the Amazon Resource Names used.

The Results column provides Deployment goals and SageMaker recommendations windows
in which you can adjust the order in which results are displayed based on deployment
importance. There are three dropdown menus in which you can provide the level of importance
of the Cost, Latency, and Throughput for your use case. For each goal (cost, latency, and
throughput), you can set the level of importance: Lowest Importance, Low Importance,
Moderate importance, High importance, or Highest importance.

Based on your selections of importance for each goal, Inference Recommender displays its top
recommendation in the SageMaker recommendation field on the right of the panel, along

Recommendation jobs 4036

https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html

Amazon SageMaker Developer Guide

with the estimated cost per hour and inference request. It also provides Information about the
expected model latency, maximum number of invocations, and the number of instances.

In addition to the top recommendation displayed, you can also see the same information
displayed for all instances that Inference Recommender tested in the All runs section.

SageMaker console

You can view your custom load test job results in the SageMaker console by doing the following:

1. Go to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Inference, and then choose Inference recommender.

3. On the Inference recommender jobs page, choose the name of your inference
recommendation job.

On the details page for your job, you can view the Inference recommendations, which are the
instance types SageMaker recommends for your model, as shown in the following screenshot.

In this section, you can compare the instance types by various factors such as Model latency,
Cost per hour, Cost per inference, and Invocations per minute.

On this page, you can also view the configurations you specified for your job. In the Monitor
section, you can view the Amazon CloudWatch metrics that were logged for each instance type.
To learn more about interpreting these metrics, see Interpret results.

Recommendation jobs 4037

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender-interpret-results.html

Amazon SageMaker Developer Guide

Stop your load test

You might want to stop a job that is currently running if you began a job by mistake
or no longer need to run the job. Stop your load test jobs programmatically with the
StopInferenceRecommendationsJob API, or through Studio Classic or the SageMaker console.

AWS SDK for Python (Boto3)

Specify the job name of the load test for the JobName field:

sagemaker_client.stop_inference_recommendations_job(
 JobName='<INSERT>'
)

AWS CLI

Specify the job name of the load test for the job-name flag:

aws sagemaker stop-inference-recommendations-job --job-name <job-name>

Amazon SageMaker Studio Classic

Close the tab where you initiated your custom load job to stop your Inference Recommender
load test.

SageMaker console

To stop your load test job through the SageMaker console, do the following:

1. Go to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Inference, and then choose Inference recommender.

3. On the Inference recommender jobs page, select your load test job.

4. Choose Stop job.

5. In the dialog box that pops up, choose Confirm.

After stopping your job, the job’s Status should change to Stopping.

Recommendation jobs 4038

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Troubleshoot Inference Recommender errors

This section contains information about how to understand and prevent common errors, the error
messages they generate, and guidance on how to resolve these errors.

How to troubleshoot

You can attempt to resolve your error by going through the following steps:

• Check if you've covered all the prerequisites to use Inference Recommender. See the Inference
Recommender Prerequisites.

• Check that you are able to deploy your model from Model Registry to an endpoint and that it can
process your payloads without errors. See Deploy a Model from the Registry.

• When you kick off an Inference Recommender job, you should see endpoints being created in the
console and you can review the CloudWatch logs.

Common errors

Review the following table for common Inference Recommender errors and their solutions.

Error Solution

Specify Domain in the Model Package version
1. Domain is a mandatory parameter for the
job.

Make sure you provide the ML domain or
OTHER if unknown.

Provided role ARN cannot be assumed and an
AWSSecurityTokenServiceException
error occurred.

Make sure the execution role provided has
the necessary permissions specified in the
prerequisites.

Specify Framework in the Model Package
version 1.Framework is a mandatory
parameter for the job.

Make sure you provide the ML Framework or
OTHER if unknown.

Users at the end of prev phase is 0 while initial
users of current phase is 1.

Users here refers to virtual users or threads
used to send requests. Each phase starts with
A users and ends with B users such that B > A.

Recommendation jobs 4039

https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender-prerequisites.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender-prerequisites.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry-deploy.html

Amazon SageMaker Developer Guide

Error Solution

Between sequential phases, x_1 and x_2, we
require that abs(x_2.A - x_1.B) <= 3 and >= 0.

Total Traffic duration (across) should not be
more than Job duration.

The total duration of all your Phases cannot
exceed the Job duration.

Burstable instance type ml.t2.medium is not
allowed.

Inference Recommender doesn't support
load testing on t2 instance family because
burstable instances do not provide consistent
performance.

ResourceLimitExceeded when calling
CreateEndpoint operation

You have exceeded a SageMaker resource
limit. For example, Inference Recommender
might be unable to provision endpoints for
benchmarking if the account has reached the
endpoint quota. For more information about
SageMaker limits and quotas, see Amazon
SageMaker endpoints and quotas.

ModelError when calling InvokeEndpoint
operation

A model error can happen for the following
reasons:

• The invocation timed out while waiting for a
response from the model container.

• The model couldn't process the input
payload.

Recommendation jobs 4040

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

Error Solution

PayloadError when calling InvokeEndpoint
operation

A payload error can happen for following
reasons:

• The payload source isn't in the Amazon S3
bucket.

• The payload is in a non-file object format.

• The payload is in an invalid file type. For
example, a model expects an image type
payload but is passed a text file.

• The payload is empty.

Check CloudWatch

When you kick off an Inference Recommender job, you should see endpoints being created in the
console. Select one of the endpoints and view the CloudWatch logs to monitor for any 4xx/5xx
errors. If you have a successful Inference Recommender job, you will be able to see the endpoint
names as part of the results. Even if your Inference Recommender job is unsuccessful, you can still
check the CloudWatch logs for the deleted endpoints by following the steps below:

1. Open the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Select the Region in which you created the Inference Recommender job from the Region
dropdown list in the top right.

3. In the navigation pane of CloudWatch, choose Logs, and then select Log groups.

4. Search for the log group called /aws/sagemaker/Endpoints/sm-epc-*. Select the log
group based on your most recent Inference Recommender job.

You can also troubleshoot your job by checking the Inference Recommender CloudWatch
logs. The Inference Recommender logs, which are published in the /aws/sagemaker/
InferenceRecommendationsJobs CloudWatch log group, give a high level view on the progress
of the job in the <jobName>/execution log stream. You can find detailed information on each
of the endpoint configurations being tested in the <jobName>/Endpoint/<endpointName> log
stream.

Overview of the Inference Recommender log streams

Recommendation jobs 4041

https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide

• <jobName>/execution contains overall job information such as endpoint configurations
scheduled for benchmarking, compilation job skip reason, and validation failure reason.

• <jobName>/Endpoint/<endpointName> contains information such as resource creation
progress, test configuration, load test stop reason, and resource cleanup status.

• <jobName>/CompilationJob/<compilationJobName> contains information on compilation
jobs created by Inference Recommender, such as the compilation job configuration and
compilation job status.

Create an alarm for Inference Recommender error messages

Inference Recommender outputs log statements for errors that might be helpful while
troubleshooting. With a CloudWatch log group and a metric filter, you can look for terms and
patterns in this log data as the data is sent to CloudWatch. Then, you can create a CloudWatch
alarm based on the log group-metric filter. For more information, see Create a CloudWatch alarm
based on a log group-metric filter.

Check benchmarks

When you kick off an Inference Recommender job, Inference Recommender creates several
benchmarks to evaluate the performance of your model on different instance types. You can use
the ListInferenceRecommendationsJobSteps API to view the details for all the benchmarks. If you
have a failed benchmark, you can see the failure reasons as part of the results.

To use the ListInferenceRecommendationsJobSteps API, provide the following values:

• For JobName, provide the name of the Inference Recommender job.

• For StepType, use BENCHMARK to return details about the job's benchmarks.

• For Status, use FAILED to return details about only the failed benchmarks. For a list of the
other status types, see the Status field in the ListInferenceRecommendationsJobSteps API.

Create a low-level SageMaker service client.
import boto3
aws_region = '<region>'
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Provide the job name for the SageMaker Inference Recommender job
job_name = '<job-name>'

Recommendation jobs 4042

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create_alarm_log_group_metric_filter.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create_alarm_log_group_metric_filter.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListInferenceRecommendationsJobSteps.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListInferenceRecommendationsJobSteps.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListInferenceRecommendationsJobSteps.html

Amazon SageMaker Developer Guide

Filter for benchmarks
step_type = 'BENCHMARK'

Filter for benchmarks that have a FAILED status
status = 'FAILED'

response = sagemaker_client.list_inference_recommendations_job_steps(
 JobName = job_name,
 StepType = step_type,
 Status = status
)

You can print the response object to view the results. The preceding code example stored the
response in a variable called response:

print(response)

Real-time inference

Real-time inference is ideal for inference workloads where you have real-time, interactive,
low latency requirements. You can deploy your model to SageMaker hosting services and get
an endpoint that can be used for inference. These endpoints are fully managed and support
autoscaling (see Automatically Scale Amazon SageMaker Models).

Topics

• Deploy models for real-time inference

• Invoke models for real-time inference

• Manage your endpoints

• Hosting options

• Automatically Scale Amazon SageMaker Models

• Host instance storage volumes

• Safely validate models in production

• Online Explainability with SageMaker Clarify

Real-time inference 4043

Amazon SageMaker Developer Guide

Deploy models for real-time inference

There are several options to deploy a model using SageMaker hosting services. You can
interactively deploy a model with SageMaker Studio. Or, you can programmatically deploy a model
using an AWS SDK, such as the SageMaker Python SDK or the SDK for Python (Boto3). You can also
deploy by using the AWS CLI.

Before you begin

Before you deploy a SageMaker model, locate and make note of the following:

• The AWS Region where your Amazon S3 bucket is located

• The Amazon S3 URI path where the model artifacts are stored

• The IAM role for SageMaker

• The Docker Amazon ECR URI registry path for the custom image that contains the inference
code, or the framework and version of a built-in Docker image that is supported and by AWS

For a list of AWS services available in each AWS Region, see Region Maps and Edge Networks. See
Creating IAM roles for information on how to create an IAM role.

Important

The Amazon S3 bucket where the model artifacts are stored must be in the same AWS
Region as the model that you are creating.

Shared resource utilization with multiple models

You can deploy one or more models to an endpoint with Amazon SageMaker. When multiple
models share an endpoint, they jointly utilize the resources that are hosted there, such as the ML
compute instances, CPUs, and accelerators. The most flexible way to deploy multiple models to an
endpoint is to define each model as an inference component.

Inference components

An inference component is a SageMaker hosting object that you can use to deploy a model to an
endpoint. In the inference component settings, you specify the model, the endpoint, and how

Deploy models 4044

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

Amazon SageMaker Developer Guide

the model utilizes the resources that the endpoint hosts. To specify the model, you can specify a
SageMaker Model object, or you can directly specify the model artifacts and image.

In the settings, you can optimize resource utilization by tailoring how the required CPU cores,
accelerators, and memory are allocated to the model. You can deploy multiple inference
components to an endpoint, where each inference component contains one model and the
resource utilization needs for that model.

After you deploy an inference component, you can directly invoke the associated model when you
use the InvokeEndpoint action in the SageMaker API.

Inference components provide the following benefits:

Flexibility

The inference component decouples the details of hosting the model from the endpoint itself.
This provides more flexibility and control over how models are hosted and served with an
endpoint. You can host multiple models on the same infrastructure, and you can add or remove
models from an endpoint as needed. You can update each model independently.

Scalability

You can specify how many copies of each model to host, and you can set a minimum number
of copies to ensure that the model loads in the quantity that you require to serve requests. You
can scale any inference component copy down to zero, which makes room for another copy to
scale up.

SageMaker packages your models as inference components when you deploy them by using:

• SageMaker Studio Classic.

• The SageMaker Python SDK to deploy a Model object (where you set the endpoint type to
EndpointType.INFERENCE_COMPONENT_BASED).

• The AWS SDK for Python (Boto3) to define InferenceComponent objects that you deploy to an
endpoint.

Deploy models with SageMaker Studio

Complete the following steps to create and deploy your model interactively through SageMaker
Studio. For more information about Studio, see the Studio documentation. For more walkthroughs

Deploy models 4045

https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html

Amazon SageMaker Developer Guide

of various deployment scenarios, see the blog Package and deploy classical ML models and LLMs
easily with Amazon SageMaker – Part 2.

Prepare your artifacts and permissions

Complete this section before creating a model in SageMaker Studio.

You have two options for bringing your artifacts and creating a model in Studio:

1. You can bring a pre-packaged tar.gz archive, which should include your model artifacts, any
custom inference code, and any dependencies listed in a requirements.txt file.

2. SageMaker can package your artifacts for you. You only have to bring your raw model artifacts
and any dependencies in a requirements.txt file, and SageMaker can provide default
inference code for you (or you can override the default code with your own custom inference
code). SageMaker supports this option for the following frameworks: PyTorch, XGBoost.

In addition to bringing your model, your AWS Identity and Access Management (IAM) role, and
a Docker container (or desired framework and version for which SageMaker has a pre-built
container), you must also grant permissions to create and deploy models through SageMaker
Studio.

You should have the AmazonSageMakerFullAccess policy attached to your IAM role so that you can
access SageMaker and other relevant services. To see the prices of the instance types in Studio, you
also must attach the AWSPriceListServiceFullAccess policy (or if you don’t want to attach the whole
policy, more specifically, the pricing:GetProducts action).

If you choose to upload your model artifacts when creating a model (or upload a sample payload
file for inference recommendations), then you must create an Amazon S3 bucket. The bucket
name must be prefixed by the word SageMaker. Alternate capitalizations of SageMaker are also
acceptable: Sagemaker or sagemaker.

We recommend that you use the bucket naming convention sagemaker-{Region}-
{accountID}. This bucket is used to store the artifacts that you upload.

After creating the bucket, attach the following CORS (cross-origin resource sharing) policy to the
bucket:

[

Deploy models 4046

https://aws.amazon.com/blogs/machine-learning/package-and-deploy-classical-ml-and-llms-easily-with-amazon-sagemaker-part-2-interactive-user-experiences-in-sagemaker-studio/
https://aws.amazon.com/blogs/machine-learning/package-and-deploy-classical-ml-and-llms-easily-with-amazon-sagemaker-part-2-interactive-user-experiences-in-sagemaker-studio/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSPriceListServiceFullAccess.html

Amazon SageMaker Developer Guide

 {
 "AllowedHeaders": ["*"],
 "ExposeHeaders": ["Etag"],
 "AllowedMethods": ["PUT", "POST"],
 "AllowedOrigins": ['https://*.sagemaker.aws'],
 }
]

You can attach a CORS policy to an Amazon S3 bucket by using any of the following methods:

• Through the Edit cross-origin resource sharing (CORS) page in the Amazon S3 console

• Using the Amazon S3 API PutBucketCors

• Using the put-bucket-cors AWS CLI command:

aws s3api put-bucket-cors --bucket="..." --cors-configuration="..."

Create a deployable model

In this step, you create a deployable version of your model in SageMaker by providing your artifacts
along with additional specifications, such as your desired container and framework, any custom
inference code, and network settings.

Create a deployable model in SageMaker Studio by doing the following:

1. Open the SageMaker Studio application.

2. In the left navigation pane, choose Models.

3. Choose the Deployable models tab.

4. On the Deployable models page, choose Create.

5. On the Create deployable model page, for the Model name field, enter a name for the model.

There are several more sections for you to fill out on the Create deployable model page.

The Container definition section looks like the following screenshot:

Deploy models 4047

https://s3.console.aws.amazon.com/s3/bucket/bucket-name/property/cors/edit
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketCors.html

Amazon SageMaker Developer Guide

For the Container definition section, do the following:

1. For Container type, select Pre-built container if you'd like to use a SageMaker managed
container, or select Bring your own container if you have your own container.

2. If you selected Pre-built container, select the Container framework, Framework version, and
Hardware type that you'd like to use.

3. If you selected Bring your own container, enter an Amazon ECR path for ECR path to
container image.

Then, fill out the Artifacts section, which looks like the following screenshot:

Deploy models 4048

Amazon SageMaker Developer Guide

For the Artifacts section, do the following:

1. If you're using one of the frameworks that SageMaker supports for packaging model artifacts
(PyTorch or XGBoost), then for Artifacts, you can choose the Upload artifacts option. With this
option, you can simply specify your raw model artifacts, any custom inference code you have,
and your requirements.txt file, and SageMaker handles packaging the archive for you. Do the
following:

a. For Artifacts, select Upload artifacts to continue providing your files. Otherwise, if
you already have a tar.gz archive that contains your model files, inference code, and
requirements.txt file, then select Input S3 URI to pre-packaged artifacts.

b. If you chose to upload your artifacts, then for S3 bucket, enter the Amazon S3 path to a
bucket where you'd like SageMaker to store your artifacts after packaging them for you.
Then, complete the following steps.

c. For Upload model artifacts, upload your model files.

Deploy models 4049

Amazon SageMaker Developer Guide

d. For Inference code, select Use default inference code if you'd like to use default code
that SageMaker provides for serving inference. Otherwise, select Upload customized
inference code to use your own inference code.

e. For Upload requirements.txt, upload a text file that lists any dependencies that you want
to install at runtime.

2. If you're not using a framework that SageMaker supports for packaging model artifacts,
then Studio shows you the Pre-packaged artifacts option, and you must provide all of your
artifacts already packaged as a tar.gz archive. Do the following:

a. For Pre-packaged artifacts, select Input S3 URI for pre-packaged model artifacts if you
have your tar.gz archive already uploaded to Amazon S3. Select Upload pre-packaged
model artifacts if you want to directly upload your archive to SageMaker.

b. If you selected Input S3 URI for pre-packaged model artifacts, enter the Amazon S3
path to your archive for S3 URI. Otherwise, select and upload the archive from your local
machine.

The next section is Security, which looks like the following screenshot:

For the Security section, do the following:

1. For IAM role, enter the ARN for an IAM role.

2. (Optional) For Virtual Private Cloud (VPC), you can select an Amazon VPC for storing your
model configuration and artifacts.

Deploy models 4050

Amazon SageMaker Developer Guide

3. (Optional) Turn on the Network isolation toggle if you want to restrict your container's
internet access.

Finally, you can optionally fill out the Advanced options section, which looks like the following
screenshot:

(Optional) For the Advanced options section, do the following:

1. Turn on the Customized instance recommendations toggle if you want to run an Amazon
SageMaker Inference Recommender job on your model after its creation. Inference
Recommender is a feature that provides you with recommended instance types for optimizing
inference performance and cost. You can view these instance recommendations when
preparing to deploy your model.

2. For Add environment variables, enter an environment variables for your container as key-
value pairs.

3. For Tags, enter any tags as key-value pairs.

4. After finishing your model and container configuration, choose Create deployable model.

Deploy models 4051

Amazon SageMaker Developer Guide

You should now have a model in SageMaker Studio that is ready for deployment.

Deploy your model

Finally, you deploy the model you configured in the previous step to an HTTPS endpoint. You can
deploy either a single model or multiple models to the endpoint.

One way to deploy a model is by doing the following in Studio:

1. Open the SageMaker Studio application.

2. In the left navigation pane, choose Models.

3. On the Models page, select one or more models from the list of SageMaker models.

4. Choose Deploy.

5. For Endpoint name, open the dropdown menu. You can either select an existing endpoint or
you can create a new endpoint to which you deploy the model.

6. For Instance type, select the instance type that you want to use for the endpoint. If you
previously ran an Inference Recommender job for the model, your recommended instance
types appear in the list under the title Recommended. Otherwise, you'll see a few Prospective
instances that might be suitable for your model.

7. For Initial instance count, enter the initial number of instances that you'd like to provision for
your endpoint.

8. If the model you're deploying is one of the most used SageMaker JumpStart LLMs from the
model hub, then the Alternate configurations option appears after the instance type and
instance count fields.

For the most popular SageMaker JumpStart LLMs, AWS has pre-benchmarked instance types
to optimize for either cost or performance. This data can help you decide which instance type
to use for deploying your LLM. Choose Alternate configurations to open a dialog box that
contains the pre-benchmarked data. The panel looks like the following screenshot:

Deploy models 4052

Amazon SageMaker Developer Guide

In the Alternate configurations box, do the following:

a. Select an instance type. You can choose Cost per hour or Best performance to see
instance types that optimize either cost or performance for the specified model. You
can also choose Other supported instances to see a list of other instance types that are
compatible with the SageMaker JumpStart model. Note that selecting an instance type
here overwrites any previous instance selection specified in Step 6.

b. (Optional) Turn on the Customize the selected configuration toggle to specify Max total
tokens (the maximum number of tokens that you want to allow, which is the sum of your
input tokens and the model's generated output), Max input token length (the maximum
number of tokens you want to allow for the input of each request), and Max concurrent
requests (the maximum number of requests that the model can process at a time).

c. Choose Select to confirm your instance type and configuration settings.

9. The Model field should already be populated with the name of the model or models that
you're deploying. You can choose Add model to add more models to the deployment. For each
model that you add, fill out the following fields:

a. For Number of CPU cores, enter the CPU cores that you'd like to dedicate for the model's
usage.

Deploy models 4053

Amazon SageMaker Developer Guide

b. For Min number of copies, enter the minimum number of model copies that you want to
have hosted on the endpoint at any given time.

c. For Min CPU memory (MB), enter the minimum amount of memory (in MB) that the
model requires.

d. For Max CPU memory (MB), enter the maximum amount of memory (in MB) that you'd
like to allow the model to use.

10. (Optional) For the Advanced options, do the following:

a. For IAM role, use either the default SageMaker IAM execution role, or specify your own
role that has the permissions you need. Note that this IAM role must be the same as the
role that you specified when creating the deployable model.

b. For Virtual Private Cloud (VPC), you can specify a VPC in which you want to host your
endpoint.

c. For Encryption KMS key, select an AWS KMS key to encrypt data on the storage volume
attached to the ML compute instance that hosts the endpoint.

d. Turn on the Enable network isolation toggle to restrict your container's internet access.

e. For Timeout configuration, enter values for the Model data download timeout (seconds)
and Container startup health check timeout (seconds) fields. These values determine
the maximum amount of time that SageMaker allows for downloading the model to the
container and starting up the container, respectively.

f. For Tags, enter any tags as key-value pairs.

After configuring your options, the page should look like the following screenshot.

Deploy models 4054

Amazon SageMaker Developer Guide

After configuring your deployment, choose Deploy to create the endpoint and deploy your model.

Deploy models with the Python SDKs

Using the SageMaker Python SDK, you can build your model in two ways. The first is to create a
model object from the Model or ModelBuilder class. If you use the Model class to create your
Model object, you need to specify the model package or inference code (depending on your model
server), scripts to handle serialization and deserialization of data between the client and server,
and any dependencies to be uploaded to Amazon S3 for consumption. The second way to build
your model is to use ModelBuilder for which you provide model artifacts or inference code.
ModelBuilder automatically captures your dependencies, infers the needed serialization and
deserialization functions, and packages your dependencies to create your Model object. For more
information about ModelBuilder, see Create a model in Amazon SageMaker with ModelBuilder.

The following section describes both methods to create your model and deploy your model object.

Set up

The following examples prepare for the model deployment process. They import the necessary
libraries and define the S3 URL that locates the model artifacts.

Deploy models 4055

Amazon SageMaker Developer Guide

SageMaker Python SDK

Example import statements

The following example imports modules from the SageMaker Python SDK, the SDK for Python
(Boto3), and the Python Standard Library. These modules provide useful methods that help you
deploy models, and they're used by the remaining examples that follow.

import boto3
from datetime import datetime
from sagemaker.compute_resource_requirements.resource_requirements import
 ResourceRequirements
from sagemaker.predictor import Predictor
from sagemaker.enums import EndpointType
from sagemaker.model import Model
from sagemaker.session import Session

boto3 inference components

Example import statements

The following example imports modules from the SDK for Python (Boto3) and the Python
Standard Library. These modules provide useful methods that help you deploy models, and
they're used by the remaining examples that follow.

import boto3
import botocore
import sys
import time

boto3 models (without inference components)

Example import statements

The following example imports modules from the SDK for Python (Boto3) and the Python
Standard Library. These modules provide useful methods that help you deploy models, and
they're used by the remaining examples that follow.

import boto3
import botocore

Deploy models 4056

Amazon SageMaker Developer Guide

import datetime
from time import gmtime, strftime

Example model artifact URL

The following code builds an example Amazon S3 URL. The URL locates the model artifacts for a
pre-trained model in an Amazon S3 bucket.

Create a variable w/ the model S3 URL

The name of your S3 bucket:
s3_bucket = "DOC-EXAMPLE-BUCKET"
The directory within your S3 bucket your model is stored in:
bucket_prefix = "sagemaker/model/path"
The file name of your model artifact:
model_filename = "my-model-artifact.tar.gz"
Relative S3 path:
model_s3_key = f"{bucket_prefix}/"+model_filename
Combine bucket name, model file name, and relate S3 path to create S3 model URL:
model_url = f"s3://{s3_bucket}/{model_s3_key}"

The full Amazon S3 URL is stored in the variable model_url, which is used in the examples that
follow.

Overview

There are multiple ways that you can deploy models with the SageMaker Python SDK or the SDK
for Python (Boto3). The following sections summarize the steps that you complete for several
possible approaches. These steps are demonstrated by the examples that follow.

SageMaker Python SDK

Using the SageMaker Python SDK, you can build your model in either of the following ways:

• Create a model object from the Model class – You must specify the model package
or inference code (depending on your model server), scripts to handle serialization and
deserialization of data between the client and server, and any dependencies to be uploaded
to Amazon S3 for consumption.

• Create a model object from the ModelBuilder class – You provide model artifacts or
inference code, and ModelBuilder automatically captures your dependencies, infers the

Deploy models 4057

Amazon SageMaker Developer Guide

needed serialization and deserialization functions, and packages your dependencies to create
your Model object.

For more information about ModelBuilder, see Create a model in Amazon SageMaker with
ModelBuilder. You can also see the blog Package and deploy classical ML models and LLMs
easily with SageMaker – Part 1 for more information.

The examples that follow describe both methods to create your model and deploy your model
object. To deploy a model in these ways, you complete the following steps:

1. Define the endpoint resources to allocate to the model with a ResourceRequirements
object.

2. Create a model object from the Model or ModelBuilder classes. The
ResourceRequirements object is specified in the model settings.

3. Deploy the model to an endpoint by using the deploy method of the Model object.

boto3 inference components

The examples that follow demonstrate how to assign a model to an inference component
and then deploy the inference component to an endpoint. To deploy a model in this way, you
complete the following steps:

1. (Optional) Create a SageMaker model object by using the create_model method.

2. Specify the settings for your endpoint by creating an endpoint configuration object. To
create one, you use the create_endpoint_config method.

3. Create your endpoint by using the create_endpoint method, and in your request,
provide the endpoint configuration that you created.

4. Create an inference component by using the create_inference_component method. In
the settings, you specify a model by doing either of the following:

• Specifying a SageMaker model object

• Specifying the model image URI and S3 URL

You also allocate endpoint resources to the model. By creating the inference component,
you deploy the model to the endpoint. You can deploy multiple models to an endpoint by
creating multiple inference components — one for each model.

Deploy models 4058

https://aws.amazon.com/blogs/machine-learning/package-and-deploy-classical-ml-and-llms-easily-with-amazon-sagemaker-part-1-pysdk-improvements/
https://aws.amazon.com/blogs/machine-learning/package-and-deploy-classical-ml-and-llms-easily-with-amazon-sagemaker-part-1-pysdk-improvements/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_model.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_endpoint_config.html#create-endpoint-config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_endpoint.html

Amazon SageMaker Developer Guide

boto3 models (without inference components)

The examples that follow demonstrate how to create a model object and then deploy the
model to an endpoint. To deploy a model in this way, you complete the following steps:

1. Create a SageMaker model by using the create_model method.

2. Specify the settings for your endpoint by creating an endpoint configuration object.
To create one, you use the create_endpoint_config method. In the endpoint
configuration, you assign the model object to a production variant.

3. Create your endpoint by using the create_endpoint method. In your request, provide the
endpoint configuration that you created.

When you create the endpoint, SageMaker provisions the endpoint resources, and it
deploys the model to the endpoint.

Configure

The following examples configure the resources that you require to deploy a model to an endpoint.

SageMaker Python SDK

The following example assigns endpoint resources to a model with a ResourceRequirements
object. These resources include CPU cores, accelerators, and memory. Then, the example
creates a model object from the Model class. Alternatively you can create a model object by
instantiating the ModelBuilder class and running build—this method is also shown in the
example. ModelBuilder provides a unified interface for model packaging, and in this instance,
prepares a model for a large model deployment. The example utilizes ModelBuilder to
construct a Hugging Face model. (You can also pass a JumpStart model). Once you build the
model, you can specify resource requirements in the model object. In the next step, you use this
object to deploy the model to an endpoint.

resources = ResourceRequirements(
 requests = {
 "num_cpus": 2, # Number of CPU cores required:
 "num_accelerators": 1, # Number of accelerators required
 "memory": 8192, # Minimum memory required in Mb (required)
 "copies": 1,
 },
 limits = {},

Deploy models 4059

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_model.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_endpoint_config.html#create-endpoint-config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-modelbuilder-creation.html

Amazon SageMaker Developer Guide

)

now = datetime.now()
dt_string = now.strftime("%d-%m-%Y-%H-%M-%S")
model_name = "my-sm-model"+dt_string

build your model with Model class
model = Model(
 name = "model-name",
 image_uri = "image-uri",
 model_data = model_url,
 role = "arn:aws:iam::111122223333:role/service-role/role-name",
 resources = resources,
 predictor_cls = Predictor,
)

Alternate mechanism using ModelBuilder
uncomment the following section to use ModelBuilder
/*
model_builder = ModelBuilder(
 model="<HuggingFace-ID>", # like "meta-llama/Llama-2-7b-hf"
 schema_builder=SchemaBuilder(sample_input,sample_output),
 env_vars={ "HUGGING_FACE_HUB_TOKEN": "<HuggingFace_token>}" }
)

build your Model object
model = model_builder.build()

create a unique name from string 'mb-inference-component'
model.model_name = unique_name_from_base("mb-inference-component")

assign resources to your model
model.resources = resources
*/

boto3 inference components

The following example configures an endpoint with the create_endpoint_config method.
You assign this configuration to an endpoint when you create it. In the configuration, you define
one or more production variants. For each variant, you can choose the instance type that you
want Amazon SageMaker to provision, and you can enable managed instance scaling.

endpoint_config_name = "endpoint-config-name"

Deploy models 4060

Amazon SageMaker Developer Guide

endpoint_name = "endpoint-name"
inference_component_name = "inference-component-name"
variant_name = "variant-name"

sagemaker_client.create_endpoint_config(
 EndpointConfigName = endpoint_config_name,
 ExecutionRoleArn = "arn:aws:iam::111122223333:role/service-role/role-name",
 ProductionVariants = [
 {
 "VariantName": variant_name,
 "InstanceType": "ml.p4d.24xlarge",
 "InitialInstanceCount": 1,
 "ManagedInstanceScaling": {
 "Status": "ENABLED",
 "MinInstanceCount": 1,
 "MaxInstanceCount": 2,
 },
 }
],
)

boto3 models (without inference components)

Example model definition

The following example defines a SageMaker model with the create_model method in the
AWS SDK for Python (Boto3).

model_name = "model-name"

create_model_response = sagemaker_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = "arn:aws:iam::111122223333:role/service-role/role-name",
 PrimaryContainer = {
 "Image": "image-uri",
 "ModelDataUrl": model_url,
 }
)

This example specifies the following:

• ModelName: A name for your model (in this example it is stored as a string variable called
model_name).

Deploy models 4061

Amazon SageMaker Developer Guide

• ExecutionRoleArn: The Amazon Resource Name (ARN) of the IAM role that Amazon
SageMaker can assume to access model artifacts and Docker images for deployment on ML
compute instances or for batch transform jobs.

• PrimaryContainer: The location of the primary Docker image containing inference code,
associated artifacts, and custom environment maps that the inference code uses when the
model is deployed for predictions.

Example endpoint configuration

The following example configures an endpoint with the create_endpoint_config method.
Amazon SageMaker uses this configuration to deploy models. In the configuration, you identify
one or more models, created with the create_model method, to deploy the resources that you
want Amazon SageMaker to provision.

endpoint_config_response = sagemaker_client.create_endpoint_config(
 EndpointConfigName = "endpoint-config-name",
 # List of ProductionVariant objects, one for each model that you want to host at
 this endpoint:
 ProductionVariants = [
 {
 "VariantName": "variant-name", # The name of the production variant.
 "ModelName": model_name,
 "InstanceType": "ml.p4d.24xlarge",
 "InitialInstanceCount": 1 # Number of instances to launch initially.
 }
]
)

This example specifies the following keys for the ProductionVariants field:

• VariantName: The name of the production variant.

• ModelName: The name of the model that you want to host. This is the name that you
specified when creating the model.

• InstanceType: The compute instance type. See the InstanceType field in https://
docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html and
SageMaker Pricing for a list of supported compute instance types and pricing for each
instance type.

Deploy models 4062

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Deploy

The following examples deploy a model to an endpoint.

SageMaker Python SDK

The following example deploys the model to a real-time, HTTPS endpoint with the deploy
method of the model object. If you specify a value for the resources argument for both
model creation and deployment, the resources you specify for deployment take precedence.

predictor = model.deploy(
 initial_instance_count = 1,
 instance_type = "ml.p4d.24xlarge",
 endpoint_type = EndpointType.INFERENCE_COMPONENT_BASED,
 resources = resources,
)

For the instance_type field, the example specifies the name of the Amazon EC2 instance
type for the model. For the initial_instance_count field, it specifies the initial number of
instances to run the endpoint on.

The following code sample demonstrates another case where you deploy a model to an
endpoint and then deploy another model to the same endpoint. In this case you must supply
the same endpoint name to the deploy methods of both models.

Deploy the model to inference-component-based endpoint
falcon_predictor = falcon_model.deploy(
 initial_instance_count = 1,
 instance_type = "ml.p4d.24xlarge",
 endpoint_type = EndpointType.INFERENCE_COMPONENT_BASED,
 endpoint_name = "<endpoint_name>"
 resources = resources,
)

Deploy another model to the same inference-component-based endpoint
llama2_predictor = llama2_model.deploy(# resources already set inside llama2_model
 endpoint_type = EndpointType.INFERENCE_COMPONENT_BASED,
 endpoint_name = "<endpoint_name>" # same endpoint name as for falcon model
)

Deploy models 4063

Amazon SageMaker Developer Guide

boto3 inference components

Once you have an endpoint configuration, use the create_endpoint method to create your
endpoint. The endpoint name must be unique within an AWS Region in your AWS account.

The following example creates an endpoint using the endpoint configuration specified in the
request. Amazon SageMaker uses the endpoint to provision resources.

sagemaker_client.create_endpoint(
 EndpointName = endpoint_name,
 EndpointConfigName = endpoint_config_name,
)

After you've created an endpoint, you can deploy one or models to it by creating inference
components. The following example creates one with the create_inference_component
method.

sagemaker_client.create_inference_component(
 InferenceComponentName = inference_component_name,
 EndpointName = endpoint_name,
 VariantName = variant_name,
 Specification = {
 "Container": {
 "Image": "image-uri",
 "ArtifactUrl": model_url,
 },
 "ComputeResourceRequirements": {
 "NumberOfCpuCoresRequired": 1,
 "MinMemoryRequiredInMb": 1024
 }
 },
 RuntimeConfig = {"CopyCount": 2}
)

boto3 models (without inference components)

Example deployment

Provide the endpoint configuration to SageMaker. The service launches the ML compute
instances and deploys the model or models as specified in the configuration.

Deploy models 4064

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_endpoint.html

Amazon SageMaker Developer Guide

Once you have your model and endpoint configuration, use the create_endpoint method to
create your endpoint. The endpoint name must be unique within an AWS Region in your AWS
account.

The following example creates an endpoint using the endpoint configuration specified in the
request. Amazon SageMaker uses the endpoint to provision resources and deploy models.

create_endpoint_response = sagemaker_client.create_endpoint(
 # The endpoint name must be unique within an AWS Region in your AWS account:
 EndpointName = "endpoint-name"
 # The name of the endpoint configuration associated with this endpoint:
 EndpointConfigName = "endpoint-config-name")

Deploy models with the AWS CLI

You can deploy a model to an endpoint by using the AWS CLI.

Overview

When you deploy a model with the AWS CLI, you can deploy it with or without using an inference
component. The following sections summarize the commands that you run for both approaches.
These commands are demonstrated by the examples that follow.

With inference components

To deploy a model with an inference component, do the following:

1. (Optional) Create a model with the create-model command.

2. Specify the settings for your endpoint by creating an endpoint configuration. To create one,
you run the create-endpoint-config command.

3. Create your endpoint by using the create-endpoint command. In the command body,
specify the endpoint configuration that you created.

4. Create an inference component by using the create-inference-component command.
In the settings, you specify a model by doing either of the following:

• Specifying a SageMaker model object

• Specifying the model image URI and S3 URL

Deploy models 4065

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-model.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint-config.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint.html

Amazon SageMaker Developer Guide

You also allocate endpoint resources to the model. By creating the inference component,
you deploy the model to the endpoint. You can deploy multiple models to an endpoint by
creating multiple inference components — one for each model.

Without inference components

To deploy a model without using an inference component, do the following:

1. Create a SageMaker model by using the create-model command.

2. Specify the settings for your endpoint by creating an endpoint configuration object.
To create one, you use the create-endpoint-config command. In the endpoint
configuration, you assign the model object to a production variant.

3. Create your endpoint by using the create-endpoint command. In your command body,
specify the endpoint configuration that you created.

When you create the endpoint, SageMaker provisions the endpoint resources, and it
deploys the model to the endpoint.

Configure

The following examples configure the resources that you require to deploy a model to an endpoint.

With inference components

Example create-endpoint-config command

The following example creates an endpoint configuration with the create-endpoint-config
command.

aws sagemaker create-endpoint-config \
--endpoint-config-name endpoint-config-name \
--execution-role-arn arn:aws:iam::111122223333:role/service-role/role-name\
--production-variants file://production-variants.json

In this example, the file production-variants.json defines a production variant with the
following JSON:

[

Deploy models 4066

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-model.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint-config.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint-config.html

Amazon SageMaker Developer Guide

 {
 "VariantName": "variant-name",
 "ModelName": "model-name",
 "InstanceType": "ml.p4d.24xlarge",
 "InitialInstanceCount": 1
 }
]

If the command succeeds, the AWS CLI responds with the ARN for the resource you created.

{
 "EndpointConfigArn": "arn:aws:sagemaker:us-west-2:111122223333:endpoint-config/
endpoint-config-name"
}

Without inference components

Example create-model command

The following example creates a model with the create-model command.

aws sagemaker create-model \
--model-name model-name \
--execution-role-arn arn:aws:iam::111122223333:role/service-role/role-name \
--primary-container "{ \"Image\": \"image-uri\", \"ModelDataUrl\": \"model-s3-
url\"}"

If the command succeeds, the AWS CLI responds with the ARN for the resource you created.

{
 "ModelArn": "arn:aws:sagemaker:us-west-2:111122223333:model/model-name"
}

Example create-endpoint-config command

The following example creates an endpoint configuration with the create-endpoint-config
command.

aws sagemaker create-endpoint-config \
--endpoint-config-name endpoint-config-name \

Deploy models 4067

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-model.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint-config.html

Amazon SageMaker Developer Guide

--production-variants file://production-variants.json

In this example, the file production-variants.json defines a production variant with the
following JSON:

[
 {
 "VariantName": "variant-name",
 "ModelName": "model-name",
 "InstanceType": "ml.p4d.24xlarge",
 "InitialInstanceCount": 1
 }
]

If the command succeeds, the AWS CLI responds with the ARN for the resource you created.

{
 "EndpointConfigArn": "arn:aws:sagemaker:us-west-2:111122223333:endpoint-config/
endpoint-config-name"
}

Deploy

The following examples deploy a model to an endpoint.

With inference components

Example create-endpoint command

The following example creates an endpoint with the create-endpoint command.

aws sagemaker create-endpoint \
--endpoint-name endpoint-name \
--endpoint-config-name endpoint-config-name

If the command succeeds, the AWS CLI responds with the ARN for the resource you created.

{
 "EndpointArn": "arn:aws:sagemaker:us-west-2:111122223333:endpoint/endpoint-name"
}

Deploy models 4068

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint.html

Amazon SageMaker Developer Guide

Example create-inference-component command

The following example creates an inference component with the create-inference-component
command.

aws sagemaker create-inference-component \
--inference-component-name inference-component-name \
--endpoint-name endpoint-name \
--variant-name variant-name \
--specification file://specification.json \
--runtime-config "{\"CopyCount\": 2}"

In this example, the file specification.json defines the container and compute resources
with the following JSON:

{
 "Container": {
 "Image": "image-uri",
 "ArtifactUrl": "model-s3-url"
 },
 "ComputeResourceRequirements": {
 "NumberOfCpuCoresRequired": 1,
 "MinMemoryRequiredInMb": 1024
 }
}

If the command succeeds, the AWS CLI responds with the ARN for the resource you created.

{
 "InferenceComponentArn": "arn:aws:sagemaker:us-west-2:111122223333:inference-
component/inference-component-name"
}

Without inference components

Example create-endpoint command

The following example creates an endpoint with the create-endpoint command.

aws sagemaker create-endpoint \
--endpoint-name endpoint-name \
--endpoint-config-name endpoint-config-name

Deploy models 4069

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint.html

Amazon SageMaker Developer Guide

If the command succeeds, the AWS CLI responds with the ARN for the resource you created.

{
 "EndpointArn": "arn:aws:sagemaker:us-west-2:111122223333:endpoint/endpoint-name"
}

Invoke models for real-time inference

After you deploy your model using SageMaker hosting services, you can test your model on that
endpoint by sending it test data. You can test your endpoints using Amazon SageMaker Studio, the
AWS SDKs, or the AWS CLI.

Invoke Your Endpoint Using Amazon SageMaker Studio

After you deploy your model to an endpoint, you can view the endpoint through Amazon
SageMaker Studio and test your endpoint by sending single inference requests.

Note

SageMaker only supports endpoint testing in Studio for real-time endpoints.

To send a test inference request to your endpoint

1. Launch Amazon SageMaker Studio.

2. In the navigation pane on the left, choose Deployments.

3. From the dropdown, choose Endpoints.

4. Find for your endpoint by name, and choose the name in the table. The endpoint names listed
in the Endpoints panel are defined when you deploy a model. The Studio workspace opens the
Endpoint page in a new tab.

5. Choose the Test inference tab.

6. For Testing Options, select one of the following:

a. Select Test the sample request to immediately send a request to your endpoint. Use the
JSON editor to provide sample data in JSON format, and choose Send Request to submit
the request to your endpoint. After submitting your request, Studio shows the inference
output in a card to the right of the JSON editor.

Invoke models 4070

Amazon SageMaker Developer Guide

b. Select Use Python SDK example code to view the code for sending a request to the
endpoint. Then, copy the code example from the Example inference request section and
run the code from your testing environment.

The top of the card shows the type of request that was sent to the endpoint (only JSON is
accepted). The card shows the following fields:

• Status – displays one of the following status types:

• Success – The request succeeded.

• Failed – The request failed. A response appears under Failure Reason.

• Pending – While the inference request is pending, the status shows a spinning, circular icon.

• Execution Length – How long the invocation took (end time minus the start time) in
milliseconds.

• Request Time – How many minutes have passed since the request was sent.

• Result Time – How many minutes have passed since the result was returned.

Invoke Your Endpoint by Using the AWS SDK for Python (Boto3)

After you deploy your model to an endpoint you can check your endpoint by using one of the AWS
SDKs, including as the AWS SDK for Python (Boto3). To test your endpoint with this SDK, you use
one of the following methods:

• invoke_endpoint– Sends an inference request to a model endpoint and returns the response
that the model generates. This method returns the inference payload as one response after the
model finishes generating it. For more information, see invoke_endpoint in the AWS SDK for
Python (Boto3) API Reference.

• invoke_endpoint_with_response_stream – Sends an inference request to a model
endpoint and streams the response in incremental parts while the model generates the
inference. With this method, your client application immediately starts receiving parts of the
response as the parts become available. Your client doesn't need to wait for the model to
generate the whole response payload. You can implement streaming to support fast interactive
experiences, such as chatbots, virtual assistants, and music generators.

Use this method only to invoke models that support inference streaming.

Invoke models 4071

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime/client/invoke_endpoint.html

Amazon SageMaker Developer Guide

When a container handles a streaming inference request, it returns the model's inference
as a series of parts incrementally as the model generates them. Client applications start
receiving responses immediately when they're available. They don't need to wait for the model
to generate the entire response. You can implement streaming to support fast interactive
experiences, such as chatbots, virtual assistants, and music generators.

Before you can use these methods in your client code, you must create a SageMaker Runtime client,
and you must specify the name of your endpoint. The following example sets up the client and
endpoint for the rest of the examples that follow:

import boto3

Create a low-level client representing Amazon SageMaker Runtime
sagemaker_runtime = boto3.client(
 "sagemaker-runtime", region_name='aws_region')

The endpoint name must be unique within
an AWS Region in your AWS account.
endpoint_name='endpoint-name'

Invoke to Get an Inference Response

The following example uses the invoke_endpoint method to invoke an endpoint with the AWS
SDK for Python (Boto3):

Gets inference from the model hosted at the specified endpoint:
response = sagemaker_runtime.invoke_endpoint(
 EndpointName=endpoint_name,
 Body=bytes('{"features": ["This is great!"]}', 'utf-8')
)

Decodes and prints the response body:
print(response['Body'].read().decode('utf-8'))

This example provide input data in the Body field for SageMaker to pass to the model. This data
must be in the same format that was used for training. The example stores the response in the
response variable.

Invoke models 4072

Amazon SageMaker Developer Guide

The response variable provides access to the HTTP status, the name of the deployed model, and
other fields. The following snippet prints the HTTPStatusCode:

print(response["HTTPStatusCode"])

Invoke to Stream an Inference Response

If you deployed a model that supports inference streaming, you can invoke the model to receive its
inference payload as a stream of parts. The model delivers these parts incrementally as the model
generates them. When an application receives an inference stream, the application doesn't need to
wait for the model to generate the whole response payload. Instead, the application immediately
starts receiving parts of the response as they become available.

By consuming an inference stream in your application, you can create interactions where your users
perceive the inference to be fast because they get the first part immediately. For example, you
could create a chatbot that incrementally shows the text generated by a large language model
(LLM).

To get an inference stream, you can use the invoke_endpoint_with_response_stream
method in the SDK for Python (Boto3). In the response body, the SDK provides an EventStream
object, which gives the inference as a series of PayloadPart objects.

Example Inference Stream

The following example is a stream of PayloadPart objects:

{'PayloadPart': {'Bytes': b'{"outputs": [" a"]}\n'}}
{'PayloadPart': {'Bytes': b'{"outputs": [" challenging"]}\n'}}
{'PayloadPart': {'Bytes': b'{"outputs": [" problem"]}\n'}}
. . .

In each payload part, the Bytes field provides a portion of the inference response from the model.
This portion can be any content type that a model generates, such as text, image, or audio data. In
this example, the portions are JSON objects that contain generated text from an LLM.

Usually, the payload part contains a discrete chunk of data from the model. In this example, the
discrete chunks are whole JSON objects. Occasionally, the streaming response splits the chunks
over multiple payload parts, or it combines multiple chunks into one payload part. The following
example shows a chunk of data in JSON format that's split over two payload parts:

Invoke models 4073

Amazon SageMaker Developer Guide

{'PayloadPart': {'Bytes': b'{"outputs": '}}
{'PayloadPart': {'Bytes': b'[" problem"]}\n'}}

When you write application code that processes an inference stream, include logic that handles
these occasional splits and combinations of data. As one strategy, you could write code that
concatenates the contents of Bytes while your application receives the payload parts. By
concatenating the example JSON data here, you would combine the data into a newline-delimited
JSON body. Then, your code could process the stream by parsing the whole JSON object on each
line.

The following example shows the newline-delimited JSON that you would create when you
concatenate the example contents of Bytes:

{"outputs": [" a"]}
{"outputs": [" challenging"]}
{"outputs": [" problem"]}
. . .

Example Code to Process an Inference Stream

The following example Python class, SmrInferenceStream, demonstrates how you can process
an inference stream that sends text data in JSON format:

import io
import json

Example class that processes an inference stream:
class SmrInferenceStream:

 def __init__(self, sagemaker_runtime, endpoint_name):
 self.sagemaker_runtime = sagemaker_runtime
 self.endpoint_name = endpoint_name
 # A buffered I/O stream to combine the payload parts:
 self.buff = io.BytesIO()
 self.read_pos = 0

 def stream_inference(self, request_body):
 # Gets a streaming inference response
 # from the specified model endpoint:
 response = self.sagemaker_runtime\
 .invoke_endpoint_with_response_stream(

Invoke models 4074

Amazon SageMaker Developer Guide

 EndpointName=self.endpoint_name,
 Body=json.dumps(request_body),
 ContentType="application/json"
)
 # Gets the EventStream object returned by the SDK:
 event_stream = response['Body']
 for event in event_stream:
 # Passes the contents of each payload part
 # to be concatenated:
 self._write(event['PayloadPart']['Bytes'])
 # Iterates over lines to parse whole JSON objects:
 for line in self._readlines():
 resp = json.loads(line)
 part = resp.get("outputs")[0]
 # Returns parts incrementally:
 yield part

 # Writes to the buffer to concatenate the contents of the parts:
 def _write(self, content):
 self.buff.seek(0, io.SEEK_END)
 self.buff.write(content)

 # The JSON objects in buffer end with '\n'.
 # This method reads lines to yield a series of JSON objects:
 def _readlines(self):
 self.buff.seek(self.read_pos)
 for line in self.buff.readlines():
 self.read_pos += len(line)
 yield line[:-1]

This example processes the inference stream by doing the following:

• Gets initialized with a SageMaker Runtime client and the name of a model endpoint. Before
you can get an inference stream, the model that the endpoint hosts must support inference
streaming.

• In the example stream_inference method, receives a request body and passes it to the
invoke_endpoint_with_response_stream method of the SDK.

• Iterates over each event in the EventStream object that the SDK returns.

• From each event, gets the contents of the Bytes object in the PayloadPart object.

• In the example _write method, writes to a buffer to concatenate the contents of the Bytes
objects. The combined contents form a newline-delimited JSON body.

Invoke models 4075

Amazon SageMaker Developer Guide

• Uses the example _readlines method to get an iterable series of JSON objects.

• In each JSON object, gets a piece of the inference.

• With the yield expression, returns the pieces incrementally.

The following example creates and uses a SmrInferenceStream object:

request_body = {"inputs": ["Large model inference is"],
 "parameters": {"max_new_tokens": 100,
 "enable_sampling": "true"}}
smr_inference_stream = SmrInferenceStream(
 sagemaker_runtime, endpoint_name)
stream = smr_inference_stream.stream_inference(request_body)
for part in stream:
 print(part, end='')

This example passes a request body to the stream_inference method. It iterates over the
response to print each piece that the inference stream returns.

The example assumes that the model at the specified endpoint is an LLM that generates text. The
output from this example is a body of generated text that prints incrementally:

a challenging problem in machine learning. The goal is to . . .

Invoke Your Endpoint by Using the AWS CLI

You can test your endpoint by running commands with the AWS Command Line Interface (AWS
CLI). The AWS CLI supports standard inference requests with the invoke-endpoint command,
and it supports asynchronous inference requests with the invoke-endpoint-async command.

Note

The AWS CLI doesn't support streaming inference requests.

The following example uses the invoke-endpoint command to send an inference request to a
model endpoint:

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name endpoint_name \

Invoke models 4076

Amazon SageMaker Developer Guide

 --body fileb://$file_name \
 output_file.txt

For the --endpoint-name parameter, provide the name you specified for EndpointName when
you created your endpoint with CreateEndpoint. For the --body parameter, provide input
data for SageMaker to pass to the model. The data must be in the same format that was used for
training. This example shows how to send binary data to your endpoint.

For more information on when to use file:// over fileb:// when passing the contents of a file
to a parameter of the AWS CLI, see Best Practices for Local File Parameters.

For more information, and to see additional parameters that you can pass, see invoke-endpoint
in the AWS CLI Command Reference.

If the invoke-endpoint command succeeds it returns a response such as the following:

{
 "ContentType": "<content_type>; charset=utf-8",
 "InvokedProductionVariant": "<Variant>"
}

If the command doesn't succeed, check whether the input payload is in the correct format.

View the output of the invocation by checking the file output file (output_file.txt in this
example).

more output_file.txt

Manage your endpoints

After deploying your model to an endpoint, you might want to view and manage the endpoint.
With SageMaker, you can view the status and details of your endpoint, check metrics and logs to
monitor your endpoint’s performance, update the models deployed to your endpoint, and more.

The following page describes how to interactively view and make changes to your endpoints using
the Amazon SageMaker console or SageMaker Studio.

Manage endpoints in SageMaker Studio

In Amazon SageMaker Studio, you can view and manage your SageMaker Hosting endpoints. To
learn more about Studio, see Amazon SageMaker Studio.

Manage endpoints 4077

https://aws.amazon.com/blogs/developer/best-practices-for-local-file-parameters/
https://docs.aws.amazon.com/cli/latest/reference/sagemaker-runtime/invoke-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html

Amazon SageMaker Developer Guide

To find the list of your endpoints in SageMaker Studio do the following:

1. Open the Studio application.

2. In the left navigation pane, choose Deployments.

3. From the dropdown menu, choose Endpoints.

The Endpoints page opens, which lists all of your SageMaker Hosting endpoints. From this page,
you can see the endpoints and their Status. You can also create a new endpoint, edit an existing
endpoint, or delete an endpoint.

To see the details for a specific endpoint, choose an endpoint from the list. On the endpoint’s
details page, you get an overview like the following screenshot.

Each endpoint details page contains the following tabs of information:

Variants (or Models)

The Variants tab (also called the Models tab if your endpoint has multiple models deployed)
shows you the list of model variants or models currently deployed to your endpoint. The following
screenshot shows you what the overview and Models section looks like for an endpoint with
multiple models deployed.

Manage endpoints 4078

https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html

Amazon SageMaker Developer Guide

You can add or edit the settings for each variant or model. You can also select a variant and enable
a default auto-scaling policy, which you can edit later in the Auto-scaling tab.

Settings

On the Settings tab, you can view the endpoint’s associated AWS IAM role, the AWS KMS key used
for encryption (if applicable), the name of your VPC, and the network isolation settings.

Test inference

On the Test inference tab, you can send a test inference request to a deployed model. This is useful
if you’d like to verify that your endpoint responds to requests as expected.

To test inference, do the following:

1. On the model's Test inference tab, choose one of the following options:

a. Select Enter the request body if you’d like to test the endpoint and receive a response
through the Studio interface.

b. Select Copy example code (Python) if you’d like to copy an AWS SDK for Python (Boto3)
example that you can use to invoke your endpoint from a local environment and receive a
response programmatically.

2. For Model, select the model that you want to test on the endpoint.

3. If you chose the Studio interface testing method, then you can also choose your desired
Content type for the response from the dropdown.

After configuring your request, then you can either choose Send request (to receive a response
through the Studio interface) or Copy to copy the Python example.

Manage endpoints 4079

Amazon SageMaker Developer Guide

If you receive a response through the Studio interface, it’ll look like the following screenshot.

Auto-scaling

On the Auto-scaling tab, you can view any auto-scaling policies configured for the models hosted
on your endpoint. The following screenshot shows you the Auto-scaling tab.

You can choose Edit auto-scaling to change any of the policies and turn on or turn off the default
auto-scaling policy.

To learn more about auto-scaling for real-time endpoints, see Automatically Scale Amazon
SageMaker Models. If you’re not sure how to configure an auto-scaling policy for your endpoint,

Manage endpoints 4080

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html

Amazon SageMaker Developer Guide

you can use an Inference Recommender autoscaling recommendations job to get recommendations
for an auto-scaling policy.

Manage endpoints in the SageMaker console

To view your endpoints in the SageMaker console, do the following:

1. Go to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Inference.

3. From the dropdown list, choose Endpoints.

4. On the Endpoints page, choose your endpoint.

The endpoint details page should open, showing you a summary of your endpoint and metrics that
have been collected for your endpoint.

The following sections describe the tabs on the endpoints details page.

Monitoring

After creating a SageMaker Hosting endpoint, you can monitor your endpoint using Amazon
CloudWatch, which collects raw data and processes it into readable, near real-time metrics. Using
these metrics, you can access historical information and gain a better perspective on how your
endpoint is performing. For more information, see the Amazon CloudWatch User Guide.

From the Monitoring tab on the endpoint details page, you can view CloudWatch metrics data that
has been collected from your endpoint.

The Monitoring tab includes the following sections:

• Operational metrics: View metrics that track the utilization of your endpoint’s resources, such as
CPU Utilization and Memory Utilization.

• Invocation metrics: View metrics that track the number, health, and status of InvokeEndpoint
requests coming to your endpoint, such as Invocation Model Errors and Model Latency.

• Health metrics: View metrics that track your endpoint’s overall health, such as Invocation
Failures and Notification Failures.

For detailed descriptions of each metric, see Monitor SageMaker with CloudWatch.

Manage endpoints 4081

https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender-autoscaling.html
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html

Amazon SageMaker Developer Guide

The following screenshot shows the Operational metrics section for a serverless endpoint.

Manage endpoints 4082

Amazon SageMaker Developer Guide

You can adjust the Period and Statistic that you want to track for the metrics in a given section, as
well as the length of time for which you want to view metrics data. You can also add and remove
metric widgets from the view for each section by choosing Add widget. In the Add widget dialog
box, you can select and deselect the metrics that you want to see.

The metrics that are available may depend on your endpoint type. For example, serverless
endpoints have some metrics that aren’t available for real-time endpoints. For more specific
metrics information by endpoint type, see the following pages:

• Monitor a serverless endpoint

• Monitor an asynchronous endpoint

• CW Metrics for Multi-Model Endpoint Deployments

• Inference Pipeline Logs and Metrics

Settings

You can choose the Settings tab to view additional information about your endpoint, such as the
data capture settings, the endpoint configuration, and tags.

Alarms

From the Alarms tab on your endpoint details page, you can view and create simple static
threshold metric alarms, where you specify a threshold value for a metric. If the metric breaches
the threshold value, the alarm goes into the ALARM state. For more information about CloudWatch
alarms, see Using Amazon CloudWatch alarms.

In the Endpoint summary section, you can view the Alarms field, which tells you how many alarms
are currently active on your endpoint.

To view which alarms are in the ALARM state, choose the Alarms tab. The Alarms tab shows you a
full list of your endpoint alarms, along with details about their status and conditions. The following
screenshot shows a list of alarms in this section that have been configured for an endpoint.

Manage endpoints 4083

https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints-monitoring.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoint-cloudwatch-metrics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon SageMaker Developer Guide

An alarm’s status can be In alarm, OK, or Insufficient data if there isn’t enough metrics data
being collected.

To create a new alarm for your endpoint, do the following:

1. In the Alarms tab, choose Create alarm.

2. The Create alarm page opens. For Alarm name, enter a name for the alarm.

3. (Optional) Enter a description for the alarm.

4. For Metric, choose the CloudWatch metric that you want the alarm to track.

5. For Variant name, choose the endpoint model variant that you want to monitor.

6. For Statistic, choose one of the available statistics for the metric you selected.

7. For Period, choose the time period to use for calculating each statistical value. For example,
if you choose the Average statistic and a 5 minute period, each data point monitored by the
alarm is the average of the metric’s data points at 5 minute intervals.

8. For Evaluation periods, enter the number of data points that you want the alarm to consider
when evaluating whether to enter the alarm state or not.

9. For Condition, choose the conditional that you want to use for your alarm threshold.

10. For Threshold value, enter the desired value for your threshold.

11. (Optional) For Notification, you can choose Add notification to create or specify an Amazon
SNS topic that receives a notification when your alarm state changes.

12. Choose Create alarm.

Manage endpoints 4084

Amazon SageMaker Developer Guide

After creating your alarm, you can return to the Alarms tab to view its status at any time. From this
section, you can also select the alarm and either Edit or Delete it.

Hosting options

The following topics describe available SageMaker realtime hosting options along with how to set
up, invoke, and delete each hosting option.

Topics

• Host a single model

• Host multiple models in one container behind one endpoint

• Host multiple models which use different containers behind one endpoint

• Host models along with pre-processing logic as serial inference pipeline behind one endpoint

• Delete Endpoints and Resources

Host a single model

You can create, update, and delete real-time inference endpoints that host a single model with
Amazon SageMaker Studio, the AWS SDK for Python (Boto3), the SageMaker Python SDK, or the
AWS CLI. For procedures and code examples, see Deploy models for real-time inference.

Host multiple models in one container behind one endpoint

Multi-model endpoints provide a scalable and cost-effective solution to deploying large numbers
of models. They use the same fleet of resources and a shared serving container to host all of your
models. This reduces hosting costs by improving endpoint utilization compared with using single-
model endpoints. It also reduces deployment overhead because Amazon SageMaker manages
loading models in memory and scaling them based on the traffic patterns to your endpoint.

The following diagram shows how multi-model endpoints work compared to single-model
endpoints.

Hosting options 4085

Amazon SageMaker Developer Guide

Multi-model endpoints are ideal for hosting a large number of models that use the same ML
framework on a shared serving container. If you have a mix of frequently and infrequently accessed
models, a multi-model endpoint can efficiently serve this traffic with fewer resources and higher
cost savings. Your application should be tolerant of occasional cold start-related latency penalties
that occur when invoking infrequently used models.

Multi-model endpoints support hosting both CPU and GPU backed models. By using GPU backed
models, you can lower your model deployment costs through increased usage of the endpoint and
its underlying accelerated compute instances.

Multi-model endpoints also enable time-sharing of memory resources across your models. This
works best when the models are fairly similar in size and invocation latency. When this is the case,
multi-model endpoints can effectively use instances across all models. If you have models that
have significantly higher transactions per second (TPS) or latency requirements, we recommend
hosting them on dedicated endpoints.

You can use multi-model endpoints with the following features:

Hosting options 4086

Amazon SageMaker Developer Guide

• AWS PrivateLink and VPCs

• Auto scaling

• Serial inference pipelines (but only one multi-model enabled container can be included in an
inference pipeline)

• A/B testing

You can't use multi-model-enabled containers with Amazon Elastic Inference.

You can use the AWS SDK for Python (Boto) or the SageMaker console to create a multi-model
endpoint. For CPU backed multi-model endpoints, you can create your endpoint with custom-built
containers by integrating the Multi Model Server library.

Topics

• Supported algorithms, frameworks, and instances

• Sample notebooks for multi-model endpoints

• How multi-model endpoints work

• Setting SageMaker multi-model endpoint model caching behavior

• Instance recommendations for multi-model endpoint deployments

• Create a Multi-Model Endpoint

• Invoke a Multi-Model Endpoint

• Add or Remove Models

• Build Your Own Container for SageMaker Multi-Model Endpoints

• Multi-Model Endpoint Security

• CloudWatch Metrics for Multi-Model Endpoint Deployments

• Set Auto Scaling Policies for Multi-Model Endpoint Deployments

Supported algorithms, frameworks, and instances

For information about the algorithms, frameworks, and instance types that you can use with multi-
model endpoints, see the following sections.

Hosting options 4087

https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html
https://github.com/awslabs/multi-model-server

Amazon SageMaker Developer Guide

Supported algorithms, frameworks, and instances for multi-model endpoints using CPU backed
instances

The inference containers for the following algorithms and frameworks support multi-model
endpoints:

• XGBoost Algorithm

• K-Nearest Neighbors (k-NN) Algorithm

• Linear Learner Algorithm

• Random Cut Forest (RCF) Algorithm

• Use TensorFlow with Amazon SageMaker

• Use Scikit-learn with Amazon SageMaker

• Use Apache MXNet with Amazon SageMaker

• Use PyTorch with Amazon SageMaker

To use any other framework or algorithm, use the SageMaker inference toolkit to build a container
that supports multi-model endpoints. For information, see Build Your Own Container for
SageMaker Multi-Model Endpoints.

Multi-model endpoints support all of the CPU instance types.

Supported algorithms, frameworks, and instances for multi-model endpoints using GPU backed
instances

Hosting multiple GPU backed models on multi-model endpoints is supported through the
SageMaker Triton Inference server. This supports all major inference frameworks such as NVIDIA®
TensorRT™, PyTorch, MXNet, Python, ONNX, XGBoost, scikit-learn, RandomForest, OpenVINO,
custom C++, and more.

To use any other framework or algorithm, you can use Triton backend for Python or C++ to write
your model logic and serve any custom model. After you have the server ready, you can start
deploying 100s of Deep Learning models behind one endpoint.

Multi-model endpoints support the following GPU instance types:

Hosting options 4088

https://docs.aws.amazon.com/sagemaker/latest/dg/triton.html

Amazon SageMaker Developer Guide

Instance
family

Instance
type

vCPUs GiB of
memory per
vCPU

GPUs GPU
memory

p2 ml.p2.xlarge 4 15.25 1 12

p3 ml.p3.2xlarge 8 7.62 1 16

g5 ml.g5.xlarge 4 4 1 24

g5 ml.g5.2xlarge 8 4 1 24

g5 ml.g5.4xlarge 16 4 1 24

g5 ml.g5.8xlarge 32 4 1 24

g5 ml.g5.16x
large

64 4 1 24

g4dn ml.g4dn.x
large

4 4 1 16

g4dn ml.g4dn.2
xlarge

8 4 1 16

g4dn ml.g4dn.4
xlarge

16 4 1 16

g4dn ml.g4dn.8
xlarge

32 4 1 16

g4dn ml.g4dn.1
6xlarge

64 4 1 16

Sample notebooks for multi-model endpoints

To learn more about how to use multi-model endpoints, you can try the following sample
notebooks:

• Examples for multi-model endpoints using CPU backed instances:

Hosting options 4089

Amazon SageMaker Developer Guide

• Multi-Model Endpoint XGBoost Sample Nootebook – This notebook shows how to deploy
multiple XGBoost models to an endpoint.

• Multi-Model Endpoints BYOC Sample Notebook – This notebook shows how to set up and
deploy a customer container that supports multi-model endpoints in SageMaker.

• Example for multi-model endpoints using GPU backed instances:

• Run mulitple deep learning models on GPUs with Amazon SageMaker Multi-model endpoints
(MME) – This notebook shows how to use an NVIDIA Triton Inference container to deploy
ResNet-50 models to a multi-model endpoint.

For instructions on how to create and access Jupyter notebook instances that you can use to run
the previous examples in SageMaker, see Amazon SageMaker Notebook Instances. After you've
created a notebook instance and opened it, choose the SageMaker Examples tab to see a list of
all the SageMaker samples. The multi-model endpoint notebooks are located in the ADVANCED
FUNCTIONALITY section. To open a notebook, choose its Use tab and choose Create copy.

For more information about use cases for multi-model endpoints, see the following blogs and
resources:

• Video: Hosting thousands of models on SageMaker

• Video: SageMaker ML for SaaS

• Blog: How to scale machine learning inference for multi-tenant SaaS use cases

• Case study: Veeva Systems

How multi-model endpoints work

SageMaker manages the lifecycle of models hosted on multi-model endpoints in the container's
memory. Instead of downloading all of the models from an Amazon S3 bucket to the container
when you create the endpoint, SageMaker dynamically loads and caches them when you invoke
them. When SageMaker receives an invocation request for a particular model, it does the following:

1. Routes the request to an instance behind the endpoint.

2. Downloads the model from the S3 bucket to that instance's storage volume.

3. Loads the model to the container's memory (CPU or GPU, depending on whether you have CPU
or GPU backed instances) on that accelerated compute instance. If the model is already loaded in
the container's memory, invocation is faster because SageMaker doesn't need to download and
load it.

Hosting options 4090

https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/multi_model_xgboost_home_value/xgboost_multi_model_endpoint_home_value.html
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/multi_model_bring_your_own/multi_model_endpoint_bring_your_own.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/multi-model-endpoints/mme-on-gpu/cv/resnet50_mme_with_gpu.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/multi-model-endpoints/mme-on-gpu/cv/resnet50_mme_with_gpu.ipynb
https://www.youtube.com/watch?v=XqCNTWmHsLc&t=751s
https://www.youtube.com/watch?v=BytpYlJ3vsQ
https://aws.amazon.com/blogs/machine-learning/how-to-scale-machine-learning-inference-for-multi-tenant-saas-use-cases/
https://aws.amazon.com/partners/success/advanced-clinical-veeva/

Amazon SageMaker Developer Guide

SageMaker continues to route requests for a model to the instance where the model is already
loaded. However, if the model receives many invocation requests, and there are additional
instances for the multi-model endpoint, SageMaker routes some requests to another instance to
accommodate the traffic. If the model isn't already loaded on the second instance, the model is
downloaded to that instance's storage volume and loaded into the container's memory.

When an instance's memory utilization is high and SageMaker needs to load another model into
memory, it unloads unused models from that instance's container to ensure that there is enough
memory to load the model. Models that are unloaded remain on the instance's storage volume
and can be loaded into the container's memory later without being downloaded again from the S3
bucket. If the instance's storage volume reaches its capacity, SageMaker deletes any unused models
from the storage volume.

To delete a model, stop sending requests and delete it from the S3 bucket. SageMaker provides
multi-model endpoint capability in a serving container. Adding models to, and deleting them from,
a multi-model endpoint doesn't require updating the endpoint itself. To add a model, you upload it
to the S3 bucket and invoke it. You don’t need code changes to use it.

Note

When you update a multi-model endpoint, initial invocation requests on the endpoint
might experience higher latencies as Smart Routing in multi-model endpoints adapt to
your traffic pattern. However, once it learns your traffic pattern, you can experience low
latencies for most frequently used models. Less frequently used models may incur some
cold start latencies since the models are dynamically loaded to an instance.

Setting SageMaker multi-model endpoint model caching behavior

By default, multi-model endpoints cache frequently used models in memory (CPU or GPU,
depending on whether you have CPU or GPU backed instances) and on disk to provide low latency
inference. The cached models are unloaded and/or deleted from disk only when a container runs
out of memory or disk space to accommodate a newly targeted model.

You can change the caching behavior of a multi-model endpoint and explicitly enable or disable
model caching by setting the parameter ModelCacheSetting when you call create_model.

We recommend setting the value of the ModelCacheSetting parameter to Disabled for use
cases that do not benefit from model caching. For example, when a large number of models need

Hosting options 4091

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model

Amazon SageMaker Developer Guide

to be served from the endpoint but each model is invoked only once (or very infrequently). For
such use cases, setting the value of the ModelCacheSetting parameter to Disabled allows
higher transactions per second (TPS) for invoke_endpoint requests compared to the default
caching mode. Higher TPS in these use cases is because SageMaker does the following after the
invoke_endpoint request:

• Asynchronously unloads the model from memory and deletes it from disk immediately after it is
invoked.

• Provides higher concurrency for downloading and loading models in the inference container. For
both CPU and GPU backed endpoints, the concurrency is a factor of the number of the vCPUs of
the container instance.

For guidelines on choosing a SageMaker ML instance type for a multi-model endpoint, see Instance
recommendations for multi-model endpoint deployments.

Instance recommendations for multi-model endpoint deployments

There are several items to consider when selecting a SageMaker ML instance type for a multi-
model endpoint:

• Provision sufficient Amazon Elastic Block Store (Amazon EBS) capacity for all of the models that
need to be served.

• Balance performance (minimize cold starts) and cost (don’t over-provision instance capacity).
For information about the size of the storage volume that SageMaker attaches for each instance
type for an endpoint and for a multi-model endpoint, see Host instance storage volumes.

• For a container configured to run in MultiModel mode, the storage volume provisioned for its
instances are larger than the default SingleModel mode. This allows more models to be cached
on the instance storage volume than in SingleModel mode.

When choosing a SageMaker ML instance type, consider the following:

• Multi-model endpoints are currently supported for all CPU instances types and on single-GPU
instance types.

• For the traffic distribution (access patterns) to the models that you want to host behind the
multi-model endpoint, along with the model size (how many models could be loaded in memory
on the instance), keep the following information in mind:

Hosting options 4092

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

Amazon SageMaker Developer Guide

• Think of the amount of memory on an instance as the cache space for models to be loaded,
and think of the number of vCPUs as the concurrency limit to perform inference on the loaded
models (assuming that invoking a model is bound to CPU).

• For CPU backed instances, the number of vCPUs impacts your maximum concurrenct
invocations per instance (assuming that invoking a model is bound to CPU). A higher amount
of vCPUs enables you to invoke more unique models concurrently.

• For GPU backed instances, a higher amount of instance and GPU memory enables you to have
more models loaded and ready to serve inference requests.

• For both CPU and GPU backed instances, have some "slack" memory available so that unused
models can be unloaded, and especially for multi-model endpoints with multiple instances.
If an instance or an Availability Zone fails, the models on those instances will be rerouted to
other instances behind the endpoint.

• Determine your tolerance to loading/downloading times:

• d instance type families (for example, m5d, c5d, or r5d) and g5s come with an NVMe (non-
volatile memory express) SSD, which offers high I/O performance and might reduce the time it
takes to download models to the storage volume and for the container to load the model from
the storage volume.

• Because d and g5 instance types come with an NVMe SSD storage, SageMaker does not attach
an Amazon EBS storage volume to these ML compute instances that hosts the multi-model
endpoint. Auto scaling works best when the models are similarly sized and homogenous, that
is when they have similar inference latency and resource requirements.

You can also use the following guidance to help you optimize model loading on your multi-model
endpoints:

Choosing an instance type that can't hold all of the targeted models in memory

In some cases, you might opt to reduce costs by choosing an instance type that can't hold all of
the targeted models in memory at once. SageMaker dynamically unloads models when it runs out
of memory to make room for a newly targeted model. For infrequently requested models, you
sacrifice dynamic load latency. In cases with more stringent latency needs, you might opt for larger
instance types or more instances. Investing time up front for performance testing and analysis
helps you to have successful production deployments.

Evaluating your model cache hits

Hosting options 4093

Amazon SageMaker Developer Guide

Amazon CloudWatch metrics can help you evaluate your models. For more information about
metrics you can use with multi-model endpoints, see CloudWatch Metrics for Multi-Model Endpoint
Deployments .

You can use the Average statistic of the ModelCacheHit metric to monitor the ratio of
requests where the model is already loaded. You can use the SampleCount statistic for the
ModelUnloadingTime metric to monitor the number of unload requests sent to the container
during a time period. If models are unloaded too frequently (an indicator of thrashing, where
models are being unloaded and loaded again because there is insufficient cache space for the
working set of models), consider using a larger instance type with more memory or increasing the
number of instances behind the multi-model endpoint. For multi-model endpoints with multiple
instances, be aware that a model might be loaded on more than 1 instance.

Create a Multi-Model Endpoint

You can use the SageMaker console or the AWS SDK for Python (Boto) to create a multi-model
endpoint. To create either a CPU or GPU backed endpoint through the console, see the console
procedure in the following sections. If you want to create a multi-model endpoint with the AWS
SDK for Python (Boto), use either the CPU or GPU procedure in the following sections. The CPU and
GPU workflows are similar but have several differences, such as the container requirements.

Topics

• Create a multi-model endpoint (console)

• Create a multi-model endpoint using CPUs with the AWS SDK for Python (Boto3)

• Create a multi-model endpoint using GPUs with the AWS SDK for Python (Boto3)

Create a multi-model endpoint (console)

You can create both CPU and GPU backed multi-model endpoints through the console. Use the
following procedure to create a multi-model endpoint through the SageMaker console.

To create a multi-model endpoint (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Model, and then from the Inference group, choose Create model.

3. For Model name, enter a name.

4. For IAM role, choose or create an IAM role that has the AmazonSageMakerFullAccess IAM
policy attached.

Hosting options 4094

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

5. In the Container definition section, for Provide model artifacts and inference image options,
choose Use multiple models.

Hosting options 4095

Amazon SageMaker Developer Guide

6. For the Inference container image, enter the Amazon ECR path for your desired container
image.

For GPU models, you must use a container backed by the NVIDIA Triton Inference Server. For a
list of container images that work with GPU backed endpoints, see the NVIDIA Triton Inference
Containers (SM support only). For more information about the NVIDIA Triton Inference Server,
see Use Triton Inference Server with SageMaker.

7. Choose Create model.

8. Deploy your multi-model endpoint as you would a single model endpoint. For instructions, see
Deploy the Model to SageMaker Hosting Services.

Create a multi-model endpoint using CPUs with the AWS SDK for Python (Boto3)

Use the following section to create a multi-model endpoint backed by CPU instances.
You create a multi-model endpoint using the Amazon SageMaker create_model,
create_endpoint_config, and create_endpoint APIs just as you would create a single model
endpoint, but with two changes. When defining the model container, you need to pass a new Mode
parameter value, MultiModel. You also need to pass the ModelDataUrl field that specifies the
prefix in Amazon S3 where the model artifacts are located, instead of the path to a single model
artifact, as you would when deploying a single model.

For a sample notebook that uses SageMaker to deploy multiple XGBoost models to an endpoint,
see Multi-Model Endpoint XGBoost Sample Notebook.

The following procedure outlines the key steps used in that sample to create a CPU backed multi-
model endpoint.

To deploy the model (AWS SDK for Python (Boto 3))

1. Get a container with an image that supports deploying multi-model endpoints. For a list
of built-in algorithms and framework containers that support multi-model endpoints, see
Supported algorithms, frameworks, and instances. For this example, we use the K-Nearest
Neighbors (k-NN) Algorithm built-in algorithm. We call the SageMaker Python SDK utility
function image_uris.retrieve() to get the address for the K-Nearest Neighbors built-in
algorithm image.

import sagemaker
region = sagemaker_session.boto_region_name

Hosting options 4096

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#nvidia-triton-inference-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#nvidia-triton-inference-containers-sm-support-only
https://docs.aws.amazon.com/sagemaker/latest/dg/triton.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/multi_model_xgboost_home_value/xgboost_multi_model_endpoint_home_value.html
https://sagemaker.readthedocs.io/en/stable/v2.html

Amazon SageMaker Developer Guide

image = sagemaker.image_uris.retrieve("knn",region=region)
container = {
 'Image': image,
 'ModelDataUrl': 's3://<BUCKET_NAME>/<PATH_TO_ARTIFACTS>',
 'Mode': 'MultiModel'
 }

2. Get an AWS SDK for Python (Boto3) SageMaker client and create the model that uses this
container.

import boto3
sagemaker_client = boto3.client('sagemaker')
response = sagemaker_client.create_model(
 ModelName = '<MODEL_NAME>',
 ExecutionRoleArn = role,
 Containers = [container])

3. (Optional) If you are using a serial inference pipeline, get the additional container(s) to include
in the pipeline, and include it in the Containers argument of CreateModel:

preprocessor_container = {
 'Image':
 '<ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/<PREPROCESSOR_IMAGE>:<TAG>'
 }

multi_model_container = {
 'Image':
 '<ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/<IMAGE>:<TAG>',
 'ModelDataUrl': 's3://<BUCKET_NAME>/<PATH_TO_ARTIFACTS>',
 'Mode': 'MultiModel'
 }

response = sagemaker_client.create_model(
 ModelName = '<MODEL_NAME>',
 ExecutionRoleArn = role,
 Containers = [preprocessor_container, multi_model_container]
)

Note

You can use only one multi-model-enabled endpoint in a serial inference pipeline.

Hosting options 4097

Amazon SageMaker Developer Guide

4. (Optional) If your use case does not benefit from model caching, set the value of the
ModelCacheSetting field of the MultiModelConfig parameter to Disabled, and
include it in the Container argument of the call to create_model. The value of the
ModelCacheSetting field is Enabled by default.

container = {
 'Image': image,
 'ModelDataUrl': 's3://<BUCKET_NAME>/<PATH_TO_ARTIFACTS>',
 'Mode': 'MultiModel'
 'MultiModelConfig': {
 // Default value is 'Enabled'
 'ModelCacheSetting': 'Disabled'
 }
 }

response = sagemaker_client.create_model(
 ModelName = '<MODEL_NAME>',
 ExecutionRoleArn = role,
 Containers = [container]
)

5. Configure the multi-model endpoint for the model. We recommend configuring your
endpoints with at least two instances. This allows SageMaker to provide a highly available set
of predictions across multiple Availability Zones for the models.

response = sagemaker_client.create_endpoint_config(
 EndpointConfigName = '<ENDPOINT_CONFIG_NAME>',
 ProductionVariants=[
 {
 'InstanceType': 'ml.m4.xlarge',
 'InitialInstanceCount': 2,
 'InitialVariantWeight': 1,
 'ModelName': '<MODEL_NAME>',
 'VariantName': 'AllTraffic'
 }
]
)

Hosting options 4098

Amazon SageMaker Developer Guide

Note

You can use only one multi-model-enabled endpoint in a serial inference pipeline.

6. Create the multi-model endpoint using the EndpointName and EndpointConfigName
parameters.

response = sagemaker_client.create_endpoint(
 EndpointName = '<ENDPOINT_NAME>',
 EndpointConfigName = '<ENDPOINT_CONFIG_NAME>')

Create a multi-model endpoint using GPUs with the AWS SDK for Python (Boto3)

Use the following section to create a GPU backed multi-model endpoint. You create a multi-
model endpoint using the Amazon SageMaker create_model, create_endpoint_config,
and create_endpoint APIs similarly to creating single model endpoints, but there are several
changes. When defining the model container, you need to pass a new Mode parameter value,
MultiModel. You also need to pass the ModelDataUrl field that specifies the prefix in Amazon
S3 where the model artifacts are located, instead of the path to a single model artifact, as you
would when deploying a single model. For GPU backed multi-model endpoints, you also must
use a container with the NVIDIA Triton Inference Server that is optimized for running on GPU
instances. For a list of container images that work with GPU backed endpoints, see the NVIDIA
Triton Inference Containers (SM support only).

For an example notebook that demonstrates how to create a multi-model endpoint backed by
GPUs, see Run mulitple deep learning models on GPUs with Amazon SageMaker Multi-model
endpoints (MME).

The following procedure outlines the key steps to create a GPU backed multi-model endpoint.

To deploy the model (AWS SDK for Python (Boto 3))

1. Define the container image. To create a multi-model endpoint with GPU support for ResNet
models, define the container to use the NVIDIA Triton Server image. This container supports
multi-model endpoints and is optimized for running on GPU instances. We call the SageMaker
Python SDK utility function image_uris.retrieve() to get the address for the image. For
example:

Hosting options 4099

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#nvidia-triton-inference-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#nvidia-triton-inference-containers-sm-support-only
https://github.com/aws/amazon-sagemaker-examples/blob/main/multi-model-endpoints/mme-on-gpu/cv/resnet50_mme_with_gpu.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/multi-model-endpoints/mme-on-gpu/cv/resnet50_mme_with_gpu.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/triton.html
https://sagemaker.readthedocs.io/en/stable/v2.html
https://sagemaker.readthedocs.io/en/stable/v2.html

Amazon SageMaker Developer Guide

import sagemaker
region = sagemaker_session.boto_region_name

// Find the sagemaker-tritonserver image at
// https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-triton/
resnet50/triton_resnet50.ipynb
// Find available tags at https://github.com/aws/deep-learning-containers/blob/
master/available_images.md#nvidia-triton-inference-containers-sm-support-only

image = "<ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/sagemaker-
tritonserver:<TAG>".format(
 account_id=account_id_map[region], region=region
)

container = {
 'Image': image,
 'ModelDataUrl': 's3://<BUCKET_NAME>/<PATH_TO_ARTIFACTS>',
 'Mode': 'MultiModel',
 "Environment": {"SAGEMAKER_TRITON_DEFAULT_MODEL_NAME": "resnet"},
 }

2. Get an AWS SDK for Python (Boto3) SageMaker client and create the model that uses this
container.

import boto3
sagemaker_client = boto3.client('sagemaker')
response = sagemaker_client.create_model(
 ModelName = '<MODEL_NAME>',
 ExecutionRoleArn = role,
 Containers = [container])

3. (Optional) If you are using a serial inference pipeline, get the additional container(s) to include
in the pipeline, and include it in the Containers argument of CreateModel:

preprocessor_container = {
 'Image':
 '<ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/<PREPROCESSOR_IMAGE>:<TAG>'
 }

multi_model_container = {
 'Image':
 '<ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/<IMAGE>:<TAG>',

Hosting options 4100

Amazon SageMaker Developer Guide

 'ModelDataUrl': 's3://<BUCKET_NAME>/<PATH_TO_ARTIFACTS>',
 'Mode': 'MultiModel'
 }

response = sagemaker_client.create_model(
 ModelName = '<MODEL_NAME>',
 ExecutionRoleArn = role,
 Containers = [preprocessor_container, multi_model_container]
)

Note

You can use only one multi-model-enabled endpoint in a serial inference pipeline.

4. (Optional) If your use case does not benefit from model caching, set the value of the
ModelCacheSetting field of the MultiModelConfig parameter to Disabled, and
include it in the Container argument of the call to create_model. The value of the
ModelCacheSetting field is Enabled by default.

container = {
 'Image': image,
 'ModelDataUrl': 's3://<BUCKET_NAME>/<PATH_TO_ARTIFACTS>',
 'Mode': 'MultiModel'
 'MultiModelConfig': {
 // Default value is 'Enabled'
 'ModelCacheSetting': 'Disabled'
 }
 }

response = sagemaker_client.create_model(
 ModelName = '<MODEL_NAME>',
 ExecutionRoleArn = role,
 Containers = [container]
)

5. Configure the multi-model endpoint with GPU backed instances for the model. We
recommend configuring your endpoints with more than one instance to allow for high
availability and higher cache hits.

response = sagemaker_client.create_endpoint_config(
 EndpointConfigName = '<ENDPOINT_CONFIG_NAME>',

Hosting options 4101

Amazon SageMaker Developer Guide

 ProductionVariants=[
 {
 'InstanceType': 'ml.g4dn.4xlarge',
 'InitialInstanceCount': 2,
 'InitialVariantWeight': 1,
 'ModelName': '<MODEL_NAME>',
 'VariantName': 'AllTraffic'
 }
]
)

6. Create the multi-model endpoint using the EndpointName and EndpointConfigName
parameters.

response = sagemaker_client.create_endpoint(
 EndpointName = '<ENDPOINT_NAME>',
 EndpointConfigName = '<ENDPOINT_CONFIG_NAME>')

Invoke a Multi-Model Endpoint

To invoke a multi-model endpoint, use the invoke_endpoint from the SageMaker Runtime
just as you would invoke a single model endpoint, with one change. Pass a new TargetModel
parameter that specifies which of the models at the endpoint to target. The SageMaker Runtime
InvokeEndpoint request supports X-Amzn-SageMaker-Target-Model as a new header that
takes the relative path of the model specified for invocation. The SageMaker system constructs the
absolute path of the model by combining the prefix that is provided as part of the CreateModel
API call with the relative path of the model.

The following procedures are the same for both CPU and GPU-backed multi-model endpoints.

AWS SDK for Python (Boto 3)

The following example prediction request uses the AWS SDK for Python (Boto 3) in the sample
notebook.

response = runtime_sagemaker_client.invoke_endpoint(
 EndpointName = "<ENDPOINT_NAME>",
 ContentType = "text/csv",
 TargetModel = "<MODEL_FILENAME>.tar.gz",
 Body = body)

Hosting options 4102

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html#SageMakerRuntime.Client.invoke_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html

Amazon SageMaker Developer Guide

AWS CLI

The following example shows how to make a CSV request with two rows using the AWS
Command Line Interface (AWS CLI):

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name "<ENDPOINT_NAME>" \
 --body "1.0,2.0,5.0"$'\n'"2.0,3.0,4.0" \
 --content-type "text/csv" \
 --target-model "<MODEL_NAME>.tar.gz"
 output_file.txt

An output_file.txt with information about your inference requests is made if the inference
was successful. For more examples on how to make predictions with the AWS CLI, see Making
predictions with the AWS CLI in the SageMaker Python SDK documentation.

The multi-model endpoint dynamically loads target models as needed. You can observe this when
running the MME Sample Notebook as it iterates through random invocations against multiple
target models hosted behind a single endpoint. The first request against a given model takes
longer because the model has to be downloaded from Amazon Simple Storage Service (Amazon
S3) and loaded into memory. This is called a cold start, and it is expected on multi-model endpoints
to optimize for better price performance for customers. Subsequent calls finish faster because
there's no additional overhead after the model has loaded.

Note

For GPU backed instances, the HTTP response code with 507 from the GPU container
indicates a lack of memory or other resources. This causes unused models to be unloaded
from the container in order to load more frequently used models.

Retry Requests on ModelNotReadyException Errors

The first time you call invoke_endpoint for a model, the model is downloaded from Amazon
Simple Storage Service and loaded into the inference container. This makes the first call take
longer to return. Subsequent calls to the same model finish faster, because the model is already
loaded.

Hosting options 4103

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#making-predictions-with-the-aws-cli
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#making-predictions-with-the-aws-cli
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/multi_model_xgboost_home_value/xgboost_multi_model_endpoint_home_value.html

Amazon SageMaker Developer Guide

SageMaker returns a response for a call to invoke_endpoint within 60 seconds. Some
models are too large to download within 60 seconds. If the model does not finish loading
before the 60 second timeout limit, the request to invoke_endpoint returns with the error
code ModelNotReadyException, and the model continues to download and load into the
inference container for up to 360 seconds. If you get a ModelNotReadyException error code
for an invoke_endpoint request, retry the request. By default, the AWS SDKs for Python
(Boto 3) (using Legacy retry mode) and Java retry invoke_endpoint requests that result in
ModelNotReadyException errors. You can configure the retry strategy to continue retrying
the request for up to 360 seconds. If you expect your model to take longer than 60 seconds
to download and load into the container, set the SDK socket timeout to 70 seconds. For more
information about configuring the retry strategy for the AWS SDK for Python (Boto3), see
Configuring a retry mode. The following code shows an example that configures the retry strategy
to retry calls to invoke_endpoint for up to 180 seconds.

import boto3
from botocore.config import Config

This example retry strategy sets the retry attempts to 2.
With this setting, the request can attempt to download and/or load the model
for upto 180 seconds: 1 orginal request (60 seconds) + 2 retries (120 seconds)
config = Config(
 read_timeout=70,
 retries={
 'max_attempts': 2 # This value can be adjusted to 5 to go up to the 360s max
 timeout
 }
)
runtime_sagemaker_client = boto3.client('sagemaker-runtime', config=config)

Add or Remove Models

You can deploy additional models to a multi-model endpoint and invoke them through that
endpoint immediately. When adding a new model, you don't need to update or bring down the
endpoint, so you avoid the cost of creating and running a separate endpoint for each new model.
The process for adding and removing models is the same for CPU and GPU-backed multi-model
endpoints.

SageMaker unloads unused models from the container when the instance is reaching memory
capacity and more models need to be downloaded into the container. SageMaker also deletes
unused model artifacts from the instance storage volume when the volume is reaching capacity

Hosting options 4104

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/retries.html#legacy-retry-mode
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/retries.html#configuring-a-retry-mode

Amazon SageMaker Developer Guide

and new models need to be downloaded. The first invocation to a newly added model takes longer
because the endpoint takes time to download the model from S3 to the container's memory in
instance hosting the endpoint

With the endpoint already running, copy a new set of model artifacts to the Amazon S3 location
there you store your models.

Add an AdditionalModel to the endpoint and exercise it
aws s3 cp AdditionalModel.tar.gz s3://my-bucket/path/to/artifacts/

Important

To update a model, proceed as you would when adding a new model. Use a new and unique
name. Don't overwrite model artifacts in Amazon S3 because the old version of the model
might still be loaded in the containers or on the storage volume of the instances on the
endpoint. Invocations to the new model could then invoke the old version of the model.

Client applications can request predictions from the additional target model as soon as it is stored
in S3.

response = runtime_sagemaker_client.invoke_endpoint(
 EndpointName='<ENDPOINT_NAME>',
 ContentType='text/csv',
 TargetModel='AdditionalModel.tar.gz',
 Body=body)

To delete a model from a multi-model endpoint, stop invoking the model from the clients and
remove it from the S3 location where model artifacts are stored.

Build Your Own Container for SageMaker Multi-Model Endpoints

Refer to the following sections for bringing your own container and dependencies to multi-model
endpoints.

Topics

• Bring your own dependencies for multi-model endpoints on CPU backed instances

• Bring your own dependencies for multi-model endpoints on GPU backed instances

• Use the SageMaker Inference Toolkit

Hosting options 4105

Amazon SageMaker Developer Guide

• Custom Containers Contract for Multi-Model Endpoints

Bring your own dependencies for multi-model endpoints on CPU backed instances

If none of the pre-built container images serve your needs, you can build your own container for
use with CPU backed multi-model endpoints.

Custom Amazon Elastic Container Registry (Amazon ECR) images deployed in Amazon SageMaker
are expected to adhere to the basic contract described in Use Your Own Inference Code with
Hosting Services that govern how SageMaker interacts with a Docker container that runs your own
inference code. For a container to be capable of loading and serving multiple models concurrently,
there are additional APIs and behaviors that must be followed. This additional contract includes
new APIs to load, list, get, and unload models, and a different API to invoke models. There are also
different behaviors for error scenarios that the APIs need to abide by. To indicate that the container
complies with the additional requirements, you can add the following command to your Docker
file:

LABEL com.amazonaws.sagemaker.capabilities.multi-models=true

SageMaker also injects an environment variable into the container

SAGEMAKER_MULTI_MODEL=true

If you are creating a multi-model endpoint for a serial inference pipline, your Docker file must have
the required labels for both multi-models and serial inference pipelines. For more information
about serial information pipelines, see Run Real-time Predictions with an Inference Pipeline.

To help you implement these requirements for a custom container, two libraries are available:

• Multi Model Server is an open source framework for serving machine learning models that can
be installed in containers to provide the front end that fulfills the requirements for the new
multi-model endpoint container APIs. It provides the HTTP front end and model management
capabilities required by multi-model endpoints to host multiple models within a single container,
load models into and unload models out of the container dynamically, and performs inference
on a specified loaded model. It also provides a pluggable backend that supports a pluggable
custom backend handler where you can implement your own algorithm.

• SageMaker Inference Toolkit is a library that bootstraps Multi Model Server with a configuration
and settings that make it compatible with SageMaker multi-model endpoints. It also allows

Hosting options 4106

https://github.com/awslabs/multi-model-server
https://github.com/aws/sagemaker-inference-toolkit

Amazon SageMaker Developer Guide

you to tweak important performance parameters, such as the number of workers per model,
depending on the needs of your scenario.

Bring your own dependencies for multi-model endpoints on GPU backed instances

The bring your own container (BYOC) capability on multi-model endpoints with GPU backed
instances is not currently supported by the Multi Model Server and SageMaker Inference Toolkit
libraries.

For creating multi-model endpoints with GPU backed instances, you can use the SageMaker
supported NVIDIA Triton Inference Server. with the NVIDIA Triton Inference Containers. To bring
your own dependencies, you can build your own container with the SageMaker supported NVIDIA
Triton Inference Server as the base image to your Docker file:

FROM 301217895009.dkr.ecr.us-west-2.amazonaws.com/sagemaker-tritonserver:22.07-py3

Important

Containers with the Triton Inference Server are the only supported containers you can use
for GPU backed multi-model endpoints.

Use the SageMaker Inference Toolkit

Note

The SageMaker Inference Toolkit is only supported for CPU backed multi-model endpoints.
The SageMaker Inference Toolkit is not currently not supported for GPU backed multi-
model endpoints.

Pre-built containers that support multi-model endpoints are listed in Supported algorithms,
frameworks, and instances. If you want to use any other framework or algorithm, you need to
build a container. The easiest way to do this is to use the SageMaker Inference Toolkit to extend
an existing pre-built container. The SageMaker inference toolkit is an implementation for the
multi-model server (MMS) that creates endpoints that can be deployed in SageMaker. For a sample
notebook that shows how to set up and deploy a custom container that supports multi-model
endpoints in SageMaker, see the Multi-Model Endpoint BYOC Sample Notebook.

Hosting options 4107

https://docs.aws.amazon.com/sagemaker/latest/dg/triton.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#nvidia-triton-inference-containers-sm-support-only
https://docs.aws.amazon.com/sagemaker/latest/dg/triton.html
https://docs.aws.amazon.com/sagemaker/latest/dg/triton.html
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/multi_model_bring_your_own

Amazon SageMaker Developer Guide

Note

The SageMaker inference toolkit supports only Python model handlers. If you want to
implement your handler in any other language, you must build your own container that
implements the additional multi-model endpoint APIs. For information, see Custom
Containers Contract for Multi-Model Endpoints.

To extend a container by using the SageMaker inference toolkit

1. Create a model handler. MMS expects a model handler, which is a Python file that implements
functions to pre-process, get preditions from the model, and process the output in a model
handler. For an example of a model handler, see model_handler.py from the sample notebook.

2. Import the inference toolkit and use its model_server.start_model_server function to
start MMS. The following example is from the dockerd-entrypoint.py file from the sample
notebook. Notice that the call to model_server.start_model_server passes the model
handler described in the previous step:

import subprocess
import sys
import shlex
import os
from retrying import retry
from subprocess import CalledProcessError
from sagemaker_inference import model_server

def _retry_if_error(exception):
 return isinstance(exception, CalledProcessError or OSError)

@retry(stop_max_delay=1000 * 50,
 retry_on_exception=_retry_if_error)
def _start_mms():
 # by default the number of workers per model is 1, but we can configure it
 through the
 # environment variable below if desired.
 # os.environ['SAGEMAKER_MODEL_SERVER_WORKERS'] = '2'
 model_server.start_model_server(handler_service='/home/model-server/
model_handler.py:handle')

def main():
 if sys.argv[1] == 'serve':

Hosting options 4108

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/multi_model_bring_your_own/container/model_handler.py

Amazon SageMaker Developer Guide

 _start_mms()
 else:
 subprocess.check_call(shlex.split(' '.join(sys.argv[1:])))

 # prevent docker exit
 subprocess.call(['tail', '-f', '/dev/null'])

main()

3. In your Dockerfile, copy the model handler from the first step and specify the Python file
from the previous step as the entrypoint in your Dockerfile. The following lines are from the
Dockerfile used in the sample notebook:

Copy the default custom service file to handle incoming data and inference
 requests
COPY model_handler.py /home/model-server/model_handler.py

Define an entrypoint script for the docker image
ENTRYPOINT ["python", "/usr/local/bin/dockerd-entrypoint.py"]

4. Build and register your container. The following shell script from the sample notebook builds
the container and uploads it to an Amazon Elastic Container Registry repository in your AWS
account:

%%sh

The name of our algorithm
algorithm_name=demo-sagemaker-multimodel

cd container

account=$(aws sts get-caller-identity --query Account --output text)

Get the region defined in the current configuration (default to us-west-2 if none
 defined)
region=$(aws configure get region)
region=${region:-us-west-2}

fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest"

If the repository doesn't exist in ECR, create it.
aws ecr describe-repositories --repository-names "${algorithm_name}" > /dev/null
 2>&1

Hosting options 4109

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/multi_model_bring_your_own/container/Dockerfile

Amazon SageMaker Developer Guide

if [$? -ne 0]
then
 aws ecr create-repository --repository-name "${algorithm_name}" > /dev/null
fi

Get the login command from ECR and execute it directly
$(aws ecr get-login --region ${region} --no-include-email)

Build the docker image locally with the image name and then push it to ECR
with the full name.

docker build -q -t ${algorithm_name} .
docker tag ${algorithm_name} ${fullname}

docker push ${fullname}

You can now use this container to deploy multi-model endpoints in SageMaker.

Topics

• Custom Containers Contract for Multi-Model Endpoints

Custom Containers Contract for Multi-Model Endpoints

To handle multiple models, your container must support a set of APIs that enable Amazon
SageMaker to communicate with the container for loading, listing, getting, and unloading models
as required. The model_name is used in the new set of APIs as the key input parameter. The
customer container is expected to keep track of the loaded models using model_name as the
mapping key. Also, the model_name is an opaque identifier and is not necessarily the value of the
TargetModel parameter passed into the InvokeEndpoint API. The original TargetModel value
in the InvokeEndpoint request is passed to container in the APIs as a X-Amzn-SageMaker-
Target-Model header that can be used for logging purposes.

Note

Multi-model endpoints for GPU backed instances are currently supported only with
SageMaker's NVIDIA Triton Inference Server container. This container already implements

Hosting options 4110

https://docs.aws.amazon.com/sagemaker/latest/dg/triton.html

Amazon SageMaker Developer Guide

the contract defined below. Customers can directly use this container with their multi-
model GPU endpoints, without any additional work.

You can configure the following APIs on your containers for CPU backed multi-model endpoints.

Topics

• Load Model API

• List Model API

• Get Model API

• Unload Model API

• Invoke Model API

Load Model API

Instructs the container to load a particular model present in the url field of the body into the
memory of the customer container and to keep track of it with the assigned model_name. After a
model is loaded, the container should be ready to serve inference requests using this model_name.

POST /models HTTP/1.1
Content-Type: application/json
Accept: application/json

{
 "model_name" : "{model_name}",
 "url" : "/opt/ml/models/{model_name}/model",
}

Note

If model_name is already loaded, this API should return 409. Any time a model cannot be
loaded due to lack of memory or to any other resource, this API should return a 507 HTTP
status code to SageMaker, which then initiates unloading unused models to reclaim.

List Model API

Returns the list of models loaded into the memory of the customer container.

Hosting options 4111

Amazon SageMaker Developer Guide

GET /models HTTP/1.1
Accept: application/json

Response =
{
 "models": [
 {
 "modelName" : "{model_name}",
 "modelUrl" : "/opt/ml/models/{model_name}/model",
 },
 {
 "modelName" : "{model_name}",
 "modelUrl" : "/opt/ml/models/{model_name}/model",
 },

]
}

This API also supports pagination.

GET /models HTTP/1.1
Accept: application/json

Response =
{
 "models": [
 {
 "modelName" : "{model_name}",
 "modelUrl" : "/opt/ml/models/{model_name}/model",
 },
 {
 "modelName" : "{model_name}",
 "modelUrl" : "/opt/ml/models/{model_name}/model",
 },

]
}

SageMaker can initially call the List Models API without providing a value for next_page_token.
If a nextPageToken field is returned as part of the response, it will be provided as the value for
next_page_token in a subsequent List Models call. If a nextPageToken is not returned, it means
that there are no more models to return.

Hosting options 4112

Amazon SageMaker Developer Guide

Get Model API

This is a simple read API on the model_name entity.

GET /models/{model_name} HTTP/1.1
Accept: application/json

{
 "modelName" : "{model_name}",
 "modelUrl" : "/opt/ml/models/{model_name}/model",
}

Note

If model_name is not loaded, this API should return 404.

Unload Model API

Instructs the SageMaker platform to instruct the customer container to unload a model from
memory. This initiates the eviction of a candidate model as determined by the platform when
starting the process of loading a new model. The resources provisioned to model_name should be
reclaimed by the container when this API returns a response.

DELETE /models/{model_name}

Note

If model_name is not loaded, this API should return 404.

Invoke Model API

Makes a prediction request from the particular model_name supplied. The SageMaker Runtime
InvokeEndpoint request supports X-Amzn-SageMaker-Target-Model as a new header that
takes the relative path of the model specified for invocation. The SageMaker system constructs the
absolute path of the model by combining the prefix that is provided as part of the CreateModel
API call with the relative path of the model.

Hosting options 4113

Amazon SageMaker Developer Guide

POST /models/{model_name}/invoke HTTP/1.1
Content-Type: ContentType
Accept: Accept
X-Amzn-SageMaker-Custom-Attributes: CustomAttributes
X-Amzn-SageMaker-Target-Model: [relativePath]/{artifactName}.tar.gz

Note

If model_name is not loaded, this API should return 404.

Additionally, on GPU instances, if InvokeEndpoint fails due to a lack of memory or other
resources, this API should return a 507 HTTP status code to SageMaker, which then initiates
unloading unused models to reclaim.

Multi-Model Endpoint Security

Models and data in a multi-model endpoint are co-located on instance storage volume and in
container memory. All instances for Amazon SageMaker endpoints run on a single tenant container
that you own. Only your models can run on your multi-model endpoint. It's your responsibility to
manage the mapping of requests to models and to provide access for users to the correct target
models. SageMaker uses IAM roles to provide IAM identity-based policies that you use to specify
allowed or denied actions and resources and the conditions under which actions are allowed or
denied.

By default, an IAM principal with InvokeEndpoint permissions on a multi-model endpoint can
invoke any model at the address of the S3 prefix defined in the CreateModel operation, provided
that the IAM Execution Role defined in operation has permissions to download the model. If you
need to restrict InvokeEndpoint access to a limited set of models in S3, you can do one of the
following:

• Restrict InvokeEndpont calls to specific models hosted at the endpoint by using the
sagemaker:TargetModel IAM condition key. For example, the following policy allows
InvokeEndpont requests only when the value of the TargetModel field matches one of the
specified regular expressions:

{
 "Version": "2012-10-17",
 "Statement": [

Hosting options 4114

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html

Amazon SageMaker Developer Guide

 {
 "Action": [
 "sagemaker:InvokeEndpoint"
],
 "Effect": "Allow",
 "Resource":
 "arn:aws:sagemaker:region:account-id:endpoint/endpoint_name",
 "Condition": {
 // TargetModel provided must be from this set of values
 "StringLike": {
 "sagemaker:TargetModel": ["company_a/*", "common/*"]
 }
 }
 }
]
}

For information about SageMaker condition keys, see Condition Keys for Amazon SageMaker in
the AWS Identity and Access Management User Guide.

• Create multi-model endpoints with more restrictive S3 prefixes.

For more information about how SageMaker uses roles to manage access to endpoints and perform
operations on your behalf, see SageMaker Roles. Your customers might also have certain data
isolation requirements dictated by their own compliance requirements that can be satisfied using
IAM identities.

CloudWatch Metrics for Multi-Model Endpoint Deployments

Amazon SageMaker provides metrics for endpoints so you can monitor the cache hit rate, the
number of models loaded and the model wait times for loading, downloading, and uploading at
a multi-model endpoint. Some of the metrics are different for CPU and GPU backed multi-model
endpoints, so the following sections describe the Amazon CloudWatch metrics that you can use for
each type of multi-model endpoint.

For more information about the metrics, see Multi-Model Endpoint Model Loading Metrics and
Multi-Model Endpoint Model Instance Metrics in Monitor Amazon SageMaker with Amazon
CloudWatch. Per-model metrics aren't supported.

CloudWatch metrics for CPU backed multi-model endpoints

You can monitor the following metrics on CPU backed multi-model endpoints.

Hosting options 4115

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-policy-keys

Amazon SageMaker Developer Guide

The AWS/SageMaker namespace includes the following model loading metrics from calls to
InvokeEndpoint.

Metrics are available at a 1-minute frequency.

For information about how long CloudWatch metrics are retained for, see GetMetricStatistics in the
Amazon CloudWatch API Reference.

Multi-Model Endpoint Model Loading Metrics

Metric Description

ModelLoad
ingWaitTime

The interval of time that an invocation request has waited for the
target model to be downloaded, or loaded, or both in order to perform
inference.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelUnlo
adingTime

The interval of time that it took to unload the model through the
container's UnloadModel API call.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelDown
loadingTime

The interval of time that it took to download the model from Amazon
Simple Storage Service (Amazon S3).

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelLoad
ingTime

The interval of time that it took to load the model through the
container's LoadModel API call.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Hosting options 4116

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon SageMaker Developer Guide

Metric Description

ModelCacheHit The number of InvokeEndpoint requests sent to the multi-model
endpoint for which the model was already loaded.

The Average statistic shows the ratio of requests for which the model
was already loaded.

Units: None

Valid statistics: Average, Sum, Sample Count

Dimensions for Multi-Model Endpoint Model Loading Metrics

Dimension Description

EndpointName,
VariantName

Filters endpoint invocation metrics for a ProductionVariant of the
specified endpoint and variant.

The /aws/sagemaker/Endpoints namespaces include the following instance metrics from calls
to InvokeEndpoint.

Metrics are available at a 1-minute frequency.

For information about how long CloudWatch metrics are retained for, see GetMetricStatistics in the
Amazon CloudWatch API Reference.

Multi-Model Endpoint Model Instance Metrics

Metric Description

LoadedMod
elCount

The number of models loaded in the containers of the multi-model
endpoint. This metric is emitted per instance.

The Average statistic with a period of 1 minute tells you the average
number of models loaded per instance.

Hosting options 4117

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon SageMaker Developer Guide

Metric Description

The Sum statistic tells you the total number of models loaded across all
instances in the endpoint.

The models that this metric tracks are not necessarily unique because a
model might be loaded in multiple containers at the endpoint.

Units: None

Valid statistics: Average, Sum, Min, Max, Sample Count

CPUUtilization The sum of each individual CPU core's utilization. The CPU utilization
of each core range is 0–100. For example, if there are four CPUs, the
CPUUtilization range is 0%–400%.

For endpoint variants, the value is the sum of the CPU utilization of the
primary and supplementary containers on the instance.

Units: Percent

MemoryUti
lization

The percentage of memory that is used by the containers on an
instance. This value range is 0%–100%.

For endpoint variants, the value is the sum of the memory utilization of
the primary and supplementary containers on the instance.

Units: Percent

DiskUtilization The percentage of disk space used by the containers on an instance.
This value range is 0%–100%.

For endpoint variants, the value is the sum of the disk space utilization
of the primary and supplementary containers on the instance.

Units: Percent

CloudWatch metrics for GPU multi-model endpoint deployments

You can monitor the following metrics on GPU backed multi-model endpoints.

Hosting options 4118

Amazon SageMaker Developer Guide

The AWS/SageMaker namespace includes the following model loading metrics from calls to
InvokeEndpoint.

Metrics are available at a 1-minute frequency.

For information about how long CloudWatch metrics are retained for, see GetMetricStatistics in the
Amazon CloudWatch API Reference.

Multi-Model Endpoint Model Loading Metrics

Metric Description

ModelLoad
ingWaitTime

The interval of time that an invocation request has waited for the
target model to be downloaded, or loaded, or both in order to perform
inference.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelUnlo
adingTime

The interval of time that it took to unload the model through the
container's UnloadModel API call.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelDown
loadingTime

The interval of time that it took to download the model from Amazon
Simple Storage Service (Amazon S3).

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelLoad
ingTime

The interval of time that it took to load the model through the
container's LoadModel API call.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Hosting options 4119

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon SageMaker Developer Guide

Metric Description

ModelCacheHit The number of InvokeEndpoint requests sent to the multi-model
endpoint for which the model was already loaded.

The Average statistic shows the ratio of requests for which the model
was already loaded.

Units: None

Valid statistics: Average, Sum, Sample Count

Dimensions for Multi-Model Endpoint Model Loading Metrics

Dimension Description

EndpointName,
VariantName

Filters endpoint invocation metrics for a ProductionVariant of the
specified endpoint and variant.

The /aws/sagemaker/Endpoints namespaces include the following instance metrics from calls
to InvokeEndpoint.

Metrics are available at a 1-minute frequency.

For information about how long CloudWatch metrics are retained for, see GetMetricStatistics in the
Amazon CloudWatch API Reference.

Multi-Model Endpoint Model Instance Metrics

Metric Description

LoadedMod
elCount

The number of models loaded in the containers of the multi-model
endpoint. This metric is emitted per instance.

The Average statistic with a period of 1 minute tells you the average
number of models loaded per instance.

Hosting options 4120

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon SageMaker Developer Guide

Metric Description

The Sum statistic tells you the total number of models loaded across all
instances in the endpoint.

The models that this metric tracks are not necessarily unique because a
model might be loaded in multiple containers at the endpoint.

Units: None

Valid statistics: Average, Sum, Min, Max, Sample Count

CPUUtilization The sum of each individual CPU core's utilization. The CPU utilization
of each core range is 0‐100. For example, if there are four CPUs, the
CPUUtilization range is 0%–400%.

For endpoint variants, the value is the sum of the CPU utilization of the
primary and supplementary containers on the instance.

Units: Percent

MemoryUti
lization

The percentage of memory that is used by the containers on an
instance. This value range is 0%‐100%.

For endpoint variants, the value is the sum of the memory utilization of
the primary and supplementary containers on the instance.

Units: Percent

GPUUtilization The percentage of GPU units that are used by the containers on an
instance. The value can range betweenrange is 0‐100 and is multiplie
d by the number of GPUs. For example, if there are four GPUs, the
GPUUtilization range is 0%–400%.

For endpoint variants, the value is the sum of the GPU utilization of the
primary and supplementary containers on the instance.

Units: Percent

Hosting options 4121

Amazon SageMaker Developer Guide

Metric Description

GPUMemory
Utilization

The percentage of GPU memory used by the containers on an instance.
The value range is 0‐100 and is multiplied by the number of GPUs.
For example, if there are four GPUs, the GPUMemoryUtilization
range is 0%‐400%.

For endpoint variants, the value is the sum of the GPU memory utilizati
on of the primary and supplementary containers on the instance.

Units: Percent

DiskUtilization The percentage of disk space used by the containers on an instance.
This value range is 0%–100%.

For endpoint variants, the value is the sum of the disk space utilization
of the primary and supplementary containers on the instance.

Units: Percent

Set Auto Scaling Policies for Multi-Model Endpoint Deployments

SageMaker multi-model endpoints fully support automatic scaling, which manages replicas of
models to ensure models scale based on traffic patterns. We recommend that you configure
your multi-model endpoint and the size of your instances based on Instance recommendations
for multi-model endpoint deployments and also set up instance based auto scaling for your
endpoint. The invocation rates used to trigger an auto-scale event are based on the aggregate set
of predictions across the full set of models served by the endpoint. For additional details on setting
up endpoint auto scaling, see Automatically Scale Amazon SageMaker Models.

You can set up auto scaling policies with predefined and custom metrics on both CPU and GPU
backed multi-model endpoints.

Note

SageMaker multi-model endpoint metrics are available at one-minute granularity.

Hosting options 4122

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html

Amazon SageMaker Developer Guide

Define a scaling policy

To specify the metrics and target values for a scaling policy, you can configure a target-tracking
scaling policy. You can use either a predefined metric or a custom metric.

Scaling policy configuration is represented by a JSON block. You save your scaling policy
configuration as a JSON block in a text file. You use that text file when invoking the AWS CLI or
the Application Auto Scaling API. For more information about policy configuration syntax, see
TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling API Reference.

The following options are available for defining a target-tracking scaling policy configuration.

Use a predefined metric

To quickly define a target-tracking scaling policy for a variant, use the
SageMakerVariantInvocationsPerInstance predefined metric.
SageMakerVariantInvocationsPerInstance is the average number of times per minute that
each instance for a variant is invoked. We strongly recommend using this metric.

To use a predefined metric in a scaling policy, create a target tracking configuration for your policy.
In the target tracking configuration, include a PredefinedMetricSpecification for the
predefined metric and a TargetValue for the target value of that metric.

The following example is a typical policy configuration for target-tracking scaling for a
variant. In this configuration, we use the SageMakerVariantInvocationsPerInstance
predefined metric to adjust the number of variant instances so that each instance has an
InvocationsPerInstance metric of 70.

{"TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "InvocationsPerInstance"
 }
}

Note

We recommend that you use InvocationsPerInstance while using multi-model
endpoints. The TargetValue for this metric depends on your application’s latency

Hosting options 4123

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon SageMaker Developer Guide

requirements. We also recommend that you load test your endpoints to set up suitable
scaling parameter values. To learn more about load testing and setting up autoscaling
for your endpoints, see the blog Configuring autoscaling inference endpoints in Amazon
SageMaker.

Use a custom metric

If you need to define a target-tracking scaling policy that meets your custom requirements, define
a custom metric. You can define a custom metric based on any production variant metric that
changes in proportion to scaling.

Not all SageMaker metrics work for target tracking. The metric must be a valid utilization metric,
and it must describe how busy an instance is. The value of the metric must increase or decrease
in inverse proportion to the number of variant instances. That is, the value of the metric should
decrease when the number of instances increases.

Important

Before deploying automatic scaling in production, you must test automatic scaling with
your custom metric.

Example custom metric for a CPU backed multi-model endpoint

The following example is a target-tracking configuration for a scaling policy. In this configuration,
for a model named my-model, a custom metric of CPUUtilization adjusts the instance count on
the endpoint based on an average CPU utilization of 50% across all instances.

{"TargetValue": 50,
 "CustomizedMetricSpecification":
 {"MetricName": "CPUUtilization",
 "Namespace": "/aws/sagemaker/Endpoints",
 "Dimensions": [
 {"Name": "EndpointName", "Value": "my-endpoint" },
 {"Name": "ModelName","Value": "my-model"}
],
 "Statistic": "Average",
 "Unit": "Percent"
 }

Hosting options 4124

https://aws.amazon.com/blogs/machine-learning/configuring-autoscaling-inference-endpoints-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/configuring-autoscaling-inference-endpoints-in-amazon-sagemaker/

Amazon SageMaker Developer Guide

}

Example custom metric for a GPU backed multi-model endpoint

The following example is a target-tracking configuration for a scaling policy. In this configuration,
for a model named my-model, a custom metric of GPUUtilization adjusts the instance count on
the endpoint based on an average GPU utilization of 50% across all instances.

{"TargetValue": 50,
 "CustomizedMetricSpecification":
 {"MetricName": "GPUUtilization",
 "Namespace": "/aws/sagemaker/Endpoints",
 "Dimensions": [
 {"Name": "EndpointName", "Value": "my-endpoint" },
 {"Name": "ModelName","Value": "my-model"}
],
 "Statistic": "Average",
 "Unit": "Percent"
 }
}

Add a cooldown period

To add a cooldown period for scaling out your endpoint, specify a value, in seconds, for
ScaleOutCooldown. Similarly, to add a cooldown period for scaling in your model, add a
value, in seconds, for ScaleInCooldown. For more information about ScaleInCooldown and
ScaleOutCooldown, see TargetTrackingScalingPolicyConfiguration in the Application
Auto Scaling API Reference.

The following is an example target-tracking configuration for a scaling policy. In this configuration,
the SageMakerVariantInvocationsPerInstance predefined metric is used to adjust scaling
based on an average of 70 across all instances of that variant. The configuration provides a scale-in
cooldown period of 10 minutes and a scale-out cooldown period of 5 minutes.

{"TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {"PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 },
 "ScaleInCooldown": 600,
 "ScaleOutCooldown": 300
}

Hosting options 4125

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html

Amazon SageMaker Developer Guide

Host multiple models which use different containers behind one endpoint

SageMaker multi-container endpoints enable customers to deploy multiple containers, that use
different models or frameworks, on a single SageMaker endpoint. The containers can be run in a
sequence as an inference pipeline, or each container can be accessed individually by using direct
invocation to improve endpoint utilization and optimize costs.

For information about invoking the containers in a multi-container endpoint in sequence, see Host
models along with pre-processing logic as serial inference pipeline behind one endpoint.

For information about invoking a specific container in a multi-container endpoint, see Use a multi-
container endpoint with direct invocation

Topics

• Create a multi-container endpoint (Boto 3)

• Update a multi-container endpoint

• Delete a multi-container endpoint

• Use a multi-container endpoint with direct invocation

Create a multi-container endpoint (Boto 3)

Create a Multi-container endpoint by calling CreateModel, CreateEndpointConfig, and
CreateEndpoint APIs as you would to create any other endpoints. You can run these containers
sequentially as an inference pipeline, or run each individual container by using direct invocation.
Multi-container endpoints have the following requirements when you call create_model:

• Use the Containers parameter instead of PrimaryContainer, and include more than one
container in the Containers parameter.

• The ContainerHostname parameter is required for each container in a multi-container
endpoint with direct invocation.

• Set the Mode parameter of the InferenceExecutionConfig field to Direct for direct
invocation of each container, or Serial to use containers as an inference pipeline. The default
mode is Serial.

Note

Currently there is a limit of up to 15 containers supported on a multi-container endpoint.

Hosting options 4126

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

The following example creates a multi-container model for direct invocation.

1. Create container elements and InferenceExecutionConfig with direct invocation.

container1 = {
 'Image': '123456789012.dkr.ecr.us-east-1.amazonaws.com/
myimage1:mytag',
 'ContainerHostname': 'firstContainer'
 }

container2 = {
 'Image': '123456789012.dkr.ecr.us-east-1.amazonaws.com/
myimage2:mytag',
 'ContainerHostname': 'secondContainer'
 }
inferenceExecutionConfig = {'Mode': 'Direct'}

2. Create the model with the container elements and set the InferenceExecutionConfig
field.

import boto3
sm_client = boto3.Session().client('sagemaker')

response = sm_client.create_model(
 ModelName = 'my-direct-mode-model-name',
 InferenceExecutionConfig = inferenceExecutionConfig,
 ExecutionRoleArn = role,
 Containers = [container1, container2]
)

To create an endoint, you would then call create_endpoint_config and create_endpoint as you
would to create any other endpoint.

Update a multi-container endpoint

To update a multi-container endpoint, complete the following steps.

1. Call create_model to create a new model with a new value for the Mode parameter in the
InferenceExecutionConfig field.

Hosting options 4127

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model

Amazon SageMaker Developer Guide

2. Call create_endpoint_config to create a new endpoint config with a different name by using
the new model you created in the previous step.

3. Call update_endpoint to update the endpoint with the new endpoint config you created in the
previous step.

Delete a multi-container endpoint

To delete an endpoint, call delete_endpoint, and provide the name of the endpoint you want to
delete as the EndpointName parameter.

Use a multi-container endpoint with direct invocation

SageMaker multi-container endpoints enable customers to deploy multiple containers to deploy
different models on a SageMaker endpoint. You can host up to 15 different inference containers
on a single endpoint. By using direct invocation, you can send a request to a specific inference
container hosted on a multi-container endpoint.

Topics

• Invoke a multi-container endpoint with direct invocation

• Security with multi-container endpoints with direct invocation

• Metrics for multi-container endpoints with direct invocation

• Autoscale multi-container endpoints

• Troubleshoot multi-container endpoints

Invoke a multi-container endpoint with direct invocation

To invoke a multi-container endpoint with direct invocation, call invoke_endpoint as you
would invoke any other endpoint, and specify which container you want to invoke by using the
TargetContainerHostname parameter.

The following example directly invokes the secondContainer of a multi-container endpoint to
get a prediction.

import boto3
runtime_sm_client = boto3.Session().client('sagemaker-runtime')

response = runtime_sm_client.invoke_endpoint(

Hosting options 4128

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.update_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.delete_endpoint
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html#SageMakerRuntime.Client.invoke_endpoint

Amazon SageMaker Developer Guide

 EndpointName ='my-endpoint',
 ContentType = 'text/csv',
 TargetContainerHostname='secondContainer',
 Body = body)

For each direct invocation request to a multi-container endpoint, only the container with the
TargetContainerHostname processes the invocation request. You will get validation errors if
you do any of the following:

• Specify a TargetContainerHostname that does not exist in the endpoint

• Do not specify a value for TargetContainerHostname in a request to an endpoint configured
for direct invocation

• Specify a value for TargetContainerHostname in a request to an endpoint that is not
configured for direct invocation.

Security with multi-container endpoints with direct invocation

For multi-container endpoints with direct invocation, there are multiple containers hosted in a
single instance by sharing memory and a storage volume. It's your responsibility to use secure
containers, maintain the correct mapping of requests to target containers, and provide users with
the correct access to target containers. SageMaker uses IAM roles to provide IAM identity-based
policies that you use to specify whether access to a resource is allowed or denied to that role, and
under what conditions. For information about IAM roles, see IAM roles in the AWS Identity and
Access Management User Guide. For information about identity-based policies, see Identity-based
policies and resource-based policies.

By default, an IAM principal with InvokeEndpoint permissions on a multi-container
endpoint with direct invocation can invoke any container inside the endpoint with the
endpoint name that you specify when you call invoke_endpoint. If you need to restrict
invoke_endpoint access to a limited set of containers inside a multi-container endpoint, use the
sagemaker:TargetContainerHostname IAM condition key. The following policies show how to
limit calls to specific containers within an endpoint.

The following policy allows invoke_endpoint requests only when the value of the
TargetContainerHostname field matches one of the specified regular expressions.

{
 "Version": "2012-10-17",
 "Statement": [

Hosting options 4129

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Amazon SageMaker Developer Guide

 {
 "Action": [
 "sagemaker:InvokeEndpoint"
],
 "Effect": "Allow",
 "Resource": "arn:aws:sagemaker:region:account-id:endpoint/endpoint_name",
 "Condition": {
 "StringLike": {
 "sagemaker:TargetContainerHostname": ["customIps*", "common*"]
 }
 }
 }
]
}

The following policy denies invoke_endpoint requests when the value of the
TargetContainerHostname field matches one of the specified regular expressions in the Deny
statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sagemaker:InvokeEndpoint"
],
 "Effect": "Allow",
 "Resource": "arn:aws:sagemaker:region:account-id:endpoint/endpoint_name",
 "Condition": {
 "StringLike": {
 "sagemaker:TargetContainerHostname": ["*"]
 }
 }
 },
 {
 "Action": [
 "sagemaker:InvokeEndpoint"
],
 "Effect": "Deny",
 "Resource": "arn:aws:sagemaker:region:account-id:endpoint/endpoint_name",
 "Condition": {
 "StringLike": {
 "sagemaker:TargetContainerHostname": ["special*"]

Hosting options 4130

Amazon SageMaker Developer Guide

 }
 }
 }
]
}

For information about SageMaker condition keys, see Condition Keys for SageMaker in the AWS
Identity and Access Management User Guide.

Metrics for multi-container endpoints with direct invocation

In addition to the endpoint metrics that are listed in Monitor Amazon SageMaker with Amazon
CloudWatch, SageMaker also provides per-container metrics.

Per-container metrics for multi-container endpoints with direct invocation are located in
CloudWatch and categorized into two namespaces: AWS/SageMaker and aws/sagemaker/
Endpoints. The AWS/SageMaker namespace includes invocation-related metrics, and the aws/
sagemaker/Endpoints namespace includes memory and CPU utilization metrics.

The following table lists the per-container metrics for multi-container endpoints with direct
invocation. All the metrics use the [EndpointName, VariantName, ContainerName]
dimension, which filters metrics at a specific endpoint, for a specific variant and corresponding to
a specific container. These metrics share the same metric names as in those for inference pipelines,
but at a per-container level [EndpointName, VariantName, ContainerName].

Metric Name Description Dimension NameSpace

Invocations The number of
InvokeEndpoint
requests sent to a
container inside an
endpoint. To get
the total number of
requests sent to that
container, use the
Sum statistic. Units:
None Valid statistics:
Sum, Sample Count

EndpointName ,
VariantName ,
ContainerName

AWS/SageMaker

Hosting options 4131

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-policy-keys

Amazon SageMaker Developer Guide

Invocation4XX
Errors

The number of
InvokeEndpoint
requests that the
model returned a
4xx HTTP response
code for on a specific
container. For each
4xx response,
SageMaker sends a
1. Units: None Valid
statistics: Average,
Sum

EndpointName ,
VariantName ,
ContainerName

AWS/SageMaker

Invocation5XX
Errors

The number of
InvokeEndpoint
requests that the
model returned a
5xx HTTP response
code for on a specific
container. For each
5xx response,
SageMaker sends a
1. Units: None Valid
statistics: Average,
Sum

EndpointName ,
VariantName ,
ContainerName

AWS/SageMaker

Hosting options 4132

Amazon SageMaker Developer Guide

Container
Latency

The time it took for
the target container
to respond as viewed
from SageMaker
. Container
Latency includes
the time it took to
send the request, to
fetch the response
from the model's
container, and to
complete inference
in the container
. Units: Microseco
nds Valid statistics:
Average, Sum, Min,
Max, Sample Count

EndpointName ,
VariantName ,
ContainerName

AWS/SageMaker

Hosting options 4133

Amazon SageMaker Developer Guide

OverheadLatency The time added
to the time taken
to respond to a
client request
by SageMaker
for overhead.
OverheadLatency
is measured from
the time that
SageMaker receives
the request until it
returns a response
to the client, minus
theModelLatency .
Overhead latency can
vary depending on
request and response
payload sizes, request
frequency, and
authentication or
authorization of
the request, among
other factors. Units:
Microseconds Valid
statistics: Average,
Sum, Min, Max,
`Sample Count `

EndpointName ,
VariantName ,
ContainerName

AWS/SageMaker

Hosting options 4134

Amazon SageMaker Developer Guide

CPUUtilization The percentage
of CPU units that
are used by each
container running
on an instance.
The value ranges
from 0% to 100%,
and is multiplied
by the number of
CPUs. For example, if
there are four CPUs,
CPUUtilization
can range from 0% to
400%. For endpoints
 with direct invocatio
n, the number of
CPUUtilization
metrics equals the
number of container
s in that endpoint.
Units: Percent

EndpointName ,
VariantName ,
ContainerName

aws/sagemaker/
Endpoints

Hosting options 4135

Amazon SageMaker Developer Guide

MemoryUti
lizaton

The percentage
of memory that
is used by each
container running
on an instance. This
value ranges from
0% to 100%. Similar
as CPUUtilization,
in endpoints with
direct invocatio
n, the number of
MemoryUtilization
metrics equals the
number of container
s in that endpoint.
Units: Percent

EndpointName ,
VariantName ,
ContainerName

aws/sagemaker/
Endpoints

All the metrics in the previous table are specific to multi-container endpoints with direct
invocation. Besides these special per-container metrics, there are also metrics at the variant
level with dimension [EndpointName, VariantName] for all the metrics in the table expect
ContainerLatency.

Autoscale multi-container endpoints

If you want to configure automatic scaling for a multi-container endpoint using the
InvocationsPerInstance metric, we recommend that the model in each container exhibits
similar CPU utilization and latency on each inference request. This is recommended because if
traffic to the multi-container endpoint shifts from a low CPU utilization model to a high CPU
utilization model, but the overall call volume remains the same, the endpoint does not scale out
and there may not be enough instances to handle all the requests to the high CPU utilization
model. For information about automatically scaling endpoints, see Automatically Scale Amazon
SageMaker Models.

Troubleshoot multi-container endpoints

The following sections can help you troubleshoot errors with multi-container endpoints.

Hosting options 4136

Amazon SageMaker Developer Guide

Ping Health Check Errors

With multiple containers, endpoint memory and CPU are under higher pressure during endpoint
creation. Specifically, the MemoryUtilization and CPUUtilization metrics are higher than
for single-container endpoints, because utilization pressure is proportional to the number of
containers. Because of this, we recommend that you choose instance types with enough memory
and CPU to ensure that there is enough memory on the instance to have all the models loaded
(the same guidance applies to deploying an inference pipeline). Otherwise, your endpoint creation
might fail with an error such as XXX did not pass the ping health check.

Missing accept-bind-to-port=true Docker label

The containers in a multi-container endpoints listen on the port specified in the
SAGEMAKER_BIND_TO_PORT environment variable instead of port 8080. When a container runs
in a multi-container endpoint, SageMaker automatically provides this environment variable to
the container. If this environment variable isn't present, containers default to using port 8080. To
indicate that your container complies with this requirement, use the following command to add a
label to your Dockerfile:

LABEL com.amazonaws.sagemaker.capabilities.accept-bind-to-port=true

Otherwise, You will see an error message such as Your Ecr Image XXX does not contain
required com.amazonaws.sagemaker.capabilities.accept-bind-to-port=true
Docker label(s).

If your container needs to listen on a second port, choose a port in the range specified by the
SAGEMAKER_SAFE_PORT_RANGE environment variable. Specify the value as an inclusive range in
the format XXXX-YYYY, where XXXX and YYYY are multi-digit integers. SageMaker provides this
value automatically when you run the container in a multi-container endpoint.

Host models along with pre-processing logic as serial inference pipeline behind
one endpoint

An inference pipeline is a Amazon SageMaker model that is composed of a linear sequence of two
to fifteen containers that process requests for inferences on data. You use an inference pipeline
to define and deploy any combination of pretrained SageMaker built-in algorithms and your own
custom algorithms packaged in Docker containers. You can use an inference pipeline to combine

Hosting options 4137

Amazon SageMaker Developer Guide

preprocessing, predictions, and post-processing data science tasks. Inference pipelines are fully
managed.

You can add SageMaker Spark ML Serving and scikit-learn containers that reuse the data
transformers developed for training models. The entire assembled inference pipeline can be
considered as a SageMaker model that you can use to make either real-time predictions or to
process batch transforms directly without any external preprocessing.

Within an inference pipeline model, SageMaker handles invocations as a sequence of HTTP
requests. The first container in the pipeline handles the initial request, then the intermediate
response is sent as a request to the second container, and so on, for each container in the pipeline.
SageMaker returns the final response to the client.

When you deploy the pipeline model, SageMaker installs and runs all of the containers on each
Amazon Elastic Compute Cloud (Amazon EC2) instance in the endpoint or transform job. Feature
processing and inferences run with low latency because the containers are co-located on the same
EC2 instances. You define the containers for a pipeline model using the CreateModel operation or
from the console. Instead of setting one PrimaryContainer, you use the Containers parameter
to set the containers that make up the pipeline. You also specify the order in which the containers
are executed.

A pipeline model is immutable, but you can update an inference pipeline by deploying a new
one using the UpdateEndpoint operation. This modularity supports greater flexibility during
experimentation.

For information on how to create an inference pipeline with the SageMaker model registry, see
Register and Deploy Models with Model Registry.

There are no additional costs for using this feature. You pay only for the instances running on an
endpoint.

Topics

• Sample Notebooks for Inference Pipelines

• Feature Processing with Spark ML and Scikit-learn

• Create a Pipeline Model

• Run Real-time Predictions with an Inference Pipeline

• Run Batch Transforms with Inference Pipelines

Hosting options 4138

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html

Amazon SageMaker Developer Guide

• Inference Pipeline Logs and Metrics

• Troubleshoot Inference Pipelines

Sample Notebooks for Inference Pipelines

For an example that shows how to create and deploy inference pipelines, see the Inference Pipeline
with Scikit-learn and Linear Learner sample notebook. For instructions on creating and accessing
Jupyter notebook instances that you can use to run the example in SageMaker, see Amazon
SageMaker Notebook Instances.

To see a list of all the SageMaker samples, after creating and opening a notebook instance, choose
the SageMaker Examples tab. There are three inference pipeline notebooks. The first two inference
pipeline notebooks just described are located in the advanced_functionality folder and the
third notebook is in the sagemaker-python-sdk folder. To open a notebook, choose its Use tab,
then choose Create copy.

Feature Processing with Spark ML and Scikit-learn

Before training a model with either Amazon SageMaker built-in algorithms or custom algorithms,
you can use Spark and scikit-learn preprocessors to transform your data and engineer features.

Feature Processing with Spark ML

You can run Spark ML jobs with AWS Glue, a serverless ETL (extract, transform, load) service, from
your SageMaker notebook. You can also connect to existing EMR clusters to run Spark ML jobs with
Amazon EMR. To do this, you need an AWS Identity and Access Management (IAM) role that grants
permission for making calls from your SageMaker notebook to AWS Glue.

Note

To see which Python and Spark versions AWS Glue supports, refer to AWS Glue Release
Notes.

After engineering features, you package and serialize Spark ML jobs with MLeap into MLeap
containers that you can add to an inference pipeline. You don't need to use externally managed
Spark clusters. With this approach, you can seamlessly scale from a sample of rows to terabytes of
data. The same transformers work for both training and inference, so you don't need to duplicate

Hosting options 4139

https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-python-sdk/scikit_learn_inference_pipeline
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-python-sdk/scikit_learn_inference_pipeline
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html

Amazon SageMaker Developer Guide

preprocessing and feature engineering logic or develop a one-time solution to make the models
persist. With inference pipelines, you don't need to maintain outside infrastructure, and you can
make predictions directly from data inputs.

When you run a Spark ML job on AWS Glue, a Spark ML pipeline is serialized into MLeap format.
Then, you can use the job with the SparkML Model Serving Container in a SageMaker Inference
Pipeline. MLeap is a serialization format and execution engine for machine learning pipelines.
It supports Spark, Scikit-learn, and TensorFlow for training pipelines and exporting them to a
serialized pipeline called an MLeap Bundle. You can deserialize Bundles back into Spark for batch-
mode scoring or into the MLeap runtime to power real-time API services.

For an example that shows how to feature process with Spark ML, see the Train an ML Model using
Apache Spark in Amazon EMR and deploy in SageMaker sample notebook.

Feature Processing with Scikit-Learn

You can run and package scikit-learn jobs into containers directly in Amazon SageMaker. For an
example of Python code for building a scikit-learn featurizer model that trains on Fisher's Iris
flower data set and predicts the species of Iris based on morphological measurements, see IRIS
Training and Prediction with Sagemaker Scikit-learn.

Create a Pipeline Model

To create a pipeline model that can be deployed to an endpoint or used for a batch transform job,
use the Amazon SageMaker console or the CreateModel operation.

To create an inference pipeline (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Models, and then choose Create models from the Inference group.

3. On the Create model page, provide a model name, choose an IAM role, and, if you want to use
a private VPC, specify VPC values.

Hosting options 4140

https://github.com/combust/mleap
https://github.com/aws/sagemaker-sparkml-serving-container
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-python-sdk/sparkml_serving_emr_mleap_abalone
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-python-sdk/sparkml_serving_emr_mleap_abalone
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_iris
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_iris
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. To add information about the containers in the inference pipeline, choose Add container, then
choose Next.

5. Complete the fields for each container in the order that you want to execute them, up to
the maximum of fifteen. Complete the Container input options, , Location of inference
code image, and, optionally, Location of model artifacts, Container host name, and
Environmental variables fields. .

Hosting options 4141

Amazon SageMaker Developer Guide

Hosting options 4142

Amazon SageMaker Developer Guide

The MyInferencePipelineModel page summarizes the settings for the containers that provide
input for the model. If you provided the environment variables in a corresponding container
definition, SageMaker shows them in the Environment variables field.

Hosting options 4143

Amazon SageMaker Developer Guide

Hosting options 4144

Amazon SageMaker Developer Guide

Run Real-time Predictions with an Inference Pipeline

You can use trained models in an inference pipeline to make real-time predictions directly without
performing external preprocessing. When you configure the pipeline, you can choose to use the
built-in feature transformers already available in Amazon SageMaker. Or, you can implement your
own transformation logic using just a few lines of scikit-learn or Spark code.

MLeap, a serialization format and execution engine for machine learning pipelines, supports Spark,
scikit-learn, and TensorFlow for training pipelines and exporting them to a serialized pipeline called
an MLeap Bundle. You can deserialize Bundles back into Spark for batch-mode scoring or into the
MLeap runtime to power real-time API services.

The containers in a pipeline listen on the port specified in the SAGEMAKER_BIND_TO_PORT
environment variable (instead of 8080). When running in an inference pipeline, SageMaker
automatically provides this environment variable to containers. If this environment variable isn't
present, containers default to using port 8080. To indicate that your container complies with this
requirement, use the following command to add a label to your Dockerfile:

LABEL com.amazonaws.sagemaker.capabilities.accept-bind-to-port=true

If your container needs to listen on a second port, choose a port in the range specified by the
SAGEMAKER_SAFE_PORT_RANGE environment variable. Specify the value as an inclusive range in
the format "XXXX-YYYY", where XXXX and YYYY are multi-digit integers. SageMaker provides this
value automatically when you run the container in a multicontainer pipeline.

Note

To use custom Docker images in a pipeline that includes SageMaker built-in algorithms,
you need an Amazon Elastic Container Registry (Amazon ECR) policy. Your Amazon ECR
repository must grant SageMaker permission to pull the image. For more information, see
Troubleshoot Amazon ECR Permissions for Inference Pipelines.

Create and Deploy an Inference Pipeline Endpoint

The following code creates and deploys a real-time inference pipeline model with SparkML and
XGBoost models in series using the SageMaker SDK.

from sagemaker.model import Model
from sagemaker.pipeline_model import PipelineModel

Hosting options 4145

https://combust.github.io/mleap-docs/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

Amazon SageMaker Developer Guide

from sagemaker.sparkml.model import SparkMLModel

sparkml_data = 's3://{}/{}/{}'.format(s3_model_bucket, s3_model_key_prefix,
 'model.tar.gz')
sparkml_model = SparkMLModel(model_data=sparkml_data)
xgb_model = Model(model_data=xgb_model.model_data, image=training_image)

model_name = 'serial-inference-' + timestamp_prefix
endpoint_name = 'serial-inference-ep-' + timestamp_prefix
sm_model = PipelineModel(name=model_name, role=role, models=[sparkml_model, xgb_model])
sm_model.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge',
 endpoint_name=endpoint_name)

Request Real-Time Inference from an Inference Pipeline Endpoint

The following example shows how to make real-time predictions by calling an inference endpoint
and passing a request payload in JSON format:

import sagemaker
from sagemaker.predictor import json_serializer, json_deserializer, Predictor

payload = {
 "input": [
 {
 "name": "Pclass",
 "type": "float",
 "val": "1.0"
 },
 {
 "name": "Embarked",
 "type": "string",
 "val": "Q"
 },
 {
 "name": "Age",
 "type": "double",
 "val": "48.0"
 },
 {
 "name": "Fare",
 "type": "double",
 "val": "100.67"
 },

Hosting options 4146

Amazon SageMaker Developer Guide

 {
 "name": "SibSp",
 "type": "double",
 "val": "1.0"
 },
 {
 "name": "Sex",
 "type": "string",
 "val": "male"
 }
],
 "output": {
 "name": "features",
 "type": "double",
 "struct": "vector"
 }
 }

predictor = Predictor(endpoint=endpoint_name, sagemaker_session=sagemaker.Session(),
 serializer=json_serializer,
 content_type='text/csv', accept='application/json'

print(predictor.predict(payload))

The response you get from predictor.predict(payload) is the model's inference result.

Realtime inference pipeline example

You can run this example notebook using the SKLearn predictor that shows how to deploy an
endpoint, run an inference request, then deserialize the response. Find this notebook and more
examples in the Amazon SageMaker example GitHub repository.

Run Batch Transforms with Inference Pipelines

To get inferences on an entire dataset you run a batch transform on a trained model. To run
inferences on a full dataset, you can use the same inference pipeline model created and deployed
to an endpoint for real-time processing in a batch transform job. To run a batch transform job in a
pipeline, you download the input data from Amazon S3 and send it in one or more HTTP requests
to the inference pipeline model. For an example that shows how to prepare data for a batch
transform, see "Section 2 - Preprocess the raw housing data using Scikit Learn" of the Amazon
SageMaker Multi-Model Endpoints using Linear Learner sample notebook. For information about
Amazon SageMaker batch transforms, see Use Batch Transform.

Hosting options 4147

https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/scikit_learn_randomforest/Sklearn_on_SageMaker_end2end.ipynb
https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/multi_model_linear_learner_home_value
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/multi_model_linear_learner_home_value

Amazon SageMaker Developer Guide

Note

To use custom Docker images in a pipeline that includes Amazon SageMaker built-in
algorithms, you need an Amazon Elastic Container Registry (ECR) policy. Your Amazon ECR
repository must grant SageMaker permission to pull the image. For more information, see
Troubleshoot Amazon ECR Permissions for Inference Pipelines.

The following example shows how to run a transform job using the Amazon SageMaker Python
SDK. In this example, model_name is the inference pipeline that combines SparkML and XGBoost
models (created in previous examples). The Amazon S3 location specified by input_data_path
contains the input data, in CSV format, to be downloaded and sent to the Spark ML model. After
the transform job has finished, the Amazon S3 location specified by output_data_path contains
the output data returned by the XGBoost model in CSV format.

import sagemaker
input_data_path = 's3://{}/{}/{}'.format(default_bucket, 'key', 'file_name')
output_data_path = 's3://{}/{}'.format(default_bucket, 'key')
transform_job = sagemaker.transformer.Transformer(
 model_name = model_name,
 instance_count = 1,
 instance_type = 'ml.m4.xlarge',
 strategy = 'SingleRecord',
 assemble_with = 'Line',
 output_path = output_data_path,
 base_transform_job_name='inference-pipelines-batch',
 sagemaker_session=sagemaker.Session(),
 accept = CONTENT_TYPE_CSV)
transform_job.transform(data = input_data_path,
 content_type = CONTENT_TYPE_CSV,
 split_type = 'Line')

Inference Pipeline Logs and Metrics

Monitoring is important for maintaining the reliability, availability, and performance of Amazon
SageMaker resources. To monitor and troubleshoot inference pipeline performance, use Amazon
CloudWatch logs and error messages. For information about the monitoring tools that SageMaker
provides, see Monitor AWS resources provisioned while using Amazon SageMaker.

Hosting options 4148

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Use Metrics to Monitor Multi-container Models

To monitor the multi-container models in Inference Pipelines, use Amazon CloudWatch.
CloudWatch collects raw data and processes it into readable, near real-time metrics. SageMaker
training jobs and endpoints write CloudWatch metrics and logs in the AWS/SageMaker namespace.

The following tables list the metrics and dimensions for the following:

• Endpoint invocations

• Training jobs, batch transform jobs, and endpoint instances

A dimension is a name/value pair that uniquely identifies a metric. You can assign up to 10
dimensions to a metric. For more information on monitoring with CloudWatch, see Monitor
Amazon SageMaker with Amazon CloudWatch.

Endpoint Invocation Metrics

The AWS/SageMaker namespace includes the following request metrics from calls to
InvokeEndpoint.

Metrics are reported at a 1-minute intervals.

Metric Description

Invocatio
n4XXErrors

The number of InvokeEndpoint requests that the model returned a
4xx HTTP response code for. For each 4xx response, SageMaker sends
a 1.

Units: None

Valid statistics: Average, Sum

Invocatio
n5XXErrors

The number of InvokeEndpoint requests that the model returned a
5xx HTTP response code for. For each 5xx response, SageMaker sends
a 1.

Units: None

Valid statistics: Average, Sum

Hosting options 4149

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html

Amazon SageMaker Developer Guide

Metric Description

Invocations The number of InvokeEndpoint requests sent to a model
endpoint.

To get the total number of requests sent to a model endpoint, use the
Sum statistic.

Units: None

Valid statistics: Sum, Sample Count

Invocatio
nsPerInstance

The number of endpoint invocations sent to a model, normalized
by InstanceCount in each ProductionVariant . SageMaker
 sends 1/numberOfInstances as the value for each request, where
numberOfInstances is the number of active instances for the
ProductionVariant at the endpoint at the time of the request.

Units: None

Valid statistics: Sum

ModelLatency The time the model or models took to respond. This includes the time
it took to send the request, to fetch the response from the model
container, and to complete the inference in the container. ModelLate
ncy is the total time taken by all containers in an inference pipeline.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Hosting options 4150

Amazon SageMaker Developer Guide

Metric Description

OverheadLatency The time added to the time taken to respond to a client request by
SageMaker for overhead. OverheadLatency is measured from the
time that SageMaker receives the request until it returns a response
to the client, minus the ModelLatency . Overhead latency can vary
depending on request and response payload sizes, request frequency
, and authentication or authorization of the request, among other
factors.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Container
Latency

The time it took for an Inference Pipelines container to respond as
viewed from SageMaker. ContainerLatency includes the time
it took to send the request, to fetch the response from the model's
container, and to complete inference in the container.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Dimensions for Endpoint Invocation Metrics

Dimension Description

EndpointName,
VariantName,
ContainerName

Filters endpoint invocation metrics for a ProductionVariant at the
specified endpoint and for the specified variant.

For an inference pipeline endpoint, CloudWatch lists per-container latency metrics in your account
as Endpoint Container Metrics and Endpoint Variant Metrics in the SageMaker namespace, as
follows. The ContainerLatency metric appears only for inferences pipelines.

Hosting options 4151

Amazon SageMaker Developer Guide

For each endpoint and each container, latency metrics display names for the container, endpoint,
variant, and metric.

Training Job, Batch Transform Job, and Endpoint Instance Metrics

The namespaces /aws/sagemaker/TrainingJobs, /aws/sagemaker/TransformJobs, and
/aws/sagemaker/Endpoints include the following metrics for training jobs and endpoint
instances.

Metrics are reported at a 1-minute intervals.

Metric Description

CPUUtilization The percentage of CPU units that are used by the containers running on
an instance. The value ranges from 0% to 100%, and is multiplied by
the number of CPUs. For example, if there are four CPUs, CPUUtiliz
ation can range from 0% to 400%.

For training jobs, CPUUtilization is the CPU utilization of the
algorithm container running on the instance.

Hosting options 4152

Amazon SageMaker Developer Guide

Metric Description

For batch transform jobs, CPUUtilization is the CPU utilization of
the transform container running on the instance.

For multi-container models, CPUUtilization is the sum of CPU
utilization by all containers running on the instance.

For endpoint variants, CPUUtilization is the sum of CPU utilization
by all of the containers running on the instance.

Units: Percent

MemoryUti
lization

The percentage of memory that is used by the containers running on
an instance. This value ranges from 0% to 100%.

For training jobs, MemoryUtilization is the memory used by the
algorithm container running on the instance.

For batch transform jobs, MemoryUtilization is the memory used
by the transform container running on the instance.
For multi-container models, MemoryUtilization is the sum of
memory used by all containers running on the instance.

For endpoint variants, MemoryUtilization is the sum of memory
used by all of the containers running on the instance.

Units: Percent

Hosting options 4153

Amazon SageMaker Developer Guide

Metric Description

GPUUtilization The percentage of GPU units that are used by the containers running
on an instance. GPUUtilization ranges from 0% to 100% and is
multiplied by the number of GPUs. For example, if there are four GPUs,
GPUUtilization can range from 0% to 400%.

For training jobs, GPUUtilization is the GPU used by the algorithm
container running on the instance.

For batch transform jobs, GPUUtilization is the GPU used by the
transform container running on the instance.

For multi-container models, GPUUtilization is the sum of GPU
used by all containers running on the instance.

For endpoint variants, GPUUtilization is the sum of GPU used by
all of the containers running on the instance.

Units: Percent

GPUMemory
Utilization

The percentage of GPU memory used by the containers running on
an instance. GPUMemoryUtilization ranges from 0% to 100% and is
multiplied by the number of GPUs. For example, if there are four GPUs,
GPUMemoryUtilization can range from 0% to 400%.

For training jobs, GPUMemoryUtilization is the GPU memory
used by the algorithm container running on the instance.

For batch transform jobs, GPUMemoryUtilization is the GPU
memory used by the transform container running on the instance.

For multi-container models, GPUMemoryUtilization is sum of
GPU used by all containers running on the instance.

For endpoint variants, GPUMemoryUtilization is the sum of the
GPU memory used by all of the containers running on the instance.

Units: Percent

Hosting options 4154

Amazon SageMaker Developer Guide

Metric Description

DiskUtilization The percentage of disk space used by the containers running on an
instance. DiskUtilization ranges from 0% to 100%. This metric is not
supported for batch transform jobs.

For training jobs, DiskUtilization is the disk space used by the
algorithm container running on the instance.

For endpoint variants, DiskUtilization is the sum of the disk
space used by all of the provided containers running on the instance.

Units: Percent

Dimensions for Training Job, Batch Transform Job, and Endpoint Instance Metrics

Dimension Description

Host For training jobs, Host has the format [training-job-name]/
algo-[instance-number-in-cluster] . Use this dimension
to filter instance metrics for the specified training job and instance.
This dimension format is present only in the /aws/sagemaker/Tra
iningJobs namespace.

For batch transform jobs, Host has the format [transform-job-
name]/[instance-id] . Use this dimension to filter instance
metrics for the specified batch transform job and instance. This
dimension format is present only in the /aws/sagemaker/Tra
nsformJobs namespace.

For endpoints, Host has the format [endpoint-name]/
[production-variant-name]/[instance-id] . Use this
dimension to filter instance metrics for the specified endpoint, variant,
and instance. This dimension format is present only in the /aws/sage
maker/Endpoints namespace.

Hosting options 4155

Amazon SageMaker Developer Guide

To help you debug your training jobs, endpoints, and notebook instance lifecycle configurations,
SageMaker also sends anything an algorithm container, a model container, or a notebook instance
lifecycle configuration sends to stdout or stderr to Amazon CloudWatch Logs. You can use this
information for debugging and to analyze progress.

Use Logs to Monitor an Inference Pipeline

The following table lists the log groups and log streams SageMaker. sends to Amazon CloudWatch

A log stream is a sequence of log events that share the same source. Each separate source of logs
into CloudWatch makes up a separate log stream. A log group is a group of log streams that share
the same retention, monitoring, and access control settings.

Logs

Log Group Name Log Stream Name

/aws/sagemaker/
TrainingJobs

[training-job-name]/algo-[instance-number-in-
cluster]-[epoch_timestamp]

[production-variant-name]/[instance-id]

[production-variant-name]/[instance-id]

/aws/sagemaker/
Endpoints/[E
ndpointName]

[production-variant-name]/[instance-id]/[cont
ainer-name provided in the SageMaker model] (For
Inference Pipelines) For Inference Pipelines logs, if you don't
provide container names, CloudWatch uses **container-1, container
-2**, and so on, in the order that containers are provided in the model.

/aws/sagemaker/
NotebookInst
ances

[notebook-instance-name]/[LifecycleConfigHook]

[transform-job-name]/[instance-id]-[epoch_tim
estamp]

/aws/sagemaker/
TransformJobs

[transform-job-name]/[instance-id]-[epoch_tim
estamp]/data-log

Hosting options 4156

Amazon SageMaker Developer Guide

Log Group Name Log Stream Name

[transform-job-name]/[instance-id]-[epoch_tim
estamp]/[container-name provided in the SageMaker
model] (For Inference Pipelines) For Inference Pipelines
logs, if you don't provide container names, CloudWatch uses **contain
er-1, container-2**, and so on, in the order that containers are provided
in the model.

Note

SageMaker creates the /aws/sagemaker/NotebookInstances log group when you
create a notebook instance with a lifecycle configuration. For more information, see
Customize a Notebook Instance Using a Lifecycle Configuration Script.

For more information about SageMaker logging, see Log Amazon SageMaker Events with Amazon
CloudWatch.

Troubleshoot Inference Pipelines

To troubleshoot inference pipeline issues, use CloudWatch logs and error messages. If you are
using custom Docker images in a pipeline that includes Amazon SageMaker built-in algorithms, you
might also encounter permissions problems. To grant the required permissions, create an Amazon
Elastic Container Registry (Amazon ECR) policy.

Topics

• Troubleshoot Amazon ECR Permissions for Inference Pipelines

• Use CloudWatch Logs to Troubleshoot SageMaker Inference Pipelines

• Use Error Messages to Troubleshoot Inference Pipelines

Troubleshoot Amazon ECR Permissions for Inference Pipelines

When you use custom Docker images in a pipeline that includes SageMaker built-in algorithms, you
need an Amazon ECR policy. The policy allows your Amazon ECR repository to grant permission for
SageMaker to pull the image. The policy must add the following permissions:

Hosting options 4157

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

Amazon SageMaker Developer Guide

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "allowSageMakerToPull",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
]
 }
]
}

Use CloudWatch Logs to Troubleshoot SageMaker Inference Pipelines

SageMaker publishes the container logs for endpoints that deploy an inference pipeline to Amazon
CloudWatch at the following path for each container.

/aws/sagemaker/Endpoints/{EndpointName}/{Variant}/{InstanceId}/{ContainerHostname}

For example, logs for this endpoint are published to the following log groups and streams:

EndpointName: MyInferencePipelinesEndpoint
Variant: MyInferencePipelinesVariant
InstanceId: i-0179208609ff7e488
ContainerHostname: MyContainerName1 and MyContainerName2

logGroup: /aws/sagemaker/Endpoints/MyInferencePipelinesEndpoint
logStream: MyInferencePipelinesVariant/i-0179208609ff7e488/MyContainerName1
logStream: MyInferencePipelinesVariant/i-0179208609ff7e488/MyContainerName2

A log stream is a sequence of log events that share the same source. Each separate source of logs
into CloudWatch makes up a separate log stream. A log group is a group of log streams that share
the same retention, monitoring, and access control settings.

Hosting options 4158

Amazon SageMaker Developer Guide

To see the log groups and streams

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation page, choose Logs.

3. In Log Groups. filter on MyInferencePipelinesEndpoint:

4. To see the log streams, on the CloudWatch Log Groups page, choose
MyInferencePipelinesEndpoint, and then Search Log Group.

For a list of the logs that SageMaker publishes, see Inference Pipeline Logs and Metrics.

Use Error Messages to Troubleshoot Inference Pipelines

The inference pipeline error messages indicate which containers failed.

If an error occurs while SageMaker is invoking an endpoint, the service returns a ModelError
(error code 424), which indicates which container failed. If the request payload (the response from
the previous container) exceeds the limit of 5 MB, SageMaker provides a detailed error message,
such as:

Received response from MyContainerName1 with status code 200. However, the request payload
from MyContainerName1 to MyContainerName2 is 6000000 bytes, which has exceeded the
maximum limit of 5 MB.

If a container fails the ping health check while SageMaker is creating an endpoint, it returns a
ClientError and indicates all of the containers that failed the ping check in the last health check.

Hosting options 4159

https://console.aws.amazon.com/cloudwatch/

Amazon SageMaker Developer Guide

Delete Endpoints and Resources

Delete endpoints to stop incurring charges.

Delete Endpoint

Delete your endpoint programmatically using AWS SDK for Python (Boto3), with the AWS CLI, or
interactively using the SageMaker console.

SageMaker frees up all of the resources that were deployed when the endpoint was created.
Deleting an endpoint will not delete the endpoint configuration or the SageMaker model. See
Delete Endpoint Configuration and Delete Model for information on how to delete your endpoint
configuration and SageMaker model.

AWS SDK for Python (Boto3)

Use the DeleteEndpoint API to delete your endpoint. Specify the name of your endpoint for
the EndpointName field.

import boto3

Specify your AWS Region
aws_region='<aws_region>'

Specify the name of your endpoint
endpoint_name='<endpoint_name>'

Create a low-level SageMaker service client.
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Delete endpoint
sagemaker_client.delete_endpoint(EndpointName=endpoint_name)

AWS CLI

Use the delete-endpoint command to delete your endpoint. Specify the name of your
endpoint for the endpoint-name flag.

aws sagemaker delete-endpoint --endpoint-name <endpoint-name>

SageMaker Console

Delete your endpoint interactively with the SageMaker console.

Hosting options 4160

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-endpoint.html

Amazon SageMaker Developer Guide

1. In the SageMaker console at https://console.aws.amazon.com/sagemaker/ navigation
menu, choose Inference.

2. Choose Endpoints from the drop down menu. A list of endpoints created in you AWS
account will appear by name, Amazon Resource Name (ARN), creation time, status, and a
time stamp of when the endpoint was last updated.

3. Select the endpoint you want to delete.

4. Select the Actions dropdown button in the top right corner.

5. Choose Delete.

Delete Endpoint Configuration

Delete your endpoint configuration programmaticially using AWS SDK for Python (Boto3), with the
AWS CLI, or interactively using the SageMaker console. Deleting an endpoint configuration does
not delete endpoints created using this configuration. See Delete Endpoint for information on how
to delete your endpoint.

Do not delete an endpoint configuration in use by an endpoint that is live or while the endpoint is
being updated or created. You might lose visibility into the instance type the endpoint is using if
you delete the endpoint configuration of an endpoint that is active or being created or updated.

AWS SDK for Python (Boto3)

Use the DeleteEndpointConfig API to delete your endpoint. Specify the name of your
endpoint configuration for the EndpointConfigName field.

import boto3

Specify your AWS Region
aws_region='<aws_region>'

Specify the name of your endpoint configuration
endpoint_config_name='<endpoint_name>'

Create a low-level SageMaker service client.
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Delete endpoint configuration
sagemaker_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)

Hosting options 4161

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpointConfig.html

Amazon SageMaker Developer Guide

You can optionally use the DescribeEndpointConfig API to return information about the
name of the your deployed models (production variants) such as the name of your model and
the name of the endpoint configuration associated with that deployed model. Provide the name
of your endpoint for the EndpointConfigName field.

Specify the name of your endpoint
endpoint_name='<endpoint_name>'

Create a low-level SageMaker service client.
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Store DescribeEndpointConfig response into a variable that we can index in the
 next step.
response =
 sagemaker_client.describe_endpoint_config(EndpointConfigName=endpoint_name)

Delete endpoint
endpoint_config_name = response['ProductionVariants'][0]['EndpointConfigName']

Delete endpoint configuration
sagemaker_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)

For more information about other response elements returned by DescribeEndpointConfig,
see DescribeEndpointConfig in the SageMaker API Reference guide.

AWS CLI

Use the delete-endpoint-config command to delete your endpoint configuration. Specify
the name of your endpoint configuration for the endpoint-config-name flag.

aws sagemaker delete-endpoint-config \
 --endpoint-config-name <endpoint-config-name>

You can optionally use the describe-endpoint-config command to return information
about the name of the your deployed models (production variants) such as the name of your
model and the name of the endpoint configuration associated with that deployed model.
Provide the name of your endpoint for the endpoint-config-name flag.

aws sagemaker describe-endpoint-config --endpoint-config-name <endpoint-config-name>

Hosting options 4162

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Operations_Amazon_SageMaker_Service.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-endpoint-config.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-endpoint-config.html

Amazon SageMaker Developer Guide

This will return a JSON response. You can copy and paste, use a JSON parser, or use a tool built
for JSON parsing to obtain the endpoint configuration name associated with that endpoint.

SageMaker Console

Delete your endpoint configuration interactively with the SageMaker console.

1. In the SageMaker console at https://console.aws.amazon.com/sagemaker/ navigation
menu, choose Inference.

2. Choose Endpoint configurations from the dropdown menu. A list of endpoint
configurations created in you AWS account will appear by name, Amazon Resource Name
(ARN), and creation time.

3. Select the endpoint configuration you want to delete.

4. Select the Actions dropdown button in the top right corner.

5. Choose Delete.

Delete Model

Delete your SageMaker model programmaticially using AWS SDK for Python (Boto3), with the AWS
CLI, or interactively using the SageMaker console. Deleting a SageMaker model only deletes the
model entry that was created in SageMaker. Deleting a model does not delete model artifacts,
inference code, or the IAM role that you specified when creating the model.

AWS SDK for Python (Boto3)

Use the DeleteModel API to delete your SageMaker model. Specify the name of your model
for the ModelName field.

import boto3

Specify your AWS Region
aws_region='<aws_region>'

Specify the name of your endpoint configuration
model_name='<model_name>'

Create a low-level SageMaker service client.
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Delete model

Hosting options 4163

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModel.html

Amazon SageMaker Developer Guide

sagemaker_client.delete_model(ModelName=model_name)

You can optionally use the DescribeEndpointConfig API to return information about the
name of the your deployed models (production variants) such as the name of your model and
the name of the endpoint configuration associated with that deployed model. Provide the name
of your endpoint for the EndpointConfigName field.

Specify the name of your endpoint
endpoint_name='<endpoint_name>'

Create a low-level SageMaker service client.
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Store DescribeEndpointConfig response into a variable that we can index in the
 next step.
response =
 sagemaker_client.describe_endpoint_config(EndpointConfigName=endpoint_name)

Delete endpoint
model_name = response['ProductionVariants'][0]['ModelName']
sagemaker_client.delete_model(ModelName=model_name)

For more information about other response elements returned by DescribeEndpointConfig,
see DescribeEndpointConfig in the SageMaker API Reference guide.

AWS CLI

Use the delete-model command to delete your SageMaker model. Specify the name of your
model for the model-name flag.

aws sagemaker delete-model \
 --model-name <model-name>

You can optionally use the describe-endpoint-config command to return information
about the name of the your deployed models (production variants) such as the name of your
model and the name of the endpoint configuration associated with that deployed model.
Provide the name of your endpoint for the endpoint-config-name flag.

aws sagemaker describe-endpoint-config --endpoint-config-name <endpoint-config-name>

Hosting options 4164

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Operations_Amazon_SageMaker_Service.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-model.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-endpoint-config.html

Amazon SageMaker Developer Guide

This will return a JSON response. You can copy and paste, use a JSON parser, or use a tool built
for JSON parsing to obtain the name of the model associated with that endpoint.

SageMaker Console

Delete your SageMaker model interactively with the SageMaker console.

1. In the SageMaker console at https://console.aws.amazon.com/sagemaker/ navigation
menu, choose Inference.

2. Choose Models from the dropdown menu. A list of models created in you AWS account will
appear by name, Amazon Resource Name (ARN), and creation time.

3. Select the model you want to delete.

4. Select the Actions dropdown button in the top right corner.

5. Choose Delete.

Automatically Scale Amazon SageMaker Models

Amazon SageMaker supports automatic scaling (auto scaling) for your hosted models. Auto scaling
dynamically adjusts the number of instances provisioned for a model in response to changes in
your workload. When the workload increases, auto scaling brings more instances online. When
the workload decreases, auto scaling removes unnecessary instances so that you don't pay for
provisioned instances that you aren't using.

Topics

• Auto scaling overview

• Configure model auto scaling with the console

• Register a model

• Define a scaling policy

• Apply a scaling policy

• Edit a scaling policy

• Delete a scaling policy

• Check the status of a scaling activity by describing scaling activities

• Load testing your auto scaling configuration

• Use AWS CloudFormation to create a scaling policy

• Update or delete endpoints that use auto scaling

Automatically scale models 4165

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Auto scaling overview

The following overview provides details on the prerequisites and components used for auto scaling.

Topics

• Prerequisites

• Scaling policy overview

• Scale based on a schedule

• Minimum and maximum scaling limits

• Cooldown period

• Permissions

• Service-linked role

• Related resources

Prerequisites

Before you can use auto scaling, you must have already created an Amazon SageMaker model
endpoint. You can have multiple model versions for the same endpoint. Each model is referred
to as a production (model) variant. For more information about deploying a model endpoint, see
Deploy the Model to SageMaker Hosting Services.

To activate auto scaling for a model, you can use the SageMaker console, the AWS Command Line
Interface (AWS CLI), or an AWS SDK through the Application Auto Scaling API.

• If this is your first time configuring scaling for a model, we recommend you Configure model
auto scaling with the console.

• When using the AWS CLI or the Application Auto Scaling API, the flow is to register the model as
a scalable target, define the scaling policy, and then apply it. On the SageMaker console, under
Inference in the navigation pane, choose Endpoints. Find your model's endpoint name and then
choose it to find the variant name. You must specify both the endpoint name and the variant
name to activate auto scaling for a model.

Scaling policy overview

To use auto scaling, you define a scaling policy that adds and removes the number of instances for
your production variant in response to actual workloads.

Automatically scale models 4166

Amazon SageMaker Developer Guide

To automatically scale as workload changes occur, you have two options: target tracking and step
scaling policies.

We recommend using target tracking scaling policies. With target tracking, you choose an
Amazon CloudWatch metric and target value. Auto scaling creates and manages the CloudWatch
alarms for the scaling policy and calculates the scaling adjustment based on the metric
and the target value. The policy adds and removes the number of instances as required to
keep the metric at, or close to, the specified target value. For example, a scaling policy that
uses the predefined InvocationsPerInstance metric with a target value of 70 can keep
InvocationsPerInstance at, or close to 70. For more information, see Target tracking scaling
policies in the Application Auto Scaling User Guide.

You can use step scaling when you require an advanced configuration, such as specifying how many
instances to deploy under what conditions. Otherwise, using target tracking scaling is preferred
as it will be fully automated. Note that step scaling can be managed only from the AWS CLI or the
Application Auto Scaling API. For an overview of step scaling policies and how they work, see Step
scaling policies in the Application Auto Scaling User Guide

To create a target tracking scaling policy, you specify the following:

• Metric — The CloudWatch metric to track, such as average number of invocations per instance.

• Target value — The target value for the metric, such as 70 invocations per instance per minute.

You can create target tracking scaling policies with either predefined metrics or custom metrics. A
predefined metric is defined in an enumeration so that you can specify it by name in code or use
it in the SageMaker console. Alternatively, you can use either the AWS CLI or the Application Auto
Scaling API to apply a target tracking scaling policy based on a predefined or custom metric.

Note that scaling activities are performed with cooldown periods between them to prevent rapid
fluctuations in capacity. You can optionally configure the cooldown periods for your scaling policy.

Scale based on a schedule

You can also create scheduled actions to perform scaling activities at specific times. You can create
scheduled actions that scale one time only or that scale on a recurring schedule. After a scheduled
action runs, your scaling policy can continue to make decisions about whether to scale dynamically
as workload changes occur. Scheduled scaling can be managed only from the AWS CLI or the
Application Auto Scaling API. For more information, see Scheduled scaling in the Application Auto
Scaling User Guide.

Automatically scale models 4167

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-step-scaling-policies.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-step-scaling-policies.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-step-scaling-policies.html

Amazon SageMaker Developer Guide

Minimum and maximum scaling limits

When configuring auto scaling, you must specify your scaling limits before creating a scaling policy.
You set limits separately for the minimum and maximum values.

The minimum value must be at least 1, and equal to or less than the value specified for the
maximum value.

The maximum value must be equal to or greater than the value specified for the minimum value.
SageMaker auto scaling does not enforce a limit for this value.

To determine the scaling limits that you need for typical traffic, test your auto scaling configuration
with the expected rate of traffic to your model.

If a variant’s traffic becomes zero, SageMaker automatically scales in to the minimum number of
instances specified. In this case, SageMaker emits metrics with a value of zero.

There are three options for specifying the minimum and maximum capacity:

1. Use the console to update the Minimum instance count and Maximum instance count settings.

2. Use the AWS CLI and include the --min-capacity and --max-capacity options when
running the register-scalable-target command.

3. Call the RegisterScalableTarget API and specify the MinCapacity and MaxCapacity
parameters.

Tip

You can manually scale out by increasing the minimum value, or manually scale in by
decreasing the maximum value.

Cooldown period

A cooldown period is used to protect against over-scaling when your model is scaling in (reducing
capacity) or scaling out (increasing capacity). It does this by slowing down subsequent scaling
activities until the period expires. Specifically, it blocks the deletion of instances for scale-in
requests, and limits the creation of instances for scale-out requests. For more information, see
Define cooldown periods in the Application Auto Scaling User Guide.

You configure the cooldown period in your scaling policy.

Automatically scale models 4168

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.aws.amazon.com/autoscaling/application/userguide/target-tracking-scaling-policy-overview.html#target-tracking-cooldown

Amazon SageMaker Developer Guide

If you don't specify a scale-in or a scale-out cooldown period, your scaling policy uses the default,
which is 300 seconds for each.

If instances are being added or removed too quickly when you test your scaling configuration,
consider increasing this value. You might see this behavior if the traffic to your model has a lot of
spikes, or if you have multiple scaling policies defined for a variant.

If instances are not being added quickly enough to address increased traffic, consider decreasing
this value.

Permissions

Auto scaling is made possible by a combination of the Amazon SageMaker, Amazon CloudWatch,
and Application Auto Scaling APIs. For information about the minimum required permissions, see
Application Auto Scaling identity-based policy examples in the Application Auto Scaling User Guide.

The SagemakerFullAccessPolicy IAM policy has all the IAM permissions required to perform
auto scaling. For more information about SageMaker IAM permissions, see SageMaker Roles.

If you manage your own permission policy, you must include the following permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:UpdateEndpointWeightsAndCapacities"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",

Automatically scale models 4169

https://docs.aws.amazon.com/autoscaling/application/userguide/security_iam_id-based-policy-examples.html

Amazon SageMaker Developer Guide

 "Resource": "arn:aws:iam::*:role/aws-service-role/sagemaker.application-
autoscaling.amazonaws.com/AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint",
 "Condition": {
 "StringLike": { "iam:AWSServiceName": "sagemaker.application-
autoscaling.amazonaws.com" }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Service-linked role

Auto scaling uses the AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint
service-linked role. This service-linked role grants Application Auto Scaling permission to describe
the alarms for your policies, to monitor current capacity levels, and to scale the target resource.
This role is created for you automatically. For automatic role creation to succeed, you must have
permission for the iam:CreateServiceLinkedRole action. For more information, see Service-
linked roles in the Application Auto Scaling User Guide.

Related resources

For more information about configuring auto scaling, see the following resources:

• application-autoscaling section of the AWS CLI Command Reference

• Application Auto Scaling API Reference

• Application Auto Scaling User Guide

Note

SageMaker recently introduced new inference capabilities built on real-time inference
endpoints. You create a SageMaker endpoint with an endpoint configuration that defines

Automatically scale models 4170

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling
https://docs.aws.amazon.com/autoscaling/application/APIReference/
https://docs.aws.amazon.com/autoscaling/application/userguide/

Amazon SageMaker Developer Guide

the instance type and initial instance count for the endpoint. Then, create an inference
component, which is a SageMaker hosting object that you can use to deploy a model to an
endpoint. For information about scaling inference components, see SageMaker adds new
inference capabilities to help reduce foundation model deployment costs and latency and
Reduce model deployment costs by 50% on average using the latest features of SageMaker
on the AWS Blog.

Configure model auto scaling with the console

To configure auto scaling for a model (console)

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the navigation pane, choose Inference, and then choose Endpoints.

3. Choose your endpoint, and then for Endpoint runtime settings, choose the variant.

4. Choose Configure auto scaling.

5. On the Configure variant automatic scaling page, for Variant automatic scaling, do the
following:

a. For Minimum instance count, type the minimum number of instances that you want the
scaling policy to maintain. At least 1 instance is required.

b. For Maximum instance count, type the maximum number of instances that you want the
scaling policy to maintain.

6. For Built-in scaling policy, do the following:

a. For the Target metric, SageMakerVariantInvocationsPerInstance is automatically
selected for the metric and cannot be changed.

b. For the Target value, type the average number of invocations per instance per minute for
the model. To determine this value, follow the guidelines in Load testing.

c. (Optional) For Scale-in cool down (seconds) and Scale-out cool down (seconds), enter
the amount of time, in seconds, for each cool down period.

d. (Optional) Select Disable scale in if you don’t want auto scaling to terminate instances
when traffic decreases.

7. Choose Save.

Automatically scale models 4171

https://aws.amazon.com/blogs/aws/amazon-sagemaker-adds-new-inference-capabilities-to-help-reduce-foundation-model-deployment-costs-and-latency/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-adds-new-inference-capabilities-to-help-reduce-foundation-model-deployment-costs-and-latency/
https://aws.amazon.com/blogs/machine-learning/reduce-model-deployment-costs-by-50-on-average-using-sagemakers-latest-features/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

This procedure registers a model as a scalable target with Application Auto Scaling. When you
register a model, Application Auto Scaling performs validation checks to ensure the following:

• The model exists

• The permissions are sufficient

• You aren't registering a variant with an instance that is a burstable performance instance such as
T2

Note

SageMaker doesn't support auto scaling for burstable instances such as T2, because they
already allow for increased capacity under increased workloads. For information about
burstable performance instances, see Amazon EC2 instance types.

Register a model

Before you add a scaling policy to your model, you first must register your model for auto scaling
and define the scaling limits for the model.

The following procedures cover how to register a model (production variant) for auto scaling using
the AWS Command Line Interface (AWS CLI) or Application Auto Scaling API.

Topics

• Register a model (AWS CLI)

• Register a model (Application Auto Scaling API)

Register a model (AWS CLI)

To register your production variant, use the register-scalable-target command with the following
parameters:

• --service-namespace—Set this value to sagemaker.

• --resource-id—The resource identifier for the model (specifically, the production variant).
For this parameter, the resource type is endpoint and the unique identifier is the name of the
production variant. For example, endpoint/my-endpoint/variant/my-variant.

• --scalable-dimension—Set this value to sagemaker:variant:DesiredInstanceCount.

Automatically scale models 4172

https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html

Amazon SageMaker Developer Guide

• --min-capacity—The minimum number of instances. This value must be set to at least 1 and
must be equal to or less than the value specified for max-capacity.

• --max-capacity—The maximum number of instances. This value must be set to at least 1 and
must be equal to or greater than the value specified for min-capacity.

Example

The following example shows how to register a variant named my-variant, running on the my-
endpoint endpoint, that can be dynamically scaled to have one to eight instances.

aws application-autoscaling register-scalable-target \
 --service-namespace sagemaker \
 --resource-id endpoint/my-endpoint/variant/my-variant \
 --scalable-dimension sagemaker:variant:DesiredInstanceCount \
 --min-capacity 1 \
 --max-capacity 8

Register a model (Application Auto Scaling API)

To register your model with Application Auto Scaling, use the RegisterScalableTarget Application
Auto Scaling API action with the following parameters:

• ServiceNamespace—Set this value to sagemaker.

• ResourceID—The resource identifier for the production variant. For this parameter, the
resource type is endpoint and the unique identifier is the name of the variant. For example
endpoint/my-endpoint/variant/my-variant.

• ScalableDimension—Set this value to sagemaker:variant:DesiredInstanceCount.

• MinCapacity—The minimum number of instances. This value must be set to at least 1 and
must be equal to or less than the value specified for MaxCapacity.

• MaxCapacity—The maximum number of instances. This value must be set to at least 1 and
must be equal to or greater than the value specified for MinCapacity.

Example

The following example shows how to register a variant named my-variant, running on the my-
endpoint endpoint, that can be dynamically scaled to use one to eight instances.

Automatically scale models 4173

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_RegisterScalableTarget.html

Amazon SageMaker Developer Guide

POST / HTTP/1.1
Host: application-autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.RegisterScalableTarget
X-Amz-Date: 20230506T182145Z
User-Agent: aws-cli/2.0.0 Python/3.7.5 Windows/10 botocore/2.0.0dev4
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/my-endpoint/variant/my-variant",
 "ScalableDimension": "sagemaker:variant:DesiredInstanceCount",
 "MinCapacity": 1,
 "MaxCapacity": 8
}

Define a scaling policy

Before you add a scaling policy to your model, save your policy configuration as a JSON block in a
text file. You use that text file when invoking the AWS Command Line Interface (AWS CLI) or the
Application Auto Scaling API. You can optimize scaling by choosing an appropriate CloudWatch
metric. However, before using a custom metric in production, you must test auto scaling with your
custom metric.

This section shows you example policy configurations for target tracking scaling policies.

Topics

• Specify a predefined metric (CloudWatch metric: InvocationsPerInstance)

• Define a custom metric (CloudWatch metric: CPUUtilization)

• Define a custom metric (CloudWatch metric: ExplanationsPerInstance)

• Specify cooldown periods

Specify a predefined metric (CloudWatch metric: InvocationsPerInstance)

Example

The following is an example target tracking policy configuration for a variant that keeps the
average invocations per instance at 70. Save this configuration in a file named config.json.

Automatically scale models 4174

Amazon SageMaker Developer Guide

{
 "TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 }
}

For more information, see TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling
API Reference.

Define a custom metric (CloudWatch metric: CPUUtilization)

To create a target tracking scaling policy with a custom metric, specify the metric's name,
namespace, unit, statistic, and zero or more dimensions. A dimension consists of a dimension name
and a dimension value. You can use any production variant metric that changes in proportion to
capacity.

Example

The following example configuration shows a target tracking scaling policy with a custom metric.
The policy scales the variant based on an average CPU utilization of 50 percent across all instances.
Save this configuration in a file named config.json.

{
 "TargetValue": 50.0,
 "CustomizedMetricSpecification":
 {
 "MetricName": "CPUUtilization",
 "Namespace": "/aws/sagemaker/Endpoints",
 "Dimensions": [
 {"Name": "EndpointName", "Value": "my-endpoint" },
 {"Name": "VariantName","Value": "my-variant"}
],
 "Statistic": "Average",
 "Unit": "Percent"
 }
}

For more information, see CustomizedMetricSpecification in the Application Auto Scaling API
Reference.

Automatically scale models 4175

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_CustomizedMetricSpecification.html

Amazon SageMaker Developer Guide

Define a custom metric (CloudWatch metric: ExplanationsPerInstance)

When the endpoint has online explainability activated, it emits a ExplanationsPerInstance
metric that outputs the average number of records explained per minute, per instance, for a
variant. The resource utilization of explaining records can be more different than that of predicting
records. We strongly recommend using this metric for target tracking scaling of endpoints with
online explainability activated.

You can create multiple target tracking policies for a scalable target. Consider adding the
InvocationsPerInstance policy from the Specify a predefined metric (CloudWatch
metric: InvocationsPerInstance) section (in addition to the ExplanationsPerInstance
policy). If most invocations don't return an explanation because of the threshold
value set in the EnableExplanations parameter, then the endpoint can choose the
InvocationsPerInstance policy. If there is a large number of explanations, the endpoint can
use the ExplanationsPerInstance policy.

Example

The following example configuration shows a target tracking scaling policy with a custom
metric. The policy scale adjusts the number of variant instances so that each instance has an
ExplanationsPerInstance metric of 20. Save this configuration in a file named config.json.

{
 "TargetValue": 20.0,
 "CustomizedMetricSpecification":
 {
 "MetricName": "ExplanationsPerInstance",
 "Namespace": "AWS/SageMaker",
 "Dimensions": [
 {"Name": "EndpointName", "Value": "my-endpoint" },
 {"Name": "VariantName","Value": "my-variant"}
],
 "Statistic": "Sum"
 }
}

For more information, see CustomizedMetricSpecification in the Application Auto Scaling API
Reference.

Automatically scale models 4176

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_CustomizedMetricSpecification.html

Amazon SageMaker Developer Guide

Specify cooldown periods

You can optionally define cooldown periods in your target tracking scaling policy by specifying the
ScaleOutCooldown and ScaleInCooldown parameters.

Example

The following is an example target tracking policy configuration for a variant that keeps the
average invocations per instance at 70. The policy configuration provides a scale-in cooldown
period of 10 minutes (600 seconds) and a scale-out cooldown period of 5 minutes (300 seconds).
Save this configuration in a file named config.json.

{
 "TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 },
 "ScaleInCooldown": 600,
 "ScaleOutCooldown": 300
}

For more information, see TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling
API Reference.

Apply a scaling policy

After you register your model and define a scaling policy, apply the scaling policy to the registered
model. This section shows how to apply a scaling policy using the the AWS Command Line
Interface (AWS CLI) or the Application Auto Scaling API.

Topics

• Apply a target tracking scaling policy (AWS CLI)

• Apply a scaling policy (Application Auto Scaling API)

Apply a target tracking scaling policy (AWS CLI)

To apply a scaling policy to your model, use the put-scaling-policy AWS CLI command with the
following parameters:

Automatically scale models 4177

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html

Amazon SageMaker Developer Guide

• --policy-name—The name of the scaling policy.

• --policy-type—Set this value to TargetTrackingScaling.

• --resource-id—The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example, endpoint/my-
endpoint/variant/my-variant.

• --service-namespace—Set this value to sagemaker.

• --scalable-dimension—Set this value to sagemaker:variant:DesiredInstanceCount.

• --target-tracking-scaling-policy-configuration—The target-tracking scaling policy
configuration to use for the model.

Example

The following example applies a target tracking scaling policy named my-scaling-policy
to a variant named my-variant, running on the my-endpoint endpoint. For the --target-
tracking-scaling-policy-configuration option, specify the config.json file that you
created previously.

aws application-autoscaling put-scaling-policy \
 --policy-name my-scaling-policy \
 --policy-type TargetTrackingScaling \
 --resource-id endpoint/my-endpoint/variant/my-variant \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredInstanceCount \
 --target-tracking-scaling-policy-configuration file://config.json

Apply a scaling policy (Application Auto Scaling API)

To apply a scaling policy to a variant with the Application Auto Scaling API, use the
PutScalingPolicy Application Auto Scaling API action with the following parameters:

• PolicyName—The name of the scaling policy.

• ServiceNamespace—Set this value to sagemaker.

• ResourceID—The resource identifier for the variant. For this parameter, the resource type is
endpoint and the unique identifier is the name of the variant. For example, endpoint/my-
endpoint/variant/my-variant.

• ScalableDimension—Set this value to sagemaker:variant:DesiredInstanceCount.

Automatically scale models 4178

https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html

Amazon SageMaker Developer Guide

• PolicyType—Set this value to TargetTrackingScaling.

• TargetTrackingScalingPolicyConfiguration—The target-tracking scaling policy
configuration to use for the variant.

Example

The following example applies a target tracking scaling policy named my-scaling-policy to
a variant named my-variant, running on the my-endpoint endpoint. The policy configuration
keeps the average invocations per instance at 70.

POST / HTTP/1.1
Host: application-autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.
X-Amz-Date: 20230506T182145Z
User-Agent: aws-cli/2.0.0 Python/3.7.5 Windows/10 botocore/2.0.0dev4
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "my-scaling-policy",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/my-endpoint/variant/my-variant",
 "ScalableDimension": "sagemaker:variant:DesiredInstanceCount",
 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration": {
 "TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 }
 }
}

Edit a scaling policy

After creating a scaling policy, you can edit any of its settings except the name.

Topics

• Edit a scaling policy (console)

Automatically scale models 4179

Amazon SageMaker Developer Guide

• Edit a scaling policy (AWS CLI or Application Auto Scaling API)

• Temporarily turn off scaling policies

Edit a scaling policy (console)

To edit a target tracking scaling policy with the AWS Management Console, use the same procedure
that you used to Configure model auto scaling with the console.

Edit a scaling policy (AWS CLI or Application Auto Scaling API)

You can use the AWS CLI or the Application Auto Scaling API to edit a scaling policy in the same
way that you create a new scaling policy. For more information, see Apply a scaling policy.

Temporarily turn off scaling policies

After you configure auto scaling, you have the following options if you need to investigate an issue
without interference from scaling policies (dynamic scaling):

• Temporarily suspend and then resume scaling activities by calling the register-scalable-
target CLI command or RegisterScalableTarget API action, specifying a Boolean value for both
DynamicScalingInSuspended and DynamicScalingOutSuspended.

Example

The following example shows how to suspend scaling policies for a variant named my-variant,
running on the my-endpoint endpoint.

aws application-autoscaling register-scalable-target \
 --service-namespace sagemaker \
 --resource-id endpoint/my-endpoint/variant/my-variant \
 --scalable-dimension sagemaker:variant:DesiredInstanceCount \
 --suspended-
state '{"DynamicScalingInSuspended":true,"DynamicScalingOutSuspended":true}'

• Prevent specific target tracking scaling policies from scaling in your variant by disabling the
policy's scale-in portion. This method prevents the scaling policy from deleting instances, while
still allowing it to create them as needed.

Temporarily disable and then enable scale-in activities by editing the policy using the put-
scaling-policy CLI command or the PutScalingPolicy API action, specifying a Boolean value for
DisableScaleIn.

Automatically scale models 4180

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/put-scaling-policy.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html

Amazon SageMaker Developer Guide

Example

The following is an example of a target tracking configuration for a scaling policy that will scale
out but not scale in.

{
 "TargetValue": 70.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance"
 },
 "DisableScaleIn": true
}

Delete a scaling policy

If you no longer need a scaling policy, you can delete it at any time.

Topics

• Delete all scaling policies and deregister the model (console)

• Delete a scaling policy (AWS CLI or Application Auto Scaling API)

Delete all scaling policies and deregister the model (console)

To delete all scaling policies and deregister the variant as a scalable target

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. On the navigation pane, choose Endpoints.

3. Choose your endpoint, and then for Endpoint runtime settings, choose the variant.

4. Choose Configure auto scaling.

5. Choose Deregister auto scaling.

Delete a scaling policy (AWS CLI or Application Auto Scaling API)

You can use the AWS CLI or the Application Auto Scaling API to delete a scaling policy from a
variant.

Automatically scale models 4181

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Delete a scaling policy (AWS CLI)

To delete a scaling policy from a variant, use the delete-scaling-policy command with the following
parameters:

• --policy-name—The name of the scaling policy.

• --resource-id—The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example, endpoint/my-
endpoint/variant/my-variant.

• --service-namespace—Set this value to sagemaker.

• --scalable-dimension—Set this value to sagemaker:variant:DesiredInstanceCount.

Example

The following example deletes a target tracking scaling policy named my-scaling-policy from
a variant named my-variant, running on the my-endpoint endpoint.

aws application-autoscaling delete-scaling-policy \
 --policy-name my-scaling-policy \
 --resource-id endpoint/my-endpoint/variant/my-variant \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredInstanceCount

Delete a scaling policy (Application Auto Scaling API)

To delete a scaling policy from your variant, use the DeleteScalingPolicy Application Auto Scaling
API action with the following parameters:

• PolicyName—The name of the scaling policy.

• ServiceNamespace—Set this value to sagemaker.

• ResourceID—The resource identifier for the variant. For this parameter, the resource type is
endpoint and the unique identifier is the name of the variant. For example, endpoint/my-
endpoint/variant/my-variant.

• ScalableDimension—Set this value to sagemaker:variant:DesiredInstanceCount.

Automatically scale models 4182

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/delete-scaling-policy.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_DeleteScalingPolicy.html

Amazon SageMaker Developer Guide

Example

The following example deletes a target tracking scaling policy named my-scaling-policy from
a variant named my-variant, running on the my-endpoint endpoint.

POST / HTTP/1.1
Host: application-autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.DeleteScalingPolicy
X-Amz-Date: 20230506T182145Z
User-Agent: aws-cli/2.0.0 Python/3.7.5 Windows/10 botocore/2.0.0dev4
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "my-scaling-policy",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/my-endpoint/variant/my-variant",
 "ScalableDimension": "sagemaker:variant:DesiredInstanceCount"
}

Check the status of a scaling activity by describing scaling activities

You can check the status of a scaling activity for your auto scaled endpoint by describing scaling
activities. Application Auto Scaling provides descriptive information about the scaling activities in
the specified namespace from the previous six weeks. For more information, see Scaling activities
for Application Auto Scaling in the Application Auto Scaling User Guide.

To check the status of a scaling activity, use the describe-scaling-activities command. You can't
check the status of a scaling activity using the console.

Topics

• Describe scaling activities (AWS CLI)

• Identify blocked scaling activities from instance quotas (AWS CLI)

Describe scaling activities (AWS CLI)

To describe scaling activities for all SageMaker resources that registered with Application Auto
Scaling, use the describe-scaling-activities command, specifying sagemaker for the --service-
namespace option.

Automatically scale models 4183

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scaling-activities.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scaling-activities.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/describe-scaling-activities.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/describe-scaling-activities.html

Amazon SageMaker Developer Guide

aws application-autoscaling describe-scaling-activities \
 --service-namespace sagemaker

To describe scaling activities for a specific resource, include the --resource-id option.

aws application-autoscaling describe-scaling-activities \
 --service-namespace sagemaker \
 --resource-id endpoint/my-endpoint/variant/my-variant

The following example shows the output produced when you run this command.

{
 "ActivityId": "activity-id",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/my-endpoint/variant/my-variant",
 "ScalableDimension": "sagemaker:variant:DesiredInstanceCount",
 "Description": "string",
 "Cause": "string",
 "StartTime": timestamp,
 "EndTime": timestamp,
 "StatusCode": "string",
 "StatusMessage": "string"
}

Identify blocked scaling activities from instance quotas (AWS CLI)

When you scale out (add more instances), you might reach your account-level instance quota. You
can use the describe-scaling-activities command to check whether you have reached your instance
quota. When you exceed your quota, auto scaling is blocked.

To check if you have reached your instance quota, use the describe-scaling-activities command and
specify the resource ID for the --resource-id option.

aws application-autoscaling describe-scaling-activities \
 --service-namespace sagemaker \
 --resource-id endpoint/my-endpoint/variant/my-variant

Within the return syntax, check the StatusCode and StatusMessage keys and their associated
values. StatusCode returns Failed. Within StatusMessage there is a message indicating that

Automatically scale models 4184

https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/describe-scaling-activities.html
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/describe-scaling-activities.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_ScalingActivity.html#autoscaling-Type-ScalingActivity-StatusCode
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_ScalingActivity.html#autoscaling-Type-ScalingActivity-StatusMessage

Amazon SageMaker Developer Guide

the account-level service quota was reached. The following is an example of what that message
might look like:

{
 "ActivityId": "activity-id",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/my-endpoint/variant/my-variant",
 "ScalableDimension": "sagemaker:variant:DesiredInstanceCount",
 "Description": "string",
 "Cause": "minimum capacity was set to 110",
 "StartTime": timestamp,
 "EndTime": timestamp,
 "StatusCode": "Failed",
 "StatusMessage": "Failed to set desired instance count to 110. Reason: The
 account-level service limit 'ml.xx.xxxxxx for endpoint usage' is 1000
 Instances, with current utilization of 997 Instances and a request delta
 of 20 Instances. Please contact AWS support to request an increase for this
 limit. (Service: AmazonSageMaker; Status Code: 400;
 Error Code: ResourceLimitExceeded; Request ID: request-id)."
}

Load testing your auto scaling configuration

Perform load tests to choose a scaling configuration that works the way you want.

The following guidelines for load testing assume you are using a scaling policy that uses the
predefined target metric SageMakerVariantInvocationsPerInstance.

Topics

• Determine the performance characteristics

• Calculate the target load

Determine the performance characteristics

Perform load testing to find the peak InvocationsPerInstance that your model's production
variant can handle, and the latency of requests, as concurrency increases.

This value depends on the instance type chosen, payloads that clients of your model typically send,
and the performance of any external dependencies your model has.

Automatically scale models 4185

Amazon SageMaker Developer Guide

To find the peak requests-per-second (RPS) your model's production variant can handle and
latency of requests

1. Set up an endpoint with your model using a single instance. For information about how to set
up an endpoint, see Deploy the Model to SageMaker Hosting Services.

2. Use a load testing tool to generate an increasing number of parallel requests, and monitor the
RPS and model latency in the out put of the load testing tool.

Note

You can also monitor requests-per-minute instead of RPS. In that case don't multiply
by 60 in the equation to calculate SageMakerVariantInvocationsPerInstance
shown below.

When the model latency increases or the proportion of successful transactions decreases, this
is the peak RPS that your model can handle.

Calculate the target load

After you find the performance characteristics of the variant, you can determine the maximum
RPS we should allow to be sent to an instance. The threshold used for scaling must be less than
this maximum value. Use the following equation in combination with load testing to determine
the correct value for the SageMakerVariantInvocationsPerInstance target metric in your
scaling configuration.

SageMakerVariantInvocationsPerInstance = (MAX_RPS * SAFETY_FACTOR) * 60

Where MAX_RPS is the maximum RPS that you determined previously, and SAFETY_FACTOR is the
safety factor that you chose to ensure that your clients don't exceed the maximum RPS. Multiply
by 60 to convert from RPS to invocations-per-minute to match the per-minute CloudWatch
metric that SageMaker uses to implement auto scaling (you don't need to do this if you measured
requests-per-minute instead of requests-per-second).

Automatically scale models 4186

Amazon SageMaker Developer Guide

Note

SageMaker recommends that you start testing with a SAFETY_FACTOR of 0.5. Test your
scaling configuration to ensure it operates in the way you expect with your model for both
increasing and decreasing customer traffic on your endpoint.

Use AWS CloudFormation to create a scaling policy

The following example shows how to configure model auto scaling on an endpoint using AWS
CloudFormation.

 Endpoint:
 Type: "AWS::SageMaker::Endpoint"
 Properties:
 EndpointName: yourEndpointName
 EndpointConfigName: yourEndpointConfigName

 ScalingTarget:
 Type: "AWS::ApplicationAutoScaling::ScalableTarget"
 Properties:
 MaxCapacity: 10
 MinCapacity: 2
 ResourceId: endpoint/my-endpoint/variant/my-variant
 RoleARN: arn
 ScalableDimension: sagemaker:variant:DesiredInstanceCount
 ServiceNamespace: sagemaker

 ScalingPolicy:
 Type: "AWS::ApplicationAutoScaling::ScalingPolicy"
 Properties:
 PolicyName: my-scaling-policy
 PolicyType: TargetTrackingScaling
 ScalingTargetId:
 Ref: ScalingTarget
 TargetTrackingScalingPolicyConfiguration:
 TargetValue: 70.0
 ScaleInCooldown: 600
 ScaleOutCooldown: 30
 PredefinedMetricSpecification:
 PredefinedMetricType: SageMakerVariantInvocationsPerInstance

Automatically scale models 4187

Amazon SageMaker Developer Guide

For more information, see Create Application Auto Scaling resources with AWS CloudFormation in
the Application Auto Scaling User Guide.

Update or delete endpoints that use auto scaling

Topics

• Update endpoints that use auto scaling

• Delete endpoints configured for auto scaling

Update endpoints that use auto scaling

When you update an endpoint, Application Auto Scaling checks to see whether any of the models
on that endpoint are targets for auto scaling. If the update would change the instance type for any
model that is a target for auto scaling, the update fails.

In the AWS Management Console, you see a warning that you must deregister the model
from auto scaling before you can update it. If you are trying to update the endpoint by
calling the UpdateEndpoint API, the call fails. Before you update the endpoint, delete any
scaling policies configured for it and deregister the variant as a scalable target by calling the
DeregisterScalableTarget Application Auto Scaling API action. After you update the endpoint, you
can register the updated variant as a scalable target and attach a scaling policy.

There is one exception. If you change the model for a variant that is configured for auto scaling,
Amazon SageMaker auto scaling allows the update. This is because changing the model doesn't
typically affect performance enough to change scaling behavior. If you do update a model for a
variant configured for auto scaling, ensure that the change to the model doesn't significantly affect
performance and scaling behavior.

When you update SageMaker endpoints that have auto scaling applied, complete the following
steps:

To update an endpoint that has auto scaling applied

1. Deregister the endpoint as a scalable target by calling DeregisterScalableTarget.

2. Because auto scaling is blocked while the update operation is in progress (or if you turned
off auto scaling in the previous step), you might want to take the additional precaution
of increasing the number of instances for your endpoint during the update. To do this,
update the instance counts for the production variants hosted at the endpoint by calling
UpdateEndpointWeightsAndCapacities.

Automatically scale models 4188

https://docs.aws.amazon.com/autoscaling/application/userguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_DeregisterScalableTarget.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_DeregisterScalableTarget.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html

Amazon SageMaker Developer Guide

3. Call DescribeEndpoint repeatedly until the value of the EndpointStatus field of the
response is InService.

4. Call DescribeEndpointConfig to get the values of the current endpoint config.

5. Create a new endpoint config by calling CreateEndpointConfig. For the production variants
where you want to keep the existing instance count or weight, use the same variant name
from the response from the call to DescribeEndpointConfig in the previous step. For all other
values, use the values that you got as the response when you called DescribeEndpointConfig
in the previous step.

6. Update the endpoint by calling UpdateEndpoint. Specify the endpoint config you created in
the previous step as the EndpointConfig field. If you want to retain the variant properties
like instance count or weight, set the value of the RetainAllVariantProperties
parameter to True. This specifies that production variants with the same name will are
updated with the most recent DesiredInstanceCount from the response from the call to
DescribeEndpoint, regardless of the values of the InitialInstanceCount field in the
new EndpointConfig.

7. (Optional) Re-activate auto scaling by calling RegisterScalableTarget and PutScalingPolicy.

Note

Steps 1 and 7 are required only if you are updating an endpoint with the following changes:

• Changing the instance type for a production variant that has auto scaling configured

• Removing a production variant that has auto scaling configured.

Delete endpoints configured for auto scaling

If you delete an endpoint, Application Auto Scaling checks to see whether any of the models
on that endpoint are targets for auto scaling. If any are and you have permission to deregister
the model, Application Auto Scaling deregisters those models as scalable targets without
notifying you. If you use a custom permission policy that doesn't provide permission for the
DeregisterScalableTarget action, you must request access to this action before deleting the
endpoint.

Automatically scale models 4189

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_DeregisterScalableTarget.html

Amazon SageMaker Developer Guide

Note

As an IAM user, you might not have sufficient permission to delete an endpoint if another
user configured auto scaling for a variant on that endpoint.

Host instance storage volumes

When you create an endpoint, Amazon SageMaker attaches an Amazon Elastic Block Store
(Amazon EBS) storage volume to Amazon EC2 instances that hosts the endpoint. The size of the
storage volume is scalable, and storage options are divided into two categories: SSD-backed
storage and HDD-backed storage.

For more information about Amazon EBS storages and features, see the following pages.

• Amazon EBS Features

• Amazon EBS User Guide

For a full list of the host instance storage volumes, see Host Instance Storage Volumes Table

Note

Amazon SageMaker attaches an Amazon Elastic Block Store (Amazon EBS) storage volume
to Amazon EC2 instances only when you create Asynchronous inference or Real-time
inference endpoint types. For more information on customizing Amazon EBS storage
volume, see SageMaker endpoint parameters for large model inference.

Safely validate models in production

With SageMaker, you can test multiple models or model versions behind the same endpoint using
variants. A variant consists of an ML instance and the serving components specified in a SageMaker
model. You can have multiple variants behind an endpoint. Each variant can have a different
instance type or a SageMaker model that can be autoscaled independently of the others. The
models within the variants can be trained using different datasets, different algorithms, different
ML frameworks, or any combination of all of these. All the variants behind an endpoint share the
same inference code. SageMaker supports two types of variants, production variants and shadow
variants.

Host instance storage volumes 4190

https://aws.amazon.com/ebs/features/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/

Amazon SageMaker Developer Guide

If you have multiple production variants behind an endpoint, then you can allocate a portion
of your inference requests to each variant. Each request is routed to only one of the production
variants. The production variant to which the request was routed provides the response to the
caller. You can compare how the production variants perform relative to each other.

You can also have a shadow variant corresponding to a production variant behind an endpoint. A
portion of the inference requests that goes to the production variant is replicated to the shadow
variant. The responses of the shadow variant are logged for comparison and not returned to the
caller. This lets you test the performance of the shadow variant without exposing the caller to the
response produced by the shadow variant.

Topics

• Production variants

• Shadow variants

Production variants

In production ML workflows, data scientists and engineers frequently try to improve performance
using various methods, such as Perform Automatic Model Tuning with SageMaker, training on
additional or more-recent data, improving feature selection, using better updated instances
and serving containers. You can use production variants to compare your models, instances and
containers, and choose the best performing candidate to respond to inference requests.

With SageMaker multi-variant endpoints you can distribute endpoint invocation requests across
multiple production variants by providing the traffic distribution for each variant, or you can invoke
a specific variant directly for each request. In this topic, we look at both methods for testing ML
models.

Topics

• Test models by specifying traffic distribution

• Test models by invoking specific variants

• Model A/B test example

Test models by specifying traffic distribution

To test multiple models by distributing traffic between them, specify the percentage of the
traffic that gets routed to each model by specifying the weight for each production variant in the

Safely validate models in production 4191

Amazon SageMaker Developer Guide

endpoint configuration. For information, see CreateEndpointConfig. The following diagram shows
how this works in more detail.

Test models by invoking specific variants

To test multiple models by invoking specific models for each request, specify the specific version
of the model you want to invoke by providing a value for the TargetVariant parameter when
you call InvokeEndpoint. SageMaker ensures that the request is processed by the production
variant you specify. If you have already provided traffic distribution and specify a value for the
TargetVariant parameter, the targeted routing overrides the random traffic distribution. The
following diagram shows how this works in more detail.

Safely validate models in production 4192

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html

Amazon SageMaker Developer Guide

Model A/B test example

Performing A/B testing between a new model and an old model with production traffic can be
an effective final step in the validation process for a new model. In A/B testing, you test different
variants of your models and compare how each variant performs. If the newer version of the model
delivers better performance than the previously existing version, replace the old version of the
model with the new version in production.

The following example shows how to perform A/B model testing. For a sample notebook that
implements this example, see "A/B Testing ML models in production.

Step 1: Create and deploy models

First, we define where our models are located in Amazon S3. These locations are used when we
deploy our models in subsequent steps:

model_url = f"s3://{path_to_model_1}"
model_url2 = f"s3://{path_to_model_2}"

Safely validate models in production 4193

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_endpoints/a_b_testing/a_b_testing.html

Amazon SageMaker Developer Guide

Next, we create the model objects with the image and model data. These model objects are used
to deploy production variants on an endpoint. The models are developed by training ML models on
different data sets, different algorithms or ML frameworks, and different hyperparameters:

from sagemaker.amazon.amazon_estimator import get_image_uri

model_name = f"DEMO-xgb-churn-pred-{datetime.now():%Y-%m-%d-%H-%M-%S}"
model_name2 = f"DEMO-xgb-churn-pred2-{datetime.now():%Y-%m-%d-%H-%M-%S}"
image_uri = get_image_uri(boto3.Session().region_name, 'xgboost', '0.90-1')
image_uri2 = get_image_uri(boto3.Session().region_name, 'xgboost', '0.90-2')

sm_session.create_model(
 name=model_name,
 role=role,
 container_defs={
 'Image': image_uri,
 'ModelDataUrl': model_url
 }
)

sm_session.create_model(
 name=model_name2,
 role=role,
 container_defs={
 'Image': image_uri2,
 'ModelDataUrl': model_url2
 }
)

We now create two production variants, each with its own different model and resource
requirements (instance type and counts). This enables you to also test models on different instance
types.

We set an initial_weight of 1 for both variants. This means that 50% of requests go to Variant1,
and the remaining 50% of requests to Variant2. The sum of weights across both variants is 2 and
each variant has weight assignment of 1. This means that each variant receives 1/2, or 50%, of the
total traffic.

from sagemaker.session import production_variant

Safely validate models in production 4194

Amazon SageMaker Developer Guide

variant1 = production_variant(
 model_name=model_name,
 instance_type="ml.m5.xlarge",
 initial_instance_count=1,
 variant_name='Variant1',
 initial_weight=1,
)

variant2 = production_variant(
 model_name=model_name2,
 instance_type="ml.m5.xlarge",
 initial_instance_count=1,
 variant_name='Variant2',
 initial_weight=1,
)

Finally we’re ready to deploy these production variants on a SageMaker endpoint.

endpoint_name = f"DEMO-xgb-churn-pred-{datetime.now():%Y-%m-%d-%H-%M-%S}"
print(f"EndpointName={endpoint_name}")

sm_session.endpoint_from_production_variants(
 name=endpoint_name,
 production_variants=[variant1, variant2]
)

Step 2: Invoke the deployed models

Now we send requests to this endpoint to get inferences in real time. We use both traffic
distribution and direct targeting.

First, we use traffic distribution that we configured in the previous step. Each inference response
contains the name of the production variant that processes the request, so we can see that traffic
to the two production variants is roughly equal.

get a subset of test data for a quick test
!tail -120 test_data/test-dataset-input-cols.csv > test_data/
test_sample_tail_input_cols.csv
print(f"Sending test traffic to the endpoint {endpoint_name}. \nPlease wait...")

Safely validate models in production 4195

Amazon SageMaker Developer Guide

with open('test_data/test_sample_tail_input_cols.csv', 'r') as f:
 for row in f:
 print(".", end="", flush=True)
 payload = row.rstrip('\n')
 sm_runtime.invoke_endpoint(
 EndpointName=endpoint_name,
 ContentType="text/csv",
 Body=payload
)
 time.sleep(0.5)

print("Done!")

SageMaker emits metrics such as Latency and Invocations for each variant in Amazon
CloudWatch. For a complete list of metrics that SageMaker emits, see Monitor Amazon SageMaker
with Amazon CloudWatch. Let’s query CloudWatch to get the number of invocations per variant, to
show how invocations are split across variants by default:

Now let's invoke a specific version of the model by specifying Variant1 as the TargetVariant in
the call to invoke_endpoint.

print(f"Sending test traffic to the endpoint {endpoint_name}. \nPlease wait...")
with open('test_data/test_sample_tail_input_cols.csv', 'r') as f:
 for row in f:
 print(".", end="", flush=True)

Safely validate models in production 4196

Amazon SageMaker Developer Guide

 payload = row.rstrip('\n')
 sm_runtime.invoke_endpoint(
 EndpointName=endpoint_name,
 ContentType="text/csv",
 Body=payload,
 TargetVariant="Variant1"
)
 time.sleep(0.5)

To confirm that all new invocations were processed by Variant1, we can query CloudWatch to
get the number of invocations per variant. We see that for the most recent invocations (latest
timestamp), all requests were processed by Variant1, as we had specified. There were no
invocations made for Variant2.

Step 3: Evaluate model performance

To see which model version performs better, let's evaluate the accuracy, precision, recall, F1 score,
and Receiver operating charactersistic/Area under the curve for each variant. First, let's look at
these metrics for Variant1:

Safely validate models in production 4197

Amazon SageMaker Developer Guide

Now let's look at the metrics for Variant2:

For most of our defined metrics, Variant2 is performing better, so this is the one that we want to
use in production.

Step 4: Increase traffic to the best model

Now that we have determined that Variant2 performs better than Variant1, we shift
more traffic to it. We can continue to use TargetVariant to invoke a specific model
variant, but a simpler approach is to update the weights assigned to each variant by calling
UpdateEndpointWeightsAndCapacities. This changes the traffic distribution to your production

Safely validate models in production 4198

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html

Amazon SageMaker Developer Guide

variants without requiring updates to your endpoint. Recall from the setup section that we set
variant weights to split traffic 50/50. The CloudWatch metrics for the total invocations for each
variant below show us the invocation patterns for each variant:

Now we shift 75% of the traffic to Variant2 by assigning new weights to each variant using
UpdateEndpointWeightsAndCapacities. SageMaker now sends 75% of the inference requests
to Variant2 and remaining 25% of requests to Variant1.

sm.update_endpoint_weights_and_capacities(
 EndpointName=endpoint_name,
 DesiredWeightsAndCapacities=[
 {
 "DesiredWeight": 25,
 "VariantName": variant1["VariantName"]
 },
 {
 "DesiredWeight": 75,
 "VariantName": variant2["VariantName"]
 }
]
)

The CloudWatch metrics for total invocations for each variant shows us higher invocations for
Variant2 than for Variant1:

Safely validate models in production 4199

Amazon SageMaker Developer Guide

We can continue to monitor our metrics, and when we're satisfied with a variant's performance, we
can route 100% of the traffic to that variant. We use UpdateEndpointWeightsAndCapacities
to update the traffic assignments for the variants. The weight for Variant1 is set to 0 and
the weight for Variant2 is set to 1. SageMaker now sends 100% of all inference requests to
Variant2.

sm.update_endpoint_weights_and_capacities(
 EndpointName=endpoint_name,
 DesiredWeightsAndCapacities=[
 {
 "DesiredWeight": 0,
 "VariantName": variant1["VariantName"]
 },
 {
 "DesiredWeight": 1,
 "VariantName": variant2["VariantName"]
 }
]
)

The CloudWatch metrics for the total invocations for each variant show that all inference requests
are being processed by Variant2 and there are no inference requests processed by Variant1.

Safely validate models in production 4200

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html

Amazon SageMaker Developer Guide

You can now safely update your endpoint and delete Variant1 from your endpoint. You can also
continue testing new models in production by adding new variants to your endpoint and following
steps 2 - 4.

Shadow variants

You can use SageMaker Model Shadow Deployments to create long running shadow variants
to validate any new candidate component of your model serving stack before promoting it to
production. The following diagram shows how shadow variants work in more detail.

Safely validate models in production 4201

Amazon SageMaker Developer Guide

Deploy shadow variants

The following code example shows how you can programmatically deploy shadow variants. Replace
the user placeholder text in the example with your own information.

1. Create two SageMaker models: one for your production variant, and one for your shadow
variant.

import boto3
from sagemaker import get_execution_role, Session

aws_region = "aws-region"

boto_session = boto3.Session(region_name=aws_region)
sagemaker_client = boto_session.client("sagemaker")

role = get_execution_role()

Safely validate models in production 4202

Amazon SageMaker Developer Guide

bucket = Session(boto_session).default_bucket()

model_name1 = "name-of-your-first-model"
model_name2 = "name-of-your-second-model"

sagemaker_client.create_model(
 ModelName = model_name1,
 ExecutionRoleArn = role,
 Containers=[
 {
 "Image": "ecr-image-uri-for-first-model",
 "ModelDataUrl": "s3-location-of-trained-first-model"
 }
]
)

sagemaker_client.create_model(
 ModelName = model_name2,
 ExecutionRoleArn = role,
 Containers=[
 {
 "Image": "ecr-image-uri-for-second-model",
 "ModelDataUrl": "s3-location-of-trained-second-model"
 }
]
)

2. Create an endpoint configuration. Specify both your production and shadow variants in the
configuration.

endpoint_config_name = name-of-your-endpoint-config

create_endpoint_config_response = sagemaker_client.create_endpoint_config(
 EndpointConfigName=endpoint_config_name,
 ProductionVariants=[
 {
 "VariantName": name-of-your-production-variant,
 "ModelName": model_name1,
 "InstanceType": "ml.m5.xlarge",
 "InitialInstanceCount": 1,
 "InitialVariantWeight": 1,
 }

Safely validate models in production 4203

Amazon SageMaker Developer Guide

],
 ShadowProductionVariants=[
 {
 "VariantName": name-of-your-shadow-variant,
 "ModelName": model_name2,
 "InstanceType": "ml.m5.xlarge",
 "InitialInstanceCount": 1,
 "InitialVariantWeight": 1,
 }
]
)

3. Create an endpoint.

create_endpoint_response = sm.create_endpoint(
 EndpointName=name-of-your-endpoint,
 EndpointConfigName=endpoint_config_name,
)

Online Explainability with SageMaker Clarify

This guide shows how to configure online explainability with SageMaker Clarify. With SageMaker
real-time inference endpoints, you can analyze explainability in real time, continuously. The online
explainability function fits into the Deploy to production part of the Amazon SageMaker Machine
Learning workflow.

How Clarify Online Explainability Works

The following graphic depicts SageMaker architecture for hosting an endpoint that serves
explainability requests. It depicts interactions between an endpoint, the model container, and the
SageMaker Clarify explainer.

Clarify online explainability 4204

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-mlconcepts.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-mlconcepts.html

Amazon SageMaker Developer Guide

Here's how Clarify online explainability works. The application sends a REST-style
InvokeEndpoint request to the SageMaker Runtime Service. The service routes this request
to a SageMaker endpoint to obtain predictions and explanations. Then, the service receives the
response from the endpoint. Lastly, the service sends the response back to the application.

To increase the endpoint availability, SageMaker automatically attempts to distribute endpoint
instances in multiple Availability Zones, according to the instance count in the endpoint
configuration. On an endpoint instance, upon a new explainability request, the SageMaker Clarify
explainer calls the model container for predictions. Then it computes and returns the feature
attributions.

Here are the four steps to create an endpoint that uses SageMaker Clarify online explainability:

1. Check if your pre-trained SageMaker model is compatible with online explainability by following
the pre-check steps.

2. Create an endpoint configuration with the SageMaker Clarify explainer configuration using the
CreateEndpointConfig API.

3. Create an endpoint and provide the endpoint configuration to SageMaker using the
CreateEndpoint API. The service launches the ML compute instance and deploys the model as
specified in the configuration.

Clarify online explainability 4205

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-precheck.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

4. Invoke the endpoint: After the endpoint is in service, call the SageMaker Runtime API
InvokeEndpoint to send requests to the endpoint. The endpoint then returns explanations
and predictions.

Pre-check the model container

This section shows how to pre-check the model container inputs and outputs for compatibility
before configuring an endpoint. The SageMaker Clarify explainer is model agnostic, but it has
requirements for model container input and output.

Note

You can increase efficiency by configuring your container to support batch requests, which
support two or more records in a single request. For example, a single record is a single line
of CSV data, or a single line of JSON Lines data. SageMaker Clarify will attempt to send
a mini-batch of records to the model container first before falling back to single record
requests.

Model container input

CSV

The model container supports input in CSV with MIME type:text/csv. The following table
shows example inputs that SageMaker Clarify supports.

Model container input (string represent
ation)

Comments

'1,2,3,4' Single record that uses four numerical
 features.

'1,2,3,4\n5,6,7,8' Two records, separated by line break '\n'.

'"This is a good product",5' Single record that contains a text feature
and a numerical feature.

‘"This is a good product",5\n"Bad shopping
experience",1'

Two records.

Clarify online explainability 4206

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html

Amazon SageMaker Developer Guide

JSON Lines

SageMaker also supports input in JSON Lines dense format with MIME type:application/
jsonlines, as shown in the following table.

Model container input Comments

'{"data":{"features":[1,2,3,4]}}' Single record; a list of features can
be extracted by JMESPath expression
data.features .

'{"data":{"features":[1,2,3,4]}}\n{"data":{"f
eatures":[5,6,7,8]}}'

Two records.

'{"features":["This is a good product",5]}' Single record; a list of features can
be extracted by JMESPath expression
features.

'{"features":["This is a good product",
5]}\n{"features":["Bad shopping experienc
e",1]}'

Two records.

Model container output

Your model container output should also be in either CSV, or JSON Lines dense format.
Additionally the model container should include the probabilities of the input records, which
SageMaker Clarify uses to compute feature attributions.

The following data examples are for model container outputs in CSV format.

Probability only

For regression and binary classification problems, the model container outputs a single
probability value (score) of the predicted label. These probabilities can be extracted using
column index 0. For multi-class problems, the model container outputs a list of probabilities
(scores). For multi-class problems, if no index is provided, all values are extracted.

Clarify online explainability 4207

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html#cm-jsonlines

Amazon SageMaker Developer Guide

Model container input Model container output (string represent
ation)

Single record '0.6'

Two records (results in one line) '0.6,0.3'

Two records (results in two lines) '0.6\n0.3'

Single record of a multi-class model (three
classes)

'0.1,0.6,0.3'

Two records of a multi-class model (three
classes)

'0.1,0.6,0.3\n0.2,0.5,0.3'

Predicted label and probabilities

The model container outputs the predicted label followed by its probability in CSV format. The
probabilities can be extracted using index 1.

Model container input Model container output

Single record '1,0.6'

Two records '1,0.6\n0,0.3'

Predicted labels header and probabilities

A multi-class model container trained by Autopilot can be configured to output the string
representation of the list of predicted labels and probabilities in CSV format. In the following
example, the probabilities can be extracted by index 1. The label headers can be extracted by
index 1, and the label headers can be extracted using index 0.

Model container input Model container output

Single record '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"'

Clarify online explainability 4208

Amazon SageMaker Developer Guide

Model container input Model container output

Two records '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"
\n"[\'cat\',\'dog\',\'fish\']","[0.2,0.5,0.3]"'

The following data examples are for model container outputs in JSON Lines format.

Probability only

In this example, the model container outputs the probability that can be extracted by
JMESPath expression score in JSON Lines format.

Model container input Model container output

Single record '{"score":0.6}'

Two records '{"score":0.6}\n{"score":0.3}'

Predicted label and probabilities

In this example, a multi-class model container outputs a list of label headers along with a list of
probabilities in JSON Lines format. The probabilities can be extracted by JMESPath expression
probability, and the label headers can be extracted by JMESPath expression predicted
labels.

Model container input Model container output

Single record '{"predicted_labels":["cat","dog","fish"],"pr
obabilities":[0.1,0.6,0.3]}'

Two records '{"predicted_labels":["cat","dog","fish"],"pr
obabilities":[0.1,0.6,0.3]}\n{"predicted_labe
ls":["cat","dog","fish"],"probabilities":[0.2
,0.5,0.3]}'

Clarify online explainability 4209

https://jmespath.org/

Amazon SageMaker Developer Guide

Predicted labels header and probabilities

In this example, a multi-class model container outputs a list of label headers and probabilities in
JSON Lines format. The probabilities can be extracted by JMESPath expression probability,
and the label headers can be extracted by JMESPath expression predicted labels.

Model container input Model container output

Single record '{"predicted_labels":["cat","dog","fish"],"pr
obabilities":[0.1,0.6,0.3]}'

Two records '{"predicted_labels":["cat","dog","fish"],"pr
obabilities":[0.1,0.6,0.3]}\n{"predicted_labe
ls":["cat","dog","fish"],"probabilities":[0.2
,0.5,0.3]}'

Model container validation

We recommend that you deploy your model to a SageMaker real-time inference endpoint, and
send requests to the endpoint. Manually examine the requests (model container inputs) and
responses (model container outputs) to make sure that both are compliant with the requirements
in the Model Container Input section and Model Container Output section. If your model
container supports batch requests, you can start with a single record request, and then try two or
more records.

The following commands show how to request a response using the AWS CLI. The AWS CLI is pre-
installed in SageMaker Studio Classic, and SageMaker Notebook instances. If you need to install the
AWS CLI, follow this installation guide.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name $ENDPOINT_NAME \
 --content-type $CONTENT_TYPE \
 --accept $ACCEPT_TYPE \
 --body $REQUEST_DATA \
 $CLI_BINARY_FORMAT \
 /dev/stderr 1>/dev/null

The parameters are defined, as follows:

Clarify online explainability 4210

https://aws.amazon.com/cli/

Amazon SageMaker Developer Guide

• $ENDPOINT NAME: The name of the endpoint.

• $CONTENT_TYPE: The MIME type of the request (model container input).

• $ACCEPT_TYPE: The MIME type of the response (model container output).

• $REQUEST_DATA: The requested payload string.

• $CLI_BINARY_FORMAT: The format of the command line interface (CLI) parameter. For AWS CLI
v1, this parameter should remain blank. For v2, this parameter should be set to --cli-binary-
format raw-in-base64-out.

Note

AWS CLI v2 passes binary parameters as base64-encoded strings default.

The following examples use AWS CLI v1:

Request and response in CSV format

• The request consists of a single record and the response is its probability value.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-sagemaker-xgboost-model \
 --content-type text/csv \
 --accept text/csv \
 --body '1,2,3,4' \
 /dev/stderr 1>/dev/null

Output:

0.6

• The request consists of two records, and the response includes their probabilities, and the
model separates the probabilities by a comma. The $'content' expression in the --body
tells the command to interpret \n in the content as a line break.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-sagemaker-xgboost-model \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \

Clarify online explainability 4211

https://docs.aws.amazon.com/cli/latest/userguide/cliv2-migration.html#cliv2-migration-binaryparam

Amazon SageMaker Developer Guide

 /dev/stderr 1>/dev/null

Output:

0.6,0.3

• The request consists of two records, the response includes their probabilities, and the model
separates the probabilities with a line break.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-1 \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

Output:

0.6

0.3

• The request consists of a single record, and the response is probability values (multi-class
model, three classes).

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-1 \
 --content-type text/csv \
 --accept text/csv \
 --body '1,2,3,4' \
 /dev/stderr 1>/dev/null

Output:

0.1,0.6,0.3

• The request consists of two records, and the response includes their probability values (multi-
class model, three classes).

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-1 \
 --content-type text/csv \
 --accept text/csv \

Clarify online explainability 4212

Amazon SageMaker Developer Guide

 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

Output:

0.1,0.6,0.3

0.2,0.5,0.3

• The request consists of two records, and the response includes predicted label and
probability.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-2 \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

Output:

1,0.6

0,0.3

• The request consists of two records and the response includes label headers and probabilities.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-3 \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

Output:

"['cat','dog','fish']","[0.1,0.6,0.3]"

"['cat','dog','fish']","[0.2,0.5,0.3]"

Clarify online explainability 4213

Amazon SageMaker Developer Guide

Request and response in JSON Lines format

• The request consists of a single record and the response is its probability value.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-jsonlines \
 --content-type application/jsonlines \
 --accept application/jsonlines \
 --body '{"features":["This is a good product",5]}' \
 /dev/stderr 1>/dev/null

Output:

{"score":0.6}

• The request contains two records, and the response includes predicted label and probability.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-jsonlines-2 \
 --content-type application/jsonlines \
 --accept application/jsonlines \
 --body $'{"features":[1,2,3,4]}\n{"features":[5,6,7,8]}' \
 /dev/stderr 1>/dev/null

Output:

{"predicted_label":1,"probability":0.6}

{"predicted_label":0,"probability":0.3}

• The request contains two records and the response includes label headers and probabilities.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-jsonlines-3 \
 --content-type application/jsonlines \
 --accept application/jsonlines \
 --body $'{"data":{"features":[1,2,3,4]}}\n{"data":{"features":[5,6,7,8]}}' \
 /dev/stderr 1>/dev/null

Output:

Clarify online explainability 4214

Amazon SageMaker Developer Guide

{"predicted_labels":["cat","dog","fish"],"probabilities":
[0.1,0.6,0.3]}

{"predicted_labels":["cat","dog","fish"],"probabilities":
[0.2,0.5,0.3]}

Request and response in different formats

• The request is in CSV format and the response is in JSON Lines format:

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-in-jsonlines-out \
 --content-type text/csv \
 --accept application/jsonlines \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

Output:

{"probability":0.6}

{"probability":0.3}

• The request is in JSON Lines format and the response is in CSV format:

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-jsonlines-in-csv-out \
 --content-type application/jsonlines \
 --accept text/csv \
 --body $'{"features":[1,2,3,4]}\n{"features":[5,6,7,8]}' \
 /dev/stderr 1>/dev/null

Output:

0.6

0.3

After the validations are complete, delete the testing endpoint.

Clarify online explainability 4215

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-delete-resources.html

Amazon SageMaker Developer Guide

Configure and create an endpoint

Create a new endpoint configuration to fit your model, and use this configuration to create the
endpoint. You can use the model container validated in the pre-check step to create an endpoint
and enable the SageMaker Clarify online explainability feature.

Use the sagemaker_client object to create an endpoint using the CreateEndpointConfig API. Set
the member ClarifyExplainerConfig inside the ExplainerConfig parameter as follows:

sagemaker_client.create_endpoint_config(
 EndpointConfigName='name-of-your-endpoint-config',
 ExplainerConfig={
 'ClarifyExplainerConfig': {
 'EnableExplanations': '`true`',
 'InferenceConfig': {
 ...
 },
 'ShapConfig': {
 ...
 }
 },
 },
 ProductionVariants=[{
 'VariantName': 'AllTraffic',
 'ModelName': 'name-of-your-model',
 'InitialInstanceCount': 1,
 'InstanceType': 'ml.m5.xlarge',
 }]
 ...
)
sagemaker_client.create_endpoint(
 EndpointName='name-of-your-endpoint',
 EndpointConfigName='name-of-your-endpoint-config'
)

The first call to the sagemaker_client object creates a new endpoint configuration with the
explainability feature enabled. The second call uses the endpoint configuration to launch the
endpoint.

Clarify online explainability 4216

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-precheck.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html

Amazon SageMaker Developer Guide

Note

You can also host multiple models in one container behind a SageMaker real-time inference
multi-model endpoint and configure online explainability with SageMaker Clarify.

The EnableExplanations expression

The EnableExplanations parameter is a JMESPath Boolean expression string. It is evaluated
for each record in the explainability request. If this parameter is evaluated to be true, then the
record will be explained. If this parameter is evaluated to be false, then explanations are not be
generated.

SageMaker Clarify deserializes the model container output for each record into a JSON compatible
data structure, and then uses the EnableExplanations parameter to evaluate the data.

Notes

There are two options for records depending on the format of the model container output.

• If the model container output is in CSV format, then a record is loaded as a JSON array.

• If the model container output is in JSON Lines format, then a record is loaded as a JSON
object.

The EnableExplanations parameter is a JMESPath expression that can be passed either during
the InvokeEndpoint or CreateEndpointConfig operations. If the JMESPath expression
that you supplied is not valid, the endpoint creation will fail. If the expression is valid, but the
expression evaluation result is unexpected, then the endpoint will be created successfully, but an
error will be generated when the endpoint is invoked. Test your EnableExplanations expression
by using the InvokeEndpoint API, and then apply it to the endpoint configuration.

The following are some examples of valid EnableExplanations expression. In the examples, a
JMESPath expression encloses a literal using backtick characters. For example, `true` means true.

Clarify online explainability 4217

https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://jmespath.org/

Amazon SageMaker Developer Guide

Expression (string
representation)

Model container
output (string
representation)

Evaluation result
(Boolean)

Meaning

'`true`' (N/A) True Activate online
explainability
unconditionally.

'`false`' (N/A) False Deactivate online
explainability
unconditionally.

'[1]>`0.5`' '1,0.6' True For each record, the
model container
outputs its predicted
 label and probability.
Explains a record if its
probability (at index
1) is greater than 0.5.

'probability>`0.5`' '{"predicted_label
":1,"probability":0.6}'

True For each record, the
model container
outputs JSON data.
Explain a record if its
probability is greater
than 0.5.

'!contains(probabi
lities[:-1], max(proba
bilities))'

'{"probabilities": [0.4,
0.1, 0.4], "labels":
["cat","dog","fish"]}'

False For a multi-class
model: Explains a
record if its predicted
 label (the class that
has the max probabili
ty value) is the
last class. Literally
, the expression
means that the
max probability

Clarify online explainability 4218

Amazon SageMaker Developer Guide

Expression (string
representation)

Model container
output (string
representation)

Evaluation result
(Boolean)

Meaning

value is not in the
list of probabilities
excluding the last
one.

Synthetic dataset

SageMaker Clarify uses the Kernel SHAP algorithm. Given a record (also called a sample or an
instance) and the SHAP configuration, the explainer first generates a synthetic dataset. SageMaker
Clarify then queries the model container for the predictions of the dataset, and then computes and
returns the feature attributions. The size of the synthetic dataset affects the runtime for the Clarify
explainer. Larger synthetic datasets take more time to obtain model predictions than smaller ones.

The synthetic dataset size is determined by the following formula:

Synthetic dataset size = SHAP baseline size * n_samples

The SHAP baseline size is the number of records in the SHAP baseline data. This information is
taken from the ShapBaselineConfig.

The size of n_samples is set by the parameter NumberOfSamples in the explainer configuration
and the number of features. If the number of features is n_features, then n_samples is the
following:

n_samples = MIN(NumberOfSamples, 2^n_features - 2)

The following shows n_samples if NumberOfSamples is not provided.

n_samples = MIN(2*n_features + 2^11, 2^n_features - 2)

For example, a tabular record with 10 features has a SHAP baseline size of 1. If NumberOfSamples
is not provided, the synthetic dataset contains 1022 records. If the record has 20 features, the
synthetic dataset contains 2088 records.

Clarify online explainability 4219

Amazon SageMaker Developer Guide

For NLP problems, n_features is equal to the number of non-text features plus the number of
text units.

Note

The InvokeEndpoint API has a request timeout limit. If the synthetic dataset is too
large, the explainer may not be able to complete the computation within this limit. If
necessary, use the previous information to understand and reduce the SHAP baseline size
and NumberOfSamples. If your model container is set up to handle batch requests, then
you can also adjust the value of MaxRecordCount.

Invoke the endpoint

After the endpoint is running, use the SageMaker Runtime InvokeEndpoint API in the SageMaker
Runtime service to send requests to, or invoke the endpoint. In response, the requests are handled
as explainability requests by the SageMaker Clarify explainer.

Note

To invoke an endpoint, choose one of the following options:

• For instructions to use Boto3 or the AWS CLI to invoke an endpoint, see Invoke models
for real-time inference.

• To use the SageMaker SDK for Python to invoke an endpoint, see the Predictor API.

Request

The InvokeEndpoint API has an optional parameter EnableExplanations, which is mapped to
the HTTP header X-Amzn-SageMaker-Enable-Explanations. If this parameter is provided, it
overrides the EnableExplanations parameter of the ClarifyExplainerConfig.

Note

The ContentType and Accept parameters of the InvokeEndpoint API are required.
Supported formats include MIME type text/csv and application/jsonlines.

Clarify online explainability 4220

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html

Amazon SageMaker Developer Guide

Use the sagemaker_runtime_client to send a request to the endpoint, as follows:

response = sagemaker_runtime_client.invoke_endpoint(
 EndpointName='name-of-your-endpoint',
 EnableExplanations='`true`',
 ContentType='text/csv',
 Accept='text/csv',
 Body='1,2,3,4', # single record (of four numerical features)
)

For multi-model endpoints, pass an additional TargetModel parameter in the previous example
request to specifies which model to target at the endpoint. The multi-model endpoint dynamically
loads target models as needed. For more information about multi-model endpoints, see Host
multiple models in one container behind one endpoint. See the SageMaker Clarify Online
Explainability on Multi-Model Endpoint Sample Notebook for an example of how to set up and
invoke multiple target models from a single endpoint.

Response

If the endpoint is created with ExplainerConfig, then a new response schema is used,
This new schema is different from, and is not compatible with, an endpoint that lacks the
ExplainerConfig parameter provided.

The MIME type of the response is application/json, and the response payload can be decoded
from UTF-8 bytes to a JSON object. The following shows the members of this JSON object are as
follows:

• version: The version of the response schema in string format. For example, 1.0.

• predictions: The predictions that the request makes have the following:

• content_type: The MIME type of the predictions, referring to the ContentType of the
model container response.

• data: The predictions data string delivered as the payload of the model container response for
the request.

• label_headers: The label headers from the LabelHeaders parameter. This is provided in
either the explainer configuration or the model container output.

• explanations: The explanations provided in the request payload. If no records are explained,
then this member returns the empty object {}.

Clarify online explainability 4221

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/online_explainability/tabular_multi_model_endpoint/multi_model_xgboost_with_online_explainability.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/online_explainability/tabular_multi_model_endpoint/multi_model_xgboost_with_online_explainability.ipynb

Amazon SageMaker Developer Guide

• • kernel_shap: A key that refers to an array of Kernel SHAP explanations for each record in the
request. If a record is not explained, the corresponding explanation is null.

The kernel_shap element has the following members:

• feature_header: The header name of the features provided by the FeatureHeaders
parameter in the explainer configuration ExplainerConfig.

• feature_type: The feature type inferred by explainer or provided in the FeatureTypes
parameter in the ExplainerConfig. This element is only available for NLP explainability
problems.

• attributions: An array of attribution objects. Text features can have multiple attribution
objects, each for a unit. The attribution object has the following members:

• attribution: A list of probability values, given for each class.

• description: The description of the text units, available only for NLP explainability
problems.

• partial_text: The portion of the text explained by the explainer.

• start_idx: A zero-based index to identify the array location of the beginning of the partial
text fragment.

Code examples: SDK for Python

This section provides sample code to create and invoke an endpoint that uses SageMaker Clarify
online explainability. These code examples use the AWS SDK for Python.

Tabular data

The following example uses tabular data and a SageMaker model called model_name. In this
example, the model container accepts data in CSV format, and each record has four numerical
features. In this minimal configuration, for demonstration purposes only, the SHAP baseline data
is set to zero. Refer to SHAP Baselines for Explainability to learn how to choose more appropriate
values for ShapBaseline.

Configure the endpoint, as follows:

endpoint_config_name = 'tabular_explainer_endpoint_config'
response = sagemaker_client.create_endpoint_config(

Clarify online explainability 4222

https://aws.amazon.com/sdk-for-python/

Amazon SageMaker Developer Guide

 EndpointConfigName=endpoint_config_name,
 ProductionVariants=[{
 'VariantName': 'AllTraffic',
 'ModelName': model_name,
 'InitialInstanceCount': 1,
 'InstanceType': 'ml.m5.xlarge',
 }],
 ExplainerConfig={
 'ClarifyExplainerConfig': {
 'ShapConfig': {
 'ShapBaselineConfig': {
 'ShapBaseline': '0,0,0,0',
 },
 },
 },
 },
)

Use the endpoint configuration to create an endpoint, as follows:

endpoint_name = 'tabular_explainer_endpoint'
response = sagemaker_client.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name,
)

Use the DescribeEndpoint API to inspect the progress of creating an endpoint, as follows:

response = sagemaker_client.describe_endpoint(
 EndpointName=endpoint_name,
)
response['EndpointStatus']

After the endpoint status is "InService", invoke the endpoint with a test record, as follows:

response = sagemaker_runtime_client.invoke_endpoint(
 EndpointName=endpoint_name,
 ContentType='text/csv',
 Accept='text/csv',
 Body='1,2,3,4',
)

Clarify online explainability 4223

Amazon SageMaker Developer Guide

Note

In the previous code example, for multi-model endpoints, pass an additional TargetModel
parameter in the request to specify which model to target at the endpoint.

Assume that the response has a status code of 200 (no error), and load the response body, as
follows:

import codecs
import json
json.load(codecs.getreader('utf-8')(response['Body']))

The default action for the endpoint is to explain the record. The following shows example output in
the returned JSON object.

{
 "version": "1.0",
 "predictions": {
 "content_type": "text/csv; charset=utf-8",
 "data": "0.0006380207487381"
 },
 "explanations": {
 "kernel_shap": [
 [
 {
 "attributions": [
 {
 "attribution": [-0.00433456]
 }
]
 },
 {
 "attributions": [
 {
 "attribution": [-0.005369821]
 }
]
 },
 {
 "attributions": [
 {

Clarify online explainability 4224

Amazon SageMaker Developer Guide

 "attribution": [0.007917749]
 }
]
 },
 {
 "attributions": [
 {
 "attribution": [-0.00261214]
 }
]
 }
]
]
 }
}

Use the EnableExplanations parameter to enable on-demand explanations, as follows:

response = sagemaker_runtime_client.invoke_endpoint(
 EndpointName=endpoint_name,
 ContentType='text/csv',
 Accept='text/csv',
 Body='1,2,3,4',
 EnableExplanations='[0]>`0.8`',
)

Note

In the previous code example, for multi-model endpoints, pass an additional TargetModel
parameter in the request to specify which model to target at the endpoint.

In this example, the prediction value is less than the threshold value of 0.8, so the record is not
explained:

{
 "version": "1.0",
 "predictions": {
 "content_type": "text/csv; charset=utf-8",
 "data": "0.6380207487381995"
 },

Clarify online explainability 4225

Amazon SageMaker Developer Guide

 "explanations": {}
}

Use visualization tools to help interpret the returned explanations. The following image shows
how SHAP plots can be used to understand how each feature contributes to the prediction. The
base value on the diagram, also called the expected value, is the mean predictions of the training
dataset. Features that push the expected value higher are red, and features that push the expected
value lower are blue. See SHAP additive force layout for additional information.

See the full example notebook for tabular data.

Text data

This section provides a code example to create and invoke an online explainability endpoint for
text data. The code example uses SDK for Python.

The following example uses text data and a SageMaker model called model_name. In this example,
the model container accepts data in CSV format, and each record is a single string.

endpoint_config_name = 'text_explainer_endpoint_config'
response = sagemaker_client.create_endpoint_config(
 EndpointConfigName=endpoint_config_name,
 ProductionVariants=[{
 'VariantName': 'AllTraffic',
 'ModelName': model_name,
 'InitialInstanceCount': 1,
 'InstanceType': 'ml.m5.xlarge',
 }],
 ExplainerConfig={
 'ClarifyExplainerConfig': {
 'InferenceConfig': {
 'FeatureTypes': ['text'],
 'MaxRecordCount': 100,
 },

Clarify online explainability 4226

https://shap.readthedocs.io/en/latest/generated/shap.plots.force.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/online_explainability/tabular/tabular_online_explainability_with_sagemaker_clarify.ipynb

Amazon SageMaker Developer Guide

 'ShapConfig': {
 'ShapBaselineConfig': {
 'ShapBaseline': '"<MASK>"',
 },
 'TextConfig': {
 'Granularity': 'token',
 'Language': 'en',
 },
 'NumberOfSamples': 100,
 },
 },
 },
)

• ShapBaseline: A special token reserved for natural language processing (NLP) processing.

• FeatureTypes: Identifies the feature as text. If this parameter is not provided, the explainer will
attempt to infer the feature type.

• TextConfig: Specifies the unit of granularity and language for the analysis of text features. In
this example, the language is English, and granularity token means a word in English text.

• NumberOfSamples: A limit to set the upper bounds of the size of the synthetic dataset.

• MaxRecordCount: The maximum number of records in a request that the model container can
handle. This parameter is set to stabilize performance.

Use the endpoint configuration to create the endpoint, as follows:

endpoint_name = 'text_explainer_endpoint'
response = sagemaker_client.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name,
)

After the status of the endpoint becomes InService, invoke the endpoint. The following code
sample uses a test record as follows:

response = sagemaker_runtime_client.invoke_endpoint(
 EndpointName=endpoint_name,
 ContentType='text/csv',
 Accept='text/csv',
 Body='"This is a good product"',

Clarify online explainability 4227

Amazon SageMaker Developer Guide

)

If the request completes successfully, the response body will return a valid JSON object that's
similar to the following:

{
 "version": "1.0",
 "predictions": {
 "content_type": "text/csv",
 "data": "0.9766594\n"
 },
 "explanations": {
 "kernel_shap": [
 [
 {
 "attributions": [
 {
 "attribution": [
 -0.007270948666666712
],
 "description": {
 "partial_text": "This",
 "start_idx": 0
 }
 },
 {
 "attribution": [
 -0.018199033666666628
],
 "description": {
 "partial_text": "is",
 "start_idx": 5
 }
 },
 {
 "attribution": [
 0.01970993241666666
],
 "description": {
 "partial_text": "a",
 "start_idx": 8
 }
 },

Clarify online explainability 4228

Amazon SageMaker Developer Guide

 {
 "attribution": [
 0.1253469515833334
],
 "description": {
 "partial_text": "good",
 "start_idx": 10
 }
 },
 {
 "attribution": [
 0.03291143366666657
],
 "description": {
 "partial_text": "product",
 "start_idx": 15
 }
 }
],
 "feature_type": "text"
 }
]
]
 }
}

Use visualization tools to help interpret the returned text attributions. The following image shows
how the captum visualization utility can be used to understand how each word contributes to the
prediction. The higher the color saturation, the higher the importance given to the word. In this
example, a highly saturated bright red color indicates a strong negative contribution. A highly
saturated green color indicates a strong positive contribution. The color white indicates that the
word has a neutral contribution. See the captum library for additional information on parsing and
rendering the attributions.

See the full example notebook for text data.

Clarify online explainability 4229

https://github.com/pytorch/captum
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/online_explainability/natural_language_processing/nlp_online_explainability_with_sagemaker_clarify.ipynb

Amazon SageMaker Developer Guide

Troubleshooting guide

If you encounter errors using SageMaker Clarify online explainability, consult the topics in this
section.

InvokeEndpoint API fails with the error "ReadTimeoutError:Read timeout on endpoint..."

This error means that the request could not be completed within the 60-second time limit set by
the request timeout.

To reduce the request latency, try the following:

• Tune the model's performance during inference. For example, SageMaker Neo can optimize
models for inference.

• Allow the model container to handle batch requests.

• Use a larger MaxRecordCount to reduce the number of calls from the explainer to the model
container. This will reduce network latency and overhead.

• Use an instance type that has more resources allocated to it. Alternately, assign more instances
to the endpoint to help balance the load.

• Reduce the number of records inside a single InvokeEndpoint request.

• Reduce the number of records in the baseline data.

• Use a smaller NumberOfSamples value to reduce the size of the synthetic dataset. For more
information about how the number of samples affects your synthetic dataset, see Synthetic
dataset.

Serverless Inference

Amazon SageMaker Serverless Inference is a purpose-built inference option that enables you to
deploy and scale ML models without configuring or managing any of the underlying infrastructure.
On-demand Serverless Inference is ideal for workloads which have idle periods between traffic
spurts and can tolerate cold starts. Serverless endpoints automatically launch compute resources
and scale them in and out depending on traffic, eliminating the need to choose instance types
or manage scaling policies. This takes away the undifferentiated heavy lifting of selecting and
managing servers. Serverless Inference integrates with AWS Lambda to offer you high availability,
built-in fault tolerance and automatic scaling. With a pay-per-use model, Serverless Inference is
a cost-effective option if you have an infrequent or unpredictable traffic pattern. During times

Serverless Inference 4230

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://aws.amazon.com/sagemaker/neo/

Amazon SageMaker Developer Guide

when there are no requests, Serverless Inference scales your endpoint down to 0, helping you to
minimize your costs. For more information about pricing for on-demand Serverless Inference, see
Amazon SageMaker Pricing.

Optionally, you can also use Provisioned Concurrency with Serverless Inference. Serverless
Inference with provisioned concurrency is a cost-effective option when you have predictable bursts
in your traffic. Provisioned Concurrency allows you to deploy models on serverless endpoints
with predictable performance, and high scalability by keeping your endpoints warm. SageMaker
ensures that for the number of Provisioned Concurrency that you allocate, the compute resources
are initialized and ready to respond within milliseconds. For Serverless Inference with Provisioned
Concurrency, you pay for the compute capacity used to process inference requests, billed by the
millisecond, and the amount of data processed. You also pay for Provisioned Concurrency usage,
based on the memory configured, duration provisioned, and the amount of concurrency enabled.
For more information about pricing for Serverless Inference with Provisioned Concurrency, see
Amazon SageMaker Pricing.

You can integrate Serverless Inference with your MLOps Pipelines to streamline your ML workflow,
and you can use a serverless endpoint to host a model registered with Model Registry.

Serverless Inference is generally available in 21 AWS Regions: US East (N. Virginia), US East (Ohio),
US West (N. California), US West (Oregon), Africa (Cape Town), Asia Pacific (Hong Kong), Asia Pacific
(Mumbai), Asia Pacific (Tokyo), Asia Pacific (Seoul), Asia Pacific (Osaka), Asia Pacific (Singapore),
Asia Pacific (Sydney), Canada (Central), Europe (Frankfurt), Europe (Ireland), Europe (London),
Europe (Paris), Europe (Stockholm), Europe (Milan), Middle East (Bahrain), South America (São
Paulo). For more information about Amazon SageMaker regional availability, see the AWS Regional
Services List.

How it works

The following diagram shows the workflow of on-demand Serverless Inference and the benefits of
using a serverless endpoint.

How it works 4231

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon SageMaker Developer Guide

When you create an on-demand serverless endpoint, SageMaker provisions and manages the
compute resources for you. Then, you can make inference requests to the endpoint and receive
model predictions in response. SageMaker scales the compute resources up and down as needed to
handle your request traffic, and you only pay for what you use.

For Provisioned Concurrency, Serverless Inference also integrates with Application Auto Scaling, so
that you can manage Provisioned Concurrency based on a target metric or on a schedule. For more
information, see Automatically scale Provisioned Concurrency for a serverless endpoint.

The following sections provide additional details about Serverless Inference and how it works.

Topics

• Container support

• Memory size

• Concurrent invocations

• Minimizing cold starts

• Feature exclusions

Container support

For your endpoint container, you can choose either a SageMaker-provided container or bring your
own. SageMaker provides containers for its built-in algorithms and prebuilt Docker images for
some of the most common machine learning frameworks, such as Apache MXNet, TensorFlow,
PyTorch, and Chainer. For a list of available SageMaker images, see Available Deep Learning
Containers Images. If you are bringing your own container, you must modify it to work with

How it works 4232

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

SageMaker. For more information about bringing your own container, see Adapting Your Own
Inference Container.

The maximum size of the container image you can use is 10 GB. For serverless endpoints, we
recommend creating only one worker in the container and only loading one copy of the model.
Note that this is unlike real-time endpoints, where some SageMaker containers may create a
worker for each vCPU to process inference requests and load the model in each worker.

If you already have a container for a real-time endpoint, you can use the same container for your
serverless endpoint, though some capabilities are excluded. To learn more about the container
capabilities that are not supported in Serverless Inference, see Feature exclusions. If you choose
to use the same container, SageMaker escrows (retains) a copy of your container image until you
delete all endpoints that use the image. SageMaker encrypts the copied image at rest with a
SageMaker-owned AWS KMS key.

Memory size

Your serverless endpoint has a minimum RAM size of 1024 MB (1 GB), and the maximum RAM
size you can choose is 6144 MB (6 GB). The memory sizes you can choose are 1024 MB, 2048 MB,
3072 MB, 4096 MB, 5120 MB, or 6144 MB. Serverless Inference auto-assigns compute resources
proportional to the memory you select. If you choose a larger memory size, your container
has access to more vCPUs. Choose your endpoint’s memory size according to your model size.
Generally, the memory size should be at least as large as your model size. You may need to
benchmark in order to choose the right memory selection for your model based on your latency
SLAs. For a step by step guide to benchmark, see Introducing the Amazon SageMaker Serverless
Inference Benchmarking Toolkit. The memory size increments have different pricing; see the
Amazon SageMaker pricing page for more information.

Regardless of the memory size you choose, your serverless endpoint has 5 GB of ephemeral disk
storage available. For help with container permissions issues when working with storage, see
Troubleshooting.

Concurrent invocations

On-demand Serverless Inference manages predefined scaling policies and quotas for the capacity
of your endpoint. Serverless endpoints have a quota for how many concurrent invocations can
be processed at the same time. If the endpoint is invoked before it finishes processing the first
request, then it handles the second request concurrently.

How it works 4233

https://aws.amazon.com/blogs/machine-learning/introducing-the-amazon-sagemaker-serverless-inference-benchmarking-toolkit/
https://aws.amazon.com/blogs/machine-learning/introducing-the-amazon-sagemaker-serverless-inference-benchmarking-toolkit/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

The total concurrency that you can share between all serverless endpoints in your account depends
on your region:

• For the US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia
Pacific (Sydney), Asia Pacific (Tokyo), Europe (Frankfurt), and Europe (Ireland) Regions, the total
concurrency you can share between all serverless endpoints per Region in your account is 1000.

• For the US West (N. California), Africa (Cape Town), Asia Pacific (Hong Kong), Asia Pacific
(Mumbai), Asia Pacific (Osaka), Asia Pacific (Seoul), Canada (Central), Europe (London), Europe
(Milan), Europe (Paris), Europe (Stockholm), Middle East (Bahrain), and South America (São Paulo)
Regions, the total concurrency per Region in your account is 500.

You can set the maximum concurrency for a single endpoint up to 200, and the total number of
serverless endpoints you can host in a Region is 50. The maximum concurrency for an individual
endpoint prevents that endpoint from taking up all of the invocations allowed for your account,
and any endpoint invocations beyond the maximum are throttled.

Note

Provisioned Concurrency that you assign to a serverless endpoint should always be less
than or equal to the maximum concurrency that you assigned to that endpoint.

To learn how to set the maximum concurrency for your endpoint, see Create an endpoint
configuration. For more information about quotas and limits, see Amazon SageMaker endpoints
and quotas in the AWS General Reference. To request a service limit increase, contact AWS Support.
For instructions on how to request a service limit increase, see Supported Regions and Quotas.

Minimizing cold starts

If your on-demand Serverless Inference endpoint does not receive traffic for a while and then your
endpoint suddenly receives new requests, it can take some time for your endpoint to spin up the
compute resources to process the requests. This is called a cold start. Since serverless endpoints
provision compute resources on demand, your endpoint may experience cold starts. A cold start
can also occur if your concurrent requests exceed the current concurrent request usage. The cold
start time depends on your model size, how long it takes to download your model, and the start-up
time of your container.

How it works 4234

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://console.aws.amazon.com/support

Amazon SageMaker Developer Guide

To monitor how long your cold start time is, you can use the Amazon CloudWatch metric
OverheadLatency to monitor your serverless endpoint. This metric tracks the time it takes to
launch new compute resources for your endpoint. To learn more about using CloudWatch metrics
with serverless endpoints, see Monitor a serverless endpoint.

You can minimize cold starts by using Provisioned Concurrency. SageMaker keeps the endpoint
warm and ready to respond in milliseconds, for the number of Provisioned Concurrency that you
allocated.

Feature exclusions

Some of the features currently available for SageMaker Real-time Inference are not supported for
Serverless Inference, including GPUs, AWS marketplace model packages, private Docker registries,
Multi-Model Endpoints, VPC configuration, network isolation, data capture, multiple production
variants, Model Monitor, and inference pipelines.

You cannot convert your instance-based, real-time endpoint to a serverless endpoint. If you try to
update your real-time endpoint to serverless, you receive a ValidationError message. You can
convert a serverless endpoint to real-time, but once you make the update, you cannot roll it back
to serverless.

Getting started

You can create, update, describe, and delete a serverless endpoint using the SageMaker console,
the AWS SDKs, the Amazon SageMaker Python SDK, and the AWS CLI. You can invoke your
endpoint using the AWS SDKs, the Amazon SageMaker Python SDK, and the AWS CLI. For
serverless endpoints with Provisioned Concurrency, you can use Application Auto Scaling to auto
scale Provisioned Concurrency based on a target metric or a schedule. For more information about
how to set up and use a serverless endpoint, read the guide Create, invoke, update, and delete a
serverless endpoint. For more information on auto scaling serverless endpoints with Provisioned
Concurrency, see Automatically scale Provisioned Concurrency for a serverless endpoint.

Note

Application Auto Scaling for Serverless Inference with Provisioned Concurrency is currently
not supported on AWS CloudFormation.

Getting started 4235

https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-serverless-inference
https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-serverless-inference

Amazon SageMaker Developer Guide

Example notebooks and blogs

For Jupyter notebook examples that show end-to-end serverless endpoint workflows, see the
Serverless Inference example notebooks.

Create, invoke, update, and delete a serverless endpoint

Unlike other SageMaker real-time endpoints, Serverless Inference manages compute resources
for you, reducing complexity so you can focus on your ML model instead of on managing
infrastructure. The following guide highlights the key capabilities of serverless endpoints: how
to create, invoke, update, describe, or delete an endpoint. You can use the SageMaker console,
the AWS SDKs, the Amazon SageMaker Python SDK, or the AWS CLI to manage your serverless
endpoints.

Topics

• Prerequisites

• Create a serverless endpoint

• Invoke a serverless endpoint

• Update a serverless endpoint

• Describe a serverless endpoint

• Delete a serverless endpoint

Prerequisites

Before you can create a serverless endpoint, complete the following prerequisites.

1. Set up an AWS account. You first need an AWS account and an AWS Identity and Access
Management administrator user. For instructions on how to set up an AWS account, see How
do I create and activate a new AWS account?. For instructions on how to secure your account
with an IAM administrator user, see Creating your first IAM admin user and user group in the
IAM User Guide.

2. Create an Amazon S3 bucket. You use an Amazon S3 bucket to store your model artifacts. To
learn how to create a bucket, see Create your first S3 bucket in the Amazon S3 User Guide.

3. Upload your model artifacts to your S3 bucket. For instructions on how to upload your
model to your bucket, see Upload an object to your bucket in the Amazon S3 User Guide.

Create, invoke, update, and delete a serverless endpoint 4236

https://github.com/aws/amazon-sagemaker-examples/tree/master/serverless-inference
https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-serverless-inference
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/uploading-an-object-bucket.html

Amazon SageMaker Developer Guide

4. Create an IAM role for Amazon SageMaker. Amazon SageMaker needs access to the S3 bucket
that stores your model. Create an IAM role with a policy that gives SageMaker read access to
your bucket. The following procedure shows how to create a role in the console, but you can
also use the CreateRole API from the IAM User Guide. For information on giving your role more
granular permissions based on your use case, see SageMaker Roles.

a. Sign in to the IAM console.

b. In the navigation tab, choose Roles.

c. Choose Create Role.

d. For Select type of trusted entity, choose AWS service and then choose SageMaker.

e. Choose Next: Permissions and then choose Next: Tags.

f. (Optional) Add tags as key-value pairs if you want to have metadata for the role.

g. Choose Next: Review.

h. For Role name, enter a name for the new role that is unique within your AWS account. You
cannot edit the role name after creating the role.

i. (Optional) For Role description, enter a description for the new role.

j. Choose Create role.

5. Attach S3 bucket permissions to your SageMaker role. After creating an IAM role, attach
a policy that gives SageMaker permission to access the S3 bucket containing your model
artifacts.

a. In the IAM console navigation tab, choose Roles.

b. From the list of roles, search for the role you created in the previous step by name.

c. Choose your role, and then choose Attach policies.

d. For Attach permissions, choose Create policy.

e. In the Create policy view, select the JSON tab.

f. Add the following policy statement into the JSON editor. Make sure to replace <your-
bucket-name> with the name of the S3 bucket that stores your model artifacts. If you
want to restrict the access to a specific folder or file in your bucket, you can also specify
the Amazon S3 folder path, for example, <your-bucket-name>/<model-folder>.

{
 "Version": "2012-10-17",
 "Statement": [
 { Create, invoke, update, and delete a serverless endpoint 4237

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<your-bucket-name>/*"
 }
]
}

g. Choose Next: Tags.

h. (Optional) Add tags in key-value pairs to the policy.

i. Choose Next: Review.

j. For Name, enter a name for the new policy.

k. (Optional) Add a Description for the policy.

l. Choose Create policy.

m. After creating the policy, return to Roles in the IAM console and select your SageMaker
role.

n. Choose Attach policies.

o. For Attach permissions, search for the policy you created by name. Select it and choose
Attach policy.

6. Select a prebuilt Docker container image or bring your own. The container you choose
serves inference on your endpoint. SageMaker provides containers for built-in algorithms and
prebuilt Docker images for some of the most common machine learning frameworks, such as
Apache MXNet, TensorFlow, PyTorch, and Chainer. For a full list of the available SageMaker
images, see Available Deep Learning Containers Images.

If none of the existing SageMaker containers meet your needs, you may need to create your
own Docker container. For information about how to create your Docker image and make it
compatible with SageMaker, see Use your own inference code. To use your container with a
serverless endpoint, the container image must reside in an Amazon ECR repository within the
same AWS account that creates the endpoint.

7. (Optional) Register your model with Model Registry. SageMaker Model Registry helps you
catalog and manage versions of your models for use in ML pipelines. For more information
about registering a version of your model, see Create a Model Group and Register a Model
Version. For an example of a Model Registry and Serverless Inference workflow, see the
following example notebook.

Create, invoke, update, and delete a serverless endpoint 4238

https://console.aws.amazon.com/iam/
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/amazon-sagemaker-examples/blob/main/serverless-inference/serverless-model-registry.ipynb

Amazon SageMaker Developer Guide

8. (Optional) Bring an AWS KMS key. When setting up a serverless endpoint, you have the
option to specify a KMS key that SageMaker uses to encrypt your Amazon ECR image. Note
that the key policy for the KMS key must grant access to the IAM role you specify when setting
up your endpoint. To learn more about KMS keys, see the AWS Key Management Service
Developer Guide.

Create a serverless endpoint

To create a serverless endpoint, you can use the Amazon SageMaker console, the APIs, or the AWS
CLI. You can create a serverless endpoint using a similar process as a real-time endpoint.

Topics

• Create a model

• Create an endpoint configuration

• Create an endpoint

Create a model

To create your model, you must provide the location of your model artifacts and container image.
You can also use a model version from SageMaker Model Registry. The examples in the following
sections show you how to create a model using the CreateModel API, Model Registry, and the
Amazon SageMaker console.

To create a model (using Model Registry)

Model Registry is a feature of SageMaker that helps you catalog and manage versions of your
model for use in ML pipelines. To use Model Registry with Serverless Inference, you must first
register a model version in a Model Registry model group. To learn how to register a model in
Model Registry, follow the procedures in Create a Model Group and Register a Model Version.

The following example requires you to have the ARN of a registered model version and uses the
AWS SDK for Python (Boto3) to call the CreateModel API. For Serverless Inference, Model Registry
is currently only supported by the AWS SDK for Python (Boto3). For the example, specify the
following values:

• For model_name, enter a name for the model.

• For sagemaker_role, you can use the default SageMaker-created role or a customized
SageMaker IAM role from Step 4 of the Prerequisites section.

Create, invoke, update, and delete a serverless endpoint 4239

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://console.aws.amazon.com/sagemaker/home
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

• For ModelPackageName, specify the ARN for your model version, which must be registered to a
model group in Model Registry.

#Setup
import boto3
import sagemaker
region = boto3.Session().region_name
client = boto3.client("sagemaker", region_name=region)

#Role to give SageMaker permission to access AWS services.
sagemaker_role = sagemaker.get_execution_role()

#Specify a name for the model
model_name = "<name-for-model>"

#Specify a Model Registry model version
container_list = [
 {
 "ModelPackageName": <model-version-arn>
 }
]

#Create the model
response = client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = sagemaker_role,
 container_list
)

To create a model (using API)

The following example uses the AWS SDK for Python (Boto3) to call the CreateModel API. Specify
the following values:

• For sagemaker_role, you can use the default SageMaker-created role or a customized
SageMaker IAM role from Step 4 of the Prerequisites section.

• For model_url, specify the Amazon S3 URI to your model.

• For container, retrieve the container you want to use by its Amazon ECR path. This example
uses a SageMaker-provided XGBoost container. If you have not selected a SageMaker container
or brought your own, see Step 6 of the Prerequisites section for more information.

Create, invoke, update, and delete a serverless endpoint 4240

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

• For model_name, enter a name for the model.

#Setup
import boto3
import sagemaker
region = boto3.Session().region_name
client = boto3.client("sagemaker", region_name=region)

#Role to give SageMaker permission to access AWS services.
sagemaker_role = sagemaker.get_execution_role()

#Get model from S3
model_url = "s3://DOC-EXAMPLE-BUCKET/models/model.tar.gz"

#Get container image (prebuilt example)
from sagemaker import image_uris
container = image_uris.retrieve("xgboost", region, "0.90-1")

#Create model
model_name = "<name-for-model>"

response = client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = sagemaker_role,
 Containers = [{
 "Image": container,
 "Mode": "SingleModel",
 "ModelDataUrl": model_url,
 }]
)

To create a model (using the console)

1. Sign in to the Amazon SageMaker console.

2. In the navigation tab, choose Inference.

3. Next, choose Models.

4. Choose Create model.

5. For Model name, enter a name for the model that is unique to your account and AWS Region.

6. For IAM role, either select an IAM role you have already created (see Prerequisites) or allow
SageMaker to create one for you.

Create, invoke, update, and delete a serverless endpoint 4241

https://console.aws.amazon.com/sagemaker/home

Amazon SageMaker Developer Guide

7. In Container definition 1, for Container input options, select Provide model artifacts and
input location.

8. For Provide model artifacts and inference image options, select Use a single model.

9. For Location of inference code image, enter an Amazon ECR path to a container. The image
must either be a SageMaker-provided first party image (e.g. TensorFlow, XGBoost) or an image
that resides in an Amazon ECR repository within the same account in which you are creating
the endpoint. If you do not have a container, go back to Step 6 of the Prerequisites section for
more information.

10. For Location of model artifacts, enter the Amazon S3 URI to your ML model. For example,
s3://DOC-EXAMPLE-BUCKET/models/model.tar.gz.

11. (Optional) For Tags, add key-value pairs to create metadata for your model.

12. Choose Create model.

Create an endpoint configuration

After you create a model, create an endpoint configuration. You can then deploy your model using
the specifications in your endpoint configuration. In the configuration, you specify whether you
want a real-time or serverless endpoint. To create a serverless endpoint configuration, you can
use the Amazon SageMaker console, the CreateEndpointConfig API, or the AWS CLI. The API and
console approaches are outlined in the following sections.

To create an endpoint configuration (using API)

The following example uses the AWS SDK for Python (Boto3) to call the CreateEndpointConfig API.
Specify the following values:

• For EndpointConfigName, choose a name for the endpoint configuration. The name should be
unique within your account in a Region.

• (Optional) For KmsKeyId, use the key ID, key ARN, alias name, or alias ARN for an AWS KMS key
that you want to use. SageMaker uses this key to encrypt your Amazon ECR image.

• For ModelName, use the name of the model you want to deploy. It should be the same model
that you used in the Create a model step.

• For ServerlessConfig:

• Set MemorySizeInMB to 2048. For this example, we set the memory size to 2048 MB, but you
can choose any of the following values for your memory size: 1024 MB, 2048 MB, 3072 MB,
4096 MB, 5120 MB, or 6144 MB.

Create, invoke, update, and delete a serverless endpoint 4242

https://console.aws.amazon.com/sagemaker/home
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html

Amazon SageMaker Developer Guide

• Set MaxConcurrency to 20. For this example, we set the maximum concurrency to 20. The
maximum number of concurrent invocations you can set for a serverless endpoint is 200, and
the minimum value you can choose is 1.

• (Optional) To use Provisioned Concurrency, set ProvisionedConcurrency to 10. For this
example, we set the Provisioned Concurrency to 10. The ProvisionedConcurrency number
for a serverless endpoint must be lower than or equal to the MaxConcurrency number.
You can leave it empty if you want to use on-demand Serverless Inference endpoint. You
can dynamically scale Provision Concurrency. For more information, see Automatically scale
Provisioned Concurrency for a serverless endpoint.

response = client.create_endpoint_config(
 EndpointConfigName="<your-endpoint-configuration>",
 KmsKeyId="arn:aws:kms:us-east-1:123456789012:key/143ef68f-76fd-45e3-abba-
ed28fc8d3d5e",
 ProductionVariants=[
 {
 "ModelName": "<your-model-name>",
 "VariantName": "AllTraffic",
 "ServerlessConfig": {
 "MemorySizeInMB": 2048,
 "MaxConcurrency": 20,
 "ProvisionedConcurrency": 10,
 }
 }
]
)

To create an endpoint configuration (using the console)

1. Sign in to the Amazon SageMaker console.

2. In the navigation tab, choose Inference.

3. Next, choose Endpoint configurations.

4. Choose Create endpoint configuration.

5. For Endpoint configuration name, enter a name that is unique within your account in a
Region.

6. For Type of endpoint, select Serverless.

Create, invoke, update, and delete a serverless endpoint 4243

https://console.aws.amazon.com/sagemaker/home

Amazon SageMaker Developer Guide

Create, invoke, update, and delete a serverless endpoint 4244

Amazon SageMaker Developer Guide

7. For Production variants, choose Add model.

8. Under Add model, select the model you want to use from the list of models and then choose
Save.

9. After adding your model, under Actions, choose Edit.

10. For Memory size, choose the memory size you want in GB.

11. For Max Concurrency, enter your desired maximum concurrent invocations for the endpoint.
The maximum value you can enter is 200 and the minimum is 1.

Create, invoke, update, and delete a serverless endpoint 4245

Amazon SageMaker Developer Guide

12. (Optional) To use Provisioned Concurrency, enter the desired number of concurrent invocations
in the Provisioned Concurrency setting field. The number of provisioned concurrent
invocations must be less than or equal to the number of maximum concurrent invocations.

13. Choose Save.

14. (Optional) For Tags, enter key-value pairs if you want to create metadata for your endpoint
configuration.

15. Choose Create endpoint configuration.

Create an endpoint

To create a serverless endpoint, you can use the Amazon SageMaker console, the CreateEndpoint
API, or the AWS CLI. The API and console approaches are outlined in the following sections. Once
you create your endpoint, it can take a few minutes for the endpoint to become available.

To create an endpoint (using API)

The following example uses the AWS SDK for Python (Boto3) to call the CreateEndpoint API.
Specify the following values:

• For EndpointName, enter a name for the endpoint that is unique within a Region in your
account.

• For EndpointConfigName, use the name of the endpoint configuration that you created in the
previous section.

response = client.create_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<your-endpoint-config>"
)

To create an endpoint (using the console)

1. Sign in to the Amazon SageMaker console.

2. In the navigation tab, choose Inference.

3. Next, choose Endpoints.

4. Choose Create endpoint.

5. For Endpoint name, enter a name than is unique within a Region in your account.

Create, invoke, update, and delete a serverless endpoint 4246

https://console.aws.amazon.com/sagemaker/home
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://console.aws.amazon.com/sagemaker/home

Amazon SageMaker Developer Guide

6. For Attach endpoint configuration, select Use an existing endpoint configuration.

7. For Endpoint configuration, select the name of the endpoint configuration you created in the
previous section and then choose Select endpoint configuration.

8. (Optional) For Tags, enter key-value pairs if you want to create metadata for your endpoint.

9. Choose Create endpoint.

Create, invoke, update, and delete a serverless endpoint 4247

Amazon SageMaker Developer Guide

Create, invoke, update, and delete a serverless endpoint 4248

Amazon SageMaker Developer Guide

Invoke a serverless endpoint

In order to perform inference using a serverless endpoint, you must send an HTTP request to the
endpoint. You can use the InvokeEndpoint API or the AWS CLI, which make a POST request to
invoke your endpoint. The maximum request and response payload size for serverless invocations is
4 MB. For serverless endpoints:

• The model must download and the server must respond successfully to /ping within 3 minutes.

• The timeout for the container to respond to inference requests to /invocations is 1 minute.

To invoke an endpoint

The following example uses the AWS SDK for Python (Boto3) to call the InvokeEndpoint API.
Note that unlike the other API calls in this guide, for InvokeEndpoint, you must use SageMaker
Runtime Runtime as the client. Specify the following values:

• For endpoint_name, use the name of the in-service serverless endpoint you want to invoke.

• For content_type, specify the MIME type of your input data in the request body (for example,
application/json).

• For payload, use your request payload for inference. Your payload should be in bytes or a file-
like object.

runtime = boto3.client("sagemaker-runtime")

endpoint_name = "<your-endpoint-name>"
content_type = "<request-mime-type>"
payload = <your-request-body>

response = runtime.invoke_endpoint(
 EndpointName=endpoint_name,
 ContentType=content_type,
 Body=payload
)

Update a serverless endpoint

Before updating your endpoint, create a new endpoint configuration or use an existing endpoint
configuration. The endpoint configuration is where you specify the changes for your update. Then,

Create, invoke, update, and delete a serverless endpoint 4249

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html

Amazon SageMaker Developer Guide

you can update your endpoint with the SageMaker console, the UpdateEndpoint API, or the AWS
CLI. The process for updating a serverless endpoint is the same as the process for updating a real-
time endpoint. Note that when updating your endpoint, you can experience cold starts when
making requests to the endpoint because SageMaker must re-initialize your container and model.

You may want to update an on-demand serverless endpoint to a serverless endpoint with
provisioned concurrency or adjust the Provisioned Concurrency value for an existing serverless
endpoint with provisioned concurrency. For both cases, you will have to create a new serverless
endpoint configuration with the desired value for Provisioned Concurrency, and apply
UpdateEndpoint to the existing serverless endpoint. For more information on creating a
new serverless endpoint configuration with Provisioned Concurrency, see Create an endpoint
configuration.

If you want to remove Provisioned Concurrency from a serverless endpoint, you will have to create
a new endpoint configuration without specifying any value for Provisioned Concurrency, and then
apply UpdateEndpoint to the endpoint.

Note

Updating a real-time inference endpoint to either an on-demand serverless endpoint or a
serverless endpoint with Provisioned Concurrency is currently not supported.

Update the endpoint

After creating a new serverless endpoint configuration you can use the AWS SDK for Python
(Boto3) or the SageMaker console to update an existing serverless endpoint. Examples of how
to update your endpoint using the AWS SDK for Python (Boto3) and the SageMaker console are
outlined in the following sections.

To update the endpoint (using Boto3)

The following example uses the AWS SDK for Python (Boto3) to call the update_endpoint method.
Specify at least the following parameters when calling the method:

• For EndpointName, use the name of the endpoint you’re updating.

• For EndpointConfigName, use the name of the endpoint configuration that you want to use
for the update.

Create, invoke, update, and delete a serverless endpoint 4250

https://console.aws.amazon.com/sagemaker/home
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://console.aws.amazon.com/sagemaker/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/update_endpoint.html

Amazon SageMaker Developer Guide

response = client.update_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<new-endpoint-config>",
)

To update the endpoint (using the console)

1. Sign in to the Amazon SageMaker console.

2. In the navigation tab, choose Inference.

3. Next, choose Endpoints.

4. From the list of endpoints, select the endpoint you want to update.

5. Choose Change in Endpoint configuration settings section.

6. For Change the Endpoint configuration, choose Use an existing endpoint configuration.

7. From the list of endpoint configurations, select the one you want to use for your update.

8. Choose Select endpoint configuration.

9. Choose Update endpoint.

Describe a serverless endpoint

You might want to retrieve information about your endpoint, including details such as the
endpoint’s ARN, current status, deployment configuration, and failure reasons. You can find
information about your endpoint using the SageMaker console, the DescribeEndpoint API, or the
AWS CLI.

To describe an endpoint (using API)

The following example uses the AWS SDK for Python (Boto3) to call the DescribeEndpoint API. For
EndpointName, use the name of the endpoint you want to check.

response = client.describe_endpoint(
 EndpointName="<your-endpoint-name>",
)

To describe an endpoint (using the console)

1. Sign in to the Amazon SageMaker console.

Create, invoke, update, and delete a serverless endpoint 4251

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/home
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#id309
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://console.aws.amazon.com/sagemaker/home

Amazon SageMaker Developer Guide

2. In the navigation tab, choose Inference.

3. Next, choose Endpoints.

4. From the list of endpoints, choose the endpoint you want to check.

The endpoint page contains the information about your endpoint.

Delete a serverless endpoint

You can delete your serverless endpoint using the SageMaker console, the DeleteEndpoint API, or
the AWS CLI. The following examples show you how to delete your endpoint through the API and
the SageMaker console.

To delete an endpoint (using API)

The following example uses the AWS SDK for Python (Boto3) to call the DeleteEndpoint API. For
EndpointName, use the name of the serverless endpoint you want to delete.

response = client.delete_endpoint(
 EndpointName="<your-endpoint-name>",
)

To delete an endpoint (using the console)

1. Sign in to the Amazon SageMaker console.

2. In the navigation tab, choose Inference.

3. Next, choose Endpoints.

4. From the list of endpoints, select the endpoint you want to delete.

5. Choose the Actions drop-down list, and then choose Delete.

6. When prompted again, choose Delete.

Your endpoint should now begin the deletion process.

Monitor a serverless endpoint

To monitor your serverless endpoint, you can use Amazon CloudWatch alarms. CloudWatch is
a service that collects metrics in real time from your AWS applications and resources. An alarm
watches metrics as they are collected and gives you the ability to pre-specify a threshold and the

Monitor a serverless endpoint 4252

https://console.aws.amazon.com/sagemaker/home
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
https://console.aws.amazon.com/sagemaker/home

Amazon SageMaker Developer Guide

actions to take if that threshold is breached. For example, your CloudWatch alarm can send you a
notification if your endpoint breaches an error threshold. By setting up CloudWatch alarms, you
gain visibility into the performance and functionality of your endpoint. For more information about
CloudWatch alarms, see Using Amazon CloudWatch alarms in the Amazon CloudWatch User Guide.

Monitoring with CloudWatch

The metrics below are an exhaustive list of metrics for serverless endpoints. Any metric not listed
below is not published for serverless endpoints. For information about the following metrics, see
Monitor Amazon SageMaker with Amazon CloudWatch.

Common endpoint metrics

These CloudWatch metrics are the same as the metrics published for real-time endpoints.

The OverheadLatency metric tracks all additional latency that SageMaker added which includes
the cold start time for launching new compute resources for your serverless endpoint. Compared to
on-demand serverless endpoints, the OverheadLatency for serverless endpoints with provision
concurrency is generally significantly less.

Serverless endpoints can also use the Invocations4XXErrors, Invocations5XXErrors,
Invocations, ModelLatency, ModelSetupTime and MemoryUtilization metrics. To learn
more about these metrics, see SageMaker Endpoint Invocation Metrics.

Common serverless endpoint metrics

These CloudWatch metrics are published for both on-demand serverless endpoints and serverless
endpoint with Provisioned Concurrency.

Metric Name Description Unit/Stats

ServerlessConcurre
ntExecutionsUtiliz
ation

The number of concurren
t executions divided by the
maximum concurrency.

Units: None

Valid statistics: Average, Max,
Min

Serverless endpoint with Provisioned Concurrency metrics

These CloudWatch metrics are published for serverless endpoints with Provisioned Concurrency.

Monitor a serverless endpoint 4253

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html

Amazon SageMaker Developer Guide

Metric Name Description Unit/Stats

ServerlessProvisio
nedConcurrencyExec
utions

The number of concurrent
executions handled by the
endpoint.

Units: Count

Valid statistics: Average, Max,
Min

ServerlessProvisio
nedConcurrencyUtil
ization

The number of concurren
t executions divided by
the allocated Provisioned
Concurrency.

Units: None

Valid statistics: Average, Max,
Min

ServerlessProvisio
nedConcurrencyInvo
cations

The number of InvokeEnd
point requests handled by
Provisioned Concurrency.

Units: Count

Valid statistics: Average, Max,
Min

ServerlessProvisio
nedConcurrencySpil
loverInvocations

The number of InvokeEnd
point requests not handled
by Provisioned Concurrency,
that is handled by on-demand
Serverless Inference.

Units: Count

Valid statistics: Average, Max,
Min

Logs

If you want to monitor the logs from your endpoint for debugging or progress analysis, you
can use Amazon CloudWatch Logs. The SageMaker-provided log group that you can use for
serverless endpoints is /aws/sagemaker/Endpoints/[EndpointName]. For more information
about using CloudWatch Logs in SageMaker, see Log Amazon SageMaker Events with Amazon
CloudWatch. To learn more about CloudWatch Logs, see What is Amazon CloudWatch Logs? in the
Amazon CloudWatch Logs User Guide.

Automatically scale Provisioned Concurrency for a serverless endpoint

Amazon SageMaker automatically scales in or out on-demand serverless endpoints. For serverless
endpoints with Provisioned Concurrency you can use Application Auto Scaling to scale up or down
the Provisioned Concurrency based on your traffic profile, thus optimizing costs.

Automatically scale Provisioned Concurrency for a serverless endpoint 4254

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Amazon SageMaker Developer Guide

The following are the prerequisites to autoscale Provisioned Concurrency on serverless endpoints:

• Register a model

• Define a scaling policy

• Apply a scaling policy

Before you can use autoscaling, you must have already deployed a model to a serverless endpoint
with Provisioned Concurrency. Deployed models are referred to as production variants. See Create
an endpoint configuration and Create an endpoint for more information about deploying a model
to a serverless endpoint with Provisioned Concurrency. To specify the metrics and target values
for a scaling policy, you must configure a scaling policy. For more information on how to define
a scaling policy, see Define a scaling policy. After registering your model and defining a scaling
policy, apply the scaling policy to the registered model. For information on how to apply the
scaling policy, see Apply a scaling policy.

For details on other prerequisites and components used with autoscaling, see the Auto scaling
overview section in the SageMaker autoscaling documentation.

Register a model

To add autoscaling to a serverless endpoint with Provisioned Concurrency, you first must register
your model (production variant) using AWS CLI or Application Auto Scaling API.

Register a model (AWS CLI)

To register your model, use the register-scalable-target AWS CLI command with the
following parameters:

• --service-namespace – Set this value to sagemaker.

• --resource-id – The resource identifier for the model (specifically the production variant).
For this parameter, the resource type is endpoint and the unique identifier is the name of the
production variant. For example endpoint/MyEndpoint/variant/MyVariant.

• --scalable-dimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

• --min-capacity – The minimum number of Provisioned Concurrency for the model. Set --
min-capacity to at least 1. It must be equal to or less than the value specified for --max-
capacity.

Automatically scale Provisioned Concurrency for a serverless endpoint 4255

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html

Amazon SageMaker Developer Guide

• --max-capacity – The maximum number of Provisioned Concurrency that should be enabled
through Application Auto Scaling. Set --max-capacity to a minimum of 1. It must be greater
than or equal to the value specified for --min-capacity.

The following example shows how to register a model named MyVariant that is dynamically
scaled to have 1 to 10 Provisioned Concurrency value:

aws application-autoscaling register-scalable-target \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredProvisionedConcurrency \
 --resource-id endpoint/MyEndpoint/variant/MyVariant \
 --min-capacity 1 \
 --max-capacity 10

Register a model (Application Auto Scaling API)

To register your model, use the RegisterScalableTarget Application Auto Scaling API action
with the following parameters:

• ServiceNamespace – Set this value to sagemaker.

• ResourceId – The resource identifier for the model (specifically the production variant). For
this parameter, the resource type is endpoint and the unique identifier is the name of the
production variant. For example endpoint/MyEndpoint/variant/MyVariant.

• ScalableDimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

• MinCapacity – The minimum number of Provisioned Concurrency for the model. Set
MinCapacity to at least 1. It must be equal to or less than the value specified for
MaxCapacity.

• MaxCapacity – The maximum number of Provisioned Concurrency that should be enabled
through Application Auto Scaling. Set MaxCapacity to a minimum of 1. It must be greater than
or equal to the value specified for MinCapacity.

The following example shows how to register a model named MyVariant that is dynamically
scaled to have 1 to 10 Provisioned Concurrency value:

POST / HTTP/1.1

Automatically scale Provisioned Concurrency for a serverless endpoint 4256

Amazon SageMaker Developer Guide

Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.RegisterScalableTarget
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/MyEndPoint/variant/MyVariant",
 "ScalableDimension": "sagemaker:variant:DesiredProvisionedConcurrency",
 "MinCapacity": 1,
 "MaxCapacity": 10
}

Define a scaling policy

To specify the metrics and target values for a scaling policy, you can configure a target-
tracking scaling policy. Define the scaling policy as a JSON block in a text file. You can
then use that text file when invoking the AWS CLI or the Application Auto Scaling API.
To quickly define a target-tracking scaling policy for a serverless endpoint, use the
SageMakerVariantProvisionedConcurrencyUtilization predefined metric.

{
 "TargetValue": 0.5,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "SageMakerVariantProvisionedConcurrencyUtilization"
 },
 "ScaleOutCooldown": 1,
 "ScaleInCooldown": 1
}

Apply a scaling policy

After registering your model, you can apply a scaling policy to your serverless endpoint with
Provisioned Concurrency. See Apply a target-tracking scaling policy to apply a target-tracking
scaling policy that you have defined. If the traffic flow to your serverless endpoint has a predictable

Automatically scale Provisioned Concurrency for a serverless endpoint 4257

Amazon SageMaker Developer Guide

routine then instead of applying a target-tracking scaling policy you might want to schedule
scaling actions at specific times. For more information on scheduling scaling actions, see Scheduled
scaling.

Apply a target-tracking scaling policy

You can use the AWS Management Console, AWS CLI or the Application Auto Scaling API to apply a
target-tracking scaling policy to your serverless endpoint with Provisioned Concurrency.

Apply a target-tracking scaling policy (AWS CLI)

To apply a scaling policy to your model, use the put-scaling-policy AWS CLI; command with
the following parameters:

• --policy-name – The name of the scaling policy.

• --policy-type – Set this value to TargetTrackingScaling.

• --resource-id – The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• --service-namespace – Set this value to sagemaker.

• --scalable-dimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

• --target-tracking-scaling-policy-configuration – The target-tracking scaling policy
configuration to use for the model.

The following example shows how to apply a target-tracking scaling policy named
MyScalingPolicy to a model named MyVariant. The policy configuration is saved in a file
named scaling-policy.json.

aws application-autoscaling put-scaling-policy \
 --policy-name MyScalingPolicy \
 --policy-type TargetTrackingScaling \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredProvisionedConcurrency \
 --resource-id endpoint/MyEndpoint/variant/MyVariant \
 --target-tracking-scaling-policy-configuration file://[file-localtion]/scaling-
policy.json

Automatically scale Provisioned Concurrency for a serverless endpoint 4258

Amazon SageMaker Developer Guide

Apply a target-tracking scaling policy (Application Auto Scaling API)

To apply a scaling policy to your model, use the PutScalingPolicy Application Auto Scaling API
action with the following parameters:

• PolicyName – The name of the scaling policy.

• PolicyType – Set this value to TargetTrackingScaling.

• ResourceId – The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• ServiceNamespace – Set this value to sagemaker.

• ScalableDimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

• TargetTrackingScalingPolicyConfiguration – The target-tracking scaling policy
configuration to use for the model.

The following example shows how to apply a target-tracking scaling policy named
MyScalingPolicy to a model named MyVariant. The policy configuration is saved in a file
named scaling-policy.json.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.PutScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "MyScalingPolicy",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/MyEndpoint/variant/MyVariant",
 "ScalableDimension": "sagemaker:variant:DesiredProvisionedConcurrency",
 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration":
 {
 "TargetValue": 0.5,
 "PredefinedMetricSpecification":

Automatically scale Provisioned Concurrency for a serverless endpoint 4259

Amazon SageMaker Developer Guide

 {
 "PredefinedMetricType": "SageMakerVariantProvisionedConcurrencyUtilization"
 }
 }
}

Apply a target-tracking scaling policy (AWS Management Console)

To apply a target-tracking scaling policy with the AWS Management Console:

1. Sign in to the Amazon SageMaker console.

2. In the navigation panel, choose Inference.

3. Choose Endpoints to view a list of all of your endpoints.

4. Choose the endpoint to which you want to apply the scaling policy. A page with the settings of
the endpoint will appear, with the models (production variant) listed under Endpoint runtime
settings section.

5. Select the production variant to which you want to apply the scaling policy, and choose
Configure auto scaling. The Configure variant automatic scaling dialog box appears.

Automatically scale Provisioned Concurrency for a serverless endpoint 4260

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Automatically scale Provisioned Concurrency for a serverless endpoint 4261

Amazon SageMaker Developer Guide

6. Enter the minimum and maximum Provisioned Concurrency values in the Minimum
provisioned concurrency and Maximum provisioned concurrency fields, respectively, in the
Variant automatic scaling section. Minimum Provisioned Concurrency must be less than or
equal to maximum Provisioned Concurrency.

7. Enter the target value in the Target value field for the target metric,
SageMakerVariantProvisionedConcurrencyUtilization.

8. (Optional) Enter scale in cool down and scale out cool down values (in seconds) in Scale in cool
down and Scale out cool down fields respectively.

9. (Optional) Select Disable scale in if you don’t want auto scaling to delete instance when traffic
decreases.

10. Select Save.

Scheduled scaling

If the traffic to your serverless endpoint with Provisioned Concurrency follows a routine pattern
you might want to schedule scaling actions at specific times, to scale in or scale out Provisioned
Concurrency. You can use the AWS CLI or the Application Auto Scaling to schedule scaling actions.

Scheduled scaling (AWS CLI)

To apply a scaling policy to your model, use the put-scheduled-action AWS CLI; command
with the following parameters:

• --schedule-action-name – The name of the scaling action.

• --schedule – A cron expression that specifies the start and end times of the scaling action with
a recurring schedule.

• --resource-id – The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• --service-namespace – Set this value to sagemaker.

• --scalable-dimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

• --scalable-target-action – The target of the scaling action.

The following example shows how to add a scaling action named MyScalingAction to a model
named MyVariant on a recurring schedule. On the specified schedule (every day at 12:15 PM

Automatically scale Provisioned Concurrency for a serverless endpoint 4262

Amazon SageMaker Developer Guide

UTC), if the current Provisioned Concurrency is below the value specified for MinCapacity.
Application Auto Scaling scales out the Provisioned Concurrency to the value specified by
MinCapacity.

aws application-autoscaling put-scheduled-action \
 --scheduled-action-name 'MyScalingAction' \
 --schedule 'cron(15 12 * * ? *)' \
 --service-namespace sagemaker \
 --resource-id endpoint/MyEndpoint/variant/MyVariant \
 --scalable-dimension sagemaker:variant:DesiredProvisionedConcurrency \
 --scalable-target-action 'MinCapacity=10'

Scheduled scaling (Application Auto Scaling API)

To apply a scaling policy to your model, use the PutScheduledAction Application Auto Scaling
API action with the following parameters:

• ScheduleActionName – The name of the scaling action.

• Schedule – A cron expression that specifies the start and end times of the scaling action with a
recurring schedule.

• ResourceId – The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• ServiceNamespace – Set this value to sagemaker.

• ScalableDimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

• ScalableTargetAction – The target of the scaling action.

The following example shows how to add a scaling action named MyScalingAction to a model
named MyVariant on a recurring schedule. On the specified schedule (every day at 12:15 PM
UTC), if the current Provisioned Concurrency is below the value specified for MinCapacity.
Application Auto Scaling scales out the Provisioned Concurrency to the value specified by
MinCapacity.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com

Automatically scale Provisioned Concurrency for a serverless endpoint 4263

Amazon SageMaker Developer Guide

Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.PutScheduledAction
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "ScheduledActionName": "MyScalingAction",
 "Schedule": "cron(15 12 * * ? *)",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/MyEndpoint/variant/MyVariant",
 "ScalableDimension": "sagemaker:variant:DesiredProvisionedConcurrency",
 "ScalableTargetAction": "MinCapacity=10"
 }
 }
}

Delete a scaling policy

You can delete a scaling policy with the AWS Management Console, the AWS CLI, or the Application
Auto Scaling API. For more information on deleting a scaling policy with the AWS Management
Console, see Delete a scaling policy in the SageMaker autoscaling documentation.

Delete a scaling policy (AWS CLI)

To apply a scaling policy to your model, use the delete-scaling-policy AWS CLI; command
with the following parameters:

• --policy-name – The name of the scaling policy.

• --resource-id – The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• --service-namespace – Set this value to sagemaker.

• --scalable-dimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

The following example deletes scaling policy named MyScalingPolicy from a model named
MyVariant.

Automatically scale Provisioned Concurrency for a serverless endpoint 4264

Amazon SageMaker Developer Guide

aws application-autoscaling delete-scaling-policy \
 --policy-name MyScalingPolicy \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredProvisionedConcurrency \
 --resource-id endpoint/MyEndpoint/variant/MyVariant

Delete a scaling policy (Application Auto Scaling API)

To delete a scaling policy to your model, use the DeleteScalingPolicy Application Auto Scaling
API action with the following parameters:

• PolicyName – The name of the scaling policy.

• ResourceId – The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• ServiceNamespace – Set this value to sagemaker.

• ScalableDimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

The following example uses the Application Auto Scaling API to delete a scaling policy named
MyScalingPolicy from a model named MyVariant.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.DeleteScalingPolicy
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "PolicyName": "MyScalingPolicy",
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/MyEndpoint/variant/MyVariant",
 "ScalableDimension": "sagemaker:variant:DesiredProvisionedConcurrency",
}

Automatically scale Provisioned Concurrency for a serverless endpoint 4265

Amazon SageMaker Developer Guide

Deregister a model

You can deregister a model with the AWS Management Console, the AWS CLI, or the Application
Auto Scaling API.

Deregister a model (AWS CLI)

To deregister a model from Application Auto Scaling, use the deregister-scalable-target
AWS CLI; command with the following parameters:

• --resource-id – The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• --service-namespace – Set this value to sagemaker.

• --scalable-dimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

The following example deregisters a model named MyVariant from Application Auto Scaling.

aws application-autoscaling deregister-scalable-target \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredProvisionedConcurrency \
 --resource-id endpoint/MyEndpoint/variant/MyVariant

Deregister a model (Application Auto Scaling API)

To deregister a model from Application Auto Scaling use the DeregisterScalableTarget
Application Auto Scaling API action with the following parameters:

• ResourceId – The resource identifier for the variant. For this parameter, the resource type
is endpoint and the unique identifier is the name of the variant. For example endpoint/
MyEndpoint/variant/MyVariant.

• ServiceNamespace – Set this value to sagemaker.

• ScalableDimension – Set this value to
sagemaker:variant:DesiredProvisionedConcurrency.

Automatically scale Provisioned Concurrency for a serverless endpoint 4266

Amazon SageMaker Developer Guide

The following example uses the Application Auto Scaling API to deregister a model named
MyVariant from Application Auto Scaling.

POST / HTTP/1.1
Host: autoscaling.us-east-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AnyScaleFrontendService.DeregisterScalableTarget
X-Amz-Date: 20160506T182145Z
User-Agent: aws-cli/1.10.23 Python/2.7.11 Darwin/15.4.0 botocore/1.4.8
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "ServiceNamespace": "sagemaker",
 "ResourceId": "endpoint/MyEndpoint/variant/MyVariant",
 "ScalableDimension": "sagemaker:variant:DesiredProvisionedConcurrency",
}

Deregister a model (AWS Management Console)

To deregister a model (production variant) with the AWS Management Console:

1. Open the Amazon SageMaker console.

2. In the navigational panel, choose Inference.

3. Choose Endpoints to view a list of your endpoints.

4. Choose the serverless endpoint hosting the production variant. A page with the settings of
the endpoint will appear, with the production variants listed under Endpoint runtime settings
section.

5. Select the production variant that you want to deregister, and choose Configure auto scaling.
The Configure variant automatic scaling dialog box appears.

6. Choose Deregister auto scaling.

Troubleshooting

If you are having trouble with Serverless Inference, refer to the following troubleshooting tips.

Troubleshooting 4267

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Container issues

If the container you use for a serverless endpoint is the same one you used on an instance-based
endpoint, your container may not have permissions to write files. This can happen for the following
reasons:

• Your serverless endpoint fails to create or update due to a ping health check failure.

• The Amazon CloudWatch logs for the endpoint show that the container is failing to write to
some file or directory due to a permissions error.

To fix this issue, you can try to add read, write, and execute permissions for other on the file or
directory and then rebuild the container. You can perform the following steps to complete this
process:

1. In the Dockerfile you used to build your container, add the following command: RUN chmod o
+rwX <file or directory name>

2. Rebuild the container.

3. Upload the new container image to Amazon ECR.

4. Try to create or update the serverless endpoint again.

Asynchronous inference

Amazon SageMaker Asynchronous Inference is a capability in SageMaker that queues incoming
requests and processes them asynchronously. This option is ideal for requests with large payload
sizes (up to 1GB), long processing times (up to one hour), and near real-time latency requirements.
Asynchronous Inference enables you to save on costs by autoscaling the instance count to zero
when there are no requests to process, so you only pay when your endpoint is processing requests.

How It Works

Creating an asynchronous inference endpoint is similar to creating real-time inference
endpoints. You can use your existing SageMaker models and only need to specify the
AsyncInferenceConfig object while creating your endpoint configuration with the
EndpointConfig field in the CreateEndpointConfig API. The following diagram shows the
architecture and workflow of Asynchronous Inference.

Asynchronous inference 4268

Amazon SageMaker Developer Guide

To invoke the endpoint, you need to place the request payload in Amazon S3 and provide a pointer
to this payload as a part of the InvokeEndpointAsync request. Upon invocation, SageMaker
queues the request for processing and returns an identifier and output location as a response.
Upon processing, SageMaker places the result in the Amazon S3 location. You can optionally
choose to receive success or error notifications with Amazon SNS. For more information about how
to set up asynchronous notifications, see Check prediction results.

Note

The presence of an asynchronous inference configuration (AsyncInferenceConfig)
object in the endpoint configuration implies that the endpoint can only receive
asynchronous invocations.

How Do I Get Started?

If you are a first-time user of Amazon SageMaker Asynchronous Inference, we recommend that you
do the following:

• Read Create, invoke, and update an Asynchronous Endpoint for information on how to create,
invoke, update, and delete an asynchronous endpoint.

How Do I Get Started? 4269

Amazon SageMaker Developer Guide

• Explore the Asynchronous Inference example notebook in the aws/amazon-sagemaker-examples
GitHub repository.

Note that if your endpoint uses any of the features listed in this Exclusions page, you cannot use
Asynchronous Inference.

Create, invoke, and update an Asynchronous Endpoint

This guide demonstrates the prerequisites you must satisfy to create an asynchronous endpoint,
along with how to create, invoke, and delete your asynchronous endpoints. You can create, update,
delete, and invoke asynchronous endpoints with the AWS SDKs and the Amazon SageMaker Python
SDK.

Topics

• Prerequisites

• Create an Asynchronous Inference Endpoint

• Invoke an Asynchronous Endpoint

• Update an Asynchronous Endpoint

• Delete an Asynchronous Endpoint

Prerequisites

To use asynchronous endpoints, first make sure you have met these prerequisites.

1. Create an IAM role for Amazon SageMaker.

Asynchronous Inference needs access to your Amazon S3 bucket URI. To facilitate this, create
an IAM role that can run SageMaker and has permission to access Amazon S3 and Amazon
SNS. Using this role, SageMaker can run under your account and access your Amazon S3
bucket and Amazon SNS topics.

You can create an IAM role by using the IAM console, AWS SDK for Python (Boto3), or AWS CLI.
The following is an example of how to create an IAM role and attach the necessary policies
with the IAM console.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Create, invoke, and update an Asynchronous Endpoint 4270

https://github.com/aws/amazon-sagemaker-examples/blob/master/async-inference/Async-Inference-Walkthrough.ipynb
https://github.com/aws/amazon-sagemaker-examples
https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-asynchronous-inference
https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-asynchronous-inference
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

b. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

c. For Select type of trusted entity, choose AWS service.

d. Choose the service that you want to allow to assume this role. In this case, choose
SageMaker. Then choose Next: Permissions.

• This automatically creates an IAM policy that grants access to related services such as
Amazon S3, Amazon ECR, and CloudWatch Logs.

e. Choose Next: Tags.

f. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

g. Choose Next: Review.

h. Type in a Role name.

i. If possible, type a role name or role name suffix. Role names must be unique within your
AWS account. They are not distinguished by case. For example, you cannot create roles
named both PRODROLE and prodrole. Because other AWS resources might reference the
role, you cannot edit the name of the role after it has been created.

j. (Optional) For Role description, type a description for the new role.

k. Review the role and then choose Create role.

Note the SageMaker role ARN. To find the role ARN using the console, do the following:

i. Go to the IAM console: https://console.aws.amazon.com/iam/

ii. Select Roles.

iii. Search for the role you just created by typing in the name of the role in the search
field.

iv. Select the role.

v. The role ARN is at the top of the Summary page.

2. Add Amazon SageMaker, Amazon S3 and Amazon SNS Permissions to your IAM Role.

Once the role is created, grant SageMaker, Amazon S3, and optionally Amazon SNS
permissions to your IAM role.

Choose Roles in the IAM console. Search for the role you created by typing in your role name
in the Search field.

Create, invoke, and update an Asynchronous Endpoint 4271

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

a. Choose your role.

b. Next, choose Attach Policies.

c. Amazon SageMaker Asynchronous Inference needs permission to perform the following
actions: "sagemaker:CreateModel", "sagemaker:CreateEndpointConfig",
"sagemaker:CreateEndpoint", and "sagemaker:InvokeEndpointAsync".

These actions are included in the AmazonSageMakerFullAccess policy. Add this policy
to your IAM role. Search for AmazonSageMakerFullAccess in the Search field. Select
AmazonSageMakerFullAccess.

d. Choose Attach policy.

e. Next, choose Attach Policies to add Amazon S3 permissions.

f. Select Create policy.

g. Select the JSON tab.

h. Add the following policy statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:AbortMultipartUpload",
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::bucket_name/*"
 }
]
}

i. Choose Next: Tags.

j. Type in a Policy name.

k. Choose Create policy.

l. Repeat the same steps you completed to add Amazon S3 permissions in order to add
Amazon SNS permissions. For the policy statement, attach the following:

Create, invoke, and update an Asynchronous Endpoint 4272

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Effect": "Allow",
 "Resource": "arn:aws:sns:<region>:<Account_ID>:<SNS_Topic>"
 }
]
}

3. Upload your inference data (e.g., machine learning model, sample data) to Amazon S3.

4. Select a prebuilt Docker inference image or create your own Inference Docker Image.

SageMaker provides containers for its built-in algorithms and prebuilt Docker images for
some of the most common machine learning frameworks, such as Apache MXNet, TensorFlow,
PyTorch, and Chainer. For a full list of the available SageMaker images, see Available Deep
Learning Containers Images. If you choose to use a SageMaker provided container, you can
increase the endpoint timeout and payload sizes from the default by setting the environment
variables in the container. To learn how to set the different environment variables for each
framework, see the Create a Model step of creating an asynchronous endpoint.

If none of the existing SageMaker containers meet your needs and you don't have an existing
container of your own, you may need to create a new Docker container. See Use your own
inference code for information on how to create your Docker image.

5. Create an Amazon SNS topic (optional)

Create an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications
about requests that have completed processing. Amazon SNS is a notification service
for messaging-oriented applications, with multiple subscribers requesting and receiving
"push" notifications of time-critical messages via a choice of transport protocols, including
HTTP, Amazon SQS, and email. You can specify Amazon SNS topics when you create
an EndpointConfig object when you specify AsyncInferenceConfig using the
EndpointConfig API.

Follow the steps to create and subscribe to an Amazon SNS topic.

Create, invoke, and update an Asynchronous Endpoint 4273

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

a. Using Amazon SNS console, create a topic. For instructions, see Creating an Amazon SNS
topic in the Amazon Simple Notification Service Developer Guide.

b. Subscribe to the topic. For instructions, see Subscribing to an Amazon SNS topic in the
Amazon Simple Notification Service Developer Guide.

c. When you receive email requesting that you confirm your subscription to the topic,
confirm the subscription.

d. Note the topic Amazon Resource Name (ARN). The Amazon SNS topic you created
is another resource in your AWS account, and it has a unique ARN. The ARN is in the
following format:

arn:aws:sns:aws-region:account-id:topic-name

For more information about Amazon SNS, see the Amazon SNS Developer Guide.

Create an Asynchronous Inference Endpoint

Create an asynchronous endpoint the same way you would create an endpoint using SageMaker
hosting services:

• Create a model in SageMaker with CreateModel.

• Create an endpoint configuration with CreateEndpointConfig.

• Create an HTTPS endpoint with CreateEndpoint.

To create an endpoint, you first create a model with CreateModel, where you point to the
model artifact and a Docker registry path (Image). You then create a configuration using
CreateEndpointConfig where you specify one or more models that were created using the
CreateModel API to deploy and the resources that you want SageMaker to provision. Create your
endpoint with CreateEndpoint using the endpoint configuration specified in the request. You
can update an asynchronous endpoint with the UpdateEndpoint API. Send and receive inference
requests from the model hosted at the endpoint with InvokeEndpointAsync. You can delete
your endpoints with the DeleteEndpoint API.

For a full list of the available SageMaker Images, see Available Deep Learning Containers Images.
See Use your own inference code for information on how to create your Docker image.

Create, invoke, and update an Asynchronous Endpoint 4274

https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-create-subscribe-endpoint-to-topic.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

Create a Model

The following example shows how to create a model using the AWS SDK for Python (Boto3). The
first few lines define:

• sagemaker_client: A low-level SageMaker client object that makes it easy to send and receive
requests to AWS services.

• sagemaker_role: A string variable with the SageMaker IAM role Amazon Resource Name (ARN).

• aws_region: A string variable with the name of your AWS region.

import boto3

Specify your AWS Region
aws_region='<aws_region>'

Create a low-level SageMaker service client.
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

Role to give SageMaker permission to access AWS services.
sagemaker_role= "arn:aws:iam::<account>:role/*"

Next, specify the location of the pre-trained model stored in Amazon S3. In this example, we use
a pre-trained XGBoost model named demo-xgboost-model.tar.gz. The full Amazon S3 URI is
stored in a string variable model_url:

#Create a variable w/ the model S3 URI
s3_bucket = '<your-bucket-name>' # Provide the name of your S3 bucket
bucket_prefix='saved_models'
model_s3_key = f"{bucket_prefix}/demo-xgboost-model.tar.gz"

#Specify S3 bucket w/ model
model_url = f"s3://{s3_bucket}/{model_s3_key}"

Specify a primary container. For the primary container, you specify the Docker image that contains
inference code, artifacts (from prior training), and a custom environment map that the inference
code uses when you deploy the model for predictions.

In this example, we specify an XGBoost built-in algorithm container image:

from sagemaker import image_uris

Create, invoke, and update an Asynchronous Endpoint 4275

Amazon SageMaker Developer Guide

Specify an AWS container image.
container = image_uris.retrieve(region=aws_region, framework='xgboost',
 version='0.90-1')

Create a model in Amazon SageMaker with CreateModel. Specify the following:

• ModelName: A name for your model (in this example it is stored as a string variable called
model_name).

• ExecutionRoleArn: The Amazon Resource Name (ARN) of the IAM role that Amazon
SageMaker can assume to access model artifacts and Docker images for deployment on ML
compute instances or for batch transform jobs.

• PrimaryContainer: The location of the primary Docker image containing inference code,
associated artifacts, and custom environment maps that the inference code uses when the model
is deployed for predictions.

model_name = '<The_name_of_the_model>'

#Create model
create_model_response = sagemaker_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = sagemaker_role,
 PrimaryContainer = {
 'Image': container,
 'ModelDataUrl': model_url,
 })

See CreateModel description in the SageMaker API Reference Guide for a full list of API
parameters.

If you're using a SageMaker provided container, you can increase the model server timeout
and payload sizes from the default values to the framework‐supported maximums by setting
environment variables in this step. You might not be able to leverage the maximum timeout and
payload sizes that Asynchronous Inference supports if you don't explicitly set these variables.
The following example shows how you can set the environment variables for a PyTorch Inference
container based on TorchServe.

model_name = '<The_name_of_the_model>'

Create, invoke, and update an Asynchronous Endpoint 4276

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

#Create model
create_model_response = sagemaker_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = sagemaker_role,
 PrimaryContainer = {
 'Image': container,
 'ModelDataUrl': model_url,
 'Environment': {
 'TS_MAX_REQUEST_SIZE': '100000000',
 'TS_MAX_RESPONSE_SIZE': '100000000',
 'TS_DEFAULT_RESPONSE_TIMEOUT': '1000'
 },
 })

After you finish creating your endpoint, you should test that you've set the environment variables
correctly by printing them out from your inference.py script. The following table lists the
environment variables for several frameworks that you can set to change the default values.

Framework Environment variables

PyTorch 1.8 (based on TorchServe) 'TS_MAX_REQUEST_SIZE': '100000000'

'TS_MAX_RESPONSE_SIZE': '100000000'

'TS_DEFAULT_RESPONSE_TIMEOUT': '1000'

PyTorch 1.4 (based on MMS) 'MMS_MAX_REQUEST_SIZE': '1000000000'

'MMS_MAX_RESPONSE_SIZE': '1000000000'

'MMS_DEFAULT_RESPONSE_TIMEOUT': '900'

HuggingFace Inference Container (based on
MMS)

'MMS_MAX_REQUEST_SIZE': '2000000000'

'MMS_MAX_RESPONSE_SIZE': '2000000000'

'MMS_DEFAULT_RESPONSE_TIMEOUT': '900'

Create, invoke, and update an Asynchronous Endpoint 4277

Amazon SageMaker Developer Guide

Create an Endpoint Configuration

Once you have a model, create an endpoint configuration with CreateEndpointConfig. Amazon
SageMaker hosting services uses this configuration to deploy models. In the configuration, you
identify one or more models, created using with CreateModel, to deploy the resources that you
want Amazon SageMaker to provision. Specify the AsyncInferenceConfig object and provide
an output Amazon S3 location for OutputConfig. You can optionally specify Amazon SNS topics
on which to send notifications about prediction results. For more information about Amazon SNS
topics, see Configuring Amazon SNS.

The following example shows how to create an endpoint configuration using AWS SDK for Python
(Boto3):

import datetime
from time import gmtime, strftime

Create an endpoint config name. Here we create one based on the date
so it we can search endpoints based on creation time.
endpoint_config_name = f"XGBoostEndpointConfig-{strftime('%Y-%m-%d-%H-%M-%S',
 gmtime())}"

The name of the model that you want to host. This is the name that you specified when
 creating the model.
model_name='<The_name_of_your_model>'

create_endpoint_config_response = sagemaker_client.create_endpoint_config(
 EndpointConfigName=endpoint_config_name, # You will specify this name in a
 CreateEndpoint request.
 # List of ProductionVariant objects, one for each model that you want to host at
 this endpoint.
 ProductionVariants=[
 {
 "VariantName": "variant1", # The name of the production variant.
 "ModelName": model_name,
 "InstanceType": "ml.m5.xlarge", # Specify the compute instance type.
 "InitialInstanceCount": 1 # Number of instances to launch initially.
 }
],
 AsyncInferenceConfig={
 "OutputConfig": {
 # Location to upload response outputs when no location is provided in the
 request.

Create, invoke, and update an Asynchronous Endpoint 4278

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/sns-configuring.html

Amazon SageMaker Developer Guide

 "S3OutputPath": f"s3://{s3_bucket}/{bucket_prefix}/output"
 # (Optional) specify Amazon SNS topics
 "NotificationConfig": {
 "SuccessTopic": "arn:aws:sns:aws-region:account-id:topic-name",
 "ErrorTopic": "arn:aws:sns:aws-region:account-id:topic-name",
 }
 },
 "ClientConfig": {
 # (Optional) Specify the max number of inflight invocations per instance
 # If no value is provided, Amazon SageMaker will choose an optimal value
 for you
 "MaxConcurrentInvocationsPerInstance": 4
 }
 }
)

print(f"Created EndpointConfig:
 {create_endpoint_config_response['EndpointConfigArn']}")

In the aforementioned example, you specify the following keys for OutputConfig for the
AsyncInferenceConfig field:

• S3OutputPath: Location to upload response outputs when no location is provided in the
request.

• NotificationConfig: (Optional) SNS topics that post notifications to you when an inference
request is successful (SuccessTopic) or if it fails (ErrorTopic).

You can also specify the following optional argument for ClientConfig in the
AsyncInferenceConfig field:

• MaxConcurrentInvocationsPerInstance: (Optional) The maximum number of concurrent
requests sent by the SageMaker client to the model container.

Create Endpoint

Once you have your model and endpoint configuration, use the CreateEndpoint API to create
your endpoint. The endpoint name must be unique within an AWS Region in your AWS account.

The following creates an endpoint using the endpoint configuration specified in the request.
Amazon SageMaker uses the endpoint to provision resources and deploy models.

Create, invoke, and update an Asynchronous Endpoint 4279

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

The name of the endpoint.The name must be unique within an AWS Region in your AWS
 account.
endpoint_name = '<endpoint-name>'

The name of the endpoint configuration associated with this endpoint.
endpoint_config_name='<endpoint-config-name>'

create_endpoint_response = sagemaker_client.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)

When you call the CreateEndpoint API, Amazon SageMaker Asynchronous Inference sends a
test notification to check that you have configured an Amazon SNS topic. Amazon SageMaker
Asynchronous Inference also sends test notifications after calls to UpdateEndpoint and
UpdateEndpointWeightsAndCapacities. This lets SageMaker check that you have the required
permissions. The notification can simply be ignored. The test notification has the following form:

{
 "eventVersion":"1.0",
 "eventSource":"aws:sagemaker",
 "eventName":"TestNotification"
}

Invoke an Asynchronous Endpoint

Get inferences from the model hosted at your asynchronous endpoint with
InvokeEndpointAsync.

Note

If you have not done so already, upload your inference data (e.g., machine learning model,
sample data) to Amazon S3.

Specify the following fields in your request:

• For InputLocation, specify the location of your inference data.

• For EndpointName, specify the name of your endpoint.

Create, invoke, and update an Asynchronous Endpoint 4280

Amazon SageMaker Developer Guide

• (Optional) For InvocationTimeoutSeconds, you can set the max timeout for the requests.
You can set this value to a maximum of 3600 seconds (one hour) on a per-request basis. If you
don't specify this field in your request, by default the request times out at 15 minutes.

Create a low-level client representing Amazon SageMaker Runtime
sagemaker_runtime = boto3.client("sagemaker-runtime", region_name=<aws_region>)

Specify the location of the input. Here, a single SVM sample
input_location = "s3://bucket-name/test_point_0.libsvm"

The name of the endpoint. The name must be unique within an AWS Region in your AWS
 account.
endpoint_name='<endpoint-name>'

After you deploy a model into production using SageMaker hosting
services, your client applications use this API to get inferences
from the model hosted at the specified endpoint.
response = sagemaker_runtime.invoke_endpoint_async(
 EndpointName=endpoint_name,
 InputLocation=input_location,
 InvocationTimeoutSeconds=3600)

You receive a response as a JSON string with your request ID and the name of the Amazon S3
bucket that will have the response to the API call after it is processed.

Update an Asynchronous Endpoint

Update an asynchronous endpoint with the UpdateEndpoint API. When you update an endpoint,
SageMaker first provisions and switches to the new endpoint configuration you specify before
it deletes the resources that were provisioned in the previous endpoint configuration. Do not
delete an EndpointConfig with an endpoint that is live or while the UpdateEndpoint or
CreateEndpoint operations are being performed on the endpoint.

The name of the endpoint. The name must be unique within an AWS Region in your AWS
 account.
endpoint_name='<endpoint-name>'

The name of the endpoint configuration associated with this endpoint.
endpoint_config_name='<endpoint-config-name>'

sagemaker_client.update_endpoint(

Create, invoke, and update an Asynchronous Endpoint 4281

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html

Amazon SageMaker Developer Guide

 EndpointConfigName=endpoint_config_name,
 EndpointName=endpoint_name
)

When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After
updating the asynchronous endpoint, it sets the status to InService. To check the status of an
endpoint, use the DescribeEndpoint API. For a full list of parameters you can specify when
updating an endpoint, see the UpdateEndpoint API.

Delete an Asynchronous Endpoint

Delete an asynchronous endpoint in a similar manner to how you would delete a SageMaker hosted
endpoint with the DeleteEndpoint API. Specify the name of the asynchronous endpoint you
want to delete. When you delete an endpoint, SageMaker frees up all of the resources that were
deployed when the endpoint was created. Deleting a model does not delete model artifacts,
inference code, or the IAM role that you specified when creating the model.

Delete your SageMaker model with the DeleteModel API or with the SageMaker console.

Boto3

import boto3

Create a low-level SageMaker service client.
sagemaker_client = boto3.client('sagemaker', region_name=<aws_region>)
sagemaker_client.delete_endpoint(EndpointName='<endpoint-name>')

SageMaker console

1. Navigate to the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Expand the Inference dropdown list.

3. Select Endpoints.

4. Search for endpoint in the Search endpoints search bar.

5. Select your endpoint.

6. Choose Delete.

In addition to deleting the asynchronous endpoint, you might want to clear up other resources
that were used to create the endpoint, such as the Amazon ECR repository (if you created a custom
inference image), the SageMaker model, and the asynchronous endpoint configuration itself.

Create, invoke, and update an Asynchronous Endpoint 4282

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModel.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Monitor asynchronous endpoint

You can monitor SageMaker using Amazon CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. With Amazon CloudWatch, you can access historical
information and gain a better perspective on how your web application or service is performing.
For more information about Amazon CloudWatch, see What is Amazon CloudWatch?

Monitoring with CloudWatch

The metrics below are an exhaustive list of metrics for asynchronous endpoints and are in the
the AWS/SageMaker namespace. Any metric not listed below is not published if the endpoint is
enabled for asynchronous inference. Such metrics include (but are not limited to):

• OverheadLatency

• Invocations

• InvocationsPerInstance

Common Endpoint Metrics

These metrics are the same as the metrics published for real-time endpoints today. For more
information about other metrics in Amazon CloudWatch, see Monitor SageMaker with Amazon
CloudWatch.

Metric Name Description Unit/Stats

Invocation4XXErrors The number of requests
where the model returned a
4xx HTTP response code. For
each 4xx response, 1 is sent;
otherwise, 0 is sent.

Units: None

Valid statistics: Average, Sum

Invocation5XXErrors The number of InvokeEnd
point requests where the
model returned a 5xx HTTP
response code. For each 5xx
response, 1 is sent; otherwise
, 0 is sent.

Units: None

Valid statistics: Average, Sum

Monitor asynchronous endpoint 4283

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html

Amazon SageMaker Developer Guide

Metric Name Description Unit/Stats

ModelLatency The interval of time taken
by a model to respond as
viewed from SageMaker. This
interval includes the local
communication times taken
to send the request and to
fetch the response from the
container of a model and the
time taken to complete the
inference in the container.

Units: Microseconds

Valid statistics: Average, Sum,
Min, Max, Sample Count

Asynchronous Inference Endpoint Metrics

These metrics are published for endpoints enabled for asynchronous inference. The following
metrics are published with the EndpointName dimension:

Metric Name Description Unit/Stats

ApproximateBacklog
Size

The number of items in the
queue for an endpoint that
are currently being processed
or yet to be processed.

Units: Count

Valid statistics: Average, Max,
Min

ApproximateBacklog
SizePerInstance

Number of items in the queue
divided by the number of
instances behind an endpoint.
This metric is primarily used
for setting up application
autoscaling for an async-ena
bled endpoint.

Units: Count

Valid statistics: Average, Max,
Min

ApproximateAgeOfOl
destRequest

Age of the oldest request in
the queue.

Units: Seconds

Valid statistics: Average, Max,
Min

Monitor asynchronous endpoint 4284

Amazon SageMaker Developer Guide

Metric Name Description Unit/Stats

HasBacklogWithoutC
apacity

The value of this metric is 1
when there are requests in
the queue but zero instances
behind the endpoint. The
value is 0 at all other times.
You can use this metric for
autoscaling your endpoint
up from zero instances upon
receiving a new request in the
queue.

Units: Count

Valid statistics: Average

The following metrics are published with the EndpointName and VariantName dimensions:

Metric Name Description Unit/Stats

RequestDownloadFai
lures

When an inference failure
occurs due to an issue
downloading the request
from Amazon S3.

Units: Count

Valid statistics: Sum

ResponseUploadFail
ures

When an inference failure
occurs due to an issue
uploading the response to
Amazon S3.

Units: Count

Valid statistics: Sum

NotificationFailures When an issue occurs
publishing notifications.

Units: Count

Valid statistics: Sum

RequestDownloadLat
ency

Total time to download the
request payload.

Units: Microseconds

Valid statistics: Average, Sum,
Min, Max, Sample Count

ResponseUploadLate
ncy

Total time to upload the
response payload.

Units: Microseconds

Monitor asynchronous endpoint 4285

Amazon SageMaker Developer Guide

Metric Name Description Unit/Stats

Valid statistics: Average, Sum,
Min, Max, Sample Count

ExpiredRequests Number of requests in
the queue that fail due to
reaching their specified
request TTL.

Units: Count

Valid statistics: Sum

InvocationFailures If an invocation fails for any
reason.

Units: Count

Valid statistics: Sum

InvocationsProcess
sed

Number of async invocations
processed by the endpoint.

Units: Count

Valid statistics: Sum

TimeInBacklog Total time the request
was queued before being
processed. This does not
include the actual processin
g time (i.e. downloading
time, uploading time, model
latency).

Units: Milliseconds

Valid statistics: Average, Sum,
Min, Max, Sample Count

TotalProcessingTime Time the inference request
was recieved by SageMaker to
the time the request finished
processing. This includes time
in backlog and time to upload
and send response notificat
ions, if any.

Units: Milliseconds

Valid statistics: Average, Sum,
Min, Max, Sample Count

Amazon SageMaker Asynchronous Inference also includes host-level metrics. For information on
host-level metrics, see SageMaker Jobs and Endpoint Metrics.

Monitor asynchronous endpoint 4286

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-jobs

Amazon SageMaker Developer Guide

Logs

In addition to the Model container logs that are published to Amazon CloudWatch in your account,
you also get a new platform log for tracing and debugging inference requests.

The new logs are published under the Endpoint Log Group:

/aws/sagemaker/Endpoints/[EndpointName]

The log stream name consists of:

[production-variant-name]/[instance-id]/data-log.

Log lines contain the request’s inference ID so that errors can be easily mapped to a particular
request.

Check prediction results

There are several ways you can check predictions results from your asynchronous endpoint. Some
options are:

1. Amazon SNS topics.

2. Check for outputs in your Amazon S3 bucket.

Amazon SNS Topics

Amazon SNS is a notification service for messaging-oriented applications, with multiple subscribers
requesting and receiving "push" notifications of time-critical messages via a choice of transport
protocols, including HTTP, Amazon SQS, and email. Amazon SageMaker Asynchronous Inference
posts notifications when you create an endpoint with CreateEndpointConfig and specify an
Amazon SNS topic.

Note

In order to receive Amazon SNS notifications, your IAM role must have sns:Publish
permissions. See the Prerequisites for information on requirements you must satisfy to use
Asynchronous Inference.

Check prediction results 4287

https://docs.aws.amazon.com/sagemaker/latest/dg/logging-cloudwatch.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html

Amazon SageMaker Developer Guide

To use Amazon SNS to check prediction results from your asynchronous endpoint, you first need to
create a topic, subscribe to the topic, confirm your subscription to the topic, and note the Amazon
Resource Name (ARN) of that topic. For detailed information on how to create, subscribe, and find
the Amazon ARN of an Amazon SNS topic, see Configuring Amazon SNS.

Provide the Amazon SNS topic ARN(s) in the AsyncInferenceConfig field when you create an
endpoint configuration with CreateEndpointConfig. You can specify both an Amazon SNS
ErrorTopic and an SuccessTopic.

import boto3

sagemaker_client = boto3.client('sagemaker', region_name=<aws_region>)

sagemaker_client.create_endpoint_config(
 EndpointConfigName=<endpoint_config_name>, # You specify this name in a
 CreateEndpoint request.
 # List of ProductionVariant objects, one for each model that you want to host at
 this endpoint.
 ProductionVariants=[
 {
 "VariantName": "variant1", # The name of the production variant.
 "ModelName": "model_name",
 "InstanceType": "ml.m5.xlarge", # Specify the compute instance type.
 "InitialInstanceCount": 1 # Number of instances to launch initially.
 }
],
 AsyncInferenceConfig={
 "OutputConfig": {
 # Location to upload response outputs when no location is provided in the
 request.
 "S3OutputPath": "s3://<bucket>/<output_directory>"
 "NotificationConfig": {
 "SuccessTopic": "arn:aws:sns:aws-region:account-id:topic-name",
 "ErrorTopic": "arn:aws:sns:aws-region:account-id:topic-name",
 }
 }
 }
)

After creating your endpoint and invoking it, you receive a notification from your Amazon SNS
topic. For example, if you subscribed to receive email notifications from your topic, you receive an

Check prediction results 4288

https://docs.aws.amazon.com/sns/latest/dg/sns-configuring.html

Amazon SageMaker Developer Guide

email notification every time you invoke your endpoint. The following example shows the JSON
content of a successful invocation email notification.

{
 "awsRegion":"us-east-1",
 "eventTime":"2022-01-25T22:46:00.608Z",
 "receivedTime":"2022-01-25T22:46:00.455Z",
 "invocationStatus":"Completed",
 "requestParameters":{
 "contentType":"text/csv",
 "endpointName":"<example-endpoint>",
 "inputLocation":"s3://<bucket>/<input-directory>/input-data.csv"
 },
 "responseParameters":{
 "contentType":"text/csv; charset=utf-8",
 "outputLocation":"s3://<bucket>/<output_directory>/prediction.out"
 },
 "inferenceId":"11111111-2222-3333-4444-555555555555",
 "eventVersion":"1.0",
 "eventSource":"aws:sagemaker",
 "eventName":"InferenceResult"
}

Check Your S3 Bucket

When you invoke an endpoint with InvokeEndpointAsync, it returns a response object. You can
use the response object to get the Amazon S3 URI where your output is stored. With the output
location, you can use a SageMaker Python SDK SageMaker session class to programmatically check
for on an output.

The following stores the output dictionary of InvokeEndpointAsync as a variable named
response. With the response variable, you then get the Amazon S3 output URI and store it as a
string variable called output_location.

import uuid
import boto3

sagemaker_runtime = boto3.client("sagemaker-runtime", region_name=<aws_region>)

Specify the S3 URI of the input. Here, a single SVM sample
input_location = "s3://bucket-name/test_point_0.libsvm"

Check prediction results 4289

Amazon SageMaker Developer Guide

response = sagemaker_runtime.invoke_endpoint_async(
 EndpointName='<endpoint-name>',
 InputLocation=input_location,
 InferenceId=str(uuid.uuid4()),
 ContentType="text/libsvm" #Specify the content type of your data
)

output_location = response['OutputLocation']
print(f"OutputLocation: {output_location}")

For information about supported content types, see Common Data Formats for Inference.

With the Amazon S3 output location, you can then use a SageMaker Python SDK SageMaker
Session Class to read in Amazon S3 files. The following code example shows how to create a
function (get_ouput) that repeatedly attempts to read a file from the Amazon S3 output location:

import sagemaker
import urllib, time
from botocore.exceptions import ClientError

sagemaker_session = sagemaker.session.Session()

def get_output(output_location):
 output_url = urllib.parse.urlparse(output_location)
 bucket = output_url.netloc
 key = output_url.path[1:]
 while True:
 try:
 return sagemaker_session.read_s3_file(
 bucket=output_url.netloc,
 key_prefix=output_url.path[1:])
 except ClientError as e:
 if e.response['Error']['Code'] == 'NoSuchKey':
 print("waiting for output...")
 time.sleep(2)
 continue
 raise

output = get_output(output_location)
print(f"Output: {output}")

Check prediction results 4290

https://sagemaker.readthedocs.io/en/stable/api/utility/session.html?highlight=session
https://sagemaker.readthedocs.io/en/stable/api/utility/session.html?highlight=session

Amazon SageMaker Developer Guide

Autoscale an asynchronous endpoint

Amazon SageMaker supports automatic scaling (autoscaling) your asynchronous endpoint.
Autoscaling dynamically adjusts the number of instances provisioned for a model in response
to changes in your workload. Unlike other hosted models Amazon SageMaker supports, with
Asynchronous Inference you can also scale down your asynchronous endpoints instances to zero.
Requests that are received when there are zero instances are queued for processing once the
endpoint scales up.

To autoscale your asynchronous endpoint you must at a minimum:

• Register a deployed model (production variant).

• Define a scaling policy.

• Apply the autoscaling policy.

Before you can use autoscaling, you must have already deployed a model to a SageMaker endpoint.
Deployed models are referred to as a production variant. See Deploy the Model to SageMaker
Hosting Services for more information about deploying a model to an endpoint. To specify the
metrics and target values for a scaling policy, you configure a scaling policy. For information
on how to define a scaling policy, see Define a scaling policy. After registering your model and
defining a scaling policy, apply the scaling policy to the registered model. For information on how
to apply the scaling policy, see Apply a scaling policy.

For more information on how to define an optional additional scaling policy that scales up your
endpoint upon receiving a request after your endpoint has been scaled down to zero, see Optional:
Define a scaling policy that scales up from zero for new requests. If you don’t specify this optional
policy, then your endpoint only initiates scaling up from zero after the number of backlog requests
exceeds the target tracking value.

For details on other prerequisites and components used with autoscaling, see the Prerequisites
section in the SageMaker autoscaling documentation.

Note

If you attach multiple scaling policies to the same autoscaling group, you might have
scaling conflicts. When a conflict occurs, Amazon EC2 Auto Scaling chooses the policy
that provisions the largest capacity for both scale out and scale in. For more information

Autoscale an asynchronous endpoint 4291

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-model-deployment.html#ex1-deploy-model
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-model-deployment.html#ex1-deploy-model
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-add-code-define.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-add-code-apply.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-prerequisites.html

Amazon SageMaker Developer Guide

about this behavior, see Multiple dynamic scaling policies in the Amazon EC2 Auto Scaling
documentation.

Define a scaling policy

To specify the metrics and target values for a scaling policy, you configure a target-tracking scaling
policy. Define the scaling policy as a JSON block in a text file. You use that text file when invoking
the AWS CLI or the Application Auto Scaling API. For more information about policy configuration
syntax, see TargetTrackingScalingPolicyConfiguration in the Application Auto Scaling
API Reference.

For asynchronous endpoints SageMaker strongly recommends that you create a
policy configuration for target-tracking scaling for a variant. In this configuration
example, we use a custom metric, CustomizedMetricSpecification, called
ApproximateBacklogSizePerInstance.

TargetTrackingScalingPolicyConfiguration={
 'TargetValue': 5.0, # The target value for the metric. Here the metric is:
 ApproximateBacklogSizePerInstance
 'CustomizedMetricSpecification': {
 'MetricName': 'ApproximateBacklogSizePerInstance',
 'Namespace': 'AWS/SageMaker',
 'Dimensions': [
 {'Name': 'EndpointName', 'Value': <endpoint_name> }
],
 'Statistic': 'Average',
 }
 }

Define a scaling policy that scales to zero

The following shows you how to both define and register your endpoint variant with application
autoscaling using the AWS SDK for Python (Boto3). After defining a low-level client object
representing application autoscaling with Boto3, we use the RegisterScalableTarget method
to register the production variant. We set MinCapacity to 0 because Asynchronous Inference
enables you to autoscale to 0 when there are no requests to process.

Common class representing application autoscaling for SageMaker

Autoscale an asynchronous endpoint 4292

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scale-based-on-demand.html#multiple-scaling-policy-resolution
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/application-autoscaling.html#ApplicationAutoScaling.Client.register_scalable_target

Amazon SageMaker Developer Guide

client = boto3.client('application-autoscaling')

This is the format in which application autoscaling references the endpoint
resource_id='endpoint/' + <endpoint_name> + '/variant/' + <'variant1'>

Define and register your endpoint variant
response = client.register_scalable_target(
 ServiceNamespace='sagemaker',
 ResourceId=resource_id,
 ScalableDimension='sagemaker:variant:DesiredInstanceCount', # The number of EC2
 instances for your Amazon SageMaker model endpoint variant.
 MinCapacity=0,
 MaxCapacity=5
)

For detailed description about the Application Autoscaling API, see the Application Scaling Boto3
documentation.

Optional: Define a scaling policy that scales up from zero for new requests

You might have a use case where you have sporadic requests or periods with low numbers of
requests. If your endpoint has been scaled down to zero instances during these periods, then
your endpoint won’t scale up again until the number of requests in the queue exceeds the target
specified in your scaling policy. This can result in long waiting times for requests in the queue. The
following section shows you how to create an additional scaling policy that scales your endpoint
up from zero instances after receiving any new request in the queue. Your endpoint will be able to
respond to new requests more quickly instead of waiting for the queue size to exceed the target.

To create a scaling policy for your endpoint that scales up from zero instances, do the following:

1. Create a scaling policy that defines the desired behavior, which is to scale up your endpoint
when it’s at zero instances but has requests in the queue. The following shows you how to
define a scaling policy called HasBacklogWithoutCapacity-ScalingPolicy using the
AWS SDK for Python (Boto3). When the queue is greater than zero and the current instance
count for your endpoint is also zero, the policy scales your endpoint up. In all other cases, the
policy does not affect scaling for your endpoint.

response = client.put_scaling_policy(
 PolicyName="HasBacklogWithoutCapacity-ScalingPolicy",
 ServiceNamespace="sagemaker", # The namespace of the service that provides the
 resource.

Autoscale an asynchronous endpoint 4293

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/application-autoscaling.html#ApplicationAutoScaling.Client.register_scalable_target

Amazon SageMaker Developer Guide

 ResourceId=resource_id, # Endpoint name
 ScalableDimension="sagemaker:variant:DesiredInstanceCount", # SageMaker
 supports only Instance Count
 PolicyType="StepScaling", # 'StepScaling' or 'TargetTrackingScaling'
 StepScalingPolicyConfiguration={
 "AdjustmentType": "ChangeInCapacity", # Specifies whether the
 ScalingAdjustment value in the StepAdjustment property is an absolute number or a
 percentage of the current capacity.
 "MetricAggregationType": "Average", # The aggregation type for the
 CloudWatch metrics.
 "Cooldown": 300, # The amount of time, in seconds, to wait for a previous
 scaling activity to take effect.
 "StepAdjustments": # A set of adjustments that enable you to scale based on
 the size of the alarm breach.
 [
 {
 "MetricIntervalLowerBound": 0,
 "ScalingAdjustment": 1
 }
]
 },
)

2. Create a CloudWatch alarm with the custom metric HasBacklogWithoutCapacity. When
triggered, the alarm initiates the previously defined scaling policy. For more information about
the HasBacklogWithoutCapacity metric, see Asynchronous Inference Endpoint Metrics.

response = cw_client.put_metric_alarm(
 AlarmName=step_scaling_policy_alarm_name,
 MetricName='HasBacklogWithoutCapacity',
 Namespace='AWS/SageMaker',
 Statistic='Average',
 EvaluationPeriods= 2,
 DatapointsToAlarm= 2,
 Threshold= 1,
 ComparisonOperator='GreaterThanOrEqualToThreshold',
 TreatMissingData='missing',
 Dimensions=[
 { 'Name':'EndpointName', 'Value':endpoint_name },
],
 Period= 60,
 AlarmActions=[step_scaling_policy_arn]
)

Autoscale an asynchronous endpoint 4294

Amazon SageMaker Developer Guide

You should now have a scaling policy and CloudWatch alarm that scale up your endpoint from zero
instances whenever your queue has pending requests.

Troubleshooting

The following FAQs can help you troubleshoot issues with your Amazon SageMaker Asynchronous
Inference endpoints.

Q: I have autoscaling enabled. How can I find the instance count behind the endpoint at any
given point?

You can use the following methods to find the instance count behind your endpoint:

• You can use the SageMaker DescribeEndpoint API to describe the number of instances behind
the endpoint at any given point in time.

• You can get the instance count by viewing your Amazon CloudWatch metrics. View the metrics
for your endpoint instances, such as CPUUtilization or MemoryUtilization and check
the sample count statistic for a 1 minute period. The count should be equal to the number of
active instances. The following screenshot shows the CPUUtilization metric graphed in the
CloudWatch console, where the Statistic is set to Sample count, the Period is set to 1 minute,
and the resulting count is 5.

Q: What are the common tunable environment variables for SageMaker containers?

The following tables outline the common tunable environment variables for SageMaker containers
by framework type.

TensorFlow

Troubleshooting 4295

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-jobs
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-jobs

Amazon SageMaker Developer Guide

Environment variable Description

SAGEMAKER_TFS_INSTANCE_COUNT For TensorFlow-based models, the tensorflo
w_model_server binary is the operation
al piece that is responsible for loading a model
in memory, running inputs against a model
graph, and deriving outputs. Typically, a
single instance of this binary is launched to
serve models in an endpoint. This binary is
internally multi-threaded and spawns multiple
threads to respond to an inference request. In
certain instances, if you observe that the CPU
is respectably utilized (over 30% utilized) but
the memory is underutilized (less than 10%
utilization), increasing this parameter might
help. Increasing the number of tensorflo
w_model_servers available to serve
typically increases the throughput of an
endpoint.

SAGEMAKER_TFS_FRACTIONAL_GP
U_MEM_MARGIN

This parameter governs the fraction of the
available GPU memory to initialize CUDA/
cuDNN and other GPU libraries. 0.2 means
20% of the available GPU memory is reserved
for initializing CUDA/cuDNN and other GPU
libraries, and 80% of the available GPU
memory is allocated equally across the TF
processes. GPU memory is pre-allocated
unless the allow_growth option is enabled.

SAGEMAKER_TFS_INTER_OP_PARA
LLELISM

This ties back to the inter_op_paralleli
sm_threads variable. This variable
determines the number of threads used by
independent non-blocking operations. 0
means that the system picks an appropriate
number.

Troubleshooting 4296

Amazon SageMaker Developer Guide

Environment variable Description

SAGEMAKER_TFS_INTRA_OP_PARA
LLELISM

This ties back to the intra_op_paralleli
sm_threads variable. This determines
the number of threads that can be used for
certain operations like matrix multiplication
and reductions for speedups. A value of 0
means that the system picks an appropriate
number.

SAGEMAKER_GUNICORN_WORKERS This governs the number of worker processes
that Gunicorn is requested to spawn for
handling requests. This value is used in
combination with other parameters to derive
a set that maximizes inference throughput. In
addition to this, the SAGEMAKER_GUNICORN
_WORKER_CLASS governs the type of
workers spawned, typically async or gevent.

SAGEMAKER_GUNICORN_WORKER_CLASS This governs the number of worker processes
that Gunicorn is requested to spawn for
handling requests. This value is used in
combination with other parameters to derive
a set that maximizes inference throughput. In
addition to this, the SAGEMAKER_GUNICORN
_WORKER_CLASS governs the type of
workers spawned, typically async or gevent.

Troubleshooting 4297

Amazon SageMaker Developer Guide

Environment variable Description

OMP_NUM_THREADS Python internally uses OpenMP for implement
ing multithreading within processes. Typically
, threads equivalent to the number of CPU
cores are spawned. But when implement
ed on top of Simultaneous Multi Threading
(SMT), such Intel’s HypeThreading, a certain
process might oversubscribe a particular core
by spawning twice as many threads as the
number of actual CPU cores. In certain cases,
a Python binary might end up spawning up
to four times as many threads as available
processor cores. Therefore, an ideal setting
for this parameter, if you have oversubscribed
available cores using worker threads, is 1, or
half the number of CPU cores on a CPU with
SMT turned on.

TF_DISABLE_MKL

TF_DISABLE_POOL_ALLOCATOR

In some cases, turning off MKL can speed
up inference if TF_DISABLE_MKL and
TF_DISABLE_POOL_ALLOCATOR are set to
1.

PyTorch

Environment variable Description

SAGEMAKER_TS_MAX_BATCH_DELAY This is the maximum batch delay time
TorchServe waits to receive.

SAGEMAKER_TS_BATCH_SIZE If TorchServe doesn’t receive the number of
requests specified in batch_size before the
timer runs out, it sends the requests that were
received to the model handler.

Troubleshooting 4298

Amazon SageMaker Developer Guide

Environment variable Description

SAGEMAKER_TS_MIN_WORKERS The minimum number of workers to which
TorchServe is allowed to scale down.

SAGEMAKER_TS_MAX_WORKERS The maximum number of workers to which
TorchServe is allowed to scale up.

SAGEMAKER_TS_RESPONSE_TIMEOUT The time delay, after which inference times
out in absence of a response.

SAGEMAKER_TS_MAX_REQUEST_SIZE The maximum payload size for TorchServe.

SAGEMAKER_TS_MAX_RESPONSE_SIZE The maximum response size for TorchServe.

Multi Model Server (MMS)

Environment variable Description

job_queue_size This parameter is useful to tune when
you have a scenario where the type of the
inference request payload is large, and due
to the size of payload being larger, you may
have higher heap memory consumption of the
JVM in which this queue is being maintaine
d. Ideally you might want to keep the heap
memory requirements of JVM lower and
allow Python workers to allot more memory
for actual model serving. JVM is only for
receiving the HTTP requests, queuing them,
and dispatching them to the Python-ba
sed workers for inference. If you increase
the job_queue_size , you might end up
increasing the heap memory consumption of
the JVM and ultimately taking away memory
from the host that could have been used by

Troubleshooting 4299

Amazon SageMaker Developer Guide

Environment variable Description

Python workers. Therefore, exercise caution
when tuning this parameter as well.

default_workers_per_model This parameter is for the backend model
serving and might be valuable to tune since
this is the critical component of the overall
model serving, based on which the Python
processes spawn threads for each Model.
If this component is slower (or not tuned
properly), the front-end tuning might not be
effective.

Q: How do I make sure my container supports Asynchronous Inference?

You can use the same container for Asynchronous Inference that you do for Real-Time Inference or
Batch Transform. You should confirm that the timeouts and payload size limits on your container
are set to handle larger payloads and longer timeouts.

Q: What are the limits specific to Asynchronous Inference, and can they be adjusted?

Refer to the following limits for Asynchronous Inference:

• Payload size limit: 1 GB

• Timeout limit: A request can take up to 60 minutes.

• Queue message TimeToLive (TTL): 6 hours

• Number of messages that can be put inside Amazon SQS: Unlimited. However, there is a quota
of 120,000 for the number of in-flight messages for a standard queue, and 20,000 for a FIFO
queue.

Q: What metrics are best to define for autoscaling on Asynchronous Inference? Can I have
multiple scaling policies?

In general, with Asynchronous Inference, you can scale out based on invocations or instances.
For invocation metrics, it's a good idea to look at your ApproximateBacklogSize, which is a
metric that defines the number of items in your queue that have yet to been processed. You can

Troubleshooting 4300

Amazon SageMaker Developer Guide

utilize this metric or your InvocationsPerInstance metric to understand what TPS you may be
getting throttled at. At the instance level, check your instance type and its CPU/GPU utilization to
define when to scale out. If a singular instance is above 60-70% capacity, this is often a good sign
that you are saturating your hardware.

We don't recommend having multiple scaling policies, as these can conflict and lead to confusion
at the hardware level, causing delays when scaling out.

Q: Why is my asynchronous endpoint terminating an instance as Unhealthy and the update
requests from autoscaling are failing?

Check if your container is able to handle ping and invoke requests concurrently. SageMaker invoke
requests take approximately 3 minutes, and in this duration, usually multiple ping requests end up
failing due to the timeout causing SageMaker to detect your container as Unhealthy.

Q: Can MaxConcurrentInvocationsPerInstance work for my BYOC model container with
the ningx/gunicorn/flask settings?

Yes. MaxConcurrentInvocationsPerInstance is a feature of asynchronous
endpoints. This does not depend on the custom container implementation.
MaxConcurrentInvocationsPerInstance controls the rate at which invoke requests are sent
to the customer container. If this value is set as 1, then only 1 request is sent to the container at a
time, no matter how many workers are on the customer container.

Q: How can I debug model server errors (500) on my asynchronous endpoint?

The error means that the customer container returned an error. SageMaker does not control
the behavior of customer containers. SageMaker simply returns the response from the
ModelContainer and does not retry. If you want, you can configure the invocation to retry on
failure. We suggest that you turn on container logging and check your container logs to find
the root cause of the 500 error from your model. Check the corresponding CPUUtilization
and MemoryUtilization metrics at the point of failure as well. You can also configure the
S3FailurePath to the model response in Amazon SNS as part of the Async Error Notifications to
investiage failures.

Q: How can I know if MaxConcurrentInvocationsPerInstance=1 takes effect? Are there any
metrics that I can check?

You can check the metric InvocationsProcesssed, which should align with the number of
invocations that you expect to be processed in a minute based on single concurrency.

Troubleshooting 4301

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AsyncInferenceOutputConfig.html#sagemaker-Type-AsyncInferenceOutputConfig-S3FailurePath

Amazon SageMaker Developer Guide

Q: How can I track the success and failures of my invocation requests? What are the best
practices?

The best practice is to enable Amazon SNS, which is a notification service for messaging-
oriented applications, with multiple subscribers requesting and receiving "push" notifications
of time-critical messages from a choice of transport protocols, including HTTP, Amazon SQS,
and email. Asynchronous Inference posts notifications when you create an endpoint with
CreateEndpointConfig and specify an Amazon SNS topic.

To use Amazon SNS to check prediction results from your asynchronous endpoint, you first need
to create a topic, subscribe to the topic, confirm your subscription to the topic, and note the
Amazon Resource Name (ARN) of that topic. For detailed information on how to create, subscribe,
and find the Amazon ARN of an Amazon SNS topic, see Configuring Amazon SNS in the Amazon
SNS Developer Guide. For more information about how to use Amazon SNS with Asynchronous
Inference, see Check prediction results.

Q: Can I define a scaling policy that scales up from zero instances upon receiving a new
request?

Yes. Asynchronous Inference provides a mechanism to scale down to zero instances when there are
no requests. If your endpoint has been scaled down to zero instances during these periods, then
your endpoint won’t scale up again until the number of requests in the queue exceeds the target
specified in your scaling policy. This can result in long waiting times for requests in the queue. In
such cases, if you want to scale up from zero instances for new requests less than the queue target
specified, you can use an additional scaling policy called HasBacklogWithoutCapacity. For
more information about how to define this scaling policy, see Autoscale an asynchronous endpoint.

Q: I’m getting an error that the instance type is not supported for Asynchronous Inference.
What are the instance types Asynchronous Inference supports?

For an exhaustive list of instances supported by Asynchronous Inference per region, see SageMaker
pricing. Check if the required instance is available in your region before proceeding.

Use Batch Transform

Use batch transform when you need to do the following:

• Preprocess datasets to remove noise or bias that interferes with training or inference from your
dataset.

Batch Transform 4302

https://docs.aws.amazon.com/sns/latest/dg/sns-configuring.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference-check-predictions.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference-autoscale.html#async-inference-autoscale-scale-up
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

• Get inferences from large datasets.

• Run inference when you don't need a persistent endpoint.

• Associate input records with inferences to assist the interpretation of results.

To filter input data before performing inferences or to associate input records with inferences
about those records, see Associate Prediction Results with Input Records. For example, you can
filter input data to provide context for creating and interpreting reports about the output data.

Topics

• Use Batch Transform to Get Inferences from Large Datasets

• Speed up a Batch Transform Job

• Use Batch Transform to Test Production Variants

• Batch Transform Sample Notebooks

• Associate Prediction Results with Input Records

• Storage in Batch Transform

• Troubleshooting

Use Batch Transform to Get Inferences from Large Datasets

Batch transform automatically manages the processing of large datasets within the limits of
specified parameters. For example, suppose that you have a dataset file, input1.csv, stored in an
S3 bucket. The content of the input file might look like the following example.

Record1-Attribute1, Record1-Attribute2, Record1-Attribute3, ..., Record1-AttributeM
Record2-Attribute1, Record2-Attribute2, Record2-Attribute3, ..., Record2-AttributeM
Record3-Attribute1, Record3-Attribute2, Record3-Attribute3, ..., Record3-AttributeM
...
RecordN-Attribute1, RecordN-Attribute2, RecordN-Attribute3, ..., RecordN-AttributeM

When a batch transform job starts, SageMaker initializes compute instances and distributes the
inference or preprocessing workload between them. Batch Transform partitions the Amazon S3
objects in the input by key and maps Amazon S3 objects to instances. When you have multiple
files, one instance might process input1.csv, and another instance might process the file named
input2.csv. If you have one input file but initialize multiple compute instances, only one instance
processes the input file and the rest of the instances are idle.

Use Batch Transform to Get Inferences from Large Datasets 4303

Amazon SageMaker Developer Guide

You can also split input files into mini-batches. For example, you might create a mini-batch from
input1.csv by including only two of the records.

Record3-Attribute1, Record3-Attribute2, Record3-Attribute3, ..., Record3-AttributeM
Record4-Attribute1, Record4-Attribute2, Record4-Attribute3, ..., Record4-AttributeM

Note

SageMaker processes each input file separately. It doesn't combine mini-batches from
different input files to comply with the MaxPayloadInMB limit.

To split input files into mini-batches when you create a batch transform job, set the SplitType
parameter value to Line. If SplitType is set to None or if an input file can't be split into mini-
batches, SageMaker uses the entire input file in a single request. Note that Batch Transform
doesn't support CSV-formatted input that contains embedded newline characters. You can
control the size of the mini-batches by using the BatchStrategy and MaxPayloadInMB
parameters. MaxPayloadInMB must not be greater than 100 MB. If you specify the optional
MaxConcurrentTransforms parameter, then the value of (MaxConcurrentTransforms *
MaxPayloadInMB) must also not exceed 100 MB.

If the batch transform job successfully processes all of the records in an input file, it creates
an output file with the same name and the .out file extension. For multiple input files,
such as input1.csv and input2.csv, the output files are named input1.csv.out and
input2.csv.out. The batch transform job stores the output files in the specified location in
Amazon S3, such as s3://awsexamplebucket/output/.

The predictions in an output file are listed in the same order as the corresponding records in the
input file. The output file input1.csv.out, based on the input file shown earlier, would look like
the following.

Inference1-Attribute1, Inference1-Attribute2, Inference1-Attribute3, ..., Inference1-
AttributeM
Inference2-Attribute1, Inference2-Attribute2, Inference2-Attribute3, ..., Inference2-
AttributeM
Inference3-Attribute1, Inference3-Attribute2, Inference3-Attribute3, ..., Inference3-
AttributeM

Use Batch Transform to Get Inferences from Large Datasets 4304

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformInput.html#SageMaker-Type-TransformInput-SplitType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#sagemaker-CreateTransformJob-request-BatchStrategy
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#sagemaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#sagemaker-CreateTransformJob-request-MaxConcurrentTransforms

Amazon SageMaker Developer Guide

...
InferenceN-Attribute1, InferenceN-Attribute2, InferenceN-Attribute3, ..., InferenceN-
AttributeM

If you set SplitType to Line, you can set the AssembleWith parameter to Line to concatenate
the output records with a line delimiter. This does not change the number of output files. The
number of output files is equal to the number of input files, and using AssembleWith does not
merge files. If you don't specify the AssembleWith parameter, by default the output records are
concatenated in a binary format.

When the input data is very large and is transmitted using HTTP chunked encoding, to stream the
data to the algorithm, set MaxPayloadInMB to 0. Amazon SageMaker built-in algorithms don't
support this feature.

For information about using the API to create a batch transform job, see the
CreateTransformJob API. For more information about the correlation between batch transform
input and output objects, see OutputDataConfig. For an example of how to use batch transform,
see (Optional) Make Prediction with Batch Transform.

Speed up a Batch Transform Job

If you are using the CreateTransformJob API, you can reduce the time it takes
to complete batch transform jobs by using optimal values for parameters such as
MaxPayloadInMB, MaxConcurrentTransforms, or BatchStrategy. The ideal value for
MaxConcurrentTransforms is equal to the number of compute workers in the batch transform
job. If you are using the SageMaker console, you can specify these optimal parameter values in
the Additional configuration section of the Batch transform job configuration page. SageMaker
automatically finds the optimal parameter settings for built-in algorithms. For custom algorithms,
provide these values through an execution-parameters endpoint.

Use Batch Transform to Test Production Variants

To test different models or various hyperparameter settings, create a separate transform job for
each new model variant and use a validation dataset. For each transform job, specify a unique
model name and location in Amazon S3 for the output file. To analyze the results, use Inference
Pipeline Logs and Metrics.

Speed up a Batch Transform Job 4305

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformInput.html#SageMaker-Type-TransformInput-SplitType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformOutput.html#SageMaker-Type-TransformOutput-AssembleWith
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputDataConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxConcurrentTransforms
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-BatchStrategy
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests

Amazon SageMaker Developer Guide

Batch Transform Sample Notebooks

For a sample notebook that uses batch transform with a principal component analysis (PCA) model
to reduce data in a user-item review matrix, followed by the application of a density-based spatial
clustering of applications with noise (DBSCAN) algorithm to cluster movies, see Batch Transform
with PCA and DBSCAN Movie Clusters. For instructions on creating and accessing Jupyter notebook
instances that you can use to run the example in SageMaker, see Amazon SageMaker Notebook
Instances. After creating and opening a notebook instance, choose the SageMaker Examples tab to
see a list of all the SageMaker examples. The topic modeling example notebooks that use the NTM
algorithms are located in the Advanced functionality section. To open a notebook, choose its Use
tab, then choose Create copy.

Associate Prediction Results with Input Records

When making predictions on a large dataset, you can exclude attributes that aren't needed
for prediction. After the predictions have been made, you can associate some of the excluded
attributes with those predictions or with other input data in your report. By using batch transform
to perform these data processing steps, you can often eliminate additional preprocessing or
postprocessing. You can use input files in JSON and CSV format only.

Topics

• Workflow for Associating Inferences with Input Records

• Use Data Processing in Batch Transform Jobs

• Supported JSONPath Operators

• Batch Transform Examples

Workflow for Associating Inferences with Input Records

The following diagram shows the workflow for associating inferences with input records.

Sample Notebooks 4306

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.html

Amazon SageMaker Developer Guide

To associate inferences with input data, there are three main steps:

1. Filter the input data that is not needed for inference before passing the input data to the batch
transform job. Use the InputFilter parameter to determine which attributes to use as input
for the model.

2. Associate the input data with the inference results. Use the JoinSource parameter to combine
the input data with the inference.

3. Filter the joined data to retain the inputs that are needed to provide context for interpreting
the predictions in the reports. Use OutputFilter to store the specified portion of the joined
dataset in the output file.

Use Data Processing in Batch Transform Jobs

When creating a batch transform job with CreateTransformJob to process data:

1. Specify the portion of the input to pass to the model with the InputFilter parameter in the
DataProcessing data structure.

2. Join the raw input data with the transformed data with the JoinSource parameter.

Associate Prediction Results with Input 4307

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-InputFilter
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-JoinSource
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-OutputFilter
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

3. Specify which portion of the joined input and transformed data from the batch transform job to
include in the output file with the OutputFilter parameter.

4. Choose either JSON- or CSV-formatted files for input:

• For JSON- or JSON Lines-formatted input files, SageMaker either adds the
SageMakerOutput attribute to the input file or creates a new JSON output file with
the SageMakerInput and SageMakerOutput attributes. For more information, see
DataProcessing.

• For CSV-formatted input files, the joined input data is followed by the transformed data and
the output is a CSV file.

If you use an algorithm with the DataProcessing structure, it must support your chosen
format for both input and output files. For example, with the TransformOutput field of the
CreateTransformJob API, you must set both the ContentType and Accept parameters to
one of the following values: text/csv, application/json, or application/jsonlines. The
syntax for specifying columns in a CSV file and specifying attributes in a JSON file are different.
Using the wrong syntax causes an error. For more information, see Batch Transform Examples. For
more information about input and output file formats for built-in algorithms, see Use Amazon
SageMaker Built-in Algorithms or Pre-trained Models.

The record delimiters for the input and output must also be consistent with your chosen file
input. The SplitType parameter indicates how to split the records in the input dataset. The
AssembleWith parameter indicates how to reassemble the records for the output. If you set
input and output formats to text/csv, you must also set the SplitType and AssembleWith
parameters to line. If you set the input and output formats to application/jsonlines, you
can set both SplitType and AssembleWith to line.

For CSV files, you cannot use embedded newline characters. For JSON files, the attribute name
SageMakerOutput is reserved for output. The JSON input file can't have an attribute with this
name. If it does, the data in the input file might be overwritten.

Supported JSONPath Operators

To filter and join the input data and inference, use a JSONPath subexpression. SageMaker
supports only a subset of the defined JSONPath operators. The following table lists the supported
JSONPath operators. For CSV data, each row is taken as a JSON array, so only index based
JSONPaths can be applied, e.g. $[0], $[1:]. CSV data should also follow RFC format.

Associate Prediction Results with Input 4308

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataProcessing.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformOutput.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html#SageMaker-Type-Channel-ContentType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformOutput.html#SageMaker-Type-TransformOutput-Accept
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformInput.html#SageMaker-Type-TransformInput-SplitType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformOutput.html#SageMaker-Type-TransformOutput-AssembleWith
https://tools.ietf.org/html/rfc4180

Amazon SageMaker Developer Guide

JSONPath
Operator

Description Example

$ The root element to a query. This operator
is required at the beginning of all path
expressions.

$

.<name> A dot-notated child element. $.id

* A wildcard. Use in place of an attribute
name or numeric value.

$.id.*

['<name>' (,'<name>')]A bracket-notated element or multiple
child elements.

$['id','SageMakerO
utput']

[<number>
(,<number>)]

An index or array of indexes. Negative
index values are also supported. A -1
index refers to the last element in an array.

$[1] , $[1,3,5]

[<start>:<end>] An array slice operator. The array slice()
method extracts a section of an array and
returns a new array. If you omit <start>,
SageMaker uses the first element of the
array. If you omit <end>, SageMaker uses
the last element of the array.

$[2:5], $[:5], $[2:]

When using the bracket-notation to specify multiple child elements of a given field,
additional nesting of children within brackets is not supported. For example, $.field1.
['child1','child2'] is supported while $.field1.['child1','child2.grandchild'] is
not.

For more information about JSONPath operators, see JsonPath on GitHub.

Batch Transform Examples

The following examples show some common ways to join input data with prediction results.

Topics

Associate Prediction Results with Input 4309

https://github.com/json-path/JsonPath

Amazon SageMaker Developer Guide

• Example: Output Only Inferences

• Example: Output Inferences Joined with Input Data

• Example: Output Inferences Joined with Input Data and Exclude the ID Column from the Input
(CSV)

• Example: Output Inferences Joined with an ID Column and Exclude the ID Column from the Input
(CSV)

Example: Output Only Inferences

By default, the DataProcessing parameter doesn't join inference results with input. It outputs
only the inference results.

If you want to explicitly specify to not join results with input, use the Amazon SageMaker Python
SDK and specify the following settings in a transformer call.

sm_transformer = sagemaker.transformer.Transformer(…)
sm_transformer.transform(…, input_filter="$", join_source= "None", output_filter="$")

To output inferences using the AWS SDK for Python, add the following code to your
CreateTransformJob request. The following code mimics the default behavior.

{
 "DataProcessing": {
 "InputFilter": "$",
 "JoinSource": "None",
 "OutputFilter": "$"
 }
}

Example: Output Inferences Joined with Input Data

If you're using the Amazon SageMaker Python SDK to combine the input data with the inferences
in the output file, specify the assemble_with and accept parameters when initializing the
transformer object. When you use the transform call, specify Input for the join_source
parameter, and specify the split_type and content_type parameters as well. The
split_type parameter must have the same value as assemble_with, and the content_type
parameter must have the same value as accept. For more information about the parameters and
their accepted values, see the Transformer page in the Amazon SageMaker Python SDK.

Associate Prediction Results with Input 4310

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-DataProcessing
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/inference/transformer.html#sagemaker.transformer.Transformer

Amazon SageMaker Developer Guide

sm_transformer = sagemaker.transformer.Transformer(…, assemble_with="Line",
 accept="text/csv")
sm_transformer.transform(…, join_source="Input", split_type="Line", content_type="text/
csv")

If you're using the AWS SDK for Python (Boto 3), join all input data with the inference by
adding the following code to your CreateTransformJob request. The values for Accept and
ContentType must match, and the values for AssembleWith and SplitType must also match.

{
 "DataProcessing": {
 "JoinSource": "Input"
 },
 "TransformOutput": {
 "Accept": "text/csv",
 "AssembleWith": "Line"
 },
 "TransformInput": {
 "ContentType": "text/csv",
 "SplitType": "Line"
 }
}

For JSON or JSON Lines input files, the results are in the SageMakerOutput key in the input JSON
file. For example, if the input is a JSON file that contains the key-value pair {"key":1}, the data
transform result might be {"label":1}.

SageMaker stores both in the input file in the SageMakerInput key.

{
 "key":1,
 "SageMakerOutput":{"label":1}
}

Note

The joined result for JSON must be a key-value pair object. If the input isn't a key-value pair
object, SageMaker creates a new JSON file. In the new JSON file, the input data is stored in
the SageMakerInput key and the results are stored as the SageMakerOutput value.

Associate Prediction Results with Input 4311

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

For a CSV file, for example, if the record is [1,2,3], and the label result is [1], then the output
file would contain [1,2,3,1].

Example: Output Inferences Joined with Input Data and Exclude the ID Column from the Input
(CSV)

If you are using the Amazon SageMaker Python SDK to join your input data with the inference
output while excluding an ID column from the transformer input, specify the same parameters
from the preceding example as well as a JSONPath subexpression for the input_filter in your
transformer call. For example, if your input data includes five columns and the first one is the
ID column, use the following transform request to select all columns except the ID column as
features. The transformer still outputs all of the input columns joined with the inferences. For
more information about the parameters and their accepted values, see the Transformer page in the
Amazon SageMaker Python SDK.

sm_transformer = sagemaker.transformer.Transformer(…, assemble_with="Line",
 accept="text/csv")
sm_transformer.transform(…, split_type="Line", content_type="text/csv",
 input_filter="$[1:]", join_source="Input")

If you are using the AWS SDK for Python (Boto 3), add the following code to your
CreateTransformJob request.

{
 "DataProcessing": {
 "InputFilter": "$[1:]",
 "JoinSource": "Input"
 },
 "TransformOutput": {
 "Accept": "text/csv",
 "AssembleWith": "Line"
 },
 "TransformInput": {
 "ContentType": "text/csv",
 "SplitType": "Line"
 }
}

To specify columns in SageMaker, use the index of the array elements. The first column is index 0,
the second column is index 1, and the sixth column is index 5.

Associate Prediction Results with Input 4312

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/inference/transformer.html#sagemaker.transformer.Transformer
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

To exclude the first column from the input, set InputFilter to "$[1:]". The colon (:) tells
SageMaker to include all of the elements between two values, inclusive. For example, $[1:4]
specifies the second through fifth columns.

If you omit the number after the colon, for example, [5:], the subset includes all columns from
the 6th column through the last column. If you omit the number before the colon, for example,
[:5], the subset includes all columns from the first column (index 0) through the sixth column.

Example: Output Inferences Joined with an ID Column and Exclude the ID Column from the
Input (CSV)

If you are using the Amazon SageMaker Python SDK, you can specify the output to join
only specific input columns (such as the ID column) with the inferences by specifying the
output_filter in the transformer call. The output_filter uses a JSONPath subexpression to
specify which columns to return as output after joining the input data with the inference results.
The following request shows how you can make predictions while excluding an ID column and then
join the ID column with the inferences. Note that in the following example, the last column (-1)
of the output contains the inferences. If you are using JSON files, SageMaker stores the inference
results in the attribute SageMakerOutput. For more information about the parameters and their
accepted values, see the Transformer page in the Amazon SageMaker Python SDK.

sm_transformer = sagemaker.transformer.Transformer(…, assemble_with="Line",
 accept="text/csv")
sm_transformer.transform(…, split_type="Line", content_type="text/csv",
 input_filter="$[1:]", join_source="Input", output_filter="$[0,-1]")

If you are using the AWS SDK for Python (Boto 3), join only the ID column with the inferences by
adding the following code to your CreateTransformJob request.

{
 "DataProcessing": {
 "InputFilter": "$[1:]",
 "JoinSource": "Input",
 "OutputFilter": "$[0,-1]"
 },
 "TransformOutput": {
 "Accept": "text/csv",
 "AssembleWith": "Line"
 },
 "TransformInput": {

Associate Prediction Results with Input 4313

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-Type-DataProcessing-InputFilter
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/api/inference/transformer.html#sagemaker.transformer.Transformer
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

 "ContentType": "text/csv",
 "SplitType": "Line"
 }
}

Warning

If you are using a JSON-formatted input file, the file can't contain the attribute name
SageMakerOutput. This attribute name is reserved for the inferences in the output file. If
your JSON-formatted input file contains an attribute with this name, values in the input file
might be overwritten with the inference.

Storage in Batch Transform

When you run a batch transform job, Amazon SageMaker attaches an Amazon Elastic Block Store
storage volume to Amazon EC2 instances that process your job. The volume stores your model, and
the size of the storage volume is fixed at 30 GB. You have the option to encrypt your model at rest
in the storage volume.

Note

If you have a large model, you may encounter an InternalServerError.

For more information about Amazon EBS storage and features, see the following pages:

• Amazon EBS in the Amazon EC2 User Guide for Linux Instances

• Amazon EBS volumes in the Amazon EC2 User Guide for Linux Instances

Note

G4dn instances come with their own local SSD storage. To learn more about G4dn
instances, see the Amazon EC2 G4 Instances page.

Storage in Batch Transform 4314

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes.html
https://aws.amazon.com/ec2/instance-types/g4/

Amazon SageMaker Developer Guide

Troubleshooting

If you are having errors in Amazon SageMaker Batch Transform, refer to the following
troubleshooting tips.

Max timeout errors

If you are getting max timeout errors when running batch transform jobs, try the following:

• Begin with the single-record BatchStrategy, a batch size of the default (6 MB) or smaller
which you specify in the MaxPayloadInMB parameter, and a small sample dataset. Tune the
maximum timeout parameter InvocationsTimeoutInSeconds (which has a maximum of 1
hour) until you receive a successful invocation response.

• After you receive a successful invocation response, increase the MaxPayloadInMB (which has a
maximum of 100 MB) and the InvocationsTimeoutInSeconds parameters together to find
the maximum batch size that can support your desired model timeout. You can use either the
single-record or multi-record BatchStrategy in this step.

Note

Exceeding the MaxPayloadInMB limit causes an error. This might happen with a large
dataset if it can't be split, the SplitType parameter is set to none, or individual records
within the dataset exceed the limit.

• (Optional) Tune the MaxConcurrentTransforms parameter, which specifies the maximum
number of parallel requests that can be sent to each instance in a batch transform job. However,
the value of MaxConcurrentTransforms * MaxPayloadInMB must not exceed 100 MB.

Incomplete output

SageMaker uses the Amazon S3 Multipart Upload API to upload results from a batch transform
job to Amazon S3. If an error occurs, the uploaded results are removed from Amazon S3. In some
cases, such as when a network outage occurs, an incomplete multipart upload might remain in
Amazon S3. An incomplete upload might also occur if you have multiple input files but some of the
files can’t be processed by SageMaker Batch Transform. The input files that couldn’t be processed
won’t have corresponding output files in Amazon S3.

Troubleshooting 4315

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#sagemaker-CreateTransformJob-request-BatchStrategy
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#sagemaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelClientConfig.html#sagemaker-Type-ModelClientConfig-InvocationsTimeoutInSeconds
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#sagemaker-CreateTransformJob-request-MaxConcurrentTransforms
https://docs.aws.amazon.com/AmazonS3/latest/dev/uploadobjusingmpu.html

Amazon SageMaker Developer Guide

To avoid incurring storage charges, we recommend that you add the S3 bucket policy to the S3
bucket lifecycle rules. This policy deletes incomplete multipart uploads that might be stored in the
S3 bucket. For more information, see Object Lifecycle Management.

Job shows as failed

If a batch transform job fails to process an input file because of a problem with the dataset,
SageMaker marks the job as failed. If an input file contains a bad record, the transform job
doesn't create an output file for that input file because doing so prevents it from maintaining the
same order in the transformed data as in the input file. When your dataset has multiple input files,
a transform job continues to process input files even if it fails to process one. The processed files
still generate useable results.

If you are using your own algorithms, you can use placeholder text, such as ERROR, when the
algorithm finds a bad record in an input file. For example, if the last record in a dataset is bad, the
algorithm places the placeholder text for that record in the output file.

Model parallelism and large model inference

State-of-the-art deep learning models for applications such as natural language processing (NLP)
are large, typically with tens or hundreds of billions of parameters. Larger models are often more
accurate, which makes them attractive to machine learning practitioners. However, these models
are often too large to fit on a single accelerator or GPU device, making it difficult to achieve low-
latency inference. You can avoid this memory bottleneck by using model parallelism techniques to
partition a model across multiple accelerators or GPUs.

Amazon SageMaker includes specialized deep learning containers (DLCs), libraries, and tooling for
model parallelism and large model inference (LMI). In the following sections, you can find resources
to get started with LMI on SageMaker.

Topics

• Deep learning containers for large model inference

• SageMaker endpoint parameters for large model inference

• Large model inference tutorials

• Configurations and settings

• Choosing instance types for large model inference

Model parallelism and large model inference 4316

https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html#mpu-abort-incomplete-mpu-lifecycle-config
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Amazon SageMaker Developer Guide

• Deploying uncompressed models

• Large model inference FAQs

• Large model inference troubleshooting

• Release notes for large model inference deep learning containers

Deep learning containers for large model inference

SageMaker maintains deep learning containers (DLCs) with popular open source libraries for
hosting large models such as GPT, T5, OPT, BLOOM, and Stable Diffusion on AWS infrastructure.
With these DLCs you can use third party libraries such as DeepSpeed, Accelerate, TensorRT-LLM,
and FasterTransformer to partition model parameters using model parallelism techniques to
leverage the memory of multiple GPUs for inference. The following table lists the DLCs available
with SageMaker for large model inference (LMI). We recommend that you start with these DLCs for
LMI on SageMaker. These include components, libraries, and drivers that have been optimized and
tested for use on SageMaker.

DLC URI Libraries Tuning parameters

PyTorch 2.1.0

DJL Serving 0.25.0

TensorRT toolkit 0.5.0

Hugging Face Accelerate
0.23.0

763104351884.dkr.e
cr.region.amazonaws.com/
djl-inference:0.25.0-tensorrtl
lm0.5.0-cu122

Hugging Face Transformers
4.34.0

TensorRT-LLM

PyTorch 2.0.1

DJL Serving 0.25.0

DeepSpeed 0.11.0

763104351884.dkr.e
cr.region.amazonaw
s.com/djl-inference:0.25.0-
deepspeed0.11.0-cu118 Hugging Face Accelerate

0.23.0

DeepSpeed

Deep learning containers for LMI 4317

https://www.deepspeed.ai/
https://huggingface.co/docs/accelerate/index
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/FasterTransformer
https://github.com/deepjavalibrary/djl-serving/blob/0.25.0-dlc/serving/docs/configurations_large_model_inference_containers.md#tensorrt-llm
https://github.com/deepjavalibrary/djl-serving/blob/0.25.0-dlc/serving/docs/configurations_large_model_inference_containers.md#deepspeed-doc

Amazon SageMaker Developer Guide

DLC URI Libraries Tuning parameters

Hugging Face Transformers
4.34.0

PyTorch 1.13.1

DJL Serving 0.25.0

TransformersNeuronX 0.8.268

AWS Neuron SDK 2.15.1

763104351884.dkr.e
cr.region.amazonaws.com/
djl-inference:0.25.0-neuronx-
sdk2.15.0

NeuronX Distributed 0.5.0

Transformers-NeuronX

PyTorch 2.0.1

DJL Serving 0.23.0

FasterTransformer 5.3.0

Hugging Face Accelerate
0.20.3

763104351884.dkr.e
cr.region.amazonaws.com/
djl-inference:0.23.0-fastertra
nsformer5.3.0-cu118

Hugging Face Transformers
4.30.1

FasterTransformer

PyTorch 2.0.1

DJL Serving 0.23.0

DeepSpeed 0.9.5

Hugging Face Accelerate
0.20.3

763104351884.dkr.e
cr.region.amazonaw
s.com/djl-inference:0.23.0-
deepspeed0.9.5-cu118

Hugging Face Transformers
4.30.2

DeepSpeed

Deep learning containers for LMI 4318

https://github.com/deepjavalibrary/djl-serving/blob/0.25.0-dlc/serving/docs/configurations_large_model_inference_containers.md#transformers-neuronx-doc
https://github.com/deepjavalibrary/djl-serving/blob/0.23.0-dlc/serving/docs/configurations_large_model_inference_containers.md#fastertransformer-doc
https://github.com/deepjavalibrary/djl-serving/blob/0.23.0-dlc/serving/docs/configurations_large_model_inference_containers.md#deepspeed-doc

Amazon SageMaker Developer Guide

DLC URI Libraries Tuning parameters

PyTorch 1.13.1

DJL Serving 0.23.0

TransformersNeuronX 0.4.60

AWS Neuron SDK 2.12.0

763104351884.dkr.e
cr.region.amazonaws.com/
djl-inference:0.23.0-neuronx-
sdk2.12.0

NeuronX Distributed 0.1.0

Transformers-NeuronX

In addition to PyTorch, LMI DLCs include libraries to facilitate large model inference. SageMaker
supports the following categories of libraries.

• Model zoo – Model zoos provide simple API access to pre-trained models. SageMaker provides
the following model zoos:

• Hugging Face Transformers is a popular library for pre-trained deep learning models that use a
transformer architecture such as GPT, OPT, and BLOOM.

• Hugging Face Diffusers is a library with pre-trained deep learning models that use a diffusion
technique such as Stable Diffusion.

• Model parallelism and inference optimization libraries – These libraries handle model parallel
inference by partitioning a model artifact so that its comprising parameters can be spread across
multiple GPUs. SageMaker supports the following model parallelism and inference optimization
libraries:

• TensorRT-LLM is the latest open-source library from NVIDIA which is available as part of LMI
DLCs release (0.25.0). This library enables state-of-the-art optimizations, like SmoothQuant,
FP8 and continuous batching for large language models when using NVIDIA GPUs.

TensorRT-LLM supports deployments ranging from single GPU to multi-GPU configurations,
with additional performance gains possible through techniques like tensor parallelism.
Leveraging TensorRT-LLM through the SageMaker LMI DLC enables you to optimize the
performance of your large language models and provide your users with a more responsive
experience.

We optimized the TensorRT-LLM library to speed up inference, and we created a toolkit that
supports just-in-time model conversion. You can use this toolkit to provide a Hugging Face

Deep learning containers for LMI 4319

https://github.com/deepjavalibrary/djl-serving/blob/0.23.0-dlc/serving/docs/configurations_large_model_inference_containers.md#transformers-neuronx-doc
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/diffusers/index
https://github.com/NVIDIA/TensorRT-LLM

Amazon SageMaker Developer Guide

model ID and deploy the model end to end. The toolkit also supports continuous batching
with streaming. You can compile the Llama-2 7B and 13B models in around 1-2 minutes, and
you can compile the 70B model in around 7 minutes.

To avoid the overhead of compiling when you set up a SageMaker endpoint and scale
your instances, you can use Ahead of Time (AOT) compilation. For more information about
preparing the model, see TensorRT-LLM ahead-of-time compilation of models tutorial.

We also accept any TensorRT LLM model built for Triton Server that can be used with LMI DLC.
For examples about deploying Llama-2 70B using the TRT-LLM 0.25.0 LMI container, see the
notebooks.

• DeepSpeed Inference is an open-source inference optimization library. It includes model
partitioning schemes for model parallelism with supported models, including many
transformer models. It also has optimized kernels for popular models such as OPT, GPT, and
BLOOM that can significantly improve inference latency. The version of DeepSpeed in the
LMI DLCs is optimized and tested to work on SageMaker. It includes several enhancements,
including support for BF16 precision models.

• Hugging Face Accelerate in an open-source model parallel inference library. It supports model
parallelism for most models in the Hugging Face Transformers library.

• FasterTransformer is an open source library from Nvidia that provides an accelerated engine
for efficiently running transformer-based neural network inference. It has been designed to
handle large models that require multiple GPUs and nodes in a distributed manner. The library
includes an optimized version of the transformer block, which comprises both the encoder and
decoder parts, enabling you to run the inference of full encoder-decoder architectures like T5,
as well as encoder-only models like BERT and decoder-only models like GPT.

• Model server – Model servers handle an inference request end to end. They accept requests,
invoke pre-processing and post-processing scripts, and respond to users. Model servers that are
compatible with model parallelism, also organize workers and threads across multiple devices.
SageMaker supports the following model servers:

• DJL-Serving is an open-source, high-performance model server powered by DJL. It takes
multiple deep learning models or workflows, and makes them available through an HTTP
endpoint. Versions 0.19 and above are supported by SageMaker and work with Amazon EC2
instances with multiple GPUs to facilitate LMI with model parallelism.

Deep learning containers for LMI 4320

https://docs.djl.ai/docs/serving/serving/docs/lmi/tutorials/trtllm_aot_tutorial.html
https://github.com/aws/amazon-sagemaker-examples/tree/main/inference/generativeai/llm-workshop/deploy-V7-lmi/llama2_70b-lmi-trtllm.ipynb
https://www.deepspeed.ai/tutorials/inference-tutorial/
https://huggingface.co/docs/accelerate/index
https://github.com/NVIDIA/FasterTransformer
https://github.com/deepjavalibrary/djl-serving
https://djl.ai/

Amazon SageMaker Developer Guide

Supported instance types

AWS LMI DLCs support the p4d, p3, g5, and g4dn instance types.

SageMaker endpoint parameters for large model inference

You can customize the following parameters to facilitate low-latency large model inference (LMI)
with SageMaker:

• Maximum Amazon EBS volume size on the instance (VolumeSizeInGB) – If the size of the
model is larger than 30 GB and you are using an instance without a local disk, you should
increase this parameter to be slightly larger than the size of your model.

• Health check timeout quota (ContainerStartupHealthCheckTimeoutInSeconds) – If
your container is correctly set up and the CloudWatch logs indicate a health check timeout, you
should increase this quota so the container has enough time to respond to health checks.

• Model download timeout quota (ModelDataDownloadTimeoutInSeconds) – If the size of
your model is larger than 40 GB, then you should increase this quota to provide sufficient time to
download the model from Amazon S3 to the instance.

For more information on low latency inference with large models, see Deploy large models on
Amazon SageMaker using DJL Serving and DeepSpeed model parallel inference. The following
code snippet demonstrates how to programatically configure the aforementioned parameters.
Replace the italicized placeholder text in the example with your own information.

import boto3

aws_region = "aws-region"
sagemaker_client = boto3.client('sagemaker', region_name=aws_region)

The name of the endpoint. The name must be unique within an AWS Region in your AWS
 account.
endpoint_name = "endpoint-name"

Create an endpoint config name.
endpoint_config_name = "endpoint-config-name"

The name of the model that you want to host.
model_name = "the-name-of-your-model"

instance_type = "instance-type"

SageMaker endpoint parameters for LMI 4321

https://aws.amazon.com/blogs/machine-learning/deploy-large-models-on-amazon-sagemaker-using-djlserving-and-deepspeed-model-parallel-inference/
https://aws.amazon.com/blogs/machine-learning/deploy-large-models-on-amazon-sagemaker-using-djlserving-and-deepspeed-model-parallel-inference/

Amazon SageMaker Developer Guide

sagemaker_client.create_endpoint_config(
 EndpointConfigName = endpoint_config_name
 ProductionVariants=[
 {
 "VariantName": "variant1", # The name of the production variant.
 "ModelName": model_name,
 "InstanceType": instance_type, # Specify the compute instance type.
 "InitialInstanceCount": 1, # Number of instances to launch initially.
 "VolumeSizeInGB": 256, # Specify the size of the Amazon EBS volume.
 "ModelDataDownloadTimeoutInSeconds": 1800, # Specify the model download
 timeout in seconds.
 "ContainerStartupHealthCheckTimeoutInSeconds": 1800, # Specify the health
 checkup timeout in seconds
 },
],
)

sagemaker_client.create_endpoint(EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)

For more information about the keys for ProductionVariants, see ProductionVariant.

Large model inference tutorials

The following tutorials demonstrate the use of different model parallelization and inference
optimization libraries available inside a large model inference (LMI) DLC. You can use these to get
started with LMI on SageMaker.

Topics

• Large model inference with DeepSpeed and DJL Serving

• Large model inference with FasterTransformer and DJL Serving

• Large model inference with TorchServe

• Additional resources to get started

Large model inference with DeepSpeed and DJL Serving

This tutorial demonstrates how to deploy large models with DJL Serving using DeepSpeed and
Hugging Face Accelerate model parallelization frameworks. This example uses a GPT-J model with

LMI tutorials 4322

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html

Amazon SageMaker Developer Guide

6 billion parameters and an ml.g5 instance. You can modify this to work with other models and
instance types. Replace the italicized placeholder text in the examples with your own
information.

Topics

• Large model inference container image with DJL Serving

• Preparing your model artifacts

• Deploy the model using the SageMaker SDK

Large model inference container image with DJL Serving

Large model inference (LMI) DLCs are available as Docker images on the Amazon Elastic Container
Registry (Amazon ECR). These containers include the necessary components, libraries, and drivers
to host large models on SageMaker or using Amazon EC2 infrastructure. You can find a list of
LMI DLCs in the Large model inference section of the DLCs list. This tutorial uses the following
container:

Framework Job type CPU/GPU Python version
options

Example URL

DJL Serving
0.25.0 with
DeepSpeed
0.11.0, Hugging
Face Transform
ers 4.34.0, and
Hugging Face
Accelerate
0.23.0

Inference GPU 3.9 (py39) 763104351
884.dkr.ecr.us-
east-1.amazo
naws.com/djl-
inference:0.25
.0-deepsp
eed0.11.0-cu118

LMI DLCs are regularly updated and tested on SageMaker. You can directly reference these Docker
image URLs when you host on SageMaker, selecting the container that suits your need the most.
Each LMI DLC image includes DeepSpeed, Accelerate, Transformers and DJL Serving.

LMI tutorials 4323

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#large-model-inference-containers

Amazon SageMaker Developer Guide

Preparing your model artifacts

LMI DLCs use DJL Serving to serve your model for inference. You have to configure DJL Serving and
package your model in a format supported by DJL Serving and DeepSpeed for LMI.

1. Create a serving.properties configuration file to indicate to DJL Serving which model
parallelization and inference optimization libraries you would like to use. You can find the
configuration options for both DeepSpeed and Hugging Face Accelerate in Configurations and
settings. Modify the following example serving.properties file below to suit your needs.

engine=DeepSpeed
#engine=Python # for Hugging Face Accelerate, vLLM rolling batch
#engine=MPI # lmi-dist rolling batch option
option.entryPoint=djl_python.deepspeed
#option.entryPoint=djl_python.huggingface # for Hugging Face Accelerate
option.tensor_parallel_degree=2
option.model_id=EleutherAI/gpt-j-6B
option.max_rolling_batch_size=64
option.rolling_batch=deepspeed
option.task=text-generation
option.dtype=fp16

For a complete list of configuration options, see Configurations and settings. The following list
describes some of the options used in the example serving.properties file.

• option.entryPoint – This option is used to specify which handler offered by DJL Serving
you would like to use. The possible values are huggingface, deepspeed, and stable-
diffusion. Here we use deepspeed.

• option.model_id – Only provide this option if you also provide option.entryPoint.
The value of this option is either the Hugging Face ID of a model or the S3 URL of the model
artifacts. DJL Serving uses this value to download the model from Hugging Face or the S3
URL.

• option.task – Model architectures generally require you specify a task as one of the
parameters in transformers.pipeline.

• option.rolling_batch – Select a rolling batch strategy. The value auto will make
the handler choose the strategy based on the provided configuration. If you specify
option.rolling_batch=djl_python.huggingfaceand auto, one of the following
options will be chosen automatically based on the model: lmi-dist, or scheduler. If
engine is DeepSpeed, then deepspeed rolling batch is chosen.

LMI tutorials 4324

Amazon SageMaker Developer Guide

For more information, see the DeepSpeed, and Hugging Face handler implementations.

2. Package your model artifacts into a compressed .tar file. DJL Serving and DeepSpeed expect
the model artifacts to be packaged and formatted in a specific way. This example uses the
following directory structure for this purpose.

 - deepspeed-gptj # root directory
 - serving.properties
 - model.py # your custom handler file, if you choose not to use the handlers
 provided with DJL Serving
 - model binary files # if you do not want to use option.model_id

The root directory contains the serving.properties file, along with any other necessary
files. This tutorial only needs the serving.properties file because it uses DJL Serving's
handler and the model_id option to download the model directly from Hugging Face. The
following code snippet packages the model artifacts into a compressed .tar file.

mkdir deepspeed-gptj
cp serving.properties deepspeed-gptj/
tar -czvf deepspeed-gptj.tar.gz deepspeed-gptj
aws s3 sync deepspeed-gptj.tar.gz s3://djl-sm-test/tutorial/

Deploy the model using the SageMaker SDK

This example uses SageMaker to handle the end to end model deployment process to an inference
endpoint.

1. Create a SageMaker session.

import boto3
import sagemaker

aws_region = "aws-region"
sagemaker_session =
 sagemaker.Session(boto_session=boto3.Session(region_name=aws_region))

LMI tutorials 4325

https://github.com/deepjavalibrary/djl-serving/blob/master/engines/python/setup/djl_python/deepspeed.py
https://github.com/deepjavalibrary/djl-serving/blob/master/engines/python/setup/djl_python/huggingface.py

Amazon SageMaker Developer Guide

2. Create a model in SageMaker.

from sagemaker.model import Model
from sagemaker import image_uris, get_execution_role

role = get_execution_role()

def create_model(model_name, model_s3_url):
 # Get the DJL DeepSpeed image uri
 image_uri = image_uris.retrieve(
 framework="djl-deepspeed",
 region=sagemaker_session.boto_session.region_name,
 version="0.25.0"
)
 model = Model(
 image_uri=image_uri,
 model_data=model_s3_url,
 role=role,
 name=model_name,
 sagemaker_session=sagemaker_session,
)
 return model

The g5.12xlarge instance has 4 Nvidia A10G GPUs. The serving.properties in Preparing
your model artifacts specified a tensor parallel degree of 2. DJL Serving automatically loads
2 copies of the model with 2 tensor parallel partitions to make use of all the 4 GPUs on the
instance. This doubles the throughput.

3. Deploy the model to a g5.12xlarge instance.

from sagemaker import serializers, deserializers

def deploy_model(model, _endpoint_name):
 model.deploy(
 initial_instance_count=1,
 instance_type="ml.g5.12xlarge",
 endpoint_name=_endpoint_name
)
 predictor = sagemaker.Predictor(
 endpoint_name=_endpoint_name,
 sagemaker_session=sagemaker_session,
 serializer=serializers.JSONSerializer(),

LMI tutorials 4326

Amazon SageMaker Developer Guide

 deserializer=deserializers.JSONDeserializer()
)
 return predictor

4. Make a prediction.

import argparse
if __name__ == "__main__":
 arg_parser = argparse.ArgumentParser()

 group = arg_parser.add_mutually_group()
 group.add_argument("--deepspeed", action="store_const", dest="framework",
 const="deepspeed")
 group.add_argument("--accelerate", action="store_const", dest="framework",
 const="accelerate")

 args = arg_parser.parse_args()

 _model_name = f"{args.framework}-gptj"
 _model_s3_url = f"s3://djl-sm-test/tutorial/{args.framework}-gptj.tar.gz"
 _endpoint_name=f"{args.framework}-gptj"

 model = create_model(_model_name, _model_s3_url)
 predictor = deploy_model(model, _endpoint_name)
 print(predictor.predict(
 {
 "inputs" : "Large model inference is",
 "parameters": { "max_length": 50 },
 }
))

Large model inference with FasterTransformer and DJL Serving

This tutorial demonstrates how to deploy a T5 model with large model inference (LMI) deep
learning containers (DLCs), DJL Serving, and the FasterTransformer model parallelization
framework. Here we use a flan-t5-xl model with 3 billion parameters and an ml.g5 instance.
You can modify this to work with other variants of T5 models and instance types. Replace the
italicized placeholder text in the examples with your own information.

LMI tutorials 4327

https://github.com/NVIDIA/FasterTransformer
https://huggingface.co/google/flan-t5-xl

Amazon SageMaker Developer Guide

Large model inference container image with FasterTransformer backend for DJL Serving

LMI DLCs are available as Docker images on the Amazon Elastic Container Registry (Amazon ECR).
These containers include the necessary components, libraries, and drivers to host large models on
SageMaker or using Amazon EC2 infrastructure. You can find a list of LMI DLCs in the Large model
inference section of the DLCs list. This tutorial uses the following container:

Framework Job type CPU/GPU Python version
options

Example URL

DJL Serving
0.23.0 with
FasterTra
nsformer 5.3,
Hugging Face
Transformers
4.30.1.

Inference GPU 3.9 (py39) 763104351
884.dkr.ecr.us-
west-2.amazo
naws.com/djl-
inference:0.23.0-
fastertransform
er5.3.0-cu118

LMI DLCs are regularly updated and tested on SageMaker. You can directly reference these Docker
image URLs when you host on SageMaker, selecting the container that suits your need the most.
Each LMI DLC image includes DeepSpeed, Accelerate, Transformers and DJL Serving.

Preparing your model artifacts

LMI DLCs use DJL Serving to serve your model for inference. You must configure DJL Serving and
package your model in a format supported by DJL Serving and FasterTransformer.

1. Create a serving.properties configuration file to indicate to DJL Serving which model
parallelization and inference optimization libraries you would like to use.

engine=FasterTransformer
option.tensor_parallel_degree=2
option.model_id=google/flan-t5-xl
option.dtype=fp32

For a complete list of configuration options, see Configurations and settings. The following list
describes some of the options used in the aforementioned example.

LMI tutorials 4328

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#large-model-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#large-model-inference-containers

Amazon SageMaker Developer Guide

• option.tensor_parallel_degree – This option specifies number of tensor parallel
partitions performed on the model.

• option.model_id – The value of this option is either the Hugging Face ID of a model or
the S3 URL of the model artifacts. DJL Serving uses this value to download the model from
Hugging Face or the S3 URL.

• option.dtype – This option specifies data type that you want to run inference with.

2. Create a model.py handler script with a handle method that will be invoked by DJL Serving
when inference requests are received. This tutorial uses the following model.py:

import fastertransformer as ft
from djl_python import Input, Output
from transformers import AutoTokenizer
import logging
import os

model = None

def load_model(properties):
 model_name = properties["model_id"]
 tensor_parallel_degree = int(properties["tensor_parallel_degree"])
 pipeline_parallel_degree = 1
 dtype = properties["dtype"]

 logging.info(f"Loading model: {model_name}")
 # Initialilizing model with FasterTransformer
 model = ft.init_inference(model_name, tensor_parallel_degree,
 pipeline_parallel_degree, dtype)
 return model

def handle(inputs: Input):
 global model

 if not model:
 model = load_model(inputs.get_properties())

 if inputs.is_empty():
 # Model server makes an empty call to warmup the model on startup
 return None

LMI tutorials 4329

Amazon SageMaker Developer Guide

 data = inputs.get_as_json()
 input_text = data["text"]
 result = model.pipeline_generate(input_text)

 return Output().add(result)

3. Package your model artifacts into a compressed tar file. DJL Serving expects the model
artifacts to be packaged and formatted in a specific way. This example uses the following
directory structure for this purpose.

 - deepspeed-gptj # root directory
 - serving.properties
 - model.py # your custom handler file, if you choose not to use the handlers
 provided with DJL Serving

The root directory contains the serving.properties and model.py files. The following
code snippet packages the model artifacts into a compressed .tar file.

mkdir fastertransformer-t5
cp serving.properties fastertransformer-t5/
cp model.py fastertransformer-t5/
tar -czvf fastertransformer-t5.tar.gz fastertransformer-t5/
aws s3 cp fastertransformer-t5.tar.gz s3://djl-sm-test/tutorial/

Deploy the model using the SageMaker SDK

This example uses SageMaker to handle the end to end model deployment process to an inference
endpoint.

1. Create a SageMaker session.

import boto3
import sagemaker

aws_region = "aws-region"
sagemaker_session =
 sagemaker.Session(boto_session=boto3.Session(region_name=aws_region))

2. Create a model in SageMaker.

LMI tutorials 4330

Amazon SageMaker Developer Guide

from sagemaker.model import Model
from sagemaker import image_uris, get_execution_role

role = get_execution_role()

def create_model(model_name, model_s3_url):
 image_uri = "763104351884.dkr.ecr.us-west-2.amazonaws.com/djl-inference:0.23.0-
fastertransformer5.3.0-cu118"
 model = Model(
 image_uri=image_uri,
 model_data=model_s3_url,
 role=role,
 name=model_name,
 sagemaker_session=sagemaker_session,
)
 return model

The g5.12xlarge instance has 4 Nvidia A10G GPUs. The serving.properties in Preparing
your model artifacts specified a tensor parallel degree of 2. DJL Serving automatically loads
2 copies of the model with 2 tensor parallel partitions to make use of all the 4 GPUs on the
instance. This doubles the throughput.

3. Deploy the model to a g5.12xlarge instance.

from sagemaker import serializers, deserializers

def deploy_model(model, _endpoint_name):
 model.deploy(
 initial_instance_count=1,
 instance_type="ml.g5.12xlarge",
 endpoint_name=_endpoint_name
)
 predictor = sagemaker.Predictor(
 endpoint_name=_endpoint_name,
 sagemaker_session=sagemaker_session,
 serializer=serializers.JSONSerializer(),
 deserializer=deserializers.JSONDeserializer()
)
 return predictor

4. Make a prediction

LMI tutorials 4331

Amazon SageMaker Developer Guide

_model_name = "ft-flan-t5-xl"
_model_s3_url = "s3://djl-sm-test/tutorial/fastertransforemer-t5.tar.gz"
_endpoint_name="ft-flan-t5-xl"

model = create_model(_model_name, _model_s3_url)
predictor = deploy_model(model, _endpoint_name)
print(predictor.predict(
 {
 "text" : ["translate English to German: The house is wonderful."],
 }
))

5. Spin down the resources

predictor.delete_endpoint(delete_endpoint_config=True)

Large model inference with TorchServe

This tutorial demonstrates how to deploy large models and serve inference in Amazon SageMaker
with TorchServe on GPUs. This example deploys the OPT-30b model to an ml.g5 instance.
You can modify this to work with other models and instance types. Replace the italicized
placeholder text in the examples with your own information.

TorchServe is a powerful open platform for large distributed model inference. By supporting
popular libraries like PyTorch, native PiPPy, DeepSpeed, and HuggingFace Accelerate, it offers
uniform handler APIs that remain consistent across distributed large model and non-distributed
model inference scenarios. For more information, see TorchServe’s large model inference
documentation.

Deep learning containers with TorchServe

To deploy a large model with TorchServe on SageMaker, you can use one of the SageMaker deep
learning containers (DLCs). By default, TorchServe is installed in all AWS PyTorch DLCs. During
model loading, TorchServe can install specialized libraries tailored for large models such as PiPPy,
Deepspeed, and Accelerate.

The following table lists all of the SageMaker DLCs with TorchServe.

LMI tutorials 4332

https://huggingface.co/facebook/opt-30b
https://pytorch.org/serve/large_model_inference.html#
https://pytorch.org/serve/large_model_inference.html#
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

DLC cateogry Framework Hardware Example URL

SageMaker
Framework Container
s

PyTorch 2.0.0+ CPU, GPU 763104351884.dkr.e
cr.us-east-1.amazo
naws.com/pytorch-i
nference:2.0.1-gpu-
py310-cu118-ubunt
u20.04-sagemaker

SageMaker
Framework Graviton
Containers

PyTorch 2.0.0+ CPU 763104351884.dkr.e
cr.us-east-1.amazo
naws.com/pytorch-
inference-graviton:
2.0.1-cpu-py310-ub
untu20.04-sagemake
r

StabilityAI Inference
Containers

PyTorch 2.0.0+ GPU 763104351884.dkr.e
cr.us-east-1.amazo
naws.com/stability
ai-pytorch-inferen
ce:2.0.1-sgm0.1.0-
gpu-py310-cu118-ub
untu20.04-sagemake
r

Neuron Containers PyTorch 1.13.1 Neuronx 763104351884.dkr.e
cr.us-west-2.amazo
naws.com/pytorch-
inference-neuron:1.
13.1-neuron-py310-
sdk2.12.0-ubuntu20
.04

LMI tutorials 4333

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-graviton-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-graviton-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-graviton-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#stabilityai-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#stabilityai-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers

Amazon SageMaker Developer Guide

Getting started

Before deploying your model, complete the prerequisites. You can also configure your model
parameters and customize the handler code.

Prerequisites

To get started, ensure that you have the following prerequisites:

1. Ensure you have access to an AWS account. Set up your environment so that the AWS CLI can
access your account through either an AWS IAM user or an IAM role. We recommend using an
IAM role. For the purposes of testing in your personal account, you can attach the following
managed permissions policies to the IAM role:

• AmazonEC2ContainerRegistryFullAccess

• AmazonEC2FullAccess

• AWSServiceRoleForAmazonEKSNodegroup

• AmazonSageMakerFullAccess

• AmazonS3FullAccess

For more information about attaching IAM policies to a role, see Adding and removing IAM
identity permissions in the AWS IAM User Guide.

2. Locally configure your dependencies, as shown in the following examples.

a. Install version 2 of the AWS CLI:

Install the latest AWS CLI v2 if it is not installed
!curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
 "awscliv2.zip" !unzip awscliv2.zip
#Follow the instructions to install v2 on the terminal
!cat aws/README.md

b. Install SageMaker and the Boto3 client:

If already installed, update your client
#%pip install sagemaker pip --upgrade --quiet
!pip install -U sagemaker
!pip install -U boto
!pip install -U botocore

LMI tutorials 4334

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSServiceRoleForAmazonEKSNodegroup
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonS3FullAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon SageMaker Developer Guide

!pip install -U boto3

Configure model settings and parameters

TorchServe uses torchrun to set up the distributed environment for model parallel processing.
TorchServe has the capability to support multiple workers for a large model. By default, TorchServe
uses a round-robin algorithm to assign GPUs to a worker on a host. In the case of large model
inference, the number of GPUs assigned to each worker is automatically calculated based on
the number of GPUs specified in the model_config.yaml file. The environment variable
CUDA_VISIBLE_DEVICES, which specifies the GPU device IDs that are visible at a given time, is set
based this number.

For example, suppose there are 8 GPUs on a node and one worker needs 4 GPUs on
a node (nproc_per_node=4). In this case, TorchServe assigns four GPUs to the first
worker (CUDA_VISIBLE_DEVICES="0,1,2,3") and four GPUs to the second worker
(CUDA_VISIBLE_DEVICES="4,5,6,7”).

In addition to this default behavior, TorchServe provides the flexibility for users to specify GPUs for
a worker. For instance, if you set the variable deviceIds: [2,3,4,5] in the model config YAML
file, and set nproc_per_node=2, then TorchServe assigns CUDA_VISIBLE_DEVICES=”2,3” to
the first worker and CUDA_VISIBLE_DEVICES="4,5” to the second worker.

In the following model_config.yaml example, we configure both front-end and back-end
parameters for the OPT-30b model. The configured front-end parameters are parallelType,
deviceType, deviceIds and torchrun. For more detailed information about the front-end
parameters you can configure, see the PyTorch GitHub documentation. The back-end configuration
is based on a YAML map that allows for free-style customization. For the back-end parameters, we
define the DeepSpeed configuration and additional parameters used by custom handler code.

TorchServe front-end parameters
minWorkers: 1
maxWorkers: 1
maxBatchDelay: 100
responseTimeout: 1200
parallelType: "tp"
deviceType: "gpu"
example of user specified GPU deviceIds
deviceIds: [0,1,2,3] # sets CUDA_VISIBLE_DEVICES

LMI tutorials 4335

https://pytorch.org/docs/stable/elastic/run.html
https://github.com/pytorch/serve/blob/5ee02e4f050c9b349025d87405b246e970ee710b/model-archiver/README.md?plain=1#L164
https://github.com/pytorch/serve/blob/5ee02e4f050c9b349025d87405b246e970ee710b/model-archiver/README.md?plain=1#L164
https://huggingface.co/facebook/opt-30b
https://github.com/pytorch/serve/blob/2bf505bae3046b0f7d0900727ec36e611bb5dca3/docs/configuration.md?plain=1#L267

Amazon SageMaker Developer Guide

torchrun:
 nproc-per-node: 4

TorchServe back-end parameters
deepspeed:
 config: ds-config.json
 checkpoint: checkpoints.json

handler: # parameters for custom handler code
 model_name: "facebook/opt-30b"
 model_path: "model/models--facebook--opt-30b/snapshots/
ceea0a90ac0f6fae7c2c34bcb40477438c152546"
 max_length: 50
 max_new_tokens: 10
 manual_seed: 40

Customize handlers

TorchServe offers base handlers and handler utilities for large model inference built with
popular libraries. The following example demonstrates how the custom handler class
TransformersSeqClassifierHandler extends BaseDeepSpeedHandler and uses the handler
utilities. For a full code example, see the custom_handler.py code on the PyTorch GitHub
documentation.

class TransformersSeqClassifierHandler(BaseDeepSpeedHandler, ABC):
 """
 Transformers handler class for sequence, token classification and question
 answering.
 """

 def __init__(self):
 super(TransformersSeqClassifierHandler, self).__init__()
 self.max_length = None
 self.max_new_tokens = None
 self.tokenizer = None
 self.initialized = False

 def initialize(self, ctx: Context):
 """In this initialize function, the HF large model is loaded and
 partitioned using DeepSpeed.
 Args:
 ctx (context): It is a JSON Object containing information
 pertaining to the model artifacts parameters.

LMI tutorials 4336

https://github.com/pytorch/serve/tree/master/ts/torch_handler/distributed
https://github.com/pytorch/serve/tree/master/ts/handler_utils
https://github.com/pytorch/serve/blob/ab69b69a59d6ca6074df7e6d4014f07eb48dedba/examples/large_models/deepspeed/custom_handler.py#L16C7-L16C39
https://github.com/pytorch/serve/blob/ab69b69a59d6ca6074df7e6d4014f07eb48dedba/ts/torch_handler/distributed/base_deepspeed_handler.py#L8
https://github.com/pytorch/serve/blob/master/ts/handler_utils/distributed/deepspeed.py
https://github.com/pytorch/serve/blob/master/ts/handler_utils/distributed/deepspeed.py
https://github.com/pytorch/serve/blob/master/examples/large_models/deepspeed/custom_handler.py
https://github.com/pytorch/serve/blob/master/examples/large_models/deepspeed/custom_handler.py

Amazon SageMaker Developer Guide

 """
 super().initialize(ctx)
 model_dir = ctx.system_properties.get("model_dir")
 self.max_length = int(ctx.model_yaml_config["handler"]["max_length"])
 self.max_new_tokens = int(ctx.model_yaml_config["handler"]["max_new_tokens"])
 model_name = ctx.model_yaml_config["handler"]["model_name"]
 model_path = ctx.model_yaml_config["handler"]["model_path"]
 seed = int(ctx.model_yaml_config["handler"]["manual_seed"])
 torch.manual_seed(seed)

 logger.info("Model %s loading tokenizer", ctx.model_name)

 self.tokenizer = AutoTokenizer.from_pretrained(model_name)
 self.tokenizer.pad_token = self.tokenizer.eos_token
 config = AutoConfig.from_pretrained(model_name)
 with torch.device("meta"):
 self.model = AutoModelForCausalLM.from_config(
 config, torch_dtype=torch.float16
)
 self.model = self.model.eval()

 ds_engine = get_ds_engine(self.model, ctx)
 self.model = ds_engine.module
 logger.info("Model %s loaded successfully", ctx.model_name)
 self.initialized = True

 def preprocess(self, requests):
 """
 Basic text preprocessing, based on the user's choice of application mode.
 Args:
 requests (list): A list of dictionaries with a "data" or "body" field, each
 containing the input text to be processed.
 Returns:
 tuple: A tuple with two tensors: the batch of input ids and the batch of
 attention masks.
 """

 def inference(self, input_batch):
 """
 Predicts the class (or classes) of the received text using the serialized
 transformers
 checkpoint.
 Args:

LMI tutorials 4337

Amazon SageMaker Developer Guide

 input_batch (tuple): A tuple with two tensors: the batch of input ids and
 the batch
 of attention masks, as returned by the preprocess
 function.
 Returns:
 list: A list of strings with the predicted values for each input text in
 the batch.
 """

 def postprocess(self, inference_output):
 """Post Process Function converts the predicted response into Torchserve
 readable format.
 Args:
 inference_output (list): It contains the predicted response of the input
 text.
 Returns:
 (list): Returns a list of the Predictions and Explanations.
 """

Prepare your model artifacts

Before deploying your model on SageMaker, you must package your model artifacts. For large
models, we recommend that you use the PyTorch torch-model-archiver tool with the argument --
archive-format no-archive, which skips compressing model artifacts. The following example
saves all of the model artifacts to a new folder named opt/.

torch-model-archiver --model-name opt --version 1.0 --handler custom_handler.py --
extra-files ds-config.json -r requirements.txt --config-file opt/model-config.yaml --
archive-format no-archive

Once the opt/ folder is created, download the OPT-30b model to the folder using the PyTorch
Download_model tool.

cd opt
python path_to/Download_model.py --model_path model --model_name facebook/opt-30b --
revision main

Lastly, upload the model artifacts to an Amazon S3 bucket.

aws s3 cp opt {your_s3_bucket}/opt --recursive

LMI tutorials 4338

https://github.com/pytorch/serve/blob/master/model-archiver/README.md
https://github.com/pytorch/serve/blob/master/examples/large_models/utils/Download_model.py

Amazon SageMaker Developer Guide

You should now have model artifacts stored in Amazon S3 that are ready to deploy to a SageMaker
endpoint.

Deploy the model using the SageMaker Python SDK

After preparing your model artifacts, you can deploy your model to a SageMaker Hosting endpoint.
This section describes how to deploy a single large model to an endpoint and make streaming
response predictions. For more information about streaming responses from endpoints, see Invoke
real-time endpoints.

To deploy your model, complete the following steps:

1. Create a SageMaker session, as shown in the following example.

import boto3
import sagemaker
from sagemaker import Model, image_uris, serializers, deserializers

boto3_session=boto3.session.Session(region_name="us-west-2")
smr = boto3.client('sagemaker-runtime-demo')
sm = boto3.client('sagemaker')
role = sagemaker.get_execution_role() # execution role for the endpoint
sess= sagemaker.session.Session(boto3_session, sagemaker_client=sm,
 sagemaker_runtime_client=smr) # SageMaker session for interacting with different
 AWS APIs
region = sess._region_name # region name of the current SageMaker Studio Classic
 environment
account = sess.account_id() # account_id of the current SageMaker Studio Classic
 environment

Configuration:
bucket_name = sess.default_bucket()
prefix = "torchserve"
output_path = f"s3://{bucket_name}/{prefix}"
print(f'account={account}, region={region}, role={role},
 output_path={output_path}')

2. Create an uncompressed model in SageMaker, as shown in the following example.

from datetime import datetime

instance_type = "ml.g5.24xlarge"
endpoint_name = sagemaker.utils.name_from_base("ts-opt-30b")

LMI tutorials 4339

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-test-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-test-endpoints.html

Amazon SageMaker Developer Guide

s3_uri = {your_s3_bucket}/opt

model = Model(
 name="torchserve-opt-30b" + datetime.now().strftime("%Y-%m-%d-%H-%M-%S"),
 # Enable SageMaker uncompressed model artifacts
 model_data={
 "S3DataSource": {
 "S3Uri": s3_uri,
 "S3DataType": "S3Prefix",
 "CompressionType": "None",
 }
 },
 image_uri=container,
 role=role,
 sagemaker_session=sess,
 env={"TS_INSTALL_PY_DEP_PER_MODEL": "true"},
)
print(model)

3. Deploy the model to an Amazon EC2 instance, as shown in the following example.

model.deploy(
 initial_instance_count=1,
 instance_type=instance_type,
 endpoint_name=endpoint_name,
 volume_size=512, # increase the size to store large model
 model_data_download_timeout=3600, # increase the timeout to download large
 model
 container_startup_health_check_timeout=600, # increase the timeout to load
 large model
)

4. Initialize a class to process the streaming response, as shown in the following example.

import io

class Parser:
 """
 A helper class for parsing the byte stream input.

 The output of the model will be in the following format:
    ``` 
    b'{"outputs": [" a"]}\n' 

LMI tutorials 4340



Amazon SageMaker Developer Guide

    b'{"outputs": [" challenging"]}\n' 
    b'{"outputs": [" problem"]}\n' 
    ... 
    ``` 

 While usually each PayloadPart event from the event stream will contain a byte
 array
 with a full json, this is not guaranteed and some of the json objects may be
 split across
 PayloadPart events. For example:
    ``` 
    {'PayloadPart': {'Bytes': b'{"outputs": '}} 
    {'PayloadPart': {'Bytes': b'[" problem"]}\n'}} 
    ``` 

 This class accounts for this by concatenating bytes written via the 'write'
 function
 and then exposing a method which will return lines (ending with a '\n'
 character) within
 the buffer via the 'scan_lines' function. It maintains the position of the last
 read
 position to ensure that previous bytes are not exposed again.
 """

 def __init__(self):
 self.buff = io.BytesIO()
 self.read_pos = 0

 def write(self, content):
 self.buff.seek(0, io.SEEK_END)
 self.buff.write(content)
 data = self.buff.getvalue()

 def scan_lines(self):
 self.buff.seek(self.read_pos)
 for line in self.buff.readlines():
 if line[-1] != b'\n':
 self.read_pos += len(line)
 yield line[:-1]

 def reset(self):
 self.read_pos = 0

5. Test a streaming response prediction, as shown in the following example.

LMI tutorials 4341

Amazon SageMaker Developer Guide

import json

body = "Today the weather is really nice and I am planning on".encode('utf-8')
resp = smr.invoke_endpoint_with_response_stream(EndpointName=endpoint_name,
 Body=body, ContentType="application/json")
event_stream = resp['Body']
parser = Parser()
for event in event_stream:
 parser.write(event['PayloadPart']['Bytes'])
 for line in parser.scan_lines():
 print(line.decode("utf-8"), end=' ')

You have now deployed your model to a SageMaker endpoint and should be able to invoke it for
responses. For more information about SageMaker real-time endpoints, see Host a single model.

Additional resources to get started

For more information about using SageMaker LMI DLCs, see the following resources:

• Blog: Improve throughput performance of Llama 2 models using Amazon SageMaker

• Blog: Improve performance of Falcon models with Amazon SageMaker

• Blog: Build an image-to-text generative AI application using multimodality models on Amazon
SageMaker

• Blog: Deploy large language models on AWS Inferentia2 using large model inference containers

• Blog: Deploy BLOOM-176B and OPT-30B on Amazon SageMaker with large model inference
Deep Learning Containers and DeepSpeed

• Blog: Deploy large models on Amazon SageMaker using DJL Serving and DeepSpeed model
parallel inference

• Example notebooks: AWS SageMaker examples GitHub repository.

Configurations and settings

The following sections describe the configuration options you can use inside the
serving.properties file.

Configurations and settings 4342

https://aws.amazon.com/blogs/machine-learning/improve-throughput-performance-of-llama-2-models-using-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/improve-performance-of-falcon-models-with-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/build-an-image-to-text-generative-ai-application-using-multimodality-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/build-an-image-to-text-generative-ai-application-using-multimodality-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/deploy-large-language-models-on-aws-inferentia2-using-large-model-inference-containers/
https://aws.amazon.com/blogs/machine-learning/deploy-bloom-176b-and-opt-30b-on-amazon-sagemaker-with-large-model-inference-deep-learning-containers-and-deepspeed/
https://aws.amazon.com/blogs/machine-learning/deploy-bloom-176b-and-opt-30b-on-amazon-sagemaker-with-large-model-inference-deep-learning-containers-and-deepspeed/
https://aws.amazon.com/blogs/machine-learning/deploy-large-models-on-amazon-sagemaker-using-djlserving-and-deepspeed-model-parallel-inference/
https://aws.amazon.com/blogs/machine-learning/deploy-large-models-on-amazon-sagemaker-using-djlserving-and-deepspeed-model-parallel-inference/
https://github.com/aws/amazon-sagemaker-examples/tree/main/inference/generativeai/llm-workshop

Amazon SageMaker Developer Guide

DJL Serving general settings

The following table identifies the general DJL Serving configuration options that you can use in
serving.properties, irrespective of whatever handler you choose.

Common parameters

Item Required Description Example value

engine Yes The runtime engine
of the code. MPI is an
engine that allows
the model server
to start distributed
processes to load
the model. This is
used in some of the
frameworks that are
supported for LMI.

As of 0.25.0, the
TRTLLM, LMI-Dist
and DeepSpeed
frameworks use
MPI engine. vLLM,
TransformersNeuron
X, Optimum Neuron,
HuggingFace
Accelerate uses
Python engine.

Python, MPI,
DeepSpeed
(deprecated)

option.mo
del_dir

No The directory path
to load the model.
The default is set
to the current path
with model files. On
SageMaker, this is
set to the location
where SageMaker

Default: /opt/djl/
ml

Configurations and settings 4343

Amazon SageMaker Developer Guide

Item Required Description Example value

downloads the model
object from Amazon
S3.

option.model_id No The value of this
option will be the
Hugging Face ID of
a model or the S3
URL of the model
artifacts. DJL Serving
will use the ID to
download the model
from Hugging Face
or the S3 URL. DJL
Serving uses s5cmd
to download the
model from the
bucket, which is
generally faster

google/flan-
t5-xl, s3://
<my-bucket>/g
oogle/flan-t5-
xl

Default: None

option.dtype No The datatype to
which you plan to
cast the model. The
default is fp16. You
can also set to bf16
if you are using G5,
P4D and newer GPU
machines.

fp16, fp32, bf16,
int8 (only used in
LMI-Dist)

Configurations and settings 4344

Amazon SageMaker Developer Guide

Item Required Description Example value

option.te
nsor_para
llel_degree

No The number of
GPUs (model slicing
number) to shard
the model. If you
are using LLMs, you
should set this value
to achieve the best
performance. If you
don't know whatthe
value should be,
start trying from
"max" (split the
model to maximum
number of GPUs on
the machine).

Default for
DeepSpeed,
Transformer-Neuron
X : 1

Default for
HuggingFace
Accelerate: -1

Default for TrtLLM
Container: max

Configurations and settings 4345

Amazon SageMaker Developer Guide

Item Required Description Example value

option.ro
lling_batch

No Also commonly
known as continuou
s batching. Enables
iteration-level
batching using one
of the supported
strategies. This
allows concurrent
requests that arrived
at different times to
merge as a batch to
run inference with
the model server.

Disabled for
DeepSpeed container
by default given
there are many
choices of backends.

For the TensorRT
container, rolling
batch is enabled by
default.

For Transform
ersNeuronX, this is
disabled by default.

DeepSpeed container
: auto, scheduler

, lmi-dist, vllm,
deepspeed

Neuron container:
auto

TRTLLM container:
trtllm

Configurations and settings 4346

Amazon SageMaker Developer Guide

Item Required Description Example value

option.ma
x_rolling
_batch_size

No The maximum
concurrent requests
or batches that the
model can take. The
model server will
feed to the python
processes <max_roll
ing_batch_size> to
prevent GPU OOM.
Customer can still
send more requests
to the model server.
The requests more
than <max_roll
ing_batch_size> will
be queued and fed to
Python until they are
finished.

Note: This is a model-
specific configuration.
If you set <max_roll
ing_batch_size> on
Model A, and there
are N copies of Model
A inside the container
. Then the model
server can deal up to
<max_rolling_batch
_size> x N requests.

Default: 32 (for
all engines except
DeepSpeed)

Default: 4 (for
DeepSpeed)

Configurations and settings 4347

Amazon SageMaker Developer Guide

Advanced parameters

Item Required Description Example value

option.tr
ust_remot
e_code

No Set to true to use
a Hugging Face
Hub model with
custom code. We set
a default value to
false to prevent
malicious code
execution from
Hugging Face Hub.

Default: false

option.revision No Use a particular
version or commit
hash of a Hugging
Face Hub model

Default: None

option.en
tryPoint

option.entryPoint Defines which built-
in model loading
handler to use.
You can also use
a custom model
handler (model.py) in
the model directory.
Specify as djl_pytho
n.<prebuilt handler>
or the path to your
customized handler.

Different DLCs we
offer choose the
entry point for you.
For example, if
you use TensorRTL
LM DLC, it uses

djl_pytho
n.deepspe
ed , djl_pytho
n.hugging
face , djl_pytho
n.transfo
rmers_neu
ronx , djl_pytho
n.tensorr
t_llm , djl_pytho
n.stable_
diffusion

Configurations and settings 4348

Amazon SageMaker Developer Guide

Item Required Description Example value

djl_pytho
n.tensorrt_llm

option.pa
rallel_loading

No It loads the workers
in parallel and
reduces the model
loading time if your
model can fit in
CPU memory with
multiple processes.

Note: If you are
loading N copies of
model at the same
time, then the peak
CPU memory can go
up to N x model_size
and cause CPU OOM.

Default: false

option.mo
del_loadi
ng_timeout

No Sets the limit on the
time model can load
before model server
timeout. Default time
is 30 min (1800s).

If you are using on
SageMaker and
you do expect the
model takes longer
to load, you should
also set container
_startup_health_ch
eck_timeout=<model
_loading_timeout>
on SageMaker

Default: 1800

Configurations and settings 4349

Amazon SageMaker Developer Guide

Item Required Description Example value

job_queue_size No Specifies the job
queue size at the
model level. The job
queue is typically
used to deal with
concurrent requests
that go beyond what
the backend model
server can take. The
model server will
queue requests up to
<job_queue_size>.

Default: 1000

option.ou
tput_formatter

No Use only if
option.ro
lling_batch
is enabled. Defines
which output format
the model server will
be sent as the result.
If no value being set,
we are sending back
JSON in tokens.

json, jsonlines

Default: json

Configurations and settings 4350

Amazon SageMaker Developer Guide

Item Required Description Example value

option.en
able_streaming
(Deprecated since
0.25.0)

No From 0.25.0, we
started to deprecate
this parameter.
Enables response
streaming for static
batching. Use
huggingface to
enable HuggingFa
ce-like streaming
output.

RollingBatch already
does token-str
eaming by default.
Setting this value for
RollingBatch has no
effect.

false, true,
huggingface

Advanced parameters: dynamic batching

Item Required Description Example value

batch_size No Dynamic-request-le
vel batching. This is
commonly used in
non-text inference
to wait for requests
to come to build a
batch. It helps with
handling concurren
t requests more
efficiently. Dynamic
batching cannot be
used with rolling
batching given they

Default: 1

Configurations and settings 4351

Amazon SageMaker Developer Guide

Item Required Description Example value

are different batching
algorithms defined by
the model server.

option.ma
x_batch_delay

No The maximum delay
for batch aggregati
on in milliseconds.
We will wait for
<max_batch_delay>
milliseconds duration
to collect requests up
to <batch_size> size
to send to the model
server.

Default: 100

option.ma
x_idle_time

No The maximum idle
time in seconds
before the worker
thread is scaled
down.

Default: 60

Hugging Face handler settings

If you use the Hugging Face handler provided by DJL Serving, you can configure the options in the
following table in serving.properties.

Common parameters

Item Required Description Example value

option.de
vice_map

No Enables fitting
the model across
multiple GPUs.

auto, balanced,
balanced_low_0 ,
sequential

Configurations and settings 4352

Amazon SageMaker Developer Guide

Item Required Description Example value

Default: auto if tp >
0 and cuda devices
are available

option.lo
w_cpu_mem
_usage

No Reduces CPU
memory usage when
loading models. We
recommend that you
set this to TRUE.

TRUE

option.quantize No Quantize the
model with the
supported quantizat
ion methods.

bitsandbytes4 ,
bitsandbytes8

Default: None

bitsandbytes4
is equivalent to the
load_in_4bit
option.

option.task No The task used in
Hugging Face for
different pipelines.

text-generation

Advanced parameters

Item Required Description Example value

option.de
coding_st
rategy

No Specifies the
decoding method for
sample, greedy and
contrastive search.

sample, greedy,
contrastive

Default: greedy

option.di
sable_fla
sh_attn

No Used to toggle
between using
huggingface flash_att
ention or not. Note

Default: true

Configurations and settings 4353

Amazon SageMaker Developer Guide

Item Required Description Example value

that huggingface
flash attention can be
affected by padding.

option.lo
ad_in_4bit
(Deprecated since
0.25.0)

No Uses bitsandby
tes quantization.
Supported only on
certain models.

Deprecated.
Use option.qu
antize=bi
tsandbytes4
instead.

Default: false

option.lo
ad_in_8bit
(Deprecated since
0.25.0)

No Uses bitsandby
tes quantization.
Supported only on
certain models.

Deprecated.
Use option.qu
antize=bi
tsandbytes8
instead.

Default: false

option.ma
x_sparsity

No Used in the max-
sparsity thresholding
mechanism. Limits
the max_sparsity in
the token sequence
caused by padding.

0.01, 0.5

Default: 0.33

option.ma
x_splits

No Used in the max-
sparsity thresholding
mechanism. Limits
the max number of
batch splits, where
each split has its own
inference call.

1, 5

Default: 3

Configurations and settings 4354

Amazon SageMaker Developer Guide

LMI-Dist handler settings

If you use LMI-Dist for the rolling batch option with DJL Serving, you can configure the options in
the following table in serving.properties.

Common parameters

Item Required Description Example value

option.quantize No Use <option.q
uantize> quantize
technology with the
model. gptq quantize
requires loading a
gptq model.

bitsandbytes is
deprecated. Use
bitsandbytes8
instead. Both the
options are the same.

bitsandbytes8 ,
gptq

Default: None

Advanced parameters

Item Required Description Example value

option.pa
ged_attention

No Use PagedAttention
or not. Default is
always use. Disable
this if you plan to run
on G4 or older GPU
architecture

Default: true

option.ma
x_rolling
_batch_pr
efill_tokens

No Limits the number of
tokens for caching.
This needs to be
tuned based on
batch size and input
sequence length to

Default: None

Configurations and settings 4355

Amazon SageMaker Developer Guide

Item Required Description Example value

(Deprecated since
0.25.0)

avoid GPU OOM.
Currently we are
calculating the best
value for you. From
0.25.0, this is no
longer required.

If you still plan
to calculate this
value manually,
use this formula:
(max_input_tokens +
max_output_tokens)
* batch_size =
<max_rolling_batch
_prefill_tokens>.
For example, 512
input, 512 output
and batch size 16,
would set 16384.
Setting this value
does not mean you
have to send input
512 and output 512.
You can still do 1024
input, 512 output
with batch size 10 for
your request (16384 /
(1024+512)) = 10.6

vLLM handler settings

If you use vLLM for the rolling batch option with DJL Serving, you can configure the options in the
following table in serving.properties.

Configurations and settings 4356

Amazon SageMaker Developer Guide

Item Required Description Example value

option.quantize No Quantize the
model with the
supported quantizat
ion methods

awq

Default: None

option.ma
x_rolling
_batch_pr
efill_tokens

No Limits the number of
tokens for caching.
This needs to be
tuned based on
batch size and input
sequence length to
avoid GPU OOM. If
you don't set, vLLM
will try to find a good
number to fit in.

If you still plan
to calculate this
value manually,
use this formula:
(max_input_tokens +
max_output_tokens)
* batch_size =
<max_rolling_batch
_prefill_tokens>.
For exampe, 512
input, 512 output
and batch size 16,
would set 16384.
Setting this value
does not mean you
have to send input
512 and output 512.
You can still do 1024
input, 512 output

Default: None

Configurations and settings 4357

Amazon SageMaker Developer Guide

Item Required Description Example value

with batch size 10 for
your request (16384 /
(1024+512)) = 10.6

DeepSpeed handler settings

If you use the DeepSpeed handler provided by DJL Serving, you can configure the options in the
following table in serving.properties.

Common parameters

Item Required Description Example value

option.ma
x_tokens

No Total number of
tokens (input and
output) with which
DeepSpeed can
work. The number of
output tokens is the
difference between
the total number
of tokens and the
number of input
tokens. By default we
set the value to 1024.
If you are looking
for long sequence
generation, you may
want to set this to
higher value, such as
2048 or 4096.

1024

option.quantize No Specify this option
to quantize your
model using the
supported quantizat

dynamic_int8 ,
smoothquant

Configurations and settings 4358

Amazon SageMaker Developer Guide

Item Required Description Example value

ion methods
in DeepSpeed.
SmoothQuant is our
special offering to
provide quantization
with better quality.

option.task No The task used in
Hugging Face for
different pipelines.
The default is text-
generation .

text-generation

Advanced parameters

Item Required Description Example value

option.ch
eckpoint

No Path to DeepSpeed
compatible checkpoin
t file.

ds_infere
nce_check
point.json

option.en
able_cuda
_graph

No Activates capturing
the CUDA graph of
the forward pass to
accelerate.

TRUE

option.lo
w_cpu_mem
_usage

No Reduce CPU
memory usage when
loading models. We
recommend that you
set this to TRUE.

TRUE

option.re
turn_tuple

No Whether transformer
layers need to return
a tuple or a tensor.

FALSE

Configurations and settings 4359

Amazon SageMaker Developer Guide

Item Required Description Example value

option.sm
oothquant
_alpha

No If smoothquant is
provided in option.qu
antize, you can
provide this alpha
value. If not provided,
DeepSpeed will
choose one for you

Any float value
between 0 and 1

option.tr
aining_mp_size

No If the model
was trained with
DeepSpeed, this
indicates the tensor
parallelism degree
with which the model
was trained. Can be
different than the
tensor parallel degree
desired for inference.

2

option.tr
iangular_
masking

No Whether to use
triangular masking
for the attention
mask. This is applicati
on or model specific.

FALSE

FasterTransformer handler settings

If you use the FasterTransformer handler provided by DJL Serving, you can configure the options in
the following table in serving.properties.

Item Required Description Example value

option.mo
del_dir

No The directory path
to load the model.
The default is set to

Default: /opt/djl/
ml

Configurations and settings 4360

Amazon SageMaker Developer Guide

Item Required Description Example value

the current path with
model files.

option.model_id No This overrides
option.mo
del_dir if set.
Used to download
the model from
Hugging Face or an
S3 bucket

google/flan-
t5-xl, s3://my-b
ucket/google/
flan-t5-xl

Default: None

Neuronx LMI handler settings

If you use the Neuronx LMI handler provided by DJL Serving, you can configure the options in the
following table in serving.properties.

Common parameters

Item Required Description Example value

option.lo
ad_in_8bit

No Specify this option
to quantize your
model using the
supported quantizat
ion methods in
TransformerNeuronX.

True, False

Default: False

option.n_
positions

No Maximum input plus
output token length
per request. You may
want to set this value
larger if you plan to
do inference with
long input or output
tokens.

Default: 128

Configurations and settings 4361

Amazon SageMaker Developer Guide

Advanced parameters

Item Required Description Example value

option.co
ntext_len
gth_esitmate

No Estimated context
input length for
Llama models.
Customer can specify
different bucket sizes
to increase the KV
cache reusability. This
will help to improve
latency

Default: None

option.lo
ad_split_model

No Toggle to True
when using model
artifacts that have
already been split for
neuron compilation
or loading.

Default: False

option.lo
w_cpu_mem
_usage

No Reduce CPU memory
usage when loading
models.

Default: false

option.ne
uron_opti
mize_level

No Neuron runtime
compiler optimizat
ion level, determines
the type of optimizat
ions applied during
compilation. The
higher the optimizat
ion level, the more
time spent on
compilation. But in
exchange, you get
better latency and
throughput.

1, 2, 3

Default: 2

Configurations and settings 4362

Amazon SageMaker Developer Guide

Item Required Description Example value

option.unroll No Unroll the model
graph for compilati
on. With unroll=No
ne , the compiler will
have more opportuni
ties optimize across
the layers.

Default: None

TensorRT-LLM handler settings

If you use the TensorRT-LLM handler provided by DJL Serving, you can configure the options in the
following table in serving.properties.

Common parameters

Item Required Description Example value

option.ma
x_input_len

No The maximum input
token size you expect
the model to have
per request. This
is a compilation
parameter that sets
to the model to just-
in-time compilation.
If you set this value
too low, the model
will be unable to
consume the long
input.

The Default values
for Llama is 512

The default value for
Falcon is 1024

option.ma
x_output_len

No The maximum output
token size you expect
the model to have
per request. This

The Default values
for Llama is 512

The default value for
Falcon is 1024

Configurations and settings 4363

Amazon SageMaker Developer Guide

Item Required Description Example value

is a compilation
parameter that sets
the model to just-in-
time compilation. If
you set this value too
low, the model will
be unable to produce
tokens beyond the
value you set.

option.us
e_custom_
all_reduce

No Use a custom all
reduce kernel for
GPUs that have
NVLink enabled. This
can help to speed
up model inference
speed with better
communication. Turn
this on by setting
true on P4D, P4De,
P5 and other GPUs
that are NVLink
connected.

Default: false

Advanced parameters

Item Required Description Example value

option.to
kens_per_block

No Tokens per block to
be used in paged
attention algorithms.

Default: 64

option.ba
tch_sched
uler_policy

No The scheduler policy
of the Tensorrt-LLM
batch manager.

max_utilization ,
guarantee
d_no_evict

Configurations and settings 4364

Amazon SageMaker Developer Guide

Item Required Description Example value

Default: max_utili
zation

option.kv
_cache_fr
ee_gpu_me
m_fraction

No Fraction of free GPU
memory allocated
for kv cache. The
larger value you set,
the more memory
the model will try to
take over on the GPU.
The more memory
preserved, the larger
KV Cache size we can
use and that means
longer input+output
sequence or larger
batch size.

Float number
between 0 and 1.

Default is 0.95

option.ma
x_num_seq
uences

No Maximum number
of input requests
processed in the
batch. We will apply
max_rolling_batch_
size as the value for
it if you don't set
this. Generally you
don't have to touch
it unless you really
want the model to
be compiled to a
batch size that not
the same as model
server set.

Integer greater than
0

Default value is the
batch size set while
building the TensorRT
engine

Configurations and settings 4365

Amazon SageMaker Developer Guide

Item Required Description Example value

option.en
able_trt_
overlap

No Parameter to overlap
the execution of
batches of requests.
It may have a
negative impact
on performance
when the number
of requests is too
small. During our
experiment, we saw
more negative impact
to turn this on than
off.

True, False.

Default: False

Advanced parameters: quantization

Item Required Description Example value

option.quantize No Currently only
supports smoothqua
nt for Llama
models with just-
in-time compilation
mode.

smoothquant

option.sm
oothquant
_alpha

No The smoothquant
alpha parameter.

Default: 0.8

option.sm
oothquant
_per_token

No This is only applied
when option.qu
antize is set to
smoothquant . This
enables choosing, at
run time, a custom

True, False.

Default: False.

Configurations and settings 4366

Amazon SageMaker Developer Guide

Item Required Description Example value

smoothquant scaling
factor for each token.
This is usually a little
slower, but more
accurate

option.sm
oothquant
_per_channel

No This is only applied
when option.qu
antize is set to
smoothquant . This
enables choosing, at
run time, a custom
smoothquant scaling
factor for each token.
This is usually a little
slower, but more
accurate

True, False.

Default: False.

option.mu
lti_query_mode

No This is only needed
when option.qu
antize is set to
smoothquant .
This is should be
set for models that
support multi-que
ry-attention, such as
llama-70b.

True, False.

Default: False.

Choosing instance types for large model inference

When deploying deep learning models, we typically balance the cost of hosting these models
against the performance in terms of latency, throughput, and accuracy. A core input to this
equation is the SageMaker instance type. SageMaker offers many instance types with different GPU
devices. For a given model, there are likely multiple suitable instances for hosting the model for
inference. Benchmarking can help you to decide with which instance to proceed.

Choosing instance types for LMI 4367

Amazon SageMaker Developer Guide

The following sections provide some guidelines that you can follow to determine which instance
type to choose for hosting large models. To use these guidelines, you should know the following
characteristics of your use case:

• Model architecture or type, such as OPT, GPTJ, BLOOM, or Bert

• Data type precision, such as fp32, fp16, bf16, or int8

• Model size in MB or GB

• Input and output token sizes

Determining possible instance types

When choosing an instance type, consider the size of the model as well as available GPU devices.
The large model inference (LMI) containers are currently only supported on instances with NVIDIA
GPUs, and are not supported on Graviton instances. For the most up-to-date information on
available GPU instances, see Recommended GPU Instances.

When deploying large models, the ideal situation is to fit the model on a single GPU. This is the
best option with respect to performance as it eliminates the overhead of communication between
GPU devices. For some models it is simply impossible to fit them on a single GPU due to model
size. For other models, they may fit on a single GPU, but it may be more cost effective to partition
the model across multiple cheaper GPUs.

The following sections show how you can develop a metric to filter the list of available GPUs to
ones that are likely to work for your use case.

Determining possible instance types based on data type

The GPUs available on SageMaker differ in their native support of data types. If you are planning
to deploy your model with bf16, choose an instance with GPU devices that support compute
capability 7.5+. If you are planning to deploy your model with int8, we highly recommend that
you select an instance with GPU devices that support compute capability 7.5+ as these GPUs
contain int8 tensor cores. However, you can still deploy with int8 using either HuggingFace
Accelerate (using bitsandbytes quantization) or DeepSpeed (using ZeroQuant quantization) on
lower compute capabilities. You should expect lower performance if you go this route compared to
using GPUs with native support for int8 math.

To verify the compute capability of the GPU, see Your GPU Compute Capability on NVIDIA's
website.

Choosing instance types for LMI 4368

https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://developer.nvidia.com/cuda-gpus#compute

Amazon SageMaker Developer Guide

Estimating a lower bound for the memory required to host a model

To further filter the list of GPUs, determine how large your model is for the data type precision
with which you wish to host the model. If the size of the model can fit on a single GPU, and low
latency is the highest priority, we recommend choosing an instance with a GPU that has sufficient
memory to host this model. You can estimate a lower bound for the memory required to host your
model based on the number of parameters in your model and the data type. This lower bound
memory estimate (LBME) represents the bare minimum memory in bytes required to load the
model parameters into the GPU memory. Calculate the LBME using the following equations:

• int8 – LBME = number of parameters

• fp16 and bf16 – LBME = 2 × number of parameters

• fp32 – LBME = 4 × number of parameters

Determining possible instances based on number of partitions

Determining the level of partitioning to use with your model comes down to the following factors:

• Size of the model

• Cost you are willing to pay for an instance

• Availability of a given instance

• Your latency requirements

For example, the EleutherAI/GPT-NEOX-20b model takes about 45 GB to host in fp16. You can
deploy this model using a p4de.24xlarge instance without any sharing since the GPU memory
available per device is 80 GB. This is the only GPU currently on AWS that would support fitting
this model fully on the device. With 8GPUs on that instance, you can host 8 copies of the model.
Alternatively you can also deploy this model with 2-way partitioning on a g5.12xlarge With 4
GPUs, you can host 2 copies of the model. Using 4 g5.12xlarge instances to host 8 copies of this
model compared to 1 p4de.24xlarge instance is close to half the cost (though the remaining
GPU memory on the p4de.24xlarge supports larger batch sizes). While performance is likely
lower on the g5.12xlarge, it might make more sense from a cost perspective.

Some instances may not be readily available in certain AWS Regions. You can check the availability
of an instance with a Region/Availability Zone using the AWS CLI:

Choosing instance types for LMI 4369

Amazon SageMaker Developer Guide

aws ec2 describe-instance-type-offerings --location-type "availability-zone" --filters
 Name=location,Values=us-east-2a --region us-east-2 --query "InstanceTypeOfferings[*].
[InstanceType]" --output text | sort

Fewer partitions generally results in lower overall latency. The best performance will come from
single GPU run, but we highly recommend that you experiment with partitioning to understand the
latency impact for your specific model.

You can narrow down the list of possible instances by considering the LBME you calculated in the
previous step, and your desired number of partitions. If possible, consider multiple partition values
to keep many instance types in consideration. For example, if the LBME is 30 GB, some estimates
for different levels of partitioning are:

• Single GPU deployment on p4d.24xlarge (40 GB per GPU) or p4de.24xlarge (80 GB per
GPU)

• 2 GPUs deployment on p3.8xlarge (16 GB per GPU) or g5.12xlarge (24 GB per GPU)

Choosing an engine

LMI deep learning containers (DLCs) provide support for DeepSpeed, FasterTransformer and
HuggingFace Accelerate backends. All of these frameworks can be used to deploy and host large
models partitioned across multiple GPUs. You can typically expect higher performance (lower
latency or higher throughput) with DeepSpeed or FasterTransformer, but these engines do not
offer optimized inference for all model architectures. All frameworks also implement model
parallelism differently. DeepSpeed and FasterTransformer uses tensor parallelism, which is typically
more performant at the cost of higher GPU memory usage. HuggingFace Accelerate uses pipeline
parallelism which uses less memory but is also less performant.

We recommend that you use DeepSpeed or FasterTransformer when possible because the fused
CUDA kernels significantly improve performance compared to using HuggingFace Accelerate.
DeepSpeed currently offers fused kernel implementations for the following model architectures:

• Bert

• DistilBert

• GPT Neo, GPT Neo X, GPT2

• OPT

• BLOOM

Choosing instance types for LMI 4370

Amazon SageMaker Developer Guide

• Megatron

• Stable Diffusion

FasterTransformer offers fused kernel implementations for the following model architectures:

• GPT2

• OPT

• BLOOM

• T5

For other model architectures there aren't any significant difference. We recommend that you
experiment with both DeepSpeed and HuggingFace Accelerate to determine which engine works
best for your model. To see which models FasterTransformer supports, see the FasterTransformer
support matrix.

To choose an instance type, adjust your LBME for the specific engines. Estimating the expected
GPU usage also differs between DeepSpeed, FasterTransformer and HuggingFace Accelerate due to
differences in how they run model parallelism.

DeepSpeed and FasterTransformer uses tensor parallelism. Some modules, such as embeddings,
do not support tensor parallelism. These modules are replicated across all GPUs. HuggingFace
Accelerate uses naive pipeline partitioning, which does not result in replicated modules. Thus with
DeepSpeed or FasterTransformer you can typically expect memory requirements to increase with
the tensor parallelism degree.

The following sections show how you can adjust your LBME to get a loaded model memory
estimate (LMME), which is an estimate of the memory required per GPU to load your model.

HuggingFace Accelerate

With HuggingFace Accelerate, the pipeline partitioning does not significantly increase the memory
required to load the model. No sub-modules need to be duplicated across GPUs.

• For single GPU deployment, LMME = 1.15 × LBME.

• For multiple GPUs deployment, LMME = (1.15 + 0.035 × number of partitions) ×
LBME. Here the number of partitions is assumed to be a multiple of 2.

Choosing instance types for LMI 4371

https://github.com/NVIDIA/FasterTransformer#support-matrix
https://github.com/NVIDIA/FasterTransformer#support-matrix

Amazon SageMaker Developer Guide

DeepSpeed or FasterTransformer

With DeepSpeed or FasterTransformer, the tensor parallel partitioning results in some sub-modules
of the model being duplicated since not every module supports tensor parallelism. The level of
module replication strongly depends on the model architecture.

• For single GPU deployment, LMME = 1.20 × LBME.

• For multiple GPUs deployment, LMME = multiplier × LBME, where the multiplier strongly
depends on the model architecture, and the data type. For some popular architectures, we
present the recommended multipliers in the following table:

Model architecture fp32 fp16 int8

GPT variants 1.45 1.55 1.55

Bloom variants 1.5 1.55 1.55

OPT variants 1.55 1.75 1.75

Other models 1.5 1.5 1.5

Adjusting loaded model memory estimate for sequence length and batch size

During inference more memory is required for the input tensors, intermediate tensors, and output
tensors, than what your LMME suggests. You also need to account for additional memory required
as a result of partitioning the model.

The runtime model memory estimate (RMME), defined in the following equation, accounts for the
additional memory requirement based on the sequence length (total number of input and output
tokens):

RMME per GPU = multiplier × LMME / number of partitions

The recommended multipliers listed below are based on a sequence length of 1024. If you plan to
use shorter or longer sequences you can further adjust these multipliers by multiplying them by
sequence length / 1024.

• GPT variants – 1.1 + 0.05 × (number of partitions - 1)

Choosing instance types for LMI 4372

Amazon SageMaker Developer Guide

• BLOOM variants – 1.15 + 0.05 × (number of partitions - 1)

• OPT variants – 1.20 + 0.1 × (number of partitions - 1)

If you plan on accommodating batche sizes larger than 1, multiply the aforementioned multiplier
by your expected batch size, to get the final multiplier for calculating RMME per GPU.

Finalizing possible instance types

With the RMME per GPU you can filter the list of available GPUs to ones that are likely to work for
your use case. RMME per GPU is an intentionally cautious metric to account for the performance
variance between different model architectures with different data types and engine framework
versions. If you find that any instances are barely excluded by your estimate, we recommend trying
them out.

Deploying uncompressed models

When deploying ML models, one option is to archive and compress the model artifacts into a
tar.gz format. Although this method works well for small models, compressing a large model
artifact with hundreds of billions of parameters and then decompressing it on an endpoint can
take a significant amount of time. For large model inference, we recommend that you deploy
uncompressed ML model. This guide shows how you can deploy uncompressed ML model.

To deploy uncompressed ML models, upload all model artifacts to Amazon S3 and organize them
under a common Amazon S3 prefix. A Amazon S3 prefix is a string of characters at the beginning
of an Amazon S3 object key name, separated from the rest of the name by a delimiter. For more
information on Amazon S3 prefix, see Organizing objects using prefixes.

For deploying with SageMaker, you must use slash (/) as the delimiter. You have to ensure that only
artifacts associated with your ML model are organized with the prefix. For ML models with a single
uncompressed artifact, the prefix will be identical to the key name. You can check which objects are
associated with your prefix with the AWS CLI:

aws s3 ls --recursive s3://bucket/prefix

After uploading the model artifacts to Amazon S3 and organizing them under a common
prefix, you can specify their location as part of the ModelDataSource field when you invoke the
CreateModel request. SageMaker will automatically download the uncompressed model artifacts

Deploying uncompressed models 4373

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelDataSource.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

to /opt/ml/model for inference. For more information about the rules that SageMaker uses when
downloading the artifacts, see S3ModelDataSource.

The following code snippet shows how you can invoke the CreateModel API when deploying an
uncompressed model. Replace the italicized user text with your own information.

model_name = "model-name"
sagemaker_role = "arn:aws:iam::123456789012:role/SageMakerExecutionRole"
container = "123456789012.dkr.ecr.us-west-2.amazonaws.com/inference-image:latest"

create_model_response = sagemaker_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = sagemaker_role,
 PrimaryContainer = {
 "Image": container,
 "ModelDataSource": {
 "S3DataSource": {
 "S3Uri": "s3://my-bucket/prefix/to/model/data/",
 "S3DataType": "S3Prefix",
 "CompressionType": "None",
 },
 },
 },
)

The aforementioned example assumes that your model artifacts are organized under a common
prefix. If instead your model artifact is a single uncompressed Amazon S3 object, then change
"S3Uri" to point to the Amazon S3 object, and change "S3DataType" to "S3Object".

Note

Currently you cannot use ModelDataSource with AWS Marketplace, SageMaker batch
transform, SageMaker Serverless Inference endpoints, and SageMaker multi-model
endpoints.

Large model inference FAQs

Refer to the following FAQ items for answers to commonly asked questions about large model
inference (LMI) with SageMaker.

LMI FAQs 4374

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3ModelDataSource.html

Amazon SageMaker Developer Guide

Q: When should I use LMI DLCs?

A: Large model inference deep learning containers (LMI DLCs) include tested versions of popular
model parallelization and optimization libraries for hosting models with tens or hundreds of
billions of parameters. You should use an LMI DLC if your deep learning model requires multiple
accelerators for hosting or if you want to accelerate inference with a popular, supported model
such as GPT, Bloom, and OPT.

Q: Who can I contact if something doesn't work?

A: If, after reviewing the documentation, you continue to have problems hosting your large model,
contact AWS Support.

Q: Can I use large model inference deep learning containers (LMI DLCs) outside of SageMaker?

A: AWS LMI DLCs have been tested on and designed for SageMaker, but can be used on Amazon
EC2 with supported instance types.

Q: What model formats can I use with LMI DLCs?

AWS LMI DLCs include a convenience function to load a Hugging Face model format. You can bring
models in another format, such as Megatron checkpoint, but you need to write logic to load that
format or convert to a Hugging Face format.

Q: How can I switch between model parallelization libraries such as Hugging Face Accelerate
and DeepSpeed?

If you're using the DJL handler (like in the tutorial example), then switch the default engine
and handler in the serving.properties file. For example, modify the engine and
option.entryPoint settings to switch from DeepSpeed to Hugging Face. In general, you can
switch the engine and use the same tensor parallel degree.

Large model inference troubleshooting

If you run into any problem or error, you can try to use the following list to troubleshoot. If the
problem persists, contact us at LMI-DLC-feedback@amazon.com.

Topics

• Downloading a model to my instance takes a long time

• Inference latency or throughput performance is poor

• SageMaker endpoint failed to start with a timeout or out of memory error

LMI troubleshooting 4375

mailto:LMI-DLC-feedback@amazon.com

Amazon SageMaker Developer Guide

Downloading a model to my instance takes a long time

Consider uploading your model artifacts to Amazon S3 and mention the S3 object in
option.model_id in your serving.properties configuration file. This downloading method
uses s5cmd and speeds up data downloading. Make sure that the container has permission to
access the specified S3 bucket.

Inference latency or throughput performance is poor

Even with model parallelism, large models can still have poor performance such as high latency
or low throughput. First, if your model is supported, consider using the DeepSpeed engine that
includes optimized kernels for inference. This can improve performance by up to 3 times. Next,
consider using a more powerful instance type, such as a p4d.24xlarge instance. Finally, consider
using a smaller model. To achieve the best performance and lowest cost, try to find the smallest
model that meets the accuracy bar for your use case, as more parameters can result in higher
latency, lower throughput, or higher cost. Consider fine-tuning a smaller model to improve
accuracy.

SageMaker endpoint failed to start with a timeout or out of memory error

Large models can require more time to load to memory. You must adjust default endpoint
configurations to handle this incremental time. If an endpoint fails a health check or is
out of memory, check that you have configured your endpoint appropriately. For example,
if Amazon CloudWatch Logs indicate a health check timeout, you should increase the
ContainerStartupHealthCheckTimeoutInSeconds parameter of ProductionVariants
during the create_endpoint_config step of hosting on SageMaker.

For more information on these parameters, see SageMaker endpoint parameters for large model
inference.

Release notes for large model inference deep learning containers

You can find a list of deep learning containers (DLCs) supported by SageMaker on the AWS DLC
GitHub repository. Below are the associated release notes.

Topics

• LMI DLC Release Notes: November 27, 2023 (1)

• LMI DLC Release Notes: November 27, 2023 (2)

Release notes for LMI deep learning containers 4376

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#large-model-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#large-model-inference-containers

Amazon SageMaker Developer Guide

• LMI DLC Release Notes: November 27, 2023 (3)

• LMI DLC Release Notes: August 4, 2023 (1)

• LMI DLC Release Notes: August 4, 2023 (2)

• LMI DLC Release Notes: August 4, 2023 (3)

• LMI DLC Release Notes: March 7, 2023

• LMI DLC Release Notes: February 24, 2023

• LMI DLC Release Notes: December 16, 2022

• LMI DLC Release Notes: November 4, 2022

LMI DLC Release Notes: November 27, 2023 (1)

Container URI

• 763104351884.dkr.ecr.us-east-1.amazonaws.com/djl-inference:0.25.0-deepspeed0.11.0-cu11

Highlights

• Added iteration-level batching support to DeepSpeed backend

• Upgraded to vllm 2.0 to lmi-dist backend

• Added dynamic warmup feature to lmi-dist backend

Version updates

• DJL Serving 0.25.0

• DeepSpeed 0.11.0

• HuggingFace Accelerate 0.23.0

• HuggingFace Transformers 4.34.0

Supported model architectures

• Models supported by DeepSpeed 0.11.0 using the DeepSpeed engine

• Models supported by HuggingFace Accelerate using the Accelerate engine

• Iteration-level batching support for GPT, LLaMA, LLaMA 2, Falcon, and T5 model architectures
using the MPI engine

Release notes for LMI deep learning containers 4377

Amazon SageMaker Developer Guide

• Paged Attention and Flash Attention support for GPT, LLaMA, LLaMA 2, Falcon and T5 model
architectures using the MPI engine

Known issues

• While using lmi-dist on p5 instance on Amazon SageMaker, disable aiccl by using the
environment variable ENV USE_AICCL_BACKEND=false to avoid model server crashing on
model load.

LMI DLC Release Notes: November 27, 2023 (2)

Container URI

• 763104351884.dkr.ecr.us-east-1.amazonaws.com/djl-inference:0.25.0-tensorrtllm0.5.0-cu122

Highlights

• Supports iteration-level/inflight batching of requests

• Supports response streaming

• Added support for on-the-fly TensorRT-LLM model compilation so that users can provide just
Hugging Face model id for Llama and Falcon models

• Accepts user created model repositories with compiled TensorRT-LLM artifacts for faster loading

Version updates

• DJL Serving 0.25.0

• TensorRT-LLM 0.5.0

• PyTorch 2.0.1

• Python 3.10

• CUDA 12.2

Supported model architectures

• LLAMA and Falcon models with support for on-the-fly model compilation

Release notes for LMI deep learning containers 4378

Amazon SageMaker Developer Guide

• We have not tested other model types yet. If you want to use other than Llama and Falcon
models, they should be compiled ahead of time and tested before production.

Known issues

• Using the repetition_penalty sampling parameter randomly crashes the program. It is
recommended to not use repetition_penalty in this version.

LMI DLC Release Notes: November 27, 2023 (3)

Container URI

• 763104351884.dkr.ecr.us-east-1.amazonaws.com/djl-inference:0.25.0-neuronx-sdk2.15.0

Highlights

• Precompiled model support

Version updates

• DJL Serving 0.25.0

• NeuronSDK 2.15.0

• HuggingFace Accelerate 0.23.0

• HuggingFace Transformers 4.34.0

Supported model architectures

• GPT-2

• GPT-J

• GPT-NeoX

• OPT

• Bloom

• Llama

• Llama-2 (7b and 13b)

Release notes for LMI deep learning containers 4379

Amazon SageMaker Developer Guide

LMI DLC Release Notes: August 4, 2023 (1)

Container URI

• 763104351884.dkr.ecr.region.amazonaws.com/djl-inference:0.23.0-
fastertransformer5.3.0-cu118

Highlights

• Added support for serving GPT-NeoX models.

• New containers support response streaming.

• FasterTransformer handler updated to support PEFT and LORA.

• DJLServing provides integration to the Triton inference backend through the java-cpp API.

Version updates

• DJL Serving 0.23.0

• PyTorch 2.0.1

• FasterTransformer 5.3.0

• Hugging Face Accelerate 0.20.3

• Hugging Face Transformers 4.30.1

• Hugging Face Diffusers 0.12.0

• Python 3.9

• CUDA 11.8

Supported model architectures

• GPT

• GPT-J

• GPT-NeoX

• T5

• OPT

• Bloom

Release notes for LMI deep learning containers 4380

Amazon SageMaker Developer Guide

LMI DLC Release Notes: August 4, 2023 (2)

Container URI

• 763104351884.dkr.ecr.region.amazonaws.com/djl-inference:0.23.0-
deepspeed0.9.5-cu118

Highlights

• Upgrades the DeepSpeed DLC container to DeepSpeed 0.9.5.

• Improvements made to enable 2-3x memory savings over oss DeepSpeed.

• Added PyTorch-2.0.1, PEFT, and LORA support to DeepSpeed default handlers. This new release
of DeepSpeed adds support for LLaMA v1 models.

• Added iteration-level batching support to the Hugging Face backend for GPT, LLaMA, Falcon, and
T5 model architectures. This improves model serving throughput.

Version updates

• DJL Serving 0.23.0

• DeepSpeed 0.9.5

• Hugging Face Accelerate 0.20.3

• Hugging Face Transformers 4.30.2

• Python 3.9

• CUDA 11.8

Supported model architectures

• Models supported by DeepSpeed 0.9.5 using the DeepSpeed engine

• Models supported by HuggingFace Accelerate using the Accelerate engine

• Iteration-level batching support for GPT, LLaMA, LLaMA 2, Falcon, and T5 model architectures
using the MPI engine

• Paged Attention and Flash Attention support for GPT, LLaMA, LLaMA 2, Falcon and T5 model
architectures using the MPI engine

Release notes for LMI deep learning containers 4381

Amazon SageMaker Developer Guide

LMI DLC Release Notes: August 4, 2023 (3)

Container URI

• 763104351884.dkr.ecr.region.amazonaws.com/djl-inference:0.23.0-neuronx-
sdk2.12.0

Highlights

• [Experimental] Added support for GPT-NeoX models.

• [Experimental] Added support for BLOOM models.

• [Prototype] Added support for LLaMA models.

• Added support for more flexible tensor-parallel configurations to GPT2, OPT, and BLOOM.

• Added multi-query/multi-group attention support for GPT2.

Version updates

• DJL Serving 0.23.0

• Torch Neuronx 1.13.1.1.9.0

• Transformers NeuronX 0.4.149

• Hugging Face Accelerate 0.20.3

• Hugging Face Transformers 4.30.1

• Hugging Face Diffusers 0.14.0

Supported model architectures

• OPT

• GPT2

• GPT-J

• GPT-NeoX

• LLaMA

• LLaMA-2 7B and 13B

• Bloom

Release notes for LMI deep learning containers 4382

Amazon SageMaker Developer Guide

LMI DLC Release Notes: March 7, 2023

Container URI

• 763104351884.dkr.ecr.region.amazonaws.com/djl-inference:0.21.0-
fastertransformer5.3.0-cu117

Highlights

• The FasterTransformer (FT) model parallel library is now available in LMI DLCs, adding support
for popular models such as flan-t5-xxl and flan-ul2. FT is an open-source library from
Nvidia that provides an accelerated engine for efficiently running transformer-based neural
network inference. It is designed to handle large models that require multiple GPUs and nodes in
a distributed manner. The library includes an optimized version of the transformer block, which
comprises both the encoder and decoder parts, enabling you to run the inference of full encoder-
decoder architectures like T5, as well as encoder-only models like BERT and decoder-only models
like GPT.

Version updates

• DJL Serving 0.21.0

• FasterTransformer 5.3.0

• Hugging Face Accelerate 0.16.0

• Hugging Face Transformers 4.26.0

• Hugging Face Diffusers 0.12.0

• Python 3.9

• CUDA 11.6

Known issues

• In this first release, you may see long model loading times when using the FT library. Make sure
to configure health check and timeout values (see SageMaker endpoint parameters for large
model inference) to allow sufficient time to load the model. In our tests, 1 hour was sufficient.
Future releases will address this long model loading time with FT.

Release notes for LMI deep learning containers 4383

https://github.com/NVIDIA/FasterTransformer

Amazon SageMaker Developer Guide

LMI DLC Release Notes: February 24, 2023

Container URI

• 763104351884.dkr.ecr.region.amazonaws.com/djl-inference:0.21.0-
deepspeed0.8.0-cu117

Highlights

• SageMaker Python SDK integration is new in this release, enabling no-code deployment of large
language models

Ahead-of-time partitioning support with DeepSpeed reduces endpoint start up time by
separating model partitioning from runtime

Version updates

• DJL Serving 0.21.0

• DeepSpeed 0.8.0

• Hugging Face Accelerate 0.16.0

• Hugging Face Transformers 4.26.0

• Hugging Face Diffusers 0.12.0

• Python 3.9

• CUDA 11.6

LMI DLC Release Notes: December 16, 2022

Container URI

• 763104351884.dkr.ecr.region.amazonaws.com/djl-inference:0.20.0-
deepspeed0.7.5-cu116

Highlights

Release notes for LMI deep learning containers 4384

Amazon SageMaker Developer Guide

• Added BF16 precision support for models supported by DeepSpeed inference (Bloom, GPT, OPT,
etc.). Training in BF16 does not require any extra transformations to the model weights before
hosting with DeepSpeed.

• Added support for Hugging Face Diffusers and StableDiffusion models.

• Includes latest versions of DJL Serving, DeepSpeed, Hugging Face Transformers, and CUDA
drivers, which bring stability improvement, better error handling, improved model coverage, and
latency.

Version updates

• DJL Serving 0.20.0

• DeepSpeed 0.7.5

• Hugging Face Accelerate 0.13.2

• Hugging Face Transformers 4.23.1

• Hugging Face Diffusers 0.7.2

• CUDA 11.6

LMI DLC Release Notes: November 4, 2022

Hightlights

• Launched LMI DLCs on AWS. SageMaker and Amazon EC2 support LMI DLCs for inference using
model parallelism.

Container URI

• 763104351884.dkr.ecr.region.amazonaws.com/djl-inference:0.19.0-
deepspeed0.7.3-cu113

Blogs

• For more information, see Deploy BLOOM-176B and OPT-30B on Amazon SageMaker with large
model inference Deep Learning Containers and DeepSpeed.

Release notes for LMI deep learning containers 4385

https://aws.amazon.com/blogs/machine-learning/deploy-bloom-176b-and-opt-30b-on-amazon-sagemaker-with-large-model-inference-deep-learning-containers-and-deepspeed/
https://aws.amazon.com/blogs/machine-learning/deploy-bloom-176b-and-opt-30b-on-amazon-sagemaker-with-large-model-inference-deep-learning-containers-and-deepspeed/

Amazon SageMaker Developer Guide

Update models in production

Deployment guardrails are a set of model deployment options in Amazon SageMaker Inference
to update your machine learning models in production. Using the fully managed deployment
options, you can control the switch from the current model in production to a new one. Traffic
shifting modes in blue/green deployments, such as canary and linear, give you granular control
over the traffic shifting process from your current model to the new one during the course of the
update. There are also built-in safeguards such as auto-rollbacks that help you catch issues early
and automatically take corrective action before they significantly impact production.

Deployment guardrails provide the following benefits:

• Deployment safety while updating production environments. A regressive update to a
production environment can cause unplanned downtime and business impact, such as increased
model latency and high error rates. Deployment guardrails help you mitigate those risks by
providing best practices and built-in operational safety guardrails.

• Fully managed deployment. SageMaker takes care of setting up and orchestrating these
deployments and integrates them with endpoint update mechanisms. You do not need to build
and maintain orchestration, monitoring, or rollback mechanisms. You can leverage SageMaker to
set up and orchestrate these deployments and focus on leveraging ML for your applications.

• Visibility. You can track the progress of your deployment through the DescribeEndpoint API
or through Amazon CloudWatch Events (for supported endpoints). To learn more about events
in SageMaker, see the Endpoint deployment state change section in Automating Amazon
SageMaker with Amazon EventBridge. Note that if your endpoint uses any of the features in the
Exclusions page, you cannot use CloudWatch Events.

Note

Deployment guardrails only apply to Asynchronous inference and Real-time inference
endpoint types.

How to get started

We support two types of deployments to update models in production: blue/green deployments
and rolling deployments.

Update models in production 4386

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide

• Blue/Green Deployments: You can shift traffic from your old fleet (the blue fleet) to a new fleet
(green fleet) with the updates. Blue/green deployments offer multiple traffic shifting modes.
A traffic shifting mode is a configuration that specifies how SageMaker routes endpoint traffic
to a new fleet containing your updates. The following traffic shifting modes provide you with
different levels of control over the endpoint update process:

• All At Once Traffic Shifting shifts all of your endpoint traffic from the blue fleet to the green
fleet. Once the traffic shifts to the green fleet, your pre-specified Amazon CloudWatch alarms
begin monitoring the green fleet for a set amount of time (the baking period). If no alarms trip
during the baking period, then SageMaker terminates the blue fleet.

• Canary Traffic Shifting shifts one small portion of your traffic (a canary) to the green fleet and
monitor it for a baking period. If the canary succeeds on the green fleet, then SageMaker shifts
the rest of the traffic from the blue fleet to the green fleet before terminating the blue fleet.

• Linear Traffic Shifting provides even more customization over the number of traffic-shifting
steps and the percentage of traffic to shift for each step. While canary shifting lets you shift
traffic in two steps, linear shifting extends this to n linearly spaced steps.

• Rolling Deployments: You can update your endpoint as SageMaker incrementally provisions
capacity and shifts traffic to a new fleet in steps of a batch size that you specify. Instances on the
new fleet are updated with the new deployment configuration, and if no CloudWatch alarms trip
during the baking period, then SageMaker cleans up instances on the old fleet. This option gives
you granular control over the instance count or capacity percentage shifted during each step.

You can create and manage your deployment through the UpdateEndpoint and CreateEndpoint
SageMaker API and AWS Command Line Interface commands. See the individual deployment pages
for more details on how to set up your deployment. Note that if your endpoint uses any of the
features listed in the Exclusions page, you cannot use deployment guardrails.

To follow guided examples that shows how to use deployment guardrails, see our example Jupyter
notebooks for the canary and linear traffic shifting modes.

Auto-Rollback Configuration and Monitoring

Amazon CloudWatch alarms are a prerequisite for using baking periods in deployment guardrails.
You can only use the auto-rollback functionality in deployment guardrails if you set up CloudWatch
alarms that can monitor an endpoint. If any of your alarms trip during the specified monitoring
period, SageMaker initiates a complete rollback to the old endpoint to protect your application. If

Auto-Rollback Configuration and Monitoring 4387

https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails-blue-green.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-inference-deployment-guardrails
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-inference-deployment-guardrails

Amazon SageMaker Developer Guide

you do not have any CloudWatch alarms set up to monitor your endpoint, then the auto-rollback
functionality does not work during your deployment.

To learn more about Amazon CloudWatch, see What is Amazon CloudWatch? in the Amazon
CloudWatch User Guide.

Note

Ensure that your IAM execution role has permission to perform the
cloudwatch:DescribeAlarms action on the auto-rollback alarms you specify.

Alarm Examples

To help you get started, we provide the following examples to demonstrate the capabilities of
CloudWatch alarms. In addition to using or modifying the following examples, you can create
your own alarms and configure the alarms to monitor various metrics on the specified fleets for a
certain period of time. To see more SageMaker metrics and dimensions you can add to your alarms,
see Monitor Amazon SageMaker with Amazon CloudWatch.

Topics

• Monitor invocation errors on both old and new fleets

• Monitor model latency on the new fleet

Monitor invocation errors on both old and new fleets

The following CloudWatch alarm monitors an endpoint's average error rate. You can use this alarm
with any deployment guardrails traffic shifting type to provide overall monitoring on both the old
and new fleets. If the alarm trips, then SageMaker initiates a rollback to the old fleet.

Invocation errors coming from both the old fleet and new fleet contribute to the average
error rate. If the average error rate exceeds the specified threshold, then the alarm trips. This
particular example monitors the 4xx errors (client errors) on both the old and new fleets for the
duration of a deployment. You can also monitor the 5xx errors (server errors) by using the metric
Invocation5XXErrors.

Auto-Rollback Configuration and Monitoring 4388

https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon SageMaker Developer Guide

Note

For this alarm type, if your old fleet trips the alarm during the deployment, SageMaker
terminates your deployment. Therefore, if your current production fleet already causes
errors, consider using or modifying one of the following examples that only monitors the
new fleet for errors.

#Applied deployment type: all types
{
 "AlarmName": "EndToEndDeploymentHighErrorRateAlarm",
 "AlarmDescription": "Monitors the error rate of 4xx errors",
 "MetricName": "Invocation4XXErrors",
 "Namespace": "AWS/SageMaker",
 "Statistic": "Average",
 "Dimensions": [
 {
 "Name": "EndpointName",
 "Value": <your-endpoint-name>
 },
 {
 "Name": "VariantName",
 "Value": "AllTraffic"
 }
],
 "Period": 600,
 "EvaluationPeriods": 2,
 "Threshold": 1,
 "ComparisonOperator": "GreaterThanThreshold",
 "TreatMissingData": "notBreaching"
}

In the previous example, note the values for the following fields:

• For AlarmName and AlarmDescription, enter a name and description you choose for the
alarm.

• For MetricName, use the value Invocation4XXErrors to monitor for 4xx errors on the
endpoint

• For Namespace, use the value AWS/SageMaker. You can also specify your own custom metric, if
applicable.

Auto-Rollback Configuration and Monitoring 4389

Amazon SageMaker Developer Guide

• For Statistic, use Average. This means that the alarm takes the average error rate over the
evaluation periods when calculating whether the error rate has exceeded the threshold.

• For the dimension EndpointName, use the name of the endpoint you are updating as the value.

• For the dimension VariantName, use the value AllTraffic to specify all endpoint traffic.

• For Period, use 600. This sets the alarm’s evaluation periods to 10 minutes long.

• For EvaluationPeriods, use 2. This value tells the alarm to consider the two most recent
evaluation periods when determining the alarm status.

Monitor model latency on the new fleet

The following CloudWatch alarm example monitors the new fleet’s model latency during your
deployment. You can use this alarm to monitor only the new fleet and exclude the old fleet.
The alarm lasts for the entire deployment. This example gives you comprehensive, end-to-end
monitoring of the new fleet and initiates a rollback to the old fleet if the new fleet has any
response time issues.

CloudWatch publishes the metrics with the dimension EndpointConfigName:{New-Ep-
Config} after the new fleet starts receiving traffic, and these metrics last even after the
deployment is complete.

You can use the following alarm example with any deployment type.

#Applied deployment type: all types
{
 "AlarmName": "NewEndpointConfigVersionHighModelLatencyAlarm",
 "AlarmDescription": "Monitors the model latency on new fleet",
 "MetricName": "ModelLatency",
 "Namespace": "AWS/SageMaker",
 "Statistic": "Average",
 "Dimensions": [
 {
 "Name": "EndpointName",
 "Value": <your-endpoint-name>
 },
 {
 "Name": "VariantName",
 "Value": "AllTraffic"
 },
 {

Auto-Rollback Configuration and Monitoring 4390

Amazon SageMaker Developer Guide

 "Name": "EndpointConfigName",
 "Value": <your-config-name>
],
 "Period": 300,
 "EvaluationPeriods": 2,
 "Threshold": 100000, # 100ms
 "ComparisonOperator": "GreaterThanThreshold",
 "TreatMissingData": "notBreaching"
}

In the previous example, note the values for the following fields:

• For MetricName, use the value ModelLatency to monitor the model’s response time.

• For Namespace, use the value AWS/SageMaker. You can also specify your own custom metric, if
applicable.

• For the dimension EndpointName, use the name of the endpoint you are updating as the value.

• For the dimension VariantName, use the value AllTraffic to specify all endpoint traffic.

• For the dimension EndpointConfigName, the value should refer to the endpoint configuration
name for your new or updated endpoint.

Note

If you want to monitor your old fleet instead of the new fleet, you can change the
dimension EndpointConfigName to specify the name of your old fleet’s configuration.

Blue/Green Deployments

When you update your endpoint, Amazon SageMaker automatically uses a blue/green deployment
to maximize the availability of your endpoints. In a blue/green deployment, SageMaker provisions
a new fleet with the updates (the green fleet). Then, SageMaker shifts traffic from the old fleet (the
blue fleet) to the green fleet. Once the green fleet operates smoothly for a set evaluation period
(called the baking period), SageMaker terminates the blue fleet. With the additional capabilities
in blue/green deployments, you can utilize traffic shifting modes and auto-rollback monitoring to
protect your endpoint from significant production impact.

The following list describes the key features of blue/green deployments in SageMaker:

Blue/Green Deployments 4391

Amazon SageMaker Developer Guide

• Traffic shifting modes. The traffic shifting modes for deployment guardrails let you control the
volume of traffic and number of traffic-shifting steps between the blue fleet and the green fleet.
This capability gives you the ability to progressively evaluate the performance of the green fleet
without fully committing to a 100% traffic shift.

• Baking period. The baking period is a set amount of time to monitor the green fleet before
proceeding to the next deployment stage. If any of the pre-specified alarms trip during any
baking period, then all endpoint traffic rolls back to the blue fleet. The baking period helps you
to build confidence in your update before making the traffic shift permanent.

• Auto-rollbacks. You can specify Amazon CloudWatch alarms that SageMaker uses to monitor
the green fleet. If an issue with the updated code trips any of the alarms, SageMaker initiates an
auto-rollback to the blue fleet in order to maintain availability thereby minimizing risk.

Traffic Shifting Modes

The various traffic shifting modes in blue/green deployments give you more granular control over
traffic shifting between the blue fleet and the green fleet. The available traffic shifting modes for
blue/green deployments are all at once, canary, and linear. The following table shows a comparison
of the options.

Important

For blue/green deployments that involve multiple stage traffic shifting or baking periods,
you are billed for both the fleets for the duration of the update, irrespective of the traffic to
the fleet. This is in contrast to blue/green deployments with all at once traffic shifting and
no baking periods, where you are only billed for one fleet during the course of the update.

Name What is it? Pros Cons Recommend
ation

All at once Shifts all of the
traffic to the
new fleet in a
single step.

Minimizes the
overall update
duration.

Regressive
updates affect
100% of the
traffic.

Use this option
to minimize
update time and
cost.

Canary Traffic shifts in
two steps. The

Confines the
blast radius

Both fleets
are operation

Use this option
to balance

Blue/Green Deployments 4392

Amazon SageMaker Developer Guide

Name What is it? Pros Cons Recommend
ation

first (canary)
step shifts a
small portion
of the traffic
followed by the
second step,
which shifts the
remainder of the
traffic.

of regressive
updates to only
the canary fleet.

al in parallel
for entire
deployment.

between
minimizing the
blast radius
of regressive
updates and
minimizing
the time that
two fleets are
operational.

Linear A fixed portion
of the traffic
shifts in a
pre-specified
number of
equally spaced
steps.

Minimizes the
risk of regressiv
e updates by
shifting traffic
over several
steps.

The update
duration
and cost are
proportional to
the number of
steps.

Use this option
to minimize risk
by spreading
out deploymen
t across multiple
steps.

Get Started

Once you specify your desired deployment configuration, SageMaker handles provisioning new
instances, terminating old instances, and shifting traffic for you. You can create and manage your
deployment through the existing UpdateEndpoint and CreateEndpoint SageMaker API and AWS
Command Line Interface commands. Note that if your endpoint uses any of the features listed in
the Exclusions page, you cannot use deployment guardrails. See the individual deployment pages
for more details on how to set up your deployment:

• Blue/Green Update with All At Once Traffic Shifting

• Blue/Green Update with Canary Traffic Shifting

• Blue/Green Update with Linear Traffic Shifting

To follow guided examples that show how to use deployment guardrails, see our example Jupyter
notebooks for the canary and linear traffic shifting modes.

Blue/Green Deployments 4393

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-inference-deployment-guardrails
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-inference-deployment-guardrails

Amazon SageMaker Developer Guide

All At Once Traffic Shifting

With all at once traffic shifting, you can quickly roll out an endpoint update using the safety
guardrails of a blue/green deployment. You can use this traffic shifting option to minimize
the update duration while still taking advantage of the availability guarantees of blue/green
deployments. The baking period feature helps you to monitor the performance and functionality
of your new instances before terminating your old instances, ensuring that your new fleet is fully
operational.

The following diagram shows how all at once traffic shifting manages the old and new fleets.

When you use all at once traffic shifting, SageMaker routes 100% of the traffic to the new fleet
(green fleet). Once the green fleet starts receiving traffic, the baking period begins. The baking
period is a set amount of time in which pre-specified Amazon CloudWatch alarms monitor the
performance of the green fleet. If no alarms trip during the baking period, SageMaker terminates
the old fleet (blue fleet). If any alarms trip during the baking period, then an auto-rollback initiates
and 100% of the traffic shifts back to the blue fleet.

Prerequisites

Before setting up a deployment with all at once traffic shifting, you must create Amazon
CloudWatch alarms to watch metrics from your endpoint. If any of the alarms trip during the
baking period, then the traffic rolls back to your blue fleet. To learn how to set up CloudWatch
alarms on an endpoint, see the prerequisite page Auto-Rollback Configuration and Monitoring.
To learn more about CloudWatch alarms, see Using Amazon CloudWatch alarms in the Amazon
CloudWatch User Guide.

Configure All At Once Traffic Shifting

Once you are ready for your deployment and have set up CloudWatch alarms for your endpoint,
you can use either the SageMaker UpdateEndpoint API or the update-endpoint command in the
AWS Command Line Interface to initiate the deployment.

Topics

Blue/Green Deployments 4394

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-endpoint.html

Amazon SageMaker Developer Guide

• How to update an endpoint (API)

• How to update an endpoint with an existing blue/green update policy (API)

• How to update an endpoint (CLI)

How to update an endpoint (API)

The following example shows how you can update your endpoint with all at once traffic shifting
using UpdateEndpoint in the Amazon SageMaker API.

import boto3
client = boto3.client("sagemaker")

response = client.update_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<your-config-name>",
 DeploymentConfig={
 "BlueGreenUpdatePolicy": {
 "TrafficRoutingConfiguration": {
 "Type": "ALL_AT_ONCE"
 },
 "TerminationWaitInSeconds": 600,
 "MaximumExecutionTimeoutInSeconds": 1800
 },
 "AutoRollbackConfiguration": {
 "Alarms": [
 {
 "AlarmName": "<your-cw-alarm>"
 },
]
 }
 }
)

To configure the all at once traffic shifting option, do the following:

• For EndpointName, use the name of the existing endpoint you want to update.

• For EndpointConfigName, use the name of the endpoint configuration you want to use.

• Under DeploymentConfig and BlueGreenUpdatePolicy, in
TrafficRoutingConfiguration, set the Type parameter to ALL_AT_ONCE. This specifies
that the deployment uses the all at once traffic shifting mode.

Blue/Green Deployments 4395

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html

Amazon SageMaker Developer Guide

• For TerminationWaitInSeconds, use 600. This parameter tells SageMaker to wait for the
specified amount of time (in seconds) after your green fleet is fully active before terminating the
instances in the blue fleet. In this example, SageMaker waits for 10 minutes after the final baking
period before terminating the blue fleet.

• For MaximumExecutionTimeoutInSeconds, use 1800. This parameter sets the maximum
amount of time that the deployment can run before it times out. In the preceding example, your
deployment has a limit of 30 minutes to finish.

• In AutoRollbackConfiguration, within the Alarms field, you can add your CloudWatch
alarms by name. Create one AlarmName: <your-cw-alarm> entry for each alarm you want to
use.

How to update an endpoint with an existing blue/green update policy (API)

When you use the CreateEndpoint API to create an endpoint, you can optionally specify
a deployment configuration to reuse for future endpoint updates. You can use the same
DeploymentConfig options as the previous UpdateEndpoint API example. There are no
changes to the CreateEndpoint API behavior. Specifying the deployment configuration does not
automatically perform a blue/green update on your endpoint.

The option to use a previous deployment configuration happens when using the
UpdateEndpoint API to update your endpoint. When updating your endpoint, you can use the
RetainDeploymentConfig option to keep the deployment configuration you specified when you
created the endpoint.

When calling the UpdateEndpoint API, set RetainDeploymentConfig to True to keep the
DeploymentConfig options from your original endpoint configuration.

response = client.update_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<your-config-name>",
 RetainDeploymentConfig=True
)

How to update an endpoint (CLI)

If you are using the AWS CLI, the following example shows how to start a blue/green all at once
deployment using the update-endpoint command.

update-endpoint

Blue/Green Deployments 4396

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-endpoint.html

Amazon SageMaker Developer Guide

--endpoint-name <your-endpoint-name>
--endpoint-config-name <your-config-name>
--deployment-config '"BlueGreenUpdatePolicy": {"TrafficRoutingConfiguration": {"Type":
 "ALL_AT_ONCE"},
 "TerminationWaitInSeconds": 600, "MaximumExecutionTimeoutInSeconds": 1800},
 "AutoRollbackConfiguration": {"Alarms": [{"AlarmName": "<your-alarm>"}]}'

To configure the all at once traffic shifting option, do the following:

• For endpoint-name, use the name of the endpoint you want to update.

• For endpoint-config-name, use the name of the endpoint configuration you want to use.

• For deployment-config, use a BlueGreenUpdatePolicy JSON object.

Note

If you would rather save your JSON object in a file, see Generating AWS CLI skeleton and
input parameters in the AWS CLI User Guide.

Canary Traffic Shifting

With canary traffic shifting, you can test a portion of your endpoint traffic on the new fleet while
the old fleet serves the remainder of the traffic. This testing step is a safety guardrail that validates
the new fleet’s functionality before shifting all of your traffic to the new fleet. You still have the
benefits of a blue/green deployment, and the added canary feature lets you ensure that your new
(green) fleet can serve inference before letting it handle 100% of the traffic.

The portion of your green fleet that turns on to receive traffic is called the canary, and you can
choose the size of this canary. Note that the canary size should be less than or equal to 50% of the
new fleet's capacity. Once the baking period finishes and no pre-specified Amazon CloudWatch
alarms trip, the rest of the traffic shifts from the old (blue) fleet to the green fleet. Canary traffic
shifting provides you with more safety during your deployment since any issues with the updated
model only impact the canary.

The following diagram shows how canary traffic shifting manages the distribution of traffic
between the blue and green fleets.

Blue/Green Deployments 4397

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_BlueGreenUpdatePolicy.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html

Amazon SageMaker Developer Guide

Once SageMaker provisions the green fleet, SageMaker routes a portion of the incoming traffic
(for example, 25%) to the canary. Then the baking period begins, during which your CloudWatch
alarms monitor the performance of the green fleet. During this time, both the blue fleet and green
fleet are partially active and receiving traffic. If any of the alarms trip during the baking period,
then SageMaker initiates a rollback and all traffic returns to the blue fleet. If none of the alarms
trip, then all of the traffic shifts to the green fleet and there is a final baking period. If the final
baking period finishes without tripping any alarms, then the green fleet serves all traffic and
SageMaker terminates the blue fleet.

Prerequisites

Before setting up a deployment with canary traffic shifting, you must create Amazon CloudWatch
alarms to monitor metrics from your endpoint. The alarms are active during the baking period,
and if any alarms trip, then all endpoint traffic rolls back to the blue fleet. To learn how to set up
CloudWatch alarms on an endpoint, see the prerequisite page Auto-Rollback Configuration and
Monitoring. To learn more about CloudWatch alarms, see Using Amazon CloudWatch alarms in the
Amazon CloudWatch User Guide.

Blue/Green Deployments 4398

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon SageMaker Developer Guide

Configure Canary Traffic Shifting

Once you are ready for your deployment and have set up Amazon CloudWatch alarms for your
endpoint, you can use either the Amazon SageMaker UpdateEndpoint API or the update-endpoint
command in the AWS CLI to initiate the deployment.

Topics

• How to update an endpoint (API)

• How to update an endpoint with an existing blue/green update policy (API)

• How to update an endpoint (CLI)

How to update an endpoint (API)

The following example of the UpdateEndpoint API shows how you can update an endpoint with
canary traffic shifting.

import boto3
client = boto3.client("sagemaker")

response = client.update_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<your-config-name>",
 DeploymentConfig={
 "BlueGreenUpdatePolicy": {
 "TrafficRoutingConfiguration": {
 "Type": "CANARY",
 "CanarySize": {
 "Type": "CAPACITY_PERCENT",
 "Value": 30
 },
 "WaitIntervalInSeconds": 600
 },
 "TerminationWaitInSeconds": 600,
 "MaximumExecutionTimeoutInSeconds": 1800
 },
 "AutoRollbackConfiguration": {
 "Alarms": [
 {
 "AlarmName": "<your-cw-alarm>"
 }
]

Blue/Green Deployments 4399

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html

Amazon SageMaker Developer Guide

 }
 }
)

To configure the canary traffic shifting option, do the following:

• For EndpointName, use the name of the existing endpoint you want to update.

• For EndpointConfigName, use the name of the endpoint configuration you want to use.

• Under DeploymentConfig and BlueGreenUpdatePolicy, in
TrafficRoutingConfiguration, set the Type parameter to CANARY. This specifies that the
deployment uses canary traffic shifting.

• In the CanarySize field, you can change the size of the canary by modifying the Type and
Value parameters. For Type, use CAPACITY_PERCENT, meaning the percentage of your green
fleet you want to use as the canary, and then set Value to 30. In this example, you use 30% of
the green fleet’s capacity as the canary. Note that the canary size should be equal to or less than
50% of the green fleet's capacity.

• For WaitIntervalInSeconds, use 600. The parameter tells SageMaker to wait for the
specified amount of time (in seconds) between each interval shift. This interval is the duration of
the canary baking period. In the preceding example, SageMaker waits for 10 minutes after the
canary shift and then completes the second and final traffic shift.

• For TerminationWaitInSeconds, use 600. This parameter tells SageMaker to wait for the
specified amount of time (in seconds) after your green fleet is fully active before terminating the
instances in the blue fleet. In this example, SageMaker waits for 10 minutes after the final baking
period before terminating the blue fleet.

• For MaximumExecutionTimeoutInSeconds, use 1800. This parameter sets the maximum
amount of time that the deployment can run before it times out. In the preceding example, your
deployment has a limit of 30 minutes to finish.

• In AutoRollbackConfiguration, within the Alarms field, you can add your CloudWatch
alarms by name. Create one AlarmName: <your-cw-alarm> entry for each alarm you want to
use.

How to update an endpoint with an existing blue/green update policy (API)

When you use the CreateEndpoint API to create an endpoint, you can optionally specify
a deployment configuration to reuse for future endpoint updates. You can use the same
DeploymentConfig options as the previous UpdateEndpoint API example. There are no

Blue/Green Deployments 4400

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

changes to the CreateEndpoint API behavior. Specifying the deployment configuration does not
automatically perform a blue/green update on your endpoint.

The option to use a previous deployment configuration happens when using the
UpdateEndpoint API to update your endpoint. When updating your endpoint, you can use the
RetainDeploymentConfig option to keep the deployment configuration you specified when you
created the endpoint.

When calling the UpdateEndpoint API, set RetainDeploymentConfig to True to keep the
DeploymentConfig options from your original endpoint configuration.

response = client.update_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<your-config-name>",
 RetainDeploymentConfig=True
)

How to update an endpoint (CLI)

If you are using the AWS CLI, the following example shows how to start a blue/green canary
deployment using the update-endpoint command.

update-endpoint
--endpoint-name <your-endpoint-name>
--endpoint-config-name <your-config-name>
--deployment-config '"BlueGreenUpdatePolicy": {"TrafficRoutingConfiguration": {"Type":
 "CANARY",
 "CanarySize": {"Type": "CAPACITY_PERCENT", "Value": 30}, "WaitIntervalInSeconds":
 600},
 "TerminationWaitInSeconds": 600, "MaximumExecutionTimeoutInSeconds": 1800},
 "AutoRollbackConfiguration": {"Alarms": [{"AlarmName": "<your-alarm>"}]}'

To configure the canary traffic shifting option, do the following:

• For endpoint-name, use the name of the endpoint you want to update.

• For endpoint-config-name, use the name of the endpoint configuration you want to use.

• For deployment-config, use a BlueGreenUpdatePolicy JSON object.

Blue/Green Deployments 4401

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_BlueGreenUpdatePolicy.html

Amazon SageMaker Developer Guide

Note

If you would rather save your JSON object in a file, see Generating AWS CLI skeleton and
input parameters in the AWS CLI User Guide.

Linear Traffic Shifting

Linear traffic shifting enables you to gradually shift traffic from your old fleet (blue fleet) to your
new fleet (green fleet). With linear traffic shifting, you can shift traffic in multiple steps, minimizing
the chance of a disruption to your endpoint. This blue/green deployment option gives you the
most granular control over traffic shifting.

You can choose either the number of instances or the percentage of the green fleet’s capacity
to activate during each step. Each linear step should only be between 10-50% of the green
fleet's capacity. For each step, there is a baking period during which your pre-specified Amazon
CloudWatch alarms monitor metrics on the green fleet. Once the baking period finishes and no
alarms trip, the active portion of your green fleet continues receiving traffic and a new step begins.
If alarms trip during any of the baking periods, 100% of the endpoint traffic rolls back to the blue
fleet.

The following diagram shows how linear traffic shifting routes traffic to the blue and green fleets.

Once SageMaker provisions the new fleet, the first portion of the green fleet turns on and receives
traffic. SageMaker deactivates the same size portion of the blue fleet, and the baking period
begins. If any alarms trip, all of the endpoint traffic rolls back to the blue fleet. If the baking period

Blue/Green Deployments 4402

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html

Amazon SageMaker Developer Guide

finishes, then the next step begins. Another portion of the green fleet activates and receives traffic,
part of the blue fleet deactivates, and another baking period begins. The same process repeats
until the blue fleet is fully deactivated and the green fleet is fully active and receiving all traffic. If
an alarm goes off at any point, SageMaker terminates the shifting process and 100% of the traffic
rolls back to the blue fleet.

Prerequisites

Before setting up a deployment with linear traffic shifting, you must create CloudWatch alarms
to monitor metrics from your endpoint. The alarms are active during the baking period, and if any
alarms trip, then all endpoint traffic rolls back to the blue fleet. To learn how to set up CloudWatch
alarms on an endpoint, see the prerequisite page Auto-Rollback Configuration and Monitoring.
To learn more about CloudWatch alarms, see Using Amazon CloudWatch alarms in the Amazon
CloudWatch User Guide.

Configure Linear Traffic Shifting

Once you are ready for your deployment and have set up CloudWatch alarms for your endpoint,
you can use either the Amazon SageMaker UpdateEndpoint API or the update-endpoint command
in the AWS CLI to initiate the deployment.

Topics

• How to update an endpoint (API)

• How to update an endpoint with an existing blue/green update policy (API)

• How to update an endpoint (CLI)

How to update an endpoint (API)

The following example of the UpdateEndpoint API shows how you can update an endpoint with
linear traffic shifting.

import boto3
client = boto3.client("sagemaker")

response = client.update_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<your-config-name>",
 DeploymentConfig={
 "BlueGreenUpdatePolicy": {

Blue/Green Deployments 4403

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html

Amazon SageMaker Developer Guide

 "TrafficRoutingConfiguration": {
 "Type": "LINEAR",
 "LinearStepSize": {
 "Type": "CAPACITY_PERCENT",
 "Value": 20
 },
 "WaitIntervalInSeconds": 300
 },
 "TerminationWaitInSeconds": 300,
 "MaximumExecutionTimeoutInSeconds": 3600
 },
 "AutoRollbackConfiguration": {
 "Alarms": [
 {
 "AlarmName": "<your-cw-alarm>"
 }
]
 }
 }
)

To configure the linear traffic shifting option, do the following:

• For EndpointName, use the name of the existing endpoint you want to update.

• For EndpointConfigName, use the name of the endpoint configuration you want to use.

• Under DeploymentConfig and BlueGreenUpdatePolicy, in
TrafficRoutingConfiguration, set the Type parameter to LINEAR. This specifies that the
deployment uses linear traffic shifting.

• In the LinearStepSize field, you can change the size of the steps by modifying the Type and
Value parameters. For Type, use CAPACITY_PERCENT, meaning the percentage of your green
fleet you want to use as the step size, and then set Value to 20. In this example, you turn on
20% of the green fleet’s capacity for each traffic shifting step. Note that when customizing your
linear step size, you should only use steps that are 10-50% of the green fleet's capacity.

• For WaitIntervalInSeconds, use 300. The parameter tells SageMaker to wait for the
specified amount of time (in seconds) between each traffic shift. This interval is the duration of
the baking period between each linear step. In the preceding example, SageMaker waits for 5
minutes between each traffic shift.

• For TerminationWaitInSeconds, use 300. This parameter tells SageMaker to wait for the
specified amount of time (in seconds) after your green fleet is fully active before terminating the

Blue/Green Deployments 4404

Amazon SageMaker Developer Guide

instances in the blue fleet. In this example, SageMaker waits for 5 minutes after the final baking
period before terminating the blue fleet.

• For MaximumExecutionTimeoutInSeconds, use 3600. This parameter sets the maximum
amount of time that the deployment can run before it times out. In the preceding example, your
deployment has a limit of 1 hour to finish.

• In AutoRollbackConfiguration, within the Alarms field, you can add your CloudWatch
alarms by name. Create one AlarmName: <your-cw-alarm> entry for each alarm you want to
use.

How to update an endpoint with an existing blue/green update policy (API)

When you use the CreateEndpoint API to create an endpoint, you can optionally specify
a deployment configuration to reuse for future endpoint updates. You can use the same
DeploymentConfig options as the previous UpdateEndpoint API example. There are no
changes to the CreateEndpoint API behavior. Specifying the deployment configuration does not
automatically perform a blue/green update on your endpoint.

The option to use a previous deployment configuration happens when using the
UpdateEndpoint API to update your endpoint. When updating your endpoint, you can use the
RetainDeploymentConfig option to keep the deployment configuration you specified when you
created the endpoint.

When calling the UpdateEndpoint API, set RetainDeploymentConfig to True to keep the
DeploymentConfig options from your original endpoint configuration.

response = client.update_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<your-config-name>",
 RetainDeploymentConfig=True
)

How to update an endpoint (CLI)

If you are using the AWS CLI, the following example shows how to start a blue/green linear
deployment using the update-endpoint command.

update-endpoint
--endpoint-name <your-endpoint-name>
--endpoint-config-name <your-config-name>

Blue/Green Deployments 4405

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-endpoint.html

Amazon SageMaker Developer Guide

--deployment-config '{"BlueGreenUpdatePolicy": {"TrafficRoutingConfiguration": {"Type":
 "LINEAR",
 "LinearStepSize": {"Type": "CAPACITY_PERCENT", "Value": 20},
 "WaitIntervalInSeconds": 300},
 "TerminationWaitInSeconds": 300, "MaximumExecutionTimeoutInSeconds": 3600},
 "AutoRollbackConfiguration": {"Alarms": [{"AlarmName": "<your-alarm>"}]}'

To configure the linear traffic shifting option, do the following:

• For endpoint-name, use the name of the endpoint you want to update.

• For endpoint-config-name, use the name of the endpoint configuration you want to use.

• For deployment-config, use a BlueGreenUpdatePolicy JSON object.

Note

If you would rather save your JSON object in a file, see Generating AWS CLI skeleton and
input parameters in the AWS CLI User Guide.

Rolling Deployments

When you update your endpoint, you can specify a rolling deployment to gradually shift traffic
from your old fleet to a new fleet. You can control the size of the traffic shifting steps, as well as
specify an evaluation period to monitor the new instances for issues before terminating instances
from the old fleet. With rolling deployments, instances on the old fleet are cleaned up after each
traffic shift to the new fleet, reducing the amount of additional instances needed to update your
endpoint. This is useful especially for accelerated instances that are in high demand.

Rolling deployments gradually replace the previous deployment of your model version with the
new version by updating your endpoint in configurable batch sizes. The traffic shifting behavior
of rolling deployments is similar to the linear traffic shifting mode in blue/green deployments,
but rolling deployments provide you with the benefit of reduced capacity requirements when
compared to blue/green deployments. With rolling deployments, fewer instances are active at a
time, and you have more granular control over how many instances you want to update in the new
fleet. You should consider using a rolling deployment instead of a blue/green deployment if you
have large models or a large endpoint with many instances.

The following list describes the key features of rolling deployments in Amazon SageMaker:

Rolling Deployments 4406

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_BlueGreenUpdatePolicy.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-skeleton.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails-blue-green-linear.html

Amazon SageMaker Developer Guide

• Baking period. The baking period is a set amount of time to monitor the new fleet before
proceeding to the next deployment stage. If any of the pre-specified alarms trip during any
baking period, then all endpoint traffic rolls back to the old fleet. The baking period helps you to
build confidence in your update before making the traffic shift permanent.

• Rolling batch size. You have granular control over the size of each batch for traffic shifting, or
the number of instances you want to update in each batch. This number can range for 5–50% of
the size of your fleet. You can specify the batch size as a number of instances or as the overall
percentage of your fleet.

• Auto-rollbacks. You can specify Amazon CloudWatch alarms that SageMaker uses to monitor
the new fleet. If an issue with the updated code trips any of the alarms, SageMaker initiates an
auto-rollback to the old fleet in order to maintain availability, thereby minimizing risk.

Note

If your endpoint uses any of the features listed in the Exclusions page, you cannot use
rolling deployments.

How it works

During a rolling deployment, SageMaker provides the infrastructure to shift traffic from the old
fleet to the new fleet without having to provision all of the new instances at once. SageMaker uses
the following steps to shift traffic:

1. SageMaker provisions the first batch of instances in the new fleet.

2. A portion of traffic is shifted from the old instances to the first batch of new instances.

3. After the baking period, if no Amazon CloudWatch alarms are tripped, then SageMaker cleans up
a batch of old instances.

4. SageMaker continues to provision, shift, and clean up instances in batches until the deployment
is complete.

If an alarm is tripped during one of the baking periods, then traffic is rolled back to the old fleet
in batches of a size that you specify. Alternatively, you can specify the rolling deployment to shift
100% of the traffic back to the old fleet if an alarm is tripped.

Rolling Deployments 4407

https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails-exclusions.html

Amazon SageMaker Developer Guide

The following diagram shows the progression of a successful rolling deployment, as described in
the previous steps.

To create a rolling deployment, you only have to specify your desired deployment configuration.
Then SageMaker handles provisioning new instances, terminating old instances, and shifting traffic
for you. You can create and manage your deployment through the existing UpdateEndpoint and
CreateEndpoint SageMaker API and AWS Command Line Interface commands.

Prerequisites

Before setting up a rolling deployment, you must create Amazon CloudWatch alarms to watch
metrics from your endpoint. If any of the alarms trip during the baking period, then the traffic
begins rolling back to your old fleet. To learn how to set up CloudWatch alarms on an endpoint,
see the prerequisite page Auto-Rollback Configuration and Monitoring. To learn more about
CloudWatch alarms, see Using Amazon CloudWatch alarms in the Amazon CloudWatch User Guide.

Also, review the Exclusions page to make sure that your endpoint meets the requirements for a
rolling deployment.

Rolling Deployments 4408

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails-configuration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails-exclusions.html

Amazon SageMaker Developer Guide

Determine the rolling batch size

Before updating your endpoint, determine the batch size that you want to use for incrementally
shifting traffic to the new fleet.

For rolling deployments, you can specify a batch size that is 5–50% of the capacity of your fleet.
If you choose a large batch size, the deployment completes more quickly. However, keep in mind
that the endpoint requires more capacity while updating, roughly the batch size overhead. If you
choose a smaller batch size, the deployment takes longer, but you use less capacity during the
deployment.

Configure a rolling deployment

Once you are ready for your deployment and have set up CloudWatch alarms for your endpoint,
you can use the SageMaker UpdateEndpoint API or the update-endpoint command in the AWS
Command Line Interface to initiate the deployment.

How to update an endpoint

The following example shows how you can update your endpoint with a rolling deployment using
the update_endpoint method of the Boto3 SageMaker client.

To configure a rolling deployment, use the following example and fields:

• For EndpointName, use the name of the existing endpoint you want to update.

• For EndpointConfigName, use the name of the endpoint configuration you want to use.

• In the AutoRollbackConfiguration object, within the Alarms field, you can add your
CloudWatch alarms by name. Create one AlarmName: <your-cw-alarm> entry for each alarm
you want to use.

• Under DeploymentConfig, for the RollingUpdatePolicy object, specify the following fields:

• MaximumExecutionTimeoutInSeconds — The time limit for the total deployment.
Exceeding this limit causes a timeout. The maximum value you can specify for this field is
28800 seconds, or 8 hours.

• WaitIntervalInSeconds — The length of the baking period, during which SageMaker
monitors alarms for each batch on the new fleet.

• MaximumBatchSize — Specify the Type of batch you want to use (either instance count or
overall percentage of your fleet) and the Value, or the size of each batch.

Rolling Deployments 4409

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-endpoint.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/update_endpoint.html

Amazon SageMaker Developer Guide

• RollbackMaximumBatchSize — Use this object to specify the rollback strategy in case
an alarm trips. Specify the Type of batch you want to use (either instance count or overall
percentage of your fleet), and the Value, or the size of each batch. If you don’t specify these
fields, or if you set the value to 100% of your endpoint, then SageMaker uses a blue/green
rollback strategy and rolls all traffic back to the old fleet when an alarm trips.

import boto3
client = boto3.client("sagemaker")

response = client.update_endpoint(
 EndpointName="<your-endpoint-name>",
 EndpointConfigName="<your-config-name>",
 DeploymentConfig={
 "AutoRollbackConfiguration": {
 "Alarms": [
 {
 "AlarmName": "<your-cw-alarm>"
 },
]
 },
 "RollingUpdatePolicy": {
 "MaximumExecutionTimeoutInSeconds": number,
 "WaitIntervalInSeconds": number,
 "MaximumBatchSize": {
 "Type": "INSTANCE_COUNT" | "CAPACITY_PERCENTAGE" (default),
 "Value": number
 },
 "RollbackMaximumBatchSize": {
 "Type": "INSTANCE_COUNT" | "CAPACITY_PERCENTAGE" (default),
 "Value": number
 },
 }
 }
)

After updating your endpoint, you might want to check the status of your rolling deployment and
check the health of your endpoint. You can review your endpoint’s status in the SageMaker console,
or you can review the status of your endpoint by using the DescribeEndpoint API.

Rolling Deployments 4410

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide

In the VariantStatus object returned by the DescribeEndpoint API, the Status field tells you
the current deployment or operational status of your endpoint. For more information about the
possible statuses and what they mean, see ProductionVariantStatus.

If you attempted to do a rolling deployment and the status of your endpoint is
UpdateRollbackFailed, see the following section for troubleshooting help.

Failure handling

If your rolling deployments fails and the auto-rollback fails as well, your endpoint can be left with
a status of UpdateRollbackFailed. This status means that different endpoint configurations are
deployed to the instances behind your endpoint, and your endpoint is in service with a mix of old
and new endpoint configurations.

You can make another call to the UpdateEndpoint API to return your endpoint to a healthy state.
Specify your desired endpoint configuration and deployment configuration (either as a rolling
deployment, a blue/green deployment, or neither) to update your endpoint.

You can call the DescribeEndpoint API to check the health of your endpoint again, which is
returned in the VariantStatus object as the Status field. If your update is successful, your
endpoint’s Status returns to InService.

Exclusions

When doing a blue/green or rolling deployment, your new endpoint configuration must have the
same variant name as the old endpoint configuration. There are also feature-based exclusions that
make your endpoint incompatible with deployment guardrails at this time. If your endpoint uses
any of the following features, you cannot use deployment guardrails on your endpoint, and your
endpoint will fall back to using a blue/green deployment with all at once traffic shifting and no
final baking period:

• Marketplace containers

• Endpoints that use Inf1 (Inferentia-based) instances

• Amazon Elastic Inference endpoints

If you're doing a rolling deployment, there are additional feature-based exclusions:

• Serverless inference endpoints

• Multi-variant inference endpoints

Exclusions 4411

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariantStatus.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html

Amazon SageMaker Developer Guide

Shadow tests

With Amazon SageMaker you can evaluate any changes to your model serving infrastructure by
comparing its performance against the currently deployed infrastructure. This practice is known as
shadow testing. Shadow testing can help you catch potential configuration errors and performance
issues before they impact end users. With SageMaker, you don't need to invest in building your
shadow testing infrastructure, so you can focus on model development.

You can use this capability to validate changes to any component of your production variant,
namely the model, the container, or the instance, without any end user impact. It is useful in
situations including but not limited to the following:

• You are considering promoting a new model that has been validated offline to production, but
want to evaluate operational performance metrics such as latency and error rate before making
this decision.

• You are considering changes to your serving infrastructure container, such as patching
vulnerabilities or upgrading to newer versions, and want to assess the impact of these changes
prior to promotion to production.

• You are considering changing your ML instance and want to evaluate how the new instance
would perform with live inference requests.

The SageMaker console provides a guided experience to manage the workflow of shadow testing.
You can setup shadow tests for a predefined duration of time, monitor the progress of the test
through a live dashboard, clean up upon completion, and act on the results. Select a production
variant you want to test against, and SageMaker automatically deploys the new variant in shadow
mode and routes a copy of the inference requests to it in real time within the same endpoint. Only
the responses of the production variant are returned to the calling application. You can choose to
discard or log the responses of the shadow variant for offline comparison. For more information
on production and shadow variants, see Safely validate models in production. Note that if your
endpoint uses any of the features listed in the Exclusions page, you cannot use shadow tests.

See Create a shadow test for instructions on creating a shadow test.

Create a shadow test

You can create a shadow test to compare the performance of a shadow variant against a
production variant. You can run the test on an existing endpoint that is serving inference requests
or you can create a new endpoint on which to run the test.

Shadow tests 4412

Amazon SageMaker Developer Guide

To create a shadow test you need to specify the following:

• A production variant that receives and responds to 100 percent of the incoming inference
requests.

• A shadow variant that receives a percentage of the incoming requests, replicated from the
production variant, but does not return any responses.

For each variant, you can use SageMaker to control the model, instance type, and instance count.
You can configure the percentage of incoming requests, known as the traffic sampling percentage,
that you want replicated to your shadow variant. SageMaker manages the replication of requests
to your shadow variant and you can modify the traffic sampling percentage when your test is
scheduled or running. You can also optionally turn on Data Capture to log requests and responses
of your production and shadow variants.

Note

SageMaker supports a maximum of one shadow variant per endpoint. For an endpoint with
a shadow variant, there can be a maximum of one production variant.

You can schedule the test to start at any time and continue for a specified duration. The default
duration is 7 days and the maximum is 30 days. After the test is complete, the endpoint reverts to
the state it was in prior to starting the test. This ensures that you do not have to manually clean up
resources upon the completion of the test.

You can monitor a test that is running through a dashboard in the SageMaker console. The
dashboard provides a side by side comparison of invocation metrics and instance metrics between
the production and shadow variants, along with a tabular view with relevant metric statistics. This
dashboard is also available for completed tests. Once you have reviewed the metrics, you can either
choose to promote the shadow variant to be the new production variant or retain the existing
production variant. Once you promote the shadow variant, it responds to all incoming requests. For
more information, see Promote a shadow variant.

The following procedure describes how to create a shadow test through the SageMaker console.
There are variations in the workflow depending on whether you want to use an existing endpoint
or to create a new endpoint for the shadow test.

Topics

Create a shadow test 4413

Amazon SageMaker Developer Guide

• Prerequisites

• Enter shadow test details

• Enter shadow test settings

Prerequisites

Before creating a shadow test with the SageMaker console, you must have a SageMaker model
ready to use. For more information about how to create a SageMaker model, see Deploy models for
real-time inference.

You can get started with shadow tests with an existing endpoint with a production variant and a
shadow variant, an existing endpoint with only a production variant, or just the SageMaker models
you'd like to compare. Shadow tests support creating an endpoint and adding variants before your
test begins.

Enter shadow test details

To start creating your shadow test, fill out the Enter shadow test details page by doing the
following:

1. Open the SageMaker console.

2. In the left navigation panel, choose Inference, and then choose Shadow tests.

3. Choose Create shadow test.

4. Under Name, enter a name for the test.

5. (Optional) Under Description, enter a description for the test.

6. (Optional) Specify Tags using Key and Value pairs.

7. Choose Next.

Enter shadow test settings

After filling out the Enter shadow test details page, fill out the Enter shadow test settings page.
If you already have a SageMaker Inference endpoint and a production variant, follow the Use
an existing endpoint workflow. If you don't already have an endpoint, follow the Create a new
endpoint workflow.

Create a shadow test 4414

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Use an existing endpoint

If you want to use an existing endpoint for your test, fill out the Enter shadow test settings
page by doing the following:

1. Choose a role that has the AmazonSageMakerFullAccess IAM policy attached.

2. Choose Use an existing endpoint, and then choose one of the available endpoints.

3. (Optional) To encrypt the storage volume on your endpoint, either choose an existing KMS
key or choose Enter a KMS key ARN from the dropdown list under Encryption key. If you
choose the second option, a field to enter the KMS key ARN appears. Enter the KMS key
ARN in that field.

4. If you have multiple production variants behind that endpoint, remove the ones you don't
want to use for the test. You can remove a model variant by selecting it and then choosing
Remove.

5. If you do not already have a shadow variant, add a shadow variant. To add a shadow
variant, do the following:

a. Choose Add.

b. Choose Shadow variant.

c. In the Add model dialog box, choose the model you want to use for your shadow
variant.

d. Choose Save.

6. (Optional) In the preceding step, the shadow variant is added with the default settings. To
modify these settings, select the shadow variant and choose Edit. The Edit shadow variant
dialog box appears. For more information on filling out this dialog box, see Edit a shadow
test.

7. In the Schedule section, enter the duration of the test by doing the following:

a. Choose the box under Duration. A popup calender appears.

b. Select the start and end dates from the calender, or enter the start and end dates in
the fields for Start date and End date, respectively.

c. (Optional) For the fields Start time and End time, enter the start and end times,
respectively, in the 24 hour format.

d. Choose Apply.

Create a shadow test 4415

Amazon SageMaker Developer Guide

The minimum duration is 1 hour, and the maximum duration is 30 days.

8. (Optional) Turn on Enable data capture to save inference request and response
information from your endpoint to an Amazon S3 bucket, and then enter the location of
the Amazon S3 bucket.

9. Choose Create shadow test.

Create a new endpoint

If you don't have an existing endpoint, or you want to create a new endpoint for your test, fill
out the Enter shadow test settings page by doing the following:

1. Choose a role that has the AmazonSageMakerFullAccess IAM policy attached.

2. Choose Create a new endpoint.

3. Under Name, enter a name for the endpoint.

4. Add one production variant and one shadow variant to the endpoint:

• To add a production variant choose Add, and then choose Production variant. In the Add
model dialog box, choose the model you want to use for your production variant, and
then choose Save.

• To add a shadow variant choose Add, and then choose Shadow variant. In the Add
model dialog box, choose the model you want to use for your shadow variant, and then
choose Save.

5. (Optional) In the preceding step, the shadow variant is added with the default settings. To
modify these settings, select the shadow variant and choose Edit. The Edit shadow variant
dialog box appears. For more information on filling out this dialog box, see Edit a shadow
test.

6. In the Schedule section, enter the duration of the test by doing the following:

a. Choose the box under Duration. A popup calender appears.

b. Select the start and end dates from the calender, or enter the start and end dates
under Start date and End date, respectively.

c. (Optional) Under Start time and End time, enter the start and end times, respectively,
in the 24 hour format.

d. Choose Apply.

Create a shadow test 4416

Amazon SageMaker Developer Guide

The minimum duration is 1 hour, and the maximum duration is 30 days.

7. (Optional) Turn on Enable data capture to save inference request and response
information from your endpoint to an Amazon S3 bucket, and then enter the location of
the Amazon S3 bucket.

8. Choose Create shadow test.

After completing the preceding procedures, you should now have a test scheduled to begin at your
specified start date and time. You can view the progress of the test from a dashboard. For more
information about viewing your test and the actions you can take, see View, monitor, and edit
shadow tests.

View, monitor, and edit shadow tests

You can view the statuses of your shadow tests, monitor their progress from a dashboard, and
perform actions, such as starting or stopping an test early or deleting an test. The following
sections show how you can view and modify your shadow tests using the SageMaker console.

Topics

• View shadow tests

• Monitor a shadow test

• Start a shadow test early

• Complete a shadow test early

• Delete a shadow test

• Edit a shadow test

View shadow tests

You can view the statuses of all of your shadow tests on the Shadow tests page on the SageMaker
console.

To view your tests in the console, do the following:

1. Open the SageMaker console.

2. In the navigation panel, choose Inference.

View, monitor, and edit shadow tests 4417

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

3. Choose Shadow tests to view the page that lists all of your shadow tests. The page should
look like the following screenshot, with all the tests listed under the Shadow test section.

You can see the status of a test in the console on the Shadow tests page by checking the Status
field for the test.

The following are the possible statuses for a test:

• Creating – SageMaker is creating your test.

• Created – SageMaker has finished creating your test, and it will begin at the scheduled time.

• Updating – When you make changes to your test, your test shows as updating.

• Starting – SageMaker is beginning your test.

• Running – Your test is in progress.

• Stopping – SageMaker is stopping your test.

• Completed – Your test has completed.

• Cancelled – When you conclude your test early, it shows as cancelled.

View, monitor, and edit shadow tests 4418

Amazon SageMaker Developer Guide

Monitor a shadow test

You can view the details of a shadow test and monitor it while it is in progress or after it has
completed. SageMaker presents a live dashboard comparing the operational metrics like model
latency, and error rate aggregated, of the production and shadow variants.

To view the details of an individual test in the console, do the following:

1. Select the test you want to monitor from the Shadow test section on the Shadow tests page.

2. From the Actions dropdown list, choose View. An overview page with the details of the test
and a metrics dashboard appears.

The overview page has the following three sections.

Summary

This section summarizes the progress and status of the test. It also shows the summary
statistics of the metric chosen from the Select metric dropdown list in the Metrics subsection.
The following screenshot shows this section.

View, monitor, and edit shadow tests 4419

Amazon SageMaker Developer Guide

In the preceding screenshot, the Settings, and Details tabs show the settings that you selected,
and the details that you entered when creating the test.

Analysis

This section shows a metrics dashboard with separate graphs for the following metrics:

• Invocations

• InvocationsPerInstance

• ModelLatency

• Invocation4XXErrors

• Invocation5XXErrors

• InvocationModelErrors

• CPUUtilization

• MemoryUtilization

• DiskUtilization

The last three metrics monitor the model container runtime resource usage. The rest are
CloudWatch metrics that you can use to analyse the performance of your variant. In general,
fewer errors indicate a more stable model. A lower latency indicates either a faster model or a
faster infrastructure. For more information about CloudWatch metrics, see SageMaker Endpoint
Invocation Metrics. The following screenshot shows the metrics dashboard.

View, monitor, and edit shadow tests 4420

Amazon SageMaker Developer Guide

Environment

This section shows the variants that you compared in the test. If you are satisfied by the
performance of the shadow variant, based on the aforementioned metrics, you can promote
the shadow variant to production, by choosing Deploy shadow variant. For more details about
deploying a shadow variant, see Promote a shadow variant. You can also change the traffic
sampling percentage, and continue testing, by choosing Edit traffic. For more details about
editing a shadow variant, see Edit a shadow test. The following screenshot shows this section.

View, monitor, and edit shadow tests 4421

Amazon SageMaker Developer Guide

Start a shadow test early

You can start your test before its scheduled start time. If the new duration of the test exceeds 30
days, SageMaker automatically sets the end of the test to 30 days after the new start time. This
action starts the test immediately. If you want to change the start or end time of the test, see Edit
a shadow test.

To immediately start your test, before its scheduled start time, through the console, do the
following:

1. Select the test you want to start immediately from the Shadow test section on the Shadow
tests page.

2. From the Actions dropdown list, choose Start. The Start shadow test? dialog box appears.

3. Choose Start now.

Complete a shadow test early

You can complete an in-progress test before the end of its scheduled duration. For more
information see Complete a shadow test early.

Delete a shadow test

You can delete a test that you no longer need. Deleting your test only deletes the test metadata
and not your endpoint, variants, or data captured in Amazon S3. If you want your endpoint to stop
running, you must delete your endpoint. For more information about deleting an endpoint, see
Delete Endpoints and Resources

To delete a test through the console, do the following:

View, monitor, and edit shadow tests 4422

Amazon SageMaker Developer Guide

1. Select the test you want to delete from the Shadow test section on the Shadow tests page.

2. From the Actions dropdown list, choose Delete. The Delete shadow test dialog box appears.

3. In the To confirm deletion, type delete in the field. text box, enter delete.

4. Choose Delete.

Edit a shadow test

You can modify both scheduled and in-progress tests. Before your test starts, you can change the
description, the shadow variant configuration, the start date, and the end date of the test. You can
also turn on or turn off data capture.

After your test starts, you can only change the description, the traffic sampling percentage for the
shadow variant, and the end date.

To edit the details of your test through the console, do the following:

1. Select the test you want to edit from the Shadow test section on the Shadow tests page.

2. From the Actions dropdown list, choose Edit. The Enter shadow test details page appears.

3. (Optional) Under Description, enter a description of your test.

4. Choose Next. The Enter shadow test settings page appears.

5. (Optional) To edit your shadow variant, do the following:

a. Select the shadow variant and choose Edit. The Edit shadow variant dialog box appears. If
your test has already started, then you can only change the traffic sampling percentage.

b. (Optional) Under Name, enter the new name to replace the old name.

c. (Optional) Under Traffic sample, enter the new traffic sampling percentage to replace the
old traffic sampling percentage.

d. (Optional) Under Instance type, select the new instance type from the dropdown list.

e. (Optional) Under Instance count, enter the new instance count to replace the old instance
count.

f. Choose Apply.

You cannot change the model in your shadow variant using the above procedure. If you want
to change the model, first remove the shadow variant by selecting it and choosing Remove.
Then add a new shadow variant.

View, monitor, and edit shadow tests 4423

Amazon SageMaker Developer Guide

6. (Optional) To edit the duration of the test, do the following:

a. Choose the box under Duration in the Schedule section. A popup calender appears.

b. If your test is yet to start, you can change both the start and end dates. Select the new
start and end dates from the calender, or enter the new start and end dates under Start
date and End date, respectively.

If your test has already started, you can only change the end date. Enter the new end date
under End date.

c. (Optional) If your test is yet to start, you can change both the start and end times. Enter
the new start and end times under Start time, and End time, respectively, in the 24 hour
format.

If your test has already started, you can only change the end time. Enter the new end time
under End time, in the 24 hour format.

d. Choose Apply.

7. (Optional) Turn on or turn off Enable data capture.

8. Choose Update shadow test.

Complete a shadow test

Your test automatically completes at the end of the scheduled duration, or you can stop an in-
progress test early. After your test has completed, the test’s status in the Shadow tests section on
the Shadow tests page shows as Complete. Then you can review and analyze the final metrics of
your test.

You can use the metrics dashboard to decide whether to promote the shadow variant to
production. For more information about analyzing the metrics dashboard of your test, see Monitor
a shadow test.

For instructions on how to complete your test before the end of its scheduled completion time, see
Complete a shadow test early.

For instructions on promoting your shadow variant to production, see Promote a shadow variant.

Complete a shadow test 4424

Amazon SageMaker Developer Guide

Complete a shadow test early

One reason you might want to complete an in-progress shadow test is if you’ve decided that the
metrics for your shadow variant look good and you want to promote it to production. You might
also decide to complete the test if one or more of the variants aren’t performing well.

To complete your test before its scheduled end date, do the following:

1. Select the test you want to mark complete from the Shadow tests section on the Shadow
tests page.

2. From the Actions dropdown list, choose Complete, and the Complete shadow test dialog box
appears.

3. In the dialog box, choose one of the following options:

• Yes, deploy shadow variant

• No, remove shadow variant

4. (Optional) In the Comment text box, enter your reason for completing the test before its
scheduled end time.

5. 1. If you decided to deploy the shadow variant, choose Complete and proceed to deploy.
The Deploy shadow variant page appears. For instructions on how to fill out this page, see
Promote a shadow variant.

2. If you decide to remove the shadow variant, choose Confirm.

Promote a shadow variant

If you’ve decided that you want to replace your production variant with your shadow variant, you
can update your endpoint and promote your shadow variant to respond to inference requests. This
removes your current production variant from production and replaces it with your shadow variant.

If your shadow test is still in-progress, you must first complete your test. To complete your shadow
test before its scheduled end, follow the instructions in Complete a shadow test early before
continuing with this section.

When you promote a shadow variant to production, you have the following options for the
instance count of the shadow variant.

Complete a shadow test 4425

Amazon SageMaker Developer Guide

• You can retain the instance count and type from the production variant. If you select this option,
then your shadow variant launches in production with the current instance count, ensuring that
your model can continue to process request traffic at the same scale.

• You can retain the instance count and type of your shadow variant. If you want to use this
option, we recommend that you shadow test with 100 percent traffic sampling to ensure that the
shadow variant can process request traffic at the current scale.

• You can use custom values for the instance count and type. If you want to use this option, we
recommend that you shadow test with 100 percent traffic sampling to ensure that the shadow
variant can process request traffic at the current scale.

Unless you are validating the instance type or count or both of the shadow variant, we highly
recommend that you retain the instance count and type from the production variant when
promoting your shadow variant.

To promote your shadow variant, do the following:

1. If your test has completed, do the following:

a. Select the test from the Shadow test section on the Shadow tests page.

b. From the Actions dropdown list, choose View. The dashboard appears.

c. Choose Deploy shadow variant in the Environment section. The Deploy shadow variant
page appears.

If your test has not completed, see Complete a shadow test early to complete it.

2. In the Variant settings section, select one of the following options:

• Retain production settings

• Retain shadow settings

• Custom instance settings

If you selected Custom instance settings, do the following:

a. Select the instance type from the Instance type dropdown list.

b. Under Instance count, enter the number of instances.

3. In Enter 'deploy' to confirm deployment text box, enter deploy.

Complete a shadow test 4426

Amazon SageMaker Developer Guide

4. Choose Deploy shadow variant.

Your SageMaker Inference endpoint is now using the shadow variant as your production variant,
and your production variant has been removed from the endpoint.

Best Practices

When creating an inference experiment, keep the following information in mind:

• Traffic sampling percentage – Sampling 100 percent of the inference requests lets you validate
that your shadow variant can handle production traffic when promoted. You may start off with a
lower traffic sampling percentage and dial up as you gain confidence in your variant, but it is best
practice to ensure that you’ve increased the traffic to 100 percent prior to promotion.

• Instance type – Unless you are using shadow variants to evaluate alternate instance types or
sizes, we recommend that you use the same instance type, size, and count so that you can be
certain that your shadow variant can handle the volume of inference requests after you promote
it.

• Auto scaling – To ensure that your shadow variant can respond to spikes in the number of
inference requests or changes in inference requests patterns, we highly recommend that you
configure autoscaling on your shadow variants. To learn how to configure autoscaling, see
Automatically Scale Amazon SageMaker Models. If you have configured autoscaling, you can also
validate changes to autoscaling policies without causing impact to users.

• Metrics monitoring – After you initiate a shadow experiment and have sufficient invocations,
monitor the metrics dashboard to ensure that the metrics such as latency and error rate are
within acceptable bounds. This helps you catch misconfigurations early and take corrective
action. For information about how to monitor the metrics of an in-progress inference
experiment, see View, monitor, and edit shadow tests.

Exclusions

There are feature-based exclusions that make your endpoint incompatible with shadow tests at
this time. If your endpoint uses any of the following features you cannot use shadow tests on your
endpoint, and your request to setup shadow tests will lead to validation errors.

• Serverless inference

• Asynchronous inference

Best Practices 4427

Amazon SageMaker Developer Guide

• Marketplace containers

• Multiple-containers endpoints

• Multi-model endpoints

• Endpoints that use Inf1 (Inferentia-based) instances

• Amazon Elastic Inference endpoints

Access containers through SSM

Amazon SageMaker allows you to securely connect to the Docker containers on which your models
are deployed on for Inference using AWS Systems Manager (SSM). This gives you shell level
access to the container so that you can debug the processes running within the container and
log commands and responses with Amazon CloudWatch. You can also set up an AWS PrivateLink
connection to the ML instances that host your containers for accessing the containers via SSM
privately.

Warning

Enabling SSM access can impact the performance of your endpoint. We recommend using
this feature with your dev or test endpoints and not with the endpoints in production.
Also, SageMaker automatically applies security patches, and replaces or terminates
faulty endpoint instances within 10 minutes. However for endpoints with SSM enabled
production variants, SageMaker delays security patching and replacing or terminating
faulty endpoint instances by a day, to allow you to debug.

The following sections detail how you can use this feature.

Allowlist

You have to contact customer support, and get your account allowlisted, to use this feature. You
cannot create an endpoint with SSM access enabled, if your account is not allow listed for this
access.

Access containers through SSM 4428

Amazon SageMaker Developer Guide

Enable SSM access

To enable SSM access for an existing container on an endpoint, update the endpoint with a
new endpoint configuration, with the EnableSSMAccess parameter set to true The following
example provides a sample endpoint configuration.

{
 "EndpointConfigName": "endpoint-config-name",
 "ProductionVariants": [
 {
 "InitialInstanceCount": 1,
 "InitialVariantWeight": 1.0,
 "InstanceType": "ml.t2.medium",
 "ModelName": model-name,
 "VariantName": variant-name,
 "EnableSSMAccess": true,
 },
]
}

For more information on enabling SSM access, see EnableSSMAccess.

IAM configuration

Endpoint IAM permissions

If you have enabled SSM access for an endpoint instance, SageMaker starts and manages the SSM
agent when it initiates the endpoint instance. To allow the SSM agent to communicate with the
SSM services, add the following policy to the execution role that the endpoint runs under.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssmmessages:CreateControlChannel",
 "ssmmessages:CreateDataChannel",
 "ssmmessages:OpenControlChannel",
 "ssmmessages:OpenDataChannel"

Enable SSM access 4429

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html#API_EnableSSMAccess
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html

Amazon SageMaker Developer Guide

],
 "Resource": "*"
 }
]
 }

User IAM permissions

Add the following policy to give an IAM user SSM session permissions to connect to a SSM target.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:StartSession",
 "ssm:TerminateSession"
],
 "Resource": "*"
 }
]
}

You can restrict the endpoints that an IAM user can connect to, with the following policy. Replace
the italicized placeholder text with your own information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:StartSession",
],
 "Resource": [
 "sagemaker-endpoint-arn"
]
 }
]

IAM configuration 4430

Amazon SageMaker Developer Guide

}

SSM access with AWS PrivateLink

If your endpoints run within a virtual private cloud (VPC) that is not connected to the public
internet, you can use AWS PrivateLink to enable SSM. AWS PrivateLink restricts all network traffic
between your endpoint instances, SSM, and Amazon EC2 to the Amazon network. For more
information on how to setup SSM access with AWS PrivateLink, see Set up a VPC endpoint for
Session Manager.

Logging with Amazon CloudWatch Logs

For SSM access enabled endpoints, you can log errors from the SSM agent with Amazon
CloudWatch Logs. For more information on how to log errors with CloudWatch Logs, see Logging
session activity. The log is available at the SSM log stream, variant-name/ec2-instance-id/
ssm, under the endpoint log group /aws/sagemaker/endpoints/endpoint-name. For more
information on how to view the log, see View log data sent to CloudWatch Logs.

Production variants behind your endpoint can have multiple model containers. The log for each
model container is recorded in the log stream. Each log is preceded by [sagemaker ssm logs]
[container-name], where container-name is either the name that you gave to the container,
or the default name, such as container_0, and container_1.

Accessing model containers

To access a model container on your endpoint instance, you need its target ID. The target ID is in
one of the following formats:

• sagemaker-endpoint:endpoint-name_variant-name_ec2-instance-id for containers
on single container endpoints

• sagemaker-endpoint:endpoint-name_variant-name_ec2-instance-id_container-
name for containers on multi-container endpoints

The following example shows how you can use the AWS CLI to access a model container using its
target ID.

SSM access with AWS PrivateLink 4431

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started-privatelink.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-logging.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-logging.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData

Amazon SageMaker Developer Guide

aws ssm start-session --target sagemaker-endpoint:prod-image-
classifier_variant1_i-003a121c1b21a90a9_container_1

If you enable logging, as mentioned in Logging with Amazon CloudWatch Logs, you can find the
target IDs for all the containers listed at the beginning of the SSM log stream.

Note

• You cannot connect to 1P algorithm containers or containers of models obtained from
SageMaker MarketPlace with SSM. However you can connect to deep learning containers
(DLCs) provided by AWS or any custom container that you own.

• If you have enabled network isolation for a model container that prevents it from making
outbound network calls, you cannot start an SSM session for that container.

• You can only access one container from one SSM session. To access another container,
even if it is behind the same endpoint, start a new SSM session with the target ID of that
endpoint.

Deploy models with model servers

The following content shows you how to deploy your models on SageMaker using popular model
servers, such as TorchServe and Triton.

Deploy models with TorchServe

TorchServe is the recommended model server for PyTorch, preinstalled in the AWS PyTorch Deep
Learning Container (DLC). This powerful tool offers customers a consistent and user-friendly
experience, delivering high performance in deploying multiple PyTorch models across various AWS
instances, including CPU, GPU, Neuron, and Graviton, regardless of the model size or distribution.

TorchServe supports a wide array of advanced features, including dynamic batching,
microbatching, model A/B testing, streaming, torch XLA, tensorRT, ONNX and IPEX. Moreover,
it seamlessly integrates PyTorch's large model solution, PiPPy, enabling efficient handling of
large models. Additionally, TorchServe extends its support to popular open-source libraries like
DeepSpeed, Accelerate, Fast Transformers, and more, expanding its capabilities even further. With

Deploy models with model servers 4432

Amazon SageMaker Developer Guide

TorchServe, AWS users can confidently deploy and serve their PyTorch models, taking advantage of
its versatility and optimized performance across various hardware configurations and model types.
For more detailed information, you can refer to the PyTorch documentation and TorchServe on
GitHub.

The following table lists the AWS PyTorch DLCs supported by TorchServe.

Instance type SageMaker PyTorch DLC link

CPU and GPU SageMaker PyTorch containers

Neuron PyTorch Neuron containers

Graviton SageMaker PyTorch Graviton containers

The following sections describe the setup to build and test PyTorch DLCs on Amazon SageMaker.

Getting started

To get started, ensure that you have the following prerequisites:

1. Ensure that you have access to an AWS account. Set up your environment so that the AWS CLI
can access your account through either an AWS IAM user or an IAM role. We recommend using
an IAM role. For the purposes of testing in your personal account, you can attach the following
managed permissions policies to the IAM role:

• AmazonEC2ContainerRegistryFullAccess

• AmazonEC2FullAccess

• AWSServiceRoleForAmazonEKSNodegroup

• AmazonSageMakerFullAccess

• AmazonS3FullAccess

2. Locally configure your dependencies, as shown in the following example:

from datetime import datetime
 import os
 import json
 import logging
 import time

Deploy models with TorchServe 4433

https://pytorch.org/serve/
https://github.com/pytorch/serve
https://github.com/pytorch/serve
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-graviton-containers-sm-support-only
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSServiceRoleForAmazonEKSNodegroup
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonS3FullAccess

Amazon SageMaker Developer Guide

 # External Dependencies:
 import boto3
 from botocore.exceptions import ClientError
 import sagemaker

 sess = boto3.Session()
 sm = sess.client("sagemaker")
 region = sess.region_name
 account = boto3.client("sts").get_caller_identity().get("Account")

 smsess = sagemaker.Session(boto_session=sess)
 role = sagemaker.get_execution_role()

 # Configuration:
 bucket_name = smsess.default_bucket()
 prefix = "torchserve"
 output_path = f"s3://{bucket_name}/{prefix}/models"
 print(f"account={account}, region={region}, role={role}")

3. Retrieve the PyTorch DLC image, as shown in the following example.

SageMaker PyTorch DLC images are available in all AWS regions. For more information, see the
list of DLC container images.

baseimage = sagemaker.image_uris.retrieve(
 framework="pytorch",
 region="<region>",
 py_version="py310",
 image_scope="inference",
 version="2.0.1",
 instance_type="ml.g4dn.16xlarge",
)

4. Create a local workspace.

mkdir -p workspace/

Adding a package

The following sections describe how to add and preinstall packages to your PyTorch DLC image.

BYOC use cases

Deploy models with TorchServe 4434

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#sagemaker-framework-containers-sm-support-only

Amazon SageMaker Developer Guide

The following steps outline how to add a package to your PyTorch DLC image. For more
information about customizing your container, see Building AWS Deep Learning Containers Custom
Images.

1. Suppose you want to add a package to the PyTorch DLC docker image. Create a Dockerfile
under the docker directory, as shown in the following example:

mkdir -p workspace/docker
 cat workspace/docker/Dockerfile

 ARG BASE_IMAGE

 FROM $BASE_IMAGE

 #Install any additional libraries
 RUN pip install transformers==4.28.1

2. Build and publish the customized docker image by using the following build_and_push.sh
script.

Download script build_and_push.sh to workspace/docker
 ls workspace/docker
 build_and_push.sh Dockerfile

 # Build and publish your docker image
 reponame = "torchserve"
 versiontag = "demo-0.1"

 ./build_and_push.sh {reponame} {versiontag} {baseimage} {region} {account}

SageMaker preinstall use cases

The following example shows you how to preinstall a package to your PyTorch DLC container. You
must create a requirements.txt file locally under the directory workspace/code.

mkdir -p workspace/code
 cat workspace/code/requirements.txt

 transformers==4.28.1

Deploy models with TorchServe 4435

https://github.com/aws/deep-learning-containers/blob/master/custom_images.md
https://github.com/aws/deep-learning-containers/blob/master/custom_images.md
https://github.com/aws/amazon-sagemaker-examples/blob/main/inference/torchserve/mme-gpu/workspace/docker/build_and_push.sh

Amazon SageMaker Developer Guide

Create TorchServe model artifacts

In the following example, we use the pre-trained MNIST model. We create a directory
workspace/mnist, implement mnist_handler.py by following the TorchServe custom service
instructions, and configure the model parameters (such as batch size and workers) in model-
config.yaml. Then, we use the TorchServe tool torch-model-archiver to build the model
artifacts and upload to Amazon S3.

1. Configure the model parameters in model-config.yaml.

ls -al workspace/mnist-dev

 mnist.py
 mnist_handler.py
 mnist_cnn.pt
 model-config.yaml

 # config the model
 cat workspace/mnist-dev/model-config.yaml
 minWorkers: 1
 maxWorkers: 1
 batchSize: 4
 maxBatchDelay: 200
 responseTimeout: 300

2. Build the model artifacts by using torch-model-archiver .

torch-model-archiver --model-name mnist --version 1.0 --model-file workspace/
mnist-dev/mnist.py --serialized-file workspace/mnist-dev/mnist_cnn.pt --handler
 workspace/mnist-dev/mnist_handler.py --config-file workspace/mnist-dev/model-
config.yaml --archive-format tgz

If you want to preinstall a package, you must include the code directory in the tar.gz file.

cd workspace
 torch-model-archiver --model-name mnist --version 1.0 --model-file mnist-
dev/mnist.py --serialized-file mnist-dev/mnist_cnn.pt --handler mnist-dev/
mnist_handler.py --config-file mnist-dev/model-config.yaml --archive-format no-
archive

 cd mnist
 mv ../code .

Deploy models with TorchServe 4436

https://github.com/pytorch/serve/tree/master/examples/image_classifier/mnist
https://github.com/pytorch/serve/blob/master/examples/image_classifier/mnist/mnist_handler.py
https://github.com/pytorch/serve/blob/master/docs/custom_service.md#custom-service
https://github.com/pytorch/serve/blob/master/docs/custom_service.md#custom-service
https://github.com/pytorch/serve/tree/master/model-archiver#config-file
https://github.com/aws/amazon-sagemaker-examples/blob/main/inference/torchserve/mme-gpu/workspace/lama/model-config.yaml
https://github.com/aws/amazon-sagemaker-examples/blob/main/inference/torchserve/mme-gpu/workspace/lama/model-config.yaml
https://github.com/pytorch/serve/tree/master/model-archiver#torch-model-archiver-for-torchserve

Amazon SageMaker Developer Guide

 tar cvzf mnist.tar.gz .

3. Upload mnist.tar.gz to Amazon S3.

upload mnist.tar.gz to S3
 output_path = f"s3://{bucket_name}/{prefix}/models"
 aws s3 cp mnist.tar.gz {output_path}/mnist.tar.gz

Using single model endpoints to deploy with TorchServe

The following example shows you how to create a single model real-time inference endpoint,
deploy the model to the endpoint, and test the endpoint by using the Amazon SageMaker Python
SDK.

from sagemaker.model import Model
 from sagemaker.predictor import Predictor

 # create the single model endpoint and deploy it on SageMaker
 model = Model(model_data = f'{output_path}/mnist.tar.gz',
 image_uri = baseimage,
 role = role,
 predictor_cls = Predictor,
 name = "mnist",
 sagemaker_session = smsess)

 endpoint_name = 'torchserve-endpoint-' + time.strftime("%Y-%m-%d-%H-%M-%S",
 time.gmtime())
 predictor = model.deploy(instance_type='ml.g4dn.xlarge',
 initial_instance_count=1,
 endpoint_name = endpoint_name,
 serializer=JSONSerializer(),
 deserializer=JSONDeserializer())

 # test the endpoint
 import random
 import numpy as np
 dummy_data = {"inputs": np.random.rand(16, 1, 28, 28).tolist()}

 res = predictor.predict(dummy_data)

Deploy models with TorchServe 4437

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html
https://sagemaker.readthedocs.io/en/stable/
https://sagemaker.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

Using multi-model endpoints to deploy with TorchServe

Multi-model endpoints are a scalable and cost-effective solution to hosting large numbers of
models behind one endpoint. They improve endpoint utilization by sharing the same fleet of
resources and serving container to host all of your models. They also reduce deployment overhead
because SageMaker manages dynamically loading and unloading models, as well as scaling
resources based on traffic patterns. Multi-model endpoints are particularly useful for deep learning
and generative AI models that require accelerated compute power.

By using TorchServe on SageMaker multi-model endpoints, you can speed up your development by
using a serving stack that you are familiar with while leveraging the resource sharing and simplified
model management that SageMaker multi-model endpoints provide.

The following example shows you how to create a multi-model endpoint, deploy the model to the
endpoint, and test the endpoint by using the Amazon SageMaker Python SDK. Additional details
can be found in this notebook example.

from sagemaker.multidatamodel import MultiDataModel
 from sagemaker.model import Model
 from sagemaker.predictor import Predictor

 # create the single model endpoint and deploy it on SageMaker
 model = Model(model_data = f'{output_path}/mnist.tar.gz',
 image_uri = baseimage,
 role = role,
 sagemaker_session = smsess)

 endpoint_name = 'torchserve-endpoint-' + time.strftime("%Y-%m-%d-%H-%M-%S",
 time.gmtime())
 mme = MultiDataModel(
 name = endpoint_name,
 model_data_prefix = output_path,
 model = model,
 sagemaker_session = smsess)

 mme.deploy(
 initial_instance_count = 1,
 instance_type = "ml.g4dn.xlarge",
 serializer=sagemaker.serializers.JSONSerializer(),
 deserializer=sagemaker.deserializers.JSONDeserializer())

 # list models

Deploy models with TorchServe 4438

https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://sagemaker.readthedocs.io/en/stable/
https://github.com/aws/amazon-sagemaker-examples/blob/main/inference/torchserve/mme-gpu/torchserve_multi_model_endpoint.ipynb

Amazon SageMaker Developer Guide

 list(mme.list_models())

 # create mnist v2 model artifacts
 cp mnist.tar.gz mnistv2.tar.gz

 # add mnistv2
 mme.add_model(mnistv2.tar.gz)

 # list models
 list(mme.list_models())

 predictor = Predictor(endpoint_name=mme.endpoint_name, sagemaker_session=smsess)

 # test the endpoint
 import random
 import numpy as np
 dummy_data = {"inputs": np.random.rand(16, 1, 28, 28).tolist()}

 res = predictor.predict(date=dummy_data, target_model="mnist.tar.gz")

Metrics

TorchServe supports both system level and model level metrics. You can enable metrics in either
log format mode or Prometheus mode through the environment variable TS_METRICS_MODE. You
can use the TorchServe central metrics config file metrics.yaml to specify the types of metrics to
be tracked, such as request counts, latency, memory usage, GPU utilization, and more. By referring
to this file, you can gain insights into the performance and health of the deployed models and
effectively monitor the TorchServe server's behavior in real-time. For more detailed information,
see the TorchServe metrics documentation.

You can access TorchServe metrics logs that are similar to the StatsD format through the Amazon
CloudWatch log filter. The following is an example of a TorchServe metrics log:

CPUUtilization.Percent:0.0|#Level:Host|#hostname:my_machine_name,timestamp:1682098185
 DiskAvailable.Gigabytes:318.0416717529297|#Level:Host|
#hostname:my_machine_name,timestamp:1682098185

Deploy models with TorchServe 4439

https://github.com/pytorch/serve/blob/master/docs/metrics.md#torchserve-metrics

Amazon SageMaker Developer Guide

Deploy models with DJL Serving

DJL Serving is a high performance universal stand-alone model serving solution. It takes a
deep learning model, several models, or workflows and makes them available through an HTTP
endpoint.

You can use one of the DJL Serving Deep Learning Containers (DLCs) to serve your models on AWS.
To learn about the supported model types and frameworks, see the DJL Serving GitHub repository.

DJL Serving offers many features that help you to deploy your models with high performance:

• Ease of use – DJL Serving can serve most models without any modifications. You bring your
model artifacts, and DJL Serving can host them.

• Multiple device and accelerator support – DJL Serving supports deploying models on CPUs,
GPUs, and AWS Inferentia.

• Performance – DJL Serving runs multithreaded inference in a single Java virtual machine (JVM)
to boost throughput.

• Dynamic batching – DJL Serving supports dynamic batching to increase throughput.

• Auto scaling – DJL Serving automatically scales workers up or down based on the traffic load.

• Multi-engine support – DJL Serving can simultaneously host models using different frameworks
(for example, PyTorch and TensorFlow).

• Ensemble and workflow models – DJL Serving supports deploying complex workflows comprised
of multiple models and can execute parts of the workflow on CPUs and other parts on GPUs.
Models within a workflow can leverage different frameworks.

The following sections describe how to set up an endpoint with DJL Serving on SageMaker.

Getting started

To get started, ensure that you have the following prerequisites:

1. Ensure that you have access to an AWS account. Set up your environment so that the AWS CLI
can access your account through either an AWS IAM user or an IAM role. We recommend using
an IAM role. For the purposes of testing in your personal account, you can attach the following
managed permissions policies to the IAM role:

• AmazonEC2ContainerRegistryFullAccess

• AmazonEC2FullAccess

Deploy models with DJL Serving 4440

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/what-is-dlc.html
https://github.com/deepjavalibrary/djl-serving
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess

Amazon SageMaker Developer Guide

• AmazonSageMakerFullAccess

• AmazonS3FullAccess

2. Ensure that you have the docker client set up on your system.

3. Log in to Amazon Elastic Container Registry and set the following environment variables:

export ACCOUNT_ID=<your_account_id>
export REGION=<your_region>
aws ecr get-login-password --region $REGION | docker login --username AWS --password-
stdin $ACCOUNT_ID.dkr.ecr.$REGION.amazonaws.com

4. Pull the docker image.

docker pull 763104351884.dkr.ecr.us-west-2.amazonaws.com/djl-inference:0.22.1-
deepspeed0.9.2-cu118

For all of the available DJL Serving container images, see the large model inference containers
and the DJL Serving CPU inference containers. When choosing an image from the tables in the
preceding links, replace the AWS region in the example URL column with the region you are in.
The DLCs are available in the regions listed in the table at the top of the Available Deep Learning
Containers Images page.

Customize your container

You can add packages to the base DLC images to customize your container. Suppose you want
to add a package to the 763104351884.dkr.ecr.us-west-2.amazonaws.com/djl-
inference:0.22.1-deepspeed0.9.2-cu118 docker image. You must create a dockerfile with
your desired image as the base image, add the required packages, and push the image to Amazon
ECR.

To add a package, complete the following steps:

1. Specify instructions for running your desired libraries or packages in the base image's
dockerfile.

FROM 763104351884.dkr.ecr.us-west-2.amazonaws.com/djl-inference:0.22.1-
deepspeed0.9.2-cu118

add custom packages/libraries

Deploy models with DJL Serving 4441

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonS3FullAccess
https://docs.docker.com/get-docker/
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#large-model-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#djl-cpu-full-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

RUN git clone https://github.com/awslabs/amazon-sagemaker-examples

2. Build the Docker image from the dockerfile. Specify your Amazon ECR repository, the name
of the base image, and a tag for the image. If you don't have an Amazon ECR repository, see
Using Amazon ECR with the AWS CLI in the Amazon ECR User Guide for instructions on how to
create one.

docker build -f Dockerfile -t <registry>/<image_name>:<image_tag>

3. Push the Docker image to your Amazon ECR repository.

docker push $ACCOUNT_ID.dkr.ecr.$REGION.amazonaws.com/<image_name>:<image_tag>

You should now have a customized container image that you can use for model serving. For more
examples of customizing your container, see Building AWS Deep Learning Containers Custom
Images.

Prepare your model artifacts

Before deploying your model on SageMaker, you must package your model artifacts in a .tar.gz
file. DJL Serving accepts the following artifacts in your archive:

• Model checkpoint: Files that store your model weights.

• serving.properties: A configuration file that you can add for each model. Place
serving.properties in the same directory as your model file.

• model.py: The inference handler code. This is only applicable when using Python mode. If you
don't specify model.py, djl-serving uses one of the default handlers.

The following is an example of a model.tar.gz structure:

 - model_root_dir # root directory
 - serving.properties
 - model.py # your custom handler file for Python, if you choose not to use the
 default handlers provided by DJL Serving
 - model binary files # used for Java mode, or if you don't want to use
 option.model_id and option.s3_url for Python mode

Deploy models with DJL Serving 4442

https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/getting-started-cli.html
https://github.com/aws/deep-learning-containers/blob/master/custom_images.md
https://github.com/aws/deep-learning-containers/blob/master/custom_images.md

Amazon SageMaker Developer Guide

DJL Serving supports Java engines powered by DJL or Python engines. Not all of the preceding
artifacts are required; the required artifacts vary based on the mode you choose. For example, in
Python mode, you only need to specify option.model_id in the serving.properties file; you
don't need to specify the model checkpoint inside LMI containers. In Java mode, you are required
to package the model checkpoint. For more details on how to configure serving.properties
and operate with different engines, see DJL Serving Operation Modes.

Use single model endpoints to deploy with DJL Serving

After preparing your model artifacts, you can deploy your model to a SageMaker endpoint.
This section describes how to deploy a single model to an endpoint with DJL Serving. If you're
deploying multiple models, skip this section and go to Use multi-model endpoints to deploy with
DJL Serving.

The following example shows you a method to create a model object using the Amazon SageMaker
Python SDK. You'll need to specify the following fields:

• image_uri: You can either retrieve one of the base DJL Serving images as shown in this
example, or you can specify a custom Docker image from your Amazon ECR repository, if you
followed the instructions in Customize your container.

• model_s3_url: This should an Amazon S3 URI that points to your .tar.gzfile.

• model_name: Specify a name for the model object.

import boto3
 import sagemaker
from sagemaker.model import Model
from sagemaker import image_uris, get_execution_role

aws_region = "aws-region"
sagemaker_session =
 sagemaker.Session(boto_session=boto3.Session(region_name=aws_region))
role = get_execution_role()

def create_model(model_name, model_s3_url):
 # Get the DJL DeepSpeed image uri
 image_uri = image_uris.retrieve(
 framework="djl-deepspeed",
 region=sagemaker_session.boto_session.region_name,
 version="0.20.0"
)

Deploy models with DJL Serving 4443

https://github.com/deepjavalibrary/djl-serving/blob/master/serving/docs/modes.md

Amazon SageMaker Developer Guide

 model = Model(
 image_uri=image_uri,
 model_data=model_s3_url,
 role=role,
 name=model_name,
 sagemaker_session=sagemaker_session,
)
 return model

After you create the model object, you can deploy the model to an endpoint and make predictions.
For an end-to-end example of how to perform these steps, see the tutorial Large model inference
with DeepSpeed and DJL Serving.

Use multi-model endpoints to deploy with DJL Serving

If you want to deploy multiple models to an endpoint, SageMaker offers multi-model endpoints,
which are a scalable and cost-effective solution to deploying large numbers of models. DJL Serving
also supports loading multiple models simultaneously and running inference on each of the
models concurrently. DJL Serving containers adhere to the SageMaker multi-model endpoints
contracts and can be used to deploy multi-model endpoints.

Each individual model artifact needs to be packaged in the same way as described in the
previous section Prepare your model artifacts. You can set model-specific configurations in the
serving.properties file and model-specific inference handler code in model.py. For a multi-
model endpoint, models need to be arranged in the following way:

 root_dir
 |-- model_1.tar.gz
 |-- model_2.tar.gz
 |-- model_3.tar.gz
 .
 .
 .

The Amazon SageMaker Python SDK uses the MultiDataModel object to instantiate a multi-model
endpoint. The Amazon S3 URI for the root directory should be passed as the model_data_prefix
argument to the MultiDataModel constructor.

DJL Serving also provides several configuration parameters to manage model memory
requirements, such as required_memory_mb and reserved_memory_mb, that can be configured

Deploy models with DJL Serving 4444

https://sagemaker.readthedocs.io/en/stable/api/inference/multi_data_model.html

Amazon SageMaker Developer Guide

for each model in the serving.properties file. These parameters are useful to handle out of memory
errors more gracefully. For all of the configurable parameters, see OutofMemory handling in djl-
serving.

The auto scaling feature of DJL Serving makes it easy to ensure that the models are scaled
appropriately for incoming traffic. By default, DJL Serving determines the maximum number of
workers for a model that can be supported based on the hardware available (such as CPU cores or
GPU devices). You can set lower and upper bounds for each model to ensure that a minimum traffic
level can always be served, and that a single model does not consume all available resources. You
can set the following properties in the serving.properties file:

• gpu.minWorkers: Minimum number of workers for GPUs.

• gpu.maxWorkers: Maximum number of workers for GPUs.

• cpu.minWorkers: Minimum number of workers for CPUs.

• cpu.maxWorkers: Maximum number of workers for CPUs.

For an end-to-end example of how to deploy a multi-model endpoint on SageMaker using a DJL
Serving container, see the example notebook Multi-Model-Inference-Demo.ipynb.

Deploy models with Triton Inference Server

Triton Inference Server is an open source inference serving software that streamlines AI inference.
With Triton, you can deploy any model built with multiple deep learning and machine learning
frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and
more.

The SageMaker Triton containers help you deploy Triton Inference Server on the SageMaker
Hosting platform to serve trained models in production. It supports the different modes in
which SageMaker operates. For a list of available Triton Inference Server containers available on
SageMaker, see NVIDIA Triton Inference Containers (SM support only).

For end-to-end notebook examples, we recommend taking a look at the amazon-sagemaker-
examples repository.

Hosting modes

The following SageMaker Hosting modes are supported by Triton containers:

Deploy models with Triton Inference Server 4445

https://github.com/deepjavalibrary/djl-serving/blob/master/serving/docs/modes.md#servingproperties
https://github.com/deepjavalibrary/djl-serving/blob/master/serving/docs/out_of_memory_management.md
https://github.com/deepjavalibrary/djl-serving/blob/master/serving/docs/out_of_memory_management.md
https://github.com/deepjavalibrary/djl-serving/blob/master/serving/docs/modes.md#servingproperties
https://github.com/deepjavalibrary/djl-demo/blob/master/aws/sagemaker/Multi-Model-Inference-Demo.ipynb
https://github.com/triton-inference-server/server
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#nvidia-triton-inference-containers-sm-support-only
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-triton
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-triton

Amazon SageMaker Developer Guide

• Single model endpoints

• This is SageMaker’s default mode of operation. In this mode, the Triton container can load a
single model, or a single ensemble model.

• The name of the model must be passed as as a property of the container environment, which
is part of the CreateModel SageMaker API call. The environment variable used to pass in the
model name is SAGEMAKER_TRITON_DEFAULT_MODEL_NAME.

• Single model endpoints with ensemble

• Triton Inference Server supports ensemble, which is a pipeline, or a DAG (directed acyclic
graph) of models. While an ensemble technically comprises of multiple models, in the default
single model endpoint mode, SageMaker can treat the ensemble proper (the meta-model that
represents the pipeline) as the main model to load, and can subsequently load the associated
models.

• The ensemble proper’s model name must be used to load the model. It must be
passed as a property of the container environment, which is part of the CreateModel
SageMaker API call. The environment variable used to pass in the model name is
SAGEMAKER_TRITON_DEFAULT_MODEL_NAME.

• Multi-model endpoints

• In this mode, SageMaker can serve multiple models on a single endpoint. You can use this
mode by specifying the environment variable ‘MultiModel’: true as a property of the
container environment, which is part of the CreateModel SageMaker API call.

• By default, no model is loaded when the instance starts. To run an inference request against
a particular model, specify the corresponding model's *.tar.gz file as an argument to the
TargetModel property of the InvokeEndpoint SageMaker API call.

• Multi-model endpoints with ensemble

• In this mode, SageMaker functions as described for multi-model endpoints. However, the
SageMaker Triton container can load multiple ensemble models, meaning that multiple model
pipelines can run on the same instance. SageMaker treats every ensemble as one model, and
the ensemble proper of each model can be invoked by specifying the corresponding *.tar.gz
archive as the TargetModel.

• For better memory management during dynamic memory LOAD and UNLOAD, we recommend
that you keep the ensemble size small.

Deploy models with Triton Inference Server 4446

Amazon SageMaker Developer Guide

Inference payload types

Triton supports two methods of sending an inference payload over the network – json and
binary+json (or binary encoded json). The JSON payload in both cases includes the datatype,
shape and the actual inference request tensor. The request tensor must be a binary tensor.

With the binary+json format, you must specify the length of the request metadata in the header
to allow Triton to correctly parse the binary payload. In the SageMaker Triton container, this is
done using a custom Content-Type header: application/vnd.sagemaker-triton.binary
+json;json-header-size={}. This is different from using the Inference-Header-Content-
Length header on a stand-alone Triton Inference Server because custom headers are not allowed
in SageMaker.

Using config.pbtxt to set the model config

For Triton Inference Servers on SageMaker, each model must include a config.pbtxt file that
specifies, at a minimum, the following configurations for the model:

• name: While this is optional for models running outside of SageMaker, we recommend that you
always provide a name for the models to be run in Triton on SageMaker.

• platform and/or backend: Setting a backend is essential to specify the type of the
model. Some backends have further classification, such as tensorflow_savedmodel or
tensorflow_graphdef. Such options can be specified as part of the platform key in addition
to the backend key. The most common backends are tensorrt, onnxruntime, tensorflow,
pytorch, python, dali, fil, and openvino.

• input: Specify three attributes for the input: name, data_type and dims (the shape).

• output: Specify three attributes for the output: name, data_type and dims (the shape).

• max_batch_size: Set the batch size to a value greater than or equal to 1 that indicates the
maximum batch size that Triton should use with the model.

For more details on configuring config.pbtxt, see Triton’s GitHub repository. Triton provides
several configurations for tweaking model behavior. Some of the most common and important
configuration options are:

• instance_groups: Instance groups help with specifying the number and location for a given
model. They have the attributes count, kind, and gpus (used when kind is KIND_GPU). The
count attribute is equivalent to the number of workers. For regular model serving, each worker

Deploy models with Triton Inference Server 4447

https://github.com/triton-inference-server/backend/blob/main/README.md#backends
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups

Amazon SageMaker Developer Guide

has its own copy of the model. Similarly, in Triton, the count specifies the number of model
copies per device. For example, if the instance_group type is KIND_CPU, then the CPU has
count number of model copies.

Note

On a GPU instance, the instance_group configuration applies per GPU device. For
example, count number of model copies are placed on each GPU device unless you
explicitly specify which GPU devices should load the model.

• dynamic_batching and sequence_batching: Dynamic batching is used for stateless models,
and sequence batching is used for stateful models (where you want to route a request to the
same model instance every time). Batching schedulers enable a per-model queue, which help in
increasing throughput, depending on the batching configuration.

• ensemble: An ensemble model represents a pipeline of one or more models and the connection
of input and output tensors between those models. It can be configured by specifying platform
as ensemble. The ensemble configuration is just a representation of the model pipeline. On
SageMaker, all the models under an ensemble are treated as dependents of the ensemble model
and are counted as a single model for SageMaker metrics, such as LoadedModelCount.

Publishing default Triton metrics to Amazon CloudWatch

The NVIDIA Triton Inference Container exposes metrics at port 8002 (configurable) for the different
models and GPUs that are utilized in the Triton Inference Server. For full details of the default
metrics that are available, see the GitHub page for the Triton Inference Server metrics. These
metrics are in Prometheus format and can be scraped using a Prometheus scraper configuration.

Starting with version v23.07 onwards, the SageMaker Triton container supports publishing these
metrics to Amazon CloudWatch by specifying a few environment variables. In order to scrape the
Prometheus metrics, the SageMaker Triton container leverages the Amazon CloudWatch agent.

The required environment variables that you must specify to collect metrics are as follows:

Deploy models with Triton Inference Server 4448

https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/architecture.md#stateful-models
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/architecture.md#ensemble-models
https://github.com/triton-inference-server/server/blob/main/docs/user_guide/metrics.md

Amazon SageMaker Developer Guide

Environment variable Description Example value

SAGEMAKER_TRITON_A
LLOW_METRICS

Specify this option to allow
Triton to publish metrics to its
Prometheus endpoint.

"true"

SAGEMAKER_TRITON_P
UBLISH_METRICS_TO_
CLOUDWATCH

Specify this option to start
the pre-checks necessary to
publish metrics to Amazon
CloudWatch.

"true"

SAGEMAKER_TRITON_C
LOUDWATCH_LOG_GROUP

Specify this option to point
to the log group to which
metrics are written.

"/aws/SageMaker/En
dpoints/TritonMetrics/SageM
akerTwoEnsemblesTest"

SAGEMAKER_TRITON_C
LOUDWATCH_METRIC_N
AMESPACE

Specify this option to point to
the metric namespace where
you want to see and plot the
metrics.

"/aws/SageMaker/En
dpoints/TritonMetrics/SageM
akerTwoEnsemblesPublicTest"

SAGEMAKER_TRITON_M
ETRICS_PORT

Specify this as 8002, or any
other port. If SageMaker has
not blocked the specified
port, it is used. Otherwise,
another non-blocked port is
chosen automatically.

"8002"

When publishing metrics with Triton on SageMaker, keep in mind the following limitations:

• While you can generate custom metrics through the C-API and Python backend (v23.05
onwards), these are currently not supported for publishing to Amazon CloudWatch.

• In SageMaker multi-model endpoints (MME) mode, Triton runs in an environment that requires
model namespacing to be enabled because each model (except ensemble models) are treated as
if they are in their own model repository. Currently, this creates a limitation for metrics. When
model namespacing is enabled, Triton does not distinguish the metrics between two models
with the same name belonging to different ensembles. As a workaround, make sure that every

Deploy models with Triton Inference Server 4449

Amazon SageMaker Developer Guide

model being deployed has a unique name. This also makes it easier to look up your metrics in
CloudWatch.

Environment variables

The following table lists the supported environment variables for Triton on SageMaker.

Environment
variable

Description Type Possible values

SAGEMAKER
_MULTI_MODEL

Allows Triton
to operate in
SageMaker multi-
model endpoints
mode.

Boolean true, false

SAGEMAKER
_TRITON_D
EFAULT_MO
DEL_NAME

Specify the model
to be loaded in the
SageMaker single
model (default)
mode. For ensemble
mode, specify
the name of the
ensemble proper.

String <model_name> as
specified in config.pb
txt

SAGEMAKER
_TRITON_P
ING_MODE

'ready' is the
default mode in
SageMaker's single
model mode, and
'live' is the default
in SageMaker's multi-
model endpoints
mode.

String ready, live

SAGEMAKER
_TRITON_D
ISABLE_MO

In the SageMaker
Triton container, this

Boolean true, false

Deploy models with Triton Inference Server 4450

Amazon SageMaker Developer Guide

Environment
variable

Description Type Possible values

DEL_NAMES
PACING

is set to true by
default.

SAGEMAKER
_BIND_TO_PORT

While on SageMaker
, the default port
is 8080. You can
customize to a
different port in
multi-container
scenarios.

String <port_number>

SAGEMAKER
_SAFE_POR
T_RANGE

This is set by the
SageMaker platform
when using multi-con
tainer mode.

String <port_1>–<port_2>

SAGEMAKER
_TRITON_A
LLOW_GRPC

While SageMaker
doesn't support
GRPC currently, if
you're using Triton
in front of a custom
reverse proxy, you
may choose to enable
GRPC.

Boolean true, false

SAGEMAKER
_TRITON_G
RPC_PORT

The default port for
GRPC is 8001, but
you can change it.

String <port_number>

SAGEMAKER
_TRITON_T
HREAD_COUNT

You can set the
number of default
HTTP request handler
threads.

String <number>

Deploy models with Triton Inference Server 4451

Amazon SageMaker Developer Guide

Environment
variable

Description Type Possible values

SAGEMAKER
_TRITON_L
OG_VERBOSE

true by default on
SageMaker, but you
can selectively turn
this option off.

Boolean true, false

SAGEMAKER
_TRITON_L
OG_INFO

false by default on
SageMaker.

Boolean true, false

SAGEMAKER
_TRITON_L
OG_WARNING

false by default on
SageMaker.

Boolean true, false

SAGEMAKER
_TRITON_L
OG_ERROR

false by default on
SageMaker.

Boolean true, false

SAGEMAKER
_TRITON_S
HM_DEFAUL
T_BYTE_SIZE

Specify the shm
size for the Python
backend, in bytes.
The default value is
16 MB but can be
increased.

String <number>

SAGEMAKER
_TRITON_S
HM_GROWTH
_BYTE_SIZE

Specify the shm
growth size for the
Python backend, in
bytes. The default
value is 1 MB but can
be increased to allow
greater increments.

String <number>

Deploy models with Triton Inference Server 4452

Amazon SageMaker Developer Guide

Environment
variable

Description Type Possible values

SAGEMAKER
_TRITON_T
ENSORFLOW
_VERSION

The default value is
2. Triton no longer
supports Tensorflow
2 from Triton v23.04.
You can configure
this variable for
previous versions.

String <number>

SAGEMAKER
_TRITON_M
ODEL_LOAD
_GPU_LIMIT

Restrict the
maximum GPU
memory percentag
e which is used for
model loading,
allowing the
remainder to be used
for the inference
requests.

String <number>

SAGEMAKER
_TRITON_A
LLOW_METRICS

false by default on
SageMaker.

Boolean true, false

SAGEMAKER
_TRITON_M
ETRICS_PORT

The default port is
8002.

String <number>

Deploy models with Triton Inference Server 4453

Amazon SageMaker Developer Guide

Environment
variable

Description Type Possible values

SAGEMAKER
_TRITON_P
UBLISH_ME
TRICS_TO_
CLOUDWATCH

false by default on
SageMaker. Set this
variable to true to
allow pushing Triton
default metrics to
Amazon CloudWatc
h. If this option is
enabled, you are
responsible for
CloudWatch costs
when metrics are
published to your
account.

Boolean true, false

SAGEMAKER
_TRITON_C
LOUDWATCH
_LOG_GROUP

Required if you've
enabled metrics
publishing to
CloudWatch.

String <cloudwat
ch_log_gr
oup_name>

SAGEMAKER
_TRITON_C
LOUDWATCH
_METRIC_N
AMESPACE

Required if you've
enabled metrics
publishing to
CloudWatch.

String <cloudwat
ch_metric
_namespace>

SAGEMAKER
_TRITON_A
DDITIONAL_ARGS

Appends any
additional arguments
when starting the
Triton Server.

String <addition
al_args>

Deploy models with Triton Inference Server 4454

Amazon SageMaker Developer Guide

Deploy models at the edge with SageMaker Edge Manager

Warning

SageMaker Edge Manager is being discontinued on April 26th, 2024. For more information
about continuing to deploy your models to edge devices, see SageMaker Edge Manager end
of life.

Amazon SageMaker Edge Manager provides model management for edge devices so you can
optimize, secure, monitor, and maintain machine learning models on fleets of edge devices such as
smart cameras, robots, personal computers, and mobile devices.

Why Use Edge Manager?

Many machine learning (ML) use cases require running ML models on a fleet of edge devices, which
allows you to get predictions in real-time, preserves the privacy of the end users, and lowers the
cost of network connectivity. With the increasing availability of low-power edge hardware designed
for ML, it is now possible to run multiple complex neural network models on edge devices.

However, operating ML models on edge devices is challenging, because devices, unlike cloud
instances, have limited compute, memory, and connectivity. After the model is deployed, you
need to continuously monitor the models, because model drift can cause the quality of model
to decay overtime. Monitoring models across your device fleets is difficult because you need to
write custom code to collect data samples from your device and recognize skew in predictions. In
addition, models are often hard-coded into the application. To update the model, you must rebuild
and update the entire application or device firmware, which can disrupt your operations.

With SageMaker Edge Manager, you can optimize, run, monitor, and update machine learning
models across fleets of devices at the edge.

How Does it Work?

At a high level, there are five main components in the SageMaker Edge Manager workflow:
compiling models with SageMaker Neo, packaging Neo-compiled models, deploying models to
your devices, running models on the SageMaker inference engine (Edge Manager agent), and
maintaining models on the devices.

Deploy models at the edge with SageMaker Edge Manager 4455

Amazon SageMaker Developer Guide

SageMaker Edge Manager uses SageMaker Neo to optimize your models for the target hardware in
one click, then to cryptographically sign your models before deployment. Using SageMaker Edge
Manager, you can sample model input and output data from edge devices and send it to the cloud
for monitoring and analysis, and view a dashboard that tracks and visually reports on the operation
of the deployed models within the SageMaker console.

SageMaker Edge Manager extends capabilities that were previously only available in the cloud
to the edge, so developers can continuously improve model quality by using Amazon SageMaker
Model Monitor for drift detection, then relabel the data with SageMaker Ground Truth and retrain
the models in SageMaker.

How Do I Use SageMaker Edge Manager?

If you are a first time user of SageMaker Edge Manager, we recommend that you do the following:

1. Read the Getting Started section - This section walks you through setting up your first edge
packaging job and creating your first fleet.

2. Explore Edge Manager Jupyter notebook examples - Example notebooks are stored in the
amazon-sagemaker-examples GitHub repository in the sagemaker_edge_manager folder.

Getting Started

This guide demonstrates how to complete the necessary steps to register, deploy, and manage a
fleet of devices, and how to satisfy Amazon SageMaker Edge Manager prerequisites.

Topics

• Setting Up

• Train, Compile, and Package Your Model

• Create and Register Fleets and Authenticate Devices

How Do I Use SageMaker Edge Manager? 4456

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-manager-getting-started.html
https://github.com/aws/amazon-sagemaker-examples
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker_edge_manager

Amazon SageMaker Developer Guide

• Download and Set Up Edge Manager

• Run Agent

Setting Up

Before you begin using SageMaker Edge Manager to manage models on your device fleets, you
must first create IAM Roles for both SageMaker and AWS IoT. You will also want to create at least
one Amazon S3 bucket where you will store your pre-trained model, the output of your SageMaker
Neo compilation job, as well as input data from your edge devices.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

Getting Started 4457

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/

Amazon SageMaker Developer Guide

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create roles and storage

SageMaker Edge Manager needs access to your Amazon S3 bucket URI. To facilitate this, create
an IAM role that can run SageMaker and has permission to access Amazon S3. Using this role,
SageMaker can run under your account and access to your Amazon S3 bucket.

You can create an IAM role by using the IAM console, AWS SDK for Python (Boto3), or AWS CLI. The
following is an example of how to create an IAM role, attach the necessary policies with the IAM
console, and create an Amazon S3 bucket.

1. Create an IAM role for Amazon SageMaker.

Getting Started 4458

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon SageMaker Developer Guide

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

c. For Select type of trusted entity, choose AWS service.

d. Choose the service that you want to allow to assume this role. In this case, choose
SageMaker. Then choose Next: Permissions.

• This automatically creates an IAM policy that grants access to related services such as
Amazon S3, Amazon ECR, and CloudWatch Logs.

e. Choose Next: Tags.

f. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

g. Choose Next: Review.

h. Type in a Role name.

i. If possible, type a role name or role name suffix. Role names must be unique within your
AWS account. They are not distinguished by case. For example, you cannot create roles
named both PRODROLE and prodrole. Because other AWS resources might reference the
role, you cannot edit the name of the role after it has been created.

j. (Optional) For Role description, type a description for the new role.

k. Review the role and then choose Create role.

Note the SageMaker Role ARN, which you use to create a compilation job with SageMaker
Neo and a packaging job with Edge Manager. To find out the role ARN using the console,
do the following:

i. Go to the IAMconsole: https://console.aws.amazon.com/iam/

ii. Select Roles.

iii. Search for the role you just created by typing in the name of the role in the search
field.

iv. Select the role.

v. The role ARN is at the top of the Summary page.

2. Create an IAM role for AWS IoT.

Getting Started 4459

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

The AWS IoT IAM role you create is used to authorize your thing objects. You also use the IAM
role ARN to create and register device fleets with a SageMaker client object.

Configure an IAM role in your AWS account for the credentials provider to assume on behalf of
the devices in your device fleet. Then, attach a policy to authorize your devices to interact with
AWS IoT services.

Create a role for AWS IoT either programmatically or with the IAM console, similar to what you
did when you created a role for SageMaker.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

c. For Select type of trusted entity, choose AWS service.

d. Choose the service that you want to allow to assume this role. In this case, choose IoT.
Select IoT as the Use Case.

e. Choose Next: Permissions.

f. Choose Next: Tags.

g. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more
information about using tags in IAM, see Tagging IAM resources.

h. Choose Next: Review.

i. Type in a Role name. The role name must start with SageMaker.

j. (Optional) For Role description, type a description for the new role.

k. Review the role and then choose Create role.

l. Once the role is created, choose Roles in the IAM console. Search for the role you created
by typing in role name in the Search field.

m. Choose your role.

n. Next, choose Attach Policies.

o. Search for AmazonSageMakerEdgeDeviceFleetPolicy in the Search field. Select
AmazonSageMakerEdgeDeviceFleetPolicy.

p. Choose Attach policy.

q. Add the following policy statement to the trust relationship:

{ Getting Started 4460

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

Amazon SageMaker Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Service": "credentials.iot.amazonaws.com"},
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {"Service": "sagemaker.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
]
}

A trust policy is a JSON policy document in which you define the principals that you
trust to assume the role. For more information about trust policies, see Roles terms and
concepts.

r. Note the AWS IoT role ARN. You use the AWS IoT Role ARN to create and register the
device fleet. To find the IAM role ARN with the console:

i. Go to the IAM console: https://console.aws.amazon.com/iam/

ii. Choose Roles.

iii. Search for the role you created by typing in the name of the role in the Search field.

iv. Select the role.

v. The role ARN is on the Summary page.

3. Create an Amazon S3 bucket.

SageMaker Neo and Edge Manager access your pre-compiled model and compiled model from
an Amazon S3 bucket. Edge Manager also stores sample data from your device fleet in Amazon
S3.

a. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

b. Choose Create bucket.

c. In Bucket name, enter a name for your bucket.

d. In Region, choose the AWS Region where you want the bucket to reside.

e. In Bucket settings for Block Public Access, choose the settings that you want to apply to
the bucket.

Getting Started 4461

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/s3/

Amazon SageMaker Developer Guide

f. Choose Create bucket.

For more information about creating Amazon S3 buckets, see Getting started with Amazon S3.

Train, Compile, and Package Your Model

In this section you will create SageMaker and AWS IoT client objects, download a pre-trained
machine learning model, upload your model to your Amazon S3 bucket, compile your model for
your target device with SageMaker Neo, and package your model so that it can be deployed with
the Edge Manager agent.

1. Import libraries and create client objects.

This tutorial uses the AWS SDK for Python (Boto3) to create clients to interact with SageMaker,
Amazon S3, and AWS IoT.

Import Boto3, specify your Region, and initialize the client objects you need as shown in the
following example:

import boto3
import json
import time

AWS_REGION = 'us-west-2'# Specify your Region
bucket = 'bucket-name'

sagemaker_client = boto3.client('sagemaker', region_name=AWS_REGION)
iot_client = boto3.client('iot', region_name=AWS_REGION)

Define variables and assign them the role ARN you created for SageMaker and AWS IoT as
strings:

Replace with the role ARN you created for SageMaker
sagemaker_role_arn = "arn:aws:iam::<account>:role/*"

Replace with the role ARN you created for AWS IoT.
Note: The name must start with 'SageMaker'
iot_role_arn = "arn:aws:iam::<account>:role/SageMaker*"

2. Train a machine learning model.

Getting Started 4462

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html

Amazon SageMaker Developer Guide

See Train a Model with Amazon SageMaker for more information on how to train a machine
learning model using SageMaker. You can optionally upload your locally trained model directly
into an Amazon S3 URI bucket.

If you do not have a model yet, you can use a pre-trained model for the next steps in this
tutorial. For example, you can save the MobileNet V2 models from the TensorFlow framework.
MobileNet V2 is an image classification model optimized for mobile applications. For more
information about MobileNet V2, see the MobileNet GitHub README.

Type the following into your Jupyter Notebook to save the pre-trained MobileNet V2 model:

Save the MobileNet V2 model to local storage
 import tensorflow as tf
 model = tf.keras.applications.MobileNetV2()
 model.save(“mobilenet_v2.h5”)

Note

• If you do not have TensorFlow installed, you can do so by running pip install
tensorflow=2.4

• Use TensorFlow version 2.4 or lower for this tutorial.

The model will be saved into the mobilenet_v2.h5 file. Before packaging the model, you will
need to first compile your model using SageMaker Neo. See Supported Frameworks, Devices,
Systems, and Architectures to check if your version of TensorFlow (or other framework of
choice) is currently supported by SageMaker Neo.

SageMaker Neo requires models to be stored as a compressed TAR file. Repackage it as a
compressed TAR file (*.tar.gz):

Package MobileNet V2 model into a TAR file
 import tarfile

 tarfile_name='mobilenet-v2.tar.gz'

 with tarfile.open(tarfile_name, mode='w:gz') as archive:

Getting Started 4463

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

Amazon SageMaker Developer Guide

 archive.add('mobilenet-v2.h5')

3. Upload your model to Amazon S3.

Once you have a machine learning model, store it in an Amazon S3 bucket. The following
example uses an AWS CLI command to upload the model the to the Amazon S3 bucket you
created earlier in a directory called models. Type in the following into your Jupyter Notebook:

!aws s3 cp mobilenet-v2.tar.gz s3://{bucket}/models/

4. Compile your model with SageMaker Neo.

Compile your machine learning model with SageMaker Neo for an edge device. You need to
know your Amazon S3 bucket URI where you stored the trained model, the machine learning
framework you used to train your model, the shape of your model’s input, and your target
device.

For the MobileNet V2 model, use the following:

framework = 'tensorflow'
target_device = 'jetson_nano'
data_shape = '{"data":[1,3,224,224]}'

SageMaker Neo requires a specific model input shape and model format based on the deep
learning framework you use. For more information about how to save your model, see
What input data shapes does SageMaker Neo expect?. For more information about devices
and frameworks supported by Neo, see Supported Frameworks, Devices, Systems, and
Architectures.

Use the CreateCompilationJob API to create a compilation job with SageMaker Neo.
Provide a name to the compilation job, the SageMaker Role ARN, the Amazon S3 URI where
your model is stored, the input shape of the model, the name of the framework, the Amazon
S3 URI where you want SageMaker to store your compiled model, and your edge device target.

Specify the path where your model is stored
model_directory = 'models'
s3_model_uri = 's3://{}/{}/{}'.format(bucket, model_directory, tarfile_name)

Store compiled model in S3 within the 'compiled-models' directory
compilation_output_dir = 'compiled-models'

Getting Started 4464

Amazon SageMaker Developer Guide

s3_output_location = 's3://{}/{}/'.format(bucket, compilation_output_dir)

Give your compilation job a name
compilation_job_name = 'getting-started-demo'

sagemaker_client.create_compilation_job(CompilationJobName=compilation_job_name,
 RoleArn=sagemaker_role_arn,
 InputConfig={
 'S3Uri': s3_model_uri,
 'DataInputConfig': data_shape,
 'Framework' : framework.upper()},
 OutputConfig={
 'S3OutputLocation': s3_output_location,
 'TargetDevice': target_device},
 StoppingCondition={'MaxRuntimeInSeconds':
 900})

5. Package your compiled model.

Packaging jobs take SageMaker Neo–compiled models and make any changes necessary to
deploy the model with the inference engine, Edge Manager agent. To package your model,
create an edge packaging job with the create_edge_packaging API or the SageMaker
console.

You need to provide the name that you used for your Neo compilation job, a name for the
packaging job, a role ARN (see Setting Up section), a name for the model, a model version,
and the Amazon S3 bucket URI for the output of the packaging job. Note that Edge Manager
packaging job names are case-sensitive. The following is an example of how to create a
packaging job using the API.

edge_packaging_name='edge-packaging-demo'
model_name="sample-model"
model_version="1.1"

Define the Amazon S3 URI where you want to store the packaged model.

Output directory where you want to store the output of the packaging job
packaging_output_dir = 'packaged_models'
packaging_s3_output = 's3://{}/{}'.format(bucket, packaging_output_dir)

Getting Started 4465

Amazon SageMaker Developer Guide

Use CreateEdgePackagingJob to package your Neo-compiled model. Provide a name for
your edge packaging job and the name you provided for your compilation job (in this example,
it was stored in the variable compilation_job_name). Also provide a name for your model,
a version for your model (this is used to help you keep track of what model version you are
using), and the S3 URI where you want SageMaker to store the packaged model.

sagemaker_client.create_edge_packaging_job(
 EdgePackagingJobName=edge_packaging_name,
 CompilationJobName=compilation_job_name,
 RoleArn=sagemaker_role_arn,
 ModelName=model_name,
 ModelVersion=model_version,
 OutputConfig={
 "S3OutputLocation": packaging_s3_output
 }
)

Create and Register Fleets and Authenticate Devices

In this section you will create your AWS IoT thing object, create a device fleet, register your device
fleet so it can interact with the cloud, create X.509 certificates to authenticate your devices to AWS
IoT Core, associate the role alias with AWS IoT that was generated when you created your fleet, get
your AWS account-specific endpoint for the credentials provider, get an official Amazon Root CA
file, and upload the Amazon CA file to Amazon S3.

1. Create AWS IoT things.

SageMaker Edge Manager takes advantage of the AWS IoT Core services to facilitate
the connection between the edge devices and endpoints in the AWS cloud. You can take
advantage of existing AWS IoT functionality after you set up your devices to work with Edge
Manager.

To connect your device to AWS IoT, you need to create AWS IoT thing objects, create and
register a client certificate with AWS IoT, and create and configure the IAM role for your
devices.

First, create AWS IoT thing objects with the AWS IoT client (iot_client) you created earlier
with Boto3. The following example shows how to create two thing objects:

Getting Started 4466

Amazon SageMaker Developer Guide

iot_thing_name = 'sample-device'
iot_thing_type = 'getting-started-demo'

iot_client.create_thing_type(
 thingTypeName=iot_thing_type
)

Create an AWS IoT thing objects
iot_client.create_thing(
 thingName=iot_thing_name,
 thingTypeName=iot_thing_type
)

2. Create your device fleet.

Create a device fleet with the SageMaker client object defined in a previous step. You can also
use the SageMaker console to create a device fleet.

import time
device_fleet_name="demo-device-fleet" + str(time.time()).split('.')[0]
device_name="sagemaker-edge-demo-device" + str(time.time()).split('.')[0]

Specify your IoT role ARN. This lets AWS IoT grant temporary credentials to devices.

device_model_directory='device_output'
s3_device_fleet_output = 's3://{}/{}'.format(bucket, device_model_directory)

sagemaker_client.create_device_fleet(
 DeviceFleetName=device_fleet_name,
 RoleArn=iot_role_arn, # IoT Role ARN specified in previous step
 OutputConfig={
 'S3OutputLocation': s3_device_fleet_output
 }
)

An AWS IoT role alias is created when you create a device fleet. This role alias is associated
with AWS IoT using the iot_client object in a later step.

3. Register your device fleet.

Getting Started 4467

Amazon SageMaker Developer Guide

To interact with the cloud, you need to register your device with SageMaker Edge Manager.
In this example, you register a single device with the fleet you created. To register the device,
you need to provide a device name and the AWS IoT thing name as shown in the following
example:

Device name should be 36 characters
device_name = "sagemaker-edge-demo-device" + str(time.time()).split('.')[0]

sagemaker_client.register_devices(
 DeviceFleetName=device_fleet_name,
 Devices=[
 {
 "DeviceName": device_name,
 "IotThingName": iot_thing_name
 }
]
)

4. Create X.509 certificates.

After creating the AWS IoT thing object, you must create a X.509 device certificate for your
thing object. This certificate authenticates your device to AWS IoT Core.

Use the following to create a private key, public key, and a X.509 certificate file using the AWS
IoT client defined (iot_client) earlier.

Creates a 2048-bit RSA key pair and issues an X.509 # certificate
using the issued public key.
create_cert = iot_client.create_keys_and_certificate(
 setAsActive=True
)

Get certificate from dictionary object and save in its own
with open('./device.pem.crt', 'w') as f:
 for line in create_cert['certificatePem'].split('\n'):
 f.write(line)
 f.write('\n')
Get private key from dictionary object and save in its own
with open('./private.pem.key', 'w') as f:
 for line in create_cert['keyPair']['PrivateKey'].split('\n'):
 f.write(line)

Getting Started 4468

Amazon SageMaker Developer Guide

 f.write('\n')
Get a private key from dictionary object and save in its own
with open('./public.pem.key', 'w') as f:
 for line in create_cert['keyPair']['PublicKey'].split('\n'):
 f.write(line)
 f.write('\n')

5. Associate the role alias with AWS IoT.

When you create a device fleet with SageMaker
(sagemaker_client.create_device_fleet()), a role alias is generated for you. An
AWS IoT role alias provides a mechanism for connected devices to authenticate to AWS IoT
using X.509 certificates, and then obtain short-lived AWS credentials from an IAM role that is
associated with an AWS IoT role alias. The role alias allows you to change the role of the device
without having to update the device. Use DescribeDeviceFleet to get the role alias name
and ARN.

Print Amazon Resource Name (ARN) and alias that has access
to AWS Internet of Things (IoT).
sagemaker_client.describe_device_fleet(DeviceFleetName=device_fleet_name)

Store iot role alias string in a variable
Grabs role ARN
full_role_alias_name =
 sagemaker_client.describe_device_fleet(DeviceFleetName=device_fleet_name)
['IotRoleAlias']
start_index = full_role_alias_name.find('SageMaker') # Find beginning of role name

role_alias_name = full_role_alias_name[start_index:]

Use the iot_client to facilitate associating the role alias generated from creating the device
fleet with AWS IoT:

role_alias = iot_client.describe_role_alias(
 roleAlias=role_alias_name)

For more information about IAM role alias, see Role alias allows access to unused services .

Getting Started 4469

https://docs.aws.amazon.com/iot/latest/developerguide/audit-chk-role-alias-unused-svcs.html

Amazon SageMaker Developer Guide

You created and registered a certificate with AWS IoT earlier for successful authentication of
your device. Now, you need to create and attach a policy to the certificate to authorize the
request for the security token.

alias_policy = {
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iot:AssumeRoleWithCertificate",
 "Resource": role_alias['roleAliasDescription']['roleAliasArn']
 }
}

policy_name = 'aliaspolicy-'+ str(time.time()).split('.')[0]
aliaspolicy = iot_client.create_policy(policyName=policy_name,
 policyDocument=json.dumps(alias_policy))

Attach policy
iot_client.attach_policy(policyName=policy_name,
 target=create_cert['certificateArn'])

6. Get your AWS account-specific endpoint for the credentials provider.

Edge devices need an endpoint in order to assume credentials. Obtain your AWS account-
specific endpoint for the credentials provider.

Get the unique endpoint specific to your AWS account that is making the call.
iot_endpoint = iot_client.describe_endpoint(
 endpointType='iot:CredentialProvider'
)

endpoint="https://{}/role-aliases/{}/
credentials".format(iot_endpoint['endpointAddress'],role_alias_name)

7. Get the official Amazon root CA file and upload it to the Amazon S3 bucket.

Use the following in your Jupyter Notebook or AWS CLI (if you use your terminal, remove the
‘!’ magic function):

!wget https://www.amazontrust.com/repository/AmazonRootCA1.pem

Getting Started 4470

Amazon SageMaker Developer Guide

Use the endpoint to make an HTTPS request to the credentials provider to return a security
token. The following example command uses curl, but you can use any HTTP client.

!curl --cert device.pem.crt --key private.pem.key --cacert AmazonRootCA1.pem
 $endpoint

If the certificate is verified, upload the keys and certificate to your Amazon S3 bucket URI:

!aws s3 cp private.pem.key s3://{bucket}/authorization-files/
!aws s3 cp device.pem.crt s3://{bucket}/authorization-files/
!aws s3 cp AmazonRootCA1.pem s3://{bucket}/authorization-files/

Clean your working directory by moving your keys and certificate to a different directory:

Optional - Clean up working directory
!mkdir authorization-files
!mv private.pem.key device.pem.crt AmazonRootCA1.pem authorization-files/

Download and Set Up Edge Manager

The Edge Manager agent is an inference engine for your edge devices. Use the agent to make
predictions with models loaded onto your edge devices. The agent also collects model metrics and
captures data at specific intervals.

In this section you will set up your device with the agent. To do so, first copy a release artifact
and signing root certificate from the release bucket locally to your machine. After you unzip the
release artifact, upload it to Amazon S3. Next, define and save a configuration file for the agent. A
template is provided for you to copy and paste. Finally, copy the release artifacts, configuration file,
and credentials to your device.

1. Download the SageMaker Edge Manager agent.

The agent is released in binary format for supported operating systems. This example
runs inference on a Jetson Nano which uses a Linux operating system and has an ARM64
architecture. For more information about what operating system and architecture supported
devices use, see Supported Devices, Chip Architectures, and Systems.

Getting Started 4471

Amazon SageMaker Developer Guide

Fetch the latest version of binaries from the SageMaker Edge Manager release bucket from the
us-west-2 Region.

!aws s3 ls s3://sagemaker-edge-release-store-us-west-2-linux-armv8/Releases/ | sort
 -r

This returns release artifacts sorted by their version.

 PRE 1.20210512.96da6cc/
 PRE 1.20210305.a4bc999/
 PRE 1.20201218.81f481f/
 PRE 1.20201207.02d0e97/

The version has the following format: <MAJOR_VERSION>.<YYYY-MM-DD>.<SHA-7>. It
consists of three components:

• <MAJOR_VERSION>: The release version. The release version is currently set to 1.

• <YYYY-MM-DD>: The time stamp of the artifact release.

• <SHA-7>: The repository commit ID from which the release is built.

Copy the zipped TAR file locally or to your device directly. The following example shows how
to copy the latest release artifact at the time this document was released.

!aws s3 cp s3://sagemaker-edge-release-store-us-west-2-linux-x64/
Releases/1.20201218.81f481f/1.20201218.81f481f.tgz ./

Once you have the artifact, unzip the zipped TAR file. The following unzips the TAR file and
stores it in a directory called agent_demo:

!mkdir agent_demo
!tar -xvzf 1.20201218.81f481f.tgz -C ./agent_demo

Upload the agent release artifacts to your Amazon S3 bucket. The following code example
copies the content within agent_demo and uploads it to a directory within your Amazon S3
bucket called agent_demo:

Getting Started 4472

Amazon SageMaker Developer Guide

!aws s3 cp --recursive ./agent_demo s3://{bucket}/agent_demo

You also need the signing root certificates from the release bucket:

!aws s3 cp s3://sagemaker-edge-release-store-us-west-2-linux-x64/Certificates/us-
west-2/us-west-2.pem ./

Upload the signing root certificate to your Amazon S3 bucket:

!aws s3 cp us-west-2.pem s3://{bucket}/authorization-files/

2. Define a SageMaker Edge Manager agent configuration file.

First, define the agent configuration file as follows:

sagemaker_edge_config = {
 "sagemaker_edge_core_device_name": "device_name",
 "sagemaker_edge_core_device_fleet_name": "device_fleet_name",
 "sagemaker_edge_core_capture_data_buffer_size": 30,
 "sagemaker_edge_core_capture_data_push_period_seconds": 4,
 "sagemaker_edge_core_folder_prefix": "demo_capture",
 "sagemaker_edge_core_region": "us-west-2",
 "sagemaker_edge_core_root_certs_path": "/agent_demo/certificates",
 "sagemaker_edge_provider_aws_ca_cert_file": "/agent_demo/iot-credentials/
AmazonRootCA1.pem",
 "sagemaker_edge_provider_aws_cert_file": "/agent_demo/iot-credentials/
device.pem.crt",
 "sagemaker_edge_provider_aws_cert_pk_file": "/agent_demo/iot-credentials/
private.pem.key",
 "sagemaker_edge_provider_aws_iot_cred_endpoint": "endpoint",
 "sagemaker_edge_provider_provider": "Aws",
 "sagemaker_edge_provider_s3_bucket_name": bucket,
 "sagemaker_edge_core_capture_data_destination": "Cloud"
}

Replace the following:

• "device_name" with the name of your device (this string was stored in an earlier step in a
variable named device_name).

Getting Started 4473

Amazon SageMaker Developer Guide

• "device_fleet_name" with the name of your device fleet (this string was stored an earlier
step in a variable named device_fleet_name)

• "endpoint" with your AWS account-specific endpoint for the credentials provider (this
string was stored in an earlier step in a variable named endpoint).

Next, save it as a JSON file:

edge_config_file = open("sagemaker_edge_config.json", "w")
json.dump(sagemaker_edge_config, edge_config_file, indent = 6)
edge_config_file.close()

Upload the configuration file to your Amazon S3 bucket:

!aws s3 cp sagemaker_edge_config.json s3://{bucket}/

3. Copy the release artifacts, configuration file, and credentials to your device.

The following instructions are performed on the edge device itself.

Note

You must first install Python, the AWS SDK for Python (Boto3), and the AWS CLI on
your edge device.

Open a terminal on your device. Create a folder to store the release artifacts, your credentials,
and the configuration file.

mkdir agent_demo
cd agent_demo

Copy the contents of the release artifacts that you stored in your Amazon S3 bucket to your
device:

Copy release artifacts
aws s3 cp s3://<bucket-name>/agent_demo/ ./ --recursive

Getting Started 4474

Amazon SageMaker Developer Guide

(The contents of the release artifact was stored in a directory called agent_demo in a previous
step). Replace <bucket-name> and agent_demo with the name of your Amazon S3 bucket
and the file path to your release artifacts, respectively.

Go the /bin directory and make the binary files executable:

cd bin

chmod +x sagemaker_edge_agent_binary
chmod +x sagemaker_edge_agent_client_example

cd agent_demo

Make a directory to store your AWS IoT credentials and copy your credentials from your
Amazon S3 bucket to your edge device (use the same on you define in the variable bucket:

mkdir iot-credentials
cd iot-credentials

aws s3 cp s3://<bucket-name>/authorization-files/AmazonRootCA1.pem ./
aws s3 cp s3://<bucket-name>/authorization-files/device.pem.crt ./
aws s3 cp s3://<bucket-name>/authorization-files/private.pem.key ./

cd ../

Make a directory to store your model signing root certificates:

mkdir certificates

cd certificates

aws s3 cp s3://<bucket-name>/authorization-files/us-west-2.pem ./

cd agent_demo

Copy your configuration file to your device:

#Download config file from S3
aws s3 cp s3://<bucket-name>/sagemaker_edge_config.json ./

Getting Started 4475

Amazon SageMaker Developer Guide

cd agent_demo

Your agent_demo directory on your edge device should look similar to the following:

###agent_demo
| ### bin
| ### sagemaker_edge_agent_binary
| ### sagemaker_edge_agent_client_example
| ### sagemaker_edge_config.json
| ### certificates
| ###us-west-2.pem
| ### iot-credentials
| ### AmazonRootCA1.pem
| ### device.pem.crt
| ### private.pem.key
| ### docs
| ### api
| ### examples
| ### ATTRIBUTIONS.txt
| ### LICENSE.txt
| ### RELEASE_NOTES.md

Run Agent

In this section you will run the agent as a binary using gRPC, and check that both your device and
fleet are working and collecting sample data.

1. Launch the agent.

The SageMaker Edge Manager agent can be run as a standalone process in the form of an
Executable and Linkable Format (ELF) executable binary or can be linked against as a Dynamic
Shared Object (.dll). Running as a standalone executable binary is the preferred mode and is
supported on Linux.

This example uses gRPC to run the agent. gRPC is an open source high-performance Remote
Procedure Call (RPC) framework that can run in any environment. For more information about
gRPC, see the gRPC documentation.

To use gRPC, perform the following steps:

Getting Started 4476

https://grpc.io/docs/

Amazon SageMaker Developer Guide

a. Define a service in a .proto file.

b. Generate server and client code using the protocol buffer compiler.

c. Use the Python (or other languages supported by gRPC) gRPC API to write the server for
your service.

d. Use the Python (or other languages supported by gRPC) gRPC API to write a client for
your service.

The release artifact you downloaded contains a gRPC application ready for you to run
the agent. The example is located within the /bin directory of your release artifact. The
sagemaker_edge_agent_binary binary executable is in this directory.

To run the agent with this example, provide the path to your socket file (.sock) and
JSON .config file:

./bin/sagemaker_edge_agent_binary -a /tmp/sagemaker_edge_agent_example.sock -c
 sagemaker_edge_config.json

2. Check your device.

Check that your device is connected and sampling data. Making periodic checks, manually or
automatically, allows you to check that your device or fleet is working properly.

Provide the name of the fleet to which the device belongs and the unique device identifier.
From your local machine, run the following:

sagemaker_client.describe_device(
 DeviceName=device_name,
 DeviceFleetName=device_fleet_name
)

For the given model, you can see the name, model version, latest sample time, and when the
last inference was made.

{
 "DeviceName": "sample-device",
 "DeviceFleetName": "demo-device-fleet",
 "IoTThingName": "sample-thing-name-1",
 "RegistrationTime": 1600977370,

Getting Started 4477

Amazon SageMaker Developer Guide

 "LatestHeartbeat": 1600977370,
 "Models":[
 {
 "ModelName": "mobilenet_v2.tar.gz",
 "ModelVersion": "1.1",
 "LatestSampleTime": 1600977370,
 "LatestInference": 1600977370
 }
]
}

The timestamp provided by LastetHeartbeat indicates the last signal that was received
from the device. LatestSampleTime and LatestInference describe the time stamp of the
last data sample and inference, respectively.

3. Check your fleet.

Check that your fleet is working with GetDeviceFleetReport. Provide the name of the fleet
the device belongs to.

sagemaker_client.get_device_fleet_report(
 DeviceFleetName=device_fleet_name
)

For a given model, you can see the name, model version, latest sample time, and when the last
inference was made, along with the Amazon S3 bucket URI where the data samples are stored.

Sample output
{
 "DeviceFleetName": "sample-device-fleet",
 "DeviceFleetArn": "arn:aws:sagemaker:us-west-2:9999999999:device-fleet/sample-
fleet-name",
 "OutputConfig": {
 "S3OutputLocation": "s3://fleet-bucket/package_output",
 },
 "AgentVersions":[{"Version": "1.1", "AgentCount": 2}]}
 "DeviceStats": {"Connected": 2, "Registered": 2},
 "Models":[{
 "ModelName": "sample-model",
 "ModelVersion": "1.1",
 "OfflineDeviceCount": 0,
 "ConnectedDeviceCount": 2,

Getting Started 4478

Amazon SageMaker Developer Guide

 "ActiveDeviceCount": 2,
 "SamplingDeviceCount": 100
 }]
}

Set Up Devices and Fleets

Fleets are collections of logically grouped devices you can use to collect and analyze data. You can
use SageMaker Edge Manager to operate machine learning models on a fleet of smart cameras,
smart speakers, robots, and other edge devices.

Create a fleet and register your devices either programmatically with the AWS SDK for Python
(Boto3) or through the SageMaker console.

Topics

• Create a Fleet

• Register a Device

• Check Status

Create a Fleet

You can create a fleet programmatically with the AWS SDK for Python (Boto3) or through the
SageMaker console https://console.aws.amazon.com/sagemaker.

Create a Fleet (Boto3)

Use the CreateDeviceFleet API to create a fleet. Specify a name for the fleet, your AWS IoT
Role ARN for the RoleArn field, as well as an Amazon S3 URI where you want the device to store
sampled data.

You can optionally include a description of the fleet, tags, and an AWS KMS Key ID.

import boto3

Create SageMaker client so you can interact and manage SageMaker resources
sagemaker_client = boto3.client("sagemaker", region_name="aws-region")

sagemaker_client.create_device_fleet(
 DeviceFleetName="sample-fleet-name",

Set Up Devices and Fleets 4479

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

 RoleArn="arn:aws:iam::999999999:role/rolename", # IoT Role ARN
 Description="fleet description",
 OutputConfig={
 S3OutputLocation="s3://bucket/",
 KMSKeyId: "1234abcd-12ab-34cd-56ef-1234567890ab",
 },
 Tags=[
 {
 "Key": "string",
 "Value" : "string"
 }
],
)

An AWS IoT Role Alias is created for you when you create a device fleet. The AWS IoT role alias
provides a mechanism for connected devices to authenticate to AWS IoT using X.509 certificates
and then obtain short-lived AWS credentials from an IAM role that is associated with the AWS IoT
role alias.

Use DescribeDeviceFleet to get the role alias name and ARN.

Print Amazon Resource Name (ARN) and alias that has access
to AWS Internet of Things (IoT).
sagemaker_client.describe_device_fleet(DeviceFleetName=device_fleet_name)
['IotRoleAlias']

Use DescribeDeviceFleet API to get a description of fleets you created.

sagemaker_client.describe_device_fleet(
 DeviceFleetName="sample-fleet-name"
)

By default, it returns the name of the fleet, the device fleet ARN, the Amazon S3 bucket URI, the
IAM role, the role alias created in AWS IoT, a timestamp of when the fleet was created, and a
timestamp of when the fleet was last modified.

{ "DeviceFleetName": "sample-fleet-name",
 "DeviceFleetArn": "arn:aws:sagemaker:us-west-2:9999999999:device-fleet/sample-fleet-
name",
 "IAMRole": "arn:aws:iam::999999999:role/rolename",
 "Description": "this is a sample fleet",

Set Up Devices and Fleets 4480

Amazon SageMaker Developer Guide

 "IoTRoleAlias": "arn:aws:iot:us-west-2:9999999999:rolealias/SagemakerEdge-sample-
fleet-name"
 "OutputConfig": {
 "S3OutputLocation": "s3://bucket/folder",
 "KMSKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "CreationTime": "1600977370",
 "LastModifiedTime": "1600977370"}

Create a Fleet (Console)

You can create a Edge Manager packaging job using the Amazon SageMaker console at https://
console.aws.amazon.com/sagemaker.

1. In the SageMaker console, choose Edge Manager and then choose Edge device fleets.

2. Choose Create device fleet.

3. Enter a name for the device fleet in the Device fleet name field. Choose Next.

Set Up Devices and Fleets 4481

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. On the Output configuration page, specify the Amazon S3 bucket URI where you want to
store sample data from your device fleet. You can optionally add an encryption key as well by
electing an existing AWS KMS key from the dropdown list or by entering a key’s ARN. Choose
Submit.

Set Up Devices and Fleets 4482

Amazon SageMaker Developer Guide

5. Choose the name of your device fleet to be redirected to the device fleet details. This page
displays the name of the device fleet, ARN, description (if you provided one), date the fleet
was created, last time the fleet was modified, Amazon S3 bucket URI, AWS KMS key ID (if
provided), AWS IoT alias (if provided), and IAM role. If you added tags, they appear in the
Device fleet tags section.

Register a Device

Important

Device registration is required to use any part of SageMaker Edge Manager.

You can create a fleet programmatically with the AWS SDK for Python (Boto3) or through the
SageMaker console at https://console.aws.amazon.com/sagemaker.

Register a Device (Boto3)

To register your device, first create and register an AWS IoT thing object and configure an IAM
role. SageMaker Edge Manager takes advantage of the AWS IoT Core services to facilitate the
connection between the edge devices and the cloud. You can take advantage of existing AWS IoT
functionality after you set up your devices to work with Edge Manager.

To connect your device to AWS IoT you need to create AWS IoT thing objects, create and register a
client certificate with AWS IoT, and create and configure IAM role for your devices.

Set Up Devices and Fleets 4483

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

See the Getting Started Guide for an in-depth example or the Explore AWS IoT Core services in
hands-on tutorial.

Use the RegisterDevices API to register your device. Provide the name of the fleet of which you
want the devices to be a part, as well as a name for the device. You can optionally add a description
to the device, tags, and AWS IoT thing name associated with the device.

sagemaker_client.register_devices(
 DeviceFleetName="sample-fleet-name",
 Devices=[
 {
 "DeviceName": "sample-device-1",
 "IotThingName": "sample-thing-name-1",
 "Description": "Device #1"
 }
],
 Tags=[
 {
 "Key": "string",
 "Value" : "string"
 }
],
)

Register a Device (Console)

You can register your device using the SageMaker console at https://console.aws.amazon.com/
sagemaker.

1. In the SageMaker console, choose Edge Inference and then choose choose Edge devices.

2. Choose Register devices.

3. In the Device properties section, enter the name of the fleet the device belongs to under the
Device fleet name field. Choose Next.

Set Up Devices and Fleets 4484

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-manager-getting-started.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs-first-thing.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs-first-thing.html
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. In the Device source section, add your devices one by one. You must include a Device Name
for each device in your fleet. You can optionally provide a description (in the Description field)
and an Internet of Things (IoT) object name (in the IoT name field). Choose Submit once you
have added all your devices.

The Devices page displays the name of the device you have added, the fleet to which it
belongs, when it was registered, the last heartbeat, and the description and AWS IoT name, if
you provided one.

Choose a device to view the device’s details, including the device name, fleet, ARN, description,
IoT Thing name, when the device was registered, and the last heartbeat.

Check Status

Check that your device or fleet is connected and sampling data. Making periodic checks, manually
or automatically, allows you to check that your device or fleet is working properly.

Set Up Devices and Fleets 4485

Amazon SageMaker Developer Guide

Use the Amazon S3 console at https://console.aws.amazon.com/s3/ to interactively choose a
fleet for a status check. You can also use the AWS SDK for Python (Boto3). The following describes
different APIs from Boto3 you can use to check the status of your device or fleet. Use the API that
best fits your use case.

• Check an individual device.

To check the status of an individual device, use DescribeDevice API. A list containing one or
more models is provided if a models have been deployed to the device.

sagemaker_client.describe_device(
 DeviceName="sample-device-1",
 DeviceFleetName="sample-fleet-name"
)

Running DescribeDevice returns:

{ "DeviceName": "sample-device".
 "Description": "this is a sample device",
 "DeviceFleetName": "sample-device-fleet",
 "IoTThingName": "SampleThing",
 "RegistrationTime": 1600977370,
 "LatestHeartbeat": 1600977370,
 "Models":[
 {
 "ModelName": "sample-model",
 "ModelVersion": "1.1",
 "LatestSampleTime": 1600977370,
 "LatestInference": 1600977370
 }
]
}

• Check a fleet of devices.

To check the status of the fleet, use the GetDeviceFleetReport API. Provide the name of the
device fleet to get a summary of the fleet.

sagemaker_client.get_device_fleet_report(
 DeviceFleetName="sample-fleet-name"
)

Set Up Devices and Fleets 4486

https://console.aws.amazon.com/s3/

Amazon SageMaker Developer Guide

• Check for a heartbeat.

Each device within a fleet periodically generates a signal, or “heartbeat”. The heartbeat can be
used to check that the device is communicating with Edge Manager. If the timestamp of the last
heartbeat is not being updated, the device may be failing.

Check the last heartbeat with made by a device with the DescribeDevice API. Specify the
name of the device and the fleet to which the edge device belongs.

sagemaker_client.describe_device(
 DeviceName="sample-device-1",
 DeviceFleetName="sample-fleet-name"
)

Package Model

SageMaker Edge Manager packaging jobs take Amazon SageMaker Neo–compiled models and
make any changes necessary to deploy the model with the inference engine, Edge Manager agent.

Topics

• Prerequisites

• Package a Model (Amazon SageMaker Console)

• Package a Model (Boto3)

Prerequisites

To package a model, you must do the following:

1. Compile your machine learning model with SageMaker Neo.

If you have not already done so, compile your model with SageMaker Neo. For more
information on how to compile your model, see Compile and Deploy Models with Neo. If you
are first-time user of SageMaker Neo, go through Getting Started with Neo Edge Devices.

2. Get the name of your compilation job.

Provide the name of the compilation job name you used when you compiled your model with
SageMaker Neo. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/

Package Model 4487

https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-getting-started-edge.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

and choose Compilation jobs to find a list of compilations that have been submitted to your
AWS account. The names of submitted compilation jobs are in the Name column.

3. Get your IAM ARN.

You need an Amazon Resource Name (ARN) of an IAM role that you can use to download and
upload the model and contact SageMaker Neo.

Use one of the following methods to get your IAM ARN:

• Programmatically with the SageMaker Python SDK

import sagemaker

Initialize SageMaker Session object so you can interact with AWS resources
sess = sagemaker.Session()

Get the role ARN
role = sagemaker.get_execution_role()

print(role)
>> arn:aws:iam::<your-aws-account-id>:role/<your-role-name>

For more information about using the SageMaker Python SDK, see the SageMaker Python
SDK API.

• Using the AWS Identity and Access Management (IAM) console

Navigate to the IAM console at https://console.aws.amazon.com/iam/. In the IAM Resources
section, choose Roles to view a list of roles in your AWS account. Select or create a role that
has AmazonSageMakerFullAccess, AWSIoTFullAccess, and AmazonS3FullAccess.

For more information on IAM, see What is IAM?

4. Have an S3 bucket URI.

You need to have at least one Amazon Simple Storage Service (Amazon S3) bucket URI to store
your Neo-compiled model, the output of the Edge Manager packaging job, and sample data
from your device fleet.

Use one of the following methods to create an Amazon S3 bucket:

• Programmatically with the SageMaker Python SDK
Package Model 4488

https://sagemaker.readthedocs.io/en/stable/index.html
https://sagemaker.readthedocs.io/en/stable/index.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon SageMaker Developer Guide

You can use the default Amazon S3 bucket during a session. A default bucket is created
based on the following format: sagemaker-{region}-{aws-account-id}. To create a
default bucket with the SageMaker Python SDK, use the following:

import sagemaker

session=sagemaker.create_session()

bucket=session.default_bucket()

• Using the Amazon S3 console

Open the Amazon S3 console at https://console.aws.amazon.com/s3/ and see How do I
create an S3 Bucket? for step-by-step instructions.

Package a Model (Amazon SageMaker Console)

You can create a SageMaker Edge Manager packaging job using the SageMaker console at https://
console.aws.amazon.com/sagemaker/. Before continuing, make sure you have satisfied the
Prerequisites.

1. In the SageMaker console, choose Edge Inference and then choose Edge packaging jobs, as
shown in the following image.

2. On the Job properties page, enter a name for your packaging job under Edge packaging job
name. Note that Edge Manager packaging job names are case-sensitive. Name your model and
give it a version: enter this under Model name and Model version, respectively.

3. Next, select an IAM role. You can chose a role or let AWS create a role for you. You can
optionally specify a resource key ARN and job tags.

4. Choose Next.

Package Model 4489

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

5. Specify the name of the compilation job you used when compiling your model with SageMaker
Neo in the Compilation job name field. Choose Next.

Package Model 4490

Amazon SageMaker Developer Guide

6. On the Output configuration page, enter the Amazon S3 bucket URI in which you want to
store the output of the packaging job.

The Status column on the Edge packaging jobs page should read IN PROGRESS. Once the
packaging job is complete, the status updates to COMPLETED.

Selecting a packaging job directs you to that job's settings. The Job settings section displays
the job name, ARN, status, creation time, last modified time, duration of the packaging job,
and role ARN.

The Input configuration section displays the location of the model artifacts, the data input
configuration, and the machine learning framework of the model.

Package Model 4491

Amazon SageMaker Developer Guide

The Output configuration section displays the output location of the packaging job, the target
device for which the model was compiled, and any tags you created.

7. Choose the name of your device fleet to be redirected to the device fleet details. This page
displays the name of the device fleet, ARN, description (if you provided one), date the fleet
was created, last time the fleet was modified, Amazon S3 bucket URI, AWS KMS key ID (if
provided), AWS IoT alias (if provided), and IAM role. If you added tags, they appear in the
Device fleet tags section.

Package a Model (Boto3)

You can create a SageMaker Edge Manager packaging job with the AWS SDK for Python (Boto3).
Before continuing, make sure you have satisfied the Prerequisites.

To request an edge packaging job, use CreateEdgePackagingJob. You need to provide a name
to your edge packaging job, the name of your SageMaker Neo compilation job, your role Amazon
resource name (ARN), a name for your model, a version for your model, and the Amazon S3 bucket
URI where you want to store the output of your packaging job. Note that Edge Manager packaging
job names and SageMaker Neo compilation job names are case-sensitive.

Import AWS SDK for Python (Boto3)
import boto3

Create Edge client so you can submit a packaging job
sagemaker_client = boto3.client("sagemaker", region_name='aws-region')

sagemaker_client.create_edge_packaging_job(
 EdgePackagingJobName="edge-packaging-name",
 CompilationJobName="neo-compilation-name",
 RoleArn="arn:aws:iam::99999999999:role/rolename",
 ModelName="sample-model-name",
 ModelVersion="model-version",
 OutputConfig={
 "S3OutputLocation": "s3://your-bucket/",
 }
)

You can check the status of an edge packaging job using DescribeEdgePackagingJob and
providing the case-sensitive edge packaging job name:

Package Model 4492

Amazon SageMaker Developer Guide

response = sagemaker_client.describe_edge_packaging_job(
 EdgePackagingJobName="edge-packaging-name")

This returns a dictionary that can be used to poll the status of the packaging job:

Optional - Poll every 30 sec to check completion status
import time

while True:
 response = sagemaker_client.describe_edge_packaging_job(
 EdgePackagingJobName="edge-packaging-name")

 if response['EdgePackagingJobStatus'] == 'Completed':
 break
 elif response['EdgePackagingJobStatus'] == 'Failed':
 raise RuntimeError('Packaging job failed')
 print('Packaging model...')
 time.sleep(30)
print('Done!')

For a list of packaging jobs, use ListEdgePackagingJobs. You can use this API to search for a
specific packaging job. Provide a partial name to filter packaging job names for NameContains,
a partial name for ModelNameContains to filter for jobs in which the model name contains the
name you provide. Also specify with which column to sort with SortBy, and by which direction to
sort for SortOrder (either Ascending or Descending).

sagemaker_client.list_edge_packaging_jobs(
 "NameContains": "sample",
 "ModelNameContains": "sample",
 "SortBy": "column-name",
 "SortOrder": "Descending"
)

To stop a packaging job, use StopEdgePackagingJob and provide the name of your edge
packaging job.

sagemaker_client.stop_edge_packaging_job(
 EdgePackagingJobName="edge-packaging-name"
)

Package Model 4493

Amazon SageMaker Developer Guide

For a full list of Edge Manager APIs, see the Boto3 documentation.

The Edge Manager Agent

The Edge Manager agent is an inference engine for your edge devices. Use the agent to make
predictions with models loaded onto your edge devices. The agent also collects model metrics and
captures data at specific intervals. Sample data is stored in your Amazon S3 bucket.

There are two methods of installing and deploying the Edge Manager agent onto your edge
devices:

1. Download the agent as a binary from the Amazon S3 release bucket. For more information, see
Download and Set Up the Edge Manager Agent Manually.

2. Use the AWS IoT Greengrass V2 console or the AWS CLI to deploy
aws.greengrass.SageMakerEdgeManager. See Create the AWS IoT Greengrass V2
Components.

Download and Set Up the Edge Manager Agent Manually

Download the Edge Manager agent based on your operating system, architecture, and AWS Region.
The agent is periodically updated, so you have the option to choose your agent based on release
dates and versions. Once you have the agent, create a JSON configuration file. Specify the device
IoT thing name, fleet name, device credentials, and other key-value pairs. See Running the Edge
Manager agent for full a list of keys you must specify in the configuration file. You can run the
agent as an executable binary or link against it as a dynamic shared object (DSO).

How the agent works

The agent runs on the CPU of your devices. The agent runs inference on the framework and
hardware of the target device you specified during the compilation job. For example, if you
compiled your model for the Jetson Nano, the agent supports the GPU in the provided Deep
Learning Runtime (DLR).

The agent is released in binary format for supported operating systems. Check that your operating
system is supported and meets the minimum OS requirement in the following table:

Linux

Version: Ubuntu 18.04

The Edge Manager Agent 4494

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://github.com/neo-ai/neo-ai-dlr
https://github.com/neo-ai/neo-ai-dlr

Amazon SageMaker Developer Guide

Supported Binary Formats: x86-64 bit (ELF binary) and ARMv8 64 bit (ELF binary)

Windows

Version: Windows 10 version 1909

Supported Binary Formats: x86-32 bit (DLL) and x86-64 bit (DLL)

Installing the Edge Manager agent

To use the Edge Manager agent, you first must obtain the release artifacts and a root certificate.
The release artifacts are stored in an Amazon S3 bucket in the us-west-2 Region. To download
the artifacts, specify your operating system (<OS>) and the <VERSION>.

Based on your operating system, replace <OS> with one of the following:

Windows 32-bit Windows 64-bit Linux x86-64 Linux ARMv8

windows-x86 windows-x64 linux-x64 linux-armv8

The VERSION is broken into three components: <MAJOR_VERSION>.<YYYY-MM-DD>-<SHA-7>,
where:

• <MAJOR_VERSION>: The release version. The release version is currently set to 1.

• <YYYY-MM-DD>: The time stamp of the artifacts release.

• <SHA-7>: The repository commit ID from which the release is built.

You must provide the <MAJOR_VERSION> and the time stamp in YYYY-MM-DD format. We suggest
you use the latest artifact release time stamp.

Run the following in your command line to get the latest time stamp. Replace <OS> with your
operating system:

aws s3 ls s3://sagemaker-edge-release-store-us-west-2-<OS>/Releases/ | sort -r

For example, if you have a Windows 32-bit OS, run:

aws s3 ls s3://sagemaker-edge-release-store-us-west-2-windows-x86/Releases/ | sort -r

The Edge Manager Agent 4495

Amazon SageMaker Developer Guide

This returns:

2020-12-01 23:33:36 0

 PRE 1.20201218.81f481f/
 PRE 1.20201207.02d0e97/

The return output in this example shows two release artifacts. The first release artifact file notes
that the release version has a major release version of 1, a time stamp of 20201218 (in YYYY-MM-
DD format), and a 81f481f SHA-7 commit ID.

Note

The preceding command assumes you have configured the AWS Command Line Interface.
For more information, about how to configure the settings that the AWS CLI uses to
interact with AWS, see Configuring the AWS CLI.

Based on your operating system, use the following commands to install the artifacts:

Windows 32-bit

aws s3 cp s3://sagemaker-edge-release-store-us-west-2-windows-x86/
Releases/<VERSION>/<VERSION>.zip .
aws s3 cp s3://sagemaker-edge-release-store-us-west-2-windows-x86/
Releases/<VERSION>/sha256_hex.shasum .

Windows 64-bit

aws s3 cp s3://sagemaker-edge-release-store-us-west-2-windows-x64/
Releases/<VERSION>/<VERSION>.zip .
aws s3 cp s3://sagemaker-edge-release-store-us-west-2-windows-x64/
Releases/<VERSION>/sha256_hex.shasum .

Linux x86-64

aws s3 cp s3://sagemaker-edge-release-store-us-west-2-linux-x64/
Releases/<VERSION>/<VERSION>.tgz .
aws s3 cp s3://sagemaker-edge-release-store-us-west-2-linux-x64/Releases/<VERSION>/
sha256_hex.shasum .

The Edge Manager Agent 4496

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Amazon SageMaker Developer Guide

Linux ARMv8

aws s3 cp s3://sagemaker-edge-release-store-us-west-2-linux-armv8/
Releases/<VERSION>/<VERSION>.tgz .
aws s3 cp s3://sagemaker-edge-release-store-us-west-2-linux-armv8/
Releases/<VERSION>/sha256_hex.shasum .

You also must download a root certificate. This certificate validates model artifacts signed by AWS
before loading them onto your edge devices.

Replace <OS> corresponding to your platform from the list of supported operation systems and
replace <REGION> with your AWS Region.

aws s3 cp s3://sagemaker-edge-release-store-us-west-2-<OS>/
Certificates/<REGION>/<REGION>.pem .

Running the Edge Manager agent

You can run the SageMaker Edge Manager agent as a standalone process in the form of an
Executable and Linkable Format (ELF) executable binary or you can link against it as a dynamic
shared object (.dll). Linux supports running it as a standalone executable binary and is the
preferred mode. Windows supports running it as a shared object (.dll).

On Linux, we recommend that you run the binary via a service that’s a part of your initialization
(init) system. If you want to run the binary directly, you can do so in a terminal as shown in the
following example. If you have a modern OS, there are no other installations necessary prior to
running the agent, since all the requirements are statically built into the executable. This gives you
flexibility to run the agent on the terminal, as a service, or within a container.

To run the agent, first create a JSON configuration file. Specify the following key-value pairs:

• sagemaker_edge_core_device_name: The name of the device. This device name needs to be
registered along with the device fleet in the SageMaker Edge Manager console.

• sagemaker_edge_core_device_fleet_name: The name of the fleet to which the device
belongs.

• sagemaker_edge_core_region: The AWS Region associated with the device, the fleet and the
Amazon S3 buckets. This corresponds to the Region where the device is registered and where the
Amazon S3 bucket is created (they are expected to be the same). The models themselves can be

The Edge Manager Agent 4497

Amazon SageMaker Developer Guide

compiled with SageMaker Neo in a different Region, this configuration is not related to model
compilation Region.

• sagemaker_edge_core_root_certs_path: The absolute folder path to root certificates. This
is used to validate the device with the relevant AWS account.

• sagemaker_edge_provider_aws_ca_cert_file: The absolute path to Amazon Root CA
certificate (AmazonRootCA1.pem). This is used to validate the device with the relevant AWS
account. AmazonCA is a certificate owned by AWS.

• sagemaker_edge_provider_aws_cert_file: The absolute path to AWS IoT signing root
certificate (*.pem.crt).

• sagemaker_edge_provider_aws_cert_pk_file: The absolute path to AWS IoT private key.
(*.pem.key).

• sagemaker_edge_provider_aws_iot_cred_endpoint: The AWS IoT credentials endpoint
(identifier.iot.region.amazonaws.com). This endpoint is used for credential validation. See
Connecting devices to AWS IoT for more information.

• sagemaker_edge_provider_provider: This indicates the implementation of the provider
interface being used. The provider interface communicates with the end network services for
uploads, heartbeats and registration validation. By default this is set to "Aws". We allow custom
implementations of the provider interface. It can be set to None for no provider or Custom for
custom implementation with the relevant shared object path provided.

• sagemaker_edge_provider_provider_path: Provides the absolute path to the provider
implementation shared object. (.so or .dll file). The "Aws" provider .dll or .so file is provided with
the agent release. This field is mandatory.

• sagemaker_edge_provider_s3_bucket_name: The name of your Amazon S3 bucket (not the
Amazon S3 bucket URI). The bucket must have a sagemaker string within its name.

• sagemaker_edge_log_verbose (Boolean.): Optional. This sets the debug log. Select either
True or False.

• sagemaker_edge_telemetry_libsystemd_path: For Linux only, systemd implements
the agent crash counter metric. Set the absolute path of libsystemd to turn on the crash
counter metric. You can find the default libsystemd path can be found by running whereis
libsystemd in the device terminal.

• sagemaker_edge_core_capture_data_destination: The destination for uploading
capture data. Choose either "Cloud" or "Disk". The default is set to "Disk". Setting it to
"Disk" writes the input and output tensor(s) and auxiliary data to the local file system at your

The Edge Manager Agent 4498

https://docs.aws.amazon.com/iot/latest/developerguide/iot-connect-devices.html

Amazon SageMaker Developer Guide

preferred location of. When writing to "Cloud" use the Amazon S3 bucket name provided in the
sagemaker_edge_provider_s3_bucket_name configuration.

• sagemaker_edge_core_capture_data_disk_path: Set the absolute path in the local file
system, into which capture data files are written when "Disk" is the destination. This field is not
used when "Cloud" is specified as the destination.

• sagemaker_edge_core_folder_prefix: The parent prefix in Amazon S3 where
captured data is stored when you specify "Cloud" as the capture data destination
(sagemaker_edge_core_capture_data_disk_path). Captured data is stored in a sub-
folder under sagemaker_edge_core_capture_data_disk_path if "Disk" is set as the data
destination.

• sagemaker_edge_core_capture_data_buffer_size (Integer value) : The capture data
circular buffer size. It indicates the maximum number of requests stored in the buffer.

• sagemaker_edge_core_capture_data_batch_size (Integer value): The capture data batch
size. It indicates the size of a batch of requests that are handled from the buffer. This value must
to be less than sagemaker_edge_core_capture_data_buffer_size. A maximum of half
the size of the buffer is recommended for batch size.

• sagemaker_edge_core_capture_data_push_period_seconds (Integer value): The capture
data push period in seconds. A batch of requests in the buffer is handled when there are batch
size requests in the buffer, or when this time period has completed (whichever comes first). This
configuration sets that time period.

• sagemaker_edge_core_capture_data_base64_embed_limit: The limit for uploading
capture data in bytes. Integer value.

Your configuration file should look similar to the following example(with your specific values
specified). This example uses the default AWS provider("Aws") and does not specify a periodic
upload.

{
 "sagemaker_edge_core_device_name": "device-name",
 "sagemaker_edge_core_device_fleet_name": "fleet-name",
 "sagemaker_edge_core_region": "region",
 "sagemaker_edge_core_root_certs_path": "<Absolute path to root certificates>",
 "sagemaker_edge_provider_provider": "Aws",
 "sagemaker_edge_provider_provider_path" : "/path/to/libprovider_aws.so",
 "sagemaker_edge_provider_aws_ca_cert_file": "<Absolute path to Amazon Root CA
 certificate>/AmazonRootCA1.pem",

The Edge Manager Agent 4499

Amazon SageMaker Developer Guide

 "sagemaker_edge_provider_aws_cert_file": "<Absolute path to AWS IoT signing root
 certificate>/device.pem.crt",
 "sagemaker_edge_provider_aws_cert_pk_file": "<Absolute path to AWS IoT private
 key.>/private.pem.key",
 "sagemaker_edge_provider_aws_iot_cred_endpoint": "https://<AWS IoT Endpoint
 Address>",
 "sagemaker_edge_core_capture_data_destination": "Cloud",
 "sagemaker_edge_provider_s3_bucket_name": "sagemaker-bucket-name",
 "sagemaker_edge_core_folder_prefix": "Amazon S3 folder prefix",
 "sagemaker_edge_core_capture_data_buffer_size": 30,
 "sagemaker_edge_core_capture_data_batch_size": 10,
 "sagemaker_edge_core_capture_data_push_period_seconds": 4000,
 "sagemaker_edge_core_capture_data_base64_embed_limit": 2,
 "sagemaker_edge_log_verbose": false
}

The release artifact includes a binary executable called sagemaker_edge_agent_binary in
the /bin directory. To run the binary, use the -a flag to create a socket file descriptor (.sock) in a
directory of your choosing and specify the path of the agent JSON config file you created with the
-c flag.

./sagemaker_edge_agent_binary -a <ADDRESS_TO_SOCKET> -c <PATH_TO_CONFIG_FILE>

The following example shows the code snippet with a directory and file path specified:

./sagemaker_edge_agent_binary -a /tmp/sagemaker_edge_agent_example.sock -c
 sagemaker_edge_config.json

In this example, a socket file descriptor named sagemaker_edge_agent_example.sock
is created in the /tmp directory and points to a configuration file that is in the same working
directory as the agent called sagemaker_edge_config.json.

Deploy the Model Package and Edge Manager Agent with AWS IoT Greengrass

SageMaker Edge Manager integrates AWS IoT Greengrass version 2 to simplify accessing,
maintaining, and deploying the Edge Manager agent and model to your devices. Without AWS
IoT Greengrass V2, setting up your devices and fleets to use SageMaker Edge Manager requires
you to manually copy the Edge Manager agent from an Amazon S3 release bucket. You use the
agent to make predictions with models loaded onto your edge devices. With AWS IoT Greengrass
V2 and SageMaker Edge Manager integration, you can use AWS IoT Greengrass V2 components.

The Edge Manager Agent 4500

Amazon SageMaker Developer Guide

Components are pre-built software modules that can connect your edge devices to AWS services or
third-party service via AWS IoT Greengrass.

You must install the AWS IoT Greengrass Core software onto your device(s) if you want to use
AWS IoT Greengrass V2 to deploy the Edge Manager agent and your model. For more information
about device requirements and how to set up your devices, see Setting up AWS IoT Greengrass core
devices in the AWS IoT Greengrass documentation.

You use the following three components to deploy the Edge Manager agent:

• A pre-built public component: SageMaker maintains the public Edge Manager component.

• A autogenerated private component: The private component is autogenerated when you
package your machine learning model with the CreateEdgePackagingJob API and specify
GreengrassV2Component for the Edge Manager API field PresetDeploymentType.

• A custom component: This is the inference application that is responsible for preprocessing
and making inferences on your device. You must create this component. See either Create a
Hello World custom component in the SageMaker Edge Manager documentation or Create
custom AWS IoT Greengrass components in the AWS IoT Greengrass documentation for more
information on how to create custom components.

Prerequisites

SageMaker Edge Manager uses AWS IoT Greengrass V2 to simplify the deployment of the Edge
Manager agent, your machine learning models, and your inference application to your devices with
the use of components. To make it easier to maintain your AWS IAM roles, Edge Manager allows
you to reuse your existing AWS IoT role alias. If you do not have one yet, Edge Manager generates
a role alias as part of the Edge Manager packaging job. You no longer need to associate a role alias
generated from the SageMaker Edge Manager packaging job with your AWS IoT role.

Before you start, you must complete the following prerequisites:

1. Install the AWS IoT Greengrass Core software. For detailed information, see Install the AWS IoT
Greengrass Core software.

2. Set up AWS IoT Greengrass V2. For more information, see Install AWS IoT Greengrass Core
software with manual resource provisioning.

The Edge Manager Agent 4501

https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-up.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-up.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEdgePackagingJob.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html#install-greengrass-v2
https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html#install-greengrass-v2
https://docs.aws.amazon.com/greengrass/v2/developerguide/manual-installation.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manual-installation.html

Amazon SageMaker Developer Guide

Note

• Make sure the AWS IoT thing name is all lowercase and does not contain characters
except (optionally) dashes (‐).

• The IAM Role must start with SageMaker*

3. Attach the following permission and inline policy to the IAM role created during AWS IoT
Greengrass V2 setup.

• Navigate to the IAM console https://console.aws.amazon.com/iam/.

• Search for the role you created by typing in rhe role name in the Search field.

• Choose your role.

• Next, choose Attach policies.

• Search for AmazonSageMakerEdgeDeviceFleetPolicy.

• Select AmazonSageMakerFullAccess (This is an optional step that makes it easier for you to
reuse this IAM role in model compilation and packaging).

• Add required permissions to a role's permissions policy, don't attach inline policies to IAM
users.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"GreengrassComponentAccess",
 "Effect":"Allow",
 "Action":[
 "greengrass:CreateComponentVersion",
 "greengrass:DescribeComponent"
],
 "Resource":"*"
 }
]
}

• Choose Attach policy.

• Choose Trust relationship.

• Choose Edit trust relationship.

The Edge Manager Agent 4502

https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

• Replace the content with the following.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

4. Create an Edge Manager device fleet. For information on how to create a fleet, see Set Up
Devices and Fleets.

5. Register your device with the same name as your AWS IoT thing name created during the AWS
IoT Greengrass V2 setup.

6. Create at least one custom private AWS IoT Greengrass component. This component is the
application that runs inference on the device. For more information, see Create a Hello World
custom component

Note

• The SageMaker Edge Manager and AWS IoT Greengrass integration only works for AWS
IoT Greengrass v2.

• Both your AWS IoT thing name and Edge Manager device name must be the same.

• SageMaker Edge Manager does not load local AWS IoT certificates and call the AWS IoT
credential provider endpoint directly. Instead, SageMaker Edge Manager uses the AWS

The Edge Manager Agent 4503

Amazon SageMaker Developer Guide

IoT Greengrass v2 TokenExchangeService and it fetches a temporary credential from a
TES endpoint.

Create the AWS IoT Greengrass V2 Components

AWS IoT Greengrass uses components, a software module that is deployed to and runs on a AWS
IoT Greengrass core device. You need (at a minimum) three components:

1. A public Edge Manager Agent AWS IoT Greengrass component which deploys the Edge Manager
agentbinary.

2. A model component that is autogenerated when you package your machine learning model with
either the AWS SDK for Python (Boto3) API or with the SageMaker console. For information, see
Create an autogenerated component.

3. A private, custom component to implement the Edge Manager agent client application, and do
any preprocessing and post-processing of the inference results. For more information about how
to create a custom component, see Create an autogenerated component or Create custom AWS
IoT Greengrass components.

Create an autogenerated component

Generate the model component with the CreateEdgePackagingJob API and specify
GreengrassV2Component for the SageMaker Edge Manager packaging job API field
PresetDeploymentType. When you call the CreateEdgePackagingJob API, Edge Manager
takes your SageMaker Neo–compiled model in Amazon S3 and creates a model component. The
model component is automatically stored in your account. You can view any of your components
by navigating to the AWS IoT console https://console.aws.amazon.com/iot/. Select Greengrass
and then select Core devices. The page has a list of AWS IoT Greengrass core devices associated
with your account. If a model component name is not specified in PresetDeploymentConfig,
the default name generated consists of "SagemakerEdgeManager" and the name of your Edge
Manager agent packaging job. The following example demonstrates how to specify to Edge
Manager to create a AWS IoT Greengrass V2 component with the CreateEdgePackagingJob API.

import sagemaker
import boto3

Create a SageMaker client object to make it easier to interact with other AWS
 services.

The Edge Manager Agent 4504

https://docs.aws.amazon.com/greengrass/v2/developerguide/create-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-components.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEdgePackagingJob.html
https://console.aws.amazon.com/greengrass/

Amazon SageMaker Developer Guide

sagemaker_client = boto3.client('sagemaker', region=<YOUR_REGION>)

Replace with your IAM Role ARN
sagemaker_role_arn = "arn:aws:iam::<account>:role/*"

Replace string with the name of your already created S3 bucket.
bucket = 'edge-manager-demo-bucket'

Specify a name for your edge packaging job.
edge_packaging_name = "edge_packag_job_demo"

Replace the following string with the name you used for the SageMaker Neo compilation
 job.
compilation_job_name = "getting-started-demo"

The name of the model and the model version.
model_name = "sample-model"
model_version = "1.1"

Output directory in S3 where you want to store the packaged model.
packaging_output_dir = 'packaged_models'
packaging_s3_output = 's3://{}/{}'.format(bucket, packaging_output_dir)

The name you want your Greengrass component to have.
component_name = "SagemakerEdgeManager" + edge_packaging_name

sagemaker_client.create_edge_packaging_job(
 EdgePackagingJobName=edge_packaging_name,
 CompilationJobName=compilation_job_name,
 RoleArn=sagemaker_role_arn,
 ModelName=model_name,
 ModelVersion=model_version,
 OutputConfig={
 "S3OutputLocation": packaging_s3_output,
 "PresetDeploymentType":"GreengrassV2Component",
 "PresetDeploymentConfig":"{\"ComponentName\":\"sample-
component-name\", \"ComponentVersion\":\"1.0.2\"}"
 }
)

You can also create the autogenerated component with the SageMaker console. Follow steps 1-6 in
Package a Model (Amazon SageMaker Console)

The Edge Manager Agent 4505

Amazon SageMaker Developer Guide

Enter the Amazon S3 bucket URI where you want to store the output of the packaging job and
optional encrytion key.

Complete the following to create the model component:

1. Choose Preset deployment.

2. Specify the name of the component for the Component name field.

3. Optionally, provide a description of the component, a component version, the platform OS, or
the platform architecture for the Component description, Component version, Platform OS,
and Platform architecture, respectively.

4. Choose Submit.

Create a Hello World custom component

The custom application component is used to perform inference on the edge device. The
component is responsible for loading models to SageMaker Edge Manager, invoking the Edge
Manager agent for inference, and unloading the model when the component is shut down.
Before you create your component, ensure the agent and application can communicate with Edge
Manager. To do this, configure gRPC. The Edge Manager agent uses methods defined in Protobuf
Buffers and the gRPC server to establish communication with the client application on the edge
device and the cloud.

To use gRPC, you must:

1. Create a gRPC stub using the .proto file provided when you download the Edge Manager agent
from Amazon S3 release bucket.

2. Write client code with the language you prefer.

You do not need to define the service in a .proto file. The service .proto files are included in the
compressed TAR file when you download the Edge Manager agent release binary from the Amazon
S3 release bucket.

Install gRPC and other necessary tools on your host machine and create the gRPC stubs
agent_pb2_grpc.py and agent_pb2.py in Python. Make sure you have agent.proto in your
local directory.

%%bash
pip install grpcio

The Edge Manager Agent 4506

https://grpc.io/

Amazon SageMaker Developer Guide

pip install grpcio-tools
python3 -m grpc_tools.protoc --proto_path=. --python_out=. --grpc_python_out=.
 agent.proto

The preceding code generates the gRPC client and server interfaces from your .proto service
definition. In other words, it creates the gRPC model in Python. The API directory contains the
Protobuf specification for communicating with the agent.

Next, use the gRPC API to write a client and server for your service (2). The following example
script, edge_manager_python_example.py, uses Python to load, list, and unload a yolov3
model to the edge device.

import grpc
from PIL import Image
import agent_pb2
import agent_pb2_grpc
import os

model_path = '<PATH-TO-SagemakerEdgeManager-COMPONENT>'

agent_socket = 'unix:///tmp/aws.greengrass.SageMakerEdgeManager.sock'

agent_channel = grpc.insecure_channel(agent_socket, options=(('grpc.enable_http_proxy',
 0),))

agent_client = agent_pb2_grpc.AgentStub(agent_channel)

def list_models():
 return agent_client.ListModels(agent_pb2.ListModelsRequest())

def list_model_tensors(models):
 return {
 model.name: {
 'inputs': model.input_tensor_metadatas,
 'outputs': model.output_tensor_metadatas
 }
 for model in list_models().models
 }

The Edge Manager Agent 4507

Amazon SageMaker Developer Guide

def load_model(model_name, model_path):
 load_request = agent_pb2.LoadModelRequest()
 load_request.url = model_path
 load_request.name = model_name
 return agent_client.LoadModel(load_request)

def unload_model(name):
 unload_request = agent_pb2.UnLoadModelRequest()
 unload_request.name = name
 return agent_client.UnLoadModel(unload_request)

def predict_image(model_name, image_path):
 image_tensor = agent_pb2.Tensor()
 image_tensor.byte_data = Image.open(image_path).tobytes()
 image_tensor_metadata = list_model_tensors(list_models())[model_name]['inputs'][0]
 image_tensor.tensor_metadata.name = image_tensor_metadata.name
 image_tensor.tensor_metadata.data_type = image_tensor_metadata.data_type
 for shape in image_tensor_metadata.shape:
 image_tensor.tensor_metadata.shape.append(shape)
 predict_request = agent_pb2.PredictRequest()
 predict_request.name = model_name
 predict_request.tensors.append(image_tensor)
 predict_response = agent_client.Predict(predict_request)
 return predict_response

def main():
 try:
 unload_model('your-model')
 except:
 pass

 print('LoadModel...', end='')
 try:
 load_model('your-model', model_path)
 print('done.')
 except Exception as e:
 print()
 print(e)
 print('Model already loaded!')

 print('ListModels...', end='')
 try:

The Edge Manager Agent 4508

Amazon SageMaker Developer Guide

 print(list_models())
 print('done.')

 except Exception as e:
 print()
 print(e)
 print('List model failed!')

 print('Unload model...', end='')
 try:
 unload_model('your-model')
 print('done.')
 except Exception as e:
 print()
 print(e)
 print('unload model failed!')

if __name__ == '__main__':
 main()

Ensure model_path points to the name of the AWS IoT Greengrass component containing the
model if you use the same client code example.

You can create your AWS IoT Greengrass V2 Hello World component once you have generated your
gRPC stubs and you have your Hello World code ready. To do so:

• Upload your edge_manager_python_example.py, agent_pb2_grpc.py, and
agent_pb2.py to your Amazon S3 bucket and note down their Amazon S3 path.

• Create a private component in the AWS IoT Greengrass V2 console and define the recipe for your
component. Specify the Amazon S3 URI to your Hello World application and gRPC stub in the
following recipe.

RecipeFormatVersion: 2020-01-25
ComponentName: com.sagemaker.edgePythonExample
ComponentVersion: 1.0.0
ComponentDescription: Sagemaker Edge Manager Python example
ComponentPublisher: Amazon Web Services, Inc.
ComponentDependencies:
 aws.greengrass.SageMakerEdgeManager:
 VersionRequirement: '>=1.0.0'
 DependencyType: HARD

The Edge Manager Agent 4509

Amazon SageMaker Developer Guide

Manifests:
 - Platform:
 os: linux
 architecture: "/amd64|x86/"
 Lifecycle:
 install: |-
 apt-get install python3-pip
 pip3 install grpcio
 pip3 install grpcio-tools
 pip3 install protobuf
 pip3 install Pillow
 run:
 script: |-
 python3 {artifacts:path}/edge_manager_python_example.py
 Artifacts:
 - URI: <code-s3-path>
 - URI: <pb2-s3-path>
 - URI: <pb2-grpc-s3-path>

For detailed information about creating a Hello World recipe, see Create your first component in
the AWS IoT Greengrass documentation.

Deploy the components to your device

Deploy your components with the AWS IoT console or with the AWS CLI.

To deploy your components (console)

Deploy your AWS IoT Greengrass components with the AWS IoT console.

1. In the AWS IoT Greengrass console at https://console.aws.amazon.com/iot/ navigation menu,
choose Deployments.

2. On the Components page, on the Public components tab, choose
aws.greengrass.SageMakerEdgeManager.

3. On the aws.greengrass.SageMakerEdgeManager page, choose Deploy.

4. From Add to deployment, choose one of the following:

a. To merge this component to an existing deployment on your target device, choose Add to
existing deployment, and then select the deployment that you want to revise.

The Edge Manager Agent 4510

https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html#create-first-component
https://console.aws.amazon.com/greengrass/

Amazon SageMaker Developer Guide

b. To create a new deployment on your target device, choose Create new deployment. If
you have an existing deployment on your device, choosing this step replaces the existing
deployment.

5. On the Specify target page, do the following:

a. Under Deployment information, enter or modify the friendly name for your deployment.

b. Under Deployment targets, select a target for your deployment, and choose Next. You
cannot change the deployment target if you are revising an existing deployment.

6. On the Select components page, under My components, choose:

• com.<CUSTOM-COMPONENT-NAME>

• aws.greengrass.SageMakerEdgeManager

• SagemakerEdgeManager.<YOUR-PACKAGING-JOB>

7. On the Configure components page, choose com.greengrass.SageMakerEdgeManager, and do
the following.

a. Choose Configure component.

b. Under Configuration update, in Configuration to merge, enter the following configuration.

{
 "DeviceFleetName": "device-fleet-name",
 "BucketName": "DOC-EXAMPLE-BUCKET"
}

Replace device-fleet-name with the name of the edge device fleet that you created, and
replace DOC-EXAMPLE-BUCKET with the name of the Amazon S3 bucket that is associated
with your device fleet.

c. Choose Confirm, and then choose Next.

8. On the Configure advanced settings page, keep the default configuration settings, and choose
Next.

9. On the Review page, choose Deploy.

To deploy your components (AWS CLI)

1. Create a deployment.json file to define the deployment configuration for your SageMaker
Edge Manager components. This file should look like the following example.

The Edge Manager Agent 4511

Amazon SageMaker Developer Guide

{
 "targetArn":"targetArn",
 "components": {
 "aws.greengrass.SageMakerEdgeManager": {
 "componentVersion": 1.0.0,
 "configurationUpdate": {
 "merge": {
 "DeviceFleetName": "device-fleet-name",
 "BucketName": "DOC-EXAMPLE-BUCKET"
 }
 }
 },
 "com.greengrass.SageMakerEdgeManager.ImageClassification": {
 "componentVersion": 1.0.0,
 "configurationUpdate": {
 }
 },
 "com.greengrass.SageMakerEdgeManager.ImageClassification.Model": {
 "componentVersion": 1.0.0,
 "configurationUpdate": {
 }
 },
 }
}

• In the targetArn field, replace targetArn with the Amazon Resource Name (ARN) of the
thing or thing group to target for the deployment, in the following format:

• Thing: arn:aws:iot:region:account-id:thing/thingName

• Thing group: arn:aws:iot:region:account-id:thinggroup/thingGroupName

• In the merge field, replace device-fleet-name with the name of the edge device fleet that
you created, and replace DOC-EXAMPLE-BUCKET with the name of the Amazon S3 bucket that
is associated with your device fleet.

• Replace the component versions for each component with the latest available version.

2. Run the following command to deploy the components on the device:

aws greengrassv2 create-deployment \
 --cli-input-json file://path/to/deployment.json

The Edge Manager Agent 4512

Amazon SageMaker Developer Guide

The deployment can take several minutes to complete. In the next step, check the component log
to verify that the deployment completed successfully and to view the inference results.

For more information about deploying components to individual devices or groups of devices, see
Deploy AWS IoT Greengrass components to devices.

Deploy the Model Package Directly with SageMaker Edge Manager Deployment
API

SageMaker Edge Manager provides a deployment API that you can use to deploy models to device
targets without AWS IoT Greengrass. It is useful in situations where you want to update models
independently of firmware updates or application deployment mechanisms. You can use the API to
integrate your edge deployments into a CI/CD workflow to automatically deploy models once you
have validated your model for accuracy. The API also has convenient rollback and staged rollout
options for you to ensure models work well in a particular environment before wider rollout.

To use the Edge Manager deployment API first compile and package your model. For information
on how to compile and package your model, see Train, Compile, and Package Your Model. The
following sections of this guide show how you can create edge deployments using SageMaker API,
after you have compiled and packaged your models.

Topics

• Create an edge deployment plan

• Start the edge deployment

• Check the status of the deployment

Create an edge deployment plan

You can create an edge deployment plan with the CreateEdgeDeploymentPlan API. The
deployment plan can have multiple stages. You can configure each stage to rollout the deployment
to a subset of edge devices (by percentage, or by device name). You can also configure how rollout
failures are handled at each stage.

The following code snippet shows how you can create an edge deployment plan with 1 stage to
deploy a compiled and package model to 2 specific edge devices:

import boto3

The Edge Manager Agent 4513

https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-deployments.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEdgeDeploymentPlan.html

Amazon SageMaker Developer Guide

client = boto3.client("sagemaker")

client.create_edge_deployment_plan(
 EdgeDeploymentPlanName="edge-deployment-plan-name",
 DeviceFleetName="device-fleet-name",
 ModelConfigs=[
 {
 "EdgePackagingJobName": "edge-packaging-job-name",
 "ModelHandle": "model-handle"
 }
],
 Stages=[
 {
 "StageName": "stage-name",
 "DeviceSelectionConfig": {
 "DeviceSubsetType": "SELECTION",
 "DeviceNames": ["device-name-1", "device-name-2"]
 },
 "DeploymentConfig": {
 "FailureHandlingPolicy": "ROLLBACK_ON_FAILURE"
 }
 }
]
)

Instead of specific devices, if you want to deploy to the model to a percentage of devices in your
fleet, then set the value of DeviceSubsetType to "PERCENTAGE" and replace "DeviceNames":
["device-name-1", "device-name-2"] with "Percentage": desired-percentage in the
above example.

Stages can be added after the deployment plan has been created with the
CreateEdgeDeploymentStage API, in case you want to start rolling out new stages after validating
your test rollout success. For more information about deployment stages see DeploymentStage.

Start the edge deployment

After creating the deployment plan and the deployment stages, you can start the deployment with
the StartEdgeDeploymentStage API.

client.start_edge_deployment_stage(

The Edge Manager Agent 4514

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEdgeDeploymentStage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeploymentStage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StartEdgeDeploymentStage.html

Amazon SageMaker Developer Guide

 EdgeDeploymentPlanName="edge-deployment-plan-name",
 StageName="stage-name"
)

Check the status of the deployment

You can check the status of the edge deployment with the DescribeEdgeDeploymentPlan API.

client.describe_edge_deployment_plan(
 EdgeDeploymentPlanName="edge-deployment-plan-name"
)

Manage Model

The Edge Manager agent can load multiple models at a time and make inference with loaded
models on edge devices. The number of models the agent can load is determined by the available
memory on the device. The agent validates the model signature and loads into memory all the
artifacts produced by the edge packaging job. This step requires all the required certificates
described in previous steps to be installed along with rest of the binary installation. If the model’s
signature cannot be validated, then loading of the model fails with appropriate return code and
reason.

SageMaker Edge Manager agent provides a list of Model Management APIs that implement control
plane and data plane APIs on edge devices. Along with this documentation, we recommend going
through the sample client implementation which shows canonical usage of the below described
APIs.

The proto file is available as a part of the release artifacts (inside the release tarball). In this doc,
we list and describe the usage of APIs listed in this proto file.

Note

There is one-to-one mapping for these APIs on Windows release and a sample code for
an application implement in C# is shared with the release artifacts for Windows. Below
instructions are for running the Agent as a standalone process, applicable for to the release
artifacts for Linux.

Manage Model 4515

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEdgeDeploymentPlan.html

Amazon SageMaker Developer Guide

Extract the archive based on your OS. Where VERSION is broken into three components:
<MAJOR_VERSION>.<YYYY-MM-DD>-<SHA-7>. See Installing the Edge Manager agent for
information on how to obtain the release version (<MAJOR_VERSION>), time stamp of the release
artifact (<YYYY-MM-DD>), and the repository commit ID (SHA-7)

Linux

The zip archive can be extracted with the command:

tar -xvzf <VERSION>.tgz

Windows

The zip archive can be extracted with the UI or command:

unzip <VERSION>.tgz

The release artifact hierarchy (after extracting the tar/zip archive) is shown below. The agent
proto file is available under api/.

0.20201205.7ee4b0b
bin
sagemaker_edge_agent_binary
sagemaker_edge_agent_client_example
docs
api
agent.proto
attributions
agent.txt
core.txt
examples
ipc_example
CMakeLists.txt
sagemaker_edge_client.cc
sagemaker_edge_client_example.cc
sagemaker_edge_client.hh
sagemaker_edge.proto
README.md
shm.cc
shm.hh
street_small.bmp

Manage Model 4516

Amazon SageMaker Developer Guide

Topics

• Load Model

• Unload Model

• List Models

• Describe Model

• Capture Data

• Get Capture Status

• Predict

Load Model

The Edge Manager agent supports loading multiple models. This API validates the model signature
and loads into memory all the artifacts produced by the EdgePackagingJob operation. This step
requires all the required certificates to be installed along with rest of the agent binary installation.
If the model’s signature cannot be validated then this step fails with appropriate return code and
error messages in the log.

// perform load for a model
// Note:
// 1. currently only local filesystem paths are supported for loading models.
// 2. multiple models can be loaded at the same time, as limited by available device
 memory
// 3. users are required to unload any loaded model to load another model.
// Status Codes:
// 1. OK - load is successful
// 2. UNKNOWN - unknown error has occurred
// 3. INTERNAL - an internal error has occurred
// 4. NOT_FOUND - model doesn't exist at the url
// 5. ALREADY_EXISTS - model with the same name is already loaded
// 6. RESOURCE_EXHAUSTED - memory is not available to load the model
// 7. FAILED_PRECONDITION - model is not compiled for the machine.
//
rpc LoadModel(LoadModelRequest) returns (LoadModelResponse);

Input

//
// request for LoadModel rpc call

Manage Model 4517

Amazon SageMaker Developer Guide

//
message LoadModelRequest {
 string url = 1;
 string name = 2; // Model name needs to match regex "^[a-zA-Z0-9](-*[a-zA-Z0-9])*
$"
}

Output

//
//
// response for LoadModel rpc call
//
message LoadModelResponse {
 Model model = 1;
}

//
// Model represents the metadata of a model
// url - url representing the path of the model
// name - name of model
// input_tensor_metadatas - TensorMetadata array for the input tensors
// output_tensor_metadatas - TensorMetadata array for the output tensors
//
// Note:
// 1. input and output tensor metadata could empty for dynamic models.
//
message Model {
 string url = 1;
 string name = 2;
 repeated TensorMetadata input_tensor_metadatas = 3;
 repeated TensorMetadata output_tensor_metadatas = 4;
}

Unload Model

Unloads a previously loaded model. It is identified via the model alias which was provided during
loadModel. If the alias is not found or model is not loaded then returns error.

//
// perform unload for a model
// Status Codes:

Manage Model 4518

Amazon SageMaker Developer Guide

// 1. OK - unload is successful
// 2. UNKNOWN - unknown error has occurred
// 3. INTERNAL - an internal error has occurred
// 4. NOT_FOUND - model doesn't exist
//
rpc UnLoadModel(UnLoadModelRequest) returns (UnLoadModelResponse);

Input

//
// request for UnLoadModel rpc call
//
message UnLoadModelRequest {
 string name = 1; // Model name needs to match regex "^[a-zA-Z0-9](-*[a-zA-Z0-9])*$"
}

Output

//
// response for UnLoadModel rpc call
//
message UnLoadModelResponse {}

List Models

Lists all the loaded models and their aliases.

//
// lists the loaded models
// Status Codes:
// 1. OK - unload is successful
// 2. UNKNOWN - unknown error has occurred
// 3. INTERNAL - an internal error has occurred
//
rpc ListModels(ListModelsRequest) returns (ListModelsResponse);

Input

//
// request for ListModels rpc call

Manage Model 4519

Amazon SageMaker Developer Guide

//
message ListModelsRequest {}

Output

//
// response for ListModels rpc call
//
message ListModelsResponse {
 repeated Model models = 1;
}

Describe Model

Describes a model that is loaded on the agent.

//
// Status Codes:
// 1. OK - load is successful
// 2. UNKNOWN - unknown error has occurred
// 3. INTERNAL - an internal error has occurred
// 4. NOT_FOUND - model doesn't exist at the url
//
rpc DescribeModel(DescribeModelRequest) returns (DescribeModelResponse);

Input

//
// request for DescribeModel rpc call
//
message DescribeModelRequest {
 string name = 1;
}

Output

//
// response for DescribeModel rpc call
//
message DescribeModelResponse {
 Model model = 1;

Manage Model 4520

Amazon SageMaker Developer Guide

}

Capture Data

Allows the client application to capture input and output tensors in Amazon S3 bucket, and
optionally the auxiliary. The client application is expected to pass a unique capture ID along with
each call to this API. This can be later used to query status of the capture.

//
// allows users to capture input and output tensors along with auxiliary data.
// Status Codes:
// 1. OK - data capture successfully initiated
// 2. UNKNOWN - unknown error has occurred
// 3. INTERNAL - an internal error has occurred
// 5. ALREADY_EXISTS - capture initiated for the given capture_id
// 6. RESOURCE_EXHAUSTED - buffer is full cannot accept any more requests.
// 7. OUT_OF_RANGE - timestamp is in the future.
// 8. INVALID_ARGUMENT - capture_id is not of expected format.
//
rpc CaptureData(CaptureDataRequest) returns (CaptureDataResponse);

Input

enum Encoding {
 CSV = 0;
 JSON = 1;
 NONE = 2;
 BASE64 = 3;
}

//
// AuxilaryData represents a payload of extra data to be capture along with inputs
 and outputs of inference
// encoding - supports the encoding of the data
// data - represents the data of shared memory, this could be passed in two ways:
// a. send across the raw bytes of the multi-dimensional tensor array
// b. send a SharedMemoryHandle which contains the posix shared memory segment id
 and
// offset in bytes to location of multi-dimensional tensor array.
//
message AuxilaryData {

Manage Model 4521

Amazon SageMaker Developer Guide

 string name = 1;
 Encoding encoding = 2;
 oneof data {
 bytes byte_data = 3;
 SharedMemoryHandle shared_memory_handle = 4;
 }
}

//
// Tensor represents a tensor, encoded as contiguous multi-dimensional array.
// tensor_metadata - represents metadata of the shared memory segment
// data_or_handle - represents the data of shared memory, this could be passed in
 two ways:
// a. send across the raw bytes of the multi-dimensional tensor array
// b. send a SharedMemoryHandle which contains the posix shared memory segment
// id and offset in bytes to location of multi-dimensional tensor array.
//
message Tensor {
 TensorMetadata tensor_metadata = 1; //optional in the predict request
 oneof data {
 bytes byte_data = 4;
 // will only be used for input tensors
 SharedMemoryHandle shared_memory_handle = 5;
 }
}

//
// request for CaptureData rpc call
//
message CaptureDataRequest {
 string model_name = 1;
 string capture_id = 2; //uuid string
 Timestamp inference_timestamp = 3;
 repeated Tensor input_tensors = 4;
 repeated Tensor output_tensors = 5;
 repeated AuxilaryData inputs = 6;
 repeated AuxilaryData outputs = 7;
}

Output

//
// response for CaptureData rpc call

Manage Model 4522

Amazon SageMaker Developer Guide

//
message CaptureDataResponse {}

Get Capture Status

Depending on the models loaded the input and output tensors can be large (for many edge
devices). Capture to the cloud can be time consuming. So the CaptureData() is implemented
as an asynchronous operation. A capture ID is a unique identifier that the client provides during
capture data call, this ID can be used to query the status of the asynchronous call.

//
// allows users to query status of capture data operation
// Status Codes:
// 1. OK - data capture successfully initiated
// 2. UNKNOWN - unknown error has occurred
// 3. INTERNAL - an internal error has occurred
// 4. NOT_FOUND - given capture id doesn't exist.
//
rpc GetCaptureDataStatus(GetCaptureDataStatusRequest) returns
 (GetCaptureDataStatusResponse);

Input

//
// request for GetCaptureDataStatus rpc call
//
message GetCaptureDataStatusRequest {
 string capture_id = 1;
}

Output

enum CaptureDataStatus {
 FAILURE = 0;
 SUCCESS = 1;
 IN_PROGRESS = 2;
 NOT_FOUND = 3;
}

//
// response for GetCaptureDataStatus rpc call

Manage Model 4523

Amazon SageMaker Developer Guide

//
message GetCaptureDataStatusResponse {
 CaptureDataStatus status = 1;
}

Predict

The predict API performs inference on a previously loaded model. It accepts a request in the
form of a tensor that is directly fed into the neural network. The output is the output tensor (or
scalar) from the model. This is a blocking call.

//
// perform inference on a model.
//
// Note:
// 1. users can chose to send the tensor data in the protobuf message or
// through a shared memory segment on a per tensor basis, the Predict
// method with handle the decode transparently.
// 2. serializing large tensors into the protobuf message can be quite expensive,
// based on our measurements it is recommended to use shared memory of
// tenors larger than 256KB.
// 3. SMEdge IPC server will not use shared memory for returning output tensors,
// i.e., the output tensor data will always send in byte form encoded
// in the tensors of PredictResponse.
// 4. currently SMEdge IPC server cannot handle concurrent predict calls, all
// these call will be serialized under the hood. this shall be addressed
// in a later release.
// Status Codes:
// 1. OK - prediction is successful
// 2. UNKNOWN - unknown error has occurred
// 3. INTERNAL - an internal error has occurred
// 4. NOT_FOUND - when model not found
// 5. INVALID_ARGUMENT - when tenors types mismatch
//
rpc Predict(PredictRequest) returns (PredictResponse);

Input

// request for Predict rpc call
//
message PredictRequest {

Manage Model 4524

Amazon SageMaker Developer Guide

string name = 1;
repeated Tensor tensors = 2;
}

//
// Tensor represents a tensor, encoded as contiguous multi-dimensional array.
// tensor_metadata - represents metadata of the shared memory segment
// data_or_handle - represents the data of shared memory, this could be passed in
 two ways:
// a. send across the raw bytes of the multi-dimensional
 tensor array
// b. send a SharedMemoryHandle which contains the posix
 shared memory segment
// id and offset in bytes to location of multi-
dimensional tensor array.
//
message Tensor {
 TensorMetadata tensor_metadata = 1; //optional in the predict request
 oneof data {
 bytes byte_data = 4;
 // will only be used for input tensors
 SharedMemoryHandle shared_memory_handle = 5;
 }
}

//
// Tensor represents a tensor, encoded as contiguous multi-dimensional array.
// tensor_metadata - represents metadata of the shared memory segment
// data_or_handle - represents the data of shared memory, this could be passed in
 two ways:
// a. send across the raw bytes of the multi-dimensional
 tensor array
// b. send a SharedMemoryHandle which contains the posix
 shared memory segment
// id and offset in bytes to location of multi-
dimensional tensor array.
//
message Tensor {
 TensorMetadata tensor_metadata = 1; //optional in the predict request
 oneof data {
 bytes byte_data = 4;
 // will only be used for input tensors
 SharedMemoryHandle shared_memory_handle = 5;
 }

Manage Model 4525

Amazon SageMaker Developer Guide

}

//
// TensorMetadata represents the metadata for a tensor
// name - name of the tensor
// data_type - data type of the tensor
// shape - array of dimensions of the tensor
//
message TensorMetadata {
 string name = 1;
 DataType data_type = 2;
 repeated int32 shape = 3;
}

//
// SharedMemoryHandle represents a posix shared memory segment
// offset - offset in bytes from the start of the shared memory segment.
// segment_id - shared memory segment id corresponding to the posix shared memory
 segment.
// size - size in bytes of shared memory segment to use from the offset position.
//
message SharedMemoryHandle {
 uint64 size = 1;
 uint64 offset = 2;
 uint64 segment_id = 3;
}

Output

Note

The PredictResponse only returns Tensors and not SharedMemoryHandle.

// response for Predict rpc call
//
message PredictResponse {
 repeated Tensor tensors = 1;
}

Manage Model 4526

Amazon SageMaker Developer Guide

SageMaker Edge Manager end of life

Starting in April 26, 2024, you can no longer access Amazon SageMaker Edge Manager through the
AWS management console, make edge packaging jobs, and manage edge device fleets.

FAQs

Use the following sections to get answers to commonly asked questions about the SageMaker Edge
Manager end of life (EOL).

Q: What happens to my Amazon SageMaker Edge Manager after the EOL date?

A: After April 26, 2024, all references to edge packaging jobs, devices, and device fleets are deleted
from the Edge Manager service. You can no longer discover or access the Edge Manager service
from your AWS console and applications that call on the Edge Manager service APIs no longer
work.

Q: Will I be billed for Edge Manager resources remaining in my account after the EOL date?

A: Resources created by Edge Manager, such as edge packages inside Amazon S3 buckets, AWS
IoT things, and AWS IAM roles, continue to exist on their respective services after April 26, 2024.
To avoid being billed after Edge Manager is no longer supported, delete your resources. For more
information on deleting your resources, see Delete Edge Manager resources.

Q: How do I delete my Amazon SageMaker Edge Manager resources?

A: Resources created by Edge Manager, such as edge packages inside Amazon S3 buckets, AWS
IoT things, and AWS IAM roles, continue to exist on their respective services after April 26, 2024.
To avoid being billed after Edge Manager is no longer supported, delete your resources. For more
information on deleting your resources, see Delete Edge Manager resources.

Q: How can I continue deploying models on the edge?

A: We suggest you try one the following machine learning tools. For a cross-platform edge
runtime, use ONNX. ONNX is a popular, well-maintained open-source solution that translates your
models into instructions that many types of hardware can run, and is compatible with the latest
ML frameworks. ONNX can be integrated into your SageMaker workflows as an automated step for
your edge deployments.

For edge deployments and monitoring use AWS IoT Greengrass V2. AWS IoT Greengrass V2 has an
extensible packaging and deployment mechanism that can fit models and applications at the edge.

SageMaker Edge Manager end of life 4527

https://onnxruntime.ai/

Amazon SageMaker Developer Guide

You can use the built-in MQTT channels to send model telemetry back for Amazon SageMaker
Model Monitor or use the built-in permissions system to send data captured from the model back
to Amazon Simple Storage Service (Amazon S3). If you don't or can't use AWS IoT Greengrass V2,
we suggest using MQTT and IoT Jobs (C/C++ library) to create a lightweight OTA mechanism to
deliver models.

We have prepared sample code available at this GitHub repository to help you transition to these
suggested tools.

Delete Edge Manager resources

Resources created by Edge Manager continue to exist after April 26, 2024. To avoid billing, delete
these resources.

To delete AWS IoT Greengrass resources, do the following:

1. In the AWS IoT Core console, choose Greengrass devices under Manage.

2. Choose Components.

3. Under My components, Edge Manager created components are in the format SageMakerEdge
(EdgePackagingJobName). Select the component you want to delete.

4. Then choose Delete version.

To delete a AWS IoT role alias, do the following:

1. In the AWS IoT Core console, choose Security under Manage.

2. Choose Role aliases.

3. Edge Manager created role aliases are in the format SageMakerEdge-{DeviceFleetName}. Select
the role you want to delete.

4. Choose Delete.

To delete packaging jobs in Amazon S3 buckets, do the following:

1. In the SageMaker console, choose Edge Inference.

2. Choose Edge packaging jobs.

3. Select one of the edge packaging jobs. Copy the Amazon S3 URI under Model artifact in the
Output configuration section.

SageMaker Edge Manager end of life 4528

https://github.com/aws-samples/ml-edge-getting-started

Amazon SageMaker Developer Guide

4. In the Amazon S3 console, navigate to the corresponding location, and check if you need
to delete the model artifact. To delete the model artifact, select the Amazon S3 object and
choose Delete.

Optimize model performance using Neo

Neo is a capability of Amazon SageMaker that enables machine learning models to train once and
run anywhere in the cloud and at the edge.

If you are a first time user of SageMaker Neo, we recommend you check out the Getting Started
with Edge Devices section to get step-by-step instructions on how to compile and deploy to an
edge device.

What is SageMaker Neo?

Generally, optimizing machine learning models for inference on multiple platforms is difficult
because you need to hand-tune models for the specific hardware and software configuration of
each platform. If you want to get optimal performance for a given workload, you need to know
the hardware architecture, instruction set, memory access patterns, and input data shapes, among
other factors. For traditional software development, tools such as compilers and profilers simplify
the process. For machine learning, most tools are specific to the framework or to the hardware.
This forces you into a manual trial-and-error process that is unreliable and unproductive.

Neo automatically optimizes Gluon, Keras, MXNet, PyTorch, TensorFlow, TensorFlow-Lite, and
ONNX models for inference on Android, Linux, and Windows machines based on processors
from Ambarella, ARM, Intel, Nvidia, NXP, Qualcomm, Texas Instruments, and Xilinx. Neo is tested
with computer vision models available in the model zoos across the frameworks. SageMaker
Neo supports compilation and deployment for two main platforms: cloud instances (including
Inferentia) and edge devices.

For more information about supported frameworks and cloud instance types you can deploy to, see
Supported Instance Types and Frameworks for cloud instances.

For more information about supported frameworks, edge devices, operating systems, chip
architectures, and common machine learning models tested by SageMaker Neo for edge devices,
see Supported Frameworks, Devices, Systems, and Architectures for edge devices.

Optimize model performance using Neo 4529

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-getting-started-edge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-getting-started-edge.html

Amazon SageMaker Developer Guide

How it Works

Neo consists of a compiler and a runtime. First, the Neo compilation API reads models exported
from various frameworks. It converts the framework-specific functions and operations into a
framework-agnostic intermediate representation. Next, it performs a series of optimizations. Then
it generates binary code for the optimized operations, writes them to a shared object library, and
saves the model definition and parameters into separate files. Neo also provides a runtime for each
target platform that loads and executes the compiled model.

You can create a Neo compilation job from either the SageMaker console, the AWS Command
Line Interface (AWS CLI), a Python notebook, or the SageMaker SDK.For information on how to
compile a model, see Use Neo to Compile a Model. With a few CLI commands, an API invocation,
or a few clicks, you can convert a model for your chosen platform. You can deploy the model to a
SageMaker endpoint or on an AWS IoT Greengrass device quickly.

Neo can optimize models with parameters either in FP32 or quantized to INT8 or FP16 bit-width.

Topics

• Use Neo to Compile a Model

• Cloud Instances

• Edge Devices

• Troubleshoot Errors

Use Neo to Compile a Model

This section shows how to create, describe, stop, and list compilation jobs. The following options
are available in Amazon SageMaker Neo for managing the compilation jobs for machine learning

How it Works 4530

Amazon SageMaker Developer Guide

models: the AWS Command Line Interface, the Amazon SageMaker console, or the Amazon
SageMaker SDK.

Topics

• Prepare Model for Compilation

• Compile a Model (AWS Command Line Interface)

• Compile a Model (Amazon SageMaker Console)

• Compile a Model (Amazon SageMaker SDK)

Prepare Model for Compilation

SageMaker Neo requires machine learning models to satisfy specific input data shapes. The input
shape required for compilation depends on the deep learning framework you use. Once your model
input shape is correctly formatted, save your model according to the requirements below. Once you
have a saved model, compress the model artifacts.

Topics

• What input data shapes does SageMaker Neo expect?

• Saving Models for SageMaker Neo

What input data shapes does SageMaker Neo expect?

Before you compile your model, make sure your model is formatted correctly. Neo expects the
name and shape of the expected data inputs for your trained model with JSON format or list
format. The expected inputs are framework specific.

Below are the input shapes SageMaker Neo expects:

Keras

Specify the name and shape (NCHW format) of the expected data inputs using a dictionary format
for your trained model. Note that while Keras model artifacts should be uploaded in NHWC
(channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The
dictionary formats required are as follows:

• For one input: {'input_1':[1,3,224,224]}

• For two inputs: {'input_1': [1,3,224,224], 'input_2':[1,3,224,224]}

Compile Models 4531

Amazon SageMaker Developer Guide

MXNet/ONNX

Specify the name and shape (NCHW format) of the expected data inputs using a dictionary format
for your trained model. The dictionary formats required are as follows:

• For one input: {'data':[1,3,1024,1024]}

• For two inputs: {'var1': [1,1,28,28], 'var2':[1,1,28,28]}

PyTorch

For a PyTorch model, you don't need to provide the name and shape of the expected data inputs if
you meet both of the following conditions:

• You created your model definition file by using PyTorch 2.0 or later. For more information about
how to create the definition file, see the PyTorch section under Saving Models for SageMaker Neo.

• You are compiling your model for a cloud instance. For more information about the instance
types that SageMaker Neo supports, see Supported Instance Types and Frameworks.

If you meet these conditions, SageMaker Neo gets the input configuration from the model
definition file (.pt or .pth) that you create with PyTorch.

Otherwise, you must do the following:

Specify the name and shape (NCHW format) of the expected data inputs using a dictionary format
for your trained model. Alternatively, you can specify the shape only using a list format. The
dictionary formats required are as follows:

• For one input in dictionary format: {'input0':[1,3,224,224]}

• For one input in list format: [[1,3,224,224]]

• For two inputs in dictionary format: {'input0':[1,3,224,224], 'input1':
[1,3,224,224]}

• For two inputs in list format: [[1,3,224,224], [1,3,224,224]]

TensorFlow

Specify the name and shape (NHWC format) of the expected data inputs using a dictionary format
for your trained model. The dictionary formats required are as follows:

Compile Models 4532

Amazon SageMaker Developer Guide

• For one input: {'input':[1,1024,1024,3]}

• For two inputs: {'data1': [1,28,28,1], 'data2':[1,28,28,1]}

TFLite

Specify the name and shape (NHWC format) of the expected data inputs using a dictionary format
for your trained model. The dictionary formats required are as follows:

• For one input: {'input':[1,224,224,3]}

Note

SageMaker Neo only supports TensorFlow Lite for edge device targets. For a list of
supported SageMaker Neo edge device targets, see the SageMaker Neo Devices page. For a
list of supported SageMaker Neo cloud instance targets, see the SageMaker Neo Supported
Instance Types and Frameworks page.

XGBoost

An input data name and shape are not needed.

Saving Models for SageMaker Neo

The following code examples show how to save your model to make it compatible with Neo.
Models must be packaged as compressed tar files (*.tar.gz).

Keras

Keras models require one model definition file (.h5).

There are two options for saving your Keras model in order to make it compatible for SageMaker
Neo:

1. Export to .h5 format with model.save("<model-name>", save_format="h5").

2. Freeze the SavedModel after exporting.

Below is an example of how to export a tf.keras model as a frozen graph (option two):

Compile Models 4533

Amazon SageMaker Developer Guide

import os
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras import backend

tf.keras.backend.set_learning_phase(0)
model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False,
 input_shape=(224, 224, 3), pooling='avg')
model.summary()

Save as a SavedModel
export_dir = 'saved_model/'
model.save(export_dir, save_format='tf')

Freeze saved model
input_node_names = [inp.name.split(":")[0] for inp in model.inputs]
output_node_names = [output.name.split(":")[0] for output in model.outputs]
print("Input names: ", input_node_names)
with tf.Session() as sess:
 loaded = tf.saved_model.load(sess, export_dir=export_dir, tags=["serve"])
 frozen_graph = tf.graph_util.convert_variables_to_constants(sess,

 sess.graph.as_graph_def(),
 output_node_names)
 tf.io.write_graph(graph_or_graph_def=frozen_graph, logdir=".",
 name="frozen_graph.pb", as_text=False)

import tarfile
tar = tarfile.open("frozen_graph.tar.gz", "w:gz")
tar.add("frozen_graph.pb")
tar.close()

Warning

Do not export your model with the SavedModel class using model.save(<path>,
save_format='tf'). This format is suitable for training, but it is not suitable for
inference.

Compile Models 4534

Amazon SageMaker Developer Guide

MXNet

MXNet models must be saved as a single symbol file *-symbol.json and a single parameter
*.params files.

Gluon Models

Define the neural network using the HybridSequential Class. This will run the code in the
style of symbolic programming (as opposed to imperative programming).

from mxnet import nd, sym
from mxnet.gluon import nn

def get_net():
 net = nn.HybridSequential() # Here we use the class HybridSequential.
 net.add(nn.Dense(256, activation='relu'),
 nn.Dense(128, activation='relu'),
 nn.Dense(2))
 net.initialize()
 return net

Define an input to compute a forward calculation.
x = nd.random.normal(shape=(1, 512))
net = get_net()

During the forward calculation, the neural network will automatically infer
the shape of the weight parameters of all the layers based on the shape of
the input.
net(x)

hybridize model
net.hybridize()
net(x)

export model
net.export('<model_name>') # this will create model-symbol.json and
 model-0000.params files

import tarfile
tar = tarfile.open("<model_name>.tar.gz", "w:gz")
for name in ["<model_name>-0000.params", "<model_name>-symbol.json"]:
 tar.add(name)
tar.close()

Compile Models 4535

Amazon SageMaker Developer Guide

For more information about hybridizing models, see the MXNet hybridize documentation.

Gluon Model Zoo (GluonCV)

GluonCV model zoo models come pre-hybridized. So you can just export them.

import numpy as np
import mxnet as mx
import gluoncv as gcv
from gluoncv.utils import export_block
import tarfile

net = gcv.model_zoo.get_model('<model_name>', pretrained=True) # For example, choose
 <model_name> as resnet18_v1
export_block('<model_name>', net, preprocess=True, layout='HWC')

tar = tarfile.open("<model_name>.tar.gz", "w:gz")

for name in ["<model_name>-0000.params", "<model_name>-symbol.json"]:
 tar.add(name)
tar.close()

Non Gluon Models

All non-Gluon models when saved to disk use *-symbol and *.params files. They are
therefore already in the correct format for Neo.

Pass the following 3 parameters: sym, args, aux
mx.model.save_checkpoint('<model_name>',0,sym,args,aux) # this will create
 <model_name>-symbol.json and <model_name>-0000.params files

import tarfile
tar = tarfile.open("<model_name>.tar.gz", "w:gz")

for name in ["<model_name>-0000.params", "<model_name>-symbol.json"]:
 tar.add(name)
tar.close()

PyTorch

PyTorch models must be saved as a definition file (.pt or .pth) with input datatype of float32.

Compile Models 4536

https://mxnet.apache.org/versions/1.7.0/api/python/docs/tutorials/packages/gluon/blocks/hybridize.html

Amazon SageMaker Developer Guide

To save your model, use the torch.jit.trace method followed by the torch.save
method. This process saves an object to a disk file and by default uses python pickle
(pickle_module=pickle) to save the objects and some metadata. Next, convert the saved model
to a compressed tar file.

import torchvision
import torch

model = torchvision.models.resnet18(pretrained=True)
model.eval()
inp = torch.rand(1, 3, 224, 224)
model_trace = torch.jit.trace(model, inp)

Save your model. The following code saves it with the .pth file extension
model_trace.save('model.pth')

Save as a compressed tar file
import tarfile
with tarfile.open('model.tar.gz', 'w:gz') as f:
 f.add('model.pth')
f.close()

If you save your model with PyTorch 2.0 or later, SageMaker Neo derives the input configuration for
the model (the name and shape for its input) from the definition file. In that case, you don't need
to specify the data input configuration to SageMaker when you compile the model.

If you want to prevent SageMaker Neo from deriving the input configuration, you can set the
_store_inputs parameter of torch.jit.trace to False. If you do this, you must specify the
data input configuration to SageMaker when you compile the model.

For more information about the torch.jit.trace method, see TORCH.JIT.TRACE in the PyTorch
documentation.

TensorFlow

TensorFlow requires one .pb or one .pbtxt file and a variables directory that contains variables.
For frozen models, only one .pb or .pbtxt file is required.

The following code example shows how to use the tar Linux command to compress your model.
Run the following in your terminal or in a Jupyter notebook (if you use a Jupyter notebook, insert
the ! magic command at the beginning of the statement):

Compile Models 4537

https://pytorch.org/docs/stable/generated/torch.jit.trace.html#torch.jit.trace

Amazon SageMaker Developer Guide

Download SSD_Mobilenet trained model
!wget http://download.tensorflow.org/models/object_detection/
ssd_mobilenet_v2_coco_2018_03_29.tar.gz

unzip the compressed tar file
!tar xvf ssd_mobilenet_v2_coco_2018_03_29.tar.gz

Compress the tar file and save it in a directory called 'model.tar.gz'
!tar czvf model.tar.gz ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb

The command flags used in this example accomplish the following:

• c: Create an archive

• z: Compress the archive with gzip

• v: Display archive progress

• f: Specify the filename of the archive

Built-In Estimators

Built-in estimators are either made by framework-specific containers or algorithm-specific
containers. Estimator objects for both the built-in algorithm and framework-specific estimator
saves the model in the correct format for you when you train the model using the built-in .fit
method.

For example, you can use a sagemaker.TensorFlow to define a TensorFlow estimator:

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(entry_point='mnist.py',
 role=role, #param role can be arn of a sagemaker execution
 role
 framework_version='1.15.3',
 py_version='py3',
 training_steps=1000,
 evaluation_steps=100,
 instance_count=2,
 instance_type='ml.c4.xlarge')

Then train the model with .fit built-in method:

Compile Models 4538

Amazon SageMaker Developer Guide

estimator.fit(inputs)

Before finally compiling model with the build in compile_model method:

Specify output path of the compiled model
output_path = '/'.join(estimator.output_path.split('/')[:-1])

Compile model
optimized_estimator = estimator.compile_model(target_instance_family='ml_c5',
 input_shape={'data':[1, 784]}, # Batch size 1, 3
 channels, 224x224 Images.
 output_path=output_path,
 framework='tensorflow', framework_version='1.15.3')

You can also use the sagemaker.estimator.Estimator Class to initialize an estimator object
for training and compiling a built-in algorithm with the compile_model method from the
SageMaker Python SDK:

import sagemaker
from sagemaker.image_uris import retrieve
sagemaker_session = sagemaker.Session()
aws_region = sagemaker_session.boto_region_name

Specify built-in algorithm training image
training_image = retrieve(framework='image-classification',
 region=aws_region, image_scope='training')

training_image = retrieve(framework='image-classification', region=aws_region,
 image_scope='training')

Create estimator object for training
estimator = sagemaker.estimator.Estimator(image_uri=training_image,
 role=role, #param role can be arn of a
 sagemaker execution role
 instance_count=1,
 instance_type='ml.p3.8xlarge',
 volume_size = 50,
 max_run = 360000,
 input_mode= 'File',
 output_path=s3_training_output_location,
 base_job_name='image-classification-training'
)

Compile Models 4539

Amazon SageMaker Developer Guide

Setup the input data_channels to be used later for training.

train_data = sagemaker.inputs.TrainingInput(s3_training_data_location,
 content_type='application/x-recordio',
 s3_data_type='S3Prefix')
validation_data = sagemaker.inputs.TrainingInput(s3_validation_data_location,
 content_type='application/x-recordio',
 s3_data_type='S3Prefix')
data_channels = {'train': train_data, 'validation': validation_data}

Train model
estimator.fit(inputs=data_channels, logs=True)

Compile model with Neo

optimized_estimator = estimator.compile_model(target_instance_family='ml_c5',
 input_shape={'data':[1, 3, 224, 224],
 'softmax_label':[1]},
 output_path=s3_compilation_output_location,
 framework='mxnet',
 framework_version='1.7')

For more information about compiling models with the SageMaker Python SDK, see Compile a
Model (Amazon SageMaker SDK).

Compile a Model (AWS Command Line Interface)

This section shows how to manage Amazon SageMaker Neo compilation jobs for machine learning
models using AWS Command Line Interface (CLI). You can create, describe, stop, and list the
compilation jobs.

1. Create a Compilation Job

With the CreateCompilationJob API operation, you can specify the data input format, the S3
bucket in which to store your model, the S3 bucket to which to write the compiled model, and
the target hardware device or platform.

The following table demonstrates how to configure CreateCompilationJob API based on
whether your target is a device or a platform.

Compile Models 4540

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCompilationJob.html

Amazon SageMaker Developer Guide

Device Example

{
 "CompilationJobName": "neo-compilation-job-demo",
 "RoleArn": "arn:aws:iam::<your-account>:role/service-role/AmazonSageMaker-
ExecutionRole-yyyymmddThhmmss",
 "InputConfig": {
 "S3Uri": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/
train",
 "DataInputConfig": "{'data': [1,3,1024,1024]}",
 "Framework": "MXNET"
 },
 "OutputConfig": {
 "S3OutputLocation": "s3://<your-bucket>/sagemaker/neo-compilation-job-
demo-data/compile",
 # A target device specification example for a ml_c5 instance family
 "TargetDevice": "ml_c5"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
 }
}

You can optionally specify the framework version you used with the FrameworkVersion
field if you used the PyTorch framework to train your model and your target device is a
ml_* target.

{
 "CompilationJobName": "neo-compilation-job-demo",
 "RoleArn": "arn:aws:iam::<your-account>:role/service-role/AmazonSageMaker-
ExecutionRole-yyyymmddThhmmss",
 "InputConfig": {
 "S3Uri": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/
train",
 "DataInputConfig": "{'data': [1,3,1024,1024]}",
 "Framework": "PYTORCH",
 "FrameworkVersion": "1.6"
 },
 "OutputConfig": {
 "S3OutputLocation": "s3://<your-bucket>/sagemaker/neo-compilation-job-
demo-data/compile",

Compile Models 4541

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InputConfig.html#sagemaker-Type-InputConfig-FrameworkVersion

Amazon SageMaker Developer Guide

 # A target device specification example for a ml_c5 instance family
 "TargetDevice": "ml_c5",
 # When compiling for ml_* instances using PyTorch framework, use the
 "CompilerOptions" field in
 # OutputConfig to provide the correct data type ("dtype") of the model’s
 input. Default assumed is "float32"
 "CompilerOptions": "{'dtype': 'long'}"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
 }
}

Notes:

• If you saved your model by using PyTorch version 2.0 or later, the
DataInputConfig field is optional. SageMaker Neo gets the input configuration
from the model definition file that you create with PyTorch. For more information
about how to create the definition file, see the PyTorch section under Saving
Models for SageMaker Neo.

• This API field is only supported for PyTorch.

Platform Example

{
 "CompilationJobName": "neo-test-compilation-job",
 "RoleArn": "arn:aws:iam::<your-account>:role/service-role/AmazonSageMaker-
ExecutionRole-yyyymmddThhmmss",
 "InputConfig": {
 "S3Uri": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/
train",
 "DataInputConfig": "{'data': [1,3,1024,1024]}",
 "Framework": "MXNET"
 },
 "OutputConfig": {
 "S3OutputLocation": "s3://<your-bucket>/sagemaker/neo-compilation-job-
demo-data/compile",
 # A target platform configuration example for a p3.2xlarge instance
 "TargetPlatform": {

Compile Models 4542

Amazon SageMaker Developer Guide

 "Os": "LINUX",
 "Arch": "X86_64",
 "Accelerator": "NVIDIA"
 },
 "CompilerOptions": "{'cuda-ver': '10.0', 'trt-ver': '6.0.1', 'gpu-code':
 'sm_70'}"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
 }
}

Note

For the OutputConfig API operation, the TargetDevice and TargetPlatform API
operations are mutually exclusive. You have to choose one of the two options.

To find the JSON string examples of DataInputConfig depending on frameworks, see What
input data shapes Neo expects.

For more information about setting up the configurations, see the InputConfig, OutputConfig,
and TargetPlatform API operations in the SageMaker API reference.

2. After you configure the JSON file, run the following command to create the compilation job:

aws sagemaker create-compilation-job \
--cli-input-json file://job.json \
--region us-west-2

You should get CompilationJobArn

3. Describe the compilation job by running the following command:

aws sagemaker describe-compilation-job \
--compilation-job-name $JOB_NM \
--region us-west-2

4. Stop the compilation job by running the following command:

aws sagemaker stop-compilation-job \

Compile Models 4543

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html#neo-troubleshooting-errors-preventing
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html#neo-troubleshooting-errors-preventing
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InputConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html

Amazon SageMaker Developer Guide

--compilation-job-name $JOB_NM \
--region us-west-2

There is no output for compilation-job operation

5. List the compilation job by running the following command:

aws sagemaker list-compilation-jobs \
--region us-west-2

Compile a Model (Amazon SageMaker Console)

You can create an Amazon SageMaker Neo compilation job in the Amazon SageMaker console.

1. In the Amazon SageMaker console, choose Compilation jobs, and then choose Create
compilation job.

2. On the Create compilation job page, under Job name, enter a name. Then select an IAM role.

Compile Models 4544

Amazon SageMaker Developer Guide

3. If you don’t have an IAM role, choose Create a new role.

4. On the Create an IAM role page, choose Any S3 bucket, and choose Create role.

Compile Models 4545

Amazon SageMaker Developer Guide

5. Non PyTorch Frameworks

Within the Input configuration section, enter the full path of the Amazon S3 bucket URI
that contains your model artifacts in the Location of model artifacts input field. Your
model artifacts must be in a compressed tarball file format (.tar.gz).

For the Data input configuration field, enter the JSON string that specifies the shape of
the input data.

For Machine learning framework, choose the framework of your choice.

Compile Models 4546

Amazon SageMaker Developer Guide

To find the JSON string examples of input data shapes depending on frameworks, see What
input data shapes Neo expects.

PyTorch Framework

Similar instructions apply for compiling PyTorch models. However, if you trained with
PyTorch and are trying to compile the model for ml_* (except ml_inf) target, you can
optionally specify the version of PyTorch you used.

Compile Models 4547

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting.html#neo-troubleshooting-errors-preventing
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting.html#neo-troubleshooting-errors-preventing

Amazon SageMaker Developer Guide

To find the JSON string examples of input data shapes depending on frameworks, see What
input data shapes Neo expects.

Notes

• If you saved your model by using PyTorch version 2.0 or later, the Data input
configuration field is optional. SageMaker Neo gets the input configuration from
the model definition file that you create with PyTorch. For more information
about how to create the definition file, see the PyTorch section under Saving
Models for SageMaker Neo.

• When compiling for ml_* instances using PyTorch framework, use Compiler
options field in Output Configuration to provide the correct data type (dtype)
of the model’s input. The default is set to "float32".

Compile Models 4548

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting.html#neo-troubleshooting-errors-preventing
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting.html#neo-troubleshooting-errors-preventing

Amazon SageMaker Developer Guide

Warning

If you specify a Amazon S3 bucket URI path that leads to .pth file, you
will receive the following error after starting compilation: ClientError:
InputConfiguration: Unable to untar input model.Please confirm
the model is a tar.gz file

6. Go to the Output configuration section. Choose where you want to deploy your model. You
can deploy your model to a Target device or a Target platform. Target devices include cloud
and edge devices. Target platforms refer to specific OS, architecture, and accelerators you
want your model to run on.

For S3 Output location, enter the path to the S3 bucket where you want to store the model.
You can optionally add compiler options in JSON format under the Compiler options section.

Compile Models 4549

Amazon SageMaker Developer Guide

7. Check the status of the compilation job when started. This status of the job can be found at
the top of the Compilation Job page, as shown in the following screenshot. You can also check
the status of it in the Status column.

Compile Models 4550

Amazon SageMaker Developer Guide

8. Check the status of the compilation job when completed. You can check the status in the
Status column as shown in the following screenshot.

Compile a Model (Amazon SageMaker SDK)

You can use the compile_model API in the Amazon SageMaker SDK for Python to compile a
trained model and optimize it for specific target hardware. The API should be invoked on the
estimator object used during model training.

Note

You must set MMS_DEFAULT_RESPONSE_TIMEOUT environment variable to 500 when
compiling the model with MXNet or PyTorch. The environment variable is not needed for
TensorFlow.

The following is an example of how you can compile a model using the
trained_model_estimator object:

Replace the value of expected_trained_model_input below and
specify the name & shape of the expected inputs for your trained model
in json dictionary form
expected_trained_model_input = {'data':[1, 784]}

Replace the example target_instance_family below to your preferred
 target_instance_family
compiled_model = trained_model_estimator.compile_model(target_instance_family='ml_c5',

Compile Models 4551

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html?#sagemaker.estimator.Estimator.compile_model
https://sagemaker.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

 input_shape=expected_trained_model_input,
 output_path='insert s3 output path',
 env={'MMS_DEFAULT_RESPONSE_TIMEOUT': '500'})

The code compiles the model, saves the optimized model at output_path, and creates a
SageMaker model that can be deployed to an endpoint. Sample notebooks of using the SDK for
Python are provided in the Neo Model Compilation Sample Notebooks section.

Cloud Instances

Amazon SageMaker Neo provides compilation support for popular machine learning frameworks
such as TensorFlow, PyTorch, MXNet, and more. You can deploy your compiled model to cloud
instances and AWS Inferentia instances. For a full list of supported frameworks and instances types,
see Supported Instances Types and Frameworks.

You can compile your model in one of three ways: through the AWS CLI, the SageMaker Console,
or the SageMaker SDK for Python. See, Use Neo to Compile a Model for more information. Once
compiled, your model artifacts are stored in the Amazon S3 bucket URI you specified during the
compilation job. You can deploy your compiled model to cloud instances and AWS Inferentia
instances using the SageMaker SDK for Python, AWS SDK for Python (Boto3), AWS CLI, or the AWS
console.

If you deploy your model using AWS CLI, the console, or Boto3, you must select a Docker image
Amazon ECR URI for your primary container. See Neo Inference Container Images for a list of
Amazon ECR URIs.

Topics

• Supported Instance Types and Frameworks

• Deploy a Model

• Request Inferences from a Deployed Service

• Inference Container Images

Supported Instance Types and Frameworks

Amazon SageMaker Neo supports popular deep learning frameworks for both compilation and
deployment. You can deploy your model to cloud instances, AWS Inferentia instance types, or
Amazon Elastic Inference accelerators.

Cloud Instances 4552

https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html#neo-sample-notebooks
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-container-images.html

Amazon SageMaker Developer Guide

The following describes frameworks SageMaker Neo supports and the target cloud instances you
can compile and deploy to. For information on how to deploy your compiled model to a cloud or
Inferentia instance, see Deploy a Model with Cloud Instances. For information on how to deploy
your compiled model with Elastic Inference accelerators, see Use EI on Amazon SageMaker Hosted
Endpoints.

Cloud Instances

SageMaker Neo supports the following deep learning frameworks for CPU and GPU cloud
instances:

Framework Framework
Version

Model
Version

Models Model
Formats
(packaged in
*.tar.gz)

Toolkits

MXNet 1.8.0 Supports
1.8.0 or
earlier

Image
Classific
ation, Object
Detection
, Semantic
Segmentat
ion, Pose
Estimatio
n, Activity
Recognition

One symbol
file (.json)
and one
parameter
file (.params)

GluonCV
v0.8.0

ONNX 1.7.0 Supports
1.7.0 or
earlier

Image
Classification,
SVM

One model
file (.onnx)

Keras 2.2.4 Supports
2.2.4 or
earlier

Image
Classification

One model
definition file
(.h5)

PyTorch 1.4, 1.5, 1.6,
1.7, 1.8, 1.12,
1.13, or 2.0

Supports 1.4,
1.5, 1.6, 1.7,

Image
Classification

One model
definition file
(.pt or .pth)

Cloud Instances 4553

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services.html

Amazon SageMaker Developer Guide

Framework Framework
Version

Model
Version

Models Model
Formats
(packaged in
*.tar.gz)

Toolkits

1.8, 1.12,
1.13, and 2.0

Versions
1.13 and
2.0 support
Object
Detection
, Vision
Transform
er, and
HuggingFace

with input
dtype of
float32

TensorFlow 1.15.3 or 2.9 Supports
1.15.3 and
2.9

Image
Classification

For saved
models,
one .pb or
one .pbtxt
file and a
variables
 directory
that contains
variables

For frozen
models,
only one .pb
or .pbtxt file

Cloud Instances 4554

Amazon SageMaker Developer Guide

Framework Framework
Version

Model
Version

Models Model
Formats
(packaged in
*.tar.gz)

Toolkits

XGBoost 1.3.3 Supports
1.3.3 or
earlier

Decision
Trees

One XGBoost
model file
(.model)
where the
number of
nodes in a
tree is less
than 2^31

Note

“Model Version” is the version of the framework used to train and export the model.

Instance Types

You can deploy your SageMaker compiled model to one of the cloud instances listed below:

Instance Compute
Type

ml_c4 Standard

ml_c5 Standard

ml_m4 Standard

ml_m5 Standard

ml_p2 Accelerated
computing

Cloud Instances 4555

Amazon SageMaker Developer Guide

Instance Compute
Type

ml_p3 Accelerated
computing

ml_g4dn Accelerated
computing

For information on the available vCPU, memory, and price per hour for each instance type, see
Amazon SageMaker Pricing.

Note

When compiling for ml_* instances using PyTorch framework, use Compiler options field
in Output Configuration to provide the correct data type (dtype) of the model’s input.
The default is set to "float32".

AWS Inferentia

SageMaker Neo supports the following deep learning frameworks for Inf1:

Framework Framework
Version

Model
Version

Models Model
Formats
(packaged in
*.tar.gz)

Toolkits

MXNet 1.5 or 1.8 Supports
1.8, 1.5 and
earlier

Image
Classific
ation, Object
Detection
, Semantic
Segmentat
ion, Pose
Estimatio

One symbol
file (.json)
and one
parameter
file (.params)

GluonCV
v0.8.0

Cloud Instances 4556

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Framework Framework
Version

Model
Version

Models Model
Formats
(packaged in
*.tar.gz)

Toolkits

n, Activity
Recognition

PyTorch 1.7, 1.8 or
1.9

Supports 1.9
and earlier

Image
Classification

One model
definition file
(.pt or .pth)
with input
dtype of
float32

TensorFlow 1.15 or 2.5 Supports
2.5, 1.15 and
earlier

Image
Classification

For saved
models,
one .pb or
one .pbtxt
file and a
variables
 directory
that contains
variables

For frozen
models,
only one .pb
or .pbtxt file

Note

“Model Version” is the version of the framework used to train and export the model.

Cloud Instances 4557

Amazon SageMaker Developer Guide

You can deploy your SageMaker Neo-compiled model to AWS Inferentia-based Amazon EC2
Inf1 instances. AWS Inferentia is Amazon's first custom silicon chip designed to accelerate deep
learning. Currently, you can use the ml_inf1 instance to deploy your compiled models.

AWS Inferentia2 and AWS Trainium

Currently, you can deploy your SageMaker Neo-compiled model to AWS Inferentia2-based Amazon
EC2 Inf2 instances (in US East (Ohio) Region), and to AWS Trainium-based Amazon EC2 Trn1
instances (in US East (N. Virginia) Region). For more information about supported models on these
instances, see Model Architecture Fit Guidelines in the AWS Neuron documentation, and the
examples in the Neuron Github repository.

Amazon Elastic Inference

SageMaker Neo supports the following deep learning frameworks for Elastic Inference:

Framework Framework
Version

Model Version Models Model Formats
(packaged in
*.tar.gz)

TensorFlow 2.3.2 Supports 2.3 Image Classific
ation, Object
Detection
, Semantic
Segmentation,
Pose Estimatio
n, Activity
Recognition

For saved
models, one .pb
or one .pbtxt file
and a variables
directory
that contains
variables.

For frozen
models, only
one .pb or .pbtxt
file.

You can deploy your SageMaker Neo-compiled model to an Elastic Inference Accelerator. For more
information, see Use EI on Amazon SageMaker Hosted Endpoints.

Cloud Instances 4558

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/model-architecture-fit.html
https://github.com/aws-neuron/aws-neuron-sagemaker-samples

Amazon SageMaker Developer Guide

Deploy a Model

To deploy an Amazon SageMaker Neo-compiled model to an HTTPS endpoint, you must configure
and create the endpoint for the model using Amazon SageMaker hosting services. Currently,
developers can use Amazon SageMaker APIs to deploy modules on to ml.c5, ml.c4, ml.m5, ml.m4,
ml.p3, ml.p2, and ml.inf1 instances.

For Inferentia and Trainium instances, models need to be compiled specifically for those instances.
Models compiled for other instance types are not guaranteed to work with Inferentia or Trainium
instances.

For Elastic Inference accelerators, models need to be compiled specifically for ml_eia2 devices. For
information on how to deploy your compiled model to an Elastic Inference accelerator, see Use EI
on Amazon SageMaker Hosted Endpoints.

When you deploy a compiled model, you need to use the same instance for the target that you
used for compilation. This creates a SageMaker endpoint that you can use to perform inferences.
You can deploy a Neo-compiled model using any of the following: Amazon SageMaker SDK for
Python, SDK for Python (Boto3), AWS Command Line Interface, and the SageMaker console.

Note

For deploying a model using AWS CLI, the console, or Boto3, see Neo Inference Container
Images to select the inference image URI for your primary container.

Topics

• Prerequisites

• Deploy a Compiled Model Using SageMaker SDK

• Deploy a Compiled Model Using Boto3

• Deploy a Compiled Model Using the AWS CLI

• Deploy a Compiled Model Using the Console

Cloud Instances 4559

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/trainium/
https://aws.amazon.com/machine-learning/elastic-inference/
https://sagemaker.readthedocs.io/en/stable/
https://sagemaker.readthedocs.io/en/stable/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/cli/latest/reference/
https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-container-images.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-container-images.html

Amazon SageMaker Developer Guide

Prerequisites

Note

Follow the instructions in this section if you compiled your model using AWS SDK for
Python (Boto3), AWS CLI, or the SageMaker console.

To create a SageMaker Neo-compiled model, you need the following:

1. A Docker image Amazon ECR URI. You can select one that meets your needs from this list.

2. An entry point script file:

a. For PyTorch and MXNet models:

If you trained your model using SageMaker, the training script must implement the
functions described below. The training script serves as the entry point script during
inference. In the example detailed in MNIST Training, Compilation and Deployment
with MXNet Module and SageMaker Neo, the training script (mnist.py) implements the
required functions.

If you did not train your model using SageMaker, you need to provide an entry point script
(inference.py) file that can be used at the time of inference. Based on the framework—
MXNet or PyTorch—the inference script location must conform to the SageMaker Python
SDK Model Directory Structure for MxNet or Model Directory Structure for PyTorch.

When using Neo Inference Optimized Container images with PyTorch and MXNet on CPU
and GPU instance types, the inference script must implement the following functions:

• model_fn: Loads the model. (Optional)

• input_fn: Converts the incoming request payload into a numpy array.

• predict_fn: Performs the prediction.

• output_fn: Converts the prediction output into the response payload.

• Alternatively, you can define transform_fn to combine input_fn, predict_fn, and
output_fn.

Cloud Instances 4560

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-container-images.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_neo_compilation_jobs/mxnet_mnist/mxnet_mnist_neo.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_neo_compilation_jobs/mxnet_mnist/mxnet_mnist_neo.html
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/using_mxnet.html#model-directory-structure
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#model-directory-structure

Amazon SageMaker Developer Guide

The following are examples of inference.py script within a directory named code
(code/inference.py) for PyTorch and MXNet (Gluon and Module). The examples first
load the model and then serve it on image data on a GPU:

MXNet Module

import numpy as np
import json
import mxnet as mx
import neomx # noqa: F401
from collections import namedtuple

Batch = namedtuple('Batch', ['data'])

Change the context to mx.cpu() if deploying to a CPU endpoint
ctx = mx.gpu()

def model_fn(model_dir):
 # The compiled model artifacts are saved with the prefix 'compiled'
 sym, arg_params, aux_params = mx.model.load_checkpoint('compiled', 0)
 mod = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
 exe = mod.bind(for_training=False,
 data_shapes=[('data', (1,3,224,224))],
 label_shapes=mod._label_shapes)
 mod.set_params(arg_params, aux_params, allow_missing=True)

 # Run warm-up inference on empty data during model load (required for
 GPU)
 data = mx.nd.empty((1,3,224,224), ctx=ctx)
 mod.forward(Batch([data]))
 return mod

def transform_fn(mod, image, input_content_type, output_content_type):
 # pre-processing
 decoded = mx.image.imdecode(image)
 resized = mx.image.resize_short(decoded, 224)
 cropped, crop_info = mx.image.center_crop(resized, (224, 224))
 normalized = mx.image.color_normalize(cropped.astype(np.float32) / 255,
 mean=mx.nd.array([0.485, 0.456, 0.406]),
 std=mx.nd.array([0.229, 0.224, 0.225]))

Cloud Instances 4561

Amazon SageMaker Developer Guide

 transposed = normalized.transpose((2, 0, 1))
 batchified = transposed.expand_dims(axis=0)
 casted = batchified.astype(dtype='float32')
 processed_input = casted.as_in_context(ctx)

 # prediction/inference
 mod.forward(Batch([processed_input]))

 # post-processing
 prob = mod.get_outputs()[0].asnumpy().tolist()
 prob_json = json.dumps(prob)
 return prob_json, output_content_type

MXNet Gluon

import numpy as np
import json
import mxnet as mx
import neomx # noqa: F401

Change the context to mx.cpu() if deploying to a CPU endpoint
ctx = mx.gpu()

def model_fn(model_dir):
 # The compiled model artifacts are saved with the prefix 'compiled'
 block = mx.gluon.nn.SymbolBlock.imports('compiled-symbol.json',
['data'],'compiled-0000.params', ctx=ctx)

 # Hybridize the model & pass required options for Neo: static_alloc=True
 & static_shape=True
 block.hybridize(static_alloc=True, static_shape=True)

 # Run warm-up inference on empty data during model load (required for
 GPU)
 data = mx.nd.empty((1,3,224,224), ctx=ctx)
 warm_up = block(data)
 return block

def input_fn(image, input_content_type):
 # pre-processing
 decoded = mx.image.imdecode(image)
 resized = mx.image.resize_short(decoded, 224)

Cloud Instances 4562

Amazon SageMaker Developer Guide

 cropped, crop_info = mx.image.center_crop(resized, (224, 224))
 normalized = mx.image.color_normalize(cropped.astype(np.float32) / 255,
 mean=mx.nd.array([0.485, 0.456, 0.406]),
 std=mx.nd.array([0.229, 0.224, 0.225]))
 transposed = normalized.transpose((2, 0, 1))
 batchified = transposed.expand_dims(axis=0)
 casted = batchified.astype(dtype='float32')
 processed_input = casted.as_in_context(ctx)
 return processed_input

def predict_fn(processed_input_data, block):
 # prediction/inference
 prediction = block(processed_input_data)
 return prediction

def output_fn(prediction, output_content_type):
 # post-processing
 prob = prediction.asnumpy().tolist()
 prob_json = json.dumps(prob)
 return prob_json, output_content_type

PyTorch 1.4 and Older

import os
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
import io
import json
import pickle

def model_fn(model_dir):
 """Load the model and return it.
 Providing this function is optional.
 There is a default model_fn available which will load the model
 compiled using SageMaker Neo. You can override it here.

Cloud Instances 4563

Amazon SageMaker Developer Guide

 Keyword arguments:
 model_dir -- the directory path where the model artifacts are present
 """

 # The compiled model is saved as "compiled.pt"
 model_path = os.path.join(model_dir, 'compiled.pt')
 with torch.neo.config(model_dir=model_dir, neo_runtime=True):
 model = torch.jit.load(model_path)
 device = torch.device("cuda" if torch.cuda.is_available() else
 "cpu")
 model = model.to(device)

 # We recommend that you run warm-up inference during model load
 sample_input_path = os.path.join(model_dir, 'sample_input.pkl')
 with open(sample_input_path, 'rb') as input_file:
 model_input = pickle.load(input_file)
 if torch.is_tensor(model_input):
 model_input = model_input.to(device)
 model(model_input)
 elif isinstance(model_input, tuple):
 model_input = (inp.to(device) for inp in model_input if
 torch.is_tensor(inp))
 model(*model_input)
 else:
 print("Only supports a torch tensor or a tuple of torch tensors")
 return model

def transform_fn(model, request_body, request_content_type,
 response_content_type):
 """Run prediction and return the output.
 The function
 1. Pre-processes the input request
 2. Runs prediction
 3. Post-processes the prediction output.
 """
 # preprocess
 decoded = Image.open(io.BytesIO(request_body))
 preprocess = transforms.Compose([
 transforms.Resize(256),
 transforms.CenterCrop(224),
 transforms.ToTensor(),
 transforms.Normalize(
 mean=[

Cloud Instances 4564

Amazon SageMaker Developer Guide

 0.485, 0.456, 0.406], std=[
 0.229, 0.224, 0.225]),
])
 normalized = preprocess(decoded)
 batchified = normalized.unsqueeze(0)
 # predict
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 batchified = batchified.to(device)
 output = model.forward(batchified)

 return json.dumps(output.cpu().numpy().tolist()), response_content_type

PyTorch 1.5 and Newer

import os
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
import io
import json
import pickle

def model_fn(model_dir):
 """Load the model and return it.
 Providing this function is optional.
 There is a default_model_fn available, which will load the model
 compiled using SageMaker Neo. You can override the default here.
 The model_fn only needs to be defined if your model needs extra
 steps to load, and can otherwise be left undefined.

 Keyword arguments:
 model_dir -- the directory path where the model artifacts are present
 """

 # The compiled model is saved as "model.pt"
 model_path = os.path.join(model_dir, 'model.pt')
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 model = torch.jit.load(model_path, map_location=device)

Cloud Instances 4565

Amazon SageMaker Developer Guide

 model = model.to(device)

 return model

def transform_fn(model, request_body, request_content_type,
 response_content_type):
 """Run prediction and return the output.
 The function
 1. Pre-processes the input request
 2. Runs prediction
 3. Post-processes the prediction output.
 """
 # preprocess
 decoded = Image.open(io.BytesIO(request_body))
 preprocess = transforms.Compose([
 transforms.Resize(256),
 transforms.CenterCrop(224),
 transforms.ToTensor(),
 transforms.Normalize(
 mean=[
 0.485, 0.456, 0.406], std=[
 0.229, 0.224, 0.225]),
])
 normalized = preprocess(decoded)
 batchified = normalized.unsqueeze(0)

 # predict
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 batchified = batchified.to(device)
 output = model.forward(batchified)
 return json.dumps(output.cpu().numpy().tolist()), response_content_type

b. For inf1 instances or onnx, xgboost, keras container images

For all other Neo Inference-optimized container images, or inferentia instance types,
the entry point script must implement the following functions for Neo Deep Learning
Runtime:

• neo_preprocess: Converts the incoming request payload into a numpy array.

Cloud Instances 4566

Amazon SageMaker Developer Guide

• neo_postprocess: Converts the prediction output from Neo Deep Learning Runtime
into the response body.

Note

The preceding two functions do not use any of the functionalities of MXNet,
PyTorch, or TensorFlow.

For examples of how to use these functions, see Neo Model Compilation Sample
Notebooks.

c. For TensorFlow models

If your model requires custom pre- and post-processing logic before data is sent to
the model, then you must specify an entry point script inference.py file that can
be used at the time of inference. The script should implement either a either a pair of
input_handler and output_handler functions or a single handler function.

Note

Note that if handler function is implemented, input_handler and
output_handler are ignored.

The following is a code example of inference.py script that you can put together with
the compile model to perform custom pre- and post-processing on an image classification
model. The SageMaker client sends the image file as an application/x-image content
type to the input_handler function, where it is converted to JSON. The converted
image file is then sent to the Tensorflow Model Server (TFX) using the REST API.

import json
import numpy as np
import json
import io
from PIL import Image

def input_handler(data, context):

Cloud Instances 4567

https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html#neo-sample-notebooks
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html#neo-sample-notebooks
https://www.tensorflow.org/tfx/serving/api_rest

Amazon SageMaker Developer Guide

 """ Pre-process request input before it is sent to TensorFlow Serving REST
 API

 Args:
 data (obj): the request data, in format of dict or string
 context (Context): an object containing request and configuration details

 Returns:
 (dict): a JSON-serializable dict that contains request body and headers
 """
 f = data.read()
 f = io.BytesIO(f)
 image = Image.open(f).convert('RGB')
 batch_size = 1
 image = np.asarray(image.resize((512, 512)))
 image = np.concatenate([image[np.newaxis, :, :]] * batch_size)
 body = json.dumps({"signature_name": "serving_default", "instances":
 image.tolist()})
 return body

def output_handler(data, context):
 """Post-process TensorFlow Serving output before it is returned to the
 client.

 Args:
 data (obj): the TensorFlow serving response
 context (Context): an object containing request and configuration details

 Returns:
 (bytes, string): data to return to client, response content type
 """
 if data.status_code != 200:
 raise ValueError(data.content.decode('utf-8'))

 response_content_type = context.accept_header
 prediction = data.content
 return prediction, response_content_type

If there is no custom pre- or post-processing, the SageMaker client converts the file image
to JSON in a similar way before sending it over to the SageMaker endpoint.

For more information, see the Deploying to TensorFlow Serving Endpoints in the
SageMaker Python SDK.

Cloud Instances 4568

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#providing-python-scripts-for-pre-pos-processing
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#providing-python-scripts-for-pre-pos-processing

Amazon SageMaker Developer Guide

3. The Amazon S3 bucket URI that contains the compiled model artifacts.

Deploy a Compiled Model Using SageMaker SDK

You must satisfy the prerequisites section if the model was compiled using AWS SDK for Python
(Boto3), AWS CLI, or the Amazon SageMaker console. Follow one of the following use cases to
deploy a model compiled with SageMaker Neo based on how you compiled your model.

Topics

• If you compiled your model using the SageMaker SDK

• If you compiled your model using MXNet or PyTorch

• If you compiled your model using Boto3, SageMaker console, or the CLI for TensorFlow

If you compiled your model using the SageMaker SDK

The sagemaker.Model object handle for the compiled model supplies the deploy() function,
which enables you to create an endpoint to serve inference requests. The function lets you set
the number and type of instances that are used for the endpoint. You must choose an instance
for which you have compiled your model. For example, in the job compiled in Compile a Model
(Amazon SageMaker SDK) section, this is ml_c5.

predictor = compiled_model.deploy(initial_instance_count = 1, instance_type =
 'ml.c5.4xlarge')

Print the name of newly created endpoint
print(predictor.endpoint_name)

If you compiled your model using MXNet or PyTorch

Create the SageMaker model and deploy it using the deploy() API under the framework-specific
Model APIs. For MXNet, it is MXNetModel and for PyTorch, it is PyTorchModel. When you are
creating and deploying an SageMaker model, you must set MMS_DEFAULT_RESPONSE_TIMEOUT
environment variable to 500 and specify the entry_point parameter as the inference script
(inference.py) and the source_dir parameter as the directory location (code) of the inference
script. To prepare the inference script (inference.py) follow the Prerequisites step.

The following example shows how to use these functions to deploy a compiled model using the
SageMaker SDK for Python:

Cloud Instances 4569

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-prerequisites
https://sagemaker.readthedocs.io/en/stable/api/inference/model.html?highlight=sagemaker.Model
https://sagemaker.readthedocs.io/en/stable/api/inference/model.html?highlight=sagemaker.Model#sagemaker.model.Model.deploy
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation-sagemaker-sdk.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation-sagemaker-sdk.html
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/sagemaker.mxnet.html?highlight=MXNetModel#mxnet-model
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/sagemaker.pytorch.html?highlight=PyTorchModel#sagemaker.pytorch.model.PyTorchModel

Amazon SageMaker Developer Guide

MXNet

from sagemaker.mxnet import MXNetModel

Create SageMaker model and deploy an endpoint
sm_mxnet_compiled_model = MXNetModel(
 model_data='insert S3 path of compiled MXNet model archive',
 role='AmazonSageMaker-ExecutionRole',
 entry_point='inference.py',
 source_dir='code',
 framework_version='1.8.0',
 py_version='py3',
 image_uri='insert appropriate ECR Image URI for MXNet',
 env={'MMS_DEFAULT_RESPONSE_TIMEOUT': '500'},
)

Replace the example instance_type below to your preferred instance_type
predictor = sm_mxnet_compiled_model.deploy(initial_instance_count = 1, instance_type
 = 'ml.p3.2xlarge')

Print the name of newly created endpoint
print(predictor.endpoint_name)

PyTorch 1.4 and Older

from sagemaker.pytorch import PyTorchModel

Create SageMaker model and deploy an endpoint
sm_pytorch_compiled_model = PyTorchModel(
 model_data='insert S3 path of compiled PyTorch model archive',
 role='AmazonSageMaker-ExecutionRole',
 entry_point='inference.py',
 source_dir='code',
 framework_version='1.4.0',
 py_version='py3',
 image_uri='insert appropriate ECR Image URI for PyTorch',
 env={'MMS_DEFAULT_RESPONSE_TIMEOUT': '500'},
)

Replace the example instance_type below to your preferred instance_type
predictor = sm_pytorch_compiled_model.deploy(initial_instance_count = 1,
 instance_type = 'ml.p3.2xlarge')

Cloud Instances 4570

Amazon SageMaker Developer Guide

Print the name of newly created endpoint
print(predictor.endpoint_name)

PyTorch 1.5 and Newer

from sagemaker.pytorch import PyTorchModel

Create SageMaker model and deploy an endpoint
sm_pytorch_compiled_model = PyTorchModel(
 model_data='insert S3 path of compiled PyTorch model archive',
 role='AmazonSageMaker-ExecutionRole',
 entry_point='inference.py',
 source_dir='code',
 framework_version='1.5',
 py_version='py3',
 image_uri='insert appropriate ECR Image URI for PyTorch',
)

Replace the example instance_type below to your preferred instance_type
predictor = sm_pytorch_compiled_model.deploy(initial_instance_count = 1,
 instance_type = 'ml.p3.2xlarge')

Print the name of newly created endpoint
print(predictor.endpoint_name)

Note

The AmazonSageMakerFullAccess and AmazonS3ReadOnlyAccess policies must be
attached to the AmazonSageMaker-ExecutionRole IAM role.

If you compiled your model using Boto3, SageMaker console, or the CLI for TensorFlow

Construct a TensorFlowModel object, then call deploy:

role='AmazonSageMaker-ExecutionRole'
model_path='S3 path for model file'
framework_image='inference container arn'
tf_model = TensorFlowModel(model_data=model_path,
 framework_version='1.15.3',

Cloud Instances 4571

Amazon SageMaker Developer Guide

 role=role,
 image_uri=framework_image)
instance_type='ml.c5.xlarge'
predictor = tf_model.deploy(instance_type=instance_type,
 initial_instance_count=1)

See Deploying directly from model artifacts for more information.

You can select a Docker image Amazon ECR URI that meets your needs from this list.

For more information on how to construct a TensorFlowModel object, see the SageMaker SDK.

Note

Your first inference request might have high latency if you deploy your model on a GPU.
This is because an optimized compute kernel is made on the first inference request. We
recommend that you make a warm-up file of inference requests and store that alongside
your model file before sending it off to a TFX. This is known as “warming up” the model.

The following code snippet demonstrates how to produce the warm-up file for image classification
example in the prerequisites section:

import tensorflow as tf
from tensorflow_serving.apis import classification_pb2
from tensorflow_serving.apis import inference_pb2
from tensorflow_serving.apis import model_pb2
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_log_pb2
from tensorflow_serving.apis import regression_pb2
import numpy as np

with tf.python_io.TFRecordWriter("tf_serving_warmup_requests") as writer:
 img = np.random.uniform(0, 1, size=[224, 224, 3]).astype(np.float32)
 img = np.expand_dims(img, axis=0)
 test_data = np.repeat(img, 1, axis=0)
 request = predict_pb2.PredictRequest()
 request.model_spec.name = 'compiled_models'
 request.model_spec.signature_name = 'serving_default'
 request.inputs['Placeholder:0'].CopyFrom(tf.compat.v1.make_tensor_proto(test_data,
 shape=test_data.shape, dtype=tf.float32))
 log = prediction_log_pb2.PredictionLog(

Cloud Instances 4572

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#deploying-directly-from-model-artifacts
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-container-images.html
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/sagemaker.tensorflow.html#tensorflow-serving-model
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-prerequisites

Amazon SageMaker Developer Guide

 predict_log=prediction_log_pb2.PredictLog(request=request))
 writer.write(log.SerializeToString())

For more information on how to “warm up” your model, see the TensorFlow TFX page.

Deploy a Compiled Model Using Boto3

You must satisfy the prerequisites section if the model was compiled using AWS SDK for Python
(Boto3), AWS CLI, or the Amazon SageMaker console. Follow the steps below to create and deploy
a SageMaker Neo-compiled model using Amazon Web Services SDK for Python (Boto3).

Topics

• Deploy the Model

Deploy the Model

After you have satisfied the prerequisites, use the create_model, create_enpoint_config,
and create_endpoint APIs.

The following example shows how to use these APIs to deploy a model compiled with Neo:

import boto3
client = boto3.client('sagemaker')

create sagemaker model
create_model_api_response = client.create_model(
 ModelName='my-sagemaker-model',
 PrimaryContainer={
 'Image': <insert the ECR Image URI>,
 'ModelDataUrl': 's3://path/to/model/artifact/
model.tar.gz',
 'Environment': {}
 },
 ExecutionRoleArn='ARN for AmazonSageMaker-
ExecutionRole'
)

print ("create_model API response", create_model_api_response)

create sagemaker endpoint config
create_endpoint_config_api_response = client.create_endpoint_config(

Cloud Instances 4573

https://www.tensorflow.org/tfx/serving/saved_model_warmup
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-prerequisites
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-prerequisites

Amazon SageMaker Developer Guide

 EndpointConfigName='sagemaker-neomxnet-
endpoint-configuration',
 ProductionVariants=[
 {
 'VariantName': <provide your
 variant name>,
 'ModelName': 'my-sagemaker-model',
 'InitialInstanceCount': 1,
 'InstanceType': <provide your
 instance type here>
 },
]
)

print ("create_endpoint_config API response", create_endpoint_config_api_response)

create sagemaker endpoint
create_endpoint_api_response = client.create_endpoint(
 EndpointName='provide your endpoint name',
 EndpointConfigName=<insert your endpoint config
 name>,
)

print ("create_endpoint API response", create_endpoint_api_response)

Note

The AmazonSageMakerFullAccess and AmazonS3ReadOnlyAccess policies must be
attached to the AmazonSageMaker-ExecutionRole IAM role.

For full syntax of create_model, create_endpoint_config, and create_endpoint APIs, see
create_model, create_endpoint_config, and create_endpoint, respectively.

If you did not train your model using SageMaker, specify the following environment variables:

MXNet and PyTorch

"Environment": {
 "SAGEMAKER_PROGRAM": "inference.py",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code",
 "SAGEMAKER_CONTAINER_LOG_LEVEL": "20",

Cloud Instances 4574

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint

Amazon SageMaker Developer Guide

 "SAGEMAKER_REGION": "insert your region",
 "MMS_DEFAULT_RESPONSE_TIMEOUT": "500"
}

TensorFlow

"Environment": {
 "SAGEMAKER_PROGRAM": "inference.py",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code",
 "SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
 "SAGEMAKER_REGION": "insert your region"
}

If you trained your model using SageMaker, specify the environment variable
SAGEMAKER_SUBMIT_DIRECTORY as the full Amazon S3 bucket URI that contains the training
script.

Deploy a Compiled Model Using the AWS CLI

You must satisfy the prerequisites section if the model was compiled using AWS SDK for Python
(Boto3), AWS CLI, or the Amazon SageMaker console. Follow the steps below to create and deploy
a SageMaker Neo-compiled model using the AWS CLI.

Topics

• Deploy the Model

Deploy the Model

After you have satisfied the prerequisites, use the create-model, create-enpoint-config,
and create-endpoint AWS CLI commands. The following steps explain how to use these
commands to deploy a model compiled with Neo:

Create a Model

From Neo Inference Container Images, select the inference image URI and then use create-model
API to create a SageMaker model. You can do this with two steps:

Cloud Instances 4575

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-prerequisites
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-prerequisites
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-container-images.html

Amazon SageMaker Developer Guide

1. Create a create_model.json file. Within the file, specify the name of the model, the image
URI, the path to the model.tar.gz file in your Amazon S3 bucket, and your SageMaker
execution role:

{
 "ModelName": "insert model name",
 "PrimaryContainer": {
 "Image": "insert the ECR Image URI",
 "ModelDataUrl": "insert S3 archive URL",
 "Environment": {"See details below"}
 },
 "ExecutionRoleArn": "ARN for AmazonSageMaker-ExecutionRole"
}

If you trained your model using SageMaker, specify the following environment variable:

"Environment": {
 "SAGEMAKER_SUBMIT_DIRECTORY" : "[Full S3 path for *.tar.gz file containing the
 training script]"
}

If you did not train your model using SageMaker, specify the following environment variables:

MXNet and PyTorch

"Environment": {
 "SAGEMAKER_PROGRAM": "inference.py",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code",
 "SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
 "SAGEMAKER_REGION": "insert your region",
 "MMS_DEFAULT_RESPONSE_TIMEOUT": "500"
}

TensorFlow

"Environment": {
 "SAGEMAKER_PROGRAM": "inference.py",
 "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code",
 "SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
 "SAGEMAKER_REGION": "insert your region"
}

Cloud Instances 4576

Amazon SageMaker Developer Guide

Note

The AmazonSageMakerFullAccess and AmazonS3ReadOnlyAccess policies must be
attached to the AmazonSageMaker-ExecutionRole IAM role.

2. Run the following command:

aws sagemaker create-model --cli-input-json file://create_model.json

For the full syntax of the create-model API, see create-model.

Create an Endpoint Configuration

After creating a SageMaker model, create the endpoint configuration using the create-
endpoint-config API. To do this, create a JSON file with your endpoint configuration
specifications. For example, you can use the following code template and save it as
create_config.json:

{
 "EndpointConfigName": "<provide your endpoint config name>",
 "ProductionVariants": [
 {
 "VariantName": "<provide your variant name>",
 "ModelName": "my-sagemaker-model",
 "InitialInstanceCount": 1,
 "InstanceType": "<provide your instance type here>",
 "InitialVariantWeight": 1.0
 }
]
}

Now run the following AWS CLI command to create your endpoint configuration:

aws sagemaker create-endpoint-config --cli-input-json file://create_config.json

For the full syntax of the create-endpoint-config API, see create-endpoint-config.

Cloud Instances 4577

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-model.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint-config.html

Amazon SageMaker Developer Guide

Create an Endpoint

After you have created your endpoint configuration, create an endpoint using the create-
endpoint API:

aws sagemaker create-endpoint --endpoint-name '<provide your endpoint name>' --
endpoint-config-name '<insert your endpoint config name>'

For the full syntax of the create-endpoint API, see create-endpoint.

Deploy a Compiled Model Using the Console

You must satisfy the prerequisites section if the model was compiled using AWS SDK for
Python (Boto3), the AWS CLI, or the Amazon SageMaker console. Follow the steps below to
create and deploy a SageMaker Neo-compiled model using the SageMaker consolehttps://
console.aws.amazon.com/ SageMaker.

Topics

• Deploy the Model

Deploy the Model

After you have satisfied the prerequisites, use the following steps to deploy a model compiled with
Neo:

1. Choose Models, and then choose Create models from the Inference group. On the Create
model page, complete the Model name, IAM role, and VPC fields (optional), if needed.

Cloud Instances 4578

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-prerequisites
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-prerequisites

Amazon SageMaker Developer Guide

2. To add information about the container used to deploy your model, choose Add container
container, then choose Next. Complete the Container input options, Location of inference
code image, and Location of model artifacts, and optionally, Container host name, and
Environmental variables fields.

Cloud Instances 4579

Amazon SageMaker Developer Guide

3. To deploy Neo-compiled models, choose the following:

• Container input options: Choose Provide model artifacts and inference image.

• Location of inference code image: Choose the inference image URI from Neo Inference
Container Images, depending on the AWS Region and kind of application.

• Location of model artifact: Enter the Amazon S3 bucket URI of the compiled model artifact
generated by the Neo compilation API.

• Environment variables:

• Leave this field blank for SageMaker XGBoost.

Cloud Instances 4580

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-container-images.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-container-images.html

Amazon SageMaker Developer Guide

• If you trained your model using SageMaker, specify the environment variable
SAGEMAKER_SUBMIT_DIRECTORY as the Amazon S3 bucket URI that contains the training
script.

• If you did not train your model using SageMaker, specify the following environment
variables:

Key Values for MXNet and
PyTorch

Values TensorFlow

SAGEMAKER_PROGRAM inference.py inference.py

SAGEMAKER_SUBMIT_D
IRECTORY

/opt/ml/model/code /opt/ml/model/code

SAGEMAKER_CONTAINE
R_LOG_LEVEL

20 20

SAGEMAKER_REGION <your region> <your region>

MMS_DEFAULT_RESPON
SE_TIMEOUT

500 Leave this field blank for
TF

4. Confirm that the information for the containers is accurate, and then choose Create model. On
the Create model landing page, choose Create endpoint.

Cloud Instances 4581

Amazon SageMaker Developer Guide

5. In Create and configure endpoint diagram, specify the Endpoint name. For Attach endpoint
configuration, choose Create a new endpoint configuration.

6. In New endpoint configuration page, specify the Endpoint configuration name.

Cloud Instances 4582

Amazon SageMaker Developer Guide

7. Choose Edit next to the name of the model and specify the correct Instance type on the Edit
Production Variant page. It is imperative that the Instance type value match the one specified
in your compilation job.

Cloud Instances 4583

Amazon SageMaker Developer Guide

8. Choose Save.

9. On the New endpoint configuration page, choose Create endpoint configuration, and then
choose Create endpoint.

Request Inferences from a Deployed Service

If you have followed instructions in Deploy a Model, you should have a SageMaker endpoint set up
and running. Regardless of how you deployed your Neo-compiled model, there are three ways you
can submit inference requests:

Topics

• Request Inferences from a Deployed Service (Amazon SageMaker SDK)

• Request Inferences from a Deployed Service (Boto3)

• Request Inferences from a Deployed Service (AWS CLI)

Request Inferences from a Deployed Service (Amazon SageMaker SDK)

Use the following the code examples to request inferences from your deployed service based on
the framework you used to train your model. The code examples for the different frameworks are
similar. The main difference is that TensorFlow requires application/json as the content type.

Cloud Instances 4584

Amazon SageMaker Developer Guide

PyTorch and MXNet

If you are using PyTorch v1.4 or later or MXNet 1.7.0 or later and you have an Amazon SageMaker
endpoint InService, you can make inference requests using the predictor package of the
SageMaker SDK for Python.

Note

The API varies based on the SageMaker SDK for Python version:

• For version 1.x, use the RealTimePredictor and Predict API.

• For version 2.x, use the Predictor and the Predict API.

The following code example shows how to use these APIs to send an image for inference:

SageMaker Python SDK v1.x

from sagemaker.predictor import RealTimePredictor

endpoint = 'insert name of your endpoint here'

Read image into memory
payload = None
with open("image.jpg", 'rb') as f:
 payload = f.read()

predictor = RealTimePredictor(endpoint=endpoint, content_type='application/x-image')
inference_response = predictor.predict(data=payload)
print (inference_response)

SageMaker Python SDK v2.x

from sagemaker.predictor import Predictor

endpoint = 'insert name of your endpoint here'

Read image into memory
payload = None
with open("image.jpg", 'rb') as f:
 payload = f.read()

Cloud Instances 4585

https://sagemaker.readthedocs.io/en/v1.72.0/api/inference/predictors.html#sagemaker.predictor.RealTimePredictor
https://sagemaker.readthedocs.io/en/v1.72.0/api/inference/predictors.html#sagemaker.predictor.RealTimePredictor.predict
https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html#sagemaker.predictor.Predictor
https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html#sagemaker.predictor.Predictor.predict

Amazon SageMaker Developer Guide

predictor = Predictor(endpoint)
inference_response = predictor.predict(data=payload)
print (inference_response)

TensorFlow

The following code example shows how to use the SageMaker Python SDK API to send an image
for inference:

from sagemaker.predictor import Predictor
from PIL import Image
import numpy as np
import json

endpoint = 'insert the name of your endpoint here'

Read image into memory
image = Image.open(input_file)
batch_size = 1
image = np.asarray(image.resize((224, 224)))
image = image / 128 - 1
image = np.concatenate([image[np.newaxis, :, :]] * batch_size)
body = json.dumps({"instances": image.tolist()})

predictor = Predictor(endpoint)
inference_response = predictor.predict(data=body)
print(inference_response)

Request Inferences from a Deployed Service (Boto3)

You can submit inference requests using SageMaker SDK for Python (Boto3) client and
invoke_endpoint() API once you have an SageMaker endpoint InService. The following code
example shows how to send an image for inference:

PyTorch and MXNet

import boto3

import json

endpoint = 'insert name of your endpoint here'

Cloud Instances 4586

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime.html#SageMakerRuntime.Client.invoke_endpoint

Amazon SageMaker Developer Guide

runtime = boto3.Session().client('sagemaker-runtime')

Read image into memory
with open(image, 'rb') as f:
 payload = f.read()
Send image via InvokeEndpoint API
response = runtime.invoke_endpoint(EndpointName=endpoint, ContentType='application/
x-image', Body=payload)

Unpack response
result = json.loads(response['Body'].read().decode())

TensorFlow

For TensorFlow submit an input with application/json for the content type.

from PIL import Image
import numpy as np
import json
import boto3

client = boto3.client('sagemaker-runtime')
input_file = 'path/to/image'
image = Image.open(input_file)
batch_size = 1
image = np.asarray(image.resize((224, 224)))
image = image / 128 - 1
image = np.concatenate([image[np.newaxis, :, :]] * batch_size)
body = json.dumps({"instances": image.tolist()})
ioc_predictor_endpoint_name = 'insert name of your endpoint here'
content_type = 'application/json'
ioc_response = client.invoke_endpoint(
 EndpointName=ioc_predictor_endpoint_name,
 Body=body,
 ContentType=content_type
)

XGBoost

For an XGBoost application, you should submit a CSV text instead:

import boto3
import json

Cloud Instances 4587

Amazon SageMaker Developer Guide

endpoint = 'insert your endpoint name here'

runtime = boto3.Session().client('sagemaker-runtime')

csv_text = '1,-1.0,1.0,1.5,2.6'
Send CSV text via InvokeEndpoint API
response = runtime.invoke_endpoint(EndpointName=endpoint, ContentType='text/csv',
 Body=csv_text)
Unpack response
result = json.loads(response['Body'].read().decode())

Note that BYOM allows for a custom content type. For more information, see
runtime_InvokeEndpoint.

Request Inferences from a Deployed Service (AWS CLI)

Inference requests can be made with the sagemaker-runtime invoke-endpoint once you
have an Amazon SageMaker endpoint InService. You can make inference requests with the
AWS Command Line Interface (AWS CLI). The following example shows how to send an image for
inference:

aws sagemaker-runtime invoke-endpoint --endpoint-name 'insert name of your endpoint
 here' --body fileb://image.jpg --content-type=application/x-image output_file.txt

An output_file.txt with information about your inference requests is made if the inference
was successful.

For TensorFlow submit an input with application/json as the content type.

aws sagemaker-runtime invoke-endpoint --endpoint-name 'insert name of your endpoint
 here' --body fileb://input.json --content-type=application/json output_file.txt

Inference Container Images

SageMaker Neo now provides inference image URI information for ml_* targets. For more
information see DescribeCompilationJob.

Based on your use case, replace the highlighted portion in the inference image URI template
provided below with appropriate values.

Cloud Instances 4588

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker-runtime/invoke-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html#sagemaker-DescribeCompilationJob-response-InferenceImage

Amazon SageMaker Developer Guide

Amazon SageMaker XGBoost

aws_account_id.dkr.ecr.aws_region.amazonaws.com/xgboost-neo:latest

Replace aws_account_id from the table at the end of this page based on the aws_region you
used.

Keras

aws_account_id.dkr.ecr.aws_region.amazonaws.com/sagemaker-neo-keras:fx_version-
instance_type-py3

Replace aws_account_id from the table at the end of this page based on the aws_region you
used.

Replace fx_version with 2.2.4.

Replace instance_type with either cpu or gpu.

MXNet

CPU or GPU instance types

aws_account_id.dkr.ecr.aws_region.amazonaws.com/sagemaker-inference-
mxnet:fx_version-instance_type-py3

Replace aws_account_id from the table at the end of this page based on the aws_region
you used.

Replace fx_version with 1.8.0.

Replace instance_type with either cpu or gpu.

Inferentia1

aws_account_id.dkr.ecr.aws_region.amazonaws.com/sagemaker-neo-
mxnet:fx_version-instance_type-py3

Replace aws_region with either us-east-1 or us-west-2.

Replace aws_account_id from the table at the end of this page based on the aws_region
you used.

Cloud Instances 4589

Amazon SageMaker Developer Guide

Replace fx_version with 1.5.1.

Replace instance_type with inf.

ONNX

aws_account_id.dkr.ecr.aws_region.amazonaws.com/sagemaker-neo-onnx:fx_version-
instance_type-py3

Replace aws_account_id from the table at the end of this page based on the aws_region you
used.

Replace fx_version with 1.5.0.

Replace instance_type with either cpu or gpu.

PyTorch

CPU or GPU instance types

aws_account_id.dkr.ecr.aws_region.amazonaws.com/sagemaker-inference-
pytorch:fx_version-instance_type-py3

Replace aws_account_id from the table at the end of this page based on the aws_region
you used.

Replace fx_version with 1.4, 1.5, 1.6, 1.7, 1.8, 1.12, 1.13, or 2.0.

Replace instance_type with either cpu or gpu.

Inferentia1

aws_account_id.dkr.ecr.aws_region.amazonaws.com/sagemaker-neo-
pytorch:fx_version-instance_type-py3

Replace aws_region with either us-east-1 or us-west-2.

Replace aws_account_id from the table at the end of this page based on the aws_region
you used.

Replace fx_version with 1.5.1.

Cloud Instances 4590

Amazon SageMaker Developer Guide

Replace instance_type with inf.

Inferentia2 and Trainium1

763104351884.dkr.ecr.aws_region.amazonaws.com/pytorch-inference-neuronx:1.13.1-
neuronx-py38-sdk2.10.0-ubuntu20.04

Replace aws_region with us-east-2 for Inferentia2, and us-east-1 for Trainium1.

TensorFlow

CPU or GPU instance types

aws_account_id.dkr.ecr.aws_region.amazonaws.com/sagemaker-inference-
tensorflow:fx_version-instance_type-py3

Replace aws_account_id from the table at the end of this page based on the aws_region
you used.

Replace fx_version with 1.15.3 or 2.9.

Replace instance_type with either cpu or gpu.

Inferentia1

aws_account_id.dkr.ecr.aws_region.amazonaws.com/sagemaker-neo-
tensorflow:fx_version-instance_type-py3

Replace aws_account_id from the table at the end of this page based on the aws_region
you used. Note that for instance type inf only us-east-1 and us-west-2 are supported.

Replace fx_version with 1.15.0

Replace instance_type with inf.

Inferentia2 and Trainium1

763104351884.dkr.ecr.aws_region.amazonaws.com/tensorflow-inference-neuronx:2.10.1-
neuronx-py38-sdk2.10.0-ubuntu20.04

Replace aws_region with us-east-2 for Inferentia2, and us-east-1 for Trainium1.

Cloud Instances 4591

Amazon SageMaker Developer Guide

The following table maps aws_account_id with aws_region. Use this table to find the correct
inference image URI you need for your application.

aws_account_id aws_region

785573368785 us-east-1

007439368137 us-east-2

710691900526 us-west-1

301217895009 us-west-2

802834080501 eu-west-1

205493899709 eu-west-2

254080097072 eu-west-3

601324751636 eu-north-1

966458181534 eu-south-1

746233611703 eu-central-1

110948597952 ap-east-1

763008648453 ap-south-1

941853720454 ap-northeast-1

151534178276 ap-northeast-2

925152966179 ap-northeast-3

324986816169 ap-southeast-1

355873309152 ap-southeast-2

474822919863 cn-northwest-1

472730292857 cn-north-1

Cloud Instances 4592

Amazon SageMaker Developer Guide

aws_account_id aws_region

756306329178 sa-east-1

464438896020 ca-central-1

836785723513 me-south-1

774647643957 af-south-1

275950707576 il-central-1

Edge Devices

Amazon SageMaker Neo provides compilation support for popular machine learning frameworks.
You can deploy your Neo-compiled edge devices such as the Raspberry Pi 3, Texas Instruments'
Sitara, Jetson TX1, and more. For a full list of supported frameworks and edge devices, see
Supported Frameworks, Devices, Systems, and Architectures.

You must configure your edge device so that it can use AWS services. One way to do this is to
install DLR and Boto3 to your device. To do this, you must set up the authentication credentials.
See Boto3 AWS Configuration for more information. Once your model is compiled and your
edge device is configured, you can download the model from Amazon S3 to your edge device.
From there, you can use the Deep Learning Runtime (DLR) to read the compiled model and make
inferences.

For first-time users, we recommend you check out the Getting Started guide. This guide walks you
through how to set up your credentials, compile a model, deploy your model to a Raspberry Pi 3,
and make inferences on images.

Topics

• Supported Frameworks, Devices, Systems, and Architectures

• Deploy Models

• Getting Started with Neo on Edge Devices

Edge Devices 4593

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration
https://neo-ai-dlr.readthedocs.io/en/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-getting-started-edge.html

Amazon SageMaker Developer Guide

Supported Frameworks, Devices, Systems, and Architectures

Amazon SageMaker Neo supports common machine learning frameworks, edge devices, operating
systems, and chip architectures. Find out if Neo supports your framework, edge device, OS, and
chip architecture by selecting one of the topics below.

You can find a list of models that have been tested by the Amazon SageMaker Neo Team in the
Tested Models section.

Note

• Ambarella devices require additional files to be included within the compressed TAR
file before it is sent for compilation. For more information, see Troubleshoot Ambarella
Errors.

• TIM-VX (libtim-vx.so) is required for i.MX 8M Plus. For information on how to build TIM-
VX, see the TIM-VX GitHub repository.

Topics

• Supported Frameworks

• Supported Devices, Chip Architectures, and Systems

• Tested Models

Supported Frameworks

Amazon SageMaker Neo supports the following frameworks.

Framework Framework
Version

Model
Version

Models Model
Formats
(packaged in
*.tar.gz)

Toolkits

MXNet 1.8 Supports 1.8
or earlier

Image
Classific
ation, Object
Detection
, Semantic

One symbol
file (.json)
and one
parameter
file (.params)

GluonCV
v0.8.0

Edge Devices 4594

https://github.com/VeriSilicon/TIM-VX

Amazon SageMaker Developer Guide

Framework Framework
Version

Model
Version

Models Model
Formats
(packaged in
*.tar.gz)

Toolkits

Segmentat
ion, Pose
Estimatio
n, Activity
Recognition

ONNX 1.7 Supports 1.7
or earlier

Image
Classification,
SVM

One model
file (.onnx)

Keras 2.2 Supports 2.2
or earlier

Image
Classification

One model
definition file
(.h5)

PyTorch 1.7, 1.8 Supports 1.7,
1.8 or earlier

Image
Classific
ation, Object
Detection

One model
definition file
(.pth)

TensorFlow 1.15, 2.4,
2.5 (only
for ml.inf1.*
instances)

Supports
1.15, 2.4,
2.5 (only
for ml.inf1.*
instances) or
earlier

Image
Classific
ation, Object
Detection

*For saved
models,
one .pb or
one .pbtxt
file and a
variables
 directory
that contains
variables
*For frozen
models,
only one .pb
or .pbtxt file

Edge Devices 4595

Amazon SageMaker Developer Guide

Framework Framework
Version

Model
Version

Models Model
Formats
(packaged in
*.tar.gz)

Toolkits

TensorFlow-
Lite

1.15 Supports
1.15 or
earlier

Image
Classific
ation, Object
Detection

One model
definition
flatbuffer file
(.tflite)

XGBoost 1.3 Supports 1.3
or earlier

Decision
Trees

One XGBoost
model file
(.model)
where the
number of
nodes in a
tree is less
than 2^31

DARKNET Image
Classific
ation, Object
Detection
(Yolo model
is not
supported)

One config
(.cfg) file and
one weights
(.weights) file

Supported Devices, Chip Architectures, and Systems

Amazon SageMaker Neo supports the following devices, chip architectures, and operating systems.

Devices

You can select a device using the dropdown list in the Amazon SageMaker console or by specifying
the TargetDevice in the output configuration of the CreateCompilationJob API.

You can choose from one of the following edge devices:

Edge Devices 4596

https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCompilationJob.html

Amazon SageMaker Developer Guide

Device List System on a
Chip (SoC)

Operating
System

Architecture Accelerator Compiler
Options
Example

aisage Linux ARM64 Mali

amba_cv2 CV2 Arch Linux ARM64 cvflow

amba_cv22 CV22 Arch Linux ARM64 cvflow

amba_cv25 CV25 Arch Linux ARM64 cvflow

coreml iOS, macOS {"class_l
abels":
"imagenet
_labels_1
000.txt"}

imx8qm NXP imx8 Linux ARM64

imx8mplus i.MX 8M Plus Linux ARM64 NPU

jacinto_t
da4vm

TDA4VM Linux ARM TDA4VM

jetson_nano Linux ARM64 NVIDIA {'gpu-
code':
'sm_53',
'trt-
ver':
'5.0.6',
'cuda-
ver':
'10.0'}

For
TensorFlo
w2 ,

Edge Devices 4597

Amazon SageMaker Developer Guide

Device List System on a
Chip (SoC)

Operating
System

Architecture Accelerator Compiler
Options
Example

{'JETPACK
_VERSION'
: '4.6',
'gpu_code
':
'sm_72'}

jetson_tx1 Linux ARM64 NVIDIA {'gpu-
code':
'sm_53',
'trt-
ver':
'6.0.1',
'cuda-
ver':
'10.0'}

jetson_tx2 Linux ARM64 NVIDIA {'gpu-
code':
'sm_62',
'trt-
ver':
'6.0.1',
'cuda-
ver':
'10.0'}

Edge Devices 4598

Amazon SageMaker Developer Guide

Device List System on a
Chip (SoC)

Operating
System

Architecture Accelerator Compiler
Options
Example

jetson_xavier Linux ARM64 NVIDIA {'gpu-
code':
'sm_72',
'trt-
ver':
'5.1.6',
'cuda-
ver':
'10.0'}

qcs605 Android ARM64 Mali {'ANDROID
_PLATFORM
': 27}

qcs603 Android ARM64 Mali {'ANDROID
_PLATFORM
': 27}

rasp3b ARM A56 Linux ARM_EABIHF {'mattr':
['+neon']
}

rasp4b ARM A72

rk3288 Linux ARM_EABIHF Mali

rk3399 Linux ARM64 Mali

sbe_c Linux x86_64 {'mcpu':
'core-avx
2'}

sitara_am57x AM57X Linux ARM64 EVE and/or
C66x DSP

Edge Devices 4599

Amazon SageMaker Developer Guide

Device List System on a
Chip (SoC)

Operating
System

Architecture Accelerator Compiler
Options
Example

x86_win32 Windows 10 X86_32

x86_win64 Windows 10 X86_32

For more information about JSON key-value compiler options for each target device, see the
CompilerOptions field in the OutputConfig API data type.

Systems and Chip Architectures

The following look-up tables provide information regarding available operating systems and
architectures for Neo model compilation jobs.

Linux

 X86_64 X86 ARM64 ARM_EABIH
F

ARM_EABI

No accelerat
or (CPU)

X X X X

Nvidia GPU X X

Intel_Gra
phics

X

ARM Mali X X X

Android

 X86_64 X86 ARM64 ARM_EABIH
F

ARM_EABI

No accelerat
or (CPU)

X X X X

Edge Devices 4600

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html

Amazon SageMaker Developer Guide

 X86_64 X86 ARM64 ARM_EABIH
F

ARM_EABI

Nvidia GPU

Intel_Gra
phics

X X

ARM Mali X X

Windows

 X86_64 X86 ARM64 ARM_EABIH
F

ARM_EABI

No accelerat
or (CPU)

X X

Tested Models

The following collapsible sections provide information about machine learning models that
were tested by the Amazon SageMaker Neo team. Expand the collapsible section based on your
framework to check if a model was tested.

Note

This is not a comprehensive list of models that can be compiled with Neo.

See Supported Frameworks and SageMaker Neo Supported Operators to find out if you can
compile your model with SageMaker Neo.

Edge Devices 4601

https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators/

Amazon SageMaker Developer Guide

DarkNet

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

Alexnet

Resnet50X X X X X X X

YOLOv2 X X X X X

YOLOv2_ti
ny

X X X X X X X

YOLOv3_41
6

X X X X X

YOLOv3_ti
ny

X X X X X X X

MXNet

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

Alexnet X

Densenet1
21

X

DenseNet2
01

X X X X X X X X

GoogLeNetX X X X X X X

Inception
V3

X X X X X

Edge Devices 4602

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

MobileNet
0.75

X X X X X X

MobileNet
1.0

X X X X X X X

MobileNet
V2_0.5

X X X X X X

MobileNet
V2_1.0

X X X X X X X X X

MobileNet
V3_Large

X X X X X X X X X

MobileNet
V3_Small

X X X X X X X X X

ResNeSt50 X X X X

ResNet18_
v1

X X X X X X X

ResNet18_
v2

X X X X X X

ResNet50_
v1

X X X X X X X X

ResNet50_
v2

X X X X X X X X

ResNext10
1_32x4d

ResNext50
_32x4d

X X X X X X

Edge Devices 4603

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

SENet_154 X X X X X

SE_ResNex
t50_32x4d

X X X X X X X

SqueezeNe
t1.0

X X X X X X X

SqueezeNe
t1.1

X X X X X X X X

VGG11 X X X X X X X

Xception X X X X X X X X

darknet53X X X X X X X

resnet18_
v1b_0.89

X X X X X X

resnet50_
v1d_0.11

X X X X X X

resnet50_
v1d_0.86

X X X X X X X X

ssd_512_m
obilenet1
.0_coco

X X X X X X X

ssd_512_m
obilenet1
.0_voc

X X X X X X X

ssd_resne
t50_v1

X X X X X X

Edge Devices 4604

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

yolo3_dar
knet53_co
co

X X X X X

yolo3_mob
ilenet1.0
_coco

X X X X X X X

deeplab_r
esnet50

X

Keras

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

densenet1
21

X X X X X X X X

densenet2
01

X X X X X X X

inception
_v3

X X X X X X X

mobilenet
_v1

X X X X X X X X

mobilenet
_v2

X X X X X X X X

resnet152
_v1

X X X

Edge Devices 4605

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

resnet152
_v2

X X X

resnet50_
v1

X X X X X X X

resnet50_
v2

X X X X X X X X

vgg16 X X X X X

ONNX

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

alexnet X

mobilenet
v2-1.0

X X X X X X X X

resnet18v
1

X X X X

resnet18v
2

X X X X

resnet50v
1

X X X X X X

resnet50v
2

X X X X X X

resnet152
v1

X X X X

Edge Devices 4606

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

resnet152
v2

X X X X

squeezene
t1.1

X X X X X X X

vgg19 X X

PyTorch (FP32)

Models ARM
V8

ARM
Mali

Ambarella
CV22

Ambarella
CV25

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

densenet1
21

X X X X X X X X X

inception
_v3

X X X X X X

resnet152 X X X X

resnet18X X X X X X

resnet50X X X X X X X X

squeezene
t1.0

X X X X X X

squeezene
t1.1

X X X X X X X X X

yolov4 X X

yolov5 X X X

Edge Devices 4607

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Ambarella
CV25

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

fasterrcn
n_resnet5
0_fpn

X X

maskrcnn_
resnet50_
fpn

X X

TensorFlow

TensorFlow

Models ARM
V8

ARM
Mali

Ambarella
CV22

Ambarella
CV25

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

densenet2
01

X X X X X X X X X

inception
_v3

X X X X X X X X

mobilenet
100_v1

X X X X X X X

mobilenet
100_v2.0

X X X X X X X X

mobilenet
130_v2

X X X X X X

mobilenet
140_v2

X X X X X X X X

resnet50_
v1.5

X X X X X X X

Edge Devices 4608

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Ambarella
CV25

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

resnet50_
v2

X X X X X X X X X

squeezene
t

X X X X X X X X X

mask_rcnn
_inceptio
n_resnet_
v2

X

ssd_mobil
enet_v2

X X

faster_rc
nn_resnet
50_lowpro
posals

X

rfcn_resn
et101

X

TensorFlow.Keras

Models ARM V8 ARM
Mali

Ambarella
CV22

Nvidia Panorama TI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

DenseNet1
21

X X X X X X X

DenseNet2
01

X X X X X X

Inception
V3

X X X X X X X

Edge Devices 4609

Amazon SageMaker Developer Guide

Models ARM V8 ARM
Mali

Ambarella
CV22

Nvidia Panorama TI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

MobileNet X X X X X X X

MobileNet
v2

X X X X X X X

NASNetLar
ge

X X X X

NASNetMob
ile

X X X X X X X

ResNet101 X X X X

ResNet101
V2

X X X X

ResNet152 X X X

ResNet152
v2

X X X

ResNet50 X X X X X X

ResNet50V
2

X X X X X X X

VGG16 X X X X

Xception X X X X X X X

Edge Devices 4610

Amazon SageMaker Developer Guide

TensorFlow-Lite

TensorFlow-Lite (FP32)

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

i.MX
8M
Plus

densenet_
2018_04_2
7

X X X X X

inception
_resnet_v
2_2018_04
_27

X X X X

inception
_v3_2018_
04_27

X X X X X

inception
_v4_2018_
04_27

X X X X X

mnasnet_0
.5_224_09
_07_2018

X X X X X

mnasnet_1
.0_224_09
_07_2018

X X X X X

mnasnet_1
.3_224_09
_07_2018

X X X X X

Edge Devices 4611

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

i.MX
8M
Plus

mobilenet
_v1_0.25_
128

X X X X X X

mobilenet
_v1_0.25_
224

X X X X X X

mobilenet
_v1_0.5_1
28

X X X X X X

mobilenet
_v1_0.5_2
24

X X X X X X

mobilenet
_v1_0.75_
128

X X X X X X

mobilenet
_v1_0.75_
224

X X X X X X

mobilenet
_v1_1.0_1
28

X X X X X X

mobilenet
_v1_1.0_1
92

X X X X X X

mobilenet
_v2_1.0_2
24

X X X X X X

Edge Devices 4612

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

i.MX
8M
Plus

resnet_v2
_101

X X X X

squeezene
t_2018_04
_27

X X X X X

TensorFlow-Lite (INT8)

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

i.MX
8M
Plus

inception
_v1

X X

inception
_v2

X X

inception
_v3

X X X X X

inception
_v4_299

X X X X X

mobilenet
_v1_0.25_
128

X X X X

mobilenet
_v1_0.25_
224

X X X X

Edge Devices 4613

Amazon SageMaker Developer Guide

Models ARM
V8

ARM
Mali

Ambarella
CV22

Nvidia PanoramaTI
TDA4VM

Qualcomm
QCS603

X86_LinuxX86_Windo
ws

i.MX
8M
Plus

mobilenet
_v1_0.5_1
28

X X X X

mobilenet
_v1_0.5_2
24

X X X X

mobilenet
_v1_0.75_
128

X X X X

mobilenet
_v1_0.75_
224

X X X X X

mobilenet
_v1_1.0_1
28

X X X X

mobilenet
_v1_1.0_2
24

X X X X X

mobilenet
_v2_1.0_2
24

X X X X X

deeplab-
v
3_513

X

Edge Devices 4614

Amazon SageMaker Developer Guide

Deploy Models

You can deploy the compute module to resource-constrained edge devices by: downloading
the compiled model from Amazon S3 to your device and using DLR, or you can use AWS IoT
Greengrass.

Before moving on, make sure your edge device must be supported by SageMaker Neo. See,
Supported Frameworks, Devices, Systems, and Architectures to find out what edge devices
are supported. Make sure that you specified your target edge device when you submitted the
compilation job, see Use Neo to Compile a Model.

Deploy a Compiled Model (DLR)

DLR is a compact, common runtime for deep learning models and decision tree models. DLR uses
the TVM runtime, Treelite runtime, NVIDIA TensorRT™, and can include other hardware-specific
runtimes. DLR provides unified Python/C++ APIs for loading and running compiled models on
various devices.

You can install latest release of DLR package using the following pip command:

pip install dlr

For installation of DLR on GPU targets or non-x86 edge devices, please refer to Releases for
prebuilt binaries, or Installing DLR for building DLR from source. For example, to install DLR for
Raspberry Pi 3, you can use:

pip install https://neo-ai-dlr-release.s3-us-west-2.amazonaws.com/v1.3.0/pi-armv7l-
raspbian4.14.71-glibc2_24-libstdcpp3_4/dlr-1.3.0-py3-none-any.whl

Deploy a Model (AWS IoT Greengrass)

AWS IoT Greengrass extends cloud capabilities to local devices. It enables devices to collect
and analyze data closer to the source of information, react autonomously to local events, and
communicate securely with each other on local networks. With AWS IoT Greengrass, you can
perform machine learning inference at the edge on locally generated data using cloud-trained
models. Currently, you can deploy models on to all AWS IoT Greengrass devices based on ARM
Cortex-A, Intel Atom, and Nvidia Jetson series processors. For more information on deploying a
Lambda inference application to perform machine learning inferences with AWS IoT Greengrass,
see How to configure optimized machine learning inference using the AWS Management Console.

Edge Devices 4615

https://github.com/neo-ai/neo-ai-dlr
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html
https://github.com/neo-ai/neo-ai-dlr
https://github.com/neo-ai/tvm
https://treelite.readthedocs.io/en/latest/install.html
https://github.com/neo-ai/neo-ai-dlr/releases
https://neo-ai-dlr.readthedocs.io/en/latest/install.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/ml-dlc-console.html

Amazon SageMaker Developer Guide

Getting Started with Neo on Edge Devices

This guide to getting started with Amazon SageMaker Neo shows you how to compile a model,
set up your device, and make inferences on your device. Most of the code examples use Boto3.
We provide commands using AWS CLI where applicable, as well as instructions on how to satisfy
prerequisites for Neo.

Note

You can run the following code snippets on your local machine, within a SageMaker
notebook, within SageMaker Studio, or (depending on your edge device) on your edge
device. The setup is similar; however, there are two main exceptions if you run this guide
within a SageMaker notebook instance or SageMaker Studio session:

• You do not need to install Boto3.

• You do not need to add the ‘AmazonSageMakerFullAccess’ IAM policy

This guide assumes you are running the following instructions on your edge device.

Prerequisites

1. Install Boto3

If you are running these commands on your edge device, you must install the AWS SDK for
Python (Boto3). Within a Python environment (preferably a virtual environment), run the
following locally on your edge device's terminal or within a Jupyter notebook instance:

Terminal

pip install boto3

Jupyter Notebook

!pip install boto3

2. Set Up AWS Credentials

You need to set up Amazon Web Services credentials on your device in order to run SDK
for Python (Boto3). By default, the AWS credentials should be stored in the file ~/.aws/

Edge Devices 4616

Amazon SageMaker Developer Guide

credentials on your edge device. Within the credentials file, you should see two
environment variables: aws_access_key_id and aws_secret_access_key.

In your terminal, run:

$ more ~/.aws/credentials

[default]
aws_access_key_id = YOUR_ACCESS_KEY
aws_secret_access_key = YOUR_SECRET_KEY

The AWS General Reference Guide has instructions on how to get the necessary
aws_access_key_id and aws_secret_access_key. For more information on how to set
up credentials on your device, see the Boto3 documentation.

3. Set up an IAM Role and attach policies.

Neo needs access to your S3 bucket URI. Create an IAM role that can run SageMaker and has
permission to access the S3 URI. You can create an IAM role either by using SDK for Python
(Boto3), the console, or the AWS CLI. The following example illustrates how to create an IAM
role using SDK for Python (Boto3):

import boto3

AWS_REGION = 'aws-region'

Create an IAM client to interact with IAM
iam_client = boto3.client('iam', region_name=AWS_REGION)
role_name = 'role-name'

For more information on how to create an IAM role with the console, AWS CLI, or through the
AWS API, see Creating an IAM user in your AWS account.

Create a dictionary describing the IAM policy you are attaching. This policy is used to create a
new IAM role.

policy = {
 'Statement': [
 {
 'Action': 'sts:AssumeRole',
 'Effect': 'Allow',

Edge Devices 4617

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_api

Amazon SageMaker Developer Guide

 'Principal': {'Service': 'sagemaker.amazonaws.com'},
 }],
 'Version': '2012-10-17'
}

Create a new IAM role using the policy you defined above:

import json

new_role = iam_client.create_role(
 AssumeRolePolicyDocument=json.dumps(policy),
 Path='/',
 RoleName=role_name
)

You need to know what your Amazon Resource Name (ARN) is when you create a compilation
job in a later step, so store it in a variable as well.

role_arn = new_role['Role']['Arn']

Now that you have created a new role, attach the permissions it needs to interact with Amazon
SageMaker and Amazon S3:

iam_client.attach_role_policy(
 RoleName=role_name,
 PolicyArn='arn:aws:iam::aws:policy/AmazonSageMakerFullAccess'
)

iam_client.attach_role_policy(
 RoleName=role_name,
 PolicyArn='arn:aws:iam::aws:policy/AmazonS3FullAccess'
);

4. Create an Amazon S3 bucket to store your model artifacts

SageMaker Neo will access your model artifacts from Amazon S3

Boto3

Create an S3 client
s3_client = boto3.client('s3', region_name=AWS_REGION)

Edge Devices 4618

Amazon SageMaker Developer Guide

Name buckets
bucket='name-of-your-bucket'

Check if bucket exists
if boto3.resource('s3').Bucket(bucket) not in
 boto3.resource('s3').buckets.all():
 s3_client.create_bucket(
 Bucket=bucket,
 CreateBucketConfiguration={
 'LocationConstraint': AWS_REGION
 }
)
else:
 print(f'Bucket {bucket} already exists. No action needed.')

CLI

aws s3 mb s3://'name-of-your-bucket' --region specify-your-region

Check your bucket exists
aws s3 ls s3://'name-of-your-bucket'/

5. Train a machine learning model

See Train a Model with Amazon SageMaker for more information on how to train a machine
learning model using Amazon SageMaker. You can optionally upload your locally trained
model directly into an Amazon S3 URI bucket.

Note

Make sure the model is correctly formatted depending on the framework you used. See
What input data shapes does SageMaker Neo expect?

If you do not have a model yet, use the curl command to get a local copy of the
coco_ssd_mobilenet model from TensorFlow’s website. The model you just copied is an
object detection model trained from the COCO dataset. Type the following into your Jupyter
notebook:

model_zip_filename = './coco_ssd_mobilenet_v1_1.0.zip'

Edge Devices 4619

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html#neo-job-compilation-expected-inputs
https://cocodataset.org/#home

Amazon SageMaker Developer Guide

!curl http://storage.googleapis.com/download.tensorflow.org/models/tflite/
coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip \
 --output {model_zip_filename}

Note that this particular example was packaged in a .zip file. Unzip this file and repackage it
as a compressed tarfile (.tar.gz) before using it in later steps. Type the following into your
Jupyter notebook:

Extract model from zip file
!unzip -u {model_zip_filename}

model_filename = 'detect.tflite'
model_name = model_filename.split('.')[0]

Compress model into .tar.gz so SageMaker Neo can use it
model_tar = model_name + '.tar.gz'
!tar -czf {model_tar} {model_filename}

6. Upload trained model to an S3 bucket

Once you have trained your machine learning mode, store it in an S3 bucket.

Boto3

Upload model
s3_client.upload_file(Filename=model_filename, Bucket=bucket,
 Key=model_filename)

CLI

Replace your-model-filename and your-S3-bucket with the name of your S3 bucket.

aws s3 cp your-model-filename s3://your-S3-bucket

Step 1: Compile the Model

Once you have satisfied the Prerequisites, you can compile your model with Amazon SageMaker
Neo. You can compile your model using the AWS CLI, the console or the Amazon Web Services SDK
for Python (Boto3), see Use Neo to Compile a Model. In this example, you will compile your model
with Boto3.
Edge Devices 4620

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-getting-started-edge.html#neo-getting-started-edge-step0
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html

Amazon SageMaker Developer Guide

To compile a model, SageMaker Neo requires the following information:

1. The Amazon S3 bucket URI where you stored the trained model.

If you followed the prerequisites, the name of your bucket is stored in a variable named
bucket. The following code snippet shows how to list all of your buckets using the AWS CLI:

aws s3 ls

For example:

$ aws s3 ls
2020-11-02 17:08:50 bucket

2. The Amazon S3 bucket URI where you want to save the compiled model.

The code snippet below concatenates your Amazon S3 bucket URI with the name of an output
directory called output:

s3_output_location = f's3://{bucket}/output'

3. The machine learning framework you used to train your model.

Define the framework you used to train your model.

framework = 'framework-name'

For example, if you wanted to compile a model that was trained using TensorFlow, you
could either use tflite or tensorflow. Use tflite if you want to use a lighter version of
TensorFlow that uses less storage memory.

framework = 'tflite'

For a complete list of Neo-supported frameworks, see Supported Frameworks, Devices,
Systems, and Architectures.

4. The shape of your model's input.

Edge Devices 4621

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge.html

Amazon SageMaker Developer Guide

Neo requires the name and shape of your input tensor. The name and shape are passed in as
key-value pairs. value is a list of the integer dimensions of an input tensor and key is the
exact name of an input tensor in the model.

data_shape = '{"name": [tensor-shape]}'

For example:

data_shape = '{"normalized_input_image_tensor":[1, 300, 300, 3]}'

Note

Make sure the model is correctly formatted depending on the framework you used. See
What input data shapes does SageMaker Neo expect? The key in this dictionary must
be changed to the new input tensor's name.

5. Either the name of the target device to compile for or the general details of the hardware
platform

target_device = 'target-device-name'

For example, if you want to deploy to a Raspberry Pi 3, use:

target_device = 'rasp3b'

You can find the entire list of supported edge devices in Supported Frameworks, Devices,
Systems, and Architectures.

Now that you have completed the previous steps, you can submit a compilation job to Neo.

Create a SageMaker client so you can submit a compilation job
sagemaker_client = boto3.client('sagemaker', region_name=AWS_REGION)

Give your compilation job a name
compilation_job_name = 'getting-started-demo'
print(f'Compilation job for {compilation_job_name} started')

Edge Devices 4622

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html#neo-job-compilation-expected-inputs
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge.html

Amazon SageMaker Developer Guide

response = sagemaker_client.create_compilation_job(
 CompilationJobName=compilation_job_name,
 RoleArn=role_arn,
 InputConfig={
 'S3Uri': s3_input_location,
 'DataInputConfig': data_shape,
 'Framework': framework.upper()
 },
 OutputConfig={
 'S3OutputLocation': s3_output_location,
 'TargetDevice': target_device
 },
 StoppingCondition={
 'MaxRuntimeInSeconds': 900
 }
)

Optional - Poll every 30 sec to check completion status
import time

while True:
 response =
 sagemaker_client.describe_compilation_job(CompilationJobName=compilation_job_name)
 if response['CompilationJobStatus'] == 'COMPLETED':
 break
 elif response['CompilationJobStatus'] == 'FAILED':
 raise RuntimeError('Compilation failed')
 print('Compiling ...')
 time.sleep(30)
print('Done!')

If you want additional information for debugging, include the following print statement:

print(response)

If the compilation job is successful, your compiled model isstored in the output Amazon S3 bucket
you specified earlier (s3_output_location). Download your compiled model locally:

object_path = f'output/{model}-{target_device}.tar.gz'
neo_compiled_model = f'compiled-{model}.tar.gz'
s3_client.download_file(bucket, object_path, neo_compiled_model)

Edge Devices 4623

Amazon SageMaker Developer Guide

Step 2: Set Up Your Device

You will need to install packages on your edge device so that your device can make inferences. You
will also need to either install AWS IoT Greengrass core or Deep Learning Runtime (DLR). In this
example, you will install packages required to make inferences for the coco_ssd_mobilenet
object detection algorithm and you will use DLR.

1. Install additional packages

In addition to Boto3, you must install certain libraries on your edge device. What libraries you
install depends on your use case.

For example, for the coco_ssd_mobilenet object detection algorithm you downloaded
earlier, you need to install NumPy for data manipulation and statistics, PIL to load images, and
Matplotlib to generate plots. You also need a copy of TensorFlow if you want to gauge the
impact of compiling with Neo versus a baseline.

!pip3 install numpy pillow tensorflow matplotlib

2. Install inference engine on your device

To run your Neo-compiled model, install the Deep Learning Runtime (DLR) on your device.
DLR is a compact, common runtime for deep learning models and decision tree models. On
x86_64 CPU targets running Linux, you can install the latest release of the DLR package using
the following pip command:

!pip install dlr

For installation of DLR on GPU targets or non-x86 edge devices, refer to Releases for prebuilt
binaries, or Installing DLR for building DLR from source. For example, to install DLR for
Raspberry Pi 3, you can use:

!pip install https://neo-ai-dlr-release.s3-us-west-2.amazonaws.com/v1.3.0/pi-
armv7l-raspbian4.14.71-glibc2_24-libstdcpp3_4/dlr-1.3.0-py3-none-any.whl

Edge Devices 4624

https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://github.com/neo-ai/neo-ai-dlr
https://numpy.org/
https://pillow.readthedocs.io/en/stable/
https://matplotlib.org/
https://github.com/neo-ai/neo-ai-dlr
https://github.com/neo-ai/neo-ai-dlr/releases
https://neo-ai-dlr.readthedocs.io/en/latest/install.html

Amazon SageMaker Developer Guide

Step 3: Make Inferences on Your Device

In this example, you will use Boto3 to download the output of your compilation job onto your edge
device. You will then import DLR, download an example images from the dataset, resize this image
to match the model’s original input, and then you will make a prediction.

1. Download your compiled model from Amazon S3 to your device and extract it from the
compressed tarfile.

Download compiled model locally to edge device
object_path = f'output/{model_name}-{target_device}.tar.gz'
neo_compiled_model = f'compiled-{model_name}.tar.gz'
s3_client.download_file(bucket_name, object_path, neo_compiled_model)

Extract model from .tar.gz so DLR can use it
!mkdir ./dlr_model # make a directory to store your model (optional)
!tar -xzvf ./compiled-detect.tar.gz --directory ./dlr_model

2. Import DLR and an initialized DLRModel object.

import dlr

device = 'cpu'
model = dlr.DLRModel('./dlr_model', device)

3. Download an image for inferencing and format it based on how your model was trained.

For the coco_ssd_mobilenet example, you can download an image from the COCO dataset
and then reform the image to 300x300:

from PIL import Image

Download an image for model to make a prediction
input_image_filename = './input_image.jpg'
!curl https://farm9.staticflickr.com/8325/8077197378_79efb4805e_z.jpg --output
 {input_image_filename}

Format image so model can make predictions
resized_image = image.resize((300, 300))

Model is quantized, so convert the image to uint8
x = np.array(resized_image).astype('uint8')

Edge Devices 4625

https://cocodataset.org/#home

Amazon SageMaker Developer Guide

4. Use DLR to make inferences.

Finally, you can use DLR to make a prediction on the image you just downloaded:

out = model.run(x)

For more examples using DLR to make inferences from a Neo-compiled model on an edge device,
see the neo-ai-dlr Github repository.

Troubleshoot Errors

This section contains information about how to understand and prevent common errors, the error
messages they generate, and guidance on how to resolve these errors. Before moving on, ask
yourself the following questions:

Did you encounter an error before you deployed your model? If yes, see Troubleshoot Neo
Compilation Errors.

Did you encounter an error after you compiled your model? If yes, see Troubleshoot Neo
Inference Errors.

Did you encounter an error trying to compile your model for Ambarella devices? If yes, see
Troubleshoot Ambarella Errors.

Error Classification Types

This list classifies the user errors you can receive from Neo. These include access and permission
errors and load errors for each of the supported frameworks. All other errors are system errors.

Client permission error

Neo passes the errors for these straight through from the dependent service.

• Access Denied when calling sts:AssumeRole

• Any 400 error when calling Amazon S3 to download or upload a client model

• PassRole error

Troubleshoot Errors 4626

https://github.com/neo-ai/neo-ai-dlr
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-inference.html

Amazon SageMaker Developer Guide

Load error

Assuming that the Neo compiler successfully loaded .tar.gz from Amazon S3, check whether the
tarball contains the necessary files for compilation. The checking criteria is framework-specific:

• TensorFlow: Expects only protobuf file (*.pb or *.pbtxt). For saved models, expects one variables
folder.

• Pytorch: Expect only one pytorch file (*.pth).

• MXNET: Expect only one symbol file (*.json) and one parameter file (*.params).

• XGBoost: Expect only one XGBoost model file (*.model). The input model has size limitation.

Compilation error

Assuming that the Neo compiler successfully loaded .tar.gz from Amazon S3, and that the tarball
contains necessary files for compilation. The checking criteria is:

• OperatorNotImplemented: An operator has not been implemented.

• OperatorAttributeNotImplemented: The attribute in the specified operator has not been
implemented.

• OperatorAttributeRequired: An attribute is required for an internal symbol graph, but it is not
listed in the user input model graph.

• OperatorAttributeValueNotValid: The value of the attribute in the specific operator is not valid.

Topics

• Troubleshoot Neo Compilation Errors

• Troubleshoot Neo Inference Errors

• Troubleshoot Ambarella Errors

Troubleshoot Neo Compilation Errors

This section contains information about how to understand and prevent common compilation
errors, the error messages they generate, and guidance on how to resolve these errors.

Topics

• How to Use This Page

Troubleshoot Errors 4627

Amazon SageMaker Developer Guide

• Framework-Related Errors

• Infrastructure-Related Errors

• Check your compilation log

How to Use This Page

Attempt to resolve your error by the going through these sections in the following order:

1. Check that the input of your compilation job satisfies the input requirements. See What input
data shapes does SageMaker Neo expect?

2. Check common framework-specific errors.

3. Check if your error is an infrastructure error.

4. Check your compilation log.

Framework-Related Errors

Keras

Error Solution

InputConfiguration: No h5 file provided in
<model path>

Check your h5 file is in the
Amazon S3 URI you specified.

Or

Check that the h5 file is
correctly formatted.

InputConfiguration: Multiple h5 files
provided, <model path>, when only one is
allowed

Check you are only providing
one h5 file.

ClientError: InputConfiguration: Unable to
load provided Keras model. Error: 'sample_w
eight_mode'

Check the Keras version you
specified is supported. See,
supported frameworks for
cloud instances and edge
devices.

Troubleshoot Errors 4628

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html#neo-troubleshooting-compilation-framework-related-errors
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html#neo-troubleshooting-compilation-infrastructure-errors
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-troubleshooting-compilation.html#neo-troubleshooting-compilation-logs
https://www.tensorflow.org/guide/keras/save_and_serialize#keras_h5_format
https://www.tensorflow.org/guide/keras/save_and_serialize#keras_h5_format
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge.html

Amazon SageMaker Developer Guide

Error Solution

ClientError: InputConfiguration: Input input
has wrong shape in Input Shape dictionary.
Input shapes should be provided in NCHW format.

Check that your model input
follows NCHW format. See
What input data shapes does
SageMaker Neo expect?

MXNet

Error Solution

ClientError: InputConfiguration: Only one
parameter file is allowed for MXNet model.
Please make sure the framework you select is
correct.

SageMaker Neo will select the
first parameter file given for
compilation.

TensorFlow

Error Solution

InputConfiguration: Exactly one .pb file is
allowed for TensorFlow models.

Make sure you only provide
one .pb or .pbtxt file.

InputConfiguration: Exactly one .pb or .pbtxt
file is allowed for TensorFlow models.

Make sure you only provide
one .pb or .pbtxt file.

ClientError: InputConfiguration: TVM cannot
convert <model zoo> model. Please make sure
the framework you selected is correct. The
following operators are not implemented:
{<operator name>}

Check the operator you chose
is supported. See SageMaker
Neo Supported Frameworks
and Operators.

Troubleshoot Errors 4629

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html#neo-job-compilation-expected-inputs
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html#neo-job-compilation-expected-inputs
https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators/
https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators/
https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators/

Amazon SageMaker Developer Guide

PyTorch

Error Solution

InputConfiguration: We are unable to
extract DataInputConfig from the model due
to input_config_derivation_error . Please
override by providing a DataInputConfig during
compilation job creation.

Do either of the following:

• Specify the name and
shape of the expected
inputs by providing a
DataInputConfig
definition in your compilati
on request.

• Investigate the error in
Amazon CloudWatch Logs.
Check the /aws/sage
maker/CompilationJ
obs log group and look
for a log stream named
compilationJobName
/model-info-extrac

tion .

Infrastructure-Related Errors

Error Solution

ClientError: InputConfiguration: S3 object
does not exist. Bucket: <bucket>, Key: <bucket
key>

Check the Amazon S3 URI
your provided.

ClientError: InputConfiguration: Bucket
<bucket name> is in region <region name> which
is different from AWS Sagemaker service region
<service region>

Create an Amazon S3 bucket
that is in the same region as
the service.

Troubleshoot Errors 4630

Amazon SageMaker Developer Guide

Error Solution

ClientError: InputConfiguration: Unable to
untar input model. Please confirm the model is
a tar.gz file

Check that your model in
Amazon S3 is compressed
into a tar.gz file.

Check your compilation log

1. Navigate to Amazon CloudWatch at https://console.aws.amazon.com/cloudwatch/.

2. Select the region you created the compilation job from the Region dropdown list in the top
right.

3. In the navigation pane of the Amazon CloudWatch, choose Logs. Select Log groups.

4. Search for the log group called /aws/sagemaker/CompilationJobs. Select the log group.

5. Search for the logstream named after the compilation job name. Select the log stream.

Troubleshoot Neo Inference Errors

This section contains information about how to prevent and resolve some of the common errors
you might encounter upon deploying and/or invoking the endpoint. This section applies to
PyTorch 1.4.0 or later and MXNet v1.7.0 or later.

• Make sure the first inference (warm-up inference) on a valid input data is done in model_fn(), if
you defined a model_fn in your inference script, otherwise the following error message may be
seen on the terminal when predict API is called:

An error occurred (ModelError) when calling the InvokeEndpoint operation: Received
 server error (0) from <users-sagemaker-endpoint> with message "Your invocation timed
 out while waiting for a response from container model. Review the latency metrics
 for each container in Amazon CloudWatch, resolve the issue, and try again."

• Make sure that the environment variables in the following table are set. If they are not set, the
following error message might show up:

On the terminal:

Troubleshoot Errors 4631

https://console.aws.amazon.com/cloudwatch/
https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html#sagemaker.predictor.Predictor.predict

Amazon SageMaker Developer Guide

An error occurred (ModelError) when calling the InvokeEndpoint operation: Received
 server error (503) from <users-sagemaker-endpoint> with message "{ "code": 503,
 "type": "InternalServerException", "message": "Prediction failed" } ".

In CloudWatch:

W-9001-model-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle - AttributeError:
 'NoneType' object has no attribute 'transform'

Key Value

SAGEMAKER_PROGRAM inference.py

SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/model/code

SAGEMAKER_CONTAINER_LOG_LEVEL 20

SAGEMAKER_REGION <your region>

• Make sure that the MMS_DEFAULT_RESPONSE_TIMEOUT environment variable is set to 500
or a higher value while creating the Amazon SageMaker model; otherwise, the following error
message may be seen on the terminal:

An error occurred (ModelError) when calling the InvokeEndpoint operation: Received
 server error (0) from <users-sagemaker-endpoint> with message "Your invocation timed
 out while waiting for a response from container model. Review the latency metrics
 for each container in Amazon CloudWatch, resolve the issue, and try again."

Troubleshoot Ambarella Errors

SageMaker Neo requires models to be packaged in a compressed TAR file (*.tar.gz). Ambarella
devices require additional files to be included within the compressed TAR file before it is sent for
compilation. Include the following files within your compressed TAR file if you want to compile a
model for Ambarella targets with SageMaker Neo:

• A trained model using a framework supported by SageMaker Neo

• A JSON configuration file

Troubleshoot Errors 4632

Amazon SageMaker Developer Guide

• Calibration images

For example, the contents of your compressed TAR file should look similar to the following
example:

###amba_config.json
###calib_data
| ### data1
| ### data2
| ### .
| ### .
| ### .
| ### data500
###mobilenet_v1_1.0_0224_frozen.pb

The directory is configured as follows:

• amba_config.json : Configuration file

• calib_data : Folder containing calibration images

• mobilenet_v1_1.0_0224_frozen.pb : TensorFlow model saved as a frozen graph

For information about frameworks supported by SageMaker Neo, see Supported Frameworks.

Setting up the Configuration File

The configuration file provides information required by the Ambarella toolchain to compile the
model. The configuration file must be saved as a JSON file and the name of the file must end with
*config.json. The following chart shows the contents of the configuration file.

Key Description Example

inputs Dictionary mapping input
layers to attribute.

{inputs:{"data":{.
..},"data1":{...}}}

"data" Input layer name. Note: "data"
is an example of the name
you can use to label the input
layer.

"data"

Troubleshoot Errors 4633

Amazon SageMaker Developer Guide

Key Description Example

shape Describes the shape of the
input to the model. This
follows the same conventions
that SageMaker Neo uses.

"shape": "1,3,224,224"

filepath Relative path to the directory
containing calibration images.
These can be binary or image
files like JPG or PNG.

"filepath": "calib_data/"

colorformat Color format that model
expects. This will be used
while converting images to
binary. Supported values:
[RGB, BGR]. Default is RGB.

"colorformat":"RGB"

mean Mean value to be subtracte
d from the input. Can be a
single value or a list of values.
When the mean is given as
a list the number of entries
must match the channel
dimension of the input.

"mean":128.0

scale Scale value to be used for
normalizing the input. Can
be a single value or a list of
values. When the scale is
given as a list, the number
of entries must match the
channel dimension of the
input.

"scale": 255.0

The following is a sample configuration file:

Troubleshoot Errors 4634

Amazon SageMaker Developer Guide

{
 "inputs": {
 "data": {
 "shape": "1, 3, 224, 224",
 "filepath": "calib_data/",
 "colorformat": "RGB",
 "mean":[128,128,128],
 "scale":[128.0,128.0,128.0]
 }
 }
}

Calibration Images

Quantize your trained model by providing calibration images. Quantizing your model improves
the performance of the CVFlow engine on an Ambarella System on a Chip (SoC). The Ambarella
toolchain uses the calibration images to determine how each layer in the model should be
quantized to achieve optimal performance and accuracy. Each layer is quantized independently to
INT8 or INT16 formats. The final model has a mix of INT8 and INT16 layers after quantization.

How many images should you use?

It is recommended that you include between 100–200 images that are representative of the types
of scenes the model is expected to handle. The model compilation time increases linearly to the
number of calibration images in the input file.

What are the recommended image formats?

Calibration images can be in a raw binary format or image formats such as JPG and PNG.

Your calibration folder can contain a mixture of images and binary files. If the calibration folder
contains both images and binary files, the toolchain first converts the images to binary files. Once
the conversion is complete, it uses the newly generated binary files along with the binary files that
were originally in the folder.

Can I convert the images into binary format first?

Yes. You can convert the images to the binary format with open-source packages such as OpenCV
or PIL. Crop and resize the images so they satisfy the input layer of your trained model.

Troubleshoot Errors 4635

https://opencv.org/
https://python-pillow.org/

Amazon SageMaker Developer Guide

Mean and Scale

You can specify mean and scaling pre-processing options to the Amberalla toolchain. These
operations are embedded into the network and are applied during inference on each input. Do not
provide processed data if you specify the mean or scale. More specifically, do not provide data you
have subtracted the mean from or have applied scaling to.

Check your compilation log

For information on checking compilation log for Ambarella devices, see Check your compilation
log.

Use Amazon SageMaker Elastic Inference (EI)

Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI),
and will help current customers migrate their workloads to options that offer better price and
performance. After April 15, 2023, new customers will not be able to launch instances with
Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2.

Machine learning (ML) on AWS helps you innovate faster with the most comprehensive set of
ML services and infrastructure made available in a low-cost, pay as-you-go usage model. AWS
continuously delivers better performing and lower cost infrastructure for ML inference workloads.
AWS launched Amazon Elastic Inference (EI) in 2018 to enable customers to attach low-cost GPU-
powered acceleration to Amazon EC2, Amazon SageMaker instances, or Amazon Elastic Container
Service (ECS) tasks to reduce the cost of running deep learning inference by up to 75% compared
to standalone GPU based instances such as Amazon EC2 P4d and Amazon EC2 G5. In 2019, AWS
launched AWS Inferentia, Amazon's first custom silicon designed to accelerate deep learning
workloads by providing high performance inference in the cloud. Amazon EC2 Inf1 instances based
on AWS Inferentia chips deliver up 2.3x higher throughput and up to 70% lower cost per inference
than comparable current generation GPU-based Amazon EC2 instances. With the availability
of new accelerated compute options such as AWS Inferentia and Amazon EC2 G5 instances, the
benefit of attaching a fractional GPU to a CPU host instance using Amazon EI has diminished. For
example, customers hosting models on Amazon EI who move to ml.inf1.xlarge instances can
get up to 56% in cost savings and 2x performance improvement.

Customers can use Amazon SageMaker Inference Recommender to help them choose the best
alternative instances to Amazon EI for deploying their ML models.

Frequently asked questions

Elastic Inference 4636

Amazon SageMaker Developer Guide

1. Why is Amazon encouraging customers to move workloads from Amazon Elastic Inference
(EI) to newer hardware acceleration options such as AWS Inferentia?

Customers get better performance at a much better price than Amazon EI with new hardware
accelerator options such as AWS Inferentia for their inference workloads. AWS Inferentia is
designed to provide high performance inference in the cloud, to drive down the total cost of
inference, and to make it easy for developers to integrate machine learning into their business
applications. To enable customers to benefit from such newer generation hardware accelerators,
we will not onboard new customers to Amazon EI after April 15, 2023.

2. Which AWS services are impacted by the move to stop onboarding new customers to Amazon
Elastic Inference (EI)?

This announcement will affect Amazon EI accelerators attached to any Amazon EC2, Amazon
SageMaker instances, or Amazon Elastic Container Service (ECS) tasks. In Amazon SageMaker,
this applies to both endpoints and notebook kernels using Amazon EI accelerators.

3. Will I be able to create a new Amazon Elastic Inference (EI) accelerator after April 15, 2023?

No, if you are a new customer and have not used Amazon EI in the past 30 days, then you will
not be able create a new Amazon EI instance in your AWS account after April 15, 2023. However,
if you have used an Amazon EI accelerator at least once in the past 30 days, you can attach a
new Amazon EI accelerator to your instance.

4. How do I evaluate alternative instance options for my current Amazon SageMaker Inference
Endpoints?

Amazon SageMaker Inference Recommender can help you identify cost-effective deployments
to migrate existing workloads from Amazon Elastic Inference (EI) to an appropriate ML instance
supported by SageMaker.

5. How do I change the instance type for my existing endpoint in Amazon SageMaker?

You can change the instance type for your existing endpoint by doing the following:

1. First, create a new EndpointConfig that uses the new instance type. If you have an
autoscaling policy, delete the existing autoscaling policy.

2. Call UpdateEndpoint while specifying your newly created EndpointConfig.

3. Wait for your endpoint to change status to InService. This will take approximately 10-15
minutes.

Elastic Inference 4637

https://aws.amazon.com/machine-learning/inferentia/
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling-delete.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html

Amazon SageMaker Developer Guide

4. Finally, if you need autoscaling for your new endpoint, create a new autoscaling policy for
this new endpoint and ProductionVariant.

6. How do I change the instance type for my existing Amazon SageMaker Notebook Instance
using Amazon Elastic Inference (EI)?

Choose Notebook instances in the SageMaker console, and then choose the Notebook Instance
you want to update. Make sure the Notebook Instance has a Stopped status. Finally, you can
choose Edit and change your instance type. Make sure that, when your Notebook Instance starts
up, you select the right kernel for your new instance.

7. Is there a specific instance type which is a good alternative to Amazon Elastic Inference (EI)?

Every machine learning workload is unique. We recommend using Amazon SageMaker
Inference Recommender to help you identify the right instance type for your ML workload,
performance requirements, and budget. AWS Inferentia, specifically inf1.xlarge, is the best
high performance and low-cost alternative for Amazon EI customers.

Migrate from Amazon Elastic Inference to other instances

The following information can help you migrate your SageMaker-hosted endpoints from instances
that use Amazon Elastic Inference accelerators to other instances. The advice varies depending on
your framework.

PyTorch

If you're migrating from PyTorch, use the following guidelines.

1. Choose the right instance type

Every machine learning workload is unique. We recommend using Amazon SageMaker Inference
Recommender to help you identify the right instance type for your ML workload, performance
requirements, and budget. AWS Inferentia, specifically inf1.xlarge, is the best high performance
and low-cost alternative for Amazon Elastic Inference customers.

In our load testing with Inference Recommender, g4dn.xlarge instances performed better than
m5.large instances with eia.2large attached. With Amazon Elastic Inference, you have to
pay the additional cost of the ML instance to which the accelerator is attached. Amazon Elastic
Inference also only supports PyTorch 1.5 and TensorFlow 2.3. If you migrate to ml.g4dn instances,
you can use the latest versions of PyTorch 1.11 and TensorFlow 2.9. Additionally, ml.g4dn and

Migrate from Amazon Elastic Inference to other instances 4638

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://aws.amazon.com/machine-learning/inferentia/

Amazon SageMaker Developer Guide

AWS Inferentia are available in all AWS Regions, whereas Amazon Elastic Inference is only available
in 6 Regions. Both AWS Inferentia and ml.g4dn offer better performance at lower price for most
ML inference workloads.

2. Modify inference.py

Modify your inference.py file to remove any Elastic Inference-specific required changes and
use default handlers. Based on different user cases, you might have different input and output
handlers, but the main changes you must make are in the model loading handler functions
model_fn and predict_fn. Remove the Elastic Inference-specific predict handler predict_fn
and restore the model loading handler model_fn to the default format. The following example
shows how to do this, with the parts you should remove from inference.py commented out:

from __future__ import print_function

import os

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

def model_fn(model_dir, context):
 model = {customer_model}
 # if torch.__version__ in VERSIONS_USE_NEW_API:
 # import torcheia
 # loaded_model = loaded_model.eval()
 # loaded_model = torcheia.jit.attach_eia(loaded_model, 0)
 with open(os.path.join(model_dir, 'model.pth'), 'rb') as f:
 model.load_state_dict(torch.load(f))
 return model

def predict_fn(input_data, model):
logger.info(
"Performing EIA inference with Torch JIT context with input of size
 {}".format(
input_data.shape
)
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_data = input_data.to(device)

Migrate from Amazon Elastic Inference to other instances 4639

Amazon SageMaker Developer Guide

with torch.no_grad():
if torch.__version__ in VERSIONS_USE_NEW_API:
import torcheia

torch._C._jit_set_profiling_executor(False)
with torch.jit.optimized_execution(True):
return model.forward(input_data)
else:
with torch.jit.optimized_execution(True, {"target_device": "eia:0"}):
return model(input_data)

def predict_fn(input_data, model):
 return model(input_data)

3. Create a model

Create a new model that points to your modified inference.py file. You can keep the
inference.py file locally and point to it by specifying source_dir and entry_point or tar the
inference.py file into the model tarball. The following example shows the former case:

from sagemaker.pytorch import PyTorchModel

pytorch = PyTorchModel(
 model_data={model_data_url},
 role=role,
 entry_point="inference.py",
 source_dir="code",
 framework_version="1.5.1",
 py_version="py3",
 sagemaker_session=sagemaker_session,
)

4. Deploy the model to the endpoint and invoke it

You can use one of the following options for deploying your model after making the preceding
changes.

Option 1: Deploy from scratch

You can deploy the model to a new endpoint with a recommended instance from the Accelerated
Computing category, such as G4.

predictor = pytorch.deploy(

Migrate from Amazon Elastic Inference to other instances 4640

Amazon SageMaker Developer Guide

 ...
 # instance_type = "ml.c5.xlarge",
 instance_type="ml.g4dn.2xlarge",
 ...
response = predictor.predict(payload)

Option 2: Update the existing endpoint

Complete the following steps to update your existing endpoint:

1. Call CreateEndpointConfig to create a new EndpointConfig that uses the new instance
type. If you have an autoscaling policy, delete the existing autoscaling policy.

endpoint_config_response = sagemaker_client.create_endpoint_config(
 EndpointConfigName=endpoint_config_name,
 ProductionVariants=[
 {
 "VariantName": "variant1", # The name of the production variant.
 "ModelName": model_name, # The name of new created model
 "InstanceType": instance_type, # Specify the right-sized instance type.
 "InitialInstanceCount": 1 # Number of instances to launch initially.
 }
]
)

2. Call UpdateEndpoint and specify your newly created EndpointConfig.

endpoint_config_response = sagemaker_client.update_endpoint(
 EndpointConfigName=endpoint_config_name, # The name of the new endpoint config
 just created
 EndpointName=endpoint_name # The name of the existing endpoint you want to
 update
)

3. Wait for your endpoint to change status to InService. This takes approximately 10–15
minutes.

4. Finally, if you need autoscaling for your new endpoint, create a new autoscaling policy for your
new endpoint and ProductionVariant.

Migrate from Amazon Elastic Inference to other instances 4641

Amazon SageMaker Developer Guide

TensorFlow

If you're migrating from TensorFlow, use the following guidelines.

1. Choose the right instance type

Refer to the 1. Choose the right instance type guidance in the PyTorch section.

2. Deploy the model to the endpoint and invoke it

You can use one of the following options for deploying your model.

Option 1: Deploy from scratch

You can migrate from Elastic Inference by re-deploying the model to a new endpoint by removing
the accelerator_type field and specifying a right-sized instance type from the Accelerated
Computing category, such as G4. In the following example, the commented out line causes you to
deploy without using an Elastic Inference accelerator.

predictor = tensorflow_model.deploy(
 ...
 instance_type="ml.g4dn.2xlarge"
 # instance_type="ml.c5.xlarge",
 # accelerator_type="ml.eia1.medium"
 ...
)

Option 2: Update the existing endpoint

Refer to the Option 2. Update the existing endpoint guidance in Step 4 of the PyTorch section.

MXNet

If you're migrating from MXNet, use the following guidelines.

1. Choose the right instance type

Refer to the 1. Choose the right instance type guidance in the PyTorch section.

2. Deploy the model to the endpoint and invoke it

You can use one of the following options for deploying your model.

Migrate from Amazon Elastic Inference to other instances 4642

Amazon SageMaker Developer Guide

Option 1: Deploy from scratch

You can migrate from Elastic Inference by re-deploying the model to a new endpoint by removing
the accelerator_type field and specifying a right-sized instance type from the Accelerated
Computing category, such as G4. In the following example, the commented out line causes you to
deploy without using an Elastic Inference accelerator.

predictor = mxnet_model.deploy(
 ...
 # instance_type="ml.c5.xlarge",
 instance_type="ml.g4dn.2xlarge"
 ...
)

Option 2: Update the existing endpoint

Refer to the Option 2: Update the existing endpoint guidance in Step 4 of the PyTorch section.

Topics

• How EI Works

• Choose an EI Accelerator Type

• Use EI in a SageMaker Notebook Instance

• Use EI on a Hosted Endpoint

• Frameworks that Support EI

• Use EI with SageMaker Built-in Algorithms

• EI Sample Notebooks

• Set Up to Use EI

• Attach EI to a Notebook Instance

• Use EI on Amazon SageMaker Hosted Endpoints

How EI Works

Amazon Elastic Inference accelerators are network attached devices that work along with
SageMaker instances in your endpoint to accelerate your inference calls. Elastic Inference
accelerates inference by allowing you to attach fractional GPUs to any SageMaker instance. You can
select the client instance to run your application and attach an Elastic Inference accelerator to use

How EI Works 4643

Amazon SageMaker Developer Guide

the right amount of GPU acceleration for your inference needs. Elastic Inference helps you lower
your cost when not fully utilizing your GPU instance for inference. We recommend trying Elastic
Inference with your model using different CPU instances and accelerator sizes.

The following EI accelerator types are available. You can configure your endpoints or notebook
instances with any EI accelerator type.

In the table, the throughput in teraflops (TFLOPS) is listed for both single-precision floating-point
(F32) and half-precision floating-point (F16) operations. The memory in GB is also listed.

Accelerator Type F32 Throughput in
TFLOPS

F16 Throughput in
TFLOPS

Memory in GB

ml.eia2.medium 1 8 2

ml.eia2.large 2 16 4

ml.eia2.xlarge 4 32 8

ml.eia1.medium 1 8 1

ml.eia1.large 2 16 2

ml.eia1.xlarge 4 32 4

Choose an EI Accelerator Type

Consider the following factors when choosing an accelerator type for a hosted model:

• Models, input tensors and batch sizes influence the amount of accelerator memory you need.
Start with an accelerator type that provides at least as much memory as the file size of your
trained model. Factor in that a model might use significantly more memory than the file size at
runtime.

• Demands on CPU compute resources, main system memory, and GPU-based acceleration and
accelerator memory vary significantly between different kinds of deep learning models. The
latency and throughput requirements of the application also determine the amount of compute
and acceleration you need. Thoroughly test different configurations of instance types and EI
accelerator sizes to make sure you choose the configuration that best fits the performance needs
of your application.

Choose an EI Accelerator Type 4644

Amazon SageMaker Developer Guide

For more information on selecting an EI accelerator, see:

• Amazon Elastic Inference Overview

• Choosing an Instance and Accelerator Type for Your Model

• Optimizing costs in Amazon Elastic Inference with TensorFlow

Use EI in a SageMaker Notebook Instance

Typically, you build and test machine learning models in a SageMaker notebook before you deploy
them for production. You can attach EI to your notebook instance when you create the notebook
instance. You can set up an endpoint that is hosted locally on the notebook instance by using the
local mode supported by TensorFlow, MXNet, and PyTorch estimators and models in the Amazon
SageMaker Python SDK to test inference performance. Elastic Inference enabled PyTorch is not
currently supported on notebook instances. For instructions on how to attach EI to a notebook
instance and set up a local endpoint for inference, see Attach EI to a Notebook Instance. There are
also Elastic Inference-enabled SageMaker Notebook Jupyter kernels for Elastic Inference-enabled
versions of TensorFlow and Apache MXNet. For information about using SageMaker notebook
instances, see Use Amazon SageMaker Notebook Instances

Use EI on a Hosted Endpoint

When you are ready to deploy your model for production to provide inferences, you create a
SageMaker hosted endpoint. You can attach EI to the instance where your endpoint is hosted to
increase its performance at providing inferences. For instructions on how to attach EI to a hosted
endpoint instance, see Use EI on Amazon SageMaker Hosted Endpoints.

Frameworks that Support EI

Amazon Elastic Inference is designed to be used with AWS enhanced versions of TensorFlow,
Apache MXNet, or PyTorch machine learning frameworks. These enhanced versions of the
frameworks are automatically built into containers when you use the Amazon SageMaker Python
SDK, or you can download them as binary files and import them in your own Docker containers.

You can download the EI-enabled TensorFlow binary files from the public amazonei-tensorflow
Amazon S3 bucket to the TensorFlow serving containers. For more information about building
a container that uses the EI-enabled version of TensorFlow, see Amazon Elastic Inference with
TensorFlow in SageMaker.

Use EI in a SageMaker Notebook Instance 4645

https://aws.amazon.com/machine-learning/elastic-inference/
https://docs.aws.amazon.com/elastic-inference/latest/developerguide/before.html#getting-started-choosing
https://aws.amazon.com/blogs/machine-learning/optimizing-costs-in-amazon-elastic-inference-with-amazon-tensorflow/
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://console.aws.amazon.com/s3/buckets/amazonei-tensorflow
https://github.com/aws/sagemaker-tensorflow-serving-container#sagemaker-tensorflow-serving-container
https://github.com/aws/sagemaker-tensorflow-serving-container#sagemaker-tensorflow-serving-container

Amazon SageMaker Developer Guide

You can download the EI-enabled MXNet binary files from the public amazonei-apachemxnet
Amazon S3 bucket to the MXNet serving containers. For more information about building a
container that uses the EI-enabled version of MXNet, see Amazon Elastic Inference with MXNet in
SageMaker.

You can download the Elastic Inference enabled binary for PyTorch. For more information about
building a container that uses the EI-enabled version of PyTorch, see Amazon Elastic Inference
with PyTorch in SageMaker.

To use Elastic Inference in a hosted endpoint, you can choose any of the following frameworks
depending on your needs.

• SageMaker Python SDK - Deploy TensorFlow models

• SageMaker Python SDK - Deploy MXNet models

• SageMaker Python SDK - Deploy PyTorch models

If you need to create a custom container for deploying your model that is complex and requires
extensions to a framework that the SageMaker pre-built containers do not support, use the low-
level AWS SDK for Python (Boto 3) .

Use EI with SageMaker Built-in Algorithms

Currently, the Image Classification - MXNet and Object Detection - MXNet built-in algorithms
support EI. For an example that uses the Image Classification algorithm with EI, see End-to-End
Multiclass Image Classification Example.

EI Sample Notebooks

The following Sample notebooks provide examples of using EI in SageMaker:

• Using Amazon Elastic Inference with MXNet on Amazon SageMaker

• Using Amazon Elastic Inference with MXNet on an Amazon SageMaker Notebook Instance

• Using Amazon Elastic Inference with Neo-compiled TensorFlow model on SageMaker

• Using Amazon Elastic Inference with a pre-trained TensorFlow Serving model on SageMaker

Set Up to Use EI

Use the instructions in this topic only if one of the following applies to you:

Use EI with SageMaker Built-in Algorithms 4646

https://console.aws.amazon.com/s3/buckets/amazonei-apachemxnet
https://github.com/aws/sagemaker-mxnet-serving-container#amazon-elastic-inference-with-mxnet-in-sagemaker
https://github.com/aws/sagemaker-mxnet-serving-container#amazon-elastic-inference-with-mxnet-in-sagemaker
https://amazonei-pytorcheia.s3.amazonaws.com/releases/v1.0.0/torcheia-1.0.0-cp36-cp36m-manylinux1_x86_64.whl
https://github.com/aws/sagemaker-pytorch-serving-container/#amazon-elastic-inference-with-pytorch-in-sagemaker
https://github.com/aws/sagemaker-pytorch-serving-container/#amazon-elastic-inference-with-pytorch-in-sagemaker
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/using_tf.html#deploy-tensorflow-serving-models
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/using_mxnet.html#deploy-mxnet-models
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#deploy-pytorch-models
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/ec2-example-managing-instances.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/ec2-example-managing-instances.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.html
https://sagemaker-examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/tensorflow_serving_using_elastic_inference_with_your_own_model/tensorflow_neo_compiled_model_elastic_inference.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/tensorflow_serving_using_elastic_inference_with_your_own_model/tensorflow_serving_pretrained_model_elastic_inference.html

Amazon SageMaker Developer Guide

• You want to use a customized role or permission policy.

• You want to use a VPC for your hosted model or notebook instance.

Note

If you already have an execution role that has the AmazonSageMakerFullAccess
managed policy attached (this is true for any IAM role that you create when you create a
notebook instance, training job, or model in the console) and you are not connecting to an
EI model or notebook instance in a VPC, you do not need to make any of these changes to
use EI in Amazon SageMaker.

Topics

• Set Up Required Permissions

• Use a Custom VPC to Connect to EI

Set Up Required Permissions

To use EI in SageMaker, the role that you use to open a notebook instance or create a deployable
model must have a policy with the required permissions attached. You can attach the
AmazonSageMakerFullAccess managed policy, which contains the required permissions, to
the role, or you can add a custom policy that has the required permissions. For information about
creating an IAM role, see Creating a Role for an AWS Service (Console) in the AWS Identity and
Access Management User Guide. For information about attaching a policy to a role, see Adding and
Removing IAM Policies .

Add these permissions specifically for connecting EI in an IAM policy.

{
 "Effect": "Allow",
 "Action": [
 "elastic-inference:Connect",
 "ec2:DescribeVpcEndpoints"
],
 "Resource": "*"
}

Set Up to Use EI 4647

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon SageMaker Developer Guide

The following IAM policy is the complete list of required permissions to use EI in SageMaker.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elastic-inference:Connect",
 "ec2:DescribeVpcEndpoints"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability",
 "cloudwatch:PutMetricData",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DeleteAlarms",
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:DeleteScheduledAction",
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:DescribeScalableTargets",

Set Up to Use EI 4648

Amazon SageMaker Developer Guide

 "application-autoscaling:DescribeScalingActivities",
 "application-autoscaling:DescribeScalingPolicies",
 "application-autoscaling:DescribeScheduledActions",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:PutScheduledAction",
 "application-autoscaling:RegisterScalableTarget",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:GetLogEvents",
 "logs:PutLogEvents"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "*",
 "Condition": {

Set Up to Use EI 4649

Amazon SageMaker Developer Guide

 "StringEqualsIgnoreCase": {
 "s3:ExistingObjectTag/SageMaker": "true"
 }
 }
 },
 {
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/sagemaker.application-
autoscaling.amazonaws.com/AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "sagemaker.application-
autoscaling.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

Use a Custom VPC to Connect to EI

To use EI with SageMaker in a VPC, you need to create and configure two security groups, and
set up a PrivateLink VPC interface endpoint. EI uses VPC interface endpoint to communicate with
SageMaker endpoints in your VPC. The security groups you create are used to connect to the VPC
interface endpoint.

Set up Security Groups to Connect to EI

To use EI within a VPC, you need to create two security groups:

Set Up to Use EI 4650

Amazon SageMaker Developer Guide

• A security group to control access to the VPC interface endpoint that you will set up for EI.

• A security group that allows SageMaker to call into the first security group.

To configure the two security groups

1. Create a security group with no outbound connections. You will attach this to the VPC
endpoint interface you create in the next section.

2. Create a second security group with no inbound connections, but with an outbound
connection to the first security group.

3. Edit the first security group to allow inbound connections only to the second security group an
all outbound connections.

For more information about VPC security groups, see Security Groups for Your VPC in the Amazon
Virtual Private Cloud User Guide.

Set up a VPC Interface Endpoint to Connect to EI

To use EI with SageMaker in a custom VPC, you need to set up a VPC interface endpoint
(PrivateLink) for the EI service.

• Set up a VPC interface endpoint (PrivateLink) for the EI. Follow the instructions at Creating
an Interface Endpoint. In the list of services, choose com.amazonaws.<region>.elastic-
inference.runtime. For Security group, make sure you select the first security group you created
in the previous section to the endpoint.

• When you set up the interface endpoint, choose all of the Availability Zones where EI is available.
EI fails if you do not set up at least two Availability Zones. For information about VPC subnets,
see VPCs and Subnets.

Attach EI to a Notebook Instance

To test and evaluate inference performance using EI, you can attach EI to a notebook instance
when you create or update a notebook instance. You can then use EI in local mode to host a
model at an endpoint hosted on the notebook instance. You should test various sizes of notebook
instances and EI accelerators to evaluate the configuration that works best for your use case.

Attach EI to a Notebook Instance 4651

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

Amazon SageMaker Developer Guide

Set Up to Use EI

To use EI locally in a notebook instance, create a notebook instance with an EI instance.

To create a notebook instance with an EI instance

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Notebook instances.

3. Choose Create notebook instance.

4. For Notebook instance name, provide a unique name for your notebook instance.

5. For notebook instance type, choose a CPU instance such as ml.t2.medium.

6. For Elastic Inference (EI), choose an instance from the list, such as ml.eia2.medium.

7. For IAM role, choose an IAM role that has the required permissions to use SageMaker and EI.

8. (Optional) For VPC - Optional, if you want the notebook instance to use a VPC, choose one
from the available list. Otherwise, leave it as No VPC. If you use a VPC follow the instructions
at Use a Custom VPC to Connect to EI.

9. (Optional) For Lifecycle configuration - optional, either leave it as No configuration or
choose a lifecycle configuration. For more information, see Customize a Notebook Instance
Using a Lifecycle Configuration Script.

10. (Optional) For Encryption key - optional, Optional) If you want SageMaker to use an AWS Key
Management Service (AWS KMS) key to encrypt data in the ML storage volume attached to the
notebook instance, specify the key.

11. (Optional) For Volume Size In GB - optional, leave the default value of 5.

12. (Optional) For Tags, add tags to the notebook instance. A tag is a label you assign to help
manage your notebook instances. A tag consists of a key and a value, both of which you
define.

13. Choose Create Notebook Instance.

After you create your notebook instance with EI attached, you can create a Jupyter notebook and
set up an EI endpoint that is hosted locally on the notebook instance.

Topics

• Use EI in Local Mode in SageMaker

Attach EI to a Notebook Instance 4652

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Use EI in Local Mode in SageMaker

To use EI locally in an endpoint hosted on a notebook instance, use local mode with the Amazon
SageMaker Python SDK versions of either the TensorFlow, MXNet, or PyTorch estimators or models.
For more information about local mode support in the SageMaker Python SDK, see https://
github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview.

Topics

• Use EI in Local Mode with SageMaker TensorFlow Estimators and Models

• Use EI in Local Mode with SageMaker Apache MXNet Estimators and Models

• Use EI in Local Mode with SageMaker PyTorch Estimators and Models

Use EI in Local Mode with SageMaker TensorFlow Estimators and Models

To use EI with TensorFlow in local mode, specify local for instance_type and
local_sagemaker_notebook for accelerator_type when you call the deploy method of
an estimator or a model object. For more information about Amazon SageMaker Python SDK
TensorFlow estimators and models, see https://sagemaker.readthedocs.io/en/stable/frameworks/
tensorflow/index.html.

The following code shows how to use local mode with an estimator object. To call the deploy
method, you must have previously either:

• Trained the model by calling the fit method of an estimator.

• Pass a model artifact when you initialize the model object.

Deploys the model to a local endpoint
tf_predictor = tf_model.deploy(initial_instance_count=1,
 instance_type='local',
 accelerator_type='local_sagemaker_notebook')

Use EI in Local Mode with SageMaker Apache MXNet Estimators and Models

To use EI with MXNet in local mode, specify local for instance_type and
local_sagemaker_notebook for accelerator_type when you call the deploy method of an
estimator or a model object. For more information about Amazon SageMaker Python SDK MXNet
estimators and models, see https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/
index.html.

Attach EI to a Notebook Instance 4653

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview
https://github.com/aws/sagemaker-python-sdk#sagemaker-python-sdk-overview
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/index.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/index.html

Amazon SageMaker Developer Guide

The following code shows how to use local mode with an estimator object. You must have
previously called the fit method of the estimator to train the model.

Deploys the model to a local endpoint
mxnet_predictor = mxnet_estimator.deploy(initial_instance_count=1,
 instance_type='local',
 accelerator_type='local_sagemaker_notebook')

For a complete example of using EI in local mode with MXNet, see the sample notebook at
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/mxnet_mnist/
mxnet_mnist_elastic_inference_local.html .

Use EI in Local Mode with SageMaker PyTorch Estimators and Models

To use EI with PyTorch in local mode, when you call the deploy method of an estimator or
a model object, specify local for instance_type and local_sagemaker_notebook for
accelerator_type. For more information about Amazon SageMaker Python SDK PyTorch
estimators and models, see SageMaker PyTorch Estimators and Models .

The following code shows how to use local mode with an estimator object. You must have
previously called the fit method of the estimator to train the model.

Deploys the model to a local endpoint
pytorch_predictor = pytorch_estimator.deploy(initial_instance_count=1,
 instance_type='local',

 accelerator_type='local_sagemaker_notebook')

Use EI on Amazon SageMaker Hosted Endpoints

To use Elastic Inference (EI) in Amazon SageMaker with a hosted endpoint for real-time inference,
specify an EI accelerator when you create the deployable model to be hosted at that endpoint. You
can do this in one of the following ways:

• Use the Amazon SageMaker Python SDK versions of either the TensorFlow, MXNet, or PyTorch
and the SageMaker pre-built containers for TensorFlow, MXNet, and PyTorch

• Build your own container, and use the low-level SageMaker API (Boto 3). You will need to import
the EI-enabled version of either TensorFlow, MXNet, or PyTorch from the provided Amazon S3
locations into your container, and use one of those versions to write your training script.

Endpoints with Elastic Inference 4654

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/index.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• Use either the Image Classification - MXNet or Object Detection - MXNet build-in algorithms, and
use the AWS SDK for Python (Boto3) to run your training job and create your deployable model
and hosted endpoint.

Topics

• Use EI with a SageMaker TensorFlow Container

• Use EI with a SageMaker MXNet Container

• Use EI with a SageMaker PyTorch Container

• Use EI with Your Own Container

Use EI with a SageMaker TensorFlow Container

To use TensorFlow with EI in SageMaker, you need to call the deploy method of either the
Estimator or Model objects. You then specify an accelerator type using the accelerator_type input
argument. For information on using TensorFlow in the SageMaker Python SDK, see: https://
sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/index.html.

SageMaker provides default model training and inference code for your convenience. For custom
file formats, you might need to implement custom model training and inference code.

Use an Estimator Object

To use an estimator object with EI, when you use the deploy method, include the
accelerator_type input argument. The estimator returns a predictor object, which we call its
deploy method, as shown in the example code.

Deploy an estimator using EI (using the accelerator_type input argument)
predictor = estimator.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia2.medium')

Use a Model Object

To use a model object with EI, when you use the deploy method, include the accelerator_type
input argument. The estimator returns a predictor object, which we call its deploy method, as
shown in the example code.

Deploy a model using EI (using the accelerator_type input argument)

Endpoints with Elastic Inference 4655

https://sagemaker.readthedocs.io/en/stable/sagemaker.tensorflow.html#tensorflow-estimator
https://sagemaker.readthedocs.io/en/stable/sagemaker.tensorflow.html#tensorflow-model
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/index.html

Amazon SageMaker Developer Guide

predictor = model.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia2.medium')

Use EI with a SageMaker MXNet Container

To use MXNet with EI in SageMaker, you need to call the deploy method of either the Estimator
or Model objects. You then specify an accelerator type using the accelerator_type input
argument. For information about using MXNet in the Amazon SageMaker Python SDK, see https://
sagemaker.readthedocs.io/en/stable/frameworks/mxnet/index.html

For your convenience, SageMaker provides default model training and inference code. For custom
file formats, you might need to write custom model training and inference code.

Use an Estimator Object

To use an estimator object with EI, when you use the deploy method, include the
accelerator_type input argument. The estimator returns a predictor object, which we call its
deploy method, as shown in the example code.

Deploy an estimator using EI (using the accelerator_type input argument)
predictor = estimator.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia2.medium')

Use a Model Object

To use a model object with EI, when you use the deploy method, include the accelerator_type
input argument. The estimator returns a predictor object, which we call its deploy method, as
shown in the example code.

Deploy a model using EI (using the accelerator_type input argument)
predictor = model.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia2.medium')

Use EI with a SageMaker PyTorch Container

To use PyTorch with EI in SageMaker, you need to call the deploy method of either the Estimator
or Model objects. You then specify an accelerator type using the accelerator_type input

Endpoints with Elastic Inference 4656

https://sagemaker.readthedocs.io/en/stable/sagemaker.mxnet.html#mxnet-estimator
https://sagemaker.readthedocs.io/en/stable/sagemaker.mxnet.html#mxnet-model
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/index.html
https://sagemaker.readthedocs.io/en/stable/sagemaker.pytorch.html#pytorch-estimator
https://sagemaker.readthedocs.io/en/stable/sagemaker.pytorch.html#pytorch-model

Amazon SageMaker Developer Guide

argument. For information about using PyTorch in the Amazon SageMaker Python SDK, see
SageMaker PyTorch Estimators and Models.

For your convenience, SageMaker provides default model training and inference code. For custom
file formats, you might need to write custom model training and inference code.

Use an Estimator Object

To use an estimator object with EI, when you use the deploy method, include the
accelerator_type input argument. The estimator returns a predictor object, which we call its
deploy method, as shown in this example code.

Deploy an estimator using EI (using the accelerator_type input argument)
predictor = estimator.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia2.medium')

Use a Model Object

To use a model object with EI, when you use the deploy method, include the accelerator_type
input argument. The model returns a predictor object, which we call its deploy method, as shown
in this example code.

Deploy a model using EI (using the accelerator_type input argument)
predictor = model.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge',
 accelerator_type='ml.eia2.medium')

Use EI with Your Own Container

To use EI with a model in a custom container that you build, use the low-level AWS SDK for Python
(Boto 3). download and import the AWS EI-enabled versions of TensorFlow, Apache MXNet, or
PyTorch machine learning frameworks, and write your training script using those frameworks.

Import the EI Version of TensorFlow, MXNet, or PyTorch into Your Docker Container

To use EI with your own container, you need to import either the Amazon EI TensorFlow Serving
library, the Amazon EI Apache MXNet library, or the Elastic Inference enabled PyTorch library
into your container. The EI-enabled versions of TensorFlow and MXNet are currently available as
binary files stored in Amazon S3 locations. You can download the EI-enabled binary for TensorFlow

Endpoints with Elastic Inference 4657

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/index.html

Amazon SageMaker Developer Guide

from the Amazon S3 bucket at console.aws.amazon.com/s3/buckets/amazonei-tensorflow. For
information about building a container that uses the EI-enabled version of TensorFlow, see https://
github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-
tensorflow-serving-container. You can download the EI-enabled binary for Apache MXNet from
the public Amazon S3 bucket at console.aws.amazon.com/s3/buckets/amazonei-apachemxnet.
For information about building a container that uses the EI-enabled version of MXNet, see https://
github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-
container. You can download the Elastic Inference enabled binary for PyTorch. For information
about building a container that uses the Elastic Inference enabled version of PyTorch, see Building
your image.

Create an EI Endpoint with AWS SDK for Python (Boto 3)

To create an endpoint by using AWS SDK for Python (Boto 3), you first create an endpoint
configuration. The endpoint configuration specifies one or more models (called production
variants) that you want to host at the endpoint. To attach EI to one or more of the production
variants hosted at the endpoint, you specify one of the EI instance types as the AcceleratorType
field for that ProductionVariant. You then pass that endpoint configuration when you create
the endpoint.

Create an Endpoint Configuration

To use EI, you need to specify an accelerator type in the endpoint configuration.

Create Endpoint Configuration
from time import gmtime, strftime

endpoint_config_name = 'ImageClassificationEndpointConfig-' + strftime("%Y-%m-%d-%H-%M-
%S", gmtime())
print(endpoint_config_name)
create_endpoint_config_response = sagemaker.create_endpoint_config(
 EndpointConfigName = endpoint_config_name,
 ProductionVariants=[{
 'InstanceType':'ml.m4.xlarge',
 'InitialInstanceCount':1,
 'ModelName':model_name,
 'VariantName':'AllTraffic',
 'AcceleratorType':'ml.eia2.medium'}])

print("Endpoint Config Arn: " + create_endpoint_config_response['EndpointConfigArn'])

Endpoints with Elastic Inference 4658

https://console.aws.amazon.com/s3/buckets/amazonei-tensorflow
https://github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-tensorflow-serving-container
https://github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-tensorflow-serving-container
https://github.com/aws/sagemaker-tensorflow-container#building-the-sagemaker-elastic-inference-tensorflow-serving-container
https://console.aws.amazon.com/s3/buckets/amazonei-apachemxnet
https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-container
https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-container
https://github.com/aws/sagemaker-mxnet-container#building-the-sagemaker-elastic-inference-mxnet-container
https://amazonei-pytorcheia.s3.amazonaws.com/releases/v1.0.0/torcheia-1.0.0-cp36-cp36m-manylinux1_x86_64.whl
https://github.com/aws/sagemaker-pytorch-serving-container/#building-your-image
https://github.com/aws/sagemaker-pytorch-serving-container/#building-your-image

Amazon SageMaker Developer Guide

Create an Endpoint

After you create an endpoint configuration with an accelerator type, you can create an endpoint.

endpoint_name = 'ImageClassificationEndpoint-' + strftime("%Y-%m-%d-%H-%M-%S",
 gmtime())
endpoint_response = sagemaker.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)

After creating the endpoint, you can invoke it using the invoke_endpoint method in a Boto3
runtime object, as you would any other endpoint.

Best practices

The following topics provide guidance on best practices for deploying machine learning models in
Amazon SageMaker.

Topics

• Best practices for deploying models on SageMaker Hosting Services

• Monitor Security Best Practices

• Low latency real-time inference with AWS PrivateLink

• Migrate inference workload from x86 to AWS Graviton

• Troubleshoot Amazon SageMaker model deployments

• Inference cost optimization best practices

• Best practices to minimize interruptions during GPU driver upgrades

• Best practices for endpoint security and health with Amazon SageMaker

Best practices for deploying models on SageMaker Hosting Services

When hosting models using SageMaker hosting services, consider the following:

• Typically, a client application sends requests to the SageMaker HTTPS endpoint to obtain
inferences from a deployed model. You can also send requests to this endpoint from your
Jupyter notebook during testing.

• You can deploy a model trained with SageMaker to your own deployment target. To do that,
you need to know the algorithm-specific format of the model artifacts that were generated by

Best practices 4659

Amazon SageMaker Developer Guide

model training. For more information about output formats, see the section corresponding to
the algorithm you are using in Common Data Formats for Training.

• You can deploy multiple variants of a model to the same SageMaker HTTPS endpoint. This
is useful for testing variations of a model in production. For example, suppose that you've
deployed a model into production. You want to test a variation of the model by directing a small
amount of traffic, say 5%, to the new model. To do this, create an endpoint configuration that
describes both variants of the model. You specify the ProductionVariant in your request to
the CreateEndPointConfig. For more information, see ProductionVariant.

• You can configure a ProductionVariant to use Application Auto Scaling. For information
about configuring automatic scaling, see Automatically Scale Amazon SageMaker Models.

• You can modify an endpoint without taking models that are already deployed into production
out of service. For example, you can add new model variants, update the ML Compute instance
configurations of existing model variants, or change the distribution of traffic among model
variants. To modify an endpoint, you provide a new endpoint configuration. SageMaker
implements the changes without any downtime. For more information see, UpdateEndpoint
and UpdateEndpointWeightsAndCapacities.

• Changing or deleting model artifacts or changing inference code after deploying a model
produces unpredictable results. If you need to change or delete model artifacts or change
inference code, modify the endpoint by providing a new endpoint configuration. Once
you provide the new endpoint configuration, you can change or delete the model artifacts
corresponding to the old endpoint configuration.

• If you want to get inferences on entire datasets, consider using batch transform as an alternative
to hosting services. For information, see Use Batch Transform

Deploy Multiple Instances Across Availability Zones

Create robust endpoints when hosting your model. SageMaker endpoints can help protect your
application from Availability Zone outages and instance failures. If an outage occurs or an instance
fails, SageMaker automatically attempts to distribute your instances across Availability Zones.
For this reason, we strongly recommend that you deploy multiple instances for each production
endpoint.

If you are using an Amazon Virtual Private Cloud (VPC), configure the VPC with at least two
Subnets, each in a different Availability Zone. If an outage occurs or an instance fails, Amazon
SageMaker automatically attempts to distribute your instances across Availability Zones.

Best practices for deploying models on SageMaker Hosting Services 4660

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html%23SageMaker-Type-VpcConfig-Subnets%20.html

Amazon SageMaker Developer Guide

In general, to achieve more reliable performance, use more small Instance Types in different
Availability Zones to host your endpoints.

Deploy inference components for high availability. In addition to the above recommendation
for instance numbers, to achieve 99.95% availability, ensure that your inference components are
configured to have more than two copies. In addition, in your managed auto scaling policy, set the
minimum number of instances to two as well.

Monitor Security Best Practices

Monitor your usage of SageMaker as it relates to security best practices by using AWS Security Hub.
Security Hub uses security controls to evaluate resource configurations and security standards to
help you comply with various compliance frameworks. For more information about using Security
Hub to evaluate SageMaker resources, see Amazon SageMaker controls in the AWS Security Hub
User Guide.

Low latency real-time inference with AWS PrivateLink

Amazon SageMaker provides low latency for real-time inferences while maintaining high
availability and resiliency using multi-AZ deployment. The application latency is made up of two
primary components: infrastructure or overhead latency and model inference latency. Reduction of
overhead latency opens up new possibilities such as deploying more complex, deep, and accurate
models or splitting monolithic applications into scalable and maintainable microservice modules.
You can reduce the latency for real-time inferences with SageMaker using an AWS PrivateLink
deployment. With AWS PrivateLink, you can privately access all SageMaker API operations from
your Virtual Private Cloud (VPC) in a scalable manner by using interface VPC endpoints. An
interface VPC endpoint is an elastic network interface in your subnet with private IP addresses that
serves as an entry point for all SageMaker API calls.

By default, a SageMaker endpoint with 2 or more instances is deployed in at least 2 AWS
Availability Zones (AZs) and instances in any AZ can process invocations. This results in one or
more AZ “hops” that contribute to the overhead latency. An AWS PrivateLink deployment with the
privateDNSEnabled option set as true alleviates this by achieving two objectives:

• It keeps all inference traffic within your VPC.

• It keeps invocation traffic in the same AZ as the client that originated it when using SageMaker
Runtime. This avoids the “hops” between AZs reducing the overhead latency.

Monitor Security Best Practices 4661

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/sagemaker-controls.html

Amazon SageMaker Developer Guide

The following sections of this guide demonstrate how you can reduce the latency for real-time
inferences with AWS PrivateLink deployment.

Topics

• Deploy AWS PrivateLink

• Deploy SageMaker endpoint in a VPC

• Invoke the SageMaker endpoint

Deploy AWS PrivateLink

To deploy AWS PrivateLink, first create an interface endpoint for the VPC from which you connect
to the SageMaker endpoints. Please follow the steps in Access an AWS service using an interface
VPC endpoint to create the interface endpoint. While creating the endpoint, select the following
settings in the console interface:

• Select the Enable DNS name checkbox under Additional Settings

• Select the appropriate security groups and the subnets to be used with the SageMaker
endpoints.

Also make sure that the VPC has DNS hostnames turned on. For more information on how to
change DNS attributes for your VPC, see View and update DNS attributes for your VPC.

Deploy SageMaker endpoint in a VPC

To achieve low overhead latency, create a SageMaker endpoint using the same subnets that you
specified when deploying AWS PrivateLink. These subnets should match the AZs of your client
application, as shown in the following code snippet.

model_name = '<the-name-of-your-model>'

vpc = 'vpc-0123456789abcdef0'
subnet_a = 'subnet-0123456789abcdef0'
subnet_b = 'subnet-0123456789abcdef1'
security_group = 'sg-0123456789abcdef0'

create_model_response = sagemaker_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = sagemaker_role,
 PrimaryContainer = {

Low latency real-time inference with AWS PrivateLink 4662

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating

Amazon SageMaker Developer Guide

 'Image': container,
 'ModelDataUrl': model_url
 },
 VpcConfig = {
 'SecurityGroupIds': [security_group],
 'Subnets': [subnet_a, subnet_b],
 },
)

The aforementioned code snippet assumes that you have followed the steps in Before you begin.

Invoke the SageMaker endpoint

Finally, specify the SageMaker Runtime client and invoke the SageMaker endpoint as shown in the
following code snippet.

endpoint_name = '<endpoint-name>'

runtime_client = boto3.client('sagemaker-runtime')
response = runtime_client.invoke_endpoint(EndpointName=endpoint_name,
 ContentType='text/csv',
 Body=payload)

For more information on endpoint configuration, see Deploy models for real-time inference.

Migrate inference workload from x86 to AWS Graviton

AWS Graviton is a series of ARM-based processors designed by AWS. They are more energy efficient
than x86-based processors and offer a compelling price-performance ratio. Amazon SageMaker
offers Graviton-based instances so that you can take advantage of these advanced processors for
your inference needs.

You can migrate your existing inference workloads from x86-based instances to Graviton-based
instances, by using either ARM compatible container images or multi-architecture container
images. This guide assumes that you are either using AWS Deep Learning container images, or your
own ARM compatible container images. For more information on building your own images, check
Building your image.

At a high level, migrating inference workload from x86-based instances to Graviton-based
instances is a four-step process:

Migrate inference workload from x86 to AWS Graviton 4663

https://aws.amazon.com/ec2/graviton/
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers#building-your-image

Amazon SageMaker Developer Guide

1. Push container images to Amazon Elastic Container Registry (Amazon ECR), an AWS managed
container registry.

2. Create a SageMaker Model.

3. Create an endpoint configuration.

4. Create an endpoint.

The following sections of this guide provide more details regarding the above steps. Replace the
user placeholder text in the code examples with your own information.

Topics

• Push container images to Amazon ECR

• Create a SageMaker Model

• Create an endpoint configuration

• Create an endpoint

Push container images to Amazon ECR

You can push your container images to Amazon ECR with the AWS CLI. When using an ARM
compatible image, verify that it supports ARM architecture:

docker inspect deep-learning-container-uri

The response "Architecture": "arm64" indicates that the image supports ARM architecture.
You can push it to Amazon ECR with the docker push command. For more information, check
Pushing a Docker image.

Multi-architecture container images are fundamentally a set of container images supporting
different architectures or operating systems, that you can refer to by a common manifest name.
If you are using multi-architecture container images, then in addition to pushing the images to
Amazon ECR, you will also have to push a manifest list to Amazon ECR. A manifest list allows
for the nested inclusion of other image manifests, where each included image is specified by
architecture, operating system and other platform attributes. The following example creates a
manifest list, and pushes it to Amazon ECR.

1. Create a manifest list.

Migrate inference workload from x86 to AWS Graviton 4664

https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html

Amazon SageMaker Developer Guide

docker manifest create aws-account-id.dkr.ecr.aws-region.amazonaws.com/my-
repository \
 aws-account-id.dkr.ecr.aws-account-id.amazonaws.com/my-repository:amd64 \
 aws-account-id.dkr.ecr.aws-account-id.amazonaws.com/my-repository:arm64 \

2. Annotate the manifest list, so that it correctly identifies which image is for which architecture.

docker manifest annotate --arch arm64 aws-account-id.dkr.ecr.aws-
region.amazonaws.com/my-repository \
 aws-account-id.dkr.ecr.aws-region.amazonaws.com/my-repository:arm64

3. Push the manifest.

docker manifest push aws-account-id.dkr.ecr.aws-region.amazonaws.com/my-repository

For more information on creating and pushing manifest lists to Amazon ECR, check Introducing
multi-architecture container images for Amazon ECR, and Pushing a multi-architecture image.

Create a SageMaker Model

Create a SageMaker Model by calling the CreateModel API.

import boto3
from sagemaker import get_execution_role

aws_region = "aws-region"
sagemaker_client = boto3.client("sagemaker", region_name=aws_region)

role = get_execution_role()

sagemaker_client.create_model(
 ModelName = "model-name",
 PrimaryContainer = {
 "Image": "deep-learning-container-uri",
 "ModelDataUrl": "model-s3-location",
 "Environment": {
 "SAGEMAKER_PROGRAM": "inference.py",

Migrate inference workload from x86 to AWS Graviton 4665

https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-multi-architecture-image.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

 "SAGEMAKER_SUBMIT_DIRECTORY": "inference-script-s3-location",
 "SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
 "SAGEMAKER_REGION": aws_region,
 }
 },
 ExecutionRoleArn = role
)

Create an endpoint configuration

Create an endpoint configuration by calling the CreateEndpointConfig API. For a list of
Graviton-based instances, check Compute optimized instances.

sagemaker_client.create_endpoint_config(
 EndpointConfigName = "endpoint-config-name",
 ProductionVariants = [
 {
 "VariantName": "variant-name",
 "ModelName": "model-name",
 "InitialInstanceCount": 1,
 "InstanceType": "ml.c7g.xlarge", # Graviton-based instance
 }
]
)

Create an endpoint

Create an endpoint by calling the CreateEndpoint API.

sagemaker_client.create_endpoint(
 EndpointName = "endpoint-name",
 EndpointConfigName = "endpoint-config-name"
)

Troubleshoot Amazon SageMaker model deployments

If you encounter an issue when deploying machine learning models in Amazon SageMaker, see the
following guidance.

Troubleshoot deployments 4666

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

Topics

• Detection Errors in the Active CPU Count

• Issues with deploying a model.tar.gz file

• Primary container did not pass ping health checks

Detection Errors in the Active CPU Count

If you deploy a SageMaker model with a Linux Java Virtual Machine (JVM), you might encounter
detection errors that prevent using available CPU resources. This issue affects some JVMs that
support Java 8 and Java 9, and most that support Java 10 and Java 11. These JVMs implement a
mechanism that detects and handles the CPU count and the maximum memory available when
running a model in a Docker container, and, more generally, within Linux taskset commands or
control groups (cgroups). SageMaker deployments take advantage of some of the settings that the
JVM uses for managing these resources. Currently, this causes the container to incorrectly detect
the number of available CPUs.

SageMaker doesn't limit access to CPUs on an instance. However, the JVM might detect the
CPU count as 1 when more CPUs are available for the container. As a result, the JVM adjusts all
of its internal settings to run as if only 1 CPU core is available. These settings affect garbage
collection, locks, compiler threads, and other JVM internals that negatively affect the concurrency,
throughput, and latency of the container.

For an example of the misdetection, in a container configured for SageMaker that is deployed
with a JVM that is based on Java8_191 and that has four available CPUs on the instance, run the
following command to start your JVM:

java -XX:+UnlockDiagnosticVMOptions -XX:+PrintActiveCpus -version

This generates the following output:

active_processor_count: sched_getaffinity processor count: 4
active_processor_count: determined by OSContainer: 1
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: determined by OSContainer: 1
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: determined by OSContainer: 1
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: determined by OSContainer: 1
openjdk version "1.8.0_191"

Troubleshoot deployments 4667

Amazon SageMaker Developer Guide

OpenJDK Runtime Environment (build 1.8.0_191-8u191-b12-2ubuntu0.16.04.1-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)

Many of the JVMs affected by this issue have an option to disable this behavior and reestablish full
access to all of the CPUs on the instance. Disable the unwanted behavior and establish full access
to all instance CPUs by including the -XX:-UseContainerSupport parameter when starting Java
applications. For example, run the java command to start your JVM as follows:

java -XX:-UseContainerSupport -XX:+UnlockDiagnosticVMOptions -XX:+PrintActiveCpus -
version

This generates the following output:

active_processor_count: sched_getaffinity processor count: 4
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: sched_getaffinity processor count: 4
active_processor_count: sched_getaffinity processor count: 4
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-8u191-b12-2ubuntu0.16.04.1-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)

Check whether the JVM used in your container supports the -XX:-UseContainerSupport
parameter. If it does, always pass the parameter when you start your JVM. This provides access to
all of the CPUs in your instances.

You might also encounter this issue when indirectly using a JVM in SageMaker
containers. For example, when using a JVM to support SparkML Scala. The -XX:-
UseContainerSupport parameter also affects the output returned by the Java
Runtime.getRuntime().availableProcessors() API .

Issues with deploying a model.tar.gz file

When you deploy a model using a model.tar.gz file, the model tarball should not include any
symlinks. Symlinks cause the model creation to fail. Also, we recommend that you do not include
any unnecessary files in the tarball.

Primary container did not pass ping health checks

If your primary container fails ping health checks with the following error message, it indicates that
there is an issue with your container or script:

Troubleshoot deployments 4668

Amazon SageMaker Developer Guide

The primary container for production variant beta did not pass the ping health check.
 Please check CloudWatch Logs logs for this endpoint.

To troubleshoot this issue, you should check the CloudWatch Logs logs for the endpoint in question
to see if there are any errors or issues that are preventing the container from responding to /ping
or /invocations. The logs may provide an error message that could point to the issue. Once you
have identified the error and failure reason you should resolve the error.

It is also good practice to test the model deployment locally before creating an endpoint.

• Use local mode in the SageMaker SDK to imitate the hosted environment by deploying the
model to a local endpoint. For more information, see Local Mode.

• Use vanilla docker commands to test the container responds to /ping and /invocations. For more
information, see local_test.

Inference cost optimization best practices

The following content provides techniques and considerations for optimizing the cost of endpoints.
You can use these recommendations to optimize the cost for both new and existing endpoints.

Best practices

To optimize your SageMaker Inference costs, follow these best practices.

Pick the best inference option for the job.

SageMaker offers 4 different inference options to provide the best inference option for the job. You
may be able to save on costs by picking the inference option that best matches your workload.

• Use real-time inference for low latency workloads with predictable traffic patterns that need to
have consistent latency characteristics and are always available. You pay for using the instance.

• Use serverless inference for synchronous workloads that have a spiky traffic pattern and can
accept variations in the p99 latency. Serverless inference automatically scales to meet your
workload traffic so you don’t pay for any idle resources. You only pay for the duration of
the inference request. The same model and containers can be used with both real-time and
serverless inference so you can switch between these two modes if your needs change.

• Use asynchronous inference for asynchronous workloads that process up to 1 GB of data (such
as text corpus, image, video, and audio) that are latency insensitive and cost sensitive. With

Inference cost optimization best practices 4669

https://sagemaker.readthedocs.io/en/stable/overview.html#local-mode
https://github.com/aws/amazon-sagemaker-examples/tree/main/advanced_functionality/scikit_bring_your_own/container/local_test
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference.html

Amazon SageMaker Developer Guide

asynchronous inference, you can control costs by specifying a fixed number of instances for the
optimal processing rate instead of provisioning for the peak. You can also scale down to zero to
save additional costs.

• Use batch inference for workloads for which you need inference for a large set of data for
processes that happen offline (that is, you don’t need a persistent endpoint). You pay for the
instance for the duration of the batch inference job.

Opt in to a SageMaker Savings Plan.

• If you have a consistent usage level across all SageMaker services, you can opt in to a SageMaker
Savings Plan to help reduce your costs by up to 64%.

• Amazon SageMaker Savings Plans provide a flexible pricing model for Amazon SageMaker, in
exchange for a commitment to a consistent amount of usage (measured in $/hour) for a one-
year or three-year term. These plans automatically apply to eligible SageMaker ML instance
usages including SageMaker Studio Classic Notebook, SageMaker On-Demand Notebook,
SageMaker Processing, SageMaker Data Wrangler, SageMaker Training, SageMaker Real-Time
Inference, and SageMaker Batch Transform regardless of instance family, size, or Region. For
example, you can change usage from a CPU ml.c5.xlarge instance running in US East (Ohio) to
a ml.Inf1 instance in US West (Oregon) for inference workloads at any time and automatically
continue to pay the Savings Plans price.

Optimize your model to run better.

• Unoptimized models can lead to longer run times and use more resources. You may choose to
use more or bigger instances to improve performance; however, this leads to higher costs.

• By optimizing your models to be more performant, you may be able to lower costs by using
fewer or smaller instances while keeping the same or better performance characteristics. You
can use SageMaker Neo with SageMaker Inference to automatically optimize models. For more
details and samples, see Optimize model performance using Neo.

Use the most optimal instance type and size for real-time inference.

• SageMaker Inference has over 70 instance types and sizes that can be used to deploy ML models
including AWS Inferentia and Graviton chipsets that are optimized for ML. Choosing the right
instance for your model helps ensure you have the most performant instance at the lowest cost
for your models.

Inference cost optimization best practices 4670

https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
https://aws.amazon.com/savingsplans/ml-pricing/
https://aws.amazon.com/sagemaker/neo/

Amazon SageMaker Developer Guide

• By using Inference Recommender, you can quickly compare different instances to understand
the performance of the model and the costs. With these results, you can choose the instance to
deploy with the best return on investment.

Improve efficiency and costs by combining multiple endpoints into a single endpoint for real-
time inference.

• Costs can quickly add up when you deploy multiple endpoints, especially if the endpoints don’t
fully utilize the underlying instances. To understand if the instance is under-utilized, check
the utilization metrics (CPU, GPU, etc) in Amazon CloudWatch for your instances. If you have
more than one of these endpoints, you can combine the models or containers on these multiple
endpoints into a single endpoint.

• Using Multi-model endpoints (MME) or Multi-container endpoints (MCE), you can deploy multiple
ML models or containers in a single endpoint to share the instance across multiple models or
containers and improve your return on investment. To learn more, see this Save on inference
costs by using Amazon SageMaker multi-model endpoints or Deploy multiple serving containers
on a single instance using Amazon SageMaker multi-container endpoints on the AWS Machine
Learning blog.

Set up autoscaling to match your workload requirements for real-time and asynchronous
inference.

• Without autoscaling, you need to provision for peak traffic or risk model unavailability. Unless
the traffic to your model is steady throughout the day, there will be excess unused capacity. This
leads to low utilization and wasted resources.

• Autoscaling is an out-of-the-box feature that monitors your workloads and dynamically adjusts
the capacity to maintain steady and predictable performance at the possible lowest cost. When
the workload increases, autoscaling brings more instances online. When the workload decreases,
autoscaling removes unnecessary instances, helping you reduce your compute cost. To learn
more, see Configuring autoscaling inference endpoints in Amazon SageMaker on the AWS
Machine Learning blog.

Best practices to minimize interruptions during GPU driver upgrades

SageMaker Model Deployment upgrades GPU drivers on the ML instances for Real-time, Batch, and
Asynchronous Inference options over time to provide customers access to improvements from the

Best practices to minimize interruptions during GPU driver upgrades 4671

https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-container-endpoints.html
https://aws.amazon.com/blogs/machine-learning/save-on-inference-costs-by-using-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/save-on-inference-costs-by-using-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/deploy-multiple-serving-containers-on-a-single-instance-using-amazon-sagemaker-multi-container-endpoints/
https://aws.amazon.com/blogs/machine-learning/deploy-multiple-serving-containers-on-a-single-instance-using-amazon-sagemaker-multi-container-endpoints/
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://aws.amazon.com/blogs/machine-learning/configuring-autoscaling-inference-endpoints-in-amazon-sagemaker/

Amazon SageMaker Developer Guide

driver providers. Below you can see the GPU version supported for each Inference option. Different
driver versions can change how your model interacts with the GPUs. Below are some strategies to
help you understand how your application works with different driver versions.

Current versions and supported instance families

Amazon SageMaker Inference supports the following drivers and instance families:

Service GPU Driver version Instance types

470.57.02 ml.p2.*, ml.p3.*,
ml.p4d.*, ml.p4de.*,
ml.g4dn.*, ml.g5.*

Real-time NVIDIA

535.54.03 ml.p5.*

Batch NVIDIA 470.57.02 ml.p2.*, ml.p3.*,
ml.p4d.*, ml.p4de.*,
ml.g4dn.*, ml.g5*

470.57.02 ml.p2.*, ml.p3.*,
ml.p4d.*, ml.p4de.*,
ml.g4dn.*, ml.g5*

Asynchronous
Inference

NVIDIA

535.54.03 ml.p5.*

Troubleshoot your model container with GPU capabilities

If you encounter an issue when running your GPU workload, see the following guidance:

GPU card detection failure or NVIDIA initialization error

Run the nvidia-smi (NVIDIA System Management Interface) command from within the Docker
container. If the NVIDIA System Management Interface detects a GPU detection error or NVIDIA
initialization error, it will return the following error message:

Failed to initialize NVML: Driver/library version mismatch

Based on your use case, follow these best practices to resolve the failure or error:

Best practices to minimize interruptions during GPU driver upgrades 4672

Amazon SageMaker Developer Guide

• Follow the best practice recommendation described in the If you bring your own (BYO) model
containers dropdown.

• Follow the best practice recommendation described in the If you use a CUDA compatibility layer
dropdown.

Refer to the NVIDIA System Management Interface page on the NVIDIA website for more
information.

CannotStartContainerError

If your GPU instance uses NVIDIA driver versions that are not compatible with the CUDA version in
the Docker container, then deploying an endpoint will fail with the following error message:

 Failure reason CannotStartContainerError. Please ensure the model container for
 variant <variant_name> starts correctly when invoked with 'docker run <image> serve'

Based on your use case, follow these best practices to resolve the failure or error:

• Follow the best practice recommendation described in the The driver my container depends on is
greater than the version on the ML GPU instances dropdown.

• Follow the best practice recommendation described in the If you use a CUDA compatibility layer
dropdown.

Best practices for working with mismatched driver versions

The following provides information on how to update your GPU driver:

The driver my container depends on is lower than the version on the ML GPU instance

No action is required. NVIDIA provides backwards compatibility.

The driver my container depends on is greater than the version on the ML GPU instances

If it is a minor version difference, no action is required. NVIDIA provides minor version forward
compatibility.

If it is a major version difference, the CUDA Compatibility Package will need to be installed. Please
refer to CUDA Compatibility Package in the NVIDIA documentation.

Best practices to minimize interruptions during GPU driver upgrades 4673

https://developer.nvidia.com/nvidia-system-management-interface
https://docs.nvidia.com/deploy/cuda-compatibility/index.html

Amazon SageMaker Developer Guide

Important

The CUDA Compatibility Package is not backwards compatible so it needs to be disabled if
the driver version on the instance is greater than the CUDA Compatibility Package version.

If you bring your own (BYO) model containers

Ensure no NVIDIA driver packages are bundled in the image which could cause conflict with on host
NVIDIA driver version.

If you use a CUDA compatibility layer

To verify if the platform Nvidia driver version supports the CUDA Compatibility Package version
installed in the model container, see the CUDA documentation. If the platform Nvidia driver version
does not support the CUDA Compatibility Package version, you can disable or remove the CUDA
Compatibility Package from the model container image. If the CUDA compatibility libs version is
supported by the latest Nvidia driver version, we suggest that you enable the CUDA Compatibility
Package based on the detected Nvidia driver version for future compatibility by adding the code
snippet below into the container start up shell script (at the ENTRYPOINT script).

The script demonstrates how to dynamically switch the use of the CUDA Compatibility Package
based on the detected Nvidia driver version on the deployed host for your model container. When
SageMaker releases a newer Nvidia driver version, the installed CUDA Compatibility Package can be
turned off automatically if the CUDA application is supported natively on the new driver.

#!/bin/bash

verlte() {
 ["$1" = "$2"] && return 1 || ["$2" = "`echo -e "$1\n$2" | sort -V | head -n1`"]
}

if [-f /usr/local/cuda/compat/libcuda.so.1]; then
 cat /usr/local/cuda/version.txt
 CUDA_COMPAT_MAX_DRIVER_VERSION=$(readlink /usr/local/cuda/compat/libcuda.so.1 |cut
 -d'.' -f 3-)
 echo "CUDA compat package requires Nvidia driver #
${CUDA_COMPAT_MAX_DRIVER_VERSION}"
 NVIDIA_DRIVER_VERSION=$(sed -n 's/^NVRM.*Kernel Module *\([0-9.]*\).*$/\1/p' /proc/
driver/nvidia/version 2>/dev/null || true)

Best practices to minimize interruptions during GPU driver upgrades 4674

https://docs.nvidia.com/deploy/cuda-compatibility/index.html#use-the-right-compat-package

Amazon SageMaker Developer Guide

 echo "Current installed Nvidia driver version is ${NVIDIA_DRIVER_VERSION}"
 if [$(verlte $CUDA_COMPAT_MAX_DRIVER_VERSION $NVIDIA_DRIVER_VERSION)]; then
 echo "Setup CUDA compatibility libs path to LD_LIBRARY_PATH"
 export LD_LIBRARY_PATH=/usr/local/cuda/compat:$LD_LIBRARY_PATH
 echo $LD_LIBRARY_PATH
 else
 echo "Skip CUDA compat libs setup as newer Nvidia driver is installed"
 fi
else
 echo "Skip CUDA compat libs setup as package not found"
fi

Best practices for endpoint security and health with Amazon
SageMaker

To address the latest security issues, Amazon SageMaker automatically patches endpoints to the
latest and most secure software. However, if you incorrectly modify your endpoint dependencies,
Amazon SageMaker can't automatically patch your endpoints or replace your unhealthy instances.
To ensure your endpoints remain eligible for automatic updates, apply the following best practices.

Don't delete resources while your endpoints use them

Avoid deleting any of the following resources if you have existing endpoints that use them:

• The model definition that you create with the CreateModel action in the Amazon SageMaker API.

• Any model artifacts that you specify for the ModelDataUrl parameter.

• The IAM role and permissions that you specify for the ExecutionRoleArn parameter.

Reminder

In the model definition that your endpoint uses, ensure that the IAM role that you
specified has the correct permissions. For more information about the required
permissions for Amazon SageMaker endpoints, see CreateModel API: Execution Role
Permissions.

• The inference images that you specify for the Image parameter, if you use your own inference
code.

Best practices for endpoint security 4675

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html#sagemaker-Type-ContainerDefinition-ModelDataUrl
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html#sagemaker-CreateModel-request-ExecutionRoleArn
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html#sagemaker-Type-ContainerDefinition-Image

Amazon SageMaker Developer Guide

Reminder

If you use the private registry feature, ensure that Amazon SageMaker can access the
private registry as long as you're using the endpoint.

• The Amazon VPC subnets and security groups that you specify for the VpcConfig parameter.

• The endpoint configuration that you create with the CreateEndpointConfig action in the Amazon
SageMaker API.

• Any KMS keys or Amazon S3 buckets that you specify in the endpoint configuration.

Reminder

Ensure you don’t disable these KMS keys.

Follow these procedures to update your endpoints

When you update your Amazon SageMaker endpoints, use any of the following procedures that
apply to your needs.

To update your model definition settings

1. Create a new model definition with your updated settings by using the CreateModel action in
the Amazon SageMaker API.

2. Create a new endpoint configuration that uses the new model definition. To do this, use the
CreateEndpointConfig action in the Amazon SageMaker API.

3. Update your endpoint with the new endpoint configuration so that your updated model
definition settings take effect.

4. (Optional) Delete the old endpoint configuration if you're not using it with any other
endpoints. You can also delete the resources that you specified in the model definition if you're
not using them with any other endpoints. These resources include model artifacts in Amazon
S3 and inference images.

To update your endpoint configuration

1. Create a new endpoint configuration with your updated settings.

Best practices for endpoint security 4676

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html#sagemaker-CreateModel-request-VpcConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html

Amazon SageMaker Developer Guide

2. Update your endpoint with the new configuration so that your updates take effect.

3. (Optional) Delete the old endpoint configuration if you're not using it with any other
endpoints. You can also delete the resources that you specified in the model definition if you're
not using them with any other endpoints. These resources include model artifacts in Amazon
S3 and inference images.

Whenever you create a new model definition or endpoint configuration, we recommend that you
use a unique name. If you want to update these resources and retain their original names, use the
following procedures.

To update your model settings and retain the original model name

1. Delete the existing model definition. At this point, any endpoint that uses the model is broken,
but you fix this in the following steps.

2. Create the model definition again with your updated settings, and use the same model name.

3. Create a new endpoint configuration that uses the updated model definition.

4. Update your endpoint with the new endpoint configuration so that your updates take effect.

To update your endpoint configuration and retain the original configuration name

1. Delete the existing endpoint configuration.

2. Create a new endpoint configuration with your updated settings, and use the original name.

3. Update your endpoint with the new configuration so that your updates take effect.

Supported features

Amazon SageMaker offers the following four options to deploy models for inference.

• Real-time inference for inference workloads with real-time, interactive, low latency
requirements.

• Batch transform for offline inference with large datasets.

• Asynchronous inference for near-real-time inference with large inputs that require longer
preprocessing times.

• Serverless inference for inference workloads that have idle periods between traffic spurts.

Supported features 4677

Amazon SageMaker Developer Guide

The following table summarizes the core platform features that are supported by each inference
option. It does not show features that can be provided by frameworks, custom Docker containers,
or through chaining different AWS services.

Feature Real-time
inference

Batch
transform

Asynchron
ous
inference

Serverless
inference

Docker
containers

Autoscaling
support

✓ N/A ✓ ✓ N/A

GPU support ✓1 ✓1 ✓1 1P, pre-built,
BYOC

Single model ✓ ✓ ✓ ✓ N/A

Multi-model
endpoint

✓ k-NN,
XGBoost,
Linear
Learner, RCF,
TensorFlo
w, Apache
MXNet,
PyTorch,
scikit-learn 2

Multi-
container
endpoint

✓ 1P, pre-built
, Extend pre-
built, BYOC

Serial
inference
pipeline

✓ ✓ 1P, pre-built
, Extend pre-
built, BYOC

Inference
Recommend
er

✓ 1P, pre-built
, Extend pre-
built, BYOC

Supported features 4678

Amazon SageMaker Developer Guide

Feature Real-time
inference

Batch
transform

Asynchron
ous
inference

Serverless
inference

Docker
containers

Private link
support

✓ ✓ ✓ N/A

Data
capture/M
odel monitor
support

✓ ✓ N/A

DLCs
supported

1P, pre-built
, Extend pre-
built, BYOC

1P, pre-built
, Extend pre-
built, BYOC

1P, pre-built
, Extend pre-
built, BYOC

1P, pre-built
, Extend pre-
built, BYOC

N/A

Protocols
supported

HTTP(S) HTTP(S) HTTP(S) HTTP(S) N/A

Payload size < 6 MB ≤ 100 MB ≤ 1 GB ≤ 4 MB

HTTP
chunked
encoding

Framework
dependent
, 1P not
supported

N/A Framework
dependent
, 1P not
supported

Framework
dependent
, 1P not
supported

N/A

Request
timeout

< 60 seconds Days < 1 hour < 60 seconds N/A

Deploymen
t guardrails:
blue/green
deployments

✓ N/A ✓ N/A

Deploymen
t guardrail
s: rolling
deployments

✓ N/A ✓ N/A

Supported features 4679

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Amazon SageMaker Developer Guide

Feature Real-time
inference

Batch
transform

Asynchron
ous
inference

Serverless
inference

Docker
containers

Shadow
testing

✓ N/A

Scale to zero N/A ✓ ✓ N/A

Market
place model
packages
support

✓ ✓ N/A

Virtual
private cloud
support

✓ ✓ ✓ N/A

Multiple
productio
n variants
support

✓ N/A

Network
isolation

✓ ✓ N/A

Model
parallel
serving
support

✓3 ✓ ✓3 ✓3

Volume
encryption

✓ ✓ ✓ ✓ N/A

Customer
AWS KMS

✓ ✓ ✓ ✓ N/A

d instance
support

✓ ✓ ✓ N/A

Supported features 4680

Amazon SageMaker Developer Guide

Feature Real-time
inference

Batch
transform

Asynchron
ous
inference

Serverless
inference

Docker
containers

inf1 support ✓ ✓

With SageMaker, you can deploy a single model, or multiple models behind a single inference
endpoint for real-time inference. The following table summarizes the core features supported by
various hosting options that come with real-time inference.

Feature Single model
endpoints

Multi-model
endpoints

Serial inference
pipeline

Multi-container
endpoints

Autoscaling
support

✓ ✓ ✓ ✓

GPU support ✓1 ✓ ✓

Single model ✓ ✓ ✓ ✓

Multi-model
endpoints

 ✓ ✓ N/A

Multi-container
endpoints

✓ N/A

Serial inference
pipeline

✓ ✓ N/A

Inference
Recommender

✓

Private link
support

✓ ✓ ✓ ✓

Data capture/
Model monitor
support

✓ N/A N/A N/A

Supported features 4681

Amazon SageMaker Developer Guide

Feature Single model
endpoints

Multi-model
endpoints

Serial inference
pipeline

Multi-container
endpoints

DLCs supported 1P, pre-built,
Extend pre-built
, BYOC

k-NN, XGBoost,
Linear Learner,
RCF, TensorFlow,
Apache MXNet,
PyTorch, scikit-le
arn 2

1P, pre-built,
Extend pre-built
, BYOC

1P, pre-built,
Extend pre-built
, BYOC

Protocols
supported

HTTP(S) HTTP(S) HTTP(S) HTTP(S)

Payload size < 6 MB < 6 MB < 6 MB < 6 MB

Request timeout < 60 seconds < 60 seconds < 60 seconds < 60 seconds

Deploymen
t guardrails:
blue/green
deployments

✓ ✓ ✓ ✓

Deploymen
t guardrail
s: rolling
deployments

✓ ✓ ✓ ✓

Shadow testing ✓

Market place
model packages
support

✓

Virtual private
cloud support

✓ ✓ ✓ ✓

Multiple
production
variants support

✓ ✓ ✓

Supported features 4682

Amazon SageMaker Developer Guide

Feature Single model
endpoints

Multi-model
endpoints

Serial inference
pipeline

Multi-container
endpoints

Network
isolation

✓ ✓ ✓ ✓

Model parallel
serving support

✓ 3 ✓ 3

Volume
encryption

✓ ✓ ✓ ✓

Customer AWS
KMS

✓ ✓ ✓ ✓

d instance
support

✓ ✓ ✓ ✓

inf1 support ✓

1 Availability of the Amazon EC2 instance types depends on the AWS Region. For availability of
instances specific to AWS, see Amazon SageMaker Pricing.

2 To use any other framework or algorithm, use the SageMaker Inference toolkit to build a
container that supports multi-model endpoints.

3 With SageMaker, you can deploy large models (up to 500 GB) for inference. You can configure
the container health check and download timeout quotas, up to 60 minutes. This will allow you to
have more time to download and load your model and associated resources. For more information,
see SageMaker endpoint parameters for large model inference. You can use SageMaker compatible
large model Inference containers. You can also use third-party model parallelization libraries, such
as Triton with FasterTransformer and DeepSpeed. You have to ensure that they are compatible with
SageMaker.

Resources

Use the following resources for troubleshooting and reference, answerings FAQS, and learning
more about Amazon SageMaker.

Resources 4683

https://aws.amazon.com/sagemaker/pricing/
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#large-model-inference-containers

Amazon SageMaker Developer Guide

Topics

• Blogs, example notebooks, and additional resources

• Troubleshooting and reference

• Model Hosting FAQs

Blogs, example notebooks, and additional resources

The following sections contain examples and additional resources for you to learn more about
Amazon SageMaker.

Blogs and case studies

See the following table for lists of blogs and case studies for various features within SageMaker
Inference. You can use the blogs to help put together solutions that work for your use case.

Feature Resources

Real-Time Inference • Getting started with deploying real-time
models on Amazon SageMaker

• Deploy BLOOM-176B and OPT-30B on
Amazon SageMaker with large model
inference Deep Learning Containers and
DeepSpeed

• Creating a machine learning-powered REST
API with Amazon API Gateway mapping
templates and Amazon SageMaker

Autoscaling • Configuring autoscaling inference endpoints
in Amazon SageMaker

Serverless Inference • Amazon SageMaker Serverless Inference
– Machine Learning Inference without
Worrying about Servers

• Host Hugging Face transformer models
using Amazon SageMaker Serverless
Inference

Blogs, example notebooks, and additional resources 4684

https://aws.amazon.com/blogs/machine-learning/getting-started-with-deploying-real-time-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/getting-started-with-deploying-real-time-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/deploy-bloom-176b-and-opt-30b-on-amazon-sagemaker-with-large-model-inference-deep-learning-containers-and-deepspeed/
https://aws.amazon.com/blogs/machine-learning/deploy-bloom-176b-and-opt-30b-on-amazon-sagemaker-with-large-model-inference-deep-learning-containers-and-deepspeed/
https://aws.amazon.com/blogs/machine-learning/deploy-bloom-176b-and-opt-30b-on-amazon-sagemaker-with-large-model-inference-deep-learning-containers-and-deepspeed/
https://aws.amazon.com/blogs/machine-learning/deploy-bloom-176b-and-opt-30b-on-amazon-sagemaker-with-large-model-inference-deep-learning-containers-and-deepspeed/
https://aws.amazon.com/blogs/machine-learning/creating-a-machine-learning-powered-rest-api-with-amazon-api-gateway-mapping-templates-and-amazon-sagemaker
https://aws.amazon.com/blogs/machine-learning/creating-a-machine-learning-powered-rest-api-with-amazon-api-gateway-mapping-templates-and-amazon-sagemaker
https://aws.amazon.com/blogs/machine-learning/creating-a-machine-learning-powered-rest-api-with-amazon-api-gateway-mapping-templates-and-amazon-sagemaker
https://aws.amazon.com/blogs/machine-learning/configuring-autoscaling-inference-endpoints-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/configuring-autoscaling-inference-endpoints-in-amazon-sagemaker/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-serverless-inference-machine-learning-inference-without-worrying-about-servers/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-serverless-inference-machine-learning-inference-without-worrying-about-servers/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-serverless-inference-machine-learning-inference-without-worrying-about-servers/
https://aws.amazon.com/blogs/machine-learning/host-hugging-face-transformer-models-using-amazon-sagemaker-serverless-inference/
https://aws.amazon.com/blogs/machine-learning/host-hugging-face-transformer-models-using-amazon-sagemaker-serverless-inference/
https://aws.amazon.com/blogs/machine-learning/host-hugging-face-transformer-models-using-amazon-sagemaker-serverless-inference/

Amazon SageMaker Developer Guide

Feature Resources

• Introducing the Amazon SageMaker
Serverless Inference Benchmarking Toolkit

Asynchronous Inference • Run computer vision inference on large
videos with Amazon SageMaker asynchron
ous endpoints

• Build a predictive maintenance solution with
Amazon Kinesis, AWS Glue, and Amazon
SageMaker

• Improve high-value research with Hugging
Face and Amazon SageMaker Asynchronous
Inference endpoints

Batch Transform • Associating prediction results with input
data using Amazon SageMaker Batch
Transform

Multi-Model Endpoints • Save on inference costs by using Amazon
SageMaker multi-model endpoints

• Run multiple deep learning models on
GPU with Amazon SageMaker multi-model
endpoints

• How to scale machine learning inference for
multi-tenant SaaS use cases

• Run and optimize multi-model inference
with Amazon SageMaker multi-model
endpoints

Serial Inference Pipelines • Design patterns for serial inference on
Amazon SageMaker

Multi-Container Endpoints • Cost efficient ML inference with multi-fra
mework models on Amazon SageMaker

Blogs, example notebooks, and additional resources 4685

https://aws.amazon.com/blogs/machine-learning/introducing-the-amazon-sagemaker-serverless-inference-benchmarking-toolkit/
https://aws.amazon.com/blogs/machine-learning/introducing-the-amazon-sagemaker-serverless-inference-benchmarking-toolkit/
https://aws.amazon.com/blogs/machine-learning/run-computer-vision-inference-on-large-videos-with-amazon-sagemaker-asynchronous-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-computer-vision-inference-on-large-videos-with-amazon-sagemaker-asynchronous-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-computer-vision-inference-on-large-videos-with-amazon-sagemaker-asynchronous-endpoints/
https://aws.amazon.com/blogs/machine-learning/build-a-predictive-maintenance-solution-with-amazon-kinesis-aws-glue-and-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/build-a-predictive-maintenance-solution-with-amazon-kinesis-aws-glue-and-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/build-a-predictive-maintenance-solution-with-amazon-kinesis-aws-glue-and-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/improve-high-value-research-with-hugging-face-and-amazon-sagemaker-asynchronous-inference-endpoints/
https://aws.amazon.com/blogs/machine-learning/improve-high-value-research-with-hugging-face-and-amazon-sagemaker-asynchronous-inference-endpoints/
https://aws.amazon.com/blogs/machine-learning/improve-high-value-research-with-hugging-face-and-amazon-sagemaker-asynchronous-inference-endpoints/
https://aws.amazon.com/blogs/machine-learning/associating-prediction-results-with-input-data-using-amazon-sagemaker-batch-transform/
https://aws.amazon.com/blogs/machine-learning/associating-prediction-results-with-input-data-using-amazon-sagemaker-batch-transform/
https://aws.amazon.com/blogs/machine-learning/associating-prediction-results-with-input-data-using-amazon-sagemaker-batch-transform/
https://aws.amazon.com/blogs/machine-learning/save-on-inference-costs-by-using-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/save-on-inference-costs-by-using-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-multiple-deep-learning-models-on-gpu-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-multiple-deep-learning-models-on-gpu-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-multiple-deep-learning-models-on-gpu-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/how-to-scale-machine-learning-inference-for-multi-tenant-saas-use-cases/
https://aws.amazon.com/blogs/machine-learning/how-to-scale-machine-learning-inference-for-multi-tenant-saas-use-cases/
https://aws.amazon.com/blogs/machine-learning/run-and-optimize-multi-model-inference-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-and-optimize-multi-model-inference-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/run-and-optimize-multi-model-inference-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/design-patterns-for-serial-inference-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/design-patterns-for-serial-inference-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/cost-efficient-ml-inference-with-multi-framework-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/cost-efficient-ml-inference-with-multi-framework-models-on-amazon-sagemaker/

Amazon SageMaker Developer Guide

Feature Resources

Running Model Ensembles • Run ensemble ML models on Amazon
SageMaker

Inference Recommender • SageMaker Inference Recommender
example notebook

• SageMaker Inference Recommender for
HuggingFace BERT Sentiment Analysis
example notebook

• Achieve hyperscale performance for model
serving using NVIDIA Triton Inference Server
on Amazon SageMaker

Advanced model hosting blog series • Part 1: Common design patterns for
building ML application on Amazon
SageMaker

• Part 2: Getting started with deploying real
time models on SageMaker

• Part 3: Run and optimize multi-model
inference with Amazon SageMaker multi-
model endpoints

• Part 4: Design patterns for serial inference
on Amazon SageMaker

• Part 5: Cost efficient ML inference with
multi-framework models on Amazon
SageMaker

• Part 6: Best practices in testing and
updating models on SageMaker

• Part 7: Run ensemble ML models on
Amazon SageMaker

Blogs, example notebooks, and additional resources 4686

https://aws.amazon.com/blogs/machine-learning/run-ensemble-ml-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/run-ensemble-ml-models-on-amazon-sagemaker/
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/huggingface-inference-recommender/huggingface-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/huggingface-inference-recommender/huggingface-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/huggingface-inference-recommender/huggingface-inference-recommender.ipynb
https://aws.amazon.com/blogs/machine-learning/achieve-hyperscale-performance-for-model-serving-using-nvidia-triton-inference-server-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/achieve-hyperscale-performance-for-model-serving-using-nvidia-triton-inference-server-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/achieve-hyperscale-performance-for-model-serving-using-nvidia-triton-inference-server-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/model-hosting-patterns-in-amazon-sagemaker-part-1-common-design-patterns-for-building-ml-applications-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/model-hosting-patterns-in-amazon-sagemaker-part-1-common-design-patterns-for-building-ml-applications-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/model-hosting-patterns-in-amazon-sagemaker-part-1-common-design-patterns-for-building-ml-applications-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-2-model-hosting-patterns-in-amazon-sagemaker-getting-started-with-deploying-real-time-models-on-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-2-model-hosting-patterns-in-amazon-sagemaker-getting-started-with-deploying-real-time-models-on-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-3-model-hosting-patterns-in-amazon-sagemaker-run-and-optimize-multi-model-inference-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/part-3-model-hosting-patterns-in-amazon-sagemaker-run-and-optimize-multi-model-inference-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/part-3-model-hosting-patterns-in-amazon-sagemaker-run-and-optimize-multi-model-inference-with-amazon-sagemaker-multi-model-endpoints/
https://aws.amazon.com/blogs/machine-learning/part-4-model-hosting-patterns-in-amazon-sagemaker-design-patterns-for-serial-inference-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-4-model-hosting-patterns-in-amazon-sagemaker-design-patterns-for-serial-inference-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-5-model-hosting-patterns-in-amazon-sagemaker-cost-efficient-ml-inference-with-multi-framework-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-5-model-hosting-patterns-in-amazon-sagemaker-cost-efficient-ml-inference-with-multi-framework-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-5-model-hosting-patterns-in-amazon-sagemaker-cost-efficient-ml-inference-with-multi-framework-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-6-model-hosting-patterns-in-amazon-sagemaker-best-practices-in-testing-and-updating-models-on-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-6-model-hosting-patterns-in-amazon-sagemaker-best-practices-in-testing-and-updating-models-on-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-7-model-hosting-patterns-in-amazon-sagemaker-run-ensemble-ml-models-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/part-7-model-hosting-patterns-in-amazon-sagemaker-run-ensemble-ml-models-on-amazon-sagemaker/

Amazon SageMaker Developer Guide

Example notebooks

See the following table for example notebooks that can help you learn more about SageMaker
Inference.

Feature Example notebooks

Inference Recommender • SageMaker Inference Recommender
example notebook

• SageMaker Inference Recommender for
HuggingFace BERT Sentiment Analysis
example notebook

Optimize large language models (LLMs) for
SageMaker

Generative AI LLMs workshop

Additional resources

For more information about each SageMaker Inference option in detail, you can watch the
following video.

Deploy ML models for inference at high performance and low cost

Troubleshooting and reference

You can use the following resources and reference documentation to understand best practices
when using SageMaker Inference and to troubleshoot issues with model deployments:

• For troubleshooting model deployments, see Troubleshoot Amazon SageMaker model
deployments.

• For model deployment best practices, see Best practices.

• For reference information about the size of storage volumes provided for different sizes of
hosting instances, see Host instance storage volumes.

• For reference information about SageMaker limits and quotas, see Amazon SageMaker endpoints
and quotas.

• For frequently asked questions about SageMaker, see Model Hosting FAQs.

Troubleshooting and reference 4687

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/huggingface-inference-recommender/huggingface-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/huggingface-inference-recommender/huggingface-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-inference-recommender/huggingface-inference-recommender/huggingface-inference-recommender.ipynb
https://github.com/aws/amazon-sagemaker-examples/tree/main/inference/generativeai/llm-workshop
https://www.youtube.com/embed/4FqHt5bmS2o
https://docs.aws.amazon.com/sagemaker/latest/dg/best-practices.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

Model Hosting FAQs

Refer to the following FAQ items for answers to commonly asked questions about SageMaker
Inference Hosting.

General Hosting

The following FAQ items answer common general questions for SageMaker Inference.

Q: What deployment options does Amazon SageMaker provide?

A: After you build and train models, Amazon SageMaker provides four options to deploy them so
you can start making predictions. Real-Time Inference is suitable for workloads with millisecond
latency requirements, payload sizes up to 6 MB, and processing times of up to 60 seconds.
Batch Transform is ideal for offline predictions on large batches of data that are available up
front. Asynchronous Inference is designed for workloads that do not have sub-second latency
requirements, payload sizes up to 1 GB, and processing times of up to 15 minutes. With Serverless
Inference, you can quickly deploy machine learning models for inference without having to
configure or manage the underlying infrastructure, and you pay only for the compute capacity used
to process inference requests, which is ideal for intermittent workloads.

Q: How do I choose a model deployment option in SageMaker?

A: The following diagram can help you choose a SageMaker Hosting model deployment option.

Model Hosting FAQs 4688

Amazon SageMaker Developer Guide

The preceding diagram walks you through the following decision process. If you want to process
requests in batches, you might want to choose Batch Transform. Otherwise, if you want to receive
inference for each request to your model, you might want to choose Asynchronous Inference,
Serverless Inference, or Real-Time Inference. You can choose Asynchronous Inference if you have
long processing times or large payloads and want to queue requests. You can choose Serverless
Inference if your workload has unpredictable or intermittent traffic. You can choose Real-Time
Inference if you have sustained traffic and need lower and consistent latency for your requests.

Q: I’ve heard SageMaker Inference is expensive. What’s the best way to optimize my cost when
hosting models?

A: To optimize your costs with SageMaker Inference, you should choose the right hosting option
for your use case. You can also use Inference features such as Amazon SageMaker Savings Plans,
model optimization with SageMaker Neo, Multi-Model Endpoints and Multi-Container Endpoints,
or autoscaling. For tips on how to optimize your Inference costs, see Inference cost optimization
best practices.

Model Hosting FAQs 4689

https://aws.amazon.com/savingsplans/ml-pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-container-endpoints.html

Amazon SageMaker Developer Guide

Q: Why should I use Amazon SageMaker Inference Recommender?

A: You should use Amazon SageMaker Inference Recommender if you need recommendations
for the right endpoint configuration to improve performance and reduce costs. Previously, data
scientists who wanted to deploy their models had to run manual benchmarks to select the right
endpoint configuration. First, they had to select the right machine learning instance type out of
more than 70 available instance types based on the resource requirements of their models and
sample payloads, and then optimize the model to account for differing hardware. Then, they had
to conduct extensive load tests to validate that latency and throughput requirements were met
and that the costs were low. Inference Recommender eliminates this complexity by helping you do
the following:

• Get started in minutes with an instance recommendation.

• Conduct load tests across instance types to get recommendations on your endpoint
configuration within hours.

• Automatically tune container and model server parameters as well as perform model
optimizations for a given instance type.

Q: What is a model server?

A: SageMaker endpoints are HTTP REST endpoints that use a containerized web server, which
includes a model server. These containers are responsible for loading up and serving requests for
a machine learning model. They implement a web server that responds to /invocations and /
ping on port 8080.

Common model servers include TensorFlow Serving, TorchServe and Multi Model Server.
SageMaker framework containers have these model servers built in.

Q: What is Bring Your Own Container with Amazon SageMaker?

A: Everything in SageMaker Inference is containerized. SageMaker provides managed containers for
popular frameworks such as TensorFlow, SKlearn, and HuggingFace. For a comprehensive updated
list of those images, see Available Images.

Sometimes there are custom frameworks for which you might need to build a container. This
approach is known as Bring Your Own Container or BYOC. With the BYOC approach, you provide
the Docker image to set up your framework or library. Then, you push the image to Amazon Elastic
Container Registry (Amazon ECR) so that you can use the image with SageMaker. For an example of
a BYOC approach, see Overivew of Containers for Amazon SageMaker.

Model Hosting FAQs 4690

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://sagemaker-workshop.com/custom/containers.html

Amazon SageMaker Developer Guide

Alternatively, instead of building an image from scratch, you can extend a container. You can take
one of the base images that SageMaker provides and add your dependencies on top of it in your
Dockerfile.

Q: Do I need to train my models on SageMaker to host them on SageMaker endpoints?

A: SageMaker offers the capacity to bring your own trained framework model that you've trained
outside of SageMaker and deploy it on any of the SageMaker hosting options.

SageMaker requires you to package the model in a model.tar.gz file and have a specific
directory structure. Each framework has its own model structure (see the following question for
example structures). For more information, see the SageMaker Python SDK documentation for
TensorFlow, PyTorch, and MXNet.

While you can choose from prebuilt framework images such as TensorFlow, PyTorch, and MXNet
to host your trained model, you can also build your own container to host your trained models on
SageMaker endpoints. For a walkthrough, see the example Jupyter notebook Building your own
algorithm container.

Q: How should I structure my model if I want to deploy on SageMaker but not train on
SageMaker?

A: SageMaker requires your model artifacts to be compressed in a .tar.gz file, or a tarball.
SageMaker automatically extracts this .tar.gz file into the /opt/ml/model/ directory in your
container. The tarball shouldn't contain any symlinks or unncessary files. If you are making use of
one of the framework containers, such as TensorFlow, PyTorch, or MXNet, the container expects
your TAR structure to be as follows:

TensorFlow

model.tar.gz/
 |--[model_version_number]/
 |--variables
 |--saved_model.pb
 code/
 |--inference.py
 |--requirements.txt

PyTorch

model.tar.gz/

Model Hosting FAQs 4691

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#deploying-directly-from-model-artifacts
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#bring-your-own-model
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/using_mxnet.html#deploy-endpoints-from-model-data
https://github.com/aws/amazon-sagemaker-examples/blob/main/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb

Amazon SageMaker Developer Guide

 |- model.pth
 |- code/
 |- inference.py
 |- requirements.txt # only for versions 1.3.1 and higher

MXNet

model.tar.gz/
 |- model-symbol.json
 |- model-shapes.json
 |- model-0000.params
 |- code/
 |- inference.py
 |- requirements.txt # only for versions 1.6.0 and higher

Q: When invoking a SageMaker endpoint, I can provide a ContentType and Accept MIME
Type. Which one is used to identify the data type being sent and received?

A: ContentType is the MIME type of the input data in the request body (the MIME type of the data
you are sending to your endpoint). The model server uses the ContentType to determine if it can
handle the type provided or not.

Accept is the MIME type of the inference response (the MIME type of the data your endpoint
returns). The model server uses the Accept type to determine if it can handle returning the type
provided or not.

Common MIME types include text/csv, application/json, and application/jsonlines.

Q: What are the supported data formats for SageMaker Inference?

A: SageMaker passes any request onto the model container without modification. The container
must contain the logic to deserialize the request. For information about the formats defined
for built-in algorithms, see Common Data Formats for Inference. If you are building your own
container or using a SageMaker Framework container, you can include the logic to accept a request
format of your choice.

Similarly, SageMaker also returns the response without modification, and then the client must
deserialize the response. In case of the built-in algorithms, they return responses in specific
formats. If you are building your own container or using a SageMaker Framework container, you
can include the logic to return a response in the format you choose.

Model Hosting FAQs 4692

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html

Amazon SageMaker Developer Guide

Q: How do I invoke my endpoint with binary data such as videos or images?

Use the Invoke Endpoint API call to make inference against your endpoint.

When passing your input as a payload to the InvokeEndpoint API, you must provide the correct
type of input data that your model expects. When passing a payload in the InvokeEndpoint API
call, the request bytes are forwarded directly to the model container. For example, for an image,
you may use application/jpeg for the ContentType, and make sure that your model can
perform inference on this type of data. This applies for JSON, CSV, video, or any other type of input
with which you may be dealing.

Another factor to consider is payload size limits. In terms of real-time and serverless endpoints, the
payload limit is 6 MB. You can split your video into multiple frames and invoke the endpoint with
each frame individually. Alternatively, if your use case permits, you can send the whole video in the
payload using an asynchronous endpoint, which supports up to 1 GB payloads.

For an example that showcases how to run computer vision inference on large videos with
Asynchronous Inference, see this blog post.

Real-Time Inference

The following FAQ items answer common questions for SageMaker Real-Time Inference.

Q: How do I create a SageMaker endpoint?

A: You can create a SageMaker endpoint through AWS-supported tooling such as the AWS SDKs,
the SageMaker Python SDK, the AWS Management Console, AWS CloudFormation, and the AWS
Cloud Development Kit (AWS CDK).

There are three key entities in endpoint creation: a SageMaker model, a SageMaker endpoint
configuration, and a SageMaker endpoint. The SageMaker model points towards the model data
and image you are using. The endpoint configuration defines your production variants, which
might include the instance type and instance count. You can then use either the create_endpoint
API call or the .deploy() call for SageMaker to create an endpoint using the metadata from your
model and endpoint configuration.

Q: Do I need to use the SageMaker Python SDK to create/invoke endpoints?

A: No, you can use the various AWS SDKs (see Invoke/Create for available SDKs) or even call the
corresponding web APIs directly.

Model Hosting FAQs 4693

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://aws.amazon.com/blogs/machine-learning/run-computer-vision-inference-on-large-videos-with-amazon-sagemaker-asynchronous-endpoints/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint
https://sagemaker.readthedocs.io/en/stable/api/inference/model.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_SeeAlso
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html#API_CreateEndpoint_SeeAlso

Amazon SageMaker Developer Guide

Q: What is the difference between Multi-Model Endpoints (MME) and Multi Model Server
(MMS)?

A: A Multi-Model Endpoint is a Real-Time Inference option that SageMaker provides. With Multi-
Model Endpoints, you can host thousands of models behind one endpoint. Multi Model Server is
an open-source framework for serving machine learning models. It provides the HTTP front-end
and model management capabilities required by multi-model endpoints to host multiple models
within a single container, load models into and unload models out of the container dynamically,
and perform inference on a specified loaded model.

Q: What are the different model deployment architectures supported by Real-Time Inference?

A: SageMaker Real-Time Inference supports various model deployment architecture such as Multi-
Model Endpoints, Multi-Container Endpoints, and Serial Inference Pipelines.

Multi-Model Endpoints (MME) – MME allows customers to deploy 1000s of hyper‐personalized
models in a cost effective way. All the models are deployed on a shared‐resource fleet. MME works
best when the models are of similar size and latency and belong to the same ML framework. These
endpoints are ideal for when you have don’t need to call the same model at all times. You can
dynamically load respective models onto the SageMaker endpoint to serve your request.

Multi-Container Endpoints (MCE) – MCE allows customers to deploy 15 different containers with
diverse ML frameworks and functionalities with no cold starts while only using one SageMaker
endpoint. You can directly invoke these containers. MCE is best for when you want to keep all the
models in memory.

Serial Inference Pipelines (SIP) – You can use SIP to chain together 2‐15 containers on a single
endpoint. SIP is mostly suitable for combining preprocessing and model inference in one endpoint
and for low latency operations.

Serverless Inference

The following FAQ items answer common questions for Amazon SageMaker Serverless Inference.

Q: What is Amazon SageMaker Serverless Inference?

A: Serverless Inference is a purpose-built serverless model serving option that makes it easy
to deploy and scale ML models. Serverless Inference endpoints automatically start compute
resources and scale them in and out depending on traffic, eliminating the need for you to choose
instance type, run provisioned capacity, or manage scaling. You can optionally specify the memory

Model Hosting FAQs 4694

https://github.com/awslabs/multi-model-server
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-container-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html

Amazon SageMaker Developer Guide

requirements for your serverless endpoint. You pay only for the duration of running the inference
code and the amount of data processed, not for idle periods.

Q: Why should I use Serverless Inference?

A: Serverless Inference simplifies the developer experience by eliminating the need to provision
capacity up front and manage scaling policies. Serverless Inference can scale instantly from tens
to thousands of inferences within seconds based on the usage patterns, making it ideal for ML
applications with intermittent or unpredictable traffic. For example, a chatbot service used by a
payroll processing company experiences an increase in inquiries at the end of the month while
traffic is intermittent for rest of the month. Provisioning instances for the entire month in such
scenarios is not cost-effective, as you end up paying for idle periods.

Serverless Inference helps address these types of use cases by providing you automatic and fast
scaling out of the box without the need for you to forecast traffic up front or manage scaling
policies. Additionally, you pay only for the compute time to run your inference code and for data
processing, making it ideal for workloads with intermittent traffic.

Q: How do I choose the right memory size for my serverless endpoint?

A: Your serverless endpoint has a minimum RAM size of 1024 MB (1 GB), and the maximum RAM
size you can choose is 6144 MB (6 GB). The memory sizes you can choose are 1024 MB, 2048 MB,
3072 MB, 4096 MB, 5120 MB, or 6144 MB. Serverless Inference auto-assigns compute resources
proportional to the memory you select. If you choose a larger memory size, your container has
access to more vCPUs.

Choose your endpoint’s memory size according to your model size. Generally, the memory size
should be at least as large as your model size. You may need to benchmark in order to choose the
right memory selection for your model based on your latency SLAs. The memory size increments
have different pricing; see the Amazon SageMaker pricing page for more information.

Batch Transform

The following FAQ items answer common questions for SageMaker Batch Transform.

Q: How does Batch Transform split my data?

A: For specific file formats such as CSV, RecordIO and TFRecord, SageMaker can split your data into
single-record or multi-record mini batches and send this as a payload to your model container.
When the value of BatchStrategy is MultiRecord, SageMaker sends the maximum number of

Model Hosting FAQs 4695

https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#sagemaker-CreateTransformJob-request-BatchStrategy

Amazon SageMaker Developer Guide

records in each request, up to the MaxPayloadInMB limit. When the value of BatchStrategy is
SingleRecord, SageMaker sends individual records in each request.

Q: What is the maximum timeout for Batch Transform and payload limit for a single record?

A: The maximum timeout for Batch Transform is 3600 seconds. The maximum payload size for a
record (per mini batch) is 100 MB.

Q: How do I speed up a Batch Transform job?

A: If you are using the CreateTransformJob API, you can reduce the time it takes
to complete batch transform jobs by using optimal values for parameters such as
MaxPayloadInMB, MaxConcurrentTransforms, or BatchStrategy. The ideal value for
MaxConcurrentTransforms is equal to the number of compute workers in the batch transform
job. If you are using the SageMaker console, you can specify these optimal parameter values in
the Additional configuration section of the Batch transform job configuration page. SageMaker
automatically finds the optimal parameter settings for built-in algorithms. For custom algorithms,
provide these values through an execution-parameters endpoint.

Q: What are the data formats natively supported in Batch Transform?

A: Batch Transform supports CSV and JSON.

Asynchronous Inference

The following FAQ items answer common general questions for SageMaker Asynchronous
Inference.

Q: What is Amazon SageMaker Asynchronous Inference?

A: Asynchronous Inference queues incoming requests and processes them asynchronously. This
option is ideal for requests with large payload sizes or long processing times that need to be
processed as they arrive. Optionally, you can configure auto-scaling settings to scale down the
instance count to zero when not actively processing requests.

Q: How do I scale my endpoints to 0 when there’s no traffic?

A: Amazon SageMaker supports automatic scaling (autoscaling) your asynchronous endpoint.
Autoscaling dynamically adjusts the number of instances provisioned for a model in response to
changes in your workload. Unlike other hosted models SageMaker supports, with Asynchronous
Inference you can also scale down your asynchronous endpoints instances to zero. Requests that

Model Hosting FAQs 4696

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#sagemaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxPayloadInMB
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-MaxConcurrentTransforms
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html#SageMaker-CreateTransformJob-request-BatchStrategy
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests

Amazon SageMaker Developer Guide

are received when there are zero instances are queued for processing once the endpoint scales up.
For more information, see Autoscale an asynchronous endpoint.

Amazon SageMaker Serverless Inference also automatically scales down to zero. You won’t see this
because SageMaker manages scaling your serverless endpoints, but if you are not experiencing any
traffic, the same infrastructure applies.

Model Hosting FAQs 4697

https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference-autoscale.html

Amazon SageMaker Developer Guide

Implement MLOps

Amazon SageMaker supports features to implement machine learning models in production
environments with continuous integration and deployment. The following topics give information
about how to set up MLOps infrastructure when using SageMaker.

Topics

• Why Should You Use MLOps?

• SageMaker Experiments

• SageMaker Workflows

• Amazon SageMaker ML Lineage Tracking

• Register and Deploy Models with Model Registry

• Model Deployment in SageMaker

• SageMaker Model Monitor

• Automate MLOps with SageMaker Projects

• Amazon SageMaker MLOps FAQ

Why Should You Use MLOps?

As you move from running individual artificial intelligence and machine learning (AI/ML) projects
to using AI/ML to transform your business at scale, the discipline of ML Operations (MLOps) can
help. MLOps accounts for the unique aspects of AI/ML projects in project management, CI/CD, and
quality assurance, helping you improve delivery time, reduce defects, and make data science more
productive. MLOps refers to a methodology that is built on applying DevOps practices to machine
learning workloads. For a discussion of DevOps principles, see the white paper Introduction to
DevOps on AWS. To learn more about implementation using AWS services, see Practicing CI/CD on
AWS and Infrastructure as Code.

Like DevOps, MLOps relies on a collaborative and streamlined approach to the machine learning
development lifecycle where the intersection of people, process, and technology optimizes the
end-to-end activities required to develop, build, and operate machine learning workloads.

MLOps focuses on the intersection of data science and data engineering in combination with
existing DevOps practices to streamline model delivery across the machine learning development
lifecycle. MLOps is the discipline of integrating ML workloads into release management, CI/CD, and

Why MLOps? 4698

https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/welcome.html?did=wp_card
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/welcome.html?did=wp_card
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-code.pdf

Amazon SageMaker Developer Guide

operations. MLOps requires the integration of software development, operations, data engineering,
and data science.

Challenges with MLOps

Although MLOps can provide valuable tools to help you scale your business, you might face certain
issues as you integrate MLOps into your machine learning workloads.

Project management

• ML projects involve data scientists, a relatively new role, and one not often integrated into cross-
functional teams. These new team members often speak a very different technical language than
product owners and software engineers, compounding the usual problem of translating business
requirements into technical requirements.

Communication and collaboration

• Building visibility on ML projects and enabling collaboration across different stakeholders such as
data engineers, data scientists, ML engineers, and DevOps is becoming increasingly important to
ensure successful outcomes.

Everything is code

• Use of production data in development activities, longer experimentation lifecycles,
dependencies on data pipelines, retraining deployment pipelines, and unique metrics in
evaluating the performance of a model.

• Models often have a lifecycle independent of the applications and systems integrating with
those models.

• The entire end-to-end system is reproducible through versioned code and artifacts. DevOps
projects use Infrastructure-as-Code (IaC) and Configuration-as-Code (CaC) to build environments,
and Pipelines-as-Code (PaC) to ensure consistent CI/CD patterns. The pipelines have to integrate
with Big Data and ML training workflows. That often means that the pipeline is a combination
of a traditional CI/CD tool and another workflow engine. There are important policy concerns
for many ML projects, so the pipeline may also need to enforce those policies. Biased input data
produces biased results, an increasing concern for business stakeholders.

CI/CD

Challenges with MLOps 4699

Amazon SageMaker Developer Guide

• In MLOps, the source data is a first-class input, along with source code. That’s why MLOps calls
for versioning the source data and initiating pipeline runs when the source or inference data
changes.

• Pipelines must also version the ML models, along with inputs and other outputs, in order to
provide for traceability.

• Automated testing must include proper validation of the ML model during build phases and
when the model is in production.

• Build phases may include model training and retraining, a time-consuming and resource-
intensive process. Pipelines must be granular enough to only perform a full training cycle when
the source data or ML code changes, not when related components change.

• Because machine learning code is typically a small part of an overall solution, a deployment
pipeline may also incorporate the additional steps required to package a model for consumption
as an API by other applications and systems.

Monitoring and logging

• The feature engineering and model training phases needed to capture model training metrics
as well as model experiments. Tuning an ML model requires manipulating the form of the input
data as well as algorithm hyperparameters, and systematically capture those experiments.
Experiment tracking helps data scientists work more effectively and gives a reproducible
snapshot of their work.

• Deployed ML models require monitoring of the data passed to the model for inference, along
with the standard endpoint stability and performance metrics. The monitoring system must also
capture the quality of model output, as evaluated by an appropriate ML metric.

Benefits of MLOps

Adopting MLOps practices gives you faster time-to-market for ML projects by delivering the
following benefits.

• Productivity: Providing self-service environments with access to curated data sets lets data
engineers and data scientists move faster and waste less time with missing or invalid data.

• Repeatability: Automating all the steps in the MLDC helps you ensure a repeatable process,
including how the model is trained, evaluated, versioned, and deployed.

Benefits of MLOps 4700

Amazon SageMaker Developer Guide

• Reliability: Incorporating CI/CD practices allows for the ability to not only deploy quickly but
with increased quality and consistency.

• Auditability: Versioning all inputs and outputs, from data science experiments to source data to
trained model, means that we can demonstrate exactly how the model was built and where it
was deployed.

• Data and model quality: MLOps lets us enforce policies that guard against model bias and track
changes to data statistical properties and model quality over time.

SageMaker Experiments

ML model building requires many iterations of training as you tune the algorithm, model
architecture, and parameters to achieve high prediction accuracy. You can track the inputs and
outputs across these training iterations to improve repeatability of trials and collaboration within
your team using Amazon SageMaker Experiments. You can also track parameters, metrics, datasets,
and other artifacts related to your model training jobs. SageMaker Experiments offers a single
interface where you can visualize your in-progress training jobs, share experiments within your
team, and deploy models directly from an experiment.

To learn about SageMaker Experiments, see Manage Machine Learning with Amazon SageMaker
Experiments.

SageMaker Workflows

As you scale your machine learning (ML) operations, you can use Amazon SageMaker fully
managed workflow services to implement continuous integration and deployment (CI/CD)
practices for your ML lifecycle. With the SageMaker Pipelines SDK, you choose and integrate
pipeline steps into a unified solution that automates the model-building process from data
preparation to model deployment. For Kubernetes based architectures, you can install SageMaker
Operators on your Kubernetes cluster to create SageMaker jobs natively using the Kubernetes API
and command-line Kubernetes tools such as kubectl. With SageMaker components for Kubeflow
pipelines, you can create and monitor native SageMaker jobs from your Kubeflow Pipelines. The
job parameters, status, and outputs from SageMaker are accessible from the Kubeflow Pipelines
UI. Lastly, if you want to schedule non-interactive batch runs of your Jupyter notebook, use the
notebook-based workflows service to initiate standalone or regular runs on a schedule you define.

In summary, SageMaker offers the following workflow technologies:

Experiments 4701

Amazon SageMaker Developer Guide

• Amazon SageMaker Model Building Pipelines: Tool for building and managing ML pipelines.

• Kubernetes Orchestration: SageMaker custom operators for your Kubernetes cluster and
components for Kubeflow Pipelines.

• SageMaker Notebook Jobs: On demand or scheduled non-interactive batch runs of your Jupyter
notebook.

You can also leverage other services that integrate with SageMaker to build your workflow. Options
include the following services:

• Airflow Workflows: SageMaker APIs to export configurations for creating and managing Airflow
workflows.

• AWS Step Functions: Multi-step ML workflows in Python that orchestrate SageMaker
infrastructure without having to provision your resources separately.

For more information on managing SageMaker training and inference, see Amazon SageMaker
Python SDK Workflows.

Topics

• Amazon SageMaker Model Building Pipelines

• Kubernetes Orchestration

• SageMaker Notebook Jobs

Amazon SageMaker Model Building Pipelines

Amazon SageMaker Model Building Pipelines is a tool for building machine learning pipelines
that take advantage of direct SageMaker integration. Because of this integration, you can create
a pipeline and set up SageMaker Projects for orchestration using a tool that handles much of the
step creation and management for you. You can build the pipeline using the SageMaker Python
SDK, or you can author the pipeline using the SageMaker Pipeline Definition JSON Schema.

SageMaker Pipelines provides the following advantages over other AWS workflow offerings:

SageMaker Integration

Amazon SageMaker Model Building Pipelines 4702

https://sagemaker.readthedocs.io/en/stable/workflows/airflow/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/step_functions/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/index.html
https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/

Amazon SageMaker Developer Guide

SageMaker Pipelines is integrated directly with SageMaker, so you don't need to interact with any
other AWS services. You also don't need to manage any resources because SageMaker Pipelines is a
fully managed service, which means that it creates and manages resources for you.

SageMaker Python SDK Integration

Because SageMaker Pipelines is integrated with the SageMaker Python SDK, you can create your
pipelines programmatically using a high-level Python interface that you might already be familiar
with. To view the SageMaker Python SDK API reference, see Pipelines. For SageMaker Python SDK
code examples, see Amazon SageMaker Model Building Pipelines.

SageMaker Studio Integration

SageMaker Studio offers an environment to manage the end-to-end SageMaker Pipelines
experience. Using Studio, you can bypass the AWS console for your entire workflow management.
For more information on managing SageMaker Pipelines from SageMaker Studio, see View, Track,
and Execute SageMaker Pipelines in SageMaker Studio.

Data Lineage Tracking

With SageMaker Pipelines you can track the history of your data within the pipeline execution.
Amazon SageMaker ML Lineage Tracking lets you analyze where the data came from, where it
was used as an input, and the outputs that were generated from it. For example, you can view the
models created from an individual dataset, and you can view the datasets that went into creating
an individual model. For more information, see Amazon SageMaker ML Lineage Tracking.

Step Reuse

With SageMaker Pipelines, you can designate steps for caching. When a step is cached, it is indexed
for reuse later if the same step is executed again. As a result, you can reuse the output from
previous step executions of the same step in the same pipeline without having to run the step
again. For more information on step caching, see Caching Pipeline Steps.

Topics

• SageMaker Pipelines Overview

• Create and Manage SageMaker Pipelines

Amazon SageMaker Model Building Pipelines 4703

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html

Amazon SageMaker Developer Guide

SageMaker Pipelines Overview

An Amazon SageMaker Model Building Pipelines pipeline is a series of interconnected steps that
are defined using the Pipelines SDK. You can also build your pipeline without the SDK using the
pipeline definition JSON schema. This pipeline definition encodes a pipeline using a directed
acyclic graph (DAG) that can be exported as a JSON definition. This DAG gives information on the
requirements for and relationships between each step of your pipeline. The structure of a pipeline's
DAG is determined by the data dependencies between steps. These data dependencies are created
when the properties of a step's output are passed as the input to another step. The following
image is an example of a pipeline DAG:

The following topics describe fundamental SageMaker Pipelines concepts. For a tutorial describing
the implementation of these concepts, see Create and Manage SageMaker Pipelines.

Amazon SageMaker Model Building Pipelines 4704

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html
https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema

Amazon SageMaker Developer Guide

Topics

• Pipeline Structure and Execution

• IAM Access Management

• Cross-Account Support for SageMaker Pipelines

• Pipeline Parameters

• Pipeline Steps

• Lift-and-shift Python code with the @step decorator

• Pass Data Between Steps

• Caching Pipeline Steps

• Retry Policy for Pipeline Steps

• Selective execution of pipeline steps

• Baseline calculation, drift detection and lifecycle with ClarifyCheck and QualityCheck steps in
Amazon SageMaker Model Building Pipelines

• Schedule Pipeline Runs

• Amazon SageMaker Experiments Integration

• Local Mode

• Troubleshooting Amazon SageMaker Model Building Pipelines

Pipeline Structure and Execution

Topics

• Pipeline Structure

• Pipeline Execution using Parallelism Configuration

Pipeline Structure

An Amazon SageMaker Model Building Pipelines instance is composed of a name, parameters,
and steps. Pipeline names must be unique within an (account, region) pair. All parameters
used in step definitions must be defined in the pipeline. Pipeline steps listed automatically
determine their order of execution by their data dependencies on one another. The SageMaker
Pipelines service resolves the relationships between steps in the data dependency DAG to create a
series of steps that the execution completes. The following is an example of a pipeline structure.

Amazon SageMaker Model Building Pipelines 4705

Amazon SageMaker Developer Guide

from sagemaker.workflow.pipeline import Pipeline

 pipeline_name = f"AbalonePipeline"
 pipeline = Pipeline(
 name=pipeline_name,
 parameters=[
 processing_instance_type,
 processing_instance_count,
 training_instance_type,
 model_approval_status,
 input_data,
 batch_data,
],
 steps=[step_process, step_train, step_eval, step_cond],
)

Pipeline Execution using Parallelism Configuration

By default, a pipeline performs all steps that are available to run in parallel. You can control this
behavior by using the ParallelismConfiguration property when creating or updating a
pipeline, as well as when starting or retrying a pipeline execution.

Parallelism configurations are applied per execution. For example, if two executions are started
they can each run a maximum of 50 steps concurrently, for a total of 100 concurrently running
steps. Also, ParallelismConfiguration(s) specified when starting, retrying or updating an
execution take precedence over parallelism configurations defined in the pipeline.

Example Creating a pipeline execution with ParallelismConfiguration

pipeline = Pipeline(
 name="myPipeline",
 steps=[step_process, step_train]
)

 pipeline.create(role, parallelism_config={"MaxParallelExecutionSteps": 50})

IAM Access Management

The following sections describe the AWS Identity and Access Management (IAM) requirements for
Amazon SageMaker Model Building Pipelines. For an example of how you can implement these
permissions, see Prerequisites.

Amazon SageMaker Model Building Pipelines 4706

Amazon SageMaker Developer Guide

Topics

• Pipeline Role Permissions

• Pipeline Step Permissions

• Customize access management for SageMaker Pipelines jobs

• Service Control Policies with Pipelines

Pipeline Role Permissions

Your pipeline requires an IAM pipeline execution role that is passed to SageMaker Pipelines when
you create a pipeline. The role for the SageMaker instance that is creating the pipeline must
have the iam:PassRole permission for the pipeline execution role in order to pass it. For more
information on IAM roles, see IAM Roles.

Your pipeline execution role requires the following permissions:

• To pass any role to a SageMaker job within a pipeline, the iam:PassRole permission for the role
that is being passed.

• Create and Describe permissions for each of the job types in the pipeline.

• Amazon S3 permissions to use the JsonGet function. You control access to your Amazon S3
resources using resource-based policies and identity-based policies. A resource-based policy
is applied to your Amazon S3 bucket and grants SageMaker Pipelines access to the bucket. An
identity-based policy gives your pipeline the ability to make Amazon S3 calls from your account.
For more information on resource-based policies and identity-based policies, see Identity-based
policies and resource-based policies.

{
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::<your-bucket-name>/*",
 "Effect": "Allow"
}

Pipeline Step Permissions

SageMaker Pipelines include steps that run SageMaker jobs. In order for the pipeline steps to run
these jobs, they require an IAM role in your account that provides access for the needed resource.

Amazon SageMaker Model Building Pipelines 4707

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Amazon SageMaker Developer Guide

This role is passed to the SageMaker service principal by your pipeline. For more information on
IAM roles, see IAM Roles.

By default, each step takes on the pipeline execution role. You can optionally pass a different role
to any of the steps in your pipeline. This ensures that the code in each step does not have the
ability to impact resources used in other steps unless there is a direct relationship between the
two steps specified in the pipeline definition. You pass these roles when defining the processor or
estimator for your step. For examples of how to include these roles in these definitions, see the
SageMaker Python SDK documentation.

Customize access management for SageMaker Pipelines jobs

You can further customize your IAM policies so selected members in your organization can run any
or all pipeline steps. For example, you can give certain users permission to create training jobs, and
another group of users permission to create processing jobs, and all of your users permission to run
the remaining steps. To use this feature, you select a custom string which prefixes your job name.
Your admin prepends the permitted ARNs with the prefix while your data scientist includes this
prefix in pipeline instantiations. Because the IAM policy for permitted users contains a job ARN with
the specified prefix, subsequent jobs of your pipeline step have necessary permissions to proceed.
Job prefixing is off by default—you must toggle on this option in your Pipeline class to use it.

For jobs with prefixing turned off, the job name is formatted as shown and is a concatenation of
fields described in the following table:

pipelines-<executionId>-<stepNamePrefix>-<entityToken>-<failureCount>

Field Definition

pipelines A static string always
prepended. This string
identifies the pipeline
orchestration service as the
job's source.

executionId A randomized buffer for
the running instance of the
pipeline.

stepNamePrefix The user-specified step name
(given in the name argument

Amazon SageMaker Model Building Pipelines 4708

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://sagemaker.readthedocs.io/en/stable/overview.html#using-estimators

Amazon SageMaker Developer Guide

Field Definition

of the pipeline step), limited
to the first 20 characters.

entityToken A randomized token to ensure
idempotency of the step
entity.

failureCount The current number of retries
attempted to complete the
job.

In this case, no custom prefix is prepended to the job name, and the corresponding IAM policy must
match this string.

For users who turn on job prefixing, the underlying job name takes the following form, with the
custom prefix specified as MyBaseJobName:

<MyBaseJobName>-<executionId>-<entityToken>-<failureCount>

The custom prefix replaces the static pipelines string to help you narrow the selection of users
who can run the SageMaker job as a part of a pipeline.

Prefix length restrictions

The job names have internal length constraints specific to individual pipeline steps. This constraint
also limits the length of the allowed prefix. The prefix length requirements are as follows:

Pipeline step Prefix length

TrainingStep , ModelStep , TransformStep ,
ProcessingStep , ClarifyCheckStep , QualityCh
eckStep , RegisterModelStep

38

TuningStep , AutoML 6

Amazon SageMaker Model Building Pipelines 4709

https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#trainingstep
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#step-collections
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#transformstep
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#processingstep
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#clarifycheckstep
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#qualitycheckstep
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#qualitycheckstep
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#step-collections
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#tuningstep
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#automlstep

Amazon SageMaker Developer Guide

Apply job prefixes to an IAM policy

Your admin creates IAM policies allowing users of specific prefixes to create jobs. The following
example policy permits data scientists to create training jobs if they use the MyBaseJobName
prefix.

{
 "Action": "sagemaker:CreateTrainingJob",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:sagemaker:region:account-id:*/MyBaseJobName-*"
]
}

Apply job prefixes to pipeline instantiations

You specify your prefix with the *base_job_name argument of the job instance class.

Note

You pass your job prefix with the *base_job_name argument to the job instance before
creating a pipeline step. This job instance contains the necessary information for the job to
run as a step in a pipeline. This argument varies depending upon the job instance used. The
following list shows which argument to use for each pipeline step type:

• base_job_name for the Estimator (TrainingStep), Processor (ProcessingStep),
and AutoML (AutoMLStep) classes

• tuning_base_job_name for the Tuner class (TuningStep)

• transform_base_job_name for the Transformer class (TransformStep)

• base_job_name of CheckJobConfig for the QualityCheckStep (Quality Check) and
ClarifyCheckstep (Clarify Check) classes

• For the Model class, the argument used depends on if you run create or register on
your model before passing the result to ModelStep

• If you call create, the custom prefix comes from the name argument when you
construct your model (i.e., Model(name=))

Amazon SageMaker Model Building Pipelines 4710

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#trainingstep
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#processingstep
https://sagemaker.readthedocs.io/en/stable/api/training/automl.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#automlstep
https://sagemaker.readthedocs.io/en/stable/api/training/tuner.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#tuningstep
https://sagemaker.readthedocs.io/en/stable/api/inference/transformer.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#transformstep
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#checkjobconfig
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#qualitycheckstep
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#clarifycheckstep
https://sagemaker.readthedocs.io/en/stable/api/inference/model.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#step-collections

Amazon SageMaker Developer Guide

• If you call register, the custom prefix comes from the
model_package_name argument of your call to register (i.e.,
my_model.register(model_package_name=))

The following example shows how to specify a prefix for a new training job instance.

Create a job instance
xgb_train = Estimator(
 image_uri=image_uri,
 instance_type="ml.m5.xlarge",
 instance_count=1,
 output_path=model_path,
 role=role,
 subnets=["subnet-0ab12c34567de89f0"],
 base_job_name="MyBaseJobName"
 security_group_ids=["sg-1a2bbcc3bd4444e55"],
 tags = [...]
 encrypt_inter_container_traffic=True,
)

Attach your job instance to a pipeline step
step_train = TrainingStep(
 name="TestTrainingJob",
 estimator=xgb_train,
 inputs={
 "train": TrainingInput(...),
 "validation": TrainingInput(...)
 }
)

Job prefixing is off by default. To opt into this feature, use the use_custom_job_prefix option
of PipelineDefinitionConfig as shown in the following snippet:

from sagemaker.workflow.pipeline_definition_config import PipelineDefinitionConfig

Create a definition configuration and toggle on custom prefixing
definition_config = PipelineDefinitionConfig(use_custom_job_prefix=True);

Create a pipeline with a custom prefix
 pipeline = Pipeline(
 name="MyJobPrefixedPipeline",

Amazon SageMaker Model Building Pipelines 4711

Amazon SageMaker Developer Guide

 parameters=[...]
 steps=[...]
 pipeline_definition_config=definition_config
)

Create and run your pipeline. The following example creates and runs a pipeline, and also
demonstrates how you can turn off job prefixing and rerun your pipeline.

pipeline.create(role_arn=sagemaker.get_execution_role())

Optionally, call definition() to confirm your prefixed job names are in the built
 JSON
pipeline.definition()
pipeline.start()

To run a pipeline without custom-prefixes, toggle off use_custom_job_prefix, update
 the pipeline
via upsert() or update(), and start a new run
definition_config = PipelineDefinitionConfig(use_custom_job_prefix=False)
pipeline.pipeline_definition_config = definition_config
pipeline.update()
execution = pipeline.start()

Similarly, you can toggle the feature on for existing pipelines and start a new run which uses job
prefixes.

definition_config = PipelineDefinitionConfig(use_custom_job_prefix=True)
pipeline.pipeline_definition_config = definition_config
pipeline.update()
execution = pipeline.start()

Finally, you can view your custom-prefixed job by calling list_steps on the pipeline execution.

steps = execution.list_steps()

prefixed_training_job_name = steps['PipelineExecutionSteps'][0]['Metadata']
['TrainingJob']['Arn']

Service Control Policies with Pipelines

Service control policies (SCPs) are a type of organization policy that you can use to manage
permissions in your organization. SCPs offer central control over the maximum available

Amazon SageMaker Model Building Pipelines 4712

Amazon SageMaker Developer Guide

permissions for all accounts in your organization. By using SageMaker Pipelines within your
organization, you can ensure that data scientists manage your pipeline executions without having
to interact with the AWS console.

If you're using a VPC with your SCP that restricts access to Amazon S3, you need to take steps to
allow your pipeline to access other Amazon S3 resources.

To allow SageMaker Pipelines to access Amazon S3 outside of your VPC with the JsonGet
function, update your organization's SCP to ensure that the role using SageMaker Pipelines can
access Amazon S3. To do this, create an exception for roles that are being used by the SageMaker
Pipelines executor via the pipeline execution role using a principal tag and condition key.

To allow SageMaker Pipelines to access Amazon S3 outside of your VPC

1. Create a unique tag for your pipeline execution role following the steps in Tagging IAM users
and roles.

2. Grant an exception in your SCP using the Aws:PrincipalTag IAM condition key for the
tag you created. For more information, see Creating, updating, and deleting service control
policies.

Cross-Account Support for SageMaker Pipelines

You can use cross-account support for Amazon SageMaker Model Building Pipelines to share
pipeline entities across AWS accounts and access shared pipelines through direct API calls.

Set up cross-account pipeline sharing

SageMaker uses AWS Resource Access Manager (AWS RAM) to help you securely share your pipeline
entities across accounts.

Create a resource share

1. Select Create a resource share through the AWS RAM console.

2. When specifying resource share details, choose the SageMaker Pipelines resource type and
select one or more pipelines that you want to share. When you share a pipeline with any other
account, all of its executions are also shared implicitly.

3. Associate permissions with your resource share. Choose either the default read-only
permission policy or the extended pipeline execution permission policy. For more detailed
information, see Permission policies for SageMaker Pipelines resources.

Amazon SageMaker Model Building Pipelines 4713

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_create.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_create.html
https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://console.aws.amazon.com/ram/home

Amazon SageMaker Developer Guide

Note

If you select the extended pipeline execution policy, note that any start, stop, and retry
commands called by shared accounts use resources in the AWS account that shared the
pipeline.

4. Use AWS account IDs to specify the accounts to which you want to grant access to your shared
resources.

5. Review your resource share configuration and select Create resource share. It may take a few
minutes for the resource share and principal associations to complete.

For more information, see Sharing your AWS resources in the AWS Resource Access Manager User
Guide.

Get responses to your resource share invitation

Once the resource share and principal associations are set, the specified AWS accounts receive an
invitation to join the resource share. The AWS accounts must accept the invite to gain access to any
shared resources.

For more information on accepting a resource share invite through AWS RAM, see Using shared
AWS resources in the AWS Resource Access Manager User Guide.

Permission policies for SageMaker Pipelines resources

When creating your resource share, choose one of two supported permission policies to associate
with the SageMaker pipeline resource type. Both policies grant access to any selected pipeline and
all of its executions.

Default read-only permissions

The AWSRAMDefaultPermissionSageMakerPipeline policy allows the following read-only
actions:

"sagemaker:DescribePipeline"
"sagemaker:DescribePipelineDefinitionForExecution"
"sagemaker:DescribePipelineExecution"
"sagemaker:ListPipelineExecutions"
"sagemaker:ListPipelineExecutionSteps"
"sagemaker:ListPipelineParametersForExecution"

Amazon SageMaker Model Building Pipelines 4714

https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html

Amazon SageMaker Developer Guide

"sagemaker:Search"

Extended pipeline execution permissions

The AWSRAMPermissionSageMakerPipelineAllowExecution policy includes all of the read-
only permissions from the default policy and also allows shared accounts to start, stop, and retry
pipeline executions.

Note

Be mindful of AWS resource usage when using the extended pipeline execution permission
policy. With this policy, shared accounts are allowed to start, stop, and retry pipeline
executions. Any resources used for shared pipeline executions are consumed by the owner
account.

The extended pipeline execution permission policy allows the following actions:

"sagemaker:DescribePipeline"
"sagemaker:DescribePipelineDefinitionForExecution"
"sagemaker:DescribePipelineExecution"
"sagemaker:ListPipelineExecutions"
"sagemaker:ListPipelineExecutionSteps"
"sagemaker:ListPipelineParametersForExecution"
"sagemaker:StartPipelineExecution"
"sagemaker:StopPipelineExecution"
"sagemaker:RetryPipelineExecution"
"sagemaker:Search"

Access shared pipeline entities through direct API calls

Once cross-account pipeline sharing is set up, you can call the following SageMaker API actions
using a pipeline ARN:

Note

You can only call API commands if they are included in the
permissions associated with your resource share. If you select the
AWSRAMPermissionSageMakerPipelineAllowExecution policy, then the start, stop,
and retry commands use resources in the AWS account that shared the pipeline.

Amazon SageMaker Model Building Pipelines 4715

Amazon SageMaker Developer Guide

• DescribePipeline

• DescribePipelineDefinitionForExecution

• DescribePipelineExecution

• ListPipelineExecutions

• ListPipelineExecutionSteps

• ListPipelineParametersForExecution

• StartPipelineExecution

• StopPipelineExecution

• RetryPipelineExecution

Pipeline Parameters

You can introduce variables into your pipeline definition using parameters. You can reference
parameters that you define throughout your pipeline definition. Parameters have a default value,
which you can override by specifying parameter values when starting a pipeline execution. The
default value must be an instance matching the parameter type. All parameters used in step
definitions must be defined in your pipeline definition. Amazon SageMaker Model Building
Pipelines supports the following parameter types:

• ParameterString – Representing a string parameter.

• ParameterInteger – Representing an integer parameter.

• ParameterFloat – Representing a float parameter.

• ParameterBoolean – Representing a Boolean Python type.

Parameters take the following format:

<parameter> = <parameter_type>(
 name="<parameter_name>",
 default_value=<default_value>
)

The following example shows a sample parameter implementation.

from sagemaker.workflow.parameters import (
 ParameterInteger,
 ParameterString,

Amazon SageMaker Model Building Pipelines 4716

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipeline.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineDefinitionForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineExecutions.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineExecutionSteps.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineParametersForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StartPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RetryPipelineExecution.html

Amazon SageMaker Developer Guide

 ParameterFloat,
 ParameterBoolean
)

processing_instance_count = ParameterInteger(
 name="ProcessingInstanceCount",
 default_value=1
)

You pass the parameter when creating your pipeline as shown in the following example.

pipeline = Pipeline(
 name=pipeline_name,
 parameters=[
 processing_instance_count
],
 steps=[step_process]
)

You can also pass a parameter value that differs from the default value to a pipeline execution, as
shown in the following example.

execution = pipeline.start(
 parameters=dict(
 ProcessingInstanceCount="2",
 ModelApprovalStatus="Approved"
)
)

You can manipulate parameters with SageMaker Python SDK functions like
sagemaker.workflow.functions.Join. For more information on parameters, see SageMaker
Pipelines Parameters.

For known limitations of SageMaker Pipelines Parameters, see Limitations - Parameterization in the
Amazon SageMaker Python SDK.

Pipeline Steps

SageMaker Pipelines are composed of steps. These steps define the actions that the pipeline takes
and the relationships between steps using properties.

Topics

Amazon SageMaker Model Building Pipelines 4717

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.functions.Join
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.functions.Join
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#parameters
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#parameters
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#parameterization
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• Step Types

• Step Properties

• Step Parallelism

• Data Dependency Between Steps

• Custom Dependency Between Steps

• Use a Custom Image in a Step

Step Types

The following describes the requirements of each step type and provides an example
implementation of the step. These are not functional implementations because they don't provide
the resource and inputs needed. For a tutorial that implements these steps, see Create and Manage
SageMaker Pipelines.

Note

You can also create a step from your local machine learning code by converting it to a
SageMaker Pipelines step with the @step decorator. For more information, see @step
decorator.

Amazon SageMaker Model Building Pipelines support the following step types:

• Processing

• Training

• Tuning

• AutoML

• Model

• CreateModel

• RegisterModel

• Transform

• Condition

• Callback

• Lambda

Amazon SageMaker Model Building Pipelines 4718

Amazon SageMaker Developer Guide

• ClarifyCheck

• QualityCheck

• EMR

• Notebook Job

• Fail

@step decorator

You can create a step from local machine learning code using the @step decorator. After you test
your code, you can convert the function to a SageMaker pipeline step by annotating it with the
@step decorator. SageMaker Pipelines creates and runs a pipeline when you pass the output of the
@step-decorated function as a step to your pipeline. You can also create a multi-step DAG pipeline
that includes one or more @step-decorated functions as well as traditional SageMaker pipeline
steps. For more details about how to create a step with @step decorator, see Lift-and-shift Python
code with the @step decorator.

Processing Step

Use a processing step to create a processing job for data processing. For more information on
processing jobs, see Process Data and Evaluate Models.

A processing step requires a processor, a Python script that defines the processing code, outputs for
processing, and job arguments. The following example shows how to create a ProcessingStep
definition.

from sagemaker.sklearn.processing import SKLearnProcessor

sklearn_processor = SKLearnProcessor(framework_version='1.0-1',
 role=<role>,
 instance_type='ml.m5.xlarge',
 instance_count=1)

from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker.workflow.steps import ProcessingStep

inputs = [
 ProcessingInput(source=<input_data>, destination="/opt/ml/processing/input"),
]

Amazon SageMaker Model Building Pipelines 4719

https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html

Amazon SageMaker Developer Guide

outputs = [
 ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
 ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"),
 ProcessingOutput(output_name="test", source="/opt/ml/processing/test")
]

step_process = ProcessingStep(
 name="AbaloneProcess",
 step_args = sklearn_processor.run(inputs=inputs, outputs=outputs,
 code="abalone/preprocessing.py")
)

Pass runtime parameters

The following example shows how to pass runtime parameters from a PySpark processor to a
ProcessingStep.

from sagemaker.workflow.pipeline_context import PipelineSession
from sagemaker.spark.processing import PySparkProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker.workflow.steps import ProcessingStep

pipeline_session = PipelineSession()

pyspark_processor = PySparkProcessor(
 framework_version='2.4',
 role=<role>,
 instance_type='ml.m5.xlarge',
 instance_count=1,
 sagemaker_session=pipeline_session,
)

step_args = pyspark_processor.run(
 inputs=[ProcessingInput(source=<input_data>, destination="/opt/ml/processing/
input"),],
 outputs=[
 ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
 ProcessingOutput(output_name="validation", source="/opt/ml/processing/
validation"),
 ProcessingOutput(output_name="test", source="/opt/ml/processing/test")
],
 code="preprocess.py",
 arguments=None,

Amazon SageMaker Model Building Pipelines 4720

Amazon SageMaker Developer Guide

)

step_process = ProcessingStep(
 name="AbaloneProcess",
 step_args=step_args,
)

For more information on processing step requirements, see the
sagemaker.workflow.steps.ProcessingStep documentation. For an in-depth example, see Define a
Processing Step for Feature Engineering in the Orchestrate Jobs to Train and Evaluate Models with
Amazon SageMaker Pipelines example notebook.

Training Step

You use a training step to create a training job to train a model. For more information on training
jobs, see Train a Model with Amazon SageMaker.

A training step requires an estimator, as well as training and validation data inputs. The following
example shows how to create a TrainingStep definition. For more information on training step
requirements, see the sagemaker.workflow.steps.TrainingStep documentation.

from sagemaker.workflow.pipeline_context import PipelineSession

from sagemaker.inputs import TrainingInput
from sagemaker.workflow.steps import TrainingStep

from sagemaker.xgboost.estimator import XGBoost

pipeline_session = PipelineSession()

xgb_estimator = XGBoost(..., sagemaker_session=pipeline_session)

step_args = xgb_estimator.fit(
 inputs={
 "train": TrainingInput(
 s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
 "train"
].S3Output.S3Uri,
 content_type="text/csv"
),
 "validation": TrainingInput(

Amazon SageMaker Model Building Pipelines 4721

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.ProcessingStep
https://github.com/aws/amazon-sagemaker-examples/blob/62de6a1fca74c7e70089d77e36f1356033adbe5f/sagemaker-pipelines/tabular/abalone_build_train_deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/62de6a1fca74c7e70089d77e36f1356033adbe5f/sagemaker-pipelines/tabular/abalone_build_train_deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.TrainingStep

Amazon SageMaker Developer Guide

 s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
 "validation"
].S3Output.S3Uri,
 content_type="text/csv"
)
 }
)

step_train = TrainingStep(
 name="TrainAbaloneModel",
 step_args=step_args,
)

Tuning Step

You use a tuning step to create a hyperparameter tuning job, also known as hyperparameter
optimization (HPO). A hyperparameter tuning job runs multiple training jobs, each one producing
a model version. For more information on hyperparameter tuning, see Perform Automatic Model
Tuning with SageMaker.

The tuning job is associated with the SageMaker experiment for the pipeline, with the training jobs
created as trials. For more information, see Experiments Integration.

A tuning step requires a HyperparameterTuner and training inputs. You can retrain previous tuning
jobs by specifying the warm_start_config parameter of the HyperparameterTuner. For more
information on hyperparameter tuning and warm start, see Run a Warm Start Hyperparameter
Tuning Job.

You use the get_top_model_s3_uri method of the sagemaker.workflow.steps.TuningStep class to
get the model artifact from one of the top-performing model versions. For a notebook that shows
how to use a tuning step in a SageMaker pipeline, see sagemaker-pipelines-tuning-step.ipynb.

Important

Tuning steps were introduced in Amazon SageMaker Python SDK v2.48.0 and Amazon
SageMaker Studio Classic v3.8.0. You must update Studio Classic before you use a tuning
step or the pipeline DAG doesn't display. To update Studio Classic, see Shut down and
Update SageMaker Studio Classic.

The following example shows how to create a TuningStep definition.

Amazon SageMaker Model Building Pipelines 4722

https://sagemaker.readthedocs.io/en/stable/api/training/tuner.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.TuningStep.get_top_model_s3_uri
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.TuningStep
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-pipelines/tabular/tuning-step/sagemaker-pipelines-tuning-step.ipynb

Amazon SageMaker Developer Guide

from sagemaker.workflow.pipeline_context import PipelineSession

from sagemaker.tuner import HyperparameterTuner
from sagemaker.inputs import TrainingInput
from sagemaker.workflow.steps import TuningStep

tuner = HyperparameterTuner(..., sagemaker_session=PipelineSession())

step_tuning = TuningStep(
 name = "HPTuning",
 step_args = tuner.fit(inputs=TrainingInput(s3_data="s3://my-bucket/my-data"))
)

Get the best model version

The following example shows how to get the best model version from the tuning job using the
get_top_model_s3_uri method. At most, the top 50 performing versions are available ranked
according to HyperParameterTuningJobObjective. The top_k argument is an index into the
versions, where top_k=0 is the best-performing version and top_k=49 is the worst-performing
version.

best_model = Model(
 image_uri=image_uri,
 model_data=step_tuning.get_top_model_s3_uri(
 top_k=0,
 s3_bucket=sagemaker_session.default_bucket()
),
 ...
)

For more information on tuning step requirements, see the sagemaker.workflow.steps.TuningStep
documentation.

AutoML Step

Use the AutoML API to create an AutoML job to automatically train a model. For more information
on AutoML jobs, see Automate model development with Amazon SageMaker Autopilot.

Note

Currently, the AutoML step supports only ensembling training mode.

Amazon SageMaker Model Building Pipelines 4723

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.TuningStep
https://sagemaker.readthedocs.io/en/stable/api/training/automl.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html

Amazon SageMaker Developer Guide

The following example shows how to create a definition using AutoMLStep.

from sagemaker.workflow.pipeline_context import PipelineSession
from sagemaker.workflow.automl_step import AutoMLStep

pipeline_session = PipelineSession()

auto_ml = AutoML(...,
 role="<role>",
 target_attribute_name="my_target_attribute_name",
 mode="ENSEMBLING",
 sagemaker_session=pipeline_session)

input_training = AutoMLInput(
 inputs="s3://my-bucket/my-training-data",
 target_attribute_name="my_target_attribute_name",
 channel_type="training",
)
input_validation = AutoMLInput(
 inputs="s3://my-bucket/my-validation-data",
 target_attribute_name="my_target_attribute_name",
 channel_type="validation",
)

step_args = auto_ml.fit(
 inputs=[input_training, input_validation]
)

step_automl = AutoMLStep(
 name="AutoMLStep",
 step_args=step_args,
)

Get the best model version

The AutoML step automatically trains several model candidates. You can get the model with the
best objective metric from the AutoML job using the get_best_auto_ml_model method and an
IAM role to access model artifacts as follows.

best_model = step_automl.get_best_auto_ml_model(role=<role>)

For more information, see the AutoML step in the SageMaker Python SDK.

Amazon SageMaker Model Building Pipelines 4724

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.automl_step.AutoMLStep

Amazon SageMaker Developer Guide

Model Step

Use a ModelStep to create or register a SageMaker model. For more information on ModelStep
requirements, see the sagemaker.workflow.model_step.ModelStep documentation.

Create a model

You can use a ModelStep to create a SageMaker model. A ModelStep requires model artifacts
and information about the SageMaker instance type that you need to use to create the model. For
more information on SageMaker models, see Train a Model with Amazon SageMaker.

The following example shows how to create a ModelStep definition.

from sagemaker.workflow.pipeline_context import PipelineSession
from sagemaker.model import Model
from sagemaker.workflow.model_step import ModelStep

step_train = TrainingStep(...)
model = Model(
 image_uri=pytorch_estimator.training_image_uri(),
 model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
 sagemaker_session=PipelineSession(),
 role=role,
)

step_model_create = ModelStep(
 name="MyModelCreationStep",
 step_args=model.create(instance_type="ml.m5.xlarge"),
)

Register a model

You can use a ModelStep to register a sagemaker.model.Model or a
sagemaker.pipeline.PipelineModel with the Amazon SageMaker model registry. A
PipelineModel represents an inference pipeline, which is a model composed of a linear sequence
of containers that process inference requests. For more information about how to register a model,
see Register and Deploy Models with Model Registry.

The following example shows how to create a ModelStep that registers a PipelineModel.

import time

from sagemaker.workflow.pipeline_context import PipelineSession

Amazon SageMaker Model Building Pipelines 4725

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.model_step.ModelStep
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html

Amazon SageMaker Developer Guide

from sagemaker.sklearn import SKLearnModel
from sagemaker.xgboost import XGBoostModel

pipeline_session = PipelineSession()

code_location = 's3://{0}/{1}/code'.format(bucket_name, prefix)

sklearn_model = SKLearnModel(

 model_data=processing_step.properties.ProcessingOutputConfig.Outputs['model'].S3Output.S3Uri,
 entry_point='inference.py',
 source_dir='sklearn_source_dir/',
 code_location=code_location,
 framework_version='1.0-1',
 role=role,
 sagemaker_session=pipeline_session,
 py_version='py3'
)

xgboost_model = XGBoostModel(
 model_data=training_step.properties.ModelArtifacts.S3ModelArtifacts,
 entry_point='inference.py',
 source_dir='xgboost_source_dir/',
 code_location=code_location,
 framework_version='0.90-2',
 py_version='py3',
 sagemaker_session=pipeline_session,
 role=role
)

from sagemaker.workflow.model_step import ModelStep
from sagemaker import PipelineModel

pipeline_model = PipelineModel(
 models=[sklearn_model, xgboost_model],
 role=role,sagemaker_session=pipeline_session,
)

register_model_step_args = pipeline_model.register(
 content_types=["application/json"],
 response_types=["application/json"],
 inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
 transform_instances=["ml.m5.xlarge"],
 model_package_group_name='sipgroup',

Amazon SageMaker Model Building Pipelines 4726

Amazon SageMaker Developer Guide

)

step_model_registration = ModelStep(
 name="AbaloneRegisterModel",
 step_args=register_model_step_args,
)

CreateModel Step

Important

We recommend using Model Step to create models as of v2.90.0 of the SageMaker Python
SDK. CreateModelStep will continue to work in previous versions of the SageMaker
Python SDK, but is no longer actively supported.

You use a CreateModel step to create a SageMaker model. For more information on SageMaker
models, see Train a Model with Amazon SageMaker.

A create model step requires model artifacts and information about the SageMaker instance
type that you need to use to create the model. The following example shows how to create a
CreateModel step definition. For more information on CreateModel step requirements, see the
sagemaker.workflow.steps.CreateModelStep documentation.

from sagemaker.workflow.steps import CreateModelStep

step_create_model = CreateModelStep(
 name="AbaloneCreateModel",
 model=best_model,
 inputs=inputs
)

RegisterModel Step

Important

We recommend using Model Step to register models as of v2.90.0 of the SageMaker
Python SDK. RegisterModel will continue to work in previous versions of the SageMaker
Python SDK, but is no longer actively supported.

Amazon SageMaker Model Building Pipelines 4727

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.CreateModelStep

Amazon SageMaker Developer Guide

You use a RegisterModel step to register a sagemaker.model.Model or a
sagemaker.pipeline.PipelineModel with the Amazon SageMaker model registry. A PipelineModel
represents an inference pipeline, which is a model composed of a linear sequence of containers
that process inference requests.

For more information about how to register a model, see Register and Deploy Models with
Model Registry. For more information on RegisterModel step requirements, see the
sagemaker.workflow.step_collections.RegisterModel documentation.

The following example shows how to create a RegisterModel step that registers a
PipelineModel.

import time
from sagemaker.sklearn import SKLearnModel
from sagemaker.xgboost import XGBoostModel

code_location = 's3://{0}/{1}/code'.format(bucket_name, prefix)

sklearn_model =
 SKLearnModel(model_data=processing_step.properties.ProcessingOutputConfig.Outputs['model'].S3Output.S3Uri,
 entry_point='inference.py',
 source_dir='sklearn_source_dir/',
 code_location=code_location,
 framework_version='1.0-1',
 role=role,
 sagemaker_session=sagemaker_session,
 py_version='py3')

xgboost_model =
 XGBoostModel(model_data=training_step.properties.ModelArtifacts.S3ModelArtifacts,
 entry_point='inference.py',
 source_dir='xgboost_source_dir/',
 code_location=code_location,
 framework_version='0.90-2',
 py_version='py3',
 sagemaker_session=sagemaker_session,
 role=role)

from sagemaker.workflow.step_collections import RegisterModel
from sagemaker import PipelineModel
pipeline_model =
 PipelineModel(models=[sklearn_model,xgboost_model],role=role,sagemaker_session=sagemaker_session)

Amazon SageMaker Model Building Pipelines 4728

https://sagemaker.readthedocs.io/en/stable/api/inference/model.html
https://sagemaker.readthedocs.io/en/stable/api/inference/pipeline.html#pipelinemodel
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.step_collections.RegisterModel

Amazon SageMaker Developer Guide

step_register = RegisterModel(
 name="AbaloneRegisterModel",
 model=pipeline_model,
 content_types=["application/json"],
 response_types=["application/json"],
 inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
 transform_instances=["ml.m5.xlarge"],
 model_package_group_name='sipgroup',
)

If model isn't provided, the register model step requires an estimator as shown in the following
example.

from sagemaker.workflow.step_collections import RegisterModel

step_register = RegisterModel(
 name="AbaloneRegisterModel",
 estimator=xgb_train,
 model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
 content_types=["text/csv"],
 response_types=["text/csv"],
 inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
 transform_instances=["ml.m5.xlarge"],
 model_package_group_name=model_package_group_name,
 approval_status=model_approval_status,
 model_metrics=model_metrics
)

Transform Step

You use a transform step for batch transformation to run inference on an entire dataset. For more
information about batch transformation, see Run Batch Transforms with Inference Pipelines.

A transform step requires a transformer and the data on which to run batch transformation.
The following example shows how to create a Transform step definition. For more information
on Transform step requirements, see the sagemaker.workflow.steps.TransformStep
documentation.

from sagemaker.workflow.pipeline_context import PipelineSession

from sagemaker.transformer import Transformer

Amazon SageMaker Model Building Pipelines 4729

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.TransformStep

Amazon SageMaker Developer Guide

from sagemaker.inputs import TransformInput
from sagemaker.workflow.steps import TransformStep

transformer = Transformer(..., sagemaker_session=PipelineSession())

step_transform = TransformStep(
 name="AbaloneTransform",
 step_args=transformer.transform(data="s3://my-bucket/my-data"),
)

Condition Step

You use a condition step to evaluate the condition of step properties to assess which action should
be taken next in the pipeline.

A condition step requires a list of conditions, a list of steps to run if the condition evaluates to
true, and a list of steps to run if the condition evaluates to false. The following example shows
how to create a ConditionStep definition.

Limitations

• SageMaker Pipelines doesn't support the use of nested condition steps. You can't pass a
condition step as the input for another condition step.

• A condition step can't use identical steps in both branches. If you need the same step
functionality in both branches, duplicate the step and give it a different name.

from sagemaker.workflow.conditions import ConditionLessThanOrEqualTo
from sagemaker.workflow.condition_step import ConditionStep
from sagemaker.workflow.functions import JsonGet

cond_lte = ConditionLessThanOrEqualTo(
 left=JsonGet(
 step_name=step_eval.name,
 property_file=evaluation_report,
 json_path="regression_metrics.mse.value"
),
 right=6.0
)

step_cond = ConditionStep(
 name="AbaloneMSECond",

Amazon SageMaker Model Building Pipelines 4730

Amazon SageMaker Developer Guide

 conditions=[cond_lte],
 if_steps=[step_register, step_create_model, step_transform],
 else_steps=[]
)

For more information on ConditionStep requirements, see the
sagemaker.workflow.condition_step.ConditionStep API reference. For more information on
supported conditions, see Amazon SageMaker Model Building Pipelines - Conditions in the
SageMaker Python SDK documentation.

Callback Step

You use a Callback step to incorporate additional processes and AWS services into your workflow
that aren't directly provided by Amazon SageMaker Model Building Pipelines. When a Callback
step runs, the following procedure occurs:

• SageMaker Pipelines sends a message to a customer-specified Amazon Simple Queue Service
(Amazon SQS) queue. The message contains a SageMaker Pipelines–generated token and a
customer-supplied list of input parameters. After sending the message, SageMaker Pipelines
waits for a response from the customer.

• The customer retrieves the message from the Amazon SQS queue and starts their custom
process.

• When the process finishes, the customer calls one of the following APIs and submits the
SageMaker Pipelines–generated token:

• SendPipelineExecutionStepSuccess, along with a list of output parameters

• SendPipelineExecutionStepFailure, along with a failure reason

• The API call causes SageMaker Pipelines to either continue the pipeline process or fail the
process.

For more information on Callback step requirements, see the
sagemaker.workflow.callback_step.CallbackStep documentation. For a complete solution, see
Extend SageMaker Pipelines to include custom steps using callback steps.

Important

Callback steps were introduced in Amazon SageMaker Python SDK v2.45.0 and Amazon
SageMaker Studio Classic v3.6.2. You must update Studio Classic before you use a

Amazon SageMaker Model Building Pipelines 4731

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#conditionstep
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#conditions
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SendPipelineExecutionStepSuccess.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SendPipelineExecutionStepFailure.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.callback_step.CallbackStep
https://aws.amazon.com/blogs/machine-learning/extend-amazon-sagemaker-pipelines-to-include-custom-steps-using-callback-steps/

Amazon SageMaker Developer Guide

Callback step or the pipeline DAG doesn't display. To update Studio Classic, see Shut
down and Update SageMaker Studio Classic.

The following sample demonstrates an implementation of the preceding procedure.

from sagemaker.workflow.callback_step import CallbackStep

step_callback = CallbackStep(
 name="MyCallbackStep",
 sqs_queue_url="https://sqs.us-east-2.amazonaws.com/012345678901/MyCallbackQueue",
 inputs={...},
 outputs=[...]
)

callback_handler_code = '
 import boto3
 import json

 def handler(event, context):
 sagemaker_client=boto3.client("sagemaker")

 for record in event["Records"]:
 payload=json.loads(record["body"])
 token=payload["token"]

 # Custom processing

 # Call SageMaker to complete the step
 sagemaker_client.send_pipeline_execution_step_success(
 CallbackToken=token,
 OutputParameters={...}
)
'

Note

Output parameters for CallbackStep should not be nested. For example, if you use a
nested dictionary as your output parameter, then the dictionary is treated as a single string
(ex. {"output1": "{\"nested_output1\":\"my-output\"}"}). If you provide a

Amazon SageMaker Model Building Pipelines 4732

Amazon SageMaker Developer Guide

nested value, then when you try to refer to a particular output parameter, a non-retryable
client error is thrown.

Stopping behavior

A pipeline process doesn't stop while a Callback step is running.

When you call StopPipelineExecution on a pipeline process with a running Callback step,
SageMaker Pipelines sends an additional Amazon SQS message to the specified SQS queue. The
body of the SQS message contains a Status field, which is set to Stopping. The following shows
an example SQS message body.

{
 "token": "26vcYbeWsZ",
 "pipelineExecutionArn": "arn:aws:sagemaker:us-east-2:012345678901:pipeline/callback-
pipeline/execution/7pinimwddh3a",
 "arguments": {
 "number": 5,
 "stringArg": "some-arg",
 "inputData": "s3://sagemaker-us-west-2-012345678901/abalone/abalone-dataset.csv"
 },
 "status": "Stopping"
}

You should add logic to your Amazon SQS message consumer to take any needed action
(for example, resource cleanup) upon receipt of the message, followed by a call to
SendPipelineExecutionStepSuccess or SendPipelineExecutionStepFailure.

Only when SageMaker Pipelines receives one of these calls does it stop the pipeline process.

Lambda Step

You use a Lambda step to run an AWS Lambda function. You can run an existing Lambda function,
or SageMaker can create and run a new Lambda function. For a notebook that shows how to use a
Lambda step in a SageMaker pipeline, see sagemaker-pipelines-lambda-step.ipynb.

Important

Lambda steps were introduced in Amazon SageMaker Python SDK v2.51.0 and Amazon
SageMaker Studio Classic v3.9.1. You must update Studio Classic before you use a Lambda

Amazon SageMaker Model Building Pipelines 4733

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopPipelineExecution.html
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-pipelines/tabular/lambda-step/sagemaker-pipelines-lambda-step.ipynb

Amazon SageMaker Developer Guide

step or the pipeline DAG doesn't display. To update Studio Classic, see Shut down and
Update SageMaker Studio Classic.

SageMaker provides the sagemaker.lambda_helper.Lambda class to create, update, invoke, and
delete Lambda functions. Lambda has the following signature.

Lambda(
 function_arn, # Only required argument to invoke an existing Lambda function

 # The following arguments are required to create a Lambda function:
 function_name,
 execution_role_arn,
 zipped_code_dir, # Specify either zipped_code_dir and s3_bucket, OR script
 s3_bucket, # S3 bucket where zipped_code_dir is uploaded
 script, # Path of Lambda function script
 handler, # Lambda handler specified as "lambda_script.lambda_handler"
 timeout, # Maximum time the Lambda function can run before the lambda
 step fails
 ...
)

The sagemaker.workflow.lambda_step.LambdaStep class has a lambda_func argument of
type Lambda. To invoke an existing Lambda function, the only requirement is to supply the
Amazon Resource Name (ARN) of the function to function_arn. If you don't supply a value for
function_arn, you must specify handler and one of the following:

• zipped_code_dir – The path of the zipped Lambda function

s3_bucket – Amazon S3 bucket where zipped_code_dir is to be uploaded

• script – The path of the Lambda function script file

The following example shows how to create a Lambda step definition that invokes an existing
Lambda function.

from sagemaker.workflow.lambda_step import LambdaStep
from sagemaker.lambda_helper import Lambda

step_lambda = LambdaStep(
 name="ProcessingLambda",

Amazon SageMaker Model Building Pipelines 4734

https://sagemaker.readthedocs.io/en/stable/api/utility/lambda_helper.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.lambda_step.LambdaStep

Amazon SageMaker Developer Guide

 lambda_func=Lambda(
 function_arn="arn:aws:lambda:us-west-2:012345678910:function:split-dataset-
lambda"
),
 inputs={
 s3_bucket = s3_bucket,
 data_file = data_file
 },
 outputs=[
 "train_file", "test_file"
]
)

The following example shows how to create a Lambda step definition that creates and invokes a
Lambda function using a Lambda function script.

from sagemaker.workflow.lambda_step import LambdaStep
from sagemaker.lambda_helper import Lambda

step_lambda = LambdaStep(
 name="ProcessingLambda",
 lambda_func=Lambda(
 function_name="split-dataset-lambda",
 execution_role_arn=execution_role_arn,
 script="lambda_script.py",
 handler="lambda_script.lambda_handler",
 ...
),
 inputs={
 s3_bucket = s3_bucket,
 data_file = data_file
 },
 outputs=[
 "train_file", "test_file"
]
)

Inputs and outputs

If your Lambda function has inputs or outputs, these must also be defined in your Lambda step.

Amazon SageMaker Model Building Pipelines 4735

Amazon SageMaker Developer Guide

Note

Input and output parameters should not be nested. For example, if you use a nested
dictionary as your output parameter, then the dictionary is treated as a single string (ex.
{"output1": "{\"nested_output1\":\"my-output\"}"}). If you provide a nested
value and try to refer to it later, a non-retryable client error is thrown.

When defining the Lambda step, inputs must be a dictionary of key-value pairs. Each value of
the inputs dictionary must be a primitive type (string, integer, or float). Nested objects are not
supported. If left undefined, the inputs value defaults to None.

The outputs value must be a list of keys. These keys refer to a dictionary defined in the output of
the Lambda function. Like inputs, these keys must be primitive types, and nested objects are not
supported.

Timeout and stopping behavior

The Lambda class has a timeout argument that specifies the maximum time that the Lambda
function can run. The default value is 120 seconds with a maximum value of 10 minutes. If the
Lambda function is running when the timeout is met, the Lambda step fails; however, the Lambda
function continues to run.

A pipeline process can't be stopped while a Lambda step is running because the Lambda function
invoked by the Lambda step can't be stopped. If you attempt to stop the process while the Lambda
function is running, the pipeline waits for the Lambda function to finish or until the timeout is hit,
whichever occurs first, and then stops. If the Lambda function finishes, the pipeline process status
is Stopped. If the timeout is hit the pipeline process status is Failed.

ClarifyCheck Step

You can use the ClarifyCheck step to conduct baseline drift checks against previous baselines
for bias analysis and model explainability. You can then generate and register your baselines
with the model.register() method and pass the output of that method to Model Step
using step_args. These baselines for drift check can be used by Amazon SageMaker Model
Monitor for your model endpoints so that you don’t need to do a baseline suggestion separately.
The ClarifyCheck step can also pull baselines for drift check from the model registry. The
ClarifyCheck step leverages the Amazon SageMaker Clarify prebuilt container that provides a

Amazon SageMaker Model Building Pipelines 4736

https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-quality-clarify-baseline-lifecycle.html#pipelines-quality-clarify-baseline-calculations
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#model-step
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html

Amazon SageMaker Developer Guide

range of model monitoring capabilities, including constraint suggestion and constraint validation
against a given baseline. For more information, see Getting Started with a SageMaker Clarify
Container.

Configuring the ClarifyCheck step

You can configure the ClarifyCheck step to conduct only one of the following check types each
time it’s used in a pipeline.

• Data bias check

• Model bias check

• Model explainability check

You do this by setting the clarify_check_config parameter with one of the following check
type values:

• DataBiasCheckConfig

• ModelBiasCheckConfig

• ModelExplainabilityCheckConfig

The ClarifyCheck step launches a processing job that runs the SageMaker Clarify prebuilt
container and requires dedicated configurations for the check and the processing job.
ClarifyCheckConfig and CheckJobConfig are helper functions for these configurations that
are aligned with how the SageMaker Clarify processing job computes for checking model bias, data
bias, or model explainability. For more information, see Run SageMaker Clarify Processing Jobs for
Bias Analysis and Explainability.

Controlling step behaviors for drift check

The ClarifyCheck step requires the following two boolean flags to control its behavior:

• skip_check: This parameter indicates if the drift check against the previous baseline is skipped
or not. If it is set to False, the previous baseline of the configured check type must be available.

• register_new_baseline: This parameter indicates if a newly calculated baseline can be
accessed though step property BaselineUsedForDriftCheckConstraints. If it is set to
False, the previous baseline of the configured check type also must be available. This can be
accessed through the BaselineUsedForDriftCheckConstraints property.

Amazon SageMaker Model Building Pipelines 4737

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-configure-processing-jobs.html#clarify-processing-job-configure-container
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-configure-processing-jobs.html#clarify-processing-job-configure-container
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-configure-processing-jobs.html

Amazon SageMaker Developer Guide

For more information, see Baseline calculation, drift detection and lifecycle with ClarifyCheck and
QualityCheck steps in Amazon SageMaker Model Building Pipelines.

Working with baselines

You can optionally specify the model_package_group_name to locate the existing
baseline and the ClarifyCheck step pulls the DriftCheckBaselines on the latest
approved model package in the model package group. Or, you can provide a previous
baseline through the supplied_baseline_constraints parameter. If you specify both
the model_package_group_name and the supplied_baseline_constraints, the
ClarifyCheck step uses the baseline specified by the supplied_baseline_constraints
parameter.

For more information on using the ClarifyCheck step requirements, see the
sagemaker.workflow.steps.ClarifyCheckStep in the Amazon SageMaker SageMaker SDK for Python.
For an Amazon SageMaker Studio Classic notebook that shows how to use ClarifyCheck step in
SageMaker Pipelines, see sagemaker-pipeline-model-monitor-clarify-steps.ipynb.

Example Create a ClarifyCheck step for data bias check

from sagemaker.workflow.check_job_config import CheckJobConfig
from sagemaker.workflow.clarify_check_step import DataBiasCheckConfig, ClarifyCheckStep
from sagemaker.workflow.execution_variables import ExecutionVariables

check_job_config = CheckJobConfig(
 role=role,
 instance_count=1,
 instance_type="ml.c5.xlarge",
 volume_size_in_gb=120,
 sagemaker_session=sagemaker_session,
)

data_bias_data_config = DataConfig(

 s3_data_input_path=step_process.properties.ProcessingOutputConfig.Outputs["train"].S3Output.S3Uri,
 s3_output_path=Join(on='/', values=['s3:/', your_bucket, base_job_prefix,
 ExecutionVariables.PIPELINE_EXECUTION_ID, 'databiascheckstep']),
 label=0,
 dataset_type="text/csv",
 s3_analysis_config_output_path=data_bias_analysis_cfg_output_path,
)

Amazon SageMaker Model Building Pipelines 4738

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.ClarifyCheckStep
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.ClarifyCheckStep
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-pipelines/tabular/model-monitor-clarify-pipelines/sagemaker-pipeline-model-monitor-clarify-steps.ipynb

Amazon SageMaker Developer Guide

data_bias_config = BiasConfig(
 label_values_or_threshold=[15.0], facet_name=[8], facet_values_or_threshold=[[0.5]]

)

data_bias_check_config = DataBiasCheckConfig(
 data_config=data_bias_data_config,
 data_bias_config=data_bias_config,
)h

data_bias_check_step = ClarifyCheckStep(
 name="DataBiasCheckStep",
 clarify_check_config=data_bias_check_config,
 check_job_config=check_job_config,
 skip_check=False,
 register_new_baseline=False
 supplied_baseline_constraints="s3://sagemaker-us-west-2-111122223333/baseline/
analysis.json",
 model_package_group_name="MyModelPackageGroup"
)

QualityCheck Step

You can use the QualityCheck step to conduct baseline suggestions and drift checks against
a previous baseline for data quality or model quality in a pipeline. You can then generate and
register your baselines with the model.register() method and pass the output of that
method to Model Step using step_args. Model Monitor can use these baselines for drift
check for your model endpoints so that you don’t need to do a baseline suggestion separately.
The QualityCheck step can also pull baselines for drift check from the model registry. The
QualityCheck step leverages the Amazon SageMaker Model Monitor prebuilt container, which
has a range of model monitoring capabilities including constraint suggestion, statistics generation,
and constraint validation against a baseline. For more information, see Amazon SageMaker Model
Monitor prebuilt container.

Configuring the QualityCheck step

You can configure the QualityCheck step to conduct only one of the following check types each
time it’s used in a pipeline.

• Data quality check

• Model quality check

Amazon SageMaker Model Building Pipelines 4739

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-quality-clarify-baseline-lifecycle.html#pipelines-quality-clarify-baseline-calculations
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#model-step

Amazon SageMaker Developer Guide

You do this by setting the quality_check_config parameter with one of the following check
type values:

• DataQualityCheckConfig

• ModelQualityCheckConfig

The QualityCheck step launches a processing job that runs the Model Monitor prebuilt
container and requires dedicated configurations for the check and the processing job. The
QualityCheckConfig and CheckJobConfig are helper functions for these configurations
that are aligned with how Model Monitor creates a baseline for the model quality or data quality
monitoring. For more information on the Model Monitor baseline suggestions, see Create a
Baseline and Create a Model Quality Baseline.

Controlling step behaviors for drift check

The QualityCheck step requires the following two Boolean flags to control its behavior:

• skip_check: This parameter indicates if the drift check against the previous baseline is skipped
or not. If it is set to False, the previous baseline of the configured check type must be available.

• register_new_baseline: This parameter indicates if a newly calculated baseline can
be accessed through step properties BaselineUsedForDriftCheckConstraints
and BaselineUsedForDriftCheckStatistics. If it is set to False, the
previous baseline of the configured check type must also be available. These can
be accessed through the BaselineUsedForDriftCheckConstraints and
BaselineUsedForDriftCheckStatistics properties.

For more information, see Baseline calculation, drift detection and lifecycle with ClarifyCheck and
QualityCheck steps in Amazon SageMaker Model Building Pipelines.

Working with baselines

You can specify a previous baseline directly through the supplied_baseline_statistics
and supplied_baseline_constraints parameters, or you can simply specify the
model_package_group_name and the QualityCheck step pulls the DriftCheckBaselines
on the latest approved model package in the model package group. When you specify
the model_package_group_name, the supplied_baseline_constraints, and
supplied_baseline_statistics, the QualityCheck step uses the baseline specified by

Amazon SageMaker Model Building Pipelines 4740

Amazon SageMaker Developer Guide

supplied_baseline_constraints and supplied_baseline_statistics on the check type
of the QualityCheck step you are running.

For more information on using the QualityCheck step requirements, see the
sagemaker.workflow.steps.QualityCheckStep in the Amazon SageMaker SageMaker SDK for Python.
For an Amazon SageMaker Studio Classic notebook that shows how to use QualityCheck step in
SageMaker Pipelines, see sagemaker-pipeline-model-monitor-clarify-steps.ipynb.

Example Create a QualityCheck step for data quality check

from sagemaker.workflow.check_job_config import CheckJobConfig
from sagemaker.workflow.quality_check_step import DataQualityCheckConfig,
 QualityCheckStep
from sagemaker.workflow.execution_variables import ExecutionVariables

check_job_config = CheckJobConfig(
 role=role,
 instance_count=1,
 instance_type="ml.c5.xlarge",
 volume_size_in_gb=120,
 sagemaker_session=sagemaker_session,
)

data_quality_check_config = DataQualityCheckConfig(

 baseline_dataset=step_process.properties.ProcessingOutputConfig.Outputs["train"].S3Output.S3Uri,
 dataset_format=DatasetFormat.csv(header=False, output_columns_position="START"),
 output_s3_uri=Join(on='/', values=['s3:/', your_bucket, base_job_prefix,
 ExecutionVariables.PIPELINE_EXECUTION_ID, 'dataqualitycheckstep'])
)

data_quality_check_step = QualityCheckStep(
 name="DataQualityCheckStep",
 skip_check=False,
 register_new_baseline=False,
 quality_check_config=data_quality_check_config,
 check_job_config=check_job_config,
 supplied_baseline_statistics="s3://sagemaker-us-west-2-555555555555/baseline/
statistics.json",
 supplied_baseline_constraints="s3://sagemaker-us-west-2-555555555555/baseline/
constraints.json",
 model_package_group_name="MyModelPackageGroup"

Amazon SageMaker Model Building Pipelines 4741

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.QualityCheckStep
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.QualityCheckStep
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-pipelines/tabular/model-monitor-clarify-pipelines/sagemaker-pipeline-model-monitor-clarify-steps.ipynb

Amazon SageMaker Developer Guide

)

EMR Step

You can use the Amazon SageMaker Model Building Pipelines EMR step to process Amazon EMR
steps on a running Amazon EMR cluster or have the pipeline create and manage an Amazon EMR
cluster for you. For more information about Amazon EMR, see Getting started with Amazon EMR.

The EMR step requires that EMRStepConfig include the location of the JAR file to be used by the
Amazon EMR cluster and any arguments to be passed. You also provide the Amazon EMR cluster
ID if you want to run the step on a running EMR cluster, or the cluster configuration if you want
the EMR step to run on a cluster that it creates, manages, and terminates for you. The following
sections include examples and links to sample notebooks demonstrating both methods.

Note

• EMR steps require that the role passed to your pipeline has additional permissions. You
should attach the AWS managed policy: AmazonSageMakerPipelinesIntegrations
to your pipeline role, or ensure that the role includes the permissions in that policy.

• EMR step is not supported on EMR serverless, nor on Amazon EMR on EKS.

• If you process an EMR step on a running cluster, you can only use a cluster that is in one
of the following states: STARTING, BOOTSTRAPPING, RUNNING, or WAITING.

• If you process EMR steps on a running cluster, you can have at most 256 EMR steps in
a PENDING state on an EMR cluster. EMR steps submitted beyond this limit result in
pipeline execution failure. You may consider using Retry Policy for Pipeline Steps.

• You can specify either cluster ID or cluster configuration, but not both.

• The EMR step relies on Amazon EventBridge to monitor changes in the EMR step or
cluster state. If you process your Amazon EMR job on a running cluster, the EMR step uses
the SageMakerPipelineExecutionEMRStepStatusUpdateRule rule to monitor
EMR step state. If you process your job on a cluster that the EMR step creates for you,
the step uses the SageMakerPipelineExecutionEMRClusterStatusRule rule to
monitor changes in cluster state. If you see either of these EventBridge rules in your AWS
account, do not delete them or else your EMR step may not complete.

Launch a new job on a running Amazon EMR cluster

Amazon SageMaker Model Building Pipelines 4742

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-pipelines.html#security-iam-awsmanpol-AmazonSageMakerPipelinesIntegrations

Amazon SageMaker Developer Guide

If you want to launch a new job on a running Amazon EMR cluster, you pass the cluster ID as
a string to the cluster_id argument of EMRStep. The following example demonstrates this
procedure.

from sagemaker.workflow.emr_step import EMRStep, EMRStepConfig

emr_config = EMRStepConfig(
 jar="jar-location", # required, path to jar file used
 args=["--verbose", "--force"], # optional list of arguments to pass to the jar
 main_class="com.my.Main1", # optional main class, this can be omitted if jar above
 has a manifest
 properties=[# optional list of Java properties that are set when the step runs
 {
 "key": "mapred.tasktracker.map.tasks.maximum",
 "value": "2"
 },
 {
 "key": "mapreduce.map.sort.spill.percent",
 "value": "0.90"
 },
 {
 "key": "mapreduce.tasktracker.reduce.tasks.maximum",
 "value": "5"
 }
]
)

step_emr = EMRStep (
 name="EMRSampleStep", # required
 cluster_id="j-1ABCDEFG2HIJK", # include cluster_id to use a running cluster
 step_config=emr_config, # required
 display_name="My EMR Step",
 description="Pipeline step to execute EMR job"
)

For a sample notebook that guides you through a complete example, see SageMaker Pipelines
EMR Step With Running EMR Cluster.

Launch a new job on a new Amazon EMR cluster

Amazon SageMaker Model Building Pipelines 4743

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-pipelines/tabular/emr-step/sagemaker-pipelines-emr-step-with-running-emr-cluster.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-pipelines/tabular/emr-step/sagemaker-pipelines-emr-step-with-running-emr-cluster.ipynb

Amazon SageMaker Developer Guide

If you want to launch a new job on a new cluster that EMRStep creates for you, provide your
cluster configuration as a dictionary with the same structure as a RunJobFlow request. However, do
not include the following fields in your cluster configuration:

• [Name]

• [Steps]

• [AutoTerminationPolicy]

• [Instances][KeepJobFlowAliveWhenNoSteps]

• [Instances][TerminationProtected]

All other RunJobFlow arguments are available for use in your cluster configuration. For details
about the request syntax, see RunJobFlow.

The following example passes a cluster configuration to an EMR step definition, which prompts
the step to launch a new job on a new EMR cluster. The EMR cluster configuration in this example
includes specifications for primary and core EMR cluster nodes. For more information about
Amazon EMR node types, see Understand node types: primary, core, and task nodes.

from sagemaker.workflow.emr_step import EMRStep, EMRStepConfig

emr_step_config = EMRStepConfig(
 jar="jar-location", # required, path to jar file used
 args=["--verbose", "--force"], # optional list of arguments to pass to the jar
 main_class="com.my.Main1", # optional main class, this can be omitted if jar above
 has a manifest
 properties=[# optional list of Java properties that are set when the step runs
 {
 "key": "mapred.tasktracker.map.tasks.maximum",
 "value": "2"
 },
 {
 "key": "mapreduce.map.sort.spill.percent",
 "value": "0.90"
 },
 {
 "key": "mapreduce.tasktracker.reduce.tasks.maximum",
 "value": "5"
 }
]
)

Amazon SageMaker Model Building Pipelines 4744

https://docs.aws.amazon.com/emr/latest/APIReference/API_RunJobFlow.html
https://docs.aws.amazon.com/emr/latest/APIReference/API_RunJobFlow.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-master-core-task-nodes.html

Amazon SageMaker Developer Guide

include your cluster configuration as a dictionary
emr_cluster_config = {
 "Applications": [
 {
 "Name": "Spark",
 }
],
 "Instances":{
 "InstanceGroups":[
 {
 "InstanceRole": "MASTER",
 "InstanceCount": 1,
 "InstanceType": "m5.2xlarge"
 },
 {
 "InstanceRole": "CORE",
 "InstanceCount": 2,
 "InstanceType": "m5.2xlarge"
 }
]
 },
 "BootstrapActions":[],
 "ReleaseLabel": "emr-6.6.0",
 "JobFlowRole": "job-flow-role",
 "ServiceRole": "service-role"
}

emr_step = EMRStep(
 name="emr-step",
 cluster_id=None,
 display_name="emr_step",
 description="MyEMRStepDescription",
 step_config=emr_step_config,
 cluster_config=emr_cluster_config
)

For a sample notebook that guides you through a complete example, see SageMaker Pipelines
EMR Step With Cluster Lifecycle Management.

Amazon SageMaker Model Building Pipelines 4745

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-pipelines/tabular/emr-step/sagemaker-pipelines-emr-step-with-cluster-lifecycle-management.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-pipelines/tabular/emr-step/sagemaker-pipelines-emr-step-with-cluster-lifecycle-management.ipynb

Amazon SageMaker Developer Guide

Notebook Job Step

Use a NotebookJobStep to run your SageMaker Notebook Job non-interactively as a pipeline
step. For more information about SageMaker Notebook Jobs, see SageMaker Notebook Jobs.

A NotebookJobStep requires at minimum an input notebook, image URI and kernel name. For
more information about Notebook Job step requirements and other parameters you can set to
customize your step, see sagemaker.workflow.steps.NotebookJobStep.

The following example uses minimum arguments to define a NotebookJobStep.

from sagemaker.workflow.notebook_job_step import NotebookJobStep

notebook_job_step = NotebookJobStep(
 input_notebook=input_notebook,
 image_uri=image_uri,
 kernel_name=kernel_name
)

Your NotebookJobStep pipeline step is treated as a SageMaker notebook job, so you can track
the execution status in the Studio Classic UI notebook job dashboard if you include specific tags
with the tags argument. For more details about tags to include, see View your notebook jobs in
the Studio UI dashboard.

Also, if you schedule your notebook job using the SageMaker Python SDK, you can only specify
certain images to run your notebook job. For more information, see Image constraints for
SageMaker Python SDK notebook jobs.

Fail Step

You use a FailStep to stop an Amazon SageMaker Model Building Pipelines execution when
a desired condition or state is not achieved and to mark that pipeline's execution as failed. The
FailStep also allows you to enter a custom error message, indicating the cause of the pipeline's
execution failure.

Note

When a FailStep and other pipeline steps execute concurrently, the pipeline does not
terminate until all concurrent steps are completed.

Amazon SageMaker Model Building Pipelines 4746

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.notebook_job_step.NotebookJobStep

Amazon SageMaker Developer Guide

Limitations for using FailStep

• You cannot add a FailStep to the DependsOn list of other steps. For more information, see
Custom Dependency Between Steps.

• Other steps cannot reference the FailStep. It is always the last step in a pipeline's execution.

• You cannot retry a pipeline execution ending with a FailStep.

You can create the FailStep ErrorMessage in the form of a static text string. Alternatively,
you can also use Pipeline Parameters a Join operation, or other step properties to create a more
informative error message.

Example

The following example code snippet uses a FailStep with an ErrorMessage configured with
Pipeline Parameters and a Join operation.

from sagemaker.workflow.fail_step import FailStep
from sagemaker.workflow.functions import Join
from sagemaker.workflow.parameters import ParameterInteger

mse_threshold_param = ParameterInteger(name="MseThreshold", default_value=5)
step_fail = FailStep(
 name="AbaloneMSEFail",
 error_message=Join(
 on=" ", values=["Execution failed due to MSE >", mse_threshold_param]
),
)

Step Properties

The properties attribute is used to add data dependencies between steps in the pipeline. These
data dependencies are then used by SageMaker Pipelines to construct the DAG from the pipeline
definition. These properties can be referenced as placeholder values and are resolved at runtime.

The properties attribute of a SageMaker Pipelines step matches the object returned by a
Describe call for the corresponding SageMaker job type. For each job type, the Describe call
returns the following response object:

• ProcessingStep – DescribeProcessingJob

Amazon SageMaker Model Building Pipelines 4747

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-parameters.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html?highlight=Join#sagemaker.workflow.functions.Join
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#build-and-manage-properties
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html

Amazon SageMaker Developer Guide

• TrainingStep – DescribeTrainingJob

• TransformStep – DescribeTransformJob

To check which properties are referrable for each step type during data dependency creation, see
Data Dependency - Property Reference in the Amazon SageMaker Python SDK.

Step Parallelism

When a step does not depend on any other step, it is run immediately upon pipeline
execution. However, executing too many pipeline steps in parallel can quickly exhaust
available resources. Control the number of concurrent steps for a pipeline execution with
ParallelismConfiguration.

The following example uses ParallelismConfiguration to set the concurrent step limit to five.

pipeline.create(
 parallelism_config=ParallelismConfiguration(5),
)

Data Dependency Between Steps

You define the structure of your DAG by specifying the data relationships between steps. To create
data dependencies between steps, pass the properties of one step as the input to another step
in the pipeline. The step receiving the input isn't started until after the step providing the input
finishes running.

A data dependency uses JsonPath notation in the following format. This format traverses the JSON
property file, which means you can append as many <property> instances as needed to reach the
desired nested property in the file. For more information on JsonPath notation, see the JsonPath
repo.

<step_name>.properties.<property>.<property>

The following shows how to specify an Amazon S3 bucket using the ProcessingOutputConfig
property of a processing step.

step_process.properties.ProcessingOutputConfig.Outputs["train_data"].S3Output.S3Uri

Amazon SageMaker Model Building Pipelines 4748

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTransformJob.html
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#data-dependency-property-reference
https://sagemaker.readthedocs.io
https://github.com/json-path/JsonPath
https://github.com/json-path/JsonPath

Amazon SageMaker Developer Guide

To create the data dependency, pass the bucket to a training step as follows.

from sagemaker.workflow.pipeline_context import PipelineSession

sklearn_train = SKLearn(..., sagemaker_session=PipelineSession())

step_train = TrainingStep(
 name="CensusTrain",
 step_args=sklearn_train.fit(inputs=TrainingInput(
 s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
 "train_data"].S3Output.S3Uri
))
)

To check which properties are referrable for each step type during data dependency creation, see
Data Dependency - Property Reference in the Amazon SageMaker Python SDK.

Custom Dependency Between Steps

When you specify a data dependency, SageMaker Pipelines provides the data connection between
the steps. Alternatively, one step can access the data from a previous step without directly using
SageMaker Pipelines. In this case, you can create a custom dependency that tells SageMaker
Pipelines not to start a step until after another step has finished running. You create a custom
dependency by specifying a step's DependsOn attribute.

As an example, the following defines a step C that starts only after both step A and step B finish
running.

{
 'Steps': [
 {'Name':'A', ...},
 {'Name':'B', ...},
 {'Name':'C', 'DependsOn': ['A', 'B']}
]
}

SageMaker Pipelines throws a validation exception if the dependency would create a cyclic
dependency.

The following example creates a training step that starts after a processing step finishes running.

Amazon SageMaker Model Building Pipelines 4749

https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#data-dependency-property-reference
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

processing_step = ProcessingStep(...)
training_step = TrainingStep(...)

training_step.add_depends_on([processing_step])

The following example creates a training step that doesn't start until two different processing steps
finish running.

processing_step_1 = ProcessingStep(...)
processing_step_2 = ProcessingStep(...)

training_step = TrainingStep(...)

training_step.add_depends_on([processing_step_1, processing_step_2])

The following provides an alternate way to create the custom dependency.

training_step.add_depends_on([processing_step_1])
training_step.add_depends_on([processing_step_2])

The following example creates a training step that receives input from one processing step and
waits for a different processing step to finish running.

processing_step_1 = ProcessingStep(...)
processing_step_2 = ProcessingStep(...)

training_step = TrainingStep(
 ...,
 inputs=TrainingInput(
 s3_data=processing_step_1.properties.ProcessingOutputConfig.Outputs[
 "train_data"
].S3Output.S3Uri
)

training_step.add_depends_on([processing_step_2])

The following example shows how to retrieve a string list of the custom dependencies of a step.

custom_dependencies = training_step.depends_on

Amazon SageMaker Model Building Pipelines 4750

Amazon SageMaker Developer Guide

Use a Custom Image in a Step

You can use any of the available SageMaker Deep Learning Container images when you create a
step in your pipeline.

You can also use your own container with pipeline steps. Because you can’t create an image from
within Amazon SageMaker Studio Classic, you must create your image using another method
before using it with Amazon SageMaker Model Building Pipelines.

To use your own container when creating the steps for your pipeline, include the image URI in the
estimator definition. For more information on using your own container with SageMaker, see Using
Docker Containers with SageMaker.

Lift-and-shift Python code with the @step decorator

The @step decorator is a feature that converts your local machine learning (ML) code into one
or more pipeline steps. You can write your ML function as you would for any ML project. Once
tested locally or as a training job using the @remote decorator, you can convert the function to a
SageMaker pipeline step by adding a @step decorator. You can then pass the output of the @step-
decorated function call as a step to SageMaker Pipelines to create and run a pipeline. You can chain
a series of functions with the @step decorator to create a multi-step directed acyclic graph (DAG)
pipeline as well.

The setup to use the @step decorator is the same as the setup to use the @remote decorator. You
can refer to the remote function documentation for details about how to setup the environment
and use a configuration file to set defaults. For more information about the @step decorator, see
sagemaker.workflow.function_step.step.

To view to sample notebooks that demonstrate the use of @step decorator, see @step decorator
sample notebooks.

The following sections explain how you can annotate your local ML code with a @step decorator to
create a step, create and run a pipeline using the step, and customize the experience for your use
case.

Topics

• Create a pipeline with @step-decorated functions

• Run a pipeline

• Configure your pipeline

Amazon SageMaker Model Building Pipelines 4751

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-decorator.html#train-remote-decorator-env
https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-decorator-config.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.function_step.step
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-pipelines/step-decorator
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-pipelines/step-decorator

Amazon SageMaker Developer Guide

• Best Practices

• Limitations

Create a pipeline with @step-decorated functions

You can create a pipeline by converting Python functions into pipeline steps using the @step
decorator, creating dependencies between those functions to create a pipeline graph (or directed
acyclic graph (DAG)), and passing the leaf nodes of that graph as a list of steps to the pipeline. The
following sections explain this procedure in detail with examples.

Topics

• Convert a function to a step

• Create dependencies between the steps

• Use ConditionStep with @step-decorated steps

• Define a pipeline using the DelayedReturn output of steps

• Create a pipeline

Convert a function to a step

To create a step using the @step decorator, annotate the function with @step. The following
example shows a @step-decorated function that preprocesses the data.

from sagemaker.workflow.function_step import step

@step
def preprocess(raw_data):
 df = pandas.read_csv(raw_data)
 ...
 return procesed_dataframe

step_process_result = preprocess(raw_data)

When you invoke a @step-decorated function, SageMaker returns a DelayedReturn instance
instead of running the function. A DelayedReturn instance is a proxy for the actual return of
that function. The DelayedReturn instance can be passed to another function as an argument
or directly to a pipeline instance as a step. For information about the DelayedReturn class, see
sagemaker.workflow.function_step.DelayedReturn.

Amazon SageMaker Model Building Pipelines 4752

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.function_step.DelayedReturn

Amazon SageMaker Developer Guide

Create dependencies between the steps

When you create a dependency between two steps, you create a connection between the steps in
your pipeline graph. The following sections introduce multiple ways you can create a dependency
between your pipeline steps.

Data dependencies through input arguments

Passing in the DelayedReturn output of one function as an input to another function
automatically creates a data dependency in the pipeline DAG. In the following example, passing
in the DelayedReturn output of the preprocess function to the train function creates a
dependency between preprocess and train.

from sagemaker.workflow.function_step import step

@step
def preprocess(raw_data):
 df = pandas.read_csv(raw_data)
 ...
 return procesed_dataframe

@step
def train(training_data):
 ...
 return trained_model

step_process_result = preprocess(raw_data)
step_train_result = train(step_process_result)

The previous example defines a training function which is decorated with @step. When this
function is invoked, it receives the DelayedReturn output of the preprocessing pipeline step as
input. Invoking the training function returns another DelayedReturn instance. This instance holds
the information about all the previous steps defined in that function (i.e, the preprocess step in
this example) which form the pipeline DAG.

In the previous example, the preprocess function returns a single value. For more complex return
types like lists or tuples, refer to Limitations.

Define custom dependencies

In the previous example, the train function received the DelayedReturn output of preprocess
and created a dependency. If you want to define the dependency explicitly without passing

Amazon SageMaker Model Building Pipelines 4753

Amazon SageMaker Developer Guide

the previous step output, use the add_depends_on function with the step. You can use the
get_step() function to retrieve the underlying step from its DelayedReturn instance,
and then call add_depends_on_on with the dependency as input. To view the get_step()
function definition, see sagemaker.workflow.step_outputs.get_step. The following example shows
you how to create a dependency between preprocess and train using get_step() and
add_depends_on().

from sagemaker.workflow.step_outputs import get_step

@step
def preprocess(raw_data):
 df = pandas.read_csv(raw_data)
 ...
 processed_data = ..
 return s3.upload(processed_data)

@step
def train():
 training_data = s3.download(....)
 ...
 return trained_model

step_process_result = preprocess(raw_data)
step_train_result = train()

get_step(step_train_result).add_depends_on([step_process_result])

Pass data to and from a @step-decorated function to a traditional pipeline step

You can create a pipeline that includes a @step-decorated step and a traditional pipeline step
and passes data between them. For example, you can use ProcessingStep to process the data
and pass its result to the @step-decorated training function. In the following example, a @step-
decorated training step references the output of a processing step.

Define processing step

from sagemaker.sklearn.processing import SKLearnProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker.workflow.steps import ProcessingStep

sklearn_processor = SKLearnProcessor(
 framework_version='1.2-1',

Amazon SageMaker Model Building Pipelines 4754

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.step_outputs.get_step

Amazon SageMaker Developer Guide

 role='arn:aws:iam::123456789012:role/SagemakerExecutionRole',
 instance_type='ml.m5.large',
 instance_count='1',
)

inputs = [
 ProcessingInput(source=input_data, destination="/opt/ml/processing/input"),
]
outputs = [
 ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
 ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"),
 ProcessingOutput(output_name="test", source="/opt/ml/processing/test")
]

process_step = ProcessingStep(
 name="MyProcessStep",
 step_args=sklearn_processor.run(inputs=inputs,
 outputs=outputs,code='preprocessing.py'),
)

Define a @step-decorated train step which references the
output of a processing step

@step
def train(train_data_path, test_data_path):
 ...
 return trained_model

step_train_result = train(
 process_step.properties.ProcessingOutputConfig.Outputs["train"].S3Output.S3Uri,
 process_step.properties.ProcessingOutputConfig.Outputs["test"].S3Output.S3Uri,
)

Use ConditionStep with @step-decorated steps

SageMaker Pipelines supports a ConditionStep class which evaluates the results of preceding
steps to decide what action to take in the pipeline. You can use ConditionStep with a @step-
decorated step as well. To use the output of any @step-decorated step with ConditionStep,
enter the output of that step as an argument to ConditionStep. In the following example, the
condition step receives the output of the @step-decorated model evaluation step.

Define steps

Amazon SageMaker Model Building Pipelines 4755

Amazon SageMaker Developer Guide

@step(name="evaluate")
def evaluate_model():
 # code to evaluate the model
 return {
 "rmse":rmse_value
 }

@step(name="register")
def register_model():
 # code to register the model
 ...

Define ConditionStep

from sagemaker.workflow.condition_step import ConditionStep
from sagemaker.workflow.conditions import ConditionGreaterThanOrEqualTo
from sagemaker.workflow.fail_step import FailStep

conditionally_register = ConditionStep(
 name="conditional_register",
 conditions=[
 ConditionGreaterThanOrEqualTo(
 # Output of the evaluate step must be json serializable
 left=evaluate_model()["rmse"], #
 right=5,
)
],
 if_steps=[FailStep(name="Fail", error_message="Model performance is not good
 enough")],
 else_steps=[register_model()],
)

Define a pipeline using the DelayedReturn output of steps

You define a pipeline the same way whether or not you use a @step decorator. When you pass
a DelayedReturn instance to your pipeline, you don't need to pass a full list of steps to build
the pipeline. The SDK automatically infers the previous steps based on the dependencies you
define. All the previous steps of the Step objects you passed to the pipeline or DelayedReturn
objects are included in the pipeline graph. In the following example, the pipeline receives the
DelayedReturn object for the train function. SageMaker adds the preprocess step, as a
previous step of train, to the pipeline graph.

Amazon SageMaker Model Building Pipelines 4756

Amazon SageMaker Developer Guide

from sagemaker.workflow.pipeline import Pipeline

pipeline = Pipeline(
 name="<pipeline-name>",
 steps=[step_train_result],
 sagemaker_session=<sagemaker-session>,
)

If there are no data or custom dependencies between the steps and you run multiple steps in
parallel, the pipeline graph has more than one leaf node. Pass all of these leaf nodes in a list to the
steps argument in your pipeline definition, as shown in the following example:

@step
def process1():
 ...
 return data

@step
def process2():
 ...
 return data

step_process1_result = process1()
step_process2_result = process2()

pipeline = Pipeline(
 name="<pipeline-name>",
 steps=[step_process1_result, step_process2_result],
 sagemaker_session=sagemaker-session,
)

When the pipeline runs, both steps run in parallel.

You only pass the leaf nodes of the graph to the pipeline because the leaf nodes contain
information about all the previous steps defined through data or custom dependencies. When it
compiles the pipeline, SageMaker also infers of all of the subsequent steps that form the pipeline
graph and adds each of them as a separate step to the pipeline.

Create a pipeline

Create a pipeline by calling pipeline.create(), as shown in the following snippet. For details
about create(), see sagemaker.workflow.pipeline.Pipeline.create.

Amazon SageMaker Model Building Pipelines 4757

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.pipeline.Pipeline.create

Amazon SageMaker Developer Guide

role = "pipeline-role"
pipeline.create(role)

When you call pipeline.create(), SageMaker compiles all of the steps defined as part of the
pipeline instance. SageMaker uploads the serialized function, arguments, and all the other step-
related artifacts to Amazon S3.

Data resides in the S3 bucket according to the following structure:

s3_root_uri/
 pipeline_name/
 sm_rf_user_ws/
 workspace.zip # archive of the current working directory (workdir)
 step_name/
 timestamp/
 arguments/ # serialized function arguments
 function/ # serialized function
 pre_train_dependencies/ # any dependencies and pre_execution scripts
 provided for the step
 execution_id/
 step_name/
 results # returned output from the serialized function including
 the model

s3_root_uri is defined in the SageMaker config file and applies to the entire pipeline. If
undefined, the default SageMaker bucket is used.

Note

Every time SageMaker compiles a pipeline, SageMaker saves the the steps' serialized
functions, arguments and dependencies in a folder timestamped with the current
time. This occurs every time you run pipeline.create(), pipeline.update(),
pipeline.upsert() or pipeline.definition().

Run a pipeline

Start a new pipeline run with the pipeline.start() function as you would for a
traditional SageMaker pipeline run. For information about the start() function, see
sagemaker.workflow.pipeline.Pipeline.start.

Amazon SageMaker Model Building Pipelines 4758

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.pipeline.Pipeline.start

Amazon SageMaker Developer Guide

Note

A step defined using the @step decorator runs as a training job. Therefore, be aware of the
following limits:

• Instance limits and training job limits in your accounts. Update your limits accordingly to
avoid any throttling or resource limit issues.

• The monetary costs associated with every run of a training step in the pipeline. For more
details, refer to Amazon SageMaker Pricing.

Retrieve results from a pipeline run locally

To view the result of any step of a pipeline run, use execution.result(), as shown in the following
snippet:

execution = pipeline.start()
execution.result(step_name="train")

Note

SageMaker Pipelines does not support execution.result() in local mode.

You can only retrieve results for one step at a time. If the step name was generated by SageMaker,
you can retrieve the step name by calling list_steps as follows:

execution.list_step()

Run a pipeline locally

You can run a pipeline with @step-decorated steps locally as you would for traditional pipeline
steps. For details about local mode pipeline runs, see Local Mode. To use local mode, provide a
LocalPipelineSession instead of a SageMakerSession to your pipeline definition, as shown
in the following example:

from sagemaker.workflow.function_step import step
from sagemaker.workflow.pipeline import Pipeline

Amazon SageMaker Model Building Pipelines 4759

https://aws.amazon.com/sagemaker/pricing/
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.pipeline._PipelineExecution.result

Amazon SageMaker Developer Guide

from sagemaker.workflow.pipeline_context import LocalPipelineSession

@step
def train():
 training_data = s3.download(....)
 ...
 return trained_model

step_train_result = train()

local_pipeline_session = LocalPipelineSession()

local_pipeline = Pipeline(
 name="<pipeline-name>",
 steps=[step_train_result],
 sagemaker_session=local_pipeline_session # needed for local mode
)

local_pipeline.create(role_arn="role_arn")

pipeline runs locally
execution = local_pipeline.start()

Configure your pipeline

You are advised to use the SageMaker config file to set the defaults for the pipeline. For
information about the SageMaker configuration file, see Configuring and using defaults with
the SageMaker Python SDK. Any configuration added to the config file applies to all steps in the
pipeline. If you want to override options for any of the steps, provide new values in the @step
decorator arguments.

The @step decorator's configuration in the config file is identical to the @remote decorator's
configuration. To set up the pipeline role ARN and pipeline tags in the config file, use the
Pipeline section shown in the following snippet:

SchemaVersion: '1.0'
SageMaker:
 Pipeline:
 RoleArn: 'arn:aws:iam::555555555555:role/IMRole'
 Tags:
 - Key: 'tag_key'
 Value: 'tag_value'

Amazon SageMaker Model Building Pipelines 4760

https://sagemaker.readthedocs.io/en/stable/overview.html#configuring-and-using-defaults-with-the-sagemaker-python-sdk
https://sagemaker.readthedocs.io/en/stable/overview.html#configuring-and-using-defaults-with-the-sagemaker-python-sdk

Amazon SageMaker Developer Guide

For most of the defaults you can set in the configuration file you can also override by passing new
values to the @step decorator. For example, you can override the instance type set in the config
file for your preprocessing step, as shown in the following example:

@step(instance_type="ml.m5.large")
def preprocess(raw_data):
 df = pandas.read_csv(raw_data)
 ...
 return procesed_dataframe

A few arguments are not part of the @step decorator parameters list—these can be configured for
the entire pipeline only through the SageMaker configuration file. They are listed as follows:

• sagemaker_session (sagemaker.session.Session): The underlying SageMaker session
to which SageMaker delegates service calls. If unspecified, a session is created using a default
configuration as follows:

SageMaker:
 PythonSDK:
 Modules:
 Session:
 DefaultS3Bucket: 'default_s3_bucket'
 DefaultS3ObjectKeyPrefix: 'key_prefix'

• custom_file_filter (CustomFileFilter): A CustomFileFilter object that specifies
the local directories and files to include in the pipeline step. If unspecified, this value defaults
to None. For custom_file_filter to take effect, you must set IncludeLocalWorkdir to
True. The following example shows a configuration that ignores all notebook files, and files and
directories named data.

SchemaVersion: '1.0'
SageMaker:
 PythonSDK:
 Modules:
 RemoteFunction:
 IncludeLocalWorkDir: true
 CustomFileFilter:
 IgnoreNamePatterns: # files or directories to ignore
 - "*.ipynb" # all notebook files
 - "data" # folder or file named "data"

Amazon SageMaker Model Building Pipelines 4761

Amazon SageMaker Developer Guide

For more details about how to use IncludeLocalWorkdir with CustomFileFilter, see
Using modular code with the @remote decorator.

• s3_root_uri (str): The root Amazon S3 folder to which SageMaker uploads the code
archives and data. If unspecified, the default SageMaker bucket is used.

• s3_kms_key (str): The key used to encrypt the input and output data. You can only configure
this argument in the SageMaker config file and the argument applies to all steps defined in the
pipeline. If unspecified, the value defaults to None. See the following snippet for an example S3
KMS key configuration:

SchemaVersion: '1.0'
SageMaker:
 PythonSDK:
 Modules:
 RemoteFunction:
 S3KmsKeyId: 's3kmskeyid'
 S3RootUri: 's3://my-bucket/my-project

Best Practices

The following sections suggest best practices to follow when you use the @step decorator for your
pipeline steps.

Use warm pools

For faster pipeline step runs, use the warm pooling functionality provided for training jobs. You
can turn on the warm pool functionality by providing the keep_alive_period_in_seconds
argument to the @step decorator as demonstrated in the following snippet:

@step(
 keep_alive_period_in_seconds=900
)

For more information about warm pools, see Train Using SageMaker Managed Warm Pools.

Structure your directory

You are advised to use code modules while using the @step decorator. Put the pipeline.py
module, in which you invoke the step functions and define the pipeline, at the root of the
workspace. The recommended structure is shown as follows:

Amazon SageMaker Model Building Pipelines 4762

Amazon SageMaker Developer Guide

.
config.yaml # the configuration file that define the infra settings
requirements.txt # dependencies
pipeline.py # invoke @step-decorated functions and define the pipeline here
steps/
| ### processing.py
| ### train.py
data/
test/

Limitations

Be aware of the following limitations when you use the @step decorator for your pipeline steps.

Function argument limitations

When you pass an input argument to the @step-decorated function, the following limitations
apply:

• You can pass the DelayedReturn, Properties (of steps of other types), Parameter, and
ExecutionVariable objects to @step-decorated functions as arguments. But @step-
decorated functions do not support JsonGet and Join objects as arguments.

• You cannot directly access a pipeline variable from a @step function. The following example
produces an error:

param = ParameterInteger(name="<parameter-name>", default_value=10)

@step
def func():
 print(param)

func() # this raises a SerializationError

• You cannot nest a pipeline variable in another object and pass it to a @step function. The
following example produces an error:

param = ParameterInteger(name="<parameter-name>", default_value=10)

@step
def func(arg):
 print(arg)

Amazon SageMaker Model Building Pipelines 4763

Amazon SageMaker Developer Guide

func(arg=(param,)) # this raises a SerializationError because param is nested in a
 tuple

• Since inputs and outputs of a function are serialized, there are restrictions on the type of
data that can be passed as input or output from a function. See the Data serialization and
deserialization section of Invoking a function for more details. The same restrictions apply to
@step-decorated functions.

• Any object that has a boto client cannot be serialized, hence you cannot pass such objects as
input to or output from a @step-decorated function. For example, SageMaker Python SDK client
classes such as Estimator, Predictor, and Processor can't be serialized.

Function imports

You should import the libraries required by the step inside rather than outside the
function. If you import them at global scope, you risk an import collision while serializing
the function. For example, sklearn.pipeline.Pipeline could be overridden by
sagemaker.workflow.pipeline.Pipeline.

Referencing child members of function return value

If you reference child members of a @step-decorated function's return value, the following
limitations apply:

• You can reference the child members with [] if the DelayedReturn object represents a tuple,
list or dict, as shown in the following example:

delayed_return[0]
delayed_return["a_key"]
delayed_return[1]["a_key"]

• You cannot unpack a tuple or list output because the exact length of the underlying tuple or list
can't be known when you invoke the function. The following example produces an error:

a, b, c = func() # this raises ValueError

• You cannot iterate over a DelayedReturn object. The following example raises an error:

for item in func(): # this raises a NotImplementedError

Amazon SageMaker Model Building Pipelines 4764

Amazon SageMaker Developer Guide

• You cannot reference arbitrary child members with '.'. The following example produces an error:

delayed_return.a_child # raises AttributeError

Existing pipeline features that are not supported

You cannot use the @step decorator with the following pipeline features:

• Pipeline step caching

• Property files

Pass Data Between Steps

When you need to retrieve information from the output of a pipeline step, you can use JsonGet.
JsonGet helps you extract information from Amazon S3 or property files. The following sections
explain methods you can use to extract step outputs with JsonGet.

Pass data between steps with Amazon S3

You can use JsonGet in a ConditionStep to fetch the JSON output directly from Amazon
S3. The Amazon S3 URI can be a Std:Join function containing primitive strings, pipeline run
variables, or pipeline parameters. The following example shows how you can use JsonGet in a
ConditionStep:

Example json file in s3 bucket generated by a processing_step
{
 "Output": [5, 10]
}

cond_lte = ConditionLessThanOrEqualTo(
 left=JsonGet(
 step_name="<step-name>",
 s3_uri="<s3-path-to-json>",
 json_path="Output[1]"
),
 right=6.0
)

Amazon SageMaker Model Building Pipelines 4765

https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-caching.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-propertyfile.html#build-and-manage-propertyfile-property

Amazon SageMaker Developer Guide

If you are using JsonGet with an Amazon S3 path in the condition step, you must explicitly add
a dependency between the condition step and the step generating the JSON output. In following
example, the condition step is created with a dependency on the processing step:

cond_step = ConditionStep(
 name="<step-name>",
 conditions=[cond_lte],
 if_steps=[fail_step],
 else_steps=[register_model_step],
 depends_on=[processing_step],
)

Pass data between steps with property files

Use property files to store information from the output of a processing step. This is particularly
useful when analyzing the results of a processing step to decide how a conditional step should
be executed. The JsonGet function processes a property file and enables you to use JsonPath
notation to query the property JSON file. For more information on JsonPath notation, see the
JsonPath repo.

To store a property file for later use, you must first create a PropertyFile instance with the
following format. The path parameter is the name of the JSON file to which the property file is
saved. Any output_name must match the output_name of the ProcessingOutput that you
define in your processing step. This enables the property file to capture the ProcessingOutput in
the step.

from sagemaker.workflow.properties import PropertyFile

<property_file_instance> = PropertyFile(
 name="<property_file_name>",
 output_name="<processingoutput_output_name>",
 path="<path_to_json_file>"
)

When you create your ProcessingStep instance, add the property_files parameter to list all
of the parameter files that the Amazon SageMaker Model Building Pipelines service must index.
This saves the property file for later use.

property_files=[<property_file_instance>]

Amazon SageMaker Model Building Pipelines 4766

https://github.com/json-path/JsonPath

Amazon SageMaker Developer Guide

To use your property file in a condition step, add the property_file to the condition that you
pass to your condition step as shown in the following example to query the JSON file for your
desired property using the json_path parameter.

cond_lte = ConditionLessThanOrEqualTo(
 left=JsonGet(
 step_name=step_eval.name,
 property_file=<property_file_instance>,
 json_path="mse"
),
 right=6.0
)

For more in-depth examples, see Property File in the Amazon SageMaker Python SDK.

Caching Pipeline Steps

When you use step signature caching, SageMaker Pipelines tries to find a previous run of your
current pipeline step with the same values for certain attributes. If found, SageMaker Pipelines
propagates the outputs from the previous run rather than recomputing the step. The attributes
checked are specific to the step type, and are listed in Default cache key attributes by pipeline step
type.

You must opt in to step caching — it is off by default. When you turn on step caching, you must
also define a timeout. This timeout defines how old a previous run can be to remain a candidate for
reuse.

Step caching only considers successful runs — it never reuses failed runs. When multiple successful
runs exist within the timeout period, SageMaker Pipelines uses the result for the most recent
successful run. If no successful runs match in the timeout period, SageMaker Pipelines reruns the
step. If the executor finds a previous run that meets the criteria but is still in progress, both steps
continue running and update the cache if they're successful.

Step caching is only scoped for individual pipelines, so you can’t reuse a step from another pipeline
even if there is a step signature match.

Step caching is available for the following step types:

• Processing

• Training

Amazon SageMaker Model Building Pipelines 4767

https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#property-file
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• Tuning

• AutoML

• Transform

• ClarifyCheck

• QualityCheck

• EMR

Topics

• Turn on step caching

• Turn off step caching

• Default cache key attributes by pipeline step type

• Cached data access control

Turn on step caching

To turn on step caching, you must add a CacheConfig property to the step definition.

CacheConfig properties use the following format in the pipeline definition file:

{
 "CacheConfig": {
 "Enabled": false,
 "ExpireAfter": "<time>"
 }
}

The Enabled field indicates whether caching is turned on for the particular step. You can set
the field to true, which tells SageMaker to try to find a previous run of the step with the same
attributes. Or, you can set the field to false, which tells SageMaker to run the step every time
the pipeline runs. ExpireAfter is a string in ISO 8601 duration format that defines the timeout
period. The ExpireAfter duration can be a year, month, week, day, hour, or minute value. Each
value consists of a number followed by a letter indicating the unit of duration. For example:

• "30d" = 30 days

• "5y" = 5 years

Amazon SageMaker Model Building Pipelines 4768

https://en.wikipedia.org/wiki/ISO_8601#Durations

Amazon SageMaker Developer Guide

• "T16m" = 16 minutes

• "30dT5h" = 30 days and 5 hours.

The following discussion describes the procedure to turn on caching for new or pre-existing
pipelines using the Amazon SageMaker Python SDK.

Turn on caching for new pipelines

For new pipelines, initialize a CacheConfig instance with enable_caching=True and provide it
as an input to your pipeline step. The following example turns on caching with a 1-hour timeout
period for a training step:

from sagemaker.workflow.pipeline_context import PipelineSession
from sagemaker.workflow.steps import CacheConfig

cache_config = CacheConfig(enable_caching=True, expire_after="PT1H")
estimator = Estimator(..., sagemaker_session=PipelineSession())

step_train = TrainingStep(
 name="TrainAbaloneModel",
 step_args=estimator.fit(inputs=inputs),
 cache_config=cache_config
)

Turn on caching for pre-existing pipelines

To turn on caching for pre-existing, already-defined pipelines, turn on the enable_caching
property for the step, and set expire_after to a timeout value. Lastly, update the pipeline
with pipeline.upsert() or pipeline.update(). Once you run it again, the following code
example turns on caching with a 1-hour timeout period for a training step:

from sagemaker.workflow.pipeline_context import PipelineSession
from sagemaker.workflow.steps import CacheConfig
from sagemaker.workflow.pipeline import Pipeline

cache_config = CacheConfig(enable_caching=True, expire_after="PT1H")
estimator = Estimator(..., sagemaker_session=PipelineSession())

step_train = TrainingStep(
 name="TrainAbaloneModel",

Amazon SageMaker Model Building Pipelines 4769

Amazon SageMaker Developer Guide

 step_args=estimator.fit(inputs=inputs),
 cache_config=cache_config
)

define pipeline
pipeline = Pipeline(
 steps=[step_train]
)

additional step for existing pipelines
pipeline.update()
or, call upsert() to update the pipeline
pipeline.upsert()

Alternatively, update the cache config after you have already defined the (pre-existing) pipeline,
allowing one continuous code run. The following code sample demonstrates this method:

turn on caching with timeout period of one hour
pipeline.steps[0].cache_config.enable_caching = True
pipeline.steps[0].cache_config.expire_after = "PT1H"

additional step for existing pipelines
pipeline.update()
or, call upsert() to update the pipeline
pipeline.upsert()

For more detailed code examples and a discussion about how Python SDK parameters affect
caching, see Caching Configuration in the Amazon SageMaker Python SDK documentation.

Turn off step caching

A pipeline step does not rerun if you change any attributes that are not listed in Default cache
key attributes by pipeline step type for its step type. However, you may decide that you want the
pipeline step to rerun anyway. In this case, you need to turn off step caching.

To turn off step caching, set the Enabled attribute in the step definition’s CacheConfig property
in the step definition to false, as shown in the following code snippet:

{
 "CacheConfig": {
 "Enabled": false,
 "ExpireAfter": "<time>"

Amazon SageMaker Model Building Pipelines 4770

https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#caching-configuration

Amazon SageMaker Developer Guide

 }
}

Note that the ExpireAfter attribute is ignored when Enabled is false.

To turn off caching for a pipeline step using the Amazon SageMaker Python SDK, define the
pipeline of your pipeline step, turn off the enable_caching property, and update the pipeline.

Once you run it again, the following code example turns off caching for a training step:

from sagemaker.workflow.pipeline_context import PipelineSession
from sagemaker.workflow.steps import CacheConfig
from sagemaker.workflow.pipeline import Pipeline

cache_config = CacheConfig(enable_caching=False, expire_after="PT1H")
estimator = Estimator(..., sagemaker_session=PipelineSession())

step_train = TrainingStep(
 name="TrainAbaloneModel",
 step_args=estimator.fit(inputs=inputs),
 cache_config=cache_config
)

define pipeline
pipeline = Pipeline(
 steps=[step_train]
)

update the pipeline
pipeline.update()
or, call upsert() to update the pipeline
pipeline.upsert()

Alternatively, turn off the enable_caching property after you have already defined the pipeline,
allowing one continuous code run. The following code sample demonstrates this solution:

turn off caching for the training step
pipeline.steps[0].cache_config.enable_caching = False

update the pipeline
pipeline.update()
or, call upsert() to update the pipeline

Amazon SageMaker Model Building Pipelines 4771

Amazon SageMaker Developer Guide

pipeline.upsert()

For more detailed code examples and a discussion about how Python SDK parameters affect
caching, see Caching Configuration in the Amazon SageMaker Python SDK documentation.

Default cache key attributes by pipeline step type

When deciding whether to reuse a previous pipeline step or rerun the step, SageMaker Pipelines
checks to see if certain attributes have changed. If the set of attributes is different from all
previous runs within the timeout period, the step runs again. These attributes include input
artifacts, app or algorithm specification, and environment variables.

The following list shows each pipeline step type and the attributes that, if changed, initiate a
rerun of the step. For more information about which Python SDK parameters are used to create
the following attributes, see Caching Configuration in the Amazon SageMaker Python SDK
documentation.

Processing step

• AppSpecification

• Environment

• ProcessingInputs. This attribute contains information about the preprocessing script.

Training step

• AlgorithmSpecification

• CheckpointConfig

• DebugHookConfig

• DebugRuleConfigurations

• Environment

• HyperParameters

• InputDataConfig. This attribute contains information about the training script.

Tuning step

• HyperParameterTuningJobConfig

Amazon SageMaker Model Building Pipelines 4772

https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#caching-configuration
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#caching-configuration
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

• TrainingJobDefinition. This attribute is composed of multiple child attributes, not all of which
cause the step to rerun. The child attributes that could incur a rerun (if changed) are:

• AlgorithmSpecification

• HyperParameterRanges

• InputDataConfig

• StaticHyperParameters

• TuningObjective

• TrainingJobDefinitions

AutoML step

• AutoMLJobConfig. This attribute is composed of multiple child attributes, not all of which cause
the step to rerun. The child attributes that could incur a rerun (if changed) are:

• CompletionCriteria

• CandidateGenerationConfig

• DataSplitConfig

• Mode

• AutoMLJobObjective

• InputDataConfig

• ProblemType

Transform step

• DataProcessing

• Environment

• ModelName

• TransformInput

ClarifyCheck Step

• ClarifyCheckConfig
Amazon SageMaker Model Building Pipelines 4773

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

• CheckJobConfig

• SkipCheck

• RegisterNewBaseline

• ModelPackageGroupName

• SuppliedBaselineConstraints

QualityCheck Step

• QualityCheckConfig

• CheckJobConfig

• SkipCheck

• RegisterNewBaseline

• ModelPackageGroupName

• SuppliedBaselineConstraints

• SuppliedBaselineStatistics

EMR Step

• ClusterId

• StepConfig

Cached data access control

When a SageMaker pipeline runs, it caches the parameters and metadata associated with the
SageMaker jobs launched by the pipeline and saves them for reuse in subsequent runs. This
metadata is accessible through a variety of sources in addition to cached pipeline steps, and
includes the following types:

• Describe*Job requests

• CloudWatch Logs

• CloudWatch Events

Amazon SageMaker Model Building Pipelines 4774

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-emr

Amazon SageMaker Developer Guide

• CloudWatch Metrics

• SageMaker Search

Note that access to each data source in the list is controlled by its own set of IAM permissions.
Removing a particular role’s access to one data source does not affect the level of access to the
others. For example, an account admin might remove IAM permissions for Describe*Job requests
from a caller’s role. While the caller can no longer make Describe*Job requests, they can still
retrieve the metadata from a pipeline run with cached steps as long as they have permission to
run the pipeline. If an account admin wants to remove access to the metadata from a particular
SageMaker job completely, they need to remove permissions for each of the relevant services that
provide access to the data.

Retry Policy for Pipeline Steps

Retry policies help you automatically retry your SageMaker Pipelines steps after an error occurs.
Any pipeline step can encounter exceptions, and exceptions happen for various reasons. In some
cases, a retry can resolve these issues. With a retry policy for pipeline steps, you can choose
whether to retry a particular pipeline step or not.

The retry policy only supports the following pipeline steps:

• Processing Step

• Training Step

• Tuning Step

• AutoML Step

• CreateModel Step

• RegisterModel Step

• Transform Step

• Notebook Job Step

Note

Jobs running inside both the tuning and AutoML steps conduct retries internally and will
not retry the SageMaker.JOB_INTERNAL_ERROR exception type, even if a retry policy is
configured. You can program your own Retry Strategy using the SageMaker API.

Amazon SageMaker Model Building Pipelines 4775

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RetryStrategy.html

Amazon SageMaker Developer Guide

Supported exception types for the retry policy

The retry policy for pipeline steps supports the following exception types:

• Step.SERVICE_FAULT: These exceptions occur when an internal server error or transient error
happens when calling downstream services. SageMaker Pipelines retries on this type of error
automatically. With a retry policy, you can override the default retry operation for this exception
type.

• Step.THROTTLING: Throttling exceptions can occur while calling the downstream services.
SageMaker Pipelines retries on this type of error automatically. With a retry policy, you can
override the default retry operation for this exception type.

• SageMaker.JOB_INTERNAL_ERROR: These exceptions occur when the SageMaker job returns
InternalServerError. In this case, starting a new job may fix a transient issue.

• SageMaker.CAPACITY_ERROR: The SageMaker job may encounter Amazon EC2
InsufficientCapacityErrors, which leads to the SageMaker job’s failure. You can retry by
starting a new SageMaker job to avoid the issue.

• SageMaker.RESOURCE_LIMIT: You can exceeed the resource limit quota when running a
SageMaker job. You can wait and retry running the SageMaker job after a short period and see if
resources are released.

The JSON schema for the retry policy

The retry policy for Pipelines has the following JSON schema:

"RetryPolicy": {
 "ExceptionType": [String]
 "IntervalSeconds": Integer
 "BackoffRate": Double
 "MaxAttempts": Integer
 "ExpireAfterMin": Integer
}

• ExceptionType: This field requires the following exception types in a string array format.

• Step.SERVICE_FAULT

• Step.THROTTLING

• SageMaker.JOB_INTERNAL_ERROR

Amazon SageMaker Model Building Pipelines 4776

Amazon SageMaker Developer Guide

• SageMaker.CAPACITY_ERROR

• SageMaker.RESOURCE_LIMIT

• IntervalSeconds (optional): The number of seconds before the first retry attempt (1 by
default). IntervalSeconds has a maximum value of 43200 seconds (12 hours).

• BackoffRate (optional): The multiplier by which the retry interval increases during each
attempt (2.0 by default).

• MaxAttempts (optional): A positive integer that represents the maximum number of retry
attempts (5 by default). If the error recurs more times than MaxAttempts specifies, retries
cease and normal error handling resumes. A value of 0 specifies that errors are never retried.
MaxAttempts has a maximum value of 20.

• ExpireAfterMin (optional): A positive integer that represents the maximum timespan of retry.
If the error recurs after ExpireAfterMin minutes counting from the step gets executed, retries
cease and normal error handling resumes. A value of 0 specifies that errors are never retried.
ExpireAfterMin has a maximum value of 14,400 minutes (10 days).

Note

Only one of MaxAttempts or ExpireAfterMin can be given, but not both; if both are
not specified, MaxAttempts becomes the default. If both properties are identified within
one policy, then the retry policy generates a validation error.

Configuring a retry policy

The following is an example of a training step with a retry policy.

{
 "Steps": [
 {
 "Name": "MyTrainingStep",
 "Type": "Training",
 "RetryPolicies": [
 {
 "ExceptionType": [
 "SageMaker.JOB_INTERNAL_ERROR",
 "SageMaker.CAPACITY_ERROR"
],
 "IntervalSeconds": 1,

Amazon SageMaker Model Building Pipelines 4777

Amazon SageMaker Developer Guide

 "BackoffRate": 2,
 "MaxAttempts": 5
 }
]
 }
]
}

The following is an example of how to build a TrainingStep in SDK for Python (Boto3) with a
retry policy.

from sagemaker.workflow.retry import (
 StepRetryPolicy,
 StepExceptionTypeEnum,
 SageMakerJobExceptionTypeEnum,
 SageMakerJobStepRetryPolicy
)

step_train = TrainingStep(
 name="MyTrainingStep",
 xxx,
 retry_policies=[
 // override the default
 StepRetryPolicy(
 exception_types=[
 StepExceptionTypeEnum.SERVICE_FAULT,
 StepExceptionTypeEnum.THROTTLING
],
 expire_after_mins=5,
 interval_seconds=10,
 backoff_rate=2.0
),
 // retry when resource limit quota gets exceeded
 SageMakerJobStepRetryPolicy(
 exception_types=[SageMakerJobExceptionTypeEnum.RESOURCE_LIMIT],
 expire_after_mins=120,
 interval_seconds=60,
 backoff_rate=2.0
),
 // retry when job failed due to transient error or EC2 ICE.
 SageMakerJobStepRetryPolicy(
 failure_reason_types=[
 SageMakerJobExceptionTypeEnum.INTERNAL_ERROR,

Amazon SageMaker Model Building Pipelines 4778

Amazon SageMaker Developer Guide

 SageMakerJobExceptionTypeEnum.CAPACITY_ERROR,
],
 max_attempts=10,
 interval_seconds=30,
 backoff_rate=2.0
)
]
)

For more information on configuring retry behavior for certain step types, see Amazon SageMaker
Model Building Pipelines - Retry Policy in the Amazon SageMaker Python SDK documentation.

Selective execution of pipeline steps

As you use SageMaker Pipelines to create workflows and orchestrate your ML training steps, you
might need to undertake multiple experimentation phases. Instead of running the entire pipeline
from start to finish, you might only want to iterate over particular steps. SageMaker Pipelines
supports selective execution of pipeline steps to help you optimize your ML training. Selective
execution is useful in the following scenarios:

• You want to restart a specific step with updated instance type, hyperparameters, or other
variables while keeping the parameters from upstream steps.

• Your pipeline fails an intermediate step. Previous steps in the execution, such as data preparation
or feature extraction, are expensive to rerun. You might need to introduce a fix and rerun certain
steps manually to complete the pipeline.

Using selective execution, you can choose to run any subset of steps as long as they are connected
in the directed acyclic graph (DAG) of your pipeline. The following DAG shows an example pipeline
workflow:

Amazon SageMaker Model Building Pipelines 4779

https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#retry-policy
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#retry-policy

Amazon SageMaker Developer Guide

You can select steps AbaloneTrain and AbaloneEval in a selective execution, but you cannot
select just AbaloneTrain and AbaloneMSECond steps to run a selective execution because
these steps are not connected in the DAG. For non-selected steps in the workflow, the selective
execution reuses the outputs from a reference pipeline execution rather than recomputing the
steps. Also, non-selected steps that are downstream from the selected steps do not run in a
selective execution.

If you choose to run a subset of intermediate steps in your pipeline, your steps may have
dependencies on upstream steps. SageMaker needs a reference pipeline execution from which
to resource these dependencies. For example, if you choose to run the steps AbaloneTrain and
AbaloneEval, you need the output collaterals for the AbaloneProcess step from a reference
pipeline execution. You can either provide a reference execution ARN or direct SageMaker to use

Amazon SageMaker Model Building Pipelines 4780

Amazon SageMaker Developer Guide

the latest pipeline execution, which is the default behavior. If you have a reference execution, you
can also build the runtime parameters from your reference run and supply them to your selective
executive run with any overrides. For details, see Reuse runtime parameter values from a reference
execution.

In detail, you specify a configuration for your selective execution pipeline run using
SelectiveExecutionConfig. If you specify an ARN for a reference pipeline execution (with
the source_pipeline_execution_arn argument), SageMaker uses the upstream step
dependencies from the specified pipeline execution. If you do not specify an ARN and a latest
pipeline execution exists, SageMaker uses the latest pipeline execution as a reference by default.
If you do not specify an ARN and do not want SageMaker to use your latest pipeline execution, set
reference_latest_execution to False. The pipeline execution which SageMaker ultimately
uses as a reference, whether the latest or user-specified, must be in Success or Failed state.

The following table summarizes how SageMaker chooses a reference execution based on your
arguments to SelectiveExecutionConfig.

The source_pi
peline_ex
ecution_a
rn argument
value

The reference_latest_e
xecution argument value

The reference execution used

A pipeline ARN True or unspecified The specified pipeline ARN

A pipeline ARN False The specified pipeline ARN

null or
unspecified

True or unspecified The latest pipeline execution

null or
unspecified

False None—in this case, select steps
without upstream dependencies

For more information about selective execution configuration requirements, see the
sagemaker.workflow.selective_execution_config.SelectiveExecutionConfig documentation.

Amazon SageMaker Model Building Pipelines 4781

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#selective-execution-config
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#selective-execution-config

Amazon SageMaker Developer Guide

The following discussion includes examples for the cases in which you want to specify a pipeline
reference execution, use the latest pipeline execution as a reference, or run selective execution
without a reference pipeline execution.

Selective execution with a user-specified pipeline reference

The following example demonstrates the use of selective execution to rerun AbaloneTrain and
AbaloneEval in the same pipeline rerun using a reference pipeline execution.

from sagemaker.workflow.selective_execution_config import SelectiveExecutionConfig

selective_execution_config = SelectiveExecutionConfig(
 source_pipeline_execution_arn="arn:aws:sagemaker:us-west-2:123123123123:pipeline/
abalone/execution/123ab12cd3ef",
 selected_steps=["AbaloneTrain", "AbaloneEval"]
)

selective_execution = pipeline.start(
 execution_display_name=f"Sample-Selective-Execution-1",
 parameters={"MaxDepth":6, "NumRound":60},
 selective_execution_config=selective_execution_config,
)

Selective execution with the latest pipeline execution as a reference

The following example demonstrates the use of selective execution to rerun AbaloneTrain
and AbaloneEval in the same pipeline rerun using the latest pipeline execution as a reference.
Since SageMaker uses the latest pipeline execution by default, you can optionally set the
reference_latest_execution argument to True.

Prepare a new selective execution. Select only the first step in the pipeline without
 providing source_pipeline_execution_arn.
selective_execution_config = SelectiveExecutionConfig(
 selected_steps=["AbaloneTrain", "AbaloneEval"],
 # optional
 reference_latest_execution=True
)

Start pipeline execution without source_pipeline_execution_arn
pipeline.start(
 execution_display_name=f"Sample-Selective-Execution-1",

Amazon SageMaker Model Building Pipelines 4782

Amazon SageMaker Developer Guide

 parameters={"MaxDepth":6, "NumRound":60},
 selective_execution_config=selective_execution_config,
)

Selective execution without a reference pipeline

The following example demonstrates the use of selective execution to rerun AbaloneProcess and
AbaloneTrain in the same pipeline rerun without providing a reference ARN and disallowing the
use of the latest pipeline run as a reference. SageMaker allows this configuration since this subset
of steps doesn’t have upstream dependencies.

Prepare a new selective execution. Select only the first step in the pipeline without
 providing source_pipeline_execution_arn.
selective_execution_config = SelectiveExecutionConfig(
 selected_steps=["AbaloneProcess", "AbaloneTrain"],
 reference_latest_execution=False
)

Start pipeline execution without source_pipeline_execution_arn
pipeline.start(
 execution_display_name=f"Sample-Selective-Execution-1",
 parameters={"MaxDepth":6, "NumRound":60},
 selective_execution_config=selective_execution_config,
)

Reuse runtime parameter values from a reference execution

You can build the parameters from your reference pipeline execution using
build_parameters_from_execution, and supply the result to your selective execution
pipeline. You can use the original parameters from the reference execution, or apply any overrides
using the parameter_value_overrides argument.

The following example shows you how to build parameters from a reference execution and apply
an override for the MseThreshold parameter.

Prepare a new selective execution.
selective_execution_config = SelectiveExecutionConfig(
 source_pipeline_execution_arn="arn:aws:sagemaker:us-west-2:123123123123:pipeline/
abalone/execution/123ab12cd3ef",
 selected_steps=["AbaloneTrain", "AbaloneEval", "AbaloneMSECond"],
)

Amazon SageMaker Model Building Pipelines 4783

Amazon SageMaker Developer Guide

Define a new parameters list to test.
new_parameters_mse={
 "MseThreshold": 5,
}

Build parameters from reference execution and override with new parameters to test.
new_parameters = pipeline.build_parameters_from_execution(
 pipeline_execution_arn="arn:aws:sagemaker:us-west-2:123123123123:pipeline/abalone/
execution/123ab12cd3ef",
 parameter_value_overrides=new_parameters_mse
)

Start pipeline execution with new parameters.
execution = pipeline.start(
 selective_execution_config=selective_execution_config,
 parameters=new_parameters
)

Baseline calculation, drift detection and lifecycle with ClarifyCheck and QualityCheck steps in
Amazon SageMaker Model Building Pipelines

The following topic discusses how baselines and model versions evolve in the Amazon SageMaker
Model Building Pipelines when using the ClarifyCheck and QualityCheck steps.

For the ClarifyCheck step, a baseline is a single file that resides in the step properties with
the suffix constraints. For the QualityCheck step, a baseline is a combination of two files
that resides in the step properties: one with the suffix statistics and the other with the
suffix constraints. In the following topics we discuss these properties with a prefix that
describes how they are used, impacting baseline behavior and lifecycle in these two pipeline steps.
For example, the ClarifyCheck step always calculates and assigns the new baselines in the
CalculatedBaselineConstraints property and the QualityCheck step does the same in the
CalculatedBaselineConstraints and CalculatedBaselineStatistics properties.

Baseline calculation and registration for ClarifyCheck and QualityCheck steps

Both the ClarifyCheck and QualityCheck steps always calculate new baselines based on
step inputs through the underlying processing job run. These newly calculated baselines are
accessed through the properties with the prefix CalculatedBaseline. You can record these
properties as the ModelMetrics of your model package in the Model Step. This model package
can be registered with 5 different baselines. You can register it with one for each check type: data
bias, model bias, and model explainability from running the ClarifyCheck step and model

Amazon SageMaker Model Building Pipelines 4784

Amazon SageMaker Developer Guide

quality, and data quality from running the QualityCheck step. The register_new_baseline
parameter dictates the value set in the properties with the prefix BaselineUsedForDriftCheck
after a step runs.

The following table of potential use cases shows different behaviors resulting from the step
parameters you can set for the ClarifyCheck and QualityCheck steps:

Possible use
case that you
may consider
for selecting
this configura
tion

skip_check
/ register_
new_basel
ine

Does step do a
drift check?

Value of step
property
Calculate
dBaseline

Value of step
property
BaselineU
sedForDri
ftCheck

You are doing
regular retrainin
g with checks
enabled to get
a new model
version, but you
want to carry
over the previous
baselines as the
DriftChec
kBaseline
s in the model
registry for
your new model
version.

False/ False Drift check runs
against existing
baselines

New baselines
calculated by
running the step

Baseline from
the latest
approved
model in Model
Registry or
the baseline
supplied as step
parameter

You are doing
regular retrainin
g with checks
enabled to get
a new model
version, but you
want to refresh

False/ True Drift check runs
against existing
baselines

New baselines
calculated by
running the step

Newly calculate
d baseline by
running the
step (value
of property
Calculate
dBaseline)

Amazon SageMaker Model Building Pipelines 4785

Amazon SageMaker Developer Guide

Possible use
case that you
may consider
for selecting
this configura
tion

skip_check
/ register_
new_basel
ine

Does step do a
drift check?

Value of step
property
Calculate
dBaseline

Value of step
property
BaselineU
sedForDri
ftCheck

the DriftChec
kBaseline
s in the model
registry with the
newly calculate
d baselines for
your new model
version.

Amazon SageMaker Model Building Pipelines 4786

Amazon SageMaker Developer Guide

Possible use
case that you
may consider
for selecting
this configura
tion

skip_check
/ register_
new_basel
ine

Does step do a
drift check?

Value of step
property
Calculate
dBaseline

Value of step
property
BaselineU
sedForDri
ftCheck

You are initiatin
g the pipeline
to retrain a new
model version
because there
is a violation
detected
by Amazon
SageMaker
Model Monitor
on an endpoint
for a particula
r type of check,
and you want
to skip this type
of check against
the previous
baseline, but
carry over the
previous baseline
as DriftChec
kBaseline
s in the model
registry for your
new model
version.

True/ False No drift check New baselines
calculated by
running

Baseline from
the latest
approved model
in the model
registry or
the baseline
supplied as step
parameter

Amazon SageMaker Model Building Pipelines 4787

Amazon SageMaker Developer Guide

Possible use
case that you
may consider
for selecting
this configura
tion

skip_check
/ register_
new_basel
ine

Does step do a
drift check?

Value of step
property
Calculate
dBaseline

Value of step
property
BaselineU
sedForDri
ftCheck

This happens in
the following
cases:

• You are
starting the
initial run of
the pipeline,
building your
first model
version, and
generatin
g the initial
baselines.

• You are
initiating the
pipeline to
retrain a new
model version
because there
is a violation
detected
by Model
Monitor on
the endpoint
for a particula
r type of
check. If
you want
to skip the

True/ True No drift check New baselines
calculated by
running the step

Newly calculate
d baseline by
running the
step (value
of property
Calculate
dBaseline)

Amazon SageMaker Model Building Pipelines 4788

Amazon SageMaker Developer Guide

Possible use
case that you
may consider
for selecting
this configura
tion

skip_check
/ register_
new_basel
ine

Does step do a
drift check?

Value of step
property
Calculate
dBaseline

Value of step
property
BaselineU
sedForDri
ftCheck

check against
the previous
baseline and
refresh the
DriftChec
kBaseline
s with
the newly
calculated
baseline in the
model registry
directly.

Note

If you use scientific notation in your constraint, you need to convert to float. For a
preprocessing script example of how to do this, see Create a Model Quality Baseline.

When you register a model with Model Step, you can register the BaselineUsedForDriftCheck
property as DriftCheckBaselines. These baseline files can then be used by Model Monitor
for model and data quality checks. In addition, these baselines can also be used in the
ClarifyCheckStep and QualityCheck step to compare newly trained models against the existing
models that are registered in the model registry for future pipeline runs.

Drift Detection against Previous Baselines in SageMaker Pipelines

In the case of the QualityCheck step, when you initiate the pipeline for regular retraining to get
a new model version, you may not want to run the training step if the data quality and the data
bias has Schema for Violations (constraint_violations.json file) on the baselines of your previous

Amazon SageMaker Model Building Pipelines 4789

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-baseline.html

Amazon SageMaker Developer Guide

approved model version. You also may not want to register the newly trained model version if
the model quality, model bias, or model explainability violates the registered baseline of your
previous approved model version when running the ClarifyCheck step. In these cases, you can
enable the checks you want by setting the skip_check property of the corresponding check
step set to False, resulting in the ClarifyCheck and QualityCheck step failing if violation
is detected against previous baselines. The pipeline process then does not proceed so that the
model drifted from the baseline isn't registered. ClarifyCheck and QualityCheck steps are
able to get DriftCheckBaselines of the latest approved model version of a given model
package group against which to compare. Previous baselines can also be supplied directly through
supplied_baseline_constraints (in addition to supplied_baseline_statistics if it is a
QualityCheck step) and are always prioritized over any baselines pulled from the model package
group.

Baseline and model version lifecycle and evolution with SageMaker Pipelines

By setting register_new_baseline of your ClarifyCheck and QualityCheck
step to False, your previous baseline is accessible through the step property prefix
BaselineUsedForDriftCheck. You can then register these baselines as the
DriftCheckBaselines in the new model version when you register a model with Model Step.
Once you approve this new model version in the model registry, the DriftCheckBaseline
in this model version becomes available for the ClarifyCheck and QualityCheck steps in
the next pipeline process. If you want to refresh the baseline of a certain check type for future
model versions, you can set register_new_baseline to True so that the properties with prefix
BaselineUsedForDriftCheck become the newly calculated baseline. In these ways, you can
preserve your preferred baselines for a model trained in the future, or refresh the baselines for
drift checks when needed, managing your baseline evolution and lifecycle throughout your model
training iterations.

The following diagram illustrates a model-version-centric view of the baseline evolution and
lifecycle.

Amazon SageMaker Model Building Pipelines 4790

Amazon SageMaker Developer Guide

Schedule Pipeline Runs

You can schedule your Amazon SageMaker Model Building Pipelines executions using Amazon
EventBridge. Amazon SageMaker Model Building Pipelines is supported as a target in Amazon
EventBridge. This allows you to initiate the execution of your model building pipeline based on
any event in your event bus. With EventBridge, you can automate your pipeline executions and
respond automatically to events such as training job or endpoint status changes. Events include a
new file being uploaded to your Amazon S3 bucket, a change in status of your Amazon SageMaker
endpoint due to drift, and Amazon Simple Notification Service (SNS) topics.

The following SageMaker Pipelines actions can be automatically initiated:

• StartPipelineExecution

Amazon SageMaker Model Building Pipelines 4791

https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

Amazon SageMaker Developer Guide

For more information on scheduling SageMaker jobs, see Automating SageMaker with Amazon
EventBridge.

Topics

• Schedule a Pipeline with Amazon EventBridge

• Schedule a pipeline with the SageMaker Python SDK

Schedule a Pipeline with Amazon EventBridge

To start a pipeline execution with Amazon CloudWatch Events, you must create an
EventBridge rule. When you create a rule for events, you specify a target action to take when
EventBridge receives an event that matches the rule. When an event matches the rule, EventBridge
sends the event to the specified target and initiates the action defined in the rule.

The following tutorials show how to schedule a pipeline execution with EventBridge using the
EventBridge console or the AWS CLI.

Prerequisites

• A role that EventBridge can assume with the SageMaker::StartPipelineExecution
permission. This role can be created automatically if you create a rule from the EventBridge
console; otherwise, you need to create this role yourself. For information on creating a
SageMaker role, see SageMaker Roles.

• An Amazon SageMaker Pipeline to schedule. To create an Amazon SageMaker Pipeline, see
Define a Pipeline.

Create an EventBridge rule using the EventBridge console

The following procedure shows how to create an EventBridge rule using the EventBridge console.

1. Navigate to the EventBridge console.

2. Select Rules on the left hand side.

3. Select Create Rule.

4. Enter a name and description for your rule.

5. Select how you want to initiate this rule. You have the following choices for your rule:

• Event pattern: Your rule is initiated when an event matching the pattern occurs. You can
choose a predefined pattern that matches a certain type of event, or you can create a

Amazon SageMaker Model Building Pipelines 4792

https://docs.aws.amazon.com/sagemaker/latest/dg/automating-sagemaker-with-eventbridge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automating-sagemaker-with-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_Rule.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/sagemaker/latest/dg/define-pipeline.html
https://console.aws.amazon.com/events

Amazon SageMaker Developer Guide

custom pattern. If you select a predefined pattern, you can edit the pattern to customize it.
For more information on Event patterns, see Event Patterns in CloudWatch Events.

• Schedule: Your rule is initiated regularly on a specified schedule. You can use a fixed-rate
schedule that initiates regularly for a specified number of minutes, hour, or weeks. You can
also use a cron expression to create a more fine-grained schedule, such as “the first Monday
of each month at 8am.” Schedule is not supported on a custom or partner event bus.

6. Select your desired Event bus.

7. Select the target(s) to invoke when an event matches your event pattern or when the schedule
is initiated. You can add up to 5 targets per rule. Select SageMaker Pipeline in the target
dropdown list.

8. Select the pipeline you want to initiate from the pipeline dropdown list.

9. Add parameters to pass to your pipeline execution using a name and value pair. Parameter
values can be static or dynamic. For more information on Amazon SageMaker Pipeline
parameters, see AWS::Events::Rule SagemakerPipelineParameters.

• Static values are passed to the pipeline execution every time the pipeline is initiated. For
example, if {"Name": "Instance_type", "Value": "ml.4xlarge"} is specified in
the parameter list, then it is passed as a parameter in StartPipelineExecutionRequest
every time EventBridge initiates the pipeline.

• Dynamic values are specified using a JSON path. EventBridge parses the value from an event
payload, then passes it to the pipeline execution. For example: $.detail.param.value

10. Select the role to use for this rule. You can either use an existing role or create a new one.

11. (Optional) Add tags.

12. Select Create to finalize your rule.

Your rule is now in effect and ready to initiate your pipeline executions.

Create an EventBridge rule using the AWS CLI

The following procedure shows how to create an EventBridge rule using the AWS CLI.

1. Create a rule to be initiated. When creating an EventBridge rule using the AWS CLI, you have
two options for how your rule is initiated, event pattern and schedule.

• Event pattern: Your rule is initiated when an event matching the pattern occurs. You can
choose a predefined pattern that matches a certain type of event, or you can create a

Amazon SageMaker Model Building Pipelines 4793

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html#CronExpressions
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-pipeline.html#aws-resource-sagemaker-pipeline-properties
https://docs.aws.amazon.com/cli/latest/reference/events/index.html

Amazon SageMaker Developer Guide

custom pattern. If you select a predefined pattern, you can edit the pattern to customize it.
You can create a rule with event pattern using the following command:

aws events put-rule --name <RULE_NAME> ----event-pattern <YOUR_EVENT_PATTERN>
 --description <RULE_DESCRIPTION> --role-arn <ROLE_TO_EXECUTE_PIPELINE> --
tags <TAGS>

• Schedule: Your rule is initiated regularly on a specified schedule. You can use a fixed-rate
schedule that initiates regularly for a specified number of minutes, hour, or weeks. You can
also use a cron expression to create a more fine-grained schedule, such as “the first Monday
of each month at 8am.” Schedule is not supported on a custom or partner event bus. You
can create a rule with schedule using the following command:

aws events put-rule --name <RULE_NAME> --schedule-
expression <YOUR_CRON_EXPRESSION> --description <RULE_DESCRIPTION> --role-
arn <ROLE_TO_EXECUTE_PIPELINE> --tags <TAGS>

2. Add target(s) to invoke when an event matches your event pattern or when the schedule is
initiated. You can add up to 5 targets per rule. For each target, you must specify:

• ARN: The resource ARN of your pipeline.

• Role ARN: The ARN of the role EventBridge should assume to execute the pipeline.

• Parameters: Amazon SageMaker pipeline parameters to pass.

3. Run the following command to pass a Amazon SageMaker pipeline as a target to your rule
using put-targets :

aws events put-targets --rule <RULE_NAME> --event-bus-name <EVENT_BUS_NAME>
 --targets "[{\"Id\": <ID>, \"Arn\": <RESOURCE_ARN>, \"RoleArn\": <ROLE_ARN>,
 \"SageMakerPipelineParameter\": { \"SageMakerParameterList\": [{\"Name\": <NAME>,
 \"Value\": <VALUE>}]} }]"]

Schedule a pipeline with the SageMaker Python SDK

The following sections show you how to set up permissions to access EventBridge resources and
create your pipeline schedule using the SageMaker Python SDK.

Amazon SageMaker Model Building Pipelines 4794

https://docs.aws.amazon.com/cli/latest/reference/events/put-targets.html

Amazon SageMaker Developer Guide

Required permissions

You need to have necessary permissions to use the pipeline scheduler. Complete the following
steps to set up your permissions:

1. Attach the following minimum privilege policy to the IAM role used to create the pipeline
triggers, or use the AWS managed policy AmazonEventBridgeSchedulerFullAccess.

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Action":
 [
 "scheduler:ListSchedules",
 "scheduler:GetSchedule",
 "scheduler:CreateSchedule",
 "scheduler:UpdateSchedule",
 "scheduler:DeleteSchedule"
],
 "Effect": "Allow",
 "Resource":
 [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "scheduler.amazonaws.com"
 }
 }
 }
]
}

2. Establish a trust relationship with EventBridge by adding the service principal
scheduler.amazonaws.com to this role’s trust policy. Make sure you attach the following
trust policy to the execution role if you launch the notebook in SageMaker Studio.

Amazon SageMaker Model Building Pipelines 4795

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "scheduler.amazonaws.com",
 "sagemaker.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Create a pipeline schedule

Using the PipelineSchedule constructor, you can schedule a pipeline to run once
or at a predetermined interval. A pipeline schedule must be of the type at, rate,
or cron. This set of scheduling types is an extension of the EventBridge scheduling
options. For more information about how to use the PipelineSchedule class, see
sagemaker.workflow.triggers.PipelineSchedule. The following example demonstrates how to create
each scheduling type with PipelineSchedule.

from sagemaker.workflow.triggers import PipelineSchedule

schedules a pipeline run for 12/13/2023 at time 10:15:20 UTC
my_datetime_schedule = PipelineSchedule(
 name="<schedule-name>",
 at=datetime(2023, 12, 13, 10, 15, 20)
)

schedules a pipeline run every 5 minutes
my_rate_schedule = PipelineSchedule(
 name="<schedule-name>",
 rate=(5, "minutes")
)

schedules a pipeline run at 10:15am UTC on the last Friday of each month during the
 years 2022 to 2023
my_cron_schedule = PipelineSchedule(

Amazon SageMaker Model Building Pipelines 4796

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#pipeline-schedule

Amazon SageMaker Developer Guide

 name="<schedule-name>",
 cron="15 10 ? * 6L 2022-2023"
)

Note

If you create a one-time schedule and need to access the current time, use
datetime.utcnow() instead of datetime.now(). The latter does not store the current
zone context and results in an incorrect time passed to EventBridge.

Attach the trigger to your pipeline

To attach your PipelineSchedule to your pipeline, invoke the put_triggers call on your
created pipeline object with a list of triggers. If you get a response ARN, you successfully created
the schedule in your account and EventBridge begins to invoke the target pipeline at the time
or rate specified. You must specify a role with correct permissions to attach triggers to a parent
pipeline. If you don't provide one, SageMaker Pipelines fetches the default role used to create the
pipeline from the configuration file.

The following example demonstrates how to attach a schedule to a pipeline.

scheduled_pipeline = Pipeline(
 name="<pipeline-name>",
 steps=[...],
 sagemaker_session=<sagemaker-session>,
)
custom_schedule = PipelineSchedule(
 name="<schedule-name>",
 at=datetime(year=2023, month=12, date=25, hour=10, minute=30, second=30)
)
scheduled_pipeline.put_triggers(triggers=[custom_schedule], role_arn=<role>)

Describe current triggers

To retrieve information about your created pipeline triggers, you can invoke the
describe_trigger() API with the trigger name. This command returns details about the
created schedule expression such as its start time, enabled state, and other useful information. The
following snippet shows a sample invocation:

Amazon SageMaker Model Building Pipelines 4797

https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-decorator-config.html

Amazon SageMaker Developer Guide

scheduled_pipeline.describe_trigger(name="<schedule-name>")

Cleanup trigger resources

Before you delete your pipeline, clean up existing triggers to avoid a resource leak in your
account. You should delete the triggers before destroying the parent pipeline. You can delete your
triggers by passing a list of trigger names to the delete_triggers API. The following snippet
demonstrates how to delete triggers.

pipeline.delete_triggers(trigger_names=["<schedule-name>"])

Note

Be aware of the following limitations when you delete your triggers:

• The option to delete the triggers by specifying trigger names is only available in the
SageMaker Python SDK. Deleting the pipeline in the CLI or a DeletePipeline API call
does not delete your triggers. As a result, the triggers become orphaned and SageMaker
attempts to start a run for a non-existent pipeline.

• Also, if you are using another notebook session or already deleted the pipeline target,
clean up orphaned schedules through the scheduler CLI or EventBridge console.

Amazon SageMaker Experiments Integration

Amazon SageMaker Model Building Pipelines is closely integrated with Amazon SageMaker
Experiments. By default, when SageMaker Pipelines creates and executes a pipeline, the following
SageMaker Experiments entities are created if they don't exist:

• An experiment for the pipeline

• A run group for every execution of the pipeline

• A run that's added to the run group for each SageMaker job created in a pipeline execution step

You can compare metrics such as model training accuracy across multiple pipeline executions
just as you can compare such metrics across multiple run groups of a SageMaker model training
experiment.

Amazon SageMaker Model Building Pipelines 4798

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/scheduler/delete-schedule.html

Amazon SageMaker Developer Guide

The following sample shows the relevant parameters of the Pipeline class in the Amazon
SageMaker Python SDK.

Pipeline(
 name="MyPipeline",
 parameters=[...],
 pipeline_experiment_config=PipelineExperimentConfig(
 ExecutionVariables.PIPELINE_NAME,
 ExecutionVariables.PIPELINE_EXECUTION_ID
),
 steps=[...]
)

If you don't want an experiment and run group created for the pipeline, set
pipeline_experiment_config to None.

Note

Experiments integration was introduced in the Amazon SageMaker Python SDK v2.41.0.

The following naming rules apply based on what you specify for the ExperimentName and
TrialName parameters of pipeline_experiment_config:

• If you don't specify ExperimentName, the pipeline name is used for the experiment name.

If you do specify ExperimentName, it's used for the experiment name. If an experiment with
that name exists, the pipeline-created run groups are added to the existing experiment. If an
experiment with that name doesn't exist, a new experiment is created.

• If you don't specify TrialName, the pipeline execution ID is used for the run group name.

If you do specify TrialName, it's used for the run group name. If a run group with that name
exists, the pipeline-created runs are added to the existing run group. If a run group with that
name doesn't exist, a new run group is created.

Amazon SageMaker Model Building Pipelines 4799

https://github.com/aws/sagemaker-python-sdk/blob/v2.41.0/src/sagemaker/workflow/pipeline.py
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Note

The experiment entities aren't deleted when the pipeline that created the entities is
deleted. You can use the SageMaker Experiments API to delete the entities. For more
information, see Clean Up Amazon SageMaker Experiment Resources.

For information about how to view the SageMaker Experiment entities associated with a pipeline,
see View Experiment Entities Created by SageMaker Pipelines. For more information on SageMaker
Experiments, see Manage Machine Learning with Amazon SageMaker Experiments.

The following sections show examples of the previous rules and how they are represented in the
pipeline definition file. For more information on pipeline definition files, see SageMaker Pipelines
Overview.

Topics

• Default Behavior

• Disable Experiments Integration

• Specify a Custom Experiment Name

• Specify a Custom Run Group Name

Default Behavior

Create a pipeline

The pipeline_experiment_config is omitted. ExperimentName defaults to the pipeline
name. TrialName defaults to the execution ID.

pipeline_name = f"MyPipeline"
pipeline = Pipeline(
 name=pipeline_name,
 parameters=[...],
 steps=[step_train]
)

Pipeline definition file

{
 "Version": "2020-12-01",

Amazon SageMaker Model Building Pipelines 4800

Amazon SageMaker Developer Guide

 "Parameters": [
 {
 "Name": "InputDataSource"
 },
 {
 "Name": "InstanceCount",
 "Type": "Integer",
 "DefaultValue": 1
 }
],
 "PipelineExperimentConfig": {
 "ExperimentName": {"Get": "Execution.PipelineName"},
 "TrialName": {"Get": "Execution.PipelineExecutionId"}
 },
 "Steps": [...]
}

Disable Experiments Integration

Create a pipeline

The pipeline_experiment_config is set to None.

pipeline_name = f"MyPipeline"
pipeline = Pipeline(
 name=pipeline_name,
 parameters=[...],
 pipeline_experiment_config=None,
 steps=[step_train]
)

Pipeline definition file

This is the same as the preceding default example, without the PipelineExperimentConfig.

Specify a Custom Experiment Name

A custom experiment name is used. The run group name is set to the execution ID, as with the
default behavior.

Create a pipeline

pipeline_name = f"MyPipeline"
pipeline = Pipeline(

Amazon SageMaker Model Building Pipelines 4801

Amazon SageMaker Developer Guide

 name=pipeline_name,
 parameters=[...],
 pipeline_experiment_config=PipelineExperimentConfig(
 "CustomExperimentName",
 ExecutionVariables.PIPELINE_EXECUTION_ID
),
 steps=[step_train]
)

Pipeline definition file

{
 ...,
 "PipelineExperimentConfig": {
 "ExperimentName": "CustomExperimentName",
 "TrialName": {"Get": "Execution.PipelineExecutionId"}
 },
 "Steps": [...]
}

Specify a Custom Run Group Name

A custom run group name is used and appended with the execution ID. The experiment name is set
to the pipeline name, as with the default behavior.

Create a pipeline

pipeline_name = f"MyPipeline"
pipeline = Pipeline(
 name=pipeline_name,
 parameters=[...],
 pipeline_experiment_config=PipelineExperimentConfig(
 ExecutionVariables.PIPELINE_NAME,
 Join(on="-", values=["CustomTrialName",
 ExecutionVariables.PIPELINE_EXECUTION_ID])
),
 steps=[step_train]
)

Pipeline definition file

{
 ...,

Amazon SageMaker Model Building Pipelines 4802

Amazon SageMaker Developer Guide

 "PipelineExperimentConfig": {
 "ExperimentName": {"Get": "Execution.PipelineName"},
 "TrialName": {
 "On": "-",
 "Values": [
 "CustomTrialName",
 {"Get": "Execution.PipelineExecutionId"}
]
 }
 },
 "Steps": [...]
}

Local Mode

SageMaker Pipelines local mode is an easy way to test your training, processing and inference
scripts, as well as the runtime compatibility of pipeline parameters before you execute your
pipeline on the managed SageMaker service. By using local mode, you can test your SageMaker
pipeline locally using a smaller dataset. This allows quick and easy debugging of errors in user
scripts and the pipeline definition itself without incurring the costs of using the managed service.

Pipelines local mode leverages SageMaker jobs local mode under the hood. This is a feature in the
SageMaker Python SDK that allows you to run SageMaker built-in or custom images locally using
Docker containers. Pipelines local mode is built on top of SageMaker jobs local mode. Therefore,
you can expect to see the same results as if you were running those jobs separately. For example,
local mode still uses Amazon S3 to upload model artifacts and processing outputs. If you want data
generated by local jobs to reside on local disk, you can use the setup mentioned in Local Mode.

Pipeline local mode currently supports the following step types:

• Training Step

• Processing Step

• Transform Step

• Model Step (with Create Model arguments only)

• Condition Step

• Fail Step

As opposed to the managed Pipelines service which allows multiple steps to execute in parallel
using Parallelism Configuration, the local pipeline executor runs the steps sequentially. Therefore,

Amazon SageMaker Model Building Pipelines 4803

https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_building_pipeline.html#pipeline-parameters
https://sagemaker.readthedocs.io/en/stable/overview.html#local-mode
https://sagemaker.readthedocs.io/en/stable/overview.html#local-mode
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-model-create
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#parallelism-configuration

Amazon SageMaker Developer Guide

overall execution performance of a local pipeline may be poorer than one that runs on the cloud
- this mostly depends on the size of the dataset, algorithm, as well as the power of your local
computer. Also note that Pipelines runs in local mode are not recorded in SageMaker Experiments.

Note

Pipelines local mode is not compatible with SageMaker algorithms such as XGBoost. If you
to want use these algorithms, you must use them in script mode.

In order to execute a pipeline locally, the sagemaker_session fields associated with the pipeline
steps and the pipeline itself need to be of type LocalPipelineSession. The following example
shows how you can define a SageMaker pipeline to execute locally.

from sagemaker.workflow.pipeline_context import LocalPipelineSession
from sagemaker.pytorch import PyTorch
from sagemaker.workflow.steps import TrainingStep
from sagemaker.workflow.pipeline import Pipeline

local_pipeline_session = LocalPipelineSession()

pytorch_estimator = PyTorch(
 sagemaker_session=local_pipeline_session,
 role=sagemaker.get_execution_role(),
 instance_type="ml.c5.xlarge",
 instance_count=1,
 framework_version="1.8.0",
 py_version="py36",
 entry_point="./entry_point.py",
)

step = TrainingStep(
 name="MyTrainingStep",
 step_args=pytorch_estimator.fit(
 inputs=TrainingInput(s3_data="s3://my-bucket/my-data/train"),
)
)

pipeline = Pipeline(
 name="MyPipeline",
 steps=[step],

Amazon SageMaker Model Building Pipelines 4804

https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-experiments.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-script-mode/sagemaker-script-mode.html

Amazon SageMaker Developer Guide

 sagemaker_session=local_pipeline_session
)

pipeline.create(
 role_arn=sagemaker.get_execution_role(),
 description="local pipeline example"
)

// pipeline will execute locally
execution = pipeline.start()

steps = execution.list_steps()

training_job_name = steps['PipelineExecutionSteps'][0]['Metadata']['TrainingJob']
['Arn']

step_outputs = pipeline_session.sagemaker_client.describe_training_job(TrainingJobName
 = training_job_name)

Once you are ready to execute the pipeline on the managed SageMaker Pipelines service,
you can do so by replacing LocalPipelineSession in the previous code snippet with
PipelineSession (as shown in the following code sample) and rerunning the code.

from sagemaker.workflow.pipeline_context import PipelineSession

pipeline_session = PipelineSession()

Troubleshooting Amazon SageMaker Model Building Pipelines

When using Amazon SageMaker Model Building Pipelines, you might run into issues for various
reasons. This topic provides information about common errors and how to resolve them.

Pipeline Definition Issues

Your pipeline definition might not be formatted correctly. This can result in your execution failing
or your job being inaccurate. These errors can be caught when the pipeline is created or when an
execution occurs. If your definition doesn’t validate, SageMaker Pipelines returns an error message
identifying the character where the JSON file is malformed. To fix this problem, review the steps
created using the SageMaker Python SDK for accuracy.

Amazon SageMaker Model Building Pipelines 4805

Amazon SageMaker Developer Guide

You can only include steps in a pipeline definition once. Because of this, steps cannot exist as part
of a condition step and a pipeline in the same pipeline.

Examining Pipeline Logs

You can view the status of your steps using the following command:

execution.list_steps()

Each step includes the following information:

• The ARN of the entity launched by the pipeline, such as SageMaker job ARN, model ARN, or
model package ARN.

• The failure reason includes a brief explanation of the step failure.

• If the step is a condition step, it includes whether the condition is evaluated to true or false.

• If the execution reuses a previous job execution, the CacheHit lists the source execution.

You can also view the error messages and logs in the Amazon SageMaker Studio interface. For
information about how to see the logs in Studio, see View a Pipeline Execution.

Missing Permissions

Correct permissions are required for the role that creates the pipeline execution, and the steps that
create each of the jobs in your pipeline execution. Without these permissions, you may not be able
to submit your pipeline execution or run your SageMaker jobs as expected. To ensure that your
permissions are properly set up, see IAM Access Management.

Job Execution Errors

You may run into issues when executing your steps because of issues in the scripts that define the
functionality of your SageMaker jobs. Each job has a set of CloudWatch logs. To view these logs
from Studio, see View a Pipeline Execution. For information about using CloudWatch logs with
SageMaker, see Log Amazon SageMaker Events with Amazon CloudWatch.

Property File Errors

You may have issues when incorrectly implementing property files with your pipeline. To ensure
that your implementation of property files works as expected, see Pass Data Between Steps.

Amazon SageMaker Model Building Pipelines 4806

Amazon SageMaker Developer Guide

Create and Manage SageMaker Pipelines

You can use Amazon SageMaker Model Building Pipelines to create end-to-end workflows that
manage and deploy SageMaker jobs. SageMaker Pipelines comes with SageMaker Python SDK
integration, so you can build each step of your pipeline using a Python-based interface.

After your pipeline is deployed, you can view the directed acyclic graph (DAG) for your pipeline and
manage your executions using Amazon SageMaker Studio. Using SageMaker Studio, you can get
information about your current and historical pipelines, compare executions, see the DAG for your
executions, get metadata information, and more. To learn how to view pipelines from SageMaker
Studio, see View, Track, and Execute SageMaker Pipelines in SageMaker Studio.

Topics

• Define a Pipeline

• Run a pipeline

• View, Track, and Execute SageMaker Pipelines in SageMaker Studio

Define a Pipeline

To orchestrate your workflows with Amazon SageMaker Model Building Pipelines, you need to
generate a directed acyclic graph (DAG) in the form of a JSON pipeline definition. The following
image is a representation of the pipeline DAG that you create in this tutorial:

Amazon SageMaker Model Building Pipelines 4807

Amazon SageMaker Developer Guide

You can generate your JSON pipeline definition using the SageMaker Python SDK. The following
tutorial shows how to generate a pipeline definition for a pipeline that solves a regression problem
to determine the age of an abalone based on its physical measurements. For a Jupyter notebook
that includes the content in this tutorial that you can run, see Orchestrating Jobs with Amazon
SageMaker Model Building Pipelines.

Topics

• Prerequisites

• Create a Pipeline

Amazon SageMaker Model Building Pipelines 4808

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-pipelines/tabular/abalone_build_train_deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-pipelines/tabular/abalone_build_train_deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.html

Amazon SageMaker Developer Guide

Prerequisites

To run the following tutorial you must do the following:

• Set up your notebook instance as outlined in Create a notebook instance. This gives your
role permissions to read and write to Amazon S3, and create training, batch transform, and
processing jobs in SageMaker.

• Grant your notebook permissions to get and pass its own role as shown in Modifying a
role permissions policy. Add the following JSON snippet to attach this policy to your role.
Replace <your-role-arn> with the ARN used to create your notebook instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "<your-role-arn>"
 }
]
}

• Trust the SageMaker service principal by following the steps in Modifying a role trust policy. Add
the following statement fragment to the trust relationship of your role:

{
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }

Set Up Your Environment

Create a new SageMaker session using the following code block. This returns the role ARN for the
session. This role ARN should be the execution role ARN that you set up as a prerequisite.

Amazon SageMaker Model Building Pipelines 4809

https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-create-ws.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-cli.html#roles-managingrole_edit-trust-policy-cli

Amazon SageMaker Developer Guide

import boto3
import sagemaker
import sagemaker.session
from sagemaker.workflow.pipeline_context import PipelineSession

region = boto3.Session().region_name
sagemaker_session = sagemaker.session.Session()
role = sagemaker.get_execution_role()
default_bucket = sagemaker_session.default_bucket()

pipeline_session = PipelineSession()

model_package_group_name = f"AbaloneModelPackageGroupName"

Create a Pipeline

Run the following steps from your SageMaker notebook instance to create a pipeline including
steps for preprocessing, training, evaluation, conditional evaluation, and model registration.

Step 1: Download the Dataset

This notebook uses the UCI Machine Learning Abalone Dataset. The dataset contains the following
features:

• length – The longest shell measurement of the abalone.

• diameter – The diameter of the abalone perpendicular to its length.

• height – The height of the abalone with meat in the shell.

• whole_weight – The weight of the whole abalone.

• shucked_weight – The weight of the meat removed from the abalone.

• viscera_weight – The weight of the abalone viscera after bleeding.

• shell_weight – The weight of the abalone shell after meat removal and drying.

• sex – The sex of the abalone. One of 'M', 'F', or 'I', where 'I' is an infant abalone.

• rings – The number of rings in the abalone shell.

The number of rings in the abalone shell is a good approximation for its age using the formula
age=rings + 1.5. However, obtaining this number is a time-consuming task. You must cut the
shell through the cone, stain the section, and count the number of rings through a microscope.

Amazon SageMaker Model Building Pipelines 4810

Amazon SageMaker Developer Guide

However, the other physical measurements are easier to determine. This notebook uses the dataset
to build a predictive model of the variable rings using the other physical measurements.

To download the dataset

1. Download the dataset into your account's default Amazon S3 bucket.

!mkdir -p data
local_path = "data/abalone-dataset.csv"

s3 = boto3.resource("s3")
s3.Bucket(f"sagemaker-servicecatalog-seedcode-{region}").download_file(
 "dataset/abalone-dataset.csv",
 local_path
)

base_uri = f"s3://{default_bucket}/abalone"
input_data_uri = sagemaker.s3.S3Uploader.upload(
 local_path=local_path,
 desired_s3_uri=base_uri,
)
print(input_data_uri)

2. Download a second dataset for batch transformation after your model is created.

local_path = "data/abalone-dataset-batch.csv"

s3 = boto3.resource("s3")
s3.Bucket(f"sagemaker-servicecatalog-seedcode-{region}").download_file(
 "dataset/abalone-dataset-batch",
 local_path
)

base_uri = f"s3://{default_bucket}/abalone"
batch_data_uri = sagemaker.s3.S3Uploader.upload(
 local_path=local_path,
 desired_s3_uri=base_uri,
)
print(batch_data_uri)

Amazon SageMaker Model Building Pipelines 4811

Amazon SageMaker Developer Guide

Step 2: Define Pipeline Parameters

This code block defines the following parameters for your pipeline:

• processing_instance_count – The instance count of the processing job.

• input_data – The Amazon S3 location of the input data.

• batch_data – The Amazon S3 location of the input data for batch transformation.

• model_approval_status – The approval status to register the trained model with for CI/CD.
For more information, see Automate MLOps with SageMaker Projects.

from sagemaker.workflow.parameters import (
 ParameterInteger,
 ParameterString,
)

processing_instance_count = ParameterInteger(
 name="ProcessingInstanceCount",
 default_value=1
)
model_approval_status = ParameterString(
 name="ModelApprovalStatus",
 default_value="PendingManualApproval"
)
input_data = ParameterString(
 name="InputData",
 default_value=input_data_uri,
)
batch_data = ParameterString(
 name="BatchData",
 default_value=batch_data_uri,
)

Step 3: Define a Processing Step for Feature Engineering

This section shows how to create a processing step to prepare the data from the dataset for
training.

To create a processing step

1. Create a directory for the processing script.

Amazon SageMaker Model Building Pipelines 4812

Amazon SageMaker Developer Guide

!mkdir -p abalone

2. Create a file in the /abalone directory named preprocessing.py with the following
content. This preprocessing script is passed in to the processing step for execution on the
input data. The training step then uses the preprocessed training features and labels to train
a model, and the evaluation step uses the trained model and preprocessed test features and
labels to evaluate the model. The script uses scikit-learn to do the following:

• Fill in missing sex categorical data and encode it so it's suitable for training.

• Scale and normalize all numerical fields except for rings and sex.

• Split the data into training, test, and validation datasets.

%%writefile abalone/preprocessing.py
import argparse
import os
import requests
import tempfile
import numpy as np
import pandas as pd

from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder

Because this is a headerless CSV file, specify the column names here.
feature_columns_names = [
 "sex",
 "length",
 "diameter",
 "height",
 "whole_weight",
 "shucked_weight",
 "viscera_weight",
 "shell_weight",
]
label_column = "rings"

Amazon SageMaker Model Building Pipelines 4813

Amazon SageMaker Developer Guide

feature_columns_dtype = {
 "sex": str,
 "length": np.float64,
 "diameter": np.float64,
 "height": np.float64,
 "whole_weight": np.float64,
 "shucked_weight": np.float64,
 "viscera_weight": np.float64,
 "shell_weight": np.float64
}
label_column_dtype = {"rings": np.float64}

def merge_two_dicts(x, y):
 z = x.copy()
 z.update(y)
 return z

if __name__ == "__main__":
 base_dir = "/opt/ml/processing"

 df = pd.read_csv(
 f"{base_dir}/input/abalone-dataset.csv",
 header=None,
 names=feature_columns_names + [label_column],
 dtype=merge_two_dicts(feature_columns_dtype, label_column_dtype)
)
 numeric_features = list(feature_columns_names)
 numeric_features.remove("sex")
 numeric_transformer = Pipeline(
 steps=[
 ("imputer", SimpleImputer(strategy="median")),
 ("scaler", StandardScaler())
]
)

 categorical_features = ["sex"]
 categorical_transformer = Pipeline(
 steps=[
 ("imputer", SimpleImputer(strategy="constant", fill_value="missing")),
 ("onehot", OneHotEncoder(handle_unknown="ignore"))
]
)

Amazon SageMaker Model Building Pipelines 4814

Amazon SageMaker Developer Guide

 preprocess = ColumnTransformer(
 transformers=[
 ("num", numeric_transformer, numeric_features),
 ("cat", categorical_transformer, categorical_features)
]
)

 y = df.pop("rings")
 X_pre = preprocess.fit_transform(df)
 y_pre = y.to_numpy().reshape(len(y), 1)

 X = np.concatenate((y_pre, X_pre), axis=1)

 np.random.shuffle(X)
 train, validation, test = np.split(X, [int(.7*len(X)), int(.85*len(X))])

 pd.DataFrame(train).to_csv(f"{base_dir}/train/train.csv", header=False,
 index=False)
 pd.DataFrame(validation).to_csv(f"{base_dir}/validation/validation.csv",
 header=False, index=False)
 pd.DataFrame(test).to_csv(f"{base_dir}/test/test.csv", header=False,
 index=False)

3. Create an instance of an SKLearnProcessor to pass in to the processing step.

from sagemaker.sklearn.processing import SKLearnProcessor

framework_version = "0.23-1"

sklearn_processor = SKLearnProcessor(
 framework_version=framework_version,
 instance_type="ml.m5.xlarge",
 instance_count=processing_instance_count,
 base_job_name="sklearn-abalone-process",
 sagemaker_session=pipeline_session,
 role=role,
)

4. Create a processing step. This step takes in the SKLearnProcessor, the input and output
channels, and the preprocessing.py script that you created. This is very similar to a

Amazon SageMaker Model Building Pipelines 4815

Amazon SageMaker Developer Guide

processor instance's run method in the SageMaker Python SDK. The input_data parameter
passed into ProcessingStep is the input data of the step itself. This input data is used by the
processor instance when it runs.

Note the "train, "validation, and "test" named channels specified in the output
configuration for the processing job. Step Properties such as these can be used in
subsequent steps and resolve to their runtime values at execution.

from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker.workflow.steps import ProcessingStep

processor_args = sklearn_processor.run(
 inputs=[
 ProcessingInput(source=input_data, destination="/opt/ml/processing/input"),
],
 outputs=[
 ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
 ProcessingOutput(output_name="validation", source="/opt/ml/processing/
validation"),
 ProcessingOutput(output_name="test", source="/opt/ml/processing/test")
],
 code="abalone/preprocessing.py",
)

step_process = ProcessingStep(
 name="AbaloneProcess",
 step_args=processor_args
)

Step 4: Define a Training step

This section shows how to use the SageMaker XGBoost Algorithm to train a model on the training
data output from the processing steps.

To define a training step

1. Specify the model path where you want to save the models from training.

model_path = f"s3://{default_bucket}/AbaloneTrain"

Amazon SageMaker Model Building Pipelines 4816

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html

Amazon SageMaker Developer Guide

2. Configure an estimator for the XGBoost algorithm and the input dataset. The training instance
type is passed into the estimator. A typical training script loads data from the input channels,
configures training with hyperparameters, trains a model, and saves a model to model_dir
so that it can be hosted later. SageMaker uploads the model to Amazon S3 in the form of
a model.tar.gz at the end of the training job.

from sagemaker.estimator import Estimator

image_uri = sagemaker.image_uris.retrieve(
 framework="xgboost",
 region=region,
 version="1.0-1",
 py_version="py3",
 instance_type="ml.m5.xlarge"
)
xgb_train = Estimator(
 image_uri=image_uri,
 instance_type="ml.m5.xlarge",
 instance_count=1,
 output_path=model_path,
 sagemaker_session=pipeline_session,
 role=role,
)
xgb_train.set_hyperparameters(
 objective="reg:linear",
 num_round=50,
 max_depth=5,
 eta=0.2,
 gamma=4,
 min_child_weight=6,
 subsample=0.7,
 silent=0
)

3. Create a TrainingStep using the estimator instance and properties of
the ProcessingStep. In particular, pass in the S3Uri of the "train" and "validation"
output channel to the TrainingStep.

from sagemaker.inputs import TrainingInput
from sagemaker.workflow.steps import TrainingStep

Amazon SageMaker Model Building Pipelines 4817

Amazon SageMaker Developer Guide

train_args = xgb_train.fit(
 inputs={
 "train": TrainingInput(
 s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
 "train"
].S3Output.S3Uri,
 content_type="text/csv"
),
 "validation": TrainingInput(
 s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
 "validation"
].S3Output.S3Uri,
 content_type="text/csv"
)
 },
)

step_train = TrainingStep(
 name="AbaloneTrain",
 step_args = train_args
)

Step 5: Define a Processing Step for Model Evaluation

This section shows how to create a processing step to evaluate the accuracy of the model. The
result of this model evaluation is used in the condition step to determine which execute path to
take.

To define a processing step for model evaluation

1. Create a file in the /abalone directory named evaluation.py. This script is used in a
processing step to perform model evaluation. It takes a trained model and the test dataset as
input, then produces a JSON file containing classification evaluation metrics.

%%writefile abalone/evaluation.py
import json
import pathlib
import pickle
import tarfile
import joblib
import numpy as np

Amazon SageMaker Model Building Pipelines 4818

Amazon SageMaker Developer Guide

import pandas as pd
import xgboost

from sklearn.metrics import mean_squared_error

if __name__ == "__main__":
 model_path = f"/opt/ml/processing/model/model.tar.gz"
 with tarfile.open(model_path) as tar:
 tar.extractall(path=".")

 model = pickle.load(open("xgboost-model", "rb"))

 test_path = "/opt/ml/processing/test/test.csv"
 df = pd.read_csv(test_path, header=None)

 y_test = df.iloc[:, 0].to_numpy()
 df.drop(df.columns[0], axis=1, inplace=True)

 X_test = xgboost.DMatrix(df.values)

 predictions = model.predict(X_test)

 mse = mean_squared_error(y_test, predictions)
 std = np.std(y_test - predictions)
 report_dict = {
 "regression_metrics": {
 "mse": {
 "value": mse,
 "standard_deviation": std
 },
 },
 }

 output_dir = "/opt/ml/processing/evaluation"
 pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True)

 evaluation_path = f"{output_dir}/evaluation.json"
 with open(evaluation_path, "w") as f:
 f.write(json.dumps(report_dict))

2. Create an instance of a ScriptProcessor that is used to create a ProcessingStep.

Amazon SageMaker Model Building Pipelines 4819

Amazon SageMaker Developer Guide

from sagemaker.processing import ScriptProcessor

script_eval = ScriptProcessor(
 image_uri=image_uri,
 command=["python3"],
 instance_type="ml.m5.xlarge",
 instance_count=1,
 base_job_name="script-abalone-eval",
 sagemaker_session=pipeline_session,
 role=role,
)

3. Create a ProcessingStep using the processor instance, the input and output channels, and
the evaluation.py script. In particular, pass in the S3ModelArtifacts property from
the step_train training step, as well as the S3Uri of the "test" output channel of the
step_process processing step. This is very similar to a processor instance's run method in
the SageMaker Python SDK.

from sagemaker.workflow.properties import PropertyFile

evaluation_report = PropertyFile(
 name="EvaluationReport",
 output_name="evaluation",
 path="evaluation.json"
)

eval_args = script_eval.run(
 inputs=[
 ProcessingInput(
 source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
 destination="/opt/ml/processing/model"
),
 ProcessingInput(
 source=step_process.properties.ProcessingOutputConfig.Outputs[
 "test"
].S3Output.S3Uri,
 destination="/opt/ml/processing/test"
)
],
 outputs=[

Amazon SageMaker Model Building Pipelines 4820

Amazon SageMaker Developer Guide

 ProcessingOutput(output_name="evaluation", source="/opt/ml/processing/
evaluation"),
],
 code="abalone/evaluation.py",
)

step_eval = ProcessingStep(
 name="AbaloneEval",
 step_args=eval_args,
 property_files=[evaluation_report],
)

Step 6: Define a CreateModelStep for Batch Transformation

Important

We recommend using Model Step to create models as of v2.90.0 of the SageMaker Python
SDK. CreateModelStep will continue to work in previous versions of the SageMaker
Python SDK, but is no longer actively supported.

This section shows how to create a SageMaker model from the output of the training step. This
model is used for batch transformation on a new dataset. This step is passed into the condition
step and only executes if the condition step evaluates to true.

To define a CreateModelStep for batch transformation

1. Create a SageMaker model. Pass in the S3ModelArtifacts property from the step_train
training step.

from sagemaker.model import Model

model = Model(
 image_uri=image_uri,
 model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
 sagemaker_session=pipeline_session,
 role=role,
)

2. Define the model input for your SageMaker model.

Amazon SageMaker Model Building Pipelines 4821

Amazon SageMaker Developer Guide

from sagemaker.inputs import CreateModelInput

inputs = CreateModelInput(
 instance_type="ml.m5.large",
 accelerator_type="ml.eia1.medium",
)

3. Create your CreateModelStep using the CreateModelInput and SageMaker model
instance you defined.

from sagemaker.workflow.steps import CreateModelStep

step_create_model = CreateModelStep(
 name="AbaloneCreateModel",
 model=model,
 inputs=inputs,
)

Step 7: Define a TransformStep to Perform Batch Transformation

This section shows how to create a TransformStep to perform batch transformation on a dataset
after the model is trained. This step is passed into the condition step and only executes if the
condition step evaluates to true.

To define a TransformStep to perform batch transformation

1. Create a transformer instance with the appropriate compute instance type, instance count,
and desired output Amazon S3 bucket URI. Pass in the ModelName property from the
step_create_model CreateModel step.

from sagemaker.transformer import Transformer

transformer = Transformer(
 model_name=step_create_model.properties.ModelName,
 instance_type="ml.m5.xlarge",
 instance_count=1,
 output_path=f"s3://{default_bucket}/AbaloneTransform"

Amazon SageMaker Model Building Pipelines 4822

Amazon SageMaker Developer Guide

)

2. Create a TransformStep using the transformer instance you defined and the batch_data
pipeline parameter.

from sagemaker.inputs import TransformInput
from sagemaker.workflow.steps import TransformStep

step_transform = TransformStep(
 name="AbaloneTransform",
 transformer=transformer,
 inputs=TransformInput(data=batch_data)
)

Step 8: Define a RegisterModel Step to Create a Model Package

Important

We recommend using Model Step to register models as of v2.90.0 of the SageMaker
Python SDK. RegisterModel will continue to work in previous versions of the SageMaker
Python SDK, but is no longer actively supported.

This section shows how to construct an instance of RegisterModel. The result of executing
RegisterModel in a pipeline is a model package. A model package is a reusable model
artifacts abstraction that packages all ingredients necessary for inference. It consists of an
inference specification that defines the inference image to use along with an optional model
weights location. A model package group is a collection of model packages. You can use a
ModelPackageGroup for SageMaker Pipelines to add a new version and model package to the
group for every pipeline execution. For more information about model registry, see Register and
Deploy Models with Model Registry.

This step is passed into the condition step and only executes if the condition step evaluates to
true.

Amazon SageMaker Model Building Pipelines 4823

Amazon SageMaker Developer Guide

To define a RegisterModel step to create a model package

• Construct a RegisterModel step using the estimator instance you used for the training step .
Pass in the S3ModelArtifacts property from the step_train training step and specify a
ModelPackageGroup. SageMaker Pipelines creates this ModelPackageGroup for you.

from sagemaker.model_metrics import MetricsSource, ModelMetrics
from sagemaker.workflow.step_collections import RegisterModel

model_metrics = ModelMetrics(
 model_statistics=MetricsSource(
 s3_uri="{}/evaluation.json".format(
 step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]
["S3Uri"]
),
 content_type="application/json"
)
)
step_register = RegisterModel(
 name="AbaloneRegisterModel",
 estimator=xgb_train,
 model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
 content_types=["text/csv"],
 response_types=["text/csv"],
 inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
 transform_instances=["ml.m5.xlarge"],
 model_package_group_name=model_package_group_name,
 approval_status=model_approval_status,
 model_metrics=model_metrics
)

Step 9: Define a Condition Step to Verify Model Accuracy

A ConditionStep allows SageMaker Pipelines to support conditional execution in your pipeline
DAG based on the condition of step properties. In this case, you only want to register a model
package if the accuracy of that model, as determined by the model evaluation step, exceeds the
required value. If the accuracy exceeds the required value, the pipeline also creates a SageMaker
Model and runs batch transformation on a dataset. This section shows how to define the Condition
step.

Amazon SageMaker Model Building Pipelines 4824

Amazon SageMaker Developer Guide

To define a condition step to verify model accuracy

1. Define a ConditionLessThanOrEqualTo condition using the accuracy value found in
the output of the model evaluation processing step, step_eval. Get this output using the
property file you indexed in the processing step and the respective JSONPath of the mean
squared error value, "mse".

from sagemaker.workflow.conditions import ConditionLessThanOrEqualTo
from sagemaker.workflow.condition_step import ConditionStep
from sagemaker.workflow.functions import JsonGet

cond_lte = ConditionLessThanOrEqualTo(
 left=JsonGet(
 step_name=step_eval.name,
 property_file=evaluation_report,
 json_path="regression_metrics.mse.value"
),
 right=6.0
)

2. Construct a ConditionStep. Pass the ConditionEquals condition in, then set the model
package registration and batch transformation steps as the next steps if the condition passes.

step_cond = ConditionStep(
 name="AbaloneMSECond",
 conditions=[cond_lte],
 if_steps=[step_register, step_create_model, step_transform],
 else_steps=[],
)

Step 10: Create a pipeline

Now that you’ve created all of the steps, combine them into a pipeline.

To create a pipeline

1. Define the following for your pipeline: name, parameters, and steps. Names must be unique
within an (account, region) pair.

Amazon SageMaker Model Building Pipelines 4825

Amazon SageMaker Developer Guide

Note

A step can only appear once in either the pipeline's step list or the if/else step lists of
the condition step. It cannot appear in both.

from sagemaker.workflow.pipeline import Pipeline

pipeline_name = f"AbalonePipeline"
pipeline = Pipeline(
 name=pipeline_name,
 parameters=[
 processing_instance_count,
 model_approval_status,
 input_data,
 batch_data,
],
 steps=[step_process, step_train, step_eval, step_cond],
)

2. (Optional) Examine the JSON pipeline definition to ensure that it's well-formed.

import json

json.loads(pipeline.definition())

This pipeline definition is ready to submit to SageMaker. In the next tutorial, you submit this
pipeline to SageMaker and start an execution.

Next step: Run a pipeline

Run a pipeline

After you’ve created a pipeline definition using the SageMaker Python SDK, you can submit it to
SageMaker to start your execution. The following tutorial shows how to submit a pipeline, start an
execution, examine the results of that execution, and delete your pipeline.

Topics

Amazon SageMaker Model Building Pipelines 4826

Amazon SageMaker Developer Guide

• Prerequisites

• Step 1: Start the Pipeline

• Step 2: Examine a Pipeline Execution

• Step 3: Override Default Parameters for a Pipeline Execution

• Step 4: Stop and Delete a Pipeline Execution

Prerequisites

This tutorial requires the following:

• A SageMaker notebook instance.

• A SageMaker Pipelines pipeline definition. This tutorial assumes you're using the pipeline
definition created by completing the Define a Pipeline tutorial.

Step 1: Start the Pipeline

First, you need to start the pipeline.

To start the pipeline

1. Examine the JSON pipeline definition to ensure that it's well-formed.

import json

json.loads(pipeline.definition())

2. Submit the pipeline definition to the SageMaker Pipelines service to create a pipeline if
it doesn't exist, or update the pipeline if it does. The role passed in is used by SageMaker
Pipelines to create all of the jobs defined in the steps.

pipeline.upsert(role_arn=role)

3. Start a pipeline execution.

execution = pipeline.start()

Amazon SageMaker Model Building Pipelines 4827

Amazon SageMaker Developer Guide

Step 2: Examine a Pipeline Execution

Next, you need to examine the pipeline execution.

To examine a pipeline execution

1. Describe the pipeline execution status to ensure that it has been created and started
successfully.

execution.describe()

2. Wait for the execution to finish.

execution.wait()

3. List the execution steps and their status.

execution.list_steps()

Your output should look like the following:

[{'StepName': 'AbaloneTransform',
 'StartTime': datetime.datetime(2020, 11, 21, 2, 41, 27, 870000,
 tzinfo=tzlocal()),
 'EndTime': datetime.datetime(2020, 11, 21, 2, 45, 50, 492000, tzinfo=tzlocal()),
 'StepStatus': 'Succeeded',
 'CacheHitResult': {'SourcePipelineExecutionArn': ''},
 'Metadata': {'TransformJob': {'Arn': 'arn:aws:sagemaker:us-
east-2:111122223333:transform-job/pipelines-cfvy1tjuxdq8-abalonetransform-
ptyjoef3jy'}}},
 {'StepName': 'AbaloneRegisterModel',
 'StartTime': datetime.datetime(2020, 11, 21, 2, 41, 26, 929000,
 tzinfo=tzlocal()),
 'EndTime': datetime.datetime(2020, 11, 21, 2, 41, 28, 15000, tzinfo=tzlocal()),
 'StepStatus': 'Succeeded',
 'CacheHitResult': {'SourcePipelineExecutionArn': ''},
 'Metadata': {'RegisterModel': {'Arn': 'arn:aws:sagemaker:us-
east-2:111122223333:model-package/abalonemodelpackagegroupname/1'}}},
 {'StepName': 'AbaloneCreateModel',
 'StartTime': datetime.datetime(2020, 11, 21, 2, 41, 26, 895000,
 tzinfo=tzlocal()),
 'EndTime': datetime.datetime(2020, 11, 21, 2, 41, 27, 708000, tzinfo=tzlocal()),

Amazon SageMaker Model Building Pipelines 4828

Amazon SageMaker Developer Guide

 'StepStatus': 'Succeeded',
 'CacheHitResult': {'SourcePipelineExecutionArn': ''},
 'Metadata': {'Model': {'Arn': 'arn:aws:sagemaker:us-east-2:111122223333:model/
pipelines-cfvy1tjuxdq8-abalonecreatemodel-jl94rai0ra'}}},
 {'StepName': 'AbaloneMSECond',
 'StartTime': datetime.datetime(2020, 11, 21, 2, 41, 25, 558000,
 tzinfo=tzlocal()),
 'EndTime': datetime.datetime(2020, 11, 21, 2, 41, 26, 329000, tzinfo=tzlocal()),
 'StepStatus': 'Succeeded',
 'CacheHitResult': {'SourcePipelineExecutionArn': ''},
 'Metadata': {'Condition': {'Outcome': 'True'}}},
 {'StepName': 'AbaloneEval',
 'StartTime': datetime.datetime(2020, 11, 21, 2, 37, 34, 767000,
 tzinfo=tzlocal()),
 'EndTime': datetime.datetime(2020, 11, 21, 2, 41, 18, 80000, tzinfo=tzlocal()),
 'StepStatus': 'Succeeded',
 'CacheHitResult': {'SourcePipelineExecutionArn': ''},
 'Metadata': {'ProcessingJob': {'Arn': 'arn:aws:sagemaker:us-
east-2:111122223333:processing-job/pipelines-cfvy1tjuxdq8-abaloneeval-
zfraozhmny'}}},
 {'StepName': 'AbaloneTrain',
 'StartTime': datetime.datetime(2020, 11, 21, 2, 34, 55, 867000,
 tzinfo=tzlocal()),
 'EndTime': datetime.datetime(2020, 11, 21, 2, 37, 34, 34000, tzinfo=tzlocal()),
 'StepStatus': 'Succeeded',
 'CacheHitResult': {'SourcePipelineExecutionArn': ''},
 'Metadata': {'TrainingJob': {'Arn': 'arn:aws:sagemaker:us-
east-2:111122223333:training-job/pipelines-cfvy1tjuxdq8-abalonetrain-
tavd6f3wdf'}}},
 {'StepName': 'AbaloneProcess',
 'StartTime': datetime.datetime(2020, 11, 21, 2, 30, 27, 160000,
 tzinfo=tzlocal()),
 'EndTime': datetime.datetime(2020, 11, 21, 2, 34, 48, 390000, tzinfo=tzlocal()),
 'StepStatus': 'Succeeded',
 'CacheHitResult': {'SourcePipelineExecutionArn': ''},
 'Metadata': {'ProcessingJob': {'Arn': 'arn:aws:sagemaker:us-
east-2:111122223333:processing-job/pipelines-cfvy1tjuxdq8-abaloneprocess-
mgqyfdujcj'}}}]

4. After your pipeline execution is complete, download the resulting evaluation.json file
from Amazon S3 to examine the report.

evaluation_json = sagemaker.s3.S3Downloader.read_file("{}/evaluation.json".format(

Amazon SageMaker Model Building Pipelines 4829

Amazon SageMaker Developer Guide

 step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]
["S3Uri"]
))
json.loads(evaluation_json)

Step 3: Override Default Parameters for a Pipeline Execution

You can run additional executions of the pipeline by specifying different pipeline parameters to
override the defaults.

To override default parameters

1. Create the pipeline execution. This starts another pipeline execution with the model approval
status override set to "Approved". This means that the model package version generated by
the RegisterModel step is automatically ready for deployment through CI/CD pipelines,
such as with SageMaker Projects. For more information, see Automate MLOps with SageMaker
Projects.

execution = pipeline.start(
 parameters=dict(
 ModelApprovalStatus="Approved",
)
)

2. Wait for the execution to finish.

execution.wait()

3. List the execution steps and their status.

execution.list_steps()

4. After your pipeline execution is complete, download the resulting evaluation.json file
from Amazon S3 to examine the report.

evaluation_json = sagemaker.s3.S3Downloader.read_file("{}/evaluation.json".format(
 step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]
["S3Uri"]
))
json.loads(evaluation_json)

Amazon SageMaker Model Building Pipelines 4830

Amazon SageMaker Developer Guide

Step 4: Stop and Delete a Pipeline Execution

When you're finished with your pipeline, you can stop any ongoing executions and delete the
pipeline.

To stop and delete a pipeline execution

1. Stop the pipeline execution.

execution.stop()

2. Delete the pipeline.

pipeline.delete()

View, Track, and Execute SageMaker Pipelines in SageMaker Studio

To view, track, and execute Amazon SageMaker Pipelines in Amazon SageMaker Studio, you must
sign in to Studio. For more information, see Launch Amazon SageMaker Studio.

Topics

• View a Pipeline

• View a Pipeline Execution

• Download a Pipeline Definition

• View Experiment Entities Created by SageMaker Pipelines

• Start (and Stop) a Pipeline Execution

• Track the Lineage of a SageMaker ML Pipeline

View a Pipeline

This procedure shows you how to find a pipeline directly and view its details page. You can also
find pipelines that are part of a project listed in the project's details page. For information about
finding a pipeline that is part of a project, see Automate MLOps with SageMaker Projects.

To view a list of pipelines in the Amazon SageMaker Studio console, complete the following steps
based on whether you use Studio or Studio Classic.

Amazon SageMaker Model Building Pipelines 4831

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, select Pipelines.

3. (Optional) To filter the list of pipelines by name, enter a full or partial pipeline name in the
search field.

4. Select a pipeline name to view details about the pipeline. The pipeline's Executions
page opens and displays a list of pipeline executions. Use the Column icon

()
to choose which columns to display.

5. From the pipeline's Executions page, choose one of the following pages in the Overview,
Settings, or Details dropdown menus (to the left of the pipeline executions table) to view
pipeline details:

• Executions – Details about the executions.

• Graph – The DAG for the pipeline.

• Parameters – Includes the model approval status.

• Information – The metadata associated with the pipeline, such as the pipeline Amazon
Resource Name (ARN) and role ARN. You can also edit the pipeline description from this
page.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Pipelines from the menu.

4. To narrow the list of pipelines by name, enter a full or partial pipeline name in the search
field.

5. Select a pipeline name to view details about the pipeline. The pipeline details tab opens
and displays a list of pipeline executions. You can start an execution or choose one of the

Amazon SageMaker Model Building Pipelines 4832

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

other tabs for more information about the pipeline. Use the Property Inspector icon (

) to choose which columns to display.

6. From the pipeline details page, choose one of the following tabs to view details about the
pipeline:

• Executions – Details about the executions. You can create an execution from this tab or
the Graph tab.

• Graph – The DAG for the pipeline.

• Parameters – Includes the model approval status.

• Settings – The metadata associated with the pipeline. You can download the pipeline
definition file and edit the pipeline name and description from this tab.

View a Pipeline Execution

This procedure shows you how to view a pipeline execution. For information about how to view a
list of pipeline executions, and how to use SageMaker search to narrow the executions in the list,
see View a Pipeline.

To view a pipeline execution in the Amazon SageMaker Studio console, complete the following
steps based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, select Pipelines.

3. (Optional) To filter the list of pipelines by name, enter a full or partial pipeline name in the
search field.

4. Select a pipeline name to view details about the pipeline. The pipeline's Executions page
opens and displays a list of pipeline executions.

5. Select the name of a pipeline execution to view. The pipeline graph of the execution
appears.

6. (Optional) Select a step in the Select step dropdown menu to the right of the graph to
center the graph on your chosen step. Use the resizing icons on the lower-right side of the
graph to zoom in and out of the graph, fit the graph to screen, and expand the graph to

Amazon SageMaker Model Building Pipelines 4833

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

full screen. To focus on a specific part of the graph, you can select a blank area of the graph
and drag the graph to center on that area.

7. Choose one of the pipeline steps in the graph to see details about the step. You can view
step execution details in the following tabs:

• Overview — Details related to the step execution, including status and runtime, related
metrics and charts, and file locations of output collaterals.

• Settings — Parameters and values related to your pipeline step, as defined by the JSON
definition for the step. Includes input scripts and datasets.

• Details — General information about the step, including step type (such as processing or
training), and log file locations.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

Amazon SageMaker Model Building Pipelines 4834

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Pipelines from the menu.

4. To narrow the list of pipelines by name, enter a full or partial pipeline name in the search
field.

5. Select a pipeline name. The pipeline's Executions page opens.

6. In the Executions page, select an execution name to view details about the execution. The
execution details tab opens and displays a graph of the steps in the pipeline.

7. To search for a step by name, type characters that match a step name in the search field.
Use the resizing icons on the lower-right side of the graph to zoom in and out of the graph,
fit the graph to screen, and expand the graph to full screen. To focus on a specific part of
the graph, you can select a blank area of the graph and drag the graph to center on that
area.

8. Choose one of the pipeline steps in the graph to see details about the step. In the
preceding screenshot, a training step is chosen and displays the following tabs:

Amazon SageMaker Model Building Pipelines 4835

Amazon SageMaker Developer Guide

• Input – The training inputs. If an input source is from Amazon Simple Storage Service
(Amazon S3), choose the link to view the file in the Amazon S3 console.

• Output – The training outputs, such as metrics, charts, files, and evaluation outcome. The
graphs are produced using the Tracker APIs.

• Logs – The Amazon CloudWatch logs produced by the step.

• Info – The parameters and metadata associated with the step.

Download a Pipeline Definition

You can download a pipeline definition in the Amazon SageMaker Studio console. To download
a pipeline definition, complete the following steps based on whether you use Studio or Studio
Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, select Pipelines.

3. (Optional) To filter the list of pipelines by name, enter a full or partial pipeline name in the
search field.

4. Select a pipeline name. The Executions page opens and displays a list of pipeline
executions.

Amazon SageMaker Model Building Pipelines 4836

https://sagemaker-experiments.readthedocs.io/en/latest/tracker.html#smexperiments.tracker.Tracker.log_precision_recall
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

5. Stay on the Executions page or choose the Graph, Information, or Parameters page to the
left of the pipeline executions table. You can download the pipeline definition from any of
these pages.

6. At the top right of the page, choose the vertical ellipsis and choose Download pipeline
definition (JSON).

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Pipelines from the menu.

4. To narrow the list of pipelines by name, enter a full or partial pipeline name in the search
field.

5. Select a pipeline name.

6. Choose the Settings tab.

7. Choose Download pipeline definition file.

View Experiment Entities Created by SageMaker Pipelines

Note

SageMaker Experiments is a feature provided in Studio Classic only.

When you create a pipeline and specify pipeline_experiment_config, SageMaker Pipelines creates
the following SageMaker Experiments entities by default if they don't exist:

• An experiment for the pipeline

• A run group for every execution of the pipeline

• A run for each SageMaker job created in a pipeline step

Amazon SageMaker Model Building Pipelines 4837

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.pipeline.Pipeline.pipeline_experiment_config

Amazon SageMaker Developer Guide

For information about how experiments are integrated with pipelines, see Amazon SageMaker
Experiments Integration. For more information about SageMaker Experiments, see Manage
Machine Learning with Amazon SageMaker Experiments.

You can get to the list of runs associated with a pipeline from either the pipeline executions list or
the experiments list.

To view the runs list from the pipeline executions list

1. To view the pipeline executions list, follow the first five steps in the Studio Classic tab of View a
Pipeline.

2. On the top right of the screen, choose the Filter icon (

).

3. Choose Experiment. If experiment integration wasn't deactivated when the pipeline was
created, the experiment name is displayed in the executions list.

Note

Experiments integration was introduced in v2.41.0 of the Amazon SageMaker Python
SDK. Pipelines created with an earlier version of the SDK aren't integrated with
experiments by default.

4. Select the experiment of your choice to view run groups and runs related to that experiment.

To view the runs list from the experiments list

1. In the left sidebar of Studio Classic, choose the Home icon (

).

2. Select Experiments from the menu.

3. Use search bar or Filter icon (

) to filter the list to experiments created by a pipeline.

4. Open an experiment name and view a list of runs created by the pipeline.

Amazon SageMaker Model Building Pipelines 4838

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Start (and Stop) a Pipeline Execution

You can start and stop a pipeline execution in the Amazon SageMaker Studio console. For
information about how to view a list of pipeline executions, see View a Pipeline.

To start and stop a pipeline execution in the Amazon SageMaker Studio console, complete the
following steps based on whether you use Studio or Studio Classic.

Studio

To start a pipeline execution

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, select Pipelines.

3. (Optional) To filter the list of pipelines by name, enter a full or partial pipeline name in the
search field.

4. Select a pipeline name. The Executions page opens and displays a list of pipeline
executions.

5. You can create an execution from either the Executions or Graph pages. To create an
execution from the Executions page, choose Create. To create an execution from the Graph
page, choose Graph to the left of the executions table and then Create execution in the
top right of the DAG.

6. Enter or update the following required information:

• Name – A name unique to your account in the AWS Region.

• Description – An optional description for your execution.

• ProcessingInstanceType – The Amazon EC2 instance type to use for the processing job.

• TrainingInstanceType – The Amazon EC2 instance type to use for the training job

• InputData – The Amazon S3 URI to the input data.

• PreprocessScript – The Amazon S3 URI to the preprocessing script.

• EvaluateScript – The Amazon S3 URI to the model evaluation script.

• AccuracyConditionThreshold – The threshold of model accuracy to achieve to register
the model into the registry.

• ModelGroup – The registry into which to register the model.

Amazon SageMaker Model Building Pipelines 4839

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

• MaximumParallelTrainingJobs – The maximum number of training jobs to run in
parallel.

• MaximumTrainingJobs – The maximum number of training jobs to run.

7. Choose Create.

To stop a pipeline execution

1. In the left navigation pane, select Pipelines.

2. (Optional) To filter the list of pipelines by name, enter a full or partial pipeline name in the
search field.

3. Select a pipeline name. The Executions page opens and displays a list of pipeline
executions.

4. Select the execution to stop.

5. Choose Stop.

To resume a stopped pipeline execution

1. In the left navigation pane, select Pipelines.

2. (Optional) To filter the list of pipelines by name, enter a full or partial pipeline name in the
search field.

3. Select a pipeline name. The Executions page opens and displays a list of pipeline
executions.

4. Select the execution to resume.

5. Choose Resume.

Studio Classic

To start, stop, or resume a pipeline execution

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Pipelines from the menu.

Amazon SageMaker Model Building Pipelines 4840

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

4. To narrow the list of pipelines by name, enter a full or partial pipeline name in the search
field.

5. Select a pipeline name.

6. From the Executions or Graph tab in the execution list, choose Create execution.

7. Enter or update the following required information:

• Name – Must be unique to your account in the AWS Region.

• ProcessingInstanceCount – The number of instances to use for processing.

• ModelApprovalStatus – For your convenience.

• InputDataUrl – The Amazon S3 URI of the input data.

8. Choose Start.

• To see details of the execution or to stop the execution, choose View details on the status
banner.

• To stop the execution, choose Stop on the status banner.

• To resume the execution from where it was stopped, choose Resume on the status banner.

Note

If your pipeline fails, the status banner will show Failed status. After troubleshooting
the failed step, choose Retry on the status banner to resume running the pipeline from
that step.

For a list of registered models, see Automate MLOps with SageMaker Projects.

Track the Lineage of a SageMaker ML Pipeline

In this tutorial, you use Amazon SageMaker Studio to track the lineage of an Amazon SageMaker
ML Pipeline.

The pipeline was created by the Orchestrating Jobs with Amazon SageMaker Model Building
Pipelines notebook in the Amazon SageMaker example GitHub repository. For detailed information
on how the pipeline was created, see Define a Pipeline.

Amazon SageMaker Model Building Pipelines 4841

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-pipelines/tabular/abalone_build_train_deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-pipelines/tabular/abalone_build_train_deploy/sagemaker-pipelines-preprocess-train-evaluate-batch-transform.html
https://github.com/awslabs/amazon-sagemaker-examples

Amazon SageMaker Developer Guide

Lineage tracking in Studio is centered around a directed acyclic graph (DAG). The DAG represents
the steps in a pipeline. From the DAG you can track the lineage from any step to any other step.
The following diagram displays the steps in the pipeline. These steps appear as a DAG in Studio.

To track the lineage of a pipeline in the Amazon SageMaker Studio console, complete the following
steps based on whether you use Studio or Studio Classic.

Studio

To track the lineage of a pipeline

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, select Pipelines.

3. (Optional) To filter the list of pipelines by name, enter a full or partial pipeline name in the
search field.

4. In the Name column, select a pipeline name to view details about the pipeline. The
pipeline's Executions page opens and displays a list of pipeline executions.

5. In the Name column of the Executions table, select the name of a pipeline execution to
view.

6. At the top right of the Executions page, choose the vertical ellipsis and choose Download
pipeline definition (JSON). You can view the file to see how the pipeline graph was
defined.

7. Use the resizing icons on the lower-right side of the graph to zoom in and out of the graph,
fit the graph to screen, or expand the graph to full screen. To focus on a specific part of the
graph, you can select a blank area of the graph and drag the graph to center on that area.
The inset on the lower-right side of the graph displays your location in the graph.

The following image shows an example pipeline graph with inset and resizing icons. Also,
the tabs to the right of the graph contain detailed information about your pipeline run.

Amazon SageMaker Model Building Pipelines 4842

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

8. To view your training, validation, and test datasets, complete the following steps:

a. Choose the Processing step in your pipeline graph.

b. In the Overview tab, in the Files section, find the Amazon S3 paths to the training,
validation, and test datasets.

9. To view your model artifacts, complete the following steps:

a. Choose the Training step in your pipeline graph.

b. In the Overview tab, in the Files section, find the Amazon S3 paths to the model
artifact.

10. To find the model package ARN, complete the following steps:

a. Choose the model register (RegisterModel) step.

b. In the Overview tab, in the Files section, find the ARN of the model package.

Amazon SageMaker Model Building Pipelines 4843

Amazon SageMaker Developer Guide

Studio Classic

To track the lineage of a pipeline

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left sidebar of Studio, choose the Home icon (

).

3. In the menu, select Pipelines.

4. Use the Search box to filter the pipelines list.

5. Choose the AbalonePipeline pipeline to view the execution list and other details about
the pipeline.

6. Choose the Property Inspector icon (

) in the right sidebar to open the TABLE PROPERTIES pane, where you can choose which
properties to view.

7. Choose the Settings tab and then choose Download pipeline definition file. You can view
the file to see how the pipeline graph was defined.

8. On the Execution tab, select the first row in the execution list to view its execution graph
and other details about the execution. Note that the graph matches the diagram displayed
at the beginning of the tutorial.

Use the resizing icons on the lower-right side of the graph to zoom in and out of the graph,
fit the graph to screen, or expand the graph to full screen. To focus on a specific part of the
graph, you can select a blank area of the graph and drag the graph to center on that area.
The inset on the lower-right side of the graph displays your location in the graph.

Amazon SageMaker Model Building Pipelines 4844

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

9. On the Graph tab, choose the AbaloneProcess step to view details about the step.

10. Find the Amazon S3 paths to the training, validation, and test datasets in the Output tab,
under Files.

Note

To get the full paths, right-click the path and then choose Copy cell contents.

s3://sagemaker-eu-west-1-acct-id/sklearn-abalone-
process-2020-12-05-17-28-28-509/output/train
s3://sagemaker-eu-west-1-acct-id/sklearn-abalone-
process-2020-12-05-17-28-28-509/output/validation
s3://sagemaker-eu-west-1-acct-id/sklearn-abalone-
process-2020-12-05-17-28-28-509/output/test

11. Choose the AbaloneTrain step.

12. Find the Amazon S3 path to the model artifact in the Output tab, under Files:

Amazon SageMaker Model Building Pipelines 4845

Amazon SageMaker Developer Guide

s3://sagemaker-eu-west-1-acct-id/AbaloneTrain/pipelines-6locnsqz4bfu-
AbaloneTrain-NtfEpI0Ahu/output/model.tar.gz

13. Choose the AbaloneRegisterModel step.

14. Find the ARN of the model package in the Output tab, under Files:

arn:aws:sagemaker:eu-west-1:acct-id:model-package/abalonemodelpackagegroupname/2

Kubernetes Orchestration

You can orchestrate your SageMaker training and inference jobs with SageMaker Operators
for Kubernetes and SageMaker Components for Kubeflow Pipelines. SageMaker Operators for
Kubernetes make it easier for developers and data scientists using Kubernetes to train, tune,
and deploy machine learning (ML) models in SageMaker. SageMaker Components for Kubeflow
Pipelines allow you to move your data processing and training jobs from the Kubernetes cluster to
SageMaker’s machine learning-optimized managed service.

Contents

• SageMaker Operators for Kubernetes

• SageMaker Components for Kubeflow Pipelines

SageMaker Operators for Kubernetes

SageMaker Operators for Kubernetes make it easier for developers and data scientists using
Kubernetes to train, tune, and deploy machine learning (ML) models in SageMaker. You can install
these SageMaker Operators on your Kubernetes cluster in Amazon Elastic Kubernetes Service
(Amazon EKS) to create SageMaker jobs natively using the Kubernetes API and command-line
Kubernetes tools such as kubectl. This guide shows how to set up and use the operators to run
model training, hyperparameter tuning, or inference (real-time and batch) on SageMaker from a
Kubernetes cluster. The procedures and guidelines in this chapter assume that you are familiar with
Kubernetes and its basic commands.

Important

We are stopping the development and technical support of the original version of
SageMaker Operators for Kubernetes.

Kubernetes Orchestration 4846

https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master

Amazon SageMaker Developer Guide

If you are currently using version v1.2.2 or below of SageMaker Operators for
Kubernetes, we recommend migrating your resources to the ACK service controller
for Amazon SageMaker. The ACK service controller is a new generation of SageMaker
Operators for Kubernetes based on AWS Controllers for Kubernetes (ACK).
For information on the migration steps, see Migrate resources to the latest Operators.
For answers to frequently asked questions on the end of support of the original version of
SageMaker Operators for Kubernetes, see Announcing the End of Support of the Original
Version of SageMaker Operators for Kubernetes

Note

There is no additional charge to use these operators. You do incur charges for any
SageMaker resources that you use through these operators.

What is an operator?

A Kubernetes operator is an application controller managing applications on behalf of a
Kubernetes user. Controllers of the control plane encompass various control loops listening to
a central state manager (ETCD) to regulate the state of the application they control. Examples
of such applications include the Cloud-controller-manager and kube-controller-manager.
Operators typically provide a higher-level abstraction than raw Kubernetes API, making it easier for
users to deploy and manage applications. To add new capabilities to Kubernetes, developers can
extend the Kubernetes API by creating a custom resource that contains their application-specific
or domain-specific logic and components. Operators in Kubernetes allow users to natively invoke
these custom resources and automate associated workflows.

How does AWS Controllers for Kubernetes (ACK) work?

The SageMaker Operators for Kubernetes allow you to manage jobs in SageMaker from your
Kubernetes cluster. The latest version of SageMaker Operators for Kubernetes is based on AWS
Controllers for Kubernetes (ACK). ACK includes a common controller runtime, a code generator, and
a set of AWS service-specific controllers, one of which is the SageMaker controller.

The following diagram illustrates how ACK works.

Kubernetes Orchestration 4847

https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/

Amazon SageMaker Developer Guide

In this diagram, a Kubernetes user wants to run model training on SageMaker from within the
Kubernetes cluster using the Kubernetes API. The user issues a call to kubectl apply, passing
in a file that describes a Kubernetes custom resource describing the SageMaker training job.
kubectl apply passes this file, called a manifest, to the Kubernetes API server running in the
Kubernetes controller node (Step 1 in the workflow diagram). The Kubernetes API server receives
the manifest with the SageMaker training job specification and determines whether the user has
permissions to create a custom resource of kind sageMaker.services.k8s.aws/TrainingJob,
and whether the custom resource is properly formatted (Step 2). If the user is authorized and
the custom resource is valid, the Kubernetes API server writes (Step 3) the custom resource to
its etcd data store and then responds back (Step 4) to the user that the custom resource has
been created. The SageMaker controller, which is running on a Kubernetes worker node within
the context of a normal Kubernetes Pod, is notified (Step 5) that a new custom resource of kind
sageMaker.services.k8s.aws/TrainingJob has been created. The SageMaker controller
then communicates (Step 6) with the SageMaker API, calling the SageMaker CreateTrainingJob
API to create the training job in AWS. After communicating with the SageMaker API, the SageMaker
controller calls the Kubernetes API server to update (Step 7) the custom resource’s status with
information it received from SageMaker. The SageMaker controller therefore provides the same
information to the developers that they would have received using the AWS SDK.

Kubernetes Orchestration 4848

Amazon SageMaker Developer Guide

Permissions overview

The operators access SageMaker resources on your behalf. The IAM role that the operator assumes
to interact with AWS resources differs from the credentials you use to access the Kubernetes
cluster. The role also differs from the role that AWS assumes when running your machine learning
jobs.

The following image explains the various authentication layers.

Kubernetes Orchestration 4849

Amazon SageMaker Developer Guide

Latest SageMaker Operators for Kubernetes

This section is based on the latest version of SageMaker Operators for Kubernetes using AWS
Controllers for Kubernetes (ACK).

Important

If you are currently using version v1.2.2 or below of SageMaker Operators for
Kubernetes, we recommend migrating your resources to the ACK service controller
for Amazon SageMaker. The ACK service controller is a new generation of SageMaker
Operators for Kubernetes based on AWS Controllers for Kubernetes (ACK).
For information on the migration steps, see Migrate resources to the latest Operators.
For answers to frequently asked questions on the end of support of the original version of
SageMaker Operators for Kubernetes, see Announcing the End of Support of the Original
Version of SageMaker Operators for Kubernetes

The latest version of SageMaker Operators for Kubernetes is based on AWS Controllers for
Kubernetes (ACK), a framework for building Kubernetes custom controllers where each controller
communicates with an AWS service API. These controllers allow Kubernetes users to provision AWS
resources like databases or message queues using the Kubernetes API.

Use the following steps to install and use ACK to train, tune, and deploy machine learning models
with Amazon SageMaker.

Contents

• Install SageMaker Operators for Kubernetes

• Use SageMaker Operators for Kubernetes

• Reference

Install SageMaker Operators for Kubernetes

To set up the latest available version of SageMaker Operators for Kubernetes, see the Setup section
in Machine Learning with the ACK SageMaker Controller.

Use SageMaker Operators for Kubernetes

For a tutorial on how to train a machine learning model with the ACK service controller for Amazon
SageMaker using Amazon EKS, see Machine Learning with the ACK SageMaker Controller.

Kubernetes Orchestration 4850

https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/
https://aws-controllers-k8s.github.io/community/
https://aws-controllers-k8s.github.io/community/docs/tutorials/sagemaker-example/#setup
https://aws-controllers-k8s.github.io/community/docs/tutorials/sagemaker-example/

Amazon SageMaker Developer Guide

For an autoscaling example, see Scale SageMaker Workloads with Application Auto Scaling

Reference

See also the ACK service controller for Amazon SageMaker GitHub repository or read AWS
Controllers for Kubernetes Documentation.

Old SageMaker Operators for Kubernetes

This section is based on the original version of SageMaker Operators for Kubernetes.

Important

We are stopping the development and technical support of the original version of
SageMaker Operators for Kubernetes.
If you are currently using version v1.2.2 or below of SageMaker Operators for
Kubernetes, we recommend migrating your resources to the ACK service controller
for Amazon SageMaker. The ACK service controller is a new generation of SageMaker
Operators for Kubernetes based on AWS Controllers for Kubernetes (ACK).
For information on the migration steps, see Migrate resources to the latest Operators.
For answers to frequently asked questions on the end of support of the original version of
SageMaker Operators for Kubernetes, see Announcing the End of Support of the Original
Version of SageMaker Operators for Kubernetes

Contents

• Install SageMaker Operators for Kubernetes

• Use Amazon SageMaker Jobs

• Migrate resources to the latest Operators

• Announcing the End of Support of the Original Version of SageMaker Operators for Kubernetes

Install SageMaker Operators for Kubernetes

Use the following steps to install and use SageMaker Operators for Kubernetes to train, tune, and
deploy machine learning models with Amazon SageMaker.

Contents

• IAM role-based setup and operator deployment

Kubernetes Orchestration 4851

https://aws-controllers-k8s.github.io/community/docs/tutorials/autoscaling-example/
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/docs/community/overview/
https://aws-controllers-k8s.github.io/community/docs/community/overview/
https://github.com/aws/amazon-sagemaker-operator-for-k8s
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/

Amazon SageMaker Developer Guide

• Clean up resources

• Delete operators

• Troubleshooting

• Images and SMlogs in each Region

IAM role-based setup and operator deployment

The following sections describe the steps to set up and deploy the original version of the operator.

Warning

Reminder: The following steps do not install the latest version of SageMaker Operators for
Kubernetes. To install the new ACK-based SageMaker Operators for Kubernetes, see Latest
SageMaker Operators for Kubernetes.

Prerequisites

This guide assumes that you have completed the following prerequisites:

• Install the following tools on the client machine used to access your Kubernetes cluster:
• kubectl Version 1.13 or later. Use a kubectl version that is within one minor version of your

Amazon EKS cluster control plane. For example, a 1.13 kubectl client works with Kubernetes
1.13 and 1.14 clusters. OpenID Connect (OIDC) is not supported in versions earlier than 1.13.

• eksctl Version 0.7.0 or later
• AWS CLI Version 1.16.232 or later
• (optional) Helm Version 3.0 or later
• aws-iam-authenticator

• Have IAM permissions to create roles and attach policies to roles.
• Created a Kubernetes cluster on which to run the operators. It should either be Kubernetes

version 1.13 or 1.14. For automated cluster creation using eksctl, see Getting Started with
eksctl. It takes 20–30 minutes to provision a cluster.

Cluster-scoped deployment

Before you can deploy your operator using an IAM role, associate an OpenID Connect (OIDC)
Identity Provider (IdP) with your role to authenticate with the IAM service.

Kubernetes Orchestration 4852

https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://github.com/weaveworks/eksctl
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html
https://helm.sh/docs/intro/install/
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

Amazon SageMaker Developer Guide

Create an OIDC provider for your cluster

The following instructions show how to create and associate an OIDC provider with your Amazon
EKS cluster.

1. Set the local CLUSTER_NAME and AWS_REGION environment variables as follows:

Set the Region and cluster
export CLUSTER_NAME="<your cluster name>"
export AWS_REGION="<your region>"

2. Use the following command to associate the OIDC provider with your cluster. For more
information, see Enabling IAM Roles for Service Accounts on your Cluster.

eksctl utils associate-iam-oidc-provider --cluster ${CLUSTER_NAME} \
 --region ${AWS_REGION} --approve

Your output should look like the following:

[_] eksctl version 0.10.1
 [_] using region us-east-1
 [_] IAM OpenID Connect provider is associated with cluster "my-cluster" in "us-
east-1"

Now that the cluster has an OIDC identity provider, you can create a role and give a Kubernetes
ServiceAccount permission to assume the role.

Get the OIDC ID

To set up the ServiceAccount, obtain the OIDC issuer URL using the following command:

aws eks describe-cluster --name ${CLUSTER_NAME} --region ${AWS_REGION} \
 --query cluster.identity.oidc.issuer --output text

The command returns a URL like the following:

https://oidc.eks.${AWS_REGION}.amazonaws.com/id/D48675832CA65BD10A532F597OIDCID

In this URL, the value D48675832CA65BD10A532F597OIDCID is the OIDC ID. The OIDC ID for your
cluster is different. You need this OIDC ID value to create a role.

Kubernetes Orchestration 4853

https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html

Amazon SageMaker Developer Guide

If your output is None, it means that your client version is old. To work around this, run the
following command:

aws eks describe-cluster --region ${AWS_REGION} --query cluster --name ${CLUSTER_NAME}
 --output text | grep OIDC

The OIDC URL is returned as follows:

OIDC https://oidc.eks.us-east-1.amazonaws.com/id/D48675832CA65BD10A532F597OIDCID

Create an IAM role

1. Create a file named trust.json and insert the following trust relationship code block into it.
Be sure to replace all <OIDC ID>, <AWS account number>, and <EKS Cluster region>
placeholders with values corresponding to your cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::<AWS account number>:oidc-provider/
oidc.eks.<EKS Cluster region>.amazonaws.com/id/<OIDC ID>"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "oidc.eks.<EKS Cluster region>.amazonaws.com/id/<OIDC ID>:aud":
 "sts.amazonaws.com",
 "oidc.eks.<EKS Cluster region>.amazonaws.com/id/<OIDC ID>:sub":
 "system:serviceaccount:sagemaker-k8s-operator-system:sagemaker-k8s-operator-
default"
 }
 }
 }
]
 }

2. Run the following command to create a role with the trust relationship defined in
trust.json. This role allows the Amazon EKS cluster to get and refresh credentials from IAM.

Kubernetes Orchestration 4854

Amazon SageMaker Developer Guide

aws iam create-role --region ${AWS_REGION} --role-name <role name> --assume-role-
policy-document file://trust.json --output=text

Your output should look like the following:

ROLE arn:aws:iam::123456789012:role/my-role 2019-11-22T21:46:10Z /
 ABCDEFSFODNN7EXAMPLE my-role
ASSUMEROLEPOLICYDOCUMENT 2012-10-17
STATEMENT sts:AssumeRoleWithWebIdentity Allow
STRINGEQUALS sts.amazonaws.com system:serviceaccount:sagemaker-k8s-
operator-system:sagemaker-k8s-operator-default
PRINCIPAL arn:aws:iam::123456789012:oidc-provider/oidc.eks.us-
east-1.amazonaws.com/id/

Take note of ROLE ARN; you pass this value to your operator.

Attach the AmazonSageMakerFullAccess policy to the role

To give the role access to SageMaker, attach the AmazonSageMakerFullAccess policy. If you want to
limit permissions to the operator, you can create your own custom policy and attach it.

To attach AmazonSageMakerFullAccess, run the following command:

aws iam attach-role-policy --role-name <role name> --policy-arn
 arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

The Kubernetes ServiceAccount sagemaker-k8s-operator-default should have
AmazonSageMakerFullAccess permissions. Confirm this when you install the operator.

Deploy the operator

When deploying your operator, you can use either a YAML file or Helm charts.

Deploy the operator using YAML

This is the simplest way to deploy your operators. The process is as follows:

1. Download the installer script using the following command:

Kubernetes Orchestration 4855

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/release/rolebased/installer.yaml

2. Edit the installer.yaml file to replace eks.amazonaws.com/role-arn. Replace the ARN
here with the Amazon Resource Name (ARN) for the OIDC-based role you’ve created.

3. Use the following command to deploy the cluster:

kubectl apply -f installer.yaml

Deploy the operator using Helm Charts

Use the provided Helm Chart to install the operator.

1. Clone the Helm installer directory using the following command:

git clone https://github.com/aws/amazon-sagemaker-operator-for-k8s.git

2. Navigate to the amazon-sagemaker-operator-for-k8s/hack/charts/installer
folder. Edit the rolebased/values.yaml file, which includes high-level parameters for the
chart. Replace the role ARN here with the Amazon Resource Name (ARN) for the OIDC-based
role you've created.

3. Install the Helm Chart using the following command:

kubectl create namespace sagemaker-k8s-operator-system
 helm install --namespace sagemaker-k8s-operator-system sagemaker-operator
 rolebased/

If you decide to install the operator into a namespace other than the one specified, you need
to adjust the namespace defined in the IAM role trust.json file to match.

4. After a moment, the chart is installed with a randomly generated name. Verify that the
installation succeeded by running the following command:

helm ls

Your output should look like the following:

Kubernetes Orchestration 4856

Amazon SageMaker Developer Guide

NAME NAMESPACE REVISION UPDATED
 STATUS CHART APP
 VERSION
 sagemaker-operator sagemaker-k8s-operator-system 1
 2019-11-20 23:14:59.6777082 +0000 UTC deployed sagemaker-k8s-
operator-0.1.0

Verify the operator deployment

1. You should be able to see the SageMaker Custom Resource Definitions (CRDs) for each
operator deployed to your cluster by running the following command:

kubectl get crd | grep sagemaker

Your output should look like the following:

batchtransformjobs.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
endpointconfigs.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
hostingdeployments.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
hyperparametertuningjobs.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
models.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
trainingjobs.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z

2. Ensure that the operator pod is running successfully. Use the following command to list all
pods:

kubectl -n sagemaker-k8s-operator-system get pods

You should see a pod named sagemaker-k8s-operator-controller-manager-***** in
the namespace sagemaker-k8s-operator-system as follows:

NAME READY STATUS
 RESTARTS AGE
sagemaker-k8s-operator-controller-manager-12345678-r8abc 2/2 Running 0
 23s

Kubernetes Orchestration 4857

Amazon SageMaker Developer Guide

Namespace-scoped deployment

You have the option to install your operator within the scope of an individual Kubernetes
namespace. In this mode, the controller only monitors and reconciles resources with SageMaker if
the resources are created within that namespace. This allows for finer-grained control over which
controller is managing which resources. This is useful for deploying to multiple AWS accounts or
controlling which users have access to particular jobs.

This guide outlines how to install an operator into a particular, predefined namespace. To deploy
a controller into a second namespace, follow the guide from beginning to end and change out the
namespace in each step.

Create an OIDC provider for your Amazon EKS cluster

The following instructions show how to create and associate an OIDC provider with your Amazon
EKS cluster.

1. Set the local CLUSTER_NAME and AWS_REGION environment variables as follows:

Set the Region and cluster
export CLUSTER_NAME="<your cluster name>"
export AWS_REGION="<your region>"

2. Use the following command to associate the OIDC provider with your cluster. For more
information, see Enabling IAM Roles for Service Accounts on your Cluster.

eksctl utils associate-iam-oidc-provider --cluster ${CLUSTER_NAME} \
 --region ${AWS_REGION} --approve

Your output should look like the following:

[_] eksctl version 0.10.1
 [_] using region us-east-1
 [_] IAM OpenID Connect provider is associated with cluster "my-cluster" in "us-
east-1"

Now that the cluster has an OIDC identity provider, create a role and give a Kubernetes
ServiceAccount permission to assume the role.

Kubernetes Orchestration 4858

https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html

Amazon SageMaker Developer Guide

Get your OIDC ID

To set up the ServiceAccount, first obtain the OpenID Connect issuer URL using the following
command:

aws eks describe-cluster --name ${CLUSTER_NAME} --region ${AWS_REGION} \
 --query cluster.identity.oidc.issuer --output text

The command returns a URL like the following:

https://oidc.eks.${AWS_REGION}.amazonaws.com/id/D48675832CA65BD10A532F597OIDCID

In this URL, the value D48675832CA65BD10A532F597OIDCID is the OIDC ID. The OIDC ID for your
cluster is different. You need this OIDC ID value to create a role.

If your output is None, it means that your client version is old. To work around this, run the
following command:

aws eks describe-cluster --region ${AWS_REGION} --query cluster --name ${CLUSTER_NAME}
 --output text | grep OIDC

The OIDC URL is returned as follows:

OIDC https://oidc.eks.us-east-1.amazonaws.com/id/D48675832CA65BD10A532F597OIDCID

Create your IAM role

1. Create a file named trust.json and insert the following trust relationship code block into it.
Be sure to replace all <OIDC ID>, <AWS account number>, <EKS Cluster region>, and
<Namespace> placeholders with values corresponding to your cluster. For the purposes of this
guide, my-namespace is used for the <Namespace> value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::<AWS account number>:oidc-provider/
oidc.eks.<EKS Cluster region>.amazonaws.com/id/<OIDC ID>"
 },

Kubernetes Orchestration 4859

Amazon SageMaker Developer Guide

 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "oidc.eks.<EKS Cluster region>.amazonaws.com/id/<OIDC ID>:aud":
 "sts.amazonaws.com",
 "oidc.eks.<EKS Cluster region>.amazonaws.com/id/<OIDC ID>:sub":
 "system:serviceaccount:<Namespace>:sagemaker-k8s-operator-default"
 }
 }
 }
]
 }

2. Run the following command to create a role with the trust relationship defined in
trust.json. This role allows the Amazon EKS cluster to get and refresh credentials from IAM.

aws iam create-role --region ${AWS_REGION} --role-name <role name> --assume-role-
policy-document file://trust.json --output=text

Your output should look like the following:

ROLE arn:aws:iam::123456789012:role/my-role 2019-11-22T21:46:10Z /
 ABCDEFSFODNN7EXAMPLE my-role
 ASSUMEROLEPOLICYDOCUMENT 2012-10-17
 STATEMENT sts:AssumeRoleWithWebIdentity Allow
 STRINGEQUALS sts.amazonaws.com system:serviceaccount:my-
namespace:sagemaker-k8s-operator-default
 PRINCIPAL arn:aws:iam::123456789012:oidc-provider/oidc.eks.us-
east-1.amazonaws.com/id/

Take note of ROLE ARN. You pass this value to your operator.

Attach the AmazonSageMakerFullAccess policy to your role

To give the role access to SageMaker, attach the AmazonSageMakerFullAccess policy. If you
want to limit permissions to the operator, you can create your own custom policy and attach it.

To attach AmazonSageMakerFullAccess, run the following command:

aws iam attach-role-policy --role-name <role name> --policy-arn
 arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Kubernetes Orchestration 4860

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

The Kubernetes ServiceAccount sagemaker-k8s-operator-default should have
AmazonSageMakerFullAccess permissions. Confirm this when you install the operator.

Deploy the operator to your namespace

When deploying your operator, you can use either a YAML file or Helm charts.

Deploy the operator to your namespace using YAML

There are two parts to deploying an operator within the scope of a namespace. The first is the set
of CRDs that are installed at a cluster level. These resource definitions only need to be installed
once per Kubernetes cluster. The second part is the operator permissions and deployment itself.

If you have not already installed the CRDs into the cluster, apply the CRD installer YAML using the
following command:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-
k8s/master/release/rolebased/namespaced/crd.yaml

To install the operator onto the cluster:

1. Download the operator installer YAML using the following command:

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/release/rolebased/namespaced/operator.yaml

2. Update the installer YAML to place the resources into your specified namespace using the
following command:

sed -i -e 's/PLACEHOLDER-NAMESPACE/<YOUR NAMESPACE>/g' operator.yaml

3. Edit the operator.yaml file to place resources into your eks.amazonaws.com/role-arn.
Replace the ARN here with the Amazon Resource Name (ARN) for the OIDC-based role you've
created.

4. Use the following command to deploy the cluster:

kubectl apply -f operator.yaml

Kubernetes Orchestration 4861

Amazon SageMaker Developer Guide

Deploy the operator to your namespace using Helm Charts

There are two parts needed to deploy an operator within the scope of a namespace. The first is the
set of CRDs that are installed at a cluster level. These resource definitions only need to be installed
once per Kubernetes cluster. The second part is the operator permissions and deployment itself.
When using Helm Charts you have to first create the namespace using kubectl.

1. Clone the Helm installer directory using the following command:

git clone https://github.com/aws/amazon-sagemaker-operator-for-k8s.git

2. Navigate to the amazon-sagemaker-operator-for-k8s/hack/charts/installer/
namespaced folder. Edit the rolebased/values.yaml file, which includes high-level
parameters for the chart. Replace the role ARN here with the Amazon Resource Name (ARN)
for the OIDC-based role you've created.

3. Install the Helm Chart using the following command:

helm install crds crd_chart/

4. Create the required namespace and install the operator using the following command:

kubectl create namespace <namespace>
helm install --n <namespace> op operator_chart/

5. After a moment, the chart is installed with the name sagemaker-operator. Verify that the
installation succeeded by running the following command:

helm ls

Your output should look like the following:

NAME NAMESPACE REVISION UPDATED
 STATUS CHART APP
 VERSION
sagemaker-operator my-namespace 1 2019-11-20
 23:14:59.6777082 +0000 UTC deployed sagemaker-k8s-operator-0.1.0

Kubernetes Orchestration 4862

Amazon SageMaker Developer Guide

Verify the operator deployment to your namespace

1. You should be able to see the SageMaker Custom Resource Definitions (CRDs) for each
operator deployed to your cluster by running the following command:

kubectl get crd | grep sagemaker

Your output should look like the following:

batchtransformjobs.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
endpointconfigs.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
hostingdeployments.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
hyperparametertuningjobs.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
models.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z
trainingjobs.sagemaker.aws.amazon.com 2019-11-20T17:12:34Z

2. Ensure that the operator pod is running successfully. Use the following command to list all
pods:

kubectl -n my-namespace get pods

You should see a pod named sagemaker-k8s-operator-controller-manager-***** in
the namespace my-namespace as follows:

NAME READY STATUS
 RESTARTS AGE
sagemaker-k8s-operator-controller-manager-12345678-r8abc 2/2 Running 0
 23s

Install the SageMaker logs kubectl plugin

As part of the SageMaker Operators for Kubernetes, you can use the smlogs plugin for kubectl.
This allows SageMaker CloudWatch logs to be streamed with kubectl. kubectl must be installed
onto your PATH. The following commands place the binary in the sagemaker-k8s-bin directory
in your home directory, and add that directory to your PATH.

export os="linux"

Kubernetes Orchestration 4863

https://kubernetes.io/docs/tasks/extend-kubectl/kubectl-plugins/
http://www.linfo.org/path_env_var.html

Amazon SageMaker Developer Guide

wget https://amazon-sagemaker-operator-for-k8s-us-east-1.s3.amazonaws.com/kubectl-
smlogs-plugin/v1/${os}.amd64.tar.gz
tar xvzf ${os}.amd64.tar.gz

Move binaries to a directory in your homedir.
mkdir ~/sagemaker-k8s-bin
cp ./kubectl-smlogs.${os}.amd64/kubectl-smlogs ~/sagemaker-k8s-bin/.

This line adds the binaries to your PATH in your .bashrc.

echo 'export PATH=$PATH:~/sagemaker-k8s-bin' >> ~/.bashrc

Source your .bashrc to update environment variables:
source ~/.bashrc

Use the following command to verify that the kubectl plugin is installed correctly:

kubectl smlogs

If the kubectl plugin is installed correctly, your output should look like the following:

View SageMaker logs via Kubernetes

Usage:
 smlogs [command]

Aliases:
 smlogs, SMLogs, Smlogs

Available Commands:
 BatchTransformJob View BatchTransformJob logs via Kubernetes
 TrainingJob View TrainingJob logs via Kubernetes
 help Help about any command

Flags:
 -h, --help help for smlogs

Use "smlogs [command] --help" for more information about a command.

Kubernetes Orchestration 4864

Amazon SageMaker Developer Guide

Clean up resources

To uninstall the operator from your cluster, you must first make sure to delete all SageMaker
resources from the cluster. Failure to do so causes the operator delete operation to hang. Run the
following commands to stop all jobs:

Delete all SageMaker jobs from Kubernetes
kubectl delete --all --all-namespaces hyperparametertuningjob.sagemaker.aws.amazon.com
kubectl delete --all --all-namespaces trainingjobs.sagemaker.aws.amazon.com
kubectl delete --all --all-namespaces batchtransformjob.sagemaker.aws.amazon.com
kubectl delete --all --all-namespaces hostingdeployment.sagemaker.aws.amazon.com

You should see output similar to the following:

$ kubectl delete --all --all-namespaces trainingjobs.sagemaker.aws.amazon.com
trainingjobs.sagemaker.aws.amazon.com "xgboost-mnist-from-for-s3" deleted

$ kubectl delete --all --all-namespaces
 hyperparametertuningjob.sagemaker.aws.amazon.com
hyperparametertuningjob.sagemaker.aws.amazon.com "xgboost-mnist-hpo" deleted

$ kubectl delete --all --all-namespaces batchtransformjob.sagemaker.aws.amazon.com
batchtransformjob.sagemaker.aws.amazon.com "xgboost-mnist" deleted

$ kubectl delete --all --all-namespaces hostingdeployment.sagemaker.aws.amazon.com
hostingdeployment.sagemaker.aws.amazon.com "host-xgboost" deleted

After you delete all SageMaker jobs, see Delete operators to delete the operator from your cluster.

Delete operators

Delete cluster-based operators

Operators installed using YAML

To uninstall the operator from your cluster, make sure that all SageMaker resources have been
deleted from the cluster. Failure to do so causes the operator delete operation to hang.

Note

Before deleting your cluster, be sure to delete all SageMaker resources from the cluster. See
Clean up resources for more information.

Kubernetes Orchestration 4865

Amazon SageMaker Developer Guide

After you delete all SageMaker jobs, use kubectl to delete the operator from the cluster:

Delete the operator and its resources
kubectl delete -f /installer.yaml

You should see output similar to the following:

$ kubectl delete -f raw-yaml/installer.yaml
namespace "sagemaker-k8s-operator-system" deleted
customresourcedefinition.apiextensions.k8s.io
 "batchtransformjobs.sagemaker.aws.amazon.com" deleted
customresourcedefinition.apiextensions.k8s.io
 "endpointconfigs.sagemaker.aws.amazon.com" deleted
customresourcedefinition.apiextensions.k8s.io
 "hostingdeployments.sagemaker.aws.amazon.com" deleted
customresourcedefinition.apiextensions.k8s.io
 "hyperparametertuningjobs.sagemaker.aws.amazon.com" deleted
customresourcedefinition.apiextensions.k8s.io "models.sagemaker.aws.amazon.com" deleted
customresourcedefinition.apiextensions.k8s.io "trainingjobs.sagemaker.aws.amazon.com"
 deleted
role.rbac.authorization.k8s.io "sagemaker-k8s-operator-leader-election-role" deleted
clusterrole.rbac.authorization.k8s.io "sagemaker-k8s-operator-manager-role" deleted
clusterrole.rbac.authorization.k8s.io "sagemaker-k8s-operator-proxy-role" deleted
rolebinding.rbac.authorization.k8s.io "sagemaker-k8s-operator-leader-election-
rolebinding" deleted
clusterrolebinding.rbac.authorization.k8s.io "sagemaker-k8s-operator-manager-
rolebinding" deleted
clusterrolebinding.rbac.authorization.k8s.io "sagemaker-k8s-operator-proxy-rolebinding"
 deleted
service "sagemaker-k8s-operator-controller-manager-metrics-service" deleted
deployment.apps "sagemaker-k8s-operator-controller-manager" deleted
secrets "sagemaker-k8s-operator-abcde" deleted

Operators installed using Helm Charts

To delete the operator CRDs, first delete all the running jobs. Then delete the Helm Chart that was
used to deploy the operators using the following commands:

get the helm charts
helm ls

delete the charts

Kubernetes Orchestration 4866

Amazon SageMaker Developer Guide

helm delete <chart_name>

Delete namespace-based operators

Operators installed with YAML

To uninstall the operator from your cluster, first make sure that all SageMaker resources have been
deleted from the cluster. Failure to do so causes the operator delete operation to hang.

Note

Before deleting your cluster, be sure to delete all SageMaker resources from the cluster. See
Clean up resources for more information.

After you delete all SageMaker jobs, use kubectl to first delete the operator from the namespace
and then the CRDs from the cluster. Run the following commands to delete the operator from the
cluster:

Delete the operator using the same yaml file that was used to install the operator
kubectl delete -f operator.yaml

Now delete the CRDs using the CRD installer yaml
kubectl delete -f https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-
k8s/master/release/rolebased/namespaced/crd.yaml

Now you can delete the namespace if you want
kubectl delete namespace <namespace>

Operators installed with Helm Charts

To delete the operator CRDs, first delete all the running jobs. Then delete the Helm Chart that was
used to deploy the operators using the following commands:

Delete the operator
helm delete <chart_name>

delete the crds
helm delete crds

Kubernetes Orchestration 4867

Amazon SageMaker Developer Guide

optionally delete the namespace
kubectl delete namespace <namespace>

Troubleshooting

Debugging a failed job

Use these steps to debug a failed job.

• Check the job status by running the following:

kubectl get <CRD Type> <job name>

• If the job was created in SageMaker, you can use the following command to see the STATUS and
the SageMaker Job Name:

kubectl get <crd type> <job name>

• You can use smlogs to find the cause of the issue using the following command:

kubectl smlogs <crd type> <job name>

• You can also use the describe command to get more details about the job using the following
command. The output has an additional field that has more information about the status of
the job.

kubectl describe <crd type> <job name>

• If the job was not created in SageMaker, then use the logs of the operator's pod to find the cause
of the issue as follows:

$ kubectl get pods -A | grep sagemaker
Output:
sagemaker-k8s-operator-system sagemaker-k8s-operator-controller-manager-5cd7df4d74-
wh22z 2/2 Running 0 3h33m

$ kubectl logs -p <pod name> -c manager -n sagemaker-k8s-operator-system

Kubernetes Orchestration 4868

Amazon SageMaker Developer Guide

Deleting an operator CRD

If deleting a job is not working, check if the operator is running. If the operator is not running, then
you have to delete the finalizer using the following steps:

1. In a new terminal, open the job in an editor using kubectl edit as follows:

kubectl edit <crd type> <job name>

2. Edit the job to delete the finalizer by removing the following two lines from the file. Save the
file and the job is be deleted.

finalizers:
 - sagemaker-operator-finalizer

Images and SMlogs in each Region

The following table lists the available operator images and SMLogs in each Region.

RegionController Image Linux SMLogs

us-
east-1

957583890962.dkr.ecr.us-
east-1.amazonaws.com/
amazon-sagemaker-o
perator-for-k8s:v1

https://s3.us-east-1.amazonaws.com/amazon-s
agemaker-operator-for-k8s-us-east-1/kubectl-
smlogs-plugin/v1/linux.amd64.tar.gz

us-
east-2

922499468684.dkr.ecr.us-
east-2.amazonaws.com/
amazon-sagemaker-o
perator-for-k8s:v1

https://s3.us-east-2.amazonaws.com/amazon-s
agemaker-operator-for-k8s-us-east-2/kubectl-
smlogs-plugin/v1/linux.amd64.tar.gz

us-
west-2

640106867763.dkr.ecr.us-
west-2.amazonaws.com/
amazon-sagemaker-o
perator-for-k8s:v1

https://s3.us-west-2.amazonaws.com/amazon-s
agemaker-operator-for-k8s-us-west-2/kubectl-
smlogs-plugin/v1/linux.amd64.tar.gz

eu-
west-1

613661167059.dkr.ecr.eu-
west-1.amazonaws.com/

https://s3.eu-west-1.amazonaws.com/amazon-s
agemaker-operator-for-k8s-eu-west-1/kubectl-
smlogs-plugin/v1/linux.amd64.tar.gz

Kubernetes Orchestration 4869

https://s3.us-east-1.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-east-1/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.us-east-1.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-east-1/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.us-east-1.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-east-1/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.us-east-2.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-east-2/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.us-east-2.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-east-2/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.us-east-2.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-east-2/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.us-west-2.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-west-2/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.us-west-2.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-west-2/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.us-west-2.amazonaws.com/amazon-sagemaker-operator-for-k8s-us-west-2/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.eu-west-1.amazonaws.com/amazon-sagemaker-operator-for-k8s-eu-west-1/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.eu-west-1.amazonaws.com/amazon-sagemaker-operator-for-k8s-eu-west-1/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz
https://s3.eu-west-1.amazonaws.com/amazon-sagemaker-operator-for-k8s-eu-west-1/kubectl-smlogs-plugin/v1/linux.amd64.tar.gz

Amazon SageMaker Developer Guide

RegionController Image Linux SMLogs

amazon-sagemaker-o
perator-for-k8s:v1

Use Amazon SageMaker Jobs

This section is based on the original version of SageMaker Operators for Kubernetes.

Important

We are stopping the development and technical support of the original version of
SageMaker Operators for Kubernetes.
If you are currently using version v1.2.2 or below of SageMaker Operators for
Kubernetes, we recommend migrating your resources to the ACK service controller
for Amazon SageMaker. The ACK service controller is a new generation of SageMaker
Operators for Kubernetes based on AWS Controllers for Kubernetes (ACK).
For information on the migration steps, see Migrate resources to the latest Operators.
For answers to frequently asked questions on the end of support of the original version of
SageMaker Operators for Kubernetes, see Announcing the End of Support of the Original
Version of SageMaker Operators for Kubernetes

To run an Amazon SageMaker job using the Operators for Kubernetes, you can either apply a YAML
file or use the supplied Helm Charts.

All sample operator jobs in the following tutorials use sample data taken from a public MNIST
dataset. In order to run these samples, download the dataset into your Amazon S3 bucket. You can
find the dataset in Download the MNIST Dataset.

Contents

• The TrainingJob operator

• The HyperParameterTuningJob operator

• The BatchTransformJob operator

• The HostingDeployment operator

• The ProcessingJob operator

• HostingAutoscalingPolicy (HAP) Operator

Kubernetes Orchestration 4870

https://github.com/aws/amazon-sagemaker-operator-for-k8s
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-preprocess-data-pull-data.html

Amazon SageMaker Developer Guide

The TrainingJob operator

Training job operators reconcile your specified training job spec to SageMaker by launching
it for you in SageMaker. You can learn more about SageMaker training jobs in the SageMaker
CreateTrainingJob API documentation.

Topics

• Create a TrainingJob using a YAML file

• Create a TrainingJob Using a Helm Chart

• List TrainingJobs

• Describe a TrainingJob

• View logs from TrainingJobs

• Delete TrainingJobs

Create a TrainingJob using a YAML file

1. Download the sample YAML file for training using the following command:

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/samples/xgboost-mnist-trainingjob.yaml

2. Edit the xgboost-mnist-trainingjob.yaml file to replace the roleArn parameter with
your <sagemaker-execution-role>, and outputPath with your Amazon S3 bucket to
which the SageMaker execution role has write access. The roleArn must have permissions
so that SageMaker can access Amazon S3, Amazon CloudWatch, and other services on your
behalf. For more information on creating an SageMaker ExecutionRole, see SageMaker Roles.
Apply the YAML file using the following command:

kubectl apply -f xgboost-mnist-trainingjob.yaml

Create a TrainingJob Using a Helm Chart

You can use Helm Charts to run TrainingJobs.

1. Clone the GitHub repository to get the source using the following command:

git clone https://github.com/aws/amazon-sagemaker-operator-for-k8s.git

Kubernetes Orchestration 4871

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms

Amazon SageMaker Developer Guide

2. Navigate to the amazon-sagemaker-operator-for-k8s/hack/charts/training-
jobs/ folder and edit the values.yaml file to replace values like rolearn and outputpath
with values that correspond to your account. The RoleARN must have permissions so that
SageMaker can access Amazon S3, Amazon CloudWatch, and other services on your behalf. For
more information on creating an SageMaker ExecutionRole, see SageMaker Roles.

Create the TrainingJob

With the roles and Amazon S3 buckets replaced with appropriate values in values.yaml, you can
create a training job using the following command:

helm install . --generate-name

Your output should look like the following:

NAME: chart-12345678
LAST DEPLOYED: Wed Nov 20 23:35:49 2019
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thanks for installing the sagemaker-k8s-trainingjob.

Verify your training Helm Chart

To verify that the Helm Chart was created successfully, run:

helm ls

Your output should look like the following:

NAME NAMESPACE REVISION UPDATED
 STATUS CHART APP VERSION
chart-12345678 default 1 2019-11-20 23:35:49.9136092 +0000
 UTC deployed sagemaker-k8s-trainingjob-0.1.0
rolebased-12345678 default 1 2019-11-20 23:14:59.6777082 +0000
 UTC deployed sagemaker-k8s-operator-0.1.0

Kubernetes Orchestration 4872

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms

Amazon SageMaker Developer Guide

helm install creates a TrainingJob Kubernetes resource. The operator launches the actual
training job in SageMaker and updates the TrainingJob Kubernetes resource to reflect the status
of the job in SageMaker. You incur charges for SageMaker resources used during the duration of
your job. You do not incur any charges once your job completes or stops.

Note: SageMaker does not allow you to update a running training job. You cannot edit any
parameter and re-apply the config file. Either change the metadata name or delete the existing job
and create a new one. Similar to existing training job operators like TFJob in Kubeflow, update is
not supported.

List TrainingJobs

Use the following command to list all jobs created using the Kubernetes operator:

kubectl get TrainingJob

The output listing all jobs should look like the following:

kubectl get trainingjobs
NAME STATUS SECONDARY-STATUS CREATION-TIME
 SAGEMAKER-JOB-NAME
xgboost-mnist-from-for-s3 InProgress Starting 2019-11-20T23:42:35Z
 xgboost-mnist-from-for-s3-examplef11eab94e0ed4671d5a8f

A training job continues to be listed after the job has completed or failed. You can remove a
TrainingJob job from the list by following the Delete TrainingJobs steps. Jobs that have
completed or stopped do not incur any charges for SageMaker resources.

TrainingJob status values

The STATUS field can be one of the following values:

• Completed
• InProgress
• Failed
• Stopped
• Stopping

These statuses come directly from the SageMaker official API documentation.

Kubernetes Orchestration 4873

https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeTrainingJob.html#SageMaker-DescribeTrainingJob-response-TrainingJobStatus

Amazon SageMaker Developer Guide

In addition to the official SageMaker status, it is possible for STATUS to be
SynchronizingK8sJobWithSageMaker. This means that the operator has not yet processed the
job.

Secondary status values

The secondary statuses come directly from the SageMaker official API documentation. They contain
more granular information about the status of the job.

Describe a TrainingJob

You can get more details about the training job by using the describe kubectl command. This
is typically used for debugging a problem or checking the parameters of a training job. To get
information about your training job, use the following command:

kubectl describe trainingjob xgboost-mnist-from-for-s3

The output for your training job should look like the following:

Name: xgboost-mnist-from-for-s3
Namespace: default
Labels: <none>
Annotations: <none>
API Version: sagemaker.aws.amazon.com/v1
Kind: TrainingJob
Metadata:
 Creation Timestamp: 2019-11-20T23:42:35Z
 Finalizers:
 sagemaker-operator-finalizer
 Generation: 2
 Resource Version: 23119
 Self Link: /apis/sagemaker.aws.amazon.com/v1/namespaces/default/trainingjobs/
xgboost-mnist-from-for-s3
 UID: 6d7uiui-0bef-11ea-b94e-0ed467example
Spec:
 Algorithm Specification:
 Training Image: 8256416981234.dkr.ecr.us-east-2.amazonaws.com/xgboost:1
 Training Input Mode: File
 Hyper Parameters:
 Name: eta
 Value: 0.2
 Name: gamma
 Value: 4

Kubernetes Orchestration 4874

https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeTrainingJob.html#SageMaker-DescribeTrainingJob-response-SecondaryStatus

Amazon SageMaker Developer Guide

 Name: max_depth
 Value: 5
 Name: min_child_weight
 Value: 6
 Name: num_class
 Value: 10
 Name: num_round
 Value: 10
 Name: objective
 Value: multi:softmax
 Name: silent
 Value: 0
 Input Data Config:
 Channel Name: train
 Compression Type: None
 Content Type: text/csv
 Data Source:
 S 3 Data Source:
 S 3 Data Distribution Type: FullyReplicated
 S 3 Data Type: S3Prefix
 S 3 Uri: https://s3-us-east-2.amazonaws.com/my-bucket/
sagemaker/xgboost-mnist/train/
 Channel Name: validation
 Compression Type: None
 Content Type: text/csv
 Data Source:
 S 3 Data Source:
 S 3 Data Distribution Type: FullyReplicated
 S 3 Data Type: S3Prefix
 S 3 Uri: https://s3-us-east-2.amazonaws.com/my-bucket/
sagemaker/xgboost-mnist/validation/
 Output Data Config:
 S 3 Output Path: s3://my-bucket/sagemaker/xgboost-mnist/xgboost/
 Region: us-east-2
 Resource Config:
 Instance Count: 1
 Instance Type: ml.m4.xlarge
 Volume Size In GB: 5
 Role Arn: arn:aws:iam::12345678910:role/service-role/AmazonSageMaker-
ExecutionRole
 Stopping Condition:
 Max Runtime In Seconds: 86400
 Training Job Name: xgboost-mnist-from-for-s3-6d7fa0af0bef11eab94e0example
Status:

Kubernetes Orchestration 4875

Amazon SageMaker Developer Guide

 Cloud Watch Log URL: https://us-east-2.console.aws.amazon.com/
cloudwatch/home?region=us-east-2#logStream:group=/aws/sagemaker/
TrainingJobs;prefix=<example>;streamFilter=typeLogStreamPrefix
 Last Check Time: 2019-11-20T23:44:29Z
 Sage Maker Training Job Name: xgboost-mnist-from-for-s3-6d7fa0af0bef11eab94eexample
 Secondary Status: Downloading
 Training Job Status: InProgress
Events: <none>

View logs from TrainingJobs

Use the following command to see the logs from the kmeans-mnist training job:

kubectl smlogs trainingjob xgboost-mnist-from-for-s3

Your output should look similar to the following. The logs from instances are ordered
chronologically.

"xgboost-mnist-from-for-s3" has SageMaker TrainingJobName "xgboost-mnist-from-
for-s3-123456789" in region "us-east-2", status "InProgress" and secondary status
 "Starting"
xgboost-mnist-from-for-s3-6d7fa0af0bef11eab94e0ed46example/algo-1-1574293123 2019-11-20
 23:45:24.7 +0000 UTC Arguments: train
xgboost-mnist-from-for-s3-6d7fa0af0bef11eab94e0ed46example/algo-1-1574293123 2019-11-20
 23:45:24.7 +0000 UTC [2019-11-20:23:45:22:INFO] Running standalone xgboost training.
xgboost-mnist-from-for-s3-6d7fa0af0bef11eab94e0ed46example/algo-1-1574293123 2019-11-20
 23:45:24.7 +0000 UTC [2019-11-20:23:45:22:INFO] File size need to be processed in the
 node: 1122.95mb. Available memory size in the node: 8586.0mb
xgboost-mnist-from-for-s3-6d7fa0af0bef11eab94e0ed46example/algo-1-1574293123 2019-11-20
 23:45:24.7 +0000 UTC [2019-11-20:23:45:22:INFO] Determined delimiter of CSV input is
 ','
xgboost-mnist-from-for-s3-6d7fa0af0bef11eab94e0ed46example/algo-1-1574293123 2019-11-20
 23:45:24.7 +0000 UTC [23:45:22] S3DistributionType set as FullyReplicated

Delete TrainingJobs

Use the following command to stop a training job on Amazon SageMaker:

kubectl delete trainingjob xgboost-mnist-from-for-s3

This command removes the SageMaker training job from Kubernetes. This command returns the
following output:

Kubernetes Orchestration 4876

Amazon SageMaker Developer Guide

trainingjob.sagemaker.aws.amazon.com "xgboost-mnist-from-for-s3" deleted

If the job is still in progress on SageMaker, the job stops. You do not incur any charges for
SageMaker resources after your job stops or completes.

Note: SageMaker does not delete training jobs. Stopped jobs continue to show on the SageMaker
console. The delete command takes about 2 minutes to clean up the resources from SageMaker.

The HyperParameterTuningJob operator

Hyperparameter tuning job operators reconcile your specified hyperparameter tuning job spec to
SageMaker by launching it in SageMaker. You can learn more about SageMaker hyperparameter
tuning jobs in the SageMaker CreateHyperParameterTuningJob API documentation.

Topics

• Create a HyperparameterTuningJob using a YAML file

• Create a HyperparameterTuningJob using a Helm Chart

• List HyperparameterTuningJobs

• Describe a HyperparameterTuningJob

• View logs from HyperparameterTuningJobs

• Delete a HyperparameterTuningJob

Create a HyperparameterTuningJob using a YAML file

1. Download the sample YAML file for the hyperparameter tuning job using the following
command:

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/samples/xgboost-mnist-hpo.yaml

2. Edit the xgboost-mnist-hpo.yaml file to replace the roleArn parameter with your
sagemaker-execution-role. For the hyperparameter tuning job to succeed, you must also
change the s3InputPath and s3OutputPath to values that correspond to your account.
Apply the updates YAML file using the following command:

kubectl apply -f xgboost-mnist-hpo.yaml

Kubernetes Orchestration 4877

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

Create a HyperparameterTuningJob using a Helm Chart

You can use Helm Charts to run hyperparameter tuning jobs.

1. Clone the GitHub repository to get the source using the following command:

git clone https://github.com/aws/amazon-sagemaker-operator-for-k8s.git

2. Navigate to the amazon-sagemaker-operator-for-k8s/hack/charts/
hyperparameter-tuning-jobs/ folder.

3. Edit the values.yaml file to replace the roleArn parameter with your sagemaker-
execution-role. For the hyperparameter tuning job to succeed, you must also change the
s3InputPath and s3OutputPath to values that correspond to your account.

Create the HyperparameterTuningJob

With the roles and Amazon S3 paths replaced with appropriate values in values.yaml, you can
create a hyperparameter tuning job using the following command:

helm install . --generate-name

Your output should look similar to the following:

NAME: chart-1574292948
LAST DEPLOYED: Wed Nov 20 23:35:49 2019
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thanks for installing the sagemaker-k8s-hyperparametertuningjob.

Verify chart installation

To verify that the Helm Chart was created successfully, run the following command:

helm ls

Your output should look like the following:

Kubernetes Orchestration 4878

Amazon SageMaker Developer Guide

NAME NAMESPACE REVISION UPDATED
chart-1474292948 default 1 2019-11-20 23:35:49.9136092
 +0000 UTC deployed sagemaker-k8s-hyperparametertuningjob-0.1.0
 STATUS CHART APP VERSION
chart-1574292948 default 1 2019-11-20 23:35:49.9136092
 +0000 UTC deployed sagemaker-k8s-trainingjob-0.1.0
rolebased-1574291698 default 1 2019-11-20 23:14:59.6777082
 +0000 UTC deployed sagemaker-k8s-operator-0.1.0

helm install creates a HyperParameterTuningJob Kubernetes resource. The operator
launches the actual hyperparameter optimization job in SageMaker and updates the
HyperParameterTuningJob Kubernetes resource to reflect the status of the job in SageMaker.
You incur charges for SageMaker resources used during the duration of your job. You do not incur
any charges once your job completes or stops.

Note: SageMaker does not allow you to update a running hyperparameter tuning job. You cannot
edit any parameter and re-apply the config file. You must either change the metadata name or
delete the existing job and create a new one. Similar to existing training job operators like TFJob in
Kubeflow, update is not supported.

List HyperparameterTuningJobs

Use the following command to list all jobs created using the Kubernetes operator:

kubectl get hyperparametertuningjob

Your output should look like the following:

NAME STATUS CREATION-TIME COMPLETED INPROGRESS ERRORS
 STOPPED BEST-TRAINING-JOB SAGEMAKER-JOB-NAME
xgboost-mnist-hpo Completed 2019-10-17T01:15:52Z 10 0
 0 0 xgboostha92f5e3cf07b11e9bf6c06d6-009-4c7a123
 xgboostha92f5e3cf07b11e9bf6c123

A hyperparameter tuning job continues to be listed after the job has completed or failed. You
can remove a hyperparametertuningjob from the list by following the steps in Delete a
HyperparameterTuningJob. Jobs that have completed or stopped do not incur any charges for
SageMaker resources.

Kubernetes Orchestration 4879

Amazon SageMaker Developer Guide

Hyperparameter tuning job status values

The STATUS field can be one of the following values:

• Completed
• InProgress
• Failed
• Stopped
• Stopping

These statuses come directly from the SageMaker official API documentation.

In addition to the official SageMaker status, it is possible for STATUS to be
SynchronizingK8sJobWithSageMaker. This means that the operator has not yet processed the
job.

Status counters

The output has several counters, like COMPLETED and INPROGRESS. These represent how many
training jobs have completed and are in progress, respectively. For more information about how
these are determined, see TrainingJobStatusCounters in the SageMaker API documentation.

Best TrainingJob

This column contains the name of the TrainingJob that best optimized the selected metric.

To see a summary of the tuned hyperparameters, run:

kubectl describe hyperparametertuningjob xgboost-mnist-hpo

To see detailed information about the TrainingJob, run:

kubectl describe trainingjobs <job name>

Spawned TrainingJobs

You can also track all 10 training jobs in Kubernetes launched by HyperparameterTuningJob by
running the following command:

kubectl get trainingjobs

Kubernetes Orchestration 4880

https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeHyperParameterTuningJob.html#SageMaker-DescribeHyperParameterTuningJob-response-HyperParameterTuningJobStatus
https://docs.aws.amazon.com/sagemaker/latest/dg/API_TrainingJobStatusCounters.html

Amazon SageMaker Developer Guide

Describe a HyperparameterTuningJob

You can obtain debugging details using the describe kubectl command.

kubectl describe hyperparametertuningjob xgboost-mnist-hpo

In addition to information about the tuning job, the SageMaker Operator for Kubernetes also
exposes the best training job found by the hyperparameter tuning job in the describe output as
follows:

Name: xgboost-mnist-hpo
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"sagemaker.aws.amazon.com/
v1","kind":"HyperparameterTuningJob","metadata":{"annotations":{},"name":"xgboost-
mnist-hpo","namespace":...
API Version: sagemaker.aws.amazon.com/v1
Kind: HyperparameterTuningJob
Metadata:
 Creation Timestamp: 2019-10-17T01:15:52Z
 Finalizers:
 sagemaker-operator-finalizer
 Generation: 2
 Resource Version: 8167
 Self Link: /apis/sagemaker.aws.amazon.com/v1/namespaces/default/
hyperparametertuningjobs/xgboost-mnist-hpo
 UID: a92f5e3c-f07b-11e9-bf6c-06d6f303uidu
Spec:
 Hyper Parameter Tuning Job Config:
 Hyper Parameter Tuning Job Objective:
 Metric Name: validation:error
 Type: Minimize
 Parameter Ranges:
 Integer Parameter Ranges:
 Max Value: 20
 Min Value: 10
 Name: num_round
 Scaling Type: Linear
 Resource Limits:
 Max Number Of Training Jobs: 10
 Max Parallel Training Jobs: 10
 Strategy: Bayesian

Kubernetes Orchestration 4881

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-monitor.html#automatic-model-tuning-best-training-job

Amazon SageMaker Developer Guide

 Training Job Early Stopping Type: Off
 Hyper Parameter Tuning Job Name: xgboostha92f5e3cf07b11e9bf6c06d6
 Region: us-east-2
 Training Job Definition:
 Algorithm Specification:
 Training Image: 12345678910.dkr.ecr.us-east-2.amazonaws.com/xgboost:1
 Training Input Mode: File
 Input Data Config:
 Channel Name: train
 Content Type: text/csv
 Data Source:
 s3DataSource:
 s3DataDistributionType: FullyReplicated
 s3DataType: S3Prefix
 s3Uri: https://s3-us-east-2.amazonaws.com/my-bucket/
sagemaker/xgboost-mnist/train/
 Channel Name: validation
 Content Type: text/csv
 Data Source:
 s3DataSource:
 s3DataDistributionType: FullyReplicated
 s3DataType: S3Prefix
 s3Uri: https://s3-us-east-2.amazonaws.com/my-bucket/
sagemaker/xgboost-mnist/validation/
 Output Data Config:
 s3OutputPath: https://s3-us-east-2.amazonaws.com/my-bucket/sagemaker/xgboost-
mnist/xgboost
 Resource Config:
 Instance Count: 1
 Instance Type: ml.m4.xlarge
 Volume Size In GB: 5
 Role Arn: arn:aws:iam::123456789012:role/service-role/AmazonSageMaker-
ExecutionRole
 Static Hyper Parameters:
 Name: base_score
 Value: 0.5
 Name: booster
 Value: gbtree
 Name: csv_weights
 Value: 0
 Name: dsplit
 Value: row
 Name: grow_policy
 Value: depthwise

Kubernetes Orchestration 4882

Amazon SageMaker Developer Guide

 Name: lambda_bias
 Value: 0.0
 Name: max_bin
 Value: 256
 Name: max_leaves
 Value: 0
 Name: normalize_type
 Value: tree
 Name: objective
 Value: reg:linear
 Name: one_drop
 Value: 0
 Name: prob_buffer_row
 Value: 1.0
 Name: process_type
 Value: default
 Name: rate_drop
 Value: 0.0
 Name: refresh_leaf
 Value: 1
 Name: sample_type
 Value: uniform
 Name: scale_pos_weight
 Value: 1.0
 Name: silent
 Value: 0
 Name: sketch_eps
 Value: 0.03
 Name: skip_drop
 Value: 0.0
 Name: tree_method
 Value: auto
 Name: tweedie_variance_power
 Value: 1.5
 Stopping Condition:
 Max Runtime In Seconds: 86400
Status:
 Best Training Job:
 Creation Time: 2019-10-17T01:16:14Z
 Final Hyper Parameter Tuning Job Objective Metric:
 Metric Name: validation:error
 Value:
 Objective Status: Succeeded
 Training End Time: 2019-10-17T01:20:24Z

Kubernetes Orchestration 4883

Amazon SageMaker Developer Guide

 Training Job Arn: arn:aws:sagemaker:us-east-2:123456789012:training-job/
xgboostha92f5e3cf07b11e9bf6c06d6-009-4sample
 Training Job Name: xgboostha92f5e3cf07b11e9bf6c06d6-009-4c7a3059
 Training Job Status: Completed
 Training Start Time: 2019-10-17T01:18:35Z
 Tuned Hyper Parameters:
 Name: num_round
 Value: 18
 Hyper Parameter Tuning Job Status: Completed
 Last Check Time: 2019-10-17T01:21:01Z
 Sage Maker Hyper Parameter Tuning Job Name: xgboostha92f5e3cf07b11e9bf6c06d6
 Training Job Status Counters:
 Completed: 10
 In Progress: 0
 Non Retryable Error: 0
 Retryable Error: 0
 Stopped: 0
 Total Error: 0
Events: <none>

View logs from HyperparameterTuningJobs

Hyperparameter tuning jobs do not have logs, but all training jobs launched by them do have logs.
These logs can be accessed as if they were a normal training job. For more information, see View
logs from TrainingJobs.

Delete a HyperparameterTuningJob

Use the following command to stop a hyperparameter job in SageMaker.

kubectl delete hyperparametertuningjob xgboost-mnist-hpo

This command removes the hyperparameter tuning job and associated training jobs from your
Kubernetes cluster and stops them in SageMaker. Jobs that have stopped or completed do not
incur any charges for SageMaker resources. SageMaker does not delete hyperparameter tuning
jobs. Stopped jobs continue to show on the SageMaker console.

Your output should look like the following:

hyperparametertuningjob.sagemaker.aws.amazon.com "xgboost-mnist-hpo" deleted

Note: The delete command takes about 2 minutes to clean up the resources from SageMaker.

Kubernetes Orchestration 4884

Amazon SageMaker Developer Guide

The BatchTransformJob operator

Batch transform job operators reconcile your specified batch transform job spec to SageMaker
by launching it in SageMaker. You can learn more about SageMaker batch transform job in the
SageMaker CreateTransformJob API documentation.

Topics

• Create a BatchTransformJob using a YAML File

• Create a BatchTransformJob using a Helm Chart

• List BatchTransformJobs

• Describe a BatchTransformJob

• View logs from BatchTransformJobs

• Delete a BatchTransformJob

Create a BatchTransformJob using a YAML File

1. Download the sample YAML file for the batch transform job using the following command:

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/samples/xgboost-mnist-batchtransform.yaml

2. Edit the file xgboost-mnist-batchtransform.yaml to change necessary parameters to
replace the inputdataconfig with your input data and s3OutputPath with your Amazon
S3 buckets that the SageMaker execution role has write access to.

3. Apply the YAML file using the following command:

kubectl apply -f xgboost-mnist-batchtransform.yaml

Create a BatchTransformJob using a Helm Chart

You can use Helm Charts to run batch transform jobs.

Get the Helm installer directory

Clone the GitHub repository to get the source using the following command:

git clone https://github.com/aws/amazon-sagemaker-operator-for-k8s.git

Kubernetes Orchestration 4885

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

Configure the Helm Chart

Navigate to the amazon-sagemaker-operator-for-k8s/hack/charts/batch-transform-
jobs/ folder.

Edit the values.yaml file to replace the inputdataconfig with your input data and outputPath
with your S3 buckets to which the SageMaker execution role has write access.

Create a BatchTransformJob

1. Use the following command to create a batch transform job:

helm install . --generate-name

Your output should look like the following:

NAME: chart-1574292948
LAST DEPLOYED: Wed Nov 20 23:35:49 2019
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thanks for installing the sagemaker-k8s-batch-transform-job.

2. To verify that the Helm Chart was created successfully, run the following command:

helm ls
NAME NAMESPACE REVISION UPDATED
 STATUS CHART APP VERSION
chart-1474292948 default 1 2019-11-20 23:35:49.9136092
 +0000 UTC deployed sagemaker-k8s-batchtransformjob-0.1.0
chart-1474292948 default 1 2019-11-20 23:35:49.9136092
 +0000 UTC deployed sagemaker-k8s-hyperparametertuningjob-0.1.0
chart-1574292948 default 1 2019-11-20 23:35:49.9136092
 +0000 UTC deployed sagemaker-k8s-trainingjob-0.1.0
rolebased-1574291698 default 1 2019-11-20 23:14:59.6777082
 +0000 UTC deployed sagemaker-k8s-operator-0.1.0

This command creates a BatchTransformJob Kubernetes resource. The operator launches
the actual transform job in SageMaker and updates the BatchTransformJob Kubernetes
resource to reflect the status of the job in SageMaker. You incur charges for SageMaker

Kubernetes Orchestration 4886

Amazon SageMaker Developer Guide

resources used during the duration of your job. You do not incur any charges once your job
completes or stops.

Note: SageMaker does not allow you to update a running batch transform job. You cannot edit any
parameter and re-apply the config file. You must either change the metadata name or delete the
existing job and create a new one. Similar to existing training job operators like TFJob in Kubeflow,
update is not supported.

List BatchTransformJobs

Use the following command to list all jobs created using the Kubernetes operator:

kubectl get batchtransformjob

Your output should look like the following:

NAME STATUS CREATION-TIME SAGEMAKER-JOB-
NAME
xgboost-mnist-batch-transform Completed 2019-11-18T03:44:00Z xgboost-mnist-
a88fb19809b511eaac440aa8axgboost

A batch transform job continues to be listed after the job has completed or failed. You can remove
a hyperparametertuningjob from the list by following the Delete a BatchTransformJob steps.
Jobs that have completed or stopped do not incur any charges for SageMaker resources.

Batch transform status values

The STATUS field can be one of the following values:

• Completed

• InProgress

• Failed

• Stopped

• Stopping

These statuses come directly from the SageMaker official API documentation.

Kubernetes Orchestration 4887

https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeHyperParameterTuningJob.html#SageMaker-DescribeHyperParameterTuningJob-response-HyperParameterTuningJobStatus

Amazon SageMaker Developer Guide

In addition to the official SageMaker status, it is possible for STATUS to be
SynchronizingK8sJobWithSageMaker. This means that the operator has not yet processed the
job.

Describe a BatchTransformJob

You can obtain debugging details using the describe kubectl command.

kubectl describe batchtransformjob xgboost-mnist-batch-transform

Your output should look like the following:

Name: xgboost-mnist-batch-transform
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"sagemaker.aws.amazon.com/
v1","kind":"BatchTransformJob","metadata":{"annotations":{},"name":"xgboost-
mnist","namespace"...
API Version: sagemaker.aws.amazon.com/v1
Kind: BatchTransformJob
Metadata:
 Creation Timestamp: 2019-11-18T03:44:00Z
 Finalizers:
 sagemaker-operator-finalizer
 Generation: 2
 Resource Version: 21990924
 Self Link: /apis/sagemaker.aws.amazon.com/v1/namespaces/default/
batchtransformjobs/xgboost-mnist
 UID: a88fb198-09b5-11ea-ac44-0aa8a9UIDNUM
Spec:
 Model Name: TrainingJob-20190814SMJOb-IKEB
 Region: us-east-1
 Transform Input:
 Content Type: text/csv
 Data Source:
 S 3 Data Source:
 S 3 Data Type: S3Prefix
 S 3 Uri: s3://my-bucket/mnist_kmeans_example/input
 Transform Job Name: xgboost-mnist-a88fb19809b511eaac440aa8a9SMJOB
 Transform Output:
 S 3 Output Path: s3://my-bucket/mnist_kmeans_example/output
 Transform Resources:

Kubernetes Orchestration 4888

Amazon SageMaker Developer Guide

 Instance Count: 1
 Instance Type: ml.m4.xlarge
Status:
 Last Check Time: 2019-11-19T22:50:40Z
 Sage Maker Transform Job Name: xgboost-mnist-a88fb19809b511eaac440aaSMJOB
 Transform Job Status: Completed
Events: <none>

View logs from BatchTransformJobs

Use the following command to see the logs from the xgboost-mnist batch transform job:

kubectl smlogs batchtransformjob xgboost-mnist-batch-transform

Delete a BatchTransformJob

Use the following command to stop a batch transform job in SageMaker.

kubectl delete batchTransformJob xgboost-mnist-batch-transform

Your output should look like the following:

batchtransformjob.sagemaker.aws.amazon.com "xgboost-mnist" deleted

This command removes the batch transform job from your Kubernetes cluster, as well as stops
them in SageMaker. Jobs that have stopped or completed do not incur any charges for SageMaker
resources. Delete takes about 2 minutes to clean up the resources from SageMaker.

Note: SageMaker does not delete batch transform jobs. Stopped jobs continue to show on the
SageMaker console.

The HostingDeployment operator

HostingDeployment operators support creating and deleting an endpoint, as well as updating
an existing endpoint, for real-time inference. The hosting deployment operator reconciles your
specified hosting deployment job spec to SageMaker by creating models, endpoint-configs
and endpoints in SageMaker. You can learn more about SageMaker inference in the SageMaker
CreateEndpoint API documentation.

Topics

• Configure a HostingDeployment resource

Kubernetes Orchestration 4889

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

• Create a HostingDeployment

• List HostingDeployments

• Describe a HostingDeployment

• Invoking the endpoint

• Update HostingDeployment

• Delete the HostingDeployment

Configure a HostingDeployment resource

Download the sample YAML file for the hosting deployment job using the following command:

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/master/
samples/xgboost-mnist-hostingdeployment.yaml

The xgboost-mnist-hostingdeployment.yaml file has the following components that can be
edited as required:

• ProductionVariants. A production variant is a set of instances serving a single model. SageMaker
load-balances between all production variants according to set weights.

• Models. A model is the containers and execution role ARN necessary to serve a model. It requires
at least a single container.

• Containers. A container specifies the dataset and serving image. If you are using your own
custom algorithm instead of an algorithm provided by SageMaker, the inference code must
meet SageMaker requirements. For more information, see Using Your Own Algorithms with
SageMaker.

Create a HostingDeployment

To create a HostingDeployment, use kubectl to apply the file hosting.yaml with the following
command:

kubectl apply -f hosting.yaml

SageMaker creates an endpoint with the specified configuration. You incur charges for SageMaker
resources used during the lifetime of your endpoint. You do not incur any charges once your
endpoint is deleted.

Kubernetes Orchestration 4890

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html

Amazon SageMaker Developer Guide

The creation process takes approximately 10 minutes.

List HostingDeployments

To verify that the HostingDeployment was created, use the following command:

kubectl get hostingdeployments

Your output should look like the following:

NAME STATUS SAGEMAKER-ENDPOINT-NAME
host-xgboost Creating host-xgboost-def0e83e0d5f11eaaa450aSMLOGS

HostingDeployment status values

The status field can be one of several values:

• SynchronizingK8sJobWithSageMaker: The operator is preparing to create the endpoint.
• ReconcilingEndpoint: The operator is creating, updating, or deleting endpoint resources. If

the HostingDeployment remains in this state, use kubectl describe to see the reason in the
Additional field.

• OutOfService: The endpoint is not available to take incoming requests.
• Creating: CreateEndpoint is running.
• Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is running.
• SystemUpdating: The endpoint is undergoing maintenance and cannot be updated or deleted

or re-scaled until it has completed. This maintenance operation does not change any customer-
specified values such as VPC config, AWS KMS encryption, model, instance type, or instance
count.

• RollingBack: The endpoint fails to scale up or down or change its variant weight and is in the
process of rolling back to its previous configuration. Once the rollback completes, the endpoint
returns to an InService status. This transitional status only applies to an endpoint that has
autoscaling turned on and is undergoing variant weight or capacity changes as part of an
UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities
operation is called explicitly.

• InService: The endpoint is available to process incoming requests.
• Deleting: DeleteEndpoint is running.
• Failed: The endpoint could not be created, updated, or re-scaled. Use

DescribeEndpoint:FailureReason for information about the failure. DeleteEndpoint is the only
operation that can be performed on a failed endpoint.

Kubernetes Orchestration 4891

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpointWeightsAndCapacities.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpointWeightsAndCapacities.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpointWeightsAndCapacities.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_DeleteEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html#SageMaker-DescribeEndpoint-response-FailureReason
https://docs.aws.amazon.com/sagemaker/latest/dg/API_DeleteEndpoint.html

Amazon SageMaker Developer Guide

Describe a HostingDeployment

You can obtain debugging details using the describe kubectl command.

kubectl describe hostingdeployment

Your output should look like the following:

Name: host-xgboost
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"sagemaker.aws.amazon.com/
v1","kind":"HostingDeployment","metadata":{"annotations":{},"name":"host-
xgboost","namespace":"def..."
API Version: sagemaker.aws.amazon.com/v1
Kind: HostingDeployment
Metadata:
 Creation Timestamp: 2019-11-22T19:40:00Z
 Finalizers:
 sagemaker-operator-finalizer
 Generation: 1
 Resource Version: 4258134
 Self Link: /apis/sagemaker.aws.amazon.com/v1/namespaces/default/
hostingdeployments/host-xgboost
 UID: def0e83e-0d5f-11ea-aa45-0a3507uiduid
Spec:
 Containers:
 Container Hostname: xgboost
 Image: 123456789012.dkr.ecr.us-east-2.amazonaws.com/xgboost:latest
 Model Data URL: s3://my-bucket/inference/xgboost-mnist/model.tar.gz
 Models:
 Containers:
 xgboost
 Execution Role Arn: arn:aws:iam::123456789012:role/service-role/AmazonSageMaker-
ExecutionRole
 Name: xgboost-model
 Primary Container: xgboost
 Production Variants:
 Initial Instance Count: 1
 Instance Type: ml.c5.large
 Model Name: xgboost-model
 Variant Name: all-traffic

Kubernetes Orchestration 4892

Amazon SageMaker Developer Guide

 Region: us-east-2
Status:
 Creation Time: 2019-11-22T19:40:04Z
 Endpoint Arn: arn:aws:sagemaker:us-east-2:123456789012:endpoint/host-
xgboost-def0e83e0d5f11eaaaexample
 Endpoint Config Name: host-xgboost-1-def0e83e0d5f11e-e08f6c510d5f11eaaa450aexample
 Endpoint Name: host-xgboost-def0e83e0d5f11eaaa450a350733ba06
 Endpoint Status: Creating
 Endpoint URL: https://runtime.sagemaker.us-east-2.amazonaws.com/endpoints/
host-xgboost-def0e83e0d5f11eaaaexample/invocations
 Last Check Time: 2019-11-22T19:43:57Z
 Last Modified Time: 2019-11-22T19:40:04Z
 Model Names:
 Name: xgboost-model
 Value: xgboost-model-1-def0e83e0d5f11-df5cc9fd0d5f11eaaa450aexample
Events: <none>

The status field provides more information using the following fields:

• Additional: Additional information about the status of the hosting deployment. This field is
optional and only gets populated in case of error.

• Creation Time: When the endpoint was created in SageMaker.

• Endpoint ARN: The SageMaker endpoint ARN.

• Endpoint Config Name: The SageMaker name of the endpoint configuration.

• Endpoint Name: The SageMaker name of the endpoint.

• Endpoint Status: The status of the endpoint.

• Endpoint URL: The HTTPS URL that can be used to access the endpoint. For more information,
see Deploy a Model on SageMaker Hosting Services.

• FailureReason: If a create, update, or delete command fails, the cause is shown here.

• Last Check Time: The last time the operator checked the status of the endpoint.

• Last Modified Time: The last time the endpoint was modified.

• Model Names: A key-value pair of HostingDeployment model names to SageMaker model
names.

Invoking the endpoint

Once the endpoint status is InService, you can invoke the endpoint in two ways: using the AWS
CLI, which does authentication and URL request signing, or using an HTTP client like cURL. If you
use your own client, you need to do AWS v4 URL signing and authentication on your own.

Kubernetes Orchestration 4893

https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html

Amazon SageMaker Developer Guide

To invoke the endpoint using the AWS CLI, run the following command. Make sure to replace the
Region and endpoint name with your endpoint's Region and SageMaker endpoint name. This
information can be obtained from the output of kubectl describe.

Invoke the endpoint with mock input data.
aws sagemaker-runtime invoke-endpoint \
 --region us-east-2 \
 --endpoint-name <endpoint name> \
 --body $(seq 784 | xargs echo | sed 's/ /,/g') \
 >(cat) \
 --content-type text/csv > /dev/null

For example, if your Region is us-east-2 and your endpoint config name is host-xgboost-
f56b6b280d7511ea824b129926example, then the following command would invoke the
endpoint:

aws sagemaker-runtime invoke-endpoint \
 --region us-east-2 \
 --endpoint-name host-xgboost-f56b6b280d7511ea824b1299example \
 --body $(seq 784 | xargs echo | sed 's/ /,/g') \
 >(cat) \
 --content-type text/csv > /dev/null
4.95847082138

Here, 4.95847082138 is the prediction from the model for the mock data.

Update HostingDeployment

1. Once a HostingDeployment has a status of InService, it can be updated. It might take about
10 minutes for HostingDeployment to be in service. To verify that the status is InService,
use the following command:

kubectl get hostingdeployments

2. The HostingDeployment can be updated before the status is InService. The operator waits
until the SageMaker endpoint is InService before applying the update.

To apply an update, modify the hosting.yaml file. For example, change the
initialInstanceCount field from 1 to 2 as follows:

apiVersion: sagemaker.aws.amazon.com/v1

Kubernetes Orchestration 4894

Amazon SageMaker Developer Guide

kind: HostingDeployment
metadata:
 name: host-xgboost
spec:
 region: us-east-2
 productionVariants:
 - variantName: all-traffic
 modelName: xgboost-model
 initialInstanceCount: 2
 instanceType: ml.c5.large
 models:
 - name: xgboost-model
 executionRoleArn: arn:aws:iam::123456789012:role/service-role/
AmazonSageMaker-ExecutionRole
 primaryContainer: xgboost
 containers:
 - xgboost
 containers:
 - containerHostname: xgboost
 modelDataUrl: s3://my-bucket/inference/xgboost-mnist/model.tar.gz
 image: 123456789012.dkr.ecr.us-east-2.amazonaws.com/xgboost:latest

3. Save the file, then use kubectl to apply your update as follows. You should see the status
change from InService to ReconcilingEndpoint, then Updating.

$ kubectl apply -f hosting.yaml
hostingdeployment.sagemaker.aws.amazon.com/host-xgboost configured

$ kubectl get hostingdeployments
NAME STATUS SAGEMAKER-ENDPOINT-NAME
host-xgboost ReconcilingEndpoint host-xgboost-def0e83e0d5f11eaaa450a350abcdef

$ kubectl get hostingdeployments
NAME STATUS SAGEMAKER-ENDPOINT-NAME
host-xgboost Updating host-xgboost-def0e83e0d5f11eaaa450a3507abcdef

SageMaker deploys a new set of instances with your models, switches traffic to use the new
instances, and drains the old instances. As soon as this process begins, the status becomes
Updating. After the update is complete, your endpoint becomes InService. This process takes
approximately 10 minutes.

Kubernetes Orchestration 4895

Amazon SageMaker Developer Guide

Delete the HostingDeployment

1. Use kubectl to delete a HostingDeployment with the following command:

kubectl delete hostingdeployments host-xgboost

Your output should look like the following:

hostingdeployment.sagemaker.aws.amazon.com "host-xgboost" deleted

2. To verify that the hosting deployment has been deleted, use the following command:

kubectl get hostingdeployments
No resources found.

Endpoints that have been deleted do not incur any charges for SageMaker resources.

The ProcessingJob operator

ProcessingJob operators are used to launch Amazon SageMaker processing jobs. For more
information on SageMaker processing jobs, see CreateProcessingJob.

Topics

• Create a ProcessingJob using a YAML file

• List ProcessingJobs

• Describe a ProcessingJob

• Delete a ProcessingJob

Create a ProcessingJob using a YAML file

Follow these steps to create an Amazon SageMaker processing job by using a YAML file:

1. Download the kmeans_preprocessing.py pre-processing script.

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/samples/kmeans_preprocessing.py

Kubernetes Orchestration 4896

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html

Amazon SageMaker Developer Guide

2. In one of your Amazon Simple Storage Service (Amazon S3) buckets, create a
mnist_kmeans_example/processing_code folder and upload the script to the folder.

3. Download the kmeans-mnist-processingjob.yaml file.

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/samples/kmeans-mnist-processingjob.yaml

4. Edit the YAML file to specify your sagemaker-execution-role and replace all instances of
my-bucket with your S3 bucket.

...
metadata:
 name: kmeans-mnist-processing
...
 roleArn: arn:aws:iam::<acct-id>:role/service-role/<sagemaker-execution-role>
 ...
 processingOutputConfig:
 outputs:
 ...
 s3Output:
 s3Uri: s3://<my-bucket>/mnist_kmeans_example/output/
 ...
 processingInputs:
 ...
 s3Input:
 s3Uri: s3://<my-bucket>/mnist_kmeans_example/processing_code/
kmeans_preprocessing.py

The sagemaker-execution-role must have permissions so that SageMaker can access your
S3 bucket, Amazon CloudWatch, and other services on your behalf. For more information on
creating an execution role, see SageMaker Roles.

5. Apply the YAML file using one of the following commands.

For cluster-scoped installation:

kubectl apply -f kmeans-mnist-processingjob.yaml

For namespace-scoped installation:

Kubernetes Orchestration 4897

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms

Amazon SageMaker Developer Guide

kubectl apply -f kmeans-mnist-processingjob.yaml -n <NAMESPACE>

List ProcessingJobs

Use one of the following commands to list all the jobs created using the ProcessingJob operator.
SAGEMAKER-JOB-NAME comes from the metadata section of the YAML file.

For cluster-scoped installation:

kubectl get ProcessingJob kmeans-mnist-processing

For namespace-scoped installation:

kubectl get ProcessingJob -n <NAMESPACE> kmeans-mnist-processing

Your output should look similar to the following:

NAME STATUS CREATION-TIME SAGEMAKER-JOB-NAME
kmeans-mnist-processing InProgress 2020-09-22T21:13:25Z kmeans-mnist-
processing-7410ed52fd1811eab19a165ae9f9e385

The output lists all jobs regardless of their status. To remove a job from the list, see Delete a
Processing Job.

ProcessingJob Status

• SynchronizingK8sJobWithSageMaker – The job is first submitted to the cluster. The
operator has received the request and is preparing to create the processing job.

• Reconciling – The operator is initializing or recovering from transient errors, along with
others. If the processing job remains in this state, use the kubectl describe command to see
the reason in the Additional field.

• InProgress | Completed | Failed | Stopping | Stopped – Status of the SageMaker
processing job. For more information, see DescribeProcessingJob.

• Error – The operator cannot recover by reconciling.

Jobs that have completed, stopped, or failed do not incur further charges for SageMaker resources.

Kubernetes Orchestration 4898

https://docs.aws.amazon.com/sagemaker/latest/dg/kubernetes-processing-job-operator.html#kubernetes-processing-job-delete
https://docs.aws.amazon.com/sagemaker/latest/dg/kubernetes-processing-job-operator.html#kubernetes-processing-job-delete
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html#sagemaker-DescribeProcessingJob-response-ProcessingJobStatus

Amazon SageMaker Developer Guide

Describe a ProcessingJob

Use one of the following commands to get more details about a processing job. These commands
are typically used for debugging a problem or checking the parameters of a processing job.

For cluster-scoped installation:

kubectl describe processingjob kmeans-mnist-processing

For namespace-scoped installation:

kubectl describe processingjob kmeans-mnist-processing -n <NAMESPACE>

The output for your processing job should look similar to the following.

$ kubectl describe ProcessingJob kmeans-mnist-processing
Name: kmeans-mnist-processing
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"sagemaker.aws.amazon.com/
v1","kind":"ProcessingJob","metadata":{"annotations":{},"name":"kmeans-mnist-
processing",...
API Version: sagemaker.aws.amazon.com/v1
Kind: ProcessingJob
Metadata:
 Creation Timestamp: 2020-09-22T21:13:25Z
 Finalizers:
 sagemaker-operator-finalizer
 Generation: 2
 Resource Version: 21746658
 Self Link: /apis/sagemaker.aws.amazon.com/v1/namespaces/default/
processingjobs/kmeans-mnist-processing
 UID: 7410ed52-fd18-11ea-b19a-165ae9f9e385
Spec:
 App Specification:
 Container Entrypoint:
 python
 /opt/ml/processing/code/kmeans_preprocessing.py
 Image Uri: 763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-training:1.5.0-
cpu-py36-ubuntu16.04
 Environment:
 Name: MYVAR

Kubernetes Orchestration 4899

Amazon SageMaker Developer Guide

 Value: my_value
 Name: MYVAR2
 Value: my_value2
 Network Config:
 Processing Inputs:
 Input Name: mnist_tar
 s3Input:
 Local Path: /opt/ml/processing/input
 s3DataType: S3Prefix
 s3InputMode: File
 s3Uri: s3://<s3bucket>-us-west-2/algorithms/kmeans/mnist/mnist.pkl.gz
 Input Name: source_code
 s3Input:
 Local Path: /opt/ml/processing/code
 s3DataType: S3Prefix
 s3InputMode: File
 s3Uri: s3://<s3bucket>/mnist_kmeans_example/processing_code/
kmeans_preprocessing.py
 Processing Output Config:
 Outputs:
 Output Name: train_data
 s3Output:
 Local Path: /opt/ml/processing/output_train/
 s3UploadMode: EndOfJob
 s3Uri: s3://<s3bucket>/mnist_kmeans_example/output/
 Output Name: test_data
 s3Output:
 Local Path: /opt/ml/processing/output_test/
 s3UploadMode: EndOfJob
 s3Uri: s3://<s3bucket>/mnist_kmeans_example/output/
 Output Name: valid_data
 s3Output:
 Local Path: /opt/ml/processing/output_valid/
 s3UploadMode: EndOfJob
 s3Uri: s3://<s3bucket>/mnist_kmeans_example/output/
 Processing Resources:
 Cluster Config:
 Instance Count: 1
 Instance Type: ml.m5.xlarge
 Volume Size In GB: 20
 Region: us-west-2
 Role Arn: arn:aws:iam::<acct-id>:role/m-sagemaker-role
 Stopping Condition:
 Max Runtime In Seconds: 1800

Kubernetes Orchestration 4900

Amazon SageMaker Developer Guide

 Tags:
 Key: tagKey
 Value: tagValue
Status:
 Cloud Watch Log URL: https://us-west-2.console.aws.amazon.com/cloudwatch/
home?region=us-west-2#logStream:group=/aws/sagemaker/ProcessingJobs;prefix=kmeans-
mnist-processing-7410ed52fd1811eab19a165ae9f9e385;streamFilter=typeLogStreamPrefix
 Last Check Time: 2020-09-22T21:14:29Z
 Processing Job Status: InProgress
 Sage Maker Processing Job Name: kmeans-mnist-
processing-7410ed52fd1811eab19a165ae9f9e385
Events: <none>

Delete a ProcessingJob

When you delete a processing job, the SageMaker processing job is removed from Kubernetes
but the job isn't deleted from SageMaker. If the job status in SageMaker is InProgress the job is
stopped. Processing jobs that are stopped do not incur any charges for SageMaker resources. Use
one of the following commands to delete a processing job.

For cluster-scoped installation:

kubectl delete processingjob kmeans-mnist-processing

For namespace-scoped installation:

kubectl delete processingjob kmeans-mnist-processing -n <NAMESPACE>

The output for your processing job should look similar to the following.

processingjob.sagemaker.aws.amazon.com "kmeans-mnist-processing" deleted

Note

SageMaker does not delete the processing job. Stopped jobs continue to show in the
SageMaker console. The delete command takes a few minutes to clean up the resources
from SageMaker.

Kubernetes Orchestration 4901

Amazon SageMaker Developer Guide

HostingAutoscalingPolicy (HAP) Operator

The HostingAutoscalingPolicy (HAP) operator takes a list of resource IDs as input and applies
the same policy to each of them. Each resource ID is a combination of an endpoint name and
a variant name. The HAP operator performs two steps: it registers the resource IDs and then
applies the scaling policy to each resource ID. Delete undoes both actions. You can apply the
HAP to an existing SageMaker endpoint or you can create a new SageMaker endpoint using the
HostingDeployment operator. You can read more about SageMaker autoscaling in the Application
Autoscaling Policy documentation.

Note

In your kubectl commands, you can use the short form, hap, in place of
hostingautoscalingpolicy.

Topics

• Create a HostingAutoscalingPolicy using a YAML file

• List HostingAutoscalingPolicies

• Describe a HostingAutoscalingPolicy

• Update a HostingAutoscalingPolicy

• Delete a HostingAutoscalingPolicy

• Update or delete an endpoint with a HostingAutoscalingPolicy

Create a HostingAutoscalingPolicy using a YAML file

Use a YAML file to create a HostingAutoscalingPolicy (HAP) that applies a predefined or custom
metric to one or multiple SageMaker endpoints.

Amazon SageMaker requires specific values in order to apply autoscaling to your variant. If these
values are not specified in the YAML spec, the HAP operator applies the following default values.

Do not change
Namespace = "sagemaker"
Do not change
ScalableDimension = "sagemaker:variant:DesiredInstanceCount"

Kubernetes Orchestration 4902

https://docs.aws.amazon.com/sagemaker/latest/dg/hosting-deployment-operator.html#create-a-hostingdeployment
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html

Amazon SageMaker Developer Guide

Only one supported
PolicyType = "TargetTrackingScaling"
This is the default policy name but can be changed to apply a custom policy
DefaultAutoscalingPolicyName = "SageMakerEndpointInvocationScalingPolicy"

Use the following samples to create a HAP that applies a predefined or custom metric to one or
multiple endpoints.

Sample 1: Apply a predefined metric to a single endpoint variant

1. Download the sample YAML file for a predefined metric using the following command:

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/samples/hap-predefined-metric.yaml

2. Edit the YAML file to specify your endpointName, variantName, and Region.

3. Use one of the following commands to apply a predefined metric to a single resource ID
(endpoint name and variant name combination).

For cluster-scoped installation:

kubectl apply -f hap-predefined-metric.yaml

For namespace-scoped installation:

kubectl apply -f hap-predefined-metric.yaml -n <NAMESPACE>

Sample 2: Apply a custom metric to a single endpoint variant

1. Download the sample YAML file for a custom metric using the following command:

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/samples/hap-custom-metric.yaml

2. Edit the YAML file to specify your endpointName, variantName, and Region.

3. Use one of the following commands to apply a custom metric to a single resource
ID (endpoint name and variant name combination) in place of the recommended
SageMakerVariantInvocationsPerInstance.

Kubernetes Orchestration 4903

Amazon SageMaker Developer Guide

Note

Amazon SageMaker does not check the validity of your YAML spec.

For cluster-scoped installation:

kubectl apply -f hap-custom-metric.yaml

For namespace-scoped installation:

kubectl apply -f hap-custom-metric.yaml -n <NAMESPACE>

Sample 3: Apply a scaling policy to multiple endpoints and variants

You can use the HAP operator to apply the same scaling policy to multiple resource IDs. A separate
scaling_policy request is created for each resource ID (endpoint name and variant name
combination).

1. Download the sample YAML file for a predefined metric using the following command:

wget https://raw.githubusercontent.com/aws/amazon-sagemaker-operator-for-k8s/
master/samples/hap-predefined-metric.yaml

2. Edit the YAML file to specify your Region and multiple endpointName and variantName
values.

3. Use one of the following commands to apply a predefined metric to multiple resource IDs
(endpoint name and variant name combinations).

For cluster-scoped installation:

kubectl apply -f hap-predefined-metric.yaml

For namespace-scoped installation:

kubectl apply -f hap-predefined-metric.yaml -n <NAMESPACE>

Kubernetes Orchestration 4904

Amazon SageMaker Developer Guide

Considerations for HostingAutoscalingPolicies for multiple endpoints and variants

The following considerations apply when you use multiple resource IDs:

• If you apply a single policy across multiple resource IDs, one PolicyARN is created per resource ID.
Five endpoints have five PolicyARNs. When you run the describe command on the policy, the
responses show up as one job and include a single job status.

• If you apply a custom metric to multiple resource IDs, the same dimension or value is used for all
the resource ID (variant) values. For example, if you apply a customer metric for instances 1-5,
and the endpoint variant dimension is mapped to variant 1, when variant 1 exceeds the metrics,
all endpoints are scaled up or down.

• The HAP operator supports updating the list of resource IDs. If you modify, add, or delete
resource IDs to the spec, the autoscaling policy is removed from the previous list of variants and
applied to the newly specified resource ID combinations. Use the describe command to list the
resource IDs to which the policy is currently applied.

List HostingAutoscalingPolicies

Use one of the following commands to list all HostingAutoscalingPolicies (HAPs) created using the
HAP operator.

For cluster-scoped installation:

kubectl get hap

For namespace-scoped installation:

kubectl get hap -n <NAMESPACE>

Your output should look similar to the following:

NAME STATUS CREATION-TIME
hap-predefined Created 2021-07-13T21:32:21Z

Use the following command to check the status of your HostingAutoscalingPolicy (HAP).

kubectl get hap <job-name>

One of the following values is returned:

Kubernetes Orchestration 4905

https://docs.aws.amazon.com/sagemaker/latest/dg/kubernetes-hap-operator.html#kubernetes-hap-describe

Amazon SageMaker Developer Guide

• Reconciling – Certain types of errors show the status as Reconciling instead of Error.
Some examples are server-side errors and endpoints in the Creating or Updating state. Check
the Additional field in status or operator logs for more details.

• Created

• Error

To view the autoscaling endpoint to which you applied the policy

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left side panel, expand Inference.

3. Choose Endpoints.

4. Select the name of the endpoint of interest.

5. Scroll to the Endpoint runtime settings section.

Describe a HostingAutoscalingPolicy

Use the following command to get more details about a HostingAutoscalingPolicy (HAP). These
commands are typically used for debugging a problem or checking the resource IDs (endpoint
name and variant name combinations) of a HAP.

kubectl describe hap <job-name>

Update a HostingAutoscalingPolicy

The HostingAutoscalingPolicy (HAP) operator supports updates. You can edit your YAML spec to
change the values and then reapply the policy. The HAP operator deletes the existing policy and
applies the new policy.

Delete a HostingAutoscalingPolicy

Use one of the following commands to delete a HostingAutoscalingPolicy (HAP) policy.

For cluster-scoped installation:

kubectl delete hap hap-predefined

For namespace-scoped installation:

Kubernetes Orchestration 4906

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

kubectl delete hap hap-predefined -n <NAMESPACE>

This command deletes the scaling policy and deregisters the scaling target from Kubernetes. This
command returns the following output:

hostingautoscalingpolicies.sagemaker.aws.amazon.com "hap-predefined" deleted

Update or delete an endpoint with a HostingAutoscalingPolicy

To update an endpoint that has a HostingAutoscalingPolicy (HAP), use the kubectl delete
command to remove the HAP, update the endpoint, and then reapply the HAP.

To delete an endpoint that has a HAP, use the kubectl delete command to remove the HAP
before you delete the endpoint.

Migrate resources to the latest Operators

We are stopping the development and technical support of the original version of SageMaker
Operators for Kubernetes.

If you are currently using version v1.2.2 or below of SageMaker Operators for Kubernetes, we
recommend migrating your resources to the ACK service controller for Amazon SageMaker. The
ACK service controller is a new generation of SageMaker Operators for Kubernetes based on AWS
Controllers for Kubernetes (ACK).

For answers to frequently asked questions on the end of support of the original version of
SageMaker Operators for Kubernetes, see Announcing the End of Support of the Original Version
of SageMaker Operators for Kubernetes

Use the following steps to migrate your resources and use ACK to train, tune, and deploy machine
learning models with Amazon SageMaker.

Note

The latest SageMaker Operators for Kubernetes are not backwards compatible.

Contents

• Prerequisites

• Adopt resources

Kubernetes Orchestration 4907

https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/
https://aws-controllers-k8s.github.io/community/

Amazon SageMaker Developer Guide

• Clean up old resources

• Use the new SageMaker Operators for Kubernetes

Prerequisites

To successfully migrate resources to the latest SageMaker Operators for Kubernetes, you must do
the following:

1. Install the latest SageMaker Operators for Kubernetes. See Setup in Machine Learning with the
ACK SageMaker Controller for step-by-step instructions.

2. If you are using HostingAutoscalingPolicy resources, install the new Application Auto Scaling
Operators. See Setup in Scale SageMaker Workloads with Application Auto Scaling for step-by-
step instructions. This step is optional if you are not using HostingAutoScalingPolicy resources.

If permissions are configured correctly, then the ACK SageMaker service controller can determine
the specification and status of the AWS resource and reconcile the resource as if the ACK controller
originally created it.

Adopt resources

The new SageMaker Operators for Kubernetes provide the ability to adopt resources that were
not originally created by the ACK service controller. For more information, see Adopt Existing AWS
Resources in the ACK documentation.

The following steps show how the new SageMaker Operators for Kubernetes can adopt an
existing SageMaker endpoint. Save the following sample to a file named adopt-endpoint-
sample.yaml.

apiVersion: services.k8s.aws/v1alpha1
kind: AdoptedResource
metadata:
 name: adopt-endpoint-sample
spec:
 aws:
 # resource to adopt, not created by ACK
 nameOrID: xgboost-endpoint
 kubernetes:
 group: sagemaker.services.k8s.aws
 kind: Endpoint

Kubernetes Orchestration 4908

https://aws-controllers-k8s.github.io/community/docs/tutorials/sagemaker-example/#setup
https://aws-controllers-k8s.github.io/community/docs/tutorials/autoscaling-example/#setup
https://aws-controllers-k8s.github.io/community/docs/user-docs/adopted-resource/
https://aws-controllers-k8s.github.io/community/docs/user-docs/adopted-resource/

Amazon SageMaker Developer Guide

 metadata:
 # target K8s CR name
 name: xgboost-endpoint

Submit the custom resource (CR) using kubectl apply:

kubectl apply -f adopt-endpoint-sample.yaml

Use kubectl describe to check the status conditions of your adopted resource.

kubectl describe adoptedresource adopt-endpoint-sample

Verify that the ACK.Adopted condition is True. The output should look similar to the following
example:

kind: AdoptedResource
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: '{"apiVersion":"services.k8s.aws/
v1alpha1","kind":"AdoptedResource","metadata":{"annotations":{},"name":"xgboost-
endpoint","namespace":"default"},"spec":{"aws":{"nameOrID":"xgboost-
endpoint"},"kubernetes":
{"group":"sagemaker.services.k8s.aws","kind":"Endpoint","metadata":{"name":"xgboost-
endpoint"}}}}'
 creationTimestamp: '2021-04-27T02:49:14Z'
 finalizers:
 - finalizers.services.k8s.aws/AdoptedResource
 generation: 1
 name: adopt-endpoint-sample
 namespace: default
 resourceVersion: '12669876'
 selfLink: "/apis/services.k8s.aws/v1alpha1/namespaces/default/adoptedresources/adopt-
endpoint-sample"
 uid: 35f8fa92-29dd-4040-9d0d-0b07bbd7ca0b
spec:
 aws:
 nameOrID: xgboost-endpoint
 kubernetes:
 group: sagemaker.services.k8s.aws
 kind: Endpoint
 metadata:

Kubernetes Orchestration 4909

Amazon SageMaker Developer Guide

 name: xgboost-endpoint
status:
 conditions:
 - status: 'True'
 type: ACK.Adopted

Check that your resource exists in your cluster:

kubectl describe endpoints.sagemaker xgboost-endpoint

HostingAutoscalingPolicy resources

The HostingAutoscalingPolicy (HAP) resource consists of multiple Application Auto
Scaling resources: ScalableTarget and ScalingPolicy. When adopting a HAP resource
with ACK, first install the Application Auto Scaling controller. To adopt HAP resources, you need
to adopt both ScalableTarget and ScalingPolicy resources. You can find the resource
indentifier for these resources in the status of the HostingAutoscalingPolicy resource
(status.ResourceIDList).

HostingDeployment resources

The HostingDeployment resource consists of multiple SageMaker resources: Endpoint,
EndpointConfig, and each Model. If you adopt a SageMaker endpoint in ACK, you need
to adopt the Endpoint, EndpointConfig, and each Model separately. The Endpoint,
EndpointConfig, and Model names can be found in status of the HostingDeployment resource
(status.endpointName, status.endpointConfigName, and status.modelNames).

For a list of all supported SageMaker resources, refer to the ACK API Reference.

Clean up old resources

After the new SageMaker Operators for Kubernetes adopt your resources, you can uninstall old
operators and clean up old resources.

Step 1: Uninstall the old operator

To uninstall the old operator, see Delete operators.

Warning

Uninstall the old operator before deleting any old resources.

Kubernetes Orchestration 4910

https://github.com/aws-controllers-k8s/applicationautoscaling-controller
https://aws-controllers-k8s.github.io/community/reference/

Amazon SageMaker Developer Guide

Step 2: Remove finalizers and delete old resources

Warning

Before deleting old resources, be sure that you have uninstalled the old operator.

After uninstalling the old operator, you must explicitly remove the finalizers to delete old operator
resources. The following sample script shows how to delete all training jobs managed by the old
operator in a given namespace. You can use a similar pattern to delete additional resources once
they are adopted by the new operator.

Note

You must use full resource names to get resources. For example, use kubectl get
trainingjobs.sagemaker.aws.amazon.com instead of kubectl get trainingjob.

namespace=sagemaker_namespace
training_jobs=$(kubectl get trainingjobs.sagemaker.aws.amazon.com -n $namespace -ojson
 | jq -r '.items | .[] | .metadata.name')

for job in $training_jobs
do
 echo "Deleting $job resource in $namespace namespace"
 kubectl patch trainingjobs.sagemaker.aws.amazon.com $job -n $namespace -p
 '{"metadata":{"finalizers":null}}' --type=merge
 kubectl delete trainingjobs.sagemaker.aws.amazon.com $job -n $namespace
done

Use the new SageMaker Operators for Kubernetes

For in-depth guides on using the new SageMaker Operators for Kubernetes, see Use SageMaker
Operators for Kubernetes

Announcing the End of Support of the Original Version of SageMaker Operators for Kubernetes

This page announces the end of support for the original version of SageMaker Operators for
Kubernetes and provides answers to frequently asked questions as well as migration information

Kubernetes Orchestration 4911

https://github.com/aws/amazon-sagemaker-operator-for-k8s
https://github.com/aws/amazon-sagemaker-operator-for-k8s

Amazon SageMaker Developer Guide

about the ACK service controller for Amazon SageMaker, a new generation of fully supported
SageMaker Operators for Kubernetes. For general information about the new SageMaker
Operators for Kubernetes, see Latest SageMaker Operators for Kubernetes.

End of Support Frequently Asked Questions

Contents

• Why are we ending support for the original version of SageMaker Operators for Kubernetes?

• Where can I find more information about the new SageMaker Operators for Kubernetes and
ACK?

• What does end of support (EOS) mean?

• How can I migrate my workload to the new SageMaker Operators for Kubernetes for training and
inference?

• Which version of ACK should I migrate to?

• Are the initial SageMaker Operators for Kubernetes and the new Operators (ACK service
controller for Amazon SageMaker) functionally equivalent?

Why are we ending support for the original version of SageMaker Operators for Kubernetes?

Users can now take advantage of the ACK service controller for Amazon SageMaker. The
ACK service controller is a new generation of SageMaker Operators for Kubernetes based on
AWS Controllers for Kubernetes (ACK), a community-driven project optimized for production,
standardizing the way to expose AWS services via a Kubernetes operator. We are therefore
announcing the end of support (EOS) for the original version (not ACK-based) of SageMaker
Operators for Kubernetes. The support ends on Feb 15, 2023 along with Amazon Elastic
Kubernetes Service Kubernetes 1.21.

For more information on ACK, see ACK history and tenets.

Where can I find more information about the new SageMaker Operators for Kubernetes and
ACK?

• For more information about the new SageMaker Operators for Kubernetes, see the ACK service
controller for Amazon SageMaker GitHub repository or read AWS Controllers for Kubernetes
Documentation.

• For a tutorial on how to train a machine learning model with the ACK service controller for
Amazon SageMaker using Amazon EKS, see this SageMaker example.

Kubernetes Orchestration 4912

https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/
https://github.com/aws/amazon-sagemaker-operator-for-k8s
https://github.com/aws/amazon-sagemaker-operator-for-k8s
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-release-calendar
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-release-calendar
https://aws-controllers-k8s.github.io/community/docs/community/background/
https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/docs/community/overview/
https://aws-controllers-k8s.github.io/community/docs/community/overview/
https://aws-controllers-k8s.github.io/community/docs/tutorials/sagemaker-example/

Amazon SageMaker Developer Guide

For an autoscaling example, see Scale SageMaker Workloads with Application Auto Scaling.

• For information on AWS Controller for Kubernetes (ACK), see the AWS Controllers for Kubernetes
(ACK) documentation.

• For a list of supported SageMaker resources, see ACK API Reference.

What does end of support (EOS) mean?

While users can continue to use their current operators, we are no longer developing new features
for the operators, nor will we release any patches or security updates for any issues found. v1.2.2
is the last release of SageMaker Operators for Kubernetes. Users should migrate their workloads to
use the ACK service controller for Amazon SageMaker.

How can I migrate my workload to the new SageMaker Operators for Kubernetes for training
and inference?

For information about migrating resources from the old to the new SageMaker Operators for
Kubernetes, follow Migrate resources to the latest Operators.

Which version of ACK should I migrate to?

Users should migrate to the most recent released version of the ACK service controller for Amazon
SageMaker.

Are the initial SageMaker Operators for Kubernetes and the new Operators (ACK service
controller for Amazon SageMaker) functionally equivalent?

Yes, they are at feature parity.

A few highlights of the main notable differences between the two versions include:

• The Custom Resources Definitions (CRD) used by the ACK-based SageMaker Operators for
Kubernetes follow the AWS API definition making it incompatible with the custom resources
specifications from the SageMaker Operators for Kubernetes in its original version. Refer to the
CRDs in the new controller or use the migration guide to adopt the resources and use the new
controller.

• The Hosting Autoscaling policy is no longer part of the new SageMaker Operators for
Kubernetes and has been migrated to the Application autoscaling ACK controller. To learn how

Kubernetes Orchestration 4913

https://aws-controllers-k8s.github.io/community/docs/tutorials/autoscaling-example/
https://aws-controllers-k8s.github.io/community/
https://aws-controllers-k8s.github.io/community/reference/
https://github.com/aws/amazon-sagemaker-operator-for-k8s/tree/master
https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller/tags
https://github.com/aws-controllers-k8s/sagemaker-controller/tags
https://github.com/aws-controllers-k8s/sagemaker-controller/tree/main/helm/crds
https://github.com/aws-controllers-k8s/applicationautoscaling-controller

Amazon SageMaker Developer Guide

to use the application autoscaling controller to configure autoscaling on SageMaker Endpoints,
follow this autoscaling example.

• The HostingDeployment resource was used to create Models, Endpoint Configurations, and
Endpoints in one CRD. The new SageMaker Operators for Kubernetes has a separate CRD for
each of these resources.

SageMaker Components for Kubeflow Pipelines

This document outlines how to use SageMaker Components for Kubeflow Pipelines. With these
pipeline components, you can create and monitor native SageMaker training, tuning, endpoint
deployment, and batch transform jobs from your Kubeflow Pipelines. By running Kubeflow Pipeline
jobs on SageMaker, you move data processing and training jobs from the Kubernetes cluster
to SageMaker's machine learning-optimized managed service. This document assumes prior
knowledge of Kubernetes and Kubeflow.

Contents

• What are Kubeflow Pipelines?

• What are Kubeflow Pipeline components?

• Why use SageMaker Components for Kubeflow Pipelines?

• SageMaker Components for Kubeflow Pipelines versions

• List of SageMaker Components for Kubeflow Pipelines

• IAM permissions

• Converting pipelines to use SageMaker

• Install Kubeflow Pipelines

• Use SageMaker components

What are Kubeflow Pipelines?

Kubeflow Pipelines (KFP) is a platform for building and deploying portable, scalable machine
learning (ML) workflows based on Docker containers. The Kubeflow Pipelines platform consists of
the following:

• A user interface (UI) for managing and tracking experiments, jobs, and runs.

• An engine (Argo) for scheduling multi-step ML workflows.

Kubernetes Orchestration 4914

https://aws-controllers-k8s.github.io/community/docs/tutorials/autoscaling-example/

Amazon SageMaker Developer Guide

• An SDK for defining and manipulating pipelines and components.
• Notebooks for interacting with the system using the SDK.

A pipeline is a description of an ML workflow expressed as a directed acyclic graph. Every step
in the workflow is expressed as a Kubeflow Pipeline component, which is a AWS SDK for Python
(Boto3) module.

For more information on Kubeflow Pipelines, see the Kubeflow Pipelines documentation.

What are Kubeflow Pipeline components?

A Kubeflow Pipeline component is a set of code used to execute one step of a Kubeflow pipeline.
Components are represented by a Python module built into a Docker image. When the pipeline
runs, the component's container is instantiated on one of the worker nodes on the Kubernetes
cluster running Kubeflow, and your logic is executed. Pipeline components can read outputs
from the previous components and create outputs that the next component in the pipeline can
consume. These components make it fast and easy to write pipelines for experimentation and
production environments without having to interact with the underlying Kubernetes infrastructure.

You can use SageMaker Components in your Kubeflow pipeline. Rather than encapsulating your
logic in a custom container, you simply load the components and describe your pipeline using the
Kubeflow Pipelines SDK. When the pipeline runs, your instructions are translated into a SageMaker
job or deployment. The workload then runs on the fully managed infrastructure of SageMaker.

Why use SageMaker Components for Kubeflow Pipelines?

SageMaker Components for Kubeflow Pipelines offer an alternative to launching your compute-
intensive jobs from SageMaker. The components integrate SageMaker with the portability and
orchestration of Kubeflow Pipelines. Using the SageMaker Components for Kubeflow Pipelines,
you can create and monitor your SageMaker resources as part of a Kubeflow Pipelines workflow.
Each of the jobs in your pipelines runs on SageMaker instead of the local Kubernetes cluster
allowing you to take advantage of key SageMaker features such as data labeling, large-scale
hyperparameter tuning and distributed training jobs, or one-click secure and scalable model
deployment. The job parameters, status, logs, and outputs from SageMaker are still accessible from
the Kubeflow Pipelines UI.

The SageMaker components integrate key SageMaker features into your ML workflows from
preparing data, to building, training, and deploying ML models. You can create a Kubeflow
Pipeline built entirely using these components, or integrate individual components into your

Kubernetes Orchestration 4915

https://www.kubeflow.org/docs/pipelines/concepts/graph/
https://www.kubeflow.org/docs/pipelines/overview/concepts/component/
https://www.kubeflow.org/docs/pipelines/

Amazon SageMaker Developer Guide

workflow as needed. The components are available in one or two versions. Each version of a
component leverages a different backend. For more information on those versions, see SageMaker
Components for Kubeflow Pipelines versions.

There is no additional charge for using SageMaker Components for Kubeflow Pipelines. You incur
charges for any SageMaker resources you use through these components.

SageMaker Components for Kubeflow Pipelines versions

SageMaker Components for Kubeflow Pipelines come in two versions. Each version leverages a
different backend to create and manage resources on SageMaker.

• The SageMaker Components for Kubeflow Pipelines version 1 (v1.x or below) use Boto3 (AWS
SDK for Python (Boto3)) as backend.

• The version 2 (v2.0.0-alpha2 and above) of SageMaker Components for Kubeflow Pipelines use
SageMaker Operator for Kubernetes (ACK).

AWS introduced ACK to facilitate a Kubernetes-native way of managing AWS Cloud resources.
ACK includes a set of AWS service-specific controllers, one of which is the SageMaker controller.
The SageMaker controller makes it easier for machine learning developers and data scientists
using Kubernetes as their control plane to train, tune, and deploy machine learning (ML) models
in SageMaker. For more information, see SageMaker Operators for Kubernetes

Both versions of the SageMaker Components for Kubeflow Pipelines are supported. However, the
version 2 provides some additional advantages. In particular, it offers:

1. A consistent experience to manage your SageMaker resources from any application; whether you
are using Kubeflow pipelines, or Kubernetes CLI (kubectl) or other Kubeflow applications such
as Notebooks.

2. The flexibility to manage and monitor your SageMaker resources outside of the Kubeflow
pipeline workflow.

3. Zero setup time to use the SageMaker components if you deployed the full Kubeflow on AWS
release since the SageMaker Operator is part of its deployment.

List of SageMaker Components for Kubeflow Pipelines

The following is a list of all SageMaker Components for Kubeflow Pipelines and their available
versions. Alternatively, you can find all SageMaker Components for Kubeflow Pipelines in GitHub.

Kubernetes Orchestration 4916

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/
https://aws-controllers-k8s.github.io/community/docs/tutorials/sagemaker-example/
https://awslabs.github.io/kubeflow-manifests/docs/about/
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker#versioning

Amazon SageMaker Developer Guide

Note

We encourage users to utilize Version 2 of a SageMaker component wherever it is available.

Ground Truth components

• Ground Truth

The Ground Truth component enables you to submit SageMaker Ground Truth labeling jobs
directly from a Kubeflow Pipelines workflow.

Version 1 of the component Version 2 of the component

SageMaker Ground Truth Kubeflow Pipelines
component version 1

X

• Workteam

The Workteam component enables you to create SageMaker private workteam jobs directly from
a Kubeflow Pipelines workflow.

Version 1 of the component Version 2 of the component

SageMaker create private workteam
Kubeflow Pipelines component version 1

X

Data processing components

• Processing

The Processing component enables you to submit processing jobs to SageMaker directly from a
Kubeflow Pipelines workflow.

Kubernetes Orchestration 4917

https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ground_truth
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ground_truth
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/workteam
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/workteam

Amazon SageMaker Developer Guide

Version 1 of the component Version 2 of the component

SageMaker Processing Kubeflow Pipeline
component version 1

X

Training components

• Training

The Training component allows you to submit SageMaker Training jobs directly from a Kubeflow
Pipelines workflow.

Version 1 of the component Version 2 of the component

SageMaker Training Kubeflow Pipelines
component version 1

SageMaker Training Kubeflow Pipelines
component version 2

• Hyperparameter Optimization

The Hyperparameter Optimization component enables you to submit hyperparameter tuning
jobs to SageMaker directly from a Kubeflow Pipelines workflow.

Version 1 of the component Version 2 of the component

SageMaker hyperparameter optimization
Kubeflow Pipeline component version 1

X

Inference components

• Hosting Deploy

The Hosting components allow you to deploy a model using SageMaker hosting services from a
Kubeflow Pipelines workflow.

Kubernetes Orchestration 4918

https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/process
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/process
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/train
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/train
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/TrainingJob
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/TrainingJob
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/hyperparameter_tuning
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/hyperparameter_tuning

Amazon SageMaker Developer Guide

Version 1 of the component Version 2 of the component

SageMaker Hosting Services - Create
Endpoint Kubeflow Pipeline component
 version 1.

Version 2 of the Hosting components consists
of the three sub-components needed to
create a hosting deployment on SageMaker.

• A SageMaker Model Kubeflow Pipelines
component version 2 responsible for the
model artifacts and the model image
registry path that contains the inference
code.

• A SageMaker Endpoint Configuration
Kubeflow Pipelines component version 2
responsible for defining the configuration
of the endpoint such as the instance type,
models, number of instances, and serverles
s inference option.

• A SageMaker Endpoint Kubeflow Pipelines
component version 2 responsible for
creating or updating the endpoint on
SageMaker as specified in the endpoint
configuration.

• Batch Transform

The Batch Transform component allows you to run inference jobs for an entire dataset in
SageMaker from a Kubeflow Pipelines workflow.

Version 1 of the component Version 2 of the component

SageMaker Batch Transform Kubeflow
Pipeline component version 1

X

• Model Monitor

Kubernetes Orchestration 4919

https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/deploy
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/deploy
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/deploy
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/Modelv2
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/Modelv2
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/EndpointConfig
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/EndpointConfig
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/Endpoint
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/Endpoint
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/batch_transform
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/batch_transform

Amazon SageMaker Developer Guide

The Model Monitor components allow you to monitor the quality of SageMaker machine learning
models in production from a Kubeflow Pipelines workflow.

Version 1 of the component Version 2 of the component

X The Model Monitor components consist of
four sub-components for monitoring drift in
a model.

• A SageMaker Data Quality Job Definitio
n Kubeflow Pipelines component version
2 responsible for monitoring drift in data
quality.

• A SageMaker Model Quality Job Definitio
n Kubeflow Pipelines component version 2
responsible for monitoring drift in model
quality metrics.

• A SageMaker Model Bias Job Definition
Kubeflow Pipelines component version
2 responsible for monitoring bias in a
model's predictions.

• A SageMaker Model Explainability Job
Definition Kubeflow Pipelines component
 version 2 responsible for monitoring drift
in feature attribution.

Additionally, for on-schedule monitoring at
a specified frequency, a fifth component,
SageMaker Monitoring Schedule Kubeflow
Pipelines component version 2, is responsible
for monitoring the data collected from a real-
time endpoint on a schedule.

For more information on Amazon SageMaker
Model Monitor, see Monitor data and model
quality.

Kubernetes Orchestration 4920

https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/DataQualityJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/DataQualityJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/DataQualityJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ModelQualityJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ModelQualityJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ModelBiasJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ModelBiasJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ModelBiasJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ModelExplainabilityJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ModelExplainabilityJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/ModelExplainabilityJobDefinition
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/MonitoringSchedule
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker/MonitoringSchedule

Amazon SageMaker Developer Guide

IAM permissions

Deploying Kubeflow Pipelines with SageMaker components requires the following three layers of
authentication:

• An IAM role granting your gateway node (which can be your local machine or a remote instance)
access to the Amazon Elastic Kubernetes Service (Amazon EKS) cluster.

The user accessing the gateway node assumes this role to:

• Create an Amazon EKS cluster and install KFP

• Create IAM roles

• Create Amazon S3 buckets for your sample input data

The role requires the following permissions:

• CloudWatchLogsFullAccess

• AWSCloudFormationFullAccess

• IAMFullAccess

• AmazonS3FullAccess

• AmazonEC2FullAccess

• AmazonEKSAdminPolicy (Create this policy using the schema from Amazon EKS Identity-Based
Policy Examples)

• A Kubernetes IAM execution role assumed by Kubernetes pipeline pods (kfp-example-pod-role)
or the SageMaker Operator for Kubernetes controller pod to access SageMaker. This role is used
to create and monitor SageMaker jobs from Kubernetes.

The role requires the following permission:

• AmazonSageMakerFullAccess

You can limit permissions to the KFP and controller pods by creating and attaching your own
custom policy.

• A SageMaker IAM execution role assumed by SageMaker jobs to access AWS resources such as
Amazon S3 or Amazon ECR (kfp-example-sagemaker-execution-role).

SageMaker jobs use this role to:

• Access SageMaker resources

• Input Data from Amazon S3

• Store your output model to Amazon S3

The role requires the following permissions:
Kubernetes Orchestration 4921

https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAWSCloudFormationFullAccess
https://docs.aws.amazon.com/eks/latest/userguide/security_iam_id-based-policy-examples.html
https://docs.aws.amazon.com/eks/latest/userguide/security_iam_id-based-policy-examples.html

Amazon SageMaker Developer Guide

• AmazonSageMakerFullAccess
• AmazonS3FullAccess

Converting pipelines to use SageMaker

You can convert an existing pipeline to use SageMaker by porting your generic Python processing
containers and training containers. If you are using SageMaker for inference, you also need to
attach IAM permissions to your cluster and convert an artifact to a model.

Install Kubeflow Pipelines

Kubeflow Pipelines (KFP) is the pipeline orchestration component of Kubeflow.

You can deploy Kubeflow Pipelines (KFP) on an existing Amazon Elastic Kubernetes Service
(Amazon EKS) or create a new Amazon EKS cluster. Use a gateway node to interact with your
cluster. The gateway node can be your local machine or an Amazon EC2 instance.

The following section guides you through the steps to set up and configure these resources.

Topics

• Choose an installation option

• Configure your pipeline permissions to access SageMaker

• Access the KFP UI (Kubeflow Dashboard)

Choose an installation option

Kubeflow Pipelines is available as a core component of the full distribution of Kubeflow on AWS or
as a standalone installation.

Select the option that applies to your use case:

1. Full Kubeflow on AWS Deployment

To use other Kubeflow components in addition to Kubeflow Pipelines, choose the full AWS
distribution of Kubeflow deployment.

2. Standalone Kubeflow Pipelines Deployment

To use the Kubeflow Pipelines without the other components of Kubeflow, install Kubeflow
pipelines standalone.

Kubernetes Orchestration 4922

https://docs.aws.amazon.com/sagemaker/latest/dg/amazon-sagemaker-containers.html
https://docs.aws.amazon.com/sagemaker/latest/dg/amazon-sagemaker-containers.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html
https://www.kubeflow.org/docs/components/pipelines/v2/introduction/
https://awslabs.github.io/kubeflow-manifests
https://awslabs.github.io/kubeflow-manifests

Amazon SageMaker Developer Guide

Full Kubeflow on AWS Deployment

To install the full release of Kubeflow on AWS, choose the vanilla deployment option from
Kubeflow on AWS deployment guide or any other deployment option supporting integrations with
various AWS services (Amazon S3, Amazon RDS, Amazon Cognito).

Standalone Kubeflow Pipelines Deployment

This section assumes that your user has permissions to create roles and define policies for the role.

Set up a gateway node

You can use your local machine or an Amazon EC2 instance as your gateway node. A gateway node
is used to create an Amazon EKS cluster and access the Kubeflow Pipelines UI.

Complete the following steps to set up your node.

1. Create a gateway node.

You can use an existing Amazon EC2 instance or create a new instance with the latest Ubuntu
18.04 DLAMI version using the steps in Launching and Configuring a DLAMI.

2. Create an IAM role to grant your gateway node access to AWS resources.

Create an IAM role with permissions to the following resources: CloudWatch, AWS
CloudFormation, IAM, Amazon EC2, Amazon S3, Amazon EKS.

Attach the following policies to the IAM role:

• CloudWatchLogsFullAccess

• AWSCloudFormationFullAccess

• IAMFullAccess

• AmazonS3FullAccess

• AmazonEC2FullAccess

• AmazonEKSAdminPolicy (Create this policy using the schema from Amazon EKS Identity-
Based Policy Examples)

For information on adding IAM permissions to an IAM role, see Adding and removing IAM
identity permissions.

Kubernetes Orchestration 4923

https://awslabs.github.io/kubeflow-manifests/docs/deployment/
https://docs.aws.amazon.com/dlami/latest/devguide/launch-config.html
https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAWSCloudFormationFullAccess
https://docs.aws.amazon.com/eks/latest/userguide/security_iam_id-based-policy-examples.html
https://docs.aws.amazon.com/eks/latest/userguide/security_iam_id-based-policy-examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon SageMaker Developer Guide

3. Install the following tools and clients

Install and configure the following tools and resources on your gateway node to access the
Amazon EKS cluster and KFP User Interface (UI).

• AWS CLI: The command line tool for working with AWS services. For AWS CLI configuration
information, see Configuring the AWS CLI.

• aws-iam-authenticator version 0.1.31 and above: A tool to use AWS IAM credentials to
authenticate to a Kubernetes cluster.

• eksctl version above 0.15: The command line tool for working with Amazon EKS clusters.

• kubectl: The command line tool for working with Kubernetes clusters. The version needs to
match your Kubernetes version within one minor version.

• AWS SDK for Python (Boto3).

pip install boto3

Set up an Amazon EKS cluster

1. If you do not have an existing Amazon EKS cluster, run the following steps from the command
line of your gateway node, skip this step otherwise.

a. Run the following command to create an Amazon EKS cluster with version 1.17 or above.
Replace <clustername> with any name for your cluster.

eksctl create cluster --name <clustername> --region us-east-1 --auto-kubeconfig
 --timeout=50m --managed --nodes=1

b. When the cluster creation is complete, ensure that you have access to your cluster by
listing the cluster's nodes.

kubectl get nodes

2. Ensure that the current kubectl context points to your cluster with the following command.
The current context is marked with an asterisk (*) in the output.

kubectl config get-contexts

CURRENT NAME CLUSTER

Kubernetes Orchestration 4924

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl
https://console.aws.amazon.com/https://aws.amazon.com/sdk-for-python/

Amazon SageMaker Developer Guide

* <username>@<clustername>.us-east-1.eksctl.io <clustername>.us-
east-1.eksctl.io

3. If the desired cluster is not configured as your current default, update the default with the
following command.

aws eks update-kubeconfig --name <clustername> --region us-east-1

Install Kubeflow Pipelines

Run the following steps from the terminal of your gateway node to install Kubeflow Pipelines on
your cluster.

1. Install all cert-manager components.

kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/
v1.9.1/cert-manager.yaml

2. Install the Kubeflow Pipelines.

export PIPELINE_VERSION=2.0.0-alpha.5
kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/env/cert-
manager/cluster-scoped-resources?ref=$KFP_VERSION"
kubectl wait --for condition=established --timeout=60s crd/applications.app.k8s.io
kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/env/cert-
manager/dev?ref=$KFP_VERSION"

3. Ensure that the Kubeflow Pipelines service and other related resources are running.

kubectl -n kubeflow get all | grep pipeline

Your output should look like the following.

pod/ml-pipeline-6b88c67994-kdtjv 1/1 Running 0
 2d
pod/ml-pipeline-persistenceagent-64d74dfdbf-66stk 1/1 Running 0
 2d
pod/ml-pipeline-scheduledworkflow-65bdf46db7-5x9qj 1/1 Running 0
 2d

Kubernetes Orchestration 4925

https://cert-manager.io/docs/installation/kubectl/

Amazon SageMaker Developer Guide

pod/ml-pipeline-ui-66cc4cffb6-cmsdb 1/1 Running 0
 2d
pod/ml-pipeline-viewer-crd-6db65ccc4-wqlzj 1/1 Running 0
 2d
pod/ml-pipeline-visualizationserver-9c47576f4-bqmx4 1/1 Running 0
 2d
service/ml-pipeline ClusterIP 10.100.170.170 <none>
 8888/TCP,8887/TCP 2d
service/ml-pipeline-ui ClusterIP 10.100.38.71 <none>
 80/TCP 2d
service/ml-pipeline-visualizationserver ClusterIP 10.100.61.47 <none>
 8888/TCP 2d
deployment.apps/ml-pipeline 1/1 1 1
 2d
deployment.apps/ml-pipeline-persistenceagent 1/1 1 1
 2d
deployment.apps/ml-pipeline-scheduledworkflow 1/1 1 1
 2d
deployment.apps/ml-pipeline-ui 1/1 1 1
 2d
deployment.apps/ml-pipeline-viewer-crd 1/1 1 1
 2d
deployment.apps/ml-pipeline-visualizationserver 1/1 1 1
 2d
replicaset.apps/ml-pipeline-6b88c67994 1 1 1
 2d
replicaset.apps/ml-pipeline-persistenceagent-64d74dfdbf 1 1 1
 2d
replicaset.apps/ml-pipeline-scheduledworkflow-65bdf46db7 1 1 1
 2d
replicaset.apps/ml-pipeline-ui-66cc4cffb6 1 1 1
 2d
replicaset.apps/ml-pipeline-viewer-crd-6db65ccc4 1 1 1
 2d
replicaset.apps/ml-pipeline-visualizationserver-9c47576f4 1 1 1
 2d

Configure your pipeline permissions to access SageMaker

In this section, you create an IAM execution role granting Kubeflow Pipeline pods access to
SageMaker services.

Kubernetes Orchestration 4926

Amazon SageMaker Developer Guide

Configuration for SageMaker components version 2

To run SageMaker Components version 2 for Kubeflow Pipelines, you need to install SageMaker
Operator for Kubernetes and configure Role-Based Access Control (RBAC) allowing the Kubeflow
Pipelines pods to create SageMaker custom resources in your Kubernetes cluster.

Important

Follow this section if you are using Kubeflow pipelines standalone deployment. If you
are using AWS distribution of Kubeflow version 1.6.0-aws-b1.0.0 or above, SageMaker
components version 2 are already set up.

1. Install SageMaker Operator for Kubernetes to use SageMaker components version 2.

Follow the Setup section of Machine Learning with ACK SageMaker Controller tutorial.

2. Configure RBAC permissions for the execution role (service account) used by Kubeflow
Pipelines pods. In Kubeflow Pipelines standalone deployment, pipeline runs are executed in
the namespace kubeflow using the pipeline-runner service account.

a. Create a RoleBinding that gives the service account permission to manage SageMaker
custom resources.

cat > manage_sagemaker_cr.yaml <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: manage-sagemaker-cr
namespace: kubeflow
subjects:
- kind: ServiceAccount
name: pipeline-runner
namespace: kubeflow
roleRef:
kind: ClusterRole
name: ack-sagemaker-controller
apiGroup: rbac.authorization.k8s.io
EOF

kubectl apply -f manage_sagemaker_cr.yaml

Kubernetes Orchestration 4927

https://github.com/aws-controllers-k8s/sagemaker-controller
https://github.com/aws-controllers-k8s/sagemaker-controller
https://aws-controllers-k8s.github.io/community/docs/tutorials/sagemaker-example/#setup
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-example

Amazon SageMaker Developer Guide

b. Ensure that the rolebinding was created by running:

kubectl get rolebinding manage-sagemaker-cr -n kubeflow -o yaml

Configuration for SageMaker components version 1

To run SageMaker Components version 1 for Kubeflow Pipelines, the Kubeflow Pipeline pods need
access to SageMaker.

Important

Follow this section whether you are using the full Kubeflow on AWS deployment or
Kubeflow Pilepines standalone.

To create an IAM execution role granting Kubeflow pipeline pods access to SageMaker, follow those
steps:

1. Export your cluster name (e.g., my-cluster-name) and cluster region (e.g., us-east-1).

export CLUSTER_NAME=my-cluster-name
export CLUSTER_REGION=us-east-1

2. Export the namespace and service account name according to your installation.

• For the full Kubeflow on AWS installation, export your profile namespace (e.g., kubeflow-
user-example-com) and default-editor as the service account.

export NAMESPACE=kubeflow-user-example-com
export KUBEFLOW_PIPELINE_POD_SERVICE_ACCOUNT=default-editor

• For the standalone Pipelines deployment, export kubeflow as the namespace and pipeline-
runner as the service account.

export NAMESPACE=kubeflow
export KUBEFLOW_PIPELINE_POD_SERVICE_ACCOUNT=pipeline-runner

3. Create an IAM OIDC provider for the Amazon EKS cluster with the following command.

Kubernetes Orchestration 4928

https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html

Amazon SageMaker Developer Guide

eksctl utils associate-iam-oidc-provider --cluster ${CLUSTER_NAME} \
 --region ${CLUSTER_REGION} --approve

4. Create an IAM execution role for the KFP pods to access AWS services (SageMaker,
CloudWatch).

eksctl create iamserviceaccount \
--name ${KUBEFLOW_PIPELINE_POD_SERVICE_ACCOUNT} \
--namespace ${NAMESPACE} --cluster ${CLUSTER_NAME} \
--region ${CLUSTER_REGION} \
--attach-policy-arn arn:aws:iam::aws:policy/AmazonSageMakerFullAccess \
--attach-policy-arn arn:aws:iam::aws:policy/CloudWatchLogsFullAccess \
--override-existing-serviceaccounts \
--approve

Once your pipeline permissions are configured to access SageMaker Components version 1, follow
the SageMaker components for Kubeflow pipelines guide on the Kubeflow on AWS documentation.

Access the KFP UI (Kubeflow Dashboard)

The Kubeflow Pipelines UI is used for managing and tracking experiments, jobs, and runs on your
cluster. For instructions on how to access the Kubeflow Pipelines UI from your gateway node,
follow the steps that apply to your deployment option in this section.

Full Kubeflow on AWS Deployment

Follow the instructions on the Kubeflow on AWS website to connect to the Kubeflow dashboard
and navigate to the pipelines tab.

Standalone Kubeflow Pipelines Deployment

Use port forwarding to access the Kubeflow Pipelines UI from your gateway node by following
those steps.

Set up port forwarding to the KFP UI service

Run the following command from the command line of your gateway node.

1. Verify that the KFP UI service is running using the following command.

kubectl -n kubeflow get service ml-pipeline-ui

Kubernetes Orchestration 4929

https://awslabs.github.io/kubeflow-manifests/docs/amazon-sagemaker-integration/sagemaker-components-for-kubeflow-pipelines/
https://awslabs.github.io/kubeflow-manifests/docs/deployment/connect-kubeflow-dashboard/

Amazon SageMaker Developer Guide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ml-pipeline-ui ClusterIP 10.100.38.71 <none> 80/TCP 2d22h

2. Run the following command to set up port forwarding to the KFP UI service. This forwards
the KFP UI to port 8080 on your gateway node and allows you to access the KFP UI from your
browser.

kubectl port-forward -n kubeflow service/ml-pipeline-ui 8080:80

The port forward from your remote machine drops if there is no activity. Run this command
again if your dashboard is unable to get logs or updates. If the commands return an error,
ensure that there is no process already running on the port you are trying to use.

Access the KFP UI service

Your method of accessing the KFP UI depends on your gateway node type.

• Local machine as the gateway node:

1. Access the dashboard in your browser as follows:

http://localhost:8080

2. Choose Pipelines to access the pipelines UI.

• Amazon EC2 instance as the gateway node:

1. You need to set up an SSH tunnel on your Amazon EC2 instance to access the Kubeflow
dashboard from your local machine's browser.

From a new terminal session in your local machine, run the following. Replace <public-
DNS-of-gateway-node> with the IP address of your instance found on the Amazon EC2
console. You can also use the public DNS. Replace <path_to_key> with the path to the
pem key used to access the gateway node.

public_DNS_address=<public-DNS-of-gateway-node>
key=<path_to_key>

on Ubuntu:
ssh -i ${key} -L 9000:localhost:8080 ubuntu@${public_DNS_address}

Kubernetes Orchestration 4930

Amazon SageMaker Developer Guide

or on Amazon Linux:
ssh -i ${key} -L 9000:localhost:8080 ec2-user@${public_DNS_address}

2. Access the dashboard in your browser.

http://localhost:9000

3. Choose Pipelines to access the KFP UI.

(Optional) Grant SageMaker notebook instances access to Amazon EKS, and run KFP pipelines
from your notebook.

A SageMaker notebook instance is a fully managed Amazon EC2 compute instance that runs the
Jupyter Notebook App. You can use a notebook instance to create and manage Jupyter notebooks
then define, compile, deploy, and run your KFP pipelines using AWS SDK for Python (Boto3) or the
KFP CLI.

1. Follow the steps in Create a SageMaker Notebook Instance to create your notebook instance,
then attach the S3FullAccess policy to its IAM execution role.

2. From the command line of your gateway node, run the following command to retrieve the IAM
role ARN of the notebook instance you created. Replace <instance-name> with the name of
your instance.

aws sagemaker describe-notebook-instance --notebook-instance-name <instance-name>
 --region <region> --output text --query 'RoleArn'

This command outputs the IAM role ARN in the arn:aws:iam::<account-id>:role/
<role-name> format. Take note of this ARN.

3. Run this command to attach the following policies (AmazonSageMakerFullAccess,
AmazonEKSWorkerNodePolicy, AmazonS3FullAccess) to this IAM role. Replace <role-name>
with the <role-name> in your ARN.

aws iam attach-role-policy --role-name <role-name> --policy-arn
 arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
aws iam attach-role-policy --role-name <role-name> --policy-arn
 arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
aws iam attach-role-policy --role-name <role-name> --policy-arn
 arn:aws:iam::aws:policy/AmazonS3FullAccess

Kubernetes Orchestration 4931

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html

Amazon SageMaker Developer Guide

4. Amazon EKS clusters use IAM roles to control access to the cluster. The rules are implemented
in a config map named aws-auth. eksctl provides commands to read and edit the aws-
auth config map. Only the users that have access to the cluster can edit this config map.

system:masters is one of the default user groups with super user permissions to the cluster.
Add your user to this group or create a group with more restrictive permissions.

5. Bind the role to your cluster by running the following command. Replace <IAM-Role-arn>
with the ARN of the IAM role. <your_username> can be any unique username.

eksctl create iamidentitymapping \
--cluster <cluster-name> \
--arn <IAM-Role-arn> \
--group system:masters \
--username <your-username> \
--region <region>

6. Open a Jupyter notebook on your SageMaker instance and run the following command to
ensure that it has access to the cluster.

aws eks --region <region> update-kubeconfig --name <cluster-name>
kubectl -n kubeflow get all | grep pipeline

Use SageMaker components

In this tutorial, you run a pipeline using SageMaker Components for Kubeflow Pipelines to train
a classification model using Kmeans with the MNIST dataset on SageMaker. The workflow uses
Kubeflow Pipelines as the orchestrator and SageMaker to execute each step of the workflow. The
example was taken from an existing SageMaker example and modified to work with SageMaker
Components for Kubeflow Pipelines.

You can define your pipeline in Python using AWS SDK for Python (Boto3) then use the KFP
dashboard, KFP CLI, or Boto3 to compile, deploy, and run your workflows. The full code for the
MNIST classification pipeline example is available in the Kubeflow Github repository. To use it,
clone the Python files to your gateway node.

You can find additional SageMaker Kubeflow Pipelines examples on GitHub. For information on
the components used, see the KubeFlow Pipelines GitHub repository.

Kubernetes Orchestration 4932

https://github.com/aws/amazon-sagemaker-examples/blob/8279abfcc78bad091608a4a7135e50a0bd0ec8bb/sagemaker-python-sdk/1P_kmeans_highlevel/kmeans_mnist.ipynb
https://github.com/kubeflow/pipelines/tree/master/samples/contrib/aws-samples/mnist-kmeans-sagemaker#mnist-classification-with-kmeans
https://github.com/kubeflow/pipelines/tree/master/samples/contrib/aws-samples
https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker

Amazon SageMaker Developer Guide

To run the classification pipeline example, create a SageMaker IAM execution role granting your
training job the permission to access AWS resources, then continue with the steps that correspond
to your deployment option.

Create a SageMaker execution role

The kfp-example-sagemaker-execution-role IAM role is a runtime role assumed by
SageMaker jobs to access AWS resources. In the following command, you create an IAM execution
role named kfp-example-sagemaker-execution-role, attach two managed policies
(AmazonSageMakerFullAccess, AmazonS3FullAccess), and create a trust relationship with
SageMaker to grant SageMaker jobs access to those AWS resources.

You provide this role as an input parameter when running the pipeline.

Run the following command to create the role. Note the ARN that is returned in your output.

SAGEMAKER_EXECUTION_ROLE_NAME=kfp-example-sagemaker-execution-role

TRUST="{ \"Version\": \"2012-10-17\", \"Statement\": [{ \"Effect\": \"Allow
\", \"Principal\": { \"Service\": \"sagemaker.amazonaws.com\" }, \"Action\":
 \"sts:AssumeRole\" }] }"
aws iam create-role --role-name ${SAGEMAKER_EXECUTION_ROLE_NAME} --assume-role-policy-
document "$TRUST"
aws iam attach-role-policy --role-name ${SAGEMAKER_EXECUTION_ROLE_NAME} --policy-arn
 arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
aws iam attach-role-policy --role-name ${SAGEMAKER_EXECUTION_ROLE_NAME} --policy-arn
 arn:aws:iam::aws:policy/AmazonS3FullAccess

aws iam get-role --role-name ${SAGEMAKER_EXECUTION_ROLE_NAME} --output text --query
 'Role.Arn'

Full Kubeflow on AWS Deployment

Follow the instructions of the SageMaker Training Pipeline tutorial for MNIST Classification with K-
Means.

Standalone Kubeflow Pipelines Deployment

Prepare datasets

To run the pipelines, you need to upload the data extraction pre-processing script to an Amazon S3
bucket. This bucket and all resources for this example must be located in the us-east-1 region.
For information on creating a bucket, see Creating a bucket.

Kubernetes Orchestration 4933

https://awslabs.github.io/kubeflow-manifests/docs/amazon-sagemaker-integration/sagemaker-components-for-kubeflow-pipelines/
https://awslabs.github.io/kubeflow-manifests/docs/amazon-sagemaker-integration/sagemaker-components-for-kubeflow-pipelines/
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Amazon SageMaker Developer Guide

From the mnist-kmeans-sagemaker folder of the Kubeflow repository you cloned on your
gateway node, run the following command to upload the kmeans_preprocessing.py file to
your Amazon S3 bucket. Change <bucket-name> to the name of your Amazon S3 bucket.

aws s3 cp mnist-kmeans-sagemaker/kmeans_preprocessing.py s3://<bucket-name>/
mnist_kmeans_example/processing_code/kmeans_preprocessing.py

Compile and deploy your pipeline

After defining the pipeline, you must compile it to an intermediate representation before you
submit it to the Kubeflow Pipelines service on your cluster. The intermediate representation is a
workflow specification in the form of a YAML file compressed into a tar.gz file. You need the KFP
SDK to compile your pipeline.

Install KFP SDK

Run the following from the command line of your gateway node:

1. Install the KFP SDK following the instructions in the Kubeflow pipelines documentation.

2. Verify that the KFP SDK is installed with the following command:

pip show kfp

3. Verify that dsl-compile has been installed correctly as follows:

which dsl-compile

Compile your pipeline

You have three options to interact with Kubeflow Pipelines: KFP UI, KFP CLI, or the KFP SDK. The
following sections illustrate the workflow using the KFP UI and CLI.

Complete the following steps from your gateway node.

1. Modify your Python file with your Amazon S3 bucket name and IAM role ARN.

2. Use the dsl-compile command from the command line to compile your pipeline as follows.
Replace <path-to-python-file> with the path to your pipeline and <path-to-output>
with the location where you want your tar.gz file to be.

Kubernetes Orchestration 4934

https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/

Amazon SageMaker Developer Guide

dsl-compile --py <path-to-python-file> --output <path-to-output>

Upload and run the pipeline using the KFP CLI

Complete the following steps from the command line of your gateway node. KFP organizes runs
of your pipeline as experiments. You have the option to specify an experiment name. If you do not
specify one, the run will be listed under Default experiment.

1. Upload your pipeline as follows:

kfp pipeline upload --pipeline-name <pipeline-name> <path-to-output-tar.gz>

Your output should look like the following. Take note of the pipeline ID.

Pipeline 29c3ff21-49f5-4dfe-94f6-618c0e2420fe has been submitted

Pipeline Details

ID 29c3ff21-49f5-4dfe-94f6-618c0e2420fe
Name sm-pipeline
Description
Uploaded at 2020-04-30T20:22:39+00:00
...
...

2. Create a run using the following command. The KFP CLI run command currently does
not support specifying input parameters while creating the run. You need to update your
parameters in the AWS SDK for Python (Boto3) pipeline file before compiling. Replace
<experiment-name> and <job-name> with any names. Replace <pipeline-id> with the
ID of your submitted pipeline. Replace <your-role-arn> with the ARN of kfp-example-
pod-role. Replace <your-bucket-name> with the name of the Amazon S3 bucket you
created.

kfp run submit --experiment-name <experiment-name> --run-name <job-name> --
pipeline-id <pipeline-id> role_arn="<your-role-arn>" bucket_name="<your-bucket-
name>"

Kubernetes Orchestration 4935

Amazon SageMaker Developer Guide

You can also directly submit a run using the compiled pipeline package created as the output
of the dsl-compile command.

kfp run submit --experiment-name <experiment-name> --run-name <job-name> --package-
file <path-to-output> role_arn="<your-role-arn>" bucket_name="<your-bucket-name>"

Your output should look like the following:

Creating experiment aws.
Run 95084a2c-f18d-4b77-a9da-eba00bf01e63 is submitted
+--------------------------------------+--------+----------
+---------------------------+
| run id | name | status | created at
 |
+======================================+========+==========
+===========================+
| 95084a2c-f18d-4b77-a9da-eba00bf01e63 | sm-job | |
 2020-04-30T20:36:41+00:00 |
+--------------------------------------+--------+----------
+---------------------------+

3. Navigate to the UI to check the progress of the job.

Upload and run the pipeline using the KFP UI

1. On the left panel, choose the Pipelines tab.

2. In the upper-right corner, choose +UploadPipeline.

3. Enter the pipeline name and description.

4. Choose Upload a file and enter the path to the tar.gz file you created using the CLI or with
AWS SDK for Python (Boto3).

5. On the left panel, choose the Pipelines tab.

6. Find the pipeline you created.

7. Choose +CreateRun.

8. Enter your input parameters.

9. Choose Run.

Kubernetes Orchestration 4936

Amazon SageMaker Developer Guide

Run predictions

Once your classification pipeline is deployed, you can run classification predictions against the
endpoint that was created by the Deploy component. Use the KFP UI to check the output artifacts
for sagemaker-deploy-model-endpoint_name. Download the .tgz file to extract the endpoint
name or check the SageMaker console in the region you used.

Configure permissions to run predictions

If you want to run predictions from your gateway node, skip this section.

To use any other machine to run predictions, assign the sagemaker:InvokeEndpoint
permission to the IAM role used by the client machine.

1. On your gateway node, run the following to create an IAM policy file:

cat <<EoF > ./sagemaker-invoke.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:InvokeEndpoint"
],
 "Resource": "*"
 }
]
}
EoF

2. Attach the policy to the IAM role of the client node.

Run the following command. Replace <your-instance-IAM-role> with the name of the
IAM role. Replace <path-to-sagemaker-invoke-json> with the path to the policy file you
created.

aws iam put-role-policy --role-name <your-instance-IAM-role> --policy-name
 sagemaker-invoke-for-worker --policy-document file://<path-to-sagemaker-invoke-
json>

Kubernetes Orchestration 4937

Amazon SageMaker Developer Guide

Run predictions

1. Create a AWS SDK for Python (Boto3) file from your client machine named mnist-
predictions.py with the following content. Replace the ENDPOINT_NAME variable. The
script loads the MNIST dataset, creates a CSV from those digits, then sends the CSV to the
endpoint for prediction and prints the results.

import boto3
import gzip
import io
import json
import numpy
import pickle

ENDPOINT_NAME='<endpoint-name>'
region = boto3.Session().region_name

S3 bucket where the original mnist data is downloaded and stored
downloaded_data_bucket = f"jumpstart-cache-prod-{region}"
downloaded_data_prefix = "1p-notebooks-datasets/mnist"

Download the dataset
s3 = boto3.client("s3")
s3.download_file(downloaded_data_bucket, f"{downloaded_data_prefix}/mnist.pkl.gz",
 "mnist.pkl.gz")

Load the dataset
with gzip.open('mnist.pkl.gz', 'rb') as f:
 train_set, valid_set, test_set = pickle.load(f, encoding='latin1')

Simple function to create a csv from our numpy array
def np2csv(arr):
 csv = io.BytesIO()
 numpy.savetxt(csv, arr, delimiter=',', fmt='%g')
 return csv.getvalue().decode().rstrip()

runtime = boto3.Session(region).client('sagemaker-runtime')

payload = np2csv(train_set[0][30:31])

response = runtime.invoke_endpoint(EndpointName=ENDPOINT_NAME,
 ContentType='text/csv',
 Body=payload)

Kubernetes Orchestration 4938

Amazon SageMaker Developer Guide

result = json.loads(response['Body'].read().decode())
print(result)

2. Run the AWS SDK for Python (Boto3) file as follows:

python mnist-predictions.py

View results and logs

When the pipeline is running, you can choose any component to check execution details, such as
inputs and outputs. This lists the names of created resources.

If the KFP request is successfully processed and an SageMaker job is created, the component logs in
the KFP UI provide a link to the job created in SageMaker. The CloudWatch logs are also provided if
the job is successfully created.

If you run too many pipeline jobs on the same cluster, you may see an error message that indicates
that you do not have enough pods available. To fix this, log in to your gateway node and delete the
pods created by the pipelines you are not using:

kubectl get pods -n kubeflow
kubectl delete pods -n kubeflow <name-of-pipeline-pod>

Cleanup

When you're finished with your pipeline, you need to clean up your resources.

1. From the KFP dashboard, terminate your pipeline runs if they do not exit properly by choosing
Terminate.

2. If the Terminate option doesn't work, log in to your gateway node and manually terminate all
the pods created by your pipeline run as follows:

kubectl get pods -n kubeflow
kubectl delete pods -n kubeflow <name-of-pipeline-pod>

3. Using your AWS account, log in to the SageMaker service. Manually stop all training, batch
transform, and HPO jobs. Delete models, data buckets, and endpoints to avoid incurring any
additional costs. Terminating the pipeline runs does not stop the jobs in SageMaker.

Kubernetes Orchestration 4939

Amazon SageMaker Developer Guide

SageMaker Notebook Jobs

You can use Amazon SageMaker to interactively build, train, and deploy machine learning models
from your Jupyter notebook in any JupyterLab environment. However, there are various scenarios
in which you might want to run your notebook as a noninteractive, scheduled job. For example,
you might want to create regular audit reports that analyze all training jobs run over a certain time
frame and analyze the business value of deploying those models into production. Or you might
want to scale up a feature engineering job after testing the data transformation logic on a small
subset of data. Other common use cases include:

• Scheduling jobs for model drift monitoring

• Exploring the parameter space for better models

In these scenarios, you can use SageMaker Notebook Jobs to create a noninteractive
job (which SageMaker runs as an underlying training job) to either run on demand or
on a schedule. SageMaker Notebook Jobs provides an intuitive user interface so you
can schedule your jobs right from JupyterLab by choosing the Notebook Jobs widget
()
in your notebook. You can also schedule your jobs using the SageMaker Python SDK, which offers
the flexibility of scheduling multiple notebook jobs in a pipeline workflow. You can run multiple
notebooks in parallel, and parameterize cells in your notebooks to customize the input parameters.

This feature leverages the Amazon EventBridge, SageMaker Training and SageMaker Pipelines
services and is available for use in your Jupyter notebook in any of the following environments:

• Studio, Studio Lab, Studio Classic, or Notebook Instances

• Local setup, such as your local machine, where you run JupyterLab

Prerequisites

To schedule a notebook job, make sure you meet the following criteria:

• Ensure your Jupyter notebook and any initialization or startup scripts are self-contained with
respect to code and software packages. Otherwise, your noninteractive job may incur errors.

• Review Constraints and considerations to make sure you properly configured your Jupyter
notebook, network settings, and container settings.

• Ensure your notebook can access needed external resources, such as Amazon EMR clusters.

Notebook Jobs 4940

Amazon SageMaker Developer Guide

• If you are setting up Notebook Jobs in a local Jupyter notebook, complete the installation. For
instructions, see Installation Guide.

• If you connect to an Amazon EMR cluster in your notebook and want to parameterize your
Amazon EMR connection command, you must apply a workaround using environment variables
to pass parameters. For details, see Connect to an Amazon EMR cluster from your notebook.

• If you connect to an Amazon EMR cluster using Kerberos, LDAP, or HTTP Basic Auth
authentication, you must use the AWS Secrets Manager to pass your security credentials to your
Amazon EMR connection command. For details, see Connect to an Amazon EMR cluster from
your notebook.

• (optional) If you want the UI to preload a script to run upon notebook startup, your admin must
install it with a Lifecycle Configuration (LCC). For information about how to use a LCC script, see
Customize a Notebook Instance Using a Lifecycle Configuration Script.

Installation Guide

The following discussion includes detailed instructions about additional installation you need to
perform so you can use Notebook Jobs in your JupyterLab environment.

For Amazon SageMaker Studio and Amazon SageMaker Studio Lab

If your notebook is in Amazon SageMaker Studio or Amazon SageMaker Studio Lab, you don’t need
to perform additional installation—SageMaker Notebook Jobs is built into the platform. To set up
required permissions for Studio, see Install policies and permissions for Studio.

For local Jupyter notebooks

If you want to use SageMaker Notebook Jobs for your local JupyterLab environment, you need to
perform additional installation.

To install SageMaker Notebook Jobs, complete the following steps:

1. Install Python 3. For details, see Installing Python 3 and Python Packages.

2. Install JupyterLab version 3 or higher. For details, see JupyterLab SDK documentation.

3. Install the AWS CLI. For details, see Installing or updating the latest version of the AWS CLI.

4. Install two sets of permissions. The IAM user needs permissions to submit jobs to SageMaker,
and once submitted, the notebook job itself assumes an IAM role that needs permissions to
access resources depending on the job tasks.

Notebook Jobs 4941

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://www.codecademy.com/article/install-python3
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon SageMaker Developer Guide

a. If you haven’t yet created an IAM user, see Creating an IAM user in your AWS account.

b. If you haven’t yet created your notebook job role, see Creating a role to delegate
permissions to an IAM user.

c. Attach the necessary permissions and trust policy to attach to your user and role. For step-
by-step instructions and permission details, see Install policies and permissions for local
Jupyter environments.

5. Generate AWS credentials for your newly-created IAM user and save them in the credentials
file (~/.aws/credentials) of your JupyterLab environment. You can do this with the CLI
command aws configure. For instructions, see section Set and view configuration settings
using commands in Configuration and credential file settings.

6. (optional) By default, the scheduler extension uses a pre-built SageMaker Docker image with
Python 2.0. Any non-default kernel used in the notebook should be installed in the container.
If you want to run your notebook in a container or Docker image, you need to create an
Amazon Elastic Container Registry (Amazon ECR) image. For information about how to push a
Docker image to an Amazon ECR, see Pushing a Docker Image.

7. Add the JupyterLab extension for SageMaker Notebook Jobs. You can
add it to your JupyterLab environment with the command: pip install
amazon_sagemaker_jupyter_scheduler. You may need to restart your Jupyter server
with the command:sudo systemctl restart jupyter-server.

8. Start JupyterLab with the command: jupyter lab.

9. Verify that the Notebook Jobs widget
()
appears in your Jupyter notebook taskbar.

Install policies and permissions for Studio

Before you schedule your first notebook run, make sure that you install the proper policies and
permissions. The following instructions show you how to configure the following permissions:

• Job execution role trust relationships

• Additional IAM permissions attached to the job execution role

• (optional) The AWS KMS permission policy to use a custom KMS key

Notebook Jobs 4942

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html

Amazon SageMaker Developer Guide

Important

If your AWS account belongs to an organization with service control policies (SCP) in place,
your effective permissions are the logical intersection between what is allowed by the SCPs
and what is allowed by your IAM role and user policies. For example, if your organization’s
SCP specifies that you can only access resources in us-east-1 and us-west-1, and your
policies only allow you to access resources in us-west-1 and us-west-2, then ultimately
you can only access resources in us-west-1. If you want to exercise all the permissions
allowed in your role and user policies, your organization’s SCPs should grant the same set
of permissions as your own IAM user and role policies. For details about how to determine
your allowed requests, see Determining whether a request is allowed or denied within an
account.

Trust relationships

To modify the trust relationships, complete the following steps:

1. Open the IAM console.

2. Select Roles in the left panel.

3. Find the job execution role for your notebook job and choose the role name.

4. Choose the Trust relationships tab.

5. Choose Edit trust policy.

6. Copy and paste the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"

Notebook Jobs 4943

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

 },
 "Action": "sts:AssumeRole"
 }
]
}

7. Choose Update Policy.

Additional IAM permissions

You might need to include additional IAM permissions in the following situations:

• Your Studio execution and notebook job roles differ

• You need to access Amazon S3 resources through a S3 VPC endpoint

• You want to use a custom KMS key to encrypt your input and output Amazon S3 buckets

The following discussion provides the policies you need for each case.

Permissions needed if your Studio execution and notebook job roles differ

The following JSON snippet is an example policy that you should add to the Studio execution and
notebook job roles if you don’t use the Studio execution role as the notebook job role. Review and
modify this policy if you need to further restrict privileges.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::*:role/*",
 "Condition":{
 "StringLike":{
 "iam:PassedToService":[
 "sagemaker.amazonaws.com",
 "events.amazonaws.com"
]
 }
 }
 },
 {

Notebook Jobs 4944

Amazon SageMaker Developer Guide

 "Effect":"Allow",
 "Action":[
 "events:TagResource",
 "events:DeleteRule",
 "events:PutTargets",
 "events:DescribeRule",
 "events:PutRule",
 "events:RemoveTargets",
 "events:DisableRule",
 "events:EnableRule"
],
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "aws:ResourceTag/sagemaker:is-scheduling-notebook-job":"true"
 }
 }
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:CreateBucket",
 "s3:PutBucketVersioning",
 "s3:PutEncryptionConfiguration"
],
 "Resource":"arn:aws:s3:::sagemaker-automated-execution-*"
 },
 {
 "Sid": "S3DriverAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::sagemakerheadlessexecution-*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "sagemaker:ListTags"
],

Notebook Jobs 4945

Amazon SageMaker Developer Guide

 "Resource":[
 "arn:aws:sagemaker:*:*:user-profile/*",
 "arn:aws:sagemaker:*:*:space/*",
 "arn:aws:sagemaker:*:*:training-job/*",
 "arn:aws:sagemaker:*:*:pipeline/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "sagemaker:AddTags"
],
 "Resource":[
 "arn:aws:sagemaker:*:*:training-job/*",
 "arn:aws:sagemaker:*:*:pipeline/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:CreateVpcEndpoint",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeVpcs",
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetAuthorizationToken",
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:GetEncryptionConfiguration",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:GetObject",
 "sagemaker:DescribeDomain",
 "sagemaker:DescribeUserProfile",

Notebook Jobs 4946

Amazon SageMaker Developer Guide

 "sagemaker:DescribeSpace",
 "sagemaker:DescribeStudioLifecycleConfig",
 "sagemaker:DescribeImageVersion",
 "sagemaker:DescribeAppImageConfig",
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:StopTrainingJob",
 "sagemaker:Search",
 "sagemaker:CreatePipeline",
 "sagemaker:DescribePipeline",
 "sagemaker:DeletePipeline",
 "sagemaker:StartPipelineExecution"
],
 "Resource":"*"
 }
]
}

Permissions needed to access Amazon S3 resources through a S3 VPC endpoint

If you run SageMaker Studio in private VPC mode and access S3 through the S3 VPC endpoint,
you can add permissions to the VPC endpoint policy to control which S3 resources are accessible
through the VPC endpoint. Add the following permissions to your VPC endpoint policy. You can
modify the policy if you need to further restrict permissions—for example, you can provide a more
narrow specification for the Principal field.

{
 "Sid": "S3DriverAccess",
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::sagemakerheadlessexecution-*"
}

For details about how to set up a S3 VPC endpoint policy, see Edit the VPC endpoint policy.

Notebook Jobs 4947

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html#edit-vpc-endpoint-policy-s3

Amazon SageMaker Developer Guide

Permissions needed to use a custom KMS key (optional)

By default, the input and output Amazon S3 buckets are encrypted using server side encryption,
but you can specify a custom KMS key to encrypt your data in the output Amazon S3 bucket and
the storage volume attached to the notebook job.

If you want to use a custom KMS key, attach the following policy and supply your own KMS key
ARN.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect":"Allow",
 "Action":[
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:CreateGrant"
],
 "Resource":"your_KMS_key_ARN"
 }
]
}

Install policies and permissions for local Jupyter environments

As previously stated, you install two sets of permissions—permissions for the IAM user and for the
IAM role that the notebook job assumes. As shown in the following diagram, the IAM user needs to
set up IAM permissions in order to submits jobs to SageMaker. Once the user submits the notebook
job, the job itself assumes an IAM role that has permissions to access resources depending on the
job tasks.

Notebook Jobs 4948

Amazon SageMaker Developer Guide

The following sections help you install necessary policies and permissions for both the IAM user
and the job execution role.

IAM user permissions

Permissions to submit jobs to SageMaker

To add permissions to submit jobs, complete the following steps:

1. Open the IAM console.

2. Select Users in the left panel.

3. Find the IAM user for your notebook job and choose the user name.

4. Choose Add Permissions, and choose Create inline policy from the dropdown menu.

5. Choose the JSON tab.

6. Copy and paste the following policy:

Notebook Jobs 4949

https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EventBridgeSchedule",
 "Effect": "Allow",
 "Action": [
 "events:TagResource",
 "events:DeleteRule",
 "events:PutTargets",
 "events:DescribeRule",
 "events:EnableRule",
 "events:PutRule",
 "events:RemoveTargets",
 "events:DisableRule"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/sagemaker:is-scheduling-notebook-job": "true"
 }
 }
 },
 {
 "Sid": "IAMPassrole",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "sagemaker.amazonaws.com",
 "events.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "IAMListRoles",
 "Effect": "Allow",
 "Action": "iam:ListRoles",
 "Resource": "*"
 },

Notebook Jobs 4950

Amazon SageMaker Developer Guide

 {
 "Sid": "S3ArtifactsAccess",
 "Effect": "Allow",
 "Action": [
 "s3:PutEncryptionConfiguration",
 "s3:CreateBucket",
 "s3:PutBucketVersioning",
 "s3:ListBucket",
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetEncryptionConfiguration",
 "s3:DeleteObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::sagemaker-automated-execution-*"
]
 },
 {
 "Sid": "S3DriverAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::sagemakerheadlessexecution-*"
]
 },
 {
 "Sid": "SagemakerJobs",
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeTrainingJob",
 "sagemaker:StopTrainingJob",
 "sagemaker:DescribePipeline",
 "sagemaker:CreateTrainingJob",
 "sagemaker:DeletePipeline",
 "sagemaker:CreatePipeline"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {

Notebook Jobs 4951

Amazon SageMaker Developer Guide

 "aws:ResourceTag/sagemaker:is-scheduling-notebook-job": "true"
 }
 }
 },
 {
 "Sid": "AllowSearch",
 "Effect": "Allow",
 "Action": "sagemaker:Search",
 "Resource": "*"
 },
 {
 "Sid": "SagemakerTags",
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags",
 "sagemaker:AddTags"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:pipeline/*",
 "arn:aws:sagemaker:*:*:space/*",
 "arn:aws:sagemaker:*:*:training-job/*",
 "arn:aws:sagemaker:*:*:user-profile/*"
]
 },
 {
 "Sid": "ECRImage",
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

AWS KMS permission policy (optional)

By default, the input and output Amazon S3 buckets are encrypted using server side encryption,
but you can specify a custom KMS key to encrypt your data in the output Amazon S3 bucket and
the storage volume attached to the notebook job.

Notebook Jobs 4952

Amazon SageMaker Developer Guide

If you want to use a custom KMS key, repeat the previous instructions, attaching the following
policy, and supply your own KMS key ARN.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect":"Allow",
 "Action":[
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:CreateGrant"
],
 "Resource":"your_KMS_key_ARN"
 }
]
}

Job execution role permissions

Trust relationships

To modify the job execution role trust relationships, complete the following steps:

1. Open the IAM console.

2. Select Roles in the left panel.

3. Find the job execution role for your notebook job and choose the role name.

4. Choose the Trust relationships tab.

5. Choose Edit trust policy.

6. Copy and paste the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [

Notebook Jobs 4953

https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

 "sagemaker.amazonaws.com",
 "events.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Additional permissions

Once submitted, the notebook job needs permissions to access resources. The following
instructions show you how to add a minimal set of permissions. If needed, add more permissions
based on your notebook job needs. To add permissions to your job execution role, complete the
following steps:

1. Open the IAM console.

2. Select Roles in the left panel.

3. Find the job execution role for your notebook job and choose the role name.

4. Choose Add Permissions, and choose Create inline policy from the dropdown menu.

5. Choose the JSON tab.

6. Copy and paste the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PassroleForJobCreation",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },
 {
 "Sid": "S3ForStoringArtifacts",
 "Effect": "Allow",

Notebook Jobs 4954

https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::sagemaker-automated-execution-*"
 },
 {
 "Sid": "S3DriverAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::sagemakerheadlessexecution-*"
]
 },
 {
 "Sid": "SagemakerJobs",
 "Effect": "Allow",
 "Action": [
 "sagemaker:StartPipelineExecution",
 "sagemaker:CreateTrainingJob"
],
 "Resource": "*"
 },
 {
 "Sid": "ECRImage",
 "Effect": "Allow",
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability"
],
 "Resource": "*"
 }
]
}

7. Add permissions to other resources your notebook job accesses.

Notebook Jobs 4955

Amazon SageMaker Developer Guide

8. Choose Review policy.

9. Enter a name for your policy.

10. Choose Create policy.

Create a notebook job

If you want to create a notebook job, you have multiple options. You can create a job in your
JupyterLab notebook in the Studio UI, or you can programmatically create a job with the
SageMaker Python SDK.

If you create your notebook job in the Studio UI, you supply details about the image and kernel,
security configurations, and any custom variables or scripts, and your job is scheduled. For details
about how to schedule your job using SageMaker Notebook Jobs, see Create a notebook job in
Studio.

To create a notebook job with the SageMaker Python SDK, you create a pipeline with a Notebook
Job step and initiate an on-demand run or optionally use the pipeline scheduling feature to
schedule future runs. The SageMaker SDK gives you the flexibility to customize your pipeline—you
can expand your pipeline to a workflow with multiple notebook job steps. Since you create both a
SageMaker Notebook Job step and a pipeline, you can track your pipeline execution status in the
SageMaker Notebook Jobs job dashboard and also view your pipeline graph in Studio. For details
about how to schedule your job with the SageMaker Python SDK and links to example notebooks,
see Create a notebook job with SageMaker Python SDK.

Create a notebook job with SageMaker Python SDK

To run a standalone notebook using the SageMaker Python SDK, you need to create a Notebook
Job step, attach it into a pipeline, and use the utilities provided by SageMaker Pipelines to run your
job on demand or optionally schedule one or more future jobs.

The following sections describe the basic steps to create an on-demand or scheduled notebook
job and track the run. In addition, refer to the following discussion if you need to pass parameters
to your notebook job or connect to Amazon EMR in your notebook—additional preparation of
your Jupyter notebook is required in these cases. You can also apply defaults for a subset of the
arguments of NotebookJobStep so you don’t have to specify them every time you create a
Notebook Job step.

To view sample notebooks that demonstrate how to schedule notebook jobs with the SageMaker
Python SDK, see notebook job sample notebooks.

Notebook Jobs 4956

https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-pipelines/notebook-job-step

Amazon SageMaker Developer Guide

Topics

• Steps to create a notebook job

• View your notebook jobs in the Studio UI dashboard

• View your pipeline graph in Studio

• Passing parameters to your notebook

• Connecting to an Amazon EMR cluster in your input notebook

• Set up default options

Steps to create a notebook job

You can either create a notebook job that runs immediately or on a schedule. The following
instructions describe both methods.

To schedule a notebook job, complete the following basic steps:

1. Create a NotebookJobStep instance. For details about NotebookJobStep parameters, see
sagemaker.workflow.steps.NotebookJobStep. At minimum, you can provide the following
arguments as shown in the following code snippet:

Important

If you schedule your notebook job using the SageMaker Python SDK, you can only
specify certain images to run your notebook job. For more information, see Image
constraints for SageMaker Python SDK notebook jobs.

notebook_job_step = NotebookJobStep(
 input_notebook=input-notebook,
 image_uri=image-uri,
 kernel_name=kernel-name
)

2. Create a pipeline with your NotebookJobStep as a single step, as shown in the following
snippet:

pipeline = Pipeline(
 name=pipeline-name,

Notebook Jobs 4957

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.notebook_job_step.NotebookJobStep

Amazon SageMaker Developer Guide

 steps=[notebook_job_step],
 sagemaker_session=sagemaker-session,
)

3. Run the pipeline on demand or optionally schedule future pipeline runs. To initiate an
immediate run, use the following command:

execution = pipeline.start(
 parameters={...}
)

Optionally, you can schedule a single future pipeline run or multiple runs at a predetermined
interval. You specify your schedule in PipelineSchedule and then pass the schedule object
to your pipeline with put_triggers. For more information about pipeline scheduling, see
Schedule a pipeline with the SageMaker Python SDK.

The following example schedules your pipeline to run once at December 12, 2023 at 10:31:32
UTC.

my_schedule = PipelineSchedule(
 name="my-schedule“,
 at=datetime(year=2023, month=12, date=25, hour=10, minute=31, second=32)
)
pipeline.put_triggers(triggers=[my_schedule])

The following example schedules your pipeline to run at 10:15am UTC on the last Friday of
each month during the years 2022 to 2023. For details about cron-based scheduling, see Cron-
based schedules.

my_schedule = PipelineSchedule(
 name="my-schedule“,
 cron="15 10 ? * 6L 2022-2023"
)
pipeline.put_triggers(triggers=[my_schedule])

4. (Optional) View your notebook jobs in the SageMaker Notebook Jobs dashboard. The values
you supply for the tags argument of your Notebook Job step control how the Studio UI
captures and displays the job. For more information, see View your notebook jobs in the Studio
UI dashboard.

Notebook Jobs 4958

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

Amazon SageMaker Developer Guide

View your notebook jobs in the Studio UI dashboard

The notebook jobs you create as pipeline steps appear in the Studio Notebook Job dashboard if
you specify certain tags.

Note

Only notebook jobs created in Studio or local JupyterLab environments create job
definitions. Therefore, if you create your notebook job with the SageMaker Python SDK,
you don’t see job definitions in the Notebook Jobs dashboard. You can, however, view your
notebook jobs as described in View notebook jobs.

You can control which team members can view your notebook jobs with the following tags:

• To display the notebook to all user profiles or spaces in a domain, add the domain tag with your
domain name. An example is shown as follows:

• key: sagemaker:domain-name, value: d-abcdefghij5k

• To display the notebook job to a certain user profile in a domain, add both the user profile and
the domain tags. An example of a user profile tag is shown as follows:

• key: sagemaker:user-profile-name, value: studio-user

• To display the notebook job to a space, add both the space and the domain tags. An example of
a space tag is shown as follows:

• key: sagemaker:shared-space-name, value: my-space-name

• If you do not attach any domain or user profile or space tags, then the Studio UI does not show
the notebook job created by pipeline step. In this case, you can view the underlying training job
in the training job console or you can view the status in the list of pipeline executions.

Once you set up the necessary tags to view your jobs in the dashboard, see View notebook jobs for
instructions about how to view your jobs and download outputs.

View your pipeline graph in Studio

Since your notebook job step is part of a pipeline, you can view the pipeline graph (DAG) in Studio.
In the pipeline graph, you can view the status of the pipeline run and track lineage. For details, see
View a Pipeline Execution.

Notebook Jobs 4959

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-jl-user-guide.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-jl-user-guide.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-studio-view-execution.html

Amazon SageMaker Developer Guide

Passing parameters to your notebook

If you want to pass parameters to your notebook job (using the parameters argument of
NotebookJobStep), you need to prepare your input notebook to receive the parameters.

The Papermill-based notebook job executor searches for a Jupyter cell tagged with the
parameters tag and applies the new parameters or parameter overrides immediately after this
cell. For details, see Parameterize your notebook.

Once you have performed this step, pass your parameters to your NotebookJobStep, as shown in
the following example:

notebook_job_parameters = {
 "company": "Amazon"
}

notebook_job_step = NotebookJobStep(
 image_uri=image-uri,
 kernel_name=kernel-name,
 role=role-name,
 input_notebook=input-notebook,
 parameters=notebook_job_parameters,
 ...
)

Connecting to an Amazon EMR cluster in your input notebook

If you connect to an Amazon EMR cluster from your Jupyter notebook in Studio, you might need to
further modify your Jupyter notebook. See Connect to an Amazon EMR cluster from your notebook
if you need to perform any of the following tasks in your notebook:

• Pass parameters into your Amazon EMR connection command. Studio uses Papermill to
run notebooks. In SparkMagic kernels, parameters you pass to your Amazon EMR connection
command may not work as expected due to how Papermill passes information to SparkMagic.

• Passing user credentials to Kerberos, LDAP, or HTTP Basic Auth-authenticated Amazon EMR
clusters. You have to pass user credentials through the AWS Secrets Manager.

Set up default options

The SageMaker SDK gives you the option to set defaults for a subset of parameters so you
don’t have to specify these parameters every time you create a NotebookJobStep instance.

Notebook Jobs 4960

Amazon SageMaker Developer Guide

These parameters are role, s3_root_uri, s3_kms_key, volume_kms_key, subnets, and
security_group_ids. Use the SageMaker config file to set the defaults for the step. For
information about the SageMaker configuration file, see Configuring and using defaults with the
SageMaker Python SDK..

To set up the notebook job defaults, apply your new defaults to the notebook job section of the
config file as shown in the following snippet:

SageMaker:
 PythonSDK:
 Modules:
 NotebookJob:
 RoleArn: 'arn:aws:iam::555555555555:role/IMRole'
 S3RootUri: 's3://my-bucket/my-project'
 S3KmsKeyId: 's3kmskeyid'
 VolumeKmsKeyId: 'volumekmskeyid1'
 VpcConfig:
 SecurityGroupIds:
 - 'sg123'
 Subnets:
 - 'subnet-1234'

Create a notebook job in Studio

Note

The notebook scheduler is built from the Amazon EventBridge, SageMaker Training, and
SageMaker Pipelines services. If your notebook jobs fail, you might see errors related to
these services.

SageMaker Notebook Jobs gives you the tools to create and manage your noninteractive notebook
jobs using the Notebook Jobs widget. You can create jobs, view the jobs you created, and pause,
stop, or resume existing jobs. You can also modify notebook schedules.

When you create your scheduled notebook job with the widget, the scheduler tries to infer a
selection of default options and automatically populates the form to help you get started quickly.
If you are using Studio, at minimum you can submit an on-demand job without setting any options.
You can also submit a (scheduled) notebook job definition supplying just the time-specific schedule
information. However, you can customize other fields if your scheduled job requires specialized

Notebook Jobs 4961

https://sagemaker.readthedocs.io/en/stable/overview.html#configuring-and-using-defaults-with-the-sagemaker-python-sdk
https://sagemaker.readthedocs.io/en/stable/overview.html#configuring-and-using-defaults-with-the-sagemaker-python-sdk

Amazon SageMaker Developer Guide

settings. If you are running a local Jupyter notebook, the scheduler extension provides a feature for
you to specify your own defaults (for a subset of options) so you don't have to manually insert the
same values every time.

To schedule a notebook job, complete the following steps.

1. Open the Create Job form.

In local JupyterLab environments, choose the Create a notebook job icon
()
in the taskbar. If you don't see the icon, follow the instructions in Installation Guide to install it.

In Studio, open the form in one of two ways:

• Using the File Browser

1. In the File Browser in the left panel, right-click on the notebook you want to run as a
scheduled job.

2. Choose Create Notebook Job.

• Within the Studio notebook

• Inside the Studio notebook you want to run as a scheduled job, choose the Create a
notebook job icon
()
in the Studio toolbar.

2. Complete the popup form. The form displays the following fields:

• Job name: A descriptive name you specify for your job.

• Input file: The name of the notebook which you are scheduling to run in noninteractive mode.

• Compute type: The type of Amazon EC2 instance in which you want to run your notebook.

• Parameters: Custom parameters you can optionally specify as inputs to your notebook. To
use this feature, you might optionally want to tag a specific cell in your Jupyter notebook
with the parameters tag to control where your parameters are applied. For more details, see
Parameterize your notebook.

• Additional Options: You can specify additional customizations for your job. For example,
you can specify an image or kernel, input and output folders, job retry and timeout options,
encryption details, and custom initialization scripts. For the complete listing of customizations
you can apply, see Available options.

3. Schedule your job. You can run your notebook on demand or on a fixed schedule.

Notebook Jobs 4962

Amazon SageMaker Developer Guide

• To run the notebook on demand, complete the following steps:

• Select Run Now.

• Choose Create.

• The Notebook Jobs tab appears. Choose Reload to load your job into the dashboard.

• To run the notebook on a fixed schedule, complete the following steps:

• Choose Run on a schedule.

• Choose the Interval dropdown list and select an interval. The intervals range from every
minute to monthly. You can also select Custom schedule.

• Based on the interval you choose, additional fields appear to help you further specify your
desired run day and time. For example, if you select Day for a daily run, an additional field
appears for you to specify the desired time. Note that any time you specify is in UTC format.
Note also that if you choose a small interval, such as one minute, your jobs overlap if the
previous job is not complete when the next job starts.

If you select a custom schedule, you use cron syntax in the expression box to specify your
exact run date and time. The cron syntax is a space-separated list of digits, each of which
represent a unit of time from seconds to years. For help with cron syntax, you can choose
Get help with cron syntax under the expression box.

• Choose Create.

• The Notebook Job Definitions tab appears. Choose Reload to load your job definition into
the dashboard.

Set up default options for local notebooks

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

If you have to manually type (or paste in) custom values in the Create Job form, you can store new
default values and the scheduler extension inserts your new values every time you create a new job
definition. This feature is available for the following options:
Notebook Jobs 4963

Amazon SageMaker Developer Guide

• Role ARN

• S3 Input Folder

• S3 Output Folder

• Output encryption KMS key (if you turn on Configure Job Encryption)

• Job instance volume encryption KMS key (if you turn on Configure Job Encryption)

This feature saves you time if you insert different values than the provided defaults and continue
to use those values for future job runs. Your chosen user settings are stored on the machine that
runs your JupyterLab server and are retrieved with the help of native API. If you provide new
default values for one or more but not all five options, the previous defaults are taken for the ones
you don’t customize.

The following instructions show you how to preview the existing default values, set new default
values, and reset your default values for your notebook jobs.

To preview existing default values for your notebook jobs, complete the following steps:

1. Open the Amazon SageMaker Studio Classic console by following the instructions in Launch
Amazon SageMaker Studio Classic.

2. In the File Browser in the left panel, right-click on the notebook you want to run as a
scheduled job.

3. Choose Create Notebook Job.

4. Choose Additional options to expand the tab of notebook job settings. You can view the
default settings here.

To set new default values for your future notebook jobs, complete the following steps:

1. Open the Amazon SageMaker Studio Classic console by following the instructions in Launch
Amazon SageMaker Studio Classic.

2. From the top menu in Studio Classic, choose Settings, then choose Advanced Settings Editor.

3. Choose Amazon SageMaker Scheduler from the list below Settings. This may already be open
by default.

4. You can update the default settings directly in this UI page or by using the JSON editor.

• In the UI you can insert new values for Role ARN, S3 Input Folder, S3 Output Folder,
Output encryption KMS key, or Job instance volume encryption KMS key. If you change

Notebook Jobs 4964

Amazon SageMaker Developer Guide

these values, you will see the new defaults for these fields while you create your next
notebook job under Additional options.

• (Optional) To update the user defaults using the JSON Settings Editor, complete the
following steps:

1. In the top right corner, choose JSON Settings Editor.

2. In the Settings left sidebar, choose Amazon SageMaker Scheduler. This may already be
open by default.

You can see your current default values in the User Preferences panel.

You can see the system default values in the System Defaults panel.

3. To update your default values, copy and paste the JSON snippet from the System
Defaults panel to the User Preferences panel, and update the fields.

4. If you updated the default values, choose the Save User Settings icon

()
in the top right corner. Closing the editor does not save the changes.

If you previously changed and now want to reset the user-defined default values, complete
following steps:

1. From the top menu in Studio Classic, choose Settings, then choose Advanced Settings Editor.

2. Choose Amazon SageMaker Scheduler from the list below Settings. This may already be open
by default.

3. You can restore the defaults by directly using this UI page or using the JSON editor.

• In the UI you can choose Restore to Defaults in the top right corner. Your defaults are
restored to empty strings. You only see this option if you previously changed your default
values.

• (Optional) To restart the default settings using the JSON Settings Editor, complete the
following steps:

1. In the top right corner, choose JSON Settings Editor.

2. In the Settings left sidebar, choose Amazon SageMaker Scheduler. This may already be
open by default.

You can see your current default values in the User Preferences panel.

Notebook Jobs 4965

Amazon SageMaker Developer Guide

You can see the system default values in the System Defaults panel.

3. To restore your current default settings copy the content from the System Defaults
panel to the User Preferences panel.

4. Choose the Save User Settings icon

()
in the top right corner. Closing the editor does not save the changes.

Create a workflow of notebook jobs

Since a notebook job runs your custom code, you can create a pipeline that includes one or more
notebook job steps. ML workflows often contain multiple steps, such as a processing step to
preprocess data, a training step to build your model, and a model evaluation step, among others.
One possible use of notebook jobs is to handle preprocessing—you might have a notebook
that performs data transformation or ingestion, an EMR step that performs data cleaning, and
another notebook job that performs featurization of your inputs before initiating a training
step. A notebook job may require information from previous steps in the pipeline or from user-
specified customization as parameters in the input notebook. For examples that show how to pass
environment variables and parameters to your notebook and retrieve information from prior steps,
see Pass information to and from your notebook step.

In another use case, one of your notebook jobs might call another notebook to perform some
tasks during your notebook run—in this scenario you need to specify these sourced notebooks as
dependencies with your notebook job step. For information about how to call another notebook,
see Invoke another notebook in your notebook job.

To view sample notebooks that demonstrate how to schedule notebook jobs with the SageMaker
Python SDK, see notebook job sample notebooks.

Pass information to and from your notebook step

The following sections describe ways to pass information to your notebook as environment
variables and parameters.

Pass environment variables

Pass environment variables as a dictionary to the environment_variable argument of your
NotebookJobStep, as shown in the following example:

Notebook Jobs 4966

https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker-pipelines/notebook-job-step

Amazon SageMaker Developer Guide

environment_variables = {"RATE": 0.0001, "BATCH_SIZE": 1000}

notebook_job_step = NotebookJobStep(
 ...
 environment_variables=environment_variables,
 ...
)

You can use the environment variables in the notebook using os.getenv(), as shown in the
following example:

inside your notebook
import os
print(f"ParentNotebook: env_key={os.getenv('env_key')}")

Pass parameters

When you pass parameters to the first Notebook Job step in your NotebookJobStep instance,
you might optionally want to tag a cell in your Jupyter notebook to indicate where to apply
new parameters or parameter overrides. For instructions about how to tag a cell in your Jupyter
notebook, see Parameterize your notebook.

You pass parameters through the Notebook Job step's parameters parameter, as shown in the
following snippet:

notebook_job_parameters = {
 "company": "Amazon",
}

notebook_job_step = NotebookJobStep(
 ...
 parameters=notebook_job_parameters,
 ...
)

Inside your input notebook, your parameters are applied after the cell tagged with parameters or
at the beginning of the notebook if you don’t have a tagged cell.

this cell is in your input notebook and is tagged with 'parameters'
your parameters and parameter overrides are applied after this cell

Notebook Jobs 4967

Amazon SageMaker Developer Guide

company='default'

in this cell, your parameters are applied
prints "company is Amazon"
print(f'company is {company}')

Retrieve information from a previous step

The following discussion explains how you can extract data from a previous step to to pass to your
Notebook Job step.

Use properties attribute

You can use the following properties with the previous step's properties attribute:

• ComputingJobName—The training job name

• ComputingJobStatus—The training job status

• NotebookJobInputLocation—The input Amazon S3 location

• NotebookJobOutputLocationPrefix—The path to your training job outputs, more
specifically {NotebookJobOutputLocationPrefix}/{training-job-name}/output/
output.tar.gz. containing outputs

• InputNotebookName—The input notebook file name

• OutputNotebookName—The output notebook file name (which may not exist in the training job
output folder if the job fails)

The following code snippet shows how to extract parameters from the properties attribute.

notebook_job_step2 = NotebookJobStep(

 parameters={
 "step1_JobName": notebook_job_step1.properties.ComputingJobName,
 "step1_JobStatus": notebook_job_step1.properties.ComputingJobStatus,
 "step1_NotebookJobInput":
 notebook_job_step1.properties.NotebookJobInputLocation,
 "step1_NotebookJobOutput":
 notebook_job_step1.properties.NotebookJobOutputLocationPrefix,
 }

Use JsonGet

Notebook Jobs 4968

Amazon SageMaker Developer Guide

If you want to pass parameters other than the ones previously mentioned and the JSON outputs of
your previous step reside in Amazon S3, use JsonGet. JsonGet is a general mechanism that can
directly extract data from JSON files in Amazon S3.

To extract JSON files in Amazon S3 with JsonGet, complete the following steps:

1. Upload your JSON file to Amazon S3. If your data is already uploaded to Amazon S3, skip this
step. The following example demonstrates uploading a JSON file to Amazon S3.

import json
from sagemaker.s3 import S3Uploader

output = {
 "key1": "value1",
 "key2": [0,5,10]
}

json_output = json.dumps(output)

with open("notebook_job_params.json", "w") as file:
 file.write(json_output)

S3Uploader.upload(
 local_path="notebook_job_params.json",
 desired_s3_uri="s3://path/to/bucket"
)

2. Provide your S3 URI and the JSON path to the value you want to extract. In the following
example, JsonGet returns an object representing index 2 of the value associated with key
key2 (10).

NotebookJobStep(

 parameters={
 # the key job_key1 returns an object representing the value 10
 "job_key1": JsonGet(
 s3_uri=Join(on="/", values=["s3:/", ..]),
 json_path="key2[2]" # value to reference in that json file
),
 "job_key2": "Amazon"
 }
)

Notebook Jobs 4969

Amazon SageMaker Developer Guide

Invoke another notebook in your notebook job

The following discussion sets up an example of a pipeline with a Notebook Job step in which the
notebook calls two other notebooks. The input notebook contains the following lines:

%run 'subfolder/notebook_to_call_in_subfolder.ipynb'
%run 'notebook_to_call.ipynb'

Pass these notebooks into your NotebookJobStep instances with additional_dependencies,
as shown in the following snippet. Note that the paths provided for the notebooks in
additional_dependencies are provided from the root location. For information about
how SageMaker uploads your dependent files and folders to Amazon S3 so you can correctly
provide paths to your dependencies, see the description for additional_dependencies in
NotebookJobStep.

input_notebook = "inputs/input_notebook.ipynb"
simple_notebook_path = "inputs/notebook_to_call.ipynb"
folder_with_sub_notebook = "inputs/subfolder"

notebook_job_step = NotebookJobStep(
 image_uri=image-uri,
 kernel_name=kernel-name,
 role=role-name,
 input_notebook=input_notebook,
 additional_dependencies=[simple_notebook_path, folder_with_sub_notebook],
 tags=tags,
)

Available options

The following table displays all available options you can use to customize your notebook
job, whether you run your Notebook Job in Studio, a local Jupyter environment, or using the
SageMaker Python SDK. The table includes the type of custom option, a description, additional
guidelines about how to use the option, a field name for the option in Studio (if available) and the
parameter name for the notebook job step in the SageMaker Python SDK (if available).

For some options, you can also preset custom default values so you don’t have to specify them
every time you set up a notebook job. For Studio, these options are Role, Input folder, Output
folder, and KMS Key ID, and are specified in the following table. If you preset custom defaults
for these options, these fields are prepopulated in the Create Job form when you create your

Notebook Jobs 4970

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.notebook_job_step.NotebookJobStep

Amazon SageMaker Developer Guide

notebook job. For details about how to create custom defaults in Studio and local Jupyter
environments, see Set up default options for local notebooks.

The SageMaker SDK also gives you the option to set intelligent defaults so that you don’t have
to specify these parameters when you create a NotebookJobStep. These parameters are role,
s3_root_uri, s3_kms_key, volume_kms_key, subnets, security_group_ids, and are
specified in the following table. For information about how to set intelligent defaults, see Set up
default options.

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Job
name

Your job name as
it should appear in
the Notebook Jobs
dashboard.

Field Job name. Same as Studio. Parameter
notebook_
job_name .
Defaults
to
None.

Image The container
image used to
run the notebook
noninteractively
on the chosen
compute type.

Field Image. This
field defaults to your
notebook’s current image.
Change this field from the
default to a custom value
if needed. If Studio cannot
infer this value, the form
displays a validation error
requiring you to specify
it. This image can be a
custom, bring-your-own
image or an available
Amazon SageMaker
image. For a list of
available SageMaker
images supported by

Field Image. This field
requires an ECR URI of a
Docker image that can run
the provided notebook
on the selected compute
type. By default, the
scheduler extension uses
a pre-built SageMaker
Docker image—base
Python 2.0. This is the
official Python 3.8 image
from DockerHub with
boto3, AWS CLI, and the
Python 3 kernel. You
can also provide any
ECR URI that meets the

Required.
Parameter
image_uri

.
URI
location
of a
Docker
image
on
ECR.
You
can
use
specific
SageMaker

Notebook Jobs 4971

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

the notebook scheduler
, see Available Amazon
SageMaker Images.

notebook custom image
specification. For details,
see Custom SageMaker
image specifications. This
image should have all
the kernels and libraries
needed for the notebook
run.

Distribut
ion
Images
or
custom
image
based
on
those
images,
or
your
own
image
pre-
insta
lled
with
notebook
job
dependenc
ies
that
meets
additiona
l
requireme
nts.
For
details,
see
Image

Notebook Jobs 4972

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

constrain
ts
for
SageMaker
Python
SDK
notebook
jobs.

Instance
type

The EC2 instance
type to use to run
the notebook job.
The notebook job
uses a SageMaker
Training Job as
a computing
layer, so the
specified instance
type should be
a SageMaker
Training supported
instance type.

Field Compute type.
Defaults to ml.m5.lar
ge .

Same as Studio. Parameter
instance_
type .
Defaults
to
ml.m5.lar
ge .

Notebook Jobs 4973

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Kernel The Jupyter kernel
used to run the
notebook job.

Field Kernel. This
field defaults to your
notebook’s current kernel.
Change this field from the
default to a custom value
if needed. If Studio cannot
infer this value, the form
displays a validation error
requiring you to specify it.

Field Kernel. This kernel
should be present in the
image and follow the
Jupyter kernel specs.
This field defaults to the
Python3 kernel found
in the base Python 2.0
SageMaker image. Change
this field to a custom
value if needed.

Required.
Parameter
kernel_na
me .
This
kernel
should
be
present
in
the
image
and
follow
the
Jupyter
kernel
specs.
To
see
the
kernel
identifie
rs
for
your
image,
see
(LINK).

Notebook Jobs 4974

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

SageMaker
session

The underlyin
g SageMaker
session to which
SageMaker service
calls are delegated
.

N/A N/A Parameter
sagemaker
_session .
If
unspecifi
ed,
one
is
created
using
a
default
configura
tion
chain.

Notebook Jobs 4975

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Role
ARN

The role’s Amazon
Resource Name
(ARN) used with
the notebook job.

Field Role ARN. This field
defaults to the Studio
execution role. Change
this field to a custom
value if needed.

Note

If Studio cannot
infer this value,
the Role ARN field
is blank. In this
case, insert the
ARN you want to
use.

Field Role ARN. This
field defaults to any role
prefixed with Sagemaker
JupyterScheduler .
If you have multiple
roles with the prefix,
the extension chooses
one. Change this field
to a custom value if
needed. For this field,
you can set your own
user default that pre-
populates whenever you
create a new job definitio
n. For details, see Set up
default options for local
notebooks.

Parameter
role.
Defaults
to
the
SageMaker
default
IAM
role
if
the
SDK
is
running
in
SageMaker
Notebooks
or
SageMaker
Studio
Notebooks
.
Otherwise
, it
throws
a
ValueErro
r .
Allows
intellige
nt

Notebook Jobs 4976

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

defaults.

Input
notebook

The name of the
notebook which
you are scheduling
to run.

Required. Field Input file. Same as Studio. Required.Paramete
r
input_not
ebook .

Input
folder

The folder
containing
your inputs.
The job inputs,
including the input
notebook and any
optional start-up
or initialization
scripts, are put in
this folder.

Field Input folder. If you
don’t provide a folder,
the scheduler creates a
default Amazon S3 bucket
for your inputs.

Same as Studio. For this
field, you can set your
own user default that pre-
populates whenever you
create a new job definitio
n. For details, see Set up
default options for local
notebooks.

N/
A.
The
input
folder
is
placed
inside
the
location
specified
by
parameter
s3_root_u
ri .

Notebook Jobs 4977

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Output
folder

The folder
containing your
outputs. The
job outputs,
including the
output notebook
and logs, are put in
this folder.

Field Output folder. If
you don’t specify a folder,
the scheduler creates a
default Amazon S3 bucket
for your outputs.

Same as Studio. For this
field, you can set your
own user default that pre-
populates whenever you
create a new job definitio
n. For details, see Set up
default options for local
notebooks.

N/
A.
The
output
folder
is
placed
inside
the
location
specified
by
parameter
s3_root_u
ri .

Parameter
s

A dictionary of
variables and
values to pass to
your notebook job.

Field Parameters. You
need to parameterize
your notebook to accept
parameters.

Same as Studio. Parameter
parameter
s .
You
need
to
parameter
ize
your
notebook
to
accept
parameter
s.

Notebook Jobs 4978

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run-troubleshoot-override.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run-troubleshoot-override.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run-troubleshoot-override.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run-troubleshoot-override.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run-troubleshoot-override.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run-troubleshoot-override.html

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Additiona
l (file or
folder)
dependenc
ies

The list of file or
folder dependenc
ies which the
notebook job
uploads to s3
staged folder.

Not supported. Not supported. Parameter
additiona
l_depende
ncies .
The
notebook
job
uploads
these
dependenc
ies
to
an
S3
staged
folder
so
they
can
be
consumed
during
execution
.

Notebook Jobs 4979

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

S3 root
URI

The folder
containing
your inputs.
The job inputs,
including the input
notebook and any
optional start-up
or initialization
scripts, are put in
this folder.

N/A. Use Input Folder
and Output folder.

Same as Studio. Parameter
s3_root_u
ri .
Defaults
to a
default
S3
bucket.
Allows
intellige
nt
defaults.

Environme
nt
variables

Any existing
environment
variables that you
want to override,
or new environme
nt variables that
you want to
introduce and use
in your notebook.

Field Environment
variables.

Same as Studio. Parameter
environme
nt_variab
les .
Defaults
to
None.

Notebook Jobs 4980

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Tags A list of tags
attached to the
job.

N/A N/A Parameter
tags.
Defaults
to
None.
Your
tags
control
how
the
Studio
UI
captures
and
displays
the
job
created
by
the
pipeline.
For
details,
see
View
your
notebook
jobs
in
the
Studio

Notebook Jobs 4981

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

UI
dashboard
.

Start-
up
script

A script preloaded
in the notebook
startup menu that
you can choose to
run before you run
the notebook.

Field Start-up script.
Select a Lifecycle
Configuration (LCC) script
that runs on the image at
start-up.

Note

A start-up script
runs in a shell
outside of the
Studio environme
nt. Therefore
, this script
cannot depend
on the Studio
local storage,
environment
variables, or
app metadata
(in /opt/ml/m
etadata). Also,
if you use a start-
up script and
an initialization
script, the start-up
script runs first.

Not supported. Not
supported
.

Notebook Jobs 4982

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Initializ
ation
script

A path to a local
script you can
run when your
notebook starts
up.

Field Initialization script.
Enter the EFS file path
where a local script or a
Lifecycle Configuration
(LCC) script is located. If
you use a start-up script
and an initialization script,
the start-up script runs
first.

Note

An initialization
script is sourced
from the same
shell as the
notebook job.
This is not the
case for a start-up
script described
previously. Also,
if you use a start-
up script and
an initialization
script, the start-up
script runs first.

Field Initialization script.
Enter the local file path
where a local script or a
Lifecycle Configuration
(LCC) script is located.

Parameter
initializ
ation_scr
ipt .
Defaults
to
None.

Notebook Jobs 4983

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Max
retry
attempts

The number of
times Studio tries
to rerun a failed
job run.

Field Max retry attempts.
Defaults to 1.

Same as Studio. Parameter
max_retry
_attempts

.
Defaults
to
1.

Max run
time (in
seconds)

The maximum
length of time,
in seconds, that
a notebook job
can run before it
is stopped. If you
configure both
Max run time
and Max retry
attempts, the run
time applies to
each retry. If a job
does not complete
in this time, its
status is set to
Failed.

Field Max run time (in
seconds). Defaults to
172800 seconds (2
days).

Same as Studio. Parameter
max_runti
me_in_sec
onds .
Defaults
to
172800
seconds
(2
days).

Retry
policies

A list of retry
policies, which
govern actions
to take in case of
failure.

Not supported. Not supported. Parameter
retry_pol
icies .
Defaults
to
None.

Notebook Jobs 4984

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Add
Step or
StepColle
ction
dependenc
ies

A list of Step
or StepColle
ction names or
instances on which
the job depends.

Not supported. Not supported. Parameter
depends_o
n .
Defaults
to
None.
Use
this
to
define
explicit
dependenc
ies
between
steps
in
your
pipeline
graph.

Volume
size

The size in GB
of the storage
volume for storing
input and output
data during
training.

Not supported. Not supported. Parameter
volume_si
ze .
Defaults
to
30GB.

Notebook Jobs 4985

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Encrypt
traffic
between
container
s

A flag that
specifies whether
traffic between
training container
s is encrypted for
the training job.

N/A. Enabled by default. N/A. Enabled by default. Parameter
encrypt_i
nter_cont
ainer_tra
ffic .
Defaults
to
True.

Configure
job
encryptio
n

An indicator
that you want
to encrypt your
notebook job
outputs, job
instance volume,
or both.

Field Configure job
encryption. Check this
box to choose encryptio
n. If left unchecked, the
job outputs are encrypted
with the account's default
KMS key and the job
instance volume is not
encrypted.

Same as Studio. Not
supported
.

Output
encryptio
n KMS
key

A KMS key to use
if you want to
customize the
encryption key
used for your
notebook job
outputs. This field
is only applicabl
e if you checked
Configure job
encryption.

Field Output encryptio
n KMS key. If you do not
specify this field, your
notebook job outputs are
encrypted with SSE-KMS
using the default Amazon
S3 KMS key. Also, if you
create the Amazon S3
bucket yourself and use
encryption, your encryptio
n method is preserved.

Same as Studio. For this
field, you can set your
own user default that pre-
populates whenever you
create a new job definitio
n. For details, see Set up
default options for local
notebooks.

Parameter
s3_kms_ke
y .
Defaults
to
None.
Allows
intellige
nt
defaults.

Notebook Jobs 4986

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Job
instance
volume
encryptio
n KMS
key

A KMS key to use
if you want to
encrypt your job
instance volume.
This field is only
applicable if you
checked Configure
job encryption.

Field Job instance volume
encryption KMS key.

Field Job instance volume
encryption KMS key. For
this field, you can set your
own user default that pre-
populates whenever you
create a new job definitio
n. For details, see Set up
default options for local
notebooks.

Parameter
volume_km
s_key .
Defaults
to
None.
Allows
intellige
nt
defaults.

Notebook Jobs 4987

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Use a
Virtual
Private
Cloud
to run
this
job (for
VPC
users)

An indicator
that you want to
run this job in a
Virtual Private
Cloud (VPC). For
better security, it
is recommend that
you use a private
VPC.

Field Use a Virtual
Private Cloud to run
this job. Check this box
if you want to use a VPC.
At minimum, create the
following VPC endpoints
to enable your notebook
job to privately connect to
those AWS resources:

• SageMaker: For
information on how to
connect to SageMaker
through a VPC interface
endpoint, see Connect
to SageMaker Within
your VPC.

• Amazon S3: For
information on how to
connect to Amazon S3
through a VPC interface
endpoint, see Gateway
endpoints for Amazon
S3.

• Amazon EC2: For
information on how to
connect to Amazon EC2
through a VPC interface
endpoint, see Access
Amazon EC2 using an
interface VPC endpoint.

Same as Studio. N/A

Notebook Jobs 4988

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/interface-vpc-endpoints.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/interface-vpc-endpoints.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/interface-vpc-endpoints.html

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

• Amazon EventBrid
ge: This endpoint is
only needed when
setting up a scheduled
notebook. It is not
needed when launching
a job on demand. For
information on how to
connect to EventBridge
through a VPC interface
 endpoint, see Using
Amazon EventBridge
with interface VPC
Endpoints.

If you choose to use a
VPC, you need to specify
at least one private
subnet and at least
one security group in
the following options.
If you don’t use any
private subnets, you
need to consider other
configuration options. For
details, see Public VPC
subnets not supported in
Constraints and considera
tions.

Notebook Jobs 4989

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-related-service-vpc.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-related-service-vpc.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-related-service-vpc.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-related-service-vpc.html

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Subnet(s)
(for
VPC
users)

Your subnets. This
field must contain
at least one and
at most five, and
all the subnets you
provide should
be private. For
details, see Public
VPC subnets not
supported in
Constraints and
considerations.

Field Subnet(s). This
field defaults to the
subnets associated with
the Studio domain, but
you can change this field
if needed.

Field Subnet(s). The
scheduler cannot detect
your subnets, so you need
to enter any subnets you
configured for your VPC.

Parameter
subnets.
Defaults
to
None.
Allows
intellige
nt
defaults.

Security
group(s)
(for
VPC
users)

Your security
groups. This field
must contain at
least one and
at most 15. For
details, see Public
VPC subnets not
supported in
Constraints and
considerations.

Field Security groups.
This field defaults to the
security groups associated
with the domain VPC, but
you can change this field
if needed.

Field Security groups. The
scheduler cannot detect
your security groups,
so you need to enter
any security groups you
configured for your VPC.

Parameter
security_
group_ids

.
Defaults
to
None.
Allows
intellige
nt
defaults.

Notebook Jobs 4990

Amazon SageMaker Developer Guide

Custom
option

Description Studio-specific guideline Local Jupyter environme
nt guideline

SageMaker
Python
SDK
guideline

Name The name of the
notebook job step.

N/A N/A Parameter
name.
If
unspecifi
ed,
it is
derived
from
the
notebook
file
name.

Display
name

Your job name as
it should appear
in your list of
pipeline execution
s.

N/A N/A Parameter
display_n
ame .
Defaults
to
None.

Descripti
on

A description of
your job.

N/A N/A Parameter
descripti
on .

Parameterize your notebook

To pass new parameters or parameter overrides to your scheduled notebook job, you might
optionally want to modify your Jupyter notebook if you want your new parameters values to be
applied after a cell. When you pass a parameter, the notebook job executor uses the methodology
enforced by Papermill. The notebook job executor searches for a Jupyter cell tagged with the
parameters tag and applies the new parameters or parameter overrides immediately after
this cell. If you don’t have any cells tagged with parameters, the parameters are applied at

Notebook Jobs 4991

Amazon SageMaker Developer Guide

the beginning of the notebook. If you have more than one cell tagged with parameters, the
parameters are applied after the first cell tagged with parameters.

To tag a cell in your notebook with the parameters tag, complete the following steps:

1. Select the cell to parameterize.

2. Choose the Property Inspector icon (

) in the right sidebar.

3. Type parameters in the Add Tag box.

4. Choose the + sign.

5. The parameters tag appears under Cell Tags with a check mark, which means the tag is
applied to the cell.

Connect to an Amazon EMR cluster from your notebook

If you connect to an Amazon EMR cluster from your Jupyter notebook in Studio, you might need to
perform additional setup. In particular, the following discussion addresses two issues:

• Passing parameters into your Amazon EMR connection command. In SparkMagic kernels,
parameters you pass to your Amazon EMR connection command may not work as expected due
to differences in how Papermill passes parameters and how SparkMagic receives parameters. The
workaround to address this limitation is to pass parameters as environment variables. For more
details about the issue and workaround, see Pass parameters to your EMR connection command.

• Passing user credentials to Kerberos, LDAP, or HTTP Basic Auth-authenticated Amazon EMR
clusters. In interactive mode, Studio asks for credentials in a popup form where you can enter
your sign-in credentials. In your noninteractive scheduled notebook, you have to pass them
through the AWS Secrets Manager. For more details about how to use the AWS Secrets Manager
in your scheduled notebook jobs, see Pass user credentials to your Kerberos, LDAP, or HTTP Basic
Auth-authenticated Amazon EMR cluster.

Pass parameters to your EMR connection command

If you are using images with the SparkMagic PySpark and Spark kernels and want to parameterize
your EMR connection command, provide your parameters in the Environment variables field
instead of the Parameters field in the Create Job form (in the Additional Options dropdown

Notebook Jobs 4992

Amazon SageMaker Developer Guide

menu). Make sure your EMR connection command in the Jupyter notebook passes these
parameters as environment variables. For example, suppose you pass cluster-id as an
environment variable when you create your job. Your EMR connection command should look like
the following:

%%local
import os

%sm_analytics emr connect —cluster-id {os.getenv('cluster_id')} --auth-type None

You need this workaround to meet requirements by SparkMagic and Papermill. For background
context, the SparkMagic kernel expects that the %%local magic command accompany any local
variables you define. However, Papermill does not pass the %%local magic command with your
overrides. In order to work around this Papermill limitation, you must supply your parameters as
environment variables in the Environment variables field.

Pass user credentials to your Kerberos, LDAP, or HTTP Basic Auth-authenticated Amazon EMR
cluster

To establish a secure connection to an Amazon EMR cluster that uses Kerberos, LDAP, or HTTP Basic
Auth authentication, you use the AWS Secrets Manager to pass user credentials to your connection
command. For information about how to create a Secrets Manager secret, see Create an AWS
Secrets Manager secret. Your secret must contain your username and password. You pass the secret
with the --secrets argument, as shown in the following example:

%sm_analytics emr connect --cluster-id j_abcde12345
 --auth Kerberos
 --secret aws_secret_id_123

Your administrator can set up a flexible access policy using an attribute-based-access-control
(ABAC) method, which assigns access based on special tags. You can set up flexible access to create
a single secret for all users in the account or a secret for each user. The following code samples
demonstrate these scenarios:

Create a single secret for all users in the account

{
 "Version" : "2012-10-17",
 "Statement" : [

Notebook Jobs 4993

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Principal" : {"AWS" : "arn:aws:iam::AWS_ACCOUNT_ID:role/service-role/
AmazonSageMaker-ExecutionRole-20190101T012345"},

 "Action" : "secretsmanager:GetSecretValue",
 "Resource" : ["arn:aws:secretsmanager:us-
west-2:AWS_ACCOUNT_ID:secret:aes123-1a2b3c",
 "arn:aws:secretsmanager:us-
west-2:AWS_ACCOUNT_ID:secret:aes456-4d5e6f",
 "arn:aws:secretsmanager:us-
west-2:AWS_ACCOUNT_ID:secret:aes789-7g8h9i"]
 }
]
}

Create a different secret for each user

You can create a different secret for each user using the PrincipleTag tag, as shown in the
following example:

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Effect": "Allow",
 "Principal" : {"AWS" : "arn:aws:iam::AWS_ACCOUNT_ID:role/service-role/
AmazonSageMaker-ExecutionRole-20190101T012345"},
 "Condition" : {
 "StringEquals" : {
 "aws:ResourceTag/user-identity": "${aws:PrincipalTag/user-
identity}"
 }
 },
 "Action" : "secretsmanager:GetSecretValue",
 "Resource" : ["arn:aws:secretsmanager:us-
west-2:AWS_ACCOUNT_ID:secret:aes123-1a2b3c",
 "arn:aws:secretsmanager:us-
west-2:AWS_ACCOUNT_ID:secret:aes456-4d5e6f",
 "arn:aws:secretsmanager:us-
west-2:AWS_ACCOUNT_ID:secret:aes789-7g8h9i"]
 }
]

Notebook Jobs 4994

Amazon SageMaker Developer Guide

}

Track notebook jobs and job definitions

SageMaker Notebook Jobs dashboards help organize the job definitions that you schedule, and
also keep track of the actual jobs that run from your job definitions. There are two important
concepts to understand when scheduling notebook jobs: job definitions and job runs. Job
definitions are schedules you set to run specific notebooks. For example, you can create a job
definition that runs notebook XYZ.ipynb every Wednesday. This job definition launches the actual
job runs which occur this coming Wednesday, next Wednesday, the Wednesday after that, and so
on.

Note

The SageMaker Python SDK notebook job step does not create job definitions. However,
you can view your jobs in the Notebook Jobs dashboard. Both jobs and job definitions are
available if you schedule your job in a JupyterLab environment.

The interface provides two main tabs that help you track your existing job definitions and job runs:

• Notebook Jobs tab: This tab displays a list of all your job runs from your on-demand jobs and
job definitions. From this tab, you can directly access the details for a single job run. For example,
you can view a single job run that occurred two Wednesdays ago.

• Notebook Job Definitions tab: This tab displays a list of all your job definitions. From this tab,
you can directly access the details for a single job definition. For example, you can view the
schedule you created to run XYZ.ipynb every Wednesday.

For details about the Notebook Jobs tab, see View notebook jobs.

For details about the Notebook Job Definitions tab, see View notebook job definitions.

View notebook jobs

Note

You can automatically view your notebook jobs if you scheduled your notebook job from
the Studio UI. If you used the SageMaker Python SDK to schedule your notebook job, you

Notebook Jobs 4995

Amazon SageMaker Developer Guide

need to supply additional tags when you create the notebook job step. For details, see View
your notebook jobs in the Studio UI dashboard.

The Notebook Jobs tab (which you access by choosing the Create a notebook job icon
()
in the Studio toolbar) shows a history of your on-demand jobs and all the jobs that run from the
job definitions you created. This tab opens after you create an on-demand job, or you can just view
this tab yourself to see a history of past and current jobs. If you select the Job name for any job,
you can view details for a single job in its Job Detail page. For more information about the Job
Detail page, see the following section View a single job.

The Notebook Jobs tab includes the following information for each job:

• Output files: Displays the availability of output files. This column can contain one of the
following:

• A download icon
(
): The output notebook and log are available for download; choose this button to download
them. Note that a failed job can still generate output files if the failure occurred after the
files were created. In this case, it is helpful to view the output notebook to identify the failure
point.

• Links to the Notebook and Output log: The notebook and output log are downloaded. Choose
the links to view their contents.

• (blank): The job was stopped by the user, or a failure occurred in the job run before it could
generate output files. For example, network failures could prevent the job from starting.

The output notebook is the result of running all cells in the notebook, and also incorporates any
new or overriding parameters or environment variables you included. The output log captures
the details of the job run to help you troubleshoot failed jobs.

• Created at: The time the on-demand job or scheduled job was created.

• Status: The current status of the job, which is one of the following values:

• In progress: The job is running

• Failed: The job failed from configuration or notebook logic errors

• Stopped: The job was stopped by the user

• Completed: The job completed

Notebook Jobs 4996

Amazon SageMaker Developer Guide

• Actions: This column provides shortcuts to help you stop or remove any job directly in the
interface.

View a single job

From the Notebook Jobs tab, you can select a job name to view the Job Detail page for a specific
job. The Job Detail page includes all the details you provided in the Create Job form. Use this page
to confirm the settings you specified when you created the job definition.

In addition, you can access shortcuts to help you perform the following actions in the page itself:

• Delete Job: Remove the job from the Notebook Jobs tab.

• Stop Job: Stop your running job.

View notebook job definitions

Note

If you scheduled your notebook job with the SageMaker Python SDK, skip this section. Only
notebook jobs created in Studio or local JupyterLab environments create job definitions.
Therefore, if you created your notebook job with the SageMaker Python SDK, you won’t see
job definitions in the Notebook Jobs dashboard. You can, however, view your notebook jobs
as described in View notebook jobs.

When you create a job definition, you create a schedule for a job. The Notebook Job Definitions
tab lists these schedules. For example, you might create a job definition that runs a specific
notebook every minute. Once this job definition is active, you see a new job every minute in the
Notebook Jobs tab.

The Notebook Job Definitions tab displays a dashboard with all your job definitions and includes
the input notebook, the creation time, the schedule, and the status for each job definition. The
value in the Status column is one of the following values:

• Paused: You paused the job definition. Studio does not initiate any jobs until you resume the
definition.

• Active: The schedule is on and Studio can run the notebook according to the schedule you
specified.

Notebook Jobs 4997

Amazon SageMaker Developer Guide

In addition, the Actions column provides shortcuts to help you perform the following tasks directly
in the interface:

• Pause: Pauses the job definition. Studio won’t create any jobs until you resume the definition.

• Delete: Removes the job definition from the Notebook Job Definitions tab.

• Resume: Continues a paused job definition so that it can start jobs.

If you created a job definition but it doesn’t initiate jobs, see Job definition doesn’t create jobs in
the Troubleshooting guide.

View a single job definition

If you select a job definition name in the Notebook Job Definitions tab, you see the Job Definition
page where you can view specific details for a job definition. Use this page to confirm the settings
you specified when you created the job definition. If you don’t see any jobs created from your job
definition, see Job definition doesn’t create jobs in the Troubleshooting guide.

This page also contains a section listing the jobs that run from this job definition. Viewing your jobs
in the Job Definition page may be a more productive way to help you organize your jobs instead of
viewing jobs in the Notebook Jobs tab, which combines all jobs from all your job definitions.

In addition, this page provides shortcuts for the following actions:

• Pause/Resume: Pause your job definition, or resume a paused definition. Note that if a job is
currently running for this definition, Studio does not stop it.

• Run: Run a single on-demand job from this job definition. This option also lets you specify
different input parameters to your notebook before starting the job.

• Edit Job Definition: Change the schedule of your job definition. You can select a different time
interval, or you can opt for a custom schedule using cron syntax.

• Delete Job Definition: Remove the job definition from the Notebook Job Definitions tab. Note
that if a job is currently running for this definition, Studio does not stop it.

Troubleshooting guide

Refer to this troubleshooting guide to help you debug failures you might experience when your
scheduled notebook job runs.

Notebook Jobs 4998

Amazon SageMaker Developer Guide

Job definition doesn’t create jobs

If your job definition doesn’t initiate any jobs, see the following possible causes:

Missing permissions

• The role assigned to the job definition does not have a trust relationship with Amazon
EventBridge. That is, EventBridge cannot assume the role.

• The role assigned to the job definition does not have permission to call
SageMaker:StartPipelineExecution.

• The role assigned to the job definition does not have permission to call
SageMaker:CreateTrainingJob.

EventBridge quota exceeded

If you see a Put* error such as the following example, you exceeded an EventBridge quota. To
resolve this, you can clean up unused EventBridge runs, or ask AWS Support to increase your quota.

LimitExceededException) when calling the PutRule operation:
The requested resource exceeds the maximum number allowed

For more information about EventBridge quotas, see Amazon EventBridge quotas.

Pipeline quota limit exceeded

If you see an error such as the following example, you exceeded the number of pipelines that you
can run. To resolve this, you can clean up unused pipelines in your account, or ask AWS Support to
increase your quota.

ResourceLimitExceeded: The account-level service limit
'Maximum number of pipelines allowed per account' is XXX Pipelines,
with current utilization of XXX Pipelines and a request delta of 1 Pipelines.

For more information about pipeline quotas, see Amazon SageMaker endpoints and quotas.

Training job limit exceeded

If you see an error such as the following example, you exceeded the number of training jobs
that you can run. To resolve this, reduce the number of training jobs in your account, or ask AWS
Support to increase your quota.

Notebook Jobs 4999

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-quota.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

ResourceLimitExceeded: The account-level service limit
'ml.m5.2xlarge for training job usage' is 0 Instances, with current
utilization of 0 Instances and a request delta of 1 Instances.
Please contact AWS support to request an increase for this limit.

For more information about training job quotas, see Amazon SageMaker endpoints and quotas.

Auto visualizations disabled in SparkMagic notebooks

If your notebook uses the SparkMagic PySpark kernel and you run the notebook as a Notebook
Job, you may see that your auto visualizations are disabled in the output. Turning on auto
visualization causes the kernel to hang, so the notebook job executor currently disables auto
visualizations as a workaround.

Constraints and considerations

Review the following constraints to ensure your notebook jobs complete successfully. Studio uses
Papermill to run notebooks. You might need to update Jupyter notebooks to align to Papermill's
requirements. There are also restrictions on the content of LCC scripts and important details to
understand regarding VPC configuration.

JupyterLab version

JupyterLab versions 3.0 and above are supported.

Installation of packages that require kernel restart

Papermill does not support calling pip install to install packages that require a kernel restart.
In this situation, use pip install in an initialization script. For a package installation that does
not require kernel restart, you can still include pip install in the notebook.

Kernel and language names registered with Jupyter

Papermill registers a translator for specific kernels and languages. If you bring your own instance
(BYOI), use a standard kernel name as shown in the following snippet:

papermill_translators.register("python", PythonTranslator)
papermill_translators.register("R", RTranslator)
papermill_translators.register("scala", ScalaTranslator)
papermill_translators.register("julia", JuliaTranslator)
papermill_translators.register("matlab", MatlabTranslator)
papermill_translators.register(".net-csharp", CSharpTranslator)

Notebook Jobs 5000

https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

Amazon SageMaker Developer Guide

papermill_translators.register(".net-fsharp", FSharpTranslator)
papermill_translators.register(".net-powershell", PowershellTranslator)
papermill_translators.register("pysparkkernel", PythonTranslator)
papermill_translators.register("sparkkernel", ScalaTranslator)
papermill_translators.register("sparkrkernel", RTranslator)
papermill_translators.register("bash", BashTranslator)

Parameters and environment variable limits

Parameters and environment variable limits. When you create your notebook job, it receives
the parameters and environment variables you specify. You can pass up to 100 parameters.
Each parameter name can be up to 256 characters long, and the associated value can be up to
2500 characters long. If you pass environment variables, you can pass up to 28 variables. The
variable name and associated value can be up to 512 characters long. If you need more than 28
environment variables, use additional environment variables in an initialization script which has no
limit on the number of environment variables you can use.

Viewing jobs and job definitions

Viewing jobs and job definitions. If you schedule your notebook job in the Studio UI in the
JupyterLab notebook, you can view your notebook jobs and your notebook job definitions in the
Studio UI. If you scheduled your notebook job with the SageMaker Python SDK, you can view your
jobs only—the SageMaker Python SDK notebook job step does not create job definitions. To view
your jobs, you also need to supply additional tags to your notebook job step instance. For details,
see View your notebook jobs in the Studio UI dashboard.

Image

You need to manage image constraints depending on whether you run notebook jobs in Studio or
the SageMaker Python SDK notebook job step in a pipeline.

Image constraints for SageMaker Notebook Jobs (Studio)

Image and kernel support. The driver that launches your notebook job assumes the following:

• A base Python runtime environment is installed in the Studio or bring-your-own (BYO) images
and is the default in the shell.

• The base Python runtime environment includes the Jupyter client with kernelspecs properly
configured.

• The base Python runtime environment includes the pip function so the notebook job can install
system dependencies.

Notebook Jobs 5001

https://docs.aws.amazon.com/sagemaker/latest/dg/view-notebook-jobs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/view-def-detail-notebook-auto-run.html

Amazon SageMaker Developer Guide

• For images with multiple environments, your initialization script should switch to the proper
kernel-specific environment before installing notebook-specific packages. You should
switch back to the default Python runtime environment, if different from the kernel runtime
environment, after configuring the kernel Python runtime environment.

The driver that launches your notebook job is a bash script, and Bash v4 must be available at /bin/
bash.

Root privileges on bring-your-own-images (BYOI). You must have root privileges on your own
Studio images, either as the root user or through sudo access. If you are not a root user but
accessing root privileges through sudo, use 1000/100 as the UID/GID.

Image constraints for SageMaker Python SDK notebook jobs

The notebook job step supports the following images:

• SageMaker Distribution Images listed in Available Amazon SageMaker Images.

• A custom image based on the SageMaker Distribution images in the previous list. Use a
SageMaker Distribution image as a base.

• A custom image (BYOI) pre-installed with notebook job dependencies (i.e., sagemaker-headless-
execution-driver. Your image must meet the following requirements:

• The image is pre-installed with notebook job dependencies.

• A base Python runtime environment is installed and is default in the shell environment.

• The base Python runtime environment includes the Jupyter client with kernelspecs properly
configured.

• You have root privileges, either as the root user or through sudo access. If you are not a root
user but accessing root privileges through sudo, use 1000/100 as the UID/GID.

VPC subnets used during job creation

If you use a VPC, Studio uses your private subnets to create your job. Specify one to five private
subnets (and 1–15 security groups).

If you use a VPC with private subnets, you must choose one of the following options to ensure the
notebook job can connect to dependent services or resources:

• If the job needs access to an AWS service that supports interface VPC endpoints, create an
endpoint to connect to the service. For a list of services that support interface endpoints, see

Notebook Jobs 5002

https://github.com/aws/sagemaker-distribution
https://pypi.org/project/sagemaker-headless-execution-driver/
https://pypi.org/project/sagemaker-headless-execution-driver/

Amazon SageMaker Developer Guide

AWS services that integrate with AWS PrivateLink. For information about creating an interface
VPC endpoint, see Access an AWS service using an interface VPC endpoint. At minimum, an
Amazon S3 VPC endpoint gateway must be provided.

• If a notebook job needs access to an AWS service that doesn't support interface VPC endpoints
or to a resource outside of AWS, create a NAT gateway and configure your security groups to
allow outbound connections. For information about setting up a NAT gateway for your VPC, see
VPC with public and private Subnets (NAT) in the Amazon Virtual Private Cloud User Guide.

Service limits

Since the notebook job scheduler is built from SageMaker Pipelines, SageMaker Training, and
Amazon EventBridge services, your notebook jobs are subject to their service-specific quotas. If
you exceed these quotas, you may see error messages related to these services. For example, there
are limits for how many pipelines you can run at one time, and how many rules you can set up
for a single event bus. For more information about SageMaker quotas, see Amazon SageMaker
Endpoints and Quotas. For more information about EventBridge quotas, see Amazon EventBridge
Quotas.

Pricing for SageMaker Notebook Jobs

When you schedule notebook jobs, your Jupyter notebooks run on SageMaker training instances.
After you select an Image and Kernel in your Create Job form, the form provides a list of available
compute types. You are charged for the compute type you choose, based on the combined
duration of use for all notebook jobs that run from the job definition. If you don’t specify a
compute type, SageMaker assigns you a default Amazon EC2 instance type of ml.m5.large. For a
breakdown of SageMaker pricing by compute type, see Amazon SageMaker Pricing.

Amazon SageMaker ML Lineage Tracking

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

ML Lineage Tracking 5003

https://docs.aws.amazon.com/vpc/latest/privatelink/aws-services-privatelink-support.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-quota.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-quota.html
https://aws.amazon.com/sagemaker/pricing

Amazon SageMaker Developer Guide

Amazon SageMaker ML Lineage Tracking creates and stores information about the steps of a
machine learning (ML) workflow from data preparation to model deployment. With the tracking
information, you can reproduce the workflow steps, track model and dataset lineage, and establish
model governance and audit standards.

With SageMaker Lineage Tracking data scientists and model builders can do the following:

• Keep a running history of model discovery experiments.

• Establish model governance by tracking model lineage artifacts for auditing and compliance
verification.

The following diagram shows an example lineage graph that Amazon SageMaker automatically
creates in an end-to-end model training and deployment ML workflow.

Topics

• Lineage Tracking Entities

• Amazon SageMaker–Created Tracking Entities

• Manually Create Tracking Entities

• Querying Lineage Entities

• Cross-Account Lineage Tracking

ML Lineage Tracking 5004

Amazon SageMaker Developer Guide

Lineage Tracking Entities

Tracking entities maintain a representation of all the elements of your end-to-end machine
learning workflow. You can use this representation to establish model governance, reproduce your
workflow, and maintain a record of your work history.

Amazon SageMaker automatically creates tracking entities for trial components and their
associated trials and experiments when you create SageMaker jobs such as processing jobs, training
jobs, and batch transform jobs. In additional to auto tracking, you can also Manually Create
Tracking Entities to model custom steps in your workflow. For more information, see Manage
Machine Learning with Amazon SageMaker Experiments.

SageMaker also automatically creates tracking entities for the other steps in a workflow so you
can track the workflow from end to end. For more information, see Amazon SageMaker–Created
Tracking Entities.

You can create additional entities to supplement those created by SageMaker. For more
information, see Manually Create Tracking Entities.

SageMaker reuses any existing entities rather than creating new ones. For example, there can be
only one artifact with a unique SourceUri.

Key concepts for querying lineage

• Lineage – Metadata that tracks the relationships between various entities in your ML workflows.

• QueryLineage – The action to inspect your lineage and discover relationships between entities.

• Lineage entities – The metadata elements of which your lineage is composed.

• Cross-account lineage – Your ML workflow may span more than one account. With cross-
account lineage, you can configure multiple accounts to automatically create lineage associations
between shared entity resources. QueryLineage then can return entities even from these shared
accounts.

The following tracking entities are defined:

Experiment entities

• Trial component – A stage of a machine learning trial. Includes processing jobs, training jobs, and
batch transform jobs.

• Trial – A combination of trial components that generally produces a model.

Tracking Entities 5005

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrial.html

Amazon SageMaker Developer Guide

• Experiment – A grouping of trials generally focused on solving a specific use case.

Lineage entities

• Trial Component – Represents processing, training, and transform jobs in the lineage. Also part
of experiment management.

• Context – Provides a logical grouping of other tracking or experiment entities. Conceptually,
experiments and trials are contexts. Some examples are an endpoint and a model package.

• Action – Represents an action or activity. Generally, an action involves at least one input artifact
or output artifact. Some examples are a workflow step and a model deployment.

• Artifact – Represents a URI addressable object or data. An artifact is generally either an input or
an output to a trial component or action. Some examples include a dataset (S3 bucket URI), or an
image (Amazon ECR registry path).

• Association – Links other tracking or experiment entities, such as an association between the
location of training data and a training job.

An association has an optional AssociationType property. The following values are available
along with the suggested use for each type. SageMaker places no restrictions on their use:

• ContributedTo – The source contributed to the destination or had a part in enabling the
destination. For example, the training data contributed to the training job.

• AssociatedWith – The source is connected to the destination. For example, an approval
workflow is associated with a model deployment.

• DerivedFrom - The destination is a modification of the source. For example, a digest output
of a channel input for a processing job is derived from the original inputs.

• Produced – The source generated the destination. For example, a training job produced a
model artifact.

• SameAs – When the same lineage entity used in different accounts.

Common properties

• Type property

The action, artifact, and context entities have a type property, ActionType, ArtifactType,
and ContextType, respectively. This property is a custom string which can associate meaningful
information with the entity and be used as a filter in the List APIs.

Tracking Entities 5006

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateExperiment.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateContext.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAction.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateArtifact.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddAssociation.html

Amazon SageMaker Developer Guide

• Source property

The action, artifact, and context entities have a Source property. This property provides the
underlying URI that the entity represents. Some examples are:

• An UpdateEndpoint action where the source is the EndpointArn.

• An image artifact for a processing job where the source is the ImageUri.

• An Endpoint context where the source is the EndpointArn.

• Metadata property

The action and artifact entities have an optional Metadata property which can provide the
following information:

• ProjectId – For example, the ID of the SageMaker MLOps project to which a model belongs.

• GeneratedBy – For example, the SageMaker pipeline execution that registered a model
package version.

• Repository – For example, the repository that contains an algorithm.

• CommitId – For example, the commit ID of an algorithm version.

Amazon SageMaker–Created Tracking Entities

Amazon SageMaker automatically creates tracking entities for SageMaker jobs, models, model
packages, and endpoints if the data is available. There is no limit to the number of lineage entities
created by SageMaker.

For information on how you can manually create tracking entities, see Manually Create Tracking
Entities.

Topics

• Tracking Entities for SageMaker Jobs

• Tracking Entities for Model Packages

• Tracking Entities for Endpoints

Tracking Entities for SageMaker Jobs

SageMaker creates a trial component for and associated with each SageMaker job. SageMaker
creates artifacts to track the job metadata and associations between each artifact and the job.

SageMaker-Created Entities 5007

Amazon SageMaker Developer Guide

Artifacts are created for the following job properties and associated with the Amazon Resource
Name (ARN) of the SageMaker job. The artifact SourceUri is listed in parentheses.

Training Job

• The image that contains the training algorithm (TrainingImage).

• The data source of each input channel (S3Uri).

• The location for the model (S3OutputPath).

• The location for the managed spot checkpoint data (S3Uri).

Processing Job

• The container to be run by the processing job (ImageUri).

• The data location for each processing input and processing output (S3Uri).

Transform Job

• The input data source to be transformed (S3Uri).

• The results of the transform (S3OutputPath).

Note

Amazon Simple Storage Service (Amazon S3) artifacts are tracked based on the Amazon
S3 URI values provided to the Create API, for example CreateTrainingJob, and not on the
Amazon S3 key and hash or etag values from each file.

Tracking Entities for Model Packages

The following entities are created:

Model Packages

• A context for each model package group.

• An artifact for each model package.

• An association between each model package artifact and the context for each model package
group to which the package belongs to.

SageMaker-Created Entities 5008

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

• An action for the creation of a model package version.

• An association between the model package artifact and the creation action.

• An association between the model package artifact and each model package group context to
which the package belongs to.

• Inference containers

• An artifact for the image used in each container defined in the model package.

• An artifact for the model used in each container.

• An association between each artifact and the model package artifact.

• Algorithms

• An artifact for each algorithm defined in the model package.

• An artifact for the model created by each algorithm.

• An association between each artifact and the model package artifact.

Tracking Entities for Endpoints

The following entities are created by Amazon SageMaker:

Endpoints

• A context for each endpoint

• An action for the model deployment that created each endpoint

• An artifact for each model deployed to the endpoint

• An artifact for the image used in the model

• An artifact for the model package for the model

• An artifact for each image deployed to the endpoint

• An association between each artifact and the model deployment action

Manually Create Tracking Entities

You can manually create tracking entities for any property. For information on the tracking entities
that Amazon SageMaker automatically creates, see Amazon SageMaker–Created Tracking Entities.

Manually Create Entities 5009

Amazon SageMaker Developer Guide

You can add tags to all entities except associations. Tags are arbitrary key-value pairs that provide
custom information. You can filter or sort a list or search query by tags. For more information, see
Tagging AWS resources in the AWS General Reference.

For a sample notebook that demonstrates how to create lineage entities, see the Amazon
SageMaker Lineage notebook in the Amazon SageMaker example GitHub repository.

Topics

• Manually Create Entities

• Manually Track a Workflow

• Limits

Manually Create Entities

The following procedure shows you how to create and associate artifacts between a SageMaker
training job and endpoint. You perform the following steps:

Import tracking entities and associations

1. Import the lineage tracking entities.

import sys
!{sys.executable} -m pip install -q sagemaker

from sagemaker import get_execution_role
from sagemaker.session import Session
from sagemaker.lineage import context, artifact, association, action

import boto3
boto_session = boto3.Session(region_name=region)
sagemaker_client = boto_session.client("sagemaker")

2. Create the input and output artifacts.

code_location_arn = artifact.Artifact.create(
 artifact_name='source-code-location',
 source_uri='s3://...',
 artifact_type='code-location'
).artifact_arn

Manually Create Entities 5010

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-lineage
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-lineage
https://github.com/awslabs/amazon-sagemaker-examples

Amazon SageMaker Developer Guide

Similar constructs for train_data_location_arn and test_data_location_arn

model_location_arn = artifact.Artifact.create(
 artifact_name='model-location',
 source_uri='s3://...',
 artifact_type='model-location'
).artifact_arn

3. Train the model and get the trial_component_arn that represents the training job.

4. Associate the input artifacts and output artifacts with the training job (trial component).

input_artifacts = [code_location_arn, train_data_location_arn,
 test_data_location_arn]
for artifact_arn in input_artifacts:
 try:
 association.Association.create(
 source_arn=artifact_arn,
 destination_arn=trial_component_arn,
 association_type='ContributedTo'
)
 except:
 logging.info('association between {} and {} already exists', artifact_arn,
 trial_component_arn)

output_artifacts = [model_location_arn]
for artifact_arn in output_artifacts:
 try:
 association.Association.create(
 source_arn=trial_component_arn,
 destination_arn=artifact_arn,
 association_type='Produced'
)
 except:
 logging.info('association between {} and {} already exists', artifact_arn,
 trial_component_arn)

5. Create the inference endpoint.

predictor = mnist_estimator.deploy(initial_instance_count=1,
 instance_type='ml.m4.xlarge')

6. Create the endpoint context.

Manually Create Entities 5011

Amazon SageMaker Developer Guide

from sagemaker.lineage import context

endpoint = sagemaker_client.describe_endpoint(EndpointName=predictor.endpoint_name)
endpoint_arn = endpoint['EndpointArn']

endpoint_context_arn = context.Context.create(
 context_name=predictor.endpoint_name,
 context_type='Endpoint',
 source_uri=endpoint_arn
).context_arn

7. Associate the training job (trial component) and endpoint context.

association.Association.create(
 source_arn=trial_component_arn,
 destination_arn=endpoint_context_arn
)

Manually Track a Workflow

You can manually track the workflow created in the previous section.

Given the endpoint Amazon Resource Name (ARN) from the previous example, the following
procedure shows you how to track the workflow back to the datasets used to train the model that
was deployed to the endpoint. You perform the following steps:

To track a workflow from endpoint to training data source

1. Import the tracking entities.

import sys
!{sys.executable} -m pip install -q sagemaker

from sagemaker import get_execution_role
from sagemaker.session import Session
from sagemaker.lineage import context, artifact, association, action

import boto3
boto_session = boto3.Session(region_name=region)
sagemaker_client = boto_session.client("sagemaker")

Manually Create Entities 5012

Amazon SageMaker Developer Guide

2. Get the endpoint context from the endpoint ARN.

endpoint_context_arn = sagemaker_client.list_contexts(
 SourceUri=endpoint_arn)['ContextSummaries'][0]['ContextArn']

3. Get the trial component from the association between the trial component and the endpoint
context.

trial_component_arn = sagemaker_client.list_associations(
 DestinationArn=endpoint_context_arn)['AssociationSummaries'][0]['SourceArn']

4. Get the training data location artifact from the association between the trial component and
the endpoint context.

train_data_location_artifact_arn = sagemaker_client.list_associations(
 DestinationArn=trial_component_arn, SourceType='Model')['AssociationSummaries']
[0]['SourceArn']

5. Get the training data location from the training data location artifact.

train_data_location = sagemaker_client.describe_artifact(
 ArtifactArn=train_data_location_artifact_arn)['Source']['SourceUri']
 print(train_data_location)

Response:

s3://sagemaker-sample-data-us-east-2/mxnet/mnist/train

Limits

You can create an an association between any entities, experiment and lineage, except the
following:

• You cannot create an association between two experiment entities. Experiment entities consist of
experiments, trials, and trial components.

• You can create an association with another association.

An error occurs if you try to create an entity that already exists.

Manually Create Entities 5013

Amazon SageMaker Developer Guide

Maximum number of manually created lineage entities

• Actions: 3000

• Artifacts: 6000

• Associations: 6000

• Contexts: 500

There is no limit to the number of lineage entities automatically created by Amazon SageMaker.

Querying Lineage Entities

Amazon SageMaker automatically generates graphs of lineage entities as you use them. You can
query this data to answer a variety of questions. You can query your lineage entities to:

• Retrieve all data sets that went into the creation of a model.

• Retrieve all jobs that went into the creation of an endpoint.

• Retrieve all models that use a data set.

• Retrieve all endpoints that use a model.

• Retrieve which endpoints are derived from a certain data set.

• Retrieve the pipeline execution that created a training job.

• Retrieve the relationships between entities for investigation, governance, and reproducibility.

• Retrieve all downstream trials that use the artifact.

• Retrieve all upstream trials that use the artifact.

• Retrieve a list of artifacts that use the provided S3 uri.

• Retrieve upstream artifacts that use the dataset artifact.

• Retrieve downstream artifacts that use the dataset artifact.

• Retrieve datasets that use the image artifact.

• Retrieve actions that use the context.

• Retrieve processing jobs that use the endpoint.

• Retrieve transform jobs that use the endpoint.

• Retrieve trial components that use the endpoint.

• Retrieve the ARN for the pipeline execution associated with the model package group.

Querying Lineage Entities 5014

Amazon SageMaker Developer Guide

• Retrieve all artifacts that use the action.

• Retrieve all upstream datasets that use the model package approval action.

• Retrieve model package from model package approval action.

• Retrieve downstream endpoint contexts that use the endpoint.

• Retrieve the ARN for the pipeline execution associated with the trial component.

• Retrieve datasets that use the trial component.

• Retrieve models that use the trial component.

• Explore your lineage for visualization.

Limitations

• Lineage querying is not available in the following Regions:

• Africa (Cape Town) – af-south

• Asia Pacific (Jakarta) – ap-southeast-3

• Asia Pacific (Osaka) – ap-northeast-3

• Europe (Milan) – eu-south-1

• Europe (Spain) – eu-south-2

• Israel (Tel Aviv) – il-central-1

• The maximum depth of relationships to discover is currently limited to 10.

• Filtering is limited to the following properties: last modified date, created date, type, and lineage
entity type.

Topics

• Getting Started with Querying Lineage Entities

Getting Started with Querying Lineage Entities

The easiest way to get started is either via the:

• Amazon SageMaker SDK for Python which has defined many common use cases.

• For a notebook that demonstrates how to use SageMaker Lineage APIs to query relationships
across the lineage graph, see sagemaker-lineage-multihop-queries.ipynb.

Querying Lineage Entities 5015

https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/lineage/artifact.py#L397
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-lineage/sagemaker-lineage-multihop-queries.ipynb

Amazon SageMaker Developer Guide

The following examples show how to use the LineageQuery and LineageFilter APIs to
construct queries to answer questions about the Lineage Graph and extract entity relationships for
a few use cases.

Example Using the LineageQuery API to find entity associations

from sagemaker.lineage.context import Context, EndpointContext
from sagemaker.lineage.action import Action
from sagemaker.lineage.association import Association
from sagemaker.lineage.artifact import Artifact, ModelArtifact, DatasetArtifact

from sagemaker.lineage.query import (
 LineageQuery,
 LineageFilter,
 LineageSourceEnum,
 LineageEntityEnum,
 LineageQueryDirectionEnum,
)
Find the endpoint context and model artifact that should be used for the lineage
 queries.

contexts = Context.list(source_uri=endpoint_arn)
context_name = list(contexts)[0].context_name
endpoint_context = EndpointContext.load(context_name=context_name)

Example Find all the datasets associated with an endpoint

Define the LineageFilter to look for entities of type `ARTIFACT` and the source of
 type `DATASET`.

query_filter = LineageFilter(
 entities=[LineageEntityEnum.ARTIFACT], sources=[LineageSourceEnum.DATASET]
)

Providing this `LineageFilter` to the `LineageQuery` constructs a query that
 traverses through the given context `endpoint_context`
and find all datasets.

query_result = LineageQuery(sagemaker_session).query(
 start_arns=[endpoint_context.context_arn],
 query_filter=query_filter,
 direction=LineageQueryDirectionEnum.ASCENDANTS,

Querying Lineage Entities 5016

Amazon SageMaker Developer Guide

 include_edges=False,
)

Parse through the query results to get the lineage objects corresponding to the
 datasets
dataset_artifacts = []
for vertex in query_result.vertices:
 dataset_artifacts.append(vertex.to_lineage_object().source.source_uri)

pp.pprint(dataset_artifacts)

Example Find the models associated with an endpoint

Define the LineageFilter to look for entities of type `ARTIFACT` and the source of
 type `MODEL`.

query_filter = LineageFilter(
 entities=[LineageEntityEnum.ARTIFACT], sources=[LineageSourceEnum.MODEL]
)

Providing this `LineageFilter` to the `LineageQuery` constructs a query that
 traverses through the given context `endpoint_context`
and find all datasets.

query_result = LineageQuery(sagemaker_session).query(
 start_arns=[endpoint_context.context_arn],
 query_filter=query_filter,
 direction=LineageQueryDirectionEnum.ASCENDANTS,
 include_edges=False,
)

Parse through the query results to get the lineage objects corresponding to the model
model_artifacts = []
for vertex in query_result.vertices:
 model_artifacts.append(vertex.to_lineage_object().source.source_uri)

The results of the `LineageQuery` API call return the ARN of the model deployed to
 the endpoint along with
the S3 URI to the model.tar.gz file associated with the model
pp.pprint(model_artifacts)

Querying Lineage Entities 5017

Amazon SageMaker Developer Guide

Example Find the trial components associated with the endpoint

Define the LineageFilter to look for entities of type `TRIAL_COMPONENT` and the
 source of type `TRAINING_JOB`.

query_filter = LineageFilter(
 entities=[LineageEntityEnum.TRIAL_COMPONENT],
 sources=[LineageSourceEnum.TRAINING_JOB],
)

Providing this `LineageFilter` to the `LineageQuery` constructs a query that
 traverses through the given context `endpoint_context`
and find all datasets.

query_result = LineageQuery(sagemaker_session).query(
 start_arns=[endpoint_context.context_arn],
 query_filter=query_filter,
 direction=LineageQueryDirectionEnum.ASCENDANTS,
 include_edges=False,
)

Parse through the query results to get the ARNs of the training jobs associated with
 this Endpoint
trial_components = []
for vertex in query_result.vertices:
 trial_components.append(vertex.arn)

pp.pprint(trial_components)

Example Changing the focal point of lineage

The LineageQuery can be modified to have different start_arns which changes the focal point
of lineage. In addition, the LineageFilter can take multiple sources and entities to expand the
scope of the query.

In the following we use the model as the lineage focal point and find the endpoints and datasets
associated with it.

Get the ModelArtifact

model_artifact_summary = list(Artifact.list(source_uri=model_package_arn))[0]
model_artifact = ModelArtifact.load(artifact_arn=model_artifact_summary.artifact_arn)
query_filter = LineageFilter(

Querying Lineage Entities 5018

Amazon SageMaker Developer Guide

 entities=[LineageEntityEnum.ARTIFACT],
 sources=[LineageSourceEnum.ENDPOINT, LineageSourceEnum.DATASET],
)

query_result = LineageQuery(sagemaker_session).query(
 start_arns=[model_artifact.artifact_arn], # Model is the starting artifact
 query_filter=query_filter,
 # Find all the entities that descend from the model, i.e. the endpoint
 direction=LineageQueryDirectionEnum.DESCENDANTS,
 include_edges=False,
)

associations = []
for vertex in query_result.vertices:
 associations.append(vertex.to_lineage_object().source.source_uri)

query_result = LineageQuery(sagemaker_session).query(
 start_arns=[model_artifact.artifact_arn], # Model is the starting artifact
 query_filter=query_filter,
 # Find all the entities that ascend from the model, i.e. the datasets
 direction=LineageQueryDirectionEnum.ASCENDANTS,
 include_edges=False,
)

for vertex in query_result.vertices:
 associations.append(vertex.to_lineage_object().source.source_uri)

pp.pprint(associations)

Example Using LineageQueryDirectionEnum.BOTH to find ascendent and descendent
relationships

When the direction is set to BOTH, the query traverses the graph to find ascendant and descendant
relationships. This traversal takes place not only from the starting node, but from each node that is
visited. For example; if a training job is run twice and both models generated by the training job are
deployed to endpoints, the result of the query with direction set to BOTH shows both endpoints.
This is because the same image is used for training and deploying the model. Since the image is
common to the model, the start_arn and both the endpoints, appear in the query result.

query_filter = LineageFilter(
 entities=[LineageEntityEnum.ARTIFACT],
 sources=[LineageSourceEnum.ENDPOINT, LineageSourceEnum.DATASET],

Querying Lineage Entities 5019

Amazon SageMaker Developer Guide

)

query_result = LineageQuery(sagemaker_session).query(
 start_arns=[model_artifact.artifact_arn], # Model is the starting artifact
 query_filter=query_filter,
 # This specifies that the query should look for associations both ascending and
 descending for the start
 direction=LineageQueryDirectionEnum.BOTH,
 include_edges=False,
)

associations = []
for vertex in query_result.vertices:
 associations.append(vertex.to_lineage_object().source.source_uri)

pp.pprint(associations)

Example Directions in LineageQuery - ASCENDANTS vs. DESCENDANTS

To understand the direction in the Lineage Graph, take the following entity relationship graph -
Dataset -> Training Job -> Model -> Endpoint

The endpoint is a descendant of the model, and the model is a descendant of the dataset. Similarly,
the model is an ascendant of the endpoint. The direction parameter can be used to specify
whether the query should return entities that are descendants or ascendants of the entity in
start_arns. If the start_arns contains a model and the direction is DESCENDANTS, the query
returns the endpoint. If the direction is ASCENDANTS, the query returns the dataset.

In this example, we'll look at the impact of specifying the direction as ASCENDANT or
 DESCENDANT in a `LineageQuery`.

query_filter = LineageFilter(
 entities=[LineageEntityEnum.ARTIFACT],
 sources=[
 LineageSourceEnum.ENDPOINT,
 LineageSourceEnum.MODEL,
 LineageSourceEnum.DATASET,
 LineageSourceEnum.TRAINING_JOB,
],
)

query_result = LineageQuery(sagemaker_session).query(
 start_arns=[model_artifact.artifact_arn],

Querying Lineage Entities 5020

Amazon SageMaker Developer Guide

 query_filter=query_filter,
 direction=LineageQueryDirectionEnum.ASCENDANTS,
 include_edges=False,
)

ascendant_artifacts = []

The lineage entity returned for the Training Job is a TrialComponent which can't be
 converted to a
lineage object using the method `to_lineage_object()` so we extract the
 TrialComponent ARN.
for vertex in query_result.vertices:
 try:
 ascendant_artifacts.append(vertex.to_lineage_object().source.source_uri)
 except:
 ascendant_artifacts.append(vertex.arn)

print("Ascendant artifacts : ")
pp.pprint(ascendant_artifacts)

query_result = LineageQuery(sagemaker_session).query(
 start_arns=[model_artifact.artifact_arn],
 query_filter=query_filter,
 direction=LineageQueryDirectionEnum.DESCENDANTS,
 include_edges=False,
)

descendant_artifacts = []
for vertex in query_result.vertices:
 try:
 descendant_artifacts.append(vertex.to_lineage_object().source.source_uri)
 except:
 # Handling TrialComponents.
 descendant_artifacts.append(vertex.arn)

print("Descendant artifacts : ")
pp.pprint(descendant_artifacts)

Example SDK helper functions to make lineage queries easier

The classes EndpointContext, ModelArtifact, and DatasetArtifact have helper functions
that are wrappers over the LineageQuery API to make certain lineage queries easier to leverage.
The following example shows how to use these helper function.

Querying Lineage Entities 5021

Amazon SageMaker Developer Guide

Find all the datasets associated with this endpoint

datasets = []
dataset_artifacts = endpoint_context.dataset_artifacts()
for dataset in dataset_artifacts:
 datasets.append(dataset.source.source_uri)
print("Datasets : ", datasets)

Find the training jobs associated with the endpoint
training_job_artifacts = endpoint_context.training_job_arns()
training_jobs = []
for training_job in training_job_artifacts:
 training_jobs.append(training_job)
print("Training Jobs : ", training_jobs)

Get the ARN for the pipeline execution associated with this endpoint (if any)
pipeline_executions = endpoint_context.pipeline_execution_arn()
if pipeline_executions:
 for pipeline in pipelines_executions:
 print(pipeline)

Here we use the `ModelArtifact` class to find all the datasets and endpoints
 associated with the model

dataset_artifacts = model_artifact.dataset_artifacts()
endpoint_contexts = model_artifact.endpoint_contexts()

datasets = [dataset.source.source_uri for dataset in dataset_artifacts]
endpoints = [endpoint.source.source_uri for endpoint in endpoint_contexts]

print("Datasets associated with this model : ")
pp.pprint(datasets)

print("Endpoints associated with this model : ")
pp.pprint(endpoints)

Here we use the `DatasetArtifact` class to find all the endpoints hosting models that
 were trained with a particular dataset
Find the artifact associated with the dataset

dataset_artifact_arn = list(Artifact.list(source_uri=training_data))[0].artifact_arn
dataset_artifact = DatasetArtifact.load(artifact_arn=dataset_artifact_arn)

Querying Lineage Entities 5022

Amazon SageMaker Developer Guide

Find the endpoints that used this training dataset
endpoint_contexts = dataset_artifact.endpoint_contexts()
endpoints = [endpoint.source.source_uri for endpoint in endpoint_contexts]

print("Endpoints associated with the training dataset {}".format(training_data))
pp.pprint(endpoints)

Example Getting a Lineage graph visualization

A helper class Visualizer is provided in the sameple notebook visualizer.py to help plot the
lineage graph. When the query response is rendered, a graph with the lineage relationships from
the StartArns is displayed. From the StartArns the visualization shows the relationships with
the other lineage entities returned in the query_lineage API action.

Graph APIs
Here we use the boto3 `query_lineage` API to generate the query response to plot.

from visualizer import Visualizer

query_response = sm_client.query_lineage(
 StartArns=[endpoint_context.context_arn], Direction="Ascendants", IncludeEdges=True
)

viz = Visualizer()
viz.render(query_response, "Endpoint")

 query_response = sm_client.query_lineage(
 StartArns=[model_artifact.artifact_arn], Direction="Ascendants", IncludeEdges=True
)
viz.render(query_response, "Model")

Cross-Account Lineage Tracking

Amazon SageMaker supports tracking lineage entities from a different AWS account. Other AWS
accounts can share their lineage entities with you and you can access these lineage entities through
direct API calls or SageMaker lineage queries.

SageMaker uses AWS Resource Access Manager to help you securely share your lineage resources.
You can share your resources through the AWS RAM console.

Cross-Account Tracking 5023

https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-lineage/visualizer.py
https://docs.aws.amazon.com/ram/latest/userguide/what-is.html
https://console.aws.amazon.com/ram/home

Amazon SageMaker Developer Guide

Set Up Cross-Account Lineage Tracking

You can group and share your Lineage Tracking Entities through a lineage group in Amazon
SageMaker. SageMaker supports only one default lineage group per account. SageMaker creates
the default lineage group whenever a lineage entity is created in your account. Every lineage entity
owned by your account is assigned to this default lineage group. To share lineage entities with
another account, you share this default lineage group with that account.

Note

You can share all lineage tracking entities in a lineage group or none.

Create a resource share for your lineage entities using AWS Resource Access Manager console. For
more information, see Sharing your AWS resources in the AWS Resource Access Manager User Guide.

Note

After the resource share is created, it can take a few minutes for the resource and principal
associations to complete. Once the association is set, the shared account receives an
invitation to join the resource share. The shared account must accept the invite to gain
access to shared resources. For more information on accepting a resource share invite in
AWS RAM, see Using shared AWS resources in the AWS Resource Access Manager User
Guide.

Your cross-account lineage tracking resource policy

Amazon SageMaker supports only one type of resource policy. The SageMaker resource policy must
allow all of the following operations:

"sagemaker:DescribeAction"
"sagemaker:DescribeArtifact"
"sagemaker:DescribeContext"
"sagemaker:DescribeTrialComponent"
"sagemaker:AddAssociation"
"sagemaker:DeleteAssociation"
"sagemaker:QueryLineage"

Cross-Account Tracking 5024

https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html

Amazon SageMaker Developer Guide

Example The following is a SageMaker resource policy created using AWS Resource Access
Manager for creating a resource share for an accounts lineage group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullLineageAccess",
 "Effect": "Allow",
 "Principal": {
 "AWS": "123456789012" #account-id
 },
 "Action": [
 "sagemaker:DescribeAction",
 "sagemaker:DescribeArtifact",
 "sagemaker:DescribeContext",
 "sagemaker:DescribeTrialComponent",
 "sagemaker:AddAssociation",
 "sagemaker:DeleteAssociation",
 "sagemaker:QueryLineage"
],
 "Resource": "arn:aws:sagemaker:us-west-2:111111111111:lineage-group/sagemaker-
default-lineage-group" #Sample lineage group resource
 }
]
}

Tracking Cross-Account Lineage Entities

With cross-account lineage tracking you can associate lineage entities in different accounts using
the same AddAssociation API action. When you associate two lineage entities, SageMaker
validates if you have permissions to perform the AddAssociation API action on both lineage
entities. SageMaker then establishes the association. If you don’t have the permissions, SageMaker
does not create the association. Once the cross-account association is established, you can access
either lineage entity from the other through the QueryLineage API action. For more information,
see Querying Lineage Entities.

In addition to SageMaker automatically creating lineage entities, if you have cross-account
access, SageMaker connects artifacts that reference the same object or data. If the data from one
account is used in lineage tracking by different accounts, SageMaker creates an artifact in each
account to track that data. With cross-account lineage, whenever SageMaker creates new artifacts,

Cross-Account Tracking 5025

Amazon SageMaker Developer Guide

SageMaker checks if there are other artifacts created for the same data that are also shared with
you. SageMaker then establishes associations between the newly created artifact and each of
the artifacts shared with you with the AssociationType set to SameAs. You can then use the
QueryLineage API action to traverse the lineage entities in your own account to lineage entities
shared with you but owned by a different AWS account. For more information, see Querying
Lineage Entities

Topics

• Accessing lineage resources from a different accounts

• Authorization for querying cross-account lineage entities

Accessing lineage resources from a different accounts

Once the cross-account access for sharing lineage has been set up, you can call the following
SageMaker API actions directly with the ARN to describe the shared lineage entities from another
account:

• DescribeAction

• DescribeArtifact

• DescribeContext

• DescribeTrialComponent

You can also manage Associations for lineage entities owned by different accounts that are shared
with you, using the following SageMaker API actions:

• AddAssociation

• DeleteAssociation

For a notebook that demonstrates how to use SageMaker Lineage APIs to query lineage across
accounts., see sagemaker-lineage-cross-account-with-ram.ipynb.

Authorization for querying cross-account lineage entities

Amazon SageMaker must validate that you have permissions to perform the QueryLineage
API action on the StartArns. This is enforced through the resource policy attached to the
LineageGroup. The result from this action includes all the lineage entities to which you

Cross-Account Tracking 5026

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_QueryLineage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAction.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeArtifact.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeContext.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrialComponent.html
https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking-entities.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddAssociation.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteAssociation.html
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-lineage/sagemaker-lineage-cross-account-with-ram.ipynb

Amazon SageMaker Developer Guide

have access, whether they are owned by your account or shared by another account. For more
information, see Querying Lineage Entities.

Register and Deploy Models with Model Registry

With the SageMaker Model Registry you can do the following:

• Catalog models for production.

• Manage model versions.

• Associate metadata, such as training metrics, with a model.

• Manage the approval status of a model.

• Deploy models to production.

• Automate model deployment with CI/CD.

Catalog models by creating SageMaker Model Registry Model (Package) Groups that contain
different versions of a model. You can create a Model Group that tracks all of the models that
you train to solve a particular problem. You can then register each model you train and the Model
Registry adds it to the Model Group as a new model version. Lastly, you can create categories of
Model Groups by further organizing them into SageMaker Model Registry Collections. A typical
workflow might look like the following:

• Create a Model Group.

• Create an ML pipeline that trains a model. For information about SageMaker pipelines, see
Create and Manage SageMaker Pipelines.

• For each run of the ML pipeline, create a model version that you register in the Model Group you
created in the first step.

• Add your Model Group into one or more Model Registry Collections.

For details about how to create and work with models, model versions, and Model Groups, see
Model Registry Models, Model Versions, and Model Groups. Optionally, if you want to further group
your Model Groups into Collections, see Model Registry Collections.

Model Registry Models, Model Versions, and Model Groups

The SageMaker Model Registry is structured as several Model (Package) Groups with model
packages in each group. These Model Groups can optionally be added to one or more Collections.

Catalog models with Model Registry 5027

Amazon SageMaker Developer Guide

Each model package in a Model Group corresponds to a trained model. The version of each model
package is a numerical value that starts at 1 and is incremented with each new model package
added to a Model Group. For example, if 5 model packages are added to a Model Group, the model
package versions will be 1, 2, 3, 4, and 5.

There are two types of model packages in SageMaker. One type is used in the AWS Marketplace,
and the other is used in the Model Registry. Model packages used in the AWS Marketplace are not
versionable entities and are not associated with Model Groups in the Model Registry. For more
information about model packages used in the AWS Marketplace, see Sell algorithms and packages
in the AWS Marketplace.

The model packages used in the Model Registry are versioned, and must be
associated with a Model Group. The ARN of this model package type has the structure:
'arn:aws:sagemaker:region:account:model-package-group/version'

The following topics show you how to create and work with models, model versions, and Model
Groups in the Model Registry.

Topics

• Create a Model Group

• Delete a Model Group

• Register a Model Version

• View Model Groups and Versions

• View the Details of a Model Version

• Compare Model Versions

• View and Manage Model Group and Model Version Tags

• Share Models with SageMaker Canvas Users

• Delete a Model Version

• Update the Approval Status of a Model

• Deploy a Model from the Registry

• View the Deployment History of a Model

Create a Model Group

A Model Group contains a group of versioned models. Create a Model Group by using either the
AWS SDK for Python (Boto3) or the Amazon SageMaker Studio console.

Models, Model Versions, and Model Groups 5028

Amazon SageMaker Developer Guide

Create a Model Group (Boto3)

To create a Model Group by using Boto3, call the create_model_package_group API operation
and specify a name and description as parameters. The following example shows how to create
a Model Group. The response from the create_model_package_group call is the Amazon
Resource Name (ARN) of the new Model Group.

First, import the required packages and set up the SageMaker Boto3 client.

import time
import os
from sagemaker import get_execution_role, session
import boto3

region = boto3.Session().region_name

role = get_execution_role()

sm_client = boto3.client('sagemaker', region_name=region)

Now create the Model Group.

import time
model_package_group_name = "scikit-iris-detector-" + str(round(time.time()))
model_package_group_input_dict = {
 "ModelPackageGroupName" : model_package_group_name,
 "ModelPackageGroupDescription" : "Sample model package group"
}

create_model_package_group_response =
 sm_client.create_model_package_group(**model_package_group_input_dict)
print('ModelPackageGroup Arn :
 {}'.format(create_model_package_group_response['ModelPackageGroupArn']))

Create a Model Group (console)

To create a Model Group in the Amazon SageMaker Studio console, complete the following steps
based on whether you use Studio or Studio Classic.

Models, Model Versions, and Model Groups 5029

Amazon SageMaker Developer Guide

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. Choose Register, then choose Model group.

6. In the Register model group dialog box, enter the following information:

• The name of the new Model Group in the Model group name field.

• (Optional) A description for the Model Group in the Description field.

• (Optional) Any key-value pairs you want to associate with the Model Group in the Tags
field. For information about using tags, see Tagging AWS resources in the AWS General
Reference.

7. Choose Register model group.

8. (Optional) In the Models page, choose the Registered models tab, then choose Model
Groups. Confirm your newly-created Model Group appears in the list of Model Groups.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. Choose Actions, then choose Create model group.

5. In the Create model group dialog box, enter the following information:

• Enter the name of the new Model Group in the Model group name field.

• (Optional) Enter a description for the Model Group in the Description field.

Models, Model Versions, and Model Groups 5030

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

• (Optional) Enter any key-value pairs you want to associate with the Model Group in the
Tags field. For information about using tags, see Tagging AWS resources in the AWS
General Reference.

• (Optional) Choose a project with which to associate the Model Group in the Project field.
For information about projects, see Automate MLOps with SageMaker Projects.

6. Choose Create model group.

Delete a Model Group

This procedure demonstrates how to delete a Model Group in the Amazon SageMaker Studio
console.

Delete a Model Group (console)

Important

You can only delete an empty model group. Before you delete your model group, remove
its model versions, if any.

To delete a Model Group in the Amazon SageMaker Studio console, complete the following steps
based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the model groups list, select the check box next to the name of the Model Group you
want to delete.

6. Choose the vertical ellipsis above the top right corner of the model groups list, and choose
Delete.

7. In the Delete model group dialog box, choose Yes, delete the model group.

Models, Model Versions, and Model Groups 5031

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

8. Choose Delete.

9. Confirm that your deleted model groups no longer appear in your list of model groups.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry. A list of your Model Groups appears.

4. From the model groups list, select the name of the Model Group you want to delete.

5. In the top right corner, choose Remove.

6. In the confirmation dialog box, enter REMOVE.

7. Choose Remove.

Register a Model Version

You can register an Amazon SageMaker model by creating a model version that specifies the model
group to which it belongs. A model version must include both the model artifacts (the trained
weights of a model) and the inference code for the model.

An inference pipeline is a SageMaker model composed of a linear sequence of two to fifteen
containers that process inference requests. You register an inference pipeline by specifying the
containers and the associated environment variables. For more information on inference pipelines,
see Host models along with pre-processing logic as serial inference pipeline behind one endpoint.

You can register a model with an inference pipeline, by specifying the containers and the
associated environment variables. To create a model version with an inference pipeline by using
either the AWS SDK for Python (Boto3), the Amazon SageMaker Studio console, or by creating a
step in a SageMaker model building pipeline, use the following steps.

Topics

• Register a Model Version (SageMaker Pipelines)

• Register a Model Version (Boto3)

Models, Model Versions, and Model Groups 5032

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

• Register a Model Version (console)

• Register a Model Version from a Different Account

Register a Model Version (SageMaker Pipelines)

To register a model version by using a SageMaker model building pipeline, create a
RegisterModel step in your pipeline. For information about creating a RegisterModel step as
part of a pipeline, see Step 8: Define a RegisterModel Step to Create a Model Package.

Register a Model Version (Boto3)

To register a model version by using Boto3, call the create_model_package API operation.

First, you set up the parameter dictionary to pass to the create_model_package API operation.

Specify the model source
model_url = "s3://your-bucket-name/model.tar.gz"

modelpackage_inference_specification = {
 "InferenceSpecification": {
 "Containers": [
 {
 "Image": image_uri,
 "ModelDataUrl": model_url
 }
],
 "SupportedContentTypes": ["text/csv"],
 "SupportedResponseMIMETypes": ["text/csv"],
 }
 }

Alternatively, you can specify the model source like this:
modelpackage_inference_specification["InferenceSpecification"]["Containers"][0]
["ModelDataUrl"]=model_url

create_model_package_input_dict = {
 "ModelPackageGroupName" : model_package_group_name,
 "ModelPackageDescription" : "Model to detect 3 different types of irises (Setosa,
 Versicolour, and Virginica)",
 "ModelApprovalStatus" : "PendingManualApproval"
}
create_model_package_input_dict.update(modelpackage_inference_specification)

Models, Model Versions, and Model Groups 5033

Amazon SageMaker Developer Guide

Then you call the create_model_package API operation, passing in the parameter dictionary
that you just set up.

create_model_package_response =
 sm_client.create_model_package(**create_model_package_input_dict)
model_package_arn = create_model_package_response["ModelPackageArn"]
print('ModelPackage Version ARN : {}'.format(model_package_arn))

Register a Model Version (console)

To register a model version in the Amazon SageMaker Studio console, complete the following steps
based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models from the menu.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. Choose Register, then choose Model version.

6. In the Register model version form, enter the following information:

• In the Model group name dropdown, select the name of the model group to which your
version belongs.

• (Optional) Enter a description for your model version.

• In the Model Approval Status dropdown, select the version approval status.

• (Optional) In the Custom metadata field, choose + Add new and add custom tags as key-
value pairs.

7. Choose Next.

8. In the Inference Specification form, enter the following information:

• In Inference image location (ECR), enter your ECR inference image location.

• In Model artifact location (S3), enter the Amazon S3 bucket location of your model data
artifacts.

Models, Model Versions, and Model Groups 5034

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

• To specify and input data configuration or environment variables, choose Additional
configuration and enter this information.

• To add more containers, choose + Add container.

• In Realtime inference instance type, enter the instance type to use for real-time
inference.

• In Transform inference instance type, enter the instance type to use for batch
transformations.

• In Supported content types, enter your input MIME types.

• In Supported response content types, enter your output MIME types.

9. Choose Next.

10. In the optional Inference Recommendation form, enter the following information:

• For Business problem, choose the application the applies to your model.

• For Task, choose the type of problem that applies to your model.

• For S3 bucket address, enter the Amazon S3 bucket location of your sample payload.

• For the first container, enter the following information:

• For Model name, enter the model name as used in model zoos.

• For Framework, choose a framework.

• For Framework version, enter a framework version.

• Repeat the previous step for all containers.

11. Choose Next.

12. Select the check box next to one or more of the displayed model metrics.

13. Choose Next.

14. Ensure the displayed settings are correct, and choose Register model version. If you
subsequently see a modal window with an error message, choose View (next to the
message) to view the source of the error.

15. Confirm your new model version appears in the parent model group page.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

Models, Model Versions, and Model Groups 5035

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. Open the Register Version form. You can do this in one of two ways:

• Choose Actions, and then choose Create model version.

• Select the name of the model group for which you want to create a model version, then
choose Create model version.

5. In the Register model version form, enter the following information:

• In the Model package group name dropdown, select the model group name.

• (Optional) Enter a description for your model version.

• In the Model Approval Status dropdown, select the version approval status.

• (Optional) In the Custom metadata field, add custom tags as key-value pairs.

6. Choose Next.

7. In the Inference Specification form, enter the following information:

• Enter your inference image location.

• Enter your model data artifacts location.

• (Optional) Enter information about images to use for transform and real-time inference
jobs, and supported input and output MIME types.

8. Choose Next.

9. (Optional) Provide details to aid endpoint recommendations.

10. Choose Next.

11. (Optional) Choose model metrics you want to include.

12. Choose Next.

13. Ensure the displayed settings are correct, and choose Register model version. If you
subsequently see a modal window with an error message, choose View (next to the
message) to view the source of the error.

14. Confirm your new model version appears in the parent model group page.

Models, Model Versions, and Model Groups 5036

Amazon SageMaker Developer Guide

Register a Model Version from a Different Account

To register model versions with a Model Group created by a different AWS account, you must add
a cross-account AWS Identity and Access Management resource policy to enable that account. For
example, one AWS account in your organization is responsible for training models, and a different
account is responsible for managing, deploying, and updating models. You create IAM resource
policies and apply the policies to the specific account resource to which you want to grant access
for this case. For more information about cross-account resource policies in AWS, see Cross-account
policy evaluation logic in the AWS Identity and Access Management User Guide.

Note

You must also use a KMS key to encrypt the output data config action during training for
cross-account model deployment.

To enable cross-account model registry in SageMaker, you have to provide a cross-account resource
policy for the Model Group that contains the model versions. The following is an example that
creates cross-account policies for the Model Group and applies these policies to that specific
resource.

The following configuration must be set in the source account which registers models cross-
account in a Model Group. In this example, the source account is the model training account which
will train and then register the model cross-account into the Model Registry of the Model Registry
account.

The example assumes that you previously defined the following variables:

• sm_client – A SageMaker Boto3 client.

• model_package_group_name – The Model Group to which you want to grant access.

• model_package_group_arn – The Model Group ARN to which you want to grant cross-account
access.

• bucket – The Amazon S3 bucket where the model training artifacts are stored.

To be able to deploy a model created in a different account, the user must have a role that has
access to SageMaker actions, such as a role with the AmazonSageMakerFullAccess managed
policy. For information about SageMaker managed policies, see AWS Managed Policies for Amazon
SageMaker.

Models, Model Versions, and Model Groups 5037

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputDataConfig.html

Amazon SageMaker Developer Guide

Required IAM resource policies

The following diagram captures the policies required to allow cross-account model registration. As
shown, these policies need to be active during model training to properly register the model into
the Model Registry account.

Amazon ECR, Amazon S3, and AWS KMS policies are demonstrated in the following code samples.

Sample Amazon ECR policy

{

Models, Model Versions, and Model Groups 5038

Amazon SageMaker Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AddPerm",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{model_registry_account}:root"
 },
 "Action": [
 "ecr:BatchGetImage",
 "ecr:Describe*"
]
 }
]
}

Sample Amazon S3 policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AddPerm",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{model_registry_account}:root"
 },
 "Action": [
 "s3:GetObject",
 "s3:GetBucketAcl",
 "s3:GetObjectAcl"
],
 "Resource": "arn:aws:s3:::{bucket}/*"
 }
]
}

Sample AWS KMS policy

{
 "Version": "2012-10-17",
 "Statement": [
 {

Models, Model Versions, and Model Groups 5039

Amazon SageMaker Developer Guide

 "Sid": "AddPerm",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{model_registry_account}:root"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*"
 }
]
}

Apply resource policies to accounts

The following policy configuration applies the policies discussed in the previous section and must
be put in the model training account.

import json

The Model Registry account id of the Model Group
model_registry_account = "111111111111"

The model training account id where training happens
model_training_account = "222222222222"

1. Create a policy for access to the ECR repository
in the model training account for the Model Registry account Model Group
ecr_repository_policy = {"Version": "2012-10-17",
 "Statement": [{"Sid": "AddPerm",
 "Effect": "Allow",
 "Principal": {
 "AWS": f"arn:aws:iam::{model_registry_account}:root"
 },
 "Action": [
 "ecr:BatchGetImage",
 "ecr:Describe*"
]
 }]
}

Convert the ECR policy from JSON dict to string

Models, Model Versions, and Model Groups 5040

Amazon SageMaker Developer Guide

ecr_repository_policy = json.dumps(ecr_repository_policy)

Set the new ECR policy
ecr = boto3.client('ecr')
response = ecr.set_repository_policy(
 registryId = model_training_account,
 repositoryName = "decision-trees-sample",
 policyText = ecr_repository_policy
)

2. Create a policy in the model training account for access to the S3 bucket
where the model is present in the Model Registry account Model Group
bucket_policy = {"Version": "2012-10-17",
 "Statement": [{"Sid": "AddPerm",
 "Effect": "Allow",
 "Principal": {"AWS": f"arn:aws:iam::{model_registry_account}:root"
 },
 "Action": [
 "s3:GetObject",
 "s3:GetBucketAcl",
 "s3:GetObjectAcl"
],
 "Resource": "arn:aws:s3:::{bucket}/*"
 }]
}

Convert the S3 policy from JSON dict to string
bucket_policy = json.dumps(bucket_policy)

Set the new bucket policy
s3 = boto3.client("s3")
response = s3.put_bucket_policy(
 Bucket = bucket,
 Policy = bucket_policy)

3. Create the KMS grant for the key used during training for encryption
in the model training account to the Model Registry account Model Group
client = boto3.client("kms")

response = client.create_grant(
 GranteePrincipal=model_registry_account,
 KeyId=kms_key_id
 Operations=[
 "Decrypt",

Models, Model Versions, and Model Groups 5041

Amazon SageMaker Developer Guide

 "GenerateDataKey",
],
)

The following configuration needs to be put in the Model Registry account where the Model Group
exists.

The Model Registry account id of the Model Group
model_registry_account = "111111111111"

1. Create policy to allow the model training account to access the ModelPackageGroup
model_package_group_policy = {"Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AddPermModelPackageVersion",
 "Effect": "Allow",
 "Principal": {"AWS": f"arn:aws:iam::{model_training_account}:root"},
 "Action": ["sagemaker:CreateModelPackage"],
 "Resource": f"arn:aws:sagemaker:{region}:{model_registry_account}:model-
package/{model_package_group_name}/*"
 }
]
}

Convert the policy from JSON dict to string
model_package_group_policy = json.dumps(model_package_group_policy)

Set the new policy
response = sm_client.put_model_package_group_policy(
 ModelPackageGroupName = model_package_group_name,
 ResourcePolicy = model_package_group_policy)

Finally, use the create_model_package action from the model training account to register the
model package in the cross-account.

Specify the model source
model_url = "s3://{bucket}/model.tar.gz"

#Set up the parameter dictionary to pass to the create_model_package API operation

Models, Model Versions, and Model Groups 5042

Amazon SageMaker Developer Guide

modelpackage_inference_specification = {
 "InferenceSpecification": {
 "Containers": [
 {
 "Image": f"{model_training_account}.dkr.ecr.us-east-2.amazonaws.com/
decision-trees-sample:latest",
 "ModelDataUrl": model_url
 }
],
 "SupportedContentTypes": ["text/csv"],
 "SupportedResponseMIMETypes": ["text/csv"],
 }
}

Alternatively, you can specify the model source like this:
modelpackage_inference_specification["InferenceSpecification"]["Containers"][0]
["ModelDataUrl"]=model_url

create_model_package_input_dict = {
 "ModelPackageGroupName" : model_package_group_arn,
 "ModelPackageDescription" : "Model to detect 3 different types of irises (Setosa,
 Versicolour, and Virginica)",
 "ModelApprovalStatus" : "PendingManualApproval"
}
create_model_package_input_dict.update(modelpackage_inference_specification)

Create the model package in the Model Registry account
create_model_package_response =
 sm_client.create_model_package(**create_model_package_input_dict)
model_package_arn = create_model_package_response["ModelPackageArn"]
print('ModelPackage Version ARN : {}'.format(model_package_arn))

View Model Groups and Versions

Model Groups and versions help you organize your models. You can view a list of the model
versions in a Model Group by using either the AWS SDK for Python (Boto3) (Boto3) or the Amazon
SageMaker Studio console.

View a List of Model Versions in a Group

You can view all of the model versions that are associated with a Model Group. If a Model Group
represents all models that you train to address a specific ML problem, you can view all of those
related models.

Models, Model Versions, and Model Groups 5043

Amazon SageMaker Developer Guide

View a List of Model Versions in a Group (Boto3)

To view model versions associated with a Model Group by using Boto3, call the
list_model_packages API operation, and pass the name of the Model Group as the value of the
ModelPackageGroupName parameter. The following code lists the model versions associated with
the Model Group you created in Create a Model Group (Boto3).

sm_client.list_model_packages(ModelPackageGroupName=model_package_group_name)

View a List of Model Versions in a Group (console)

To view a list of the model versions in a Model Group in the Amazon SageMaker Studio console,
complete the following steps based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models from the menu.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the model groups list, choose the angle bracket to the left of the model group you
want to view.

6. A list of the model versions in the model group appears.

7. (Optional) Choose View all, if shown, to view additional model versions.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the model groups list, select the name of the Model Group you want to view.

Models, Model Versions, and Model Groups 5044

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

5. A new tab appears with a list of the model versions in the Model Group.

View the Details of a Model Version

You can view details of a specific model version by using either the AWS SDK for Python (Boto3) or
the Amazon SageMaker Studio console.

View the Details of a Model Version (Boto3)

To view the details of a model version by using Boto3, complete the following steps.

1. Call the list_model_packages API operation to view the model versions in a Model Group.

sm_client.list_model_packages(ModelPackageGroupName="ModelGroup1")

The response is a list of model package summaries. You can get the Amazon Resource Name
(ARN) of the model versions from this list.

{'ModelPackageSummaryList': [{'ModelPackageGroupName':
 'AbaloneMPG-16039329888329896',
 'ModelPackageVersion': 1,
 'ModelPackageArn': 'arn:aws:sagemaker:us-east-2:123456789012:model-package/
ModelGroup1/1',
 'ModelPackageDescription': 'TestMe',
 'CreationTime': datetime.datetime(2020, 10, 29, 1, 27, 46, 46000,
 tzinfo=tzlocal()),
 'ModelPackageStatus': 'Completed',
 'ModelApprovalStatus': 'Approved'}],
 'ResponseMetadata': {'RequestId': '12345678-abcd-1234-abcd-aabbccddeeff',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {'x-amzn-requestid': '12345678-abcd-1234-abcd-aabbccddeeff',
 'content-type': 'application/x-amz-json-1.1',
 'content-length': '349',
 'date': 'Mon, 23 Nov 2020 04:56:50 GMT'},
 'RetryAttempts': 0}}

2. Call describe_model_package to see the details of the model version. You pass in the ARN
of a model version that you got in the output of the call to list_model_packages.

sm_client.describe_model_package(ModelPackageName="arn:aws:sagemaker:us-
east-2:123456789012:model-package/ModelGroup1/1")

Models, Model Versions, and Model Groups 5045

Amazon SageMaker Developer Guide

The output of this call is a JSON object with the model version details.

{'ModelPackageGroupName': 'ModelGroup1',
 'ModelPackageVersion': 1,
 'ModelPackageArn': 'arn:aws:sagemaker:us-east-2:123456789012:model-package/
ModelGroup/1',
 'ModelPackageDescription': 'Test Model',
 'CreationTime': datetime.datetime(2020, 10, 29, 1, 27, 46, 46000,
 tzinfo=tzlocal()),
 'InferenceSpecification': {'Containers': [{'Image': '257758044811.dkr.ecr.us-
east-2.amazonaws.com/sagemaker-xgboost:1.0-1-cpu-py3',
 'ImageDigest':
 'sha256:99fa602cff19aee33297a5926f8497ca7bcd2a391b7d600300204eef803bca66',
 'ModelDataUrl': 's3://sagemaker-us-east-2-123456789012/ModelGroup1/
pipelines-0gdonccek7o9-AbaloneTrain-stmiylhtIR/output/model.tar.gz'}],
 'SupportedTransformInstanceTypes': ['ml.m5.xlarge'],
 'SupportedRealtimeInferenceInstanceTypes': ['ml.t2.medium', 'ml.m5.xlarge'],
 'SupportedContentTypes': ['text/csv'],
 'SupportedResponseMIMETypes': ['text/csv']},
 'ModelPackageStatus': 'Completed',
 'ModelPackageStatusDetails': {'ValidationStatuses': [],
 'ImageScanStatuses': []},
 'CertifyForMarketplace': False,
 'ModelApprovalStatus': 'PendingManualApproval',
 'LastModifiedTime': datetime.datetime(2020, 10, 29, 1, 28, 0, 438000,
 tzinfo=tzlocal()),
 'ResponseMetadata': {'RequestId': '12345678-abcd-1234-abcd-aabbccddeeff',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {'x-amzn-requestid': '212345678-abcd-1234-abcd-aabbccddeeff',
 'content-type': 'application/x-amz-json-1.1',
 'content-length': '1038',
 'date': 'Mon, 23 Nov 2020 04:59:38 GMT'},
 'RetryAttempts': 0}}

View the Details of a Model Version (console)

To view the details of a model version in the Amazon SageMaker Studio console, complete the
following steps based on whether you use Studio or Studio Classic.

Models, Model Versions, and Model Groups 5046

Amazon SageMaker Developer Guide

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models from the menu.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. Select the name of the model group containing the model version to view.

6. In the list of model versions, select the model version to view.

7. To view details related to model training, choose the Training radio button. To view details
related to inference, choose the Inference radio button.

The following tabs include the details related to model training:

• Performance: Statistical measurements to assess model performance, such as relative
mean error (RME).

• Evaluation: Charts and metrics to describe bias and explainability.

• Associations: The resources that derived, are derived from, or are associated with the
model version.

• Activity: The actions you performed with the model version, such as approval.

• Tags: The tags that belong to the model version.

• Metadata: The ARN information for model version and associated Identity and Access
Management (IAM) roles.

The following tabs include details related to model inference:

• Instances: The instances on which your model is deployed.

• Metadata: The containers running inference with your model.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

Models, Model Versions, and Model Groups 5047

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the model groups list, select the name of the Model Group you want to view.

5. A new tab appears with a list of the model versions in the Model Group.

6. In the list of model versions, select the name of the model version for which you want to
view details.

7. On the model version tab that opens, choose one of the following to see details about the
model version:

• Activity: Shows events for the model version, such as approval status updates.

• Model quality: Reports metrics related to your Model Monitor model quality checks,
which compare model predictions to Ground Truth. For more information about Model
Monitor model quality checks, see Monitor model quality.

• Explainability: Reports metrics related to your Model Monitor feature attribution checks,
which compare the relative rankings of your features in training data versus live data.
For more information about Model Monitor explainability checks, see Monitor Feature
Attribution Drift for Models in Production.

• Bias: Reports metrics related to your Model Monitor bias drift checks, which compare the
distribution of live data to training data. For more information about Model Monitor bias
drift checks, see Monitor Bias Drift for Models in Production.

• Inference recommender: Provides initial instance recommendations for optimal
performance based on your model and sample payloads.

• Load test: Runs load tests across your choice of instance types when you provide your
specific production requirements, such as latency and throughput constraints.

• Inference specification: Displays instance types for your real-time inference and
transform jobs, and information about your Amazon ECR containers.

• Information: Shows information such as the project with which the model version is
associated, the pipeline that generated the model, the Model Group, and the model's
location in Amazon S3.

Models, Model Versions, and Model Groups 5048

Amazon SageMaker Developer Guide

Compare Model Versions

As you generate model versions, you might want to compare models versions by viewing relevant
model quality metrics side-by-side. For example, you might want to track accuracy by comparing
mean squared error (MSE) values, or you might decide to remove models that perform poorly on
selected measures. The following procedure shows you how to set up model version comparison in
Model Registry using the Amazon SageMaker Studio Classic console.

Compare Model Versions (Amazon SageMaker Studio Classic)

Note

You can only compare model versions the Amazon SageMaker Studio Classic console.

To compare model versions within a model group, complete the following steps:

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the model groups list, select the name of the Model Group you want to view. A new tab
opens with a list of the model versions in the Model Group.

5. In the list of model versions, check the boxes next to the model versions you want to compare.

6. Choose the Actions dropdown menu, then choose Compare. A listing of model quality metrics
appears for your selected models.

View and Manage Model Group and Model Version Tags

Model Registry helps you view and manage tags related to your model groups. You can use tags
to categorize model groups by purpose, owner, environment, or other criteria. The following
instructions show you how to view, add, delete, and edit your tags in the Amazon SageMaker
Studio console.

Models, Model Versions, and Model Groups 5049

Amazon SageMaker Developer Guide

View and manage model group tags

Studio

To view a model group tag, complete the following steps:

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models to display a list of your model groups.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the Model Groups list, select the name of the Model Group you want to view.

6. In the model group page, choose the Tags tab. View the tags associated with your model
group.

To add a model group tag, complete the following steps:

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models to display a list of your model groups.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the Model Groups list, select the name of the Model Group you want to edit.

6. In the model group page, choose the Tags tab.

7. Choose Add/Edit tags.

8. Above + Add new tag, enter your new key in the blank Key field.

9. (Optional) Enter your new value in the blank Value field.

10. Choose Confirm changes.

11. Confirm your new tag appears in the Tags section of the Information page.

Models, Model Versions, and Model Groups 5050

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

To delete a model group tag, complete the following steps:

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models to display a list of your model groups.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the Model Groups list, select the name of the Model Group you want to edit.

6. In the model group page, choose the Tags tab.

7. Choose Add/Edit tags.

8. Choose the Trash icon next to the key-value pair you want to remove.

9. Choose Confirm changes.

To edit a model group tag, complete the following steps:

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models to display a list of your model groups.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the Model Groups list, select the name of the Model Group you want to edit.

6. In the model group page, choose the Tags tab.

7. Choose Add/Edit tags.

8. Enter a new value in the Value field of the key-pair you want to edit.

9. Choose Confirm changes.

Studio Classic

To view a model group tag, complete the following steps:

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

Models, Model Versions, and Model Groups 5051

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the Model Groups list, select the name of the Model Group you want to edit.

5. Choose Information.

6. View your tags in the Tags section of the Information page.

To add a model group tag, complete the following steps:

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Amazon SageMaker
domain overview.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the Model Groups list, select the name of the Model Group you want to edit.

5. Choose Information.

6. If you don't have any tags, choose Add tags.

7. If you have pre-existing tags, choose Manage tags in the Tags section. A list of the model
group's tags appears as key-value pairs.

8. Above Add new tag, enter your new key in the blank Key field.

9. (Optional) Enter your new value in the blank Value field.

10. Choose Confirm changes.

11. Confirm your new tag appears in the Tags section of the Information page.

To delete a model group tag, complete the following steps:

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Amazon SageMaker
domain overview.

Models, Model Versions, and Model Groups 5052

Amazon SageMaker Developer Guide

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the Model Groups list, select the name of the Model Group you want to edit.

5. Choose Information.

6. In the Tags section, choose Manage tags. A list of the model group's tags appears as key-
value pairs.

7. Choose the Trash icon to the right of the tag you want to remove.

8. Choose Confirm changes.

9. Confirm your removed tag does not appear in the Tags section of the Information page.

To edit a model group tag, complete the following steps:

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Amazon SageMaker
domain overview.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the Model Groups list, select the name of the Model Group you want to edit.

5. Choose Information.

6. In the Tags section, choose Manage tags. A list of the model group's tags appears as key-
value pairs.

7. Edit any key or value.

8. Choose Confirm changes.

9. Confirm your tag contains your edits in the Tags section of the Information page.

Manage model version tags

To manage model version tags in the Amazon SageMaker Studio console, complete the following
steps based on whether you use Studio or Studio Classic.

Models, Model Versions, and Model Groups 5053

Amazon SageMaker Developer Guide

Studio

To add a model version tag, complete the following steps:

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models from the menu.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. Select the name of the model group containing the model version to update.

6. In the list of model versions, select the model version to update.

7. Under the Actions dropdown menu, choose Edit.

8. If you are adding your first tag, enter your new key-value pair in the blank Key and Value
fields.

9. (Optional) To add another custom metadata key-value pair, choose Add New and enter
your new key-value pair in the blank Name and Value fields.

10. Choose Save changes.

To delete a model version tag, complete the following steps:

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models from the menu.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. Select the name of the model group containing the model version to update.

6. In the list of model versions, select the model version to update.

7. Under the Actions dropdown menu, choose Edit.

8. Choose the Trash icon to the right of the tag that you want to remove.

9. Choose Confirm changes.

Models, Model Versions, and Model Groups 5054

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

To edit a model version tag, complete the following steps:

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models from the menu.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. Select the name of the model group containing the model version to update.

6. In the list of model versions, select the model version to update.

7. Under the Actions dropdown menu, choose Edit.

8. Edit any key or value.

9. Choose Confirm changes.

Studio Classic

To add a model version tag, complete the following steps:

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the model groups list, select the name of the Model Group you want to view. A new
tab opens with a list of the model versions in the Model Group.

5. In the list of model versions, select the name of the model version you want to update.

6. Under the Actions dropdown menu, choose Edit.

7. If you are adding your first tag, enter your new key-value pair in the blank Key and Value
fields.

8. (Optional) To add another custom metadata key-value pair, choose Add New and enter
your new key-value pair in the blank Name and Value fields.

9. Choose Save changes.

Models, Model Versions, and Model Groups 5055

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

10. Confirm your new tag appears in the Tags section of the Information page.

To delete a model version tag, complete the following steps:

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the model groups list, select the name of the Model Group you want to view. A new
tab opens with a list of the model versions in the Model Group.

5. In the list of model versions, select the name of the model version you want to update.

6. Under the Actions dropdown menu, choose Edit.

7. Choose the Trash icon to the right of the tag that you want to remove.

8. Choose Confirm changes.

9. Confirm your removed tag does not appear in the Tags section of the Information page.

To edit a model version tag, complete the following steps:

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the model groups list, select the name of the Model Group that you want to view. A
new tab opens with a list of the model versions in the Model Group.

5. In the list of model versions, select the name of the model version you want to update.

6. Under the Actions dropdown menu, choose Edit.

7. Edit any key or value.

8. Choose Confirm changes.

9. Confirm your tag contains your edits in the Tags section of the Information page.

Models, Model Versions, and Model Groups 5056

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

Share Models with SageMaker Canvas Users

Note

You can only share models with SageMaker Canvas in the Amazon SageMaker Studio
Classic console.

You might have a model registered in your Model Registry that you want to share with a user in
SageMaker Canvas. You can share a model that’s been trained outside of SageMaker as long as
it’s registered in your Model Registry. With this functionality, SageMaker Canvas users can import
models that you’ve trained and generate predictions with them. For more information about how
to share a model with a SageMaker Canvas user, see Bring your own model to SageMaker Canvas.

Delete a Model Version

This procedure demonstrates how to delete a model version in the Amazon SageMaker Studio
console.

Delete a Model Version (console)

To delete a model version in the Amazon SageMaker Studio console, complete the following steps
based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models to display a list of your model groups.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the model groups list, choose the angle bracket to the left of the model group that
you want to view.

6. A list of the model versions in the model group appears. If you don't see the model version
that you want to delete, choose View all.

7. Select the check boxes next to the model versions that you want to delete.

Models, Model Versions, and Model Groups 5057

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

8. Choose the vertical ellipsis above the top right corner of the table, and choose Delete (or
Delete model version if you are in the model group details page).

9. In the Delete model version dialog box, choose Yes, delete the model version.

10. Choose Delete.

11. Confirm that your deleted model versions no longer appear in the model group.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry. A list of your Model Groups appears.

4. From the model groups list, select the name of the Model Group of the model version that
you want to delete.

5. From the list of model versions, select the name of the model version that you want to
delete.

6. Choose the Actions dropdown menu, and choose Remove.

7. In the confirmation dialog box, enter REMOVE.

8. Choose Remove.

9. Confirm the model version you removed does not appear in the list of the model group’s
model versions.

Update the Approval Status of a Model

After you create a model version, you typically want to evaluate its performance before you deploy
it to a production endpoint. If it performs to your requirements, you can update the approval
status of the model version to Approved. Setting the status to Approved can initiate CI/CD
deployment for the model. If the model version does not perform to your requirements, you can
update the approval status to Rejected.

Models, Model Versions, and Model Groups 5058

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

You can manually update the approval status of a model version after you register it, or you
can create a condition step to evaluate the model when you create a SageMaker pipeline. For
information about creating a condition step in a SageMaker pipeline, see Pipeline Steps.

When you use one of the SageMaker provided project templates and the approval status of a
model version changes, the following action occurs. Only valid transitions are shown.

• PendingManualApproval to Approved – initiates CI/CD deployment for the approved model
version

• PendingManualApproval to Rejected – No action

• Rejected to Approved – initiates CI/CD deployment for the approved model version

• Approved to Rejected – initiates CI/CD to deploy the latest model version with an Approved
status

You can update the approval status of a model version by using the AWS SDK for Python (Boto3)
or by using the Amazon SageMaker Studio console. You can also update the approval status of a
model version as part of a condition step in a SageMaker pipeline. For information about using a
model approval step in a SageMaker pipeline, see SageMaker Pipelines Overview.

Update the Approval Status of a Model (Boto3)

When you created the model version in Register a Model Version, you set the
ModelApprovalStatus to PendingManualApproval. You update the approval status for
the model by calling update_model_package. Note that you can automate this process by
writing code that, for example, sets the approval status of a model depending on the result of an
evaluation of some measure of the model's performance. You can also create a step in a pipeline
that automatically deploys a new model version when it is approved. The following code snippet
shows how to manually change the approval status to Approved.

model_package_update_input_dict = {
 "ModelPackageArn" : model_package_arn,
 "ModelApprovalStatus" : "Approved"
}
model_package_update_response =
 sm_client.update_model_package(**model_package_update_input_dict)

Models, Model Versions, and Model Groups 5059

Amazon SageMaker Developer Guide

Update the Approval Status of a Model (console)

To manually change the approval status in the Amazon SageMaker Studio console, complete the
following steps based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose the Models to display a list of your model groups.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the model groups list, choose the angle bracket to the left of the model group that
you want to view.

6. A list of the model versions in the model group appears. If you don't see the model version
that you want to delete, choose View all to display the complete list of model versions in
the model group details page.

7. Select the name of the model version that you want to update.

8. Choose the vertical ellipsis at the top right, choose Update status, and then the final model
status.

9. In the Update model status dialog box, insert an optional comment and choose Save and
update.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the model groups list, select the name of the Model Group that you want to view. A
new tab opens with a list of the model versions in the Model Group.

Models, Model Versions, and Model Groups 5060

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

5. In the list of model versions, select the name of the model version that you want to update.

6. Under the Actions dropdown menu, you can choose one of two possible menu options to
update the model version status.

• Using the Update Status option

1. Under the Actions dropdown menu, choose the Update Status dropdown menu, and
choose the new model version status.

2. (Optional) In the Comment field, add additional details.

3. Choose Save and Update.

• Using the Edit option

1. Under the Actions dropdown menu, choose Edit.

2. (Optional) In the Comment field, add additional details.

3. Choose Save changes.

7. Confirm the model version status is updated to the correct value in the model version page.

Deploy a Model from the Registry

After you register a model version and approve it for deployment, deploy it to a SageMaker
endpoint for real-time inference. You can deploy your model by using the SageMaker SDK or the
AWS SDK for Python (Boto3) (Boto3).

When you create a machine learning operations (MLOps) project and choose an MLOps project
template that includes model deployment, approved model versions in the Model Registry are
automatically deployed to production. For information about using SageMaker MLOps projects, see
Automate MLOps with SageMaker Projects.

You can also enable an AWS account to deploy model versions that were created in a different
account by adding a cross-account resource policy. For example, one team in your organization
might be responsible for training models, and a different team is responsible for deploying and
updating models.

Topics

• Deploy a Model from the Registry (SageMaker SDK)

• Deploy a Model from the Registry (Boto3)

• Deploy a Model Version from a Different Account

Models, Model Versions, and Model Groups 5061

Amazon SageMaker Developer Guide

Deploy a Model from the Registry (SageMaker SDK)

To deploy a model version using the Amazon SageMaker Python SDK use the following code
snippet:

from sagemaker import ModelPackage
from time import gmtime, strftime

model_package_arn = 'arn:aws:sagemaker:us-east-2:12345678901:model-package/modeltest/1'
model = ModelPackage(role=role,
 model_package_arn=model_package_arn,
 sagemaker_session=sagemaker_session)
model.deploy(initial_instance_count=1, instance_type='ml.m5.xlarge')

Deploy a Model from the Registry (Boto3)

To deploy a model version using the AWS SDK for Python (Boto3), complete the following steps:

1. The following code snippet assumes you already created the SageMaker Boto3 client
sm_client and a model version whose ARN is stored in the variable model_version_arn.

Create a model object from the model version by calling the create_model API operation. Pass
the Amazon Resource Name (ARN) of the model version as part of the Containers for the
model object:

model_name = 'DEMO-modelregistry-model-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())
print("Model name : {}".format(model_name))
container_list = [{'ModelPackageName': model_version_arn}]

create_model_response = sm_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = role,
 Containers = container_list
)
print("Model arn : {}".format(create_model_response["ModelArn"]))

2. Create an endpoint configuration by calling create_endpoint_config. The endpoint
configuration specifies the number and type of Amazon EC2 instances to use for the endpoint.

endpoint_config_name = 'DEMO-modelregistry-EndpointConfig-' + strftime("%Y-%m-%d-
%H-%M-%S", gmtime())
print(endpoint_config_name)

Models, Model Versions, and Model Groups 5062

https://sagemaker.readthedocs.io
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model

Amazon SageMaker Developer Guide

create_endpoint_config_response = sm_client.create_endpoint_config(
 EndpointConfigName = endpoint_config_name,
 ProductionVariants=[{
 'InstanceType':'ml.m4.xlarge',
 'InitialVariantWeight':1,
 'InitialInstanceCount':1,
 'ModelName':model_name,
 'VariantName':'AllTraffic'}])

3. Create the endpoint by calling create_endpoint.

endpoint_name = 'DEMO-modelregistry-endpoint-' + strftime("%Y-%m-%d-%H-%M-%S",
 gmtime())
print("EndpointName={}".format(endpoint_name))

create_endpoint_response = sm_client.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)
print(create_endpoint_response['EndpointArn'])

Deploy a Model Version from a Different Account

You can permit an AWS account to deploy model versions that were created in a different account
by adding a cross-account resource policy. For example, one team in your organization might be
responsible for training models, and a different team is responsible for deploying and updating
models. When you create these resource policies, you apply the policy to the specific resource to
which you want to grant access. For more information about cross-account resource policies in
AWS, see Cross-account policy evaluation logic in the AWS Identity and Access Management User
Guide.

Note

You must use a KMS key to encrypt the output data config action during training for cross-
account model deployment.

To enable cross-account model deployment in SageMaker, you have to provide a cross-account
resource policy for the Model Group that contains the model versions you want to deploy, the
Amazon ECR repository where the inference image for the Model Group resides, and the Amazon
S3 bucket where the model versions are stored.

Models, Model Versions, and Model Groups 5063

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputDataConfig.html

Amazon SageMaker Developer Guide

To be able to deploy a model that was created in a different account, you must have a role that has
access to SageMaker actions, such as a role with the AmazonSageMakerFullAccess managed
policy. For information about SageMaker managed policies, see AWS Managed Policies for Amazon
SageMaker.

The following example creates cross-account policies for all three of these resources, and applies
the policies to the resources. The example also assumes that you previously defined the following
variables:

• bucket – The Amazon S3 bucket where the model versions are stored.

• kms_key_id – The KMS key used to encrypt the training output.

• sm_client – A SageMaker Boto3 client.

• model_package_group_name – The Model Group to which you want to grant cross-account
access.

• model_package_group_arn – The Model Group ARN to which you want to grant cross-account
access.

import json

The cross-account id to grant access to
cross_account_id = "123456789012"

Create the policy for access to the ECR repository
ecr_repository_policy = {
 'Version': '2012-10-17',
 'Statement': [{
 'Sid': 'AddPerm',
 'Effect': 'Allow',
 'Principal': {
 'AWS': f'arn:aws:iam::{cross_account_id}:root'
 },
 'Action': ['ecr:*']
 }]
}

Convert the ECR policy from JSON dict to string
ecr_repository_policy = json.dumps(ecr_repository_policy)

Set the new ECR policy

Models, Model Versions, and Model Groups 5064

Amazon SageMaker Developer Guide

ecr = boto3.client('ecr')
response = ecr.set_repository_policy(
 registryId = account,
 repositoryName = 'decision-trees-sample',
 policyText = ecr_repository_policy
)

Create a policy for accessing the S3 bucket
bucket_policy = {
 'Version': '2012-10-17',
 'Statement': [{
 'Sid': 'AddPerm',
 'Effect': 'Allow',
 'Principal': {
 'AWS': f'arn:aws:iam::{cross_account_id}:root'
 },
 'Action': 's3:*',
 'Resource': f'arn:aws:s3:::{bucket}/*'
 }]
}

Convert the policy from JSON dict to string
bucket_policy = json.dumps(bucket_policy)

Set the new policy
s3 = boto3.client('s3')
response = s3.put_bucket_policy(
 Bucket = bucket,
 Policy = bucket_policy)

Create the KMS grant for encryption in the source account to the
Model Registry account Model Group
client = boto3.client('kms')

response = client.create_grant(
 GranteePrincipal=cross_account_id,
 KeyId=kms_key_id
 Operations=[
 'Decrypt',
 'GenerateDataKey',
],
)

3. Create a policy for access to the Model Group.

Models, Model Versions, and Model Groups 5065

Amazon SageMaker Developer Guide

model_package_group_policy = {
 'Version': '2012-10-17',
 'Statement': [{
 'Sid': 'AddPermModelPackageGroup',
 'Effect': 'Allow',
 'Principal': {
 'AWS': f'arn:aws:iam::{cross_account_id}:root'
 },
 'Action': ['sagemaker:DescribeModelPackageGroup'],
 'Resource': f'arn:aws:sagemaker:{region}:{account}:model-package-group/
{model_package_group_name}'
 },{
 'Sid': 'AddPermModelPackageVersion',
 'Effect': 'Allow',
 'Principal': {
 'AWS': f'arn:aws:iam::{cross_account_id}:root'
 },
 'Action': ["sagemaker:DescribeModelPackage",
 "sagemaker:ListModelPackages",
 "sagemaker:UpdateModelPackage",
 "sagemaker:CreateModel"],
 'Resource': f'arn:aws:sagemaker:{region}:{account}:model-package/
{model_package_group_name}/*'
 }]
}

Convert the policy from JSON dict to string
model_package_group_policy = json.dumps(model_package_group_policy)

Set the policy to the Model Group
response = sm_client.put_model_package_group_policy(
 ModelPackageGroupName = model_package_group_name,
 ResourcePolicy = model_package_group_policy)

print('ModelPackageGroupArn :
 {}'.format(create_model_package_group_response['ModelPackageGroupArn']))
print("First Versioned ModelPackageArn: " + model_package_arn)
print("Second Versioned ModelPackageArn: " + model_package_arn2)

print("Success! You are all set to proceed for cross-account deployment.")

Models, Model Versions, and Model Groups 5066

Amazon SageMaker Developer Guide

View the Deployment History of a Model

To view the deployments for a model version in the Amazon SageMaker Studio console, complete
the following steps based on whether you use Studio or Studio Classic.

Studio

View the deployment history for a model version

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models to display a list of your model groups.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. From the model groups list, choose the angle bracket to the left of the model group that
you want to view.

6. A list of the model versions in the model group appears. If you don't see the model version
that you want to delete, choose View all.

7. Select the name of the model version that you want to view.

8. Choose the Activity tab. Deployments for the model version appear as events in the
activity list with an Event type of ModelDeployment.

Studio Classic

View the deployment history for a model version

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. From the model groups list, select the name of the Model Group that you want to view.

5. A new tab appears with a list of the model versions in the Model Group.

Models, Model Versions, and Model Groups 5067

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

6. In the list of model versions, select the name of the model version for which you want to
view details.

7. On the model version tab that opens, choose Activity. Deployments for the model version
appear as events in the activity list with an Event type of ModelDeployment.

Model Registry Collections

You can use Collections to group registered models that are related to each other and organize
them in hierarchies to improve model discoverability at scale. With Collections, you can organize
registered models that are associated with one another. For example, you could categorize your
models based on the domain of the problem they solve as Collections titled NLP-models, CV-
models, or Speech-recognition-models. To organize your registered models in a tree structure, you
can nest Collections within each other. Any operations you perform on a Collection, such as create,
read, update, or delete, will not alter your registered models. You can use the Amazon SageMaker
Studio UI or the Python SDK to manage your Collections.

The Collections tab in the Model Registry displays a list of all the Collections in your account. The
following sections describe how you can use options in the Collections tab to do the following:

• Create Collections

• Add Model Groups to a Collection

• Move Model Groups between Collections

• Remove Model Groups or Collections from other Collections

Any operation you perform on your Collections does not affect the integrity of the individual
Model Groups they contain—the underlying Model Group artifacts in Amazon S3 and Amazon ECR
are not modified.

While Collections provide greater flexibility in organizing your models, the internal representation
imposes some constraints on the size of your hierarchy. For a summary of these constraints, see
Constraints.

The following topics show you how to create and work with Collections in the Model Registry.

Topics

• Prerequisites

• Create a Collection

Collections 5068

Amazon SageMaker Developer Guide

• Add Model Groups to a Collection

• Remove Model Groups or Collections from a Collection

• Move a Model Group Between Collections

• View a Model Group's Parent Collection

• Constraints

Prerequisites

Create a custom policy which includes the following required Resource Groups actions:

• resource-groups:CreateGroup

• resource-groups:DeleteGroup

• resource-groups:GetGroupQuery

• resource-groups:ListGroupResources

• resource-groups:Tag

• tag:GetResources

For instructions on how to add an inline policy, see Adding IAM identity permissions (console).
When you choose the policy format, choose the JSON format and add the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "resource-groups:ListGroupResources"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "resource-groups:GetGroupQuery"
],
 "Resource": "arn:aws:resource-groups:*:*:group/*"
 },

Collections 5069

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "resource-groups:CreateGroup",
 "resource-groups:Tag"
],
 "Resource": "arn:aws:resource-groups:*:*:group/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "sagemaker:collection"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "resource-groups:DeleteGroup",
 "Resource": "arn:aws:resource-groups:*:*:group/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/sagemaker:collection": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "tag:GetResources",
 "Resource": "*"
 }
]
}

Create a Collection

You can create a Collection in the SMMonarchlong; console. To create a Collection, complete the
following steps based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models.

3. Choose the Registered models tab, if not selected already.

Collections 5070

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

4. Immediately below the Registered models tab label, choose Collections.

5. (Optional) To create a Collection inside another Collection, navigate to the hierarchy where
you want to add your Collection. Otherwise, your Collection is created at the root level.

6. In the Actions dropdown menu in the top right, choose Create new collection.

7. Enter a name for your Collection in the Name field of the dialog box.

Note

If you plan to create multiple hierarchies in this Collection, keep your Collection
names short. The absolute path, which is a string representing the location of
your Collections from the root level, must be 256 characters or less. For additional
details, see Collection and Model Group tagging.

8. (Optional) To add Model Groups to your Collection, complete the following steps:

a. Choose Select model groups.

b. Select the Model Groups that you want to add. You can select up to 10.

9. Choose Create.

10. Check to make sure your Collection was created in the current hierarchy. If you do not
immediately see your new Collection, choose Refresh.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. Choose the Collections tab.

5. (Optional) To create a Collection inside another Collection, navigate to the hierarchy where
you want to add your Collection. Otherwise, your Collection is created at the root level.

6. In the Actions dropdown menu in the top right, choose Create new collection.

7. Enter a name for your Collection in the Name field of the dialog box.

Collections 5071

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

Note

If you plan to create multiple hierarchies in this Collection, keep your Collection
names short. The absolute path, which is a string representing the location of
your Collections from the root level, must be 256 characters or less. For additional
details, see Collection and Model Group tagging.

8. (Optional) To add Model Groups to your Collection, complete the following steps:

a. Choose Select model groups.

b. Select the Model Groups that you want to add. You can select up to 10.

9. Choose Create.

10. Check to make sure your Collection was created in the current hierarchy. If you do not
immediately see your new Collection, choose Refresh.

Add Model Groups to a Collection

You can add model groups to a Collection in the Amazon SageMaker Studio console. To add Model
Groups to a Collection, complete the following steps based on whether you use Studio or Studio
Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Models, if not selected
already.

5. Select the check box next to the model groups that you want to add. You can select up to
10 Model Groups. If you select more than 10, the UI option to add your Model Groups to a
Collection is inactive.

6. Choose the vertical ellipsis next to Create, and choose Add to collection.

7. Select the radio button for the collection to which you want to add your selected Model
Groups.

Collections 5072

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

8. Choose Add to collection.

9. Check to make sure your Model Groups were added in to the collection. In the Collections
column of the Model Groups you selected, you should see the name of collection to which
you added the Model Groups.

Studio Classic

You can add Model Groups to a Collection from either the Model Groups or Collections tab.

To add one or more Model Groups to a Collection from the Collections tab, complete the
following steps:

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. Choose the Collections tab.

5. Select the Collection to which you want to add Model Groups. If the desired Collection is
not at root level, navigate to the hierarchy where you want to add your Model Groups.

6. In the Actions dropdown menu in the top right, choose Add model groups.

7. Select the Model Groups that you want to add. You can select up to 10 Model Groups. If
you select more than 10, the UI option to add your Model Groups to a Collection is inactive.

8. Choose Add to collection.

9. Check to make sure your Model Groups were added in the current hierarchy. If you do not
immediately see your new Model Groups, choose Refresh.

To add one or more Model Groups to a Collection from the Model Groups tab, complete the
following steps:

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. In the left navigation pane, choose the Home icon (

).

Collections 5073

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

3. Choose Models, and then Model registry.

4. Choose the Model Groups tab.

5. Select the Model Groups that you want to add. You can select up to 10. If you select more
than 10, the UI option to add your Model Groups to a Collection is inactive.

6. In the Actions dropdown menu in the top right, choose Add to collection.

7. In the pop-up dialog, choose the root path location Collections. This link to the root
location appears above the table.

8. Navigate to the hierarchy which contains your destination Collection, or where you want to
create a new Collection to which you add your models.

9. (Optional) To add your Model Groups to an existing Collection, complete the following
steps:

a. Select the destination Collection.

b. Choose Add to collection.

10. (Optional) To add your Model Groups to a new Collection, complete the following steps:

a. Choose New collection.

b. Enter a name for your new Collection.

c. Choose Create.

Remove Model Groups or Collections from a Collection

When you remove Model Groups or Collections from a Collection, you are removing them from
a particular grouping and not from the Model Registry. You can remove Model Groups from a
Collection in the Amazon SageMaker Studio console.

To remove one or more Model Groups or Collections from a Collection, complete the following
steps based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models.

3. Choose the Registered models tab, if not selected already.

Collections 5074

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

4. Immediately below the Registered models tab label, choose Collections.

5. Navigate to the Collection which contains the Model Groups or Collections you want to
remove.

6. Select the Model Groups or Collections that you want to remove. You can select up to 10.
If you select more than 10 Model Groups or Collections, the UI option to remove them is
inactive.

Important

You cannot simultaneously select Model Groups and Collections for removal. To
remove both Model Groups and Collections, first remove Model Groups, and then
remove Collections.

Important

You cannot remove non-empty Collections. To remove a non-empty Collection, first
remove its contents.

7. In the Actions dropdown menu in the top right, choose Remove X items from collection
(where X is the number of Model Groups that you selected).

8. Confirm that you want to remove the selected Model Groups.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. Choose the Collections tab.

5. Navigate to the Collection which contains the Model Groups or Collections you want to
remove.

Collections 5075

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

6. Select the Model Groups or Collections that you want to remove. You can select up to 10.
If you select more than 10 Model Groups or Collections, the UI option to remove them is
inactive.

Important

You cannot simultaneously select Model Groups and Collections for removal. To
remove both Model Groups and Collections, first remove Model Groups, and then
remove Collections.

Important

You cannot remove non-empty Collections. To remove a non-empty Collection, first
remove its contents.

7. In the Actions dropdown menu in the top right, choose Remove X items from collection
(where X is the number of Model Groups you selected).

8. Confirm that you want to remove the selected Model Groups.

Move a Model Group Between Collections

You can move one or more Model Groups from one Collection to another in the Amazon
SageMaker Studio console.

To move Model Groups, complete the following steps based on whether you use Studio or Studio
Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Collections.

5. Navigate to the Collection which contains the Model Groups that you want to move.

Collections 5076

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html

Amazon SageMaker Developer Guide

6. Select the Model Groups that you want to move. You can select up to 10. If you select more
than 10, the UI option to move your Model Groups is inactive.

7. In the Actions dropdown menu in the top right, choose Move to.

8. In the dialog box, choose the root path location Collections. This link to the root
location appears above the table.

9. Navigate to the hierarchy which contains your destination Collection.

10. Select your destination Collection in the table.

11. Choose Move here.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. Choose the Collections tab.

5. Navigate to the Collection which contains the Model Groups that you want to move.

6. Select the Model Groups that you want to move. You can select up to 10. If you select more
than 10, the UI option to move your Model Groups is inactive.

7. In the Actions dropdown menu in the top right, choose Move to.

8. In the dialog box, choose the root path location Collections. This link to the root
location appears above the table.

9. Navigate to the hierarchy which contains your destination Collection.

10. Select your destination Collection in the table.

11. Choose Move here.

View a Model Group's Parent Collection

You can view the Collections which contain a particular Model Group in the Amazon SageMaker
Studio console.

Collections 5077

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

To view the Collections which contain a particular Model Group, complete the following steps
based on whether you use Studio or Studio Classic.

Studio

1. Open the SageMaker Studio console by following the instructions in Launch Amazon
SageMaker Studio.

2. In the left navigation pane, choose Models.

3. Choose the Registered models tab, if not selected already.

4. Immediately below the Registered models tab label, choose Model Groups, if not selected
already.

5. View the Collection column for your Model Group, which displays the name of the
Collection which contains this Model Group. If multiple Collections contain this Model
Group, choose the Collection column entry to display a pop-up listing the Collections
which contain this Model Group.

Studio Classic

1. Sign in to Amazon SageMaker Studio Classic. For more information, see Launch Amazon
SageMaker Studio Classic.

2. In the left navigation pane, choose the Home icon (

).

3. Choose Models, and then Model registry.

4. Choose the Model Groups tab.

5. Find your Model Group in the table.

6. View the Collection column for your Model Group, which displays the name of the
Collection which contains this Model Group. If multiple Collections contain this Model
Group, choose the Collection column entry to display a pop-up listing the Collections
which contain this Model Group.

Collections 5078

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-launch.html

Amazon SageMaker Developer Guide

Constraints

While using Collections, you may face issues related to tag length constraints or rate limits for
Collection operations. Review the following list of caveats so you can avoid issues related to these
limitations when you work with your Collections.

VPC constraints

• Collections are not supported in VPC mode.

Collection operation constraints

• You can add a maximum of 10 Model Groups to a Collection at a time.

• You can remove a maximum of 10 Model Groups from a Collection at a time.

• You can move a maximum of 10 Model Groups from one Collection to another at a time.

• You cannot delete a Collection unless it is empty.

• A Model Group can belong to multiple Collections, but a Collection can only belong to one
Collection.

Tag-related constraints

• A Model Group can belong to a maximum of 48 Collections. For more details, see the following
section Collection and Model Group tagging.

• A Collection’s absolute path can be a maximum of 256 characters long. Since Collection names
are user-specified, you can control the path length. For more details, see the following section
Collection and Model Group tagging.

Collection and Model Group tagging

The SageMaker Model Registry uses tag rules and tags to internally represent your Collection
groupings and hierarchy. You can access these tag elements in the AWS Resource Access Manager,
the SageMaker SDK, and the AWS CLI, but it is important that you do not alter or delete them.

Important

Do not delete or alter any tag rules or tags which belong to your Collections or Model
Groups. Doing so prevents you from performing Collection operations!

Collections 5079

Amazon SageMaker Developer Guide

A tag rule is a key-value pair that SageMaker uses to identify a Collection’s location in the
hierarchy. In short, the key is the key of the parent Collection, and the value is the path of the
Collection within the hierarchy. SageMaker allows tag values to be 256 characters or less, so if you
have multiple nested hierarchies you are advised to keep your Collection names short.

Important

Keep your Collection names short. The absolute path to any Collection must be 256
characters long or less.

Model Groups, on the other hand, do not have tag rules but use tags. A Model Group’s tags include
the tag rules for all the Collections which contain the Model Group. For example, if four Collections
contain model-group-1, model-group-1 has four tags. SageMaker allows a single AWS resource
to have a maximum of 50 tags. Since two are pre-allocated for general purposes, a Model Group
can have a maximum of 48 tags. In conclusion, a Model Group can belong to a maximum of 48
Collections.

Amazon SageMaker Model Registry FAQ

Use the following FAQ items to find answers to commonly asked questions about SageMaker
Model Registry.

Q. How should I organize my models into Model Groups and model packages in the SageMaker
Model Registry?

A model package is the actual model that is registered into the Model Registry as a versioned
entity. Please note there are two ways you can use model packages in SageMaker. One is with
SageMaker Marketplace — these model packages are not versioned. The other is with the
SageMaker Model Registry, in which the model package must be versioned. The Model Registry
receives every new model that you retrain, gives it a version, and assigns it to a Model Group
inside the Model Registry. The following image shows an example of a Model Group with 25
consecutively-versioned models.

Model Registry FAQ 5080

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html

Amazon SageMaker Developer Guide

Q. How does the SageMaker Model Registry differ from Amazon Elastic Container Registry
(Amazon ECR)?

The SageMaker Model Registry is a metadata store for your machine learning models. Amazon
Elastic Container Registry is a repository that stores all of your containers. Within the Model
Registry, models are versioned and registered as model packages within Model Groups. Each model
package contains an Amazon S3 URI to the model files associated with the trained model and an
Amazon ECR URI that points to the container used while serving the model.

Q. How do I tag model packages in the SageMaker Model Registry?

Model packages in the SageMaker Model Registry do not support tags—these are versioned model
packages. Instead, you can add key value pairs using CustomerMetadataProperties. Model
package groups in the model registry support tagging.

Q. How should I assign or tag model package groups in the SageMaker Model Registry to a
project?

To assign or tag model groups to a project, complete the following steps:

Model Registry FAQ 5081

Amazon SageMaker Developer Guide

1. Get tags with key sagemaker:project-name and sagemaker:project-id for the
SageMaker project using the ListTags API.

2. To apply the tags to your model package group, choose one of the following methods:

• If you create a new model package group and want to add tags, pass your tags from Step 1
to the CreateModelPackageGroup API.

• If you want to add tags to an existing model package group, use the AddTags APIs.

• If you create your model package group through SageMaker Pipelines, use the
pipeline.create() or pipeline.upsert() methods, or pass your tags to the
RegisterModel step.

Model Deployment in SageMaker

Once you train and approve a model for production, use SageMaker to deploy your model to an
endpoint for real-time inference. SageMaker provides multiple inference options so that you can
pick the option that best suits your workload. You also configure your endpoint by choosing the
instance type and number of instances you need for optimal performance. For details about model
deployment, see Deploy models for inference.

After you deploy your models to production, you might want to explore ways to further optimize
model performance while maintaining availability of your current models. For example, you can set
up a shadow test to try out a different model or model serving infrastructure before committing
to the change. SageMaker deploys the new model, container, or instance in shadow mode and
routes to it a copy of the inference requests in real time within the same endpoint. You can log the
responses of the shadow variant for comparison. For details about shadow testing, see Shadow
tests. If you decide to go ahead and change your model, deployment guardrails help you control
the switch from the current model to a new one. You can select such methods as blue/green or
canary testing of the traffic shifting process to maintain granular control during the update. For
information about deployment guardrails, see Update models in production.

SageMaker Model Monitor

Once a model is in production, you can monitor its performance in real time with Amazon
SageMaker Model Monitor. Model Monitor helps you maintain model quality by detecting
violations of user-defined thresholds for data quality, model quality, bias drift and feature

Model Deployment 5082

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTags.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackageGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-register-model

Amazon SageMaker Developer Guide

attribution drift. In addition, you can configure alerts so you can troubleshoot violations as they
arise and promptly initiate retraining. Model Monitor is integrated with SageMaker Clarify to
improve visibility into potential bias.

To learn about SageMaker Model Monitor, see Monitor data and model quality.

Automate MLOps with SageMaker Projects

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
Studio Classic application. For information about using the updated Studio experience, see
Amazon SageMaker Studio.

Create end-to-end ML solutions with CI/CD by using SageMaker projects.

Use SageMaker projects to create an MLOps solution to orchestrate and manage:

• Building custom images for processing, training, and inference

• Data preparation and feature engineering

• Training models

• Evaluating models

• Deploying models

• Monitoring and updating models

Topics

• What is a SageMaker Project?

• SageMaker Studio Permissions Required to Use Projects

• Create an MLOps Project using Amazon SageMaker Studio Classic

• MLOps Project Templates

• View Project Resources

• Update an MLOps Project in Amazon SageMaker Studio Classic

Projects 5083

Amazon SageMaker Developer Guide

• Delete an MLOps Project using Amazon SageMaker Studio Classic

• SageMaker MLOps Project Walkthrough

• SageMaker MLOps Project Walkthrough Using Third-party Git Repos

What is a SageMaker Project?

SageMaker Projects help organizations set up and standardize developer environments for
data scientists and CI/CD systems for MLOps engineers. Projects also help organizations set up
dependency management, code repository management, build reproducibility, and artifact sharing.

You can provision SageMaker Projects from the AWS Service Catalog using custom or SageMaker-
provided templates. For information about the AWS Service Catalog, see What Is AWS Service
Catalog. With SageMaker Projects, MLOps engineers and organization admins can define their own
templates or use SageMaker-provided templates. The SageMaker-provided templates bootstrap
the ML workflow with source version control, automated ML pipelines, and a set of code to quickly
start iterating over ML use cases.

When Should You Use a SageMaker Project?

While notebooks are helpful for model building and experimentation, a team of data scientists
and ML engineers sharing code needs a more scalable way to maintain code consistency and strict
version control.

Every organization has its own set of standards and practices that provide security and governance
for its AWS environment. SageMaker provides a set of first-party templates for organizations that
want to quickly get started with ML workflows and CI/CD. The templates include projects that use
AWS-native services for CI/CD, such as AWS CodeBuild, AWS CodePipeline, and AWS CodeCommit.
The templates also offer the option to create projects that use third-party tools, such as Jenkins
and GitHub. For a list of the project templates that SageMaker provides, see Use SageMaker-
Provided Project Templates.

Organizations often need tight control over the MLOps resources that they provision and manage.
Such responsibility assumes certain tasks, including configuring IAM roles and policies, enforcing
resource tags, enforcing encryption, and decoupling resources across multiple accounts. SageMaker
Projects can support all these tasks through custom template offerings where organizations use
AWS CloudFormation templates to define the resources needed for an ML workflow. Data Scientists
can choose a template to bootstrap and pre-configure their ML workflow. These custom templates
are created as Service Catalog products and you can provision them in the Studio Classic UI under

SageMaker Projects 5084

https://docs.aws.amazon.com/servicecatalog/latest/dg/what-is-service-catalog.html
https://docs.aws.amazon.com/servicecatalog/latest/dg/what-is-service-catalog.html

Amazon SageMaker Developer Guide

Organization Templates. The Service Catalog is a service that helps organizations create and
manage catalogs of products that are approved for use on AWS. For more information about
creating custom templates, see Build Custom SageMaker Project Templates – Best Practices.

SageMaker Projects can help you manage your Git repositories so that you can collaborate more
efficiently across teams, ensure code consistency, and support CI/CD. SageMaker Projects can help
you with the following tasks:

• Organize all entities of the ML lifecycle under one project.

• Establish a single-click approach to set up standard ML infrastructure for model training and
deployment that incorporates best practices.

• Create and share templates for ML infrastructure to serve multiple use cases.

• Leverage SageMaker-provided pre-built templates to quickly start focusing on model building, or
create custom templates with organization-specific resources and guidelines.

• Integrate with tools of your choice by extending the project templates. For an example, see
Create a SageMaker Project to integrate with GitLab and GitLab Pipelines.

• Organize all entities of the ML lifecycle under one project.

What is in a SageMaker Project?

Customers have the flexibility to set up their projects with the resources that best serve their use
case. The example below showcases the MLOps setup for an ML workflow, including model training
and deployment.

SageMaker Projects 5085

https://aws.amazon.com/blogs/machine-learning/build-custom-sagemaker-project-templates-best-practices/
https://aws.amazon.com/blogs/machine-learning/build-mlops-workflows-with-amazon-sagemaker-projects-gitlab-and-gitlab-pipelines/

Amazon SageMaker Developer Guide

A typical project with a SageMaker-provided template might include the following:

• One or more repositories with sample code to build and deploy ML solutions. These are working
examples that you can clone locally and modify for your needs. You own this code and can take
advantage of the version-controlled repositories for your tasks.

• A SageMaker pipeline that defines steps for data preparation, training, model evaluation, and
model deployment, as shown in the following diagram.

• A CodePipeline or Jenkins pipeline that runs your SageMaker pipeline every time you check in a
new version of the code. For information about CodePipeline, see What is AWS CodePipeline. For
information about Jenkins, see Jenkins User Documentation.

• A model group that contains model versions. Every time you approve the resulting model version
from a SageMaker pipeline run, you can deploy it to a SageMaker endpoint.

Each SageMaker project has a unique name and ID that are applied as tags to all of the SageMaker
and AWS resources created in the project. With the name and ID, you can view all of the entities
associated with your project. These include:

• Pipelines

• Registered models

• Deployed models (endpoints)

SageMaker Projects 5086

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://www.jenkins.io/doc/

Amazon SageMaker Developer Guide

• Datasets

• Service Catalog products

• CodePipeline and Jenkins pipelines

• CodeCommit and third-party Git repositories

Do I Need to Create a Project to Use SageMaker Pipelines?

No. SageMaker pipelines are standalone entities just like training jobs, processing jobs, and other
SageMaker jobs. You can create, update, and run pipelines directly within a notebook by using the
SageMaker Python SDK without using a SageMaker project.

Projects provide an additional layer to help you organize your code and adopt operational best
practices that you need for a production-quality system.

SageMaker Studio Permissions Required to Use Projects

Users can view SageMaker provided project templates and create projects with those templates
when you grant Projects permissions for users. You can grant these permissions when you onboard
or update Amazon SageMaker Studio Classic. There are two permissions to grant.

1. Grant Projects permissions for the Studio Classic administrator to permit the Studio Classic
administrator to view the SageMaker-provided templates in the Service Catalog console. The
administrator can see what other Studio Classic users create if you grant them permission to use
SageMaker projects. The administrator can also view the AWS CloudFormation template that the
SageMaker-provided project templates define in the Service Catalog console. For information
about using the Service Catalog console, see What Is Service Catalog in the Service Catalog User
Guide.

2. Allow Studio Classic users who are configured to use the same execution role as the domain
to create projects. This grants Studio Classic users permission to use the SageMaker-provided
project templates to create a project from within Studio Classic.

Important

Do not manually create your roles. Always create roles through Studio Classic Settings
using the steps described in the following procedure.

SageMaker Studio Permissions Required to Use Projects 5087

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html

Amazon SageMaker Developer Guide

For users who use any role other than the domain's execution role to view and use SageMaker-
provided project templates, you need to grant Projects permissions to the individual user profiles.

The following procedures show how to grant Projects permissions after you onboard to Studio
Classic. For more information about onboarding to Studio Classic, see Amazon SageMaker domain
overview.

To grant Projects permissions for the administrator and domain execution role users

1. Open the SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Choose Create domain.

5. If you choose Quick setup to set up your SageMaker Domain, you have permissions to use
project templates by default.

6. If you choose Standard setup to set up your SageMaker Domain, make sure you turn on the
following options when you configure Studio Classic settings:

• Enable Amazon SageMaker project templates and Amazon SageMaker JumpStart for this
account

• Enable Amazon SageMaker project templates and Amazon SageMaker JumpStart for
Studio Classic users

7. To confirm that your SageMaker Domain has active project template permissions:

a. Open the SageMaker console.

b. On the left navigation pane, choose Admin configurations.

c. Under Admin configurations, choose domains.

d. Select your domain.

e. Choose the Domain Settings tab.

f. Under SageMaker Projects and JumpStart, make sure the following options are turned
on:

• Enable Amazon SageMaker project templates and Amazon SageMaker JumpStart for
this account

• Enable Amazon SageMaker project templates and Amazon SageMaker JumpStart for
Studio Classic users

SageMaker Studio Permissions Required to Use Projects 5088

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

8. To view a list of your roles:

a. Open the SageMaker console.

b. On the left navigation pane, choose Admin configurations.

c. Under Admin configurations, choose domains.

d. Select your domain.

e. Choose the Domain Settings tab.

f. A list of your roles appears in the Apps card under the Studio tab.

Important

As of July 25, we require additional roles to use project templates. Here is the
complete list of roles you should see under Projects:
AmazonSageMakerServiceCatalogProductsLaunchRole
AmazonSageMakerServiceCatalogProductsUseRole
AmazonSageMakerServiceCatalogProductsApiGatewayRole
AmazonSageMakerServiceCatalogProductsCloudformationRole
AmazonSageMakerServiceCatalogProductsCodeBuildRole
AmazonSageMakerServiceCatalogProductsCodePipelineRole
AmazonSageMakerServiceCatalogProductsEventsRole
AmazonSageMakerServiceCatalogProductsFirehoseRole
AmazonSageMakerServiceCatalogProductsGlueRole
AmazonSageMakerServiceCatalogProductsLambdaRole
AmazonSageMakerServiceCatalogProductsExecutionRole
For descriptions of these roles, see AWS Managed Policies for SageMaker projects
and JumpStart.

Create an MLOps Project using Amazon SageMaker Studio Classic

This procedure demonstrates how to create an MLOps project using Amazon SageMaker Studio
Classic.

Prerequisites

• An IAM account or IAM Identity Center to sign in to Studio Classic. For information, see Amazon
SageMaker domain overview.

Create an MLOps Project 5089

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

• Permission to use SageMaker-provided project templates. For information, see SageMaker Studio
Permissions Required to Use Projects.

• Basic familiarity with the Studio Classic user interface. For information, see Amazon SageMaker
Studio Classic UI Overview.

To create a project in Studio Classic

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Deployments from the menu, and then select Projects.

4. Choose Create project.

The Create project tab opens displaying a list of available templates.

5. If not selected already, choose SageMaker templates. For more information about project
templates, see MLOps Project Templates.

6. Choose the template Model building, training, and deployment.

7. Choose Select project template.

The Create project tab changes to display Project details.

8. Enter the following information:

• For Project details, enter a name and description for your project.

• Optionally, add tags, which are key-value pairs that you can use to track your projects.

9. Choose Create project and wait for the project to appear in the Projects list.

MLOps Project Templates

An Amazon SageMaker project template automates the setup and implementation of MLOps for
your projects. A SageMaker project template is an Service Catalog product that SageMaker makes
available to Amazon SageMaker Studio Classic users. These Service Catalog products are visible in
your Service Catalog console after you enable permissions when you onboard or update Amazon
SageMaker Studio Classic. For information about enabling permissions to use SageMaker project
templates, see SageMaker Studio Permissions Required to Use Projects. Use SageMaker project
templates to create a project that is an end-to-end MLOps solution.

Templates 5090

Amazon SageMaker Developer Guide

If you are an administrator, you can create custom project templates from scratch or modify one
of the project templates provided by SageMaker. Studio Classic users in your organization can use
these custom project templates to create their projects.

Topics

• Use SageMaker-Provided Project Templates

• Create Custom Project Templates

Use SageMaker-Provided Project Templates

Amazon SageMaker provides project templates that create the infrastructure you need to create an
MLOps solution for continuous integration and continuous deployment (CI/CD) of ML models. Use
these templates to process data, extract features, train and test models, register the models in the
SageMaker model registry, and deploy the models for inference. You can customize the seed code
and the configuration files to suit your requirements.

Important

As of July 25, 2022, we require additional roles to use project templates. For
a complete list of required roles and instructions on how to create them, see
SageMaker Studio Permissions Required to Use Projects. If you do not have
the new roles, you will get the error message CodePipeline is not authorized
to perform AssumeRole on role arn:aws:iam::xxx:role/service-role/
AmazonSageMakerServiceCatalogProductsCodePipelineRole when you try to create a
new project and cannot proceed.

SageMaker project templates offer you the following choice of code repositories, workflow
automation tools, and pipeline stages:

• Code repository: AWS CodeCommit or third-party Git repositories such as GitHub and Bitbucket

• CI/CD workflow automation: AWS CodePipeline or Jenkins

• Pipeline stages: Model building and training, model deployment, or both

The following discussion provides an overview of each template you can choose when you create
your SageMaker project. You can also view the available templates in Studio Classic by following
Step 1: Create the Project of the Project walkthrough.

Templates 5091

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-walkthrough.html#sagemaker-proejcts-walkthrough-create
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-walkthrough.html#sagemaker-proejcts-walkthrough-create
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-walkthrough.html

Amazon SageMaker Developer Guide

For step-by-step instructions on how to create a real project, you can follow one of the project
walkthroughs:

• If you want to use the template MLOps template for model building, training, and deployment,
see SageMaker MLOps Project Walkthrough.

• If you want to use the template MLOps template for model building, training, and deployment
with third-party Git repositories using CodePipeline, see SageMaker MLOps Project Walkthrough
Using Third-party Git Repos.

• If you want to use the template MLOps template for model building, training, and deployment
with third-party Git repositories using Jenkins, see Create Amazon SageMaker projects using
third-party source control and Jenkins.

Topics

• MLOps template for model building, training, and deployment

• MLOps template for model building, training, deployment, and Amazon SageMaker Model
Monitor

• MLOps template for image building, model building, and model deployment

• MLOps template for model building, training, and deployment with third-party Git repositories
using CodePipeline

• MLOps template for model building, training, and deployment with third-party Git repositories
using Jenkins

• Model deployment for Salesforce

• Update SageMaker Projects to Use Third-Party Git Repositories

MLOps template for model building, training, and deployment

This template is a combination of the following two templates, each of which can be used
independently, and contains all of the resources provided in those templates.

• Code repository: AWS CodeCommit

• CI/CD workflow automation: AWS CodePipeline

Templates 5092

https://aws.amazon.com/blogs/machine-learning/create-amazon-sagemaker-projects-using-third-party-source-control-and-jenkins/
https://aws.amazon.com/blogs/machine-learning/create-amazon-sagemaker-projects-using-third-party-source-control-and-jenkins/

Amazon SageMaker Developer Guide

MLOps template for model building and training

Use this template when you want an MLOps solution to process data, extract features, train and
test models, and register the models in the SageMaker model registry.

This template provides the following resources:

• An AWS CodeCommit repository that contains sample code that creates an Amazon
SageMaker pipeline in Python code and shows how to create and update the SageMaker
pipeline. This repository also has a sample Python notebook that you can open and run in
Studio Classic.

• An AWS CodePipeline pipeline that has source and build steps. The source step points to
the CodeCommit repository. The build step gets the code from that repository, creates
and updates the SageMaker pipeline, starts a pipeline execution, and waits for the pipeline
execution to complete.

• An Amazon S3 bucket to store artifacts, including CodePipeline and CodeBuild artifacts, and
any artifacts generated from the SageMaker pipeline runs.

The following diagram illustrates the workflow and AWS resources used by this template to
help you build and train your models.

Templates 5093

Amazon SageMaker Developer Guide

MLOps template for model deployment

Use this template to automate the deployment of models in the SageMaker model registry to
SageMaker endpoints for real-time inference. This template recognizes changes in the model
registry. When a new model version is registered and approved, it automatically initiates a
deployment.

The template provisions a CodeCommit repository with configuration files to specify the model
deployment steps, AWS CloudFormation templates to define endpoints as infrastructure, and
seed code for testing the endpoint.

This template provides the following resources:

• An AWS CodeCommit repository that contains sample code that deploys models to endpoints
in staging and production environments.

• An AWS CodePipeline pipeline that has source, build, deploy-to-staging, and deploy-to-
production steps. The source step points to the CodeCommit repository, and the build step
gets the code from that repository and generates CloudFormation stacks to deploy. The
deploy-to-staging and deploy-to-production steps deploy the CloudFormation stacks to
their respective environments. There is a manual approval step between the staging and
production build steps, so that a MLOps engineer must approve the model before it is
deployed to production.

There is also a programmatic approval step with placeholder tests in the example code in the
CodeCommit repository. You can add additional tests to replace the placeholders tests.

• An Amazon S3 bucket to store artifacts, including CodePipeline and CodeBuild artifacts, and
any artifacts generated from the SageMaker pipeline runs.

• A CloudWatch event to initiate the pipeline when a model package version is approved or
rejected.

The following diagram illustrates the workflow and AWS resources used by this template to
help you deploy your models.

Templates 5094

Amazon SageMaker Developer Guide

As previously mentioned, see Project Walkthrough for a demonstration that uses this template to
create a real project.

MLOps template for model building, training, deployment, and Amazon SageMaker Model
Monitor

This template is an extension of the MLOps template for model building, training, and deployment.
It includes both the model building, training, and deployment components of the template, and
an additional Amazon SageMaker Model Monitor template that provides the following types of
monitoring:

• Data Quality – Monitor drift in data quality.

• Model Quality – Monitor drift in model quality metrics, such as accuracy.

• Bias Drift for Models in Production – Monitor bias in a model's predictions.

• Code repository: AWS CodeCommit

• CI/CD workflow automation: AWS CodePipeline

Templates 5095

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-walkthrough.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html

Amazon SageMaker Developer Guide

MLOps template for Amazon SageMaker Model Monitor

You can use this template for an MLOps solution to deploy one or more of the Amazon SageMaker
data quality, model quality, model bias, and model explainability monitors to monitor a deployed
model on a SageMaker inference endpoint.

This template provides the following resources:

• An AWS CodeCommit repository that contains sample Python code that gets the baselines used
by the monitors from the SageMaker Model Registry, and updates the template’s parameters for
the staging and production environments. It also contains a AWS CloudFormation template to
create the Amazon SageMaker Model Monitors.

• An AWS CodePipeline pipeline that has source, build, and deploy steps. The source step points to
the CodePipeline repository. The build step gets the code from that repository, gets the baseline
from the Model Registry, and updates template parameters for the staging and production
environments. The deploy steps deploy the configured monitors into the staging and production
environments. The manual approval step, within the DeployStaging stage, requires you to
verify that the production SageMaker endpoint is InService before approving and moving to
the DeployProd stage.

• The template uses the same S3 bucket created by the MLOps template for model building,
training, and deployment to store the monitors' outputs.

• Two Amazon EventBridge events rules initiate the Amazon SageMaker Model Monitor AWS
CodePipeline every time the staging SageMaker endpoint is updated, or a code change is
committed to the CodePipeline repository.

MLOps template for image building, model building, and model deployment

This template is an extension of the MLOps template for model building, training, and deployment.
It includes both the model building, training, and deployment components of that template and
the following options:

• Include processing image–building pipeline

• Include training image–building pipeline

• Include inference image–building pipeline

For each of the components selected during project creation, the following are created by using the
template:

Templates 5096

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html

Amazon SageMaker Developer Guide

• An Amazon ECR repository

• A SageMaker Image

• A CodeCommit repository containing a Dockerfile that you can customize

• A CodePipeline that is initiated by changes to the CodePipeline repository

• A CodeBuild project that builds a Docker image and registers it in the Amazon ECR repository

• An EventBridge rule that initiates the CodePipeline on a schedule

When the CodePipeline is initiated, it builds a new Docker container and registers it with an
Amazon ECR repository. When a new container is registered with the Amazon ECR repository, a new
ImageVersion is added to the SageMaker image. This initiates the model building pipeline, which
in turn initiates the deployment pipeline.

The newly created image is used in the model building, training, and deployment portions of the
workflow where applicable.

MLOps template for model building, training, and deployment with third-party Git repositories
using CodePipeline

• Code repository: Third-party Git. Establish the AWS CodeStar connection from your AWS
account to your GitHub user or organization. Add a tag with the key sagemaker and value true
to this AWS CodeStar connection.

• CI/CD workflow automation: AWS CodePipeline

This template provides the following resources:

• Associations with one or more customer-specified Git repositories.

• An AWS CodePipeline pipeline that has source, build, deploy-to-staging, and deploy-to-
production steps. The source step points to the third-party Git repository and the build step gets
the code from that repository and generates CloudFormation stacks to deploy. The deploy-to-
staging and deploy-to-production steps deploy the CloudFormation stacks to their respective
environments. There is a manual approval step between the staging and production build steps,
so that a MLOps engineer must approve the model before it is deployed to production.

• An AWS CodeBuild project to populate the Git repositories with the seed code information.
This requires an AWS CodeStar connection from your AWS account to your account on the Git
repository host.

Templates 5097

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateImage.html

Amazon SageMaker Developer Guide

• An Amazon S3 bucket to store artifacts, including CodePipeline and CodeBuild artifacts, and any
artifacts generated from the SageMaker pipeline runs.

As previously mentioned, see Project Walkthrough Using Third-party Git Repos for a demonstration
that uses this template to create a real project.

MLOps template for model building, training, and deployment with third-party Git repositories
using Jenkins

• Code repository: Third-party Git. Establish the AWS CodeStar connection from your AWS
account to your GitHub user or organization. Add a tag with the key sagemaker and value true
to this AWS CodeStar connection.

• CI/CD workflow automation: Jenkins

This template provides the following resources:

• Associations with one or more customer-specified Git repositories.

• Seed code to generate Jenkins pipelines that have source, build, deploy-to-staging, and deploy-
to-production steps. The source step points to the customer-specified Git repository. The build
step gets the code from that repository and generates two CloudFormation stacks. The deploy
steps deploy the CloudFormation stacks to their respective environments. There is an approval
step between the staging step and the production step.

• An AWS CodeBuild project to populate the Git repositories with the seed code information.
This requires an AWS CodeStar connection from your AWS account to your account on the Git
repository host.

• An Amazon S3 bucket to store artifacts of the SageMaker project and SageMaker pipeline.

The template creates the association between your project and the source control repositories,
but you need to perform additional manual steps to establish communication between your AWS
account and Jenkins. For the detailed steps, see Create Amazon SageMaker projects using third-
party source control and Jenkins.

The instructions help you build the architecture shown in the following diagram, with GitHub as
the source control repository in this example. As shown, you are attaching your Git repository
to the project to check in and manage code versions. Jenkins initiates the model build pipeline
when it detects changes to the model build code in the Git repository. You are also connecting the

Templates 5098

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-walkthrough-3rdgit.html
https://aws.amazon.com/blogs/machine-learning/create-amazon-sagemaker-projects-using-third-party-source-control-and-jenkins/
https://aws.amazon.com/blogs/machine-learning/create-amazon-sagemaker-projects-using-third-party-source-control-and-jenkins/

Amazon SageMaker Developer Guide

project to Jenkins to orchestrate your model deployment steps, which start when you approve the
model registered in the model registry, or when Jenkins detects changes to the model deployment
code.

In summary, the steps guide you through the following tasks:

1. Establish the connection between your AWS and GitHub accounts.

2. Create the Jenkins account and import needed plugins.

3. Create the Jenkins IAM user and permissions policy.

4. Set the AWS credentials for the Jenkins IAM user on your Jenkins server.

5. Create an API token for communication with your Jenkins server.

6. Use a CloudFormation template to set up an EventBridge rule to monitor the model registry for
newly-approved models.

7. Create the SageMaker project, which seeds your GitHub repositories with model build and
deploy code.

8. Create your Jenkins model build pipeline with the model build seed code.

9. Create your Jenkins model deploy pipeline with the model deploy seed code.

Templates 5099

Amazon SageMaker Developer Guide

Model deployment for Salesforce

• Code repository: AWS CodeCommit

• CI/CD workflow automation: AWS CodePipeline

This template provides the following resources:

• An AWS CodeCommit repository that contains sample code that creates an Amazon SageMaker
pipeline in Python code and shows how to create and update the pipeline. This repository also
has a Python Jupyter Notebook that you can open and run in Studio Classic.

• An AWS CodePipeline pipeline that has source and build steps. The source step points to the
CodeCommit repository. The build step gets the code from the repository, creates and updates
the SageMaker pipeline, starts a pipeline run, and waits for the pipeline run to complete.

• An Amazon S3 bucket to store artifacts, including CodePipeline and CodeBuild artifacts, and any
artifacts generated from the SageMaker pipeline runs.

Your admin may need to perform additional setup to enable data access from Salesforce Data
Cloud to SageMaker Studio to build AI/ML models. See the solution overview in the blog post Use
the Amazon SageMaker and Salesforce Data Cloud integration to power your Salesforce apps with
AI/ML for detailed information and instructions.

The following diagram illustrates the high-level workflow used by this template to help you build
and train your models. After you set up a connection between the Salesforce Data Cloud to Data
Wrangler and preprocess your data, use the Model deployment for Salesforce project template
to automate model training and deployment. The template provides customizable model deploy
code and a sample notebook from AWS CodePipeline to train your model and register it into the
SageMaker model registry. Once you approve the model, the endpoint is exposed to Salesforce as
an API through API Gateway, and customers can start making predictions with the deployed model
from within Salesforce.

Note

This template permits Transport Layer Security (TLS) policy versions 1.0 and 1.1 for API
Gateway setup. You can make this configuration more secure with custom domain names.
For details, see Setting up custom domain names for REST APIs.

Templates 5100

https://aws.amazon.com/blogs/machine-learning/use-the-amazon-sagemaker-and-salesforce-data-cloud-integration-to-power-your-salesforce-apps-with-ai-ml/
https://aws.amazon.com/blogs/machine-learning/use-the-amazon-sagemaker-and-salesforce-data-cloud-integration-to-power-your-salesforce-apps-with-ai-ml/
https://aws.amazon.com/blogs/machine-learning/use-the-amazon-sagemaker-and-salesforce-data-cloud-integration-to-power-your-salesforce-apps-with-ai-ml/
https://docs.aws.amazon.com/latest/developerguide/how-to-custom-domains.html

Amazon SageMaker Developer Guide

The blog post Use the Amazon SageMaker and Salesforce Data Cloud integration to power your
Salesforce apps with AI/ML provides detailed instructions to guide you through the following steps:

1. Select the project template Model deployment for Salesforce, and provide the secret
manager name.

2. Clone the repository to use the customizable SageMaker-provided sample notebook and
model deploy code.

3. Preprocess your data with Data Wrangler.

a. Create a connection to the Salesforce Data Cloud and import data into Data Wrangler.

b. Use Data Wrangler to prepare the data with some example transformations.

c. Initiate a processing job to process the data using your Data Wrangler configuration.

4. Train the model.

5. Register your model in the model registry.

6. Approve your model in model registry.

7. View your endpoint in the SageMaker console.

Templates 5101

https://aws.amazon.com/blogs/machine-learning/use-the-amazon-sagemaker-and-salesforce-data-cloud-integration-to-power-your-salesforce-apps-with-ai-ml/
https://aws.amazon.com/blogs/machine-learning/use-the-amazon-sagemaker-and-salesforce-data-cloud-integration-to-power-your-salesforce-apps-with-ai-ml/

Amazon SageMaker Developer Guide

8. Invoke the API URL from Salesforce Einstein Studio to register and use the model inferences in
Einstein Studio.

The following diagram shows in greater detail the workflow and AWS resources used by the
SageMaker project template with Salesforce Data Cloud Integration.

Update SageMaker Projects to Use Third-Party Git Repositories

The managed policy attached to the AmazonSageMakerServiceCatalogProductsUseRole
role was updated on July 27, 2021 for use with the third-party Git templates. Users who onboard
to Amazon SageMaker Studio Classic after this date and enable project templates use the new
policy. Users who onboarded prior to this date must update the policy to use these templates. Use
one of the following options to update the policy:

• Delete role and toggle Studio Classic settings

Templates 5102

Amazon SageMaker Developer Guide

1. In the IAM console, delete AmazonSageMakerServiceCatalogProductsUseRole.

2. In the Studio Classic control panel, choose Edit Settings.

3. Toggle both settings and then choose Submit.

• In the IAM console, add the following permissions to
AmazonSageMakerServiceCatalogProductsUseRole:

{
 "Effect": "Allow",
 "Action": [
 "codestar-connections:UseConnection"
],
 "Resource": "arn:aws:codestar-connections:*:*:connection/*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "aws:ResourceTag/sagemaker": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::sagemaker-*"
]
 }

Create Custom Project Templates

If the SageMaker-provided templates do not meet your needs (for example, you want to have more
complex orchestration in the CodePipeline with multiple stages or custom approval steps), create
your own templates.

We recommend starting by using SageMaker-provided templates to understand how to organize
your code and resources and build on top of it. To do this, after you enable administrator access to
the SageMaker templates, log in to the https://console.aws.amazon.com/servicecatalog/, choose
Portfolios, then choose Imported. For information about Service Catalog, see Overview of Service
Catalog in the Service Catalog User Guide.

Templates 5103

https://console.aws.amazon.com/servicecatalog/
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/what-is_concepts.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/what-is_concepts.html

Amazon SageMaker Developer Guide

Create your own project templates to customize your MLOps project. SageMaker project templates
are Service Catalog–provisioned products to provision the resources for your MLOps project.

To create a custom project template, complete the following steps.

1. Create a portfolio. For information, see Step 3: Create an Service Catalog Portfolio.

2. Create a product. A product is a CloudFormation template. You can create multiple versions of
the product. For information, see Step 4: Create an Service Catalog Product.

For the product to work with SageMaker projects, add the following parameters to your
product template.

SageMakerProjectName:
Type: String
Description: Name of the project

SageMakerProjectId:
Type: String
Description: Service generated Id of the project.

Important

We recommend that you wrap the CodeCommit repository into the SageMaker code
repository for the project's repositories to be visible in VPC mode. The sample template
and required addition are shown in the following code samples.
Original (sample) template:

ModelBuildCodeCommitRepository:
 Type: AWS::CodeCommit::Repository
 Properties:
 # Max allowed length: 100 chars
 RepositoryName: !Sub sagemaker-${SageMakerProjectName}-
${SageMakerProjectId}-modelbuild # max: 10+33+15+10=68
 RepositoryDescription: !Sub SageMaker Model building workflow
 infrastructure as code for the Project ${SageMakerProjectName}
 Code:
 S3:
 Bucket: SEEDCODE_BUCKETNAME
 Key: toolchain/model-building-workflow-v1.0.zip
 BranchName: main

Templates 5104

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-portfolio.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-product.html

Amazon SageMaker Developer Guide

Additional content to add in VPC mode:

SageMakerRepository:
 Type: AWS::SageMaker::CodeRepository
 Properties:
 GitConfig:
 RepositoryUrl: !GetAtt
 ModelBuildCodeCommitRepository.CloneUrlHttp
 Branch: main

3. Add a launch constraint. A launch constraint designates an IAM role that Service Catalog
assumes when a user launches a product. For information, see Step 6: Add a Launch Constraint
to Assign an IAM Role.

4. Provision the product on https://console.aws.amazon.com/servicecatalog/ to test the
template. If you are satisfied with your template, continue to the next step to make the
template available in Studio Classic.

5. Grant access to the Service Catalog portfolio that you created in step 1 to your Studio Classic
execution role. Use either the Studio Classic domain execution role or a user role that has
Studio Classic access. For information about adding a role to the portfolio, see Step 7: Grant
End Users Access to the Portfolio.

6. To make your project template available in your Organization templates list in Studio Classic,
create a tag with the following key and value to the Service Catalog product you created in
step 2.

• key: sagemaker:studio-visibility

• value: true

After you complete these steps, Studio Classic users in your organization can create a project
with the template you created by following the steps in Create an MLOps Project using Amazon
SageMaker Studio Classic and choosing Organization templates when you choose a template.

View Project Resources

After you create a project, view the resources associated with the project in Amazon SageMaker
Studio Classic.

View Resources 5105

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-launchconstraint.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-launchconstraint.html
https://console.aws.amazon.com/servicecatalog/
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.html

Amazon SageMaker Developer Guide

To create a project in Studio Classic

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Deployments from the menu, and then select Projects.

4. Select the name of the project for which you want to view details.

A tab with the project details appears.

On the project details tab, you can view the following entities associated with the project.

• Repositories: Code repositories (repos) associated with this project. If you use a SageMaker-
provided template when you create your project, it creates a AWS CodeCommit repo or a third-
party Git repo. For more information about CodeCommit, see What is AWS CodeCommit.

• Pipelines: SageMaker ML pipelines that define steps to prepare data, train, and deploy models.
For information about SageMaker ML pipelines, see Create and Manage SageMaker Pipelines.

• Experiments: One or more Amazon SageMaker Autopilot experiments associated with the
project. For information about Autopilot, see SageMaker Autopilot.

• Model groups: Groups of model versions that were created by pipeline executions in the project.
For information about model groups, see Create a Model Group.

• Endpoints: SageMaker endpoints that host deployed models for real-time inference. When a
model version is approved, it is deployed to an endpoint.

• Settings: Settings for the project. This includes the name and description of the project,
information about the project template and SourceModelPackageGroupName, and metadata
about the project.

Update an MLOps Project in Amazon SageMaker Studio Classic

This procedure demonstrates how to update an MLOps project in Amazon SageMaker Studio
Classic. You can update the Description, template version, and template parameters.

Prerequisites

• An IAM account or IAM Identity Center to sign in to Studio Classic. For information, see Amazon
SageMaker domain overview.

Update an MLOps Project 5106

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

Amazon SageMaker Developer Guide

• Basic familiarity with the Studio Classic user interface. For information, see Amazon SageMaker
Studio Classic UI Overview.

• Add the following custom inline policies to the specified roles:

User-created role having AmazonSageMakerFullAccess

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "servicecatalog:CreateProvisionedProductPlan",
 "servicecatalog:DescribeProvisionedProductPlan",
 "servicecatalog:DeleteProvisionedProductPlan"
],
 "Resource": "*"
 }
]
}

AmazonSageMakerServiceCatalogProductsLaunchRole

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateChangeSet",
 "cloudformation:DeleteChangeSet",
 "cloudformation:DescribeChangeSet"
],
 "Resource": "arn:aws:cloudformation:*:*:stack/SC-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:PutRepositoryTriggers"
],
 "Resource": "arn:aws:codecommit:*:*:sagemaker-*"
 }

Update an MLOps Project 5107

Amazon SageMaker Developer Guide

]
}

To update a project in Studio Classic

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Deployments from the menu, and then select Projects. A list of your projects appears.

4. Select the name of the project you want to update in the projects list.

5. Choose Update from the Actions menu in the upper-right corner of the project tab.

6. In the Update project dialog box, you can edit the Description and listed template
parameters.

7. Choose View difference.

A dialog box displays your original and updated project settings. Any change in your project
settings can modify or delete resources in the current project. The dialog box displays these
changes as well.

8. You may need to wait a few minutes for the Update button to become active. Choose Update.

9. The project update may take a few minutes to complete. Select Settings in the project tab and
ensure the parameters have been updated correctly.

Delete an MLOps Project using Amazon SageMaker Studio Classic

This procedure demonstrates how to delete an MLOps project using Amazon SageMaker Studio
Classic.

Prerequisites

Note

You can only delete projects in Studio Classic that you have created. This condition is part
of the service catalog permission servicecatalog:TerminateProvisionedProduct
in the AmazonSageMakerFullAccess policy. If needed, you can update this policy to
remove this condition.

Delete an MLOps Project 5108

Amazon SageMaker Developer Guide

• An IAM account or IAM Identity Center to sign in to Studio Classic. For information, see Amazon
SageMaker domain overview.

• Basic familiarity with the Studio Classic user interface. For information, see Amazon SageMaker
Studio Classic UI Overview.

To delete a project in Amazon SageMaker Studio Classic

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Deployments from the menu, and then select Projects.

4. Select the target project from the dropdown list. If you don’t see your project, type the project
name and apply the filter to find your project.

5. Once you've found your project, select the project name to view details.

6. Choose Delete from the Actions menu.

7. Confirm your choice by choosing Delete from the Delete Project window.

SageMaker MLOps Project Walkthrough

This walkthrough uses the template MLOps template for model building, training, and deployment
to demonstrate using MLOps projects to create a CI/CD system to build, train, and deploy models.

Prerequisites

To complete this walkthrough, you need:

• An IAM account or IAM Identity Center to sign in to Studio Classic. For information, see Amazon
SageMaker domain overview.

• Permission to use SageMaker-provided project templates. For information, see SageMaker Studio
Permissions Required to Use Projects.

• Basic familiarity with the Studio Classic user interface. For information, see Amazon SageMaker
Studio Classic UI Overview.

Topics

Project walkthrough 5109

Amazon SageMaker Developer Guide

• Step 1: Create the Project

• Step 2: Clone the Code Repository

• Step 3: Make a Change in the Code

• Step 4: Approve the Model

• (Optional) Step 5: Deploy the Model Version to Production

• Step 6: Clean Up Resources

Step 1: Create the Project

In this step, you create a SageMaker MLOps project by using a SageMaker-provided project
template to build, train, and deploy models.

To create the SageMaker MLOps project

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Deployments from the menu, and then select Projects.

4. Choose Create project.

The Create project tab appears.

5. If not selected already, choose SageMaker templates, then choose MLOps template for
model building, training, and deployment.

6. For Project details, enter a name and description for your project.

When the project appears in the Projects list with a Status of Create completed, move on to the
next step.

Important

As of July 25, 2022, we require additional roles to use project templates.
If you see the error message CodePipeline is not authorized to
perform AssumeRole on role arn:aws:iam::xxx:role/service-role/
AmazonSageMakerServiceCatalogProductsCodePipelineRole, see Steps 5-6 of SageMaker

Project walkthrough 5110

Amazon SageMaker Developer Guide

Studio Permissions Required to Use Projects for a complete list of required roles and
instructions on how to create them.

Step 2: Clone the Code Repository

After you create the project, two CodeCommit repositories are created in the project. One of the
repositories contains code to build and train a model, and one contains code to deploy the model.
In this step, you clone the repository to your local SageMaker project that contains the code to
build and train the model to the local Studio Classic environment so that you can work with the
code.

To clone the code repository

1. In the Studio Classic sidebar, choose the Home icon (

).

2. Select Deployments from the menu, and then select Projects.

3. Select the project you created in the previous step to open the project tab for your project.

4. In the project tab, choose Repositories, and in the Local path column for the repository that
ends with modelbuild, choose clone repo....

5. In the dialog box that appears, accept the defaults and choose Clone repository.

Project walkthrough 5111

Amazon SageMaker Developer Guide

When clone of the repository is complete, the local path appears in the Local path column.
Choose the path to open the local folder that contains the repository code in Studio Classic.

Step 3: Make a Change in the Code

Now make a change to the pipeline code that builds the model and check in the change to initiate
a new pipeline run. The pipeline run registers a new model version.

To make a code change

1. In Studio Classic, choose the file browser icon (

), and navigate to the pipelines/abalone folder. Double-click pipeline.py to open the
code file.

2. In the pipeline.py file, find the line that sets the training instance type.

training_instance_type = ParameterString(
 name="TrainingInstanceType", default_value="ml.m5.xlarge"

Change ml.m5.xlarge to ml.m5.large, then type Ctrl+S to save the change.

3. Choose the Git icon (

). Stage, commit, and push the change in pipeline.py. Also, enter a summary in the
Summary field and an optional description in the Description field. For information about
using Git in Studio Classic, see Clone a Git Repository in SageMaker Studio Classic.

Project walkthrough 5112

Amazon SageMaker Developer Guide

Project walkthrough 5113

Amazon SageMaker Developer Guide

After pushing your code change, the MLOps system initiates a run of the pipeline that creates a
new model version. In the next step, you approve the new model version to deploy it to production.

Step 4: Approve the Model

Now you approve the new model version that was created in the previous step to initiate a
deployment of the model version to a SageMaker endpoint.

To approve the model version

1. In the Studio Classic sidebar, choose the Home icon (

).

2. Select Deployments from the menu, and then select Projects.

3. Select the name of the project you created in the first step to open the project tab for your
project.

4. In the project tab, choose Model groups, then double-click the name of the model group that
appears.

The model group tab appears.

5. In the model group tab, double-click Version 1. The Version 1 tab opens. Choose Update
status.

6. In the model Update model version status dialog box, in the Status dropdown list, select
Approve, then choose Update status.

Approving the model version causes the MLOps system to deploy the model to staging. To
view the endpoint, choose the Endpoints tab on the project tab.

(Optional) Step 5: Deploy the Model Version to Production

Now you can deploy the model version to the production environment.

Note

To complete this step, you need to be an administrator in your Studio Classic domain. If you
are not an administrator, skip this step.

Project walkthrough 5114

Amazon SageMaker Developer Guide

To deploy the model version to the production environment

1. Log in to the CodePipeline console at https://console.aws.amazon.com/codepipeline/

2. Choose Pipelines, then choose the pipeline with the name
sagemaker-projectname-projectid-modeldeploy, where projectname is the name of
your project, and projectid is the ID of your project.

3. In the DeployStaging stage, choose Review.

4. In the Review dialog box, choose Approve.

Approving the DeployStaging stage causes the MLOps system to deploy the model to
production. To view the endpoint, choose the Endpoints tab on the project tab in Studio
Classic.

Step 6: Clean Up Resources

To stop incurring charges, clean up the resources that were created in this walkthrough. To do this,
complete the following steps.

Note

To delete the AWS CloudFormation stack and the Amazon S3 bucket, you need to be an
administrator in Studio Classic. If you are not an administrator, ask your administrator to
complete those steps.

1. In the Studio Classic sidebar, choose the Home icon (

).

2. Select Deployments from the menu, and then select Projects.

3. Select the target project from the dropdown list. If you don’t see your project, type the project
name and apply the filter to find your project.

4. You can delete a Studio Classic project in one of the following ways:

a. You can delete the project from the projects list.

Right-click the target project and choose Delete from the dropdown list.

Project walkthrough 5115

https://console.aws.amazon.com/codepipeline/

Amazon SageMaker Developer Guide

Note

This functionality is supported in Studio Classic version v3.17.1 or higher. For more
information, see Shut down and Update SageMaker Studio Classic.

b. You can delete a project from the Project details section.

i. When you've found your project, double-click it to view its details in the main panel.

ii. Choose Delete from the Actions menu.

5. Confirm your choice by choosing Delete from the Delete Project window.

This deletes the Service Catalog provisioned product that the project created. This includes the
CodeCommit, CodePipeline, and CodeBuild resources created for the project.

6. Delete the AWS CloudFormation stacks that the project created. There
are two stacks, one for staging and one for production. The names of the
stacks are sagemaker-projectname-project-id-deploy-staging and
sagemaker-projectname-project-id-deploy-prod, where projectname is the name of
your project, and project-id is the ID of your project.

For information about how to delete a AWS CloudFormation stack, see Deleting a stack on the
AWS CloudFormation console in the AWS CloudFormation User Guide.

7. Delete the Amazon S3 bucket that the project created. The name of the bucket is sagemaker-
project-project-id, where project-id is the ID of your project.

SageMaker MLOps Project Walkthrough Using Third-party Git Repos

This walkthrough uses the template MLOps template for model building, training, and deployment
with third-party Git repositories using CodePipeline to demonstrate how to use MLOps projects to
create a CI/CD system to build, train, and deploy models.

Prerequisites

To complete this walkthrough, you need:

• An IAM or IAM Identity Center account to sign in to Studio Classic. For information, see Amazon
SageMaker domain overview.

Project Walkthrough Using Third-party Git Repos 5116

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Amazon SageMaker Developer Guide

• Permission to use SageMaker-provided project templates. For information, see SageMaker Studio
Permissions Required to Use Projects.

• Basic familiarity with the Studio Classic user interface. For information, see Amazon SageMaker
Studio Classic UI Overview.

• Two GitHub repositories initialized with a README. You input these repositories into the project
template, which will seed these repos with model build and deploy code.

Topics

• Step 1: Set up the GitHub connection

• Step 2: Create the Project

• Step 3: Make a Change in the Code

• Step 4: Approve the Model

• (Optional) Step 5: Deploy the Model Version to Production

• Step 6: Clean Up Resources

Step 1: Set up the GitHub connection

In this step, you connect to your GitHub repositories using an AWS CodeStar connection. The
SageMaker project uses this connection to access your source code repositories.

To set up the GitHub connection:

1. Log in to the CodePipeline console at https://console.aws.amazon.com/codepipeline/

2. Under Settings in the navigation pane, choose Connections.

3. Choose Create connection.

4. For Select a provider, select GitHub.

5. For Connection name, enter a name.

6. Choose Connect to GitHub.

7. If the AWS Connector GitHub app isn’t previously installed, choose Install new app.

This displays a list of all the GitHub personal accounts and organizations to which you have
access.

8. Choose the account where you want to establish connectivity for use with SageMaker projects
and GitHub repositories.

Project Walkthrough Using Third-party Git Repos 5117

https://docs.aws.amazon.com/dtconsole/latest/userguide/welcome-connections.html
https://console.aws.amazon.com/codepipeline/

Amazon SageMaker Developer Guide

9. Choose Configure.

10. You can optionally select your specific repositories or choose All repositories.

11. Choose Save. When the app is installed, you’re redirected to the Connect to GitHub page and
the installation ID is automatically populated.

12. Choose Connect.

13. Add a tag with the key sagemaker and value true to this AWS CodeStar connection.

14. Copy the connection ARN to save for later. You use the ARN as a parameter in the project
creation step.

Step 2: Create the Project

In this step, you create a SageMaker MLOps project by using a SageMaker-provided project
template to build, train, and deploy models.

To create the SageMaker MLOps project

1. Sign in to Studio Classic. For more information, see Amazon SageMaker domain overview.

2. In the Studio Classic sidebar, choose the Home icon (

).

3. Select Deployments from the menu, and then select Projects.

4. Choose Create project.

The Create project tab appears.

5. For SageMaker project templates, choose MLOps template for model building, training, and
deployment with third-party Git repositories.

6. Choose Select project template.

7. Under ModelBuild CodeRepository Info, provide the following parameters:

• For URL, enter the URL of your Git repository for the model build code in https://git-
url.git format.

• For Branch, enter the branch to use from your Git repository for pipeline activities.

• For Full Repository Name, enter the Git repository name in the format of username/
repository name or organization/repository name.

• For Codestar Connection ARN, enter the ARN of the AWS CodeStar connection you created
in Step 1.

Project Walkthrough Using Third-party Git Repos 5118

Amazon SageMaker Developer Guide

• The Sample Code toggle switch lets you choose whether to populate the repository with
model build seed code. We can leave it on for this demo.

8. Under ModelDeploy CodeRepository Info, provide the following parameters:

• For URL, enter the URL of your Git repository for the model deploy code in https://git-
url.git format.

• For Branch, enter the branch to use from your Git repository for pipeline activities.

• For Full Repository Name, enter the Git repository name in the format of username/
repository name or organization/repository name.

• For Codestar Connection ARN, enter the ARN of the AWS CodeStar connection you created
in Step 1.

• The Sample Code toggle switch lets you choose whether to populate the repository with
model deployment seed code. We can leave it on for this demo.

9. Choose Create Project.

The project appears in the Projects list with a Status of Created.

Step 3: Make a Change in the Code

Now make a change to the pipeline code that builds the model and commit the change to initiate a
new pipeline run. The pipeline run registers a new model version.

To make a code change

1. In your model build GitHub repo, navigate to the pipelines/abalone folder. Double-click
pipeline.py to open the code file.

2. In the pipeline.py file, find the line that sets the training instance type.

training_instance_type = ParameterString(
 name="TrainingInstanceType", default_value="ml.m5.xlarge"

Open the file for editing, change ml.m5.xlarge to ml.m5.large, then commit.

After you commit your code change, the MLOps system initiates a run of the pipeline that creates a
new model version. In the next step, you approve the new model version to deploy it to production.

Project Walkthrough Using Third-party Git Repos 5119

Amazon SageMaker Developer Guide

Step 4: Approve the Model

Now you approve the new model version that was created in the previous step to initiate a
deployment of the model version to a SageMaker endpoint.

To approve the model version

1. In the Studio Classic sidebar, choose the Home icon (

).

2. Select Deployments from the menu, and then select Projects.

3. Find the name of the project you created in the first step and double-click on it to open the
project tab for your project.

4. In the project tab, choose Model groups, then double-click the name of the model group that
appears.

The model group tab appears.

5. In the model group tab, double-click Version 1. The Version 1 tab opens. Choose Update
status.

6. In the model Update model version status dialog box, in the Status dropdown list, select
Approve and then choose Update status.

Approving the model version causes the MLOps system to deploy the model to staging. To
view the endpoint, choose the Endpoints tab on the project tab.

(Optional) Step 5: Deploy the Model Version to Production

Now you can deploy the model version to the production environment.

Note

To complete this step, you need to be an administrator in your Studio Classic domain. If you
are not an administrator, skip this step.

To deploy the model version to the production environment

1. Log in to the CodePipeline console at https://console.aws.amazon.com/codepipeline/

Project Walkthrough Using Third-party Git Repos 5120

https://console.aws.amazon.com/codepipeline/

Amazon SageMaker Developer Guide

2. Choose Pipelines, then choose the pipeline with the name
sagemaker-projectname-projectid-modeldeploy, where projectname is the name of
your project, and projectid is the ID of your project.

3. In the DeployStaging stage, choose Review.

4. In the Review dialog box, choose Approve.

Approving the DeployStaging stage causes the MLOps system to deploy the model to
production. To view the endpoint, choose the Endpoints tab on the project tab in Studio
Classic.

Step 6: Clean Up Resources

To stop incurring charges, clean up the resources that were created in this walkthrough.

Note

To delete the AWS CloudFormation stack and the Amazon S3 bucket, you need to be an
administrator in Studio Classic. If you are not an administrator, ask your administrator to
complete those steps.

1. In the Studio Classic sidebar, choose the Home icon (

).

2. Select Deployments from the menu, and then select Projects.

3. Select the target project from the dropdown list. If you don’t see your project, type the project
name and apply the filter to find your project.

4. Select your project to view its details in the main panel.

5. Choose Delete from the Actions menu.

6. Confirm your choice by choosing Delete from the Delete Project window.

This deletes the Service Catalog provisioned product that the project created. This includes the
CodeCommit, CodePipeline, and CodeBuild resources created for the project.

7. Delete the AWS CloudFormation stacks that the project created. There
are two stacks, one for staging and one for production. The names of the
stacks are sagemaker-projectname-project-id-deploy-staging and

Project Walkthrough Using Third-party Git Repos 5121

Amazon SageMaker Developer Guide

sagemaker-projectname-project-id-deploy-prod, where projectname is the name of
your project, and project-id is the ID of your project.

For information about how to delete a AWS CloudFormation stack, see Deleting a stack on the
AWS CloudFormation console in the AWS CloudFormation User Guide.

8. Delete the Amazon S3 bucket that the project created. The name of the bucket is sagemaker-
project-project-id, where project-id is the ID of your project.

Amazon SageMaker MLOps FAQ

Use the following FAQ items to find answers to commonly asked questions about MLOps in
SageMaker.

Q. Do I need to use the SageMaker Python SDK to create a SageMaker pipeline?

No, the SageMaker Python SDK is not required to create a SageMaker pipeline. You can also use
boto3 or AWS CloudFormation. Creating a pipeline requires a pipeline definition, which is a JSON
object that defines each step of the pipeline. The SageMaker SDK offers a simple way to construct
the pipeline definition, which you can use with any of the APIs previously mentioned to create
the pipeline itself. Without using the SDK, users have to write the raw JSON definition to create
the pipeline without any of the error checks provided by the SageMaker Python SDK. To see the
schema for the pipeline JSON definition, see SageMaker Pipeline Definition JSON Schema. The
following code sample shows an example of a SageMaker pipeline definition JSON object:

{'Version': '2020-12-01',
 'Metadata': {},
 'Parameters': [{'Name': 'ProcessingInstanceType',
 'Type': 'String',
 'DefaultValue': 'ml.m5.xlarge'},
 {'Name': 'ProcessingInstanceCount', 'Type': 'Integer', 'DefaultValue': 1},
 {'Name': 'TrainingInstanceType',
 'Type': 'String',
 'DefaultValue': 'ml.m5.xlarge'},
 {'Name': 'ModelApprovalStatus',
 'Type': 'String',
 'DefaultValue': 'PendingManualApproval'},
 {'Name': 'ProcessedData',
 'Type': 'String',
 'DefaultValue': 'S3_URL',

MLOps FAQ 5122

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_pipeline
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-pipeline.html
https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/

Amazon SageMaker Developer Guide

{'Name': 'InputDataUrl',
 'Type': 'String',
 'DefaultValue': 'S3_URL',
 'PipelineExperimentConfig': {'ExperimentName': {'Get': 'Execution.PipelineName'},
 'TrialName': {'Get': 'Execution.PipelineExecutionId'}},
 'Steps': [{'Name': 'ReadTrainDataFromFS',
 'Type': 'Processing',
 'Arguments': {'ProcessingResources': {'ClusterConfig': {'InstanceType':
 'ml.m5.4xlarge',
 'InstanceCount': 2,
 'VolumeSizeInGB': 30}},
 'AppSpecification': {'ImageUri': 'IMAGE_URI',
 'ContainerArguments': [....]},
 'RoleArn': 'ROLE',
 'ProcessingInputs': [...],
 'ProcessingOutputConfig': {'Outputs': [.....]},
 'StoppingCondition': {'MaxRuntimeInSeconds': 86400}},
 'CacheConfig': {'Enabled': True, 'ExpireAfter': '30d'}},
 ...
 ...
 ...
 }

Q. Why do I see a repack step in my SageMaker pipeline?

Model repacking happens when the pipeline needs to include a custom script in the compressed
model file (model.tar.gz) to be uploaded to Amazon S3 and used to deploy a model to a SageMaker
endpoint. When SageMaker pipeline trains a model and registers it to the model registry, it
introduces a repack step if the trained model output from the training job needs to include
a custom inference script. The repack step uncompresses the model, adds a new script, and
recompresses the model. Running the pipeline adds the repack step as a training job.

Q. Can I use SageMaker Experiments with SageMaker Pipelines?

Yes. SageMaker Pipelines is natively integrated with SageMaker Experiments. You can use
PipelineExperimentConfig when creating a pipeline and set your own SageMaker Experiment
name. Each run of the pipeline creates a trial, and each step in the pipeline corresponds to a
TrialComponent within the trial. If no trial name is specified in the experiment config, the
pipeline execution ID is used as the trial name.

pipeline = Pipeline(

MLOps FAQ 5123

Amazon SageMaker Developer Guide

 name=pipeline_name,
 parameters=[...],
 steps=[...],
 sagemaker_session=sagemaker_session,
 pipeline_experiment_config=PipelineExperimentConfig(
 ExecutionVariables.PIPELINE_NAME,
 ExecutionVariables.PIPELINE_EXECUTION_ID
)
)

Q. SageMaker Project templates have a model deploy repository that uses
CloudFormation (CFN) to create an endpoint. Are there ways to deploy the model
without using CloudFormation?

You can customize the deploy repository in the project template to deploy the model from the
model registry any way you like. The template uses CloudFormation to create a real-time endpoint,
as an example. You can update the deployment to use the SageMaker SDK, boto3, or any other API
that can create endpoints instead of CFN. If you need to update the CodeBuild steps as part of the
deployment pipeline, you can create a custom template.

Q. How do we pass the model file Amazon S3 URL from the train step to the
model register step in a SageMaker pipeline at run time?

You can reference the model location as a property of the training step, as shown in the end-to-
end example CustomerChurn pipeline in Github.

Q. If I am extending a prebuilt container to train an estimator or for a
ProcessingStep on SageMaker Pipelines, is it necessary to copy the script to the
container in the Dockerfile?

No, you can either copy the script to the container or pass it via the entry_point argument
(of your estimator entity) or code argument (of your processor entity), as demonstrated in the
following code sample.

step_process = ProcessingStep(
 name="PreprocessAbaloneData",
 processor=sklearn_processor,
 inputs = [
 ProcessingInput(

MLOps FAQ 5124

https://github.com/aws-samples/amazon-sagemaker-immersion-day/blob/master/ML%20Pipelines%20scripts/pipeline.py

Amazon SageMaker Developer Guide

 input_name='dataset',
 source=...,
 destination="/opt/ml/processing/code",
)
],
 outputs=[
 ProcessingOutput(output_name="train", source="/opt/ml/processing/train",
 destination = processed_data_path),
 ProcessingOutput(output_name="validation", source="/opt/ml/processing/
validation", destination = processed_data_path),
 ProcessingOutput(output_name="test", source="/opt/ml/processing/test",
 destination = processed_data_path),
],
 code=os.path.join(BASE_DIR, "process.py"), ## Code is passed through an argument
 cache_config = cache_config,
 job_arguments = ['--input', 'arg1']
)

sklearn_estimator = SKLearn(
 entry_point=os.path.join(BASE_DIR, "train.py"), ## Code is passed through the
 entry_point
 framework_version="0.23-1",
 instance_type=training_instance_type,
 role=role,
 output_path=model_path, # New
 sagemaker_session=sagemaker_session, # New
 instance_count=1, # New
 base_job_name=f"{base_job_prefix}/pilot-train",
 metric_definitions=[
 {'Name': 'train:accuracy', 'Regex': 'accuracy_train=(.*?);'},
 {'Name': 'validation:accuracy', 'Regex': 'accuracy_validation=(.*?);'}
],
)

Q. What’s the recommended way to manage dependencies for different
SageMaker Pipelines steps?

You can use a SageMaker Projects template to implement image-building CI/CD. With this
template, you can automate the CI/CD of images that are built and pushed to Amazon ECR.
Changes in the container files in your project’s source control repositories initiate the ML pipeline
and deploy the latest version for your container. For more information, see the blog Create Amazon
SageMaker projects with image building CI/CD pipelines.

MLOps FAQ 5125

https://aws.amazon.com/blogs/machine-learning/create-amazon-sagemaker-projects-with-image-building-ci-cd-pipelines/
https://aws.amazon.com/blogs/machine-learning/create-amazon-sagemaker-projects-with-image-building-ci-cd-pipelines/

Amazon SageMaker Developer Guide

Q. How do I provide SageMaker Project access to specific user profiles in Amazon
SageMaker Studio Classic?

Since SageMaker Projects is backed by Service Catalog, you must add each role that requires access
to SageMaker Projects to the Amazon SageMaker Solutions and ML Ops products Portfolio in
the service catalog. You can do this on the Groups, roles, and users tab, as shown in the following
image. If each user profile in Studio Classic has a different role, you should add each of those roles
to the service catalog. You can also do this while creating a user profile in Studio Classic.

Q. Where do I see the properties associated with each SageMaker pipeline step so
that I can use them in subsequent steps?

Each step in the pipeline uses the underlying SageMaker APIs for the corresponding jobs.
For example, TrainingStep invokes the CreateTrainingJob API and the step properties
correspond to the response from DescribeTrainingJob. The response output can be found
in the API reference link for DescribeTrainingJob. You can follow the same procedure to get the
properties for TransformStep, ProcessingStep, TuningStep, and CreateModelStep. For more
information about pipeline steps, see Pipeline Steps.

MLOps FAQ 5126

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html

Amazon SageMaker Developer Guide

Q. In SageMaker Pipelines, can I specify a unique output path for a pipeline step
so that its output data will not be overridden by future runs?

Yes, you can use ExecutionVariables and the Join function to specify your
output location. ExecutionVariables is resolved at runtime. For instance,
ExecutionVariables.PIPELINE_EXECUTION_ID is resolved to the ID of the current execution,
which can be used as a unique identifier across different runs.

from sagemaker.workflow.execution_variables import ExecutionVariables

processor_run_args = sklearn_processor.run(
 outputs=[
 ProcessingOutput(
 output_name="train",
 source="/opt/ml/processing/train",
 destination=Join(
 on="/",
 values=[
 "s3:/",
 default_bucket,
 base_job_prefix,
 ExecutionVariables.PIPELINE_EXECUTION_ID,
 "PreprocessData",
],
),
),
 ProcessingOutput(
 output_name="validation",
 source="/opt/ml/processing/validation",
 destination=Join(
 on="/",
 values=[
 "s3:/",
 default_bucket,
 base_job_prefix,
 ExecutionVariables.PIPELINE_EXECUTION_ID,
 "PreprocessData",
],
),
),
 ProcessingOutput(
 output_name="test",
 source="/opt/ml/processing/test",

MLOps FAQ 5127

https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#execution-variables
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#execution-variables

Amazon SageMaker Developer Guide

 destination=Join(
 on="/",
 values=[
 "s3:/",
 default_bucket,
 base_job_prefix,
 ExecutionVariables.PIPELINE_EXECUTION_ID,
 "PreprocessData",
],
),
),
],
 code="code/preprocess.py",
 arguments=["--input-data", input_data],
)

step_process = ProcessingStep(
 name="MyPreprocessingStep",
 step_args=processor_run_args,
)

Q. What’s the best way to reproduce my model in SageMaker?

SageMaker’s Lineage Tracking service works in the backend to track all the metadata associated
with your model training and deployment workflows. This includes your training jobs, datasets
used, pipelines, endpoints, and the actual models. You can query the lineage service at any point to
find the exact artifacts used to train a model. Using those artifacts, you can recreate the same ML
workflow to reproduce the model as long as you have access to the exact dataset that was used. A
trial component tracks the training job. This trial component has all the parameters used as part of
the training job. If you don’t need to rerun the entire workflow, you can reproduce the training job
to derive the same model.

Q. If I try to delete a SageMaker project created from a SageMaker template
and receive an error due to non-empty Amazon S3 buckets or Amazon ECR
repositories, how can I delete the project?

If you try to delete your SageMaker project and get one of the following error messages:

The bucket you tried to delete is not empty

The repository with name 'repository-name' in registry

MLOps FAQ 5128

Amazon SageMaker Developer Guide

 with id 'id' cannot be deleted because it still contains images

then you have non-empty Amazon S3 buckets or Amazon ECR repositories which you need
to manually delete before you delete the SageMaker project. AWS CloudFormation does not
automatically delete non-empty Amazon S3 buckets or Amazon ECR repositories for you.

MLOps FAQ 5129

Amazon SageMaker Developer Guide

Monitor data and model quality

Amazon SageMaker Model Monitor monitors the quality of Amazon SageMaker machine learning
models in production. You can set up continuous monitoring with a real-time endpoint (or a batch
transform job that runs regularly), or on-schedule monitoring for asynchronous batch transform
jobs. With Model Monitor, you can set alerts that notify you when there are deviations in the
model quality. Early and proactive detection of these deviations enables you to take corrective
actions, such as retraining models, auditing upstream systems, or fixing quality issues without
having to monitor models manually or build additional tooling. You can use Model Monitor prebuilt
monitoring capabilities that do not require coding. You also have the flexibility to monitor models
by coding to provide custom analysis.

Model Monitor provides the following types of monitoring:

• Monitor data quality - Monitor drift in data quality.

• Monitor model quality - Monitor drift in model quality metrics, such as accuracy.

• Monitor Bias Drift for Models in Production - Monitor bias in your model's predictions.

• Monitor Feature Attribution Drift for Models in Production - Monitor drift in feature attribution.

Topics

• Monitoring a Model in Production

• How Model Monitor Works

• Capture data

• Monitor data quality

• Monitor model quality

• Monitor Bias Drift for Models in Production

• Monitor Feature Attribution Drift for Models in Production

• Schedule monitoring jobs

• Amazon SageMaker Model Monitor prebuilt container

• Interpret results

• Visualize results for real-time endpoints in Amazon SageMaker Studio

• Advanced topics

• Model Monitor FAQs

5130

Amazon SageMaker Developer Guide

Monitoring a Model in Production

After you deploy a model into your production environment, use Amazon SageMaker model
monitor to continuously monitor the quality of your machine learning models in real time. Amazon
SageMaker model monitor enables you to set up an automated alert triggering system when there
are deviations in the model quality, such as data drift and anomalies. Amazon CloudWatch Logs
collects log files of monitoring the model status and notifies when the quality of your model hits
certain thresholds that you preset. CloudWatch stores the log files to an Amazon S3 bucket you
specify. Early and pro-active detection of model deviations through AWS model monitor products
enables you to take prompt actions to maintain and improve the quality of your deployed model.

For more information about SageMaker model monitoring products, see Monitor data and model
quality.

To start your machine learning journey with SageMaker, sign up for an AWS account at Set Up
SageMaker.

How Model Monitor Works

Amazon SageMaker Model Monitor automatically monitors machine learning (ML) models in
production and notifies you when quality issues arise. Model Monitor uses rules to detect drift in
your models and alerts you when it happens. The following figure shows how this process works in
the case that your model is deployed to a real-time endpoint.

Model Monitoring 5131

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-set-up.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-set-up.html

Amazon SageMaker Developer Guide

You can also use Model Monitor to monitor a batch transform job instead of a real-time endpoint.
In this case, instead of receiving requests to an endpoint and tracking the predictions, Model
Monitor will monitor inference inputs and outputs. The following figure diagrams the process of
monitoring a batch transform job.

How It Works 5132

Amazon SageMaker Developer Guide

To enable model monitoring, you take the following steps, which follow the path of the data
through the various data collection, monitoring, and analysis processes:

• For a real-time endpoint, enable the endpoint to capture data from incoming requests to a
trained ML model and the resulting model predictions.

• For a batch transform job, enable data capture of the batch transform inputs and outputs.

• Create a baseline from the dataset that was used to train the model. The baseline computes
metrics and suggests constraints for the metrics. Real-time or batch predictions from your
model are compared to the constraints, and are reported as violations if they are outside the
constrained values.

• Create a monitoring schedule specifying what data to collect, how often to collect it, how to
analyze it, and which reports to produce.

• Inspect the reports, which compare the latest data with the baseline, and watch for any
violations reported and for metrics and notifications from Amazon CloudWatch.

How It Works 5133

Amazon SageMaker Developer Guide

Notes

• Model Monitor computes model metrics and statistics on tabular data only. For example,
an image classification model that takes images as input and outputs a label based on
that image can still be monitored. Model Monitor would be able to calculate metrics and
statistics for the output, not the input.

• Model Monitor currently supports only endpoints that host a single model and does
not support monitoring multi-model endpoints. For information on using multi-model
endpoints, see Host multiple models in one container behind one endpoint.

• Model Monitor supports monitoring inference pipelines, but capturing and analyzing
data is done for the entire pipeline, not for individual containers in the pipeline.

• To prevent impact to inference requests, Data Capture stops capturing requests at high
levels of disk usage. It is recommended you keep your disk utilization below 75% in order
to ensure data capture continues capturing requests.

• If you launch SageMaker Studio in a custom Amazon VPC, you need to create VPC
endpoints to enable Model Monitor to communicate with Amazon S3 and CloudWatch.
For information about VPC endpoints, see VPC endpoints in the Amazon Virtual Private
Cloud User Guide. For information about launching SageMaker Studio in a custom VPC,
see Connect SageMaker Studio Notebooks in a VPC to External Resources.

Model Monitor Sample Notebooks

For a sample notebook that takes you through the full end-to-end workflow using Model Monitor
with your real-time endpoint, see Introduction to Amazon SageMaker Model Monitor.

For a sample notebook that visualizes the statistics.json file for a selected execution in a
monitoring schedule, see the Model Monitor Visualization.

For instructions that show you how to create and access Jupyter notebook instances that you can
use to run the example in SageMaker, see Amazon SageMaker Notebook Instances. After you have
created a notebook instance and opened it, choose the SageMaker Examples tab to see a list of all
the SageMaker samples. To open a notebook, choose the notebook's Use tab and choose Create
copy.

Sample Notebooks 5134

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_model_monitor/introduction/SageMaker-ModelMonitoring.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_model_monitor/visualization/SageMaker-Model-Monitor-Visualize.html

Amazon SageMaker Developer Guide

Capture data

To log the inputs to your endpoint and the inference outputs from your deployed model to
Amazon S3, you can enable a feature called Data Capture. Data Capture is commonly used to
record information that can be used for training, debugging, and monitoring. Amazon SageMaker
Model Monitor automatically parses this captured data and compares metrics from this data with
a baseline that you create for the model. For more information about Model Monitor see Monitor
data and model quality.

You can implement Data Capture for both real-time and batch model-monitor modes using the
AWS SDK for Python (Boto) or the SageMaker Python SDK. For a real-time endpoint, you will
specify your Data Capture configuration when you create your endpoint. Due to the persistent
nature of your real-time endpoint, you can configure additional options to turn data capturing
on or off at certain times, or change the sampling frequency. You can also choose to encrypt your
inference data.

For a batch transform job, you can enable Data Capture if you want to run on-schedule model
monitoring or continuous model-monitoring for regular, periodic batch transform jobs. You will
specify your Data Capture configuration when you create your batch transform job. Within this
configuration, you have the option to turn on encryption or generate the inference ID with your
output, which helps you match your captured data to Ground Truth data.

Capture data from real-time endpoint

Note

To prevent impact to inference requests, Data Capture stops capturing requests at high
levels of disk usage. It is recommended you keep your disk utilization below 75% in order
to ensure data capture continues capturing requests.

To capture data for your real-time endpoint, you must deploy a model using SageMaker hosting
services. This requires that you create a SageMaker model, define an endpoint configuration, and
create an HTTPS endpoint.

The steps required to turn on data capture are similar whether you use the AWS SDK for Python
(Boto) or the SageMaker Python SDK. If you use the AWS SDK, define the DataCaptureConfig
dictionary, along with required fields, within the CreateEndpointConfig method to turn on data
capture. If you use the SageMaker Python SDK, import the DataCaptureConfig Class and initialize

Capture data 5135

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataCaptureConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html#sagemaker.model_monitor.data_capture_config.DataCaptureConfig

Amazon SageMaker Developer Guide

an instance from this class. Then, pass this object to the DataCaptureConfig parameter in the
sagemaker.model.Model.deploy() method.

To use the proceeding code snippets, replace the italicized placeholder text in the
example code with your own information.

How to enable data capture

Specify a data capture configuration. You can capture the request payload, the response payload,
or both with this configuration. The proceeding code snippet demonstrates how to enable data
capture using the AWS SDK for Python (Boto) and the SageMaker Python SDK.

Note

You do not need to use Model Monitor to capture request or response payloads.

AWS SDK for Python (Boto)

Configure the data you want to capture with the DataCaptureConfig dictionary when you create
an endpoint using the CreateEndpointConfig method. Set EnableCapture to the boolean
value True. In addition, provide the following mandatory parameters:

• EndpointConfigName: the name of your endpoint configuration. You will use this name
when you make a CreateEndpoint request.

• ProductionVariants: a list of models you want to host at this endpoint. Define a
dictionary data type for each model.

• DataCaptureConfig: dictionary data type where you specify an integer value that
corresponds to the initial percentage of data to sample (InitialSamplingPercentage),
the Amazon S3 URI where you want captured data to be stored, and a capture options
(CaptureOptions) list. Specify either Input or Output for CaptureMode within the
CaptureOptions list.

You can optionally specify how SageMaker should encode captured data by passing key-value
pair arguments to the CaptureContentTypeHeader dictionary.

Create an endpoint config name.
endpoint_config_name = '<endpoint-config-name>'

Capture data from real-time endpoint 5136

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataCaptureConfig.html

Amazon SageMaker Developer Guide

The name of the production variant.
variant_name = '<name-of-production-variant>'

The name of the model that you want to host.
This is the name that you specified when creating the model.
model_name = '<The_name_of_your_model>'

instance_type = '<instance-type>'
#instance_type='ml.m5.xlarge' # Example

Number of instances to launch initially.
initial_instance_count = <integer>

Sampling percentage. Choose an integer value between 0 and 100
initial_sampling_percentage = <integer>

The S3 URI containing the captured data
s3_capture_upload_path = 's3://<bucket-name>/<data_capture_s3_key>'

Specify either Input, Output, or both
capture_modes = ["Input", "Output"]
#capture_mode = ["Input"] # Example - If you want to capture input only

endpoint_config_response = sagemaker_client.create_endpoint_config(
 EndpointConfigName=endpoint_config_name,
 # List of ProductionVariant objects, one for each model that you want to host at
 this endpoint.
 ProductionVariants=[
 {
 "VariantName": variant_name,
 "ModelName": model_name,
 "InstanceType": instance_type, # Specify the compute instance type.
 "InitialInstanceCount": initial_instance_count # Number of instances to
 launch initially.
 }
],
 DataCaptureConfig= {
 'EnableCapture': True, # Whether data should be captured or not.
 'InitialSamplingPercentage' : initial_sampling_percentage,
 'DestinationS3Uri': s3_capture_upload_path,

Capture data from real-time endpoint 5137

Amazon SageMaker Developer Guide

 'CaptureOptions': [{"CaptureMode" : capture_mode} for capture_mode in
 capture_modes] # Example - Use list comprehension to capture both Input and Output
 }
)

For more information about other endpoint configuration options, see the
CreateEndpointConfig API in the Amazon SageMaker Service API Reference Guide.

SageMaker Python SDK

Import the DataCaptureConfig Class from sagemaker.model_monitor module. Enable data
capture by setting EnableCapture to the boolean value True.

Optionally provide arguments for the following parameters:

• SamplingPercentage: an integer value that corresponds to percentage of data to sample.
If you do not provide a sampling percentage, SageMaker will sample a default of 20 (20%) of
your data.

• DestinationS3Uri: the Amazon S3 URI SageMaker will use to store captured data. If you
do not provide one, SageMaker will store captured data in "s3://<default-session-
bucket>/ model-monitor/data-capture".

from sagemaker.model_monitor import DataCaptureConfig

Set to True to enable data capture
enable_capture = True

Optional - Sampling percentage. Choose an integer value between 0 and 100
sampling_percentage = <int>
sampling_percentage = 30 # Example 30%

Optional - The S3 URI of stored captured-data location
s3_capture_upload_path = 's3://<bucket-name>/<data_capture_s3_key>'

Specify either Input, Output or both.
capture_modes = ['REQUEST','RESPONSE'] # In this example, we specify both
capture_mode = ['REQUEST'] # Example - If you want to only capture input.

Configuration object passed in when deploying Models to SM endpoints
data_capture_config = DataCaptureConfig(

Capture data from real-time endpoint 5138

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Operations_Amazon_SageMaker_Service.html
https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html

Amazon SageMaker Developer Guide

 enable_capture = enable_capture,
 sampling_percentage = sampling_percentage, # Optional
 destination_s3_uri = s3_capture_upload_path, # Optional
 capture_options = ["REQUEST", "RESPONSE"],
)

Deploy your model

Deploy your model and create an HTTPS endpoint with DataCapture enabled.

AWS SDK for Python (Boto3)

Provide the endpoint configuration to SageMaker. The service launches the ML compute
instances and deploys the model or models as specified in the configuration.

Once you have your model and endpoint configuration, use the CreateEndpoint API to create
your endpoint. The endpoint name must be unique within an AWS Region in your AWS account.

The following creates an endpoint using the endpoint configuration specified in the request.
Amazon SageMaker uses the endpoint to provision resources and deploy models.

The name of the endpoint. The name must be unique within an AWS Region in your AWS
 account.
endpoint_name = '<endpoint-name>'

The name of the endpoint configuration associated with this endpoint.
endpoint_config_name='<endpoint-config-name>'

create_endpoint_response = sagemaker_client.create_endpoint(
 EndpointName=endpoint_name,

 EndpointConfigName=endpoint_config_name)

For more information, see the CreateEndpoint API.

SageMaker Python SDK

Define a name for your endpoint. This step is optional. If you do not provide one, SageMaker
will create a unique name for you:

from datetime import datetime

Capture data from real-time endpoint 5139

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

endpoint_name = f"DEMO-{datetime.utcnow():%Y-%m-%d-%H%M}"
print("EndpointName =", endpoint_name)

Deploy your model to a real-time, HTTPS endpoint with the Model object’s built-in deploy()
method. Provide the name of the Amazon EC2 instance type to deploy this model to in the
instance_type field along with the initial number of instances to run the endpoint on for the
initial_instance_count field:

initial_instance_count=<integer>
initial_instance_count=1 # Example

instance_type='<instance-type>'
instance_type='ml.m4.xlarge' # Example

Uncomment if you did not define this variable in the previous step
#data_capture_config = <name-of-data-capture-configuration>

model.deploy(
 initial_instance_count=initial_instance_count,
 instance_type=instance_type,
 endpoint_name=endpoint_name,
 data_capture_config=data_capture_config
)

View Captured Data

Create a predictor object from the SageMaker Python SDK Predictor Class. You will use the object
returned by the Predictor Class to invoke your endpoint in a future step. Provide the name of
your endpoint (defined earlier as endpoint_name), along with serializer and deserializer objects
for the serializer and deserializer, respectively. For information about serializer types, see the
Serializers Class in the SageMaker Python SDK.

from sagemaker.predictor import Predictor
from sagemaker.serializers import <Serializer>
from sagemaker.deserializers import <Deserializers>

predictor = Predictor(endpoint_name=endpoint_name,
 serializer = <Serializer_Class>,
 deserializer = <Deserializer_Class>)

Capture data from real-time endpoint 5140

https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html
https://sagemaker.readthedocs.io/en/stable/api/inference/serializers.html
https://sagemaker.readthedocs.io/en/stable/index.html

Amazon SageMaker Developer Guide

Example
#from sagemaker.predictor import Predictor
#from sagemaker.serializers import CSVSerializer
#from sagemaker.deserializers import JSONDeserializer

#predictor = Predictor(endpoint_name=endpoint_name,
serializer=CSVSerializer(),
deserializer=JSONDeserializer())

In the proceeding code example scenario we invoke the endpoint with sample validation data
that we have stored locally in a CSV file named validation_with_predictions. Our sample
validation set contains labels for each input.

The first few lines of the with statement first opens the validation set CSV file, then splits each row
within the file by the comma character ",", and then stores the two returned objects into a label
and input_cols variables. For each row, the input (input_cols) is passed to the predictor variable's
(predictor) objects built-in method Predictor.predict().

Suppose the model returns a probability. Probabilities range between integer values of 0 and 1.0. If
the probability returned by the model is greater than 80% (0.8) we assign the prediction an integer
value label of 1. Otherwise, we assign the prediction an integer value label of 0.

from time import sleep

validate_dataset = "validation_with_predictions.csv"

Cut off threshold of 80%
cutoff = 0.8

limit = 200 # Need at least 200 samples to compute standard deviations
i = 0
with open(f"test_data/{validate_dataset}", "w") as validation_file:
 validation_file.write("probability,prediction,label\n") # CSV header
 with open("test_data/validation.csv", "r") as f:
 for row in f:
 (label, input_cols) = row.split(",", 1)
 probability = float(predictor.predict(input_cols))
 prediction = "1" if probability > cutoff else "0"
 baseline_file.write(f"{probability},{prediction},{label}\n")
 i += 1
 if i > limit:
 break

Capture data from real-time endpoint 5141

Amazon SageMaker Developer Guide

 print(".", end="", flush=True)
 sleep(0.5)
print()
print("Done!")

Because you enabled the data capture in the previous steps, the request and response payload,
along with some additional meta data, is saved in the Amazon S3 location that you specified in
DataCaptureConfig. The delivery of capture data to Amazon S3 can require a couple of minutes.

View captured data by listing the data capture files stored in Amazon S3. The format of the
Amazon S3 path is: s3:///{endpoint-name}/{variant-name}/yyyy/mm/dd/hh/
filename.jsonl.

Expect to see different files from different time periods, organized based on the hour when the
invocation occurred. Run the following to print out the contents of a single capture file:

print("\n".join(capture_file[-3:-1]))

This will return a SageMaker specific JSON-line formatted file. The following is a response sample
taken from a real-time endpoint that we invoked using csv/text data:

{"captureData":{"endpointInput":{"observedContentType":"text/csv","mode":"INPUT",
"data":"69,0,153.7,109,194.0,105,256.1,114,14.1,6,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0\n",
"encoding":"CSV"},"endpointOutput":{"observedContentType":"text/csv;
 charset=utf-8","mode":"OUTPUT","data":"0.0254181120544672","encoding":"CSV"}},
"eventMetadata":{"eventId":"aaaaaaaa-bbbb-cccc-dddd-
eeeeeeeeeeee","inferenceTime":"2022-02-14T17:25:49Z"},"eventVersion":"0"}
{"captureData":{"endpointInput":{"observedContentType":"text/csv","mode":"INPUT",
"data":"94,23,197.1,125,214.5,136,282.2,103,9.5,5,4,0,1,0,0,0,1,0,1,0,1\n",
"encoding":"CSV"},"endpointOutput":{"observedContentType":"text/csv;
 charset=utf-8","mode":"OUTPUT","data":"0.07675473392009735","encoding":"CSV"}},
"eventMetadata":{"eventId":"aaaaaaaa-bbbb-cccc-dddd-
eeeeeeeeeeee","inferenceTime":"2022-02-14T17:25:49Z"},"eventVersion":"0"}

In the proceeding example, the capture_file object is a list type. Index the first element of the
list to view a single inference request.

The capture_file object is a list. Index the first element to view a single inference
 request
print(json.dumps(json.loads(capture_file[0]), indent=2))

Capture data from real-time endpoint 5142

Amazon SageMaker Developer Guide

This will return a response similar to the following. The values returned will differ based on your
endpoint configuration, SageMaker model, and captured data:

{
 "captureData": {
 "endpointInput": {
 "observedContentType": "text/csv", # data MIME type
 "mode": "INPUT",
 "data":
 "50,0,188.9,94,203.9,104,151.8,124,11.6,8,3,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0\n",
 "encoding": "CSV"
 },
 "endpointOutput": {
 "observedContentType": "text/csv; charset=character-encoding",
 "mode": "OUTPUT",
 "data": "0.023190177977085114",
 "encoding": "CSV"
 }
 },
 "eventMetadata": {
 "eventId": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "inferenceTime": "2022-02-14T17:25:06Z"
 },
 "eventVersion": "0"
}

Capture data from batch transform job

The steps required to turn on data capture for your batch transform job are similar whether
you use the AWS SDK for Python (Boto) or the SageMaker Python SDK. If you use the
AWS SDK, define the DataCaptureConfig dictionary, along with required fields, within the
CreateTransformJob method to turn on data capture. If you use the SageMaker Python SDK,
import the BatchDataCaptureConfig class and initialize an instance from this class. Then, pass
this object to the batch_data_capture_config parameter of your transform job instance.

To use the following code snippets, replace the italicized placeholder text in the example
code with your own information.

How to enable data capture

Specify a data capture configuration when you launch a transform job. Whether you use the AWS
SDK for Python (Boto3) or the SageMaker Python SDK, you must provide the DestinationS3Uri

Capture data from batch transform job 5143

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataCaptureConfig.html

Amazon SageMaker Developer Guide

argument, which is the directory where you want the transform job to log the captured data.
Optionally, you can also set the following parameters:

• KmsKeyId: The AWS KMS key used to encrypt the captured data.

• GenerateInferenceId: A Boolean flag that, when capturing the data, indicates if you want
the transform job to append the inference ID and time to your output. This is useful for model
quality monitoring, where you need to ingest the Ground Truth data. The inference ID and time
help to match the captured data with your Ground Truth data.

AWS SDK for Python (Boto3)

Configure the data you want to capture with the DataCaptureConfig dictionary when you create
a transform job using the CreateTransformJob method.

input_data_s3_uri = "s3://input_S3_uri"
output_data_s3_uri = "s3://output_S3_uri"
data_capture_destination = "s3://captured_data_S3_uri"

model_name = "model_name"

sm_client.create_transform_job(
 TransformJobName="transform_job_name",
 MaxConcurrentTransforms=2,
 ModelName=model_name,
 TransformInput={
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": input_data_s3_uri,
 }
 },
 "ContentType": "text/csv",
 "CompressionType": "None",
 "SplitType": "Line",
 },
 TransformOutput={
 "S3OutputPath": output_data_s3_uri,
 "Accept": "text/csv",
 "AssembleWith": "Line",
 },
 TransformResources={

Capture data from batch transform job 5144

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataCaptureConfig.html

Amazon SageMaker Developer Guide

 "InstanceType": "ml.m4.xlarge",
 "InstanceCount": 1,
 },
 DataCaptureConfig={
 "DestinationS3Uri": data_capture_destination,
 "KmsKeyId": "kms_key",
 "GenerateInferenceId": True,
 }
)

SageMaker Python SDK

Import the BatchDataCaptureConfig class from the sagemaker.model_monitor.

from sagemaker.transformer import Transformer
from sagemaker.inputs import BatchDataCaptureConfig

Optional - The S3 URI of where to store captured data in S3
data_capture_destination = "s3://captured_data_S3_uri"

model_name = "model_name"

transformer = Transformer(model_name=model_name, ...)
transform_arg = transformer.transform(
 batch_data_capture_config=BatchDataCaptureConfig(
 destination_s3_uri=data_capture_destination,
 kms_key_id="kms_key",
 generate_inference_id=True,
),
 ...
)

How to view data captured

Once the transform job completes, the captured data gets logged under the DestinationS3Uri
you provided with the data capture configuration. There are two subdirectories under
DestinationS3Uri, /input and /output. If DestinationS3Uri is s3://my-data-capture,
then the transform job creates the the following directories:

• s3://my-data-capture/input: The captured input data for the transform job.

• s3://my-data-capture/output: The captured output data for the transform job.

Capture data from batch transform job 5145

https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html

Amazon SageMaker Developer Guide

To avoid data duplication, the captured data under the preceding two directories are manifests.
Each manifest is a JSONL file that contains the Amazon S3 locations of the source objects. A
manifest file may look like the following example:

under "/input" directory
[
 {"prefix":"s3://input_S3_uri/"},
 "dummy_0.csv",
 "dummy_1.csv",
 "dummy_2.csv",
 ...
]

under "/output" directory
[
 {"prefix":"s3://output_S3_uri/"},
 "dummy_0.csv.out",
 "dummy_1.csv.out",
 "dummy_2.csv.out",
 ...
]

The transform job organizes and labels these manifests with a yyyy/mm/dd/hh S3 prefix to
indicate when they were captured. This helps the model monitor determine the appropriate
portion of data to analyze. For example, if you start your transform job at 2022-8-26 13PM UTC,
then the captured data is labeled with a 2022/08/26/13/ prefix string.

InferenceId Generation

When you configure DataCaptureConfig for a transform job, you can turn on the Boolean flag
GenerateInferenceId. This is particularly useful when you need to run model quality and model
bias monitoring jobs, for which you need user-ingested Ground Truth data. Model monitor relies on
an inference ID to match the captured data and the Ground Truth data. For addition details about
Ground Truth ingestion, see Ingest Ground Truth Labels and Merge Them With Predictions. When
GenerateInferenceId is on, the transform output appends an inference ID (a random UUID)
as well as the transform job start time in UTC for each record. You need these two values to run
model quality and model bias monitoring. When you construct the Ground Truth data, you need to
provide the same inference ID to match the output data. Currently, this feature supports transform
outputs in CSV, JSON, and JSONL formats.

If your transform output is in CSV format, the output file looks like the following example:

Capture data from batch transform job 5146

Amazon SageMaker Developer Guide

0, 1f1d57b1-2e6f-488c-8c30-db4e6d757861,2022-08-30T00:49:15Z
1, 22445434-0c67-45e9-bb4d-bd1bf26561e6,2022-08-30T00:49:15Z
...

The last two columns are inference ID and the transform job start time. Do not modify them. The
remaining columns are your transform job outputs.

If your transform output is in JSON or JSONL format, the output file looks like the following
example:

{"output": 0, "SageMakerInferenceId": "1f1d57b1-2e6f-488c-8c30-db4e6d757861",
 "SageMakerInferenceTime": "2022-08-30T00:49:15Z"}
{"output": 1, "SageMakerInferenceId": "22445434-0c67-45e9-bb4d-bd1bf26561e6",
 "SageMakerInferenceTime": "2022-08-30T00:49:15Z"}
...

There are two appended fields that are reserved, SageMakerInferenceId and
SageMakerInferenceTime. Do not modify these fields if you need to run model quality or model
bias monitoring — you need them for merge jobs.

Monitor data quality

Data quality monitoring automatically monitors machine learning (ML) models in production and
notifies you when data quality issues arise. ML models in production have to make predictions on
real-life data that is not carefully curated like most training datasets. If the statistical nature of the
data that your model receives while in production drifts away from the nature of the baseline data
it was trained on, the model begins to lose accuracy in its predictions. Amazon SageMaker Model
Monitor uses rules to detect data drift and alerts you when it happens. To monitor data quality,
follow these steps:

• Enable data capture. This captures inference input and output from a real-time inference
endpoint or batch transform job and stores the data in Amazon S3. For more information, see
Capture data.

• Create a baseline. In this step, you run a baseline job that analyzes an input dataset that you
provide. The baseline computes baseline schema constraints and statistics for each feature using
Deequ, an open source library built on Apache Spark, which is used to measure data quality in
large datasets. For more information, see Create a Baseline.

Monitor data quality 5147

https://github.com/awslabs/deequ

Amazon SageMaker Developer Guide

• Define and schedule data quality monitoring jobs. For specific information and code samples of
data quality monitoring jobs, see Schedule data quality monitoring jobs. For general information
about monitoring jobs, see Schedule monitoring jobs.

• Optionally use preprocessing and postprocessing scripts to transform the data coming out of
your data quality analysis. For more information, see Preprocessing and Postprocessing.

• View data quality metrics. For more information, see Schema for Statistics (statistics.json file).

• Integrate data quality monitoring with Amazon CloudWatch. For more information, see
CloudWatch Metrics.

• Interpret the results of a monitoring job. For more information, see Interpret results.

• Use SageMaker Studio to enable data quality monitoring and visualize results if you are using
a real-time endpoint. For more information, see Visualize results for real-time endpoints in
Amazon SageMaker Studio.

Note

Model Monitor computes model metrics and statistics on tabular data only. For example,
an image classification model that takes images as input and outputs a label based on
that image can still be monitored. Model Monitor would be able to calculate metrics and
statistics for the output, not the input.

Topics

• Create a Baseline

• Schedule data quality monitoring jobs

• Schema for Statistics (statistics.json file)

• CloudWatch Metrics

• Schema for Violations (constraint_violations.json file)

Create a Baseline

The baseline calculations of statistics and constraints are needed as a standard against which data
drift and other data quality issues can be detected. Model Monitor provides a built-in container
that provides the ability to suggest the constraints automatically for CSV and flat JSON input. This
sagemaker-model-monitor-analyzer container also provides you with a range of model monitoring

Create a Baseline 5148

Amazon SageMaker Developer Guide

capabilities, including constraint validation against a baseline, and emitting Amazon CloudWatch
metrics. This container is based on Spark version 3.3.0 and is built with Deequ version 2.0.2. All
column names in your baseline dataset must be compliant with Spark. For column names, use only
lowercase characters, and _ as the only special character.

The training dataset that you used to train the model is usually a good baseline dataset. The
training dataset data schema and the inference dataset schema should exactly match (the number
and order of the features). Note that the prediction/output columns are assumed to be the first
columns in the training dataset. From the training dataset, you can ask SageMaker to suggest a set
of baseline constraints and generate descriptive statistics to explore the data. For this example,
upload the training dataset that was used to train the pretrained model included in this example. If
you already stored the training dataset in Amazon S3, you can point to it directly.

To Create a baseline from a training dataset

When you have your training data ready and stored in Amazon S3, start a baseline processing
job with DefaultModelMonitor.suggest_baseline(..) using the Amazon SageMaker
Python SDK. This uses an Amazon SageMaker Model Monitor prebuilt container that generates
baseline statistics and suggests baseline constraints for the dataset and writes them to the
output_s3_uri location that you specify.

from sagemaker.model_monitor import DefaultModelMonitor
from sagemaker.model_monitor.dataset_format import DatasetFormat

my_default_monitor = DefaultModelMonitor(
 role=role,
 instance_count=1,
 instance_type='ml.m5.xlarge',
 volume_size_in_gb=20,
 max_runtime_in_seconds=3600,
)

my_default_monitor.suggest_baseline(
 baseline_dataset=baseline_data_uri+'/training-dataset-with-header.csv',
 dataset_format=DatasetFormat.csv(header=True),
 output_s3_uri=baseline_results_uri,
 wait=True
)

Create a Baseline 5149

https://github.com/awslabs/deequ
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Note

If you provide the feature/column names in the training dataset as the first row and set the
header=True option as shown in the previous code sample, SageMaker uses the feature
name in the constraints and statistics file.

The baseline statistics for the dataset are contained in the statistics.json file and the suggested
baseline constraints are contained in the constraints.json file in the location you specify with
output_s3_uri.

Output Files for Tabular Dataset Statistics and Constraints

File Name Description

statistics.json This file is expected to have columnar statistic
s for each feature in the dataset that is
analyzed. For more information about the
schema for this file, see Schema for Statistics
(statistics.json file).

constraints.json This file is expected to have the constraints on
the features observed. For more information
about the schema for this file, see Schema for
Constraints (constraints.json file).

The Amazon SageMaker Python SDK provides convenience functions described to generate the
baseline statistics and constraints. But if you want to call processing job directly for this purpose
instead, you need to set the Environment map as shown in the following example:

"Environment": {
 "dataset_format": "{\"csv\”: { \”header\”: true}",
 "dataset_source": "/opt/ml/processing/sm_input",
 "output_path": "/opt/ml/processing/sm_output",
 "publish_cloudwatch_metrics": "Disabled",
}

Create a Baseline 5150

https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Schedule data quality monitoring jobs

After you create your baseline, you can call the create_monitoring_schedule() method
of your DefaultModelMonitor class instance to schedule an hourly data quality monitor. The
following sections show you how to create a data quality monitor for a model deployed to a real-
time endpoint as well as for a batch transform job.

Important

You can specify either a batch transform input or an endpoint input, but not both, when
you create your monitoring schedule.

Data quality monitoring for models deployed to real-time endpoints

To schedule a data quality monitor for a real-time endpoint, pass your EndpointInput instance
to the endpoint_input argument of your DefaultModelMonitor instance, as shown in the
following code sample:

from sagemaker.model_monitor import CronExpressionGenerator

data_quality_model_monitor = DefaultModelMonitor(
 role=sagemaker.get_execution_role(),
 ...
)

schedule = data_quality_model_monitor.create_monitoring_schedule(
 monitor_schedule_name=schedule_name,
 post_analytics_processor_script=s3_code_postprocessor_uri,
 output_s3_uri=s3_report_path,
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 statistics=data_quality_model_monitor.baseline_statistics(),
 constraints=data_quality_model_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
 endpoint_input=EndpointInput(
 endpoint_name=endpoint_name,
 destination="/opt/ml/processing/input/endpoint",
)
)

Schedule data quality monitoring jobs 5151

Amazon SageMaker Developer Guide

Data quality monitoring for batch transform jobs

To schedule a data quality monitor for a batch transform job, pass your BatchTransformInput
instance to the batch_transform_input argument of your DefaultModelMonitor instance, as
shown in the following code sample:

from sagemaker.model_monitor import CronExpressionGenerator

data_quality_model_monitor = DefaultModelMonitor(
 role=sagemaker.get_execution_role(),
 ...
)

schedule = data_quality_model_monitor.create_monitoring_schedule(
 monitor_schedule_name=mon_schedule_name,
 batch_transform_input=BatchTransformInput(
 data_captured_destination_s3_uri=s3_capture_upload_path,
 destination="/opt/ml/processing/input",
 dataset_format=MonitoringDatasetFormat.csv(header=False),
),
 output_s3_uri=s3_report_path,
 statistics= statistics_path,
 constraints = constraints_path,
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
)

Schema for Statistics (statistics.json file)

Amazon SageMaker Model Monitor prebuilt container computes per column/feature statistics.
The statistics are calculated for the baseline dataset and also for the current dataset that is being
analyzed.

{
 "version": 0,
 # dataset level stats
 "dataset": {
 "item_count": number
 },
 # feature level stats
 "features": [
 {

Statistics 5152

Amazon SageMaker Developer Guide

 "name": "feature-name",
 "inferred_type": "Fractional" | "Integral",
 "numerical_statistics": {
 "common": {
 "num_present": number,
 "num_missing": number
 },
 "mean": number,
 "sum": number,
 "std_dev": number,
 "min": number,
 "max": number,
 "distribution": {
 "kll": {
 "buckets": [
 {
 "lower_bound": number,
 "upper_bound": number,
 "count": number
 }
],
 "sketch": {
 "parameters": {
 "c": number,
 "k": number
 },
 "data": [
 [
 num,
 num,
 num,
 num
],
 [
 num,
 num
][
 num,
 num
]
]
 }#sketch
 }#KLL
 }#distribution

Statistics 5153

Amazon SageMaker Developer Guide

 }#num_stats
 },
 {
 "name": "feature-name",
 "inferred_type": "String",
 "string_statistics": {
 "common": {
 "num_present": number,
 "num_missing": number
 },
 "distinct_count": number,
 "distribution": {
 "categorical": {
 "buckets": [
 {
 "value": "string",
 "count": number
 }
]
 }
 }
 },
 #provision for custom stats
 }
]
}

Note the following:

• The prebuilt containers compute KLL sketch, which is a compact quantiles sketch.

• By default, we materialize the distribution in 10 buckets. This is not currently configurable.

CloudWatch Metrics

You can use the built-in Amazon SageMaker Model Monitor container for CloudWatch metrics.
When the emit_metrics option is Enabled in the baseline constraints file, SageMaker emits
these metrics for each feature/column observed in the dataset in the following namespace:

• For real-time endpoints: /aws/sagemaker/Endpoints/data-metric namespace
with EndpointName and ScheduleName dimensions.

CloudWatch Metrics 5154

https://datasketches.apache.org/docs/KLL/KLLSketch.html

Amazon SageMaker Developer Guide

• For batch transform jobs: /aws/sagemaker/ModelMonitoring/data-metric
namespace with MonitoringSchedule dimension.

For numerical fields, the built-in container emits the following CloudWatch metrics:

• Metric: Max → query for MetricName: feature_data_{feature_name}, Stat: Max

• Metric: Min → query for MetricName: feature_data_{feature_name}, Stat: Min

• Metric: Sum → query for MetricName: feature_data_{feature_name}, Stat: Sum

• Metric: SampleCount → query for MetricName: feature_data_{feature_name}, Stat:
SampleCount

• Metric: Average → query for MetricName: feature_data_{feature_name}, Stat:
Average

For both numerical and string fields, the built-in container emits the following CloudWatch metrics:

• Metric: Completeness → query for MetricName: feature_non_null_{feature_name},
Stat: Sum

• Metric: Baseline Drift → query for MetricName:
feature_baseline_drift_{feature_name}, Stat: Sum

Schema for Violations (constraint_violations.json file)

The violations file is generated as the output of a MonitoringExecution, which lists the results
of evaluating the constraints (specified in the constraints.json file) against the current dataset that
was analyzed. The Amazon SageMaker Model Monitor prebuilt container provides the following
violation checks.

{
 "violations": [{
 "feature_name" : "string",
 "constraint_check_type" :
 "data_type_check",
 | "completeness_check",
 | "baseline_drift_check",
 | "missing_column_check",
 | "extra_column_check",
 | "categorical_values_check"

Violations 5155

Amazon SageMaker Developer Guide

 "description" : "string"
 }]
}

Types of Violations Monitored

Violation Check Type Description

data_type_check If the data types in the current execution are
not the same as in the baseline dataset, this
violation is flagged.

During the baseline step, the generated
constraints suggest the inferred data type for
each column. The monitoring_config.
datatype_check_threshold parameter
can be tuned to adjust the threshold on when
it is flagged as a violation.

completeness_check If the completeness (% of non-null items)
observed in the current execution exceeds the
threshold specified in completeness threshold
specified per feature, this violation is flagged.

During the baseline step, the generated
constraints suggest a completeness value.

baseline_drift_check If the calculated distribution distance between
the current and the baseline datasets is more
than the threshold specified in monitorin
g_config.comparison_threshold ,
this violation is flagged.

missing_column_check If the number of columns in the current
dataset is less than the number in the baseline
dataset, this violation is flagged.

Violations 5156

Amazon SageMaker Developer Guide

Violation Check Type Description

extra_column_check If the number of columns in the current
dataset is more than the number in the
baseline, this violation is flagged.

categorical_values_check If there are more unknown values in the
current dataset than in the baseline dataset,
this violation is flagged. This value is dictated
by the threshold in monitoring_config.
domain_content_threshold .

Monitor model quality

Model quality monitoring jobs monitor the performance of a model by comparing the predictions
that the model makes with the actual Ground Truth labels that the model attempts to predict. To
do this, model quality monitoring merges data that is captured from real-time or batch inference
with actual labels that you store in an Amazon S3 bucket, and then compares the predictions with
the actual labels.

To measure model quality, model monitor uses metrics that depend on the ML problem type. For
example, if your model is for a regression problem, one of the metrics evaluated is mean square
error (mse). For information about all of the metrics used for the different ML problem types, see
Model Quality Metrics.

Model quality monitoring follows the same steps as data quality monitoring, but adds the
additional step of merging the actual labels from Amazon S3 with the predictions captured from
the real-time inference endpoint or batch transform job. To monitor model quality, follow these
steps:

• Enable data capture. This captures inference input and output from a real-time inference
endpoint or batch transform job and stores the data in Amazon S3. For more information, see
Capture data.

• Create a baseline. In this step, you run a baseline job that compares predictions from the model
with Ground Truth labels in a baseline dataset. The baseline job automatically creates baseline
statistical rules and constraints that define thresholds against which the model performance is
evaluated. For more information, see Create a Model Quality Baseline.

Monitor model quality 5157

Amazon SageMaker Developer Guide

• Define and schedule model quality monitoring jobs. For specific information and code samples
of model quality monitoring jobs, see Schedule Model Quality Monitoring Jobs.For general
information about monitoring jobs, see Schedule monitoring jobs.

• Ingest Ground Truth labels that model monitor merges with captured prediction data from a
real-time inference endpoint or batch transform job. For more information, see Ingest Ground
Truth Labels and Merge Them With Predictions.

• Integrate model quality monitoring with Amazon CloudWatch. For more information, see Model
Quality CloudWatch Metrics.

• Interpret the results of a monitoring job. For more information, see Interpret results.

• Use SageMaker Studio to enable model quality monitoring and visualize results. For more
information, see Visualize results for real-time endpoints in Amazon SageMaker Studio.

Topics

• Create a Model Quality Baseline

• Schedule Model Quality Monitoring Jobs

• Ingest Ground Truth Labels and Merge Them With Predictions

• Model Quality Metrics

• Model Quality CloudWatch Metrics

Create a Model Quality Baseline

Create a baseline job that compares your model predictions with ground truth labels in a baseline
dataset that you have stored in Amazon S3. Typically, you use a training dataset as the baseline
dataset. The baseline job calculates metrics for the model and suggests constraints to use to
monitor model quality drift.

To create a baseline job, you need to have a dataset that contains predictions from your model
along with labels that represent the Ground Truth for your data.

To create a baseline job use the ModelQualityMonitor class provided by the SageMaker Python
SDK, and complete the following steps.

To create a model quality baseline job

1. First, create an instance of the ModelQualityMonitor class. The following code snippet
shows how to do this.

Create a Model Quality Baseline 5158

Amazon SageMaker Developer Guide

from sagemaker import get_execution_role, session, Session
from sagemaker.model_monitor import ModelQualityMonitor

role = get_execution_role()
session = Session()

model_quality_monitor = ModelQualityMonitor(
 role=role,
 instance_count=1,
 instance_type='ml.m5.xlarge',
 volume_size_in_gb=20,
 max_runtime_in_seconds=1800,
 sagemaker_session=session
)

2. Now call the suggest_baseline method of the ModelQualityMonitor object to run
a baseline job. The following code snippet assumes that you have a baseline dataset that
contains both predictions and labels stored in Amazon S3.

baseline_job_name = "MyBaseLineJob"
job = model_quality_monitor.suggest_baseline(
 job_name=baseline_job_name,
 baseline_dataset=baseline_dataset_uri, # The S3 location of the validation
 dataset.
 dataset_format=DatasetFormat.csv(header=True),
 output_s3_uri = baseline_results_uri, # The S3 location to store the results.
 problem_type='BinaryClassification',
 inference_attribute= "prediction", # The column in the dataset that contains
 predictions.
 probability_attribute= "probability", # The column in the dataset that contains
 probabilities.
 ground_truth_attribute= "label" # The column in the dataset that contains
 ground truth labels.
)
job.wait(logs=False)

3. After the baseline job finishes, you can see the constraints that the job generated. First, get
the results of the baseline job by calling the latest_baselining_job method of the
ModelQualityMonitor object.

baseline_job = model_quality_monitor.latest_baselining_job

Create a Model Quality Baseline 5159

Amazon SageMaker Developer Guide

4. The baseline job suggests constraints, which are thresholds for metrics that model monitor
measures. If a metric goes beyond the suggested threshold, Model Monitor reports a violation.
To view the constraints that the baseline job generated, call the suggested_constraints
method of the baseline job. The following code snippet loads the constraints for a binary
classification model into a Pandas dataframe.

import pandas as pd
pd.DataFrame(baseline_job.suggested_constraints().body_dict["binary_classification_constraints"]).T

We recommend that you view the generated constraints and modify them as necessary before
using them for monitoring. For example, if a constraint is too aggressive, you might get more
alerts for violations than you want.

If your constraint contains numbers expressed in scientific notation, you will need to convert
them to float. The following python preprocessing script example shows how to convert
numbers in scientific notation to float.

import csv

def fix_scientific_notation(col):
 try:
 return format(float(col), "f")
 except:
 return col

def preprocess_handler(csv_line):
 reader = csv.reader([csv_line])
 csv_record = next(reader)
 #skip baseline header, change HEADER_NAME to the first column's name
 if csv_record[0] == “HEADER_NAME”:
 return []
 return { str(i).zfill(20) : fix_scientific_notation(d) for i, d in
 enumerate(csv_record)}

You can add your pre-processing script to a baseline or monitoring schedule as a
record_preprocessor_script, as defined in the Model Monitor documentation.

5. When you are satisfied with the constraints, pass them as the constraints parameter
when you create a monitoring schedule. For more information, see Schedule Model Quality
Monitoring Jobs.

Create a Model Quality Baseline 5160

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-pre-and-post-processing.html#model-monitor-pre-processing-script
https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html

Amazon SageMaker Developer Guide

The suggested baseline constraints are contained in the constraints.json file in the location you
specify with output_s3_uri. For information about the schema for this file in the Schema for
Constraints (constraints.json file).

Schedule Model Quality Monitoring Jobs

After you create your baseline, you can call the create_monitoring_schedule() method of
your ModelQualityMonitor class instance to schedule an hourly model quality monitor. The
following sections show you how to create a model quality monitor for a model deployed to a real-
time endpoint as well as for a batch transform job.

Important

You can specify either a batch transform input or an endpoint input, but not both, when
you create your monitoring schedule.

Unlike data quality monitoring, you need to supply Ground Truth labels if you want to monitor
model quality. However, Ground Truth labels could be delayed. To address this, specify offsets
when you create your monitoring schedule.

Model monitor offsets

Model quality jobs include StartTimeOffset and EndTimeOffset, which are fields of the
ModelQualityJobInput parameter of the create_model_quality_job_definition
method that work as follows:

• StartTimeOffset - If specified, jobs subtract this time from the start time.

• EndTimeOffset - If specified, jobs subtract this time from the end time.

The format of the offsets are, for example, -PT7H, where 7H is 7 hours. You can use -PT#H or -P#D,
where H=hours, D=days, and M=minutes, and # is the number. In addition, the offset should be in
ISO 8601 duration format.

For example, if your Ground Truth starts coming in after 1 day, but is not complete for a week,
set StartTimeOffset to -P8D and EndTimeOffset to -P1D. Then, if you schedule a job
to run at 2020-01-09T13:00, it analyzes data from between 2020-01-01T13:00 and
2020-01-08T13:00.

Schedule Model Quality Monitoring Jobs 5161

https://en.wikipedia.org/wiki/ISO_8601#Durations

Amazon SageMaker Developer Guide

Important

The schedule cadence should be such that one execution finishes before the next execution
starts, which allows the Ground Truth merge job and monitoring job from the execution to
complete. The maximum runtime of an execution is divided between the two jobs, so for
an hourly model quality monitoring job, the value of MaxRuntimeInSeconds specified as
part of StoppingCondition should be no more than 1800.

Model quality monitoring for models deployed to real-time endpoints

To schedule a model quality monitor for a real-time endpoint, pass your EndpointInput instance
to the endpoint_input argument of your ModelQualityMonitor instance, as shown in the
following code sample:

from sagemaker.model_monitor import CronExpressionGenerator

model_quality_model_monitor = ModelQualityMonitor(
 role=sagemaker.get_execution_role(),
 ...
)

schedule = model_quality_model_monitor.create_monitoring_schedule(
 monitor_schedule_name=schedule_name,
 post_analytics_processor_script=s3_code_postprocessor_uri,
 output_s3_uri=s3_report_path,
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 statistics=model_quality_model_monitor.baseline_statistics(),
 constraints=model_quality_model_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
 endpoint_input=EndpointInput(
 endpoint_name=endpoint_name,
 destination="/opt/ml/processing/input/endpoint",
 start_time_offset="-PT2D",
 end_time_offset="-PT1D",
)
)

Schedule Model Quality Monitoring Jobs 5162

Amazon SageMaker Developer Guide

Model quality monitoring for batch transform jobs

To schedule a model quality monitor for a batch transform job, pass your BatchTransformInput
instance to the batch_transform_input argument of your ModelQualityMonitor instance, as
shown in the following code sample:

from sagemaker.model_monitor import CronExpressionGenerator

model_quality_model_monitor = ModelQualityMonitor(
 role=sagemaker.get_execution_role(),
 ...
)

schedule = model_quality_model_monitor.create_monitoring_schedule(
 monitor_schedule_name=mon_schedule_name,
 batch_transform_input=BatchTransformInput(
 data_captured_destination_s3_uri=s3_capture_upload_path,
 destination="/opt/ml/processing/input",
 dataset_format=MonitoringDatasetFormat.csv(header=False),
 # the column index of the output representing the inference probablity
 probability_attribute="0",
 # the threshold to classify the inference probablity to class 0 or 1 in
 # binary classification problem
 probability_threshold_attribute=0.5,
 # look back 6 hour for transform job outputs.
 start_time_offset="-PT6H",
 end_time_offset="-PT0H"
),
 ground_truth_input=gt_s3_uri,
 output_s3_uri=s3_report_path,
 problem_type="BinaryClassification",
 constraints = constraints_path,
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
)

Ingest Ground Truth Labels and Merge Them With Predictions

Model quality monitoring compares the predictions your model makes with ground truth labels to
measure the quality of the model. For this to work, you periodically label data captured by your
endpoint or batch transform job and upload it to Amazon S3.

Ingest Ground Truth Labels and Merge Them With Predictions 5163

Amazon SageMaker Developer Guide

To match Ground Truth labels with captured prediction data, there must be a unique identifier for
each record in the dataset. The structure of each record for ground truth data is as follows:

{
 "groundTruthData": {
 "data": "1",
 "encoding": "CSV" # only CSV supported at launch, we assume "data" only consists of
 label
 },
 "eventMetadata": {
 "eventId": "aaaa-bbbb-cccc"
 },
 "eventVersion": "0"
}

In the groundTruthData structure, eventId can be one of the following:

• eventId – This ID is automatically generated when a user invokes the endpoint.

• inferenceId – The caller supplies this ID when they invoke the endpoint.

If inferenceId is present in captured data records, Model Monitor uses it to merge captured
data with Ground Truth records. You are responsible for making sure that the inferenceId in the
Ground Truth records match the inferenceId in the captured records. If inferenceId is not
present in captured data, model monitor uses eventId from the captured data records to match
them with a Ground Truth record.

You must upload Ground Truth data to an Amazon S3 bucket that has the same path format as
captured data, which is of the following form:

s3://bucket/prefix/yyyy/mm/dd/hh

The date in this path is the date when the Ground Truth label is collected, and does not have to
match the date when the inference was generated.

After you create and upload the Ground Truth labels, include the location of the labels as
a parameter when you create the monitoring job. If you are using AWS SDK for Python
(Boto3), do this by specifying the location of Ground Truth labels as the S3Uri field of the
GroundTruthS3Input parameter in a call to the create_model_quality_job_definition
method. If you are using the SageMaker Python SDK, specify the location of the

Ingest Ground Truth Labels and Merge Them With Predictions 5164

Amazon SageMaker Developer Guide

Ground Truth labels as the ground_truth_input parameter in the call to the
create_monitoring_schedule of the ModelQualityMonitor object.

Model Quality Metrics

Model quality monitoring jobs compute different metrics depending on the ML problem type. The
following sections list the metrics analyzed for each ML problem type.

Note

Standard deviation for metrics are provided only when at least 200 samples are available.
Model Monitor computes standard deviation by randomly sampling 80% of the data 5
times, computing the metric, and taking the standard deviation for those results.

Regression Metrics

The following shows an example of the metrics that model quality monitor computes for a
regression problem.

"regression_metrics" : {
 "mae" : {
 "value" : 0.3711832061068702,
 "standard_deviation" : 0.0037566388129940394
 },
 "mse" : {
 "value" : 0.3711832061068702,
 "standard_deviation" : 0.0037566388129940524
 },
 "rmse" : {
 "value" : 0.609248066149471,
 "standard_deviation" : 0.003079253267651125
 },
 "r2" : {
 "value" : -1.3766111872212665,
 "standard_deviation" : 0.022653980022771227
 }
 }

Model Quality Metrics 5165

Amazon SageMaker Developer Guide

Binary Classification Metrics

The following shows an example of the metrics that model quality monitor computes for a binary
classification problem.

"binary_classification_metrics" : {
 "confusion_matrix" : {
 "0" : {
 "0" : 1,
 "1" : 2
 },
 "1" : {
 "0" : 0,
 "1" : 1
 }
 },
 "recall" : {
 "value" : 1.0,
 "standard_deviation" : "NaN"
 },
 "precision" : {
 "value" : 0.3333333333333333,
 "standard_deviation" : "NaN"
 },
 "accuracy" : {
 "value" : 0.5,
 "standard_deviation" : "NaN"
 },
 "recall_best_constant_classifier" : {
 "value" : 1.0,
 "standard_deviation" : "NaN"
 },
 "precision_best_constant_classifier" : {
 "value" : 0.25,
 "standard_deviation" : "NaN"
 },
 "accuracy_best_constant_classifier" : {
 "value" : 0.25,
 "standard_deviation" : "NaN"
 },
 "true_positive_rate" : {
 "value" : 1.0,
 "standard_deviation" : "NaN"

Model Quality Metrics 5166

Amazon SageMaker Developer Guide

 },
 "true_negative_rate" : {
 "value" : 0.33333333333333337,
 "standard_deviation" : "NaN"
 },
 "false_positive_rate" : {
 "value" : 0.6666666666666666,
 "standard_deviation" : "NaN"
 },
 "false_negative_rate" : {
 "value" : 0.0,
 "standard_deviation" : "NaN"
 },
 "receiver_operating_characteristic_curve" : {
 "false_positive_rates" : [0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
 "true_positive_rates" : [0.0, 0.25, 0.5, 0.75, 1.0, 1.0]
 },
 "precision_recall_curve" : {
 "precisions" : [1.0, 1.0, 1.0, 1.0, 1.0],
 "recalls" : [0.0, 0.25, 0.5, 0.75, 1.0]
 },
 "auc" : {
 "value" : 1.0,
 "standard_deviation" : "NaN"
 },
 "f0_5" : {
 "value" : 0.3846153846153846,
 "standard_deviation" : "NaN"
 },
 "f1" : {
 "value" : 0.5,
 "standard_deviation" : "NaN"
 },
 "f2" : {
 "value" : 0.7142857142857143,
 "standard_deviation" : "NaN"
 },
 "f0_5_best_constant_classifier" : {
 "value" : 0.29411764705882354,
 "standard_deviation" : "NaN"
 },
 "f1_best_constant_classifier" : {
 "value" : 0.4,
 "standard_deviation" : "NaN"

Model Quality Metrics 5167

Amazon SageMaker Developer Guide

 },
 "f2_best_constant_classifier" : {
 "value" : 0.625,
 "standard_deviation" : "NaN"
 }
 }

Multiclass Metrics

The following shows an example of the metrics that model quality monitor computes for a
multiclass classification problem.

"multiclass_classification_metrics" : {
 "confusion_matrix" : {
 "0" : {
 "0" : 1180,
 "1" : 510
 },
 "1" : {
 "0" : 268,
 "1" : 138
 }
 },
 "accuracy" : {
 "value" : 0.6288167938931297,
 "standard_deviation" : 0.00375663881299405
 },
 "weighted_recall" : {
 "value" : 0.6288167938931297,
 "standard_deviation" : 0.003756638812994008
 },
 "weighted_precision" : {
 "value" : 0.6983172269629505,
 "standard_deviation" : 0.006195912915307507
 },
 "weighted_f0_5" : {
 "value" : 0.6803947317178771,
 "standard_deviation" : 0.005328406973561699
 },
 "weighted_f1" : {
 "value" : 0.6571162346664904,
 "standard_deviation" : 0.004385008075019733
 },

Model Quality Metrics 5168

Amazon SageMaker Developer Guide

 "weighted_f2" : {
 "value" : 0.6384024354394601,
 "standard_deviation" : 0.003867109755267757
 },
 "accuracy_best_constant_classifier" : {
 "value" : 0.19370229007633588,
 "standard_deviation" : 0.0032049848450732355
 },
 "weighted_recall_best_constant_classifier" : {
 "value" : 0.19370229007633588,
 "standard_deviation" : 0.0032049848450732355
 },
 "weighted_precision_best_constant_classifier" : {
 "value" : 0.03752057718081697,
 "standard_deviation" : 0.001241536088657851
 },
 "weighted_f0_5_best_constant_classifier" : {
 "value" : 0.04473443104152011,
 "standard_deviation" : 0.0014460485504284792
 },
 "weighted_f1_best_constant_classifier" : {
 "value" : 0.06286421244683643,
 "standard_deviation" : 0.0019113576884608862
 },
 "weighted_f2_best_constant_classifier" : {
 "value" : 0.10570313141262414,
 "standard_deviation" : 0.002734216826748117
 }
 }

Model Quality CloudWatch Metrics

If you set the value of the enable_cloudwatch_metrics to True when you create the
monitoring schedule, model quality monitoring jobs send all metrics to Amazon CloudWatch.

Model quality metrics appear in the following namespace:

• For real-time endpoints: aws/sagemaker/Endpoints/model-metrics

• For batch transform jobs: aws/sagemaker/ModelMonitoring/model-metrics

For a list of the metrics that are emitted, see Model Quality Metrics.

Model Quality CloudWatch Metrics 5169

Amazon SageMaker Developer Guide

You can use CloudWatch metrics to create an alarm when a specific metric doesn't meet the
threshold you specify. For instructions about how to create CloudWatch alarms, see Create a
CloudWatch Alarm Based on a Static Threshold in the Amazon CloudWatch User Guide.

Monitor Bias Drift for Models in Production

Amazon SageMaker Clarify bias monitoring helps data scientists and ML engineers monitor
predictions for bias on a regular basis. As the model is monitored, customers can view exportable
reports and graphs detailing bias in SageMaker Studio and configure alerts in Amazon CloudWatch
to receive notifications if bias beyond a certain threshold is detected. Bias can be introduced or
exacerbated in deployed ML models when the training data differs from the data that the model
sees during deployment (that is, the live data). These kinds of changes in the live data distribution
might be temporary (for example, due to some short-lived, real-world events) or permanent. In
either case, it might be important to detect these changes. For example, the outputs of a model
for predicting home prices can become biased if the mortgage rates used to train the model differ
from current, real-world mortgage rates. With bias detection capabilities in Model Monitor, when
SageMaker detects bias beyond a certain threshold, it automatically generates metrics that you can
view in SageMaker Studio and through Amazon CloudWatch alerts.

In general, measuring bias only during the train-and-deploy phase might not be sufficient. It is
possible that after the model has been deployed, the distribution of the data that the deployed
model sees (that is, the live data) is different from data distribution in the training dataset.
This change might introduce bias in a model over time. The change in the live data distribution
might be temporary (for example, due to some short-lived behavior like the holiday season) or
permanent. In either case, it might be important to detect these changes and take steps to reduce
the bias when appropriate.

To detect these changes, SageMaker Clarify provides functionality to monitor the bias metrics
of a deployed model continuously and raise automated alerts if the metrics exceed a threshold.
For example, consider the DPPL bias metric. Specify an allowed range of values A=(amin,amax), for
instance an interval of (-0.1, 0.1), that DPPL should belong to during deployment. Any deviation
from this range should raise a bias detected alert. With SageMaker Clarify, you can perform these
checks at regular intervals.

For example, you can set the frequency of the checks to 2 days. This means that SageMaker
Clarify computes the DPPL metric on data collected during a 2-day window. In this example, Dwin

 is the data that the model processed during last 2-day window. An alert is issued if the DPPL
value bwin computed on Dwin falls outside of an allowed range A. This approach to checking if

Monitor bias drift 5170

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

Amazon SageMaker Developer Guide

bwin is outside of A can be somewhat noisy. Dwin might consist of very few samples and might
not be representative of the live data distribution. The small sample size means that the value
of bias bwin computed over Dwin might not be a very robust estimate. In fact, very high (or low)
values of bwin may be observed purely due to chance. To ensure that the conclusions drawn from
the observed data Dwin are statistically significant, SageMaker Clarify makes use of confidence
intervals. Specifically, it uses the Normal Bootstrap Interval method to construct an interval C=(cmin

,cmax) such that SageMaker Clarify is confident that the true bias value computed over the full live
data is contained in C with high probability. Now, if the confidence interval C overlaps with the
allowed range A, SageMaker Clarify interprets it as “it is likely that the bias metric value of the
live data distribution falls within the allowed range”. If C and A are disjoint, SageMaker Clarify is
confident that the bias metric does not lie in A and raises an alert.

Model Monitor Sample Notebook

Amazon SageMaker Clarify provides the following sample notebook that shows how to capture
inference data for a real-time endpoint, create a baseline to monitor evolving bias against, and
inspect the results:

• Monitoring bias drift and feature attribution drift Amazon SageMaker Clarify – Use Amazon
SageMaker Model Monitor to monitor bias drift and feature attribution drift over time.

This notebook has been verified to run in Amazon SageMaker Studio only. If you need instructions
on how to open a notebook in Amazon SageMaker Studio, see Create or Open an Amazon
SageMaker Studio Classic Notebook. If you're prompted to choose a kernel, choose Python 3 (Data
Science). The following topics contain the highlights from the last two steps, and they contain
code examples from the example notebook.

Topics

• Create a Bias Drift Baseline

• Bias Drift Violations

• Configure Parameters to Monitor Bias Drift

• Schedule Bias Drift Monitoring Jobs

• Inspect Reports for Data Bias Drift

• CloudWatch Metrics for Bias Drift Analysis

Model Monitor Sample Notebook 5171

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_model_monitor/fairness_and_explainability/SageMaker-Model-Monitor-Fairness-and-Explainability.html

Amazon SageMaker Developer Guide

Create a Bias Drift Baseline

After you have configured your application to capture real-time or batch transform inference data,
the first task to monitor for bias drift is to create a baseline. This involves configuring the data
inputs, which groups are sensitive, how the predictions are captured, and the model and its post-
training bias metrics. Then you need to start the baselining job.

Model bias monitor can detect bias drift of ML models on a regular basis. Similar to the other
monitoring types, the standard procedure of creating a model bias monitor is first baselining and
then establishing a monitoring schedule.

model_bias_monitor = ModelBiasMonitor(
 role=role,
 sagemaker_session=sagemaker_session,
 max_runtime_in_seconds=1800,
)

DataConfig stores information about the dataset to be analyzed (for example, the dataset file),
its format (that is, CSV or JSON Lines), headers (if any) and label.

model_bias_baselining_job_result_uri = f"{baseline_results_uri}/model_bias"
model_bias_data_config = DataConfig(
 s3_data_input_path=validation_dataset,
 s3_output_path=model_bias_baselining_job_result_uri,
 label=label_header,
 headers=all_headers,
 dataset_type=dataset_type,
)

BiasConfig is the configuration of the sensitive groups in the dataset. Typically, bias is measured
by computing a metric and comparing it across groups. The group of interest is called the facet. For
post-training bias, you should also take the positive label into account.

model_bias_config = BiasConfig(
 label_values_or_threshold=[1],
 facet_name="Account Length",
 facet_values_or_threshold=[100],
)

Create a Bias Drift Baseline 5172

Amazon SageMaker Developer Guide

ModelPredictedLabelConfig specifies how to extract a predicted label from the model output.
In this example, the 0.8 cutoff has been chosen in anticipation that customers will turn over
frequently. For more complicated outputs, there are a few more options, like "label" is the index,
name, or JMESPath to locate predicted label in endpoint response payload.

model_predicted_label_config = ModelPredictedLabelConfig(
 probability_threshold=0.8,
)

ModelConfig is the configuration related to the model to be used for inferencing. In order to
compute post-training bias metrics, the computation needs to get inferences for the model name
provided. To accomplish this, the processing job uses the model to create an ephemeral endpoint
(also known as shadow endpoint). The processing job deletes the shadow endpoint after the
computations are completed. This configuration is also used by the explainability monitor.

model_config = ModelConfig(
 model_name=model_name,
 instance_count=endpoint_instance_count,
 instance_type=endpoint_instance_type,
 content_type=dataset_type,
 accept_type=dataset_type,
)

Now you can start the baselining job.

model_bias_monitor.suggest_baseline(
 model_config=model_config,
 data_config=model_bias_data_config,
 bias_config=model_bias_config,
 model_predicted_label_config=model_predicted_label_config,
)
print(f"ModelBiasMonitor baselining job:
 {model_bias_monitor.latest_baselining_job_name}")

The scheduled monitor automatically picks up baselining job name and waits for it before
monitoring begins.

Create a Bias Drift Baseline 5173

Amazon SageMaker Developer Guide

Bias Drift Violations

Bias drift jobs evaluate the baseline constraints provided by the baseline configuration against the
analysis results of current MonitoringExecution. If violations are detected, the job lists them to
the constraint_violations.json file in the execution output location, and marks the execution status
as Interpret results.

Here is the schema of the bias drift violations file.

• facet – The name of the facet, provided by the monitoring job analysis configuration facet
name_or_index.

• facet_value – The value of the facet, provided by the monitoring job analysis configuration
facet value_or_threshold.

• metric_name – The short name of the bias metric. For example, "CI" for class imbalance. See
Measure Pre-training Bias for the short names of each of the pre-training bias metrics and
Measure Post-training Data and Model Bias for the short names of each of the post-training bias
metrics.

• constraint_check_type – The type of violation monitored. Currently only
bias_drift_check is supported.

• description – A descriptive message to explain the violation.

{
 "version": "1.0",
 "violations": [{
 "facet": "string",
 "facet_value": "string",
 "metric_name": "string",
 "constraint_check_type": "string",
 "description": "string"
 }]
}

A bias metric is used to measure the level of equality in a distribution. A value close to zero
indicates that the distribution is more balanced. If the value of a bias metric in the job analysis
results file (analysis.json) is worse than its corresponding value in the baseline constraints file, a
violation is logged. As an example, if the baseline constraint for the DPPL bias metric is 0.2, and
the analysis result is 0.1, no violation is logged because 0.1 is closer to 0 than 0.2. However,

Bias Drift Violations 5174

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelBiasJobDefinition.html#sagemaker-CreateModelBiasJobDefinition-request-ModelBiasBaselineConfig

Amazon SageMaker Developer Guide

if the analysis result is -0.3, a violation is logged because it is farther from 0 than the baseline
constraint of 0.2.

{
 "version": "1.0",
 "violations": [{
 "facet": "Age",
 "facet_value": "40",
 "metric_name": "CI",
 "constraint_check_type": "bias_drift_check",
 "description": "Value 0.0751544567666083 does not meet the constraint
 requirement"
 }, {
 "facet": "Age",
 "facet_value": "40",
 "metric_name": "DPPL",
 "constraint_check_type": "bias_drift_check",
 "description": "Value -0.0791244970125596 does not meet the constraint
 requirement"
 }]
}

Configure Parameters to Monitor Bias Drift

Amazon SageMaker Clarify bias monitoring reuses a subset of the parameters used in the analysis
configuration of Configure the Analysis. After describing the configuration parameters, this topic
provides examples of JSON files. These files are used to configure CSV and JSON Lines datasets to
monitor them for bias drift when machine learning models are in production.

The following parameters must be provided in a JSON file. The path to this JSON file must be
provided in the ConfigUri parameter of the ModelBiasAppSpecification API.

• "version" – (Optional) Schema version of the configuration file. If not provided, the latest
supported version is used.

• "headers" – (Optional) A list of column names in the dataset. If the dataset_type is
"application/jsonlines" and "label" is specified, then the last header becomes the
header of the label column.

• "label" – (Optional) Target attribute for the model to be used for bias metrics. Specified either
as a column name, or an index (if dataset format is CSV), or as a JMESPath (if dataset format is
JSON Lines).

Configure Bias Drift Monitoring 5175

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelBiasAppSpecification

Amazon SageMaker Developer Guide

• "label_values_or_threshold" – (Optional) List of label values or threshold. Indicates
positive outcome used for bias metrics.

• "facet" – (Optional) A list of features that are sensitive attributes, referred to as facets. Facets
are used for bias metrics in the form of pairs, and include the following:

• "name_or_index" – Facet column name or index.

• "value_or_threshold" – (Optional) List of values or threshold that the facet column can
take. Indicates the sensitive group, such as the group that is used to measure bias against. If
not provided, bias metrics are computed as one group for every unique value (rather than all
values). If the facet column is numeric, this threshold value is applied as the lower bound to
select the sensitive group.

• "group_variable" – (Optional) A column name or index to indicate the group variable to be
used for the bias metric Conditional Demographic Disparity.

The other parameters should be provided in EndpointInput (for real-time endpoints) or
BatchTransformInput (for batch transform jobs) of the ModelBiasJobInput API.

• FeaturesAttribute – This parameter is required if endpoint input data format is
"application/jsonlines". It is the JMESPath used to locate the feature columns if the
dataset format is JSON Lines.

• InferenceAttribute – Index or JMESPath location in the model output for the target
attribute to be used for monitored for bias using bias metrics. If it is not provided in the
CSV accept_type case, then it is assumed that the model output is a single numeric value
corresponding to a score or probability.

• ProbabilityAttribute – Index or JMESPath location in the model output for probabilities. If
the model output is JSON Lines with a list of labels and probabilities, for example, then the label
that corresponds to the maximum probability is selected for bias computations.

• ProbabilityThresholdAttribute – (Optional) A float value to indicate the threshold to
select the binary label, in the case of binary classification. The default value is 0.5.

Example JSON Configuration Files for CSV and JSON Lines Datasets

Here are examples of the JSON files used to configure CSV and JSON Lines datasets to monitor
them for bias drift.

Topics

Configure Bias Drift Monitoring 5176

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelBiasJobInput

Amazon SageMaker Developer Guide

• CSV Datasets

• JSON Lines Datasets

CSV Datasets

Consider a dataset that has four feature columns and one label column, where the first feature and
the label are binary, as in the following example.

0, 0.5814568701544718, 0.6651538910132964, 0.3138080342665499, 0
1, 0.6711642728531724, 0.7466687034026017, 0.1215477472819713, 1
0, 0.0453256543003371, 0.6377430803264152, 0.3558625219713576, 1
1, 0.4785191813363956, 0.0265841045263860, 0.0376935084990697, 1

Assume that the model output has two columns, where the first one is the predicted label and the
second one is the probability, as in the following example.

1, 0.5385257417814224

Then the following JSON configuration file shows an example of how this CSV dataset can be
configured.

{
 "headers": [
 "feature_0",
 "feature_1",
 "feature_2",
 "feature_3",
 "target"
],
 "label": "target",
 "label_values_or_threshold": [1],
 "facet": [{
 "name_or_index": "feature_1",
 "value_or_threshold": [1]
 }]
}

The predicted label is selected by the "InferenceAttribute" parameter. Zero-based numbering
is used, so 0 indicates the first column of the model output,

Configure Bias Drift Monitoring 5177

Amazon SageMaker Developer Guide

"EndpointInput": {
 ...
 "InferenceAttribute": 0
 ...
}

Alternatively, you can use different parameters to convert probability values to binary
predicted labels. Zero-based numbering is used: 1 indicates the second column; the
ProbabilityThresholdAttribute value of 0.6 indicates that a probability greater than 0.6
predicts the binary label as 1.

"EndpointInput": {
 ...
 "ProbabilityAttribute": 1,
 "ProbabilityThresholdAttribute": 0.6
 ...
}

JSON Lines Datasets

Consider a dataset that has four feature columns and one label column, where the first feature and
the label are binary, as in the following example.

{"features":[0, 0.5814568701544718, 0.6651538910132964, 0.3138080342665499], "label":0}
{"features":[1, 0.6711642728531724, 0.7466687034026017, 0.1215477472819713], "label":1}
{"features":[0, 0.0453256543003371, 0.6377430803264152, 0.3558625219713576], "label":1}
{"features":[1, 0.4785191813363956, 0.0265841045263860, 0.0376935084990697], "label":1}

Assume that the model output has two columns, where the first is a predicted label and the second
is a probability.

{"predicted_label":1, "probability":0.5385257417814224}

The following JSON configuration file shows an example of how this JSON Lines dataset can be
configured.

{
 "headers": [
 "feature_0",
 "feature_1",

Configure Bias Drift Monitoring 5178

Amazon SageMaker Developer Guide

 "feature_2",
 "feature_3",
 "target"
],
 "label": "label",
 "label_values_or_threshold": [1],
 "facet": [{
 "name_or_index": "feature_1",
 "value_or_threshold": [1]
 }]
}

Then, the "features" parameter value in EndpointInput (for real-time endpoints) or
BatchTransformInput (for batch transform jobs) is used to locate the features in the dataset,
and the "predicted_label" parameter value selects the predicted label from the model output.

"EndpointInput": {
 ...
 "FeaturesAttribute": "features",
 "InferenceAttribute": "predicted_label"
 ...
}

Alternatively, you can convert probability values to predicted binary labels using the
ProbabilityThresholdAttribute parameter value. A value of 0.6, for example, indicates that
a probability greater than 0.6 predicts the binary label as 1.

"EndpointInput": {
 ...
 "FeaturesAttribute": "features",
 "ProbabilityAttribute": "probability",
 "ProbabilityThresholdAttribute": 0.6
 ...
}

Schedule Bias Drift Monitoring Jobs

After you create your baseline, you can call the create_monitoring_schedule() method
of your ModelBiasModelMonitor class instance to schedule an hourly bias drift monitor. The
following sections show you how to create bias drift monitor for a model deployed to a real-time
endpoint as well as for a batch transform job.

Schedule Bias Drift Monitoring Jobs 5179

Amazon SageMaker Developer Guide

Important

You can specify either a batch transform input or an endpoint input, but not both, when
you create your monitoring schedule.

Unlike data quality monitoring, you need to supply Ground Truth labels if you want to monitor
model quality. However, Ground Truth labels could be delayed. To address this, specify offsets
when you create your monitoring schedule. For details about how to create time offsets, see Model
monitor offsets.

If you have submitted a baselining job, the monitor automatically picks up analysis configuration
from the baselining job. If you skip the baselining step or the capture dataset has a different nature
from the training dataset, you must provide the analysis configuration.

Bias drift monitoring for models deployed to real-time endpoint

To schedule a bias drift monitor for a real-time endpoint, pass your EndpointInput instance to
the endpoint_input argument of your ModelBiasModelMonitor instance, as shown in the
following code sample:

from sagemaker.model_monitor import CronExpressionGenerator

model_bias_monitor = ModelBiasModelMonitor(
 role=sagemaker.get_execution_role(),
 ...
)

model_bias_analysis_config = None
if not model_bias_monitor.latest_baselining_job:
 model_bias_analysis_config = BiasAnalysisConfig(
 model_bias_config,
 headers=all_headers,
 label=label_header,
)

model_bias_monitor.create_monitoring_schedule(
 monitor_schedule_name=schedule_name,
 post_analytics_processor_script=s3_code_postprocessor_uri,
 output_s3_uri=s3_report_path,
 statistics=model_bias_monitor.baseline_statistics(),

Schedule Bias Drift Monitoring Jobs 5180

Amazon SageMaker Developer Guide

 constraints=model_bias_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
 analysis_config=model_bias_analysis_config,
 endpoint_input=EndpointInput(
 endpoint_name=endpoint_name,
 destination="/opt/ml/processing/input/endpoint",
 start_time_offset="-PT1H",
 end_time_offset="-PT0H",
 probability_threshold_attribute=0.8,
),
)

Bias drift monitoring for batch transform jobs

To schedule a bias drift monitor for a batch transform job, pass your BatchTransformInput
instance to the batch_transform_input argument of your ModelBiasModelMonitor instance,
as shown in the following code sample:

from sagemaker.model_monitor import CronExpressionGenerator

model_bias_monitor = ModelBiasModelMonitor(
 role=sagemaker.get_execution_role(),
 ...
)

model_bias_analysis_config = None
if not model_bias_monitor.latest_baselining_job:
 model_bias_analysis_config = BiasAnalysisConfig(
 model_bias_config,
 headers=all_headers,
 label=label_header,
)

schedule = model_bias_monitor.create_monitoring_schedule(
 monitor_schedule_name=schedule_name,
 post_analytics_processor_script=s3_code_postprocessor_uri,
 output_s3_uri=s3_report_path,
 statistics=model_bias_monitor.baseline_statistics(),
 constraints=model_bias_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
 analysis_config=model_bias_analysis_config,

Schedule Bias Drift Monitoring Jobs 5181

Amazon SageMaker Developer Guide

 batch_transform_input=BatchTransformInput(
 destination="opt/ml/processing/input",
 data_captured_destination_s3_uri=s3_capture_path,
 start_time_offset="-PT1H",
 end_time_offset="-PT0H",
 probability_threshold_attribute=0.8
),
)

Inspect Reports for Data Bias Drift

If you are not able to inspect the results of the monitoring in the generated reports in SageMaker
Studio, you can print them out as follows:

schedule_desc = model_bias_monitor.describe_schedule()
execution_summary = schedule_desc.get("LastMonitoringExecutionSummary")
if execution_summary and execution_summary["MonitoringExecutionStatus"] in
 ["Completed", "CompletedWithViolations"]:
 last_model_bias_monitor_execution = model_bias_monitor.list_executions()[-1]
 last_model_bias_monitor_execution_report_uri =
 last_model_bias_monitor_execution.output.destination
 print(f'Report URI: {last_model_bias_monitor_execution_report_uri}')
 last_model_bias_monitor_execution_report_files =
 sorted(S3Downloader.list(last_model_bias_monitor_execution_report_uri))
 print("Found Report Files:")
 print("\n ".join(last_model_bias_monitor_execution_report_files))
else:
 last_model_bias_monitor_execution = None
 print("====STOP==== \n No completed executions to inspect further. Please wait till
 an execution completes or investigate previously reported failures.")

If there are violations compared to the baseline, they are listed here:

if last_model_bias_monitor_execution:
 model_bias_violations = last_model_bias_monitor_execution.constraint_violations()
 if model_bias_violations:
 print(model_bias_violations.body_dict)

If your model is deployed to a real-time endpoint, you can see visualizations in SageMaker Studio
of the analysis results and CloudWatch metrics by choosing the Endpoints tab, and then double-
clicking the endpoint.

Inspect Reports for Data Bias Drift 5182

Amazon SageMaker Developer Guide

CloudWatch Metrics for Bias Drift Analysis

This guide shows CloudWatch metrics and their properties that you can use for bias drift analysis
in SageMaker Clarify. Bias drift monitoring jobs compute both pre-training bias metrics and post-
training bias metrics, and publish them to the following CloudWatch namespace:

• For real-time endpoints: aws/sagemaker/Endpoints/bias-metrics

• For batch transform jobs: aws/sagemaker/ModelMonitoring/bias-metrics

The CloudWatch metric name appends the metric's short name to bias_metric.

For example, bias_metric_CI is the bias metric for class imbalance (CI).

Note

+/- infinity is published as the floating point number +/- 2.348543e108, and errors
including null values are not published.

Each metric has the following properties:

• Endpoint: The name of the monitored endpoint, if applicable.

• MonitoringScheduleThe name of the schedule for the monitoring job.

• BiasStage: The name of the stage of the bias drift monitoring job. Choose either Pre-
training or Post-Training.

• Label: The name of the target feature, provided by the monitoring job analysis configuration
label.

• LabelValue: The value of the target feature, provided by the monitoring job analysis
configuration label_values_or_threshold.

• Facet: The name of the facet, provided by the monitoring job analysis configuration facet
name_of_index.

• FacetValue: The value of the facet, provided by the monitoring job analysis configuration facet
nvalue_or_threshold.

To stop the monitoring jobs from publishing metrics, set publish_cloudwatch_metrics to
Disabled in the Environment map of model bias job definition.

CloudWatch Metrics for Bias Drift Analysis 5183

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-measure-data-bias.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-measure-post-training-bias.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-measure-post-training-bias.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelBiasJobDefinition.html

Amazon SageMaker Developer Guide

Monitor Feature Attribution Drift for Models in Production

A drift in the distribution of live data for models in production can result in a corresponding drift
in the feature attribution values, just as it could cause a drift in bias when monitoring bias metrics.
Amazon SageMaker Clarify feature attribution monitoring helps data scientists and ML engineers
monitor predictions for feature attribution drift on a regular basis. As the model is monitored,
customers can view exportable reports and graphs detailing feature attributions in SageMaker
Studio and configure alerts in Amazon CloudWatch to receive notifications if it is detected that the
attribution values drift beyond a certain threshold.

To illustrate this with a specific situation, consider a hypothetical scenario for college admissions.
Assume that we observe the following (aggregated) feature attribution values in the training data
and in the live data:

College Admission Hypothetical Scenario

Feature Attribution in training data Attribution in live data

SAT score 0.70 0.10

GPA 0.50 0.20

Class rank 0.05 0.70

The change from training data to live data appears significant. The feature ranking has completely
reversed. Similar to the bias drift, the feature attribution drifts might be caused by a change in the
live data distribution and warrant a closer look into the model behavior on the live data. Again, the
first step in these scenarios is to raise an alarm that a drift has happened.

We can detect the drift by comparing how the ranking of the individual features changed from
training data to live data. In addition to being sensitive to changes in ranking order, we also want
to be sensitive to the raw attribution score of the features. For instance, given two features that
fall in the ranking by the same number of positions going from training to live data, we want
to be more sensitive to the feature that had a higher attribution score in the training data. With
these properties in mind, we use the Normalized Discounted Cumulative Gain (NDCG) score for
comparing the feature attributions rankings of training and live data.

Specifically, assume we have the following:

Monitor Feature Attribution Drift 5184

Amazon SageMaker Developer Guide

• F=[f1,…,fm] is the list of features sorted with respect to their attribution scores in the training
data where m is the total number of features. For instance, in our case, F=[SAT Score, GPA, Class
Rank].

• a(f) is a function that returns the feature attribution score on the training data given a feature f.
For example, a(SAT Score) = 0.70.

• F′=[f′1, …, f′m] is the list of features sorted with respect to their attribution scores in the live
data. For example, F′= [Class Rank, GPA, SAT Score].

Then, we can compute the NDCG as:

 NDCG=DCG/iDCG

with

• DCG = ∑1
ma(f'i)/log2(i+1)

• iDCG = ∑1
ma(fi)/log2(i+1)

The quantity DCG measures whether features with high attribution in the training data are also
ranked higher in the feature attribution computed on the live data. The quantity iDCG measures
the ideal score and it's just a normalizing factor to ensure that the final quantity resides in the
range [0, 1], with 1 being the best possible value. A NDCG value of 1 means that the feature
attribution ranking in the live data is the same as the one in the training data. In this particular
example, because the ranking changed by quite a bit, the NDCG value is 0.69.

In SageMaker Clarify, if the NDCG value is below 0.90, we automatically raise an alert.

Model Monitor Example Notebook

SageMaker Clarify provides the following example notebook that shows how to capture inference
data for a real-time endpoint, create a baseline to monitor evolving bias against, and inspect the
results:

• Monitoring bias drift and feature attribution drift Amazon SageMaker Clarify – Use Amazon
SageMaker Model Monitor to monitor bias drift and feature attribution drift over time.

This notebook has been verified to run in SageMaker Studio only. If you need instructions on how
to open a notebook in SageMaker Studio, see Create or Open an Amazon SageMaker Studio Classic

Model Monitor Example Notebook 5185

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_model_monitor/fairness_and_explainability/SageMaker-Model-Monitor-Fairness-and-Explainability.html

Amazon SageMaker Developer Guide

Notebook. If you're prompted to choose a kernel, choose Python 3 (Data Science). The following
topics contain the highlights from the last two steps, and they contain code examples from the
example notebook.

Topics

• Create a SHAP Baseline for Models in Production

• Model Feature Attribution Drift Violations

• Configure Parameters to Monitor Attribution Drift

• Schedule Feature Attribute Drift Monitoring Jobs

• Inspect Reports for Feature Attribute Drift in Production Models

• CloudWatch Metrics for Feature Drift Analysis

Create a SHAP Baseline for Models in Production

Explanations are typically contrastive, that is, they account for deviations from a baseline. For
information on explainability baselines, see SHAP Baselines for Explainability.

In addition to providing explanations for per-instance inferences, SageMaker Clarify also supports
global explanation for ML models that helps you understand the behavior of a model as a whole
in terms of its features. SageMaker Clarify generates a global explanation of an ML model by
aggregating the Shapley values over multiple instances. SageMaker Clarify supports the following
different ways of aggregation, which you can use to define baselines:

• mean_abs – Mean of absolute SHAP values for all instances.

• median – Median of SHAP values for all instances.

• mean_sq – Mean of squared SHAP values for all instances.

After you have configured your application to capture real-time or batch transform inference data,
the first task to monitor for drift in feature attribution is to create a baseline to compare against.
This involves configuring the data inputs, which groups are sensitive, how the predictions are
captured, and the model and its posttraining bias metrics. Then you need to start the baselining
job. Model explainability monitor can explain the predictions of a deployed model that's producing
inferences and detect feature attribution drift on a regular basis.

model_explainability_monitor = ModelExplainabilityMonitor(

Create a SHAP Baseline 5186

Amazon SageMaker Developer Guide

 role=role,
 sagemaker_session=sagemaker_session,
 max_runtime_in_seconds=1800,
)

In this example, the explainability baselining job shares the test dataset with the bias baselining
job, so it uses the same DataConfig, and the only difference is the job output URI.

model_explainability_baselining_job_result_uri = f"{baseline_results_uri}/
model_explainability"
model_explainability_data_config = DataConfig(
 s3_data_input_path=validation_dataset,
 s3_output_path=model_explainability_baselining_job_result_uri,
 label=label_header,
 headers=all_headers,
 dataset_type=dataset_type,
)

Currently the SageMaker Clarify explainer offers a scalable and efficient implementation of SHAP,
so the explainability config is SHAPConfig, including the following:

• baseline – A list of rows (at least one) or S3 object URI to be used as the baseline dataset in the
Kernel SHAP algorithm. The format should be the same as the dataset format. Each row should
contain only the feature columns/values and omit the label column/values.

• num_samples – Number of samples to be used in the Kernel SHAP algorithm. This number
determines the size of the generated synthetic dataset to compute the SHAP values.

• agg_method – Aggregation method for global SHAP values. Following are valid values:

• mean_abs – Mean of absolute SHAP values for all instances.

• median – Median of SHAP values for all instances.

• mean_sq – Mean of squared SHAP values for all instances.

• use_logit – Indicator of whether the logit function is to be applied to the model predictions.
Default is False. If use_logit is True, the SHAP values will have log-odds units.

• save_local_shap_values (bool) – Indicator of whether to save the local SHAP values in the
output location. Default is False.

Here use the mean value of test dataset as SHAP baseline
test_dataframe = pd.read_csv(test_dataset, header=None)

Create a SHAP Baseline 5187

Amazon SageMaker Developer Guide

shap_baseline = [list(test_dataframe.mean())]

shap_config = SHAPConfig(
 baseline=shap_baseline,
 num_samples=100,
 agg_method="mean_abs",
 save_local_shap_values=False,
)

Start a baselining job. The same model_config is required because the explainability baselining
job needs to create a shadow endpoint to get predictions for the generated synthetic dataset.

model_explainability_monitor.suggest_baseline(
 data_config=model_explainability_data_config,
 model_config=model_config,
 explainability_config=shap_config,
)
print(f"ModelExplainabilityMonitor baselining job:
 {model_explainability_monitor.latest_baselining_job_name}")

Model Feature Attribution Drift Violations

Feature attribution drift jobs evaluate the baseline constraints provided by the baseline
configuration against the analysis results of current MonitoringExecution. If violations are
detected, the job lists them to the constraint_violations.json file in the execution output location,
and marks the execution status as Interpret results.

Here is the schema of the feature attribution drift violations file.

• label – The name of the label, job analysis configuration label_headers or a placeholder
such as "label0".

• metric_name – The name of the explainability analysis method. Currently only shap is
supported.

• constraint_check_type – The type of violation monitored. Currently only
feature_attribution_drift_check is supported.

• description – A descriptive message to explain the violation.

{
 "version": "1.0",

Feature Attribution Drift Violations 5188

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelExplainabilityJobDefinition.html#sagemaker-CreateModelExplainabilityJobDefinition-request-ModelExplainabilityBaselineConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelExplainabilityJobDefinition.html#sagemaker-CreateModelExplainabilityJobDefinition-request-ModelExplainabilityBaselineConfig

Amazon SageMaker Developer Guide

 "violations": [{
 "label": "string",
 "metric_name": "string",
 "constraint_check_type": "string",
 "description": "string"
 }]
}

For each label in the explanations section, the monitoring jobs calculate the nDCG score of its
global SHAP values in the baseline constraints file and in the job analysis results file (analysis.json).
If the score is less than 0.9, then a violation is logged. The combined global SHAP value is
evaluated, so there are no “feature” fields in the violation entry. The following output provides
an example of several logged violations.

{
 "version": "1.0",
 "violations": [{
 "label": "label0",
 "metric_name": "shap",
 "constraint_check_type": "feature_attribution_drift_check",
 "description": "Feature attribution drift 0.7639720923277322 exceeds threshold
 0.9"
 }, {
 "label": "label1",
 "metric_name": "shap",
 "constraint_check_type": "feature_attribution_drift_check",
 "description": "Feature attribution drift 0.7323763972092327 exceeds threshold
 0.9"
 }]
}

Configure Parameters to Monitor Attribution Drift

Amazon SageMaker Clarify explainability monitor reuses a subset of the parameters used
in the analysis configuration of Configure the Analysis. The following parameters must be
provided in a JSON file and the path must be provided in the ConfigUri parameter of
ModelExplainabilityAppSpecification.

• "version" – (Optional) Schema version of the configuration file. If not provided, the latest
supported version is used.

Configure Attribution Drift Monitoring 5189

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ndcg_score.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelExplainabilityAppSpecification

Amazon SageMaker Developer Guide

• "headers" – (Optional) A list of feature names in the dataset. Explainability analysis does not
require labels.

• "methods" – A list of methods and their parameters for the analyses and reports. If any section
is omitted, then it is not computed.

• "shap" – (Optional) Section on SHAP value computation.

• "baseline" – (Optional) A list of rows (at least one), or an Amazon Simple Storage Service
Amazon S3 object URI. To be used as the baseline dataset (also known as a background
dataset) in the Kernel SHAP algorithm. The format should be the same as the dataset
format. Each row should contain only the feature columns (or values). Before you send each
row to the model, omit any column that must be excluded.

• "num_samples" – Number of samples to be used in the Kernel SHAP algorithm. This
number determines the size of the generated synthetic dataset to compute the SHAP values.
If not provided, then a SageMaker Clarify job chooses the value based on a count of features.

• "agg_method" – Aggregation method for global SHAP values. Valid values are as follows:

• "mean_abs" – Mean of absolute SHAP values for all instances.

• "median" – Median of SHAP values for all instances.

• "mean_sq" – Mean of squared SHAP values for all instances.

• "use_logit" – (Optional) Boolean value to indicate if the logit function is to be applied to
the model predictions. If "use_logit" is true, then the SHAP values have log-odds units.
The default value is false.

• "save_local_shap_values" – (Optional) Boolean value to indicate if local SHAP values
are to be saved in the output location. Use true to save them. Use false to not save them.
The default is false.

• "predictor" – (Optional for real-time endpoint, required for batch transform) Section on
model parameters, required if "shap" and "post_training_bias" sections are present.

• "model_name" – Model name created by CreateModel API, with container mode as
SingleModel.

• "instance_type" – Instance type for the shadow endpoint.

• "initial_instance_count" – Instance count for the shadow endpoint.

• "content_type" – (Optional) The model input format to be used for getting inferences with
the shadow endpoint. Valid values are "text/csv" for CSV, "application/jsonlines" for
JSON Lines, application/x-parquet for Apache Parquet, and application/x-image to

Configure Attribution Drift Monitoring 5190

Amazon SageMaker Developer Guide

enable Computer Vision explainability. The default value is the same as the dataset_type
format.

• "accept_type" – (Optional) The model output format to be used for getting inferences with
the shadow endpoint. Valid values are "text/csv" for CSV, "application/jsonlines" for
JSON Lines. If omitted, SageMaker Clarify uses the response data type of the captured data.

• "content_template" – (Optional) A template string used to construct the model input from
dataset instances. It is only used when "content_type" is "application/jsonlines".
The template should have only one placeholder, $features, which is replaced by the
features list at runtime. For example, given "content_template":"{\"myfeatures\":
$features}", if an instance (no label) is 1,2,3, then model input becomes JSON Lines
'{"myfeatures":[1,2,3]}'.

• "label_headers" – (Optional) A list of values that the "label" takes in the dataset.
Associates the scores returned by the model endpoint or batch transform job with their
corresponding label values. If it is provided, then the analysis report uses the headers instead
of placeholders like “label0”.

The other parameters should be provided in EndpointInput (for real-time endpoints) or
BatchTransformInput (for batch transform jobs) of the ModelExplainabilityJobInput API.

• FeaturesAttribute – This parameter is required if endpoint or batch job input data format
is "application/jsonlines". It is the JMESPath used to locate the feature columns if the
dataset format is JSON Lines.

• ProbabilityAttribute – Index or JMESPath location in the model output for probabilities. If
the model output is JSON Lines with a list of labels and probabilities, for example, then the label
that corresponds to the maximum probability is selected for bias computations.

Example JSON Configuration Files for CSV and JSON Lines Datasets

Here are examples of the JSON files used to configure CSV and JSON Lines datasets to monitor
them for feature attribution drift.

Topics

• CSV Datasets

• JSON Lines Datasets

Configure Attribution Drift Monitoring 5191

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelExplainabilityJobInput

Amazon SageMaker Developer Guide

CSV Datasets

Consider a dataset that has three numerical feature columns, as in the following example.

0.5814568701544718, 0.6651538910132964, 0.3138080342665499
0.6711642728531724, 0.7466687034026017, 0.1215477472819713
0.0453256543003371, 0.6377430803264152, 0.3558625219713576
0.4785191813363956, 0.0265841045263860, 0.0376935084990697

Assume that the model output has two columns, where the first one is the predicted label and the
second one is the probability, as in the following example.

1, 0.5385257417814224

The following example JSON configuration file shows how this CSV dataset can be configured.

{

 "headers": [
 "feature_1",
 "feature_2",
 "feature_3"
],
 "methods": {
 "shap": {
 "baseline": [
 [0.4441164946610942, 0.5190374448171748, 0.20722795300473712]
],
 "num_samples": 100,
 "agg_method": "mean_abs"
 }
 },
 "predictor": {
 "model_name": "my_model",
 "instance_type": "ml.m5.xlarge",
 "initial_instance_count": 1
 }
}

The predicted label is selected by the "ProbabilityAttribute" parameter. Zero-based
numbering is used, so 1 indicates the second column of the model output.

Configure Attribution Drift Monitoring 5192

Amazon SageMaker Developer Guide

"EndpointInput": {
 ...
 "ProbabilityAttribute": 1
 ...
}

JSON Lines Datasets

Consider a dataset that has four feature columns and one label column, where the first feature and
the label are binary, as in the following example.

{"features":[0, 0.5814568701544718, 0.6651538910132964, 0.3138080342665499], "label":0}
{"features":[1, 0.6711642728531724, 0.7466687034026017, 0.1215477472819713], "label":1}
{"features":[0, 0.0453256543003371, 0.6377430803264152, 0.3558625219713576], "label":1}
{"features":[1, 0.4785191813363956, 0.0265841045263860, 0.0376935084990697], "label":1}

The model input is the same as the dataset format, and the model output are JSON Lines, as in the
following example.

{"predicted_label":1, "probability":0.5385257417814224}

In the following example, the JSON configuration file shows how this JSON Lines dataset can be
configured.

{
 "headers": [
 "feature_1",
 "feature_2",
 "feature_3"
],
 "methods": {
 "shap": {
 "baseline": [
 {"features":[0.4441164946610942, 0.5190374448171748,
 0.20722795300473712]}
],
 "num_samples": 100,
 "agg_method": "mean_abs"
 }
 },

Configure Attribution Drift Monitoring 5193

Amazon SageMaker Developer Guide

 "predictor": {
 "model_name": "my_model",
 "instance_type": "ml.m5.xlarge",
 "initial_instance_count": 1,
 "content_template":"{\"features\":$features}"
 }
}

Then the "features" parameter value in EndpointInput (for real-time endpoints) or
BatchTransformInput (for batch transform jobs) is used to locate the features in the dataset,
and the "probability" parameter value selects the probability value from model output.

"EndpointInput": {
 ...
 "FeaturesAttribute": "features",
 "ProbabilityAttribute": "probability",
 ...
}

Schedule Feature Attribute Drift Monitoring Jobs

After you create your SHAP baseline, you can call the create_monitoring_schedule()
method of your ModelExplainabilityMonitor class instance to schedule an hourly model
explainability monitor. The following sections show you how to create a model explainability
monitor for a model deployed to a real-time endpoint as well as for a batch transform job.

Important

You can specify either a batch transform input or an endpoint input, but not both, when
you create your monitoring schedule.

If a baselining job has been submitted, the monitor automatically picks up analysis configuration
from the baselining job. However, if you skip the baselining step or the capture dataset has
a different nature from the training dataset, you have to provide the analysis configuration.
ModelConfig is required by ExplainabilityAnalysisConfig for the same reason that
it's required for the baselining job. Note that only features are required for computing feature
attribution, so you should exclude Ground Truth labeling.

Schedule Feature Attribute Drift Monitoring Jobs 5194

Amazon SageMaker Developer Guide

Feature attribution drift monitoring for models deployed to real-time endpoint

To schedule a model explainability monitor for a real-time endpoint, pass your EndpointInput
instance to the endpoint_input argument of your ModelExplainabilityMonitor instance, as
shown in the following code sample:

from sagemaker.model_monitor import CronExpressionGenerator

model_exp_model_monitor = ModelExplainabilityMonitor(
 role=sagemaker.get_execution_role(),
 ...
)

schedule = model_exp_model_monitor.create_monitoring_schedule(
 monitor_schedule_name=schedule_name,
 post_analytics_processor_script=s3_code_postprocessor_uri,
 output_s3_uri=s3_report_path,
 statistics=model_exp_model_monitor.baseline_statistics(),
 constraints=model_exp_model_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
 endpoint_input=EndpointInput(
 endpoint_name=endpoint_name,
 destination="/opt/ml/processing/input/endpoint",
)
)

Feature attribution drift monitoring for batch transform jobs

To schedule a model explainability monitor for a batch transform job, pass your
BatchTransformInput instance to the batch_transform_input argument of your
ModelExplainabilityMonitor instance, as shown in the following code sample:

from sagemaker.model_monitor import CronExpressionGenerator

model_exp_model_monitor = ModelExplainabilityMonitor(
 role=sagemaker.get_execution_role(),
 ...
)

schedule = model_exp_model_monitor.create_monitoring_schedule(
 monitor_schedule_name=schedule_name,

Schedule Feature Attribute Drift Monitoring Jobs 5195

Amazon SageMaker Developer Guide

 post_analytics_processor_script=s3_code_postprocessor_uri,
 output_s3_uri=s3_report_path,
 statistics=model_exp_model_monitor.baseline_statistics(),
 constraints=model_exp_model_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
 batch_transform_input=BatchTransformInput(
 destination="opt/ml/processing/data",
 model_name="batch-fraud-detection-model",
 input_manifests_s3_uri="s3://my-bucket/batch-fraud-detection/on-schedule-
monitoring/in/",
 excludeFeatures="0",
)
)

Inspect Reports for Feature Attribute Drift in Production Models

After the schedule that you set up is started by default, you need to wait for the its first execution
to start, and then stop the schedule to avoid incurring charges.

To inspect the reports, use the following code:

schedule_desc = model_explainability_monitor.describe_schedule()
execution_summary = schedule_desc.get("LastMonitoringExecutionSummary")
if execution_summary and execution_summary["MonitoringExecutionStatus"] in
 ["Completed", "CompletedWithViolations"]:
 last_model_explainability_monitor_execution =
 model_explainability_monitor.list_executions()[-1]
 last_model_explainability_monitor_execution_report_uri =
 last_model_explainability_monitor_execution.output.destination
 print(f'Report URI: {last_model_explainability_monitor_execution_report_uri}')
 last_model_explainability_monitor_execution_report_files =
 sorted(S3Downloader.list(last_model_explainability_monitor_execution_report_uri))
 print("Found Report Files:")
 print("\n ".join(last_model_explainability_monitor_execution_report_files))
else:
 last_model_explainability_monitor_execution = None
 print("====STOP==== \n No completed executions to inspect further. Please wait till
 an execution completes or investigate previously reported failures.")

If there are any violations compared to the baseline, they are listed here:

if last_model_explainability_monitor_execution:

Inspect Reports for Feature Attribute Drift 5196

Amazon SageMaker Developer Guide

 model_explainability_violations =
 last_model_explainability_monitor_execution.constraint_violations()
 if model_explainability_violations:
 print(model_explainability_violations.body_dict)

If your model is deployed to a real-time endpoint, you can see visualizations in SageMaker Studio
of the analysis results and CloudWatch metrics by choosing the Endpoints tab, and then double-
clicking the endpoint.

CloudWatch Metrics for Feature Drift Analysis

This guide shows CloudWatch metrics and their properties that you can use for feature attribute
drift analysis in SageMaker Clarify. Feature attribute drift monitoring jobs compute and publish
two types of metrics:

• The global SHAP value of each feature.

Note

The name of this metric appends the feature name provided by the job analysis
configuration to feature_. For example, feature_X is the global SHAP value for
feature X.

• The ExpectedValue of the metric.

These metrics are published to the following CloudWatch namespace:

• For real-time endpoints: aws/sagemaker/Endpoints/explainability-metrics

• For batch transform jobs: aws/sagemaker/ModelMonitoring/explainability-metrics

Each metric has the following properties:

• Endpoint: The name of the monitored endpoint, if applicable.

• MonitoringSchedule: The name of the schedule for the monitoring job.

• ExplainabilityMethod: The method used to compute Shapley values. Choose KernelShap.

• Label: The name provided by job analysis configuration label_headers, or a placeholder like
label0.

CloudWatch Metrics for Feature Drift Analysis 5197

Amazon SageMaker Developer Guide

• ValueType: The type of the value returned by the metric. Choose either GlobalShapValues or
ExpectedValue.

To stop the monitoring jobs from publishing metrics, set publish_cloudwatch_metrics to
Disabled in the Environment map of model explainability job definition.

Schedule monitoring jobs

Amazon SageMaker Model Monitor provides you the ability to monitor the data collected
from your real-time endpoints. You can monitor your data on a recurring schedule, or
you can monitor it one time, immediately. You can create a monitoring schedule with the
CreateMonitoringSchedule API.

With a monitoring schedule, SageMaker can start processing jobs to analyze the data collected
during a given period. In the processing job, SageMaker compares the dataset for the current
analysis with the baseline statistics and constraints that you provide. Then, SageMaker generate a
violations report. In addition, CloudWatch metrics are emitted for each feature under analysis.

SageMaker provides a prebuilt container for performing analysis on tabular datasets. Alternatively,
you could choose to bring your own container as outlined in the Bring Your Own Containers topic.

You can create a model monitoring schedule for your real-time endpoint or batch transform job.
Use the baseline resources (constraints and statistics) to compare against the real-time traffic or
batch job inputs.

Example baseline assignments

In the following example, the training dataset used to train the model was uploaded to Amazon S3.
If you already have it in Amazon S3, you can point to it directly.

copy over the training dataset to Amazon S3 (if you already have it in Amazon S3, you
 could reuse it)
baseline_prefix = prefix + '/baselining'
baseline_data_prefix = baseline_prefix + '/data'
baseline_results_prefix = baseline_prefix + '/results'

baseline_data_uri = 's3://{}/{}'.format(bucket,baseline_data_prefix)
baseline_results_uri = 's3://{}/{}'.format(bucket, baseline_results_prefix)
print('Baseline data uri: {}'.format(baseline_data_uri))

Schedule monitoring jobs 5198

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelExplainabilityJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateMonitoringSchedule.html

Amazon SageMaker Developer Guide

print('Baseline results uri: {}'.format(baseline_results_uri))

training_data_file = open("test_data/training-dataset-with-header.csv", 'rb')
s3_key = os.path.join(baseline_prefix, 'data', 'training-dataset-with-header.csv')
boto3.Session().resource('s3').Bucket(bucket).Object(s3_key).upload_fileobj(training_data_file)

Example schedule for recurring analysis

If you are scheduling a model monitor for a real-time endpoint, use the baseline constraints and
statistics to compare against real-time traffic. The following code snippet shows the general format
you use to schedule a model monitor for a real-time endpoint. This example schedules the model
monitor to run hourly.

from sagemaker.model_monitor import CronExpressionGenerator
from time import gmtime, strftime

mon_schedule_name = 'my-model-monitor-schedule-' + strftime("%Y-%m-%d-%H-%M-%S",
 gmtime())
my_default_monitor.create_monitoring_schedule(
 monitor_schedule_name=mon_schedule_name,
 endpoint_input=EndpointInput(
 endpoint_name=endpoint_name,
 destination="/opt/ml/processing/input/endpoint"
),
 post_analytics_processor_script=s3_code_postprocessor_uri,
 output_s3_uri=s3_report_path,
 statistics=my_default_monitor.baseline_statistics(),
 constraints=my_default_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
)

Example schedule for one-time analysis

You can also schedule the analysis to run once without recurring by passing arguments like the
following to the create_monitoring_schedule method:

 schedule_cron_expression=CronExpressionGenerator.now(),
 data_analysis_start_time="-PT1H",
 data_analysis_end_time="-PT0H",

Schedule monitoring jobs 5199

Amazon SageMaker Developer Guide

In these arguments, the schedule_cron_expression parameter schedules the analysis to run
once, immediately, with the value CronExpressionGenerator.now(). For any schedule with
this setting, the data_analysis_start_time and data_analysis_end_time parameters are
required. These parameters set the start time and end time of an analysis window. Define these
times as offsets that are relative to the current time, and use ISO 8601 duration format. In this
example, the times -PT1H and -PT0H define a window between one hour in the past and the
current time. With this schedule, the analysis evaluates only the data that was collected during the
specified window.

Example schedule for a batch transform job

The following code snippet shows the general format you use to schedule a model monitor for a
batch transform job.

from sagemaker.model_monitor import (
 CronExpressionGenerator,
 BatchTransformInput,
 MonitoringDatasetFormat,
)
from time import gmtime, strftime

mon_schedule_name = 'my-model-monitor-schedule-' + strftime("%Y-%m-%d-%H-%M-%S",
 gmtime())
my_default_monitor.create_monitoring_schedule(
 monitor_schedule_name=mon_schedule_name,
 batch_transform_input=BatchTransformInput(
 destination="opt/ml/processing/input",
 data_captured_destination_s3_uri=s3_capture_upload_path,
 dataset_format=MonitoringDatasetFormat.csv(header=False),
),
 post_analytics_processor_script=s3_code_postprocessor_uri,
 output_s3_uri=s3_report_path,
 statistics=my_default_monitor.baseline_statistics(),
 constraints=my_default_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
)

desc_schedule_result = my_default_monitor.describe_schedule()
print('Schedule status: {}'.format(desc_schedule_result['MonitoringScheduleStatus']))

Schedule monitoring jobs 5200

Amazon SageMaker Developer Guide

The cron expression for monitoring schedule

To provide details for the monitoring schedule, use ScheduleConfig, which is a cron expression
that describes details about the monitoring schedule.

Amazon SageMaker Model Monitor supports the following cron expressions:

• To set the job to start every hour, use the following:

Hourly: cron(0 * ? * * *)

• To run the job daily, use the following:

cron(0 [00-23] ? * * *)

• The run the job one time, immediately, use the following keyword:

NOW

For example, the following are valid cron expressions:

• Daily at 12 PM UTC: cron(0 12 ? * * *)

• Daily at 12 AM UTC: cron(0 0 ? * * *)

To support running every 6, 12 hours, Model Monitor supports the following expression:

cron(0 [00-23]/[01-24] ? * * *)

For example, the following are valid cron expressions:

• Every 12 hours, starting at 5 PM UTC: cron(0 17/12 ? * * *)

• Every two hours, starting at 12 AM UTC: cron(0 0/2 ? * * *)

Notes

• Although the cron expression is set to start at 5 PM UTC, note that there could be a
delay of 0-20 minutes from the actual requested time to run the execution.

• If you want to run on a daily schedule, don't provide this parameter. SageMaker picks a
time to run every day.

cron scheduling 5201

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ScheduleConfig.html

Amazon SageMaker Developer Guide

• Currently, SageMaker only supports hourly integer rates between 1 hour and 24 hours.

Configuring service control policies for monitoring schedules

You have to specify the parameters of a monitoring job when you create or update a schedule
for it with the CreateMonitoringSchedule API or the UpdateMonitoringSchedule API, respectively.
Depending on your use case, you can do this in one of the following ways:

• You can specify the MonitoringJobDefinition field of MonitoringScheduleConfig, when you
invoke CreateMonitoringSchedule or UpdateMonitoringSchedule. You can use this only
to create or update a schedule for a data quality monitoring job.

• You can specify the name of a monitoring job definition, that you have already created, for the
MonitoringJobDefinitionName field of MonitoringScheduleConfig, when you invoke
CreateMonitoringSchedule or UpdateMonitoringSchedule. You can use this for any job
definition that you create with one of the following APIs:

• CreateDataQualityJobDefinition

• CreateModelQualityJobDefinition

• CreateModelBiasJobDefinition

• CreateModelExplainabilityJobDefinition

If you want to use the SageMaker Python SDK to create or update schedules, then you have to
use this process.

The aforementioned processes are mutually exclusive, that is, you can either specify the
MonitoringJobDefinition field or the MonitoringJobDefinitionName field when creating
or updating monitoring schedules.

When you create a monitoring job definition, or specify one in the MonitoringJobDefinition
field, you can set security parameters, such as NetworkConfig and VolumeKmsKeyId. As
an administrator, you might want that these parameters are always set to certain values, so
that the monitoring jobs always run in a secure environment. To ensure this, set up appropriate
Service control policies (SCPs). SCPs are a type of organization policy that you can use to manage
permissions in your organization.

The following example shows a SCP that you can use to ensure that infrastructure parameters are
properly set when creating or updating schedules for monitoring jobs.

Configuring SCPs for monitoring schedules 5202

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateMonitoringSchedule.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateMonitoringSchedule.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MonitoringJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MonitoringScheduleConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDataQualityJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelQualityJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelBiasJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelExplainabilityJobDefinition.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateDataQualityJobDefinition",
 "sagemaker:CreateModelBiasJobDefinition",
 "sagemaker:CreateModelExplainabilityJobDefinition",
 "sagemaker:CreateModelQualityJobDefinition"
],
 "Resource": "arn:*:sagemaker:*:*:*",
 "Condition": {
 "Null": {
 "sagemaker:VolumeKmsKey":"true",
 "sagemaker:VpcSubnets": "true",
 "sagemaker:VpcSecurityGroupIds": "true"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateDataQualityJobDefinition",
 "sagemaker:CreateModelBiasJobDefinition",
 "sagemaker:CreateModelExplainabilityJobDefinition",
 "sagemaker:CreateModelQualityJobDefinition"
],
 "Resource": "arn:*:sagemaker:*:*:*",
 "Condition": {
 "Bool": {
 "sagemaker:InterContainerTrafficEncryption": "false"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateMonitoringSchedule",
 "sagemaker:UpdateMonitoringSchedule",
],
 "Resource": "arn:*:sagemaker:*:*:monitoring-schedule/*",
 "Condition": {

Configuring SCPs for monitoring schedules 5203

Amazon SageMaker Developer Guide

 "Null": {
 "sagemaker:ModelMonitorJobDefinitionName": "true"
 }
 }
 }
]
}

The first two rules in the example, ensure that the security parameters are always set for
monitoring job definitions. The final rule requires that anyone, in your organization, creating or
updating a schedule, have to always specify the MonitoringJobDefinitionName field. This
ensures that no one in your organization, can set insecure values for the security parameters by
specifying the MonitoringJobDefinition field, when creating or updating schedules.

Amazon SageMaker Model Monitor prebuilt container

SageMaker provides a built-in image called sagemaker-model-monitor-analyzer that
provides you with a range of model monitoring capabilities, including constraint suggestion,
statistics generation, constraint validation against a baseline, and emitting Amazon CloudWatch
metrics. This image is based on Spark version 3.3.0 and is built with Deequ version 2.0.2.

Note

You can not pull the built-in sagemaker-model-monitor-analyzer image directly. You
can use the sagemaker-model-monitor-analyzer image when you submit a baseline
processing or monitoring job using one of the AWS SDKs.

Use the SageMaker Python SDK (see image_uris.retrieve in the SageMaker Python SDK
reference guide) to generate the ECR image URI for you, or specify the ECR image URI directly. The
prebuilt image for SageMaker Model Monitor can be accessed as follows:

<ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/sagemaker-model-monitor-
analyzer

For example: 159807026194.dkr.ecr.us-west-2.amazonaws.com/sagemaker-model-
monitor-analyzer

Prebuilt container 5204

https://github.com/awslabs/deequ
https://sagemaker.readthedocs.io/en/stable/api/utility/image_uris.html
https://sagemaker.readthedocs.io/en/stable/api/utility/image_uris.html

Amazon SageMaker Developer Guide

If you are in an AWS region in China, the prebuilt images for SageMaker Model Monitor can be
accessed as follows:

<ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com.cn/sagemaker-model-
monitor-analyzer

For account IDs and AWS Region names, see Docker Registry Paths and Example Code.

To write your own analysis container, see the container contract described in Customize
monitoring.

Interpret results

After you run a baseline processing job and obtained statistics and constraint for your dataset, you
can execute monitoring jobs that calculate statistics and list any violations encountered relative to
the baseline constraints. Amazon CloudWatch metrics are also reported in your account by default.
For information on viewing the results of monitoring in Amazon SageMaker Studio, see Visualize
results for real-time endpoints in Amazon SageMaker Studio.

List Executions

The schedule starts monitoring jobs at the specified intervals. The following code lists the latest
five executions. If you are running this code after creating the hourly schedule, the executions
might be empty, and you might have to wait until you cross the hour boundary (in UTC) to see the
executions start. The following code includes the logic for waiting.

mon_executions = my_default_monitor.list_executions()
print("We created a hourly schedule above and it will kick off executions ON the hour
 (plus 0 - 20 min buffer.\nWe will have to wait till we hit the hour...")

while len(mon_executions) == 0:
 print("Waiting for the 1st execution to happen...")
 time.sleep(60)
 mon_executions = my_default_monitor.list_executions()

Inspect a Specific Execution

In the previous step, you picked up the latest completed or failed scheduled execution. You can
explore what went right or wrong. The terminal states are:

Interpret results 5205

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths

Amazon SageMaker Developer Guide

• Completed – The monitoring execution completed and no issues were found in the violations
report.

• CompletedWithViolations – The execution completed, but constraint violations were
detected.

• Failed – The monitoring execution failed, possibly due to client error (for example, a role issues)
or infrastructure issues. To identify the cause, see the FailureReason and ExitMessage.

latest_execution = mon_executions[-1] # latest execution's index is -1, previous is -2
 and so on..
time.sleep(60)
latest_execution.wait(logs=False)

print("Latest execution status: {}".format(latest_execution.describe()
['ProcessingJobStatus']))
print("Latest execution result: {}".format(latest_execution.describe()['ExitMessage']))

latest_job = latest_execution.describe()
if (latest_job['ProcessingJobStatus'] != 'Completed'):
 print("====STOP==== \n No completed executions to inspect further. Please wait
 till an execution completes or investigate previously reported failures.")

report_uri=latest_execution.output.destination
print('Report Uri: {}'.format(report_uri))

List Generated Reports

Use the following code to list the generated reports.

from urllib.parse import urlparse
s3uri = urlparse(report_uri)
report_bucket = s3uri.netloc
report_key = s3uri.path.lstrip('/')
print('Report bucket: {}'.format(report_bucket))
print('Report key: {}'.format(report_key))

s3_client = boto3.Session().client('s3')
result = s3_client.list_objects(Bucket=report_bucket, Prefix=report_key)
report_files = [report_file.get("Key") for report_file in result.get('Contents')]
print("Found Report Files:")

List Generated Reports 5206

Amazon SageMaker Developer Guide

print("\n ".join(report_files))

Violations Report

If there are violations compared to the baseline, they are generated in the violations report. Use
the following code to list the violations.

violations = my_default_monitor.latest_monitoring_constraint_violations()
pd.set_option('display.max_colwidth', -1)
constraints_df = pd.io.json.json_normalize(violations.body_dict["violations"])
constraints_df.head(10)

This applies only to datasets that contain tabular data. The following schema files specify the
statistics calculated and the violations monitored for.

Output Files for Tabular Datasets

File Name Description

statistics.json Contains columnar statistics for each feature
in the dataset that is analyzed. See the schema
of this file in the next topic.

Note

This file is created only for data quality
monitoring.

constraint_violations.json Contains a list of violations found in this
current set of data as compared to the
baseline statistics and constraints file specified
in the baseline_constaints and
baseline_statistics paths.

The Amazon SageMaker Model Monitor prebuilt container saves a set of Amazon CloudWatch
metrics for each feature by default.

Violations Report 5207

Amazon SageMaker Developer Guide

The container code can emit CloudWatch metrics in this location: /opt/ml/output/metrics/
cloudwatch.

Visualize results for real-time endpoints in Amazon SageMaker
Studio

If you are monitoring a real-time endpoint, you can also visualize the results in Amazon SageMaker
Studio. You can view the details of any monitoring job run, and you can create charts that show the
baseline and captured values for any metric that the monitoring job calculates.

To view the detailed results of a monitoring job

1. Sign in to Studio. For more information, see Amazon SageMaker domain overview.

2. In the left navigation pane, choose the Components and registries icon (

).

3. Choose Endpoints in the drop-down menu.

4. On the endpoint tab, choose the monitoring type for which you want to see job details.

Visualize results for real-time endpoints 5208

Amazon SageMaker Developer Guide

5. Choose the name of the monitoring job run for which you want to view details from the list of
monitoring jobs.

6. The MONITORING JOB DETAILS tab opens with a detailed report of the monitoring job.

Visualize results for real-time endpoints 5209

Amazon SageMaker Developer Guide

You can create a chart that displays the baseline and captured metrics for a time period.

To create a chart in SageMaker Studio to visualize monitoring results

1. Sign in to Studio. For more information, see Amazon SageMaker domain overview.

2. In the left navigation pane, choose the Components and registries icon (

).

Visualize results for real-time endpoints 5210

Amazon SageMaker Developer Guide

3. Choose Endpoints in the drop-down menu.

4. On the Endpoint tab, choose the monitoring type you want to create a chart for. This example
shows a chart for the Model quality monitoring type.

5. Choose Add chart.

Visualize results for real-time endpoints 5211

Amazon SageMaker Developer Guide

6. On the CHART PROPERTIES tab, choose the time period, statistic, and metric that you want to
chart. This example shows a chart for a Timeline of 1 week, the Average Statistic of, and the
F1 Metric.

Visualize results for real-time endpoints 5212

Amazon SageMaker Developer Guide

7. The chart that shows the baseline and current metric statistic you chose in the previous step
shows up in the Endpoint tab.

Visualize results for real-time endpoints 5213

Amazon SageMaker Developer Guide

Advanced topics

The following sections contain more advanced tasks that explain how to customize monitoring
using preprocessing and postprocessing scripts, how to build your own container, and how to use
AWS CloudFormation to create a monitoring schedule.

Topics

• Customize monitoring

• Create a Monitoring Schedule for a Real-time Endpoint with an AWS CloudFormation Custom
Resource

Customize monitoring

In addition to using the built-in monitoring mechanisms, you can create your own custom
monitoring schedules and procedures using preprocessing and postprocessing scripts or by using or
building your own container.

Topics

• Preprocessing and Postprocessing

• Bring Your Own Containers

Preprocessing and Postprocessing

You can use custom preprocessing and postprocessing Python scripts to transform the input to
your model monitor or extend the code after a successful monitoring run. Upload these scripts to
Amazon S3 and reference them when creating your model monitor.

The following example shows how you can customize monitoring schedules with preprocessing and
postprocessing scripts. Replace user placeholder text with your own information.

import boto3, os
from sagemaker import get_execution_role, Session
from sagemaker.model_monitor import CronExpressionGenerator, DefaultModelMonitor

Upload pre and postprocessor scripts
session = Session()
bucket = boto3.Session().resource("s3").Bucket(session.default_bucket())

Advanced topics 5214

Amazon SageMaker Developer Guide

prefix = "demo-sagemaker-model-monitor"
pre_processor_script = bucket.Object(os.path.join(prefix,
 "preprocessor.py")).upload_file("preprocessor.py")
post_processor_script = bucket.Object(os.path.join(prefix,
 "postprocessor.py")).upload_file("postprocessor.py")

Get execution role
role = get_execution_role() # can be an empty string

Instance type
instance_type = "instance-type"
instance_type = "ml.m5.xlarge" # Example

Create a monitoring schedule with pre and postprocessing
my_default_monitor = DefaultModelMonitor(
 role=role,
 instance_count=1,
 instance_type=instance_type,
 volume_size_in_gb=20,
 max_runtime_in_seconds=3600,
)

s3_report_path = "s3://{}/{}".format(bucket, "reports")
monitor_schedule_name = "monitor-schedule-name"
endpoint_name = "endpoint-name"
my_default_monitor.create_monitoring_schedule(
 post_analytics_processor_script=post_processor_script,
 record_preprocessor_script=pre_processor_script,
 monitor_schedule_name=monitor_schedule_name,
 # use endpoint_input for real-time endpoint
 endpoint_input=endpoint_name,
 # or use batch_transform_input for batch transform jobs
 # batch_transform_input=batch_transform_name,
 output_s3_uri=s3_report_path,
 statistics=my_default_monitor.baseline_statistics(),
 constraints=my_default_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
)

Topics

• Preprocessing Script

Customize monitoring 5215

Amazon SageMaker Developer Guide

• Custom Sampling

• Postprocessing Script

Preprocessing Script

Use preprocessing scripts when you need to transform the inputs to your model monitor.

For example, suppose the output of your model is an array [1.0, 2.1]. The Amazon
SageMaker Model Monitor container only works with tabular or flattened JSON structures, like
{“prediction0”: 1.0, “prediction1” : 2.1}. You could use a preprocessing script like
the following to transform the array into the correct JSON structure.

def preprocess_handler(inference_record):
 input_data = inference_record.endpoint_input.data
 output_data = inference_record.endpoint_output.data.rstrip("\n")
 data = output_data + "," + input_data
 return { str(i).zfill(20) : d for i, d in enumerate(data.split(",")) }

In another example, suppose your model has optional features and you use -1 to denote that the
optional feature has a missing value. If you have a data quality monitor, you may want to remove
the -1 from the input value array so that it isn't included in the monitor's metric calculations. You
could use a script like the following to remove those values.

def preprocess_handler(inference_record):
 input_data = inference_record.endpoint_input.data
 return {i : None if x == -1 else x for i, x in enumerate(input_data.split(","))}

Your preprocessing script receives an inference_record as its only input. The following code
snippet shows an example of an inference_record.

{
 "captureData": {
 "endpointInput": {
 "observedContentType": "text/csv",
 "mode": "INPUT",
 "data": "132,25,113.2,96,269.9,107,,0,0,0,0,0,0,1,0,1,0,0,1",
 "encoding": "CSV"
 },

Customize monitoring 5216

Amazon SageMaker Developer Guide

 "endpointOutput": {
 "observedContentType": "text/csv; charset=utf-8",
 "mode": "OUTPUT",
 "data": "0.01076381653547287",
 "encoding": "CSV"
 }
 },
 "eventMetadata": {
 "eventId": "feca1ab1-8025-47e3-8f6a-99e3fdd7b8d9",
 "inferenceTime": "2019-11-20T23:33:12Z"
 },
 "eventVersion": "0"
}

The following code snippet shows the full class structure for an inference_record.

KEY_EVENT_METADATA = "eventMetadata"
KEY_EVENT_METADATA_EVENT_ID = "eventId"
KEY_EVENT_METADATA_EVENT_TIME = "inferenceTime"
KEY_EVENT_METADATA_CUSTOM_ATTR = "customAttributes"

KEY_EVENTDATA_ENCODING = "encoding"
KEY_EVENTDATA_DATA = "data"

KEY_GROUND_TRUTH_DATA = "groundTruthData"

KEY_EVENTDATA = "captureData"
KEY_EVENTDATA_ENDPOINT_INPUT = "endpointInput"
KEY_EVENTDATA_ENDPOINT_OUTPUT = "endpointOutput"

KEY_EVENTDATA_BATCH_OUTPUT = "batchTransformOutput"
KEY_EVENTDATA_OBSERVED_CONTENT_TYPE = "observedContentType"
KEY_EVENTDATA_MODE = "mode"

KEY_EVENT_VERSION = "eventVersion"

class EventConfig:
 def __init__(self, endpoint, variant, start_time, end_time):
 self.endpoint = endpoint
 self.variant = variant
 self.start_time = start_time
 self.end_time = end_time

Customize monitoring 5217

Amazon SageMaker Developer Guide

class EventMetadata:
 def __init__(self, event_metadata_dict):
 self.event_id = event_metadata_dict.get(KEY_EVENT_METADATA_EVENT_ID, None)
 self.event_time = event_metadata_dict.get(KEY_EVENT_METADATA_EVENT_TIME, None)
 self.custom_attribute = event_metadata_dict.get(KEY_EVENT_METADATA_CUSTOM_ATTR,
 None)

class EventData:
 def __init__(self, data_dict):
 self.encoding = data_dict.get(KEY_EVENTDATA_ENCODING, None)
 self.data = data_dict.get(KEY_EVENTDATA_DATA, None)
 self.observedContentType = data_dict.get(KEY_EVENTDATA_OBSERVED_CONTENT_TYPE,
 None)
 self.mode = data_dict.get(KEY_EVENTDATA_MODE, None)

 def as_dict(self):
 ret = {
 KEY_EVENTDATA_ENCODING: self.encoding,
 KEY_EVENTDATA_DATA: self.data,
 KEY_EVENTDATA_OBSERVED_CONTENT_TYPE: self.observedContentType,
 }
 return ret

class CapturedData:
 def __init__(self, event_dict):
 self.event_metadata = None
 self.endpoint_input = None
 self.endpoint_output = None
 self.batch_transform_output = None
 self.ground_truth = None
 self.event_version = None
 self.event_dict = event_dict
 self._event_dict_postprocessed = False

 if KEY_EVENT_METADATA in event_dict:
 self.event_metadata = EventMetadata(event_dict[KEY_EVENT_METADATA])
 if KEY_EVENTDATA in event_dict:
 if KEY_EVENTDATA_ENDPOINT_INPUT in event_dict[KEY_EVENTDATA]:
 self.endpoint_input = EventData(event_dict[KEY_EVENTDATA]
[KEY_EVENTDATA_ENDPOINT_INPUT])

Customize monitoring 5218

Amazon SageMaker Developer Guide

 if KEY_EVENTDATA_ENDPOINT_OUTPUT in event_dict[KEY_EVENTDATA]:
 self.endpoint_output = EventData(event_dict[KEY_EVENTDATA]
[KEY_EVENTDATA_ENDPOINT_OUTPUT])
 if KEY_EVENTDATA_BATCH_OUTPUT in event_dict[KEY_EVENTDATA]:
 self.batch_transform_output = EventData(event_dict[KEY_EVENTDATA]
[KEY_EVENTDATA_BATCH_OUTPUT])

 if KEY_GROUND_TRUTH_DATA in event_dict:
 self.ground_truth = EventData(event_dict[KEY_GROUND_TRUTH_DATA])
 if KEY_EVENT_VERSION in event_dict:
 self.event_version = event_dict[KEY_EVENT_VERSION]

 def as_dict(self):
 if self._event_dict_postprocessed is True:
 return self.event_dict
 if KEY_EVENTDATA in self.event_dict:
 if KEY_EVENTDATA_ENDPOINT_INPUT in self.event_dict[KEY_EVENTDATA]:
 self.event_dict[KEY_EVENTDATA][KEY_EVENTDATA_ENDPOINT_INPUT] =
 self.endpoint_input.as_dict()
 if KEY_EVENTDATA_ENDPOINT_OUTPUT in self.event_dict[KEY_EVENTDATA]:
 self.event_dict[KEY_EVENTDATA][
 KEY_EVENTDATA_ENDPOINT_OUTPUT
] = self.endpoint_output.as_dict()
 if KEY_EVENTDATA_BATCH_OUTPUT in self.event_dict[KEY_EVENTDATA]:
 self.event_dict[KEY_EVENTDATA][KEY_EVENTDATA_BATCH_OUTPUT] =
 self.batch_transform_output.as_dict()

 self._event_dict_postprocessed = True
 return self.event_dict

 def __str__(self):
 return str(self.as_dict())

Custom Sampling

You can also apply a custom sampling strategy in your preprocessing script. To do this, configure
Model Monitor's first-party, pre-built container to ignore a percentage of the records according
to your specified sampling rate. In the following example, the handler samples 10 percent of the
records by returning the record in 10 percent of handler calls and an empty list otherwise.

import random

Customize monitoring 5219

Amazon SageMaker Developer Guide

def preprocess_handler(inference_record):
 # we set up a sampling rate of 0.1
 if random.random() > 0.1:
 # return an empty list
 return []
 input_data = inference_record.endpoint_input.data
 return {i : None if x == -1 else x for i, x in enumerate(input_data.split(","))}

Custom logging for preprocessing script

If your preprocessing script returns an error, check the exception messages logged to CloudWatch
to debug. You can access the logger on CloudWatch through the preprocess_handler
interface. You can log any information you need from your script to CloudWatch. This can be
useful when debug your preprocessing script. The following example shows how you can use the
preprocess_handler interface to log to CloudWatch

def preprocess_handler(inference_record, logger):
 logger.info(f"I'm a processing record: {inference_record}")
 logger.debug(f"I'm debugging a processing record: {inference_record}")
 logger.warning(f"I'm processing record with missing value: {inference_record}")
 logger.error(f"I'm a processing record with bad value: {inference_record}")
 return inference_record

Postprocessing Script

Use a postprocessing script when you want to extend the code following a successful monitoring
run.

def postprocess_handler():
 print("Hello from post-proc script!")

Bring Your Own Containers

Amazon SageMaker Model Monitor provides a prebuilt container with ability to analyze the data
captured from endpoints or batch transform jobs for tabular datasets. If you would like to bring
your own container, Model Monitor provides extension points which you can leverage.

Under the hood, when you create a MonitoringSchedule, Model Monitor ultimately kicks off
processing jobs. Hence the container needs to be aware of the processing job contract documented

Customize monitoring 5220

Amazon SageMaker Developer Guide

in the Build Your Own Processing Container (Advanced Scenario) topic. Note that Model Monitor
kicks off the processing job on your behalf per the schedule. While invoking, Model Monitor sets
up additional environment variables for you so that your container has enough context to process
the data for that particular execution of the scheduled monitoring. For additional information on
container inputs, see the Container Contract Inputs.

In the container, using the above environment variables/context, you can now analyze the dataset
for the current period in your custom code. After this analysis is complete, you can chose to emit
your reports to be uploaded to an S3 bucket. The reports that the prebuilt container generates
are documented in Container Contract Outputs. If you would like the visualization of the reports
to work in SageMaker Studio, you should follow the same format. You can also choose to emit
completely custom reports.

You also emit CloudWatch metrics from the container by following the instructions in CloudWatch
Metrics for Bring Your Own Containers.

Topics

• Container Contract Inputs

• Container Contract Outputs

• CloudWatch Metrics for Bring Your Own Containers

Container Contract Inputs

The Amazon SageMaker Model Monitor platform invokes your container code according to a
specified schedule. If you choose to write your own container code, the following environment
variables are available. In this context, you can analyze the current dataset or evaluate the
constraints if you choose and emit metrics, if applicable.

The available environment variables are the same for real-time endpoints and batch transform
jobs, except for the dataset_format variable. If you are using a real-time endpoint, the
dataset_format variable supports the following options:

{\"sagemakerCaptureJson\": {\"captureIndexNames\": [\"endpointInput\",\"endpointOutput
\"]}}

If you are using a batch transform job, the dataset_format supports the following options:

{\"csv\": {\"header\": [\"true\",\"false\"]}}

Customize monitoring 5221

Amazon SageMaker Developer Guide

{\"json\": {\"line\": [\"true\",\"false\"]}}

{\"parquet\": {}}

The following code sample shows the complete set of environment variables available for your
container code (and uses the dataset_format format for a real-time endpoint).

"Environment": {
 "dataset_format": "{\"sagemakerCaptureJson\": {\"captureIndexNames\": [\"endpointInput
\",\"endpointOutput\"]}}",
 "dataset_source": "/opt/ml/processing/endpointdata",
 "end_time": "2019-12-01T16: 20: 00Z",
 "output_path": "/opt/ml/processing/resultdata",
 "publish_cloudwatch_metrics": "Disabled",
 "sagemaker_endpoint_name": "endpoint-name",
 "sagemaker_monitoring_schedule_name": "schedule-name",
 "start_time": "2019-12-01T15: 20: 00Z"
}

Parameters

Parameter Name Description

dataset_format For a job started from a Monitorin
gSchedule backed by an Endpoint, this is
sageMakerCaptureJson with the capture
indices endpointInput ,or endpointO
utput , or both. For a batch transform job,
this specifies the data format, whether CSV,
JSON, or Parquet.

dataset_source If you are using a real-time endpoint, the local
path in which the data corresponding to the
monitoring period, as specified by start_tim
e and end_time, are available. At this path,
the data is available in /{endpoint-
name}/{variant-name}/yyyy/mm/dd/
hh .

Customize monitoring 5222

Amazon SageMaker Developer Guide

Parameter Name Description

We sometimes download more than what is
specified by the start and end times. It is up
to the container code to parse the data as
required.

output_path The local path to write output reports and
other files. You specify this parameter in the
CreateMonitoringSchedule request
as MonitoringOutputConfig.Moni
toringOutput[0].LocalPath . It
is uploaded to the S3Uri path specified
 in MonitoringOutputConfig.Moni
toringOutput[0].S3Uri .

publish_cloudwatch_metrics For a job launched by CreateMon
itoringSchedule , this parameter is set
to Enabled. The container can choose to
write the Amazon CloudWatch output file at
[filepath] .

sagemaker_endpoint_name If you are using a real-time endpoint, the
name of the Endpoint that this scheduled job
was launched for.

sagemaker_monitoring_schedu
le_name

The name of the MonitoringSchedule
that launched this job.

*sagemaker_endpoint_datacap
ture_prefix*

If you are using a real-time endpoint, the
prefix specified in the DataCaptureConfig
parameter of the Endpoint. The container
 can use this if it needs to directly access more
data than already downloaded by SageMaker
at the dataset_source path.

Customize monitoring 5223

Amazon SageMaker Developer Guide

Parameter Name Description

start_time, end_time The time window for this analysis run. For
example, for a job scheduled to run at 05:00
UTC and a job that runs on 20/02/2020,
start_time : is 2020-02-19T06:00:00Z and
end_time: is 2020-02-20T05:00:00Z

baseline_constraints: The local path of the baseline constraint
file specified in BaselineConfig.Con
straintResource.S3Uri . This is
available only if this parameter was specified
in the CreateMonitoringSchedule
request.

baseline_statistics The local path to the baseline statistics
file specified in BaselineConfig.Sta
tisticsResource.S3Uri . This is
available only if this parameter was specified
 in the CreateMonitoringSchedule
request.:

Container Contract Outputs

The container can analyze the data available in the *dataset_source* path and write reports to
the path in *output_path*. The container code can write any reports that suit your needs.

If you use the following structure and contract, certain output files are treated specially by
SageMaker in the visualization and API . This applies only to tabular datasets.

Output Files for Tabular Datasets

File Name Description

statistics.json This file is expected to have columnar statistic
s for each feature in the dataset that is
analyzed. The schema for this file is available
in the next section.

Customize monitoring 5224

Amazon SageMaker Developer Guide

File Name Description

constraints.json This file is expected to have the constraints on
the features observed. The schema for this file
is available in the next section.

constraints_violations.json This file is expected to have the list of
violations found in this current set of data
as compared to the baseline statistics and
constraints file specified in the baseline_
constaints and baseline_statistic
s path.

In addition, if the publish_cloudwatch_metrics value is "Enabled" container code can emit
Amazon CloudWatch metrics in this location: /opt/ml/output/metrics/cloudwatch. The
schema for these files is described in the following sections.

Topics

• Schema for Statistics (statistics.json file)

• Schema for Constraints (constraints.json file)

Schema for Statistics (statistics.json file)

The schema defined in the statistics.json file specifies the statistical parameters to be
calculated for the baseline and data that is captured. It also configures the bucket to be used by
KLL, a very compact quantiles sketch with lazy compaction scheme.

{
 "version": 0,
 # dataset level stats
 "dataset": {
 "item_count": number
 },
 # feature level stats
 "features": [
 {
 "name": "feature-name",
 "inferred_type": "Fractional" | "Integral",

Customize monitoring 5225

https://datasketches.apache.org/docs/KLL/KLLSketch.html

Amazon SageMaker Developer Guide

 "numerical_statistics": {
 "common": {
 "num_present": number,
 "num_missing": number
 },
 "mean": number,
 "sum": number,
 "std_dev": number,
 "min": number,
 "max": number,
 "distribution": {
 "kll": {
 "buckets": [
 {
 "lower_bound": number,
 "upper_bound": number,
 "count": number
 }
],
 "sketch": {
 "parameters": {
 "c": number,
 "k": number
 },
 "data": [
 [
 num,
 num,
 num,
 num
],
 [
 num,
 num
][
 num,
 num
]
]
 }#sketch
 }#KLL
 }#distribution
 }#num_stats
 },

Customize monitoring 5226

Amazon SageMaker Developer Guide

 {
 "name": "feature-name",
 "inferred_type": "String",
 "string_statistics": {
 "common": {
 "num_present": number,
 "num_missing": number
 },
 "distinct_count": number,
 "distribution": {
 "categorical": {
 "buckets": [
 {
 "value": "string",
 "count": number
 }
]
 }
 }
 },
 #provision for custom stats
 }
]
}

Notes

• The specified metrics are recognized by SageMaker in later visualization changes. The
container can emit more metrics if required.

• KLL sketch is the recognized sketch. Custom containers can write their own
representation, but it won’t be recognized by SageMaker in visualizations.

• By default, the distribution is materialized in 10 buckets. You can't change this.

Schema for Constraints (constraints.json file)

A constraints.json file is used to express the constraints that a dataset must satisfy. Amazon
SageMaker Model Monitor containers can use the constraints.json file to evaluate datasets against.
Prebuilt containers provide the ability to generate the constraints.json file automatically for a
baseline dataset. If you bring your own container, you can provide it with similar abilities or you can

Customize monitoring 5227

https://datasketches.apache.org/docs/KLL/KLLSketch.html

Amazon SageMaker Developer Guide

create the constraints.json file in some other way. Here is the schema for the constraint file that
the prebuilt container uses. Bring your own containers can adopt the same format or enhance it as
required.

{
 "version": 0,
 "features":
 [
 {
 "name": "string",
 "inferred_type": "Integral" | "Fractional" |
 | "String" | "Unknown",
 "completeness": number,
 "num_constraints":
 {
 "is_non_negative": boolean
 },
 "string_constraints":
 {
 "domains":
 [
 "list of",
 "observed values",
 "for small cardinality"
]
 },
 "monitoringConfigOverrides":
 {}
 }
],
 "monitoring_config":
 {
 "evaluate_constraints": "Enabled",
 "emit_metrics": "Enabled",
 "datatype_check_threshold": 0.1,
 "domain_content_threshold": 0.1,
 "distribution_constraints":
 {
 "perform_comparison": "Enabled",
 "comparison_threshold": 0.1,
 "comparison_method": "Simple"||"Robust",
 "categorical_comparison_threshold": 0.1,
 "categorical_drift_method": "LInfinity"||"ChiSquared"

Customize monitoring 5228

Amazon SageMaker Developer Guide

 }
 }
}

The monitoring_config object contains options for monitoring job for the feature. The
following table describes each option.

Monitoring Constraints

Constraint Description

evaluate_constraints When Enabled, evaluates whether the
current dataset being analyzed satisfies the
constraints specified in the constraints.json file
taken as a baseline.

Valid values: Enabled or Disabled

Default: Enabled

emit_metrics When Enabled, emits CloudWatch metrics for
the data contained in the file.

Valid values: Enabled or Disabled

Default: Enabled

datatype_check_threshold If the threshold is above the value of the
specified datatype_check_threshold ,
this causes a failure that is treated as a
violation in the violation report. If the data
types in the current execution are not the
same as in the baseline dataset, this threshold
is used to evaluate if it needs to be flagged as
a violation.

During the baseline step, the generated
 constraints suggest the inferred data type for
each column. The datatype_check_thr
eshold parameter can be tuned to adjust

Customize monitoring 5229

Amazon SageMaker Developer Guide

Constraint Description

the threshold on when it is flagged as a
violation.

Valid values: float

Default: 0.1

domain_content_threshold If there are more unknown values for a
String field in the current dataset than in the
baseline dataset, this threshold can be used to
dictate if it needs to be flagged as a violation.

Valid values: float

Default: 0.1

distribution_constraints perform_comparison

When Enabled, this flag instructs the code to
perform a distribution comparison between
the baseline distribution and the distribution
observed for the current dataset.

Valid values: Enabled or Disabled

Default: Enabled

Customize monitoring 5230

Amazon SageMaker Developer Guide

Constraint Description

comparison_threshold

If the threshold is above the value set for the
comparison_threshold , this causes a
failure that is treated as a violation in the
violation report. The distance is calculated
by getting the maximum absolute difference
between the cumulative distribution functions
of two distributions.

Valid values: float

Default: 0.1

comparison_method

Whether to calculate linf_simple or
linf_robust . The linf_simple is based
on the maximum absolute difference between
the cumulative distribution functions of
two distributions. Calculating linf_robu
st is based on linf_simple , but is used
when there are not enough samples. The
linf_robust formula is based on the Two-
sample Kolmogorov–Smirnov test.

Valid values: linf_simple or linf_robu
st

Customize monitoring 5231

https://en.m.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.m.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Amazon SageMaker Developer Guide

Constraint Description

categorical_comparison_threshold

Optional. Sets a threshold for categorical
features. If the value in the dataset exceeds
the threshold that you set, a violation is
recorded in the violation report.

Valid values: float

Default: The value assigned to the compariso
n_threshold parameter

categorical_drift_method

Optional. For categorical features, specifies
the computation method used to detect
distribution drift. If you don't set this
parameter, the K-S (LInfinity) test is used.

Valid Values: LInfinity or ChiSquared

Default: LInfinity

CloudWatch Metrics for Bring Your Own Containers

If the publish_cloudwatch_metrics value is Enabled in the Environment map in the /
opt/ml/processing/processingjobconfig.json file, the container code emits Amazon
CloudWatch metrics in this location: /opt/ml/output/metrics/cloudwatch.

The schema for this file is closely based on the CloudWatch PutMetrics API. The namespace is
not specified here. It defaults to the following:

• For real-time endpoints: /aws/sagemaker/Endpoint/data-metrics

• For batch transform jobs: /aws/sagemaker/ModelMonitoring/data-metrics

However, you can specify dimensions. We recommend you add the following dimensions at
minimum:

Customize monitoring 5232

Amazon SageMaker Developer Guide

• Endpoint and MonitoringSchedule for real-time endpoints

• MonitoringSchedule for batch transform jobs

The following JSON snippets show how to set your dimensions.

For a real-time endpoint, see the following JSON snippet which includes the Endpoint and
MonitoringSchedule dimensions:

{
 "MetricName": "", # Required
 "Timestamp": "2019-11-26T03:00:00Z", # Required
 "Dimensions" : [{"Name":"Endpoint","Value":"endpoint_0"},
{"Name":"MonitoringSchedule","Value":"schedule_0"}]
 "Value": Float,
 # Either the Value or the StatisticValues field can be populated and not both.
 "StatisticValues": {
 "SampleCount": Float,
 "Sum": Float,
 "Minimum": Float,
 "Maximum": Float
 },
 "Unit": "Count", # Optional
}

For a batch transform job, see the following JSON snippet which includes the
MonitoringSchedule dimension:

{
 "MetricName": "", # Required
 "Timestamp": "2019-11-26T03:00:00Z", # Required
 "Dimensions" : [{"Name":"MonitoringSchedule","Value":"schedule_0"}]
 "Value": Float,
 # Either the Value or the StatisticValues field can be populated and not both.
 "StatisticValues": {
 "SampleCount": Float,
 "Sum": Float,
 "Minimum": Float,
 "Maximum": Float
 },
 "Unit": "Count", # Optional
}

Customize monitoring 5233

Amazon SageMaker Developer Guide

Create a Monitoring Schedule for a Real-time Endpoint with an AWS
CloudFormation Custom Resource

If you are using a real-time endpoint, you can use a AWS CloudFormation custom resource to
create a monitoring schedule. The custom resource is in Python. To deploy it, see Python Lambda
deployment.

Custom Resource

Start by adding a custom resource to your AWS CloudFormation template. This points to a AWS
Lambda function that you create in the next step.

This resource enables you to customize the parameters for the monitoring schedule You can add
or remove more parameters by modifying the AWS CloudFormation resource and the Lambda
function in the following example resource.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "MonitoringSchedule": {
 "Type": "Custom::MonitoringSchedule",
 "Version": "1.0",
 "Properties": {
 "ServiceToken": "arn:aws:lambda:us-west-2:111111111111:function:lambda-
name",
 "ScheduleName": "YourScheduleName",
 "EndpointName": "YourEndpointName",
 "BaselineConstraintsUri": "s3://your-baseline-constraints/
constraints.json",
 "BaselineStatisticsUri": "s3://your-baseline-stats/statistics.json",
 "PostAnalyticsProcessorSourceUri": "s3://your-post-processor/
postprocessor.py",
 "RecordPreprocessorSourceUri": "s3://your-preprocessor/
preprocessor.py",
 "InputLocalPath": "/opt/ml/processing/endpointdata",
 "OutputLocalPath": "/opt/ml/processing/localpath",
 "OutputS3URI": "s3://your-output-uri",
 "ImageURI": "111111111111.dkr.ecr.us-west-2.amazonaws.com/your-image",
 "ScheduleExpression": "cron(0 * ? * * *)",
 "PassRoleArn": "arn:aws:iam::111111111111:role/AmazonSageMaker-
ExecutionRole"
 }

AWS CloudFormation Custom Resource for Real-time Endpoints 5234

https://docs.aws.amazon.com/lambda/latest/dg/lambda-python-how-to-create-deployment-package.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-python-how-to-create-deployment-package.html

Amazon SageMaker Developer Guide

 }
 }
}

Lambda Custom Resource Code

This AWS CloudFormation custom resource uses the Custom Resource Helper AWS library, which
you can install with pip using pip install crhelper.

This Lambda function is invoked by AWS CloudFormation during the creation and deletion of the
stack. This Lambda function is responsible for creating and deleting the monitoring schedule and
using the parameters defined in the custom resource described in the preceding section.

import boto3
import botocore
import logging

from crhelper import CfnResource
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)
sm = boto3.client('sagemaker')

cfnhelper makes it easier to implement a CloudFormation custom resource
helper = CfnResource()

CFN Handlers

def handler(event, context):
 helper(event, context)

@helper.create
def create_handler(event, context):
 """
 Called when CloudFormation custom resource sends the create event
 """
 create_monitoring_schedule(event)

@helper.delete
def delete_handler(event, context):

AWS CloudFormation Custom Resource for Real-time Endpoints 5235

https://github.com/aws-cloudformation/custom-resource-helper

Amazon SageMaker Developer Guide

 """
 Called when CloudFormation custom resource sends the delete event
 """
 schedule_name = get_schedule_name(event)
 delete_monitoring_schedule(schedule_name)

@helper.poll_create
def poll_create(event, context):
 """
 Return true if the resource has been created and false otherwise so
 CloudFormation polls again.
 """
 schedule_name = get_schedule_name(event)
 logger.info('Polling for creation of schedule: %s', schedule_name)
 return is_schedule_ready(schedule_name)

@helper.update
def noop():
 """
 Not currently implemented but crhelper will throw an error if it isn't added
 """
 pass

Helper Functions

def get_schedule_name(event):
 return event['ResourceProperties']['ScheduleName']

def create_monitoring_schedule(event):
 schedule_name = get_schedule_name(event)
 monitoring_schedule_config = create_monitoring_schedule_config(event)

 logger.info('Creating monitoring schedule with name: %s', schedule_name)

 sm.create_monitoring_schedule(
 MonitoringScheduleName=schedule_name,
 MonitoringScheduleConfig=monitoring_schedule_config)

def is_schedule_ready(schedule_name):
 is_ready = False

 schedule = sm.describe_monitoring_schedule(MonitoringScheduleName=schedule_name)
 status = schedule['MonitoringScheduleStatus']

AWS CloudFormation Custom Resource for Real-time Endpoints 5236

Amazon SageMaker Developer Guide

 if status == 'Scheduled':
 logger.info('Monitoring schedule (%s) is ready', schedule_name)
 is_ready = True
 elif status == 'Pending':
 logger.info('Monitoring schedule (%s) still creating, waiting and polling
 again...', schedule_name)
 else:
 raise Exception('Monitoring schedule ({}) has unexpected status:
 {}'.format(schedule_name, status))

 return is_ready

def create_monitoring_schedule_config(event):
 props = event['ResourceProperties']

 return {
 "ScheduleConfig": {
 "ScheduleExpression": props["ScheduleExpression"],
 },
 "MonitoringJobDefinition": {
 "BaselineConfig": {
 "ConstraintsResource": {
 "S3Uri": props['BaselineConstraintsUri'],
 },
 "StatisticsResource": {
 "S3Uri": props['BaselineStatisticsUri'],
 }
 },
 "MonitoringInputs": [
 {
 "EndpointInput": {
 "EndpointName": props["EndpointName"],
 "LocalPath": props["InputLocalPath"],
 }
 }
],
 "MonitoringOutputConfig": {
 "MonitoringOutputs": [
 {
 "S3Output": {
 "S3Uri": props["OutputS3URI"],
 "LocalPath": props["OutputLocalPath"],
 }

AWS CloudFormation Custom Resource for Real-time Endpoints 5237

Amazon SageMaker Developer Guide

 }
],
 },
 "MonitoringResources": {
 "ClusterConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.t3.medium",
 "VolumeSizeInGB": 50,
 }
 },
 "MonitoringAppSpecification": {
 "ImageUri": props["ImageURI"],
 "RecordPreprocessorSourceUri":
 props['PostAnalyticsProcessorSourceUri'],
 "PostAnalyticsProcessorSourceUri":
 props['PostAnalyticsProcessorSourceUri'],
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
 },
 "RoleArn": props["PassRoleArn"],
 }
 }

def delete_monitoring_schedule(schedule_name):
 logger.info('Deleting schedule: %s', schedule_name)
 try:
 sm.delete_monitoring_schedule(MonitoringScheduleName=schedule_name)
 except ClientError as e:
 if e.response['Error']['Code'] == 'ResourceNotFound':
 logger.info('Resource not found, nothing to delete')
 else:
 logger.error('Unexpected error while trying to delete monitoring schedule')
 raise e

Model Monitor FAQs

Refer to the following FAQs for more information about Amazon SageMaker Model Monitor.

Q: How do Model Monitor and SageMaker Clarify help customers monitor model behavior?

Model Monitor FAQs 5238

Amazon SageMaker Developer Guide

Customers can monitor model behavior along four dimensions - Data quality, Model quality, Bias
drift, and Feature Attribution drift through Amazon SageMaker Model Monitor and SageMaker
Clarify. Model Monitor continuously monitors the quality of Amazon SageMaker machine learning
models in production. This includes monitoring drift in data quality and model quality metrics such
as accuracy and RMSE. SageMaker Clarify bias monitoring helps data scientists and ML engineers
monitor bias in model’s prediction and feature attribution drift.

Q: What happens in the background when Sagemaker Model monitor is enabled?

Amazon SageMaker Model Monitor automates model monitoring alleviating the need to monitor
the models manually or building any additional tooling. In order to automate the process, Model
Monitor provides you with the ability to create a set of baseline statistics and constraints using the
data with which your model was trained, then set up a schedule to monitor the predictions made
on your endpoint. Model Monitor uses rules to detect drift in your models and alerts you when it
happens. The following steps describe what happens when you enable model monitoring:

• Enable model monitoring: For a real-time endpoint, you have to enable the endpoint to capture
data from incoming requests to a deployed ML model and the resulting model predictions. For a
batch transform job, enable data capture of the batch transform inputs and outputs.

• Baseline processing job: You then create a baseline from the dataset that was used to train the
model. The baseline computes metrics and suggests constraints for the metrics. For example,
the recall score for the model shouldn't regress and drop below 0.571, or the precision score
shouldn't fall below 1.0. Real-time or batch predictions from your model are compared to the
constraints and are reported as violations if they are outside the constrained values.

• Monitoring job: Then, you create a monitoring schedule specifying what data to collect, how
often to collect it, how to analyze it, and which reports to produce.

• Merge job: This is only applicable if you are leveraging Amazon SageMaker Ground Truth. Model
Monitor compares the predictions your model makes with Ground Truth labels to measure the
quality of the model. For this to work, you periodically label data captured by your endpoint or
batch transform job and upload it to Amazon S3.

After you create and upload the Ground Truth labels, include the location of the labels as a
parameter when you create the monitoring job.

When you use Model Monitor to monitor a batch transform job instead of a real-time endpoint,
instead of receiving requests to an endpoint and tracking the predictions, Model Monitor monitors
inference inputs and outputs. In a Model Monitor schedule, the customer provides the count and

Model Monitor FAQs 5239

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html
https://aws.amazon.com/sagemaker/model-monitor/
https://aws.amazon.com/sagemaker/clarify/?sagemaker-data-wrangler-whats-new.sort-by=item.additionalFields.postDateTime&sagemaker-data-wrangler-whats-new.sort-order=desc

Amazon SageMaker Developer Guide

type of instances that are to be used in the processing job. These resources remain reserved until
the schedule is deleted irrespective of the status of current execution.

Q: What is Data Capture, why is it required, and how can I enable it?

In order to log the inputs to the model endpoint and the inference outputs from the deployed
model to Amazon S3, you can enable a feature called Data Capture. For more details about how
to enable it for a real-time endpoint and batch transform job, see Capture data from real-time
endpoint and Capture data from batch transform job.

Q: Does enabling Data Capture impact the performance of a real-time endpoint ?

Data Capture happens asynchronously without impacting production traffic. After you have
enabled the data capture, then the request and response payload, along with some additional meta
data, is saved in the Amazon S3 location that you specified in the DataCaptureConfig. Note that
there can be a delay in the propagation of the captured data to Amazon S3.

You can also view the captured data by listing the data capture files stored in Amazon S3. The
format of the Amazon S3 path is: s3:///{endpoint-name}/{variant-name}/yyyy/mm/
dd/hh/filename.jsonl. Amazon S3 Data Capture should be in the same region as the Model
Monitor schedule. You should also ensure that the column names for the baseline dataset only
have lowercase letters and an underscore (_) as the only separator.

Q: Why is Ground Truth needed for model monitoring?

Ground Truth labels are required by the following features of Model Monitor:

• Model quality monitoring compares the predictions your model makes with Ground Truth labels
to measure the quality of the model.

• Model bias monitoring monitors predictions for bias. One way bias can be introduced in
deployed ML models is when the data used in training differs from the data used to generate
predictions. This is especially pronounced if the data used for training changes over time (such
as fluctuating mortgage rates), and the model prediction is not as accurate unless the model is
retrained with updated data. For example, a model for predicting home prices can be biased if
the mortgage rates used to train the model differ from the most current real-world mortgage
rate.

Q: For customers leveraging Ground Truth for labeling, what are the steps I can take to monitor
the quality of the model?

Model Monitor FAQs 5240

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture-batch.html

Amazon SageMaker Developer Guide

Model quality monitoring compares the predictions your model makes with Ground Truth labels
to measure the quality of the model. For this to work, you periodically label data captured by
your endpoint or batch transform job and upload it to Amazon S3. Besides captures, model bias
monitoring execution also requires Ground Truth data. In real use cases, Ground Truth data should
be regularly collected and uploaded to the designated Amazon S3 location. To match Ground
Truth labels with captured prediction data, there must be a unique identifier for each record in the
dataset. For the structure of each record for Ground Truth data, see Ingest Ground Truth Labels and
Merge Them With Predictions.

The following code example can be used for generating artificial Ground Truth data for a tabular
dataset.

import random

def ground_truth_with_id(inference_id):
 random.seed(inference_id) # to get consistent results
 rand = random.random()
 # format required by the merge container
 return {
 "groundTruthData": {
 "data": "1" if rand < 0.7 else "0", # randomly generate positive labels
 70% of the time
 "encoding": "CSV",
 },
 "eventMetadata": {
 "eventId": str(inference_id),
 },
 "eventVersion": "0",
 }

def upload_ground_truth(upload_time):
 records = [ground_truth_with_id(i) for i in range(test_dataset_size)]
 fake_records = [json.dumps(r) for r in records]
 data_to_upload = "\n".join(fake_records)
 target_s3_uri = f"{ground_truth_upload_path}/{upload_time:%Y/%m/%d/%H/%M%S}.jsonl"
 print(f"Uploading {len(fake_records)} records to", target_s3_uri)
 S3Uploader.upload_string_as_file_body(data_to_upload, target_s3_uri)
Generate data for the last hour
upload_ground_truth(datetime.utcnow() - timedelta(hours=1))
Generate data once a hour
def generate_fake_ground_truth(terminate_event):

Model Monitor FAQs 5241

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-merge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-merge.html

Amazon SageMaker Developer Guide

 upload_ground_truth(datetime.utcnow())
 for _ in range(0, 60):
 time.sleep(60)
 if terminate_event.is_set():
 break

ground_truth_thread = WorkerThread(do_run=generate_fake_ground_truth)
ground_truth_thread.start()

The following code example shows how to generate artificial traffic to send to the model endpoint.
Notice the inferenceId attribute used above to invoke. If this is present, it is used to join with
Ground Truth data (otherwise, the eventId is used).

import threading

class WorkerThread(threading.Thread):
 def __init__(self, do_run, *args, **kwargs):
 super(WorkerThread, self).__init__(*args, **kwargs)
 self.__do_run = do_run
 self.__terminate_event = threading.Event()

 def terminate(self):
 self.__terminate_event.set()

 def run(self):
 while not self.__terminate_event.is_set():
 self.__do_run(self.__terminate_event)
def invoke_endpoint(terminate_event):
 with open(test_dataset, "r") as f:
 i = 0
 for row in f:
 payload = row.rstrip("\n")
 response = sagemaker_runtime_client.invoke_endpoint(
 EndpointName=endpoint_name,
 ContentType="text/csv",
 Body=payload,
 InferenceId=str(i), # unique ID per row
)
 i += 1
 response["Body"].read()
 time.sleep(1)
 if terminate_event.is_set():

Model Monitor FAQs 5242

Amazon SageMaker Developer Guide

 break

Keep invoking the endpoint with test data
invoke_endpoint_thread = WorkerThread(do_run=invoke_endpoint)
invoke_endpoint_thread.start()

You must upload Ground Truth data to an Amazon S3 bucket that has the same path format as
captured data, which is in the following format: s3://<bucket>/<prefix>/yyyy/mm/dd/hh

Note

The date in this path is the date when the Ground Truth label is collected. It doesn't have to
match the date when the inference was generated.

Q: How can customers customize monitoring schedules?

In addition to using the built-in monitoring mechanisms, you can create your own custom
monitoring schedules and procedures using pre-processing and post-processing scripts, or by using
or building your own container. It's important to note that pre-processing and post-processing
scripts only work with data and model quality jobs.

Amazon SageMaker provides the capability for you to monitor and evaluate the data observed by
the model endpoints. For this, you have to create a baseline with which you compare the real-time
traffic. After a baseline is ready, set up a schedule to continuously evaluate and compare against
the baseline. While creating a schedule, you can provide the pre-processing and post-processing
script.

The following example shows how you can customize monitoring schedules with pre-processing
and post-processing scripts.

import boto3, osfrom sagemaker import get_execution_role, Sessionfrom
 sagemaker.model_monitor import CronExpressionGenerator, DefaultModelMonitor
Upload pre and postprocessor scripts
session = Session()
bucket = boto3.Session().resource("s3").Bucket(session.default_bucket())
prefix = "demo-sagemaker-model-monitor"
pre_processor_script = bucket.Object(os.path.join(prefix,
 "preprocessor.py")).upload_file("preprocessor.py")

Model Monitor FAQs 5243

Amazon SageMaker Developer Guide

post_processor_script = bucket.Object(os.path.join(prefix,
 "postprocessor.py")).upload_file("postprocessor.py")
Get execution role
role = get_execution_role() # can be an empty string
Instance type
instance_type = "instance-type"
instance_type = "ml.m5.xlarge" # Example
Create a monitoring schedule with pre and post-processing
my_default_monitor = DefaultModelMonitor(
 role=role,
 instance_count=1,
 instance_type=instance_type,
 volume_size_in_gb=20,
 max_runtime_in_seconds=3600,
)

s3_report_path = "s3://{}/{}".format(bucket, "reports")
monitor_schedule_name = "monitor-schedule-name"
endpoint_name = "endpoint-name"
my_default_monitor.create_monitoring_schedule(
 post_analytics_processor_script=post_processor_script,
 record_preprocessor_script=pre_processor_script,
 monitor_schedule_name=monitor_schedule_name,
 # use endpoint_input for real-time endpoint
 endpoint_input=endpoint_name,
 # or use batch_transform_input for batch transform jobs
batch_transform_input=batch_transform_name,
 output_s3_uri=s3_report_path,
 statistics=my_default_monitor.baseline_statistics(),
 constraints=my_default_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
)

Q: What are some of the scenarios or use cases where I can leverage a pre-processing script?

You can use pre-processing scripts when you need to transform the inputs to your model monitor.
Consider the following example scenarios:

1. Pre-processing script for data transformation.

Suppose the output of your model is an array: [1.0, 2.1]. The Model Monitor container
only works with tabular or flattened JSON structures, such as {“prediction0”: 1.0,

Model Monitor FAQs 5244

Amazon SageMaker Developer Guide

“prediction1” : 2.1}. You could use a pre-processing script like the following example to
transform the array into the correct JSON structure.

def preprocess_handler(inference_record):
 input_data = inference_record.endpoint_input.data
 output_data = inference_record.endpoint_output.data.rstrip("\n")
 data = output_data + "," + input_data
 return { str(i).zfill(20) : d for i, d in enumerate(data.split(",")) }

2. Exclude certain records from Model Monitor's metric calculations.

Suppose your model has optional features and you use -1 to denote that the optional feature
has a missing value. If you have a data quality monitor, you may want to remove the -1 from
the input value array so that it isn't included in the monitor's metric calculations. You could use a
script like the following to remove those values.

def preprocess_handler(inference_record):
 input_data = inference_record.endpoint_input.data
 return {i : None if x == -1 else x for i, x in enumerate(input_data.split(","))}

3. Apply a custom sampling strategy.

You can also apply a custom sampling strategy in your pre-processing script. To do this,
configure Model Monitor's first-party, pre-built container to ignore a percentage of the records
according to your specified sampling rate. In the following example, the handler samples 10% of
the records by returning the record in 10% of handler calls and an empty list otherwise.

import random

def preprocess_handler(inference_record):
 # we set up a sampling rate of 0.1
 if random.random() > 0.1:
 # return an empty list
 return []
 input_data = inference_record.endpoint_input.data
 return {i : None if x == -1 else x for i, x in enumerate(input_data.split(","))}

4. Use custom logging.

Model Monitor FAQs 5245

Amazon SageMaker Developer Guide

You can log any information you need from your script to Amazon CloudWatch. This can be
useful when debugging your pre-processing script in case of an error. The following example
shows how you can use the preprocess_handler interface to log to CloudWatch.

def preprocess_handler(inference_record, logger):
 logger.info(f"I'm a processing record: {inference_record}")
 logger.debug(f"I'm debugging a processing record: {inference_record}")
 logger.warning(f"I'm processing record with missing value: {inference_record}")
 logger.error(f"I'm a processing record with bad value: {inference_record}")
 return inference_record

Note

When the pre-processing script is run on batch transform data, the input type is not always
the CapturedData object. For CSV data, the type is a string. For JSON data, the type is a
Python dictionary.

Q: When can I leverage a post-processing script?

You can leverage a post-processing script as an extension following a successful monitoring run.
The following is a simple example, but you can perform or call any business function that you need
to perform after a successful monitoring run.

def postprocess_handler():
 print("Hello from the post-processing script!")

Q: When should I consider bringing my own container for model monitoring?

SageMaker provides a pre-built container for analyzing data captured from endpoints or batch
transform jobs for tabular datasets. However, there are scenarios where you might want to create
your own container. Consider the following scenarios:

• You have regulatory and compliance requirements to only use the containers that are created
and maintained internally in your organization.

• If you want to include a few third-party libraries, you can place a requirements.txt file
in a local directory and reference it using the source_dir parameter in the SageMaker

Model Monitor FAQs 5246

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator

Amazon SageMaker Developer Guide

estimator, which enables library installation at run-time. However, if you have lots of libraries or
dependencies that increase the installation time while running the training job, you might want
to leverage BYOC.

• Your environment forces no internet connectivity (or Silo), which prevents package download.

• You want to monitor data that's in data formats other than tabular, such as NLP or CV use cases.

• When you require additional monitoring metrics than the ones supported by Model Monitor.

Q: I have NLP and CV models. How do I monitor them for data drift?

Amazon SageMaker's prebuilt container supports tabular datasets. If you want to monitor NLP
and CV models, you can bring your own container by leveraging the extension points provided by
Model Monitor. For more details about the requirements, see Bring your own containers. Some of
the following are more examples:

• For a detailed explanation of how to use Model Monitor for a computer vision use case, see
Detecting and Analyzing incorrect predictions.

• For a scenario where Model Monitor can be leveraged for a NLP use case, see Detect NLP data
drift using custom Amazon SageMaker Model Monitor.

Q: I want to delete the model endpoint for which Model Monitor was enabled, but I'm unable to
do so since the monitoring schedule is still active. What should I do?

If you want to delete an inference endpoint hosted in SageMaker which has Model
Monitor enabled, first you must delete the model monitoring schedule (with the
DeleteMonitoringSchedule CLI or API). Then, delete the endpoint.

Q: Does SageMaker Model Monitor calculate metrics and statistics for input?

Model Monitor calculates metrics and statistics for output, not input.

Q: Does SageMaker Model Monitor support multi-model endpoints?

No, Model Monitor only supports endpoints that host a single model and doesn't support
monitoring multi-model endpoints.

Q: Does SageMaker Model Monitor provide monitoring data about individual containers in an
inference pipeline?

Model Monitor FAQs 5247

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-byoc-containers.html
https://aws.amazon.com/blogs/machine-learning/detecting-and-analyzing-incorrect-model-predictions-with-amazon-sagemaker-model-monitor-and-debugger/
https://aws.amazon.com/blogs/machine-learning/detect-nlp-data-drift-using-custom-amazon-sagemaker-model-monitor/
https://aws.amazon.com/blogs/machine-learning/detect-nlp-data-drift-using-custom-amazon-sagemaker-model-monitor/
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-monitoring-schedule.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteMonitoringSchedule.html

Amazon SageMaker Developer Guide

Model Monitor supports monitoring inference pipelines, but capturing and analyzing data is done
for the entire pipeline, not for individual containers in the pipeline.

Q: What can I do to prevent impact to inference requests when data capture is set up?

To prevent impact to inference requests, Data Capture stops capturing requests at high levels of
disk usage. It is recommended you keep your disk utilization below 75% in order to ensure data
capture continues capturing requests.

Q: Can Amazon S3 Data Capture be in a different AWS region than the region in which the
monitoring schedule was set up?

No, Amazon S3 Data Capture must be in the same region as the monitoring schedule.

Q: What is a baseline, and how do I create one? Can I create a custom baseline?

A baseline is used as a reference to compare real-time or batch predictions from the model. It
computes statistics and metrics along with constraints on them. During monitoring, all of these are
used in conjunction to identify violations.

To use the default solution of Amazon SageMaker Model Monitor, you can leverage the Amazon
SageMaker Python SDK. Specifically, use the suggest_baseline method of the ModelMonitor or the
ModelQualityMonitor class to trigger a processing job that computes the metrics and constraints
for the baseline.

The result of a baseline job are two files: statistics.json and constraints.json. Schema
for statistics and schema for constraints contain the schema of the respective files. You can review
the generated constraints and modify them before using them for monitoring. Based on your
understanding of the domain and business problem, you can make a constraint more aggressive, or
relax it to control the number and nature of the violations.

Q: What are the guidelines to create a baseline dataset?

The primary requirement for any kind of monitoring is to have a baseline dataset that is used to
compute metrics and constraints. Typically, this is the training dataset used by the model, but in
some cases you might choose to use some other reference dataset.

The column names of the baseline dataset should be compatible with Spark. In order to maintain
the maximum compatibility between Spark, CSV, JSON and parquet it is advisable to use only
lowercase letters, and only use _ as the separator. Special characters including “ ” can cause
issues.

Model Monitor FAQs 5248

https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html
https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html
https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html#sagemaker.model_monitor.model_monitoring.DefaultModelMonitor.suggest_baseline
https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html#sagemaker.model_monitor.model_monitoring.DefaultModelMonitor
https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html#sagemaker.model_monitor.model_monitoring.ModelQualityMonitor
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-byoc-statistics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-byoc-statistics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-byoc-constraints.html

Amazon SageMaker Developer Guide

Q: What are the StartTimeOffset and EndTimeOffset parameters, and when are they used?

When Amazon SageMaker Ground Truth is required for monitoring jobs like model quality, you
need to ensure that a monitoring job only uses data for which Ground Truth is available. The
start_time_offset and end_time_offset parameters of EndpointInput can be used to select
the data that the monitoring job uses. The monitoring job uses the data in the time window that is
defined by start_time_offset and end_time_offset. These parameters need to be specified
in the ISO 8601 duration format. The following are some examples:

• If your Ground Truth results arrive 3 days after the predictions have been made, set
start_time_offset="-P3D" and end_time_offset="-P1D", which is 3 days and 1 day
respectively.

• If the Ground Truth results arrive 6 hours after the predictions and you have an hourly schedule,
set start_time_offset="-PT6H" and end_time_offset="-PT1H", which is 6 hours and 1
hour.

Q: Can I run ‘on demand' monitoring jobs?

Yes, you can run ‘on demand’ monitoring jobs by running a SageMaker Processing job. For Batch
Transform, SageMaker Pipelines has a MonitorBatchTransformStep that you can use to create a
SageMaker pipeline that runs monitoring jobs on demand. The SageMaker examples repository has
code samples for running data quality and model quality monitoring jobs on demand.

Q: How do I set up Model Monitor?

You can set up Model Monitor in the following ways:

• Amazon SageMaker Python SDK – There is a Model Monitor module which contains classes and
functions that assist in suggesting baselines, creating monitoring schedules, and more. See the
Amazon SageMaker Model Monitor notebook examples for detailed notebooks that leverage the
SageMaker Python SDK for setting up Model Monitor.

• SageMaker Pipelines – SageMaker Pipelines are integrated with Model Monitor through the
QualityCheck Step and ClarifyCheckStep APIs. You can create a SageMaker pipeline that contains
these steps and that can be used to run monitoring jobs on demand whenever the pipeline is
executed.

• Amazon SageMaker Studio Classic – You can create a data or model quality monitoring
schedule along with model bias and explainability schedules directly from the UI by selecting an

Model Monitor FAQs 5249

https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html#sagemaker.model_monitor.model_monitoring.EndpointInput
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-sdk.html
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.monitor_batch_transform_step.MonitorBatchTransformStep
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_model_monitor/model_monitor_batch_transform/SageMaker-ModelMonitoring-Batch-Transform-Data-Quality-With-SageMaker-Pipelines-On-Demand.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_model_monitor/model_monitor_batch_transform/SageMaker-ModelMonitoring-Batch-Transform-Model-Quality-With-SageMaker-Pipelines-On-Demand.ipynb
https://sagemaker.readthedocs.io/en/stable/index.html
https://sagemaker.readthedocs.io/en/stable/api/inference/model_monitor.html
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker_model_monitor
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-sdk.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-quality-check
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-clarify-check
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html

Amazon SageMaker Developer Guide

endpoint from the list of deployed model endpoints. Schedules for other types of monitoring
can be created by selecting the relevant tab in the UI.

• SageMaker Model Dashboard – You can enable monitoring on endpoints by selecting a model
that has been deployed to an endpoint. In the following screenshot of the SageMaker console,
a model named group1 has been selected from the Models section of the Model dashboard.
On this page, you can create a monitoring schedule, and you can edit, activate or deactivate
existing monitoring schedules and alerts. For a step by step guide on how to view alerts and
model monitor schedules, see View Model Monitor schedules and alerts.

Q: How does Model Monitor Integrate with SageMaker Model Dashboard

SageMaker Model Dashboard gives you unified monitoring across all your models by providing
automated alerts about deviations from expected behavior and troubleshooting to inspect models
and analyze factors impacting model performance over time.

Model Monitor FAQs 5250

https://docs.aws.amazon.com/sagemaker/latest/dg/model-dashboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-dashboard-schedule.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-dashboard.html

Amazon SageMaker Developer Guide

Evaluate, explain, and detect bias in models

Amazon SageMaker offers features to improve your machine learning (ML) models by detecting
potential bias and helping explain the predictions that models make. It helps you identify various
types of bias in pre-training data and in post-training that can emerge during model training or
when the model is in production. You can also evaluate a language model for model quality and
responsibility metrics using foundation model evaluations.

The following topics give information about how to evaluate, explain, and detect bias with Amazon
SageMaker.

Topics

• Use SageMaker Clarify to evaluate foundation models

• Use SageMaker Clarify to explain and detect bias

• Use SageMaker Clarify explainability with SageMaker Autopilot

Use SageMaker Clarify to evaluate foundation models

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the
new Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio
experience is now named Amazon SageMaker Studio Classic. The foundation evaluation
feature can only be used in the updated experience. For information about how to update
Studio, see Migrating from Amazon SageMaker Studio Classic. For information about using
the Studio Classic application, see Amazon SageMaker Studio Classic.

SageMaker Clarify offers Foundation Model Evaluations (FMEval) as a single place to evaluate and
compare model quality and responsibility metrics for any large language model (LLM). Use FMEval
to evaluate pre-trained and fine-tuned language models, text classifers, and more. A foundation

Evaluate foundation models 5251

Amazon SageMaker Developer Guide

model serves as a starting point, from which you can develop downstream natural language
processing (NLP) applications. FMEval provides connectors to pre-trained, text-based foundation
models from SageMaker JumpStart and Amazon Bedrock.

What are foundation model evaluations?

FMEval can help you quantify model risks, such as inaccurate, toxic, or biased content. Evaluating
your LLM helps you comply with international guidelines around responsible generative AI, such as
the ISO 42001 AI Management System Standard and the NIST AI Risk Management Framework.

You can evaluate your model using algorithms to automatically score model responses. The
automatic evaluation uses metrics based on benchmarks to measure toxic, harmful, or otherwise
poor responses to your customers. Model responses are scored using built-in datasets that are
specific for a task. You can also bring your own custom dataset to evaluate your model. You can
run an automatic evaluation using a UI or using the fmeval library in your own code that you can
customize for your use case. FMEval generates a report with visualizations and examples. If you
use a model that is not a SageMaker JumpStart publicly available model, you must use the fmeval
library to run an automatic evaluation. For a list of SageMaker JumpStart models, see Explore the
latest foundation models.

You can also employ human workers to manually evaluate your model responses for more
subjective dimensions, such as helpfulness or style. The human evaluation is configured through
a UI to help you define the criteria that humans will use to evaluate responses. The configuration
template contained in the UI can also help you document evaluation instructions for an evaluation
job, and notify your workforce about the job.

A foundation model evaluation can evaluate LLMs that generate responses for the following tasks:

• Open-ended generation – The production of natural human responses to text that does not
have a pre-defined structure.

• Text summarization – The generation of a concise and condensed summary while retaining the
meaning and key information that's contained in larger text.

• Question answering – The generation of a relevant and accurate response to a prompt.

• Classification – Assigning a category, such as a label or score to text, based on its content.

Each of these tasks have specific metrics associated with them that you can use to evaluate your
model.

What are foundation model evaluations? 5252

https://aistandardshub.org/ai-standards/information-technology-artificial-intelligence-management-system/

Amazon SageMaker Developer Guide

Get started with model evaluations

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the
new Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio
experience is now named Amazon SageMaker Studio Classic. The foundation evaluation
feature can only be used in the updated experience. For information about how to update
Studio, see Migrating from Amazon SageMaker Studio Classic. For information about using
the Studio Classic application, see Amazon SageMaker Studio Classic.

A large language model (LLM) is a machine learning model that can analyze and generate natural
language text. If you want to evaluate an LLM, SageMaker provides the following three options
that you can choose:

• Set up manual evaluations for a human workforce using s UI.

• Evaluate your model with an algorithm using a UI.

• Automatically evaluate your model with a customized workflow using the fmeval library.

You can either use an algorithm to automatically evaluate your foundation model or ask a human
work team.

Human work teams can evaluate and compare up to two models concurrently using metrics that
indicate preference for one response over another. The workflow, metrics, and instructions for
a human evaluation can be tailored to fit a particular use case. Humans can also provide a more
refined evaluation than an algorithmic evaluation.

You can also use an algorithm to evaluate your LLM using benchmarks to rapidly score your model
responses in the Evaluation UI. The UI provides a guided workflow to evaluate responses from a
SageMaker JumpStart model using pre-defined metrics. These metrics are specific to generative AI
tasks. This guided flow uses built-in or custom datasets to evaluate your LLM.

Get started with model evaluations 5253

Amazon SageMaker Developer Guide

You can use a notebook to create a more customized workflow using automatic evaluations than
what is available in the UI. Using Python code and the fmeval library, you can evaluate any text-
based LLM, including models that were created outside of SageMaker JumpStart.

The following topics provide an overview of foundation model evaluations, a summary of the
automatic and human Foundation Model Evaluation (FMEval) workflows, how to run them, and
how to view an analysis report of your results. The automatic evaluation topic shows how to
configure and run both a starting and customized evaluation.

Topics

• Foundation model evaluation overview

• Foundation model evaluation summary

• Use a human evaluation

• Use an automatic evaluation

Foundation model evaluation overview

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the
new Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio
experience is now named Amazon SageMaker Studio Classic. The foundation evaluation
feature can only be used in the updated experience. For information about how to update
Studio, see Migrating from Amazon SageMaker Studio Classic. For information about using
the Studio Classic application, see Amazon SageMaker Studio Classic.

Foundation model evaluation task types

Foundation models are evaluated based on the task for which they are generating responses. The
following tasks have different evaluation dimensions against which they are scored. An overview of

Foundation model evaluation overview 5254

Amazon SageMaker Developer Guide

the task types, evaluation dimensions, metrics, and built-in datasets that are available to evaluate
foundation models follows:

Open-ended generation

Open-ended text generation is a foundation model task that generates natural language responses
to prompts that don't have a pre-defined structure, such as general-purpose queries to a chatbot.
For open-ended text generation, Foundation Model Evaluations (FMEval) can evaluate your model
along the following dimensions.

• Factual knowledge – Evaluates how well your model encodes factual knowledge. FMEval can
measure your model against your own custom dataset or use a built-in dataset based on the
TREX open source dataset.

• Semantic robustness – Evaluates how much your model output changes as the result of small,
semantic-preserving changes in the input. FMEval measures how your model output changes as
a result of keyboard typos, random changes to uppercase, and random additions or deletions of
white spaces.

• Prompt stereotyping – Measures the probability of your model encoding biases in its response.
These biases include those for race, gender, sexual orientation, religion, age, nationality,
disability, physical appearance, and socioeconomic status. FMEval can measure your model
responses against your own custom dataset or use a built-in dataset based on the CrowS-Pairs
open source challenge dataset.

• Toxicity – Evaluates text using toxicity detection models. FMEval checks your model for
sexual references, rude, unreasonable, hateful or aggressive comments, profanity, insults,
flirtations, attacks on identities, and threats. FMEval can measure your model against
your own custom dataset or use built-in datasets based on the RealToxicityPrompts,
RealToxicityPromptsChallenging, and BOLD datasets.

RealToxicityPromptsChallenging is a subset of RealToxicityPrompts that is used to test the limits
of a large language model (LLM). It also identifies areas where LLMs are vulnerable to generating
toxic text.

You can evaluate your model with the following toxicity detectors:

• UnitaryAI Detoxify-unbiased – A multi-label text classifier trained on Toxic Comment
Classification Challenge and Jigsaw Unintended Bias in Toxicity Classification. The model
provides 7 scores for the following classes: toxicity, severe toxicity, obscenity, threat, insult,
sexual explicity and identity attack.

Foundation model evaluation overview 5255

https://hadyelsahar.github.io/t-rex/
https://github.com/nyu-mll/crows-pairs
https://arxiv.org/abs/2009.11462
https://github.com/amazon-science/bold
https://github.com/unitaryai/detoxify
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification

Amazon SageMaker Developer Guide

• Toxigen-roberta – A binary RoBERTa-based text classifier fine-tuned on the ToxiGen dataset.
The ToxiGen dataset contains sentences with subtle and implicit toxicity pertaining to minority
groups.

Text summarization

Text summarization is used for tasks, such as creating summaries of news, legal documents,
academic papers, content previews, and content curation. The following can influence the quality
of responses: ambiguity, coherence, bias, fluency of the text used to train the foundation model,
and information loss, accuracy, relevance, or context mismatch. FMEval can evaluate your model
against your own custom dataset or use built-in datasets based on the Government Report
Dataset, and Gigaword datasets. For text summarization, FMEval can evaluate your model for the
following:

• Accuracy – A numerical score indicating the similarity of the summarization to a reference
summary that is accepted as a gold standard. A high numerical score indicates that the summary
is of high quality. A low numerical score indicates a poor summary. The following metrics are
used to evaluate the accuracy of a summarization:

• ROUGE-N – Computes N-gram overlaps between the reference and model summary.

• Meteor – Computes the word overlap between the reference and model summary while also
accounting for rephrasing.

• BERTScore – Computes and compares sentence embeddings for the summarization and
reference. FMEval uses the roberta-large-mnli or microsoft/deberta-xlarge-mnli models to
compute the embeddings.

• Toxicity – Scores for generated summaries that are calculated using a toxicity detector model.
For additional information, see the Toxicity section in the previous for Open-ended generation
task for details.

• Semantic robustness – A measure of how much the quality of your model’s text summary
changes as the result of small, semantic-preserving changes in the input. Examples of these
changes include keyboard typos, the inaccurate conversion of numbers to words, random
changes to uppercase, and random additions or deletions of white spaces. Semantic robustness
uses the absolute difference in accuracy between a text summary that is unperturbed and one
that is perturbed. The accuracy algorithm uses the ROUGE-N, Meteor, and BERTScore metrics, as
detailed previously in this section.

Foundation model evaluation overview 5256

https://github.com/microsoft/TOXIGEN
https://gov-report-data.github.io/
https://gov-report-data.github.io/
https://huggingface.co/datasets/gigaword?row=3
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/bertscore
https://huggingface.co/roberta-large-mnli
https://huggingface.co/microsoft/deberta-xlarge-mnli
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/bertscore

Amazon SageMaker Developer Guide

Question answering

Question answering is used for tasks such as generating automatic help-desk responses,
information retrieval, and e-learning. FMEval can evaluate your model against your own custom
dataset or use built-in datasets based on the BoolQ, TriviaQA, and Natural Questions datasets. For
question answering, FMEval can evaluate your model for the following:

• Accuracy – An average score comparing the generated response to the question answer pairs
given in the references. The score is averaged from the following methods:

• Exact match – A binary score of 1 is assigned to an exact match, and 0 otherwise.

• Quasi-exact match – A binary score of 1 is assigned to a match with grammatical articles (such
as the, a, and) after punctuation has been removed.

• F1 over words – The F1 score, or harmonic mean of precision and recall between the
normalized response and reference. The F1 score is equal to twice precision multiplied by recall
divided by the sum of precision (P) and recall (R), or F1 = (2*P*R) / (P + R).

In the previous calculation, precision is defined as the number of true positives (TP) divided by
the sum of true positives and false positives (FP), or P = (TP)/(TP+FP).

Recall is defined as the number of true positives divided by the sum of true positives and false
negatives (FN), or R = (TP)/(TP+FN).

A higher F1 over words score indicates higher quality responses.

• Semantic robustness – A measure of how much the quality of your model’s text summary
changes as the result of small, semantic-preserving changes in the input. Examples of these
changes include keyboard typos, the inaccurate conversion of numbers to words, random
changes to uppercase, and random additions or deletions of white spaces. Semantic robustness
uses the absolute difference in accuracy between a text summary that is unperturbed and one
that is perturbed. Accuracy is measured using exact-match, quasi-exact match and F1 over words,
as described previously.

• Toxicity – Scores evaluate generated answers using a toxicity detector model. For additional
information, see the Toxicity section in the previous for Open-ended generation task for details.

Classification

Classification is used to categorize text into pre-defined categories. Applications that use text
classification include content recommendation, spam detection, language identification and trend

Foundation model evaluation overview 5257

https://github.com/google-research-datasets/boolean-questions
http://nlp.cs.washington.edu/triviaqa/
https://github.com/google-research-datasets/natural-questions

Amazon SageMaker Developer Guide

analysis on social media. Imbalanced, ambiguous, noisy data, bias in labeling are some issues that
can cause errors in classification. FMEval evaluates your model against a built-in dataset based on
the Women’s ECommerce Clothing Reviews dataset, and/or against your own prompt datasets for
the following.

• Accuracy – A score that compares the predicted class to its label. Accuracy is measured using the
following metrics:

• Classification accuracy – A binary score of 1 if the predicted label equals the true label, and 0
otherwise.

• Precision – The ratio of true positives to all positives, calculated over the entire
dataset. Precision is an appropriate measure when reducing false positives is important.
The score for each data point can be aggregated using the following values for the
multiclass_average_strategy parameter:

• micro (default) – The sum of true positive values across all classes divided by the sum of
all positives across all classes. This aggregation type gives a measure of the overall positive
predictive accuracy of your model. It does this by using equal weights for each response
without regard to its class. For example, this aggregation can assess your model’s ability to
predict a correct diagnosis for each patient.

• macro – The sum of precision values calculated for each class divided by the number of
classes. This aggregation type gives a measure of the overall positive predictive accuracy of
your model, which gives equal weight to each class. For example, this aggregation can assess
your model’s ability to predict a correct disease using data from a large number of patients.

• samples (multi-class classification only) – The ratio of the sum of true positives for
all samples to the sum of true positives and false positives for all samples. For multi-
class classification, a sample consists of a set of predicted responses for each class. This
aggregation type gives a granular measure of each sample’s precision for multi-class
problems. For example, because aggregating by samples treats each sample equally, this
aggregation can assess your model’s ability to predict a correct diagnosis for a patient with a
rare disease, and highlighting false positives.

• weighted – The weight for one class multiplied by the precision for the same class,
summed over all classes. This aggregation type provides a measure of overall precision while
accommodating varying importance values among classes. For example, this aggregation
can assess your model’s ability to predict a correct diagnosis for a patient and give a higher
weight to diseases that are life-threatening.

Foundation model evaluation overview 5258

https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews

Amazon SageMaker Developer Guide

• binary – The precision calculated for the class that is specified by the value pos_label.
This aggregation type ignores the unspecified class, and gives the overall predictive accuracy
for a single class. For example, this aggregation can assess your model’s ability to detect a
rare disease changes over time.

• none – The precision calculated for each class. Class-specific precision can help you focus
on the positive predictive value for each class. For example, this aggregation can help you
decide which medical conditions your model is able to predict well, and which conditions
may warrant additional focus.

• Recall – the ratio of true positives to the sum of true positives and false negatives, calculated
over the entire dataset. Recall is an appropriate measure when reducing false negatives is
important. The scores for each data point can be aggregated using the following values for the
multiclass_average_strategy parameter.

• micro (default) – The sum of the true positives divided by the sum of true positives and
false negatives for all classes. This aggregation type gives a measure of the overall predictive
accuracy of your model, while considering all classes equally. For example, this aggregation
can assess your model’s ability to correctly classify patients with any disease including rare
diseases, because it gives equal weight to all classes.

• macro – The sum of recall values calculated for each class divided by the number of classes.
This aggregation type gives a measure of the predictive accuracy of your model for each
class, with equal weight to each class. For example, this aggregation can assess your model’s
ability to predict all diseases, regardless of the prevalence or rarity of each condition.

• samples (multi-class classification only) – The ratio of the sum of true positives over
all samples to the sum of true positives and false negatives for all samples. For multi-
class classification, a sample consists of a set of predicted responses for each class. This
aggregation type gives a granular measure of each sample’s recall for multi-class problems.
For example, because aggregating by samples treats each sample equally, this aggregation
can assess your model’s ability to predict a correct diagnosis for a patient with a rare disease
while also minimizing false negatives.

• weighted – The weight for one class multiplied by the recall for the same class,
summed over all classes. This aggregation type provides a measure of overall recall while
accommodating varying importances among classes. For example, this aggregation can
assess your model’s ability to predict a correct diagnosis for a patient and give a higher
weight to diseases that are life-threatening.

• binary – The recall calculated for the class that is specified by the value pos_label. This
aggregation type ignores the unspecified class, and gives overall predictive accuracy for

Foundation model evaluation overview 5259

Amazon SageMaker Developer Guide

a single class. For example, this aggregation can assess your model’s ability to screen a
population for a specific highly contagious life-threatening disease.

• none – The recall calculated for each class. Class-specific recall can help you address class
imbalances in your data when the penalty for error varies significantly between classes. For
example, this aggregation can assess how well your model can identify all patients that may
have a specific disease.

• Balanced classification accuracy (BCA) – The sum of recall and the true negative rate divided
by 2 for binary classification. The true negative rate is the number of true negatives divided by
the sum of true negatives and false positives. For multiclass classification, BCA is calculated as
the sum of recall values for each class divided by the number of classes. BCA can help when
the penalty for predicting both false positives and false negatives is high. For example, BCA
can assess how well your model can predict a number of highly contagious lethal diseases with
intrusive treatments.

• Semantic robustness – Evaluates how much your model output changes as the result of small,
semantic-preserving changes in the input. FMEval measures your model output as a result of
keyboard typos, random changes to uppercase, and random additions or deletions of white
spaces. Semantic robustness scores the absolute difference in accuracy between a text summary
that is unperturbed and one that is perturbed.

Types of foundation model evaluations

The following sections provide details about both human and algorithmic types of evaluations for
your foundation model.

Human evaluations

To evaluate your model by a human, you must define the metrics and associated metric types.
If you want to evaluate more than one model, you can use a comparative or individual rating
mechanism. If you want to evaluate one model, you must use an individual rating mechanism. The
following rating mechanisms can be applied to any text-related task:

• (Comparative) Likert scale - comparison – A human evaluator will indicate their preference
between two responses on a 5-point Likert scale according to your instructions. In the final
report, the results will be shown as a histogram of ratings by preference strength over your
whole dataset. Define the important points of the 5-point scale in your instructions so that your
evaluators know how to rate the responses according to your expectations.

Foundation model evaluation overview 5260

Amazon SageMaker Developer Guide

• (Comparative) Choice buttons – Allows a human evaluator to indicate one preferred response
over another response using radio buttons, according to your instructions. The results in the final
report will be shown as a percentage of responses that workers preferred for each model. Explain
your evaluation method clearly in the instructions.

• (Comparative) Ordinal rank – Allows a human evaluator to rank their preferred responses to a
prompt in order, starting at 1, and according to your instructions. In the final report, the results
display as a histogram of the rankings from the evaluators over the whole dataset. Make sure
that you define what a rank of 1 means in your instructions.

• (Individual) Thumbs up/down – Allows a human evaluator to rate each response from a model
as acceptable or unacceptable according to your instructions. In the final report, the results show
a percentage of the total number of ratings by evaluators that received a thumbs up rating for
each model. You can use this rating method to evaluate one or more models. If you use this in
an evaluation that contains two models, the UI presents your work team with a thumbs up or
down option for each model response. The final report will show the aggregated results for each
model individually. Define what is an acceptable response in your instructions to your work team.

• (Individual) Likert scale - individual – Allows a human evaluator to indicate how strongly they
approve of the model response, based on your instructions, on a 5-point Likert scale. In the final
report, the results display a histogram of the 5-point ratings from the evaluators over your whole
dataset. You can use this rating method for an evaluation containing one or more models. If you
select this rating method in an evaluation that contains more than one model, a 5-point Likert
scale is presented to your work team for each model response. The final report will show the
aggregated results for each model individually. Define the important points on the 5-point scale
in your instructions so that your evaluators know how to rate the responses according to your
expectations.

Automatic evaluations

Automatic evaluations can leverage built-in datasets and algorithms, or you can bring your own
dataset of prompts that are specific to your use case. The built-in datasets vary for each task
and are listed in the following sections. For a summary of tasks and their associated metrics and
datasets, see the table in the following Foundation model summary evaluation section.

Foundation model evaluation summary

The following table summarizes all of the evaluation tasks, metrics, and built-in datasets for both
human and automatic evaluations.

Foundation model evaluation overview 5261

Amazon SageMaker Developer Guide

Task Human
evaluations

Human
metrics

Automatic
evaluations

Automatic
metrics

Automatic
built-in
datasets

Open-ended
generation

Fluency,
Coherence
, Toxicity,
Accuracy,
Consistency,
Relevance,
User-defined

Preferenc
e rate,
Preferenc
e strength,
Preferenc
e rank,
Approval
rate,
Approval
strength

Factual
knowledge

TREX

Semantic
robustness

TREX

BOLD

WikiText

Prompt
stereotyping

CrowS-Pairs

Toxicity RealToxic
ityPrompts

BOLD

Text
summariza
tion

Accuracy ROUGE-N Governmen
t Report
Dataset

BERTScore Gigaword

Governmen
t Report
Dataset

Foundation model evaluation overview 5262

Amazon SageMaker Developer Guide

Task Human
evaluations

Human
metrics

Automatic
evaluations

Automatic
metrics

Automatic
built-in
datasets

Gigaword

Governmen
t Report
Dataset

Gigaword

Question
answering

Accuracy Exact match BoolQ

Quasi exact
match

NaturalQu
estions

F1 over
words

TriviaQA

Semantic
robustness

BoolQ

NaturalQu
estions

TriviaQA

Toxicity BoolQ

NaturalQu
estions

TriviaQA

Text classific
ation

Accuracy Classification
accuracy

Women's
Ecommerce
Clothing
Reviews

Foundation model evaluation overview 5263

Amazon SageMaker Developer Guide

Task Human
evaluations

Human
metrics

Automatic
evaluations

Automatic
metrics

Automatic
built-in
datasets

Precision Women's
Ecommerce
Clothing
Reviews

Recall Women's
Ecommerce
Clothing
Reviews

Balanced
classification
accuracy

Women's
Ecommerce
Clothing
Reviews

Semantic
robustness

Women's
Ecommerce
Clothing
Reviews

Use a human evaluation

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the
new Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio
experience is now named Amazon SageMaker Studio Classic. The foundation evaluation
feature can only be used in the updated experience. For information about how to update

Use a human evaluation 5264

Amazon SageMaker Developer Guide

Studio, see Migrating from Amazon SageMaker Studio Classic. For information about using
the Studio Classic application, see Amazon SageMaker Studio Classic.

To ask a human to evaluate your large language model (LLM), you must set up your environment to
have the correct permissions to run an evaluation. Then, you can use the UI to guide you through
the steps in the workflow and contact your workforce. The evaluation will produce an analysis
report when the process has completed. It also produces a jsonlines output file that you can
view while the job is in progress. The following sections show you how to use the UI to run a
human evaluation.

Set up your environment

Prerequisites

To run a model evaluation in the Amazon SageMaker Studio UI, your AWS Identity and Access
Management (IAM) role and any input datasets must have the correct permissions. If you do not
have a SageMaker Domain or IAM role, follow the steps from the top of Onboard from the console
through all of Step 1. General Settings.

Setting up your permissions

The following section shows how to add permissions needed to evaluate your foundation model.

To set permissions for your Amazon S3 bucket

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, enter S3 into the search bar at the top of the page.

3. Choose S3 under Services.

4. Choose Buckets from the navigation pane.

5. In the General purpose buckets section, under Name, choose the name of the S3 bucket that
you want to use to store your model input and output in the console. If you do not have an S3
bucket, do the following.

1. Select Create bucket to open a new Create bucket page.

2. In the General configuration section, under AWS Region, select the AWS region where your
foundation model is located.

3. Name your S3 bucket in the input box under Bucket name.

Use a human evaluation 5265

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. Accept all of the default choices.

5. Select Create bucket.

6. In the General purpose buckets section, under Name, select the name of the S3 bucket that
you created.

6. Choose the Permissions tab.

7. Scroll to the Cross-origin resource sharing (CORS) section at the bottom of the window.
Choose Edit.

8. To add permissions to your bucket for foundation evaluations, ensure that the following code
appears in the input box. You can also copy and paste the following into the input box.

[
 {
 "AllowedHeaders": ["*"],
 "AllowedMethods": [
 "GET",
 "HEAD",
 "PUT"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [
 "Access-Control-Allow-Origin"
],
 "MaxAgeSeconds": 3000
 }
]

9. Choose Save changes.

To add permissions to your IAM policy

You may want to consider the level of permissions to attach to your IAM role.

• You can create a custom IAM policy that allows the minimum required permissions tailored to
this service.

• You can attach the existing AmazonSageMakerFullAccess and AmazonS3FullAccess
policies to your existing IAM role, which is more permissive. For more information about the
AmazonSageMakerFullAccess policy, see AmazonSageMakerFullAccess.

Use a human evaluation 5266

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonS3FullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

If you wish to attach the existing policies to your IAM role, you may skip the instructions set here
and continue following the instructions under To add permissions to your IAM role.

The following instructions creates a custom IAM policy that is tailored to this service with minimum
permissions.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the search bar at the top of the page, enter IAM.

3. Under Services, select Identity and Access Management (IAM).

4. Choose Policies from the navigation pane.

5. Choose Create policy. When the Policy editor opens, choose JSON.

6. Ensure that the following permissions appear in the Policy editor. You can also copy and paste
the following into the Policy editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:Search",
 "sagemaker:CreateProcessingJob",
 "sagemaker:DescribeProcessingJob",
 "sagemaker:DescribeEndpoint",
 "sagemaker:InvokeEndpoint",
 "sagemaker:CreateEndpoint",
 "sagemaker:DeleteEndpoint",
 "sagemaker:AddTags",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",

Use a human evaluation 5267

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

 "sagemaker:DescribeFlowDefinition",
 "sagemaker:StartHumanLoop",
 "sagemaker:DescribeHumanLoop"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 },
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*"
 }
]
}

7. Choose Next.

8. Enter a policy name in the Policy details section, under Policy name. You can also enter an
optional description. You will search for this policy name when you assign it to a role.

9. Choose Create policy.

Use a human evaluation 5268

Amazon SageMaker Developer Guide

To add permissions to your IAM role

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the search bar at the top of the page, enter IAM.

3. Under Services, select Identity and Access Management (IAM).

4. Choose Roles in the navigation pane.

5. If you are creating a new role:

a. Choose Create role.

b. On the Select trusted entity step, under Trusted entity type choose Custom trust policy.

c. In the Custom trust policy editor, next to Add principal choose Add.

d. On the Add principal pop-up box, under Principal type select AWS services from the
dropdown list of options.

e. Under ARN replace {ServiceName} with sagemaker.

f. Choose Add principal.

g. Choose Next.

h. (Optional) Under Permissions policies select the policies you would like to add to your
role.

i. (Optional) Under Set permissions boundary - optional choose your permission boundary
setting.

j. Choose Next.

k. On the Name, review, and create step, under Role details fill in your Role name and
Description.

l. (Optional) Under Add tags - optional, you can add tags by choosing Add new tag and
enter a Key and Value - optional pair.

m. Review your settings.

n. Choose Create role.

6. If you are adding policy to existing role:

a. Select the name of the role under Role name. The main window changes to show
information about your role.

b. In the Permissions policies section, choose the down arrow next to Add permissions.

c. From the options that appear, choose Attach policies.Use a human evaluation 5269

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

d. From the list of policies that appear, search for and select the policy that you created
under To add permissions to your IAM policy and select the check the box next to
your policy's name. If you did not create a custom IAM policy, search for and select
the check boxes next to the AWS provided AmazonSageMakerFullAccess and
AmazonS3FullAccess policies policies. You may want to consider the level of
permissions to attach to your IAM role. The instructions for the custom IAM policy is
less permissive, while the latter is more permissive. For more information about the
AmazonSageMakerFullAccess policy, see AmazonSageMakerFullAccess.

e. Choose Add permissions. A banner at the top of the page should state Policy was
successfully attached to role. when completed.

To add trust policy to your IAM role

The following trust policy makes it so administrators can allow SageMaker to assume the role. You
need to add the policy to your IAM role. Use the following steps to do so.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the search bar at the top of the page, enter IAM.

3. Under Services, select Identity and Access Management (IAM).

4. Choose Roles in the navigation pane.

5. Select the name of the role under Role name. The main window changes to show information
about your role.

6. Choose the Trust relationship tab.

7. Choose Edit trust policy.

8. Ensure that the following policy appears under Edit trust policy. You can also copy and paste
the following into the editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "sagemaker.amazonaws.com"
]

Use a human evaluation 5270

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonS3FullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

 },
 "Action": "sts:AssumeRole"
 }
]
}

9. Choose Update policy. A banner at the top of the page should state Trust policy updated.
when completed.

Get started using Studio

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the search bar at the top of the page, enter SageMaker.

3. Under Services, select Amazon SageMaker.

4. Choose Studio from the navigation pane.

5. Choose your domain from the Get Started section, after expanding the down arrow under
Select Domain.

6. Choose your user profile from the Get Started section after expanding the down arrow under
Select user profile.

7. Choose Open Studio to open the landing page for Studio.

Run a human evaluation

You can run a human evaluation on a text-based model that you have already fine-tuned in
SageMaker JumpStart if it is available for evaluation. Alternatively, you can start from a text-based
foundation model from the SageMaker JumpStart landing page in Studio, which lists pre-deployed
models.

To launch SageMaker JumpStart

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the search bar at the top of the page, enter SageMaker.

3. Under Services, select Amazon SageMaker.

4. Choose Studio from the navigation pane.

5. Choose your domain from the Get Started section, after expanding the down arrow under
Select Domain.

Use a human evaluation 5271

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

6. Choose your user profile from the Get Started section after expanding the down arrow under
Select user profile.

7. Choose Open Studio to open the landing page for Studio.

8. Choose SageMaker JumpStart from the navigation pane.

To set up an evaluation job

1. Choose a text-based SageMaker JumpStart model. You can also use the search bar and filter to
select the following kinds of text-related tasks.

• Text Summary

• Question Answering (Q&A)

• Text Classification

• Open-ended Generation

2. Choose the Evaluate button.

1. The button is located in the upper-right corner of the main window to the right of Deploy.

3. Specify job details.

a. Enter the Name of your model evaluation. This name helps you identify your model
evaluation job after it is submitted.

b. Enter a Description to add more context to the name.

c. Choose Next.

4. Set up evaluation

a. Under Choose an evaluation type, select the radio button next to Human.

b. Select the model to evaluate. You can evaluate up to two models for each evaluation.

1. If you selected a model from SageMaker JumpStart, the model that you selected is
already shown.

2. If the model requires a legal agreement, select the check box to confirm that you agree.

3. If you want to add another model, do the following.

• Select Add model to evaluation. This opens a list of available models.

• Choose the radio button next to the model that you want to add.

• Choose Add model.
Use a human evaluation 5272

Amazon SageMaker Developer Guide

c. Next, select an Task type. You can select any of the following:

• Text Summarization

• Question Answering (Q&A)

• Text classification

• Open-ended Generation

d. In the Evaluation metrics section, choose an Evaluation dimension and enter additional
context about the dimension in the text box under Description. You can choose from the
following dimensions:

• Fluency – Measures the linguistic quality of a generated text.

• Coherence – Measures the organization and structure of a generated text.

• Toxicity – Measures the harmfulness of a generated text.

• Accuracy– Indicates the accuracy of a generated text.

• A custom evaluation dimension that you can define the name and description of for
your work team.

To add a custom evaluation dimension, do the following:

• Choose + Add an evaluation dimension.

• In the text box containing Provide evaluation dimension, input the name of your
custom dimension.

• In the text box containing Provide description for this evaluation dimension, input
a description so that your work team understands how to evaluate your custom
dimension.

Under each of these metrics are reporting metrics that you can choose from the Choose
a metric type down arrow. If you have two models to evaluate, you can choose either
comparative or individual reporting metrics. If you have one model to evaluate, you can
choose only individual reporting metrics. You can choose the following reporting metrics
types for each of the above metrics.

• (Comparative) Likert scale - comparison – A human evaluator will indicate their
preference between two responses on a 5-point Likert scale according to your
instructions. The results in the final report will be shown as a histogram of preference
strength ratings from the evaluators over your whole dataset. Define the important

Use a human evaluation 5273

Amazon SageMaker Developer Guide

points of the 5-point scale in your instructions so that your evaluators know how to rate
the responses according to your expectations.

• (Comparative) Choice buttons – Allows a human evaluator to indicate their one
preferred response over another response. Evaluators indicate their preference between
two responses according to your instructions using radio buttons. The results in the
final report will be shown as a percentage of responses that workers preferred for each
model. Explain your evaluation method clearly in your instructions.

• (Comparative) Ordinal Rank – Allows a human evaluator to rank their preferred
responses to a prompt in order, starting at 1, according to your instructions. The results
in the final report will be shown as a histogram of the rankings from the evaluators over
the whole dataset. Define the what a rank of 1 means in your instructions.

• (Individual) Thumbs up/down – Allows a human evaluator to rate each response from
a model as acceptable or unacceptable according to your instructions. The results
in the final report will be shown as a percentage of the total number of ratings by
evaluators that received a thumbs up rating for each model. You may use this rating
method for an evaluation one or more models. If you use this in an evaluation that
contains two models, a thumbs up or down will be presented to your work team for
each model response and the final report will show the aggregated results for each
model individually. Define what is acceptable as a thumbs up or thumbs down rating in
your instructions.

• (Individual) Likert scale - individual – Allows a human evaluator to indicate how
strongly they approve of the model response based on your instructions on a 5-point
Likert scale. The results in the final report will be shown as a histogram of the 5-
point ratings from the evaluators over your whole dataset. You may use this scale
for an evaluation containing one or more models. If you select this rating method
in an evaluation that contains more than one model, a 5-point Likert scale will be
presented to your work team for each model response and the final report will show the
aggregated results for each model individually. Define the important points on the 5-
point scale in your instructions so that your evaluators know how to rate the responses
according to your expectations.

e. Choose a Prompt dataset. This dataset is required and will be used by your human work
team to evaluate responses from your model. Provide the url to an Amazon S3 bucket that
contains your prompt dataset in the text box under S3 location. Your dataset must be in
jsonlines format and contain the following keys to identify which parts of your dataset
the UI will use to evaluate your model:

Use a human evaluation 5274

Amazon SageMaker Developer Guide

• prompt – The request that you want your model to generate a response to.

• (Optional) category – - The category labels for your prompt. The category key
is used to categorize your prompts so you can filter your evaluation results later by
category for a deeper understanding of the evaluation results. It does not participate in
the evaluation itself, and workers do not see it on the evaluation UI.

• (Optional) referenceResponse – The reference answer for your human evaluators.
The reference answer is not rated by your workers, but can be used to understand what
responses are acceptable or unacceptable, based on your instructions.

The following jsonlines code example shows the key-value format of an evaluation
dataset:

{
 "prompt": String,
 "category": String, // optional
 "referenceResponse": String // optional - The reference answer
}

A sample dataset follows:

{"referenceResponse":"Cantal","category":"Capitals","prompt":"Aurillac is the
 capital of"}
{"referenceResponse":"Bamiyan
 Province","category":"Capitals","prompt":"Bamiyan city is the capital of"}
{"referenceResponse":"Oberspreewald-
Lausitz","category":"Capitals","prompt":"Senftenberg is the capital of"}

f. Input an S3 bucket location where you want to save the output evaluation results in the
text box under Choose an S3 location to save your evaluation results. The output file
written to this S3 location will be in jsonlines format, ending in the extension, .jsonl.

g. Configure your processor in the Processor configuration section using the following
parameters:

• Use Instance count to specify the number of compute instances to use to run your
model. If you use more than 1 instance, your model will run in parallel instances.

• Use Instance type to choose the kind of compute instance you want to use to run
your model. AWS has general compute instances and instances that are optimized for

Use a human evaluation 5275

Amazon SageMaker Developer Guide

computing and memory. For more information about instance types, see Available
Studio Classic Instance Types .

• If you want SageMaker to use your own AWS Key Management Service (AWS KMS)
encryption key instead of the default AWS managed service key, toggle to select On
under Volume KMS key, and input the AWS KMS key. SageMaker will use your AWS KMS
key to encrypt data on the storage volume. For more information about keys, see AWS
Key Management Service.

• If you want SageMaker to use your own AWS Key Management Service (AWS KMS)
encryption key instead of the default AWS managed service key, toggle to select On
under Output KMS key and input the AWS KMS key. SageMaker will use your AWS KMS
key to encrypt the processing job output.

• Use an IAM role to specify the access and permissions for the default processor. Input
the IAM role that you set up in the section Set up your IAM role in this Run a human
evaluation section.

h. After you specify your model and criteria, select Next.

Your work team consists of the people that are evaluating your model. After your work team is
created, it persists indefinitely and you cannot change its attributes. The following shows how to
get started with your work team.

Set up your work team

1. Choose an existing team or Create a new team in the Select team input text box.

2. Specify a name of your organization in Organization name. This field only appears when you
create the first work team in the account.

3. Specify a contact email. Your workers will use this email to communicate with you about the
evaluation task that you will provide to them. This field only appears when you create the first
work team in the account.

4. Specify a Team name. You cannot change this name later.

5. Specify a list of Email addresses for each of your human workers that will evaluate your large
language model (LLM). When you specify the email addresses for your team, they are notified
of a new job only when they are newly added to a work team. If you use the same team for a
subsequent job, you must notify them manually.

Use a human evaluation 5276

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

Provide instructions for your work team

1. Provide detailed instructions to your human workforce so that they can evaluate your model
to your metrics and standards. A template in the main window shows sample instructions
that you can provide. For more information about how to give instructions, see Creating good
worker instructions.

2. To minimize bias in your human evaluation, select the box next to Randomize response
positions.

3. Select Next.

You can review the summary of the selections that you have made for your human job. If you must
change your job, choose Previous to go back to an earlier selection.

Submit your evaluation job request and view job progress

1. To submit your evaluation job request, choose Create resource.

2. To see the status of all of your jobs, choose Jobs in the navigation pane. Then, choose Model
evaluation. The evaluation status displays as Completed, Failed, or In progress.

The following also displays:

• Sample notebooks to run a model evaluation in SageMaker and Amazon Bedrock.

• Links to additional information including documentation, videos, news, and blogs about the
model evaluation process.

3. Select your model evaluation under Name to view a summary of your evaluation.

• The summary gives information about the status of the job, what kind of evaluation task
you ran on which model, and when it ran. Following the summary, the human evaluation
scores are sorted and summarized by metric.

View your human analysis results

The output from your human model evaluation is stored in the S3 location that you specified to
save the output evaluation results while creating the model evaluation job.

You can view a model evaluation's job while it is still in progress. The output data appears in the S3
bucket when the evaluation job is complete. It may take a few minutes for output data to appear.

Use a human evaluation 5277

https://docs.aws.amazon.com/bedrock/latest/userguide/worker-job.html
https://docs.aws.amazon.com/bedrock/latest/userguide/worker-job.html

Amazon SageMaker Developer Guide

The contents of your output json file depends on your specific job description, metrics and model.
The following output sample was generated for a single prompt in inputRecord, where a human
rated the model response (modelResponses) as unacceptable ("result":false):

{
 "output": [{
 "flowDefinitionArn": "arn:aws:sagemaker:us-west-2:111122223333:flow-definition/
flow-definition-name",
 "humanAnswers": [{
 "acceptanceTime": "2023-11-09T19:17:43.107Z",
 "answerContent": {
 "evaluationResults": {
 "approvalRate": [{
 "metric": "Relevance",
 "modelResponseId": "0",
 "result": false
 }]
 }
 },
 "submissionTime": "2023-11-09T19:17:52.101Z",
 "timeSpentInSeconds": 8.994,
 "workerId": "444455556666",
 "workerMetadata": {
 "identityData": {
 "identityProviderType": "Cognito",
 "issuer": "https://cognito-idp.us-west-2.amazonaws.com/us-
west-2_111222",
 "sub": "12345678-1234-1234-1234-"
 }
 }
 }],
 "humanLoopName": "1234567890abcdefghijklmnopqrstuv",
 "inputRecord": {
 "prompt": "What does vitamin C serum do for skin?",
 "category": "Skincare",
 "referenceResponse": "Vitamin C serum offers a range of benefits for the
 skin.
 Firstly, it acts as a potent antioxidant, defending the skin against the
 harmful
 effects of free radicals, which can accelerate the aging process and lead
 to skin
 problems. Moreover, vitamin C brightens the skin by reducing the appearance
 of

Use a human evaluation 5278

Amazon SageMaker Developer Guide

 dark spots, age spots, and hyperpigmentation. It's a key player in
 collagen
 production, contributing to firmer and more youthful skin while minimizing
 the
 appearance of fine lines and wrinkles. Additionally, it aids in retaining
 skin moisture, promotes an even skin tone, reduces redness, and can
 enhance the effectiveness of sunscreen in protecting against UV damage.
 Furthermore, it may expedite the skin's natural healing processes, making
 it
 beneficial for addressing post-inflammatory hyperpigmentation and scars.
 To
 fully enjoy these benefits, use a quality vitamin C serum regularly as
 part of
 your skincare routine, applying it in the morning after cleansing and
 before
 sunscreen for optimal results."
 },
 "modelResponses": [{
 "text": "\nVitamin C serums are widely known for their"
 }]
 }, {
 "flowDefinitionArn": "arn:aws:sagemaker:us-west-2:111122223333:flow-definition/
flow-definition-name"
 ...
 }],

The previous output sample uses the following parameters:

• flowDefinitionArn – The Amazon Resource Number (ARN) of the human review workflow
(flow definition) that's used to create the human loop.

• humanAnswers – A list of json objects that contain worker responses in answerContent.

metric:"Relevance" – A value that is based on the Metric type that you selected when the
model evaluation job was created.

• humanLoopName – The name of the human loop.

• inputRecord – A json object that contains an entry prompt from the input dataset.

• modelResponses – The individual responses from the models.

• input – The input content sent to SageMaker in the request to StartHumanLoop.

Use a human evaluation 5279

Amazon SageMaker Developer Guide

When your analysis is complete, you can see how your model performed against the dataset that
you provided using the following steps:

1. From the Studio navigation pane, select Jobs, and then select Model Evaluation.

2. In the Model Evaluations page, successfully submitted jobs appear in a list. The list includes job
name, status, model name, evaluation type, and the date it was created.

3. If your model evaluation completed successfully, you can click on the job name to see a
summary of the evaluation results.

4. To view your human analysis report, select the name of the job that you want to examine.

An analysis report section that identifies your job by the name, status, model name, evaluation
type, and the date it was created appears at the top of the main window after you select the name
of a job that you want to examine.

The next analysis report section contains the type of task that your model performed, and the
evaluation results for that task.

The following analysis report section contains the evaluation results for each model that you
evaluated.

The next analysis report section shows the evaluation job configuration. It includes the resources
that are used, the model that is evaluated, the location of the evaluation results, and your
evaluation dimensions.

The last section contains a copy of the instructions that you provided to your workforce.

Use an automatic evaluation

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the
new Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio
experience is now named Amazon SageMaker Studio Classic. The foundation evaluation
feature can only be used in the updated experience. For information about how to update

Use an automatic evaluation 5280

Amazon SageMaker Developer Guide

Studio, see Migrating from Amazon SageMaker Studio Classic. For information about using
the Studio Classic application, see Amazon SageMaker Studio Classic.

You can use an automatic evaluation by running it in a UI or by using the fmeval library inside
your own code. The UI guides you through a standard workflow. Using the library provides
opportunities to customize your workflow further. The following sections show you how to use
both types of automatic evaluations.

Use an automatic evaluation in a UI

You can run an automatic evaluation for a SageMaker JumpStart model within the Amazon
SageMaker Studio UI. The workflow within the UI guides you through choosing a model for
evaluation and configuring evaluation dimensions, metrics, and resources. For a more customizable
workflow, see Customize your workflow using the fmeval library. That section shows how to run
an evaluation on any type of large language model (LLM) using specific parameters to generate
more tailored responses. The other sections in this guide show how to format an optional custom
input dataset, set up your environment, and run an evaluation in the UI.

Format your input dataset

If you use a built-in dataset to evaluate your model in the UI, the dataset is already structured
in the correct format for input into a model evaluation. If you use your own custom dataset, it
must be in jsonlines format. Each line in your jsonlines input dataset must be a json object,
containing a single record from your dataset. These records are used to evaluate your model.

To learn which keys are available for a custom dataset in the UI, refer to the following task lists.

• model_input – Required to indicate the input for the following tasks.

• The prompt that your model should response to in open-ended generation, toxicity, and
accuracy tasks.

• The question that your model should answer in question answering, and factual knowledge
tasks.

• The text that your model should summarize in text summarization tasks.

• The text that your model should classify in classification tasks.

• The text that you want your model to perturb in semantic robustness tasks.

• target_output – Required to indicate the response against which your model is evaluated for
the following tasks.

Use an automatic evaluation 5281

Amazon SageMaker Developer Guide

• The answer for question answering, accuracy, semantic robustness, and factual evaluation
tasks.

• For accuracy, and semantic robustness tasks, separate acceptable answers with an <OR>. The
evaluation accepts any of the answers separated by a comma as correct. As an example, use
target_output="UK<OR>England<OR>United Kingdom", if you want to accept either UK
or England or United Kingdom as acceptable answers.

• (Optional) category – Generates evaluation scores reported for each category.

• sent_less_input – Required to indicate the prompt that contains less bias for prompt
stereotyping tasks.

• sent_more_input – Required to indicate the prompt that contains more bias for prompt
stereotyping tasks.

A factual knowledge evaluation requires both the question to ask and the answer to check the
model response against. Use the key model_input with the value contained in the question, and
the key target_output with the value contained in the answer as follows:

{"model_input": "Bobigny is the capital of", "target_output": "Seine-Saint-Denis",
 "category": "Capitals"}

The previous example is a single line of a jsonlines input file that will be sent to your model as a
request. To make multiple requests, include multiple lines. The following data input example is for
a question answer task that uses an optional category key for evaluation.

{"target_output":"Cantal","category":"Capitals","model_input":"Aurillac is the capital
 of"}
{"target_output":"Bamiyan Province","category":"Capitals","model_input":"Bamiyan city
 is the capital of"}
{"target_output":"Abkhazia","category":"Capitals","model_input":"Sokhumi is the capital
 of"}

If you evaluate your algorithm in the UI, the following defaults are set for your input dataset:

• The number of records that the evaluation uses is fixed. The algorithm samples this number of
requests randomly from your input dataset.

• To change this number: Use the fmeval library as described in Customize your workflow
using the fmeval library, and set the parameter num_records to your desired number of

Use an automatic evaluation 5282

Amazon SageMaker Developer Guide

samples, or -1 to specify the entire dataset. The default number of records that are evaluated
is 100 for accuracy, prompt stereotyping, toxicity, classification, and semantic robustness tasks.
The default number of records for a factual knowledge task is 300.

• The target output delimiter as previously described in the target_output parameter is set to
<OR> in the UI.

• To separate acceptable answers using another delimiter: Use the fmeval library as
described in Customize your workflow using the fmeval library, and set the parameter
target_output_delimiter to your desired delimiter.

• You must use a text-based SageMaker JumpStart language model that is available for model
evaluation. These models have several data input configuration parameters that are passed
automatically into the FMeval process.

• To use another kind of model: Use the fmeval library to define the data configuration for
your input dataset.

Set up your environment

To run an automatic evaluation for your large language model (LLM), you must set up your
environment to have the correct permissions to run an evaluation. Then, you can use the UI to
guide you through the steps in the workflow, and run an evaluation. The following sections show
you how to use the UI to run an automatic evaluation.

Prerequisites

• To run a model evaluation in a Studio UI, your AWS Identity and Access Management (IAM)
role and any input datasets must have the correct permissions. If you do not have a SageMaker
Domain or IAM role, follow the steps from the top of Onboard from the console through all of
Step 1. General Settings.

To set permissions for your S3 bucket

After your domain and role are created, use the following steps to add the permissions needed to
evaluate your model.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, enter S3 into the search bar at the top of the page.

3. Choose S3 under Services.

Use an automatic evaluation 5283

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. Choose Buckets from the navigation pane.

5. In the General purpose buckets section, under Name, choose the name of the Amazon S3
bucket that you want to use to store your model input and output in the console. If you do not
have an Amazon S3 bucket, do the following.

1. Select Create bucket to open a new Create bucket page.

2. In the General configuration section, under AWS Region, select the AWS region where your
foundation model is located.

3. Name your S3 bucket in the input box under Bucket name.

4. Accept all of the default choices.

5. Select Create bucket.

6. In the General purpose buckets section, under Name, select the name of the S3 bucket that
you created.

6. Choose the Permissions tab.

7. Scroll to the Cross-origin resource sharing (CORS) section at the bottom of the window.
Choose Edit.

8. To add permissions to your bucket for foundation evaluations, ensure that the following code
appears in the input box. You can also copy and paste the following into the input box.

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",
 "PUT",
 "POST",
 "DELETE"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [
 "Access-Control-Allow-Origin"
]
 }
]

Use an automatic evaluation 5284

Amazon SageMaker Developer Guide

9. Choose Save changes.

To add permissions to your IAM policy

1. In the search bar at the top of the page, enter IAM.

2. Under Services, select Identity and Access Management (IAM).

3. Choose Policies from the navigation pane.

4. Choose Create policy. When the Policy editor opens, choose JSON.

5. Choose Next.

6. Ensure that the following permissions appear in the Policy editor. You can also copy and paste
the following into the Policy editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:Search",
 "sagemaker:CreateProcessingJob",
 "sagemaker:DescribeProcessingJob"
],

Use an automatic evaluation 5285

Amazon SageMaker Developer Guide

 "Resource": "*"
 }
]
}

7. Choose Next.

8. Enter a policy name in the Policy details section, under Policy name. You can also enter an
optional description. You will search for this policy name when you assign it to a role.

9. Choose Create policy.

To add permissions to your IAM role

1. Choose Roles in the navigation pane. Input the name of the role that you want to use.

2. Select the name of the role under Role name. The main window changes to show information
about your role.

3. In the Permissions policies section, choose the down arrow next to Add permissions.

4. From the options that appear, choose Attach policies.

5. From the list of policies that appear, search for the policy that you created in Step 5. Select the
check the box next to your policy's name.

6. Choose the down arrow next to Actions.

7. From the options that appear, select Attach.

8. Search for the name of the role that you created. Select the check box next to the name.

9. Choose Add permissions. A banner at the top of the page should state Policy was successfully
attached to role.

Get started using Studio

1. In the search bar at the top of the page, enter SageMaker.

2. Under Services, select Amazon SageMaker.

3. Choose Studio from the navigation pane.

4. Choose your domain from the Get Started section, after expanding the down arrow under
Select Domain.

5. Choose your user profile from the Get Started section after expanding the down arrow under
Select user profile.

Use an automatic evaluation 5286

Amazon SageMaker Developer Guide

6. Choose Open Studio to open the landing page for Studio.

Run an automatic evaluation in a UI

You can run a human evaluation on a text-based model that you have already fine-tuned in
SageMaker JumpStart if it is available for evaluation. Alternatively, you can start from a text-based
foundation model from the SageMaker JumpStart landing page in Studio, which lists pre-deployed
models.

To launch SageMaker JumpStart

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the search bar at the top of the page, enter SageMaker.

3. Under Services, select Amazon SageMaker.

4. Choose Studio from the navigation pane.

5. Choose your domain from the Get Started section, after expanding the down arrow under
Select Domain.

6. Choose your user profile from the Get Started section after expanding the down arrow under
Select user profile.

7. Choose Open Studio to open the landing page for Studio.

8. Choose SageMaker JumpStart from the navigation pane.

To set up an evaluation job

1. Choose a text-based SageMaker JumpStart model. You can also use the search bar and filter to
select the following kinds of text-related tasks.

• Text Summary

• Question Answering (Q&A)

• Text Classification

• Open-ended Generation

2. Choose the Evaluate button.

1. The button is located in the upper-right corner of the main window to the right of Deploy.

3. Specify job details.

Use an automatic evaluation 5287

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

a. Enter the Name of your model evaluation. This name helps you identify your model
evaluation job after it is submitted.

b. Enter a Description to add more context to the name.

c. Choose Next.

4. Set up evaluation

a. Under Choose an evaluation type, select the radio button next to Automatic.

b. Select the model to evaluate. You can evaluate only one model for each evaluation.

1. If you selected a model from SageMaker JumpStart, the model that you selected is
already shown.

2. If the model requires a legal agreement, select the check box to confirm that you agree.

c. Next, select an Task type. You can select any of the following:

• Text Summarization

• Question Answering (Q&A)

• Text classification

• Open-ended Generation

For more information about these tasks and dimensions, see the Automatic evaluation in
Foundation model evaluation overview.

d. In the Evaluation metrics section, choose an Evaluation dimension. The text box under
Description contains additional context about the dimension.

After you select a task, the metrics associated with the task appear under Metrics. In this
section, do the following.

e. Select an evaluation dimension from the down arrow under Evaluation dimension.

f. Choose an evaluation dataset. You can choose to use your own dataset or use a built-in
dataset. If you want to use your own dataset to evaluate the model, it must be formatted
in a way that FMEval can use. It must also be located in an S3 bucket that has the CORS
permissions referenced in the previous Set up your environment section. For more
information about how to format a custom dataset see Use a custom input dataset.

g. Input an S3 bucket location where you want to save the output evaluation results. This file
is in jsonlines (.jsonl) format.

Use an automatic evaluation 5288

Amazon SageMaker Developer Guide

h. Configure your processor in the Processor configuration section using the following
parameters:

• Use Instance count to specify the number of compute instances you want to use to run
your model. If you use more than 1 instance, your model is run in parallel instances.

• Use Instance type to choose the kind of compute instance you want to use to run your
model. For more information about instance types, see Available Studio Classic Instance
Types.

• Use Volume KMS key to specify your AWS Key Management Service (AWS KMS)
encryption key. SageMaker uses your AWS KMS key to encrypt incoming traffic from
the model and your Amazon S3 bucket. For more information about keys, see AWS Key
Management Service.

• Use Output KMS key to specify your AWS KMS encryption key for outgoing traffic.

• Use IAM Role to specify the access and permissions for the default processor. Enter the
IAM role that you set up in Set up your environment

i. After you specify your model and criteria, choose Next. The main window skips to Step 5
Review and Save.

Review and run your evaluation job

1. Review all of the parameters, model, and data that you selected for your evaluation.

2. Choose Create resource to run your evaluation.

3. To check your job status, go to the top of the Model Evaluations section on the page.

View analysis results from your automatic evaluation

This section lists three outputs for an automatic evaluation that is run in the UI.

1. The output.json file contains aggregate scores for your dataset. An example json output
follows.

{
 "evaluations": [
 {
 "evaluation_name": "factual_knowledge",
 "dataset_name": "trex",

Use an automatic evaluation 5289

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

 "prompt_template": "<s>[INST] <<SYS>>Answer the question at the end in as
 few words as possible. Do not repeat the question. Do not answer in complete
 sentences.<</SYS> Question: $feature [/INST]",
 "dataset_scores": [
 {
 "name": "factual_knowledge",
 "value": 0.2966666666666667
 }
],
 "category_scores": [
 {
 "name": "Author",
 "scores": [
 {
 "name": "factual_knowledge",
 "value": 0.4117647058823529
 }
]
 },
 ...
 {
 "name": "Capitals",
 "scores": [
 {
 "name": "factual_knowledge",
 "value": 0.2857142857142857
 }
]
 }
]
 }
]
}

In the previous output example, the model scored on average of 0.2966666666666667.
Average scores for each category are listed following the aggregate score.

2. One evaluation_name_dataset_name.jsonl file containing instance-wise results for each
jsonlines request. If you had 300 requests in your jsonlines input data, this jsonlines output file
contains 300 responses. The output file contains the request made to your model followed by
the score for that evaluation. An example instance-wide output follows.

Use an automatic evaluation 5290

Amazon SageMaker Developer Guide

3. An Evaluation Report that contains the results of your foundation model evaluation. The
content of the evaluation report depends on the kind of task you used to evaluate your model.
Each report contains the following sections:

a. The overall scores for each successful evaluation under the evaluation task. As an example
of one evaluation with one dataset, if you evaluated your model for a classification task
for Accuracy and Semantic Robustness, then a table summarizing the evaluation results
for Accuracy and Accuracy Semantic Robustness appears at the top of your report. Other
evaluations with other datasets may be structured differently.

b. The configuration for your evaluation job including the model name, type, which evaluation
methods were used and what datasets your model was evaluated against.

c. A Detailed Evaluation Results section that summarizes the evaluation algorithm, provides
information about and links to any built-in datasets, how scores are calculated, and tables
showing some sample data with their associated scores.

d. A Failed Evaluations section that contains a list of evaluations that did not complete. If no
evaluations failed, this section of the report is omitted.

Use the fmeval library to run an automatic evaluation

Using the fmeval library in your own code gives you the most flexibility to customize your
workflow. You can use the fmevallibrary to evaluate any LLM, and also to have more flexibility
with your custom input datasets. The following steps show you how to set up your environment
and how to run both a starting and a customized workflow using the fmeval library.

Get started using the fmeval library

You can configure your foundation model evaluation and customize it for your use case in a Studio
notebook. Your configuration depends both on the kind of task that your foundation model is
built to predict, and how you want to evaluate it. FMEval supports open-ended generation, text
summarization, question answering, and classification tasks. The steps in this section show you
how to set up a starting workflow. This starting workflow includes setting up your environment
and running an evaluation algorithm using either a SageMaker JumpStart or an Amazon Bedrock
foundation model with built-in datasets. If you must use a custom input dataset and workflow for a
more specific use case, see Customize your workflow using the fmeval library.

Use an automatic evaluation 5291

Amazon SageMaker Developer Guide

Set up your environment

If you don’t want to run a model evaluation in a Studio notebook, skip to step 11 in the following
Get started using Studio section.

Prerequisites

• To run a model evaluation in a Studio UI, your AWS Identity and Access Management (IAM)
role and any input datasets must have the correct permissions. If you do not have a SageMaker
Domain or IAM role, follow the steps from the top of Onboard from the console through all of
Step 1. General Settings.

To set permissions for your Amazon S3 bucket

After your domain and role are created, use the following steps to add the permissions needed to
evaluate your model.

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, enter S3 into the search bar at the top of the page.

3. Choose S3 under Services.

4. Choose Buckets from the navigation pane.

5. In the General purpose buckets section, under Name, choose the name of the S3 bucket that
you want to use to store your model input and output in the console. If you do not have an S3
bucket, do the following:

1. Select Create bucket to open a new Create bucket page.

2. In the General configuration section, under AWS Region, select the AWS region where your
foundation model is located.

3. Name your S3 bucket in the input box under Bucket name.

4. Accept all of the default choices.

5. Select Create bucket.

6. In the General purpose buckets section, under Name, select the name of the S3 bucket that
you created.

6. Choose the Permissions tab.

7. Scroll to the Cross-origin resource sharing (CORS) section at the bottom of the window.
Choose Edit.

Use an automatic evaluation 5292

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

8. To add permissions to your bucket for foundation evaluations, ensure that the following code
appears in the input box. You can also copy and paste the following into the input box.

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",
 "PUT",
 "POST",
 "DELETE"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [
 "Access-Control-Allow-Origin"
]
 }
]

9. Choose Save changes.

To add permissions to your IAM policy

1. In the search bar at the top of the page, enter IAM.

2. Under Services, select Identity and Access Management (IAM).

3. Choose Policies from the navigation pane.

4. Input AmazonSageMakerFullAccess into the search bar. Select the radio button next to the
policy that appears. The Actions button can now be selected.

5. Choose the down arrow next to Actions. Two options appear.

6. Choose Attach.

7. In the IAM listing that appears, search for the name of the role you created. Select the check
box next to the name.

8. Choose Attach policy.

Use an automatic evaluation 5293

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

Get started using Studio

1. In the search bar at the top of the page, enter SageMaker.

2. Under Services, select Amazon SageMaker.

3. Choose Studio from the navigation pane.

4. Choose your domain from the Get Started section, after expanding the down arrow under
Select Domain.

5. Choose your user profile from the Get Started section after expanding the down arrow under
Select user profile.

6. Choose Open Studio to open the landing page for Studio.

7. Select the file browser from the navigation pane and navigate to the root directory.

8. Select Create notebook.

9. In the notebook environment dialog box that opens, select the Data Science 3.0 image.

10. Choose Select.

11. Install the fmeval package in your development environment, as shown in the following code
example:

!pip install fmeval

Note

Install the fmeval library into an environment that uses Python 3.10. For more
information about requirements needed to run fmeval , see fmeval dependencies.

Configure ModelRunner

FMEval uses a high-level wrapper called ModelRunner to compose input, invoke and extract
output from your model. The fmeval package can evaluate any LLM, however the procedure
to configure ModelRunner depends on what kind of model you want to evaluate. This section
explains how to configure ModelRunner for a SageMaker JumpStart or Amazon Bedrock model. If
you want to use a custom input dataset and custom ModelRunner, see Customize your workflow
using the fmeval library.

Use an automatic evaluation 5294

https://github.com/aws/fmeval/blob/main/pyproject.toml

Amazon SageMaker Developer Guide

Use a SageMaker JumpStart model

To use ModelRunner to evaluate a SageMaker JumpStart model, create or provide an endpoint,
define the model and the built-in dataset, configure, and test ModelRunner.

Define a SageMaker JumpStart model and configure a ModelRunner

1. Provide an endpoint by doing either of the following:

• Specify the EndpointName to an existing SageMaker JumpStart endpoint, the model_id,
and model_version.

• Specify the model_id and model_version for your model, and create a SageMaker
JumpStart endpoint.

The following code example shows how create an endpoint for a Llama 2 foundation model
that's available through SageMaker JumpStart.

import sagemaker
from sagemaker.jumpstart.model import JumpStartModel

#JumpStart model and version
model_id, model_version = "meta-textgeneration-llama-2-7b-f", "*"

my_model = JumpStartModel(model_id=model_id)
predictor = my_model.deploy()
endpoint_name = predictor.endpoint_name

Accept the EULA, and test the endpoint to make sure it can predict.
predictor.predict({"inputs": [[{"role":"user", "content": "Hello how are you?"}]]},
 custom_attributes='accept_eula=true')

The previous code example refers to EULA, which stands for end-use-license-agreement
(EULA). The EULA can be found in the model card description of the model that you are using.
To use some SageMaker JumpStart models, you must specify accept_eula=true, as shown
in the previous call to predict. For more information about EULA, see the Licenses and
model sources section in Model sources and license agreements .

You can find a list of available SageMaker JumpStart models at Built-in Algorithms with pre-
trained Model Table.

Use an automatic evaluation 5295

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestSyntax
https://aws.amazon.com/blogs/machine-learning/llama-2-foundation-models-from-meta-are-now-available-in-amazon-sagemaker-jumpstart/
https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html#built-in-algorithms-with-pre-trained-model-table
https://sagemaker.readthedocs.io/en/stable/doc_utils/pretrainedmodels.html#built-in-algorithms-with-pre-trained-model-table

Amazon SageMaker Developer Guide

2. Configure ModelRunner by using the JumpStartModelRunner, as shown in the following
configuration example:

from fmeval.model_runners.sm_jumpstart_model_runner import JumpStartModelRunner

js_model_runner = JumpStartModelRunner(
 endpoint_name=endpoint_name,
 model_id=model_id,
 model_version=model_version
)

In the previous configuration example, use the same values for endpoint_name, model_id,
and model_version that you used to create the endpoint.

3. Test your ModelRunner. Send a sample request to your model as shown in the following code
example:

js_model_runner.predict("What is the capital of London")

Use an Amazon Bedrock model

To evaluate an Amazon Bedrock model, you must define the model and built-in dataset, and
configure ModelRunner.

Define an Amazon Bedrock model and configure a ModelRunner

1. To define and print model details, use the following code example for a Titan model that is
available through Amazon Bedrock:

import boto3
import json
bedrock = boto3.client(service_name='bedrock')
bedrock_runtime = boto3.client(service_name='bedrock-runtime')

model_id = "amazon.titan-tg1-large"
accept = "application/json"
content_type = "application/json"

print(bedrock.get_foundation_model(modelIdentifier=modelId).get('modelDetails'))

Use an automatic evaluation 5296

Amazon SageMaker Developer Guide

In the previous code example, the accept parameter specifies the format of the data
that you want to use to evaluate your LLM. The contentType specifies the format of
the input data in the request. Only MIME_TYPE_JSON is supported for accept and
contentType for Amazon Bedrock models. For more information about these parameters, see
InvokeModelWithResponseStream.

2. To configure ModelRunner, use the BedrockModelRunner, as shown in the following
configuration example:

from fmeval.model_runners.bedrock_model_runner import BedrockModelRunner

bedrock_model_runner = BedrockModelRunner(
 model_id=model_id,
 output='results[0].outputText',
 content_template='{"inputText": $prompt, "textGenerationConfig": \
 {"maxTokenCount": 4096, "stopSequences": [], "temperature": 1.0, "topP":
 1.0}}',
)

Parametrize the ModelRunner configuration as follows.

• Use the same values for model_id that you used to deploy the model.

• Use output to specify the format of the generated json response. As an example, if
your LLM provided the response [{"results": "this is the output"}], then
output='results[0].outputText' returns this is the output.

• Use content_template to specify how your LLM interacts with requests. The following
configuration template is detailed solely to explain the previous configuration example, and
it's not required.

• In the previous configuration example, the variable inputText specifies the prompt,
which captures the request made by the user.

• The variable textGenerationConfig specifies how the LLM generates responses as
follows:

• The parameter maxTokenCount is used to limit the length of the response by limiting
the number of tokens returned by the LLM.

• The parameter stopSequences is used to specify a list of character sequences that
tell your LLM to stop generating a response. The model output is stopped the first time

Use an automatic evaluation 5297

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModelWithResponseStream.html#API_runtime_InvokeModelWithResponseStream_RequestSyntax

Amazon SageMaker Developer Guide

any of the listed strings are encountered in the output. As an example, you can use a
carriage return sequence to limit the model response to a single line.

• The parameter topP controls the randomness by limiting the set of tokens to consider
when generating the next token. This parameter accepts values between 0.0 and 1.0.
Higher values of topP allow for a set containing a broader vocabulary and lower values
restrict the set of tokens to more probable words.

• The parameter temperature controls the randomness of the generated text, and
accepts positive values. Higher values of temperature instruct the model to generate
more random and diverse responses. Lower values generate responses that are more
predictable. Typical ranges for temperature lie between 0.2 and 2.0.

For more information about parameters for a specific Amazon Bedrock foundation model,
see Inference parameters for foundation models.

The format of the content_template parameter depends on the inputs and parameters
supported by your LLM. For example, Anthropic’s Claude 2 model can support the following
content_template:

"content_template": "{\"prompt\": $prompt, \"max_tokens_to_sample\": 500}"

As another example, the Falcon 7b model can support the following content_template.

"content_template": "{\"inputs\": $prompt, \"parameters\":{\"max_new_tokens\": \
 10, \"top_p\": 0.9, \"temperature\": 0.8}}"

Lastly, test your ModelRunner. Send a sample request to your model as shown in the
following code example:

bedrock_model_runner.predict("What is the capital of London?")

Evaluate your model

After you configure your data and ModelRunner, you can run an evaluation algorithm on the
responses generated by your LLM. To see a list of all of the available evaluation algorithms, run the
following code:

from fmeval.eval_algo_mapping import EVAL_ALGORITHMS

Use an automatic evaluation 5298

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html#model-parameters-titan
https://www.anthropic.com/index/claude-2
https://huggingface.co/tiiuae/falcon-7b

Amazon SageMaker Developer Guide

print(EVAL_ALGORITHMS.keys())

Each algorithm has both an evaluate and an evaluate_sample method. The evaluate method
computes a score for the entire dataset. The evaluate_sample method evaluates the score for a
single instance.

The evaluate_sample method returns EvalScore objects. EvalScore objects contain
aggregated scores of how well your model performed during evaluation. The evaluate_sample
method has the following optional parameters:

• model_output – The model response for a single request.

• model_input – A prompt containing the request to your model.

• target_output – The expected response from the prompt contained in model_input.

The following code example shows how to use the evaluate_sample:

#Evaluate your custom sample
model_output = model_runner.predict("London is the capital of?")[0]
eval_algo.evaluate_sample(target_output="UK<OR>England<OR>United Kingdom",
 model_output=model_output)

The evaluate method has the following optional parameters:

• model – An instance of ModelRunner using the model that you want to evaluate.

• dataset_config – The dataset configuration. If dataset_config is not provided, the model
is evaluated using all of the built-in datasets that are configured for this task.

• prompt_template – A template used to generate prompts. If prompt_template is not
provided, your model is evaluated using a default prompt template.

• save – If set to True, record-wise prompt responses and scores are saved to the file
EvalAlgorithmInterface.EVAL_RESULTS_PATH. Defaults to False.

• num_records – The number of records that are sampled randomly from the input dataset for
evaluation. Defaults to 300.

The evaluate algorithm returns a list of EvalOutput objects that can include the following:

• eval_name – The name of the evaluation algorithm.

Use an automatic evaluation 5299

Amazon SageMaker Developer Guide

dataset_name – The name of dataset used by the evaluation algorithm.

prompt_template – A template used to compose prompts that is consumed if the parameter
model_output is not provided in the dataset. For more information, see prompt_template in
the Configure a SageMaker JumpStart ModelRunner section.

dataset_scores – An aggregated score computed across the whole dataset.

category_scores – A list of CategoryScore objects that contain the scores for each category
in the dataset.

output_path – The local path to the evaluation output. This output contains prompt-responses
with record-wise evaluation scores.

error – A string error message for a failed evaluation job.

The following dimensions are available for model evaluation:

• Accuracy

• Factual knowledge

• Prompt stereotyping

• Semantic robustness

• Toxicity

Accuracy

You can run an accuracy algorithm for a question answering, text summarization, or classification
task. The algorithms are different for each task in order to accommodate the different data input
types and problems as follows:

• For question answering tasks, run the QAAccuracy algorithm with a QAAccuracyConfig file.

• For text summarization tasks, run the SummarizationAccuracy algorithm with a
SummarizationAccuracyConfig.

• For classification tasks, run the ClassificationAccuracy algorithm with a
ClassificationAccuracyConfig.

Use an automatic evaluation 5300

Amazon SageMaker Developer Guide

The QAAccuracy algorithm returns a list of EvalOutput objects that contains one
accuracy score for each sample. To run the question answer accuracy algorithm, instantiate a
QAAccuracygeConfig and pass in either <OR> or None as the target_output_delimiter.
The question answer accuracy algorithm compares the response that your model generates with a
known response. If you pass in <OR> as the target delimiter, then the algorithm scores the response
as correct if it generates any of the content separated by <OR> in the answer. If you pass None or
an empty string as the target_output_delimiter, the code throws an error.

Call the evaluate method and pass in your desired parameters as shown in the following code
example:

from fmeval.eval import get_eval_algorithm
from fmeval.eval_algorithms.qa_accuracy import QAAccuracy, QAAccuracyConfig

eval_algo = QAAccuracy(QAAccuracyConfig(target_output_delimiter="<OR>")))
eval_output = eval_algo.evaluate(model=model_runner, dataset_config=config,
 prompt_template="$feature", save=True)

The SummarizationAccuracy algorithm returns a list of EvalOutput objects that contain scores
for ROUGE-N, Meteor, and BERTScore. For more information about these scores, see the Text
summarization section in Foundation model evaluation overview. To run the text summarization
accuracy algorithm, instantiate a SummarizationAccuracyConfig and pass in the following:

• Specify the type of ROUGE metric you want to use in your evaluation to rouge_type. You
can choose rouge1, rouge2, or rougeL. These metrics compare generated summaries to
reference summaries. ROUGE-1 compares the generated summaries and reference summaries
using overlapping unigrams (sequences of one item such as “the”, “is”). ROUGE-2 compares the
generated and reference summaries using bigrams (groups of two sequences such as “the large”,
“is home”). ROUGE-L compares the longest matching sequence of words. For more information
about ROUGE, see ROUGE: A Package for Automatic Evaluation of Summaries.

• Set use_stemmer_for_rouge to True or False. A stemmer removes affixes from words
before comparing them. For example, a stemmer removes the affixes from “swimming” and
“swam” so that they are both “swim” after stemming.

• Set model_type_for_bertscore to the model that you want to use to calculate a BERTScore. You
can choose ROBERTA_MODEL or the more advanced MICROSOFT_DEBERTA_MODEL.

Use an automatic evaluation 5301

https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/bertscore
https://en.wikipedia.org/wiki/ROUGE_(metric)
https://aclanthology.org/W04-1013.pdf
https://huggingface.co/spaces/evaluate-metric/bertscore
https://huggingface.co/docs/transformers/model_doc/roberta
https://github.com/microsoft/DeBERTa

Amazon SageMaker Developer Guide

Lastly, call the evaluate method and pass in your desired parameters as shown in the following
code example:

from fmeval.eval import get_eval_algorithm
from fmeval.eval_algorithms.summarization_accuracy import SummarizationAccuracy,
 SummarizationAccuracyConfig

eval_algo =
 SummarizationAccuracy(SummarizationAccuracyConfig(rouge_type="rouge1",model_type_for_bertscore="MICROSOFT_DEBERTA_MODEL"))
eval_output = eval_algo.evaluate(model=model_runner, dataset_config=config,
 prompt_template="$feature", save=True)

The ClassificationAccuracy algorithm returns a list of EvalOutput objects that
contain the classification accuracy, precision, recall, and balanced accuracy scores for
each sample. For more information about these scores, see the Classification section
in Foundation model evaluation overview. To run the classification accuracy algorithm,
instantiate a ClassificationAccuracyConfig and pass in an averaging strategy to
multiclass_average_strategy. You can choose micro, macro, samples, weighted, or
binary. The default value is micro. Then, pass in a list containing the names of the columns that
contain the true labels for your classification categories to valid_labels. Lastly, call the evaluate
method and pass in your desired parameters as shown in the following code example:

from fmeval.eval import get_eval_algorithm
from fmeval.eval_algorithms.classification_accuracy import ClassificationAccuracy,
 ClassificationAccuracyConfig

eval_algo =
 ClassificationAccuracy(ClassificationAccuracyConfig(multiclass_average_strategy="samples",valid_labels=["animal_type","plant_type","fungi_type"]))
eval_output = eval_algo.evaluate(model=model_runner, dataset_config=config,
 prompt_template="$feature", save=True)

Factual knowledge

You can run the factual knowledge algorithm for open-ended generation. To run the factual
knowledge algorithm, instantiate a FactualKnowledgeConfig and optionally pass a delimiter
string (by default, this is <OR>). The factual knowledge algorithm compares the response that
your model generates with a known response. The algorithm scores the response as correct if it
generates any of the content separated by the delimiter in the answer. If you pass None as the
target_output_delimiter, then the model must generate the same response as the answer to
be scored as correct. Lastly, call the evaluate method and pass in your desired parameters.

Use an automatic evaluation 5302

Amazon SageMaker Developer Guide

Factual knowledge returns a list of EvalScore objects. These contain aggregated scores on
how well your model is able to encode factual knowledge as described in the Foundation
model evaluation overview section. The scores range between 0 and 1 with the lowest score
corresponding to a lower knowledge of real-world facts.

The following code example shows how to evaluate your LLM using the factual knowledge
algorithm:

from fmeval.eval import get_eval_algorithm
from fmeval.eval_algorithms.factual_knowledge import FactualKnowledge,
 FactualKnowledgeConfig

eval_algo = FactualKnowledge(FactualKnowledgeConfig())
eval_output = eval_algo.evaluate(model=model_runner, dataset_config=config,
 prompt_template="$feature", save=True)

Prompt stereotyping

You can run the prompt stereotyping algorithm for open-ended generation. To run the prompt
stereotyping algorithm, your DataConfig must identify the columns in your input dataset that
contain a less stereotypical sentence in sent_less_input_location and a more stereotypical
sentence in sent_more_output_location. For more information about DataConfig, see the
previous section 2. Configure ModelRunner. Next, call the evaluate method and pass in your
desired parameters.

Prompt stereotyping returns a list of EvalOutput objects that contain a score for each input
record and overall scores for each type of bias. The scores are calculated by comparing the
probability of the more and less stereotypical sentences. The overall score reports how often the
model preferred the stereotypical sentence in that the model assigns a higher probability to the
more stereotypical compared to the less stereotypical sentence. A score of 0.5 indicates that
your model is unbiased, or that it prefers more and less stereotypical sentences at equal rates. A
score of greater than 0.5 indicates that your model is likely to generate a response that is more
stereotypical. Scores less than 0.5 indicate that your model is likely to generate a response that is
less stereotypical.

The following code example shows how to evaluate your LLM using the prompt stereotyping
algorithm:

from fmeval.eval import get_eval_algorithm

Use an automatic evaluation 5303

Amazon SageMaker Developer Guide

from fmeval.eval_algorithms.prompt_stereotyping import PromptStereotyping

eval_algo = PromptStereotyping()
eval_output = eval_algo.evaluate(model=model_runner, dataset_config=config,
 prompt_template="$feature", save=True)

Semantic robustness

You can run a semantic robustness algorithm for any FMEval task, however your model should be
deterministic. A deterministic model is one that always generate the same output for the same
input. One may typically achieve determinism by setting a random seed in the decoding process.
The algorithms are different for each task in order to accommodate the different data input types
and problems as follows:

• For open-ended generation, question answering, or task classification run the
GeneralSemanticRobustness algorithm with a GeneralSemanticRobustnessConfig file.

• For text summarization, run the SummarizationAccuracySemanticRobustness algorithm
with a SummarizationAccuracySemanticRobustnessConfig file.

The GeneralSemanticRobustness algorithm returns a list of EvalScore objects that contain
accuracy with values between 0 and 1 quantifying the difference between the perturbed and
unperturbed model outputs. To run the general semantic robustness algorithm, instantiate a
GeneralSemanticRobustnessConfig and pass in a perturbation_type. You can choose one
of the following for perturbation_type:

• Butterfinger – A perturbation that mimics spelling mistakes using character swaps based on
keyboard distance. Input a probability that a given character is perturbed. Butterfinger is the
default value for perturbation_type.

• RandomUpperCase – A perturbation that changes a fraction of characters to uppercase. Input a
decimal from 0 to 1.

• WhitespaceAddRemove – The probability that a white space character is added in front of a
non-white space character into white.

You can also specify the following parameters:

• num_perturbations – The number of perturbations for each sample to introduce into the
generated text. The default is 5.

Use an automatic evaluation 5304

Amazon SageMaker Developer Guide

• butter_finger_perturbation_prob – The probability that a character is be perturbed. Used
only when perturbation_type is Butterfinger. The default is 0.1.

• random_uppercase_corrupt_proportion – The fraction of characters to be changed to
uppercase. Used only when perturbation_type is RandomUpperCase. The default is 0.1.

• whitespace_add_prob – Given a white space, the probability of removing it from a sample.
Used only when perturbation_type is WhitespaceAddRemove. The default is 0.05.

• whitespace_remove_prob – Given a non-white space, the probability of adding a white space
in front of it. Used only when perturbation_type is WhitespaceAddRemove. The default is
0.1.

Lastly, call the evaluate method and pass in your desired parameters as shown in the following
code example:

from fmeval.eval import get_eval_algorithm
from fmeval.eval_algorithms.general_semantic_robustness import
 GeneralSemanticRobustness, GeneralSemanticRobustnessConfig

eval_algo =
 GeneralSemanticRobustness(GeneralSemanticRobustnessConfig(perturbation_type="RandomUpperCase",num_perturbations=2,random_uppercase_corrupt_proportion=0.3)))
eval_output = eval_algo.evaluate(model=model_runner, dataset_config=config,
 prompt_template="$feature", save=True)

The SummarizationAccuracySemanticRobustness algorithm returns a list of
EvalScore objects that contain the difference (or delta) between the ROUGE-N, Meteor, and
BERTScore values between the generated and reference summaries. For more information
about these scores, see the Text summarization section in Foundation model evaluation
overview. To run the text summarization semantic robustness algorithm, instantiate a
SummarizationAccuracySemanticRobustnessConfig and pass in a perturbation_type.

You can choose one of the following for perturbation_type:

• Butterfinger – A perturbation that mimics spelling mistakes using character swaps based on
keyboard distance. Input a probability that a given character is perturbed. Butterfinger is the
default value for perturbation_type.

• RandomUpperCase – A perturbation that changes a fraction of characters to uppercase. Input a
decimal from 0 to 1.

Use an automatic evaluation 5305

https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/bertscore

Amazon SageMaker Developer Guide

• WhitespaceAddRemove – Input a probability that a white space character is added in front of a
non-white space character into white.

You can also specify the following parameters:

• num_perturbations – The number of perturbations for each sample to introduce into the
generated text. Default is 5.

• butter_finger_perturbation_prob – The probability that a character is perturbed. Used
only when perturbation_type is Butterfinger. Default is 0.1.

• random_uppercase_corrupt_proportion – The fraction of characters to be changed to
uppercase. Used only when perturbation_type is RandomUpperCase. Default is 0.1.

• whitespace_add_prob – Given a white space, the probability of removing it from a sample.
Used only when perturbation_type is WhitespaceAddRemove. Default is 0.05.

• whitespace_remove_prob – Given a non-white space, the probability of adding a white space
in front of it. Used only when perturbation_type is WhitespaceAddRemove, Default is 0.1.

• rouge_type – Metrics that compare generated summaries to reference summaries. Specify
the type of ROUGE metric you want to use in your evaluation to rouge_type. You can choose
rouge1, rouge2, or rougeL. ROUGE-1 compares the generated summaries and reference
summaries using overlapping unigrams (sequences of one item such as “the”, “is”). ROUGE-2
compares the generated and reference summaries using bigrams (groups of two sequences such
as “the large”, “is home”). ROUGE-L compares the longest matching sequence of words. For more
information about ROUGE, see ROUGE: A Package for Automatic Evaluation of Summaries.

• Set user_stemmer_for_rouge to True or False. A stemmer removes affixes from words
before comparing them. For example, a stemmer removes the affixes from “swimming” and
“swam” so that they are both “swim” after stemming.

• Set model_type_for_bertscore to the model that you want to use to calculate a BERTScore.
You can choose ROBERTA_MODEL or the more advanced MICROSOFT_DEBERTA_MODEL.

Call the evaluate method and pass in your desired parameters as shown in the following code
example:

from fmeval.eval import get_eval_algorithm
from fmeval.eval_algorithms.summarization_accuracy_semantic_robustness import
 SummarizationAccuracySemanticRobustness,
 SummarizationAccuracySemanticRobustnessConfig

Use an automatic evaluation 5306

https://en.wikipedia.org/wiki/ROUGE_(metric)
https://aclanthology.org/W04-1013.pdf
https://huggingface.co/spaces/evaluate-metric/bertscore
https://huggingface.co/docs/transformers/model_doc/roberta
https://github.com/microsoft/DeBERTa

Amazon SageMaker Developer Guide

eval_algo =
 SummarizationAccuracySemanticRobustness(SummarizationAccuracySemanticRobustnessConfig(perturbation_type="Butterfinger",num_perturbations=3,butter_finger_perturbation_prob=0.2)))
eval_output = eval_algo.evaluate(model=model_runner, dataset_config=config,
 prompt_template="$feature", save=True)

Toxicity

You can run the a toxicity algorithm for open-ended generation, text summarization, or question
answering. There are three distinct classes depending on the task.

• For open-ended generation, run the Toxicity algorithm with a ToxicityConfig file.

• For summarization, use the class Summarization_Toxicity.

• For question answering, use the class QAToxicity.

The toxicity algorithm returns one or more a list of EvalScore objects (depending on the
toxicity detector) that contain scores between 0 and 1. To run the toxicity algorithm, instantiate
a ToxicityConfig and pass in a toxicity model to use to evaluate your model against in
model_type. You can choose the following for model_type:

• `detoxify` for UnitaryAI Detoxify-unbiased, a multilabel text classifier trained on Toxic Comment
Classification Challenge and Jigsaw Unintended Bias in Toxicity Classification. The model
provides 7 scores for the following classes: toxicity, severe toxicity, obscenity, threat, insult,
sexual explicity and identity attack.

The following is example output from the detoxity model:

EvalScore(name='toxicity', value=0.01936926692724228),

EvalScore(name='severe_toxicity', value=3.3755677577573806e-06),

EvalScore(name='obscene', value=0.00022437423467636108),

EvalScore(name='identity_attack', value=0.0006707844440825284),

EvalScore(name='insult', value=0.005559926386922598),

EvalScore(name='threat', value=0.00016682750720065087),

EvalScore(name='sexual_explicit', value=4.828436431125738e-05)

Use an automatic evaluation 5307

https://github.com/unitaryai/detoxify
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification

Amazon SageMaker Developer Guide

• `toxigen` for Toxigen-roberta, a binary RoBERTa-based text classifier fine-tuned on the ToxiGen
dataset, which contains sentences with subtle and implicit toxicity pertaining to 13 minority
groups.

Lastly, call the evaluate method and pass in your desired parameters as shown in the following
code example.

from fmeval.eval import get_eval_algorithm
from fmeval.eval_algorithms.toxicity import Toxicity, ToxicityConfig

eval_algo = Toxicity(ToxicityConfig(model_type="detoxify"))
eval_output = eval_algo.evaluate(model=model_runner, dataset_config=config,
 prompt_template="$feature", save=True)

Customize your workflow using the fmeval library

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the
new Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio
experience is now named Amazon SageMaker Studio Classic. The foundation evaluation
feature can only be used in the updated experience. For information about how to update
Studio, see Migrating from Amazon SageMaker Studio Classic. For information about using
the Studio Classic application, see Amazon SageMaker Studio Classic.

You can customize your model evaluation to allow for a model that is not a SageMaker JumpStart
or Amazon Bedrock model or use a custom workflow for evaluation. If you use your own model,
you have to create a custom ModelRunner. If you use your own dataset for evaluation, you must
configure a DataConfig object. The following section shows how to format your input dataset,
customize a DataConfig object to use your custom dataset, and create a custom ModelRunner.

Customize your workflow using the fmeval library 5308

https://github.com/microsoft/TOXIGEN

Amazon SageMaker Developer Guide

Use a custom input dataset

If you want to use your own dataset to evaluate your model, you must use a DataConfig object to
specify the dataset_name and the dataset_uri of the dataset that you want to evaluate. If you
use a built-in dataset, the DataConfig object is already configured as the default for evaluation
algorithms.

You can use one custom dataset every time you use the evaluate function. You can invoke
evaluate any number of times to use any number of datasets that you want.

Configure a custom dataset with your model request specified in the question column, and the
target answer specified in the column answer, as follows:

from fmeval.data_loaders.data_config import DataConfig
from fmeval.constants import MIME_TYPE_JSONLINES

config = DataConfig(
 dataset_name="tiny_dataset",
 dataset_uri="tiny_dataset.jsonl",
 dataset_mime_type=MIME_TYPE_JSONLINES,
 model_input_location="question",
 target_output_location="answer",
)

The DataConfig class contains the following parameters:

• dataset_name – The name of the dataset that you want to use to evaluate your LLM.

dataset_uri – The local path or uniform resource identifier (URI) to the S3 location of your
dataset.

• dataset_mime_type – The format of the input data that you want to use to evaluate your LLM.
The FMEval library can support both MIME_TYPE_JSON and MIME_TYPE_JSONLINES.

• model_input_location – (Optional) The name of the column in your dataset that contains the
model inputs or prompts that you want to evaluate.

Use a model_input_location that specifies the name of your column. The column must
contain the following values corresponding to the following associated tasks:

• For open-ended generation, toxicity, and accuracy evaluations, specify the column that
contains the prompt that your model should respond to.

Customize your workflow using the fmeval library 5309

Amazon SageMaker Developer Guide

• For a question answering task, specify the column that contains the question that your model
should generate a response to.

• For a text summarization task, specify the name of the column that contains the text that you
want your model to summarize.

• For a classification task, specify the name of the column that contains the text that you want
your model to classify.

• For a factual knowledge evaluations, specify the name of the column that contains the
question that you want the model to predict the answer to.

• For semantic robustness evaluations, specify the name of the column that contains the input
that you want your model to perturb.

• For prompt stereotyping evaluations, use the sent_more_input_location and
sent_less_input_location instead of model_input_location, as shown in the
following parameters.

• model_output_location – (Optional) The name of the column in your dataset that contains
the predicted output that you want to compare against the reference output that is contained
in target_output_location. If you provide model_output_location, then FMEval won't
send a request to your model for inference. Instead, it uses the output contained in the specified
column to evaluate your model.

• target_output_location– The name of the column in the reference dataset that
contains the true value to compare against the predicted value that is contained in
model_output_location. Required only for factual knowledge, accuracy, and semantic
robustness. For factual knowledge, each row in this column should contain all possible answers
separated by a delimiter. For example, if the answers for a question are [“UK”,“England”], then
the column should contain “UK<OR>England”. The model prediction is correct if it contains any
of the answers separated by the delimiter.

• category_location – The name of the column that contains the name of a category. If you
provide a value for category_location, then scores are aggregated and reported for each
category.

• sent_more_input_location – The name of the column that contains a prompt with more
bias. Required only for prompt stereotyping. Avoid unconscious bias. For bias examples, see the
CrowS-Pairs dataset.

• sent_less_input_location – The name of the column that contains a prompt with less
bias. Required only for prompt stereotyping. Avoid unconscious bias. For bias examples, see the
CrowS-Pairs dataset.

Customize your workflow using the fmeval library 5310

https://paperswithcode.com/dataset/crows-pairs
https://paperswithcode.com/dataset/crows-pairs

Amazon SageMaker Developer Guide

• sent_more_output_location – (Optional) The name of the column that contains a predicted
probability that your model’s generated response will contain more bias. This parameter is only
used in prompt stereotyping tasks.

• sent_less_output_location – (Optional) The name of the column that contains a predicted
probability that your model’s generated response will contain less bias. This parameter is only
used in prompt stereotyping tasks.

If you want to add a new attribute that corresponds to a dataset column to the DataConfig class,
you must add the suffix _location to the end of the attribute name.

Use a custom ModelRunner

To evaluate a custom model, use a base data class to configure your model and create a custom
ModelRunner. Then, you can use this ModelRunner to evaluate any language model. Use the
following steps to define a model configuration, create a custom ModelRunner, and test it.

The ModelRunner interface has one abstract method as follows:

def predict(self, prompt: str) # Tuple[Optional[str], Optional[float]]

This method takes in a prompt as a string input, and returns a Tuple containing a model text
response and an input log probability. Every ModelRunner must implement a predict method.

Create a custom ModelRunner

1. Define a model configuration.

The following code example shows how to apply a dataclass decorator to a custom
HFModelConfig class so that you can define a model configuration for a Hugging Face
model:

from dataclasses import dataclass

@dataclass
class HFModelConfig:
 model_name: str
 max_new_tokens: int
 seed: int = 0
 remove_prompt_from_generated_text: bool = True

Customize your workflow using the fmeval library 5311

Amazon SageMaker Developer Guide

In the previous code example, the following applies:

• The parameter max_new_tokens is used to limit the length of the response by limiting
the number of tokens returned by an LLM. The type of model is set by passing a value for
model_name when the class is instantiated. In this example, the model name is set to gpt2,
as shown in the end of this section. The parameter max_new_tokens is one option to
configure text generation strategies using a gpt2 model configuration for a pre-trained
OpenAI GPT model. See AutoConfig for other model types.

• If the parameter remove_prompt_from_generated_text is set to True, then the
generated response won't contain the originating prompt sent in the request.

For other text generation parameters, see the Hugging Face documentation for
GenerationConfig.

2. Create a custom ModelRunner and implement a predict method. The following code
example shows how to create a custom ModelRunner for a Hugging Face model using the
HFModelConfig class created in the previous code example.

from typing import Tuple, Optional
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from fmeval.model_runners.model_runner import ModelRunner

class HuggingFaceCausalLLMModelRunner(ModelRunner):
 def __init__(self, model_config: HFModelConfig):
 self.config = model_config
 self.model = AutoModelForCausalLM.from_pretrained(self.config.model_name)
 self.tokenizer = AutoTokenizer.from_pretrained(self.config.model_name)

 def predict(self, prompt: str) -> Tuple[Optional[str], Optional[float]]:
 input_ids = self.tokenizer(prompt,
 return_tensors="pt").to(self.model.device)
 generations = self.model.generate(
 **input_ids,
 max_new_tokens=self.config.max_new_tokens,
 pad_token_id=self.tokenizer.eos_token_id,
)
 generation_contains_input = (
 input_ids["input_ids"][0] == generations[0][:
 input_ids["input_ids"].shape[1]]

Customize your workflow using the fmeval library 5312

https://huggingface.co/transformers/v3.5.1/model_doc/auto.html
https://huggingface.co/docs/transformers/v4.34.1/en/main_classes/text_generation#transformers.GenerationConfig
https://huggingface.co/docs/transformers/v4.34.1/en/main_classes/text_generation#transformers.GenerationConfig

Amazon SageMaker Developer Guide

).all()
 if self.config.remove_prompt_from_generated_text and not
 generation_contains_input:
 warnings.warn(
 "Your model does not return the prompt as part of its generations.
 "
 "`remove_prompt_from_generated_text` does nothing."
)
 if self.config.remove_prompt_from_generated_text and
 generation_contains_input:
 output = self.tokenizer.batch_decode(generations[:,
 input_ids["input_ids"].shape[1] :])[0]
 else:
 output = self.tokenizer.batch_decode(generations,
 skip_special_tokens=True)[0]

 with torch.inference_mode():
 input_ids = self.tokenizer(self.tokenizer.bos_token + prompt,
 return_tensors="pt")["input_ids"]
 model_output = self.model(input_ids, labels=input_ids)
 probability = -model_output[0].item()

 return output, probability

The previous code uses a custom HuggingFaceCausalLLMModelRunner class that inherits
properties from the FMEval ModelRunner class. The custom class contains a constructor and a
definition for a predict function, which returns a Tuple.

For more ModelRunner examples, see the model_runner section of the fmeval library.

The HuggingFaceCausalLLMModelRunner constructor contains the following definitions:

• The configuration is set to HFModelConfig, defined in the beginning of this section.

• The model is set to a pre-trained model from the Hugging Face Auto Class that is specified
using the model_name parameter upon instantiation.

• The tokenizer is set to a class from the Hugging Face tokenizer library that matches the pre-
trained model specified by model_name.

The predict method in the HuggingFaceCausalLLMModelRunner class uses the following
definitions:

Customize your workflow using the fmeval library 5313

https://github.com/aws/fmeval/tree/main/src/fmeval/model_runners
https://huggingface.co/transformers/v3.5.1/model_doc/auto.html
https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoTokenizer

Amazon SageMaker Developer Guide

• input_ids – A variable that contains input for your model. The model generates the input
as follows.

• A tokenizer Converts the request contained in prompt into token identifiers (IDs). These
token IDs, which are numerical values that represent a specific token (word, sub-word or
character), can be used directly by your model as input. The token IDs are returned as a
PyTorch tensor objects, as specified by return_tensors="pt". For other types of return
tensor types, see the Hugging Face documentation for apply_chat_template.

• Token IDs are sent to a device where the model is located so that they can be used by the
model.

• generations – A variable that contains the response generated by your LLM. The model’s
generate function uses the following inputs to generate the response:

• The input_ids from the previous step.

• The parameter max_new_tokens specified in HFModelConfig.

• A pad_token_id adds an end of sentence (eos) token to the response. For other tokens
that you can use, see the Hugging Face documentation for PreTrainedTokenizer.

• generation_contains_input – A boolean variable that returns True when the
generated response includes the input prompt in its response, and False otherwise. The
return value is calculated using an element-wise comparison between the following.

• All of the token IDs in the input prompt that are contained in
input_ids["input_ids"][0].

• The beginning of the generated content that is contained in generations[0][:
input_ids["input_ids"].shape[1]].

The predict method returns a warning if you directed the LLM to
remove_prompt_from_generated_text in your configuration but the generated
response doesn’t contain the input prompt.

The output from the predict method contains a string returned by the batch_decode
method, which converts token IDs returned in the response into human readable
text. If you specified remove_prompt_from_generated_text as True,
then the input prompt is removed from the generated text. If you specified
remove_prompt_from_generated_text as False, the generated text will be returned
without any special tokens that you included in the dictionary special_token_dict, as
specified by skip_special_tokens=True.

Customize your workflow using the fmeval library 5314

https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.PreTrainedTokenizer.apply_chat_template
https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.PreTrainedTokenizer

Amazon SageMaker Developer Guide

3. Test your ModelRunner. Send a sample request to your model.

The following example shows how to test a model using the gpt2 pre-trained model from the
Hugging Face AutoConfig class:

hf_config = HFModelConfig(model_name="gpt2", max_new_tokens=32)
model = HuggingFaceCausalLLMModelRunner(model_config=hf_config)

In the previous code example, model_name specifies the name of the pre-trained model.
The HFModelConfig class is instantiated as hf_config with a value for the parameter
max_new_tokens, and used to initialize ModelRunner.

If you want to use another pre-trained model from Hugging Face, choose a
pretrained_model_name_or_path in from_pretrained under AutoClass.

Lastly, test your ModelRunner. Send a sample request to your model as shown in the
following code example:

model_output = model.predict("London is the capital of?")[0]
print(model_output)
eval_algo.evaluate_sample()

Notebook tutorials

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the
new Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio
experience is now named Amazon SageMaker Studio Classic. The foundation evaluation
feature can only be used in the updated experience. For information about how to update
Studio, see Migrating from Amazon SageMaker Studio Classic. For information about using
the Studio Classic application, see Amazon SageMaker Studio Classic.

Notebook tutorials 5315

https://huggingface.co/transformers/v3.5.1/model_doc/auto.html

Amazon SageMaker Developer Guide

This section provides the following notebook tutorials, which include example code and
explanations:

• How to evaluate a SageMaker JumpStart model for prompt stereotyping.

• How to evaluate an Amazon Bedrock model for text summarization accuracy.

How to evaluate a SageMaker JumpStart model for prompt stereotyping

You can use a high-level ModelRunner wrapper to evaluate an Amazon SageMaker JumpStart
model for prompt stereotyping. The prompt stereotyping algorithm measures the probability of
your model encoding biases in its response. These biases include those for race, gender, sexual
orientation, religion, age, nationality, disability, physical appearance, and socioeconomic status.

This tutorial shows how to load the Falcon 7-B model from the Technology Innovation Institute,
available in SageMaker JumpStart, and ask this model to generate responses to prompts. Then, this
tutorial shows how to evaluate the responses for prompt stereotyping against the built-in CrowS-
Pairs open source challenge dataset.

The sections of this tutorial show how to do the following:

• Set up your environment.

• Run your model evaluation.

• View your analysis results.

Set up your environment

Prerequisites

• Use a base Python 3.10 kernel environment and an ml.g4dn.2xlarge Amazon Elastic
Compute Cloud (Amazon EC2) instance before starting this tutorial.

For more information about instance types and their recommended use cases, see Available
Studio Classic Instance Types.

Install required libraries

1. Install the SageMaker, fmeval, and other required libraries in your code as follows:

Notebook tutorials 5316

https://huggingface.co/tiiuae/falcon-7b
https://www.tii.ae/
https://github.com/nyu-mll/crows-pairs
https://github.com/nyu-mll/crows-pairs

Amazon SageMaker Developer Guide

!pip3 install sagemaker
!pip3 install -U pyarrow
!pip3 install -U accelerate
!pip3 install "ipywidgets>=8"
!pip3 install jsonlines
!pip install fmeval
!pip3 install boto3==1.28.65
import sagemaker

2. Download the sample JSON Lines dataset crows-pairs_sample.jsonl, into your current
working directory.

3. Check that your environment contains the sample input file using the following code:

import glob

Check for fmeval wheel and built-in dataset
if not glob.glob("crows-pairs_sample.jsonl"):
 print("ERROR - please make sure file exists: crows-pairs_sample.jsonl")

4. Define a SageMaker JumpStart model as follows:

from sagemaker.jumpstart.model import JumpStartModel

model_id, model_version, = (
"huggingface-llm-falcon-7b-instruct-bf16",
"*",
)

5. Deploy the SageMaker JumpStart model and create an endpoint as follows:

my_model = JumpStartModel(model_id=model_id)
predictor = my_model.deploy()
endpoint_name = predictor.endpoint_name

6. Define a prompt and the format of the model request, or payload, as follows:

prompt = "London is the capital of"
payload = {
 "inputs": prompt,
 "parameters": {

Notebook tutorials 5317

https://github.com/aws/fmeval/blob/main/examples/crows-pairs_sample.jsonl

Amazon SageMaker Developer Guide

 "do_sample": True,
 "top_p": 0.9,
 "temperature": 0.8,
 "max_new_tokens": 1024,
 "decoder_input_details" : True,
 "details" : True
 },
}

In the previous code example, the following parameters are included in the model request:

• do_sample – Instructs the model to sample from the raw model outputs (prior to
normalization) during model inference to introduce diversity and creativity into model
responses. Defaults to False. If you set do_sample to True, then you must specify a value
for one of the following parameters: temperature, top_k, top_p, or typical_p.

• top_p – Controls the randomness by limiting the set of tokens to consider when generating
the next token. Higher values of top_p allow for a set containing a broader vocabulary.
Lower values restrict the set of tokens to more probable words. Ranges for top_p are
greater than 0 and less than 1.

• temperature – Controls the randomness of the generated text. Higher values of
temperature instruct the model to generate more random and diverse responses. Lower
values generate responses that are more predictable. Values for temperature must be
positive.

• max_new_tokens – Limits the length of the response by limiting the number of tokens
returned by your model. Defaults to 20.

• decoder_input_details – Returns information about the log probabilities assigned
by the model to each potential next token and the corresponding token IDs. If
decoder_input_details is set to True, you must also set details to True in order to
receive the requested details. Defaults to False.

For more information about parameters for this Hugging Face model, see types.py.

Send a sample inference request

To test your model, send a sample request to your model and print the model response as follows:

response = predictor.predict(payload)

Notebook tutorials 5318

https://github.com/huggingface/text-generation-inference/blob/v0.9.3/clients/python/text_generation/types.py#L8

Amazon SageMaker Developer Guide

print(response[0]["generated_text"])

In the previous code example, if your model provided the response [{"response": "this is
the output"}], then the print statement returns this is the output.

Set up FMEval

1. Load the required libraries to run FMEval as follows:

import fmeval
from fmeval.data_loaders.data_config import DataConfig
from fmeval.model_runners.sm_jumpstart_model_runner import JumpStartModelRunner
from fmeval.constants import MIME_TYPE_JSONLINES
from fmeval.eval_algorithms.prompt_stereotyping import PromptStereotyping,
 PROMPT_STEREOTYPING
from fmeval.eval_algorithms import EvalAlgorithm

2. Set up the data configuration for your input dataset.

If you don't use a built-in dataset, your data configuration must identify the column that
contains more bias in sent_more_input_location. You must also identify the column that
contains less bias in sent_less_input_location. If you are using a built-in dataset from
SageMaker JumpStart, these parameters are passed to FMEval automatically through the
model metadata.

Specify the sent_more_input_location and sent_less_input_location columns for a
prompt stereotyping task, the name, uniform resource identifier (URI), and MIME type.

config = DataConfig(
 dataset_name="crows-pairs_sample",
 dataset_uri="crows-pairs_sample.jsonl",
 dataset_mime_type=MIME_TYPE_JSONLINES,
 sent_more_input_location="sent_more",
 sent_less_input_location="sent_less",
 category_location="bias_type",
)

For more information about column information that other tasks require, see the Use a
custom input dataset section in Use a custom input dataset.

3. Set up a custom ModelRunner as shown in the following code example:

Notebook tutorials 5319

Amazon SageMaker Developer Guide

js_model_runner = JumpStartModelRunner(
 endpoint_name=endpoint_name,
 model_id=model_id,
 model_version=model_version,
 output='[0].generated_text',
 log_probability='[0].details.prefill[*].logprob',
 content_template='{"inputs": $prompt, "parameters":
 {"do_sample": true, "top_p": 0.9, "temperature": 0.8, "max_new_tokens": 1024,
 "decoder_input_details": true,"details": true}}',
)

The previous code example specifies the following:

• endpoint_name – The name of the endpoint that you created in the previous Install
required libraries step.

• model_id – The id used to specify your model. This parameter was specified when the
SageMaker JumpStart model was defined.

• model_version – The version of your model used to specify your model. This parameter
was specified when the SageMaker JumpStart model was defined.

• output – Captures the output from the Falcon 7b model, which returns its response in
a generated_text key. If your model provided the response [{"generated_text":
"this is the output"}], then [0].generated_text returns this is the output.

• log_probability – Captures the log probability returned by this SageMaker JumpStart
model.

• content_template – Specifies how your model interacts with requests. The example
configuration template is detailed solely to explain the previous example, and it's not
required. The parameters in the content template are the same ones that are declared for
payload. For more information about parameters for this Hugging Face model, see
types.py.

4. Configure your evaluation report and save it to a directory as shown in the following example
code:

import os
eval_dir = "results-eval-prompt-stereotyping"
curr_dir = os.getcwd()
eval_results_path = os.path.join(curr_dir, eval_dir) + "/"
os.environ["EVAL_RESULTS_PATH"] = eval_results_path

Notebook tutorials 5320

https://huggingface.co/tiiuae/falcon-7b
https://github.com/huggingface/text-generation-inference/blob/v0.9.3/clients/python/text_generation/types.py#L8

Amazon SageMaker Developer Guide

if os.path.exists(eval_results_path):
 print(f"Directory '{eval_results_path}' exists.")
else:
 os.mkdir(eval_results_path)

5. Set up a parallelization factor as follows:

os.environ["PARALLELIZATION_FACTOR"] = "1"

A PARALLELIZATION_FACTOR is a multiplier for the number of concurrent batches sent to
your compute instance. If your hardware allows for parallelization, you can set this number
to multiply the number of invocations for your evaluation job. For example, if you have
100 invocations, and PARALLELIZATION_FACTOR is set to 2, then your job will run 200
invocations. You can increase PARALLELIZATION_FACTOR up to 10, or remove the variable
entirely. To read a blog about how AWS Lambda uses PARALLELIZATION_FACTOR see New
AWS Lambda scaling controls for Kinesis and DynamoDB event sources.

Run your model evaluation

1. Define your evaluation algorithm. The following example shows how to define a
PromptStereotyping algorithm:

eval_algo = PromptStereotyping()

For examples of algorithms that calculate metrics for other evaluation tasks, see Evaluate your
model in Use the fmeval library to run an automatic evaluation.

2. Run your evaluation algorithm. The following code example uses the model and data
configuration that was previously defined, and a prompt_template that uses feature to
pass your prompt to the model as follows:

eval_output = eval_algo.evaluate(model=js_model_runner, dataset_config=config,
prompt_template="$feature", save=True)

Your model output may be different than the previous sample output.

Notebook tutorials 5321

https://aws.amazon.com/blogs/compute/new-aws-lambda-scaling-controls-for-kinesis-and-dynamodb-event-sources/
https://aws.amazon.com/blogs/compute/new-aws-lambda-scaling-controls-for-kinesis-and-dynamodb-event-sources/

Amazon SageMaker Developer Guide

View your analysis results

1. Parse an evaluation report from the eval_output object returned by the evaluation
algorithm as follows:

import json
print(json.dumps(eval_output, default=vars, indent=4))

The previous command returns the following output (condensed for brevity):

[
 {
 "eval_name": "prompt_stereotyping",
 "dataset_name": "crows-pairs_sample",
 "dataset_scores": [
 {
 "name": "prompt_stereotyping",
 "value": 0.6666666666666666
 }
],
 "prompt_template": "$feature",
 "category_scores": [
 {
 "name": "disability",
 "scores": [
 {
 "name": "prompt_stereotyping",
 "value": 0.5
 }
]
 },
 ...
],
 "output_path": "/home/sagemaker-user/results-eval-prompt-stereotyping/
prompt_stereotyping_crows-pairs_sample.jsonl",
 "error": null
 }
]

The previous example output displays an overall score for dataset following "name":
prompt_stereotyping. This score is the normalized difference in log probabilities between

Notebook tutorials 5322

Amazon SageMaker Developer Guide

the model response providing more versus less bias. If the score is greater than 0.5, this
means that your model response is more likely to return a response containing more bias. If
the score is less than 0.5, your model is more likely to return a response containing less bias. If
the score is 0.5, the model response does not contain bias as measured by the input dataset.
You will use the output_path to create a Pandas DataFrame in the following step.

2. Import your results and read them into a DataFrame, and attach the prompt stereotyping
scores to the model input, model output, and target output as follows:

import pandas as pd
data = []
with open(os.path.join(eval_results_path,
"prompt_stereotyping_crows-pairs_sample.jsonl"), "r") as file:
for line in file:
data.append(json.loads(line))
df = pd.DataFrame(data)
df['eval_algo'] = df['scores'].apply(lambda x: x[0]['name'])
df['eval_score'] = df['scores'].apply(lambda x: x[0]['value'])
df

For a notebook that contains the code examples given in this section, see jumpstart-falcon-
stereotyping.ipnyb.

How to evaluate an Amazon Bedrock model for text summarization accuracy

You can use a high-level ModelRunner wrapper to create a custom evaluation based on a model
that is hosted outside of SageMaker JumpStart.

This tutorial shows how to load the Anthropic Claude 2 model, which is available in Amazon
Bedrock, and ask this model to summarize text prompts. Then, this tutorial shows how to evaluate
the model response for accuracy using the Rouge-L, Meteor, and BERTScore metrics.

The tutorials show how to do the following:

• Set up your environment.

• Run your model evaluation.

• View your analysis results.

Notebook tutorials 5323

https://github.com/aws/fmeval/blob/main/examples/jumpstart-falcon-stereotyping.ipynb
https://github.com/aws/fmeval/blob/main/examples/jumpstart-falcon-stereotyping.ipynb
https://www.anthropic.com/index/claude-2
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/bertscore

Amazon SageMaker Developer Guide

Set up your environment

Prerequisites

• Use a base Python 3.10 kernel environment and an ml.m5.2xlarge Amazon Elastic Compute
Cloud (Amazon EC2) instance before starting this tutorial.

For additional information about instance types and their recommended use cases, see
Available Studio Classic Instance Types.

Set up Amazon Bedrock

Before you can use an Amazon Bedrock model, you have to request access to it.

1. Sign into your AWS account.

• If you do not have an AWS account, see Sign up for an AWS account in Set up Amazon
Bedrock.

2. Open the Amazon Bedrock console.

3. In the Welcome to Amazon Bedrock! section that opens, choose Manage model access.

4. In the Model access section that appears, choose Manage model access.

5. In the Base models section that appears, check the box next to Claude listed under the
Anthropic subsection of Models.

6. Choose Request model access.

7. If your request is successful, a check mark with Access granted should appear under Access
status next to your selected model.

8. You may need to log back into your AWS account to be able to access the model.

Install required libraries

1. In your code, install the fmeval and boto3 libraries as follows:

!pip install fmeval
!pip3 install boto3==1.28.65

2. Import libraries, set a parallelization factor, and invoke an Amazon Bedrock client as follows:

import boto3

Notebook tutorials 5324

https://docs.aws.amazon.com/bedrock/latest/userguide/setting-up.html#sign-up-for-aws
https://console.aws.amazon.com/bedrock

Amazon SageMaker Developer Guide

import json
import os

Dependent on available hardware and memory
os.environ["PARALLELIZATION_FACTOR"] = "1"

Bedrock clients for model inference
bedrock = boto3.client(service_name='bedrock')
bedrock_runtime = boto3.client(service_name='bedrock-runtime')

In the previous code example, the following applies:

• PARALLELIZATION_FACTOR – A multiplier for the number of concurrent batches sent to
your compute instance. If your hardware allows for parallelization, you can set this number
to multiply the number of invocations for your evaluation job by. For example, if you have
100 invocations, and PARALLELIZATION_FACTOR is set to 2, then your job will run 200
invocations. You can increase PARALLELIZATION_FACTOR up to 10, or remove the variable
entirely. To read a blog about how AWS Lambda uses PARALLELIZATION_FACTOR see New
AWS Lambda scaling controls for Kinesis and DynamoDB event sources.

3. Download the sample JSON Lines dataset, sample-dataset.jsonl, into your current working
directory.

4. Check that your environment contains the sample input file as follows:

import glob

Check for the built-in dataset
if not glob.glob("sample-dataset.jsonl"):
 print("ERROR - please make sure file exists: sample-dataset.jsonl")

Send a sample inference request to your model

1. Define the model and the MIME type of your prompt. For an Anthropic Claude 2 model hosted
on Amazon Bedrock, your prompt must be structured as follows:

import json
model_id = 'anthropic.claude-v2'
accept = "application/json"
contentType = "application/json"
Ensure that your prompt has the correct format

Notebook tutorials 5325

https://aws.amazon.com/blogs/compute/new-aws-lambda-scaling-controls-for-kinesis-and-dynamodb-event-sources/
https://aws.amazon.com/blogs/compute/new-aws-lambda-scaling-controls-for-kinesis-and-dynamodb-event-sources/
https://github.com/aws/fmeval/blob/8da27af2f20369fd419c03d5bb0707ab24010b14/examples/xsum_sample.jsonl
https://www.anthropic.com/index/claude-2

Amazon SageMaker Developer Guide

prompt_data = """Human: Who is Barack Obama?
Assistant:
"""

For more information about how to structure the body of your request, see Model invocation
request body field. Other models may have different formats.

2. Send a sample request to your model. The body of your request contains the prompt
and any additional parameters that you want to set. A sample request with the
max_tokens_to_sample set to 500 follows:

body = json.dumps({"prompt": prompt_data, "max_tokens_to_sample": 500})
response = bedrock_runtime.invoke_model(
body=body, modelId=model_id, accept=accept, contentType=contentType
)
response_body = json.loads(response.get("body").read())
print(response_body.get("completion"))

In the previous code example, you can set the following parameters:

• temperature – Controls the randomness of the generated text, and accepts positive
values. Higher values of temperature instruct the model to generate more random and
diverse responses. Lower values generate responses that are more predictable. Ranges for
temperature lie between 0 and 1, with a default value of 0.5.

• topP – Controls the randomness by limiting the set of tokens to consider when generating
the next token. Higher values of topP allow for a set containing a broader vocabulary and
lower values restrict the set of tokens to more probable words. Ranges for topP are 0 to 1,
with a default value of 1.

• topK – Limits the model predictions to the top k most probable tokens. Higher values of
topK allow for more inventive responses. Lower values generate responses that are more
coherent. Ranges for topK are 0 to 500, with a default value of 250.

• max_tokens_to_sample – Limits the length of the response by limiting the number of
tokens returned by your model. Ranges for max_tokens_to_sample are 0 to 4096, with a
default value of 200.

• stop_sequences – Specifies a list of character sequences that tell your model to stop
generating a response. The model output is stopped the first time any of the listed strings
are encountered in the output. The response does not contain the stop sequence. For

Notebook tutorials 5326

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html#model-parameters-claude-request-body
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html#model-parameters-claude-request-body

Amazon SageMaker Developer Guide

example, you can use a carriage return sequence to limit the model response to a single line.
You can configure up to 4 stop sequences.

For more information about the parameters that you can specify in a request, see Anthropic
Claude models.

Set up FMEval

1. Load the required libraries to run FMEval as follows:

from fmeval.data_loaders.data_config import DataConfig
from fmeval.model_runners.bedrock_model_runner import BedrockModelRunner
from fmeval.constants import MIME_TYPE_JSONLINES
from fmeval.eval_algorithms.summarization_accuracy import SummarizationAccuracy,
 SummarizationAccuracyConfig

2. Set up the data configuration for your input dataset.

The following sample input is one line from sample-dataset.jsonl:

{
 "document": "23 October 2015 Last updated at 17:44
 BST\nIt's the highest rating a tropical storm
 can get and is the first one of this magnitude
 to hit mainland Mexico since 1959.\nBut how are
 the categories decided and what do they mean?
 Newsround reporter Jenny Lawrence explains.",
 "summary": "Hurricane Patricia has been rated as
 a category 5 storm.",
 "id": "34615665",
}

The previous sample input contains the text to summarize inside the document key. The
reference against which to evaluate your model response is in the summary key. You must use
these keys inside your data configuration to specify which columns contain the information
that FMEval needs to evaluate the model response.

Your data configuration must identify the text that your model should summarize
in model_input_location. You must identify the reference value with
target_output_location.

Notebook tutorials 5327

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html

Amazon SageMaker Developer Guide

The following data configuration example refers to the previous input example to specify the
columns required for a text summarization task, the name, uniform resource identifier (URI),
and MIME type:

config = DataConfig(
 dataset_name="sample-dataset",
 dataset_uri="sample-dataset.jsonl",
 dataset_mime_type=MIME_TYPE_JSONLINES,
 model_input_location="document",
 target_output_location="summary"
)

For more information about the column information required for other tasks, see the Use a
custom input dataset section in Use an automatic evaluation.

3. Set up a custom ModelRunner as shown in the following code example:

bedrock_model_runner = BedrockModelRunner(
 model_id=model_id,
 output='completion',
 content_template='{"prompt": $prompt, "max_tokens_to_sample": 500}'
)

The previous code example specifies the following:

• model_id – The id used to specify your model.

• output – Captures the output from the Anthropic Claude 2 model, which returns its
response in a completion key.

• content_template – Specifies how your model interacts with requests. The example
configuration template is detailed as follows solely to explain the previous example, and it's
not required.

• In the previous content_template example, the following apply:

• The variable prompt specifies the input prompt, which captures the request made by
the user.

• The variable max_tokens_to_sample specifies the maximum number of tokens to
500, in order to limit the length of the response.

Notebook tutorials 5328

https://www.anthropic.com/index/claude-2

Amazon SageMaker Developer Guide

For more information about the parameters that you can specify in your request, see
Anthropic Claude models.

The format of the content_template parameter depends on the inputs and parameters
supported by your LLM. In this tutorial, Anthropic’s Claude 2 model uses the following
content_template:

 "content_template": "{\"prompt\": $prompt, \"max_tokens_to_sample\": 500}"

As another example, the Falcon 7b model can support the following content_template:

"content_template": "{\"inputs\": $prompt, \"parameters\":{\"max_new_tokens\":
 \
 10, \"top_p\": 0.9, \"temperature\": 0.8}}"

Run your model evaluation

Define and run your evaluation algorithm

1. Define your evaluation algorithm. The following example shows how to define a
SummarizationAccuracy algorithm, which is used to determine accuracy for text
summarization tasks:

eval_algo = SummarizationAccuracy(SummarizationAccuracyConfig())

For examples of algorithms that calculate metrics for other evaluation tasks, see Evaluate your
model in Use the fmeval library to run an automatic evaluation.

2. Run your evaluation algorithm. The following code example uses the data configuration that
was previously defined, and a prompt_template that uses the Human and Assistant keys:

eval_output = eval_algo.evaluate(model=bedrock_model_runner,
dataset_config=config,
prompt_template="Human: $feature\n\nAssistant:\n", save=True)

In the previous code example, feature contains the prompt in the format that Amazon
Bedrock model expects.

Notebook tutorials 5329

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html
https://www.anthropic.com/index/claude-2
https://huggingface.co/tiiuae/falcon-7b

Amazon SageMaker Developer Guide

View your analysis results

1. Parse an evaluation report from the eval_output object returned by the evaluation
algorithm as follows:

parse report
print(json.dumps(eval_output, default=vars, indent=4))

The previous command returns the following output:

[
 {
 "eval_name": "summarization_accuracy",
 "dataset_name": "sample-dataset",
 "dataset_scores": [
 {
 "name": "meteor",
 "value": 0.2048823008681274
 },
 {
 "name": "rouge",
 "value": 0.03557697913367101
 },
 {
 "name": "bertscore",
 "value": 0.5406564395678671
 }
],
 "prompt_template": "Human: $feature\n\nAssistant:\n",
 "category_scores": null,
 "output_path": "/tmp/eval_results/
summarization_accuracy_sample_dataset.jsonl",
 "error": null
 }
]

The previous example output displays the three accuracy scores: Meteor, Rouge, and
BERTScore, the input prompt_template, a category_score if you requested one, any
errors, and the output_path. You will use the output_path to create a Pandas DataFrame
in the following step.

Notebook tutorials 5330

https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/bertscore

Amazon SageMaker Developer Guide

2. Import your results and read them into a DataFrame, and attach the accuracy scores to the
model input, model output, and target output as follows:

import pandas as pd

data = []
with open("/tmp/eval_results/summarization_accuracy_sample_dataset.jsonl", "r") as
 file:
 for line in file:
 data.append(json.loads(line))
df = pd.DataFrame(data)
df['meteor_score'] = df['scores'].apply(lambda x: x[0]['value'])
df['rouge_score'] = df['scores'].apply(lambda x: x[1]['value'])
df['bert_score'] = df['scores'].apply(lambda x: x[2]['value'])
df

In this invocation, the previous code example returns the following output (contracted for
brevity):

model_input model_output target_output prompt scores
 meteor_score rouge_score bert_score
0 John Edward Bates, formerly of Spalding, Linco... I cannot make any
 definitive judgments, as th... A former Lincolnshire Police officer carried
 o... Human: John Edward Bates, formerly of Spalding... [{'name': 'meteor',
 'value': 0.112359550561797... 0.112360 0.000000 0.543234 ...
1 23 October 2015 Last updated at 17:44 BST\nIt'... Here are some key
 points about hurricane/trop... Hurricane Patricia has been rated as a
 categor... Human: 23 October 2015 Last updated at 17:44 B... [{'name':
 'meteor', 'value': 0.139822692925566... 0.139823 0.017621 0.426529 ...
2 Ferrari appeared in a position to challenge un... Here are the key points
 from the article:\n\n... Lewis Hamilton stormed to pole position at the...
 Human: Ferrari appeared in a position to chall... [{'name': 'meteor', 'value':
 0.283411142234671... 0.283411 0.064516 0.597001 ...
3 The Bath-born player, 28, has made 36 appearan... Okay, let me summarize
 the key points from th... Newport Gwent Dragons number eight Ed Jackson ...
 Human: The Bath-born player, 28, has made 36 a... [{'name': 'meteor',
 'value': 0.089020771513353... 0.089021 0.000000 0.533514 ...
...

Your model output may be different than the previous sample output.

Notebook tutorials 5331

Amazon SageMaker Developer Guide

For a notebook that contains the code examples given in this section, see bedrock-claude-
summarization-accuracy.ipnyb.

Additional notebooks

The fmeval GitHub directory contains the following additional example notebooks:

• bedrock-claude-factual-knowledge.ipnyb – Evaluates an Anthropic Claude 2 model hosted on
Amazon Bedrock for factual knowledge.

• byo-model-outputs.ipynb – Evaluates a Falcon 7b model hosted on SageMaker JumpStart
for factual knowledge where you bring your own model outputs instead of sending inference
requests to your model.

• custom_model_runner_chat_gpt.ipnyb – Evaluates a custom ChatGPT 3.5 model hosted on
Hugging Face for factual knowledge.

FMEval Troubleshooting guide

Foundation Model Evaluations (FMEval) is in preview release for Amazon SageMaker Clarify and
is subject to change.

Important

In order to use SageMaker Clarify Foundation Model Evaluations (FMEval), you must
upgrade to the new Studio experience.
As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. FMEval isn't available in Amazon SageMaker
Studio Classic.
For information about how to upgrade to the new Studio experience, see Migrating
from Amazon SageMaker Studio Classic. For information about using the Studio Classic
application, see Amazon SageMaker Studio Classic.

Troubleshooting guide 5332

https://github.com/aws/fmeval/blob/main/examples/bedrock-claude-summarization-accuracy.ipynb
https://github.com/aws/fmeval/blob/main/examples/bedrock-claude-summarization-accuracy.ipynb
https://github.com/aws/fmeval/tree/main/examples
https://github.com/aws/fmeval/blob/main/examples/bedrock-claude-factual-knowledge.ipynb
https://www.anthropic.com/index/claude-2
https://github.com/aws/fmeval/blob/main/examples/byo-model-outputs.ipynb
https://huggingface.co/tiiuae/falcon-7b
https://github.com/aws/fmeval/blob/main/examples/custom_model_runner_chat_gpt.ipynb

Amazon SageMaker Developer Guide

If you run into an error while creating a foundation model evaluation, use the following list
to troubleshoot your evaluation. If you need further assistance, contact AWS Support or AWS
Developer Forums for Amazon SageMaker.

Topics

• Error uploading your data from an Amazon S3 bucket

• The processing job failed to complete

• You can't find foundation model evaluations in the SageMaker console

• Your model does not support prompt stereotyping

Error uploading your data from an Amazon S3 bucket

When you create a foundation model evaluation, you must set the correct permissions for the S3
bucket that you want to store your model input and output in. If the Cross-origin resource sharing
(CORS) permissions are not set correctly, SageMaker generates the following error:

Error: Failed to put object in s3: Error while uploading object to s3Error:
Failed to put object in S3: NetworkError when attempting to fetch resource.

To set the correct bucket permissions, follow the instructions under Set up your environment in
Use an automatic evaluation in a UI.

The processing job failed to complete

The most common reasons that your processing job failed to complete include the following:

• Insufficient quota

• Insufficient memory

• Did not pass ping check

See the following sections to help you mitigate each issue.

Insufficient quota

When you run a foundation model evaluation for a non-deployed SageMaker JumpStart model,
SageMaker Clarify deploys your large language model (LLM) to a SageMaker endpoint in your
account. If your account does not have sufficient quota to run the selected SageMaker JumpStart
model, the job fails with a ClientError. To increase your quota, follow these steps:

Troubleshooting guide 5333

https://console.aws.amazon.com/support/
https://forums.aws.amazon.com/forum.jspa?forumID=285
https://forums.aws.amazon.com/forum.jspa?forumID=285

Amazon SageMaker Developer Guide

Request an AWS Service Quotas increase

1. Retrieve the instance name, current quota and necessary quota from the on screen error
message. For example, in the following error:

• The instance name is ml.g5.12xlarge.

• The current quota from the number following current utilizationis 0 instances

• The additional required quota from the number following request delta is 1
instances.

The sample error follows:

ClientError: An error occurred (ResourceLimitExceeded) when calling
the CreateEndpoint operation: The account-level service limit
'ml.g5.12xlarge for endpoint usage' is 0 Instances, with current
utilization of 0 Instances and a request delta of 1 Instances. Please
use AWS Service Quotas to request an increase for this quota. If AWS
Service Quotas is not available, contact AWS support to request an
increase for this quota

2. Sign into the AWS Management Console and open the Service Quotas console.

3. In the navigation pane, under Manage quotas, input Amazon SageMaker.

4. Choose View quotas.

5. In the search bar under Service quotas, input the name of the instance from Step 1.
For example, using the information contained in the error message from Step 1, input
ml.g5.12xlarge.

6. Choose the Quota name that appears next to your instance name and ends with for endpoint
usage. For example, using the information contained in the error message from Step 1, choose
ml.g5.12xlarge for endpoint usage.

7. Choose Request increase at account-level.

8. Under Increase quota value, input the necessary required quota from the information given
in the error message from Step 1. Input the total of current utilization and request
delta. In the previous example error, the current utilization is 0 Instances, and the
request delta is 1 Instances. In this example, request a quota of 1 to supply the required
quota.

9. Choose Request.

Troubleshooting guide 5334

https://console.aws.amazon.com/servicequotas/home

Amazon SageMaker Developer Guide

10. Choose Quota request history from the navigation pane.

11. When the Status changes from Pending to Approved, rerun your job. You may need to refresh
your browser to see the change.

For more information about requesting an increase in your quota, see Requesting a quota increase.

Insufficient memory

If you start a foundation model evaluation on an Amazon EC2 instance that does not have
sufficient memory to run an evaluation algorithm, the job fails with the following error:

The actor is dead because its worker process has died. Worker exit
type: SYSTEM_ERROR Worker exit detail: Worker unexpectedly exits with
a connection error code 2. End of file. There are some potential root
causes. (1) The process is killed by SIGKILL by OOM killer due to high
memory usage. (2) ray stop --force is called. (3) The worker is crashed
unexpectedly due to SIGSEGV or other unexpected errors. The actor never ran
- it was cancelled before it started running.

To increase the memory available for your evaluation job, change your instance to one that has
more memory. If you are using the user interface, you can choose an instance type under Processor
configuration in Step 2. If you are running your job inside the SageMaker console, launch a new
space using an instance with increased memory capacity.

For a list of Amazon EC2 instances, see Instance types.

For more information, about instances with larger memory capacity, see Memory optimized
instances.

Did not pass ping check

In some instances, your foundation model evaluation job will fail because it did not pass a ping
check when SageMaker was deploying your endpoint. If it does not pass a ping test, the following
error appears:

ClientError: Error hosting endpoint your_endpoint_name: Failed. Reason: The
primary container for production variant AllTraffic did not pass the ping
health check. Please check CloudWatch logs for this endpoint..., Job exited
for model: your_model_name of model_type: your_model_type

Troubleshooting guide 5335

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/memory-optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/memory-optimized-instances.html

Amazon SageMaker Developer Guide

If your job generates this error, wait a few minutes and run your job again. If the error persists,
contact AWS Support or AWS Developer Forums for Amazon SageMaker.

You can't find foundation model evaluations in the SageMaker console

In order to use SageMaker Clarify Foundation Model Evaluations, you must upgrade to the new
Studio experience. As of November 30, 2023, the previous Amazon SageMaker Studio experience
is now named Amazon SageMaker Studio Classic. The foundation evaluation feature can only be
used in the updated experience. For information about how to update Studio, see Migrating from
Amazon SageMaker Studio Classic. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

Your model does not support prompt stereotyping

Only some SageMaker JumpStart models support prompt stereotyping. If you select a SageMaker
JumpStart model that is not supported, the following error appears:

{"evaluationMetrics":"This model does not support Prompt stereotyping
evaluation. Please remove that evaluation metric or select another model
that supports it."}

If you receive this error, you cannot use your selected model in a foundation evaluation. SageMaker
Clarify is currently working to update all SageMaker JumpStart models for prompt stereotyping
tasks so that they can be used in a foundation model evaluation.

Use SageMaker Clarify to explain and detect bias

This topic describes how to understand fairness and model explainability and how to explain and
detect bias using Amazon SageMaker Clarify. You can configure an SageMaker Clarify processing
job to compute bias metrics and feature attributions and generate reports for model explainability.
SageMaker Clarify processing jobs are implemented using a specialized SageMaker Clarify
container image. The following instructions show you how to configure, run, and troubleshoot a
SageMaker Clarify processing job and how to configure an analysis.

What is fairness and model explainability for machine learning
predictions?

Machine learning (ML) models are helping make decisions in domains including financial services,
healthcare, education, and human resources. Policymakers, regulators, and advocates have raised

Explain and detect bias 5336

https://console.aws.amazon.com/support/
https://forums.aws.amazon.com/forum.jspa?forumID=285

Amazon SageMaker Developer Guide

awareness about the ethical and policy challenges posed by ML and data-driven systems. Amazon
SageMaker Clarify can help you understand why your ML model made a specific prediction and
whether this bias impacts this prediction during training or inference. SageMaker Clarify also
provides tools that can help you build less biased and more understandable machine learning
models. SageMaker Clarify can also generate model governance reports that you can provide
to risk and compliance teams and external regulators. With SageMaker Clarify, you can do the
following:

• Detect bias in and help explain your model predictions.

• Identify types of bias in pre-training data.

• Identify types of bias in post-training data that can emerge during training or when your model
is in production.

SageMaker Clarify helps explain how your models make predictions using feature attributions.
It can also monitor inference models that are in production for both bias and feature attribution
drift. This information can help you in the following areas:

• Regulatory – Policymakers and other regulators can have concerns about discriminatory impacts
of decisions that use output from ML models. For example, an ML model may encode bias and
influence an automated decision.

• Business – Regulated domains may need reliable explanations for how ML models make
predictions. Model explainability may be particularly important to industries that depend
on reliability, safety, and compliance. These can include financial services, human resources,
healthcare, and automated transportation. For example, lending applications may need
to provide explanations about how ML models made certain predictions to loan officers,
forecasters, and customers.

• Data Science – Data scientists and ML engineers can debug and improve ML models when
they can determine if a model is making inferences based on noisy or irrelevant features. They
can also understand the limitations of their models and failure modes that their models may
encounter.

For a blog post that shows how to architect and build a complete machine learning model for
fraudulent automobile claims that integrates SageMaker Clarify into a SageMaker pipeline, see
the Architect and build the full machine learning lifecycle with AWS: An end-to-end Amazon
SageMaker demo. This blog post discusses how to assess and mitigate pre-training and post-

What is fairness and model explainability? 5337

https://aws.amazon.com/blogs/machine-learning/architect-and-build-the-full-machine-learning-lifecycle-with-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/architect-and-build-the-full-machine-learning-lifecycle-with-amazon-sagemaker/

Amazon SageMaker Developer Guide

training bias, and how the features impact the model prediction. The blog post contains links to
example code for each task in the ML lifecycle.

Best practices to evaluate fairness and explainability in the ML lifecycle

Fairness as a process – Notions of bias and fairness depend on their application. The measurement
of bias and the choice of the bias metrics may be guided by social, legal, and other non-technical
considerations. The successful adoption of fairness-aware ML approaches includes building
consensus and achieving collaboration across key stakeholders. These may include product, policy,
legal, engineering, AI/ML teams, end users, and communities.

Fairness and explainability by design in the ML lifecycle – Consider fairness and explainability
during each stage of the ML lifecycle. These stages include problem formation, dataset
construction, algorithm selection, the model training process, the testing process, deployment, and
monitoring and feedback. It is important to have the right tools to do this analysis. We recommend
asking the following questions during the ML lifecycle:

• Does the model encourage feedback loops that can produce increasingly unfair outcomes?

• Is an algorithm an ethical solution to the problem?

• Is the training data representative of different groups?

• Are there biases in labels or features?

• Does the data need to be modified to mitigate bias?

• Do fairness constraints need to be included in the objective function?

• Has the model been evaluated using relevant fairness metrics?

• Are there unequal effects across users?

• Is the model deployed on a population for which it was not trained or evaluated?

What is fairness and model explainability? 5338

Amazon SageMaker Developer Guide

Guide to the SageMaker explanations and bias documentation

Bias can occur and be measured in the data both before and after training a model. SageMaker
Clarify can provide explanations for model predictions after training and for models deployed to
production. SageMaker Clarify can also monitor models in production for any drift in their baseline
explanatory attributions, and calculate baselines when needed. The documentation for explaining
and detecting bias using SageMaker Clarify is structured as follows:

• For information on setting up a processing job for bias and explainability, see Configure a
SageMaker Clarify Processing Job.

• For information on detecting bias in pre-processing data before it's used to train a model, see
Detect Pre-training Data Bias.

• For information on detecting post-training data and model bias, see Detect Post-training Data
and Model Bias.

• For information on the model-agnostic feature attribution approach to explain model
predictions after training, see Model Explainability.

• For information on monitoring for feature contribution drift away from the baseline that
was established during model training, see Monitor Feature Attribution Drift for Models in
Production.

• For information about monitoring models that are in production for baseline drift, see Monitor
Bias Drift for Models in Production.

What is fairness and model explainability? 5339

Amazon SageMaker Developer Guide

• For information about obtaining explanations in real time from a SageMaker endpoint, see
Online Explainability with SageMaker Clarify.

How SageMaker Clarify Processing Jobs Work

You can use SageMaker Clarify to analyze your datasets and models for explainability and bias.
A SageMaker Clarify processing job uses the SageMaker Clarify processing container to interact
with an Amazon S3 bucket containing your input datasets. You can also use SageMaker Clarify to
analyze a customer model that is deployed to a SageMaker inference endpoint.

The following graphic shows how a SageMaker Clarify processing job interacts with your input data
and optionally, with a customer model. This interaction depends on the specific type of analysis
being performed. The SageMaker Clarify processing container obtains the input dataset and
configuration for analysis from an S3 bucket. For certain analysis types, including feature analysis,
the SageMaker Clarify processing container must send requests to the model container. Then it
retrieves the model predictions from the response that the model container sends. After that, the
SageMaker Clarify processing container computes and saves analysis results to the S3 bucket.

You can run a SageMaker Clarify processing job at multiple stages in the lifecycle of the machine
learning workflow. SageMaker Clarify can help you compute the following analysis types:

• Pre-training bias metrics. These metrics can help you understand the bias in your data so that
you can address it and train your model on a more fair dataset. See Measure Pre-training Bias for
information about pre-training bias metrics. To run a job to analyze pre-training bias metrics, you
must provide the dataset and a JSON analysis configuration file to Configure the Analysis.

• Post-training bias metrics. These metrics can help you understand any bias introduced by an
algorithm, hyperparameter choices, or any bias that wasn't apparent earlier in the flow. For more
information about post-training bias metrics, see Measure Post-training Data and Model Bias.

SageMaker Clarify Processing Jobs 5340

Amazon SageMaker Developer Guide

SageMaker Clarify uses the model predictions in addition to the data and labels to identify bias.
To run a job to analyze post-training bias metrics, you must provide the dataset and a JSON
analysis configuration file. The configuration should include the model or endpoint name.

• Shapely values, which can help you understand what impact your feature has on what your
model predicts. For more informaton about Shapely values, see Feature Attributions that Use
Shapley Values. This feature requires a trained model.

• Partial dependence plots (PDPs), which can help you understand how much your predicted target
variable would change if you varied the value of one feature. For more information about PDPs,
see Partial dependence plots (PDPs) analysis This feature requires a trained model.

SageMaker Clarify needs model predictions to compute post-training bias metrics and feature
attributions. You can provide an endpoint or SageMaker Clarify will create an ephemeral endpoint
using your model name, also known as a shadow endpoint. The SageMaker Clarify container deletes
the shadow endpoint after the computations are completed. At a high level, the SageMaker Clarify
container completes the following steps:

1. Validates inputs and parameters.

2. Creates the shadow endpoint (if a model name is provided).

3. Loads the input dataset into a data frame.

4. Obtains model predictions from the endpoint, if necessary.

5. Computes bias metrics and features attributions.

6. Deletes the shadow endpoint.

7. Generate the analysis results.

After the SageMaker Clarify processing job is complete, the analysis results will be saved in the
output location that you specified in the processing output parameter of the job. These results
include a JSON file with bias metrics and global feature attributions, a visual report, and additional
files for local feature attributions. You can download the results from the output location and view
them.

For additional information about bias metrics, explainability and how to interpret them, see Learn
How Amazon SageMaker Clarify Helps Detect Bias, Fairness Measures for Machine Learning in
Finance, and the Amazon AI Fairness and Explainability Whitepaper.

SageMaker Clarify Processing Jobs 5341

https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias
https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias
https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon.AI.Fairness.and.Explainability.Whitepaper.pdf

Amazon SageMaker Developer Guide

Configure a SageMaker Clarify Processing Job

To analyze your data and models for bias and explainability using SageMaker Clarify, you must
configure a SageMaker Clarify processing job. This guide shows how to specify the input dataset
name, analysis configuration file name, and output location for a processing job. To configure the
processing container, job inputs, outputs, resources and other parameters, you have two options.
You can either use the SageMaker CreateProcessingJob API, or use the SageMaker Python SDK
API SageMaker ClarifyProcessor,

For information about parameters that are common to all processing jobs, see Amazon SageMaker
API Reference.

Configure a SageMaker Clarify processing job using the SageMaker API

The following instructions show how to provide each portion of the SageMaker Clarify specific
configuration using the CreateProcessingJob API.

1. Input the uniform research identifier (URI) of a SageMaker Clarify container image inside the
AppSpecification parameter, as shown in the following code example.

{
 "ImageUri": "the-clarify-container-image-uri"
}

Note

The URI must identify a pre-built SageMaker Clarify container image.
ContainerEntrypoint and ContainerArguments are not supported. For more
information about SageMaker Clarify container images, see Get Started with a
SageMaker Clarify Container.

2. Specify both the configuration for your analysis and parameters for your input dataset inside the
ProcessingInputs parameter.

a. Specify the location of the JSON analysis configuration file, which includes the
parameters for bias analysis and explainability analysis. The InputName parameter of the
ProcessingInput object must be analysis_config as shown in the following code
example.

{

Configure a SageMaker Clarify Processing Job 5342

https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html?icmpid=docs_sagemaker_lp
https://docs.aws.amazon.com/sagemaker/latest/APIReference/Welcome.html?icmpid=docs_sagemaker_lp

Amazon SageMaker Developer Guide

 "InputName": "analysis_config",
 "S3Input": {
 "S3Uri": "s3://your-bucket/analysis_config.json",
 "S3DataType": "S3Prefix",
 "S3InputMode": "File",
 "LocalPath": "/opt/ml/processing/input/config"
 }
}

For more information about the schema of the analysis configuration file, see Configure the
Analysis .

b. Specify the location of the input dataset. The InputName parameter of the
ProcessingInput object must be dataset. This parameter is optional if you have provided
the "dataset_uri" in the analysis configuration file. The following values are required in the
S3Input configuration.

i. S3Urican be either an Amazon S3 object or an S3 prefix.

ii. S3InputMode must be of type File.

iii. S3CompressionType must be of type None (the default value).

iv. S3DataDistributionType must be of type FullyReplicated (the default value).

v. S3DataType can be either S3Prefix or ManifestFile. To use ManifestFile, the
S3Uri parameter should specify the location of a manifest file that follows the schema
from the SageMaker API Reference section S3Uri. This manifest file must list the S3 objects
that contain the input data for the job.

The following code shows an example of an input configuration.

{
 "InputName": "dataset",
 "S3Input": {
 "S3Uri": "s3://your-bucket/your-dataset.csv",
 "S3DataType": "S3Prefix",
 "S3InputMode": "File",
 "LocalPath": "/opt/ml/processing/input/data"
 }
}

3. Specify the configuration for the output of the processing job inside the
ProcessingOutputConfig parameter. A single ProcessingOutput object is required in the
Outputs configuration. The following are required of the output configuration:

Configure a SageMaker Clarify Processing Job 5343

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html#sagemaker-Type-S3DataSource-S3Uri

Amazon SageMaker Developer Guide

a. OutputName must be analysis_result.

b. S3Urimust be an S3 prefix to the output location.

c. S3UploadMode must be set to EndOfJob.

The following code shows an example of an output configuration.

{
 "Outputs": [{
 "OutputName": "analysis_result",
 "S3Output": {
 "S3Uri": "s3://your-bucket/result/",
 "S3UploadMode": "EndOfJob",
 "LocalPath": "/opt/ml/processing/output"
 }
 }]
}

4. Specify the configuration ClusterConfig for the resources that you use in your processing job
inside the ProcessingResources parameter. The following parameters are required inside the
ClusterConfig object.

a. InstanceCount specifies the number of compute instances in the cluster that runs the
processing job. Specify a value greater than 1 to activate distributed processing.

b. InstanceType refers to the resources that runs your processing job. Because SageMaker
SHAP analysis is compute-intensive, using an instance type that is optimized for compute
should improve runtime for analysis. The SageMaker Clarify processing job doesn't use GPUs.

The following code shows an example of resource configuration.

{
 "ClusterConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.m5.xlarge",
 "VolumeSizeInGB": 20
 }
}

5. Specify the configuration of the network that you use in your processing job inside the
NetworkConfig object. The following values are required in the configuration.

Configure a SageMaker Clarify Processing Job 5344

Amazon SageMaker Developer Guide

a. EnableNetworkIsolation must be set to False (default) so that SageMaker Clarify can
invoke an endpoint, if necessary, for predictions.

b. If the model or endpoint that you provided to the SageMaker Clarify job is within an Amazon
Virtual Private Cloud (Amazon VPC), then the SageMaker Clarify job must also be in the same
VPC. Specify the VPC using VpcConfig. Additionally, the VPC must have endpoints to an
Amazon S3 bucket, SageMaker service and SageMaker Runtime service.

If distributed processing is activated, you must also allow communication between different
instances in the same processing job. Configure a rule for your security group that allows
inbound connections between members of the same security group. For more information,
see Give Amazon SageMaker Clarify Jobs Access to Resources in Your Amazon VPC.

The following code gives an example of a network configuration.

{
 "EnableNetworkIsolation": False,
 "VpcConfig": {
 ...
 }
}

6. Set the maximum time that the job will run using the StoppingCondition parameter. The
longest that a SageMaker Clarify job can run is 7 days or 604800 seconds. If the job cannot be
completed within this time limit, it will be stopped and no analysis results will be provided. As
an example, the following configuration limits the maximum time that the job can run to 3600
seconds.

{
 "MaxRuntimeInSeconds": 3600
}

7. Specify an IAM role for the RoleArn parameter. The role must have a trust relationship with
Amazon SageMaker. It can be used to perform the SageMaker API operations listed in the
following table. We recommend using the Amazon SageMakerFullAccess managed policy, which
grants full access to SageMaker. For more information on this policy, see AWS managed policy:
AmazonSageMakerFullAccess. If you have concerns about granting full access, the minimal
permissions required depend on whether you provide a model or an endpoint name. Using an
endpoint name allows for granting fewer permissions to SageMaker.

Configure a SageMaker Clarify Processing Job 5345

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html

Amazon SageMaker Developer Guide

The following table contains API operations used by the SageMaker Clarify processing job. An X
under Model name and Endpoint name notes the API operation that is required for each input.

API Operation Model name Endpoint name What is it used for

ListTags X Tags of the job
are applied to the
shadow endpoint.

CreateEndpointConf
ig

X Create endpoint
config using the
model name that
you provided

CreateEndpoint X Create shadow
endpoint using the
endpoint config.

DescribeEndpoint X X Describe endpoint
for its status, the
endpoint must be
InService to serve
requests.

InvokeEndpoint X X Invoke the endpoint
for predictions.

For more information about required permissions, see Amazon SageMaker API Permissions:
Actions, Permissions, and Resources Reference.

For more information about passing roles to SageMaker, see Passing Roles.

After you have the individual pieces of the processing job configuration, combine them to
configure the job.

Configure a SageMaker Clarify Processing Job 5346

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTags.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html

Amazon SageMaker Developer Guide

Configure a SageMaker Clarify processing job using the AWS SDK for Python

The following code example shows how to launch a SageMaker Clarify processing job using the
AWS SDK for Python.

sagemaker_client.create_processing_job(
 ProcessingJobName="your-clarify-job-name",
 AppSpecification={
 "ImageUri": "the-clarify-container-image-uri",
 },
 ProcessingInputs=[{
 "InputName": "analysis_config",
 "S3Input": {
 "S3Uri": "s3://your-bucket/analysis_config.json",
 "S3DataType": "S3Prefix",
 "S3InputMode": "File",
 "LocalPath": "/opt/ml/processing/input/config",
 },
 }, {
 "InputName": "dataset",
 "S3Input": {
 "S3Uri": "s3://your-bucket/your-dataset.csv",
 "S3DataType": "S3Prefix",
 "S3InputMode": "File",
 "LocalPath": "/opt/ml/processing/input/data",
 },
 },
],
 ProcessingOutputConfig={
 "Outputs": [{
 "OutputName": "analysis_result",
 "S3Output": {
 "S3Uri": "s3://your-bucket/result/",
 "S3UploadMode": "EndOfJob",
 "LocalPath": "/opt/ml/processing/output",
 },
 }],
 },
 ProcessingResources={
 "ClusterConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.m5.xlarge",
 "VolumeSizeInGB": 20,
 },

Configure a SageMaker Clarify Processing Job 5347

https://aws.amazon.com/sdk-for-python/

Amazon SageMaker Developer Guide

 },
 NetworkConfig={
 "EnableNetworkIsolation": False,
 "VpcConfig": {
 ...
 },
 },
 StoppingCondition={
 "MaxRuntimeInSeconds": 3600,
 },
 RoleArn="arn:aws:iam::<your-account-id>:role/service-role/AmazonSageMaker-
ExecutionRole",
)

For an example notebook with instructions for running a SageMaker Clarify processing job using
AWS SDK for Python, see Fairness and Explainability with SageMaker Clarify using AWS SDK for
Python. Any S3 bucket used in the notebook must be in the same AWS Region as the notebook
instance that accesses it.

Configure a SageMaker Clarify processing job using the SageMaker Python SDK

You can also configure a SageMaker Clarify processing job using the SageMaker ClarifyProcessor in
the SageMaker Python SDK API. For more information, see Run SageMaker Clarify Processing Jobs
for Bias Analysis and Explainability.

Topics

• Get Started with a SageMaker Clarify Container

• Configure the Analysis

• Data Format Compatibility Guide

Get Started with a SageMaker Clarify Container

Amazon SageMaker provides prebuilt SageMaker Clarify container images that include the libraries
and other dependencies needed to compute bias metrics and feature attributions for explainability.
This image has been enabled to run SageMaker Process data in your account.

The image URIs for the containers are in the following form:

<ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/sagemaker-clarify-processing:1.0

Configure a SageMaker Clarify Processing Job 5348

http://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability_boto3.ipynb
http://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability_boto3.ipynb
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.SageMakerClarifyProcessor

Amazon SageMaker Developer Guide

For example:

205585389593.dkr.ecr.us-east-1.amazonaws.com/sagemaker-clarify-processing:1.0

The following table lists the addresses by AWS Region.

Docker Images for SageMaker Clarify Processing Jobs

Region Image address

us-east-1 205585389593.dkr.ecr.us-east-1.amazonaws.com/sagemaker-clarify-
processing:1.0

us-east-2 211330385671.dkr.ecr.us-east-2.amazonaws.com/sagemaker-clarify-
processing:1.0

us-west-1 740489534195.dkr.ecr.us-west-1.amazonaws.com/sagemaker-clarify-
processing:1.0

us-west-2 306415355426.dkr.ecr.us-west-2.amazonaws.com/sagemaker-clarify-
processing:1.0

ap-east-1 098760798382.dkr.ecr.ap-east-1.amazonaws.com/sagemaker-clarify-
processing:1.0

ap-south-1 452307495513.dkr.ecr.ap-south-1.amazonaws.com/sagemaker-clarify-
processing:1.0

ap-southeast-3 705930551576.dkr.ecr.ap-southeast-3.amazonaws.com/sagemaker-cla
rify-processing:1.0

ap-northeast-1 377024640650.dkr.ecr.ap-northeast-1.amazonaws.com/sagemaker-cla
rify-processing:1.0

ap-northeast-2 263625296855.dkr.ecr.ap-northeast-2.amazonaws.com/sagemaker-cla
rify-processing:1.0

ap-northeast-3 912233562940.dkr.ecr.ap-northeast-3.amazonaws.com/sagemaker-cla
rify-processing:1.0

Configure a SageMaker Clarify Processing Job 5349

Amazon SageMaker Developer Guide

Region Image address

ap-southeast-1 834264404009.dkr.ecr.ap-southeast-1.amazonaws.com/sagemaker-cla
rify-processing:1.0

ap-southeast-2 007051062584.dkr.ecr.ap-southeast-2.amazonaws.com/sagemaker-cla
rify-processing:1.0

ca-central-1 675030665977.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-clari
fy-processing:1.0

eu-central-1 017069133835.dkr.ecr.eu-central-1.amazonaws.com/sagemaker-clari
fy-processing:1.0

eu-west-1 131013547314.dkr.ecr.eu-west-1.amazonaws.com/sagemaker-clarify-
processing:1.0

eu-west-2 440796970383.dkr.ecr.eu-west-2.amazonaws.com/sagemaker-clarify-
processing:1.0

eu-west-3 341593696636.dkr.ecr.eu-west-3.amazonaws.com/sagemaker-clarify-
processing:1.0

eu-north-1 763603941244.dkr.ecr.eu-north-1.amazonaws.com/sagemaker-clarify-
processing:1.0

me-south-1 835444307964.dkr.ecr.me-south-1.amazonaws.com/sagemaker-clarify
-processing:1.0

sa-east-1 520018980103.dkr.ecr.sa-east-1.amazonaws.com/sagemaker-clarify-
processing:1.0

af-south-1 811711786498.dkr.ecr.af-south-1.amazonaws.com/sagemaker-clarify-
processing:1.0

eu-south-1 638885417683.dkr.ecr.eu-south-1.amazonaws.com/sagemaker-clarify-
processing:1.0

cn-north-1 122526803553.dkr.ecr.cn-north-1.amazonaws.com.cn/sagemaker-clar
ify-processing:1.0

Configure a SageMaker Clarify Processing Job 5350

Amazon SageMaker Developer Guide

Region Image address

cn-northwest-1 122578899357.dkr.ecr.cn-northwest-1.amazonaws.com.cn/sagemaker-
clarify-processing:1.0

Configure the Analysis

To analyze your data and models for explainability and bias using SageMaker Clarify, you
must configure a processing job. Part of the configuration for this processing job includes the
configuration of an analysis file. The analysis file specifies the parameters for bias analysis and
explainability. See Configure a SageMaker Clarify Processing Job to learn how to configure a
processing job and analysis file.

This guide describes the schema and parameters for this analysis configuration file. This guide
also includes examples of analysis configuration files for computing bias metrics for a tabular
dataset, and generating explanations for natural language processing (NLP) and computer vision
(CV) problems.

You can create the analysis configuration file or use the SageMaker Python SDK to generate one
for you with the SageMaker ClarifyProcessor API. Viewing the file contents can be helpful for
understanding the underlying configuration used by the SageMaker Clarify job.

Topics

• Schema for the analysis configuration file

• Example analysis configuration files

Schema for the analysis configuration file

The following section describes the schema for the analysis configuration file including
requirements and descriptions of parameters.

Requirements for the analysis configuration file

The SageMaker Clarify processing job expects the analysis configuration file to be structured with
the following requirements:

• The processing input name must be analysis_config.

Configure a SageMaker Clarify Processing Job 5351

https://sagemaker.readthedocs.io/
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.SageMakerClarifyProcessor

Amazon SageMaker Developer Guide

• The analysis configuration file is in JSON format, and encoded in UTF-8.

• The analysis configuration file is an Amazon S3 object.

You can specify additional parameters in the analysis configuration file. The following section
provides various options to tailor the SageMaker Clarify processing job for your use case and
desired types of analysis.

Parameters for analysis configuration files

In the analysis configuration file, you can specify the following parameters.

• version – (Optional) The version string of the analysis configuration file schema. If a version is
not provided, SageMaker Clarify uses the latest supported version. Currently, the only supported
version is 1.0.

• dataset_type – The format of the dataset. The input dataset format can be any of the following
values:

• text/csv for CSV

• application/jsonlines for SageMaker JSON Lines dense format

• application/json for JSON

• application/x-parquet for Apache Parquet

• application/x-image to activate explainability for computer vision problems

• dataset_uri – (Optional) The uniform resource identifier (URI) of the main dataset. If you provide
a S3 URI prefix, the SageMaker Clarify processing job recursively collects all S3 files located
under the prefix. You can provide either a S3 URI prefix or a S3 URI to an image manifest file for
computer vision problems. If dataset_uri is provided, it takes precedence over the dataset
processing job input. For any format type except image, the SageMaker Clarify processing job
loads the input dataset into a tabular data frame, as a tabular dataset. This format allows
SageMaker to easily manipulate and analyze the input dataset.

• headers – (Optional) An array of strings containing the column names of a tabular dataset. If a
value for headers is not provided, then the SageMaker Clarify processing job reads the headers
from the dataset. If the dataset doesn’t have headers, then the SageMaker Clarify processing
job will automatically generate placeholder names based on zero-based column index. As an
example, placeholder names for the first and second columns will be column_0, column_1.

Configure a SageMaker Clarify Processing Job 5352

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html#cm-jsonlines

Amazon SageMaker Developer Guide

Note

By convention, if dataset_type is application/jsonlines or application/json
then headers should contain the following names in order: feature names, label name
(if label is specified), and predicted label name (if predicted_label is specified).
An example for headers for an application/jsonlines dataset type if label is
specified is: ["feature1","feature2","feature3","target_label"].

• label – (Optional) A string or a zero-based integer index. If provided, label is used to locate the
ground truth label, also known as an observed label or target attribute in a tabular dataset. The
ground truth label is used to compute bias metrics. The value for label is specified depending
on the value of the dataset_type parameter as follows.

• If dataset_type is text/csv, label can be specified as either of the following:

• A valid column name

• An index that lies within the range of dataset columns

• If dataset_type is application/parquet, label must be a valid column name.

• If dataset_type is application/jsonlines, label must be a JMESPath expression
written to extract the ground truth label from the dataset. By convention, if headers is
specified, then it should contain the label name.

• If dataset_type is application/json, label must be a JMESPath expression written to
extract the ground truth label for each record in the dataset. This JMESPath expression must
produce a list of labels where the ith label correlates to the ith record.

• predicted_label – (Optional) A string or a zero-based integer index. If provided,
predicted_label is used to locate the column containing the predicted label in a tabular
dataset. The predicted label is used to compute post-training bias metrics. The parameter
predicted_label is optional if the dataset doesn’t include predicted label. If predicted labels
are required for computation, then the SageMaker Clarify processing job will get predictions
from the model.

The value for predicted_label is specified depending on the value of the dataset_type as
follows:

• If dataset_type is text/csv, predicted_label can be specified as either of the
following:

Configure a SageMaker Clarify Processing Job 5353

https://jmespath.org/
https://jmespath.org/

Amazon SageMaker Developer Guide

• A valid column name. If predicted_label_dataset_uri is specified, but
predicted_label is not provided, the default predicted label name is "predicted_label".

• An index that lies within the range of dataset columns. If
predicted_label_dataset_uri is specified, then the index is used to locate the
predicted label column in the predicted label dataset.

• If dataset_type is application/x-parquet, predicted_label must be a valid column
name.

• If dataset_type is application/jsonlines, predicted_label must be a valid JMESPath
expression written to extract the predicted label from the dataset. By convention, if headers
is specified, then it should contain the predicted label name.

• If dataset_type is application/json, predicted_label must be a JMESPath expression
written to extract the predicted label for each record in the dataset. The JMESPath expression
should produce a list of predicted labels where the ith predicted label is for the ith record.

• features – Required if dataset_type is application/jsonlines or application/
json. A JMESPath string expression written to locate the features in the input dataset. For
application/jsonlines, a JMESPath expression will be applied to each line to extract the
features for that record. For application/json, a JMESPath expression will be applied to
the whole input dataset. The JMESPath expression should extract a list of lists, or a 2D array/
matrix of features where the ith row contains the features that correlate to the ith record. For a
dataset_type of text/csv or application/x-parquet, all columns except for the ground
truth label and predicted label columns are automatically assigned to be features.

• predicted_label_dataset_uri – Only applicable when dataset_type is text/csv. The S3 URI
for a dataset containing predicted labels used to compute post-training bias metrics. The
SageMaker Clarify processing job will load the predictions from the provided URI instead of
getting predictions from the model. In this case, predicted_label is required to locate
the predicted label column in the predicted label dataset. If the predicted label dataset
or the main dataset is split across multiple files, an identifier column must be specified by
joinsource_name_or_index to join the two datasets.

• predicted_label_headers – Only applicable when predicted_label_dataset_uri is
specified. An array of strings containing the column names of the predicted label dataset.
Besides the predicted label header, predicted_label_headers can also contain the header
of the identifier column to join the predicted label dataset and the main dataset. For more
information, see the following description for the parameter joinsource_name_or_index.

Configure a SageMaker Clarify Processing Job 5354

https://jmespath.org/
https://jmespath.org/

Amazon SageMaker Developer Guide

• joinsource_name_or_index – The name or zero-based index of the column in tabular datasets
to be used as a identifier column while performing an inner join. This column is only used as
an identifier. It isn't used for any other computations like bias analysis or feature attribution
analysis. A value for joinsource_name_or_index is needed in the following cases:

• There are multiple input datasets, and any one is split across multiple files.

• Distributed processing is activated by setting the SageMaker Clarify processing job
InstanceCount to a value greater than 1.

• excluded_columns – (Optional) An array of names or zero-based indices of columns to be
excluded from being sent to the model as input for predictions. Ground truth label and predicted
label are automatically excluded already.

• probability_threshold – (Optional) A floating point number above which, a label or
object is selected. The default value is 0.5. The SageMaker Clarify processing job uses
probability_threshold in the following cases:

• In post-training bias analysis, probability_threshold converts a numeric model prediction
(probability value or score) to a binary label, if the model is a binary classifier. A score greater
than the threshold is converted to 1. Whereas, a score less than or equal to the threshold is
converted to 0.

• In computer vision explainability problems, if model_type is OBJECT_DETECTION,
probability_threshold filters out objects detected with confidence scores lower than the
threshold value.

• label_values_or_threshold – Required for bias analysis. An array of label values or a threshold
number, which indicate positive outcome for ground truth and predicted labels for bias metrics.
For more information, see positive label values in Amazon SageMaker Clarify Terms for Bias
and Fairness. If the label is numeric, the threshold is applied as the lower bound to select the
positive outcome. To set label_values_or_threshold for different problem types, refer to
the following examples:

• For a binary classification problem, the label has two possible values, 0 and 1.
If label value 1 is favorable to a demographic group observed in a sample, then
label_values_or_threshold should be set to [1].

• For a multiclass classification problem, the label has three possible values, bird,
cat, and dog. If the latter two define a demographic group that bias favors, then
label_values_or_threshold should be set to ["cat","dog"].

Configure a SageMaker Clarify Processing Job 5355

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProcessingClusterConfig.html#sagemaker-Type-ProcessingClusterConfig-InstanceCount

Amazon SageMaker Developer Guide

• For a regression problem, the label value is continuous, ranging from 0 to 1. If a
value greater than 0.5 should designate a sample as having a positive result, then
label_values_or_threshold should be set to 0.5.

• facet – Required for bias analysis. An array of facet objects, which are composed of sensitive
attributes against which bias is measured. You can use facets to understand the bias
characteristics of your dataset and model even if your model is trained without using sensitive
attributes. For more information, see Facet in Amazon SageMaker Clarify Terms for Bias and
Fairness. Each facet object includes the following fields:

• name_or_index – The name or zero-based index of the sensitive attribute column in a tabular
dataset. If facet_dataset_uri is specified, then the index refers to the facet dataset instead
of the main dataset.

• value_or_threshold – Required if facet is numeric and label_values_or_threshold
is applied as the lower bound to select the sensitive group). An array of facet values or a
threshold number, that indicates the sensitive demographic group that bias favors. If facet
data type is categorical and value_or_threshold is not provided, bias metrics are computed
as one group for every unique value (rather than all values). To set value_or_threshold for
different facet data types, refer to the following examples:

• For a binary facet data type, the feature has two possible values, 0 and 1. If you want to
compute the bias metrics for each value, then value_or_threshold can be either omitted
or set to an empty array.

• For a categorical facet data type, the feature has three possible values bird, cat, and dog.
If the first two define a demographic group that bias favors, then value_or_threshold
should be set to ["bird", "cat"]. In this example, the dataset samples are split into two
demographic groups. The facet in the advantaged group has value bird or cat, while the
facet in the disadvantaged group has value dog.

• For a numeric facet data type, the feature value is continuous, ranging from 0 to 1. As
an example, if a value greater than 0.5 should designate a sample as favored, then
value_or_threshold should be set to 0.5. In this example, the dataset samples are split
into two demographic groups. The facet in the advantaged group has value greater than
0.5, while the facet in the disadvantaged group has value less than or equal to 0.5.

• group_variable – The name or zero-based index of the column that indicates the subgroup to be
used for the bias metric Conditional Demographic Disparity (CDD) or Conditional Demographic
Disparity in Predicted Labels (CDDPL).

Configure a SageMaker Clarify Processing Job 5356

Amazon SageMaker Developer Guide

• facet_dataset_uri – Only applicable when dataset_type is text/csv. The S3 URI for a dataset
containing sensitive attributes for bias analysis. You can use facets to understand the bias
characteristics of your dataset and model even if your model is trained without using sensitive
attributes.

Note

If the facet dataset or the main dataset is split across multiple files, an identifier column
must be specified by joinsource_name_or_index to join the two datasets. You must
use the parameter facet to identify each facet in the facet dataset.

• facet_headers – (Only applicable when facet_dataset_uri is specified) An array of strings
containing column names for the facet dataset, and optionally, the identifier column header to
join the facet dataset and the main dataset, see joinsource_name_or_index.

• methods – An object containing one or more analysis methods and their parameters. If any
method is omitted, it is neither used for analysis nor reported.

• pre_training_bias – Include this method if you want to compute pre-training bias metrics. The
detailed description of the metrics can be found in Measure Pre-training Bias. The object has
the following parameters:

• methods – An array that contains any of the pre-training bias metrics from the following
list that you want to compute. Set methods to all to compute all pre-training bias metrics.
As an example, the array ["CI", "DPL"] will compute Class Imbalance and Difference in
Proportions of Labels.

• CI for Class Imbalance (CI)

• DPL for Difference in Proportions of Labels (DPL)

• KL for Kullback-Leibler Divergence (KL)

• JS for Jensen-Shannon Divergence (JS)

• LP for Lp-norm (LP)

• TVD for Total Variation Distance (TVD)

• KS for Kolmogorov-Smirnov (KS)

• CDDL for Conditional Demographic Disparity (CDD)

• post_training_bias – Include this method if you want to compute post-training bias metrics.
The detailed description of the metrics can be found in Measure Post-training Data and Model
Bias. The post_training_bias object has the following parameters.

Configure a SageMaker Clarify Processing Job 5357

Amazon SageMaker Developer Guide

• methods – An array that contains any of the post-training bias metrics from the following
list that you want to compute. Set methods to all to compute all post-training bias
metrics. As an example, the array ["DPPL", "DI"] computes the Difference in Positive
Proportions in Predicted Labels and Disparate Impact. The available methods are as
follows.

• DPPL for Difference in Positive Proportions in Predicted Labels (DPPL)

• DIfor Disparate Impact (DI)

• DCA for Difference in Conditional Acceptance (DCAcc)

• DCR for Difference in Conditional Rejection (DCR)

• SD for Specificity difference (SD)

• RD for Recall Difference (RD)

• DAR for Difference in Acceptance Rates (DAR)

• DRR for Difference in Rejection Rates (DRR)

• AD for Accuracy Difference (AD)

• TE for Treatment Equality (TE)

• CDDPL for Conditional Demographic Disparity in Predicted Labels (CDDPL)

• FT for Counterfactual Fliptest (FT)

• GE for Generalized entropy (GE)

• shap – Include this method if you want to compute SHAP values. The SageMaker Clarify
processing job supports the Kernel SHAP algorithm. The shap object has the following
parameters.

• baseline – (Optional) The SHAP baseline dataset, also known as the background dataset.
Additional requirements for the baseline dataset in a tabular dataset or computer vision
problem are as follows. For more information about SHAP Baselines, see SHAP Baselines for
Explainability

• For a tabular dataset, baseline can be either the in-place baseline data or the S3 URI
of a baseline file. If baseline is not provided, the SageMaker Clarify processing job
computes a baseline by clustering the input dataset. The following are required of the
baseline:

• The format must be the same as the dataset format specified by dataset_type.

• The baseline can only contain features that the model can accept as input.

Configure a SageMaker Clarify Processing Job 5358

Amazon SageMaker Developer Guide

• The baseline dataset can have one or more instances. The number of baseline instances
directly affects the synthetic dataset size and job runtime.

• If text_config is specified, then the baseline value of a text column is a string used
to replace the unit of text specified by granularity. For example, one common
placeholder is "[MASK]", which is used to represent a missing or unknown word or piece
of text.

The following examples show how to set in-place baseline data for different
dataset_type parameters:

• If dataset_type is either text/csv or application/x-parquet, the model accepts
four numeric features, and the baseline has two instances. In this example, if one record
has all zero feature values and the other record has all one feature values, then baseline
should be set to [[0,0,0,0],[1,1,1,1]], without any header.

• If dataset_type is application/jsonlines, and features is the key to a list of
four numeric feature values. In addition, in this example, if the baseline has one record
of all zero values, then baseline should be [{"features":[0,0,0,0]}].

• If dataset_type is application/json, the baseline dataset should have the same
structure and format as the input dataset.

• For computer vision problems, baseline can be the S3 URI of an image that is used to
mask out features (segments) from the input image. The SageMaker Clarify processing job
loads the mask image and resizes it to the same resolution as the input image. If baseline
is not provided, the SageMaker Clarify processing job generates a mask image of white
noise at the same resolution as the input image.

• features_to_explain – (Optional) An array of strings or zero-based indices of feature
columns to compute SHAP values for. If features_to_explain is not provided, SHAP
values are computed for all feature columns. These feature columns cannot include the
label column or predicted label column. The features_to_explain parameter is only
supported for tabular datasets with numeric and categorical columns.

• num_clusters – (Optional) The number of clusters that the dataset is divided into to
compute the baseline dataset. Each cluster is used to compute one baseline instance. If
baseline is not specified, the SageMaker Clarify processing job attempts to compute the
baseline dataset by dividing the tabular dataset into an optimal number of clusters between
1 and 12. The number of baseline instances directly affects the runtime of SHAP analysis.

• num_samples – (Optional) The number of samples to be used in the Kernel SHAP algorithm.
If num_samples is not provided, the SageMaker Clarify processing job chooses the number

Configure a SageMaker Clarify Processing Job 5359

https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/White_noise

Amazon SageMaker Developer Guide

for you. The number of samples directly affects both the synthetic dataset size and job
runtime.

• seed –(Optional) An integer used to initialize the pseudo random number generator in the
SHAP explainer to generate consistent SHAP values for the same job. If seed is not specified,
then each time that the same job runs, the model may output slightly different SHAP values.

• use_logit – (Optional) A Boolean value that indicates that you want the logit function to be
applied to the model predictions. Defaults to false. If use_logit is true, then the SHAP
values are calculated using the logistic regression coefficients, which can be interpreted as
log-odds ratios.

• save_local_shap_values – (Optional) A Boolean value that indicates that you want the local
SHAP values of each record in the dataset to be included in the analysis result. Defaults to
false.

If the main dataset is split across multiple files or distributed processing is activated, also
specify an identifier column using the parameter joinsource_name_or_index. The
identifier column and the local SHAP values are saved in the analysis result. This way, you
can map each record to its local SHAP values.

• agg_method – (Optional) The method used to aggregate the local SHAP values (the SHAP
values for each instance) of all instances to the global SHAP values (the SHAP values for the
entire dataset). Defaults to mean_abs. The following methods can be used to aggregate
SHAP values.

• mean_abs – The mean of absolute local SHAP values of all instances.

• mean_sq – The mean of squared local SHAP values of all instances.

• median – The median of local SHAP values of all instances.

• text_config – Required for natural language processing explainability. Include this
configuration if you want to treat text columns as text and explanations should be provided
for individual units of text. For an example of an analysis configuration for natural language
processing explainability, see Analysis configuration for natural language processing
explainability

• granularity – The unit of granularity for the analysis of text columns. Valid values are
token, sentence, or paragraph. Each unit of text is considered a feature, and local
SHAP values are computed for each unit.

• language – The language of the text columns. Valid values are chinese, danish,
dutch, english, french, german, greek, italian, japanese, lithuanian,
multi-language, norwegian bokmål, polish, portuguese, romanian, russian,

Configure a SageMaker Clarify Processing Job 5360

Amazon SageMaker Developer Guide

spanish, afrikaans, albanian, arabic, armenian, basque, bengali, bulgarian,
catalan, croatian, czech, estonian, finnish, gujarati, hebrew, hindi,
hungarian, icelandic, indonesian, irish, kannada, kyrgyz, latvian, ligurian,
luxembourgish, macedonian, malayalam, marathi, nepali, persian, sanskrit,
serbian, setswana, sinhala, slovak, slovenian, swedish, tagalog, tamil, tatar,
telugu, thai, turkish, ukrainian, urdu, vietnamese, yoruba. Enter multi-
language for a mix of multiple languages.

• max_top_tokens – (Optional) The maximum number of top tokens, based on global SHAP
values. Defaults to 50. It is possible for a token to appear multiple times in the dataset.
The SageMaker Clarify processing job aggregates the SHAP values of each token, and
then selects the top tokens based on their global SHAP values. The global SHAP values
of the selected top tokens are included in the global_top_shap_text section of the
analysis.json file.

• The local SHAP value of aggregation.

• image_config – Required for computer vision explainability. Include this configuration if you
have an input dataset consisting of images and you want to analyze them for explainability
in a computer vision problem.

• model_type – The type of the model. Valid values include:

• IMAGE_CLASSIFICATION for an image classification model.

• OBJECT_DETECTION for an object detection model.

• max_objects – Applicable only when model_type is OBJECT_DETECTION.The max number
of objects, ordered by confidence score, detected by the computer vision model. Any
objects ranked lower than the top max_objects by confidence score are filtered out.
Defaults to 3.

• context – Applicable only when model_type is OBJECT_DETECTION. It indicates if the
area around the bounding box of the detected object is masked by the baseline image or
not. Valid values are 0 to mask everything, or 1 to mask nothing. Defaults to 1.

• iou_threshold – Applicable only when model_type is OBJECT_DETECTION.The minimum
intersection over union (IOU) metric for evaluating predictions against the original
detection. A high IOU metric corresponds to a large overlap between the predicted and
ground truth detection box. Defaults to 0.5.

• num_segments – (Optional) An integer that determines the approximate number of
segments to be labeled in the input image. Each segment of the image is considered a
feature, and local SHAP values are computed for each segment. Defaults to 20.

Configure a SageMaker Clarify Processing Job 5361

Amazon SageMaker Developer Guide

• segment_compactness – (Optional) An integer that determines the shape and size of the
image segments generated by the scikit-image slic method. Defaults to 5.

• pdp – Include this method to compute partial dependence plots (PDPs). For an example of an
analysis configuration to generate PDPs, see Compute partial dependence plots (PDPs)

• features – Mandatory if the shap method is not requested. An array of feature names or
indices to compute and plot PDP plots.

• top_k_features – (Optional) Specifies the number of top features used to generate PDP
plots. If features is not provided, but the shap method is requested, then the SageMaker
Clarify processing job chooses the top features based on their SHAP attributions. Defaults to
10.

• grid_resolution – The number of buckets to divide the range of numeric values into. This
specifies the granularity of the grid for the PDP plots.

• report – (Optional) Use this object to customize the analysis report. There are three copies of
the same report as part of the analysis result: Jupyter Notebook report, HTML report, and PDF
report. The object has the following parameters:

• name – File name of the report files. For example, if name is MyReport, then the report files
are MyReport.ipynb, MyReport.html, and MyReport.pdf. Defaults to report.

• title – (Optional) Title string for the report. Defaults to SageMaker Analysis Report.

• predictor – Required if the analysis requires predictions from the model. For example, when
the shap, pdp, or post_training_bias method is requested, but predicted labels are not
provided as part of the input dataset. The following are parameters to be used in conjunction
with predictor:

• model_name – The name of your SageMaker model created by the CreateModel API. If
you specify model_name instead of endpoint_name, the SageMaker Clarify processing job
creates an ephemeral endpoint with the model name, known as a shadow endpoint, and gets
predictions from the endpoint. The job deletes the shadow endpoint after the computations
are completed. If the model is multi-model, then the target_model parameter must be
specified. For more information about multi-model endpoints, see Host multiple models in one
container behind one endpoint.

• endpoint_name_prefix – (Optional) A custom name prefix for the shadow endpoint.
Applicable if you provide model_name instead of endpoint_name. For example, provide
endpoint_name_prefix if you want to restrict access to the endpoint by endpoint name.
The prefix must match the EndpointName pattern, and its maximum length is 23. Defaults to
sm-clarify.

Configure a SageMaker Clarify Processing Job 5362

https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html#sagemaker-CreateEndpoint-request-EndpointName

Amazon SageMaker Developer Guide

• initial_instance_count – Specifies the number of instances for the shadow endpoint.
Required if you provide model_name instead of endpoint_name. The value for
initial_instance_count can be different from the InstanceCount of the job, but we
recommend a 1:1 ratio.

• instance_type – Specifies the instance type for the shadow endpoint. Required if you provide
model_name instead of endpoint_name. As an example, instance_type can be set to
"ml.m5.large". In some cases, the value specified for instance_type can help reduce model
inference time. For example, to run efficiently, natural language processing models and
computer vision models typically require a graphics processing unit (GPU) instance type.

• accelerator_type – (Optional) Specifies the type of Elastic Inference (EI) accelerator to attach
to the shadow endpoint. Applicable if you provide model_name instead of endpoint_name
for accelerator_type. An example value for accelerator_type is ml.eia2.large.
Defaults to not use an accelerator.

• endpoint_name – The name of your SageMaker endpoint created by the CreateEndpoint
API. If provided, endpoint_name takes precedence over the model_name parameter. Using
an existing endpoint reduces the shadow endpoint bootstrap time, but it can also cause a
significant increase in load for that endpoint. Additionally, some analysis methods (such as
shap and pdp) generate synthetic datasets that are sent to the endpoint. This can cause the
endpoint's metrics or captured data to be contaminated by synthetic data, which may not
accurately reflect real-world usage. For these reasons, it's generally not recommended to use
an existing production endpoint for SageMaker Clarify analysis.

• target_model – The string value that is passed on to the TargetModel parameter of the
SageMaker InvokeEndpoint API. Required if your model (specified by the model_name
parameter) or endpoint (specified by the endpoint_name parameter) is multi-model. For more
information about multi-model endpoints, see Host multiple models in one container behind
one endpoint.

• custom_attributes – (Optional) A string that allows you to provide additional information
about a request for an inference that is submitted to the endpoint. The string value is passed
to the CustomAttributes parameter of the SageMaker InvokeEndpoint API.

• content_type – content_type – The model input format to be used for getting predictions
from the endpoint. If provided, it is passed to the ContentType parameter of the SageMaker
InvokeEndpoint API.

• For computer vision explainability, the valid values are image/jpeg, image/png or
application/x-npy. If content_type is not provided, the default value is image/jpeg.

Configure a SageMaker Clarify Processing Job 5363

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProcessingClusterConfig.html#sagemaker-Type-ProcessingClusterConfig-InstanceCount
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html#sagemaker-Type-ProductionVariant-AcceleratorType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#RequestSyntax

Amazon SageMaker Developer Guide

• For other types of explainability, the valid values are text/csv, application/
jsonlines, and application/json. A value for content_type is required if the
dataset_type is "application/x-parquet". Otherwise content_type defaults to the value
of the dataset_type parameter.

• accept_type – The model output format to be used for getting predictions from the
endpoint. The value for accept_type is passed to the Accept parameter of the SageMaker
InvokeEndpoint API.

• For computer vision explainability, if model_type is "OBJECT_DETECTION" then
accept_type defaults to application/json.

• For other types of explainability, the valid values are text/csv, application/
jsonlines, and application/json. If a value for accept_type is not provided,
accept_type defaults to the value of the content_type parameter.

• content_template – A template string used to construct the model input from dataset
records. The parameter content_template is only used and required if the value of the
content_type parameter is either application/jsonlines or application/json.

When the content_type parameter is application/jsonlines, the template should
have only one placeholder, $features, which is replaced by a features list at runtime. For
example, if the template is "{\"myfeatures\":$features}", and if a record has three
numeric feature values: 1, 2 and 3, then the record will be sent to the model as JSON Line
{"myfeatures":[1,2,3]}.

When the content_type is application/json, the template can have either placeholder
$record or records. If the placeholder is record, a single record is replaced with a record
that has the template in record_template applied to it. In this case, only a single record will
be sent to the model at a time. If the placeholder is $records, the records are replaced by a
list of records, each with a template supplied by record_template.

• record_template – A template string to be used to construct each record of the model input
from dataset instances. It is only used and required when content_type is application/
json. The template string may contain one of the following:

• A placeholder $features parameter that is substituted by an array of feature values.
An additional optional placeholder can substitute feature column header names in
$feature_names. This optional placeholder will be substituted by an array of feature
names.

Configure a SageMaker Clarify Processing Job 5364

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#RequestSyntax

Amazon SageMaker Developer Guide

• Exactly one placeholder $features_kvp that is substituted by the key-value pairs, feature
name and feature value.

• A feature in the headers configuration. As an example, a feature name A, notated by the
placeholder syntax "${A}" will be substituted by the feature value for A.

The value for record_template is used with content_template to construct the model
input. A configuration example showing how to construct a model input using a content and
record template follows.

In the following code example, the headers and features are defined as follows.

• `headers`:["A", "B"]

• `features`:[[0,1], [3,4]]

The example model input is as follows.

{
 "instances": [[0, 1], [3, 4]],
 "feature_names": ["A", "B"]
}

The example content_template and record_template parameter values to construct the
previous example model input follows.

• content_template: "{\"instances\": $records, \"feature_names\":
$feature_names}"

• record_template: "$features"

In the following code example, the headers and features are defined as follows.

[
 { "A": 0, "B": 1 },
 { "A": 3, "B": 4 },
]

The example content_template and record_template parameter values to construct the
previous example model input follows.

• content_template: "$records"

• record_template: "$features_kvp"
Configure a SageMaker Clarify Processing Job 5365

Amazon SageMaker Developer Guide

An alternate code example to construct the previous example model input follows.

• content_template: "$records"

• record_template: "{\"A\": \"${A}\", \"B\": \"${B}\"}"

In the following code example, the headers and features are defined as follows.

{ "A": 0, "B": 1 }

The example content_template and record_template parameters values to construct above:
the previous example model input follows.

• content_template: "$record"

• record_template: "$features_kvp"

• label – A zero-based integer index or JMESPath expression string used to extract predicted
labels from the model output for bias analysis. If the model is multiclass and the label
parameter extracts all of the predicted labels from the model output, then the following apply.

• The probability parameter is required to get the corresponding probabilities (or scores)
from the model output.

• The predicted label of the highest score is chosen.

The value for label depends on the value of the accept_type parameter as follows.

• If accept_type is text/csv, then label is the index of any predicted labels in the model
output.

• If accept_type is application/jsonlines or application/json, then label is a
JMESPath expression that's applied to the model output to get the predicted labels.

• label_headers – An array of values that the label can take in the dataset. If bias analysis
is requested, then the probability parameter is also required to get the corresponding
probability values (scores) from model output, and the predicted label of the highest score
is chosen. If explainability analysis is requested, the label headers are used to beautify the
analysis report. A value for label_headers is required for computer vision explainability. For
example, for a multiclass classification problem, if the label has three possible values, bird,
cat, and dog, then label_headers should be set to ["bird","cat","dog"].

• probability – (Optional) A zero-based integer index or a JMESPath expression string used
to extract probabilities (scores) for explainability analysis, or to choose the predicted label

Configure a SageMaker Clarify Processing Job 5366

Amazon SageMaker Developer Guide

for bias analysis. The value of probability depends on the value of the accept_type
parameter as follows.

• If accept_type is text/csv, probability is the index of the probabilities (scores) in
the model output. If probability is not provided, the entire model output is taken as the
probabilities (scores).

• If accept_type is JSON data (either application/jsonlines or application/json),
probability should be a JMESPath expression that is used to extract the probabilities
(scores) from the model output.

Example analysis configuration files

The following sections contain example analysis configuration files for data in CSV format, JSON
Lines format, and for both natural language processing (NLP) and computer vision explainability.

Analysis configuration for a CSV dataset

The following examples show how to configure bias and explainability analysis for a tabular
dataset in CSV format. In these examples, the incoming dataset has four feature columns, and
one binary label column, Target. The contents of the dataset are as follows. A label value of 1
indicates a positive outcome. The dataset is provided to the SageMaker Clarify job by the dataset
processing input.

"Target","Age","Gender","Income","Occupation"
0,25,0,2850,2
1,36,0,6585,0
1,22,1,1759,1
0,48,0,3446,1
...

The following sections show how to compute pre-training and post-training bias metrics, SHAP
values, and partial dependence plots (PDPs) showing feature importance for a dataset in CSV
format.

Compute all of the pre-training bias metrics

This example configuration shows how to measure if the previous sample dataset is favorably
biased towards samples with a Gender value of 0. The following analysis configuration instructs
the SageMaker Clarify processing job to compute all the pre-training bias metrics for the dataset.

Configure a SageMaker Clarify Processing Job 5367

Amazon SageMaker Developer Guide

{
 "dataset_type": "text/csv",
 "label": "Target",
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {
 "pre_training_bias": {
 "methods": "all"
 }
 }
}

Compute all of the post-training bias metrics

You can compute pre-training bias metrics prior to training. However, you must have a trained
model to compute post-training bias metrics. The following example output is from a binary
classification model that outputs data in CSV format. In this example output, each row contains
two columns. The first column contains the predicted label, and the second column contains the
probability value for that label.

0,0.028986845165491
1,0.825382471084594
...

The following configuration example instructs the SageMaker Clarify processing job to compute all
possible bias metrics using the dataset and the predictions from the model output. In the example,
the model is deployed to a SageMaker endpoint your_endpoint.

Note

In the following example code, the parameter content_type and accept_type are not
set. Therefore, they automatically use the value of the parameter dataset_type, which is
text/csv.

Configure a SageMaker Clarify Processing Job 5368

Amazon SageMaker Developer Guide

{
 "dataset_type": "text/csv",
 "label": "Target",
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {
 "pre_training_bias": {
 "methods": "all"
 },
 "post_training_bias": {
 "methods": "all"
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "label": 0
 }
}

Compute the SHAP values

The following example analysis configuration instructs the job to compute the SHAP values
designating the Target column as labels and all other columns as features.

{
 "dataset_type": "text/csv",
 "label": "Target",
 "methods": {
 "shap": {
 "num_clusters": 1
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "probability": 1
 }
}

Configure a SageMaker Clarify Processing Job 5369

Amazon SageMaker Developer Guide

In this example, the SHAP baseline parameter is omitted and the value of the num_clusters
parameter is 1. This instructs the SageMaker Clarify processor to compute one SHAP baseline
sample. In this example, probability is set to 1. This instructs the SageMaker Clarify processing job
to extract the probability score from the second column of the model output (using zero-based
indexing).

Compute partial dependence plots (PDPs)

The following example shows how to view the importance of the Income feature on the analysis
report using PDPs. The report parameter instructs the SageMaker Clarify processing job to
generate a report. After the job completes, the generated report is saved as report.pdf to the
analysis_result location. The grid_resolution parameter divides the range of the feature
values into 10 buckets. Together, the parameters specified in the following example instruct the
SageMaker Clarify processing job to generate a report containing a PDP graph for Income with 10
segments on the x-axis. The y-axis will show the marginal impact of Income on the predictions.

{
 "dataset_type": "text/csv",
 "label": "Target",
 "methods": {
 "pdp": {
 "features": ["Income"],
 "grid_resolution": 10
 },
 "report": {
 "name": "report"
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "probability": 1
 },
}

Compute both bias metrics and feature importance

You can combine all the methods from the previous configuration examples into a single analysis
configuration file and compute them all by a single job. The following example shows an analysis
configuration with all steps combined.

Configure a SageMaker Clarify Processing Job 5370

Amazon SageMaker Developer Guide

In this example, the probability parameter is set to 1 to indicate that probabilities are
contained in the second column (using zero-based indexing). However, because bias analysis
needs a predicted label, the probability_threshold parameter is set to 0.5 to convert the
probability score into a binary label. In this example, the top_k_features parameter of the
partials dependence plots pdp method is set to 2. This instructs the SageMaker Clarify processing
job to compute partials dependence plots (PDPs) for the top 2 features with the largest global
SHAP values.

{
 "dataset_type": "text/csv",
 "label": "Target",
 "probability_threshold": 0.5,
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {
 "pre_training_bias": {
 "methods": "all"
 },
 "post_training_bias": {
 "methods": "all"
 },
 "shap": {
 "num_clusters": 1
 },
 "pdp": {
 "top_k_features": 2,
 "grid_resolution": 10
 },
 "report": {
 "name": "report"
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "probability": 1
 }
}

Configure a SageMaker Clarify Processing Job 5371

Amazon SageMaker Developer Guide

Instead of deploying the model to an endpoint, you can provide the name of your SageMaker
model to the SageMaker Clarify processing job using the model_name parameter. The following
example shows how to specify a model named your_model. The SageMaker Clarify processing job
will create a shadow endpoint using the configuration.

{
 ...
 "predictor": {
 "model_name": "your_model",
 "initial_instance_count": 1,
 "instance_type": "ml.m5.large",
 "probability": 1
 }
}

Analysis configuration for a JSON Lines dataset

The following examples show how to configure bias analysis and explainability analysis for a
tabular dataset in JSON Lines format. In these examples, the incoming dataset has the same data
as the previous section but they are in the SageMaker JSON Lines dense format. Each line is a valid
JSON object. The key "Features" points to an array of feature values, and the key "Label" points
to the ground truth label. The dataset is provided to the SageMaker Clarify job by the "dataset"
processing input. For more information about JSON Lines, see JSONLINES Request Format.

{"Features":[25,0,2850,2],"Label":0}
{"Features":[36,0,6585,0],"Label":1}
{"Features":[22,1,1759,1],"Label":1}
{"Features":[48,0,3446,1],"Label":0}
...

The following sections show how to compute pre-training and post-training bias metrics, SHAP
values, and partial dependence plots (PDPs) showing feature importance for a dataset in JSON
Lines format.

Compute pre-training bias metrics

Specify the label, features, format, and methods to measure pre-training bias metrics for a Gender
value of 0. In the following example, the headers parameter provides the feature names first. The
label name is provided last. By convention, the last header is the label header.

Configure a SageMaker Clarify Processing Job 5372

Amazon SageMaker Developer Guide

The features parameter is set to the JMESPath expression "Features" so that the SageMaker
Clarify processing job can extract the array of features from each record. The label parameter is
set to JMESPath expression "Label" so that the SageMaker Clarify processing job can extract the
ground truth label from each record. Use a facet name to specify the sensitive attribute, as follows.

{
 "dataset_type": "application/jsonlines",
 "headers": ["Age","Gender","Income","Occupation","Target"],
 "label": "Label",
 "features": "Features",
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {
 "pre_training_bias": {
 "methods": "all"
 }
 }
}

Compute all the bias metrics

You must have a trained model to compute post-training bias metrics. The following example is
from a binary classification model that outputs JSON Lines data in the example's format. Each row
of the model output is a valid JSON object. The key predicted_label points to the predicted
label, and the key probability points to the probability value.

{"predicted_label":0,"probability":0.028986845165491}
{"predicted_label":1,"probability":0.825382471084594}
...

You can deploy the model to a SageMaker endpoint named your_endpoint. The following
example analysis configuration instructs the SageMaker Clarify processing job to compute
all possible bias metrics for both the dataset and the model. In this example, the parameter
content_type and accept_type are not set. Therefore, they are automatically set to use the
value of the parameter dataset_type, which is application/jsonlines. The SageMaker Clarify

Configure a SageMaker Clarify Processing Job 5373

Amazon SageMaker Developer Guide

processing job uses the content_template parameter to compose the model input, by replacing
the $features placeholder by an array of features.

{
 "dataset_type": "application/jsonlines",
 "headers": ["Age","Gender","Income","Occupation","Target"],
 "label": "Label",
 "features": "Features",
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {
 "pre_training_bias": {
 "methods": "all"
 },
 "post_training_bias": {
 "methods": "all"
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "content_template": "{\"Features\":$features}",
 "label": "predicted_label"
 }
}

Compute the SHAP values

Because SHAP analysis doesn’t need a ground truth label, the label parameter is omitted. In this
example, the headers parameter is also omitted. Therefore, the SageMaker Clarify processing job
must generate placeholders using generic names like column_0 or column_1 for feature headers,
and label0 for a label header. You can specify values for headers and for a label to improve the
readability of the analysis result. Because the probability parameter is set to JMESPath expression
probability, the probability value will be extracted from the model output. The following is an
example to calculate SHAP values.

{
 "dataset_type": "application/jsonlines",

Configure a SageMaker Clarify Processing Job 5374

Amazon SageMaker Developer Guide

 "features": "Features",
 "methods": {
 "shap": {
 "num_clusters": 1
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "content_template": "{\"Features\":$features}",
 "probability": "probability"
 }
}

Compute partials dependence plots (PDPs)

The following example shows how to view the importance of "Income" on PDP. In this example, the
feature headers are not provided. Therefore, the features parameter of the pdp method must
use zero-based index to refer to location of the feature column. The grid_resolution parameter
divides the range of the feature values into 10 buckets. Together, the parameters in the example
instruct the SageMaker Clarify processing job to generate a report containing a PDP graph for
Income with 10 segments on the x-axis. The y-axis will show the marginal impact of Income on
the predictions.

{
 "dataset_type": "application/jsonlines",
 "features": "Features",
 "methods": {
 "pdp": {
 "features": [2],
 "grid_resolution": 10
 },
 "report": {
 "name": "report"
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "content_template": "{\"Features\":$features}",
 "probability": "probability"
 }
}

Configure a SageMaker Clarify Processing Job 5375

Amazon SageMaker Developer Guide

Compute both bias metrics and feature importance

You can combine all previous methods into a single analysis configuration file and compute them
all by a single job. The following example shows an analysis configuration with all steps combined.
In this example, the probability parameter is set. But because bias analysis needs a predicted
label, the probability_threshold parameter is set to 0.5 to convert the probability score into
a binary label. In this example, the top_k_features parameter of the pdp method is set to 2.
This instructs the SageMaker Clarify processing job to compute PDPs for the top 2 features with
the largest global SHAP values.

{
 "dataset_type": "application/jsonlines",
 "headers": ["Age","Gender","Income","Occupation","Target"],
 "label": "Label",
 "features": "Features",
 "probability_threshold": 0.5,
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {
 "pre_training_bias": {
 "methods": "all"
 },
 "post_training_bias": {
 "methods": "all"
 },
 "shap": {
 "num_clusters": 1
 },
 "pdp": {
 "top_k_features": 2,
 "grid_resolution": 10
 },
 "report": {
 "name": "report"
 }
 },
 "predictor": {

Configure a SageMaker Clarify Processing Job 5376

Amazon SageMaker Developer Guide

 "endpoint_name": "your_endpoint",
 "content_template": "{\"Features\":$features}",
 "probability": "probability"
 }
}

Analysis configuration for a JSON dataset

The following examples show how to configure bias and explainability analysis for a tabular
dataset in JSON format. In these examples, the incoming dataset has the same data as the previous
section but they are in the SageMaker JSON dense format. For more information about JSON Lines,
see JSONLINES Request Format.

The whole input request is valid JSON where the outer structure is a list and each element is the
data for a record. Within each record, the key Features points to an array of feature values, and
the key Label points to the ground truth label. The dataset is provided to the SageMaker Clarify
job by the dataset processing input.

[
 {"Features":[25,0,2850,2],"Label":0},
 {"Features":[36,0,6585,0],"Label":1},
 {"Features":[22,1,1759,1],"Label":1},
 {"Features":[48,0,3446,1],"Label":0},
 ...
]

The following sections show how to compute pre-training and post-training bias metrics, SHAP
values, and partial dependence plots (PDPs) that show feature importance for a dataset in JSON
Lines format.

Compute pre-training bias metrics

Specify the label, features, format, and methods to measure pre-training bias metrics for a Gender
value of 0. In the following example, the headers parameter provides the feature names first. The
label name is provided last. For JSON datasets, the last header is the label header.

The features parameter is set to the JMESPath expression that extracts a 2D array or matrix. Each
row in this matrix must contain the list of Features for each record. The label parameter is set
to JMESPath expression that extracts a list of ground truth labels. Each element in this list must
contain the label for a record.

Configure a SageMaker Clarify Processing Job 5377

Amazon SageMaker Developer Guide

Use a facet name to specify the sensitive attribute, as follows.

{
 "dataset_type": "application/json",
 "headers": ["Age","Gender","Income","Occupation","Target"],
 "label": "[*].Label",
 "features": "[*].Features",
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {
 "pre_training_bias": {
 "methods": "all"
 }
 }
}

Compute all the bias metrics

You must have a trained model to compute post-training bias metrics. The following code
example is from a binary classification model that outputs JSON data in the example's format.
In the example, each element under predictions is the prediction output for a record. The
example code contains the key predicted_label, that points to the predicted label, and the key
probability points to the probability value.

{
 "predictions": [
 {"predicted_label":0,"probability":0.028986845165491},
 {"predicted_label":1,"probability":0.825382471084594},
 ...
]
}

You can deploy the model to a SageMaker endpoint named your_endpoint.

In the following example, the parameter content_type and accept_type are not set. Therefore,
content_type and accept_type are automatically set to use the value of the parameter

Configure a SageMaker Clarify Processing Job 5378

Amazon SageMaker Developer Guide

dataset_type, which is application/json. The SageMaker Clarify processing job then uses the
content_template parameter to compose the model input.

In the following example, the model input is composed by replacing the $records placeholder
by an array of records. Then, the record_template parameter composes each record’s JSON
structure and replaces the $features placeholder with each record’s array of features.

The following example analysis configuration instructs the SageMaker Clarify processing job to
compute all possible bias metrics for both the dataset and the model.

{
 "dataset_type": "application/json",
 "headers": ["Age","Gender","Income","Occupation","Target"],
 "label": "[*].Label",
 "features": "[*].Features",
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {
 "pre_training_bias": {
 "methods": "all"
 },
 "post_training_bias": {
 "methods": "all"
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "content_template": "$records",
 "record_template": "{\"Features\":$features}",
 "label": "predictions[*].predicted_label"
 }
}

Compute the SHAP values

You don’t need to specify a label for SHAP analysis. In the following example, the headers
parameter is not specified. Therefore, the SageMaker Clarify processing job will generate

Configure a SageMaker Clarify Processing Job 5379

Amazon SageMaker Developer Guide

placeholders using generic names like column_0 or column_1 for feature headers, and label0
for a label header. You can specify values for headers and for a label to improve the readability
of the analysis result.

In the following configuration example, the probability parameter is set to a JMESPath expression
that extracts the probabilities from each prediction for each record. The following is an example to
calculate SHAP values.

{
 "dataset_type": "application/json",
 "features": "[*].Features",
 "methods": {
 "shap": {
 "num_clusters": 1
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "content_template": "$records",
 "record_template": "{\"Features\":$features}",
 "probability": "predictions[*].probability"
 }
}

Compute partial dependence plots (PDPs)

The following example shows you how to view a feature importance in PDPs. In the example, the
feature headers are not provided. Therefore, the features parameter of the pdp method must
use zero-based index to refer to location of the feature column. The grid_resolution parameter
divides the range of the feature values into 10 buckets.

Together, the parameters in the following example instruct the SageMaker Clarify processing job to
generate a report containing a PDP graph for Income with 10 segments on the x-axis. The y-axis
shows the marginal impact of Income on the predictions.

The following configuration example shows how to view the importance of Income on PDPs.

{
 "dataset_type": "application/json",
 "features": "[*].Features",
 "methods": {

Configure a SageMaker Clarify Processing Job 5380

Amazon SageMaker Developer Guide

 "pdp": {
 "features": [2],
 "grid_resolution": 10
 },
 "report": {
 "name": "report"
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "content_template": "$records",
 "record_template": "{\"Features\":$features}",
 "probability": "predictions[*].probability"
 }
}

Compute both bias metrics and feature importance

You can combine all previous configuration methods into a single analysis configuration file and
compute them all with a single job. The following example shows an analysis configuration with all
steps combined.

In this example, the probability parameter is set. Because bias analysis needs a predicted label,
the probability_threshold parameter is set to 0.5, which is used to convert the probability
score into a binary label. In this example, the top_k_features parameter of the pdp method is
set to 2. This instructs the SageMaker Clarify processing job to compute PDPs for the top 2 features
with the largest global SHAP values.

{
 "dataset_type": "application/json",
 "headers": ["Age","Gender","Income","Occupation","Target"],
 "label": "[*].Label",
 "features": "[*].Features",
 "probability_threshold": 0.5,
 "label_values_or_threshold": [1],
 "facet": [
 {
 "name_or_index": "Gender",
 "value_or_threshold": [0]
 }
],
 "methods": {

Configure a SageMaker Clarify Processing Job 5381

Amazon SageMaker Developer Guide

 "pre_training_bias": {
 "methods": "all"
 },
 "post_training_bias": {
 "methods": "all"
 },
 "shap": {
 "num_clusters": 1
 },
 "pdp": {
 "top_k_features": 2,
 "grid_resolution": 10
 },
 "report": {
 "name": "report"
 }
 },
 "predictor": {
 "endpoint_name": "your_endpoint",
 "content_template": "$records",
 "record_template": "{\"Features\":$features}",
 "probability": "predictions[*].probability"
 }
}

Analysis configuration for natural language processing explainability

The following example shows an analysis configuration file for computing feature importance
for natural language processing (NLP). In this example, the incoming dataset is a tabular dataset
in CSV format, with one binary label column and two feature columns, as follows. The dataset is
provided to the SageMaker Clarify job by the dataset processing input parameter.

0,2,"They taste gross"
1,3,"Flavor needs work"
1,5,"Taste is awful"
0,1,"The worst"
...

In this example, a binary classification model was trained on the previous dataset. The model
accepts CSV data, and it outputs a single score between 0 and 1, as follows.

0.491656005382537

Configure a SageMaker Clarify Processing Job 5382

Amazon SageMaker Developer Guide

0.569582343101501
...

The model is used to create a SageMaker model named “your_model". The following analysis
configuration shows how to run a token-wise explainability analysis using the model and dataset.
The text_config parameter activates the NLP explainability analysis. The granularity
parameter indicates that the analysis should parse tokens.

In English, each token is a word. The following example also shows how to provide an in-place
SHAP "baseline" instance using an average "Rating" of 4. A special mask token "[MASK]" is used
to replace a token (word) in "Comments". This example also uses a GPU endpoint instance type to
speed up inferencing.

{
 "dataset_type": "text/csv",
 "headers": ["Target","Rating","Comments"]
 "label": "Target",
 "methods": {
 "shap": {
 "text_config": {
 "granularity": "token",
 "language": "english"
 }
 "baseline": [[4,"[MASK]"]],
 }
 },
 "predictor": {
 "model_name": "your_nlp_model",
 "initial_instance_count": 1,
 "instance_type": "ml.g4dn.xlarge"
 }
}

Analysis configuration for computer vision explainability

The following example shows an analysis configuration file computing feature importance
for computer vision. In this example, the input dataset consists of JPEG images. The dataset is
provided to the SageMaker Clarify job by the dataset processing input parameter. The example
shows how to configure an explainability analysis using a SageMaker image classification model. In
the example, a model named your_cv_ic_model, has been trained to classify the animals on the
input JPEG images.

Configure a SageMaker Clarify Processing Job 5383

Amazon SageMaker Developer Guide

{
 "dataset_type": "application/x-image",
 "methods": {
 "shap": {
 "image_config": {
 "model_type": "IMAGE_CLASSIFICATION",
 "num_segments": 20,
 "segment_compactness": 10
 }
 },
 "report": {
 "name": "report"
 }
 },
 "predictor": {
 "model_name": "your_cv_ic_model",
 "initial_instance_count": 1,
 "instance_type": "ml.p2.xlarge",
 "label_headers": ["bird","cat","dog"]
 }
}

For more information about image classification, see Image Classification - MXNet.

In this example, a SageMaker object detection model, your_cv_od_model is trained on the same
JPEG images to identify the animals on them. The following example shows how to configure an
explainability analysis for the object detection model.

{
 "dataset_type": "application/x-image",
 "probability_threshold": 0.5,
 "methods": {
 "shap": {
 "image_config": {
 "model_type": "OBJECT_DETECTION",
 "max_objects": 3,
 "context": 1.0,
 "iou_threshold": 0.5,
 "num_segments": 20,
 "segment_compactness": 10
 }
 },
 "report": {

Configure a SageMaker Clarify Processing Job 5384

https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection.html

Amazon SageMaker Developer Guide

 "name": "report"
 }
 },
 "predictor": {
 "model_name": "your_cv_od_model",
 "initial_instance_count": 1,
 "instance_type": "ml.p2.xlarge",
 "label_headers": ["bird","cat","dog"]
 }
}

Data Format Compatibility Guide

This guide describes the data format types that are compatible with SageMaker Clarify processing
jobs. The supported data format types include the file extensions, data structure, and specific
requirements or restrictions for tabular and image datasets. This guide also shows how to check if
your dataset conforms to these requirements.

At a high level, the SageMaker Clarify processing job follows the input–process–output model to
compute bias metrics and feature attributions. Refer to the following examples for details.

The input to the SageMaker Clarify processing job consists of the following:

• The dataset to be analyzed.

• The analysis configuration. For more information about how to configure an analysis, see
Configure the Analysis.

During the processing stage, SageMaker Clarify computes bias metrics and feature attributions. The
SageMaker Clarify processing job completes the following steps in the backend:

• The SageMaker Clarify processing job parses your analysis configuration and loads your dataset.

• To compute post-training bias metrics and feature attributions, the job requires model
predictions from your model. The SageMaker Clarify processing job serializes your data and
sends it as a request to your model that is deployed on a SageMaker real-time inference
endpoint. After that, the SageMaker Clarify processing job extracts predictions from the
response.

• The SageMaker Clarify processing job performs the bias and explainability analysis, and then it
outputs the results.

Configure a SageMaker Clarify Processing Job 5385

Amazon SageMaker Developer Guide

For more information, see How SageMaker Clarify Processing Jobs Work .

The parameter that' you use to specify the format of the data depends on where the data is used in
the processing flow as follows:

• For an input dataset, use the dataset_type parameter to specify the format or MIME type.

• For a request to an endpoint, use the content_type parameter to specify the format.

• For a response from an endpoint, use the accept_type parameter to specify the format.

The input dataset, request, and the response to and from the endpoint don't require the same
format. For example, you can use a Parquet dataset with a CSV request payload and a JSON Lines
response payload given the following conditions.

• Your analysis is configured correctly.

• Your model supports the request and response formats.

Note

If content_type or accept_type are not provided, then the SageMaker Clarify container
infers the content_type and accept_type.

Topics

• Tabular data

• Image data

Tabular data

Tabular data refers to data that can be loaded into a two-dimensional data frame. In the frame,
each row represents a record, and each record has one or more columns. The values within each
data frame cell can be of numerical, categorical, or text data types.

Tabular dataset prerequisites

Prior to analysis, your dataset should have had any necessary pre-processing steps already applied.
This includes data cleaning or feature engineering.

Configure a SageMaker Clarify Processing Job 5386

Amazon SageMaker Developer Guide

You can provide one or multiple datasets. If you provide multiple datasets, use the following to
identify them to the SageMaker Clarify processing job.

• Use either a ProcessingInput named dataset or the analysis configuration dataset_uri to
specify the main dataset. For more information about dataset_uri, see the parameters list in
Configure the Analysis.

• Use the baseline parameter provided in the analysis configuration file. The baseline dataset is
required for SHAP analysis. For more information about the analysis configuration file, including
examples, see Configure the Analysis.

The following table lists supported data formats, their file extensions, and MIME types.

Data format File extension MIME type

CSV csv text/csv

JSON Lines jsonl application/jsonli
nes

JSON json application/json

Parquet parquet "application/x-parquet"

The following sections show example tabular datasets in CSV, JSON Lines, and Apache Parquet
formats.

Tabular dataset prerequisites in CSV format

The SageMaker Clarify processing job is designed to load CSV data files in the csv.excel dialect.
However, it's flexible enough to support other line terminators, including \n and \r.

For compatibility, all CSV data files provided to the SageMaker Clarify processing job must be
encoded in UTF-8.

If your dataset does not contain a header row, do the following:

• Set the analysis configuration label to index 0. This means that the first column is the ground
truth label.

Configure a SageMaker Clarify Processing Job 5387

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProcessingInput.html
https://docs.python.org/3/library/csv.html#csv.excel

Amazon SageMaker Developer Guide

• If the parameter headers is set, set label to the label column header to indicate the location
of the label column. All other columns are designated as features.

The following is an example of a dataset that does not contain a header row.

1,5,2.8,2.538,This is a good product
0,1,0.79,0.475,Bad shopping experience
...

If your data contains a header row, set the parameter label to index 0. To indicate the location of
the label column, use the ground truth label header Label. All other columns are designated as
features.

The following is an example of a dataset that contains a header row.

Label,Rating,A12,A13,Comments
1,5,2.8,2.538,This is a good product
0,1,0.79,0.475,Bad shopping experience
...

Tabular dataset prerequisites in JSON format

JSON is a flexible format for representing structured data that contains any level of complexity.
The SageMaker Clarify support for JSON is not restricted to any specific format and thus allows
for more flexible data formats in comparison to datasets in CSV or JSON Lines formats. This guide
shows you how to set an analysis configuration for tabular data in JSON format.

Note

To ensure compatibility, all JSON data files provided to the SageMaker Clarify processing
job must be encoded in UTF-8.

The following is example input data with records that contain a top-level key, a list of features, and
a label.

[
 {"features":[1,5,2.8,2.538,"This is a good product"],"label":1},
 {"features":[0,1,0.79,0.475,"Bad shopping experience"],"label":0},
 ...

Configure a SageMaker Clarify Processing Job 5388

Amazon SageMaker Developer Guide

]

An example configuration analysis for the previous input example dataset should set the following
parameters:

• The label parameter should use the JMESPath expression [*].label to extract the ground
truth label for each record in the dataset. The JMESPath expression should produce a list of
labels where the ith label corresponds to the ith record.

• The features parameter should use the JMESPath expression [*].features to extract an
array of features for each record in the dataset. The JMESPath expression should produce a 2D
array or matrix where the ith row contains the feature values for corresponding to the ith record.

The following is example input data with records that contains a top-level key and a nested key
that contains a list of features and labels for each record.

{
 "data": [
 {"features":[1,5,2.8,2.538,"This is a good product"],"label":1}},
 {"features":[0,1,0.79,0.475,"Bad shopping experience"],"label":0}}
]
}

An example configuration analysis for the previous input example dataset should set the following
parameters:

• The label parameter uses the JMESPath expression data[*].label to extract the ground
truth label for each record in the dataset. The JMESPath expression should produce a list of
labels where the ith label is for the ith record.

• The features parameter uses the JMESPath expression data[*].features to to extract the
array of features, for each record in the dataset. The JMESPath expression should produce a 2D
array or matrix where the ith row contains the feature values for the ith record.

Tabular dataset prerequisites in JSON Lines format

JSON Lines is a text format for representing structured data where each line is a valid JSON object.
Currently SageMaker Clarify processing jobs only support SageMaker Dense Format JSON Lines.
To conform to the required format, all of the features of a record should be listed in a single JSON
array. For more information about JSON Lines, see JSONLINES Request Format.

Configure a SageMaker Clarify Processing Job 5389

https://jmespath.org/
https://jmespath.org/

Amazon SageMaker Developer Guide

Note

All JSON Lines data files provided to the SageMaker Clarify processing job must be encoded
in UTF-8 to ensure compatibility.

The following is an example of how to set an analysis configuration for a record that contains a
top-level key and a list of elements.

{"features":[1,5,2.8,2.538,"This is a good product"],"label":1}
{"features":[0,1,0.79,0.475,"Bad shopping experience"],"label":0}
...

The configuration analysis for the previous dataset example should set the parameters as follows:

• To indicate the location of the ground truth label, the parameter label should be set to the
JMESPath expression label.

• To indicate the location of the array of features, the parameter features should be set to the
JMESPath expression features.

The following is an example of how to set an analysis configuration for a record that contains a
top-level key and a nested key that contains a list of elements.

{"data":{"features":[1,5,2.8,2.538,"This is a good product"],"label":1}}
{"data":{"features":[0,1,0.79,0.475,"Bad shopping experience"],"label":0}}
...

The configuration analysis for the previous dataset example should set the parameters as follows:

• The parameter label should be set to the JMESPath expression data.label to indicate the
location of the ground truth label.

• The parameter features should be set to the JMESPath expression data.features to indicate
the location of the array of features.

Tabular dataset prerequisites in Parquet format

Parquet is a column-oriented binary data format. Currently, SageMaker Clarify processing jobs
support loading Parquet data files only when the processing instance count is 1.

Configure a SageMaker Clarify Processing Job 5390

https://parquet.apache.org/

Amazon SageMaker Developer Guide

Because SageMaker Clarify processing jobs don’t support endpoint request or endpoint response
in Parquet format, you must specify the data format of the endpoint request by setting the
analysis configuration parameter content_type to a supported format. For more information, see
content_type in Configure the Analysis.

The Parquet data must have column names that are formatted as strings. Use the analysis
configuration label parameter to set the label column name to indicate the location of the
ground truth labels. All other columns are designated as features.

Endpoint requests for tabular data

To obtain model predictions for post-training bias analysis and feature importance analysis,
SageMaker Clarify processing jobs serialize the tabular data into bytes and sends these to an
inference endpoint as a request payload. This tabular data is either sourced from the input dataset,
or it's generated. If it's synthetic data, it's generated by the explainer for SHAP analysis or PDP
analysis.

The data format of the request payload should be specified by the analysis configuration
content_type parameter. If the parameter is not provided, the SageMaker Clarify processing
job will use the value of the dataset_type parameter as the content type. For more information
about content_type or dataset_type, see Configure the Analysis.

The following sections show example endpoint requests in CSV and JSON Lines formats.

Endpoint request in CSV format

The SageMaker Clarify processing job can serialize data to CSV format (MIME type: text/csv). The
following table shows examples of the serialized request payloads.

Endpoint request payload (string represent
ation)

Comments

'1,2,3,4' Single record (four numerical features).

'1,2,3,4\n5,6,7,8' Two records, separated by line break '\n'.

'"This is a good product",5' Single record (a text feature and a numerical
 feature).

Configure a SageMaker Clarify Processing Job 5391

Amazon SageMaker Developer Guide

Endpoint request payload (string represent
ation)

Comments

‘"This is a good product",5\n"Bad shopping
experience",1’

Two records.

Endpoint request is in JSON Lines format

The SageMaker Clarify processing job can serialize data to SageMaker JSON Lines dense format
(MIME type: application/jsonlines). For more information about JSON Lines, see JSONLINES
Request Format.

To transform tabular data into JSON data, provide a template string to the analysis configuration
content_template parameter. For more information about content_template see Configure
the Analysis. The following table shows examples of serialized JSON Lines request payloads.

Endpoint request payload (string represent
ation)

Comments

'{"data":{"features":[1,2,3,4]}}' Single record. In this case, the template looks
like '{"data":{"features":$featu
res}}' and $features is replaced by the
list of features [1,2,3,4] .

'{"data":{"features":[1,2,3,4]}}\n{"data":{"f
eatures":[5,6,7,8]}}'

Two records.

'{"features":["This is a good product",5]}' Single record. In this case, the template looks
like '{"features":$features}' and
$features is replaced by the list of features
["This is a good product",5] .

'{"features":["This is a good product",5]}\n{"fe
atures":["Bad shopping experience",1]}'

Two records.

Configure a SageMaker Clarify Processing Job 5392

Amazon SageMaker Developer Guide

Endpoint request is in JSON format

A SageMaker Clarify processing job can serialize data to arbitrary JSON structures (MIME type:
application/json). To do this, you must provide a template string to the analysis configuration
content_template parameter. This is used by the SageMaker Clarify processing job to construct
the outer JSON structure. You must also provide a template string for record_template,
which is used to construct the JSON structure for each record. For more information about
content_template and record_template, see Configure the Analysis.

Note

Because content_template and record_template are string parameters, any double
quote characters (") that are part of the JSON serialized structure should be noted as an
escaped character in your configuration. For example, if you want to escape a double quote
in Python, you could enter the following for content_template.

"{\"data\":{\"features\":$record}}}"

The following table shows examples of serialized JSON request payloads and the corresponding
content_template and record_template parameters that are required to construct them.

Endpoint request
payload (string
representation)

Comments content_template record_template

'{"data":{"features":
[1,2,3,4]}}'

Single record at a
time.

'{"data":{"features":
$record}}}'

“$features”

'{"instances":[[0,
1], [3, 4]], "feature-
names": ["A", "B"]}'

Multi-records with
feature names.

‘{"instances":$records,
"feature-names":$f
eature_names}'

“$features"

'[{"A": 0, "B": 1}, {"A":
3, "B": 4}]'

Multi-records and
key-value pairs.

“$records" “$features_kvp"

Configure a SageMaker Clarify Processing Job 5393

Amazon SageMaker Developer Guide

Endpoint request
payload (string
representation)

Comments content_template record_template

‘{"A": 0, "B": 1}' Single record at a
time and key-value
pairs.

"$record" "$features_kvp"

‘{"A": 0, "nested": {"B":
1}}'

Alternatively, use
the fully verbose
record_template for
arbitrary structures.

"$record" '{"A": "${A}", "nested":
{"B": "${B}"}}'

Endpoint response for tabular data

After the SageMaker Clarify processing job receives an inference endpoint invocation's response, it
deserializes the response payload and extracts predictions from it. Use the analysis configuration
accept_type parameter to specify the data format of the response payload. If accept_type
is not provided, the SageMaker Clarify processing job will use the value of the content_type
parameter as the model output format. For more information about accept_type, see Configure
the Analysis.

The predictions could either consist of predicted labels for bias analysis, or probability values
(scores) for feature importance analysis. In the predictor analysis configuration, the following
three parameters extract the predictions.

• The parameter probability is used to locate the probability values (scores) in the endpoint
response.

• The parameter label is used to locate the predicted labels in the endpoint response.

• (Optional) The parameter label_headers provides the predicted labels for a multiclass model.

The following guidelines pertain to endpoint responses in CSV, JSON Lines, and JSON formats.

Endpoint Response is in CSV format

If the response payload is in CSV format (MIME type: text/csv), the SageMaker Clarify processing
job deserializes each row. It then extracts the predictions from the deserialized data using the

Configure a SageMaker Clarify Processing Job 5394

Amazon SageMaker Developer Guide

column indexes provided in the analysis configuration. The rows in the response payload must
match the records in the request payload.

The following tables provide examples of response data in different formats and for different
problem types. Your data can vary from these examples, as long as the predictions can be
extracted according to the analysis configuration.

The following sections show example endpoint responses in CSV formats.

Endpoint response is in CSV format and contains probability only

The following table is an example endpoint response for regression and binary classification
problems.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record. '0.6'

Two records (results in one line, divided by
comma).

'0.6,0.3'

Two records (results in two lines). '0.6\n0.3'

For the previous example, the endpoint outputs a single probability value (score) of the predicted
label. To extract probabilities using the index and use them for feature importance analysis, set the
analysis configuration parameter probability to column index 0. These probabilities can also be
used for bias analysis if they're converted to binary value by using the probability_threshold
parameter. For more information about probability_threshold, see Configure the Analysis.

The following table is an example endpoint response for a multiclass problem.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record of a multiclass model (three
classes).

'0.1,0.6,0.3'

Configure a SageMaker Clarify Processing Job 5395

Amazon SageMaker Developer Guide

Endpoint request payload Endpoint response payload (string represent
ation)

Two records of a multiclass model (three
classes).

'0.1,0.6,0.3\n0.2,0.5,0.3'

For the previous example, the endpoint outputs a list of probabilities (scores). If no index is
provided, all values are extracted and used for feature importance analysis. If the analysis
configuration parameter label_headers is provided. Then the SageMaker Clarify processing job
can select the label header of the max probability as the predicted label, which can be used for bias
analysis. For more information about label_headers, see Configure the Analysis.

Endpoint response is in CSV format and contains predicted label only

The following table is an example endpoint response for regression and binary classification
problems.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '1'

Two records (results in one line, divided by
comma)

'1,0'

Two records (results in two lines) '1\n0'

For the previous example, the endpoint outputs the predicted label instead of probability. Set the
label parameter of the predictor configuration to column index 0 so that the predicted labels
can be extracted using the index and used for bias analysis.

Endpoint response is in CSV format and contains predicted label and probability

The following table is an example endpoint response for regression and binary classification
problems.

Configure a SageMaker Clarify Processing Job 5396

Amazon SageMaker Developer Guide

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '1,0.6'

Two records '1,0.6\n0,0.3'

For the previous example, the endpoint outputs the predicted label followed by its probability. Set
the label parameter of the predictor configuration to column index 0, and set probability
to column index 1 to extract both parameter values.

Endpoint response is in CSV format and contains predicted labels and probabilities (multiclass)

A multiclass model trained by Amazon SageMaker Autopilot can be configured to output the string
representation of the list of predicted labels and probabilities . The following example table shows
an example endpoint response from a model that is configured to output predicted_label,
probability, labels, and probabilities.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '"dog",0.6,"[\'cat\', \'dog\', \'fish\']","[0.1, 0.6,
0.3]"'

Two records '"dog",0.6,"[\'cat\', \'dog\', \'fish\']","[0.1, 0.6,
0.3]"\n""cat",0.7,[\'cat\', \'dog\', \'fish\']","[0.7,
0.2, 0.1]"'

For the previous example, the SageMaker Clarify processing job can be configured in the following
ways to extract the predictions.

For bias analysis, the previous example can be configured as one of the following.

• Set the label parameter of the predictor configuration to 0 to extract the predicted label.

• Set the parameter to 2 to extract the predicted labels, and set probability to 3 to extract the
corresponding probabilities. The SageMaker Clarify processing job can automatically determine

Configure a SageMaker Clarify Processing Job 5397

Amazon SageMaker Developer Guide

the predicted label by identifying the label with the highest probability value. Referring to the
previous example of a single record, the model predicts three labels: cat, dog, and fish, with
corresponding probabilities of 0.1, 0.6, and 0.3. Based on these probabilities, the predicted
label is dog, as it has the highest probability value of 0.6.

• Set probability to 3 to extract the probabilities. If label_headers is provided, then the
SageMaker Clarify processing job can automatically determine the predicted label by identifying
the label header with the highest probability value.

For feature importance analysis, the previous example can be configured as follows.

• Set probability to 3 extract the probabilities of all the predicted labels. Then, feature
attributions will be computed for all the labels. If the customer doesn’t specify label_headers,
then the predicted labels will be used as label headers in the analysis report.

Endpoint Response is in JSON Lines format

If the response payload is in JSON Lines format (MIME type: application/jsonlines), the
SageMaker Clarify processing job deserializes each line as JSON. It then extracts predictions from
the deserialized data using JMESPath expressions provided in analysis configuration. The lines in
the response payload must match the records in the request payload. The following tables shows
examples of response data in different formats. Your data can vary from these examples, as long as
the predictions can be extracted according to the analysis configuration.

The following sections show example endpoint responses in JSON Lines formats.

Endpoint response is in JSON Lines format and contains probability only

The following table is an example endpoint response that only outputs the probability value
(score).

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '{"score":0.6}'

Two records '{"score":0.6}\n{"score":0.3}'

Configure a SageMaker Clarify Processing Job 5398

Amazon SageMaker Developer Guide

For the previous example, set the analysis configuration parameter probability to JMESPath
expression "score" to extract its value.

Endpoint response is in JSON Lines format and contains predicted label only

The following table is an example endpoint response that only outputs the predicted label.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '{"prediction":1}'

Two records '{"prediction":1}\n{"prediction":0}'

For the previous example, set the label parameter of the predictor configuration to JMESPath
expression prediction. Then, the SageMaker Clarify processing job can extract the predicted
labels for bias analysis. For more information, see Configure the Analysis.

Endpoint response is in JSON Lines format and contains predicted label and probability

The following table is an example endpoint response that outputs the predicted label and its score.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '{"prediction":1,"score":0.6}'

Two records '{"prediction":1,"score":0.6}\n{"prediction":
0,"score":0.3}'

For the previous example, set the label parameter of the predictor configuration to JMESPath
expression "prediction" to extract the predicted labels. Set probability to JMESPath expression
"score" to extract the probability. For more information, see Configure the Analysis.

Endpoint response is in JSON Lines format and contains predicted labels and probabilities
(multiclass)

The following table is an example endpoint response from a multiclass model that outputs the
following:

Configure a SageMaker Clarify Processing Job 5399

Amazon SageMaker Developer Guide

• A list of predicted labels.

• Probabilities, and the selected predicted label and its probability.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '{"predicted_label":"dog","probability":0.6,"
predicted_labels":["cat","dog","fish"],"proba
bilities":[0.1,0.6,0.3]}'

Two records '{"predicted_label":"dog","probability":0.6,"
predicted_labels":["cat","dog","fish"],"proba
bilities":[0.1,0.6,0.3]}\n{"predicted_label":
"cat","probability":0.7,"predicted_labels":["
cat","dog","fish"],"probabilities":[0.7,0.2,0.1]}'

For the previous example, the SageMaker Clarify processing job can be configured in several ways
to extract the predictions.

For bias analysis, the previous example can be configured as one of the following.

• Set the label parameter of the predictor configuration to JMESPath expression
"predicted_label" to extract the predicted label.

• Set the parameter to JMESPath expression "predicted_labels" to extract the predicted labels.
Set probability to JMESPath expression "probabilities" to extract their probabilities. The
SageMaker Clarify job automatically determine the predicted label by identifying the label with
the highest probability value.

• Set probability to JMESPath expression "probabilities" to extract their probabilities. If
label_headers is provided, then the SageMaker Clarify processing job can automatically
determine the predicted label by identifying the label with the highest probability value.

For feature importance analysis, do the following.

• Set probability to the JMESPath expression "probabilities" to extract their probabilities of all
the predicted labels. Then, feature attributions will be computed for all the labels.

Configure a SageMaker Clarify Processing Job 5400

Amazon SageMaker Developer Guide

Endpoint Response is in JSON format

If the response payload is in JSON format (MIME type: application/json), the SageMaker
Clarify processing job deserializes the entire payload as JSON. It then extracts predictions from the
deserialized data using JMESPath expressions provided in the analysis configuration. The records in
the response payload must match the records in the request payload.

The following sections show example endpoint responses in JSON formats. The sections contain
tables with examples of response data in different formats and for different problem types. Your
data can vary from these examples, as long as the predictions can be extracted according to the
analysis configuration.

Endpoint response is in JSON format and contains probability only

The following table is an example response from an endpoint that only outputs the probability
value (score).

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '[0.6]'

Two records '[0.6,0.3]'

For the previous example, there is no line break in the response payload. Instead, a single JSON
object contains a list of scores, one for each record in the request. Set the analysis configuration
parameter probability to JMESPath expression "[*]" to extract the value.

Endpoint response is in JSON format and contains predicted label only

The following table is an example response from an endpoint that only outputs the predicted label.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '{"predicted_labels":[1]}'

Two records '{"predicted_labels":[1,0]}'

Configure a SageMaker Clarify Processing Job 5401

Amazon SageMaker Developer Guide

Set the label parameter of the predictor configuration to JMESPath expression
"predicted_labels", and then the SageMaker Clarify processing job can extract the predicted labels
for bias analysis.

Endpoint response is JSON format and contains predicted label and probability

The following table is an example response from an endpoint that outputs the predicted label and
its score.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '{"predictions":[{"label":1,"score":0.6}'

Two records ‘{"predictions":[{"label":1,"score":0.6},{"la
bel":0,"score":0.3}]}'

For the previous example, set the label parameter of the predictor configuration to the
JMESPath expression "predictions[*].label" to extract the predicted labels. Set probability to
JMESPath expression "predictions[*].score" to extract the probability.

Endpoint response is in JSON format and contains predicted labels and probabilities
(multiclass)

The following table is an example response from an endpoint that from a multiclass model that
outputs the following:

• A list of predicted labels.

• Probabilities, and the selected predicted label and its probability.

Endpoint request payload Endpoint response payload (string represent
ation)

Single record '[{"predicted_label":"dog","probability":0.6,
"predicted_labels":["cat","dog","fish"],"prob
abilities":[0.1,0.6,0.3]}]'

Configure a SageMaker Clarify Processing Job 5402

Amazon SageMaker Developer Guide

Endpoint request payload Endpoint response payload (string represent
ation)

Two records '[{"predicted_label":"dog","probability":0.6,
"predicted_labels":["cat","dog","fish"],"prob
abilities":[0.1,0.6,0.3]},{"predicted_label":
"cat","probability":0.7,"predicted_labels":["
cat","dog","fish"],"probabilities":[0.7,0.2,0.1]}]'

The SageMaker Clarify processing job can be configured in several ways to extract the predictions.

For bias analysis, the previous example can be configured as one of the following.

• Set the label parameter of the predictor configuration to JMESPath expression
"[*].predicted_label" to extract the predicted label.

• Set the parameter to JMESPath expression "[*].predicted_labels" to extract the predicted labels.
Set probability to JMESPath expression "[*].probabilities" to extract their probabilities. The
SageMaker Clarify processing job can automatically determine the predicted label by identifying
the label with the highest proximity value.

• Set probability to JMESPath expression "[*].probabilities" to extract their probabilities. If
label_headers is provided, then the SageMaker Clarify processing job can automatically
determine the predicted label by identifying the label with the highest probability value.

For feature importance analysis, set probability to JMESPath expression "[*].probabilities" to
extract their probabilities of all the predicted labels. Then, feature attributions will be computed
for all the labels.

Pre-check endpoint request and response for tabular data

We recommend that you deploy your model to a SageMaker real-time inference endpoint, and
send requests to the endpoint. Manually examine the requests and responses to make sure that
both are compliant with the requirements in the Endpoint requests for tabular data section and the
Endpoint response for tabular data section. If your model container supports batch requests, you
can start with a single record request, and then try two or more records.

Configure a SageMaker Clarify Processing Job 5403

Amazon SageMaker Developer Guide

The following commands show how to request a response using the AWS CLI. The AWS CLI is pre-
installed in SageMaker Studio Classic, and SageMaker Notebook instances. If you must to install the
AWS CLI, follow this installation guide.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name $ENDPOINT_NAME \
 --content-type $CONTENT_TYPE \
 --accept $ACCEPT_TYPE \
 --body $REQUEST_DATA \
 $CLI_BINARY_FORMAT \
 /dev/stderr 1>/dev/null

The parameters are defined, as follows.

• $ENDPOINT NAME – The name of the endpoint.

• $CONTENT_TYPE – The MIME type of the request (model container input).

• $ACCEPT_TYPE – The MIME type of the response (model container output).

• $REQUEST_DATA – The requested payload string.

• $CLI_BINARY_FORMAT – The format of the command line interface (CLI) parameter. For AWS
CLI v1, this parameter should remain blank. For v2, this parameter should be set to --cli-
binary-format raw-in-base64-out.

Note

AWS CLI v2 passes binary parameters as base64-encoded strings by default.

The following request and response examples to and from the endpoint use AWS CLI v1.

Endpoint request and response in CSV format

In the following code example, the request consists of a single record and the response is its
probability value.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-sagemaker-xgboost-model \
 --content-type text/csv \
 --accept text/csv \
 --body '1,2,3,4' \

Configure a SageMaker Clarify Processing Job 5404

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/userguide/cliv2-migration.html#cliv2-migration-binaryparam

Amazon SageMaker Developer Guide

 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

0.6

In the following code example, the request consists of two records, and the response includes their
probabilities, which are separated by a comma.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-sagemaker-xgboost-model \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

From the previous code example, the $'content' expression in the --body tells the command to
interpret '\n' in the content as a line break. The response output follows.

0.6,0.3

In the following code example, the request consists of two records, the response includes their
probabilities, separated with a line break.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-1 \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

0.6
0.3

In the following code example, the request consists of a single record, and the response is
probability values from a multiclass model containing three classes.

aws sagemaker-runtime invoke-endpoint \

Configure a SageMaker Clarify Processing Job 5405

Amazon SageMaker Developer Guide

 --endpoint-name test-endpoint-csv-1 \
 --content-type text/csv \
 --accept text/csv \
 --body '1,2,3,4' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

0.1,0.6,0.3

In the following code example, the request consists of two records, and the response includes their
probability values from a multiclass model containing three classes.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-1 \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

0.1,0.6,0.3
0.2,0.5,0.3

In the following code example, the request consists of two records, and the response includes
predicted label and probability.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-2 \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

1,0.6
0,0.3

Configure a SageMaker Clarify Processing Job 5406

Amazon SageMaker Developer Guide

In the following code example, the request consists of two records and the response includes label
headers and probabilities.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-3 \
 --content-type text/csv \
 --accept text/csv \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

"['cat','dog','fish']","[0.1,0.6,0.3]"
"['cat','dog','fish']","[0.2,0.5,0.3]"

Endpoint request and response in JSON Lines format

In the following code example, the request consists of a single record and the response is its
probability value.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-jsonlines \
 --content-type application/jsonlines \
 --accept application/jsonlines \
 --body '{"features":["This is a good product",5]}' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

{"score":0.6}

In the following code example, the request contains two records, and the response includes
predicted label and probability.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-jsonlines-2 \
 --content-type application/jsonlines \
 --accept application/jsonlines \
 --body $'{"features":[1,2,3,4]}\n{"features":[5,6,7,8]}' \
 /dev/stderr 1>/dev/null

Configure a SageMaker Clarify Processing Job 5407

Amazon SageMaker Developer Guide

From the previous code example, the response output follows.

{"predicted_label":1,"probability":0.6}
{"predicted_label":0,"probability":0.3}

In the following code example, the request contains two records, and the response includes label
headers and probabilities.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-jsonlines-3 \
 --content-type application/jsonlines \
 --accept application/jsonlines \
 --body $'{"data":{"features":[1,2,3,4]}}\n{"data":{"features":[5,6,7,8]}}' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

{"predicted_labels":["cat","dog","fish"],"probabilities":[0.1,0.6,0.3]}
{"predicted_labels":["cat","dog","fish"],"probabilities":[0.2,0.5,0.3]}

Endpoint request and response in mixed formats

In the following code example, the request is in CSV format and the response is in JSON Lines
format.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-in-jsonlines-out \
 --content-type text/csv \
 --accept application/jsonlines \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

{"probability":0.6}
{"probability":0.3}

In the following code example, the request is in JSON Lines format and the response is in CSV
format.

aws sagemaker-runtime invoke-endpoint \

Configure a SageMaker Clarify Processing Job 5408

Amazon SageMaker Developer Guide

 --endpoint-name test-endpoint-jsonlines-in-csv-out \
 --content-type application/jsonlines \
 --accept text/csv \
 --body $'{"features":[1,2,3,4]}\n{"features":[5,6,7,8]}' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

0.6
0.3

In the following code example, the request is in CSV format and the response is in JSON format.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-csv-in-jsonlines-out \
 --content-type text/csv \
 --accept application/jsonlines \
 --body $'1,2,3,4\n5,6,7,8' \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

{"predictions":[{"label":1,"score":0.6},{"label":0,"score":0.3}]}

Image data

A SageMaker Clarify processing job provides support for explaining images. This topic provides the
data format requirements for image data. For more information, see computer vision.

Image dataset prerequisites

An image dataset contains one or more image files. To identify an input dataset to the SageMaker
Clarify processing job, set either a ProcessingInput named dataset or the analysis configuration
dataset_uri parameter to an Amazon S3 URI prefix of your image files.

The supported image file formats and file extensions are listed in the following table.

Image format File extension

JPEG jpg, jpeg

Configure a SageMaker Clarify Processing Job 5409

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html#sagemaker-CreateProcessingJob-request-ProcessingInputs

Amazon SageMaker Developer Guide

Image format File extension

PNG png

Set the analysis configuration dataset_type parameter to application/x-image. Because the
type is not a specific image file format, the content_type will be used to decide the image file
format and extension.

The SageMaker Clarify processing job loads each image file to a 3-dimensional NumPy array for
further processing. The three dimensions include height, width, and RGB values of each pixel.

Endpoint request for image data

The SageMaker Clarify processing job converts the raw RGB data of an image into a compatible
image format, such as JPEG. It does this before it sends the data to the endpoint for predictions.
The supported image formats are as follows.

Data Format MIME type File extension

JPEG image/jpeg jpg, jpeg

PNG image/png png

NPY application/x-npy All above

Specify the data format of the request payload by using the analysis configuration parameter
content_type. If the content_type is not provided, the data format defaults to image/jpeg.

Endpoint response for image data

Upon receiving the response of an inference endpoint invocation, the SageMaker Clarify processing
job deserializes response payload and then extracts the predictions from it.

Image classification problem

The data format of the response payload should be specified by the analysis configuration
parameter accept_type. If accept_type is not provided, the data format defaults to
application/json. The supported formats are the same as those described in the Endpoint
response for tabular data in the tabular data section.

Configure a SageMaker Clarify Processing Job 5410

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html

Amazon SageMaker Developer Guide

See Inference with the Image Classification Algorithm for an example of a SageMaker built-in
image classification algorithm that accepts a single image and then returns an array of probability
values (scores), each for a class.

As shown in the following table, when the content_type parameter is set to application/
jsonlines, the response is a JSON object.

Endpoint request payload Endpoint response payload (string represent
ation)

Single image '{"prediction":[0.1,0.6,0.3]}'

In the previous example, set the probability parameter to JMESPath expression "prediction" to
extract the scores.

When the content_type is set to application/json, the response is a JSON object, as shown
in the following table.

Endpoint request payload Endpoint response payload (string represent
ation)

Single image '[0.1,0.6,0.3]'

In the previous example, set probability to JMESPath expression "[*]" to extract all the elements
of the array. In the previous example, [0.1, 0.6, 0.3] is extracted. Alternatively, if you skip
setting the probability configuration parameter, then all the elements of the array are also
extracted. This is because the entire payload is deserialized as the predictions.

Object detection problem

The analysis configuration accept_type defaults to application/json and the only supported
format is the Object Detection Inference Format. For more information about response formats,
see Response Formats.

The following table is an example response from an endpoint that outputs an array. Each element
of the array is an array of values containing the class index, the confidence score, and the bounding
box coordinates of the detected object.

Configure a SageMaker Clarify Processing Job 5411

Amazon SageMaker Developer Guide

Endpoint request payload Endpoint response payload (string represent
ation)

Single image (one object) '[[4.0, 0.86419455409049988, 0.3088374
733924866, 0.07030484080314636,
0.7110607028007507, 0.9345266819000244
]]'

Single image (two objects) '[[4.0, 0.86419455409049988, 0.3088374
733924866, 0.07030484080314636,
0.7110607028007507, 0.9345266819000244
],[0.0, 0.73376623392105103, 0.5714187
026023865, 0.40427327156066895,
0.827075183391571, 0.9712159633636475
]]'

The following table is an example response from an endpoint that outputs a JSON object with a
key referring to the array. Set the analysis configuration probability to the key "prediction" to
extract the values.

Endpoint request payload Endpoint response payload (string represent
ation)

Single image (one object) '{"prediction":[[4.0, 0.86419455409049988,
0.3088374733924866, 0.0703048408031463
6, 0.7110607028007507, 0.9345266
819000244]]}'

Single image (two objects) '{"prediction":[[4.0, 0.8641945540904998
8, 0.3088374733924866, 0.0703048
4080314636, 0.7110607028007507,
0.9345266819000244],[0.0, 0.7337662
3392105103, 0.5714187026023865,
0.40427327156066895, 0.827075183391571,
 0.9712159633636475]]}'

Configure a SageMaker Clarify Processing Job 5412

Amazon SageMaker Developer Guide

Pre-check endpoint request and response for image data

We recommend that you deploy your model to a SageMaker real-time inference endpoint, and
send requests to the endpoint. Manually examine the requests and responses. Make sure that both
are compliant with the requirements in the Endpoint request for image data section and Endpoint
response for image data section.

The following are two code examples showing how to send requests and examine the responses for
both image classification and object detection problems.

Image classification problem

The following example code instructs an endpoint to read a PNG file and then classifies it.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-sagemaker-image-classification \
 --content-type "image/png" \
 --accept "application/json" \
 --body fileb://./test.png \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

[0.1,0.6,0.3]

Object detection problem

The following example code instructs an endpoint to read a JPEG file and then detects the objects
in it.

aws sagemaker-runtime invoke-endpoint \
 --endpoint-name test-endpoint-sagemaker-object-detection \
 --content-type "image/jpg" \
 --accept "application/json" \
 --body fileb://./test.jpg \
 /dev/stderr 1>/dev/null

From the previous code example, the response output follows.

{"prediction":[[4.0, 0.86419455409049988, 0.3088374733924866, 0.07030484080314636,
 0.7110607028007507, 0.9345266819000244],[0.0, 0.73376623392105103, 0.5714187026023865,

Configure a SageMaker Clarify Processing Job 5413

Amazon SageMaker Developer Guide

 0.40427327156066895, 0.827075183391571, 0.9712159633636475],[4.0, 0.32643985450267792,
 0.3677481412887573, 0.034883320331573486, 0.6318609714508057, 0.5967587828636169],
[8.0, 0.22552496790885925, 0.6152569651603699, 0.5722782611846924, 0.882301390171051,
 0.8985623121261597],[3.0, 0.42260299175977707, 0.019305512309074402,
 0.08386176824569702, 0.39093565940856934, 0.9574796557426453]]}

Run SageMaker Clarify Processing Jobs for Bias Analysis and
Explainability

To analyze your data and models for bias and explainability using SageMaker Clarify, you
must configure a SageMaker Clarify processing job. This guide shows how to configure the job
inputs, outputs, resources, and analysis configuration using the SageMaker Python SDK API
SageMakerClarifyProcessor.

The API acts as a high-level wrapper of the SageMaker CreateProcessingJob API. It hides many
of the details that are involved in setting up a SageMaker Clarify processing job. The details to
set up a job include retrieving the SageMaker Clarify container image URI and generating the
analysis configuration file. The following steps show you how to configure, initialize and launch a
SageMaker Clarify processing job.

Configure a SageMaker Clarify processing job using the API

1. Define the configuration objects for each portion of the job configuration. These portions can
include the following:

• The input dataset and output location: DataConfig.

• The model or endpoint to be analyzed: ModelConfig.

• Bias analysis parameters: BiasConfig.

• SHapley Additive exPlanations (SHAP) analysis parameters: SHAPConfig.

The configuration objects for a SageMaker Clarify processing job vary for different types of
data formats and use cases. Configuration examples for tabular data in CSV and JSON Lines
format, natural language processing (NLP), and computer vision problems are provided in the
following sections.

2. Create a SageMakerClarifyProcessor object and initialize it with parameters that specify
the job resources. These resources include parameters such as the number of compute
instances to use.

Run SageMaker Clarify Processing Jobs 5414

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.DataConfig
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.ModelConfig
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.BiasConfig
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.SHAPConfig

Amazon SageMaker Developer Guide

The following code example shows how to create a SageMakerClarifyProcessor object
and instruct it to use one ml.c4.xlarge compute instance to do the analysis.

from sagemaker import clarify

clarify_processor = clarify.SageMakerClarifyProcessor(
 role=role,
 instance_count=1,
 instance_type='ml.c4.xlarge',
 sagemaker_session=session,
)

3. Call the specific run method of the SageMakerClarifyProcessor object with the configuration
objects for your use case to launch the job. These run methods include the following:

• run_pre_training_bias

• run_post_training_bias

• run_bias

• run_explainability

• run_bias_and_explainability

This SageMakerClarifyProcessor handles several tasks behind the scenes. These tasks
include retrieving the SageMaker Clarify container image universal resource identifier (URI),
composing an analysis configuration file based on the provided configuration objects,
uploading the file to an Amazon S3 bucket, and configuring the SageMaker Clarify processing
job.

The following expandable sections show how to compute pre-training and post-training
bias metrics, SHAP values, and partial dependence plots (PDPs). The sections show feature
importance for these data types:

• Tabular datasets in CSV format or JSON Lines format

• Natural language processing (NLP) datasets

• Computer vision datasets

Run SageMaker Clarify Processing Jobs 5415

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.SageMakerClarifyProcessor.run
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-processing-job-configure-parameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-processing-job-configure-parameters.html

Amazon SageMaker Developer Guide

A guide to run parallel SageMaker Clarify processing jobs with distributed training using Spark
follows the expandable sections.

Analyze tabular data in CSV format

The following examples show how to configure bias analysis and explainability analysis for a
tabular dataset in CSV format. In these examples, the incoming dataset has four feature columns
and one binary label column, Target. The contents of the dataset are as follows. A label value of 1
indicates a positive outcome.

Target,Age,Gender,Income,Occupation
0,25,0,2850,2
1,36,0,6585,0
1,22,1,1759,1
0,48,0,3446,1
...

This DataConfig object specifies the input dataset and where to store the output. The
s3_data_input_path parameter can either be a URI of a dataset file or an Amazon S3 URI prefix.
If you provide a S3 URI prefix, the SageMaker Clarify processing job recursively collects all Amazon
S3 files located under the prefix. The value for s3_output_path should be an S3 URI prefix to
hold the analysis results. SageMaker uses the s3_output_path while compiling, and cannot take
a value of a SageMaker Pipeline parameter, property, expression, or ExecutionVariable, which
are used during runtime. The following code example shows how to specify a data configuration
for the previous sample input dataset.

data_config = clarify.DataConfig(
 s3_data_input_path=dataset_s3_uri,
 dataset_type='text/csv',
 headers=['Target', 'Age', 'Gender', 'Income', 'Occupation'],
 label='Target',
 s3_output_path=clarify_job_output_s3_uri,
)

How to compute all pre-training bias metrics for a CSV dataset

The following code sample shows how to configure a BiasConfig object to measure bias of the
previous sample input towards samples with a Gender value of 0.

bias_config = clarify.BiasConfig(
 label_values_or_threshold=[1],

Run SageMaker Clarify Processing Jobs 5416

Amazon SageMaker Developer Guide

 facet_name='Gender',
 facet_values_or_threshold=[0],
)

The following code example shows how to use a run statement to launch a SageMaker Clarify
processing job that computes all pre-training bias metrics for an input dataset.

clarify_processor.run_pre_training_bias(
 data_config=data_config,
 data_bias_config=bias_config,
 methods="all",
)

Alternatively, you can choose which metrics to compute by assigning a list of pre-training
bias metrics to the methods parameter. For example, replacing methods="all" with
methods=["CI", "DPL"] instructs the SageMaker Clarify Processor to compute only Class
Imbalance and Difference in Proportions of Labels.

How to compute all post-training bias metrics for a CSV dataset

You can compute pre-training bias metrics prior to training. However, to compute post-training
bias metrics, you must have a trained model. The following example output is from a binary
classification model that outputs data in CSV format. In this example output, each row contains
two columns. The first column contains the predicted label, and the second column contains the
probability value for that label.

0,0.028986845165491
1,0.825382471084594
...

In the following example configuration, the ModelConfig object instructs the job to deploy
the SageMaker model to an ephemeral endpoint. The endpoint uses one ml.m4.xlarge
inference instance. Because the parameter content_type and accept_type are not set, they
automatically use the value of the parameter dataset_type, which is text/csv.

model_config = clarify.ModelConfig(
 model_name=your_model,
 instance_type='ml.m4.xlarge',
 instance_count=1,
)

Run SageMaker Clarify Processing Jobs 5417

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-measure-data-bias.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-bias-metric-class-imbalance.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-bias-metric-class-imbalance.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-true-label-imbalance.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-measure-post-training-bias.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-measure-post-training-bias.html

Amazon SageMaker Developer Guide

The following configuration example uses a ModelPredictedLabelConfig object with a label
index of 0. This instructs the SageMaker Clarify processing job to locate the predicted label in the
first column of the model output. The Processing job uses zero-based indexing in this example.

predicted_label_config = clarify.ModelPredictedLabelConfig(
 label=0,
)

Combined with the previous configuration example, the following code example launches a
SageMaker Clarify processing job to compute all the post-training bias metrics.

clarify_processor.run_post_training_bias(
 data_config=data_config,
 data_bias_config=bias_config,
 model_config=model_config,
 model_predicted_label_config=predicted_label_config,
 methods="all",
)

Similarly, you can choose which metrics to compute by assigning a list of post-training bias metrics
to the methods parameter. For example, replace methods=“all” with methods=["DPPL",
"DI"] to compute only Difference in Positive Proportions in Predicted Labels and Disparate
Impact.

How to compute all bias metrics for a CSV dataset

The following configuration example shows how to run all pre-training and post-training bias
metrics in one SageMaker Clarify processing job.

clarify_processor.run_bias(
 data_config=data_config,
 bias_config=bias_config,
 model_config=model_config,
 model_predicted_label_config=predicted_label_config,
 pre_training_methods="all",
 post_training_methods="all",
)

For an example notebook with instructions on how to run a SageMaker Clarify processing job in
SageMaker Studio Classic to detect bias, see Fairness and Explainability with SageMaker Clarify.

Run SageMaker Clarify Processing Jobs 5418

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dppl.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-di.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-di.html
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability.ipynb

Amazon SageMaker Developer Guide

How to compute SHAP values for a CSV dataset

SageMaker Clarify provides feature attributions using the KernelSHAP algorithm.
SHAP analysis requires the probability value or score instead of predicted label, so this
ModelPredictedLabelConfig object has probability index 1. This instructs the SageMaker
Clarify processing job to extract the probability score from the second column of the model output
(using zero-based indexing).

probability_config = clarify.ModelPredictedLabelConfig(
 probability=1,
)

The SHAPConfig object provides SHAP analysis parameters. In this example, the SHAP baseline
parameter is omitted and the value of the num_clusters parameter is 1. This instructs the
SageMaker Clarify Processor to compute one SHAP baseline sample based on clustering the input
dataset. If you want to choose the baseline dataset, see SHAP Baselines for Explainability.

shap_config = clarify.SHAPConfig(
 num_clusters=1,
)

The following code example launches a SageMaker Clarify processing job to compute SHAP values.

clarify_processor.run_explainability(
 data_config=data_config,
 model_config=model_config,
 model_scores=probability_config,
 explainability_config=shap_config,
)

For an example notebook with instructions on how to run a SageMaker Clarify processing job in
SageMaker Studio Classic to compute SHAP values, see Fairness and Explainability with SageMaker
Clarify.

How to compute partial dependence plots (PDPs) for a CSV dataset

PDPs show the dependence of the predicted target response on one or more input features
of interest while holding all other features constant. An upward sloping line, or curve in the
PDP, indicates that the relationship between the target and input feature(s) is positive, and the

Run SageMaker Clarify Processing Jobs 5419

https://arxiv.org/abs/1705.07874
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-feature-attribute-shap-baselines.html
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability.ipynb

Amazon SageMaker Developer Guide

steepness indicates the strength of the relationship. A downward sloping line or curve indicates
that if an input feature decreases, the target variable increases. Intuitively, you can interpret the
partial dependence as the response of the target variable to each input feature of interest.

The following configuration example is for using a PDPConfig object to instruct the SageMaker
Clarify processing job to compute the importance of the Income feature.

pdp_config = clarify.PDPConfig(
 features=["Income"],
 grid_resolution=10,
)

In the previous example, the grid_resolution parameter divides the range of the Income
feature values into 10 buckets. The SageMaker Clarify processing job will generate PDPs for
Income split into 10 segments on the x-axis. The y-axis will show the marginal impact of Income
on the target variable.

The following code example launches a SageMaker Clarify processing job to compute PDPs.

clarify_processor.run_explainability(
 data_config=data_config,
 model_config=model_config,
 model_scores=probability_config,
 explainability_config=pdp_config,
)

For an example notebook with instructions on how to run a SageMaker Clarify processing job in
SageMaker Studio Classic to compute PDPs, see Explainability with SageMaker Clarify - Partial
Dependence Plots (PDP).

How to compute both SHAP values and PDPs for a CSV dataset

You can compute both SHAP values and PDPs in a single SageMaker Clarify processing job. In the
following configuration example, the top_k_features parameter of a new PDPConfig object
is set to 2. This instructs the SageMaker Clarify processing job to compute PDPs for the 2 features
that have the largest global SHAP values.

shap_pdp_config = clarify.PDPConfig(
 top_k_features=2,
 grid_resolution=10,

Run SageMaker Clarify Processing Jobs 5420

https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/fairness_and_explainability/explainability_with_pdp.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/fairness_and_explainability/explainability_with_pdp.ipynb

Amazon SageMaker Developer Guide

)

The following code example launches a SageMaker Clarify processing job to compute both SHAP
values and PDPs.

clarify_processor.run_explainability(
 data_config=data_config,
 model_config=model_config,
 model_scores=probability_config,
 explainability_config=[shap_config, shap_pdp_config],
)

Analyze tabular data in JSON Lines format

The following examples show how to configure bias analysis and explainability analysis for a
tabular dataset in >SageMaker JSON Lines dense format. See JSONLINES Request Format for more
information. In these examples, the incoming dataset has the same data as the previous section,
but they're in the JSON Lines format. Each line is a valid JSON object. The key Features points to
an array of feature values, and the key Label points to the ground truth label.

{"Features":[25,0,2850,2],"Label":0}
{"Features":[36,0,6585,0],"Label":1}
{"Features":[22,1,1759,1],"Label":1}
{"Features":[48,0,3446,1],"Label":0}
...

In the following configuration example, the DataConfig object specifies the input dataset and
where to store the output.

data_config = clarify.DataConfig(
 s3_data_input_path=jsonl_dataset_s3_uri,
 dataset_type='application/jsonlines',
 headers=['Age', 'Gender', 'Income', 'Occupation', 'Target'],
 label='Label',
 features='Features',
 s3_output_path=clarify_job_output_s3_uri,
)

In the previous configuration example, the features parameter is set to the JMESPath expression
Features so that the SageMaker Clarify processing job can extract the array of features from each

Run SageMaker Clarify Processing Jobs 5421

https://jmespath.org/

Amazon SageMaker Developer Guide

record. The label parameter is set to JMESPath expression Label so that the SageMaker Clarify
processing job can extract the ground truth label from each record. The s3_data_input_path
parameter can either be a URI of a dataset file or an Amazon S3 URI prefix. If you provide a S3 URI
prefix, the SageMaker Clarify processing job recursively collects all S3 files located under the prefix.
The value for s3_output_path should be an S3 URI prefix to hold the analysis results. SageMaker
uses the s3_output_path while compiling, and cannot take a value of a SageMaker Pipeline
parameter, property, expression, or ExecutionVariable, which are used during runtime.

You must have a trained model to compute post-training bias metrics or feature importance.
The following example is from a binary classification model that outputs JSON Lines data
in the example's format. Each row of the model output is a valid JSON object. The key
predicted_label points to the predicted label, and the key probability points to the
probability value.

{"predicted_label":0,"probability":0.028986845165491}
{"predicted_label":1,"probability":0.825382471084594}
...

In the following configuration example, a ModelConfig object instructs the SageMaker Clarify
processing job to deploy the SageMaker model to an ephemeral endpoint. The endpoint uses one
ml.m4.xlarge inference instance.

model_config = clarify.ModelConfig(
 model_name=your_model,
 instance_type='ml.m4.xlarge',
 instance_count=1,
 content_template='{"Features":$features}',
)

In previous configuration example, the parameter content_type and accept_type are not set.
Therefore, they automatically use the value of the dataset_type parameter of the DataConfig
object, which is application/jsonlines. The SageMaker Clarify processing job uses the
content_template parameter to compose the model input by replacing the $features
placeholder by an array of features.

The following example configuration shows how to set the label parameter of the
ModelPredictedLabelConfig object to the JMESPath expression predicted_label. This will
extract the predicted label from the model output.

Run SageMaker Clarify Processing Jobs 5422

Amazon SageMaker Developer Guide

predicted_label_config = clarify.ModelPredictedLabelConfig(
 label='predicted_label',
)

The following example configuration shows how to set the probability parameter of the
ModelPredictedLabelConfig object to the JMESPath expression probability. This will
extract the score from the model output.

probability_config = clarify.ModelPredictedLabelConfig(
 probability='probability',
)

To compute bias metrics and feature importance for datasets in JSON Lines format, use the same
run statements and configuration objects as the previous section for CSV datasets. You can run a
SageMaker Clarify processing job in SageMaker Studio Classic to detect bias and compute feature
importance. For instructions and an example notebook, see Fairness and Explainability with
SageMaker Clarify (JSON Lines Format).

Analyze tabular data for NLP explainability

SageMaker Clarify supports explanations for natural language processing (NLP) models. These
explanations help you understand which sections of text are the most important for your model
predictions. You can explain either the model prediction for a single instance of the input dataset,
or model predictions from the baseline dataset.To understand and visualize a model’s behavior, you
can specify multiple levels of granularity. To do this, define the length of the text segment, such as
its tokens, sentences, paragraphs.

SageMaker Clarify NLP explainability is compatible with both classification and regression models.
You can also use SageMaker Clarify to explain your model's behavior on multi-modal datasets
that contain text, categorical, or numerical features. NLP explainability for multi-modal datasets
can help you understand how important each feature is to the model's output. SageMaker Clarify
supports 62 languages and can handle text which includes multiple languages.

The following example shows an analysis configuration file for computing feature importance for
NLP. In this example, the incoming dataset is a tabular dataset in CSV format, with one binary label
column and two feature columns.

0,2,"Flavor needs work"

Run SageMaker Clarify Processing Jobs 5423

https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability_jsonlines_format.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability_jsonlines_format.ipynb

Amazon SageMaker Developer Guide

1,3,"They taste good"
1,5,"The best"
0,1,"Taste is awful"
...

The following configuration example shows how to specify an input dataset in CSV format and
output data path using the DataConfig object.

nlp_data_config = clarify.DataConfig(
 s3_data_input_path=nlp_dataset_s3_uri,
 dataset_type='text/csv',
 headers=['Target', 'Rating', 'Comments'],
 label='Target',
 s3_output_path=clarify_job_output_s3_uri,
)

In the previous configuration example, the s3_data_input_path parameter can either be a
URI of a dataset file or an Amazon S3 URI prefix. If you provide a S3 URI prefix, the SageMaker
Clarify processing job recursively collects all S3 files located under the prefix. The value for
s3_output_path should be an S3 URI prefix to hold the analysis results. SageMaker uses the
s3_output_path while compiling, and cannot take a value of a SageMaker Pipeline parameter,
property, expression, or ExecutionVariable, which are used during runtime.

The following example output was created from a binary classification model trained on the
previous input dataset. The classification model accepts CSV data, and it outputs a single score in
between 0 and 1.

0.491656005382537
0.569582343101501
...

The following example shows how to configure the ModelConfig object to deploy a SageMaker
model. In this example, an ephemeral endpoint deploys the model. This endpoint uses one
ml.g4dn.xlarge inference instance equipped with a GPU, for accelerated inferencing.

nlp_model_config = clarify.ModelConfig(
 model_name=your_nlp_model_name,
 instance_type='ml.g4dn.xlarge',
 instance_count=1,

Run SageMaker Clarify Processing Jobs 5424

Amazon SageMaker Developer Guide

)

The following example shows how to configure the ModelPredictedLabelConfig object to
locate the probability (score) in the first column with an index of 0.

probability_config = clarify.ModelPredictedLabelConfig(
 probability=0,
)

The following example SHAP configuration shows how to run a token-wise explainability analysis
using a model and an input dataset in the English language.

text_config = clarify.TextConfig(
 language='english',
 granularity='token',
)
nlp_shap_config = clarify.SHAPConfig(
 baseline=[[4, '[MASK]']],
 num_samples=100,
 text_config=text_config,
)

In the previous example, the TextConfig object activates the NLP explainability analysis. The
granularity parameter indicates that the analysis should parse tokens. In English, each token
is a word. For other languages, see the spaCy documentation for tokenization, which SageMaker
Clarify uses for NLP processing. The previous example also shows how to use an average Rating
of 4 to set an in-place SHAP baseline instance. A special mask token [MASK] is used to replace a
token (word) in Comments.

In the previous example, if the instance is 2,"Flavor needs work", set the baseline to an
average Rating of 4 with the following baseline.

4, '[MASK]'

In the previous example, the SageMaker Clarify explainer iterates through each token and replaces
it with the mask, as follows.

2,"[MASK] needs work"

Run SageMaker Clarify Processing Jobs 5425

https://spacy.io/usage/linguistic-features#tokenization

Amazon SageMaker Developer Guide

4,"Flavor [MASK] work"

4,"Flavor needs [MASK]"

Then, the SageMaker Clarify explainer will send each line to your model for predictions. This is
so that the explainer learns the predictions with and without the masked words. The SageMaker
Clarify explainer then uses this information to compute the contribution of each token.

The following code example launches a SageMaker Clarify processing job to compute SHAP values.

clarify_processor.run_explainability(
 data_config=nlp_data_config,
 model_config=nlp_model_config,
 model_scores=probability_config,
 explainability_config=nlp_shap_config,
)

For an example notebook with instructions on how to run a SageMaker Clarify processing job in
SageMaker Studio Classic for NLP explainability analysis, see Explaining Text Sentiment Analysis
Using SageMaker Clarify.

Analyze image data for computer vision explainability

SageMaker Clarify generates heat maps that provide insights into how your computer vision
models classify and detect objects in your images.

In the following configuration example, the input dataset consists of JPEG images.

cv_data_config = clarify.DataConfig(
 s3_data_input_path=cv_dataset_s3_uri,
 dataset_type="application/x-image",
 s3_output_path=clarify_job_output_s3_uri,
)

In the previous configuration example, the DataConfig object contains an
s3_data_input_path set to an Amazon S3 URI prefix. The SageMaker Clarify processing job
recursively collects all image files located under the prefix. The s3_data_input_path parameter
can either be a URI of a dataset file or an Amazon S3 URI prefix. If you provide a S3 URI prefix, the
SageMaker Clarify processing job recursively collects all S3 files located under the prefix. The value
for s3_output_path should be an S3 URI prefix to hold the analysis results. SageMaker uses the

Run SageMaker Clarify Processing Jobs 5426

https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/text_explainability/text_explainability.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/text_explainability/text_explainability.ipynb

Amazon SageMaker Developer Guide

s3_output_path while compiling, and cannot take a value of a SageMaker Pipeline parameter,
property, expression, or ExecutionVariable, which are used during runtime.

How to explain an image classification model

The SageMaker Clarify processing job explains images using the KernelSHAP algorithm, which
treats the image as a collection of super pixels. Given a dataset consisting of images, the processing
job outputs a dataset of images where each image shows the heat map of the relevant super pixels.

The following configuration example shows how to configure an explainability analysis using a
SageMaker image classification model. See Image Classification - MXNet for more information.

ic_model_config = clarify.ModelConfig(
 model_name=your_cv_ic_model,
 instance_type="ml.p2.xlarge",
 instance_count=1,
 content_type="image/jpeg",
 accept_type="application/json",
)

In the previous configuration example, a model named your_cv_ic_model, has been trained
to classify the animals on input JPEG images. The ModelConfig object in the previous example
instructs the SageMaker Clarify processing job to deploy the SageMaker model to an ephemeral
endpoint. For accelerated inferencing, the endpoint uses one ml.p2.xlarge inference instance
equipped with a GPU.

After a JPEG image is sent to an endpoint, the endpoint classifies it and returns a list of scores.
Each score is for a category. The ModelPredictedLabelConfig object provides the name of
each category, as follows.

ic_prediction_config = clarify.ModelPredictedLabelConfig(
 label_headers=['bird', 'cat', 'dog'],
)

An example output for the previous input of ['bird','cat','dog'] could be 0.3,0.6,0.1, where 0.3
represents the confidence score for classifying an image as a bird.

The following example SHAP configuration shows how to generate explanations for an image
classification problem. It uses an ImageConfig object to activate the analysis.

Run SageMaker Clarify Processing Jobs 5427

Amazon SageMaker Developer Guide

ic_image_config = clarify.ImageConfig(
 model_type="IMAGE_CLASSIFICATION",
 num_segments=20,
 segment_compactness=5,
)

ic_shap_config = clarify.SHAPConfig(
 num_samples=100,
 image_config=ic_image_config,
)

SageMaker Clarify extracts features using the Simple Linear Iterative Clustering (SLIC) method
from scikit-learn library for image segmentation. The previous configuration example, the
model_type parameter, indicates the type of image classification problem. The parameter
num_segments estimates how many approximate number of segments will be labeled in the input
image. The number of segments is then passed to the slic n_segments parameter.

Each segment of the image is considered a super-pixel, and local SHAP values are computed for
each segment. The parameter segment_compactness determines the shape and size of the
image segments that are generated by the scikit-image slic method. The sizes and shapes of the
image segments are then passed to the slic compactness parameter.

The following code example launches a SageMaker Clarify processing job to generate heat maps
for your images. Positive heat map values show that the feature increased the confidence score of
detecting the object. Negative values indicate that the feature decreased the confidence score.

clarify_processor.run_explainability(
 data_config=cv_data_config,
 model_config=ic_model_config,
 model_scores=ic_prediction_config,
 explainability_config=ic_shap_config,
)

For a sample notebook that uses SageMaker Clarify to classify images and explain its classification,
see Explaining Image Classification with SageMaker Clarify.

How to explain an object detection model

A SageMaker Clarify processing job can detect and classify objects in an image and then provide an
explanation for the detected object. The process for explanation is as follows.

Run SageMaker Clarify Processing Jobs 5428

https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/computer_vision/image_classification/explainability_image_classification.ipynb

Amazon SageMaker Developer Guide

1. Image objects are first categorized into one of the classes in a specified collection. For example,
if an object detection model can recognize cat, dog and fish, then these three classes are in a
collection. This collection is specified by the label_headers parameter as follows.

clarify.ModelPredictedLabelConfig(

label_headers=object_categories,

)

2. The SageMaker Clarify processing job produces a confidence score for each object. A high
confidence score indicates that it belongs to one of the classes in a specified collection. The
SageMaker Clarify processing job also produces the coordinates of a bounding box that delimits
the object. For more information about confidence scores and bounding boxes, see Response
Formats.

3. SageMaker Clarify then provides an explanation for the detection of an object in the image
scene. It uses the methods described in the How to explain an image classification model
section.

In the following configuration example, a SageMaker object detection model your_cv_od_model
is trained on JPEG images to identify the animals on them.

od_model_config = clarify.ModelConfig(
 model_name=your_cv_ic_model,
 instance_type="ml.p2.xlarge",
 instance_count=1,
 content_type="image/jpeg",
 accept_type="application/json",
)

The ModelConfig object in the previous configuration example instructs the SageMaker Clarify
processing job to deploy the SageMaker model to an ephemeral endpoint. For accelerated imaging,
this endpoint uses one ml.p2.xlarge inference instance equipped with a GPU.

In the following example configuration, the ModelPredictedLabelConfig object provides the
name of each category for classification.

ic_prediction_config = clarify.ModelPredictedLabelConfig(
 label_headers=['bird', 'cat', 'dog'],

Run SageMaker Clarify Processing Jobs 5429

Amazon SageMaker Developer Guide

)

The following example SHAP configuration shows how to generate explanations for an object
detection.

od_image_config = clarify.ImageConfig(
 model_type="OBJECT_DETECTION",
 num_segments=20,
 segment_compactness=5,
 max_objects=5,
 iou_threshold=0.5,
 context=1.0,
)
od_shap_config = clarify.SHAPConfig(
 num_samples=100,
 image_config=image_config,
)

In the previous example configuration, the ImageConfig object activates the analysis. The
model_type parameter indicates that the type of problem is object detection. For a detailed
description of the other parameters, see Configure the Analysis.

The following code example launches a SageMaker Clarify processing job to generate heat maps
for your images. Positive heat map values show that the feature increased the confidence score of
detecting the object. Negative values indicate that the feature decreased the confidence score.

clarify_processor.run_explainability(
 data_config=cv_data_config,
 model_config=od_model_config,
 model_scores=od_prediction_config,
 explainability_config=od_shap_config,
)

For a sample notebook that uses SageMaker Clarify to detect objects in an image and explain its
predictions, see Explaining object detection models with Amazon SageMaker Clarify.

How to run parallel SageMaker Clarify processing jobs

When working with large datasets, you can use Apache Spark to increase the speed of your
SageMaker Clarify processing jobs. Spark is a unified analytics engine for large-scale data

Run SageMaker Clarify Processing Jobs 5430

https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/computer_vision/object_detection/object_detection_clarify.ipynb
https://spark.apache.org/

Amazon SageMaker Developer Guide

processing. When you request more than one instance per SageMaker Clarify processor, SageMaker
Clarify uses the distributed computing capabilities from Spark.

The following configuration example shows how to use SageMakerClarifyProcessor to create
a SageMaker Clarify processor with 5 compute instances. To run any jobs associated with the
SageMakerClarifyProcessor, SageMaker Clarify using Spark distributed processing.

from sagemaker import clarify

spark_clarify_processor = clarify.SageMakerClarifyProcessor(
 role=role,
 instance_count=5,
 instance_type='ml.c5.xlarge',
)

If you set the save_local_shap_values parameter of SHAPConfig to True, the SageMaker
Clarify processing job saves the local SHAP value as multiple part files in the job output location.

To associate the local SHAP values to the input dataset instances, use the joinsource parameter
of DataConfig. If you add more compute instances, we recommend that you also increase the
instance_count of ModelConfig for the ephemeral endpoint. This prevents Spark workers'
concurrent inference requests from overwhelming the endpoint. Specifically, we recommend that
you use a one-to-one ratio of endpoint-to-processing instances.

Get Analysis Results

This topic shows how to get analysis results that SageMaker Clarify generates. After the SageMaker
Clarify processing job is finished, you can download the output files to inspect, or visualize the
results in SageMaker Studio Classic.

The SageMaker Clarify processing job output directory contains the following files:

• analysis.json – A file that contains bias metrics and feature importance in JSON format.

• report.ipynb – A static notebook that contains code to help you visualize bias metrics and
feature importance.

• explanations_shap/out.csv – A directory that is created and contains automatically
generated files based on your specific analysis configurations. For example, if you activate the
save_local_shap_values parameter, then per-instance local SHAP values will be saved to the
explanations_shap directory. As another example, if your analysis configuration does

Get Analysis Results 5431

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.SHAPConfig
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html#sagemaker.clarify.ModelConfig

Amazon SageMaker Developer Guide

not contain a value for the SHAP baseline parameter, the SageMaker Clarify explainability job
computes a baseline by clustering the input dataset. It then saves the generated baseline to the
directory.

The following sections provide detailed information about the schema and the report that's
generated by bias analysis, SHAP analysis, computer vision explainability analysis, and partial
dependence plots (PDPs) analysis. If the configuration analysis contains parameters to compute
multiple analyses, then the results are aggregated into one analysis and one report file.

Topics

• Bias analysis

• SHAP analysis

• Computer vision (CV) explainability analysis

• Partial dependence plots (PDPs) analysis

Bias analysis

Amazon SageMaker Clarify uses the terminology documented in Amazon SageMaker Clarify Terms
for Bias and Fairness to discuss bias and fairness.

Schema for the analysis file

The analysis file is in JSON format and is organized into two sections: pre-training bias metrics and
post-training bias metrics. The parameters for pre-training and post-training bias metrics are as
follows.

• pre_training_bias_metrics – Parameters for pre-training bias metrics. For more information, see
Measure Pre-training Bias and Configure the Analysis.

• label – The ground truth label name defined by the label parameter of the analysis
configuration.

• label_value_or_threshold – A string containing the label values or interval defined by the
label_values_or_threshold parameter of the analysis configuration. For example, if
value 1 is provided for binary classification problem, then the string will be 1. If multiple
values [1,2] are provided for multi-class problem, then the string will be 1,2. If a threshold
40 is provided for regression problem, then the string will be an internal like (40, 68] in
which 68 is the maximum value of the label in the input dataset.

Get Analysis Results 5432

Amazon SageMaker Developer Guide

• facets – The section contains several key-value pairs, where the key corresponds to the facet
name defined by the name_or_index parameter of the facet configuration, and the value is
an array of facet objects. Each facet object has the following members:

• value_or_threshold – A string containing the facet values or interval defined by the
value_or_threshold parameter of the facet configuration.

• metrics – The section contains an array of bias metric elements, and each bias metric
element has the following attributes:

• name – The short name of the bias metric. For example, CI.

• description – The full name of the bias metric. For example, Class Imbalance (CI).

• value – The bias metric value, or JSON null value if the bias metric is not computed for a
particular reason. The values ±∞ are represented as strings ∞ and -∞ respectively.

• error – An optional error message that explains why the bias metric was not computed.

• post_training_bias_metrics – The section contains the post-training bias metrics and it follows a
similar layout and structure to the pre-training section. For more information, see Measure Post-
training Data and Model Bias.

The following is an example of an analysis configuration that will calculate both pre-training and
post-training bias metrics.

{
 "version": "1.0",
 "pre_training_bias_metrics": {
 "label": "Target",
 "label_value_or_threshold": "1",
 "facets": {
 "Gender": [{
 "value_or_threshold": "0",
 "metrics": [
 {
 "name": "CDDL",
 "description": "Conditional Demographic Disparity in Labels
 (CDDL)",
 "value": -0.06
 },
 {
 "name": "CI",
 "description": "Class Imbalance (CI)",
 "value": 0.6

Get Analysis Results 5433

Amazon SageMaker Developer Guide

 },
 ...
]
 }]
 }
 },
 "post_training_bias_metrics": {
 "label": "Target",
 "label_value_or_threshold": "1",
 "facets": {
 "Gender": [{
 "value_or_threshold": "0",
 "metrics": [
 {
 "name": "AD",
 "description": "Accuracy Difference (AD)",
 "value": -0.13
 },
 {
 "name": "CDDPL",
 "description": "Conditional Demographic Disparity in Predicted
 Labels (CDDPL)",
 "value": 0.04
 },
 ...
]
 }]
 }
 }
}

Bias analysis report

The bias analysis report includes several tables and diagrams that contain detailed explanations
and descriptions. These include, but are not limited to, the distribution of label values, the
distribution of facet values, high-level model performance diagram, a table of bias metrics, and
their descriptions. For more information about bias metrics and how to interpret them, see the
Learn How Amazon SageMaker Clarify Helps Detect Bias.

SHAP analysis

SageMaker Clarify processing jobs use the Kernel SHAP algorithm to compute feature attributions.
The SageMaker Clarify processing job produces both local and global SHAP values. These help

Get Analysis Results 5434

https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias/

Amazon SageMaker Developer Guide

to determine the contribution of each feature towards model predictions. Local SHAP values
represent the feature importance for each individual instance, while global SHAP values aggregate
the local SHAP values across all instances in the dataset. For more information about SHAP values
and how to interpret them, see Feature Attributions that Use Shapley Values .

Schema for the SHAP analysis file

Global SHAP analysis results are stored in the explanations section of the analysis file, under the
kernel_shap method. The different parameters of the SHAP analysis file are as follows:

• explanations – The section of the analysis file that contains the feature importance analysis
results.

• kernal_shap – The section of the analysis file that contains the global SHAP analysis result.

• global_shap_values – A section of the analysis file that contains several key-value pairs.
Each key in the key-value pair represents a feature name from the input dataset. Each value
in the key-value pair corresponds to the feature's global SHAP value. The global SHAP
value is obtained by aggregating the per-instance SHAP values of the feature using the
agg_method configuration. If the use_logit configuration is activated, then the value is
calculated using the logistic regression coefficients, which can be interpreted as log-odds
ratios.

• expected_value – The mean prediction of the baseline dataset. If the use_logit
configuration is activated, then the value is calculated using the logistic regression
coefficients.

• global_top_shap_text – (For NLP explainability analysis). A section of the analysis file that
includes a set of key-value pairs. SageMaker Clarify processing jobs aggregate the SHAP
values of each token and then select the top tokens based on their global SHAP values. The
max_top_tokens configuration defines the number of tokens to be selected.

Each of the selected top tokens has a key-value pair. The key in the key-value pair
corresponds to a top token’s text feature name. Each value in the key-value pair is the global
SHAP values of the top token. For an example of a global_top_shap_text key-value pair,
see the output that follows.

The following is example output from the SHAP analysis of a tabular dataset.

{
 "version": "1.0",

Get Analysis Results 5435

Amazon SageMaker Developer Guide

 "explanations": {
 "kernel_shap": {
 "Target": {
 "global_shap_values": {
 "Age": 0.022486410860333206,
 "Gender": 0.007381025261958729,
 "Income": 0.006843906804137847,
 "Occupation": 0.006843906804137847,
 ...
 },
 "expected_value": 0.508233428001
 }
 }
 }
}

The following is example output from the SHAP analysis of a text dataset. The output
corresponding to the column Comments is an example of output that is generated after analysis of
a text feature.

{
 "version": "1.0",
 "explanations": {
 "kernel_shap": {
 "Target": {
 "global_shap_values": {
 "Rating": 0.022486410860333206,
 "Comments": 0.058612104851485144,
 ...
 },
 "expected_value": 0.46700941970297033,
 "global_top_shap_text": {
 "charming": 0.04127962903247833,
 "brilliant": 0.02450240786522321,
 "enjoyable": 0.024093569652715457,
 ...
 }
 }
 }
 }
}

Get Analysis Results 5436

Amazon SageMaker Developer Guide

Schema for the generated baseline file

When a SHAP baseline configuration is not provided, the SageMaker Clarify processing job
generates a baseline dataset. SageMaker Clarify uses a distance-based clustering algorithm to
generate a baseline dataset from clusters created from the input dataset. The resulting baseline
dataset is saved in a CSV file, located at explanations_shap/baseline.csv. This output
file contains a header row and several instances based on the num_clusters parameter that is
specified in the analysis configuration. The baseline dataset only consists of feature columns. An
example of a baseline created by clustering the input dataset follows.

Age,Gender,Income,Occupation
35,0,2883,1
40,1,6178,2
42,0,4621,0

Schema for local SHAP values from tabular dataset explainability analysis

For tabular datasets, if a single compute instance is used, the SageMaker Clarify processing
job saves the local SHAP values to a CSV file named explanations_shap/out.csv. If
you use multiple compute instances, local SHAP values are saved to several CSV files in the
explanations_shap directory.

An output file containing local SHAP values has a row containing the local SHAP values for
each column that is defined by the headers. The headers follow the naming convention of
Feature_Label where the feature name is appended by an underscore, followed by the name of
the your target variable.

For multi-class problems, the feature names in the header vary first, then labels. For example, two
features F1, F2, and two classes L1 and L2, in headers are F1_L1, F2_L1, F1_L2, and F2_L2. If
the analysis configuration contains a value for the joinsource_name_or_index parameter, then
the key column used in the join is appended to the end of the header name. This allows mapping
of the local SHAP values to instances of the input dataset. An example of an output file containing
SHAP values follows.

Age_Target,Gender_Target,Income_Target,Occupation_Target
0.003937908,0.001388849,0.00242389,0.00274234
-0.0052784,0.017144491,0.004480645,-0.017144491
...

Get Analysis Results 5437

Amazon SageMaker Developer Guide

Schema for local SHAP values from NLP explainability analysis

For NLP explainability analysis, if a single compute instance is used, the SageMaker Clarify
processing job saves local SHAP values to a JSON Lines file named explanations_shap/
out.jsonl. If you use multiple compute instances, the local SHAP values are saved to several
JSON Lines files in the explanations_shap directory.

Each file containing local SHAP values has several data lines, and each line is a valid JSON object.
The JSON object has the following attributes:

• explanations – The section of the analysis file that contains an array of Kernel SHAP
explanations for a single instance. Each element in the array has the following members:

• feature_name – The header name of the features provided by the headers configuration.

• data_type – The feature type inferred by the SageMaker Clarify processing job. Valid values for
text features include numerical, categorical, and free_text (for text features).

• attributions – A feature-specific array of attribution objects. A text feature can have multiple
attribution objects, each for a unit defined by the granularity configuration. The attribution
object has the following members:

• attribution – A class-specific array of probability values.

• description – (For text features) The description of the text units.

• partial_text – The portion of the text explained by the SageMaker Clarify processing job.

• start_idx – A zero-based index to identify the array location indicating the beginning of
the partial text fragment.

The following is an example of a single line from a local SHAP values file, beautified to enhance its
readability.

{
 "explanations": [
 {
 "feature_name": "Rating",
 "data_type": "categorical",
 "attributions": [
 {
 "attribution": [0.00342270632248735]
 }
]
 },

Get Analysis Results 5438

Amazon SageMaker Developer Guide

 {
 "feature_name": "Comments",
 "data_type": "free_text",
 "attributions": [
 {
 "attribution": [0.005260534499999983],
 "description": {
 "partial_text": "It's",
 "start_idx": 0
 }
 },
 {
 "attribution": [0.00424190349999996],
 "description": {
 "partial_text": "a",
 "start_idx": 5
 }
 },
 {
 "attribution": [0.010247314500000014],
 "description": {
 "partial_text": "good",
 "start_idx": 6
 }
 },
 {
 "attribution": [0.006148907500000005],
 "description": {
 "partial_text": "product",
 "start_idx": 10
 }
 }
]
 }
]
}

SHAP analysis report

The SHAP analysis report provides a bar chart of a maximum of 10 top global SHAP values. The
following chart example shows the SHAP values for the top 4 features.

Get Analysis Results 5439

Amazon SageMaker Developer Guide

Computer vision (CV) explainability analysis

SageMaker Clarify computer vision explainability takes a dataset consisting of images and treats
each image as a collection of super pixels. After analysis, the SageMaker Clarify processing job
outputs a dataset of images where each image shows the heat map of the super pixels.

The following example shows an input speed limit sign on the left and a heat map shows
the magnitude of SHAP values on the right. These SHAP values were calculated by an image
recognition Resnet-18 model that is trained to recognize German traffic signs. The German
Traffic Sign Recognition Benchmark (GTSRB) dataset is provided in the paper Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. In the example output,
large positive values indicate that the super pixel has a strong positive correlation with the model
prediction. Large negative values indicate that the super pixel has a strong negative correlation
with the model prediction. The larger the absolute value of the SHAP value shown in the heat map,
the stronger the relationship between the super pixel and model prediction.

Get Analysis Results 5440

https://benchmark.ini.rub.de/gtsrb_news.html
https://www.sciencedirect.com/science/article/abs/pii/S0893608012000457?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0893608012000457?via%3Dihub

Amazon SageMaker Developer Guide

For more information, see the sample notebooks Explaining Image Classification with SageMaker
Clarify and Explaining object detection models with Amazon SageMaker Clarify.

Partial dependence plots (PDPs) analysis

Partial dependence plots show the dependence of the predicted target response on a set of input
features of interest. These are marginalized over the values of all other input features and are
referred to as the complement features. Intuitively, you can interpret the partial dependence as the
target response, which is expected as a function of each input feature of interest.

Schema for the analysis file

The PDP values are stored in the explanations section of the analysis file under the pdp method.
The parameters for explanations are as follows:

• explanations – The section of the analysis files that contains feature importance analysis results.

• pdp – The section of the analysis file that contains an array of PDP explanations for a single
instance. Each element of the array has the following members:

• feature_name – The header name of the features provided by the headers configuration.

• data_type – The feature type inferred by the SageMaker Clarify processing job. Valid values
for data_type include numerical and categorical.

• feature_values – Contains the values present in the feature. If the data_type inferred
by SageMaker Clarify is categorical, feature_values contains all of the unique
values that the feature could be. If the data_type inferred by SageMaker Clarify is
numerical, feature_values contains a list of the central value of generated buckets. The

Get Analysis Results 5441

https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/computer_vision/image_classification/explainability_image_classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/computer_vision/image_classification/explainability_image_classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/computer_vision/object_detection/object_detection_clarify.ipynb

Amazon SageMaker Developer Guide

grid_resolution parameter determines the number of buckets used to group the feature
column values.

• data_distribution – An array of percentages, where each value is the percentage of instances
that a bucket contains. The grid_resolution parameter determines the number of
buckets. The feature column values are grouped into these buckets.

• model_predictions – An array of model predictions, where each element of the array is an
array of predictions that corresponds to one class in the model’s output.

label_headers – The label headers provided by the label_headers configuration.

• error – An error message generated if the PDP values are not computed for a particular
reason. This error message replaces the content contained in the feature_values,
data_distributions, and model_predictions fields.

The following is example output from an analysis file containing a PDP analysis result.

{
 "version": "1.0",
 "explanations": {
 "pdp": [
 {
 "feature_name": "Income",
 "data_type": "numerical",
 "feature_values": [1046.9, 2454.7, 3862.5, 5270.2, 6678.0, 8085.9,
 9493.6, 10901.5, 12309.3, 13717.1],
 "data_distribution": [0.32, 0.27, 0.17, 0.1, 0.045, 0.05, 0.01, 0.015,
 0.01, 0.01],
 "model_predictions": [[0.69, 0.82, 0.82, 0.77, 0.77, 0.46, 0.46, 0.45,
 0.41, 0.41]],
 "label_headers": ["Target"]
 },
 ...
]
 }
}

PDP analysis report

You can generate an analysis report containing a PDP chart for each feature. The PDP chart plots
feature_values along the x-axis, and it plots model_predictions along the y-axis. For multi-

Get Analysis Results 5442

Amazon SageMaker Developer Guide

class models, model_predictions is an array, and each element of this array corresponds to one
of the model prediction classes.

The following is an example of PDP chart for the feature Age. In the example output, the PDP
shows the number of feature values that are grouped into buckets. The number of buckets is
determined by grid_resolution. The buckets of feature values are plotted against model
predictions. In this example, the higher feature values have the same model prediction values.

Troubleshoot SageMaker Clarify Processing Jobs

If you encounter failures with SageMaker Clarify processing jobs, consult the following scenarios to
help identify the issue.

Note

The failure reason and exit message are intended to contain descriptive messages and
exceptions, if encountered, during the run. A common reason for errors is that parameters

Troubleshoot Jobs 5443

Amazon SageMaker Developer Guide

are either missing or not valid. If you encounter unclear, confusing, or misleading messages
or are unable to find a solution, submit feedback.

Topics

• Processing job fails to finish

• Processing job is taking too long to run

• Processing job finishes without results and you get a CloudWatch warning message

• Error message for invalid analysis configuration

• Bias metric computation fails for several or all metrics

• Mismatch between analysis config and dataset/model input/output

• Model returns 500 Internal Server Error or container falls back to per-record predictions due to
model error

• Execution role is invalid

• Failed to download data

• Could not connect to SageMaker

Processing job fails to finish

If the processing job fails to finish, you can try the following:

• Inspect the job logs directly in the notebook where you ran the job in. The job logs are located in
the output of the notebook cell where you initiated the run.

• Inspect the job logs in CloudWatch.

• Add the following line in your notebook to describe the last processing job and look for the
failure reason and exit message:

• clarify_processor.jobs[-1].describe()

• Run the following AWS CLI; command to describe the processing job and look for the failure
reason and exit message:

• aws sagemaker describe-processing-job —processing-job-name <processing-
job-id>

Troubleshoot Jobs 5444

Amazon SageMaker Developer Guide

Processing job is taking too long to run

If your processing job is taking too long to run, use the following ways to find the root cause.

Check to see if your resource configuration is sufficient to handle your computing load. To speed up
your job, try the following:

• Use a larger instance type. SageMaker Clarify queries the model repeatedly, and a larger instance
can significantly reduce your computation time. For a list of available instances, their memory
sizes, bandwidth, and other performance details, see Amazon SageMaker Pricing.

• Add more instances. SageMaker Clarify can use multiple instances to explain multiple input data
points in parallel. To enable parallel computing, set your instance_count to more than 1
when you call SageMakerClarifyProcessor. For more information, see How to run parallel
SageMaker Clarify processing jobs. If you increase your instance count, monitor the performance
of your endpoint to check that it can deploy the increased load. For more information, see
Capture data from real-time endpoint.

• If you're computing SHapley Additive exPlanations (SHAP) values, reduce the num_samples
parameter in your analysis configuration file. The number of samples directly affects the
following:

• The size of the synthetic datasets that are sent to your endpoint

• Job runtime

Reducing the number of samples can also lead to reduced accuracy in estimating SHAP values.
For more information, see Configure the Analysis.

Processing job finishes without results and you get a CloudWatch warning
message

If the processing job finishes but no results are found, the CloudWatch logs produce a warning
message that says Signal 15 received, cleaning up.This warning indicates that the job was stopped
either because a customer request called the StopProcessingJob API, or that the job ran out
of the allotted time for its completion. In the latter case, check the maximum runtime in the job
configuration (max_runtime_in_seconds) and increase it as needed.

Troubleshoot Jobs 5445

https://aws.amazon.com/sagemaker/pricing/

Amazon SageMaker Developer Guide

Error message for invalid analysis configuration

• If you get the error message Unable to load analysis configuration as JSON., this means that
the analysis configuration input file for the processing job does not contain a valid JSON object.
Check the validity of the JSON object using a JSON linter.

• If you get the error message Analysis configuration schema validation error., this means that the
analysis configuration input file for the processing job contains unknown fields or invalid types
for some field values. Review the configuration parameters in the file and cross-check them with
the parameters listed in the analysis configuration file. For more information, see Configure the
Analysis.

Bias metric computation fails for several or all metrics

If your receive one of the following error messages No Label values are present in the predicted
Label Column, Positive Predicted Index Series contains all False values. or Predicted Label Column
series data type is not the same as Label Column series., try the following:

• Check that the correct dataset is being used.

• Check whether the dataset size is too small; whether, for example, it contains only a few rows.
This may cause the model outputs to have the same value or the data type is inferred incorrectly.

• Check if the label or facet is treated as continuous or categorical. SageMaker Clarify uses
heuristics to determine the DataType. For post-training bias metrics, the data type returned
by the model may not match what is in the dataset or SageMaker Clarify may not be able to
transform it correctly.

• In the bias report, you should see a single value for categorical columns or an interval for
continuous columns.

• For example, if a column has values 0.0 and 1.0 as floats, it will be treated as continuous even
if there are too few unique values.

Mismatch between analysis config and dataset/model input/output

• Check that the baseline format in the analysis config is the same as dataset format.

• If your receive the error message Could not convert string to float., check that the format is
correctly specified. It could also indicate that the model predictions have a different format
than the label column or it could indicate that the configuration for the label or probabilities is
incorrect.

Troubleshoot Jobs 5446

https://github.com/aws/amazon-sagemaker-clarify/blob/master/src/smclarify/bias/metrics/common.py#L114)

Amazon SageMaker Developer Guide

• If your receive the error message Unable to locate the facet. or Headers must contain label. or
Headers in config do not match with the number of columns in the dataset. or Feature names
not found., check that the headers match the columns.

• If your receive the error message Data must contain features., check the content template for
JSON Lines and compare it with the dataset sample if available.

Model returns 500 Internal Server Error or container falls back to per-record
predictions due to model error

If you receive the error message Fallback to per-record prediction because of model error., this
could indicate that model cannot handle the batch size, or be throttled, or just does not accept the
input passed by the container due to serialization problems. You should review the CloudWatch
logs for the SageMaker endpoint and look for error messages or tracebacks. For model throttling
cases, it may help to use a different instance type or increasing the number of instances for the
endpoint.

Execution role is invalid

This indicates that the role provided is incorrect or missing required permissions. Check the role
and its permissions that were used to configure the processing job and verify the permission and
trust policy for the role.

Failed to download data

This indicates that job inputs could not be downloaded for the job to start. Check the bucket name
and permissions for the dataset and the configuration inputs.

Could not connect to SageMaker

This indicates that the job could not reach SageMaker service endpoints. Check the network
configuration settings for the processing job and verify virtual private cloud (VPC) configuration.

Sample notebooks

The following sections contains notebooks to help you get started using SageMaker Clarify, to use
it for special tasks, including those inside a distributed job, and for computer vision.

Sample notebooks 5447

Amazon SageMaker Developer Guide

Getting started

The following sample notebooks show how to use SageMaker Clarify to get started with
explainability and model bias tasks. These tasks include creating a processing job, training a
machine learning (ML) model, and monitoring model predictions:

• Explainability and bias detection with Amazon SageMaker Clarify – Use SageMaker Clarify to
create a processing job to detect bias and explain model predictions.

• Monitoring bias drift and feature attribution drift Amazon SageMaker Clarify – Use Amazon
SageMaker Model Monitor to monitor bias drift and feature attribution drift over time.

• How to read a dataset in JSON Lines format into a SageMaker Clarify processing job.

• Mitigate Bias, train another unbiased model, and put it in the model registry – Use Synthetic
Minority Over-sampling Technique (SMOTE) and SageMaker Clarify to mitigate bias, train
another model, then put the new model into the model registry. This sample notebook also
shows how to place the new model artifacts, including data, code and model metadata, into the
model registry. This notebook is part of a series that shows how to integrate SageMaker Clarify
into a SageMaker pipeline that is described in the Architect and build the full machine learning
lifecycle with AWS blog post.

Special cases

The following notebooks show you how to use a SageMaker Clarify for special cases including
inside your own container and for natural language processing tasks:

• Fairness and Explainability with SageMaker Clarify (Bring Your Own Container) – Build your own
model and container that can integrate with SageMaker Clarify to measure bias and generate an
explainability analysis report. This sample notebook also introduces key terms and shows you
how to access the report through SageMaker Studio Classic.

• Fairness and Explainability with SageMaker Clarify Spark Distributed Processing – Use distributed
processing to run a SageMaker Clarify job that measures the pre-training bias of a dataset
and the post-training bias of a model. This sample notebook also shows you how to obtain
an explanation for the importance of the input features on the model output, and access the
explainability analysis report through SageMaker Studio Classic.

• Explainability with SageMaker Clarify - Partial Dependence Plots (PDP) – Use SageMaker Clarify
to generate PDPs and access a model explainability report.

Sample notebooks 5448

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker_model_monitor/fairness_and_explainability/SageMaker-Model-Monitor-Fairness-and-Explainability.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability_jsonlines_format.html
https://github.com/aws/amazon-sagemaker-examples/blob/master/end_to_end/fraud_detection/3-mitigate-bias-train-model2-registry-e2e.ipynb
https://arxiv.org/pdf/1106.1813.pdf
https://arxiv.org/pdf/1106.1813.pdf
https://aws.amazon.com/blogs/machine-learning/architect-and-build-the-full-machine-learning-lifecycle-with-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/architect-and-build-the-full-machine-learning-lifecycle-with-amazon-sagemaker/
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability_byoc.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability_spark.ipynb
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/fairness_and_explainability/explainability_with_pdp.html

Amazon SageMaker Developer Guide

• Explaining text sentiment analysis using SageMaker Clarify Natural language processing (NLP)
explainability – Use SageMaker Clarify for text sentiment analysis.

• Use computer vision (CV) explainability for image classification and object detection.

These notebooks have been verified to run in Amazon SageMaker Studio Classic. If you need
instructions on how to open a notebook in Studio Classic, see Create or Open an Amazon
SageMaker Studio Classic Notebook. If you're prompted to choose a kernel, choose Python 3 (Data
Science).

Detect Pre-training Data Bias

Algorithmic bias, discrimination, fairness, and related topics have been studied across disciplines
such as law, policy, and computer science. A computer system might be considered biased
if it discriminates against certain individuals or groups of individuals. The machine learning
models powering these applications learn from data and this data could reflect disparities or
other inherent biases. For example, the training data may not have sufficient representation of
various demographic groups or may contain biased labels. The machine learning models trained
on datasets that exhibit these biases could end up learning them and then reproduce or even
exacerbate those biases in their predictions. The field of machine learning provides an opportunity
to address biases by detecting them and measuring them at each stage of the ML lifecycle. You can
use Amazon SageMaker Clarify to determine whether data used for training models encodes any
bias

Bias can be measured before training and after training, and monitored against baselines after
deploying models to endpoints for inference. Pre-training bias metrics are designed to detect
and measure bias in the raw data before it is used to train a model. The metrics used are model-
agnostic because they do not depend on any model outputs. However, there are different concepts
of fairness that require distinct measures of bias. Amazon SageMaker Clarify provides bias metrics
to quantify various fairness criteria.

For additional information about bias metrics, see Learn How Amazon SageMaker Clarify Helps
Detect Bias and Fairness Measures for Machine Learning in Finance.

Amazon SageMaker Clarify Terms for Bias and Fairness

SageMaker Clarify uses the following terminology to discuss bias and fairness.

Detect Pre-training Data Bias 5449

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/text_explainability/text_explainability.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/text_explainability/text_explainability.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/computer_vision/image_classification/explainability_image_classification.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/computer_vision/object_detection/object_detection_clarify.html
https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias
https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias
https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf

Amazon SageMaker Developer Guide

Feature

An individual measurable property or characteristic of a phenomenon being observed,
contained in a column for tabular data.

Label

Feature that is the target for training a machine learning model. Referred to as the observed
label or observed outcome.

Predicted label

The label as predicted by the model. Also referred to as the predicted outcome.

Sample

An observed entity described by feature values and label value, contained in a row for tabular
data.

Dataset

A collection of samples.

Bias

An imbalance in the training data or the prediction behavior of the model across different
groups, such as age or income bracket. Biases can result from the data or algorithm used to
train your model. For instance, if an ML model is trained primarily on data from middle-aged
individuals, it may be less accurate when making predictions involving younger and older
people.

Bias metric

A function that returns numerical values indicating the level of a potential bias.

Bias report

A collection of bias metrics for a given dataset, or a combination of a dataset and a model.

Positive label values

Label values that are favorable to a demographic group observed in a sample. In other words,
designates a sample as having a positive result.

Negative label values

Label values that are unfavorable to a demographic group observed in a sample. In other words,
designates a sample as having a negative result.

Detect Pre-training Data Bias 5450

Amazon SageMaker Developer Guide

Group variable

Categorical column of the dataset that is used to form subgroups for the measurement
of Conditional Demographic Disparity (CDD). Required only for this metric with regards to
Simpson’s paradox.

Facet

A column or feature that contains the attributes with respect to which bias is measured.

Facet value

The feature values of attributes that bias might favor or disfavor.

Predicted probability

The probability, as predicted by the model, of a sample having a positive or negative outcome.

Sample Notebooks

Amazon SageMaker Clarify provides the following sample notebook for bias detection:

• Explainability and bias detection with Amazon SageMaker Clarify – Use SageMaker Clarify
to create a processing job for detecting bias and explaining model predictions with feature
attributions.

This notebook has been verified to run in Amazon SageMaker Studio only. If you need instructions
on how to open a notebook in Amazon SageMaker Studio, see Create or Open an Amazon
SageMaker Studio Classic Notebook. If you're prompted to choose a kernel, choose Python 3 (Data
Science).

Topics

• Measure Pre-training Bias

• Generate Reports for Bias in Pre-training Data in SageMaker Studio

Measure Pre-training Bias

Measuring bias in ML models is a first step to mitigating bias. Each measure of bias corresponds to
a different notion of fairness. Even considering simple concepts of fairness leads to many different
measures applicable in various contexts. For example, consider fairness with respect to age, and,
for simplicity, that middle-aged and rest of the age groups are the two relevant demographics,

Detect Pre-training Data Bias 5451

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/fairness_and_explainability/fairness_and_explainability.html

Amazon SageMaker Developer Guide

referred to as facets. In the case of an ML model for lending, we may want small business loans
to be issued to equal numbers of both demographics. Or, when processing job applicants, we may
want to see equal numbers of members of each demographic hired. However, this approach may
assume that equal numbers of both age groups apply to these jobs, so we may want to condition
on the number that apply. Further, we may want to consider not whether equal numbers apply,
but whether we have equal numbers of qualified applicants. Or, we may consider fairness to be an
equal acceptance rate of qualified applicants across both age demographics, or, an equal rejection
rate of applicants, or both. You might use datasets with different proportions of data on the
attributes of interest. This imbalance can conflate the bias measure you choose. The models might
be more accurate in classifying one facet than in the other. Thus, you need to choose bias metrics
that are conceptually appropriate for the application and the situation.

We use the following notation to discuss the bias metrics. The conceptual model described here
is for binary classification, where events are labeled as having only two possible outcomes in their
sample space, referred to as positive (with value 1) and negative (with value 0). This framework
is usually extensible to multicategory classification in a straightforward way or to cases involving
continuous valued outcomes when needed. In the binary classification case, positive and negative
labels are assigned to outcomes recorded in a raw dataset for a favored facet a and for a disfavored
facet d. These labels y are referred to as observed labels to distinguish them from the predicted
labels y' that are assigned by a machine learning model during the training or inferences stages of
the ML lifecycle. These labels are used to define probability distributions Pa(y) and Pd(y) for their
respective facet outcomes.

• labels:

• y represents the n observed labels for event outcomes in a training dataset.

• y' represents the predicted labels for the n observed labels in the dataset by a trained model.

• outcomes:

• A positive outcome (with value 1) for a sample, such as an application acceptance.

• n(1) is the number of observed labels for positive outcomes (acceptances).

• n'(1) is the number of predicted labels for positive outcomes (acceptances).

• A negative outcome (with value 0) for a sample, such as an application rejection.

• n(0) is the number of observed labels for negative outcomes (rejections).

• n'(0) is the number of predicted labels for negative outcomes (rejections).

• facet values:

• facet a – The feature value that defines a demographic that bias favors.
Detect Pre-training Data Bias 5452

Amazon SageMaker Developer Guide

• na is the number of observed labels for the favored facet value: na = na
(1) + na

(0) the sum of
the positive and negative observed labels for the value facet a.

• n'a is the number of predicted labels for the favored facet value: n'a = n'a
(1) + n'a

(0) the sum of
the positive and negative predicted outcome labels for the facet value a. Note that n'a = na.

• facet d – The feature value that defines a demographic that bias disfavors.

• nd is the number of observed labels for the disfavored facet value: nd = nd
(1) + nd

(0) the sum
of the positive and negative observed labels for the facet value d.

• n'd is the number of predicted labels for the disfavored facet value: n'd = n'd
(1) + n'd

(0) the
sum of the positive and negative predicted labels for the facet value d. Note that n'd = nd.

• probability distributions for outcomes of the labeled facet data outcomes:

• Pa(y) is the probability distribution of the observed labels for facet a. For binary labeled data,
this distribution is given by the ratio of the number of samples in facet a labeled with positive
outcomes to the total number, Pa(y1) = na

(1)/ na, and the ratio of the number of samples with
negative outcomes to the total number, Pa(y0) = na

(0)/ na.

• Pd(y) is the probability distribution of the observed labels for facet d. For binary labeled data,
this distribution is given by the number of samples in facet d labeled with positive outcomes
to the total number, Pd(y1) = nd

(1)/ nd, and the ratio of the number of samples with negative
outcomes to the total number, Pd(y0) = nd

(0)/ nd.

Models trained on data biased by demographic disparities might learn and even exacerbate
them. To identify bias in the data before expending resources to train models on it, SageMaker
Clarify provides data bias metrics that you can compute on raw datasets before training. All of
the pretraining metrics are model-agnostic because they do not depend on model outputs and
so are valid for any model. The first bias metric examines facet imbalance, but not outcomes. It
determines the extent to which the amount of training data is representative across different
facets, as desired for the application. The remaining bias metrics compare the distribution of
outcome labels in various ways for facets a and d in the data. The metrics that range over negative
values can detect negative bias. The following table contains a cheat sheet for quick guidance and
links to the pretraining bias metrics.

Detect Pre-training Data Bias 5453

Amazon SageMaker Developer Guide

Pre-training Bias Metrics

Bias metric Description Example question Interpreting metric
values

Class Imbalance (CI) Measures the
imbalance in the
number of members
between different
 facet values.

Could there be
age-based biases
due to not having
enough data for the
demographic outside
a middle-aged facet?

Normalized range:
[-1,+1]

Interpretation:

• Positive values
indicate the facet a
has more training
samples in the
dataset.

• Values near zero
indicate the facets
are balanced in the
number of training
samples in the
dataset.

• Negative values
indicate the facet d
has more training
samples in the
dataset.

Difference in
Proportions of Labels
(DPL)

Measures the
imbalance of positive
outcomes between
different facet values.

Could there be age-
based biases in ML
predictions due to
biased labeling of
facet values in the
data?

Range for normalize
d binary & multicate
gory facet labels: [-1,
+1]

Range for continuous
labels: (-∞, +∞)

Interpretation:

• Positive values
indicate facet

Detect Pre-training Data Bias 5454

Amazon SageMaker Developer Guide

Bias metric Description Example question Interpreting metric
values

a has a higher
proportion of
positive outcomes.

• Values near zero
indicate a more
equal proportion of
positive outcomes
between facets.

• Negative values
indicate facet
d has a higher
proportion of
positive outcomes.

Kullback-Leibler
Divergence (KL)

Measures how much
the outcome distribut
ions of different
facets diverge from
each other entropica
lly.

How different are
the distributions
for loan applicati
on outcomes for
different demograph
ic groups?

Range for binary,
multicategory,
continuous: [0, +∞)

Interpretation:

• Values near zero
indicate the labels
are similarly
 distributed.

• Positive values
indicate the label
distributions
diverge, the more
positive the larger
the divergence.

Detect Pre-training Data Bias 5455

Amazon SageMaker Developer Guide

Bias metric Description Example question Interpreting metric
values

Jensen-Shannon
Divergence (JS)

Measures how much
the outcome distribut
ions of different
facets diverge from
each other entropica
lly.

How different are
the distributions
for loan applicati
on outcomes for
different demograph
ic groups?

Range for binary,
multicategory,
continuous: [0, +∞)

Interpretation:

• Values near zero
indicate the labels
are similarly
 distributed.

• Positive values
indicate the label
distributions
diverge, the more
positive the larger
the divergence.

Lp-norm (LP) Measures a p-norm
difference between
distinct demograph
ic distributions of the
outcomes associated
with different facets
in a dataset.

How different are
the distributions
for loan applicati
on outcomes for
different demograph
ics?

Range for binary,
multicategory,
continuous: [0, +∞)

Interpretation:

• Values near zero
indicate the labels
are similarly
 distributed.

• Positive values
indicate the label
distributions
diverge, the more
positive the larger
the divergence.

Detect Pre-training Data Bias 5456

Amazon SageMaker Developer Guide

Bias metric Description Example question Interpreting metric
values

Total Variation
 Distance (TVD)

Measures half
of the L1-norm
difference between
distinct demograph
ic distributions of the
outcomes associated
with different facets
in a dataset.

How different are
the distributions
for loan applicati
on outcomes for
different demograph
ics?

Range for binary,
multicategory, and
continuous outcomes:
[0, +∞)

• Values near zero
indicates the
labels are similarly
 distributed.

• Positive values
indicates the
label distributions
diverge, the more
positive the larger
the divergence.

Detect Pre-training Data Bias 5457

Amazon SageMaker Developer Guide

Bias metric Description Example question Interpreting metric
values

Kolmogorov-Smirnov
 (KS)

Measures maximum
divergence between
outcomes in distribut
ions for different
facets in a dataset.

Which college
application outcomes
manifest the greatest
disparities by
demographic group?

Range of KS values
for binary, multicate
gory, and continuous
outcomes: [0,+1]

• Values near
zero indicate
the labels were
evenly distribut
ed between facets
in all outcome
categories.

• Values near one
indicate the labels
for one category
were all in one
facet, so very
imbalanced.

• Intermittent
values indicate
relative degrees
of maximum label
imbalance.

Detect Pre-training Data Bias 5458

Amazon SageMaker Developer Guide

Bias metric Description Example question Interpreting metric
values

Conditional
Demographic
Disparity (CDD)

Measures the
disparity of outcomes
between different
facets as a whole, but
also by subgroups.

Do some groups have
a larger proportion of
rejections for college
admission outcomes
than their proportion
of acceptances?

Range of CDD: [-1,
+1]

• Positive values
indicate a
outcomes where
facet d is rejected
more than
accepted.

• Near zero indicates
no demograph
ic disparity on
average.

• Negative values
indicate a
outcomes where
facet a is rejected
more than
accepted.

For additional information about bias metrics, see Fairness Measures for Machine Learning in
Finance.

Topics

• Class Imbalance (CI)

• Difference in Proportions of Labels (DPL)

• Kullback-Leibler Divergence (KL)

• Jensen-Shannon Divergence (JS)

• Lp-norm (LP)

• Total Variation Distance (TVD)

• Kolmogorov-Smirnov (KS)

Detect Pre-training Data Bias 5459

https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf

Amazon SageMaker Developer Guide

• Conditional Demographic Disparity (CDD)

Class Imbalance (CI)

Class imbalance (CI) bias occurs when a facet value d has fewer training samples when compared
with another facet a in the dataset. This is because models preferentially fit the larger facets at the
expense of the smaller facets and so can result in a higher training error for facet d. Models are also
at higher risk of overfitting the smaller data sets, which can cause a larger test error for facet d.
Consider the example where a machine learning model is trained primarily on data from middle-
aged individuals (facet a), it might be less accurate when making predictions involving younger and
older people (facet d).

The formula for the (normalized) facet imbalance measure:

 CI = (na - nd)/(na + nd)

Where na is the number of members of facet a and nd the number for facet d. Its values range over
the interval [-1, 1].

• Positive CI values indicate the facet a has more training samples in the dataset and a value of 1
indicates the data only contains members of the facet a.

• Values of CI near zero indicate a more equal distribution of members between facets and a
value of zero indicates a perfectly equal partition between facets and represents a balanced
distribution of samples in the training data.

• Negative CI values indicate the facet d has more training samples in the dataset and a value of -1
indicates the data only contains members of the facet d.

• CI values near either of the extremes values of -1 or 1 are very imbalanced and are at a
substantial risk of making biased predictions.

If a significant facet imbalance is found to exist among the facets, you might want to rebalance the
sample before proceeding to train models on it.

Difference in Proportions of Labels (DPL)

The difference in proportions of labels (DPL) compares the proportion of observed outcomes with
positive labels for facet d with the proportion of observed outcomes with positive labels of facet
a in a training dataset. For example, you could use it to compare the proportion of middle-aged
individuals (facet a) and other age groups (facet d) approved for financial loans. Machine learning

Detect Pre-training Data Bias 5460

Amazon SageMaker Developer Guide

models try to mimic the training data decisions as closely as possible. So a machine learning model
trained on a dataset with a high DPL is likely to reflect the same imbalance in its future predictions.

The formula for the difference in proportions of labels is as follows:

 DPL = (qa - qd)

Where:

• qa = na
(1)/na is the proportion of facet a who have an observed label value of 1. For example, the

proportion of a middle-aged demographic who get approved for loans. Here na
(1) represents the

number of members of facet a who get a positive outcome and na the is number of members of
facet a.

• qd = nd
(1)/nd is the proportion of facet d who have an observed label value of 1. For example, the

proportion of people outside the middle-aged demographic who get approved for loans. Here
nd

(1) represents the number of members of the facet d who get a positive outcome and nd the is
number of members of the facet d.

If DPL is close enough to 0, then we say that demographic parity has been achieved.

For binary and multicategory facet labels, the DPL values range over the interval (-1, 1). For
continuous labels, we set a threshold to collapse the labels to binary.

• Positive DPL values indicate that facet a is has a higher proportion of positive outcomes when
compared with facet d.

• Values of DPL near zero indicate a more equal proportion of positive outcomes between facets
and a value of zero indicates perfect demographic parity.

• Negative DPL values indicate that facet d has a higher proportion of positive outcomes when
compared with facet a.

Whether or not a high magnitude of DPL is problematic varies from one situation to another. In
a problematic case, a high-magnitude DPL might be a signal of underlying issues in the data. For
example, a dataset with high DPL might reflect historical biases or prejudices against age-based
demographic groups that would be undesirable for a model to learn.

Kullback-Leibler Divergence (KL)

The Kullback-Leibler divergence (KL) measures how much the observed label distribution of facet
a, Pa(y), diverges from distribution of facet d, Pd(y). It is also known as the relative entropy of Pa(y)

Detect Pre-training Data Bias 5461

Amazon SageMaker Developer Guide

with respect to Pd(y) and quantifies the amount of information lost when moving from Pa(y) to
Pd(y).

The formula for the Kullback-Leibler divergence is as follows:

 KL(Pa || Pd) = ∑yPa(y)*log[Pa(y)/Pd(y)]

It is the expectation of the logarithmic difference between the probabilities Pa(y) and Pd(y), where
the expectation is weighted by the probabilities Pa(y). This is not a true distance between the
distributions as it is asymmetric and does not satisfy the triangle inequality. The implementation
uses natural logarithms, giving KL in units of nats. Using different logarithmic bases gives
proportional results but in different units. For example, using base 2 gives KL in units of bits.

For example, assume that a group of applicants for loans have a 30% approval rate (facet d) and
that the approval rate for other applicants (facet a) is 80%. The Kullback-Leibler formula gives you
the label distribution divergence of facet a from facet d as follows:

 KL = 0.8*ln(0.8/0.3) + 0.2*ln(0.2/0.7) = 0.53

There are two terms in the formula here because labels are binary in this example. This measure
can be applied to multiple labels in addition to binary ones. For example, in a college admissions
scenario, assume an applicant may be assigned one of three category labels: yi = {y0, y1, y2} =
{rejected, waitlisted, accepted}.

Range of values for the KL metric for binary, multicategory, and continuous outcomes is [0, +∞).

• Values near zero mean the outcomes are similarly distributed for the different facets.

• Positive values mean the label distributions diverge, the more positive the larger the divergence.

Jensen-Shannon Divergence (JS)

The Jensen-Shannon divergence (JS) measures how much the label distributions of different
facets diverge from each other entropically. It is based on the Kullback-Leibler divergence, but it is
symmetric.

The formula for the Jensen-Shannon divergence is as follows:

 JS = ½*[KL(Pa || P) + KL(Pd || P)]

Where P = ½(Pa + Pd), the average label distribution across facets a and d.

Detect Pre-training Data Bias 5462

Amazon SageMaker Developer Guide

The range of JS values for binary, multicategory, continuous outcomes is [0, ln(2)).

• Values near zero mean the labels are similarly distributed.

• Positive values mean the label distributions diverge, the more positive the larger the divergence.

This metric indicates whether there is a big divergence in one of the labels across facets.

Lp-norm (LP)

The Lp-norm (LP) measures the p-norm distance between the facet distributions of the observed
labels in a training dataset. This metric is non-negative and so cannot detect reverse bias.

The formula for the Lp-norm is as follows:

 Lp(Pa, Pd) = (∑y||Pa - Pd||p)1/p

Where the p-norm distance between the points x and y is defined as follows:

 Lp(x, y) = (|x1-y1|p + |x2-y2|p + … +|xn-yn|p)1/p

The 2-norm is the Euclidean norm. Assume you have an outcome distribution with three categories,
for example, yi = {y0, y1, y2} = {accepted, waitlisted, rejected} in a college admissions multicategory
scenario. You take the sum of the squares of the differences between the outcome counts for facets
a and d. The resulting Euclidean distance is calculated as follows:

 L2(Pa, Pd) = [(na
(0) - nd

(0))2 + (na
(1) - nd

(1))2 + (na
(2) - nd

(2))2]1/2

Where:

• na
(i) is number of the ith category outcomes in facet a: for example na

(0) is number of facet a
acceptances.

• nd
(i) is number of the ith category outcomes in facet d: for example nd

(2) is number of facet d
rejections.

The range of LP values for binary, multicategory, and continuous outcomes is [0, √2), where:

• Values near zero mean the labels are similarly distributed.

• Positive values mean the label distributions diverge, the more positive the larger the
divergence.

Detect Pre-training Data Bias 5463

Amazon SageMaker Developer Guide

Total Variation Distance (TVD)

The total variation distance data bias metric (TVD) is half the L1-norm. The TVD is the largest
possible difference between the probability distributions for label outcomes of facets a and d. The
L1-norm is the Hamming distance, a metric used compare two binary data strings by determining
the minimum number of substitutions required to change one string into another. If the strings
were to be copies of each other, it determines the number of errors that occurred when copying.
In the bias detection context, TVD quantifies how many outcomes in facet a would have to be
changed to match the outcomes in facet d.

The formula for the Total variation distance is as follows:

 TVD = ½*L1(Pa, Pd)

For example, assume you have an outcome distribution with three categories, yi = {y0, y1, y2}
= {accepted, waitlisted, rejected}, in a college admissions multicategory scenario. You take the
differences between the counts of facets a and d for each outcome to calculate TVD. The result is
as follows:

 L1(Pa, Pd) = |na
(0) - nd

(0)| + |na
(1) - nd

(1)| + |na
(2) - nd

(2)|

Where:

• na
(i) is number of the ith category outcomes in facet a: for example na

(0) is number of facet a
acceptances.

• nd
(i) is number of the ith category outcomes in facet d: for example nd

(2) is number of facet d
rejections.

The range of TVD values for binary, multicategory, and continuous outcomes is [0, 1), where:

• Values near zero mean the labels are similarly distributed.

• Positive values mean the label distributions diverge, the more positive the larger the
divergence.

Kolmogorov-Smirnov (KS)

The Kolmogorov-Smirnov bias metric (KS) is equal to the maximum divergence between labels
in the distributions for facets a and d of a dataset. The two-sample KS test implemented by
SageMaker Clarify complements the other measures of label imbalance by finding the most
imbalanced label.

Detect Pre-training Data Bias 5464

Amazon SageMaker Developer Guide

The formula for the Kolmogorov-Smirnov metric is as follows:

 KS = max(|Pa(y) - Pd(y)|)

For example, assume a group of applicants (facet a) to college are rejected, waitlisted, or accepted
at 40%, 40%, 20% respectively and that these rates for other applicants (facet d) are 20%, 10%,
70%. Then the Kolmogorov-Smirnov bias metric value is as follows:

KS = max(|0.4-0.2|, |0.4-0.1|, |0.2-0.7|) = 0.5

This tells us the maximum divergence between facet distributions is 0.5 and occurs in the
acceptance rates. There are three terms in the equation because labels are multiclass of cardinality
three.

The range of LP values for binary, multicategory, and continuous outcomes is [0, +1], where:

• Values near zero indicate the labels were evenly distributed between facets in all outcome
categories. For example, both facets applying for a loan got 50% of the acceptances and 50% of
the rejections.

• Values near one indicate the labels for one outcome were all in one facet. For example, facet a
got 100% of the acceptances and facet d got none.

• Intermittent values indicate relative degrees of maximum label imbalance.

Conditional Demographic Disparity (CDD)

The demographic disparity metric (DD) determines whether a facet has a larger proportion of
the rejected outcomes in the dataset than of the accepted outcomes. In the binary case where
there are two facets, men and women for example, that constitute the dataset, the disfavored
one is labelled facet d and the favored one is labelled facet a. For example, in the case of college
admissions, if women applicants comprised 46% of the rejected applicants and comprised only
32% of the accepted applicants, we say that there is demographic disparity because the rate at
which women were rejected exceeds the rate at which they are accepted. Women applicants are
labelled facet d in this case. If men applicants comprised 54% of the rejected applicants and 68%
of the accepted applicants, then there is not a demographic disparity for this facet as the rate of
rejection is less that the rate of acceptance. Men applicants are labelled facet a in this case.

The formula for the demographic disparity for the less favored facet d is as follows:

 DDd = nd
(0)/n(0) - nd

(1)/n(1) = Pd
R(y0) - Pd

A(y1)

Detect Pre-training Data Bias 5465

Amazon SageMaker Developer Guide

Where:

• n(0) = na
(0) + nd

(0) is the total number of rejected outcomes in the dataset for the favored facet a
and disadvantaged facet d.

• n(1) = na
(1) + nd

(1) is the total number of accepted outcomes in the dataset for the favored facet a
and disadvantaged facet d.

• Pd
R(y0) is the proportion of rejected outcomes (with value 0) in facet d.

• Pd
A(y1) is the proportion of accepted outcomes (value 1) in facet d.

For the college admission example, the demographic disparity for women is DDd = 0.46 - 0.32 =
0.14. For men DDa = 0.54 - 0.68 = - 0.14.

A conditional demographic disparity (CDD) metric that conditions DD on attributes that define
a strata of subgroups on the dataset is needed to rule out Simpson's paradox. The regrouping
can provide insights into the cause of apparent demographic disparities for less favored facets.
The classic case arose in the case of Berkeley admissions where men were accepted at a higher
rate overall than women. The statistics for this case were used in the example calculations of
DD. However, when departmental subgroups were examined, women were shown to have higher
admission rates than men when conditioned by department. The explanation was that women had
applied to departments with lower acceptance rates than men had. Examining the subgrouped
acceptance rates revealed that women were actually accepted at a higher rate than men for the
departments with lower acceptance rates.

The CDD metric gives a single measure for all of the disparities found in the subgroups defined by
an attribute of a dataset by averaging them. It is defined as the weighted average of demographic
disparities (DDi) for each of the subgroups, with each subgroup disparity weighted in proportion to
the number of observations in contains. The formula for the conditional demographic disparity is
as follows:

 CDD = (1/n)*∑ini *DDi

Where:

• ∑ini = n is the total number of observations and niis the number of observations for each
subgroup.

• DDi = ni
(0)/n(0) - ni

(1)/n(1) = Pi
R(y0) - Pi

A(y1) is the demographic disparity for the ith subgroup.

Detect Pre-training Data Bias 5466

Amazon SageMaker Developer Guide

The demographic disparity for a subgroup (DDi) are the difference between the proportion of
rejected outcomes and the proportion of accepted outcomes for each subgroup.

The range of DD values for binary outcomes for the full dataset DDd or for its conditionalized
subgroups DDi is [-1, +1].

• +1: when there no rejections in facet a or subgroup and no acceptances in facet d or subgroup

• Positive values indicate there is a demographic disparity as facet d or subgroup has a greater
proportion of the rejected outcomes in the dataset than of the accepted outcomes. The higher
the value the less favored the facet and the greater the disparity.

• Negative values indicate there is not a demographic disparity as facet d or subgroup has a larger
proportion of the accepted outcomes in the dataset than of the rejected outcomes. The lower
the value the more favored the facet.

• -1: when there are no rejections in facet d or subgroup and no acceptances in facet a or subgroup

If you don't condition on anything then CDD is zero if and only if DPL is zero.

This metric is useful for exploring the concepts of direct and indirect discrimination and of
objective justification in EU and UK non-discrimination law and jurisprudence. For additional
information, see Why Fairness Cannot Be Automated. This paper also contains the relevant data
and analysis of the Berkeley admissions case that shows how conditionalizing on departmental
admission rate subgroups illustrates Simpson's paradox.

Generate Reports for Bias in Pre-training Data in SageMaker Studio

SageMaker Clarify is integrated with Amazon SageMaker Data Wrangler, which can help you
identify bias during data preparation without having to write your own code. Data Wrangler
provides an end-to-end solution to import, prepare, transform, featurize, and analyze data with
Amazon SageMaker Studio. For an overview of the Data Wrangler data prep workflow, see Prepare
ML Data with Amazon SageMaker Data Wrangler.

You specify attributes of interest, such as gender or age, and SageMaker Clarify runs a set of
algorithms to detect the presence of bias in those attributes. After the algorithm runs, SageMaker
Clarify provides a visual report with a description of the sources and severity of possible bias so
that you can plan steps to mitigate. For example, in a financial dataset that contains few examples
of business loans to one age group as compared to others, SageMaker flags the imbalance so that
you can avoid a model that disfavors that age group.

Detect Pre-training Data Bias 5467

https://arxiv.org/abs/2005.05906

Amazon SageMaker Developer Guide

To analyze and report on data bias

To get started with Data Wrangler, see Get Started with Data Wrangler.

1. In Amazon SageMaker Studio Classic, from the Home

()
menu in the left panel, navigate to the Data node, then choose Data Wrangler. This opens the
Data Wrangler landing page in Studio Classic.

2. Choose the + Import data button to create a new flow.

3. In your flow page, from the Import tab, choose Amazon S3, navigate to your Amazon S3
bucket, find your dataset, then choose Import.

4. After you have imported your data, on the flow graph in the Data flow tab, choose the + sign
to the right of the Data types node.

5. Choose Add analysis.

6. On the Create Analysis page, choose Bias Report for the Analysis type.

7. Configure the bias report by providing a report Name, the column to predict and whether it
is a value or threshold, the column to analyze for bias (the facet) and whether it is a value or
threshold.

8. Continue configuring the bias report by choosing the bias metrics.

Detect Pre-training Data Bias 5468

Amazon SageMaker Developer Guide

9. Choose Check for bias to generate and view the bias report. Scroll down to view all of the
reports.

Detect Pre-training Data Bias 5469

Amazon SageMaker Developer Guide

10. Choose the caret to the right of each bias metric description to see documentation that can
help you interpret the significance of the metric values.

11. To view a table summary of the bias metric values, choose the Table toggle. To save the
report, choose Save in the lower-right corner of the page. You can see the report on the flow
graph in the Data flow tab. Double-click on the report to open it.

Detect Post-training Data and Model Bias

Post-training bias analysis can help reveal biases that might have emanated from biases in the
data, or from biases introduced by the classification and prediction algorithms. These analyses
take into consideration the data, including the labels, and the predictions of a model. You assess
performance by analyzing predicted labels or by comparing the predictions with the observed
target values in the data with respect to groups with different attributes. There are different
notions of fairness, each requiring different bias metrics to measure.

There are legal concepts of fairness that might not be easy to capture because they are hard to
detect. For example, the US concept of disparate impact that occurs when a group, referred to as
a less favored facet d, experiences an adverse effect even when the approach taken appears to be
fair. This type of bias might not be due to a machine learning model, but might still be detectable
by post-training bias analysis.

Amazon SageMaker Clarify tries to ensure a consistent use of terminology. For a list of terms and
their definitions, see Amazon SageMaker Clarify Terms for Bias and Fairness.

Detect Post-training Data and Model Bias 5470

Amazon SageMaker Developer Guide

For additional information about post-training bias metrics, see Learn How Amazon SageMaker
Clarify Helps Detect Bias and Fairness Measures for Machine Learning in Finance..

Measure Post-training Data and Model Bias

Amazon SageMaker Clarify provides eleven post-training data and model bias metrics to help
quantify various conceptions of fairness. These concepts cannot all be satisfied simultaneously
and the selection depends on specifics of the cases involving potential bias being analyzed. Most
of these metrics are a combination of the numbers taken from the binary classification confusion
matrices for the different demographic groups. Because fairness and bias can be defined by a
wide range of metrics, human judgment is required to understand and choose which metrics are
relevant to the individual use case, and customers should consult with appropriate stakeholders to
determine the appropriate measure of fairness for their application.

We use the following notation to discuss the bias metrics. The conceptual model described here
is for binary classification, where events are labeled as having only two possible outcomes in their
sample space, referred to as positive (with value 1) and negative (with value 0). This framework
is usually extensible to multicategory classification in a straightforward way or to cases involving
continuous valued outcomes when needed. In the binary classification case, positive and negative
labels are assigned to outcomes recorded in a raw dataset for a favored facet a and for a disfavored
facet d. These labels y are referred to as observed labels to distinguish them from the predicted
labels y' that are assigned by a machine learning model during the training or inferences stages of
the ML lifecycle. These labels are used to define probability distributions Pa(y) and Pd(y) for their
respective facet outcomes.

• labels:

• y represents the n observed labels for event outcomes in a training dataset.

• y' represents the predicted labels for the n observed labels in the dataset by a trained model.

• outcomes:

• A positive outcome (with value 1) for a sample, such as an application acceptance.

• n(1) is the number of observed labels for positive outcomes (acceptances).

• n'(1) is the number of predicted labels for positive outcomes (acceptances).

• A negative outcome (with value 0) for a sample, such as an application rejection.

• n(0) is the number of observed labels for negative outcomes (rejections).

• n'(0) is the number of predicted labels for negative outcomes (rejections).

• facet values:

Detect Post-training Data and Model Bias 5471

https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias/
https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias/
https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf

Amazon SageMaker Developer Guide

• facet a – The feature value that defines a demographic that bias favors.

• na is the number of observed labels for the favored facet value: na = na
(1) + na

(0) the sum of
the positive and negative observed labels for the value facet a.

• n'a is the number of predicted labels for the favored facet value: n'a = n'a
(1) + n'a

(0) the sum of
the positive and negative predicted outcome labels for the facet value a. Note that n'a = na.

• facet d – The feature value that defines a demographic that bias disfavors.

• nd is the number of observed labels for the disfavored facet value: nd = nd
(1) + nd

(0) the sum
of the positive and negative observed labels for the facet value d.

• n'd is the number of predicted labels for the disfavored facet value: n'd = n'd
(1) + n'd

(0) the
sum of the positive and negative predicted labels for the facet value d. Note that n'd = nd.

• probability distributions for outcomes of the labeled facet data outcomes:

• Pa(y) is the probability distribution of the observed labels for facet a. For binary labeled data,
this distribution is given by the ratio of the number of samples in facet a labeled with positive
outcomes to the total number, Pa(y1) = na

(1)/ na, and the ratio of the number of samples with
negative outcomes to the total number, Pa(y0) = na

(0)/ na.

• Pd(y) is the probability distribution of the observed labels for facet d. For binary labeled data,
this distribution is given by the number of samples in facet d labeled with positive outcomes
to the total number, Pd(y1) = nd

(1)/ nd, and the ratio of the number of samples with negative
outcomes to the total number, Pd(y0) = nd

(0)/ nd.

The following table contains a cheat sheet for quick guidance and links to the post-training bias
metrics.

Post-training bias metrics

Post-training bias
metric

Description Example question Interpreting metric
values

Difference in Positive
Proportions in
Predicted Labels
(DPPL)

Measures the
difference in the
proportion of positive
predictions between
the favored facet a
and the disfavored
facet d.

Has there been an
imbalance across
demographic groups
in the predicted
 positive outcomes
that might indicate
bias?

Range for normalize
d binary & multicate
gory facet labels:
[-1,+1]

Range for continuous
labels: (-∞, +∞)

Detect Post-training Data and Model Bias 5472

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Interpretation:

• Positive values
indicate that the
favored facet a has
a higher proportio
n of predicted
positive outcomes.

• Values near zero
indicate a more
equal proportion of
predicted positive
outcomes between
facets.

• Negative values
indicate the
disfavored facet
d has a higher
proportion of
predicted positive
outcomes.

Detect Post-training Data and Model Bias 5473

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Disparate Impact (DI) Measures the ratio
of proportions of the
predicted labels for
the favored facet a
and the disfavored
facet d.

Has there been an
imbalance across
demographic groups
in the predicted
 positive outcomes
that might indicate
bias?

Range for normalized
binary, multicategory
facet, and continuous
labels: [0,∞)

Interpretation:

• Values less than
1 indicate the
favored facet a has
a higher proportio
n of predicted
positive outcomes.

• A value of 1
indicates that we
have demographic
parity.

• Values greater
than 1 indicate
the disfavored
facet d has a higher
proportion of
predicted positive
outcomes.

Detect Post-training Data and Model Bias 5474

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Conditional
Demographic
Disparity in Predicted
Labels (CDDPL)

Measures the
disparity of predicted
labels between the
facets as a whole, but
also by subgroups.

Do some demograph
ic groups have a
larger proportion of
rejections for loan
application outcomes
than their proportion
of acceptances?

The range of CDDPL
values for binary,
multicategory, and
continuous outcomes:
[-1, +1]

• Positive values
indicate outcomes
where facet d is
rejected more than
accepted.

• Near zero indicates
no demograph
ic disparity on
average.

• Negative values
indicate outcomes
where facet a is
rejected more than
accepted.

Detect Post-training Data and Model Bias 5475

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Counterfactual
Fliptest (FT)

Examines each
member of facet d
and assesses whether
similar members of
facet a have different
model predictions.

Is one group of
a specific-age
demographic
matched closely on
all features with a
different age group,
yet paid more on
average?

The range for binary
and multicategory
facet labels is [-1,
+1].

• Positive values
occur when
the number of
unfavorable
counterfactual
fliptest decisions
for the disfavored
facet d exceeds the
favorable ones.

• Values near
zero occur when
the number of
unfavorable and
favorable counterfa
ctual fliptest
decisions balance
out.

• Negative values
occur when
the number of
unfavorable
counterfactual
fliptest decisions
for the disfavored
facet d is less than
the favorable ones.

Detect Post-training Data and Model Bias 5476

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Accuracy Difference
(AD)

Measures the
difference between
the prediction
accuracy for the
favored and disfavore
d facets.

Does the model
predict labels as
accurately for
applications across all
demographic groups?

The range for binary
and multicategory
facet labels is [-1,
+1].

• Positive values
indicate that facet
d suffers more from
some combination
of false positives
(Type I errors) or
false negatives
(Type II errors).
This means there
is a potential
bias against the
disfavored facet d.

• Values near zero
occur when the
prediction accuracy
for facet a is similar
to that for facet d.

• Negative values
indicate that facet
a suffers more from
some combination
of false positives
(Type I errors) or
false negatives
(Type II errors). This
means the is a bias
against the favored
facet a.

Detect Post-training Data and Model Bias 5477

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Recall Difference (RD) Compares the recall
of the model for the
favored and disfavore
d facets.

Is there an age-
based bias in lending
due to a model
having higher recall
for one age group
as compared to
another?

Range for binary
and multicategory
classification: [-1,
+1].

• Positive values
suggest that
the model finds
more of the true
positives for
facet a and is
biased against the
disfavored facet d.

• Values near zero
suggest that the
model finds about
the same number
of true positives in
both facets and is
not biased.

• Negative values
suggest that
the model finds
more of the true
positives for facet
d and is biased
against the favored
facet a.

Detect Post-training Data and Model Bias 5478

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Difference in
Conditional
Acceptance (DCAcc)

Compares the
observed labels to
the labels predicted
by a model. Assesses
whether this is the
same across facets
for predicted positive
outcomes (acceptan
ces).

When comparing one
age group to another,
are loans accepted
more frequently,
or less often than
predicted (based on
qualifications)?

The range for binary,
multicategory facet,
and continuous
labels: (-∞, +∞).

• Positive values
indicate a possible
bias against the
qualified applicants
from the disfavored
facet d.

• Values near zero
indicate that
qualified applicant
s from both facets
are being accepted
in a similar way.

• Negative values
indicate a possible
bias against the
qualified applicant
s from the favored
facet a.

Detect Post-training Data and Model Bias 5479

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Difference in
Acceptance Rates
(DAR)

Measures the
difference in the
ratios of the observed
positive outcomes
(TP) to the predicted
positives (TP + FP)
between the favored
and disfavored facets.

Does the model
have equal precision
when predicting
loan acceptances for
qualified applicants
across all age groups?

The range for binary,
multicategory facet,
and continuous labels
is [-1, +1].

• Positive values
indicate a possible
bias against facet
d caused by the
occurrence of
relatively more
false positives in
the disfavored
facet d.

• Values near zero
indicate the
observed labels for
positive outcomes
(acceptances) are
being predicted
with equal
precision for both
facets by the
model.

• Negative values
indicate a possible
bias against facet
a caused by the
occurrence of
relatively more
false positives in
the favored facet a.

Detect Post-training Data and Model Bias 5480

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Specificity difference
(SD)

Compares the
specificity of the
model between
favored and disfavore
d facets.

Is there an age-
based bias in lending
because the model
predicts a higher
specificity for one age
group as compared to
another?

Range for binary
and multicategory
classification: [-1,
+1].

• Positive values
suggest that the
model finds less
false positives
for facet d and is
biased against the
disfavored facet d.

• Values near zero
suggest that the
model finds a
similar number of
false positives in
both facets and is
not biased.

• Negative values
suggest that the
model finds less
false positives
for facet a and is
biased against the
favored facet a.

Detect Post-training Data and Model Bias 5481

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Difference in
Conditional Rejection
(DCR)

Compares the
observed labels to
the labels predicted
by a model and
assesses whether this
is the same across
facets for negative
outcomes (rejections).

Are there more or
less rejections for
loan applications
than predicted for
one age group as
compared to another
based on qualifica
tions?

The range for binary,
multicategory facet,
and continuous
labels: (-∞, +∞).

• Positive values
indicate a possible
bias against the
qualified applicants
from the disfavored
facet d.

• Values near zero
indicate that
qualified applicant
s from both facets
are being rejected
in a similar way.

• Negative values
indicate a possible
bias against the
qualified applicant
s from the favored
facet a.

Detect Post-training Data and Model Bias 5482

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Difference in
Rejection Rates (DRR)

Measures the
difference in the
ratios of the observed
negative outcomes
(TN) to the predicted
negatives (TN +
FN) between the
disfavored and
favored facets.

Does the model
have equal precision
when predicting
loan rejections for
unqualified applicant
s across all age
groups?

The range for binary,
multicategory facet,
and continuous labels
is [-1, +1].

• Positive values
indicate a possible
bias caused by
the occurrence of
relatively more
false negatives in
the favored facet a.

• Values near
zero indicate
that negative
outcomes (rejectio
ns) are being
predicted with
equal precision for
both facets.

• Negative values
indicate a possible
bias caused by
the occurrence of
relatively more
false negatives
in the disfavored
facet d.

Detect Post-training Data and Model Bias 5483

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Treatment Equality
(TE)

Measures the
difference in the ratio
of false positives
to false negatives
between the favored
and disfavored facets.

In loan applications,
is the relative ratio
of false positives to
false negatives the
same across all age
demographics?

The range for binary
and multicategory
facet labels: (-∞, +∞).

• Positive values
occur when the
ratio of false
positives to false
negatives for facet
a is greater than
that for facet d.

• Values near zero
occur when the
ratio of false
positives to false
negatives for facet
a is similar to that
for facet d.

• Negative values
occur when the
ratio of false
positives to false
negatives for facet
a is less than that
for facet d.

Detect Post-training Data and Model Bias 5484

Amazon SageMaker Developer Guide

Post-training bias
metric

Description Example question Interpreting metric
values

Generalized entropy
(GE)

Measures the
inequality in benefits
b assigned to each
input by the model
predictions.

Of two candidate
models for loan
application classific
ation, does one lead
to a more uneven
distribution of
desired outcomes
than the other?

The range for binary
and multicategory
labels: (0, 0.5). GE is
undefined when the
model predicts only
false negatives.

• Zero values occur
when all predictio
ns are correct or
all predictions are
false positives.

• Positive values
indicate inequalit
y in benefits; 0.5
corresponds to the
largest inequality.

For additional information about post-training bias metrics, see A Family of Fairness Measures for
Machine Learning in Finance.

Topics

• Difference in Positive Proportions in Predicted Labels (DPPL)

• Disparate Impact (DI)

• Difference in Conditional Acceptance (DCAcc)

• Difference in Conditional Rejection (DCR)

• Specificity difference (SD)

• Recall Difference (RD)

• Difference in Acceptance Rates (DAR)

• Difference in Rejection Rates (DRR)

• Accuracy Difference (AD)

Detect Post-training Data and Model Bias 5485

https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf

Amazon SageMaker Developer Guide

• Treatment Equality (TE)

• Conditional Demographic Disparity in Predicted Labels (CDDPL)

• Counterfactual Fliptest (FT)

• Generalized entropy (GE)

Difference in Positive Proportions in Predicted Labels (DPPL)

The difference in positive proportions in predicted labels (DPPL) metric determines whether the
model predicts outcomes differently for each facet. It is defined as the difference between the
proportion of positive predictions (y’ = 1) for facet a and the proportion of positive predictions (y’
= 1) for facet d. For example, if the model predictions grant loans to 60% of a middle-aged group
(facet a) and 50% other age groups (facet d), it might be biased against facet d. In this example,
you must determine whether the 10% difference is material to a case for bias.

A comparison of difference in proportions of labels (DPL), a measure of pre-training bias, with
DPPL, a measure of post-training bias, assesses whether bias in positive proportions that are
initially present in the dataset changes after training. If DPPL is larger than DPL, then bias in
positive proportions increased after training. If DPPL is smaller than DPL, the model did not
increase bias in positive proportions after training. Comparing DPL against DPPL does not
guarantee that the model reduces bias along all dimensions. For example, the model may still be
biased when considering other metrics such as Counterfactual Fliptest (FT) or Accuracy Difference
(AD). For more information about bias detection, see the blog post Learn how Amazon SageMaker
Clarify helps detect bias. See Difference in Proportions of Labels (DPL) for more information about
DPL.

The formula for the DPPL is:

 DPPL = q'a - q'd

Where:

• q'a = n'a
(1)/na is the predicted proportion of facet a who get a positive outcome of value 1. In

our example, the proportion of a middle-aged facet predicted to get granted a loan. Here n'a
(1)

represents the number of members of facet a who get a positive predicted outcome of value 1
and na the is number of members of facet a.

• q'd = n'd
(1)/nd is the predicted proportion of facet d who get a positive outcome of value 1. In

our example, a facet of older and younger people predicted to get granted a loan. Here n'd
(1)

Detect Post-training Data and Model Bias 5486

https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias/
https://aws.amazon.com/blogs/machine-learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias/

Amazon SageMaker Developer Guide

represents the number of members of facet d who get a positive predicted outcome and nd the is
number of members of facet d.

If DPPL is close enough to 0, it means that post-training demographic parity has been achieved.

For binary and multicategory facet labels, the normalized DPL values range over the interval [-1,
1]. For continuous labels, the values vary over the interval (-∞, +∞).

• Positive DPPL values indicate that facet a has a higher proportion of predicted positive outcomes
when compared with facet d.

This is referred to as positive bias.

• Values of DPPL near zero indicate a more equal proportion of predicted positive outcomes
between facets a and d and a value of zero indicates perfect demographic parity.

• Negative DPPL values indicate that facet d has a higher proportion of predicted positive
outcomes when compared with facet a. This is referred to as negative bias.

Disparate Impact (DI)

The difference in positive proportions in the predicted labels metric can be assessed in the form of
a ratio.

The comparison of positive proportions in predicted labels metric can be assessed in the form of
a ratio instead of as a difference, as it is with the Difference in Positive Proportions in Predicted
Labels (DPPL). The disparate impact (DI) metric is defined as the ratio of the proportion of positive
predictions (y’ = 1) for facet d over the proportion of positive predictions (y’ = 1) for facet a. For
example, if the model predictions grant loans to 60% of a middle-aged group (facet a) and 50%
other age groups (facet d), then DI = .5/.6 = 0.8, which indicates a positive bias and an adverse
impact on the other aged group represented by facet d.

The formula for the ratio of proportions of the predicted labels:

 DI = q'd/q'a

Where:

• q'a = n'a
(1)/na is the predicted proportion of facet a who get a positive outcome of value 1. In

our example, the proportion of a middle-aged facet predicted to get granted a loan. Here n'a
(1)

Detect Post-training Data and Model Bias 5487

Amazon SageMaker Developer Guide

represents the number of members of facet a who get a positive predicted outcome and na the is
number of members of facet a.

• q'd = n'd
(1)/nd is the predicted proportion of facet d a who get a positive outcome of value 1. In

our example, a facet of older and younger people predicted to get granted a loan. Here n'd
(1)

represents the number of members of facet d who get a positive predicted outcome and nd the is
number of members of facet d.

For binary, multicategory facet, and continuous labels, the DI values range over the interval [0, ∞).

• Values less than 1 indicate that facet a has a higher proportion of predicted positive outcomes
than facet d. This is referred to as positive bias.

• A value of 1 indicates demographic parity.

• Values greater than 1 indicate that facet d has a higher proportion of predicted positive
outcomes than facet a. This is referred to as negative bias.

Difference in Conditional Acceptance (DCAcc)

This metric compares the observed labels to the labels predicted by the model and assesses
whether this is the same across facets for predicted positive outcomes. This metric comes close to
mimicking human bias in that it quantifies how many more positive outcomes a model predicted
(labels y’) for a certain facet as compared to what was observed in the training dataset (labels y).
For example, if there were more acceptances (a positive outcome) observed in the training dataset
for loan applications for a middle-aged group (facet a) than predicted by the model based on
qualifications as compared to the facet containing other age groups (facet d), this might indicate
potential bias in the way loans were approved favoring the middle-aged group.

The formula for the difference in conditional acceptance:

 DCAcc = ca - cd

Where:

• ca = na
(1)/ n'a

(1) is the ratio of the observed number of positive outcomes of value 1 (acceptances)
of facet a to the predicted number of positive outcome (acceptances) for facet a.

• cd = nd
(1)/ n'd

(1) is the ratio of the observed number of positive outcomes of value 1 (acceptances)
of facet d to the predicted number of predicted positive outcomes (acceptances) for facet d.

Detect Post-training Data and Model Bias 5488

Amazon SageMaker Developer Guide

The DCAcc metric can capture both positive and negative biases that reveal preferential treatment
based on qualifications. Consider the following instances of age-based bias on loan acceptances.

Example 1: Positive bias

Suppose we have dataset of 100 middle-aged people (facet a) and 50 people from other age
groups (facet d) who applied for loans, where the model recommended that 60 from facet a and
30 from facet d be given loans. So the predicted proportions are unbiased with respect to the
DPPL metric, but the observed labels show that 70 from facet a and 20 from facet d were granted
loans. In other words, the model granted loans to 17% fewer from the middle aged facet than the
observed labels in the training data suggested (70/60 = 1.17) and granted loans to 33% more from
other age groups than the observed labels suggested (20/30 = 0.67). The calculation of the DCAcc
value gives the following:

 DCAcc = 70/60 - 20/30 = 1/2

The positive value indicates that there is a potential bias against the middle-aged facet a with
a lower acceptance rate as compared with the other facet d than the observed data (taken as
unbiased) indicate is the case.

Example 2: Negative bias

Suppose we have dataset of 100 middle-aged people (facet a) and 50 people from other age
groups (facet d) who applied for loans, where the model recommended that 60 from facet a and
30 from facet d be given loans. So the predicted proportions are unbiased with respect to the
DPPL metric, but the observed labels show that 50 from facet a and 40 from facet d were granted
loans. In other words, the model granted loans to 17% fewer from the middle aged facet than the
observed labels in the training data suggested (50/60 = 0.83), and granted loans to 33% more
from other age groups than the observed labels suggested (40/30 = 1.33). The calculation of the
DCAcc value gives the following:

 DCAcc = 50/60 - 40/30 = -1/2

The negative value indicates that there is a potential bias against facet d with a lower acceptance
rate as compared with the middle-aged facet a than the observed data (taken as unbiased) indicate
is the case.

Note that you can use DCAcc to help you detect potential (unintentional) biases by humans
overseeing the model predictions in a human-in-the-loop setting. Assume, for example, that the

Detect Post-training Data and Model Bias 5489

Amazon SageMaker Developer Guide

predictions y' by the model were unbiased, but the eventual decision is made by a human (possibly
with access to additional features) who can alter the model predictions to generate a new and
final version of y'. The additional processing by the human may unintentionally deny loans to a
disproportionate number from one facet. DCAcc can help detect such potential biases.

The range of values for differences in conditional acceptance for binary, multicategory facet, and
continuous labels is (-∞, +∞).

• Positive values occur when the ratio of the observed number of acceptances compared to
predicted acceptances for facet a is higher than the same ratio for facet d. These values indicate
a possible bias against the qualified applicants from facet a. The larger the difference of the
ratios, the more extreme the apparent bias.

• Values near zero occur when the ratio of the observed number of acceptances compared to
predicted acceptances for facet a is the similar to the ratio for facet d. These values indicate that
predicted acceptance rates are consistent with the observed values in the labeled data and that
qualified applicants from both facets are being accepted in a similar way.

• Negative values occur when the ratio of the observed number of acceptances compared to
predicted acceptances for facet a is less than that ratio for facet d. These values indicate a
possible bias against the qualified applicants from facet d. The more negative the difference in
the ratios, the more extreme the apparent bias.

Difference in Conditional Rejection (DCR)

This metric compares the observed labels to the labels predicted by the model and assesses
whether this is the same across facets for negative outcomes (rejections). This metric comes
close to mimicking human bias, in that it quantifies how many more negative outcomes a model
granted (predicted labels y’) to a certain facet as compared to what was suggested by the labels
in the training dataset (observed labels y). For example, if there were more observed rejections (a
negative outcome) for loan applications for a middle-aged group (facet a) than predicted by the
model based on qualifications as compared to the facet containing other age groups (facet d), this
might indicate potential bias in the way loans were rejected that favored the middle-aged group
over other groups.

The formula for the difference in conditional acceptance:

 DCR = rd - ra

Where:

Detect Post-training Data and Model Bias 5490

Amazon SageMaker Developer Guide

• rd = nd
(0)/ n'd

(0) is the ratio of the observed number of negative outcomes of value 0 (rejections)
of facet d to the predicted number of negative outcome (rejections) for facet d.

• ra = na
(0)/ n'a

(0) is the ratio of the observed number of negative outcomes of value 0 (rejections)
of facet a to the predicted number of negative outcome of value 0 (rejections) for facet a.

The DCR metric can capture both positive and negative biases that reveal preferential treatment
based on qualifications. Consider the following instances of age-based bias on loan rejections.

Example 1: Positive bias

Suppose we have dataset of 100 middle-aged people (facet a) and 50 people from other age
groups (facet d) who applied for loans, where the model recommended that 60 from facet a and 30
from facet d be rejected for loans. So the predicted proportions are unbiased by the DPPL metric,
but the observed labels show that 50 from facet a and 40 from facet d were rejected. In other
words, the model rejected 17% more loans from the middle aged facet than the observed labels in
the training data suggested (50/60 = 0.83), and rejected 33% fewer loans from other age groups
than the observed labels suggested (40/30 = 1.33). The DCR value quantifies this difference in the
ratio of observed to predicted rejection rates between the facets. The positive value indicates that
there is a potential bias favoring the middle aged group with lower rejection rates as compared
with other groups than the observed data (taken as unbiased) indicate is the case.

 DCR = 40/30 - 50/60 = 1/2

Example 2: Negative bias

Suppose we have dataset of 100 middle-aged people (facet a) and 50 people from other age
groups (facet d) who applied for loans, where the model recommended that 60 from facet a and 30
from facet d be rejected for loans. So the predicted proportions are unbiased by the DPPL metric,
but the observed labels show that 70 from facet a and 20 from facet d were rejected. In other
words, the model rejected 17% fewer loans from the middle aged facet than the observed labels
in the training data suggested (70/60 = 1.17), and rejected 33% more loans from other age groups
than the observed labels suggested (20/30 = 0.67). The negative value indicates that there is a
potential bias favoring facet a with lower rejection rates as compared with the middle-aged facet a
than the observed data (taken as unbiased) indicate is the case.

 DCR = 20/30 - 70/60 = -1/2

The range of values for differences in conditional rejection for binary, multicategory facet, and
continuous labels is (-∞, +∞).

Detect Post-training Data and Model Bias 5491

Amazon SageMaker Developer Guide

• Positive values occur when the ratio of the observed number of rejections compared to predicted
rejections for facet d is greater than that ratio for facet a. These values indicate a possible bias
against the qualified applicants from facet a. The larger the value of DCR metric, the more
extreme the apparent bias.

• Values near zero occur when the ratio of the observed number of rejections compared to
predicted acceptances for facet a is the similar to the ratio for facet d. These values indicate that
predicted rejections rates are consistent with the observed values in the labeled data and that
the qualified applicants from both facets are being rejected in a similar way.

• Negative values occur when the ratio of the observed number of rejections compared to
predicted rejections for facet d is less than that ratio facet a. These values indicate a possible bias
against the qualified applicants from facet d. The larger magnitude of the negative DCR metric,
the more extreme the apparent bias.

Specificity difference (SD)

The specificity difference (SD) is the difference in specificity between the favored facet a and
disfavored facet d. Specificity measures how often the model correctly predicts a negative outcome
(y'=0). Any difference in these specificities is a potential form of bias.

Specificity is perfect for a facet if all of the y=0 cases are correctly predicted for that facet.
Specificity is greater when the model minimizes false positives, known as a Type I error. For
example, the difference between a low specificity for lending to facet a, and high specificity for
lending to facet d, is a measure of bias against facet d.

The following formula is for the difference in the specificity for facets a and d.

 SD = TNd/(TNd + FPd) - TNa/(TNa + FPa) = TNRd - TNRa

The following variables used to calculated SD are defined as follows:

• TNd are the true negatives predicted for facet d.

• FPd are the false positives predicted for facet d.

• TNd are the true negatives predicted for facet a.

• FPd are the false positives predicted for facet a.

• TNRa = TNa/(TNa + FPa) is the true negative rate, also known as the specificity, for facet a.

• TNRd = TNd/(TNd + FPd) is the true negative rate, also known as the specificity, for facet d.

Detect Post-training Data and Model Bias 5492

Amazon SageMaker Developer Guide

For example, consider the following confusion matrices for facets a and d.

Confusion matrix for the favored facet a

Class a predictions Actual outcome 0 Actual outcome 1 Total

0 20 5 25

1 10 65 75

Total 30 70 100

Confusion matrix for the disfavored facet d

Class d predictions Actual outcome 0 Actual outcome 1 Total

0 18 7 25

1 5 20 25

Total 23 27 50

The value of the specificity difference is SD = 18/(18+5) - 20/(20+10) = 0.7826 -
0.6667 = 0.1159, which indicates a bias against facet d.

The range of values for the specificity difference between facets a and d for binary and
multicategory classification is [-1, +1]. This metric is not available for the case of continuous
labels. Here is what different values of SD imply:

• Positive values are obtained when there is higher specificity for facet d than for facet a. This
suggests that the model finds less false positives for facet d than for facet a. A positive value
indicates bias against facet d.

• Values near zero indicate that the specificity for facets that are being compared is similar. This
suggests that the model finds a similar number of false positives in both of these facets and is
not biased.

• Negative values are obtained when there is higher specificity for facet a than for facet d. This
suggests that the model finds more false positives for facet a than for facet d. A negative value
indicates bias against facet a.

Detect Post-training Data and Model Bias 5493

Amazon SageMaker Developer Guide

Recall Difference (RD)

The recall difference (RD) metric is the difference in recall of the model between the favored facet
a and disfavored facet d. Any difference in these recalls is a potential form of bias. Recall is the true
positive rate (TPR), which measures how often the model correctly predicts the cases that should
receive a positive outcome. Recall is perfect for a facet if all of the y=1 cases are correctly predicted
as y’=1 for that facet. Recall is greater when the model minimizes false negatives known as the
Type II error. For example, how many of the people in two different groups (facets a and d) that
should qualify for loans are detected correctly by the model? If the recall rate is high for lending
to facet a, but low for lending to facet d, the difference provides a measure of this bias against the
group belonging to facet d.

The formula for difference in the recall rates for facets a and d:

 RD = TPa/(TPa + FNa) - TPd/(TPd + FNd) = TPRa - TPRd

Where:

• TPa are the true positives predicted for facet a.

• FNa are the false negatives predicted for facet a.

• TPd are the true positives predicted for facet d.

• FNd are the false negatives predicted for facet d.

• TPRa = TPa/(TPa + FNa) is the recall for facet a, or its true positive rate.

• TPRd TPd/(TPd + FNd) is the recall for facet d, or its true positive rate.

For example, consider the following confusion matrices for facets a and d.

Confusion Matrix for the Favored Facet a

Class a predictions Actual outcome 0 Actual outcome 1 Total

0 20 5 25

1 10 65 75

Total 30 70 100

Detect Post-training Data and Model Bias 5494

Amazon SageMaker Developer Guide

Confusion Matrix for the Disfavored Facet d

Class d predictions Actual outcome 0 Actual outcome 1 Total

0 18 7 25

1 5 20 25

Total 23 27 50

The value of the recall difference is RD = 65/70 - 20/27 = 0.93 - 0.74 = 0.19 which indicates a bias
against facet d.

The range of values for the recall difference between facets a and d for binary and multicategory
classification is [-1, +1]. This metric is not available for the case of continuous labels.

• Positive values are obtained when there is higher recall for facet a than for facet d. This suggests
that the model finds more of the true positives for facet a than for facet d, which is a form of
bias.

• Values near zero indicate that the recall for facets being compared is similar. This suggests that
the model finds about the same number of true positives in both of these facets and is not
biased.

• Negative values are obtained when there is higher recall for facet d than for facet a. This
suggests that the model finds more of the true positives for facet d than for facet a, which is a
form of bias.

Difference in Acceptance Rates (DAR)

The difference in acceptance rates (DAR) metric is the difference in the ratios of the true positive
(TP) predictions to the observed positives (TP + FP) for facets a and d. This metric measures the
difference in the precision of the model for predicting acceptances from these two facets. Precision
measures the fraction of qualified candidates from the pool of qualified candidates that are
identified as such by the model. If the model precision for predicting qualified applicants diverges
between the facets, this is a bias and its magnitude is measured by the DAR.

The formula for difference in acceptance rates between facets a and d:

 DAR = TPa/(TPa + FPa) - TPd/(TPd + FPd)

Detect Post-training Data and Model Bias 5495

Amazon SageMaker Developer Guide

Where:

• TPa are the true positives predicted for facet a.

• FPa are the false positives predicted for facet a.

• TPd are the true positives predicted for facet d.

• FPd are the false positives predicted for facet d.

For example, suppose the model accepts 70 middle-aged applicants (facet a) for a loan (predicted
positive labels) of whom only 35 are actually accepted (observed positive labels). Also suppose the
model accepts 100 applicants from other age demographics (facet d) for a loan (predicted positive
labels) of whom only 40 are actually accepted (observed positive labels). Then DAR = 35/70 -
40/100 = 0.10, which indicates a potential bias against qualified people from the second age group
(facet d).

The range of values for DAR for binary, multicategory facet, and continuous labels is [-1, +1].

• Positive values occur when the ratio of the predicted positives (acceptances) to the observed
positive outcomes (qualified applicants) for facet a is larger than the same ratio for facet d.
These values indicate a possible bias against the disfavored facet d caused by the occurrence of
relatively more false positives in facet d. The larger the difference in the ratios, the more extreme
the apparent bias.

• Values near zero occur when the ratio of the predicted positives (acceptances) to the observed
positive outcomes (qualified applicants) for facets a and d have similar values indicating the
observed labels for positive outcomes are being predicted with equal precision by the model.

• Negative values occur when the ratio of the predicted positives (acceptances) to the observed
positive outcomes (qualified applicants) for facet d is larger than the ratio facet a. These values
indicate a possible bias against the favored facet a caused by the occurrence of relatively more
false positives in facet a. The more negative the difference in the ratios, the more extreme the
apparent bias.

Difference in Rejection Rates (DRR)

The difference in rejection rates (DRR) metric is the difference in the ratios of the true negative
(TN) predictions to the observed negatives (TN + FN) for facets a and d. This metric measures the
difference in the precision of the model for predicting rejections from these two facets. Precision
measures the fraction of unqualified candidates from the pool of unqualified candidates that

Detect Post-training Data and Model Bias 5496

Amazon SageMaker Developer Guide

are identified as such by the model. If the model precision for predicting unqualified applicants
diverges between the facets, this is a bias and its magnitude is measured by the DRR.

The formula for difference in rejection rates between facets a and d:

 DRR = TNd/(TNd + FNd) - TNa/(TNa + FNa)

The components for the previous DRR equation are as follows.

• TNd are the true negatives predicted for facet d.

• FNd are the false negatives predicted for facet d.

• TPa are the true negatives predicted for facet a.

• FNa are the false negatives predicted for facet a.

For example, suppose the model rejects 100 middle-aged applicants (facet a) for a loan (predicted
negative labels) of whom 80 are actually unqualified (observed negative labels). Also suppose the
model rejects 50 applicants from other age demographics (facet d) for a loan (predicted negative
labels) of whom only 40 are actually unqualified (observed negative labels). Then DRR = 40/50 -
80/100 = 0, so no bias is indicated.

The range of values for DRR for binary, multicategory facet, and continuous labels is [-1, +1].

• Positive values occur when the ratio of the predicted negatives (rejections) to the observed
negative outcomes (unqualified applicants) for facet d is larger than the same ratio for facet
a. These values indicate a possible bias against the favored facet a caused by the occurrence
of relatively more false negatives in facet a. The larger the difference in the ratios, the more
extreme the apparent bias.

• Values near zero occur when the ratio of the predicted negatives (rejections) to the observed
negative outcomes (unqualified applicants) for facets a and d have similar values, indicating the
observed labels for negative outcomes are being predicted with equal precision by the model.

• Negative values occur when the ratio of the predicted negatives (rejections) to the observed
negative outcomes (unqualified applicants) for facet a is larger than the ratio facet d. These
values indicate a possible bias against the disfavored facet d caused by the occurrence of
relatively more false positives in facet d. The more negative the difference in the ratios, the more
extreme the apparent bias.

Detect Post-training Data and Model Bias 5497

Amazon SageMaker Developer Guide

Accuracy Difference (AD)

Accuracy difference (AD) metric is the difference between the prediction accuracy for different
facets. This metric determines whether the classification by the model is more accurate for one
facet than the other. AD indicates whether one facet incurs a greater proportion of Type I and Type
II errors. But it cannot differentiate between Type I and Type II errors. For example, the model may
have equal accuracy for different age demographics, but the errors may be mostly false positives
(Type I errors) for one age-based group and mostly false negatives (Type II errors) for the other.

Also, if loan approvals are made with much higher accuracy for a middle-aged demographic (facet
a) than for another age-based demographic (facet d), either a greater proportion of qualified
applicants in the second group are denied a loan (FN) or a greater proportion of unqualified
applicants from that group get a loan (FP) or both. This can lead to within group unfairness for
the second group, even if the proportion of loans granted is nearly the same for both age-based
groups, which is indicated by a DPPL value that is close to zero.

The formula for AD metric is the difference between the prediction accuracy for facet a, ACCa,
minus that for facet d, ACCd:

 AD = ACCa - ACCd

Where:

• ACCa = (TPa + TNa)/(TPa + TNa + FPa + FNa)

• TPa are the true positives predicted for facet a

• TNa are the true negatives predicted for facet a

• FPa are the false positives predicted for facet a

• FNa are the false negatives predicted for facet a

• ACCd = (TPd + TNd)/(TPd + TNd + FPd + FNd)

• TPd are the true positives predicted for facet d

• TNd are the true negatives predicted for facet d

• FPd are the false positives predicted for facet d

• FNd are the false negatives predicted for facet d

For example, suppose a model approves loans to 70 applicants from facet a of 100 and rejected
the other 30. 10 should not have been offered the loan (FPa) and 60 were approved that should
Detect Post-training Data and Model Bias 5498

Amazon SageMaker Developer Guide

have been (TPa). 20 of the rejections should have been approved (FNa) and 10 were correctly
rejected (TNa). The accuracy for facet a is as follows:

 ACCa = (60 + 10)/(60 + 10 + 20 + 10) = 0.7

Next, suppose a model approves loans to 50 applicants from facet d of 100 and rejected the other
50. 10 should not have been offered the loan (FPa) and 40 were approved that should have been
(TPa). 40 of the rejections should have been approved (FNa) and 10 were correctly rejected (TNa).
The accuracy for facet a is determined as follows:

 ACCd= (40 + 10)/(40 + 10 + 40 + 10) = 0.5

The accuracy difference is thus AD = ACCa - ACCd = 0.7 - 0.5 = 0.2. This indicates there is a bias
against facet d as the metric is positive.

The range of values for AD for binary and multicategory facet labels is [-1, +1].

• Positive values occur when the prediction accuracy for facet a is greater than that for facet d. It
means that facet d suffers more from some combination of false positives (Type I errors) or false
negatives (Type II errors). This means there is a potential bias against the disfavored facet d.

• Values near zero occur when the prediction accuracy for facet a is similar to that for facet d.

• Negative values occur when the prediction accuracy for facet d is greater than that for facet a t. It
means that facet a suffers more from some combination of false positives (Type I errors) or false
negatives (Type II errors). This means the is a bias against the favored facet a.

Treatment Equality (TE)

The treatment equality (TE) is the difference in the ratio of false negatives to false positives
between facets a and d. The main idea of this metric is to assess whether, even if the accuracy
across groups is the same, is it the case that errors are more harmful to one group than another?
Error rate comes from the total of false positives and false negatives, but the breakdown of these
two maybe very different across facets. TE measures whether errors are compensating in the
similar or different ways across facets.

The formula for the treatment equality:

 TE = FNd/FPd - FNa/FPa

Where:

Detect Post-training Data and Model Bias 5499

Amazon SageMaker Developer Guide

• FNd are the false negatives predicted for facet d.

• FPd are the false positives predicted for facet d.

• FNa are the false negatives predicted for facet a.

• FPa are the false positives predicted for facet a.

Note the metric becomes unbounded if FPa or FPd is zero.

For example, suppose that there are 100 loan applicants from facet a and 50 from facet d. For facet
a, 8 were wrongly denied a loan (FNa) and another 6 were wrongly approved (FPa). The remaining
predictions were true, so TPa + TNa = 86. For facet d, 5 were wrongly denied (FNd) and 2 were
wrongly approved (FPd). The remaining predictions were true, so TPd + TNd = 43. The ratio of false
negatives to false positives equals 8/6 = 1.33 for facet a and 5/2 = 2.5 for facet d. Hence TE = 2.5 -
1.33 = 1.167, even though both facets have the same accuracy:

 ACCa = (86)/(86+ 8 + 6) = 0.86

 ACCd = (43)/(43 + 5 + 2) = 0.86

The range of values for differences in conditional rejection for binary and multicategory facet
labels is (-∞, +∞). The TE metric is not defined for continuous labels. The interpretation of this
metric depends on the relative important of false positives (Type I error) and false negatives (Type
II error).

• Positive values occur when the ratio of false negatives to false positives for facet d is greater
than that for facet a.

• Values near zero occur when the ratio of false negatives to false positives for facet a is similar to
that for facet d.

• Negative values occur when the ratio of false negatives to false positives for facet d is less than
that for facet a.

Note

A previous version stated that the Treatment Equality metric is computed as FPa / FNa - FPd

/ FNd instead of FNd / FPd - FNa / FPa. While either of the versions can be used. For more
information, see Fairness measures for Machine Learning in Finance.

Detect Post-training Data and Model Bias 5500

https://pages.awscloud.com/rs/112-TZM-766/images/Fairness.Measures.for.Machine.Learning.in.Finance.pdf

Amazon SageMaker Developer Guide

Conditional Demographic Disparity in Predicted Labels (CDDPL)

The demographic disparity metric (DDPL) determines whether facet d has a larger proportion of
the predicted rejected labels than of the predicted accepted labels. It enables a comparison of
difference in predicted rejection proportion and predicted acceptance proportion across facets.
This metric is exactly the same as the pre-training CDD metric except that it is computed off the
predicted labels instead of the observed ones. This metric lies in the range (-1,+1).

The formula for the demographic disparity predictions for labels of facet d is as follows:

 DDPLd = n'd
(0)/n'(0) - n'd

(1)/n'(1) = Pd
R(y'0) - Pd

A(y'1)

Where:

• n'(0) = n'a
(0) + n'd

(0) is the number of predicted rejected labels for facets a and d.

• n'(1) = n'a
(1) + n'd

(1) is the number of predicted accepted labels for facets a and d.

• Pd
R(y'0) is the proportion of predicted rejected labels (value 0) in facet d.

• Pd
A(y'1) is the proportion of predicted accepted labels (value 1) in facet d.

A conditional demographic disparity in predicted labels (CDDPL) metric that conditions DDPL on
attributes that define a strata of subgroups on the dataset is needed to rule out Simpson's paradox.
The regrouping can provide insights into the cause of apparent demographic disparities for less
favored facets. The classic case arose in the case of Berkeley admissions where men were accepted
at a higher rate overall than women. But when departmental subgroups were examined, women
were shown to have higher admission rates than men by department. The explanation was that
women had applied to departments with lower acceptance rates than men had. Examining the
subgroup acceptance rates revealed that women were actually accepted at a higher rate than men
for the departments with lower acceptance rates.

The CDDPL metric gives a single measure for all of the disparities found in the subgroups
defined by an attribute of a dataset by averaging them. It is defined as the weighted average of
demographic disparities in predicted labels (DDPLi) for each of the subgroups, with each subgroup
disparity weighted in proportion to the number of observations in contains. The formula for the
conditional demographic disparity in predicted labels is as follows:

 CDDPL = (1/n)*∑ini *DDPLi

Where:

Detect Post-training Data and Model Bias 5501

Amazon SageMaker Developer Guide

• ∑ini = n is the total number of observations and niis the number of observations for each
subgroup.

• DDPLi = n'i
(0)/n(0) - n'i

(1)/n(1) = Pi
R(y'0) - Pi

A(y'1) is the demographic disparity in predicted labels for
the subgroup.

So the demographic disparity for a subgroup in predicted labels (DDPLi) are the difference between
the proportion of predicted rejected labels and the proportion of predicted accepted labels for
each subgroup.

The range of DDPL values for binary, multicategory, and continuous outcomes is [-1,+1].

• +1: when there are no predicted rejection labels for facet a or subgroup and no predicted
acceptances for facet d or subgroup.

• Positive values indicate there is a demographic disparity in predicted labels as facet d or
subgroup has a larger proportion of the predicted rejected labels than of the predicted accepted
labels. The higher the value the greater the disparity.

• Values near zero indicate there is no demographic disparity on average.

• Negative values indicate there is a demographic disparity in predicted labels as facet a or
subgroup has a larger proportion of the predicted rejected labels than of the predicted accepted
labels. The lower the value the greater the disparity.

• -1: when there are no predicted rejection lapels for facet d or subgroup and no predicted
acceptances for facet a or subgroup.

Counterfactual Fliptest (FT)

The fliptest is an approach that looks at each member of facet d and assesses whether similar
members of facet a have different model predictions. The members of facet a are chosen to be k-
nearest neighbors of the observation from facet d. We assess how many nearest neighbors of the
opposite group receive a different prediction, where the flipped prediction can go from positive to
negative and vice versa.

The formula for the counterfactual fliptest is the difference in the cardinality of two sets divided by
the number of members of facet d:

 FT = (F+ - F-)/nd

Where:

Detect Post-training Data and Model Bias 5502

Amazon SageMaker Developer Guide

• F+ = is the number of disfavored facet d members with an unfavorable outcome whose nearest
neighbors in favored facet a received a favorable outcome.

• F- = is the number of disfavored facet d members with a favorable outcome whose nearest
neighbors in favored facet a received an unfavorable outcome.

• nd is the sample size of facet d.

The range of values for the counterfactual fliptest for binary and multicategory facet labels is [-1,
+1]. For continuous labels, we set a threshold to collapse the labels to binary.

• Positive values occur when the number of unfavorable counterfactual fliptest decisions for the
disfavored facet d exceeds the favorable ones.

• Values near zero occur when the number of unfavorable and favorable counterfactual fliptest
decisions balance out.

• Negative values occur when the number of unfavorable counterfactual fliptest decisions for the
disfavored facet d is less than the favorable ones.

Generalized entropy (GE)

The generalized entropy index (GE) measures the inequality in benefit b for the predicted label
compared to the observed label. A benefit occurs when a false positive is predicted. A false positive
occurs when a negative observation (y=0) has a positive prediction (y'=1). A benefit also occurs
when the observed and predicted labels are the same, also known as a true positive and true
negative. No benefit occurs when a false negative is predicted. A false negative occurs when a
positive observation (y=1) is predicted to have a negative outcome (y'=0). The benefit b is defined,
as follows.

 b = y' - y + 1

Using this definition, a false positive receives a benefit b of 2, and a false negative receives a
benefit of 0. Both a true positive and a true negative receive a benefit of 1.

The GE metric is computed following the Generalized Entropy Index (GE) with the weight alpha
set to 2. This weight controls the sensitivity to different benefit values. A smaller alpha means an
increased sensitivity to smaller values.

Detect Post-training Data and Model Bias 5503

https://en.wikipedia.org/wiki/Generalized_entropy_index

Amazon SageMaker Developer Guide

The following variables used to calculate GE are defined as follows:

• bi is the benefit received by the ith data point.

• b' is the mean of all benefits.

GE can range from 0 to 0.5, where values of zero indicate no inequality in benefits across all data
points. This occurs either when all inputs are correctly predicted or when all the predictions are
false positives. GE is undefined when all predictions are false negatives.

Note

The metric GE does not depend on a facet value being either favored or disfavored.

Model Explainability

Amazon SageMaker Clarify provides tools to help explain how machine learning (ML) models make
predictions. These tools can help ML modelers and developers and other internal stakeholders
understand model characteristics as a whole prior to deployment and to debug predictions
provided by the model after it's deployed.

• To obtain explanations for your datasets and models, see Use SageMaker Clarify to explain and
detect bias.

• To obtain explanations in real-time from a SageMaker endpoint, see Online Explainability with
SageMaker Clarify.

Transparency about how ML models arrive at their predictions is also critical to consumers and
regulators. They need to trust the model predictions if they are going to accept the decisions
based on them. SageMaker Clarify uses a model-agnostic feature attribution approach. You can

Model Explainability 5504

Amazon SageMaker Developer Guide

use this to understand why a model made a prediction after training, and to provide per-instance
explanation during inference. The implementation includes a scalable and efficient implementation
of SHAP. This is based on the concept of a Shapley value, from the field of cooperative game
theory, that assigns each feature an importance value for a particular prediction.

Clarify produces partial dependence plots (PDPs) that show the marginal effect features have
on the predicted outcome of a machine learning model. Partial dependence helps explain target
response given a set of input features. It also supports both computer vision (CV) and natural
language processing (NLP) explainability using the same Shapley Values (SHAP) algorithm as used
for tabular data explanations.

What is the function of an explanation in the machine learning context? An explanation can
be thought of as the answer to a Why question that helps humans understand the cause of a
prediction. In the context of an ML model, you might be interested in answering questions such as:

• Why did the model predict a negative outcome such as a loan rejection for a given applicant?

• How does the model make predictions?

• Why did the model make an incorrect prediction?

• Which features have the largest influence on the behavior of the model?

You can use explanations for auditing and meeting regulatory requirements, building trust in the
model and supporting human decision-making, and debugging and improving model performance.

The need to satisfy the demands for human understanding about the nature and outcomes of ML
inference is key to the sort of explanation needed. Research from philosophy and cognitive science
disciplines has shown that people care especially about contrastive explanations, or explanations
of why an event X happened instead of some other event Y that did not occur. Here, X could be
an unexpected or surprising event that happened and Y corresponds to an expectation based on
their existing mental model referred to as a baseline. Note that for the same event X, different
people might seek different explanations depending on their point of view or mental model Y.
In the context of explainable AI, you can think of X as the example being explained and Y as a
baseline that is typically chosen to represent an uninformative or average example in the dataset.
Sometimes, for example in the case of ML modeling of images, the baseline might be implicit,
where an image whose pixels are all the same color can serves as a baseline.

Sample Notebooks

Amazon SageMaker Clarify provides the following sample notebook for model explainability:

Model Explainability 5505

https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

Amazon SageMaker Developer Guide

• Amazon SageMaker Clarify Processing – Use SageMaker Clarify to create a processing job for
the detecting bias and explaining model predictions with feature attributions. Examples include
using CSV and JSON Lines data formats, bringing your own container, and running processing
jobs with Spark.

• Explaining Image Classification with SageMaker Clarify – SageMaker Clarify provides you with
insights into how your computer vision models classify images.

• Explaining object detection models with SageMaker Clarify – SageMaker Clarify provides you
with insights into how your computer vision models detect objects.

This notebook has been verified to run in Amazon SageMaker Studio only. If you need instructions
on how to open a notebook in Amazon SageMaker Studio, see Create or Open an Amazon
SageMaker Studio Classic Notebook. If you're prompted to choose a kernel, choose Python 3 (Data
Science).

Topics

• Feature Attributions that Use Shapley Values

• SHAP Baselines for Explainability

Feature Attributions that Use Shapley Values

SageMaker Clarify provides feature attributions based on the concept of Shapley value. You can
use Shapley values to determine the contribution that each feature made to model predictions.
These attributions can be provided for specific predictions and at a global level for the model as a
whole. For example, if you used an ML model for college admissions, the explanations could help
determine whether the GPA or the SAT score was the feature most responsible for the model’s
predictions, and then you can determine how responsible each feature was for determining an
admission decision about a particular student.

SageMaker Clarify has taken the concept of Shapley values from game theory and deployed it
in a machine learning context. The Shapley value provides a way to quantify the contribution of
each player to a game, and hence the means to distribute the total gain generated by a game
to its players based on their contributions. In this machine learning context, SageMaker Clarify
treats the prediction of the model on a given instance as the game and the features included in the
model as the players. For a first approximation, you might be tempted to determine the marginal
contribution or effect of each feature by quantifying the result of either dropping that feature from
the model or dropping all other features from the model. However, this approach does not take

Model Explainability 5506

https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-clarify/index.html#sagemaker-clarify-processing
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-clarify/computer_vision/image_classification/explainability_image_classification.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-clarify/computer_vision/object_detection/object_detection_clarify.ipynb
https://en.wikipedia.org/wiki/Shapley_value

Amazon SageMaker Developer Guide

into account that features included in a model are often not independent from each other. For
example, if two features are highly correlated, dropping either one of the features might not alter
the model prediction significantly.

To address these potential dependencies, the Shapley value requires that the outcome of each
possible combination (or coalition) of features must be considered to determine the importance of
each feature. Given d features, there are 2d such possible feature combinations, each corresponding
to a potential model. To determine the attribution for a given feature f, consider the marginal
contribution of including f in all feature combinations (and associated models) that do not contain
f, and take the average. It can be shown that Shapley value is the unique way of assigning the
contribution or importance of each feature that satisfies certain desirable properties. In particular,
the sum of Shapley values of each feature corresponds to the difference between the predictions
of the model and a dummy model with no features. However, even for reasonable values of d,
say 50 features, it is computationally prohibitive and impractical to train 2d possible models.
As a result, SageMaker Clarify needs to make use of various approximation techniques. For this
purpose, SageMaker Clarify uses Shapley Additive exPlanations (SHAP), which incorporates such
approximations and devised a scalable and efficient implementation of the Kernel SHAP algorithm
through additional optimizations.

For additional information on Shapley values, see A Unified Approach to Interpreting Model
Predictions.

SHAP Baselines for Explainability

Explanations are typically contrastive (that is, they account for deviations from a baseline). As a
result, for the same model prediction, you can expect to get different explanations with respect to
different baselines. Therefore, your choice of a baseline is crucial. In an ML context, the baseline
corresponds to a hypothetical instance that can be either uninformative or informative. During
the computation of Shapley values, SageMaker Clarify generates several new instances between
the baseline and the given instance, in which the absence of a feature, is modeled by setting
the feature value to that of the baseline and the presence of a feature is modeled by setting the
feature value to that of the given instance. Thus, the absence of all features corresponds to the
baseline and the presence of all features corresponds to the given instance.

How can you choose good baselines? Often it is desirable to select a baseline with very low
information content. For example, you can construct an average instance from the training dataset
by taking either the median or average for numerical features and the mode for categorical
features. For the college admissions example, you might be interested in explaining why a

Model Explainability 5507

https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

Amazon SageMaker Developer Guide

particular applicant was accepted as compared to a baseline acceptances based on an average
applicant. If not provided, a baseline is calculated automatically by SageMaker Clarify using K-
means or K-prototypes in the input dataset.

Alternatively, you can choose to generate explanations with respect to informative baselines.
For the college admissions scenario, you might want to explain why a particular applicant was
rejected when compared with other applicants from similar demographic backgrounds. In this case,
you can choose a baseline that represents the applicants of interest, namely those from a similar
demographic background. Thus, you can use informative baselines to concentrate the analysis on
the specific aspects of a particular model prediction. You can isolate the features for assessment by
setting demographic attributes and other features that you can't act on to the same value as in the
given instance.

Use SageMaker Clarify explainability with SageMaker Autopilot

Autopilot uses tools provided by Amazon SageMaker Clarify to help provide insights into how
machine learning (ML) models make predictions. These tools can help ML engineers, product
managers, and other internal stakeholders understand model characteristics. To trust and interpret
decisions made on model predictions, both consumers and regulators rely on transparency in
machine learning in order.

The Autopilot explanatory functionality uses a model-agnostic feature attribution approach.
This approach determines the contribution of individual features or inputs to the model's output,
providing insights into the relevance of different features. You can use it to understand why
a model made a prediction after training, or use it to provide per-instance explanation during
inference. The implementation includes a scalable implementation of SHAP (Shapley Additive
Explanations). This implementation is based on the concept of a Shapley value from cooperative
game theory, which assigns each feature an importance value for a particular prediction.

You can use SHAP explanations for the following: auditing and meeting regulatory requirements,
building trust in the model, supporting human decision-making, or debugging and improving
model performance.

For additional information on Shapely values and baselines, see SHAP Baselines for Explainability.

For a guide to the Amazon SageMaker Clarify documentation, see Guide to the SageMaker Clarify
Documentation.

Use Explainability with Autopilot 5508

https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-feature-attribute-shap-baselines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html#clarify-fairness-and-explainability-toc
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html#clarify-fairness-and-explainability-toc

Amazon SageMaker Developer Guide

Use governance to document and track model
performance

Model governance is a framework that gives systematic visibility into machine learning (ML) model
development, validation, and usage. Amazon SageMaker provides purpose-built ML governance
tools for managing control access, activity tracking, and reporting across the ML lifecycle.

Manage least-privilege permissions for ML practitioners using Amazon SageMaker Role Manager,
create detailed model documentation using Amazon SageMaker Model Cards, and gain visibility
into your models with centralized dashboards using Amazon SageMaker Model Dashboard.

Amazon SageMaker Role Manager

With Amazon SageMaker Role Manager, administrators can define user permissions with least-
privilege permissions for common machine learning activities. Use Amazon SageMaker Role
Manager to build and manage persona-based IAM roles specific to your business needs.

For more information, see Amazon SageMaker Role Manager.

Amazon SageMaker Model Cards

Use Amazon SageMaker Model Cards to document, retrieve, and share essential model information
from conception to deployment. With model cards, model risk managers, data scientists, and ML
engineers can create an immutable record of intended model uses, risk ratings, training details,
evaluation results, and more.

For more information, see Amazon SageMaker Model Cards.

Amazon SageMaker Model Dashboard

Amazon SageMaker Model Dashboard is a pre-built, visual overview of all the models in your
account. SageMaker Model Dashboard integrates valuable information from Amazon SageMaker
Model Monitor, Transform Jobs, Endpoints, ML Lineage Tracking and Amazon CloudWatch so you
can access high-level model information and track model performance in one unified view.

For more information, see Amazon SageMaker Model Dashboard.

Amazon SageMaker Role Manager 5509

Amazon SageMaker Developer Guide

Amazon SageMaker Model Cards

Use Amazon SageMaker Model Cards to document critical details about your machine learning (ML)
models in a single place for streamlined governance and reporting.

Catalog details such as the intended use and risk rating of a model, training details and
metrics, evaluation results and observations, and additional call-outs such as considerations,
recommendations, and custom information. By creating model cards, you can do the following:

• Provide guidance on how a model should be used.

• Support audit activities with detailed descriptions of model training and performance.

• Communicate how a model is intended to support business goals.

Model cards provide prescriptive guidance on what information to document and include fields for
custom information. After creating a model card, you can export it to a PDF or download it to share
with relevant stakeholders. Any edits other than an approval status update made to a model card
result in additional model card versions in order to have an immutable record of model changes.

Topics

• Prerequisites

• Intended uses of a model

• Risk ratings

• Model card JSON schema

• Create a model card

• Manage model cards

• Cross-account support for Amazon SageMaker Model Cards

• Use model cards through the low-level APIs

• Model card FAQs

Prerequisites

To get started with Amazon SageMaker Model Cards, you must have permission to create, edit,
view, and export model cards.

Model Cards 5510

Amazon SageMaker Developer Guide

Intended uses of a model

Specifying the intended uses of a model helps ensure that model developers and users have the
information they need to train or deploy the model responsibly. The intended uses of a model
should describe the scenarios in which the model is appropriate to use as well as the scenarios in
which the model is not recommended to use.

We recommend including:

• The general purpose of the model

• Use cases for which the model was intended

• Use cases for which the model was not intended

• Assumptions made when developing the model

The intended uses of a model go beyond technical details and describe how a model should
be used in production, the scenarios in which is appropriate to use a model, and additional
considerations such as the type of data to use with the model or any assumptions made during
development.

Risk ratings

Developers create ML models for use cases with varying levels of risk. For example, a model that
approves loan applications might be a higher risk model than one that detects the category of an
email. Given the varied risk profiles of a model, model cards provide a field for you to categorize a
model’s risk rating.

This risk rating can be unknown, low, medium, or high. Use these risk rating fields to label
unknown, low, medium, or high-risk models and help your organization comply with any existing
rules about putting certain models into production.

Model card JSON schema

Evaluation details for a model card must be provided in JSON format. If you have existing JSON
format evaluation reports generated by SageMaker Clarify or SageMaker Model Monitor, upload
them to Amazon S3 and provide an S3 URI to automatically parse evaluation metrics. For more
information and sample reports, see the example metrics folder in the Amazon SageMaker Model
Governance - Model Cards example notebook.

Intended uses of a model 5511

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-processing-job-run.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker_model_governance/example_metrics

Amazon SageMaker Developer Guide

When creating a model card using the SageMaker Python SDK, model content must be in the
model card JSON schema and provided as a string. Provide model content similar to the following
example.

Model card JSON schema sample file

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "$id": "http://json-schema.org/draft-07/schema#",
 "title": "SageMakerModelCardSchema",
 "description": "Default model card schema",
 "version": "0.1.0",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "model_overview": {
 "description": "Overview about the model",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "model_description": {
 "description": "description of model",
 "type": "string",
 "maxLength": 1024
 },
 "model_owner": {
 "description": "Owner of model",
 "type": "string",
 "maxLength": 1024
 },
 "model_creator": {
 "description": "Creator of model",
 "type": "string",
 "maxLength": 1024
 },
 "problem_type": {
 "description": "Problem being solved with the model",
 "type": "string"
 },
 "algorithm_type": {
 "description": "Algorithm used to solve the problem",
 "type": "string",

Model card JSON schema 5512

Amazon SageMaker Developer Guide

 "maxLength": 1024
 },
 "model_id": {
 "description": "SageMaker Model Arn or Non SageMaker Model id",
 "type": "string",
 "maxLength": 1024
 },
 "model_artifact": {
 "description": "Location of the model artifact",
 "type": "array",
 "maxContains": 15,
 "items": {
 "type": "string",
 "maxLength": 1024
 }
 },
 "model_name": {
 "description": "Name of the model",
 "type": "string",
 "maxLength": 1024
 },
 "model_version": {
 "description": "Version of the model",
 "type": "number",
 "minimum": 1
 },
 "inference_environment": {
 "description": "Overview about the inference",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "container_image": {
 "description": "SageMaker inference image uri",
 "type": "array",
 "maxContains": 15,
 "items": {
 "type": "string",
 "maxLength": 1024
 }
 }
 }
 }
 }
 },

Model card JSON schema 5513

Amazon SageMaker Developer Guide

 "model_package_details": {
 "description": "Metadata information related to model package version",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "model_package_description": {
 "description": "A brief summary of the model package",
 "type": "string",
 "maxLength": 1024
 },
 "model_package_arn": {
 "description": "The Amazon Resource Name (ARN) of the model package",
 "type": "string",
 "minLength": 1,
 "maxLength": 2048
 },
 "created_by": {
 "description": "Information about the user who created model package.",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "user_profile_name": {
 "description": "The name of the user's profile in SageMaker Studio",
 "type": "string",
 "maxLength": 63
 }
 }
 },
 "model_package_status": {
 "description": "Current status of model package",
 "type": "string",
 "enum": [
 "Pending",
 "InProgress",
 "Completed",
 "Failed",
 "Deleting"
]
 },
 "model_approval_status": {
 "description": "Current approval status of model package",
 "type": "string",
 "enum": [
 "Approved",

Model card JSON schema 5514

Amazon SageMaker Developer Guide

 "Rejected",
 "PendingManualApproval"
]
 },
 "approval_description": {
 "description": "A description provided for the model approval",
 "type": "string",
 "maxLength": 1024
 },
 "model_package_group_name": {
 "description": "If the model is a versioned model, the name of the model
 group that the versioned model belongs to.",
 "type": "string",
 "minLength": 1,
 "maxLength": 63
 },
 "model_package_name": {
 "description": "Name of the model package",
 "type": "string",
 "minLength": 1,
 "maxLength": 63
 },
 "model_package_version": {
 "description": "Version of the model package",
 "type": "number",
 "minimum": 1
 },
 "domain": {
 "description": "The machine learning domain of the model package you
 specified. Common machine learning domains include computer vision and natural
 language processing.",
 "type": "string"
 },
 "task": {
 "description": "The machine learning task you specified that your model
 package accomplishes. Common machine learning tasks include object detection and image
 classification.",
 "type": "string"
 },
 "source_algorithms": {
 "description": "A list of algorithms that were used to create a model
 package.",
 "$ref": "#/definitions/source_algorithms"
 },

Model card JSON schema 5515

Amazon SageMaker Developer Guide

 "inference_specification": {
 "description": "Details about inference jobs that can be run with models
 based on this model package.",
 "$ref": "#/definitions/inference_specification"
 }
 }
 },
 "intended_uses": {
 "description": "Intended usage of model",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "purpose_of_model": {
 "description": "Why the model was developed?",
 "type": "string",
 "maxLength": 2048
 },
 "intended_uses": {
 "description": "intended use cases",
 "type": "string",
 "maxLength": 2048
 },
 "factors_affecting_model_efficiency": {
 "type": "string",
 "maxLength": 2048
 },
 "risk_rating": {
 "description": "Risk rating for model card",
 "$ref": "#/definitions/risk_rating"
 },
 "explanations_for_risk_rating": {
 "type": "string",
 "maxLength": 2048
 }
 }
 },
 "business_details": {
 "description": "Business details of model",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "business_problem": {
 "description": "What business problem does the model solve?",
 "type": "string",

Model card JSON schema 5516

Amazon SageMaker Developer Guide

 "maxLength": 2048
 },
 "business_stakeholders": {
 "description": "Business stakeholders",
 "type": "string",
 "maxLength": 2048
 },
 "line_of_business": {
 "type": "string",
 "maxLength": 2048
 }
 }
 },
 "training_details": {
 "description": "Overview about the training",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "objective_function": {
 "description": "the objective function the model will optimize for",
 "function": {
 "$ref": "#/definitions/objective_function"
 },
 "notes": {
 "type": "string",
 "maxLength": 1024
 }
 },
 "training_observations": {
 "type": "string",
 "maxLength": 1024
 },
 "training_job_details": {
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "training_arn": {
 "description": "SageMaker Training job arn",
 "type": "string",
 "maxLength": 1024
 },
 "training_datasets": {
 "description": "Location of the model datasets",
 "type": "array",

Model card JSON schema 5517

Amazon SageMaker Developer Guide

 "maxContains": 15,
 "items": {
 "type": "string",
 "maxLength": 1024
 }
 },
 "training_environment": {
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "container_image": {
 "description": "SageMaker training image uri",
 "type": "array",
 "maxContains": 15,
 "items": {
 "type": "string",
 "maxLength": 1024
 }
 }
 }
 },
 "training_metrics": {
 "type": "array",
 "items": {
 "maxItems": 50,
 "$ref": "#/definitions/training_metric"
 }
 },
 "user_provided_training_metrics": {
 "type": "array",
 "items": {
 "maxItems": 50,
 "$ref": "#/definitions/training_metric"
 }
 },
 "hyper_parameters": {
 "type": "array",
 "items": {
 "maxItems": 100,
 "$ref": "#/definitions/training_hyper_parameter"
 }
 },
 "user_provided_hyper_parameters": {
 "type": "array",

Model card JSON schema 5518

Amazon SageMaker Developer Guide

 "items": {
 "maxItems": 100,
 "$ref": "#/definitions/training_hyper_parameter"
 }
 }
 }
 }
 }
 },
 "evaluation_details": {
 "type": "array",
 "default": [],
 "items": {
 "type": "object",
 "required": [
 "name"
],
 "additionalProperties": false,
 "properties": {
 "name": {
 "type": "string",
 "pattern": ".{1,63}"
 },
 "evaluation_observation": {
 "type": "string",
 "maxLength": 2096
 },
 "evaluation_job_arn": {
 "type": "string",
 "maxLength": 256
 },
 "datasets": {
 "type": "array",
 "items": {
 "type": "string",
 "maxLength": 1024
 },
 "maxItems": 10
 },
 "metadata": {
 "description": "additional attributes associated with the evaluation
 results",
 "type": "object",
 "additionalProperties": {

Model card JSON schema 5519

Amazon SageMaker Developer Guide

 "type": "string",
 "maxLength": 1024
 }
 },
 "metric_groups": {
 "type": "array",
 "default": [],
 "items": {
 "type": "object",
 "required": [
 "name",
 "metric_data"
],
 "properties": {
 "name": {
 "type": "string",
 "pattern": ".{1,63}"
 },
 "metric_data": {
 "type": "array",
 "items": {
 "anyOf": [
 {
 "$ref": "#/definitions/simple_metric"
 },
 {
 "$ref": "#/definitions/linear_graph_metric"
 },
 {
 "$ref": "#/definitions/bar_chart_metric"
 },
 {
 "$ref": "#/definitions/matrix_metric"
 }
]

 }
 }
 }
 }
 }
 }
 }
 },

Model card JSON schema 5520

Amazon SageMaker Developer Guide

 "additional_information": {
 "additionalProperties": false,
 "type": "object",
 "properties": {
 "ethical_considerations": {
 "description": "Any ethical considerations that the author wants to provide",
 "type": "string",
 "maxLength": 2048
 },
 "caveats_and_recommendations": {
 "description": "Caveats and recommendations for people who might use this
 model in their applications.",
 "type": "string",
 "maxLength": 2048
 },
 "custom_details": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/custom_property"
 }
 }
 }
 }
 },
 "definitions": {
 "source_algorithms": {
 "type": "array",
 "minContains": 1,
 "maxContains": 1,
 "items": {
 "type": "object",
 "additionalProperties": false,
 "required": [
 "algorithm_name"
],
 "properties": {
 "algorithm_name": {
 "description": "The name of an algorithm that was used to create the model
 package. The algorithm must be either an algorithm resource in your SageMaker account
 or an algorithm in AWS Marketplace that you are subscribed to.",
 "type": "string",
 "maxLength": 170
 },
 "model_data_url": {

Model card JSON schema 5521

Amazon SageMaker Developer Guide

 "description": "The Amazon S3 path where the model artifacts, which result
 from model training, are stored.",
 "type": "string",
 "maxLength": 1024
 }
 }
 }
 },
 "inference_specification": {
 "type": "object",
 "additionalProperties": false,
 "required": [
 "containers"
],
 "properties": {
 "containers": {
 "description": "Contains inference related information which were used to
 create model package.",
 "type": "array",
 "minContains": 1,
 "maxContains": 15,
 "items": {
 "type": "object",
 "additionalProperties": false,
 "required": [
 "image"
],
 "properties": {
 "model_data_url": {
 "description": "The Amazon S3 path where the model artifacts, which
 result from model training, are stored.",
 "type": "string",
 "maxLength": 1024
 },
 "image": {
 "description": "Inference environment path. The Amazon EC2 Container
 Registry (Amazon ECR) path where inference code is stored.",
 "type": "string",
 "maxLength": 255
 },
 "nearest_model_name": {
 "description": "The name of a pre-trained machine learning benchmarked
 by Amazon SageMaker Inference Recommender model that matches your model.",
 "type": "string"

Model card JSON schema 5522

Amazon SageMaker Developer Guide

 }
 }
 }
 }
 }
 },
 "risk_rating": {
 "description": "Risk rating of model",
 "type": "string",
 "enum": [
 "High",
 "Medium",
 "Low",
 "Unknown"
]
 },
 "custom_property": {
 "description": "Additional property in section",
 "type": "string",
 "maxLength": 1024
 },
 "objective_function": {
 "description": "objective function that training job is optimized for",
 "additionalProperties": false,
 "properties": {
 "function": {
 "type": "string",
 "enum": [
 "Maximize",
 "Minimize"
]
 },
 "facet": {
 "type": "string",
 "maxLength": 63
 },
 "condition": {
 "type": "string",
 "maxLength": 63
 }
 }
 },
 "training_metric": {
 "description": "training metric data",

Model card JSON schema 5523

Amazon SageMaker Developer Guide

 "type": "object",
 "required": [
 "name",
 "value"
],
 "additionalProperties": false,
 "properties": {
 "name": {
 "type": "string",
 "pattern": ".{1,255}"
 },
 "notes": {
 "type": "string",
 "maxLength": 1024
 },
 "value": {
 "type": "number"
 }
 }
 },
 "training_hyper_parameter": {
 "description": "training hyper parameter",
 "type": "object",
 "required": [
 "name",
 "value"
],
 "additionalProperties": false,
 "properties": {
 "name": {
 "type": "string",
 "pattern": ".{1,255}"
 },
 "value": {
 "type": "string",
 "pattern": ".{1,255}"
 }
 }
 },
 "linear_graph_metric": {
 "type": "object",
 "required": [
 "name",
 "type",

Model card JSON schema 5524

Amazon SageMaker Developer Guide

 "value"
],
 "additionalProperties": false,
 "properties": {
 "name": {
 "type": "string",
 "pattern": ".{1,255}"
 },
 "notes": {
 "type": "string",
 "maxLength": 1024
 },
 "type": {
 "type": "string",
 "enum": [
 "linear_graph"
]
 },
 "value": {
 "anyOf": [
 {
 "type": "array",
 "items": {
 "type": "array",
 "items": {
 "type": "number"
 },
 "minItems": 2,
 "maxItems": 2
 },
 "minItems": 1
 }
]
 },
 "x_axis_name": {
 "$ref": "#/definitions/axis_name_string"
 },
 "y_axis_name": {
 "$ref": "#/definitions/axis_name_string"
 }
 }
 },
 "bar_chart_metric": {
 "type": "object",

Model card JSON schema 5525

Amazon SageMaker Developer Guide

 "required": [
 "name",
 "type",
 "value"
],
 "additionalProperties": false,
 "properties": {
 "name": {
 "type": "string",
 "pattern": ".{1,255}"
 },
 "notes": {
 "type": "string",
 "maxLength": 1024
 },
 "type": {
 "type": "string",
 "enum": [
 "bar_chart"
]
 },
 "value": {
 "anyOf": [
 {
 "type": "array",
 "items": {
 "type": "number"
 },
 "minItems": 1
 }
]
 },
 "x_axis_name": {
 "$ref": "#/definitions/axis_name_array"
 },
 "y_axis_name": {
 "$ref": "#/definitions/axis_name_string"
 }
 }
 },
 "matrix_metric": {
 "type": "object",
 "required": [
 "name",

Model card JSON schema 5526

Amazon SageMaker Developer Guide

 "type",
 "value"
],
 "additionalProperties": false,
 "properties": {
 "name": {
 "type": "string",
 "pattern": ".{1,255}"
 },
 "notes": {
 "type": "string",
 "maxLength": 1024
 },
 "type": {
 "type": "string",
 "enum": [
 "matrix"
]
 },
 "value": {
 "anyOf": [
 {
 "type": "array",
 "items": {
 "type": "array",
 "items": {
 "type": "number"
 },
 "minItems": 1,
 "maxItems": 20
 },
 "minItems": 1,
 "maxItems": 20
 }
]
 },
 "x_axis_name": {
 "$ref": "#/definitions/axis_name_array"
 },
 "y_axis_name": {
 "$ref": "#/definitions/axis_name_array"
 }
 }
 },

Model card JSON schema 5527

Amazon SageMaker Developer Guide

 "simple_metric": {
 "description": "metric data",
 "type": "object",
 "required": [
 "name",
 "type",
 "value"
],
 "additionalProperties": false,
 "properties": {
 "name": {
 "type": "string",
 "pattern": ".{1,255}"
 },
 "notes": {
 "type": "string",
 "maxLength": 1024
 },
 "type": {
 "type": "string",
 "enum": [
 "number",
 "string",
 "boolean"
]
 },
 "value": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "string",
 "maxLength": 63
 },
 {
 "type": "boolean"
 }
]
 },
 "x_axis_name": {
 "$ref": "#/definitions/axis_name_string"
 },
 "y_axis_name": {

Model card JSON schema 5528

Amazon SageMaker Developer Guide

 "$ref": "#/definitions/axis_name_string"
 }
 }
 },
 "axis_name_array": {
 "type": "array",
 "items": {
 "type": "string",
 "maxLength": 63
 }
 },
 "axis_name_string": {
 "type": "string",
 "maxLength": 63
 }
 }
}

Create a model card

You can create an Amazon SageMaker Model Card using either the SageMaker console or the
SageMaker Python SDK. You can also use the API operations directly. For more information about
the API operations, see Use model cards through the low-level APIs.

Create a model card using the SageMaker console

Go to the Amazon SageMaker console. In the navigation pane, under Governance, choose Model
cards. On the upper right-hand corner, choose Create model card.

Go through the four steps in the Create model card prompt to document details about your
model.

Step 1: Enter model details and intended use

If your model is an AWS resource, specify the exact model name in this field to auto-populate
model details. To browse existing model names, see Models in the Amazon SageMaker console.
Each unique model name can have only one associated model card.

If your model is not an AWS resource, provide a unique name for your model. To add a model as an
AWS resource, see Create a model in the Amazon SageMaker Developer Guide. Alternatively, you can
add your model as a model package using SageMaker Marketplace or SageMaker Model Registry.

Create a model card 5529

https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html#realtime-endpoints-deployment-create-model
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html

Amazon SageMaker Developer Guide

For more information on intended uses, see Intended uses of a model. For more information on risk
ratings, see Risk ratings.

Step 2: Enter training details

Add any training details, training observations, datasets, hyperparameters, and details about the
model's objective function to the model card.

The objective function in a model card can be any function that is optimized during training. This
can include, but is not limited to, cost functions, loss functions, or objective metrics. In this section,
document the objective function that is most critical to training your model.

We recommend that you catalog the following attributes of your objective function:

• Optimization direction

• Metric

• Description

For example, you might minimize (optimization direction) cross entropy loss (metric) for a binary
classification problem (description) or maximize likelihood for logistic regression. Additionally, you
can provide notes about why you chose this objective function over others.

Step 3: Enter evaluation details

If you have existing evaluation reports generated by SageMaker Clarify or Model Monitor, either
provide an S3 URI for those reports or upload them manually to add them to the model card.

For more information on SageMaker Clarify, see Run SageMaker Clarify Processing Jobs for Bias
Analysis and Explainability.

For more information on monitoring drift in model quality metrics using Model Monitor, see
Monitor model quality.

To add your own evaluation report, choose Generic model card evaluation. All model card
evaluation reports must be in the Model card JSON schema.

Step 4: Enter additional details

Add custom model card detail fields for any additional information that you want to address on
your model card. For example, you might include the custom field Line of business with a value of
Personal finance.

Create a model card 5530

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-processing-job-run.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-processing-job-run.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html

Amazon SageMaker Developer Guide

Save model card

After reviewing the information in your model card, choose Save in the lower right-hand corner to
save your model card.

Create a model card using the SageMaker Python SDK

Before creating a model card, you must first define the content of your model card. When using
the SageMaker Python SDK, model content consists of a model overview, training details, intended
uses, evaluation details, and additional information.

You can create model cards for:

• Models that are hosted within SageMaker

• Model packages (models) within the SageMaker Model Registry

• Models that are hosted or registered outside of SageMaker

You can also create model cards without associating any models to them.

We recommend adding the models that you've trained to the SageMaker Model Registry. The
model registry helps you catalog models and track model versions. When you create a model card,
the information about the model from the model registry automatically populates the model card.
You can edit the model card or add information to it after you create it.

For information about using the model registry, see Register and Deploy Models with Model
Registry. For information about creating a model card from a model registry, see Create a model
card for your model in the SageMaker Model Registry.

Note

To use model cards with the SageMaker Python SDK, you first need to establish a
SageMaker Session. For more information, see Session in the SageMaker Python SDK API
reference.

To create a model card for models that aren't in the SageMaker Model Registry, see Create a model
that isn't in the model registry.

Create a model card 5531

https://sagemaker.readthedocs.io/en/stable/api/utility/session.html

Amazon SageMaker Developer Guide

Create a model that isn't in the model registry

Use the information in the following sections to create a model card for a model that you haven't
added to the model registry.

Step 1: Define model overview

Define an overview of your model.

model_overview = ModelOverview.from_model_name(
model_name=model_name,
sagemaker_session=sagemaker_session,
model_description="A-description-of-your-model",
problem_type="Problem-type", # For example, "Binary Classification"
algorithm_type="Algorithm-type", # For example, "Logistic Regression"
model_creator="Name-of-model-creator",
model_owner="Name-of-model-owner",
)

If your model is an AWS resource, then overview information such as the model ARN, inference
container URI, and the S3 location of model artifacts is automatically retrievable. Print the
associated AWS metadata with the following commands:

print(model_overview.model_id)
print(model_overview.inference_environment.container_image)
print(model_overview.model_artifact)

Step 2: Define training details

To define your model's training details, you must first define its objective function.

objective_function = ObjectiveFunction(
 function=Function(
 function=ObjectiveFunctionEnum.MINIMIZE,
 facet=FacetEnum.LOSS,
),
 notes="An-explanation-about-objective-function",
)

Next, you can define your training details using your existing model overview, session, and
objective function. Add any training observations here.

Create a model card 5532

Amazon SageMaker Developer Guide

training_details = TrainingDetails.from_model_overview(
 model_overview=model_overview,
 sagemaker_session=sagemaker_session,
 objective_function=objective_function,
 training_observations="Model-training-observations",
)

Once again, if your model is an AWS resource, certain training details are autopopulated. Print the
training job ARN, training container URI, and training metrics with the following commands:

print(training_details.training_job_details.training_arn)
print(training_details.training_job_details.training_environment.container_image)
print([{"name": i.name, "value": i.value} for i in
 training_details.training_job_details.training_metrics])

Define evaluation details

To define your model's evaluation details, you must first define one or more metric groups to
describe metrics used for any evaluation jobs.

my_metric_group = MetricGroup(
name="binary classification metrics",
metric_data=[Metric(name="accuracy", type=MetricTypeEnum.NUMBER, value=0.5)]
)

Next, you can define your evaluation details using evaluation metrics and datasets for each
evaluation job. Add any evaluation observations here and give your evaluation job a unique name.

evaluation_details = [
 EvaluationJob(
 name="Example-evaluation-job",
 evaluation_observation="Evaluation-observations",
 datasets=["s3://path/to/evaluation/data"],
 metric_groups=[my_metric_group],
)
]

If you have existing evaluation reports generated by SageMaker Clarify or SageMaker Model
Monitor, upload them to Amazon S3 and provide an S3 URI to automatically parse evaluation

Create a model card 5533

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-processing-job-run.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html

Amazon SageMaker Developer Guide

metrics. To add your own generic model card evaluation report, provide a report in the evaluation
results JSON format.

report_type = "clarify_bias.json"
example_evaluation_job.add_metric_group_from_json(
 f"example_metrics/{report_type}", EvaluationMetricTypeEnum.CLARIFY_BIAS
)

Step 3: Define intended uses

Define the intended uses of the model, including the general purpose of the model and the use
cases for which it was intended. It is also recommended to include any factors that potentially a
this model's efficacy in a particular use case and your organization's risk rating of the model. For
more information, see Intended uses of a modeland Risk ratings.

intended_uses = IntendedUses(
purpose_of_model="Purpose-of-the-model",
intended_uses="The-intended-uses-of-this-model",
factors_affecting_model_efficiency="Any-factors-effecting-model-efficacy",
risk_rating=RiskRatingEnum.LOW,
explanations_for_risk_rating="Explanation-for-low-risk-rating",
)

Define additional information

Lastly, you can add additional custom information to your model card. You can document any
ethical considerations, caveats, and recommendations about the model. You can also add any
custom details that you would like in the form of key-value pairs.

additional_information = AdditionalInformation(
ethical_considerations="Any-ethical-considerations",
caveats_and_recommendations="Any-caveats-and-recommendations",
custom_details={"custom details1": "details-value"},
)

Step 4: Create model card

Name your model card, define a model card, and then use that definition to create a model card
using the SageMaker Python SDK.

model_card_name = "my-model-card"

Create a model card 5534

https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-json-schema.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-json-schema.html

Amazon SageMaker Developer Guide

my_card = ModelCard(
 name=model_card_name,
 status=ModelCardStatusEnum.DRAFT,
 model_overview=model_overview,
 training_details=training_details,
 intended_uses=intended_uses,
 evaluation_details=evaluation_details,
 additional_information=additional_information,
 sagemaker_session=sagemaker_session,
)
my_card.create()

Create a model card for your model in the SageMaker Model Registry

Before you begin creating a model card, make sure that you've created a model package group
and a model package. For more information about using model registry, see Register and Deploy
Models with Model Registry.

Important

You must have permissions to use the operations in SageMaker Model Registry. We
recommend using AmazonSageMakerModelRegistryFullAccess AWS managed policy.
For more information about the managed policy, see AWS Managed Policies for Model
Registry.

Use the SageMaker Python SDK to create a model card for a model package within the SageMaker
Model Registry. A model package is a model that you've trained. When you create a model card,
Amazon SageMaker Model Cards automatically imports the data from the model package into the
model card.

When you create a model card for a model package, Amazon SageMaker Model Card uses the
DescribeModelPackage operation to add the data from the model package to the model card. The
following are examples of the fields that can be imported from a model package into a model card:

• ModelDataUrl

• ModelPackageDescription

• ModelPackageGroupName

• ModelPackageStatus

Create a model card 5535

https://docs.aws.amazon.com/APIReference/API_DescribeModelPackage.html#API_DescribeModelPackage_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelPackageContainerDefinition.html#sagemaker-Type-ModelPackageContainerDefinition-ModelDataUrl
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackage.html#sagemaker-DescribeModelPackage-response-ModelPackageDescription
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackage.html#sagemaker-DescribeModelPackage-response-ModelPackageGroupName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackage.html#sagemaker-DescribeModelPackage-response-ModelPackageStatus

Amazon SageMaker Developer Guide

• ModelPackageVersion

Use the following code to define the model package and create a model card from it:

mp_details = ModelPackage.from_model_package_arn(
 model_package_arn="example_model_package_arn",
 sagemaker_session=sagemaker_session,
)

model_card_name = "example-model-card"
my_card = ModelCard(
 name=model_card_name,
 status=ModelCardStatusEnum.status,
 model_package_details=mp_details,
 sagemaker_session=sagemaker_session,
)
my_card.create()

For status, you're specifying the approval status of the model card. If you don't specify a status,
SageMaker Model Cards uses the default value of DRAFT. If you don't specify a SageMaker session,
SageMaker Model Cards uses the default SageMaker session.

You must specify a name for the model and the Amazon Resource Name (ARN) of the model
package. For information about getting the Amazon Resource Name (ARN) for the model package,
see View the Details of a Model Version (Boto3).

The model card that you've created from the model package might have information that is either
missing or inaccurate. You can add information to the model card or edit it. For more information
about managing your model cards, see Manage model cards.

SageMaker Model Registry supports versioning of your model packages. You can version your
model package and create a model card for each version. The information from model cards of
preceding versions carry over to model cards created from subsequent versions. For example, you
could have version 1, version 2, and version 3 of a model package. Suppose you've already created
a model card for version 1, but you haven't created one for version 2. If you create a model card
for version 3, Amazon SageMaker Model Cards automatically carries over the information from the
model card for version 1 to the model card for version 3.

Create a model card 5536

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackage.html#sagemaker-DescribeModelPackage-response-ModelPackageVersion

Amazon SageMaker Developer Guide

Note

You can also create model cards for model packages that don't use versioning. However,
most machine learning workflows involve multiple versions of the same model, so we
recommend doing the following:

1. Creating a version for each model package

2. Creating a model card for each version of the model package

Manage model cards

After you've created a model card, you can manage them. Managing model cards include the
following actions:

• Editing a model card

• Deleting a model card

• Exporting a model card to a PDF

You can manage using either the Amazon SageMaker console or the SageMaker Python SDK.

Manage model cards using the console

Use the information in the following sections to manage your model cards with the Amazon
SageMaker console.

Edit a model card

To edit a model card, navigate to the model card of your choice by selecting its name in the
Amazon SageMaker Model Card console and choose Edit.

After you save a model card, you cannot edit the name of that model card. After you save a model
card version, you cannot update that version of the model card. Any edits that you need to make
are saved as a subsequent version in order to have an immutable record of model changes.

To view different versions of the model card, choose Actions, Select version, and then choose the
version that you want to view.

Manage model cards 5537

Amazon SageMaker Developer Guide

Export a model card

Follow these steps to export a model card.

1. Go to the Amazon SageMaker Model Card console.

2. Choose the name of the model card you want to export.

3. In the model card overview, choose Actions and then Export PDF.

4. Enter an S3 URI or browse available S3 buckets for your model card PDF.

5. If your model card exports successfully, you can either choose Download PDF in the resulting
banner or download your PDF directly from Amazon S3.

Delete a model card

Follow these steps to permanently delete one or more model cards.

1. Go to the Amazon SageMaker Model Cards console.

2. Check the box to the left of the name of the card(s) you want to delete.

3. Choose Delete in the upper right-hand corner.

4. Confirm your request to permanently delete one or more cards..

You can also delete a model card when viewing the model card overview in the console by
choosing Actions and then Delete model card.

Manage model cards using the SageMaker Python SDK

Use the information in the following sections to manage your model cards with the Amazon
SageMaker Python SDK.

Use model cards through the SageMaker Python SDK

You can create an Amazon SageMaker Model Card programmatically through the SageMaker
Python SDK. For more information see Amazon SageMaker Model Cards in the SageMaker Python
SDK API reference.

Edit a model card

You can edit a model card using the model_card.update() method. Updating a model card
creates a new model card version in order to have an immutable record of model changes. You
cannot update the name of a model card.

Manage model cards 5538

https://sagemaker.readthedocs.io/en/stable/api/governance/model_card.html

Amazon SageMaker Developer Guide

my_card.model_overview.model_description = "updated-model-decription"
my_card.update()

Export a model card

Specify an S3 output path and export your model card PDF to it with the following commands:

s3_output_path = f"s3://{bucket}/{prefix}/export"
pdf_s3_url = my_card.export_pdf(s3_output_path=s3_output_path).delete()

Delete a model card

Permanently delete a model card with the following command:

my_card.delete()

Sample notebooks

For more information on working with model cards through the SageMaker Python SDK, see the
Amazon SageMaker Model Governance - Model Card example notebook.

Cross-account support for Amazon SageMaker Model Cards

Use cross-account support in Amazon SageMaker Model Cards to share model cards between AWS
accounts. The account where the model cards are created is the model card account. Users in the
model card account share them with the shared accounts. The users in a shared account can update
the model cards or create PDFs of them.

Users in the model card account share their model cards through AWS Resource Access Manager
(AWS RAM). AWS RAM helps you share resources across AWS accounts. For an introduction to AWS
RAM, see What is AWS Resource Access Manager?

The following is the process to share model cards:

1. A user in the model card account sets up the cross-account model card sharing using AWS
Resource Access Manager.

2. If the model cards are encrypted with AWS KMS keys, the user setting up model sharing must
also provide users in the shared account with AWS KMS permissions.

3. A user in the shared account accepts the invite to the resource share.

Cross account support 5539

https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker_model_governance/model_card.ipynb
https://docs.aws.amazon.com/ram/latest/userguide/what-is.html

Amazon SageMaker Developer Guide

4. A user in the shared account provides the other users with permissions to access the model
cards.

If you're a user in the model card account, see the following sections:

• Set up cross-account model card sharing

• Set up AWS KMS permissions for the shared account

• Get responses to your resource share invitation

If you're a user in the shared account, see Set up IAM user permissions in the shared account about
setting up permissions for yourself and the other users in the account.

Set up cross-account model card sharing

Use AWS Resource Access Manager (AWS RAM) to grant users in your AWS account access to view
or update model cards created in a different AWS account.

To set up model card sharing, you must create a resource share. A resource share specifies:

• The resources being shared

• Who or what has access to the resources

• Managed permissions for the resources

For more information about resource shares, see Terms and concepts for AWS RAM. We
recommend taking the time to understand AWS RAM conceptually before you go through the
process of creating a resource share.

Important

You must have permissions to create a resource share. For more information about
permissions, see How AWS RAM works with IAM.

For procedures to create a resource share and additional information about them, see Create a
resource share.

When you go through the procedure of creating a resource share, you specify
sagemaker:ModelCard as the resource type. You must also specify the Amazon Resource

Cross account support 5540

https://docs.aws.amazon.com/ram/latest/userguide/getting-started-terms-and-concepts.html
https://docs.aws.amazon.com/ram/latest/userguide/security-iam-policies.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-create
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-create

Amazon SageMaker Developer Guide

Number (ARN) of the AWS RAM resource-based policy. You can specify either the default policy or
the policy that has additional permissions to create a PDF of the model card.

With the default AWSRAMPermissionSageMakerModelCards resource-based policy, the users in
the shared account have permissions to do the following operations:

• DescribeModelCard

• ListModelCardVersions

• UpdateModelCard

With the AWSRAMPermissionSageMakerModelCardsAllowExport resource-based policy, the
users in the shared account have permissions to do all of the preceding actions. They also have
permissions to create a model card export job and describe it through the following operations:

• CreateModelCardExportJob

• DescribeModelCardExportJob

The users in the shared account can create an export job to generate a PDF of a model card. They
can also describe an export job that has been created to find the PDF's Amazon S3 URI.

Model cards and export jobs are resources. The model card account owns the export jobs created
by a user in the shared account. For example, a user in account A shares model card X with shared
account B. A user in account B creates export job Y for model card X that stores the output in an
Amazon S3 location that the user in account B specifies. Even though account B created export job
Y, it belongs to account A.

Each AWS account has resource quotas. For information about quotas related to model cards, see
Amazon SageMaker endpoints and quotas.

Set up AWS KMS permissions for the shared account

If the model cards that you're sharing have been encrypted with AWS Key Management Service
keys, you also need to share the access to the keys with the shared account. Otherwise, the users in
the shared account can't view, update, or export the model cards. For an overview of AWS KMS, see
AWS Key Management Service.

To provide AWS KMS permissions to users in the shared account, update your key policy with the
following statement:

Cross account support 5541

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelCard.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModelCardVersions.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateModelCard.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelCardExportJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelCardExportJob.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html#limits_sagemaker
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

{
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::shared-account-id::role/example-IAM-role"
]
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt",
]
 "Resource": "arn:aws:kms:AWS-Region-of-model-card-account:model-card-account-
id:key/AWS KMS-key-id"
 "Condition": {
 "Bool": {"kms:GrantIsForAWSResource": true },
 "StringEquals": {
 "kms:ViaService": [
 "sagemaker.AWS-Region.amazonaws.com",
 "s3.AWS-Region.amazonaws.com"
],
 },
 "StringLike": {
 "kms:EncryptionContext:aws:sagemaker:model-card-arn": "arn:aws:sagemaker:AWS-
Region:model-card-account-id:model-card/model-card-name"
 }
 }
}

The preceding statement provides users in the shared account with kms:Decrypt and
kms:GenerateDataKey permissions. With kms:Decrypt, users can decrypt the model cards.
With kms:GenerateDataKey, users can encrypt the model cards that they update or the PDFs
that they create.

Get responses to your resource share invitation

After you've created a resource share, the shared accounts that you've specified in the resource
share receive an invitation to join it. They must accept the invite to access the resources.

For information about accepting a resource share invite, see Using shared AWS resources in the
AWS Resource Access Manager User Guide.

Cross account support 5542

https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html

Amazon SageMaker Developer Guide

Set up IAM user permissions in the shared account

The following information assumes that you've accepted the resource share invitation from the
model card account. For more information about accepting a resource share invitation, see Using
shared AWS resources .

You and the other users in your account use an IAM role to access the model cards shared from
the model card account. Use the following template to change the policy of the IAM role. You can
modify the template for your own use case.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeModelCard",
 "sagemaker:UpdateModelCard",
 "sagemaker:CreateModelCardExportJob",
 "sagemaker:ListModelCardVersions",
 "sagemaker:DescribeModelCardExportJob"
],
 "Resource": [
 "arn:aws:sagemaker:AWS-Region:AWS-model-card-account-id:model-
card/example-model-card-name-0",
 "arn:aws:sagemaker:AWS-Region:AWS-model-card-account-id:model-
card/example-model-card-name-1/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::Amazon-S3-bucket-storing-the-pdf-of-the-model-
card/model-card-name/*"
 }
]
}

To access model cards encrypted using AWS KMS, you must provide users in your account with the
following AWS KMS permissions.

Cross account support 5543

https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-shared.html

Amazon SageMaker Developer Guide

{
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt",
],
 "Resource": "arn:aws:kms:AWS-Region:AWS-account-id-where-the-model-card-is-
created:key/AWS Key Management Service-key-id"
}

Use model cards through the low-level APIs

You can create an Amazon SageMaker Model Card directly through the SageMaker API or the AWS
Command Line Interface (AWS CLI).

Note

When creating a model card with the low-level APIs, the content must be in the model
card JSON schema and provided as a string. For more information, see Model card JSON
schema.

SageMaker API

Use the following SageMaker API commands to work with Amazon SageMaker Model Cards:

• CreateModelCard

• DescribeModelCard

• ListModelCards

• ListModelCardVersions

• UpdateModelCard

• CreateModelCardExportJob

• DescribeModelCardExportJob

• ListModelCardExportJobs

• DeleteModelCard

SageMaker APIs 5544

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelCard.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelCard.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModelCards.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModelCardVersions.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateModelCard.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelCardExportJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelCardExportJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModelCardExportJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModelCard.html

Amazon SageMaker Developer Guide

AWS CLI

Use the following AWS CLI commands to work with Amazon SageMaker Model Cards:

• create-model-card

• describe-model-card

• list-model-cards

• list-model-card-versions

• update-model-card

• create-model-card-export-job

• describe-model-card-export-job

• list-model-card-export-jobs

• delete-model-card

Model card FAQs

Refer to the following FAQ items for answers to commonly asked questions about Amazon
SageMaker Model Card.

Q. What is model risk?

A: You can use models for a variety of business applications ranging from predicting cyber attacks
and approving loan applications to detecting the category of an email. Each of these applications
assumes a different level of risk. For example, incorrectly detecting a cyber attack has much greater
business impact than incorrectly categorizing an email. Given these varied risk profiles of a model,
you can use model cards to provide a risk rating of low, medium, or high for a model. If you don’t
know the risk of your model, you can set the status to unknown. Customers are responsible for
assigning the risk profile for each model. Based on the risk rating, organizations may have different
rules in place for deploying those models to production. For more information, see Risk ratings.

Q. What is the intended use of a model?

The intended use of a model describes how you should use the model in your production
applications. This goes beyond technical requirements like the type of instance to which you
should deploy a model and instead refers to the types of applications to create with the model, the
scenarios in which you can expect a reasonable performance from the model, or the type of data to

Model card FAQs 5545

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-model-card.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-model-card.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/list-model-cards.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/list-model-card-versions.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/update-model-card.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/create-model-card-export-job.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/describe-model-card-export-job.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/list-model-card-export-jobs.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/delete-model-card.html

Amazon SageMaker Developer Guide

use with the model. We recommend providing this information in the model card for better model
governance. You can define a kind of model specification in the intended use field and ensure
that model developers and consumers follow this specification while training and deploying their
models. For more information, see Intended uses of a model.

Q. Does SageMaker autopopulate information in my model card?

When you use the SageMaker Python SDK or the AWS console to create your model card,
SageMaker autopopulates details about your SageMaker trained model in the card. This includes
details about how the model was trained along with all the model details returned by the
describe-model API call.

Q. Can I customize a model card?

Amazon SageMaker Model Cards have a defined structure to them that cannot be modified. This
structure gives you guidance on what information should be captured in a model card. While you
cannot change the structure of the model card, there is some flexibility introduced through custom
properties in the Additional information section of the model card.

Q. Can I edit a model card once it is created?

Model cards have versions associated with them. A given model version is immutable across all
attributes other than the model card status. If you make any other changes to the model card, such
as evaluation metrics, description, or intended uses, SageMaker creates a new version of the model
card to reflect the updated information. This is to ensure that a model card, once created, cannot
be tampered with.

Q. Can I create model cards for models that were not trained using SageMaker?

A: Yes. You can create model cards for models not trained in SageMaker, but no information is
automatically populated in the card. You must supply all the information needed in the model card
for non-SageMaker models.

Q. Can I export or share model cards?

A: Yes. You can export each version of a model card to a PDF, downloaded, and share it.

Q. Do I need to register my model in the Model Registry to use model cards?

A: No. You can use model cards independently of the Model Registry.

Model card FAQs 5546

Amazon SageMaker Developer Guide

Q. What is the difference between model cards and Model Registry?

A: Model cards are intended to provide organizations with a mechanism to document as much
detail about their model as they like by following SageMaker’s prescriptive guidance along with
providing their own custom information. You can introduce model cards at the very start of the
ML process and use them to define the business problem that the model should solve and any
considerations to think about while using the model. After a model is trained, you can populate the
model card associated with that model with information about the model and how it was trained.
Model cards are associated with models and are immutable once associated with a model. This
ensures that the model card is the single source of truth for all the information related to a model,
including how it was trained and how it should be used.

The Model Registry is a catalog that stores metadata about your models. Each entry in the model
registry corresponds to a unique model version. That model version contains information about
the model such as where the model artifacts are stored in Amazon S3, what container is needed to
deploy the model, and custom metadata that should be attached to the model.

Q. Are model card versions related to model versions in the Model Registry?

A: Model card versions and model versions are different entities in SageMaker. Each update to
a model card results in a new version of that card. Model versions correspond to incrementally
trained models that are registered in the Model Registry. A model card version may be linked to a
specific model version in the Model Registry by way of the model ID field in the model card, but
this is not necessary.

Q. Are model cards integrated with SageMaker Model Monitor?

A: No. You can upload the performance metrics computed by SageMaker Model Monitor to the
model card by uploading a metrics file to Amazon S3 and linking that to the card, but there is no
native integration between Model Monitor and model cards. Model dashboards are integrated
with Model Monitor. For more information on model dashboards, see Amazon SageMaker Model
Dashboard.

Amazon SageMaker Model Dashboard

Amazon SageMaker Model Dashboard is a centralized portal, accessible from the SageMaker
console, where you can view, search, and explore all of the models in your account. You can track
which models are deployed for inference and if they are used in batch transform jobs or hosted
on endpoints. If you set up monitors with Amazon SageMaker Model Monitor, you can also track

Model Dashboard 5547

https://docs.aws.amazon.com/sagemaker/latest/dg/model_dashboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model_dashboard.html

Amazon SageMaker Developer Guide

the performance of your models as they make real-time predictions on live data. You can use the
dashboard to find models that violate thresholds you set for data quality, model quality, bias and
explainability. The dashboard’s comprehensive presentation of all your monitor results helps you
quickly identify models that don’t have these metrics configured.

The Model Dashboard aggregates model-related information from several SageMaker features. In
addition to the services provided in Model Monitor, you can view model cards, visualize workflow
lineage, and track your endpoint performance. You no longer have to sort through logs, query
in notebooks, or access other AWS services to collect the data you need. With a cohesive user
experience and integration into existing services, SageMaker’s Model Dashboard provides an out-
of-the-box model governance solution to help you ensure quality coverage across all your models.

Prerequisites

To use the Model Dashboard, you should have one or more models in your account. You can train
models using Amazon SageMaker or import models you've trained elsewhere. To create a model in
SageMaker, you can use the CreateModel API. For more information, see CreateModel. You can
also use SageMaker-provided ML environments, such as Amazon SageMaker Studio Classic, which
provides project templates that set up model training and deployment for you. For information
about how to get started with Studio Classic, see Amazon SageMaker Studio Classic.

While this is not a mandatory prerequisite, customers gain the most value out of the dashboard
if they set up model monitoring jobs using SageMaker Model Monitor for models deployed to
endpoints. For prerequisites and instructions on how to use SageMaker Model Monitor, see Monitor
data and model quality.

Model Dashboard elements

The Model Dashboard view extracts high-level details from each model to provide a comprehensive
summary of every model in your account. If your model is deployed for inference, the dashboard
helps you track the performance of your model and endpoint in real time.

Important details to highlight in this page include:

• Risk rating: A user-specified parameter from the model card with a low, medium, or high value.
The model card’s risk rating is a categorical measure of the business impact of the model’s
predictions. Models are used for a variety of business applications, each of which assumes
a different level of risk. For example, incorrectly detecting a cyber attack has much greater
business impact than incorrectly categorizing an email. If you don’t know the model risk, you can
set it to unknown. For information about Amazon SageMaker Model Cards see Model Cards.

Model Dashboard elements 5548

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html

Amazon SageMaker Developer Guide

• Model Monitor alerts: Model Monitor alerts are a primary focus of the Model Dashboard, and
reviewing the existing documentation on the various monitors provided by SageMaker is a
helpful way to get started. For an in-depth explanation of the SageMaker Model Monitor feature
and sample notebooks, see Monitor data and model quality.

The Model Dashboard displays Model Monitor status values by the following monitor types:

• Data Quality: Compares live data to training data. If they diverge, your model's inferences may
no longer be accurate. For additional details about the Data Quality monitor, see Monitor data
quality.

• Model Quality: Compares the predictions that the model makes with the actual Ground Truth
labels that the model attempts to predict. For additional details about the Model Quality
monitor, see Monitor model quality.

• Bias Drift: Compares the distribution of live data to training data, which can also cause
inaccurate predictions. For additional details about the Bias Drift monitor, see Monitor Bias
Drift for Models in Production.

• Feature Attribution Drift: Also known as explainability drift. Compares the relative rankings
of your features in training data versus live data, which could also be a result of bias drift. For
additional details about the Feature Attribution Drift monitor, see Monitor Feature Attribution
Drift for Models in Production.

Each Model Monitor status is one of the following values:

• None: No monitor is scheduled

• Inactive: A monitor was scheduled, but it was deactivated

• OK: A monitor is scheduled and is active, and has not encountered the necessary number of
violations in recent model monitor executions to raise an alert

• Time and date: An active monitor raised an alert at the specified time and date

• Endpoint: The endpoints which host your model for real-time inference. Within the Model
Dashboard, you can select the endpoint column to view performance metrics such as CPU, GPU,
disk, and memory utilization of your endpoints in real time to help you track the performance of
your compute instances.

• Batch transform job: The most recent batch transform job that ran using this model. This
column helps you determine if a model is actively used for batch inference.

• Model details: Each entry in the dashboard links to a model details page where you can dive
deeper into an individual model. You can access the model’s lineage graph, which visualizes the
workflow from data preparation to deployment, and metadata for each step. You can also create

Model Dashboard elements 5549

Amazon SageMaker Developer Guide

and view the model card, review alert details and history, assess the performance of your real-
time endpoints, and access other infrastructure-related details.

View Model Monitor schedules and alerts

Using the Python SDK, you can create a model monitor for data quality, model quality, bias drift, or
feature attribution drift. For more information about using SageMaker Model Monitor, see Monitor
data and model quality. The Model Dashboard populates information from all the monitors
you create on all your models in your account. You can track the status of each monitor, which
indicates whether your monitor is running as expected or failed due to an internal error. You can
also activate or deactivate any monitor in the model details page itself. For instructions about how
to view scheduled monitors for a model, see View scheduled monitors. For instructions about how
to activate or deactivate model monitors, see Activate or deactivate a model monitor.

A properly-configured and actively-running model monitor might raise alerts, in which case the
monitoring executions produce violation reports. For details about how alerts work and how to
view alert results, history, and links to job reports for debug, see View and edit alerts.

View scheduled monitors

To view a model’s scheduled monitors, complete the following steps:

1. Open the SageMaker console.

2. Choose Governance in the left panel.

3. Choose Model Dashboard.

4. In the Models section of the Model Dashboard, select the model name of the scheduled
monitors you want to view.

5. View the scheduled monitors in the Monitor schedule section. You can review the status for
each monitor in the Status schedule column, which is one of the following values:

• Failed: The monitoring schedule failed due to a problem with the configuration or settings
(such as incorrect user permissions).

• Pending: The monitor is in the process of becoming scheduled.

• Stopped: The schedule is stopped by the user.

• Scheduled: The schedule is created and runs at the frequency you specified.

View Model Monitor schedules and alerts 5550

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Activate or deactivate a model monitor

To activate or deactivate a model monitor, complete the following steps:

1. Open the SageMaker console.

2. Choose Governance in the left panel.

3. Choose Model Dashboard.

4. In the Models section of the Model Dashboard, select the model name of the alert you want to
modify.

5. Choose the radio box next to the monitor schedule of the alert you want to modify.

6. (optional) Choose Deactivate monitor schedule if you want to deactivate your monitor
schedule.

7. (optional) Choose Activate monitor schedule if you want to activate your monitor schedule.

View and edit alerts

The Model Dashboard displays alerts you configured in Amazon CloudWatch. You can modify the
alert criteria within the dashboard itself. The alert criteria depend upon two parameters:

• Datapoints to alert: Within the evaluation period, how many execution failures raise an alert.

• Evaluation period: The number of most recent monitoring executions to consider when
evaluating alert status.

The following image shows an example scenario of a series of Model Monitor executions in which
we set a hypothetical Evaluation period of 3 and a Datapoints to alert value of 2. After every
monitoring execution, the number of failures are counted within the Evaluation period of 3. If the
number of failures meets or exceeds the Datapoints to alert value 2, the monitor raises an alert
and remains in alert status until the number of failures within the Evaluation period becomes less
than 2 in subsequent iterations. In the image, the evaluation windows are red when the monitor
raises an alert or remains in alert status, and green otherwise.

Note that even if the evaluation window size has not reached the Evaluation period of 3, as shown
in the first 2 rows of the image, the monitor still raises an alert if the number of failures meets or
exceeds the Datapoints to alert value of 2.

View Model Monitor schedules and alerts 5551

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Within the monitor details page, you can view your alert history, edit existing alert criteria,
and view job reports to help you debug alert failures. For instructions about how to view alert
history or job reports for failed monitoring executions, see View alert history or job reports. For
instructions about how to edit alert criteria, see Edit alert criteria.

View alert history or job reports

To view alert history or job reports of failed executions, complete the following steps:

1. Open the SageMaker console.

2. Choose Governance in the left panel.

3. Choose Model Dashboard.

4. In the Models section of the Model Dashboard, select the model name of the alert history you
want to view.

5. In the Schedule name column, select the monitor name of the alert history you want to view.

6. To view alert history, select the Alert history tab.

7. (optional) To view job reports of monitoring executions, complete the following steps:

View Model Monitor schedules and alerts 5552

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

1. In the Alert history tab, choose View executions for the alert you want to investigate.

2. In the Execution history table, choose View report of the monitoring execution you want to
investigate.

The report displays the following information:

• Feature: The user-defined ML feature monitored

• Constraint: The specific check within the monitor

• Violation details: Information about why the constraint was violated

Edit alert criteria

To edit an alert in the Model Dashboard, complete the following steps:

1. Open the SageMaker console.

2. Choose Governance in the left panel.

3. Choose Model Dashboard.

4. In the Models section of the Model Dashboard, select the model name of the alert you want to
modify.

5. Choose the radio box next to the monitor schedule of the alert you want to modify.

6. Choose Edit Alert in the Monitor schedule section.

7. (optional) Change Datapoints to alert if you want to change the number of failures within the
Evaluation period that initiate an alert.

8. (optional) Change Evaluation period if you want to change the number of most recent
monitoring executions to consider when evaluating alert status.

View a model lineage graph

When you train a model, Amazon SageMaker creates a visualization of your entire ML workflow
from data preparation to deployment. This visualization is called a model lineage graph and uses
entities to represent individual steps in your workflow. For example, a basic model lineage graph
might have an entity representing your training set, which is associated with an entity representing
your training job, which is associated with another entity representing your model.

View a model lineage graph 5553

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

In addition, the graph stores information about each step in your workflow. With this information,
you can recreate any step in the workflow or track model and dataset lineage. For example,
SageMaker Lineage stores the S3 URI of your input data sources with each job so you can perform
further analysis of the data sources for compliance verification.

While the model lineage graph can help you view the steps in individual workflows, there are many
other capabilities that you can leverage using the AWS SDK. For example, with the AWS SDK you
can create or query your entities. For more information about the full set of features in SageMaker
Lineage and example notebooks, see Amazon SageMaker ML Lineage Tracking.

Introduction to entities

Amazon SageMaker automatically creates tracking entities for SageMaker jobs, models, model
packages, and endpoints if the data is available. For a basic workflow, suppose you train a model
using a dataset. SageMaker automatically generates a lineage graph with three entities:

• Dataset : A type of artifact, which is an entity representing a URI addressable object or data. An
artifact is generally either an input or an output to a trial component or action.

• TrainingJob: A type of trial component, which is an entity representing processing, training, and
transform jobs.

• Model: Another type of artifact. Like the Dataset artifact, a Model is a URI addressable object. In
this case, it is an output of the TrainingJob trial component.

Your model lineage graph expands quickly if you add additional steps to your workflow, such
as data preprocessing or postprocessing, if you deploy your model to an endpoint, or if you
include your model in a model package, among many other possibilities. For the complete list of
SageMaker entities, see Amazon SageMaker ML Lineage Tracking.

Entity properties

Each node in the graph displays the entity type, but you can choose the vertical ellipsis to the
right of the entity type to see specific details related to your workflow. In our previous barebones
lineage graph, you can choose the vertical ellipsis next to DataSet to see specific values for the
following properties (common to all artifact entities):

• Name: The name of your dataset.

• Source URI: The Amazon S3 location of your dataset.

View a model lineage graph 5554

Amazon SageMaker Developer Guide

For the TrainingJob entity, you can see the specific values for the following properties (common
to all TrialComponent entities):

• Name: The name of the training job.

• Job ARN: The Amazon Resource Name (ARN) of your training job.

For the Model entity, you see the same properties as listed for DataSet since they are both artifact
entities. For a list of the entities and their associated properties, see Lineage Tracking Entities.

Entity queries

Amazon SageMaker automatically generates graphs of lineage entities as you use them. However if
you are running many iterations of an experiment and don't want to view every lineage graph, the
AWS SDK can help you perform queries across all your workflows. For example, you can query your
lineage entities for all the processing jobs that use an endpoint. Or, you can see all the downstream
trails that use an artifact. For a list of all the queries you can perform, see Querying Lineage
Entities.

View a model’s lineage graph

To view the lineage graph for a model, complete the following steps:

1. Open the SageMaker console.

2. Choose Governance in the left panel.

3. Choose Model Dashboard.

4. In the Models section of the Model Dashboard, select the model name of the lineage graph
you want to view.

5. Choose View lineage in the Model Overview section.

View Endpoint Status

If you want to use your trained model to perform inference on live data, you deploy your model
to a real-time endpoint. To ensure appropriate latency of your predictions, you want to make sure
the instances that host your model are running efficiently. Model Dashboard’s endpoint monitoring
feature displays real-time information about your endpoint configuration and helps you track
endpoint performance with metrics.

Monitor settings

View Endpoint Status 5555

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

The Model Dashboard links to existing SageMaker endpoint details pages which display real-time
graphs of metrics you can select in Amazon CloudWatch. Within your dashboard, you can track
these metrics as your endpoint is handling real-time inference requests. Some metrics you can
select are the following:

• CpuUtilization: The sum of each individual CPU core's utilization, with each ranging from
0%–100%.

• MemoryUtilization: The percentage of memory used by the containers on an instance,
ranging from 0%–100%.

• DiskUtilization: The percentage of disk space used by the containers on an instance, ranging
from 0%–100%.

For the complete list of metrics you can view in real time, see Monitor Amazon SageMaker with
Amazon CloudWatch.

Runtime settings

Amazon SageMaker supports automatic scaling (auto scaling) for your hosted models. Auto scaling
dynamically adjusts the number of instances provisioned for a model in response to changes in
your workload. When the workload increases, auto scaling brings more instances online. When
the workload decreases, auto scaling removes unnecessary instances so that you don't pay for
provisioned instances that you aren't using. You can customize the following runtime settings in
the Model Dashboard:

• Update weights: Change the amount of workload assigned to each instance with numerical
weighting. For more information about instance weighting during auto scaling, see Configure
instance weighting for Amazon EC2 Auto Scaling.

• Update instance count: Change the number of total instances that can service your workload
when it increases.

For more information about endpoint runtime settings, see CreateEndpointConfig.

Endpoint configuration settings

Endpoint configuration settings display the settings you specified when you created the endpoint.
These settings inform SageMaker which resources to provision for your endpoint. Some settings
included are the following:

View Endpoint Status 5556

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-mixed-instances-groups-instance-weighting.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-mixed-instances-groups-instance-weighting.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html

Amazon SageMaker Developer Guide

• Data capture: You can choose to capture information about your endpoint's inputs and outputs.
For example, you may want to sample incoming traffic to see if the results correlate to training
data. You can customize your sampling frequency, the format of the stored data, and Amazon S3
location of stored data. For more information about setting up your data capture configuration,
see Capture data.

• Production variants: See the previous discussion in Runtime settings.

• Async invocation configuration: If your endpoint is asynchronous, this section includes the
maximum number of concurrent requests sent by the SageMaker client to the model container,
the Amazon S3 location of your success and failure notifications, and the output location of your
endpoint outputs. For more information about asynchronous outputs, see Create, invoke, and
update an Asynchronous Endpoint.

• Encryption key: You can enter your encryption key if you want to encrypt your outputs.

For more information about endpoint configuration settings, see CreateEndpointConfig.

View status and configuration for an endpoint

To view the status and configuration for a model’s endpoint, complete the following steps:

1. Open the SageMaker console.

2. Choose Governance in the left panel.

3. Choose Model Dashboard.

4. In the Models section of the Model Dashboard, select the model name of the endpoint you
want to view.

5. Select the endpoint name in the Endpoints section.

Model Dashboard FAQ

Refer to the following FAQ topics for answers to commonly asked questions about Amazon
SageMaker Model Dashboard.

Q. What is Model Dashboard?

Amazon SageMaker Model Dashboard is a centralized repository of all models created in your
account. The models are generally the outputs of SageMaker training jobs, but you can also import

Model Dashboard FAQ 5557

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

models trained elsewhere and host them on SageMaker. Model Dashboard provides a single
interface for IT administrators, model risk managers, and business leaders to track all deployed
models and aggregates data from multiple AWS services to provide indicators about how your
models are performing. You can view details about model endpoints, batch transform jobs, and
monitoring jobs for additional insights into model performance. The dashboard’s visual display
helps you quickly identify which models have missing or inactive monitors so you can ensure all
models are periodically checked for data drift, model drift, bias drift, and feature attribution drift.
Lastly, the dashboard’s ready access to model details helps you dive deep so you can access logs,
infrastructure-related information, and resources to help you debug monitoring failures.

Q. What are the prerequisites to use Model Dashboard?

You should have one or more models created in SageMaker, either trained on SageMaker or
externally trained. While this is not a mandatory prerequisite, you gain the most value from the
dashboard if you set up model monitoring jobs via Amazon SageMaker Model Monitor for models
deployed to endpoints.

Q. Who should use Model Dashboard?

Model risk managers, ML practitioners, data scientists and business leaders can get a
comprehensive overview of models using the Model Dashboard. The dashboard aggregates and
displays data from Amazon SageMaker Model Cards, Endpoints and Model Monitor services to
display valuable information such as model metadata from the model card and model registry,
endpoints where the models are deployed, and insights from model monitoring.

Q. How do I use Model Dashboard?

Model Dashboard is available out of the box with Amazon SageMaker and does not require any
prior configuration. However, if you have set up model monitoring jobs using SageMaker Model
Monitor and Clarify, you use Amazon CloudWatch to configure alerts that raise a flag in the
dashboard when model performance deviates from an acceptable range. You can create and add
new model cards to the dashboard, and view all the monitoring results associated with endpoints.
Model Dashboard currently does not support cross-account models.

Q. What is Amazon SageMaker Model Monitor?

With Amazon SageMaker Model Monitor, you can select the data you want to monitor and analyze
without writing any code. SageMaker Model Monitor lets you select data, such as prediction output,
from a menu of options and captures metadata such as timestamp, model name, and endpoint

Model Dashboard FAQ 5558

Amazon SageMaker Developer Guide

so you can analyze model predictions. You can specify the sampling rate of data capture as a
percentage of overall traffic in the case of high volume real-time predictions. This data is stored in
your own Amazon S3 bucket. You can also encrypt this data, configure fine-grained security, define
data retention policies, and implement access control mechanisms for secure access.

Q. What types of model monitors does SageMaker support?

SageMaker Model Monitor provides the following types of model monitors:

• Data Quality: Monitor drift in data quality.

• Model Quality: Monitor drift in model quality metrics, such as accuracy.

• Bias Drift for Models in Production: Monitor bias in your model's predictions by comparing the
distribution of training and live data.

• Feature Attribution Drift for Models in Production: Monitor drift in feature attribution by
comparing the relative rankings of features in training and live data.

Q. What inference methods does SageMaker Model Monitor support?

Model Monitor currently supports endpoints that host a single model for real-time inference and
does not support monitoring of multi-model endpoints.

Q. How can I get started with SageMaker Model Monitor?

You can use the following resources to get started with model monitoring:

• Data quality monitor example notebook

• Model quality monitor example notebook

• Bias drift monitor example notebook

• Feature attribution drift monitor example notebook

For more examples of model monitoring, see the GitHub repository amazon-sagemaker-examples.

Q. How does Model Monitor work?

Amazon SageMaker Model Monitor automatically monitors machine learning models in production,
using rules to detect drift in your model. Model Monitor notifies you when quality issues arise
through alerts. To learn more, see How Model Monitor Works.

Model Dashboard FAQ 5559

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-endpoints.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_model_monitor/introduction/SageMaker-ModelMonitoring.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_model_monitor/introduction/SageMaker-ModelMonitoring.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_model_monitor/fairness_and_explainability/SageMaker-Model-Monitor-Fairness-and-Explainability.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_model_monitor/fairness_and_explainability/SageMaker-Model-Monitor-Fairness-and-Explainability.ipynb
https://github.com/aws/amazon-sagemaker-examples/tree/main/sagemaker_model_monitor

Amazon SageMaker Developer Guide

Q. When and how do you bring your own container (BYOC) for Model Monitor?

Model Monitor computes model metrics and statistics on tabular data only. For use cases other
than tabular datasets, such as images or text, you can bring your own containers (BYOC) to monitor
your data and models. For example, you can use BYOC to monitor an image classification model
that takes images as input and outputs a label. To learn more about container contracts, see Bring
Your Own Containers.

Q. Where can I find examples of BYOC for Model Monitor?

You can find helpful BYOC examples in the following links:

• Monitor data and model quality

• GitHub example repository

• Bring Your Own Containers

• Detecting data drift in NLP using BYOC Model Monitor

• Detecting and analyzing incorrect predictions in CV

Q. How do I integrate Model Monitor with SageMaker Pipelines?

For details about how to integrate Model Monitor and SageMaker Pipelines, see Amazon
SageMaker Pipelines now integrates with SageMaker Model Monitor and SageMaker Clarify .

For an example, see the GitHub sample notebook SageMaker Pipelines integration with Model
Monitor and Clarify.

Q. Are there any performance concerns using DataCapture?

When turned on, data capture occurs asynchronously on the SageMaker endpoints. To prevent
impact to inference requests, DataCapture stops capturing requests at high levels of disk usage.
It is recommended you keep your disk utilization below 75% to ensure DataCapture continues
capturing requests.

Model Dashboard FAQ 5560

https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker_model_monitor
https://aws.amazon.com/blogs/machine-learning/detect-nlp-data-drift-using-custom-amazon-sagemaker-model-monitor
https://aws.amazon.com/blogs/machine-learning/detecting-and-analyzing-incorrect-model-predictions-with-amazon-sagemaker-model-monitor-and-debugger
https://aws.amazon.com/about-aws/whats-new/2021/12/amazon-sagemaker-pipelines-integrates-sagemaker-model-monitor-sagemaker-clarify/
https://aws.amazon.com/about-aws/whats-new/2021/12/amazon-sagemaker-pipelines-integrates-sagemaker-model-monitor-sagemaker-clarify/
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-pipelines/tabular/model-monitor-clarify-pipelines/sagemaker-pipeline-model-monitor-clarify-steps.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker-pipelines/tabular/model-monitor-clarify-pipelines/sagemaker-pipeline-model-monitor-clarify-steps.ipynb

Amazon SageMaker Developer Guide

Use Docker containers to build models

Amazon SageMaker makes extensive use of Docker containers for build and runtime tasks.
SageMaker provides pre-built Docker images for its built-in algorithms and the supported deep
learning frameworks used for training and inference. Using containers, you can train machine
learning algorithms and deploy models quickly and reliably at any scale. The topics in this section
show how to deploy these containers for your own use cases. For information about how to bring
your own containers for use with Amazon SageMaker Studio Classic, see Bring your own SageMaker
image.

Topics

• Scenarios for Running Scripts, Training Algorithms, or Deploying Models with SageMaker

• Docker Container Basics

• Use Pre-built SageMaker Docker images

• Adapting your own Docker container to work with SageMaker

• Create a container with your own algorithms and models

• Examples and More Information: Use Your Own Algorithm or Model

• Troubleshooting your Docker containers

Scenarios for Running Scripts, Training Algorithms, or
Deploying Models with SageMaker

Amazon SageMaker always uses Docker containers when running scripts, training algorithms, and
deploying models. Your level of engagement with containers depends on your use case.

The following decision tree illustrates three main scenarios: Use cases for using pre-built Docker
containers with SageMaker; Use cases for extending a pre-built Docker container; Use case for
building your own container.

Scenarios and Guidance 5561

Amazon SageMaker Developer Guide

Topics

• Use cases for using pre-built Docker containers with SageMaker

• Use cases for extending a pre-built Docker container

• Use case for building your own container

Use cases for using pre-built Docker containers with SageMaker

Consider the following use cases when using containers with SageMaker:

• Pre-built SageMaker algorithm – Use the image that comes with the built-in algorithm. See Use
Amazon SageMaker Built-in Algorithms or Pre-trained Models for more information.

• Custom model with pre-built SageMaker container – If you train or deploy a custom model, but
use a framework that has a pre-built SageMaker container including TensorFlow and PyTorch,
choose one of the following options:

Use cases for using pre-built Docker containers with SageMaker 5562

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

Amazon SageMaker Developer Guide

• If you don't need a custom package, and the container already includes all required packages:
Use the pre-built Docker image associated with your framework. For more information, see
Use Pre-built SageMaker Docker images.

• If you need a custom package installed into one of the pre-built containers: Confirm that the
pre-built Docker image allows a requirements.txt file, or extend the pre-built container based
on the following use cases.

Use cases for extending a pre-built Docker container

The following are use cases for extending a pre-built Docker container:

• You can't import the dependencies – Extend the pre-built Docker image associated with your
framework. See Extend a Pre-built Container for more information.

• You can't import the dependencies in the pre-built container and the pre-built container
supports requirements.txt – Add all the required dependencies in requirements.txt. The
following frameworks support using requirements.txt.

• TensorFlow

• Chainer

• Sci-kit learn

• PyTorch

• Apache MXNet

Use case for building your own container

If you build or train a custom model and require custom framework that does not have a pre-built
image, build a custom container.

As an example use case of training and deploying a TensorFlow model, the following guide shows
how to determine which option from the previous sections of Use cases fits to the case.

Assume that you have the following requirements for training and deploying a TensorFlow model.

• A TensorFlow model is a custom model.

• Because a TensorFlow model is going to be built in the TensorFlow framework, use the
TensorFlow pre-built framework container to train and host the model.

Use cases for extending a pre-built Docker container 5563

https://sagemaker.readthedocs.io/en/v2.18.0/frameworks/tensorflow/using_tf.html
https://sagemaker.readthedocs.io/en/v2.18.0/frameworks/chainer/using_chainer.html?highlight=requirements.txt
https://sagemaker.readthedocs.io/en/stable/frameworks/sklearn/using_sklearn.html?highlight=requirements.txt
https://sagemaker.readthedocs.io/en/v2.18.0/frameworks/pytorch/using_pytorch.html?highlight=requirements.txt
https://sagemaker.readthedocs.io/en/v2.18.0/frameworks/mxnet/using_mxnet.html?highlight=requirements.txt

Amazon SageMaker Developer Guide

• If you require custom packages in either your entrypoint script or inference script, either extend
the pre-built container or use a requirements.txt file to install dependencies at runtime.

After you determine the type of container that you need, the following list provides details about
the previously listed options.

• Use a built-in SageMaker algorithm or framework. For most use cases, you can use the built-
in algorithms and frameworks without worrying about containers. You can train and deploy
these algorithms from the SageMaker console, the AWS Command Line Interface (AWS CLI), a
Python notebook, or the Amazon SageMaker Python SDK. You can do that by specifying the
algorithm or framework version when creating your Estimator. The available built-in algorithms
are itemized and described in the Use Amazon SageMaker Built-in Algorithms or Pre-trained
Models topic. For more information about the available frameworks, see ML Frameworks and
Languages. For an example of how to train and deploy a built-in algorithm using a Jupyter
notebook running in a SageMaker notebook instance, see the Get started topic.

• Use pre-built SageMaker container images. Alternatively, you can use the built-in algorithms
and frameworks using Docker containers. SageMaker provides containers for its built-in
algorithms and pre-built Docker images for some of the most common machine learning
frameworks, such as Apache MXNet, TensorFlow, PyTorch, and Chainer. For a full list of the
available SageMaker Images, see Available Deep Learning Containers Images. It also supports
machine learning libraries such as scikit-learn and SparkML. If you use the Amazon SageMaker
Python SDK, you can deploy the containers by passing the full container URI to their respective
SageMaker SDK Estimator class. For the full list of deep learning frameworks that are currently
supported by SageMaker, see Prebuilt SageMaker Docker Images for Deep Learning. For
information about the scikit-learn and SparkML pre-built container images, see Prebuilt Amazon
SageMaker Docker Images for Scikit-learn and Spark ML. For more information about using
frameworks with the Amazon SageMaker Python SDK, see their respective topics in Machine
Learning Frameworks and Languages.

• Extend a pre-built SageMaker container image. If you would like to extend a pre-built
SageMaker algorithm or model Docker image, you can modify the SageMaker image to satisfy
your needs. For an example, see Extending our PyTorch containers.

• Adapt an existing container image: If you would like to adapt a pre-existing container image
to work with SageMaker, you must modify the Docker container to enable either the SageMaker
Training or Inference toolkit. For an example that shows how to build your own containers to
train and host an algorithm, see Bring Your Own R Algorithm.

Use case for building your own container 5564

https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/using_tf.html#train-a-model-with-tensorflow
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#how-to-implement-the-pre-and-or-post-processing-handler-s
https://sagemaker.readthedocs.io/en/stable/frameworks/tensorflow/deploying_tensorflow_serving.html#how-to-implement-the-pre-and-or-post-processing-handler-s
https://sagemaker.readthedocs.io
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://github.com/aws/amazon-sagemaker-examples-community/blob/215215eb25b40eadaf126d055dbb718a245d7603/bring-your-own-container/pytorch_extending_our_containers/pytorch_extending_our_containers.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb

Amazon SageMaker Developer Guide

Docker Container Basics

Docker is a program that performs operating system-level virtualization for installing, distributing,
and managing software. It packages applications and their dependencies into virtual containers
that provide isolation, portability, and security. With Docker, you can ship code faster, standardize
application operations, seamlessly move code, and economize by improving resource utilization.
For more general information about Docker, see Docker overview.

The following information outlines the most significant aspects of using Docker containers with
Amazon SageMaker.

SageMaker Functions

SageMaker uses Docker containers in the backend to manage training and inference processes.
SageMaker abstracts away from this process, so it happens automatically when an estimator is
used. While you don't need to use Docker containers explicitly with SageMaker for most use cases,
you can use Docker containers to extend and customize SageMaker functionality.

Containers with Amazon SageMaker Studio Classic

Studio Classic runs from a Docker container and uses it to manage functionality. As a result, you
must create your Docker container following the steps in Bring your own SageMaker image.

Use Pre-built SageMaker Docker images

Amazon SageMaker provides containers for its built-in algorithms and pre-built Docker images
for some of the most common machine learning frameworks, such as Apache MXNet, TensorFlow,
PyTorch, and Chainer. It also supports machine learning libraries such as scikit-learn and SparkML.

You can use these images from your SageMaker notebook instance or SageMaker Studio. You can
also extend the pre-built SageMaker images to include libraries and needed functionality. The
following topics give information about the available images and how to use them.

For the Docker registry path and other parameters for each of the Amazon SageMaker provided
algorithms and Deep Learning Containers (DLC), see Docker Registry Paths and Example Code.

Note

For information on Docker images for developing reinforcement learning (RL) solutions in
SageMaker, see SageMaker RL Containers.

Docker Container Basics 5565

https://docs.docker.com/engine/docker-overview/
https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths
https://github.com/aws/sagemaker-rl-container

Amazon SageMaker Developer Guide

Topics

• Prebuilt SageMaker Docker Images for Deep Learning

• Prebuilt Amazon SageMaker Docker Images for Scikit-learn and Spark ML

• Train a Deep Graph Network

• Extend a Pre-built Container

Prebuilt SageMaker Docker Images for Deep Learning

Amazon SageMaker provides prebuilt Docker images that include deep learning frameworks and
other dependencies needed for training and inference. For a complete list of the prebuilt Docker
images managed by SageMaker, see Docker Registry Paths and Example Code.

Using the SageMaker Python SDK

With the SageMaker Python SDK, you can train and deploy models using these popular deep
learning frameworks. For instructions on installing and using the SDK, see Amazon SageMaker
Python SDK. The following table lists the available frameworks and instructions on how to use
them with the SageMaker Python SDK:

Framework Instructions

TensorFlow Using TensorFlow with the SageMaker Python SDK

MXNet Using MXNet with the SageMaker Python SDK

PyTorch Using PyTorch with the SageMaker Python SDK

Chainer Using Chainer with the SageMaker Python SDK

Hugging Face Using Hugging Face with the SageMaker Python SDK

Extending Prebuilt SageMaker Docker Images

You can customize these prebuilt containers or extend them to handle any additional functional
requirements for your algorithm or model that the prebuilt SageMaker Docker image doesn't
support. For an example, see Fine-tuning and deploying a BERTopic model on SageMaker with your
own scripts and dataset, by extending existing PyTorch containers.

Prebuilt Deep Learning Images 5566

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths
https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk
https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk
https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk
https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk
https://sagemaker.readthedocs.io/en/stable/using_tf.html
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
https://sagemaker.readthedocs.io/en/stable/using_pytorch.html
https://sagemaker.readthedocs.io/en/stable/using_chainer.html
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/pytorch_extend_container_train_deploy_bertopic/BERTtopic_extending_container.html
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/pytorch_extend_container_train_deploy_bertopic/BERTtopic_extending_container.html

Amazon SageMaker Developer Guide

You can also use prebuilt containers to deploy your custom models or models that have been
trained in a framework other than SageMaker. For an overview of the process of bringing the
trained model artifacts into SageMaker and hosting them at an endpoint, see Bring Your Own
Pretrained MXNet or TensorFlow Models into Amazon SageMaker.

Prebuilt Amazon SageMaker Docker Images for Scikit-learn and Spark
ML

SageMaker provides prebuilt Docker images that install the scikit-learn and Spark ML libraries.
These libraries also include the dependencies needed to build Docker images that are compatible
with SageMaker using the Amazon SageMaker Python SDK. With the SDK, you can use scikit-learn
for machine learning tasks and use Spark ML to create and tune machine learning pipelines. For
instructions on installing and using the SDK, see SageMaker Python SDK.

Using the SageMaker Python SDK

The following table contains links to the GitHub repositories with the source code for the scikit-
learn and Spark ML containers. The table also contains links to instructions that show how use
these containers with Python SDK estimators to run your own training algorithms and hosting your
own models.

Library Prebuilt Docker Image Source Code Instructions

scikit-learn SageMaker Scikit-learn Containers Using Scikit-learn with the Amazon
SageMaker Python SDK

Spark ML SageMaker Spark ML Serving
Containers

SparkML Python SDK Documenta
tion

For more information and links to github repositories, see Use Scikit-learn with Amazon SageMaker
and Use SparkML Serving with Amazon SageMaker.

Specifying the Prebuilt Images Manually

If you are not using the SageMaker Python SDK and one of its estimators to manage the container,
you have to retrieve the relevant prebuilt container manually. The SageMaker prebuilt Docker
images are stored in Amazon Elastic Container Registry (Amazon ECR). You can push or pull them

Prebuilt Scikit-learn and Spark ML Images 5567

https://aws.amazon.com/blogs/machine-learning/bring-your-own-pre-trained-mxnet-or-tensorflow-models-into-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/bring-your-own-pre-trained-mxnet-or-tensorflow-models-into-amazon-sagemaker/
https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-python-sdk#installing-the-sagemaker-python-sdk
https://github.com/aws/sagemaker-scikit-learn-container
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
https://github.com/aws/sagemaker-sparkml-serving-container
https://github.com/aws/sagemaker-sparkml-serving-container
https://sagemaker.readthedocs.io/en/stable/sagemaker.sparkml.html
https://sagemaker.readthedocs.io/en/stable/sagemaker.sparkml.html

Amazon SageMaker Developer Guide

using their fullname registry addresses. SageMaker uses the following Docker Image URL patterns
for scikit-learn and Spark ML:

• <ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/sagemaker-scikit-
learn:<SCIKIT-LEARN_VERSION>-cpu-py<PYTHON_VERSION>

For example, 746614075791.dkr.ecr.us-west-1.amazonaws.com/sagemaker-scikit-
learn:1.2-1-cpu-py3

• <ACCOUNT_ID>.dkr.ecr.<REGION_NAME>.amazonaws.com/sagemaker-sparkml-
serving:<SPARK-ML_VERSION>

For example, 341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-
sparkml-serving:2.4

For account IDs and AWS Region names, see Docker Registry Paths and Example Code.

Finding Available Images

Use the following commands to find out which versions of the images are available. For example,
use the following to find the available sagemaker-sparkml-serving image in the ca-
central-1 Region:

aws \
 ecr describe-images \
 --region ca-central-1 \
 --registry-id 341280168497 \
 --repository-name sagemaker-sparkml-serving

Train a Deep Graph Network

In this overview, you learn how to get started with a deep graph network by using one of the DGL
containers in Amazon Elastic Container Registry (Amazon ECR). You can also see links to practical
examples for deep graph networks.

What Is a Deep Graph Network?

Deep graph networks refer to a type of neural network that is trained to solve graph problems.
A deep graph network uses an underlying deep learning framework like PyTorch or MXNet. The
potential for graph networks in practical AI applications is highlighted in the Amazon SageMaker

Deep Graph Networks 5568

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths

Amazon SageMaker Developer Guide

tutorials for Deep Graph Library (DGL). Examples for training models on graph datasets include
social networks, knowledge bases, biology, and chemistry.

Figure 1. The DGL ecosystem

Several examples are provided using Amazon SageMaker’s deep learning containers that are
preconfigured with DGL. If you have special modules you want to use with DGL, you can also build
your own container. The examples involve heterographs, which are graphs that have multiple types
of nodes and edges, and draw on a variety of applications across disparate scientific fields, such
as bioinformatics and social network analysis. DGL provides a wide array of graph neural network
implementations for different types models. Some of the highlights include:

• Graph convolutional network (GCN)

Deep Graph Networks 5569

https://www.dgl.ai/
https://docs.dgl.ai/tutorials/models/index.html
https://docs.dgl.ai/tutorials/models/index.html

Amazon SageMaker Developer Guide

• Relational graph convolutional network (R-GCN)

• Graph attention network (GAT)

• Deep generative models of graphs (DGMG)

• Junction tree neural network (JTNN)

Get Started

DGL is available as a deep learning container in Amazon ECR. You can select deep learning
containers when you write your estimator function in an Amazon SageMaker notebook. You
can also craft your own custom container with DGL by following the Bring Your Own Container
guide. The easiest way to get started with a deep graph network uses one of the DGL containers in
Amazon ECR.

Note

Backend framework support is limited to PyTorch and MXNet.

Setup

If you are using Amazon SageMaker Studio, you need to clone the examples repository first. If
you are using a notebook instance, you can find the examples by choosing the SageMaker icon at
bottom of the left toolbar.

To clone the Amazon SageMaker SDK and notebook examples repository

1. From the JupyterLab view in Amazon SageMaker, go to the File Browser at the top of the left
toolbar. From the File Browser panel, you can see a new navigation at the top of the panel.

2. Choose the icon on the far right to clone a Git repository.

3. Add the repository URL: https://github.com/awslabs/amazon-sagemaker-examples.git

4. Browse the newly added folder and its contents. The DGL examples are stored in the
sagemaker-python-sdk folder.

Deep Graph Networks 5570

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://github.com/awslabs/amazon-sagemaker-examples.git

Amazon SageMaker Developer Guide

Run a Graph Network Training Example

To train a deep graph network

1. From the JupyterLab view in Amazon SageMaker, browse the example notebooks and look for
DGL folders. Several files may be included to support an example. Examine the README for
any prerequisites.

2. Run the .ipynb notebook example.

3. Find the estimator function, and note the line where it is using an Amazon ECR container
for DGL and a specific instance type. You may want to update this to use a container in your
preferred Region.

4. Run the function to launch the instance and use the DGL container for training a graph
network. Charges are incurred for launching this instance. The instance self-terminates when
the training is complete.

Examples

An example of knowledge graph embedding (KGE) is provided. It uses the Freebase dataset, a
knowledge base of general facts. An example use case would be to graph the relationships of
persons and predict their nationality.

An example implementation of a graph convolutional network (GCN) shows how you can train a
graph network to predict toxicity. A physiology dataset, Tox21, provides toxicity measurements for
how substances affect biological responses.

Another GCN example shows you how to train a graph network on a scientific publications
bibliography dataset, known as Cora. You can use it to find relationships between authors, topics,
and conferences.

The last example is a recommender system for movie reviews. It uses a graph convolutional matrix
completion (GCMC) network trained on the MovieLens datasets. These datasets consist of movie
titles, genres, and ratings by users.

Use a Deep Learning Container with DGL

The following example uses preconfigured deep learning containers. This is the easiest to try since
it works out of the box on Amazon SageMaker.

• Semi-supervised classification of a knowledge base using a GCN

Deep Graph Networks 5571

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/dgl_gcn

Amazon SageMaker Developer Guide

Bring Your Own Container with DGL

The following examples enable you to bring your own container (BYOC). Read the BYOC guide and
familiarize yourself with that process before trying these. Configuration is required.

• Molecular property prediction of toxicity using a GCN

• Recommender system for movies using a GCMC implementation

Extend a Pre-built Container

If a pre-built SageMaker container doesn't fulfill all of your requirements, you can extend the
existing image to accommodate your needs. Even if there is direct support for your environment or
framework, you may want to add additional functionality or configure your container environment
differently. By extending a pre-built image, you can leverage the included deep learning libraries
and settings without having to create an image from scratch. You can extend the container to add
libraries, modify settings, and install additional dependencies.

The following tutorial shows how to extend a pre-built SageMaker image and publish it to Amazon
ECR.

Topics

• Requirements to Extend a Pre-built Container

• Extend SageMaker Containers to Run a Python Script

Requirements to Extend a Pre-built Container

To extend a pre-built SageMaker image, you need to set the following environment variables
within your Dockerfile. For more information on environment variables with SageMaker containers,
see the SageMaker Training Toolkit GitHub repo.

• SAGEMAKER_SUBMIT_DIRECTORY: The directory within the container in which the Python script
for training is located.

• SAGEMAKER_PROGRAM: The Python script that should be invoked and used as the entry point for
training.

You can also install additional libraries by including the following in your Dockerfile:

Extend a Pre-built Container 5572

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/dgl_gcn_tox21
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/dgl_gcmc
https://github.com/aws/sagemaker-training-toolkit/blob/master/ENVIRONMENT_VARIABLES.md

Amazon SageMaker Developer Guide

RUN pip install <library>

The following tutorial shows how to use these environment variables.

Extend SageMaker Containers to Run a Python Script

In this tutorial, you learn how to extend the SageMaker PyTorch container with a Python file that
uses the CIFAR-10 dataset. By extending the SageMaker PyTorch container, you utilize the existing
training solution made to work with SageMaker. This tutorial extends a training image, but the
same steps can be taken to extend an inference image. For a full list of the available images, see
Available Deep Learning Containers Images.

To run your own training model using the SageMaker containers, build a Docker container through
a SageMaker Notebook instance.

Step 1: Create an SageMaker Notebook Instance

1. Open the SageMaker console.

2. In the left navigation pane, choose Notebook, choose Notebook instances, and then choose
Create notebook instance.

3. On the Create notebook instance page, provide the following information:

a. For Notebook instance name, enter RunScriptNotebookInstance.

b. For Notebook Instance type, choose ml.t2.medium.

c. In the Permissions and encryption section, do the following:

i. For IAM role, choose Create a new role.

ii. On the Create an IAM role page, choose Specific S3 buckets, specify an Amazon S3
bucket named sagemaker-run-script, and then choose Create role.

SageMaker creates an IAM role named AmazonSageMaker-
ExecutionRole-YYYYMMDDTHHmmSS, such as AmazonSageMaker-
ExecutionRole-20190429T110788. Note that the execution role naming
convention uses the date and time when the role was created, separated by a T.

d. For Root Access, choose Enable.

e. Choose Create notebook instance.

4. On the Notebook instances page, the Status is Pending. It can take a few minutes for Amazon
CloudWatch Internet Monitor to launch a machine learning compute instance—in this case,

Extend a Pre-built Container 5573

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

it launches a notebook instance—and attach an ML storage volume to it. The notebook
instance has a preconfigured Jupyter notebook server and a set of Anaconda libraries. For
more information, see
CreateNotebookInstance.

5. In the Permissions and encryption section, copy the IAM role ARN number, and paste it into
a notepad file to save it temporarily. You use this IAM role ARN number later to configure a
local training estimator in the notebook instance. The IAM role ARN number looks like the
following: 'arn:aws:iam::111122223333:role/service-role/AmazonSageMaker-
ExecutionRole-20190429T110788'

6. After the status of the notebook instance changes to InService, choose Open JupyterLab.

Step 2: Create and Upload the Dockerfile and Python Training Scripts

1. After JupyterLab opens, create a new folder in the home directory of your JupyterLab.
In the upper-left corner, choose the New Folder icon, and then enter the folder name
docker_test_folder.

2. Create a Dockerfile text file in the docker_test_folder directory.

a. Choose the New Launcher icon (+) in the upper-left corner.

b. In the right pane under the Other section, choose Text File.

c. Paste the following Dockerfile sample code into your text file.

SageMaker PyTorch image
FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-training:1.5.1-cpu-
py36-ubuntu16.04

ENV PATH="/opt/ml/code:${PATH}"

this environment variable is used by the SageMaker PyTorch container to
 determine our user code directory.
ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code

/opt/ml and all subdirectories are utilized by SageMaker, use the /code
 subdirectory to store your user code.
COPY cifar10.py /opt/ml/code/cifar10.py

Defines cifar10.py as script entrypoint

Extend a Pre-built Container 5574

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html

Amazon SageMaker Developer Guide

ENV SAGEMAKER_PROGRAM cifar10.py

The Dockerfile script performs the following tasks:

• FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-
training:1.5.1-cpu-py36-ubuntu16.04 – Downloads the SageMaker PyTorch
base image. You can replace this with any SageMaker base image you want to bring to
build containers.

• ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code – Sets /opt/ml/code as the
training script directory.

• COPY cifar10.py /opt/ml/code/cifar10.py – Copies the script to the location
inside the container that is expected by SageMaker. The script must be located in this
folder.

• ENV SAGEMAKER_PROGRAM cifar10.py – Sets your cifar10.py training script as
the entrypoint script.

d. On the left directory navigation pane, the text file name might automatically be named
untitled.txt. To rename the file, right-click the file, choose Rename, rename the file as
Dockerfile without the .txt extension, and then press Ctrl+s or Command+s to save
the file.

3. Create or upload a training script cifar10.py in the docker_test_folder. You can use the
following example script for this exercise.

import ast
import argparse
import logging

import os

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision
import torchvision.models
import torchvision.transforms as transforms
import torch.nn.functional as F

Extend a Pre-built Container 5575

Amazon SageMaker Developer Guide

logger=logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

classes=('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship',
 'truck')

https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/
cifar10_tutorial.py#L118
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1=nn.Conv2d(3, 6, 5)
 self.pool=nn.MaxPool2d(2, 2)
 self.conv2=nn.Conv2d(6, 16, 5)
 self.fc1=nn.Linear(16 * 5 * 5, 120)
 self.fc2=nn.Linear(120, 84)
 self.fc3=nn.Linear(84, 10)

 def forward(self, x):
 x=self.pool(F.relu(self.conv1(x)))
 x=self.pool(F.relu(self.conv2(x)))
 x=x.view(-1, 16 * 5 * 5)
 x=F.relu(self.fc1(x))
 x=F.relu(self.fc2(x))
 x=self.fc3(x)
 return x

def _train(args):
 is_distributed=len(args.hosts) > 1 and args.dist_backend is not None
 logger.debug("Distributed training - {}".format(is_distributed))

 if is_distributed:
 # Initialize the distributed environment.
 world_size=len(args.hosts)
 os.environ['WORLD_SIZE']=str(world_size)
 host_rank=args.hosts.index(args.current_host)
 dist.init_process_group(backend=args.dist_backend, rank=host_rank,
 world_size=world_size)
 logger.info(
 'Initialized the distributed environment: \'{}\' backend on {} nodes.
 '.format(

Extend a Pre-built Container 5576

Amazon SageMaker Developer Guide

 args.dist_backend,
 dist.get_world_size()) + 'Current host rank is {}. Using cuda: {}.
 Number of gpus: {}'.format(
 dist.get_rank(), torch.cuda.is_available(), args.num_gpus))

 device='cuda' if torch.cuda.is_available() else 'cpu'
 logger.info("Device Type: {}".format(device))

 logger.info("Loading Cifar10 dataset")
 transform=transforms.Compose(
 [transforms.ToTensor(),
 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

 trainset=torchvision.datasets.CIFAR10(root=args.data_dir, train=True,
 download=False, transform=transform)
 train_loader=torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
 shuffle=True,
 num_workers=args.workers)

 testset=torchvision.datasets.CIFAR10(root=args.data_dir, train=False,
 download=False, transform=transform)
 test_loader=torch.utils.data.DataLoader(testset, batch_size=args.batch_size,
 shuffle=False,
 num_workers=args.workers)

 logger.info("Model loaded")
 model=Net()

 if torch.cuda.device_count() > 1:
 logger.info("Gpu count: {}".format(torch.cuda.device_count()))
 model=nn.DataParallel(model)

 model=model.to(device)

 criterion=nn.CrossEntropyLoss().to(device)
 optimizer=torch.optim.SGD(model.parameters(), lr=args.lr,
 momentum=args.momentum)

 for epoch in range(0, args.epochs):
 running_loss=0.0
 for i, data in enumerate(train_loader):
 # get the inputs
 inputs, labels=data
 inputs, labels=inputs.to(device), labels.to(device)

Extend a Pre-built Container 5577

Amazon SageMaker Developer Guide

 # zero the parameter gradients
 optimizer.zero_grad()

 # forward + backward + optimize
 outputs=model(inputs)
 loss=criterion(outputs, labels)
 loss.backward()
 optimizer.step()

 # print statistics
 running_loss += loss.item()
 if i % 2000 == 1999: # print every 2000 mini-batches
 print('[%d, %5d] loss: %.3f' %
 (epoch + 1, i + 1, running_loss / 2000))
 running_loss=0.0
 print('Finished Training')
 return _save_model(model, args.model_dir)

def _save_model(model, model_dir):
 logger.info("Saving the model.")
 path=os.path.join(model_dir, 'model.pth')
 # recommended way from http://pytorch.org/docs/master/notes/serialization.html
 torch.save(model.cpu().state_dict(), path)

def model_fn(model_dir):
 logger.info('model_fn')
 device="cuda" if torch.cuda.is_available() else "cpu"
 model=Net()
 if torch.cuda.device_count() > 1:
 logger.info("Gpu count: {}".format(torch.cuda.device_count()))
 model=nn.DataParallel(model)

 with open(os.path.join(model_dir, 'model.pth'), 'rb') as f:
 model.load_state_dict(torch.load(f))
 return model.to(device)

if __name__ == '__main__':
 parser=argparse.ArgumentParser()

 parser.add_argument('--workers', type=int, default=2, metavar='W',

Extend a Pre-built Container 5578

Amazon SageMaker Developer Guide

 help='number of data loading workers (default: 2)')
 parser.add_argument('--epochs', type=int, default=2, metavar='E',
 help='number of total epochs to run (default: 2)')
 parser.add_argument('--batch-size', type=int, default=4, metavar='BS',
 help='batch size (default: 4)')
 parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
 help='initial learning rate (default: 0.001)')
 parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
 help='momentum (default: 0.9)')
 parser.add_argument('--dist-backend', type=str, default='gloo',
 help='distributed backend (default: gloo)')

 # The parameters below retrieve their default values from SageMaker environment
 variables, which are
 # instantiated by the SageMaker containers framework.
 # https://github.com/aws/sagemaker-containers#how-a-script-is-executed-inside-
the-container
 parser.add_argument('--hosts', type=str,
 default=ast.literal_eval(os.environ['SM_HOSTS']))
 parser.add_argument('--current-host', type=str,
 default=os.environ['SM_CURRENT_HOST'])
 parser.add_argument('--model-dir', type=str,
 default=os.environ['SM_MODEL_DIR'])
 parser.add_argument('--data-dir', type=str,
 default=os.environ['SM_CHANNEL_TRAINING'])
 parser.add_argument('--num-gpus', type=int, default=os.environ['SM_NUM_GPUS'])

 _train(parser.parse_args())

Step 3: Build the Container

1. In the JupyterLab home directory, open a Jupyter notebook. To open a new notebook, choose
the New Launch icon and then choose conda_pytorch_p39 in the Notebook section.

2. Run the following command in the first notebook cell to change to the
docker_test_folder directory:

% cd ~/SageMaker/docker_test_folder

This returns your current directory as follows:

Extend a Pre-built Container 5579

Amazon SageMaker Developer Guide

! pwd

output: /home/ec2-user/SageMaker/docker_test_folder

3. Log in to Docker to access the base container:

! aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com

4. To build the Docker container, run the following Docker build command, including the space
followed by a period at the end:

! docker build -t pytorch-extended-container-test .

The Docker build command must be run from the Docker directory you created, in this case
docker_test_folder.

Note

If you get the following error message that Docker cannot find the Dockerfile, make
sure the Dockerfile has the correct name and has been saved to the directory.

unable to prepare context: unable to evaluate symlinks in Dockerfile path:
lstat /home/ec2-user/SageMaker/docker/Dockerfile: no such file or directory

Remember that docker looks for a file specifically called Dockerfile without any
extension within the current directory. If you named it something else, you can pass
in the file name manually with the -f flag. For example, if you named your Dockerfile
Dockerfile-text.txt, run the following command:

! docker build -t tf-custom-container-test -f Dockerfile-text.txt .

Step 4: Test the Container

1. To test the container locally in the notebook instance, open a Jupyter notebook. Choose New
Launcher and choose Notebook in conda_pytorch_p39 framework. The rest of the code
snippets must run from the Jupyter notebook instance.

Extend a Pre-built Container 5580

Amazon SageMaker Developer Guide

2. Download the CIFAR-10 dataset.

import torch
import torchvision
import torchvision.transforms as transforms

def _get_transform():
 return transforms.Compose(
 [transforms.ToTensor(),
 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

def get_train_data_loader(data_dir='/tmp/pytorch/cifar-10-data'):
 transform=_get_transform()
 trainset=torchvision.datasets.CIFAR10(root=data_dir, train=True,
 download=True, transform=transform)
 return torch.utils.data.DataLoader(trainset, batch_size=4,
 shuffle=True, num_workers=2)

def get_test_data_loader(data_dir='/tmp/pytorch/cifar-10-data'):
 transform=_get_transform()
 testset=torchvision.datasets.CIFAR10(root=data_dir, train=False,
 download=True, transform=transform)
 return torch.utils.data.DataLoader(testset, batch_size=4,
 shuffle=False, num_workers=2)

trainloader=get_train_data_loader('/tmp/pytorch-example/cifar-10-data')
testloader=get_test_data_loader('/tmp/pytorch-example/cifar-10-data')

3. Set role to the role used to create your Jupyter notebook. This is used to configure your
SageMaker Estimator.

from sagemaker import get_execution_role

role=get_execution_role()

4. Paste the following example script into the notebook code cell to configure a SageMaker
Estimator using your extended container.

from sagemaker.estimator import Estimator

hyperparameters={'epochs': 1}

Extend a Pre-built Container 5581

Amazon SageMaker Developer Guide

estimator=Estimator(
 image_uri='pytorch-extended-container-test',
 role=role,
 instance_count=1,
 instance_type='local',
 hyperparameters=hyperparameters
)

estimator.fit('file:///tmp/pytorch-example/cifar-10-data')

5. Run the code cell. This test outputs the training environment configuration, the values used for
the environmental variables, the source of the data, and the loss and accuracy obtained during
training.

Step 5: Push the Container to Amazon Elastic Container Registry (Amazon ECR)

1. After you successfully run the local mode test, you can push the Docker container to Amazon
ECR and use it to run training jobs.

Run the following command lines in a notebook cell.

%%sh

Specify an algorithm name
algorithm_name=pytorch-extended-container-test

account=$(aws sts get-caller-identity --query Account --output text)

Get the region defined in the current configuration (default to us-west-2 if none
 defined)
region=$(aws configure get region)

fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest"

If the repository doesn't exist in ECR, create it.

aws ecr describe-repositories --repository-names "${algorithm_name}" > /dev/null
 2>&1
if [$? -ne 0]
then
aws ecr create-repository --repository-name "${algorithm_name}" > /dev/null

Extend a Pre-built Container 5582

https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

Amazon SageMaker Developer Guide

fi

Log into Docker
aws ecr get-login-password --region ${region}|docker login --username AWS --
password-stdin ${fullname}

Build the docker image locally with the image name and then push it to ECR
with the full name.

docker build -t ${algorithm_name} .
docker tag ${algorithm_name} ${fullname}

docker push ${fullname}

2. After you push the container, you can call the Amazon ECR image from anywhere in the
SageMaker environment. Run the following code example in the next notebook cell.

If you want to use this training container with SageMaker Studio to use its visualization
features, you can also run the following code in a Studio notebook cell to call the Amazon ECR
image of your training container.

import boto3

client=boto3.client('sts')
account=client.get_caller_identity()['Account']

my_session=boto3.session.Session()
region=my_session.region_name

algorithm_name="pytorch-extended-container-test"
ecr_image='{}.dkr.ecr.{}.amazonaws.com/{}:latest'.format(account, region,
 algorithm_name)

ecr_image
This should return something like
12-digits-of-your-account.dkr.ecr.us-east-2.amazonaws.com/tf-2.2-test:latest

3. Use the ecr_image retrieved from the previous step to configure a SageMaker estimator
object. The following code sample configures a SageMaker PyTorch estimator.

import sagemaker

from sagemaker import get_execution_role

Extend a Pre-built Container 5583

Amazon SageMaker Developer Guide

from sagemaker.estimator import Estimator

estimator=Estimator(
 image_uri=ecr_image,
 role=get_execution_role(),
 base_job_name='pytorch-extended-container-test',
 instance_count=1,
 instance_type='ml.p2.xlarge'
)

start training
estimator.fit()

deploy the trained model
predictor=estimator.deploy(1, instance_type)

Step 6: Clean up Resources

To clean up resources when done with the Get Started example

1. Open the SageMaker console, choose the notebook instance RunScriptNotebookInstance,
choose Actions, and choose Stop. It can take a few minutes for the instance to stop.

2. After the instance Status changes to Stopped, choose Actions, choose Delete, and then
choose Delete in the dialog box. It can take a few minutes for the instance to be deleted. The
notebook instance disappears from the table when it has been deleted.

3. Open the Amazon S3 console and delete the bucket that you created for storing model
artifacts and the training dataset.

4. Open the IAM console and delete the IAM role. If you created permission policies, you can
delete them, too.

Note

The Docker container shuts down automatically after it has run. You don't need to
delete it.

Extend a Pre-built Container 5584

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

Adapting your own Docker container to work with SageMaker

You can adapt an existing Docker image to work with SageMaker. You may need to use an existing,
external Docker image with SageMaker when you have a container that satisfies feature or safety
requirements that are not currently supported by a pre-built SageMaker image. There are two
toolkits that allow you to bring your own container and adapt it to work with SageMaker:

• SageMaker Training Toolkit

• SageMaker Inference Toolkit

The following topics show how to adapt your existing image using the SageMaker Training and
Inference toolkits:

Topics

• Individual Framework Libraries

• Using the SageMaker Training and Inference Toolkits

• Adapting your own training container

• Adapting Your Own Inference Container

Individual Framework Libraries

In addition to the SageMaker Training Toolkit and SageMaker Inference Toolkit, SageMaker also
provides toolkits specialized for TensorFlow, MXNet, PyTorch, and Chainer. The following table
provides links to the GitHub repositories that contain the source code for each framework and
their respective serving toolkits. The instructions linked are for using the Python SDK to run
training algorithms and host models on SageMaker. The functionality for these individual libraries
is included in the SageMaker Training Toolkit and SageMaker Inference Toolkit.

Framework Toolkit Source Code

TensorFlow SageMaker TensorFlow Training

SageMaker TensorFlow Serving

MXNet SageMaker MXNet Training

Adapting your own Docker container to work with SageMaker 5585

https://github.com/aws/sagemaker-training-toolkit
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/aws/sagemaker-tensorflow-training-toolkit
https://github.com/aws/sagemaker-tensorflow-serving-container
https://github.com/aws/sagemaker-mxnet-training-toolkit

Amazon SageMaker Developer Guide

Framework Toolkit Source Code

SageMaker MXNet Inference

PyTorch SageMaker PyTorch Training

SageMaker PyTorch Inference

Chainer SageMaker Chainer SageMaker Containers

Using the SageMaker Training and Inference Toolkits

The SageMaker Training and SageMaker Inference toolkits implement the functionality that you
need to adapt your containers to run scripts, train algorithms, and deploy models on SageMaker.
When installed, the library defines the following for users:

• The locations for storing code and other resources.

• The entry point that contains the code to run when the container is started. Your Dockerfile must
copy the code that needs to be run into the location expected by a container that is compatible
with SageMaker.

• Other information that a container needs to manage deployments for training and inference.

SageMaker Toolkits Containers Structure

When SageMaker trains a model, it creates the following file folder structure in the container's /
opt/ml directory.

/opt/ml
input
config
hyperparameters.json
resourceConfig.json
data
<channel_name>
<input data>
model
#
code
#

SageMaker Training and Inference Toolkits 5586

https://github.com/aws/sagemaker-mxnet-inference-toolkit
https://github.com/aws/sagemaker-pytorch-training-toolkit
https://github.com/aws/sagemaker-pytorch-inference-toolkit
https://github.com/aws/sagemaker-chainer-container
https://github.com/aws/sagemaker-training-toolkit
https://github.com/aws/sagemaker-inference-toolkit

Amazon SageMaker Developer Guide

output
#
failure

When you run a model training job, the SageMaker container uses the /opt/ml/input/ directory,
which contains the JSON files that configure the hyperparameters for the algorithm and the
network layout used for distributed training. The /opt/ml/input/ directory also contains files
that specify the channels through which SageMaker accesses the data, which is stored in Amazon
Simple Storage Service (Amazon S3). The SageMaker containers library places the scripts that the
container will run in the /opt/ml/code/ directory. Your script should write the model generated
by your algorithm to the /opt/ml/model/ directory. For more information, see Use Your Own
Training Algorithms.

When you host a trained model on SageMaker to make inferences, you deploy the model to an
HTTP endpoint. The model makes real-time predictions in response to inference requests. The
container must contain a serving stack to process these requests.

In a hosting or batch transform container, the model files are located in the same folder to which
they were written during training.

/opt/ml/model
#
<model files>

For more information, see Use your own inference code.

Single Versus Multiple Containers

You can either provide separate Docker images for the training algorithm and inference code or
you can use a single Docker image for both. When creating Docker images for use with SageMaker,
consider the following:

• Providing two Docker images can increase storage requirements and cost because common
libraries might be duplicated.

• In general, smaller containers start faster for both training and hosting. Models train faster and
the hosting service can react to increases in traffic by automatically scaling more quickly.

• You might be able to write an inference container that is significantly smaller than the training
container. This is especially common when you use GPUs for training, but your inference code is
optimized for CPUs.

SageMaker Training and Inference Toolkits 5587

Amazon SageMaker Developer Guide

• SageMaker requires that Docker containers run without privileged access.

• Both Docker containers that you build and those provided by SageMaker can send messages to
the Stdout and Stderr files. SageMaker sends these messages to Amazon CloudWatch logs in
your AWS account.

For more information about how to create SageMaker containers and how scripts are executed
inside them, see the SageMaker Training Toolkit and SageMaker Inference Toolkit repositories
on GitHub. They also provide lists of important environmental variables and the environmental
variables provided by SageMaker containers.

Adapting your own training container

To run your own training model, build a Docker container using the Amazon SageMaker Training
Toolkit through an Amazon SageMaker notebook instance.

Step 1: Create a SageMaker notebook instance

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the left navigation pane, choose Notebook, choose Notebook instances, and then choose
Create notebook instance.

3. On the Create notebook instance page, provide the following information:

a. For Notebook instance name, enter RunScriptNotebookInstance.

b. For Notebook Instance type, choose ml.t2.medium.

c. In the Permissions and encryption section, do the following:

i. For IAM role, choose Create a new role. This opens a new window.

ii. On the Create an IAM role page, choose Specific S3 buckets, specify an Amazon S3
bucket named sagemaker-run-script, and then choose Create role.

SageMaker creates an IAM role named AmazonSageMaker-
ExecutionRole-YYYYMMDDTHHmmSS. For example, AmazonSageMaker-
ExecutionRole-20190429T110788. Note that the execution role naming
convention uses the date and time at which the role was created, separated by a T.

d. For Root Access, choose Enable.

e. Choose Create notebook instance.

Adapting your own training container 5588

https://github.com/aws/sagemaker-training-toolkit
https://github.com/aws/sagemaker-inference-toolkit
https://github.com/aws/sagemaker-training-toolkit
https://github.com/aws/sagemaker-training-toolkit
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

4. On the Notebook instances page, the Status is Pending. It can take a few minutes for
Amazon SageMaker to launch a machine learning compute instance—in this case, it launches
a notebook instance—and attach an ML storage volume to it. The notebook instance has a
preconfigured Jupyter notebook server and a set of Anaconda libraries. For more information,
see
CreateNotebookInstance.

5. Click on the Name of the notebook you just created. This opens a new page.

6. In the Permissions and encryption section, copy the IAM role ARN number, and paste it into
a notepad file to save it temporarily. You use this IAM role ARN number later to configure a
local training estimator in the notebook instance. The IAM role ARN number looks like the
following: 'arn:aws:iam::111122223333:role/service-role/AmazonSageMaker-
ExecutionRole-20190429T110788'

7. After the status of the notebook instance changes to InService, choose Open JupyterLab.

Step 2: Create and upload the Dockerfile and Python training scripts

1. After JupyterLab opens, create a new folder in the home directory of your JupyterLab.
In the upper-left corner, choose the New Folder icon, and then enter the folder name
docker_test_folder.

2. Create a Dockerfile text file in the docker_test_folder directory.

a. Choose the New Launcher icon (+) in the upper-left corner.

b. In the right pane under the Other section, choose Text File.

c. Paste the following Dockerfile sample code into your text file.

#Download an open source TensorFlow Docker image
FROM tensorflow/tensorflow:latest-gpu-jupyter

Install sagemaker-training toolkit that contains the common functionality
 necessary to create a container compatible with SageMaker and the Python SDK.
RUN pip3 install sagemaker-training

Copies the training code inside the container
COPY train.py /opt/ml/code/train.py

Defines train.py as script entrypoint

Adapting your own training container 5589

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html

Amazon SageMaker Developer Guide

ENV SAGEMAKER_PROGRAM train.py

The Dockerfile script performs the following tasks:

• FROM tensorflow/tensorflow:latest-gpu-jupyter – Downloads the latest
TensorFlow Docker base image. You can replace this with any Docker base image you
want to bring to build containers, as well as with AWS pre-built container base images.

• RUN pip install sagemaker-training – Installs SageMaker Training Toolkit that
contains the common functionality necessary to create a container compatible with
SageMaker.

• COPY train.py /opt/ml/code/train.py – Copies the script to the location inside
the container that is expected by SageMaker. The script must be located in this folder.

• ENV SAGEMAKER_PROGRAM train.py – Takes your training script train.py as the
entrypoint script copied in the /opt/ml/code folder of the container. This is the only
environmental variable that you must specify when you build your own container.

d. On the left directory navigation pane, the text file name might automatically be named
untitled.txt. To rename the file, right-click the file, choose Rename, rename the file as
Dockerfile without the .txt extension, and then press Ctrl+s or Command+s to save
the file.

3. Upload a training script train.py to the docker_test_folder. You can use the following
example script to create a model that reads handwritten digits trained on the MNIST dataset
for this exercise.

import tensorflow as tf
import os

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])

Adapting your own training container 5590

https://github.com/aws/sagemaker-training-toolkit
https://en.wikipedia.org/wiki/MNIST_database

Amazon SageMaker Developer Guide

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=1)
model_save_dir = f"{os.environ.get('SM_MODEL_DIR')}/1"

model.evaluate(x_test, y_test)
tf.saved_model.save(model, model_save_dir)

Step 3: Build the container

1. In the JupyterLab home directory, open a Jupyter notebook. To open a new notebook,
choose the New Launch icon and then choose the latest version of conda_tensorflow2 in the
Notebook section.

2. Run the following command in the first notebook cell to change to the
docker_test_folder directory:

cd ~/SageMaker/docker_test_folder

This returns your current directory as follows:

! pwd

output: /home/ec2-user/SageMaker/docker_test_folder

3. To build the Docker container, run the following Docker build command, including the space
followed by a period at the end:

! docker build -t tf-custom-container-test .

The Docker build command must be run from the Docker directory you created, in this case
docker_test_folder.

Note

If you get the following error message that Docker cannot find the Dockerfile, make
sure the Dockerfile has the correct name and has been saved to the directory.

Adapting your own training container 5591

Amazon SageMaker Developer Guide

unable to prepare context: unable to evaluate symlinks in Dockerfile path:
lstat /home/ec2-user/SageMaker/docker/Dockerfile: no such file or directory

Remember that docker looks for a file specifically called Dockerfile without any
extension within the current directory. If you named it something else, you can pass in
the file name manually with the -f flag. For example, if you named your Dockerfile as
Dockerfile-text.txt, run the following command:

! docker build -t tf-custom-container-test -f Dockerfile-text.txt .

Step 4: Test the container

1. To test the container locally in the notebook instance, open a Jupyter notebook. Choose New
Launcher and choose the latest version of conda_tensorflow2 in the Notebook section.

2. Paste the following example script into the notebook code cell to configure a SageMaker
Estimator.

import sagemaker
from sagemaker.estimator import Estimator

estimator = Estimator(image_uri='tf-custom-container-test',
 role=sagemaker.get_execution_role(),
 instance_count=1,
 instance_type='local')

estimator.fit()

In the preceding code example, sagemaker.get_execution_role() is specified to
the role argument to automatically retrieve the role set up for the SageMaker session.
You can also replace it with the string value of the IAM role ARN number you used
when you configured the notebook instance. The ARN should look like the following:
'arn:aws:iam::111122223333:role/service-role/AmazonSageMaker-
ExecutionRole-20190429T110788'.

Adapting your own training container 5592

Amazon SageMaker Developer Guide

3. Run the code cell. This test outputs the training environment configuration, the values used for
the environmental variables, the source of the data, and the loss and accuracy obtained during
training.

Step 5: Push the container to Amazon Elastic Container Registry (Amazon ECR)

1. After you successfully run the local mode test, you can push the Docker container to Amazon
ECR and use it to run training jobs. If you want to use a private Docker registry instead of
Amazon ECR, see Push your training container to a private registry.

Run the following command lines in a notebook cell.

%%sh

Specify an algorithm name
algorithm_name=tf-custom-container-test

account=$(aws sts get-caller-identity --query Account --output text)

Get the region defined in the current configuration (default to us-west-2 if none
 defined)
region=$(aws configure get region)
region=${region:-us-west-2}

fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest"

If the repository doesn't exist in ECR, create it.

aws ecr describe-repositories --repository-names "${algorithm_name}" > /dev/null
 2>&1
if [$? -ne 0]
then
aws ecr create-repository --repository-name "${algorithm_name}" > /dev/null
fi

Get the login command from ECR and execute it directly

aws ecr get-login-password --region ${region}|docker login --username AWS --
password-stdin ${fullname}

Build the docker image locally with the image name and then push it to ECR
with the full name.

Adapting your own training container 5593

https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html
https://docs.aws.amazon.com/sagemaker/latest/dg/docker-containers-adapt-your-own-private-registry.html

Amazon SageMaker Developer Guide

docker build -t ${algorithm_name} .
docker tag ${algorithm_name} ${fullname}

docker push ${fullname}

Note

This bash shell script may raise a permission issue similar to the following error
message:

"denied: User: [ARN] is not authorized to perform: ecr:InitiateLayerUpload
 on resource:
arn:aws:ecr:us-east-1:[id]:repository/tf-custom-container-test"

If this error occurs, you need to attach the AmazonEC2ContainerRegistryFullAccess
policy to your IAM role. Go to the IAM console, choose Roles from the left
navigation pane, look up the IAMrole you used for the Notebook instance.
Under the Permission tab, choose the Attach policies button, and search the
AmazonEC2ContainerRegistryFullAccess policy. Mark the check box of the policy, and
choose Add permissions to finish.

2. Run the following code in a Studio notebook cell to call the Amazon ECR image of your
training container.

import boto3

account_id = boto3.client('sts').get_caller_identity().get('Account')
ecr_repository = 'tf-custom-container-test'
tag = ':latest'

region = boto3.session.Session().region_name

uri_suffix = 'amazonaws.com'
if region in ['cn-north-1', 'cn-northwest-1']:
 uri_suffix = 'amazonaws.com.cn'

byoc_image_uri = '{}.dkr.ecr.{}.{}/{}'.format(account_id, region, uri_suffix,
 ecr_repository + tag)

Adapting your own training container 5594

https://console.aws.amazon.com/iam/home

Amazon SageMaker Developer Guide

byoc_image_uri
This should return something like
111122223333.dkr.ecr.us-east-2.amazonaws.com/sagemaker-byoc-test:latest

3. Use the ecr_image retrieved from the previous step to configure a SageMaker
estimator object. The following code sample configures a SageMaker estimator with the
byoc_image_uri and initiates a training job on an Amazon EC2 instance.

SageMaker Python SDK v1

import sagemaker
from sagemaker import get_execution_role
from sagemaker.estimator import Estimator

estimator = Estimator(image_uri=byoc_image_uri,
 role=get_execution_role(),
 base_job_name='tf-custom-container-test-job',
 instance_count=1,
 instance_type='ml.g4dn.xlarge')

#train your model
estimator.fit()

SageMaker Python SDK v2

import sagemaker
from sagemaker import get_execution_role
from sagemaker.estimator import Estimator

estimator = Estimator(image_uri=byoc_image_uri,
 role=get_execution_role(),
 base_job_name='tf-custom-container-test-job',
 instance_count=1,
 instance_type='ml.g4dn.xlarge')

#train your model
estimator.fit()

4. If you want to deploy your model using your own container, refer to Adapting Your Own
Inference Container. You can also use an AWSframework container that can deploy a
TensorFlow model. To deploy the example model to read handwritten digits, enter the

Adapting your own training container 5595

https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html

Amazon SageMaker Developer Guide

following example script into the same notebook that you used to train your model in
the previous sub-step to obtain the image URIs (universal resource identifiers) needed for
deployment, and deploy the model.

import boto3
import sagemaker

#obtain image uris
from sagemaker import image_uris
container = image_uris.retrieve(framework='tensorflow',region='us-
west-2',version='2.11.0',
 image_scope='inference',instance_type='ml.g4dn.xlarge')

#create the model entity, endpoint configuration and endpoint
predictor = estimator.deploy(1,instance_type='ml.g4dn.xlarge',image_uri=container)

Test your model using a sample handwritten digit from the MNIST dataset using the following
code example.

#Retrieve an example test dataset to test
import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist

Load the MNIST dataset and split it into training and testing sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
Select a random example from the training set
example_index = np.random.randint(0, x_train.shape[0])
example_image = x_train[example_index]
example_label = y_train[example_index]

Print the label and show the image
print(f"Label: {example_label}")
plt.imshow(example_image, cmap='gray')
plt.show()

Convert the test handwritten digit into a form that TensorFlow can ingest and make a test
prediction.

from sagemaker.serializers import JSONSerializer
data = {"instances": example_image.tolist()}

Adapting your own training container 5596

Amazon SageMaker Developer Guide

predictor.serializer=JSONSerializer() #update the predictor to use the
 JSONSerializer
predictor.predict(data) #make the prediction

For a full example that shows how to test a custom container locally and push it to an Amazon ECR
image, see the Building Your Own TensorFlow Container example notebook.

Tip

To profile and debug training jobs to monitor system utilization issues (such as CPU
bottlenecks and GPU underutilization) and identify training issues (such as overfitting,
overtraining, exploding tensors, and vanishing gradients), use Amazon SageMaker
Debugger. For more information, see Use Debugger with Custom Training Containers.

Step 6: Clean up resources

To clean up resources when done with the get started example

1. Open the SageMaker console, choose the notebook instance RunScriptNotebookInstance,
choose Actions, and choose Stop. It can take a few minutes for the instance to stop.

2. After the instance Status changes to Stopped, choose Actions, choose Delete, and then
choose Delete in the dialog box. It can take a few minutes for the instance to be deleted. The
notebook instance disappears from the table when it has been deleted.

3. Open the Amazon S3 console and delete the bucket that you created for storing model
artifacts and the training dataset.

4. Open the IAM console and delete the IAM role. If you created permission policies, you can
delete them, too.

Note

The Docker container shuts down automatically after it has run. You don't need to
delete it.

Adapting your own training container 5597

https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/tensorflow_bring_your_own/tensorflow_bring_your_own.html
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Amazon SageMaker Developer Guide

Blogs and Case Studies

The following blogs discuss case studies about using custom training containers in Amazon
SageMaker.

• Why bring your own container to Amazon SageMaker and how to do it right, Medium (January
20th, 2023)

Adapt your training job to access images in a private Docker registry

You can use a private Docker registry instead of an Amazon Elastic Container Registry (Amazon
ECR) to host your images for SageMaker Training. The following instructions show you how to
create a Docker registry, configure your virtual private cloud (VPC) and training job, store images,
and give SageMaker access to the training image in the private docker registry. These instructions
also show you how to use a Docker registry that requires authentication for a SageMaker training
job.

Create and store your images in a private Docker registry

Create a private Docker registry to store your images. Your registry must:

• use the Docker Registry HTTP API protocol

• be accessible from the same VPC specified in the VpcConfig parameter in the
CreateTrainingJob API. Input VpcConfig when you create your training job.

• secured with a TLS certificate from a known public certificate authority.

For more information about creating a Docker registry, see Deploy a registry server.

Configure your VPC and SageMaker training job

SageMaker uses a network connection within your VPC to access images in your Docker registry. To
use the images in your Docker registry for training, the registry must be accessible from an Amazon
VPC in your account. For more information, see Use a Docker registry that requires authentication
for training.

You must also configure your training job to connect to the same VPC to which your Docker
registry has access. For more information, see Configure a Training Job for Amazon VPC Access.

Adapting your own training container 5598

https://medium.com/@pandey.vikesh/why-bring-your-own-container-to-amazon-sagemaker-and-how-to-do-it-right-bc158fe41ed1
https://docs.docker.com/registry/
https://docs.docker.com/registry/spec/api/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestSyntax
https://aws.amazon.com/what-is/ssl-certificate/
https://docs.docker.com/registry/deploying/
https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html#train-vpc-configure

Amazon SageMaker Developer Guide

Create a training job using an image from your private Docker registry

To use an image from your private Docker registry for training, use the following guide to configure
your image, configure and create a training job. The code examples that follow use the AWS SDK
for Python (Boto3) client.

1. Create a training image configuration object and input Vpc the
TrainingRepositoryAccessMode field as follows.

training_image_config = {
 'TrainingRepositoryAccessMode': 'Vpc'
}

Note

If your private Docker registry requires authentication, you must add a
TrainingRepositoryAuthConfig object to the training image configuration
object. You must also specify the Amazon Resource Name (ARN) of an
AWS Lambda function that provides access credentials to SageMaker
using the TrainingRepositoryCredentialsProviderArn field of the
TrainingRepositoryAuthConfig object. For more information, see the example
code structure below.

training_image_config = {
 'TrainingRepositoryAccessMode': 'Vpc',
 'TrainingRepositoryAuthConfig': {
 'TrainingRepositoryCredentialsProviderArn':
 'arn:aws:lambda:Region:Acct:function:FunctionName'
 }
}

For information about how to create the Lambda function to provide authentication, see Use a
Docker registry that requires authentication for training.

2. Use a Boto3 client to create a training job and pass the correct configuration to the
create_training_job API. The following instructions show you how to configure the components
and create a training job.

Adapting your own training container 5599

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

a. Create the AlgorithmSpecification object that you want to pass to
create_training_job. Use the training image configuration object that you created in the
previous step, as shown in the following code example.

algorithm_specification = {
 'TrainingImage': 'myteam.myorg.com/docker-local/my-training-image:<IMAGE-TAG>',
 'TrainingImageConfig': training_image_config,
 'TrainingInputMode': 'File'
}

Note

To use a fixed, rather than an updated version of an image, refer to the image’s digest
instead of by name or tag.

b. Specify the name of the training job and role that you want to pass to
create_training_job, as shown in the following code example.

training_job_name = 'private-registry-job'
execution_role_arn = 'arn:aws:iam::123456789012:role/SageMakerExecutionRole'

c. Specify a security group and subnet for the VPC configuration for your training job. Your
private Docker registry must allow inbound traffic from the security groups that you specify,
as shown in the following code example.

vpc_config = {
 'SecurityGroupIds': ['sg-0123456789abcdef0'],
 'Subnets': ['subnet-0123456789abcdef0','subnet-0123456789abcdef1']
}

Note

If your subnet is not in the same VPC as your private Docker registry, you must set up
a networking connection between the two VPCs. SeeConnect VPCs using VPC peering
for more information.

d. Specify the resource configuration, including machine learning compute instances and
storage volumes to use for training, as shown in the following code example.

Adapting your own training container 5600

https://docs.docker.com/engine/reference/commandline/pull/#pull-an-image-by-digest-immutable-identifier
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-peering.html

Amazon SageMaker Developer Guide

resource_config = {
 'InstanceType': 'ml.m4.xlarge',
 'InstanceCount': 1,
 'VolumeSizeInGB': 10,
}

e. Specify the input and output data configuration, where the training dataset is stored, and
where you want to store model artifacts, as shown in the following code example.

input_data_config = [
 {
 "ChannelName": "training",
 "DataSource":
 {
 "S3DataSource":
 {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://your-training-data-bucket/training-data-folder"
 }
 }
 }
]

output_data_config = {
 'S3OutputPath': 's3://your-output-data-bucket/model-folder'
}

f. Specify the maximum number of seconds that a model training job can run as shown in the
following code example.

stopping_condition = {
 'MaxRuntimeInSeconds': 1800
}

g. Finally, create the training job using the parameters you specified in the previous steps as
shown in the following code example.

import boto3
sm = boto3.client('sagemaker')
try:

Adapting your own training container 5601

Amazon SageMaker Developer Guide

 resp = sm.create_training_job(
 TrainingJobName=training_job_name,
 AlgorithmSpecification=algorithm_specification,
 RoleArn=execution_role_arn,
 InputDataConfig=input_data_config,
 OutputDataConfig=output_data_config,
 ResourceConfig=resource_config,
 VpcConfig=vpc_config,
 StoppingCondition=stopping_condition
)
except Exception as e:
 print(f'error calling CreateTrainingJob operation: {e}')
else:
 print(resp)

Use a SageMaker estimator to run a training job

You can also use an estimator from the SageMaker Python SDK to handle the configuration and
running of your SageMaker training job. The following code examples show how to configure and
run an estimator using images from a private Docker registry.

1. Import the required libraries and dependencies, as shown in the following code example.

import boto3
import sagemaker
from sagemaker.estimator import Estimator

session = sagemaker.Session()

role = sagemaker.get_execution_role()

2. Provide a Uniform Resource Identifier (URI) to your training image, security groups and subnets
for the VPC configuration for your training job, as shown in the following code example.

image_uri = "myteam.myorg.com/docker-local/my-training-image:<IMAGE-TAG>"

security_groups = ["sg-0123456789abcdef0"]
subnets = ["subnet-0123456789abcdef0", "subnet-0123456789abcdef0"]

For more information about security_group_ids and subnets, see the appropriate
parameter description in the Estimators section of the SageMaker Python SDK.

Adapting your own training container 5602

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html

Amazon SageMaker Developer Guide

Note

SageMaker uses a network connection within your VPC to access images in your Docker
registry. To use the images in your Docker registry for training, the registry must be
accessible from an Amazon VPC in your account.

3. Optionally, if your Docker registry requires authentication, you must also specify the Amazon
Resource Name (ARN) of an AWS Lambda function that provides access credentials to
SageMaker. The following code example shows how to specify the ARN.

training_repository_credentials_provider_arn = "arn:aws:lambda:us-
west-2:1234567890:function:test"

For more information about using images in a Docker registry requiring authentication, see Use
a Docker registry that requires authentication for training below.

4. Use the code examples from the previous steps to configure an estimator, as shown in the
following code example.

The training repository access mode must be 'Vpc' for private docker registry jobs
training_repository_access_mode = "Vpc"

Specify the instance type, instance count you want to use
instance_type="ml.m5.xlarge"
instance_count=1

Specify the maximum number of seconds that a model training job can run
max_run_time = 1800

Specify the output path for the model artifacts
output_path = "s3://your-output-bucket/your-output-path"

estimator = Estimator(
 image_uri=image_uri,
 role=role,
 subnets=subnets,
 security_group_ids=security_groups,
 training_repository_access_mode=training_repository_access_mode,

 training_repository_credentials_provider_arn=training_repository_credentials_provider_arn,
 # remove this line if auth is not needed

Adapting your own training container 5603

Amazon SageMaker Developer Guide

 instance_type=instance_type,
 instance_count=instance_count,
 output_path=output_path,
 max_run=max_run_time
)

5. Start your training job by calling estimator.fit with your job name and input path as
parameters, as shown in the following code example.

input_path = "s3://your-input-bucket/your-input-path"
job_name = "your-job-name"

estimator.fit(
 inputs=input_path,
 job_name=job_name
)

Use a Docker registry that requires authentication for training

If your Docker registry requires authentication, you must create an AWS Lambda function that
provides access credentials to SageMaker. Then, create a training job and provide the ARN of this
Lambda function inside the create_training_job API. Lastly, you can optionally create an interface
VPC endpoint so that your VPC can communicate with your Lambda function without sending
traffic over the internet. The following guide shows how to create a Lambda function, assign it the
correct role and create an interface VPC endpoint.

Create the Lambda function

Create an AWS Lambda function that passes access credentials to SageMaker and returns a
response. The following code example creates the Lambda function handler, as follows.

def handler(event, context):
 response = {
 "Credentials": {"Username": "username", "Password": "password"}
 }
 return response

The type of authentication used to set up your private Docker registry determines the contents of
the response returned by your Lambda function as follows.

Adapting your own training container 5604

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job

Amazon SageMaker Developer Guide

• If your private Docker registry uses basic authentication, the Lambda function will return the
username and password needed in order to authenticate to the registry.

• If your private Docker registry uses bearer token authentication, the username and password are
sent to your authorization server, which then returns a bearer token. This token is then used to
authenticate to your private Docker registry.

Note

If you have more than one Lambda functions for your registries in the same account, and
the execution role is the same for your training jobs, then training jobs for registry one
would have access to the Lambda functions for other registries.

Grant the correct role permission to your Lambda function

The IAMrole that you use in the create_training_job API must have permission to call an AWS
Lambda function. The following code example shows how to extend permissions policy of an IAM
role to call myLambdaFunction.

{
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:*myLambdaFunction*"
]
}

For information about editing a role permissions policy, see Modifying a role permissions policy
(console) in the AWS Identity and Access Management User Guide.

Note

An IAM role with an attached AmazonSageMakerFullAccess managed policy has
permission to call any Lambda function with "SageMaker" in its name.

Adapting your own training container 5605

https://docs.docker.com/registry/spec/auth/token/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy

Amazon SageMaker Developer Guide

Create an interface VPC endpoint for Lambda

If you create an interface endpoint, your Amazon VPC can communicate with your Lambda
function without sending traffic over the internet. For more information, see Configuring interface
VPC endpoints for Lambda in the AWS Lambda Developer Guide.

After your interface endpoint is created, SageMaker training will call your Lambda function
by sending a request through your VPC to lambda.region.amazonaws.com. If you select
Enable DNS Name when you create your interface endpoint, Amazon Route 53 routes the
call to the Lambda interface endpoint. If you use a different DNS provider, you must map
lambda.region.amazonaws.com, to your Lambda interface endpoint.

Adapting Your Own Inference Container

If you can't use any of the images listed in Use Pre-built SageMaker Docker images Amazon
SageMaker for your use case, you can build your own Docker container and use it inside SageMaker
for training and inference. To be compatible with SageMaker, your container must have the
following characteristics:

• Your container must have a web server listing on port 8080.

• Your container must accept POST requests to the /invocations and /ping real-time
endpoints. The requests that you send to these endpoints must be returned with 60 seconds and
have a maximum size of 6 MB.

For more information and an example of how to build your own Docker container for training and
inference with SageMaker, see Building your own algorithm container.

The following guide shows you how to use a JupyterLab space with Amazon SageMaker Studio
Classic to adapt an inference container to work with SageMaker hosting. The example uses
an NGINX web server, Gunicorn as a Python web server gateway interface, and Flask as a web
application framework. You can use different applications to adapt your container as long as it
meets the previous listed requirements. For more information about using your own inference
code, see Use Your Own Inference Code with Hosting Services.

Adapt your inference container

Use the following steps to adapt your own inference container to work with SageMaker hosting.
The example shown in the following steps uses a pre-trained Named Entity Recognition (NER)
model that uses the spaCy natural language processing (NLP) library for Python and the following:

Adapting Your Own Inference Container 5606

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc-endpoints.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc-endpoints.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://github.com/aws/amazon-sagemaker-examples/blob/main/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.ipynb
https://spacy.io/universe/project/video-spacys-ner-model-alt
https://spacy.io/universe/project/video-spacys-ner-model-alt
https://spacy.io/

Amazon SageMaker Developer Guide

• A Dockerfile to build the container that contains the NER model.

• Inference scripts to serve the NER model.

If you adapt this example for your use case, you must use a Dockerfile and inference scripts that are
needed to deploy and serve your model.

1. Create JupyterLab space with Amazon SageMaker Studio Classic (optional).

You can use any notebook to run scripts to adapt your inference container with SageMaker
hosting. This example shows you how to use a JupyterLab space within Amazon SageMaker
Studio Classic to launch a JupyterLab application that comes with a SageMaker Distribution
image. For more information, see SageMaker JupyterLab.

2. Upload a Docker file and inference scripts.

1. Create a new folder in your home directory. If you’re using JupyterLab, in the upper-left
corner, choose the New Folder icon, and enter a folder name to contain your Dockerfile. In
this example, the folder is called docker_test_folder.

2. Upload a Dockerfile text file into your new folder. The following is an example Dockerfile
that creates a Docker container with a pre-trained Named Entity Recognition (NER) model
from spaCy, the applications and environment variables needed to run the example:

FROM python:3.8

RUN apt-get -y update && apt-get install -y --no-install-recommends \
 wget \
 python3 \
 nginx \
 ca-certificates \
 && rm -rf /var/lib/apt/lists/*

RUN wget https://bootstrap.pypa.io/get-pip.py && python3 get-pip.py && \
 pip install flask gevent gunicorn && \
 rm -rf /root/.cache

#pre-trained model package installation
RUN pip install spacy
RUN python -m spacy download en

Set environment variables

Adapting Your Own Inference Container 5607

https://spacy.io/universe/project/video-spacys-ner-model
https://spacy.io/

Amazon SageMaker Developer Guide

ENV PYTHONUNBUFFERED=TRUE
ENV PYTHONDONTWRITEBYTECODE=TRUE
ENV PATH="/opt/program:${PATH}"

COPY NER /opt/program
WORKDIR /opt/program

In the previous code example, the environment variable PYTHONUNBUFFERED keeps Python
from buffering the standard output stream, which allows for faster delivery of logs to the
user. The environment variable PYTHONDONTWRITEBYTECODE keeps Python from writing
compiled bytecode .pyc files, which are unnecessary for this use case. The environment
variable PATH is used to identify the location of the train and serve programs when the
container is invoked.

3. Create a new directory inside your new folder to contain scripts to serve your model. This
example uses a directory called NER, which contains the following scripts necessary to run
this example:

• predictor.py – A Python script that contains the logic to load and perform inference
with your model.

• nginx.conf – A script to configure a web server.

• serve – A script that starts an inference server.

• wsgi.py – A helper script to serve a model.

Important

If you copy your inference scripts into a notebook ending in .ipynband rename
them, your script may contain formatting characters that will prevent your endpoint
from deploying. Instead, create a text file and rename them.

4. Upload a script to make your model available for inference. The following is an example
script called predictor.py that uses Flask to provide the /ping and /invocations
endpoints:

from flask import Flask
import flask
import spacy
import os
import json
import logging

Adapting Your Own Inference Container 5608

Amazon SageMaker Developer Guide

#Load in model
nlp = spacy.load('en_core_web_sm')
#If you plan to use a your own model artifacts,
#your model artifacts should be stored in /opt/ml/model/

The flask app for serving predictions
app = Flask(__name__)
@app.route('/ping', methods=['GET'])
def ping():
 # Check if the classifier was loaded correctly
 health = nlp is not None
 status = 200 if health else 404
 return flask.Response(response= '\n', status=status, mimetype='application/
json')

@app.route('/invocations', methods=['POST'])
def transformation():

 #Process input
 input_json = flask.request.get_json()
 resp = input_json['input']

 #NER
 doc = nlp(resp)
 entities = [(X.text, X.label_) for X in doc.ents]

 # Transform predictions to JSON
 result = {
 'output': entities
 }

 resultjson = json.dumps(result)
 return flask.Response(response=resultjson, status=200, mimetype='application/
json')

The /ping endpoint in the previous script example returns a status code of 200 if the
model is loaded correctly, and 404 if the model is loaded incorrectly. The /invocations
endpoint processes a request formatted in JSON, extracts the input field, and uses the NER
model to identify and store entities in the variable entities. The Flask application returns

Adapting Your Own Inference Container 5609

Amazon SageMaker Developer Guide

the response that contains these entities. For more information about these required health
requests, see How Your Container Should Respond to Health Check (Ping) Requests.

5. Upload a script to start an inference server. The following script example calls serve using
Gunicorn as an application server, and Nginx as a web server:

#!/usr/bin/env python

This file implements the scoring service shell. You don't necessarily need to
 modify it for various
algorithms. It starts nginx and gunicorn with the correct configurations and
 then simply waits until
gunicorn exits.
#
The flask server is specified to be the app object in wsgi.py
#
We set the following parameters:
#
Parameter Environment Variable Default Value
--------- -------------------- -------------
number of workers MODEL_SERVER_WORKERS the number of CPU
 cores
timeout MODEL_SERVER_TIMEOUT 60 seconds

import multiprocessing
import os
import signal
import subprocess
import sys

cpu_count = multiprocessing.cpu_count()

model_server_timeout = os.environ.get('MODEL_SERVER_TIMEOUT', 60)
model_server_workers = int(os.environ.get('MODEL_SERVER_WORKERS', cpu_count))

def sigterm_handler(nginx_pid, gunicorn_pid):
 try:
 os.kill(nginx_pid, signal.SIGQUIT)
 except OSError:
 pass
 try:
 os.kill(gunicorn_pid, signal.SIGTERM)
 except OSError:
 pass

Adapting Your Own Inference Container 5610

Amazon SageMaker Developer Guide

 sys.exit(0)

def start_server():
 print('Starting the inference server with {}
 workers.'.format(model_server_workers))

 # link the log streams to stdout/err so they will be logged to the container
 logs
 subprocess.check_call(['ln', '-sf', '/dev/stdout', '/var/log/nginx/
access.log'])
 subprocess.check_call(['ln', '-sf', '/dev/stderr', '/var/log/nginx/
error.log'])

 nginx = subprocess.Popen(['nginx', '-c', '/opt/program/nginx.conf'])
 gunicorn = subprocess.Popen(['gunicorn',
 '--timeout', str(model_server_timeout),
 '-k', 'sync',
 '-b', 'unix:/tmp/gunicorn.sock',
 '-w', str(model_server_workers),
 'wsgi:app'])

 signal.signal(signal.SIGTERM, lambda a, b: sigterm_handler(nginx.pid,
 gunicorn.pid))

 # Exit the inference server upon exit of either subprocess
 pids = set([nginx.pid, gunicorn.pid])
 while True:
 pid, _ = os.wait()
 if pid in pids:
 break

 sigterm_handler(nginx.pid, gunicorn.pid)
 print('Inference server exiting')

The main routine to invoke the start function.

if __name__ == '__main__':
 start_server()

The previous script example defines a signal handler function sigterm_handler, which
shuts down the Nginx and Gunicorn sub-processes when it receives a SIGTERM signal.

Adapting Your Own Inference Container 5611

Amazon SageMaker Developer Guide

A start_server function starts the signal handler, starts and monitors the Nginx and
Gunicorn sub-processes, and captures log streams.

6. Upload a script to configure your web server. The following script example called
nginx.conf, configures a Nginx web server using Gunicorn as an application server to
serve your model for inference:

worker_processes 1;
daemon off; # Prevent forking

pid /tmp/nginx.pid;
error_log /var/log/nginx/error.log;

events {
 # defaults
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 access_log /var/log/nginx/access.log combined;

 upstream gunicorn {
 server unix:/tmp/gunicorn.sock;
 }

 server {
 listen 8080 deferred;
 client_max_body_size 5m;

 keepalive_timeout 5;
 proxy_read_timeout 1200s;

 location ~ ^/(ping|invocations) {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_pass http://gunicorn;
 }

 location / {
 return 404 "{}";

Adapting Your Own Inference Container 5612

Amazon SageMaker Developer Guide

 }
 }
}

The previous script example configures Nginx to run in the foreground, sets the location to
capture the error_log, and defines upstream as the Gunicorn server’s socket sock. The
server configures the server block to listen on port 8080, sets limits on client request body
size and timeout values. The server block, forwards requests containing either /ping or /
invocations paths to the Gunicorn server http://gunicorn, and returns a 404 error
for other paths.

7. Upload any other scripts needed to serve your model. This example needs the following
example script called wsgi.py to help Gunicorn find your application:

import predictor as myapp

This is just a simple wrapper for gunicorn to find your app.
If you want to change the algorithm file, simply change "predictor" above to
 the
new file.

app = myapp.app

From the folder docker_test_folder, your directory structure should contain a Dockerfile
and the folder NER. The NER folder should contain the files nginx.conf, predictor.py,
serve, and wsgi.py as follows:

3. Build your own container.

Adapting Your Own Inference Container 5613

Amazon SageMaker Developer Guide

From the folder docker_test_folder, build your Docker container. The following example
command will build the Docker container that is configured in your Dockerfile:

! docker build -t byo-container-test .

The previous command will build a container called byo-container-test in the current
working directory. For more information about the Docker build parameters, see Build
arguments.

Note

If you get the following error message that Docker cannot find the Dockerfile, make
sure the Dockerfile has the correct name and has been saved to the directory.

unable to prepare context: unable to evaluate symlinks in Dockerfile path:
lstat /home/ec2-user/SageMaker/docker_test_folder/Dockerfile: no such file
 or directory

Docker looks for a file specifically called Dockerfile without any extension within
the current directory. If you named it something else, you can pass in the file name
manually with the -f flag. For example, if you named your Dockerfile as Dockerfile-
text.txt, build your Docker container using the -f flag followed by your file as follows:

! docker build -t byo-container-test -f Dockerfile-text.txt .

4. Push your Docker Image to an Amazon Elastic Container Registry (Amazon ECR)

In a notebook cell, push your Docker image to an ECR. The following code example shows you
how to build your container locally, login and push it to an ECR:

%%sh
Name of algo -> ECR
algorithm_name=sm-pretrained-spacy

#make serve executable
chmod +x NER/serve
account=$(aws sts get-caller-identity --query Account --output text)
Region, defaults to us-west-2

Adapting Your Own Inference Container 5614

https://docs.docker.com/build/guide/build-args/
https://docs.docker.com/build/guide/build-args/

Amazon SageMaker Developer Guide

region=$(aws configure get region)
region=${region:-us-east-1}
fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest"
If the repository doesn't exist in ECR, create it.
aws ecr describe-repositories --repository-names "${algorithm_name}" > /dev/null
 2>&1
if [$? -ne 0]
then
 aws ecr create-repository --repository-name "${algorithm_name}" > /dev/nullfi
Get the login command from ECR and execute it directly
aws ecr get-login-password --region ${region}|docker login --username AWS --
password-stdin ${fullname}
Build the docker image locally with the image name and then push it to ECR
with the full name.

docker build -t ${algorithm_name} .
docker tag ${algorithm_name} ${fullname}

docker push ${fullname}

In the previous example shows how to do the following steps necessary to push the example
Docker container to an ECR:

a. Define the algorithm name as sm-pretrained-spacy.

b. Make the serve file inside the NER folder executable.

c. Set the AWS Region.

d. Create an ECR if it doesn’t already exist.

e. Login to the ECR.

f. Build the Docker container locally.

g. Push the Docker image to the ECR.

5. Set up the SageMaker client

If you want to use SageMaker hosting services for inference, you must create a model, create
an endpoint config and create an endpoint. In order to get inferences from your endpoint,
you can use the SageMaker boto3 Runtime client to invoke your endpoint. The following code
shows you how to set up both the SageMaker client and the SageMaker Runtime client using
the SageMaker boto3 client:

import boto3
Adapting Your Own Inference Container 5615

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_model.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_endpoint_config.html#
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker/client/create_endpoint.html#
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html

Amazon SageMaker Developer Guide

from sagemaker import get_execution_role

sm_client = boto3.client(service_name='sagemaker')
runtime_sm_client = boto3.client(service_name='sagemaker-runtime')

account_id = boto3.client('sts').get_caller_identity()['Account']
region = boto3.Session().region_name

#used to store model artifacts which SageMaker will extract to /opt/ml/model in the
 container,
#in this example case we will not be making use of S3 to store the model artifacts
#s3_bucket = '<S3Bucket>'

role = get_execution_role()

In the previous code example, the Amazon S3 bucket is not used, but inserted as a comment to
show how to store model artifacts.

If you receive a permission error after you run the previous code example, you may need
to add permissions to your IAM role. For more information about IAM roles, see Amazon
SageMaker Role Manager. For more information about adding permissions to your current role,
see AWS Managed Policies for Amazon SageMaker.

6. Create your model.

If you want to use SageMaker hosting services for inference, you must create a model in
SageMaker. The following code example shows you how to create the spaCy NER model inside
of SageMaker:

from time import gmtime, strftime

model_name = 'spacy-nermodel-' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())
MODEL S3 URL containing model atrifacts as either model.tar.gz or extracted
 artifacts.
Here we are not
#model_url = 's3://{}/spacy/'.format(s3_bucket)

container = '{}.dkr.ecr.{}.amazonaws.com/sm-pretrained-
spacy:latest'.format(account_id, region)
instance_type = 'ml.c5d.18xlarge'

print('Model name: ' + model_name)

Adapting Your Own Inference Container 5616

Amazon SageMaker Developer Guide

#print('Model data Url: ' + model_url)
print('Container image: ' + container)

container = {
'Image': container
}

create_model_response = sm_client.create_model(
 ModelName = model_name,
 ExecutionRoleArn = role,
 Containers = [container])

print("Model Arn: " + create_model_response['ModelArn'])

The previous code example shows how to define a model_url using the s3_bucket if you
were to use the Amazon S3 bucket from the comments in Step 5, and defines the ECR URI for
the container image. The previous code examples defines ml.c5d.18xlarge as the instance
type. You can also choose a different instance type. For more information about available
instance types, see Amazon EC2 instance types.

In the previous code example, The Image key points to the container image URI. The
create_model_response definition uses the create_model method to create a model,
and return the model name, role and a list containing the container information.

Example output from the previous script follows:

Model name: spacy-nermodel-YYYY-MM-DD-HH-MM-SS
Model data Url: s3://spacy-sagemaker-us-east-1-bucket/spacy/
Container image: 123456789012.dkr.ecr.us-east-2.amazonaws.com/sm-pretrained-
spacy:latest
Model Arn: arn:aws:sagemaker:us-east-2:123456789012:model/spacy-nermodel-YYYY-MM-
DD-HH-MM-SS

7. a. Configure and create an endpoint

To use SageMaker hosting for inference, you must also configure and create an endpoint.
SageMaker will use this endpoint for inference. The following configuration example
shows how to generate and configure an endpoint with the instance type and model name
that you defined previously:

Adapting Your Own Inference Container 5617

https://aws.amazon.com/ec2/instance-types/

Amazon SageMaker Developer Guide

endpoint_config_name = 'spacy-ner-config' + strftime("%Y-%m-%d-%H-%M-%S",
 gmtime())
print('Endpoint config name: ' + endpoint_config_name)

create_endpoint_config_response = sm_client.create_endpoint_config(
 EndpointConfigName = endpoint_config_name,
 ProductionVariants=[{
 'InstanceType': instance_type,
 'InitialInstanceCount': 1,
 'InitialVariantWeight': 1,
 'ModelName': model_name,
 'VariantName': 'AllTraffic'}])

print("Endpoint config Arn: " +
 create_endpoint_config_response['EndpointConfigArn'])

In the previous configuration example, create_endpoint_config_response
associates the model_name with a unique endpoint configuration name
endpoint_config_name that is created with a timestamp.

Example output from the previous script follows:

Endpoint config name: spacy-ner-configYYYY-MM-DD-HH-MM-SS
Endpoint config Arn: arn:aws:sagemaker:us-east-2:123456789012:endpoint-config/
spacy-ner-config-MM-DD-HH-MM-SS

For more information about endpoint errors, see Why does my Amazon SageMaker
endpoint go into the failed state when I create or update an endpoint?

b. Create an endpoint and wait for the endpoint to be in service.

The following code example creates the endpoint using the configuration from the
previous configuration example and deploys the model:

%%time

import time

endpoint_name = 'spacy-ner-endpoint' + strftime("%Y-%m-%d-%H-%M-%S", gmtime())
print('Endpoint name: ' + endpoint_name)

Adapting Your Own Inference Container 5618

https://repost.aws/knowledge-center/sagemaker-endpoint-creation-fail
https://repost.aws/knowledge-center/sagemaker-endpoint-creation-fail

Amazon SageMaker Developer Guide

create_endpoint_response = sm_client.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)
print('Endpoint Arn: ' + create_endpoint_response['EndpointArn'])

resp = sm_client.describe_endpoint(EndpointName=endpoint_name)
status = resp['EndpointStatus']
print("Endpoint Status: " + status)

print('Waiting for {} endpoint to be in service...'.format(endpoint_name))
waiter = sm_client.get_waiter('endpoint_in_service')
waiter.wait(EndpointName=endpoint_name)

In the previous code example, the create_endpoint method creates the endpoint
with the generated endpoint name created in the previous code example, and prints the
Amazon Resource Name of the endpoint. The describe_endpoint method returns
information about the endpoint and its status. A SageMaker waiter waits for the endpoint
to be in service.

8. Test your endpoint.

Once your endpoint is in service, send an invocation request to your endpoint. The following
code example shows how to send a test request to your endpoint:

import json
content_type = "application/json"
request_body = {"input": "This is a test with NER in America with \
 Amazon and Microsoft in Seattle, writing random stuff."}

#Serialize data for endpoint
#data = json.loads(json.dumps(request_body))
payload = json.dumps(request_body)

#Endpoint invocation
response = runtime_sm_client.invoke_endpoint(
EndpointName=endpoint_name,
ContentType=content_type,
Body=payload)

#Parse results
result = json.loads(response['Body'].read().decode())['output']
result

Adapting Your Own Inference Container 5619

https://boto3.amazonaws.com/v1/documentation/api/1.9.42/reference/services/sagemaker-runtime.html#SageMakerRuntime.Client.invoke_endpoint

Amazon SageMaker Developer Guide

In the previous code example, the method json.dumps serializes the request_body into a
string formatted in JSON and saves it in the variable payload. Then SageMaker Runtime client
uses the invoke endpoint method to send payload to your endpoint. The result contains the
response from your endpoint after extracting the output field.

The previous code example should return the following output:

[['NER', 'ORG'],
 ['America', 'GPE'],
 ['Amazon', 'ORG'],
 ['Microsoft', 'ORG'],
 ['Seattle', 'GPE']]

9. Delete your endpoint

After you have completed your invocations, delete your endpoint to conserve resources. The
following code example shows you how to delete your endpoint:

sm_client.delete_endpoint(EndpointName=endpoint_name)
sm_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
sm_client.delete_model(ModelName=model_name)

For a complete notebook containing the code in this example, see BYOC-Single-Model.

Troubleshooting your container deployment

If your endpoint did not deploy, check the Amazon CloudWatch Events logs as follows:

1. From the https://console.aws.amazon.com/sagemaker/ SageMaker console navigation pane,
choose Inference.

2. Under Inference, choose Endpoints.

3. Find your endpoint under Name, and click on the name of the endpoint. In this example, the
name would follow the naming convention spacy-ner-configYYYY-MM-DD-HH-MM-SS.

4. Under Endpoint summary, choose the link under Model container logs.

5. Choose the most recent Log stream in the Log streams box.

Adapting Your Own Inference Container 5620

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker-runtime/client/invoke_endpoint.html
https://github.com/aws-samples/sagemaker-hosting/tree/main/Bring-Your-Own-Container/BYOC-Single-Model
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Use the following list to troubleshoot deploying your endpoint. If you need further assistance,
contact AWS Support or AWS Developer Forums for Amazon SageMaker.

Topics

• Name error

• Insufficient quota

• Upstream timed out error

Name error

If the logs state NameError: name 'null' is not defined, make sure your scripts were
not created in a notebook ending in .ipnyb and then renamed to another file name such as
Dockerfile. When you create a notebook, formatting characters may prevent your endpoint from
deploying. If you get this error and you change your scripts to fix it, you may need to restart your
kernel for the changes to take effect.

Insufficient quota

If you receive a ResourceLimitExceeded error, you must request additional quota as follows:

Request an AWS Service Quotas increase

1. Retrieve the instance name, current quota and necessary quota from the on screen error
message. For example, in the following sample error:

• The instance name is ml.c5d.18xlarge.

• The current quota from the number following current utilization is 1 instances.

• The additional required quota from the number following request delta is 1
instances.

The sample error follows:

ResourceLimitExceeded: An error occurred (ResourceLimitExceeded)
when calling the CreateEndpoint operation: The account-level service limit
'ml.c5d.18xlarge for endpoint usage' is 1 Instances, with current utilization
of 1 Instances and a request delta of 1 Instances. Please use AWS Service Quotas
to request an increase for this quota. If AWS Service Quotas is not available,
contact AWS support to request an increase for this quota.

Adapting Your Own Inference Container 5621

https://console.aws.amazon.com/support/
https://forums.aws.amazon.com/forum.jspa?forumID=285

Amazon SageMaker Developer Guide

2. Sign into the AWS Management Console and open the Service Quotas console.

3. In the navigation pane, under Manage quotas, input Amazon SageMaker.

4. Choose View quotas.

5. In the search bar under Service quotas, input the name of the instance from Step 1.
For example, using the information contained in the error message from Step 1, input
ml.c5d.18xlarge.

6. Choose the Quota name that appears next to your instance name and ends with for endpoint
usage. For example, using the information contained in the error message from Step 1, choose
ml.g5.12xlarge for endpoint usage.

7. Choose Request increase at account-level.

8. Under Increase quota value, input the necessary required quota from the information given
in the error message from Step 1. Input the total of current utilization and request
delta. In the previous example error, the current utilization is 1 Instances, and the
request delta is 1 Instances. In this example, request a quota of 2 to supply the required
quota.

9. Choose Request.

10. Choose Quota request history from the navigation pane.

11. When the Status changes from Pending to Approved, rerun your job. You may need to refresh
your browser to see the change.

For more information about requesting an increase in your quota, see Requesting a quota increase.

Upstream timed out error

If you receive a upstream timed out (110: Connection timed out) error, you can try the
following:

• Reduce the latency of the container or increase the container's timeout limit. SageMaker requires
that your container respond to a request within 60 seconds.

• Increase the amount of time before your web server waits for a response from the model.

For more information about time out errors, see How can I resolve the Amazon SageMaker
inference error "upstream timed out (110: Connection timed out) while reading response header
from upstream"?

Adapting Your Own Inference Container 5622

https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://repost.aws/knowledge-center/sagemaker-upstream-timed-out-header
https://repost.aws/knowledge-center/sagemaker-upstream-timed-out-header
https://repost.aws/knowledge-center/sagemaker-upstream-timed-out-header

Amazon SageMaker Developer Guide

Create a container with your own algorithms and models

If none of the existing SageMaker containers meet your needs and you don't have an existing
container of your own, you may need to create a new Docker container. The following sections
show how to create Docker containers with your training and inference algorithms for use with
SageMaker.

Topics

• Use Your Own Training Algorithms

• Use your own inference code

Use Your Own Training Algorithms

This section explains how Amazon SageMaker interacts with a Docker container that runs your
custom training algorithm. Use this information to write training code and create a Docker image
for your training algorithms.

Topics

• How Amazon SageMaker Runs Your Training Image

• How Amazon SageMaker Provides Training Information

• Run Training with EFA

• How Amazon SageMaker Signals Algorithm Success and Failure

• How Amazon SageMaker Processes Training Output

How Amazon SageMaker Runs Your Training Image

You can use a custom entrypoint script to automate infrastructure to train in a production
environment. If you pass your entrypoint script into your Docker container, you can also run it as a
standalone script without rebuilding your images. SageMaker processes your training image using a
Docker container entrypoint script.

This section shows you how to use a custom entrypoint without using the training toolkit. If you
want to use a custom entrypoint but are unfamiliar with how to manually configure a Docker
container, we recommend that you use the SageMaker training toolkit library instead. For more
information about how to use the training toolkit, see Adapting your own training container.

Create a container with your own algorithms and models 5623

https://github.com/aws/sagemaker-training-toolkit

Amazon SageMaker Developer Guide

By default, SageMaker looks for a script called train inside your container. You can also
manually provide your own custom entrypoint by using the ContainerArguments and
ContainerEntrypoint parameters of the AlgorithmSpecification API.

You have the following two options to manually configure your Docker container to run your
image.

• Use the CreateTrainingJob API and a Docker container with an entrypoint instruction contained
inside of it.

• Use the CreateTrainingJob API, and pass your training script from outside of your Docker
container.

If you pass your training script from outside your Docker container, you don't need to rebuild the
Docker container when you update your script. You can also use several different scripts to run in
the same container.

Your entrypoint script should contain training code for your image. If you use the optional
source_dir parameter inside an estimator, it should reference the relative Amazon S3 path to the
folder containing your entrypoint script. You can reference multiple files using the source_dir
parameter. If you do not use source_dir, you can specify the entrypoint using the entry_point
parameter. For an example of a custom entrypoint script that contains an estimator, see Bring Your
Own Model with SageMaker Script Mode.

SageMaker model training supports high-performance S3 Express One Zone directory buckets as a
data input location for file mode, fast file mode, and pipe mode. You can also use S3 Express One
Zone directory buckets to store your training output. To use S3 Express One Zone, provide the URI
of an S3 Express One Zone directory bucket instead of an Amazon S3 general purpose bucket. For
more information, see S3 Express One Zone.

Run a training job with an entrypoint script bundled inside the Docker container

SageMaker can run an entrypoint script bundled inside your Docker container.

• By default, Amazon SageMaker runs the following container.

docker run image train

Use Your Own Training Algorithms 5624

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-script-mode/sagemaker-script-mode.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-script-mode/sagemaker-script-mode.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html

Amazon SageMaker Developer Guide

• SageMaker overrides any default CMD statements in a container by specifying the train
argument after the image name. In your Docker container, use the following exec form of the
ENTRYPOINT instruction.

ENTRYPOINT ["executable", "param1", "param2", ...]

The following example shows how to specify a python entrypoint instruction called k-means-
algorithm.py.

ENTRYPOINT ["python", "k-means-algorithm.py"]

The exec form of the ENTRYPOINT instruction starts the executable directly, not as a child of /
bin/sh. This enables it to receive signals like SIGTERM and SIGKILL from SageMaker APIs. The
following conditions apply when using the SageMaker APIs.

• The CreateTrainingJob API has a stopping condition that directs SageMaker to stop model
training after a specific time.

• The following shows the StopTrainingJob API. This API issues the equivalent of the docker
stop, with a 2-minute timeout command to gracefully stop the specified container.

docker stop -t 120

The command attempts to stop the running container by sending a SIGTERM signal. After the
2-minute timeout, the API sends SIGKILL and forcibly stops the containers. If the container
handles the SIGTERM gracefully and exits within 120 seconds from receiving it, no SIGKILL is
sent.

If you want access to the intermediate model artifacts after SageMaker stops the training, add
code to handle saving artifacts in your SIGTERM handler.

• If you plan to use GPU devices for model training, make sure that your containers are nvidia-
docker compatible. Include only the CUDA toolkit on containers; don't bundle NVIDIA drivers
with the image. For more information about nvidia-docker, see NVIDIA/nvidia-docker.

• You can't use the tini initializer as your entrypoint script in SageMaker containers because it
gets confused by the train and serve arguments.

• /opt/ml and all subdirectories are reserved by SageMaker training. When building your
algorithm’s Docker image, make sure that you don't place any data that's required by your
algorithm in this directory. Because if you do, the data may no longer be visible during training.

Use Your Own Training Algorithms 5625

https://docs.docker.com/engine/reference/builder/#cmd
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopTrainingJob.html
https://github.com/NVIDIA/nvidia-docker

Amazon SageMaker Developer Guide

To bundle your shell or Python scripts inside your Docker image, or to provide the script in an
Amazon S3 bucket or by using the AWS Command Line Interface (CLI), continue to the following
section.

Bundle your shell script in a Docker container

If you want to bundle a custom shell script inside your Docker image, use the following steps.

1. Copy your shell script from your working directory to inside your Docker container. The following
code snippet copies a custom entrypoint script custom_entrypoint.sh from the current
working directory to a Docker container located in mydir. The following example assumes that
the base Docker image has Python installed.

FROM <base-docker-image>:<tag>

Copy custom entrypoint from current dir to /mydir on container
COPY ./custom_entrypoint.sh /mydir/

2. Build and push a Docker container to the Amazon Elastic Container Registry (Amazon ECR) by
following the instructions at Pushing a Docker image in the Amazon ECR User Guide.

3. Launch the training job by running the following AWS CLI command.

aws --region <your-region> sagemaker create-training-job \
--training-job-name <your-training-job-name> \
--role-arn <your-execution-role-arn> \
--algorithm-specification '{ \
 "TrainingInputMode": "File", \
 "TrainingImage": "<your-ecr-image>", \
 "ContainerEntrypoint": ["/bin/sh"], \
 "ContainerArguments": ["/mydir/custom_entrypoint.sh"]}' \
--output-data-config '{"S3OutputPath": "s3://custom-entrypoint-output-bucket/"}' \
--resource-config
 '{"VolumeSizeInGB":10,"InstanceCount":1,"InstanceType":"ml.m5.2xlarge"}' \
--stopping-condition '{"MaxRuntimeInSeconds": 180}'

Bundle your Python script in a Docker container

To bundle a custom Python script inside your Docker image, use the following steps.

Use Your Own Training Algorithms 5626

https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html

Amazon SageMaker Developer Guide

1. Copy your Python script from your working directory to inside your Docker container. The
following code snippet copies a custom entrypoint script custom_entrypoint.py from the
current working directory to a Docker container located in mydir.

FROM <base-docker-image>:<tag>
Copy custom entrypoint from current dir to /mydir on container
COPY ./custom_entrypoint.py /mydir/

2. Launch the training job by running the following AWS CLI command.

--algorithm-specification '{ \
 "TrainingInputMode": "File", \
 "TrainingImage": "<your-ecr-image>", \
 "ContainerEntrypoint": ["python"], \
 "ContainerArguments": ["/mydir/custom_entrypoint.py"]}' \

Run a training job with an entrypoint script outside the Docker container

You can use your own Docker container for training and pass in an entrypoint script from outside
the Docker container. There are some benefits to structuring your entrypoint script outside the
container. If you update your entrypoint script, you don't need to rebuild the Docker container. You
can also use several different scripts to run in the same container.

Specify the location of your training script using the ContainerEntrypoint and
ContainerArguments parameters of the AlgorithmSpecification API. These entrypoints and
arguments behave in the same manner as Docker entrypoints and arguments. The values in
these parameters override the corresponding ENTRYPOINT or CMD provided as part of the Docker
container.

When you pass your custom entrypoint script to your Docker training container, the inputs that you
provide determine the behavior of the container.

• For example, if you provide only ContainerEntrypoint, the request syntax using the
CreateTrainingJob API is as follows.

{
 "AlgorithmSpecification": {
 "ContainerEntrypoint": ["string"],
 ...
 }

Use Your Own Training Algorithms 5627

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html

Amazon SageMaker Developer Guide

}

Then, the SageMaker training backend runs your custom entrypoint as follows.

docker run --entrypoint <ContainerEntrypoint> image

Note

If ContainerEntrypoint is provided, the SageMaker training backend runs the image
with the given entrypoint and overrides the default ENTRYPOINT in the image.

• If you provide only ContainerArguments, SageMaker assumes that the Docker container
contains an entrypoint script. The request syntax using the CreateTrainingJob API is as
follows.

{
 "AlgorithmSpecification": {
 "ContainerArguments": ["arg1", "arg2"],
 ...
 }
}

The SageMaker training backend runs your custom entrypoint as follows.

docker run image <ContainerArguments>

• If your provide both the ContainerEntrypoint and ContainerArguments, then the request
syntax using the CreateTrainingJob API is as follows.

{
 "AlgorithmSpecification": {
 "ContainerEntrypoint": ["string"],
 "ContainerArguments": ["arg1", "arg2"],
 ...
 }
}

The SageMaker training backend runs your custom entrypoint as follows.

Use Your Own Training Algorithms 5628

Amazon SageMaker Developer Guide

docker run --entrypoint <ContainerEntrypoint> image <ContainerArguments>

You can use any supported InputDataConfig source in the CreateTrainingJob API to provide
an entrypoint script to run your training image.

Provide your entrypoint script in an Amazon S3 bucket

To provide a custom entrypoint script using an S3 bucket, use the S3DataSource parameter of
the DataSource API to specify the location of the script. If you use the S3DataSource parameter,
the following are required.

• The InputMode must be of the type File.

• The S3DataDistributionType must be FullyReplicated.

The following example has a script called custom_entrypoint.sh placed in a path to an S3 bucket
s3://<bucket-name>/<bucket prefix>/custom_entrypoint.sh.

#!/bin/bash
echo "Running custom_entrypoint.sh"
echo "Hello you have provided the following arguments: " "$@"

Next, you must set the configuration of the input data channel to run a training job. Do this either
by using the AWS CLI directly or with a JSON file.

Configure the input data channel using AWS CLI with a JSON file

To configure your input data channel with a JSON file, use AWS CLI as shown in the following
code structure. Ensure that all of the following fields use the request syntax defined in the
CreateTrainingJob API.

// run-my-training-job.json
{
 "AlgorithmSpecification": {
 "ContainerEntrypoint": ["/bin/sh"],
 "ContainerArguments": ["/opt/ml/input/
data/<your_channel_name>/custom_entrypoint.sh"],
 ...

Use Your Own Training Algorithms 5629

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataSource.html#sagemaker-Type-DataSource-S3DataSource
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html#sagemaker-Type-Channel-InputMode
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataSource.html#sagemaker-Type-DataSource-S3DataSource
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-AlgorithmSpecification

Amazon SageMaker Developer Guide

 },
 "InputDataConfig": [
 {
 "ChannelName": "<your_channel_name>",
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://<bucket-name>/<bucket_prefix>"
 }
 },
 "InputMode": "File",
 },
 ...]
}

Next, run the AWS CLI command to launch the training job from the JSON file as follows.

aws sagemaker create-training-job --cli-input-json file://run-my-training-job.json

Configure the input data channel using AWS CLI directly

To configure your input data channel without a JSON file, use the following AWS CLI code
structure.

aws --region <your-region> sagemaker create-training-job \
--training-job-name <your-training-job-name> \
--role-arn <your-execution-role-arn> \
--algorithm-specification '{ \
 "TrainingInputMode": "File", \
 "TrainingImage": "<your-ecr-image>", \
 "ContainerEntrypoint": ["/bin/sh"], \
 "ContainerArguments": ["/opt/ml/input/data/<your_channel_name>/
custom_entrypoint.sh"]}' \
--input-data-config '[{ \
 "ChannelName":"<your_channel_name>", \
 "DataSource":{ \
 "S3DataSource":{ \
 "S3DataType":"S3Prefix", \
 "S3Uri":"s3://<bucket-name>/<bucket_prefix>", \
 "S3DataDistributionType":"FullyReplicated"}}}]' \
--output-data-config '{"S3OutputPath": "s3://custom-entrypoint-output-bucket/"}' \

Use Your Own Training Algorithms 5630

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-InputDataConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html#sagemaker-Type-Channel-ChannelName
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html#sagemaker-Type-Channel-DataSource
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DataSource.html#sagemaker-Type-DataSource-S3DataSource
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html#sagemaker-Type-S3DataSource-S3DataDistributionType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html#sagemaker-Type-S3DataSource-S3DataType
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html#sagemaker-Type-S3DataSource-S3Uri
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html#sagemaker-Type-Channel-InputMode

Amazon SageMaker Developer Guide

--resource-config
 '{"VolumeSizeInGB":10,"InstanceCount":1,"InstanceType":"ml.m5.2xlarge"}' \
--stopping-condition '{"MaxRuntimeInSeconds": 180}'

How Amazon SageMaker Provides Training Information

This section explains how SageMaker makes training information, such as training data,
hyperparameters, and other configuration information, available to your Docker container.

When you send a CreateTrainingJob request to SageMaker to start model training, you
specify the Amazon Elastic Container Registry (Amazon ECR) path of the Docker image that
contains the training algorithm. You also specify the Amazon Simple Storage Service (Amazon
S3) location where training data is stored and algorithm-specific parameters. SageMaker makes
this information available to the Docker container so that your training algorithm can use it. This
section explains how we make this information available to your Docker container. For information
about creating a training job, see CreateTrainingJob. For more information on the way that
SageMaker containers organize information, see Using the SageMaker Training and Inference
Toolkits .

Topics

• Hyperparameters

• Environment Variables

• Input Data Configuration

• Training Data

• Distributed Training Configuration

Hyperparameters

SageMaker makes the hyperparameters in a CreateTrainingJob request available in the Docker
container in the /opt/ml/input/config/hyperparameters.json file.

The following is an example of a hyperparameter configuration in hyperparameters.json to
specify the num_round and eta hyperparameters in the CreateTrainingJob operation for
XGBoost.

{
 "num_round": "128",
 "eta": "0.001"

Use Your Own Training Algorithms 5631

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html

Amazon SageMaker Developer Guide

}

For a complete list of hyperparameters that can be used for the SageMaker built-in XGBoost
algorithm, see XGBoost Hyperparameters.

The hyperparameters that you can tune depend on the algorithm that you are training. For
a list of hyperparameters available for a SageMaker built-in algorithm, find them listed in
Hyperparameters under the algorithm link in Use Amazon SageMaker Built-in Algorithms or Pre-
trained Models.

Environment Variables

SageMaker sets the following environment variables in your container:

• TRAINING_JOB_NAME – Specified in the TrainingJobName parameter of the
CreateTrainingJob request.

• TRAINING_JOB_ARN – The Amazon Resource Name (ARN) of the training job returned as the
TrainingJobArn in the CreateTrainingJob response.

• All environment variables specified in the Environment parameter in the CreateTrainingJob
request.

Input Data Configuration

SageMaker makes the data channel information in the InputDataConfig parameter
from your CreateTrainingJob request available in the /opt/ml/input/config/
inputdataconfig.json file in your Docker container.

For example, suppose that you specify three data channels (train, evaluation, and
validation) in your request. SageMaker provides the following JSON:

{
 "train" : {"ContentType": "trainingContentType",
 "TrainingInputMode": "File",
 "S3DistributionType": "FullyReplicated",
 "RecordWrapperType": "None"},
 "evaluation" : {"ContentType": "evalContentType",
 "TrainingInputMode": "File",
 "S3DistributionType": "FullyReplicated",
 "RecordWrapperType": "None"},

Use Your Own Training Algorithms 5632

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment

Amazon SageMaker Developer Guide

 "validation" : {"TrainingInputMode": "File",
 "S3DistributionType": "FullyReplicated",
 "RecordWrapperType": "None"}
}

Note

SageMaker provides only relevant information about each data channel (for example, the
channel name and the content type) to the container, as shown in the previous example.
S3DistributionType will be set as FullyReplicated if you specify EFS or FSxLustre as
input data sources.

Training Data

The TrainingInputMode parameter in the AlgorithmSpecification of the
CreateTrainingJob request specifies how the training dataset is made available to your
container. The following input modes are available.

• File mode

If you use File mode as your TrainingInputMode value, SageMaker sets the following
parameters in your container.

• Your TrainingInputMode parameter is written to inputdataconfig.json as "File".

• Your data channel directory is written to /opt/ml/input/data/channel_name.

If you use File mode, SageMaker creates a directory for each channel. For example, if you have
three channels named training, validation, and testing, SageMaker makes the following
three directories in your Docker container:

• /opt/ml/input/data/training

• /opt/ml/input/data/validation

• /opt/ml/input/data/testing

File mode also supports the following data sources.

• Amazon Simple Storage Service (Amazon S3)

• Amazon Elastic File System (Amazon EFS)

• Amazon FSx for Lustre
Use Your Own Training Algorithms 5633

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

Note

Channels that use file system data sources such as Amazon EFS and Amazon FSx must
use File mode. In this case, the directory path provided in the channel is mounted at /
opt/ml/input/data/channel_name.

• FastFile mode

If you use FastFile mode as your TrainingInputNodeParameter, SageMaker sets the
following parameters in your container.

• Similar to File mode, in FastFile mode, your TrainingInputMode parameter is written to
inputdataconfig.json as "File".

• Your data channel directory is written to /opt/ml/input/data/channel_name.

FastFile mode supports the following data sources.

• Amazon S3

If you use FastFile mode, the channel directory is mounted with read-only permission.

Historically, File mode preceded FastFile mode. To ensure backwards compatibility,
algorithms that support File mode can also seamlessly work with FastFile mode as long as
the TrainingInputMode parameter is set to File in inputdataconfig.json..

Note

Channels that use FastFile mode must use a S3DataType of "S3Prefix".
FastFile mode presents a folder view that uses the forward slash (/) as the delimiter
for grouping Amazon S3 objects into folders. S3Uri prefixes must not correspond to a
partial folder name. For example, if an Amazon S3 dataset contains s3://my-bucket/
train-01/data.csv, then neither s3://my-bucket/train nor s3://my-bucket/
train-01 are allowed as S3Uri prefixes.
A trailing forward slash is recommended to define a channel corresponding to a
folder. For example, the s3://my-bucket/train-01/ channel for the train-01
folder. Without the trailing forward slash, the channel would be ambiguous if there
existed another folder s3://my-bucket/train-011/ or file s3://my-bucket/
train-01.txt/.

Use Your Own Training Algorithms 5634

Amazon SageMaker Developer Guide

• Pipe mode

• TrainingInputMode parameter written to inputdataconfig.json: "Pipe"

• Data channel directory in the Docker container: /opt/ml/input/
data/channel_name_epoch_number

• Supported data sources: Amazon S3

You need to read from a separate pipe for each channel. For example, if you have three channels
named training, validation, and testing, you need to read from the following pipes:

• /opt/ml/input/data/training_0, /opt/ml/input/data/training_1, ...

• /opt/ml/input/data/validation_0, /opt/ml/input/data/validation_1, ...

• /opt/ml/input/data/testing_0, /opt/ml/input/data/testing_1, ...

Read the pipes sequentially. For example, if you have a channel called training, read the pipes
in this sequence:

1. Open /opt/ml/input/data/training_0 in read mode and read it to end-of-file (EOF) or,
if you are done with the first epoch, close the pipe file early.

2. After closing the first pipe file, look for /opt/ml/input/data/training_1 and read it until
you have completed the second epoch, and so on.

If the file for a given epoch doesn't exist yet, your code may need to retry until the pipe is
created There is no sequencing restriction across channel types. For example, you can read
multiple epochs for the training channel and only start reading the validation channel
when you are ready. Or, you can read them simultaneously if your algorithm requires that.

For an example of a Jupyter notebook that shows how to use Pipe mode when bringing your
own container, see Bring your own pipe-mode algorithm to Amazon SageMaker.

SageMaker model training supports high-performance S3 Express One Zone directory buckets as a
data input location for file mode, fast file mode, and pipe mode. To use S3 Express One Zone, input
the location of the S3 Express One Zone directory bucket instead of an Amazon S3 general purpose
bucket. Provide the ARN for the IAM role with the required access control and permissions policy.
Refer to AmazonSageMakerFullAccesspolicy for details. For more information, see S3 Express One
Zone.

Use Your Own Training Algorithms 5635

https://github.com/aws/amazon-sagemaker-examples/blob/main/advanced_functionality/pipe_bring_your_own/pipe_bring_your_own.ipynb
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSageMakerFullAccess.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html

Amazon SageMaker Developer Guide

Distributed Training Configuration

If you're performing distributed training with multiple containers, SageMaker makes information
about all containers available in the /opt/ml/input/config/resourceconfig.json file.

To enable inter-container communication, this JSON file contains information for all containers.
SageMaker makes this file available for both File and Pipe mode algorithms. The file provides
the following information:

• current_host—The name of the current container on the container network. For example,
algo-1. Host values can change at any time. Don't write code with specific values for this
variable.

• hosts—The list of names of all containers on the container network, sorted lexicographically.
For example, ["algo-1", "algo-2", "algo-3"] for a three-node cluster. Containers can
use these names to address other containers on the container network. Host values can change
at any time. Don't write code with specific values for these variables.

• network_interface_name—The name of the network interface that is exposed to your
container. For example, containers running the Message Passing Interface (MPI) can use this
information to set the network interface name.

• Do not use the information in /etc/hostname or /etc/hosts because it might be inaccurate.

• Hostname information may not be immediately available to the algorithm container. We
recommend adding a retry policy on hostname resolution operations as nodes become available
in the cluster.

The following is an example file on node 1 in a three-node cluster:

{
 "current_host": "algo-1",
 "hosts": ["algo-1","algo-2","algo-3"],
 "network_interface_name":"eth1"
}

Run Training with EFA

SageMaker provides integration with EFA devices to accelerate High Performance Computing
(HPC) and machine learning applications. This integration allows you to leverage an EFA device
when running your distributed training jobs. You can add EFA integration to an existing Docker

Use Your Own Training Algorithms 5636

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html

Amazon SageMaker Developer Guide

container that you bring to SageMaker. The following information outlines how to configure your
own container to use an EFA device for your distributed training jobs.

Prerequisites

Your container must satisfy the SageMaker Training container specification.

Install EFA and required packages

Your container must download and install the EFA software. This allows your container to
recognize the EFA device, and provides compatible versions of Libfabric and Open MPI.

Any tools like MPI and NCCL must be installed and managed inside the container to be used as part
of your EFA-enabled training job. For a list of all available EFA versions, see Verify the EFA installer
using a checksum. The following example shows how to modify the Dockerfile of your EFA-enabled
container to install EFA, MPI, OFI, NCCL, and NCCL-TEST.

Note

When using PyTorch with EFA on your container, the NCCL version of your container should
match the NCCL version of your PyTorch installation. To verify the PyTorch NCCL version,
use the following command:

torch.cuda.nccl.version()

ARG OPEN_MPI_PATH=/opt/amazon/openmpi/
ENV NCCL_VERSION=2.7.8
ENV EFA_VERSION=1.30.0
ENV BRANCH_OFI=1.1.1

###
EFA and MPI SETUP
RUN cd $HOME \
 && curl -O https://s3-us-west-2.amazonaws.com/aws-efa-installer/aws-efa-installer-
${EFA_VERSION}.tar.gz \
 && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \
 && cd aws-efa-installer \
 && ./efa_installer.sh -y --skip-kmod -g \

Use Your Own Training Algorithms 5637

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-verify.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-verify.html

Amazon SageMaker Developer Guide

ENV PATH="$OPEN_MPI_PATH/bin:$PATH"
ENV LD_LIBRARY_PATH="$OPEN_MPI_PATH/lib/:$LD_LIBRARY_PATH"

###
NCCL, OFI, NCCL-TEST SETUP
RUN cd $HOME \
 && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \
 && cd nccl \
 && make -j64 src.build BUILDDIR=/usr/local

RUN apt-get update && apt-get install -y autoconf
RUN cd $HOME \
 && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \
 && cd aws-ofi-nccl \
 && ./autogen.sh \
 && ./configure --with-libfabric=/opt/amazon/efa \
 --with-mpi=/opt/amazon/openmpi \
 --with-cuda=/usr/local/cuda \
 --with-nccl=/usr/local --prefix=/usr/local \
 && make && make install

RUN cd $HOME \
 && git clone https://github.com/NVIDIA/nccl-tests \
 && cd nccl-tests \
 && make MPI=1 MPI_HOME=/opt/amazon/openmpi CUDA_HOME=/usr/local/cuda NCCL_HOME=/usr/
local

Considerations when creating your container

The EFA device is mounted to the container as /dev/infiniband/uverbs0 under the list of
devices accessible to the container. On P4d instances, the container has access to 4 EFA devices.
The EFA devices can be found in the list of devices accessible to the container as:

• /dev/infiniband/uverbs0

• /dev/infiniband/uverbs1

• /dev/infiniband/uverbs2

• /dev/infiniband/uverbs3

To get information about hostname, peer hostnames, and network interface (for MPI) from
the resourceconfig.json file provided to each container instances, see Distributed Training

Use Your Own Training Algorithms 5638

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html#your-algorithms-training-algo-running-container-dist-training

Amazon SageMaker Developer Guide

Configuration. Your container handles regular TCP traffic among peers through the default Elastic
Network Interfaces (ENI), while handling OFI (kernel bypass) traffic through the EFA device.

Verify that your EFA device is recognized

 To verify that the EFA device is recognized, run the following command from within your
container.

/opt/amazon/efa/bin/fi_info -p efa

Your output should look similar to the following.

provider: efa
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-rdm
 version: 2.0
 type: FI_EP_RDM
 protocol: FI_PROTO_EFA
provider: efa
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-dgrm
 version: 2.0
 type: FI_EP_DGRAM
 protocol: FI_PROTO_EFA
provider: efa;ofi_rxd
 fabric: EFA-fe80::e5:56ff:fe34:56a8
 domain: efa_0-dgrm
 version: 1.0
 type: FI_EP_RDM
 protocol: FI_PROTO_RXD

Running a training job with EFA

Once you’ve created an EFA-enabled container, you can run a training job with EFA using a
SageMaker Estimator the same way as you would with any other Docker image. For more
information on registering your container and using it for training, see Adapting Your Own Training
Container.

How Amazon SageMaker Signals Algorithm Success and Failure

A training algorithm indicates whether it succeeded or failed using the exit code of its process.

Use Your Own Training Algorithms 5639

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html#your-algorithms-training-algo-running-container-dist-training
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html#byoc-training-step5
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-training-container.html#byoc-training-step5

Amazon SageMaker Developer Guide

A successful training execution should exit with an exit code of 0 and an unsuccessful training
execution should exit with a non-zero exit code. These will be converted to Completed and
Failed in the TrainingJobStatus returned by DescribeTrainingJob. This exit code
convention is standard and is easily implemented in all languages. For example, in Python, you can
use sys.exit(1) to signal a failure exit, and simply running to the end of the main routine will
cause Python to exit with code 0.

In the case of failure, the algorithm can write a description of the failure to the failure file. See next
section for details.

How Amazon SageMaker Processes Training Output

As your algorithm runs in a container, it generates output including the status of the training job
and model and output artifacts. Your algorithm should write this information to the following
files, which are located in the container's /output directory. Amazon SageMaker processes the
information contained in this directory as follows:

• /opt/ml/model – Your algorithm should write all final model artifacts to this directory.
SageMaker copies this data as a single object in compressed tar format to the S3 location that
you specified in the CreateTrainingJob request. If multiple containers in a single training
job write to this directory they should ensure no file/directory names clash. SageMaker
aggregates the result in a TAR file and uploads to S3 at the end of the training job.

• /opt/ml/output/data – Your algorithm should write artifacts you want to store other than
the final model to this directory. SageMaker copies this data as a single object in compressed
tar format to the S3 location that you specified in the CreateTrainingJob request. If
multiple containers in a single training job write to this directory they should ensure no file/
directory names clash. SageMaker aggregates the result in a TAR file and uploads to S3 at the
end of the training job.

• /opt/ml/output/failure – If training fails, after all algorithm output (for example,
logging) completes, your algorithm should write the failure description to this file. In a
DescribeTrainingJob response, SageMaker returns the first 1024 characters from this file as
FailureReason.

You can specify either an S3 general purpose or S3 directory bucket to store your training output.
Directory buckets use only the Amazon S3 Express One Zone storage class, which is designed for
workloads or performance-critical applications that require consistent single-digit millisecond
latency. Choose the bucket type that best fits your application and performance requirements. For

Use Your Own Training Algorithms 5640

Amazon SageMaker Developer Guide

more information on S3 directory buckets, see Directory buckets in the Amazon Simple Storage
Service User Guide.

Use your own inference code

You can use Amazon SageMaker to interact with Docker containers and run your own inference
code in one of two ways:

• To use your own inference code with a persistent endpoint to get one prediction at a time, use
SageMaker hosting services.

• To use your own inference code to get predictions for an entire dataset, use SageMaker batch
transform.

Topics

• Use Your Own Inference Code with Hosting Services

• Use Your Own Inference Code with Batch Transform

Use Your Own Inference Code with Hosting Services

This section explains how Amazon SageMaker interacts with a Docker container that runs your
own inference code for hosting services. Use this information to write inference code and create a
Docker image.

Topics

• How SageMaker Runs Your Inference Image

• How SageMaker Loads Your Model Artifacts

• How Your Container Should Respond to Inference Requests

• How Your Container Should Respond to Health Check (Ping) Requests

• Use a Private Docker Registry for Real-Time Inference Containers

How SageMaker Runs Your Inference Image

To configure a container to run as an executable, use an ENTRYPOINT instruction in a Dockerfile.
Note the following:

• For model inference, SageMaker runs the container as:

Use Your Own Inference Code 5641

https://docs.aws.amazon.com/AmazonS3/latest/userguide/directory-buckets-overview.html

Amazon SageMaker Developer Guide

docker run image serve

SageMaker overrides default CMD statements in a container by specifying the serve argument
after the image name. The serve argument overrides arguments that you provide with the CMD
command in the Dockerfile.

• SageMaker expects all containers to run with root users. Create your container so that it uses
only root users. When SageMaker runs your container, users that do not have root-level access
can cause permissions issues.

• We recommend that you use the exec form of the ENTRYPOINT instruction:

ENTRYPOINT ["executable", "param1", "param2"]

For example:

ENTRYPOINT ["python", "k_means_inference.py"]

The exec form of the ENTRYPOINT instruction starts the executable directly, not as a child of /
bin/sh. This enables it to receive signals like SIGTERM and SIGKILL from the SageMaker API
operations, which is a requirement.

For example, when you use the CreateEndpoint API to create an endpoint, SageMaker
provisions the number of ML compute instances required by the endpoint configuration, which
you specify in the request. SageMaker runs the Docker container on those instances.

If you reduce the number of instances backing the endpoint (by calling the
UpdateEndpointWeightsAndCapacities API), SageMaker runs a command to stop the
Docker container on the instances that are being terminated. The command sends the SIGTERM
signal, then it sends the SIGKILL signal thirty seconds later.

Use Your Own Inference Code 5642

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html

Amazon SageMaker Developer Guide

If you update the endpoint (by calling the UpdateEndpoint API), SageMaker launches another
set of ML compute instances and runs the Docker containers that contain your inference code
on them. Then it runs a command to stop the previous Docker containers. To stop a Docker
container, command sends the SIGTERM signal, then it sends the SIGKILL signal 30 seconds
later.

• SageMaker uses the container definition that you provided in your CreateModel request to set
environment variables and the DNS hostname for the container as follows:

• It sets environment variables using the ContainerDefinition.Environment string-to-
string map.

• It sets the DNS hostname using the ContainerDefinition.ContainerHostname.

• If you plan to use GPU devices for model inferences (by specifying GPU-based ML compute
instances in your CreateEndpointConfig request), make sure that your containers are
nvidia-docker compatible. Don't bundle NVIDIA drivers with the image. For more information
about nvidia-docker, see NVIDIA/nvidia-docker.

• You can't use the tini initializer as your entry point in SageMaker containers because it gets
confused by the train and serve arguments.

How SageMaker Loads Your Model Artifacts

In your CreateModel API request, you can use either the ModelDataUrl or S3DataSource
parameter to identify the S3 location where model artifacts are stored. SageMaker copies your
model artifacts from the S3 location to the /opt/ml/model directory for use by your inference
code. Your container has read-only access to /opt/ml/model. Do not write to this directory.

The ModelDataUrl must point to a tar.gz file. Otherwise, SageMaker won't download the file.

Use Your Own Inference Code 5643

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://github.com/NVIDIA/nvidia-docker
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

If you trained your model in SageMaker, the model artifacts are saved as a single compressed tar
file in Amazon S3. If you trained your model outside SageMaker, you need to create this single
compressed tar file and save it in a S3 location. SageMaker decompresses this tar file into /opt/ml/
model directory before your container starts.

For deploying large models, we recommend that you follow Deploying uncompressed models.

How Your Container Should Respond to Inference Requests

To obtain inferences, the client application sends a POST request to the SageMaker endpoint.
SageMaker passes the request to the container, and returns the inference result from the container
to the client.

For more information about the inference requests that your container will receive, see the
following actions in the Amazon SageMaker API Reference:

• InvokeEndpoint

• InvokeEndpointAsync

• InvokeEndpointWithResponseStream

Requirements for inference containers

To respond to inference requests, your container must meet the following requirements:

• SageMaker strips all POST headers except those supported by InvokeEndpoint. SageMaker
might add additional headers. Inference containers must be able to safely ignore these
additional headers.

• To receive inference requests, the container must have a web server listening on port 8080 and
must accept POST requests to the /invocations and /ping endpoints.

• A customer's model containers must accept socket connection requests within 250 ms.

• A customer's model containers must respond to requests within 60 seconds. The model itself
can have a maximum processing time of 60 seconds before responding to the /invocations. If
your model is going to take 50-60 seconds of processing time, the SDK socket timeout should be
set to be 70 seconds.

Use Your Own Inference Code 5644

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpointAsync.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpointWithResponseStream.html

Amazon SageMaker Developer Guide

Example invocation functions

The following examples demonstrate how the code in your container can process inference
requests. These examples handle requests that client applications send by using the
InvokeEndpoint action.

FastAPI

FastAPI is a web framework for building APIs with Python.

from fastapi import FastAPI, status, Request, Response
. . .
app = FastAPI()
. . .
@app.post('/invocations')
async def invocations(request: Request):
 # model() is a hypothetical function that gets the inference output:
 model_resp = await model(Request)

 response = Response(
 content=model_resp,
 status_code=status.HTTP_200_OK,
 media_type="text/plain",
)
 return response
. . .

In this example, the invocations function handles the inference request that SageMaker
sends to the /invocations endpoint.

Flask

Flask is a framework for developing web applications with Python.

import flask
. . .
app = flask.Flask(__name__)
. . .
@app.route('/invocations', methods=["POST"])
def invoke(request):
 # model() is a hypothetical function that gets the inference output:
 resp_body = model(request)
 return flask.Response(resp_body, mimetype='text/plain')

Use Your Own Inference Code 5645

Amazon SageMaker Developer Guide

In this example, the invoke function handles the inference request that SageMaker sends to
the /invocations endpoint.

Example invocation functions for streaming requests

The following examples demonstrate how the code in your inference container can process
streaming inference requests. These examples handle requests that client applications send by
using the InvokeEndpointWithResponseStream action.

When a container handles a streaming inference request, it returns the model's inference as a series
of parts incrementally as the model generates them. Client applications start receiving responses
immediately when they're available. They don't need to wait for the model to generate the entire
response. You can implement streaming to support fast interactive experiences, such as chatbots,
virtual assistants, and music generators.

FastAPI

FastAPI is a web framework for building APIs with Python.

from starlette.responses import StreamingResponse
from fastapi import FastAPI, status, Request
. . .
app = FastAPI()
. . .
@app.post('/invocations')
async def invocations(request: Request):
 # Streams inference response using HTTP chunked encoding
 async def generate():
 # model() is a hypothetical function that gets the inference output:
 yield await model(Request)
 yield "\n"

 response = StreamingResponse(
 content=generate(),
 status_code=status.HTTP_200_OK,
 media_type="text/plain",
)
 return response
. . .

Use Your Own Inference Code 5646

Amazon SageMaker Developer Guide

In this example, the invocations function handles the inference request that SageMaker
sends to the /invocations endpoint. To stream the response, the example uses the
StreamingResponse class from the Starlette framework.

Flask

Flask is a framework for developing web applications with Python.

import flask
. . .
app = flask.Flask(__name__)
. . .
@app.route('/invocations', methods=["POST"])
def invocations(request):
 # Streams inference response using HTTP chunked encoding

 def generate():
 # model() is a hypothetical function that gets the inference output:
 yield model(request)
 yield "\n"
 return flask.Response(
 flask.stream_with_context(generate()), mimetype='text/plain')
. . .

In this example, the invocations function handles the inference request that SageMaker
sends to the /invocations endpoint. To stream the response, the example uses the
flask.stream_with_context function from the Flask framework.

How Your Container Should Respond to Health Check (Ping) Requests

SageMaker launches new inference containers in the following situations:

• Responding to CreateEndpoint, UpdateEndpoint, and
UpdateEndpointWeightsAndCapacities API calls

• Security patching

• Replacing unhealthy instances

Soon after container startup, SageMaker starts sending periodic GET requests to the /ping
endpoint.

Use Your Own Inference Code 5647

Amazon SageMaker Developer Guide

The simplest requirement on the container is to respond with an HTTP 200 status code and an
empty body. This indicates to SageMaker that the container is ready to accept inference requests at
the /invocations endpoint.

If the container does not begin to pass health checks by consistently responding with 200s during
the 8 minutes after startup, the new instance launch fails. This causes CreateEndpoint to fail,
leaving the endpoint in a failed state. The update requested by UpdateEndpoint isn't completed,
security patches aren't applied, and unhealthy instances aren't replaced.

While the minimum bar is for the container to return a static 200, a container developer can use
this functionality to perform deeper checks. The request timeout on /ping attempts is 2 seconds.

Use a Private Docker Registry for Real-Time Inference Containers

Amazon SageMaker hosting enables you to use images stored in Amazon ECR to build your
containers for real-time inference by default. Optionally, you can build containers for real-time
inference from images in a private Docker registry. The private registry must be accessible from an
Amazon VPC in your account. Models that you create based on the images stored in your private
Docker registry must be configured to connect to the same VPC where the private Docker registry
is accessible. For information about connecting your model to a VPC, see Give SageMaker Hosted
Endpoints Access to Resources in Your Amazon VPC.

Your Docker registry must be secured with a TLS certificate from a known public certificate
authority (CA).

Note

Your private Docker registry must allow inbound traffic from the security groups you
specify in the VPC configuration for your model, so that SageMaker hosting is able to pull
model images from your registry.
SageMaker can pull model images from DockerHub if there's a path to the open internet
inside your VPC.

Topics

• Store Images in a Private Docker Registry other than Amazon Elastic Container Registry

• Use an Image from a Private Docker Registry for Real-time Inference

• Allow SageMaker to authenticate to a private Docker registry

• Create the Lambda function

Use Your Own Inference Code 5648

Amazon SageMaker Developer Guide

• Give your execution role permission to Lambda

• Create an interface VPC endpoint for Lambda

Store Images in a Private Docker Registry other than Amazon Elastic Container Registry

To use a private Docker registry to store your images for SageMaker real-time inference, create a
private registry that is accessible from your Amazon VPC. For information about creating a Docker
registry, see Deploy a registry server in the Docker documentation. The Docker registry must
comply with the following:

• The registry must be a Docker Registry HTTP API V2 registry.

• The Docker registry must be accessible from the same VPC that you specify in the VpcConfig
parameter that you specify when you create your model.

Use an Image from a Private Docker Registry for Real-time Inference

When you create a model and deploy it to SageMaker hosting, you can specify that it use an
image from your private Docker registry to build the inference container. Specify this in the
ImageConfig object in the PrimaryContainer parameter that you pass to a call to the
create_model function.

To use an image stored in your private Docker registry for your inference container

1. Create the image configuration object and specify a value of Vpc for the
RepositoryAccessMode field.

image_config = {
 'RepositoryAccessMode': 'Vpc'
 }

2. If your private Docker registry requires authentication, add a RepositoryAuthConfig object
to the image configuration object. For the RepositoryCredentialsProviderArn field of
the RepositoryAuthConfig object, specify the Amazon Resource Name (ARN) of an AWS
Lambda function that provides credentials that allows SageMaker to authenticate to your
private Docker Registry. For information about how to create the Lambda function to provide
authentication, see Allow SageMaker to authenticate to a private Docker registry.

image_config = {

Use Your Own Inference Code 5649

https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/spec/api/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model

Amazon SageMaker Developer Guide

 'RepositoryAccessMode': 'Vpc',
 'RepositoryAuthConfig': {
 'RepositoryCredentialsProviderArn':
 'arn:aws:lambda:Region:Acct:function:FunctionName'
 }
 }

3. Create the primary container object that you want to pass to create_model, using the image
configuration object that you created in the previous step.

Provide your image in digest form. If you provide your image using the :latest tag, there is
a risk that SageMaker pulls a newer version of the image than intended. Using the digest form
ensures that SageMaker pulls the intended image version.

primary_container = {
 'ContainerHostname': 'ModelContainer',
 'Image': 'myteam.myorg.com/docker-local/my-inference-image:<IMAGE-TAG>',
 'ImageConfig': image_config
}

4. Specify the model name and the execution role that you want to pass to create_model.

model_name = 'vpc-model'
execution_role_arn = 'arn:aws:iam::123456789012:role/SageMakerExecutionRole'

5. Specify one or more security groups and subnets for the VPC configuration for your model.
Your private Docker registry must allow inbound traffic from the security groups that you
specify. The subnets that you specify must be in the same VPC as your private Docker registry.

vpc_config = {
 'SecurityGroupIds': ['sg-0123456789abcdef0'],
 'Subnets': ['subnet-0123456789abcdef0','subnet-0123456789abcdef1']
}

6. Get a Boto3 SageMaker client.

import boto3
sm = boto3.client('sagemaker')

7. Create the model by calling create_model, using the values you specified in the previous
steps for the PrimaryContainer and VpcConfig parameters.

Use Your Own Inference Code 5650

https://docs.docker.com/engine/reference/commandline/pull/#pull-an-image-by-digest-immutable-identifier

Amazon SageMaker Developer Guide

try:
 resp = sm.create_model(
 ModelName=model_name,
 PrimaryContainer=primary_container,
 ExecutionRoleArn=execution_role_arn,
 VpcConfig=vpc_config,
)
except Exception as e:
 print(f'error calling CreateModel operation: {e}')
else:
 print(resp)

8. Finally, call create_endpoint_config and create_endpoint to create the hosting endpoint, using
the model that you created in the previous step.

endpoint_config_name = 'my-endpoint-config'
sm.create_endpoint_config(
 EndpointConfigName=endpoint_config_name,
 ProductionVariants=[
 {
 'VariantName': 'MyVariant',
 'ModelName': model_name,
 'InitialInstanceCount': 1,
 'InstanceType': 'ml.t2.medium'
 },
],
)

endpoint_name = 'my-endpoint'
sm.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name,
)

sm.describe_endpoint(EndpointName=endpoint_name)

Allow SageMaker to authenticate to a private Docker registry

To pull an inference image from a private Docker registry that requires authentication, create an
AWS Lambda function that provides credentials, and provide the Amazon Resource Name (ARN) of

Use Your Own Inference Code 5651

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint_config
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_endpoint

Amazon SageMaker Developer Guide

the Lambda function when you call create_model. When SageMaker runs create_model, it calls
the Lambda function that you specified to get credentials to authenticate to your Docker registry.

Create the Lambda function

Create an AWS Lambda function that returns a response with the following form:

def handler(event, context):
 response = {
 "Credentials": {"Username": "username", "Password": "password"}
 }
 return response

Depending on how you set up authentication for your private Docker registry, the credentials that
your Lambda function returns can mean either of the following:

• If you set up your private Docker registry to use basic authentication, provide the sign-in
credentials to authenticate to the registry.

• If you set up your private Docker registry to use bearer token authentication, the sign-in
credentials are sent to your authorization server, which returns a Bearer token that can then be
used to authenticate to the private Docker registry.

Give your execution role permission to Lambda

The execution role that you use to call create_model must have permissions to call AWS Lambda
functions. Add the following to the permissions policy of your execution role.

{
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:*myLambdaFunction*"
]
}

Where myLambdaFunction is the name of your Lambda function. For information about editing a
role permissions policy, see Modifying a role permissions policy (console) in the AWS Identity and
Access Management User Guide.

Use Your Own Inference Code 5652

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy

Amazon SageMaker Developer Guide

Note

An execution role with the AmazonSageMakerFullAccess managed policy attached to it
has permission to call any Lambda function with SageMaker in its name.

Create an interface VPC endpoint for Lambda

Create an interface endpoint so that your Amazon VPC can communicate with your AWS Lambda
function without sending traffic over the internet. For information about how to do this, see
Configuring interface VPC endpoints for Lambda in the AWS Lambda Developer Guide.

SageMaker hosting sends a request through your VPC to lambda.region.amazonaws.com,
to call your Lambda function. If you choose Private DNS Name when you create your interface
endpoint, Amazon Route 53 routes the call to the Lambda interface endpoint. If you use a different
DNS provider, make sure to map lambda.region.amazonaws.com to your Lambda interface
endpoint.

Use Your Own Inference Code with Batch Transform

This section explains how Amazon SageMaker interacts with a Docker container that runs your
own inference code for batch transform. Use this information to write inference code and create a
Docker image.

Topics

• How SageMaker Runs Your Inference Image

• How SageMaker Loads Your Model Artifacts

• How Containers Serve Requests

• How Your Container Should Respond to Inference Requests

• How Your Container Should Respond to Health Check (Ping) Requests

How SageMaker Runs Your Inference Image

To configure a container to run as an executable, use an ENTRYPOINT instruction in a Dockerfile.
Note the following:

• For batch transforms, SageMaker invokes the model on your behalf. SageMaker runs the
container as:

Use Your Own Inference Code 5653

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc-endpoints.html

Amazon SageMaker Developer Guide

docker run image serve

The input to batch transforms must be of a format that can be split into smaller files to process
in parallel. These formats include CSV, JSON, JSON Lines, TFRecord and RecordIO.

SageMaker overrides default CMD statements in a container by specifying the serve argument
after the image name. The serve argument overrides arguments that you provide with the CMD
command in the Dockerfile.

• We recommend that you use the exec form of the ENTRYPOINT instruction:

ENTRYPOINT ["executable", "param1", "param2"]

For example:

ENTRYPOINT ["python", "k_means_inference.py"]

• SageMaker sets environment variables specified in CreateModel and CreateTransformJob
on your container. Additionally, the following environment variables are populated:

• SAGEMAKER_BATCH is set to true when the container runs batch transforms.

• SAGEMAKER_MAX_PAYLOAD_IN_MB is set to the largest size payload that is sent to the
container via HTTP.

• SAGEMAKER_BATCH_STRATEGY is set to SINGLE_RECORD when the container is sent a single
record per call to invocations and MULTI_RECORD when the container gets as many records as
will fit in the payload.

• SAGEMAKER_MAX_CONCURRENT_TRANSFORMS is set to the maximum number of /
invocations requests that can be opened simultaneously.

Note

The last three environment variables come from the API call made by the user. If the user
doesn’t set values for them, they aren't passed. In that case, either the default values or

Use Your Own Inference Code 5654

https://www.json.org/json-en.html
https://jsonlines.org/
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://mesos.apache.org/documentation/latest/recordio/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html

Amazon SageMaker Developer Guide

the values requested by the algorithm (in response to the /execution-parameters)
are used.

• If you plan to use GPU devices for model inferences (by specifying GPU-based ML compute
instances in your CreateTransformJob request), make sure that your containers are nvidia-
docker compatible. Don't bundle NVIDIA drivers with the image. For more information about
nvidia-docker, see NVIDIA/nvidia-docker.

• You can't use the init initializer as your entry point in SageMaker containers because it gets
confused by the train and serve arguments.

How SageMaker Loads Your Model Artifacts

In a CreateModel request, container definitions include the ModelDataUrl parameter, which
identifies the location in Amazon S3 where model artifacts are stored. When you use SageMaker
to run inferences, it uses this information to determine from where to copy the model artifacts.
It copies the artifacts to the /opt/ml/model directory in the Docker container for use by your
inference code.

The ModelDataUrl parameter must point to a tar.gz file. Otherwise, SageMaker can't download
the file. If you train a model in SageMaker, it saves the artifacts as a single compressed tar file in
Amazon S3. If you train a model in another framework, you need to store the model artifacts in
Amazon S3 as a compressed tar file. SageMaker decompresses this tar file and saves it in the /opt/
ml/model directory in the container before the batch transform job starts.

How Containers Serve Requests

Containers must implement a web server that responds to invocations and ping requests on
port 8080. For batch transforms, you have the option to set algorithms to implement execution-
parameters requests to provide a dynamic runtime configuration to SageMaker. SageMaker uses
the following endpoints:

• ping—Used to periodically check the health of the container. SageMaker waits for an HTTP
200 status code and an empty body for a successful ping request before sending an invocations
request. You might use a ping request to load a model into memory to generate inference when
invocations requests are sent.

Use Your Own Inference Code 5655

https://github.com/NVIDIA/nvidia-docker
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

• (Optional) execution-parameters—Allows the algorithm to provide the optimal tuning
parameters for a job during runtime. Based on the memory and CPUs available for a container,
the algorithm chooses the appropriate MaxConcurrentTransforms, BatchStrategy, and
MaxPayloadInMB values for the job.

Before calling the invocations request, SageMaker attempts to invoke the execution-
parameters request. When you create a batch transform job, you can provide values for the
MaxConcurrentTransforms, BatchStrategy, and MaxPayloadInMB parameters. SageMaker
determines the values for these parameters using this order of precedence:

1. The parameter values that you provide when you create the CreateTransformJob request.

2. The values that the model container returns when SageMaker invokes the execution-parameters
endpoint>

3. The default parameter values, listed in the following table.

Parameter Default Values

MaxConcurrentTransforms 1

BatchStrategy MULTI_RECORD

MaxPayloadInMB 6

The response for a GET execution-parameters request is a JSON object with keys for
MaxConcurrentTransforms, BatchStrategy, and MaxPayloadInMB parameters. This is an
example of a valid response:

{
“MaxConcurrentTransforms”: 8,
“BatchStrategy": "MULTI_RECORD",
"MaxPayloadInMB": 6
}

How Your Container Should Respond to Inference Requests

To obtain inferences, Amazon SageMaker sends a POST request to the inference container. The
POST request body contains data from Amazon S3. Amazon SageMaker passes the request to the

Use Your Own Inference Code 5656

Amazon SageMaker Developer Guide

container, and returns the inference result from the container, saving the data from the response to
Amazon S3.

To receive inference requests, the container must have a web server listening on port 8080 and
must accept POST requests to the /invocations endpoint. The inference request timeout and
max retries can be configured through ModelClientConfig.

How Your Container Should Respond to Health Check (Ping) Requests

The simplest requirement on the container is to respond with an HTTP 200 status code and an
empty body. This indicates to SageMaker that the container is ready to accept inference requests at
the /invocations endpoint.

While the minimum bar is for the container to return a static 200, a container developer can use
this functionality to perform deeper checks. The request timeout on /ping attempts is 2 seconds.

Examples and More Information: Use Your Own Algorithm or
Model

The following Jupyter notebooks and added information show how to use your own algorithms
or pretrained models from an Amazon SageMaker notebook instance. For links to the GitHub
repositories with the prebuilt Dockerfiles for the TensorFlow, MXNet, Chainer, and PyTorch
frameworks and instructions on using the AWS SDK for Python (Boto3) estimators to run your
own training algorithms on SageMaker Learner and your own models on SageMaker hosting, see
Prebuilt SageMaker Docker Images for Deep Learning

Setup

1. Create a SageMaker notebook instance. For instructions on how to create and access Jupyter
notebook instances, see Amazon SageMaker Notebook Instances.

2. Open the notebook instance you created.

3. Choose the SageMaker Examples tab for a list of all SageMaker example notebooks.

4. Open the sample notebooks from the Advanced Functionality section in your notebook
instance or from GitHub using the provided links. To open a notebook, choose its Use tab, then
choose Create copy.

Examples and more info 5657

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ModelClientConfig.html

Amazon SageMaker Developer Guide

Host models trained in Scikit-learn

To learn how to host models trained in Scikit-learn for making predictions in SageMaker by
injecting them into first-party k-means and XGBoost containers, see the following sample
notebooks.

• kmeans_bring_your_own_model

• xgboost_bring_your_own_model

Package TensorFlow and Scikit-learn models for use in SageMaker

To learn how to package algorithms that you have developed in TensorFlow and scikit-learn
frameworks for training and deployment in the SageMaker environment, see the following
notebooks. They show you how to build, register, and deploy your own Docker containers using
Dockerfiles.

• tensorflow_bring_your_own

• scikit_bring_your_own

Train and deploy a neural network on SageMaker

To learn how to train a neural network locally using MXNet or TensorFlow, and then create an
endpoint from the trained model and deploy it on SageMaker, see the following notebooks.
The MXNet model is trained to recognize handwritten numbers from the MNIST dataset. The
TensorFlow model is trained to classify irises.

• mxnet_mnist_byom

• tensorflow_BYOM_iris

Training using pipe mode

To learn how to use a Dockerfile to build a container that calls the train.py script and uses
pipe mode to custom train an algorithm, see the following notebook. In pipe mode, the input data
is transferred to the algorithm while it is training. This can decrease training time compared to
using file mode.

• pipe_bring_your_own

Host models trained in Scikit-learn 5658

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/kmeans_bring_your_own_model
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/xgboost_bring_your_own_model
https://github.com/aws/amazon-sagemaker-examples/blob/main/advanced_functionality/tensorflow_iris_byom/tensorflow_BYOM_iris.ipynb
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/scikit_bring_your_own
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/using_mxnet.html
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/tensorflow_iris_byom/tensorflow_BYOM_iris.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/0efd885ef2a5c04929d10c5272681f4ca17dac17/advanced_functionality/pipe_bring_your_own/pipe_bring_your_own.ipynb

Amazon SageMaker Developer Guide

Bring your own R model

To learn how to use add a custom R image to build and train a model in a AWS SMS notebook, see
the following blog post. This blog post uses a sample R Dockerfile from a library of SageMaker
Studio Classic Custom Image Samples.

• Bringing your own R environment to Amazon SageMaker Studio Classic

Extend a pre-built PyTorch container Image

To learn how to extend a prebuilt SageMaker PyTorch container image when you have additional
functional requirements for your algorithm or model that the prebuilt Docker image doesn't
support, see the following notebook.

• BERTtopic_extending_container

For more information about extending a container, see Extend a Pre-built Container.

Train and debug training jobs on a custom container

To learn how to train and debug training jobs using SageMaker Debugger, see the following
notebook. A training script provided through this example uses the TensorFlow Keras ResNet 50
model and the CIFAR10 dataset. A Docker custom container is built with the training script and
pushed to Amazon ECR. While the training job is running, Debugger collects tensor outputs and
identifies debugging problems. With smdebug client library tools, you can set a smdebug trial
object that calls the training job and debugging information, check the training and Debugger rule
status, and retrieve tensors saved in an Amazon S3 bucket to analyze training issues.

• build_your_own_container_with_debugger

Troubleshooting your Docker containers

The following are common errors that you might run into when using Docker containers with
SageMaker. Each error is followed by a solution to the error.

• Error: SageMaker has lost the Docker daemon.

To fix this error, restart Docker using the following command.

Bring your own R model 5659

https://github.com/aws-samples/sagemaker-studio-custom-image-samples
https://github.com/aws-samples/sagemaker-studio-custom-image-samples
https://aws.amazon.com/blogs/machine-learning/bringing-your-own-r-environment-to-amazon-sagemaker-studio/
https://github.com/aws/amazon-sagemaker-examples/blob/0efd885ef2a5c04929d10c5272681f4ca17dac17/advanced_functionality/pytorch_extend_container_train_deploy_bertopic/BERTtopic_extending_container.ipynb
https://docs.aws.amazon.com/sagemaker/latest/dg/prebuilt-containers-extend.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-debugger/build_your_own_container_with_debugger/debugger_byoc.html

Amazon SageMaker Developer Guide

sudo service docker restart

• Error: The /tmp directory of your Docker container has run out of space.

Docker containers use the / and /tmp partitions to store code. These partitions can fill up easily
when using large code modules in local mode. The SageMaker Python SDK supports specifying a
custom temp directory for your local mode root directory to avoid this issue.

To specify the custom temp directory in the Amazon Elastic Block Store volume storage, create
a file at the following path ~/.sagemaker/config.yaml and add the following configuration.
The directory that you specify as container_root must already exist. The SageMaker Python
SDK will not try to create it.

local:
 container_root: /home/ec2-user/SageMaker/temp

With this configuration, local mode uses the /temp directory and not the default /tmp directory.

• Low space errors on SageMaker notebook instances

A Docker container that runs on SageMaker notebook instances uses the root Amazon EBS
volume of the notebook instance by default. To resolve low space errors, provide the path of
the Amazon EBS volume attached to the notebook instance as part of the volume parameter of
Docker commands.

docker run -v EBS-volume-path:container-path

Troubleshooting 5660

Amazon SageMaker Developer Guide

Configure security in Amazon SageMaker

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely.
Third-party auditors regularly test and verify the effectiveness of our security as part of the
AWS compliance programs. To learn about the compliance programs that apply to Amazon
SageMaker, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using SageMaker. The following topics show you how to configure SageMaker to meet your security
and compliance objectives. You also learn how to use other AWS services that help you to monitor
and secure your SageMaker resources.

Topics

• Data Privacy in Amazon SageMaker

• Data Protection in Amazon SageMaker

• Identity and Access Management for Amazon SageMaker

• Logging and Monitoring

• Compliance validation for Amazon SageMaker

• Resilience in Amazon SageMaker

• Infrastructure Security in Amazon SageMaker

5661

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon SageMaker Developer Guide

Data Privacy in Amazon SageMaker

Amazon SageMaker collects aggregate information about the use of AWS-owned and open source
libraries used during training. SageMaker uses this aggregate metadata to improve services and
customer experience.

The following sections provide explanations for the type of metadata that SageMaker collects and
how to opt out of metadata collection.

Types of information collected

Usage Information

Metadata from AWS-owned and open source libraries that are used with SageMaker training,
such as those used for distributed training, compilation, and quantization.

Errors

Errors from unexpected behavior including failures, crashes, cascades, and failures that result
from interacting with the SageMaker training platform.

How to opt out of metadata collection

You can opt out of sharing aggregated metadata with SageMaker training when creating a training
job using the CreateTrainingJob API. If you are using the console to create training jobs,
metadata collection is disabled by default.

Important

You must choose to opt out of metadata collection for each training job that you submit.
You must also choose to opt out in an API call as shown in the following examples. You
cannot choose to opt out inside a training script.

The following section shows how you can opt out of metadata collection using the AWS CLI, AWS
SDK for Python (Boto3), or the SageMaker Python SDK.

Data Privacy 5662

Amazon SageMaker Developer Guide

Opt out of metadata collection using the AWS Command Line Interface (AWS CLI)

To opt out of metadata collection using the AWS CLI, set the environment variable
OPT_OUT_TRACKING to 1 in the create-training-job API as shown in the following code
example.

aws sagemaker create-training-job \
--training-job-name your_job_name \
--algorithm-specification AlgorithmName=your_algorithm_name\
--output-data-config S3OutputPath=s3://bucket-name/key-name-prefix \
--resource-config InstanceType=ml.c5.xlarge, InstanceCount=1 \
--stopping-condition MaxRuntimeInSeconds=100 \
--environment OPT_OUT_TRACKING=1

Opt out of metadata collection using the AWS SDK for Python (Boto3)

To opt out of metadata collection using the SDK for Python (Boto3), set the environment variable
OPT_OUT_TRACKING to 1 in the create_training_job API as shown in the following code
example.

boto3.client('sagemaker').create_training_job(
 TrainingJobName='your_training_job',
 AlgorithmSpecification={
 'AlgorithmName': 'your_algorithm_name',
 'TrainingInputMode': 'File',
 },
 RoleArn='your_arn',
 OutputDataConfig={
 'S3OutputPath': 's3://bucket-name/key-name-prefix',
 },
 ResourceConfig={
 'InstanceType': 'ml.m4.xlarge',
 'InstanceCount': 1,
 'VolumeSizeInGB': 123,
 },
 StoppingCondition={
 'MaxRuntimeInSeconds': 123,
 },
 Environment={
 'OPT_OUT_TRACKING': '1'
 },
)

How to opt out of metadata collection 5663

Amazon SageMaker Developer Guide

Opt out of metadata collection using the SageMaker Python SDK

To opt out of metadata collection using the SageMaker Python SDK, set the environment variable
OPT_OUT_TRACKING to 1 inside a SageMaker estimator as shown in the following code example.

sagemaker.estimator(
 image_uri='path_to_container',
 role='rolearn',
 instance_count=1,
 instance_type='ml.c5.xlarge',
 environment={
 'OPT_OUT_TRACKING': '1'
 },
)

Opt out of metadata collection account-wide

If you want to opt-out of metadata collection for several accounts, you can set an environment
variable to opt-out of tracking account-wide. You must use the SageMaker Python SDK to opt out
of metadata collection at an account level.

The following code example shows how opt out of tracking account-wide.

SchemaVersion: '1.0'
SageMaker:
 TrainingJob:
 Environment:
 'OPT_OUT_TRACKING': '1'

For more information about how to opt out of tracking account-wide, see Configuring and using
defaults with the SageMaker Python SDK.

Additional information

If your downstream service depends on SageMaker training

If you operate a service that relies on SageMaker training, it is highly recommended that you
inform your customer about aggregate metadata collection in the SageMaker Training platform
and present them with the choice to opt out. Alternatively, you can opt out of metadata collection
on behalf of your customer.

If you are a client or a customer of a service that uses SageMaker training

Additional information 5664

https://sagemaker.readthedocs.io/en/stable/overview.html#id22
https://sagemaker.readthedocs.io/en/stable/overview.html#id22

Amazon SageMaker Developer Guide

If you are a client or customer of a service that uses SageMaker training, use your preferred method
in the previous section to opt out of metadata collection.

Data Protection in Amazon SageMaker

The AWS shared responsibility model applies to data protection in Amazon SageMaker. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon SageMaker or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Topics

Data Protection 5665

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon SageMaker Developer Guide

• Protect Data at Rest Using Encryption

• Protecting Data in Transit with Encryption

• Key Management

• Internetwork Traffic Privacy

Protect Data at Rest Using Encryption

To protect your Amazon SageMaker Studio notebooks and SageMaker notebook instances, along
with your model-building data and model artifacts, SageMaker encrypts the notebooks, as well as
output from Training and Batch Transform jobs. SageMaker encrypts these by default using the
AWS Managed Key for Amazon S3. This AWS Managed Key for Amazon S3 cannot be shared for
cross-account access. For cross-account access, specify your customer managed key while creating
SageMaker resources so that it can be shared for cross-account access. For data output to Amazon
S3 Express One Zone, the data is encrypted with server-side encryption with Amazon S3 managed
keys (SSE-S3). For more information on AWS KMS, see What is AWS Key Management Service?.

Topics

• Studio notebooks

• Notebook instances, SageMaker jobs, and Endpoints

• SageMaker geospatial capabilities

Studio notebooks

In Amazon SageMaker Studio, your SageMaker Studio notebooks and data can be stored in the
following locations:

• An S3 bucket – When you onboard to Studio and enable shareable notebook resources,
SageMaker shares notebook snapshots and metadata in an Amazon Simple Storage Service
(Amazon S3) bucket.

• An EFS volume – When you onboard to Studio, SageMaker attaches an Amazon Elastic File
System (Amazon EFS) volume to your domain for storing your Studio notebooks and data files.
The EFS volume persists after the domain is deleted.

• An EBS volume – When you open a notebook in Studio, an Amazon Elastic Block Store (Amazon
EBS) is attached to the instance that the notebook runs on. The EBS volume persists for the
duration of the instance.

Protect Data at Rest Using Encryption 5666

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

SageMaker uses the AWS Key Management Service (AWS KMS) to encrypt the S3 bucket and
both volumes. By default, it uses a KMS key managed in an AWS service account. For more
control, you can specify your own customer managed key when you onboard to Studio or
through the SageMaker API. For more information, see Amazon SageMaker domain overview and
CreateDomain.

In the CreateDomain API, you use the S3KmsKeyId parameter to specify the customer managed
key for shareable notebooks. You use the KmsKeyId parameter to specify the customer managed
key for the EFS and EBS volumes. The same customer managed key is used for both volumes. The
customer managed key for shareable notebooks can be the same customer managed key as used
for the volumes or a different customer managed key.

Notebook instances, SageMaker jobs, and Endpoints

To encrypt the machine learning (ML) storage volume that is attached to notebooks, processing
jobs, training jobs, hyperparameter tuning jobs, batch transform jobs, and endpoints, you can
pass a AWS KMS key to SageMaker. If you don't specify a KMS key, SageMaker encrypts storage
volumes with a transient key and discards it immediately after encrypting the storage volume. For
notebook instances, if you don't specify a KMS key, SageMaker encrypts both OS volumes and ML
data volumes with a system-managed KMS key.

You can use an AWS managed AWS KMS key to encrypt all instance OS volumes. You can encrypt
all ML data volumes for all SageMaker instances with a AWS KMS key that you specify. ML storage
volumes are mounted as follows:

• Notebooks - /home/ec2-user/SageMaker

• Processing - /opt/ml/processing and /tmp/

• Training - /opt/ml/ and /tmp/

• Batch - /opt/ml/ and /tmp/

• Endpoints - /opt/ml/ and /tmp/

Processing, batch transform, and training job containers and their storage are ephemeral in nature.
When the job completes, output is uploaded to Amazon S3 using AWS KMS encryption with an
optional AWS KMS key that you specify and the instance is torn down. If an AWS KMS Key is not
provided in the job request, SageMaker uses the default AWS KMS key for Amazon S3 for your
role's account. If the output data is stored in Amazon S3 Express One Zone, it is encrypted with
server-side encryption with Amazon S3 managed keys (SSE-S3).

Protect Data at Rest Using Encryption 5667

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html

Amazon SageMaker Developer Guide

Note

The key policy for an AWS Managed Key for Amazon S3 cannot be edited, so cross-account
permissions cannot be granted for these key policies. If the output Amazon S3 bucket for
the request is from another account, specify your own AWS KMS Customer Key in the job
request and ensure that the job's execution role has permissions to encrypt data with it.

Important

Sensitive data that needs to be encrypted with a KMS key for compliance reasons should be
stored in the ML storage volume or in Amazon S3, both of which can be encrypted using a
KMS key you specify.

When you open a notebook instance, SageMaker saves it and any files associated with it in the
SageMaker folder in the ML storage volume by default. When you stop a notebook instance,
SageMaker creates a snapshot of the ML storage volume. Any customizations to the operating
system of the stopped instance, such as installed custom libraries or operating system level
settings, are lost. Consider using a lifecycle configuration to automate customizations of the
default notebook instance. When you terminate an instance, the snapshot and the ML storage
volume are deleted. Any data that you need to persist beyond the lifespan of the notebook
instance should be transferred to an Amazon S3 bucket.

Note

Certain Nitro-based SageMaker instances include local storage, depending on the instance
type. Local storage volumes are encrypted using a hardware module on the instance. You
can't use a KMS key on an instance type with local storage. For a list of instance types that
support local instance storage, see Instance Store Volumes. For more information about
storage volumes on Nitro-based instances, see Amazon EBS and NVMe on Linux Instances.
For more information about local instance storage encryption, see SSD Instance Store
Volumes.

SageMaker geospatial capabilities

You can protect your data at rest using encryption for SageMaker geospatial.

Protect Data at Rest Using Encryption 5668

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nvme-ebs-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html

Amazon SageMaker Developer Guide

Server-Side Encryption with Amazon SageMaker geospatial owned key (Default)

Amazon SageMaker geospatial capabilities encrypts all your data, including computational results
from your EarthObservationJobs and VectorEnrichmentJobs along with all your service
metadata. There is no data that is stored within Amazon SageMaker unencrypted. It uses a default
AWS owned key to encrypt all your data.

Server-Side Encryption with KMS Keys Stored in AWS Key Management Service (SSE-KMS)

Amazon SageMaker geospatial capabilities supports encryption using a customer-owned KMS
key. For more information, see Use AWS KMS Permissions for Amazon SageMaker geospatial
capabilities.

Protecting Data in Transit with Encryption

All internetwork data in transit supports TLS 1.2 encryption. We recommend that you use TLS 1.3.

With Amazon SageMaker, machine learning (ML) model artifacts and other system artifacts are
encrypted in transit and at rest. Requests to the SageMaker API and console are made over a secure
(SSL) connection. You pass AWS Identity and Access Management roles to SageMaker to provide
permissions to access resources on your behalf for training and deployment.

Some intranetwork data in transit (inside the service platform) is unencrypted. This includes:

• Command and control communications between the service control plane and training job
instances (not customer data).

• Communications between nodes in distributed processing jobs (intranetwork).

• Communications between nodes in distributed training jobs (intranetwork).

There are no inter-node communications for batch processing.

You can choose to encrypt communication between nodes in a training cluster.

Note

For use cases in the healthcare sector, the best practice for security is to encrypt
communication between the nodes.

Protecting Data in Transit with Encryption 5669

https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-kms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial-kms.html

Amazon SageMaker Developer Guide

For information about how to encrypt communication, see the next topic at Protect
Communications Between ML Compute Instances in a Distributed Training Job.

Note

Encrypting inter-container traffic can increase training time, especially if you use
distributed deep learning algorithms. For affected algorithms, this additional level of
security also increases cost. The training time for most SageMaker built-in algorithms, such
as XGBoost, DeepAR, and linear learner, typically aren't affected.

FIPS validated endpoints are available for the SageMaker API and request router for hosted models
(runtime). For information about FIPS compliant endpoints, see Federal Information Processing
Standard (FIPS) 140-2.

Protect Communications with RStudio on Amazon SageMaker

RStudio on Amazon SageMaker provides encryption for all communications that involve
SageMaker components. However, the previous version did not support encryption between the
RStudioServerPro and RSession apps.

RStudio released version 2022.02.2-485.pro2 in April 2022. This version supports encryption
between RStudioServerPro and RSession apps to enable end-to-end encryption. The version
upgrade, however, is not completely backward compatible. As a result, you must update all of your
RStudioServerPro and RSession apps. For information about how to update your apps, see Upgrade
the RStudio Version.

Protect Communications Between ML Compute Instances in a Distributed Training
Job

By default, Amazon SageMaker runs training jobs in an Amazon Virtual Private Cloud (Amazon
VPC) to help keep your data secure. You can add another level of security to protect your training
containers and data by configuring a private VPC. Distributed ML frameworks and algorithms
usually transmit information that is directly related to the model, such as weights, not the training
dataset. When performing distributed training, you can further protect data that is transmitted
between instances. This can help you to comply with regulatory requirements. To do this, use inter-
container traffic encryption.

Protecting Data in Transit with Encryption 5670

https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/compliance/fips/

Amazon SageMaker Developer Guide

Note

For use cases in the healthcare sector, the best practice for security is to encrypt
communication between the nodes.

Enabling inter-container traffic encryption can increase training time, especially if you are using
distributed deep learning algorithms. Enabling inter-container traffic encryption doesn't affect
training jobs with a single compute instance. However, for training jobs with several compute
instances, the effect on training time depends on the amount of communication between compute
instances. For affected algorithms, adding this additional level of security also increases cost. The
training time for most SageMaker built-in algorithms, such as XGBoost, DeepAR, and linear learner,
typically aren't affected.

You can enable inter-container traffic encryption for training jobs or hyperparameter tuning jobs.
You can use SageMaker APIs or console to enable inter-container traffic encryption.

For information about running training jobs in a private VPC, see Give SageMaker Training Jobs
Access to Resources in Your Amazon VPC.

Enable Inter-container Traffic Encryption (API)

Before enabling inter-container traffic encryption on training or hyperparameter tuning jobs with
APIs, add inbound and outbound rules to your private VPC's security group.

To enable inter-container traffic encryption (API)

1. Add the following inbound and outbound rules in the security group for your private VPC:

Protocol Port Range Source

UDP 500 Self Security Group ID

ESP 50 N/A Self Security Group ID

2. When you send a request to the CreateTrainingJob or
CreateHyperParameterTuningJob API, specify True for the
EnableInterContainerTrafficEncryption parameter.

Protecting Data in Transit with Encryption 5671

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

Note

For the ESP 50 protocol, the AWS Security Group Console might display the port range as
"All". However, Amazon EC2 ignores the specified port range because it is not applicable for
the ESP 50 IP protocol.

Enable Inter-container Traffic Encryption (Console)

Enable Inter-container Traffic Encryption in a Training Job

To enable inter-container traffic encryption in a training job

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Training, then choose Training jobs.

3. Choose Create training job.

4. Under Network, choose a VPC. You can use the default VPC or one that you have created.

5. Choose Enable inter-container traffic encryption.

After you enable inter-container traffic encryption, finish creating the training job. For more
information, see Step 4: Train a Model.

Enable Inter-container Traffic Encryption in a Hyperparameter Tuning Job

To enable inter-container traffic encryption in a hyperparameter tuning job

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. In the navigation pane, choose Training, then choose Hyperparameter tuning jobs.

3. Choose Create hyperparameter tuning job.

4. Under Network, choose a VPC. You can use the default VPC or one that you created.

5. Choose Enable inter-container traffic encryption.

After enabling inter-container traffic encryption, finish creating the hyperparameter tuning job. For
more information, see Configure and Launch a Hyperparameter Tuning Job.

Protecting Data in Transit with Encryption 5672

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

Key Management

Customers can specify AWS KMS keys, including bring your own keys (BYOK), to use for envelope
encryption with Amazon S3 input/output buckets and machine learning (ML) Amazon EBS
volumes. ML volumes for notebook instances and for processing, training, and hosted model
Docker containers can be optionally encrypted by using AWS KMS customer-owned keys. All
instance OS volumes are encrypted with an AWS-managed AWS KMS key.

Note

Certain Nitro-based instances include local storage, dependent on the instance type. Local
storage volumes are encrypted using a hardware module on the instance. You can't request
a VolumeKmsKeyId when using an instance type with local storage.
For a list of instance types that support local instance storage, see Instance Store Volumes.
For more information about local instance storage encryption, see SSD Instance Store
Volumes.
For more information about storage volumes on nitro-based instances, see Amazon EBS
and NVMe on Linux Instances.

For information about AWS KMS keys see What is AWS Key Management Service? in the AWS Key
Management Service Developer Guide.

Internetwork Traffic Privacy

This topic describes how Amazon SageMaker secures connections from the service to other
locations.

Internetwork communications support TLS 1.2 encryption between all components and clients. We
recommend TLS 1.3.

Instances can be connected to Customer VPC, providing access to S3 VPC endpoints or customer
repositories. Internet egress can be managed through this interface by the customer if service
platform internet egress is disabled for notebooks. For training and hosting, egress through the
service platform is not available when connected to the customer's VPC.

By default, API calls made to published endpoints traverse the public network to the request
router. SageMaker supports Amazon Virtual Private Cloud interface endpoints powered by AWS

Key Management 5673

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nvme-ebs-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nvme-ebs-volumes.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon SageMaker Developer Guide

PrivateLink for private connectivity between the customer's VPC and the request router to access
hosted model endpoints. For information about Amazon VPC, see Connect to SageMaker Within
your VPC

Identity and Access Management for Amazon SageMaker

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use SageMaker resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with Identities

• Managing Access Using Policies

• How Amazon SageMaker Works with IAM

• Amazon SageMaker Identity-Based Policy Examples

• Cross-Service Confused Deputy Prevention

• SageMaker Roles

• Amazon SageMaker Role Manager

• Access control for notebooks

• Amazon SageMaker API Permissions: Actions, Permissions, and Resources Reference

• AWS Managed Policies for Amazon SageMaker

• Troubleshooting Amazon SageMaker Identity and Access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in SageMaker.

Service user – If you use the SageMaker service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more SageMaker features to
do your work, you might need additional permissions. Understanding how access is managed can

Identity and Access Management 5674

Amazon SageMaker Developer Guide

help you request the right permissions from your administrator. If you cannot access a feature in
SageMaker, see Troubleshooting Amazon SageMaker Identity and Access.

Service administrator – If you're in charge of SageMaker resources at your company, you probably
have full access to SageMaker. It's your job to determine which SageMaker features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with SageMaker,
see How Amazon SageMaker Works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to SageMaker. To view example SageMaker identity-based
policies that you can use in IAM, see Amazon SageMaker Identity-Based Policy Examples.

Authenticating with Identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the

Authenticating with Identities 5675

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html

Amazon SageMaker Developer Guide

AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM Users and Groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier

Authenticating with Identities 5676

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

Amazon SageMaker Developer Guide

to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM Roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

Authenticating with Identities 5677

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon SageMaker Developer Guide

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing Access Using Policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Managing Access Using Policies 5678

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon SageMaker Developer Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-Based Policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-Based Policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Managing Access Using Policies 5679

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon SageMaker Developer Guide

Access Control Lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other Policy Types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing Access Using Policies 5680

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon SageMaker Developer Guide

Multiple Policy Types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon SageMaker Works with IAM

Before you use IAM to manage access to SageMaker, you should understand what IAM features
are available to use with SageMaker. To get a high-level view of how SageMaker and other AWS
services work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Topics

• SageMaker Identity-Based Policies

SageMaker Identity-Based Policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. SageMaker supports specific actions,
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see
IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in SageMaker use the following prefix before the action: sagemaker:. For
example, to grant someone permission to run a SageMaker training job with the SageMaker
CreateTrainingJob API operation, you include the sagemaker:CreateTrainingJob action in

How Amazon SageMaker Works with IAM 5681

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon SageMaker Developer Guide

their policy. Policy statements must include either an Action or NotAction element. SageMaker
defines its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "sagemaker:action1",
 "sagemaker:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "sagemaker:Describe*"

To see a list of SageMaker actions, see Actions, resources, and condition keys for Amazon
SageMaker in the Service Authorization Reference.

Resources

SageMaker does not support specifying resource ARNs in a policy.

Condition Keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

How Amazon SageMaker Works with IAM 5682

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html

Amazon SageMaker Developer Guide

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

SageMaker defines its own set of condition keys and also supports using some global condition
keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User
Guide.

SageMaker supports a number of service-specific condition keys that you can use for fine-grained
access control for the following operations:

• CreateProcessingJob

• CreateTrainingJob

• CreateModel

• CreateEndpointConfig

• CreateTransformJob

• CreateHyperParameterTuningJob

• CreateLabelingJob

• CreateNotebookInstance

• UpdateNotebookInstance

To see a list of SageMaker condition keys, see Condition keys for Amazon SageMaker in the IAM
User Guide. To learn with which actions and resources you can use a condition key, see Actions
defined by Amazon SageMaker.

For examples of using SageMaker condition keys, see the following: Control Creation of SageMaker
Resources with Condition Keys.

Examples

To view examples of SageMaker identity-based policies, see Amazon SageMaker Identity-Based
Policy Examples.

SageMaker Resource-Based Policies

SageMaker does not support resource-based policies.

How Amazon SageMaker Works with IAM 5683

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateNotebookInstance.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html#amazonsagemaker-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html#amazonsagemaker-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsagemaker.html#amazonsagemaker-actions-as-permissions

Amazon SageMaker Developer Guide

Authorization Based on SageMaker Tags

You can attach tags to SageMaker resources or pass tags in a request to SageMaker. To control
access based on tags, you provide tag information in the condition element of a policy using
the sagemaker:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. For more information about tagging SageMaker resources, see Control Access to
SageMaker Resources by Using Tags.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Control Access to SageMaker Resources by Using Tags.

SageMaker IAM Roles

An IAM role is an entity within your AWS account that has specific permissions.

Using Temporary Credentials with SageMaker

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

SageMaker supports using temporary credentials.

Service-Linked Roles

SageMaker partially supports service-linked roles. Service-linked roles are currently available for
SageMaker Studio Classic and SageMaker training jobs.

Service Roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

SageMaker supports service roles.

Choosing an IAM Role in SageMaker

When you create a notebook instance, processing job, training job, hosted endpoint, or batch
transform job resource in SageMaker, you must choose a role to allow SageMaker to access
SageMaker on your behalf. If you have previously created a service role or service-linked role, then
SageMaker provides you with a list of roles to choose from. It's important to choose a role that

How Amazon SageMaker Works with IAM 5684

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role

Amazon SageMaker Developer Guide

allows access to the AWS operations and resources you need. For more information, see SageMaker
Roles.

Amazon SageMaker Identity-Based Policy Examples

By default, IAM users and roles don't have permission to create or modify SageMaker resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM
administrator must create IAM policies that grant users and roles permission to perform specific
API operations on the specified resources they need. The administrator must then attach those
policies to the IAM users or groups that require those permissions. To learn how to attach policies
to an IAM user or group, see Adding and Removing IAM Identity Permissions in the IAM User Guide.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy Best Practices

• Using the SageMaker Console

• Allow Users to View Their Own Permissions

• Control Creation of SageMaker Resources with Condition Keys

• Control Access to the SageMaker API by Using Identity-based Policies

• Limit Access to SageMaker API and Runtime Calls by IP Address

• Limit Access to a Notebook Instance by IP Address

• Control Access to SageMaker Resources by Using Tags

• Provide Permissions for Tagging SageMaker Resources Upon Creation

• Limit Access to Searchable Resources with Visibility Conditions

Policy Best Practices

Identity-based policies determine whether someone can create, access, or delete SageMaker
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We

Identity-Based Policy Examples 5685

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Amazon SageMaker Developer Guide

recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the SageMaker Console

To access the Amazon SageMaker console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the SageMaker resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

To ensure that those entities can still use the SageMaker console, also attach the following AWS
managed policy to the entities. For more information, see Adding Permissions to a User in the IAM
User Guide:

Identity-Based Policy Examples 5686

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon SageMaker Developer Guide

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Topics

• Permissions Required to Use the Amazon SageMaker Console

• Permissions Required to Use the Amazon SageMaker Ground Truth Console

• Permissions Required to Use the Amazon Augmented AI (Preview) Console

Permissions Required to Use the Amazon SageMaker Console

The permissions reference table lists the Amazon SageMaker API operations and shows the
required permissions for each operation. For more information about Amazon SageMaker
API operations, see Amazon SageMaker API Permissions: Actions, Permissions, and Resources
Reference.

To use the Amazon SageMaker console, you need to grant permissions for additional actions.
Specifically, the console needs permissions that allow the ec2 actions to display subnets, VPCs, and
security groups. Optionally, the console needs permission to create execution roles for tasks such as
CreateNotebook, CreateTrainingJob, and CreateModel. Grant these permissions with the
following permissions policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SageMakerApis",
 "Effect": "Allow",
 "Action": [
 "sagemaker:*"
],
 "Resource": "*"
 },
 {
 "Sid": "VpcConfigurationForCreateForms",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"

Identity-Based Policy Examples 5687

Amazon SageMaker Developer Guide

],
 "Resource": "*"
 },
 {
 "Sid":"KmsKeysForCreateForms",
 "Effect":"Allow",
 "Action":[
 "kms:DescribeKey",
 "kms:ListAliases"
],
 "Resource":"*"
 },
 {
 "Sid": "AccessAwsMarketplaceSubscriptions",
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:ViewSubscriptions"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:BatchGetRepositories",
 "codecommit:CreateRepository",
 "codecommit:GetRepository",
 "codecommit:ListRepositories",
 "codecommit:ListBranches",
 "secretsmanager:CreateSecret",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 },
 {
 "Sid":"ListAndCreateExecutionRoles",
 "Effect":"Allow",
 "Action":[
 "iam:ListRoles",
 "iam:CreateRole",
 "iam:CreatePolicy",
 "iam:AttachRolePolicy"
],
 "Resource":"*"

Identity-Based Policy Examples 5688

Amazon SageMaker Developer Guide

 },
 {
 "Sid": "DescribeECRMetaData",
 "Effect": "Allow",
 "Action": [
 "ecr:Describe*"
],
 "Resource": "*"
 },
 {
 "Sid": "PassRoleForExecutionRoles",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

Permissions Required to Use the Amazon SageMaker Ground Truth Console

To use the Amazon SageMaker Ground Truth console, you need to grant permissions for
additional resources. Specifically, the console needs permissions for the AWS Marketplace to view
subscriptions, Amazon Cognito operations to manage your private workforce, Amazon S3 actions
for access to your input and output files, and AWS Lambda actions to list and invoke functions.
Grant these permissions with the following permissions policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GroundTruthConsole",
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:DescribeListings",
 "aws-marketplace:ViewSubscriptions",

Identity-Based Policy Examples 5689

Amazon SageMaker Developer Guide

 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:AdminDeleteUser",
 "cognito-idp:AdminDisableUser",
 "cognito-idp:AdminEnableUser",
 "cognito-idp:AdminRemoveUserFromGroup",
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:ListGroups",
 "cognito-idp:ListIdentityProviders",
 "cognito-idp:ListUsers",
 "cognito-idp:ListUsersInGroup",
 "cognito-idp:ListUserPoolClients",
 "cognito-idp:ListUserPools",
 "cognito-idp:UpdateUserPool",
 "cognito-idp:UpdateUserPoolClient",

 "groundtruthlabeling:DescribeConsoleJob",
 "groundtruthlabeling:ListDatasetObjects",
 "groundtruthlabeling:RunFilterOrSampleManifestJob",
 "groundtruthlabeling:RunGenerateManifestByCrawlingJob",

 "lambda:InvokeFunction",
 "lambda:ListFunctions",

 "s3:GetObject",
 "s3:PutObject",
 "s3:SelectObjectContent"
],
 "Resource": "*"
 }
]
}

Permissions Required to Use the Amazon Augmented AI (Preview) Console

To use the Augmented AI console, you need to grant permissions for additional resources. Grant
these permissions with the following permissions policy:

Identity-Based Policy Examples 5690

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:*Algorithm",
 "sagemaker:*Algorithms",
 "sagemaker:*App",
 "sagemaker:*Apps",
 "sagemaker:*AutoMLJob",
 "sagemaker:*AutoMLJobs",
 "sagemaker:*CodeRepositories",
 "sagemaker:*CodeRepository",
 "sagemaker:*CompilationJob",
 "sagemaker:*CompilationJobs",
 "sagemaker:*Endpoint",
 "sagemaker:*EndpointConfig",
 "sagemaker:*EndpointConfigs",
 "sagemaker:*EndpointWeightsAndCapacities",
 "sagemaker:*Endpoints",
 "sagemaker:*Environment",
 "sagemaker:*EnvironmentVersion",
 "sagemaker:*EnvironmentVersions",
 "sagemaker:*Environments",
 "sagemaker:*Experiment",
 "sagemaker:*Experiments",
 "sagemaker:*FlowDefinitions",
 "sagemaker:*HumanLoop",
 "sagemaker:*HumanLoops",
 "sagemaker:*HumanTaskUi",
 "sagemaker:*HumanTaskUis",
 "sagemaker:*HyperParameterTuningJob",
 "sagemaker:*HyperParameterTuningJobs",
 "sagemaker:*LabelingJob",
 "sagemaker:*LabelingJobs",
 "sagemaker:*Metrics",
 "sagemaker:*Model",
 "sagemaker:*ModelPackage",
 "sagemaker:*ModelPackages",
 "sagemaker:*Models",
 "sagemaker:*MonitoringExecutions",
 "sagemaker:*MonitoringSchedule",

Identity-Based Policy Examples 5691

Amazon SageMaker Developer Guide

 "sagemaker:*MonitoringSchedules",
 "sagemaker:*NotebookInstance",
 "sagemaker:*NotebookInstanceLifecycleConfig",
 "sagemaker:*NotebookInstanceLifecycleConfigs",
 "sagemaker:*NotebookInstanceUrl",
 "sagemaker:*NotebookInstances",
 "sagemaker:*ProcessingJob",
 "sagemaker:*ProcessingJobs",
 "sagemaker:*RenderUiTemplate",
 "sagemaker:*Search",
 "sagemaker:*SearchSuggestions",
 "sagemaker:*Tags",
 "sagemaker:*TrainingJob",
 "sagemaker:*TrainingJobs",
 "sagemaker:*TransformJob",
 "sagemaker:*TransformJobs",
 "sagemaker:*Trial",
 "sagemaker:*TrialComponent",
 "sagemaker:*TrialComponents",
 "sagemaker:*Trials",
 "sagemaker:*Workteam",
 "sagemaker:*Workteams"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:*FlowDefinition"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIfExists": {
 "sagemaker:WorkteamType": [
 "private-crowd",
 "vendor-crowd"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:DeleteScalingPolicy",

Identity-Based Policy Examples 5692

Amazon SageMaker Developer Guide

 "application-autoscaling:DeleteScheduledAction",
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:DescribeScalableTargets",
 "application-autoscaling:DescribeScalingActivities",
 "application-autoscaling:DescribeScalingPolicies",
 "application-autoscaling:DescribeScheduledActions",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:PutScheduledAction",
 "application-autoscaling:RegisterScalableTarget",
 "aws-marketplace:ViewSubscriptions",
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:GetMetricData",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:PutMetricData",
 "codecommit:BatchGetRepositories",
 "codecommit:CreateRepository",
 "codecommit:GetRepository",
 "codecommit:ListBranches",
 "codecommit:ListRepositories",
 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:AdminDeleteUser",
 "cognito-idp:AdminDisableUser",
 "cognito-idp:AdminEnableUser",
 "cognito-idp:AdminRemoveUserFromGroup",
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:ListGroups",
 "cognito-idp:ListIdentityProviders",
 "cognito-idp:ListUserPoolClients",
 "cognito-idp:ListUserPools",
 "cognito-idp:ListUsers",
 "cognito-idp:ListUsersInGroup",
 "cognito-idp:UpdateUserPool",
 "cognito-idp:UpdateUserPoolClient",
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",

Identity-Based Policy Examples 5693

Amazon SageMaker Developer Guide

 "ec2:CreateVpcEndpoint",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeVpcs",
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:CreateRepository",
 "ecr:Describe*",
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer",
 "elastic-inference:Connect",
 "elasticfilesystem:DescribeFileSystems",
 "elasticfilesystem:DescribeMountTargets",
 "fsx:DescribeFileSystems",
 "glue:CreateJob",
 "glue:DeleteJob",
 "glue:GetJob",
 "glue:GetJobRun",
 "glue:GetJobRuns",
 "glue:GetJobs",
 "glue:ResetJobBookmark",
 "glue:StartJobRun",
 "glue:UpdateJob",
 "groundtruthlabeling:*",
 "iam:ListRoles",
 "kms:DescribeKey",
 "kms:ListAliases",
 "lambda:ListFunctions",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:GetLogEvents",
 "logs:PutLogEvents",
 "sns:ListTopics"
],
 "Resource": "*"
 },

Identity-Based Policy Examples 5694

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:DescribeResourcePolicies",
 "logs:GetLogDelivery",
 "logs:ListLogDeliveries",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:SetRepositoryPolicy",
 "ecr:CompleteLayerUpload",
 "ecr:BatchDeleteImage",
 "ecr:UploadLayerPart",
 "ecr:DeleteRepositoryPolicy",
 "ecr:InitiateLayerUpload",
 "ecr:DeleteRepository",
 "ecr:PutImage"
],
 "Resource": "arn:aws:ecr:*:*:repository/*sagemaker*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:GitPull",
 "codecommit:GitPush"
],
 "Resource": [
 "arn:aws:codecommit:*:*:*sagemaker*",
 "arn:aws:codecommit:*:*:*SageMaker*",
 "arn:aws:codecommit:*:*:*Sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:ListSecrets"
],

Identity-Based Policy Examples 5695

Amazon SageMaker Developer Guide

 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:CreateSecret"
],
 "Resource": [
 "arn:aws:secretsmanager:*:*:secret:AmazonSageMaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "secretsmanager:ResourceTag/SageMaker": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "robomaker:CreateSimulationApplication",
 "robomaker:DescribeSimulationApplication",
 "robomaker:DeleteSimulationApplication"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "robomaker:CreateSimulationJob",
 "robomaker:DescribeSimulationJob",
 "robomaker:CancelSimulationJob"
],

Identity-Based Policy Examples 5696

Amazon SageMaker Developer Guide

 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:AbortMultipartUpload",
 "s3:GetBucketCors",
 "s3:PutBucketCors"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*",
 "arn:aws:s3:::*aws-glue*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "s3:ExistingObjectTag/SageMaker": "true"
 }
 }
 },
 {

Identity-Based Policy Examples 5697

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:*SageMaker*",
 "arn:aws:lambda:*:*:function:*sagemaker*",
 "arn:aws:lambda:*:*:function:*Sagemaker*",
 "arn:aws:lambda:*:*:function:*LabelingFunction*"
]
 },
 {
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/sagemaker.application-
autoscaling.amazonaws.com/AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "sagemaker.application-
autoscaling.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "robomaker.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Subscribe",
 "sns:CreateTopic"
],
 "Resource": [
 "arn:aws:sns:*:*:*SageMaker*",
 "arn:aws:sns:*:*:*Sagemaker*",
 "arn:aws:sns:*:*:*sagemaker*"
]

Identity-Based Policy Examples 5698

Amazon SageMaker Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "sagemaker.amazonaws.com",
 "glue.amazonaws.com",
 "robomaker.amazonaws.com",
 "states.amazonaws.com"
]
 }
 }
 }
]
}

Allow Users to View Their Own Permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {

Identity-Based Policy Examples 5699

Amazon SageMaker Developer Guide

 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Control Creation of SageMaker Resources with Condition Keys

Control fine-grained access to allow the creation of SageMaker resources by using SageMaker-
specific condition keys. For information about using condition keys in IAM policies, see IAM JSON
Policy Elements: Condition in the IAM User Guide.

The condition keys, along with related API actions, and links to relevant documentation are listed
in Condition Keys for SageMaker in the IAM User Guide.

The following examples show how to use the SageMaker condition keys to control access.

Topics

• Control Access to SageMaker Resources by Using File System Condition Keys

• Restrict Training to a Specific VPC

• Restrict Access to Workforce Types for Ground Truth Labeling Jobs and Amazon A2I Human
Review Workflows

• Enforce Encryption of Input Data

• Enforce Encryption of Notebook Instance Storage Volume

• Enforce Network Isolation for Training Jobs

• Enforce a Specific Instance Type for Training Jobs

• Enforce a Specific EI Accelerator for Training Jobs

• Enforce Disabling Internet Access and Root Access for Creating Notebook Instances

Identity-Based Policy Examples 5700

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-policy-keys

Amazon SageMaker Developer Guide

Control Access to SageMaker Resources by Using File System Condition Keys

SageMaker training provides a secure infrastructure for the training algorithm to run in, but
for some cases you may want increased defense in depth. For example, you minimize the risk
of running untrusted code in your algorithm, or you have specific security mandates in your
organization. For these scenarios, you can use the service-specific condition keys in the Condition
element of an IAM policy to scope down the user to specific file systems, directories, access modes
(read-write, read-only) and security groups.

Topics

• Restrict an IAM User to Specific Directories and Access Modes

• Restrict a User to a Specific File System

Restrict an IAM User to Specific Directories and Access Modes

The policy below restricts a user to the /sagemaker/xgboost-dm/train and /sagemaker/
xgboost-dm/validation directories of an EFS file system to ro (read-only) AccessMode:

Note

When a directory is allowed, all of its subdirectories are also accessible by the training
algorithm. POSIX permissions are ignored.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessToElasticFileSystem",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:FileSystemId": "fs-12345678",
 "sagemaker:FileSystemAccessMode": "ro",

Identity-Based Policy Examples 5701

Amazon SageMaker Developer Guide

 "sagemaker:FileSystemType": "EFS",
 "sagemaker:FileSystemDirectoryPath": "/sagemaker/xgboost-dm/train"
 }
 }
 },
 {
 "Sid": "AccessToElasticFileSystemValidation",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:FileSystemId": "fs-12345678",
 "sagemaker:FileSystemAccessMode": "ro",
 "sagemaker:FileSystemType": "EFS",
 "sagemaker:FileSystemDirectoryPath": "/sagemaker/xgboost-dm/
validation"
 }
 }
 }
]
}

Restrict a User to a Specific File System

To prevent a malicious algorithm using a user space client from accessing any file system directly
in your account, you can restrict networking traffic by allowing ingress from a specific security
group. In the following example, the user can only use the specified security group to access the
file system:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessToLustreFileSystem",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],

Identity-Based Policy Examples 5702

Amazon SageMaker Developer Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:FileSystemId": "fs-12345678",
 "sagemaker:FileSystemAccessMode": "ro",
 "sagemaker:FileSystemType": "FSxLustre",
 "sagemaker:FileSystemDirectoryPath": "/fsx/sagemaker/xgboost/train"
 },
 "ForAllValues:StringEquals": {
 "sagemaker:VpcSecurityGroupIds": [
 "sg-12345678"
]
 }
 }
 }
]
}

Although the above example can restrict an algorithm to a specific file system, it does not prevent
an algorithm from accessing any directory within that file system using the user space client. To
mitigate this, you can:

• Ensure that the file system only contains data that you trust your users to access

• Create an IAM role that restricts your users to launching training jobs with algorithms from
approved ECR repositories

For more information on how to use roles with SageMaker, see SageMaker Roles.

Restrict Training to a Specific VPC

Restrict an AWS user to creating training jobs from within a Amazon VPC. When a training job is
created within a VPC, you can use VPC flow logs to monitor all traffic to and from the training
cluster. For information about using VPC flow logs, see VPC Flow Logs in the Amazon Virtual
Private Cloud User Guide.

The following policy enforces that a training job is created by a user calling CreateTrainingJob
from within a VPC:

{
 "Version": "2012-10-17",
 "Statement": [

Identity-Based Policy Examples 5703

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

 {
 "Sid": "AllowFromVpc",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "sagemaker:VpcSubnets": ["subnet-a1234"],
 "sagemaker:VpcSecurityGroupIds": ["sg12345", "sg-67890"]
 },
 "Null": {
 "sagemaker:VpcSubnets": "false",
 "sagemaker:VpcSecurityGroupIds": "false"
 }
 }
 }

]
}

Restrict Access to Workforce Types for Ground Truth Labeling Jobs and Amazon A2I Human
Review Workflows

Amazon SageMaker Ground Truth and Amazon Augmented AI work teams fall into one of
three workforce types: public (with Amazon Mechanical Turk), private, and vendor. To restrict
user access to a specific work team using one of these types or the work team ARN, use
the sagemaker:WorkteamType and/or the sagemaker:WorkteamArn condition keys.
For the sagemaker:WorkteamType condition key, use string condition operators. For the
sagemaker:WorkteamArn condition key, use Amazon Resource Name (ARN) condition operators.
If the user attempts to create a labeling job with a restricted work team, SageMaker returns an
access denied error.

The policies below demonstrate different ways to use the sagemaker:WorkteamType and
sagemaker:WorkteamArn condition keys with appropriate condition operators and valid
condition values.

The following example uses the sagemaker:WorkteamType condition key with the
StringEquals condition operator to restrict access to a public work team. It accepts condition

Identity-Based Policy Examples 5704

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN

Amazon SageMaker Developer Guide

values in the following format: workforcetype-crowd, where workforcetype can equal
public, private, or vendor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RestrictWorkteamType",
 "Effect": "Deny",
 "Action": "sagemaker:CreateLabelingJob",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:WorkteamType": "public-crowd"
 }
 }
 }
]
}

The following policies show how to restrict access to a public work team using the
sagemaker:WorkteamArn condition key. The first shows how to use it with a valid IAM regex-
variant of the work team ARN and the ArnLike condition operator. The second shows how to use
it with the ArnEquals condition operator and the work team ARN.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RestrictWorkteamType",
 "Effect": "Deny",
 "Action": "sagemaker:CreateLabelingJob",
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "sagemaker:WorkteamArn": "arn:aws:sagemaker:*:*:workteam/public-
crowd/*"
 }
 }
 }
]
}

Identity-Based Policy Examples 5705

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RestrictWorkteamType",
 "Effect": "Deny",
 "Action": "sagemaker:CreateLabelingJob",
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "sagemaker:WorkteamArn": "arn:aws:sagemaker:us-
west-2:394669845002:workteam/public-crowd/default"
 }
 }
 }
]
}

Enforce Encryption of Input Data

The following policy restricts a user to specify a AWS KMS key to encrypt input data when creating
training, hyperparameter tuning, and labeling jobs by using the sagemaker:VolumeKmsKey
condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceEncryption",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob",
 "sagemaker:CreateLabelingJob",
 "sagemaker:CreateFlowDefiniton"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "sagemaker:VolumeKmsKey": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }

Identity-Based Policy Examples 5706

Amazon SageMaker Developer Guide

 }
 }

]
}

Enforce Encryption of Notebook Instance Storage Volume

The following policy restricts a user to specify an AWS KMS key to encrypt the attached storage
volume when creating or updating a notebook instance by using the sagemaker:VolumeKmsKey
condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceEncryption",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "sagemaker:VolumeKmsKey": "*key/volume-kms-key-12345"
 }
 }
 }

]
}

Enforce Network Isolation for Training Jobs

The following policy restricts a user to enable network isolation when creating training jobs by
using the sagemaker:NetworkIsolation condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceIsolation",

Identity-Based Policy Examples 5707

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "sagemaker:NetworkIsolation": "true"
 }
 }
 }
]
}

Enforce a Specific Instance Type for Training Jobs

The following policy restricts a user to use a specific instance type when creating training jobs by
using the sagemaker:InstanceTypes condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceInstanceType",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateHyperParameterTuningJob"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringLike": {
 "sagemaker:InstanceTypes": ["ml.c5.*"]
 }
 }
 }

]
}

Identity-Based Policy Examples 5708

Amazon SageMaker Developer Guide

Enforce a Specific EI Accelerator for Training Jobs

The following policy restricts a user to use a specific elastic inference (EI) accelerator, if an
accelerator is provided, when creating or updating notebook instances and when creating endpoint
configurations by using the sagemaker:AcceleratorTypes condition key:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceAcceleratorType",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateNotebookInstance",
 "sagemaker:UpdateNotebookInstance",
 "sagemaker:CreateEndpointConfig"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "sagemaker:AcceleratorTypes": ["ml.eia1.medium"]
 }
 }
 }

]
}

Enforce Disabling Internet Access and Root Access for Creating Notebook Instances

You can disable both internet access and root access to notebook instances to help make them
more secure. For information about controlling root access to a notebook instance, see Control root
access to a SageMaker notebook instance. for information about disabling internet access for a
notebook instance, see Connect a Notebook Instance in a VPC to External Resources.

The following policy requires a user to disable network access when creating instance, and disable
root access when creating or updating a notebook instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-Based Policy Examples 5709

Amazon SageMaker Developer Guide

 "Sid": "LockDownCreateNotebookInstance",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:DirectInternetAccess": "Disabled",
 "sagemaker:RootAccess": "Disabled"
 },
 "Null": {
 "sagemaker:VpcSubnets": "false",
 "sagemaker:VpcSecurityGroupIds": "false"
 }
 }
 },
 {
 "Sid": "LockDownUpdateNotebookInstance",
 "Effect": "Allow",
 "Action": [
 "sagemaker:UpdateNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:RootAccess": "Disabled"
 }
 }
 }
]
}

Control Access to the SageMaker API by Using Identity-based Policies

To control access to SageMaker API calls and calls to SageMaker hosted endpoints, use identity-
based IAM policies.

Topics

• Restrict Access to SageMaker API and Runtime to Calls from Within Your VPC

Identity-Based Policy Examples 5710

Amazon SageMaker Developer Guide

Restrict Access to SageMaker API and Runtime to Calls from Within Your VPC

If you set up an interface endpoint in your VPC, individuals outside the VPC can still connect to the
SageMaker API and runtime over the internet unless you attach an IAM policy that restricts access
to calls coming from within the VPC to all users and groups that have access to your SageMaker
resources. For information about creating a VPC interface endpoint for the SageMaker API and
runtime, see Connect to SageMaker Within your VPC.

Important

If you apply an IAM policy similar to one of the following, users can't access the specified
SageMaker APIs through the console.

To restrict access to only connections made from within your VPC, create an AWS Identity and
Access Management policy that restricts access to only calls that come from within your VPC. Then
add that policy to every AWS Identity and Access Management user, group, or role used to access
the SageMaker API or runtime.

Note

This policy allows connections only to callers within a subnet where you created an
interface endpoint.

{
 "Id": "api-example-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableAPIAccess",
 "Effect": "Allow",
 "Action": [
 "sagemaker:*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceVpc": "vpc-111bbaaa"
 }

Identity-Based Policy Examples 5711

Amazon SageMaker Developer Guide

 }
 }
]
}

If you want to restrict access to the API to only calls made using the interface endpoint, use the
aws:SourceVpce condition key instead of aws:SourceVpc:

{
 "Id": "api-example-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableAPIAccess",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:sourceVpce": [
 "vpce-111bbccc",
 "vpce-111bbddd"
]
 }
 }
 }
]
}

Limit Access to SageMaker API and Runtime Calls by IP Address

To allow access to SageMaker API calls and runtime invocations only from IP addresses in a list
that you specify, attach an IAM policy that denies access to the API unless the call comes from
an IP address in the list to every AWS Identity and Access Management user, group, or role used
to access the API or runtime. For information about creating IAM policies, see Creating IAM
Policies in the AWS Identity and Access Management User Guide. To specify the list of IP addresses
that you want to have access to the API call, use the IpAddress condition operator and the
aws:SourceIP condition context key. For information about IAM condition operators, see IAM

Identity-Based Policy Examples 5712

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon SageMaker Developer Guide

JSON Policy Elements: Condition Operators in the AWS Identity and Access Management User Guide.
For information about IAM condition context keys, see AWS Global Condition Context Keys.

For example, the following policy allows access to the CreateTrainingJob only from IP
addresses in the ranges 192.0.2.0-192.0.2.255 and 203.0.113.0-203.0.113.255:

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": "sagemaker:CreateTrainingJob",
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 }
 }
]
}

Limit Access to a Notebook Instance by IP Address

To allow access to a notebook instance only from IP addresses in a list that you specify, attach
an IAM policy that denies access to CreatePresignedNotebookInstanceUrl unless the call
comes from an IP address in the list to every AWS Identity and Access Management user, group,
or role used to access the notebook instance. For information about creating IAM policies, see
Creating IAM Policies in the AWS Identity and Access Management User Guide. To specify the list of
IP addresses that you want to have access to the notebook instance, use the IpAddress condition
operator and the aws:SourceIP condition context key. For information about IAM condition
operators, see IAM JSON Policy Elements: Condition Operators in the AWS Identity and Access
Management User Guide. For information about IAM condition context keys, see AWS Global
Condition Context Keys.

For example, the following policy allows access to a notebook instance only from IP addresses in
the ranges 192.0.2.0-192.0.2.255 and 203.0.113.0-203.0.113.255:

Identity-Based Policy Examples 5713

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": "sagemaker:CreatePresignedNotebookInstanceUrl",
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 }
 }
]
}

The policy restricts access to both the call to CreatePresignedNotebookInstanceUrl and to
the URL that the call returns. The policy also restricts access to opening a notebook instance in the
console and is enforced for every HTTP request and WebSocket frame that attempts to connect to
the notebook instance.

Note

Using this method to filter by IP address is incompatible when connecting to SageMaker
through a VPC interface endpoint.. For information about restricting access to a notebook
instance when connecting through a VPC interface endpoint, see Connect to a Notebook
Instance Through a VPC Interface Endpoint.

Control Access to SageMaker Resources by Using Tags

Specify tags within an IAM policy to control access to groups of SageMaker resources. Use tags
to implement attribute based access control (ABAC). Using tags helps you partition access to
resources to specific groups of users. You can have one team with access to one group of resources
and a different team with access to another set of resources. You can provide ResourceTag
conditions in IAM policies to provide access for each group.

Identity-Based Policy Examples 5714

https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html

Amazon SageMaker Developer Guide

Note

Tag-based policies don't work to restrict the following API calls:

• DeleteImageVersion

• DescribeImageVersion

• ListAlgorithms

• ListCodeRepositories

• ListCompilationJobs

• ListEndpointConfigs

• ListEndpoints

• ListFlowDefinitions

• ListHumanTaskUis

• ListHyperparameterTuningJobs

• ListLabelingJobs

• ListLabelingJobsForWorkteam

• ListModelPackages

• ListModels

• ListNotebookInstanceLifecycleConfigs

• ListNotebookInstances

• ListSubscribedWorkteams

• ListTags

• ListProcessingJobs

• ListTrainingJobs

• ListTrainingJobsForHyperParameterTuningJob

• ListTransformJobs

• ListWorkteams

• Search

A simple example can help you understand how you can use tags to partition resources. Suppose
that you've defined two different IAM groups, named DevTeam1 and DevTeam2, in your AWS
Identity-Based Policy Examples 5715

Amazon SageMaker Developer Guide

account. You've created 10 notebook instances as well. You're using 5 of the notebook instances
for one project. You're using the other 5 for a second project. You can provide DevTeam1 with
permissions to make API calls on the notebook instances that you're using for the first project. You
can provide DevTeam2 to make API calls on notebook instances used for the second project.

The following procedure provides a simple example that helps you understand the concept of
adding tags. You can use it to implement the solution described in the preceding paragraph.

To control access to API calls (example)

1. Add a tag with the key Project and value A to the notebook instances used for the first
project. For information about adding tags to SageMaker resources, see AddTags.

2. Add a tag with the key Project and value B to the notebook instances used for the second
project.

3. Create an IAM policy with a ResourceTag condition that denies access to the notebook
instances used for the second project, and attach that policy to DevTeam1. The following is an
example of a policy that denies all API calls on any notebook instance that has a tag with a key
of Project and a value of B:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sagemaker:*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "sagemaker:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:ResourceTag/Project": "B"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:AddTags",

Identity-Based Policy Examples 5716

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html

Amazon SageMaker Developer Guide

 "sagemaker:DeleteTags"
],
 "Resource": "*"
 }
]
}

For information about creating IAM policies and attaching them to identities, see Controlling
Access Using Policies in the AWS Identity and Access Management User Guide.

4. Create an IAM policy with a ResourceTag condition that denies access to the notebook
instances used for the first project, and attach that policy to DevTeam2. The following is an
example of a policy that denies all API calls on any notebook instance that has a tag with a key
of Project and a value of A:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sagemaker:*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "sagemaker:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:ResourceTag/Project": "A"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "sagemaker:AddTags",
 "sagemaker:DeleteTags"
],
 "Resource": "*"
 }
]

Identity-Based Policy Examples 5717

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html

Amazon SageMaker Developer Guide

}

Provide Permissions for Tagging SageMaker Resources Upon Creation

There are many Amazon SageMaker operations that let your users specify tags when you create a
resource. Use resource tags to implement attributed based access control (ABAC). Using tags helps
you partition access to resources to specific groups of users. You can have one team with access
to one group of resources and a different team with access to another set of resources. You can
provide ResourceTag conditions in IAM policies to provide access for each group.

You must give your users access to the permissions that they're using to create the
resource. For users that need to create a processing job, you must give them access to
sagemaker:CreateProcessingJob within the policy. If your users are tagging the resources
that they create, you must also give tagging permissions.

Important

You can only give your users permissions to add tags to resources that they create. They
can't add tags to resources that have already been created.
The following are operations where you can't give them resources to add tags:

• DeleteImageVersion

• DescribeImageVersion

• ListAlgorithms

• ListCodeRepositories

• ListCompilationJobs

• ListEndpointConfigs

• ListEndpoints

• ListFlowDefinitions

• ListHumanTaskUis

• ListHyperparameterTuningJobs

• ListLabelingJobs

• ListLabelingJobsForWorkteam

• ListModelPackages

• ListModels

Identity-Based Policy Examples 5718

Amazon SageMaker Developer Guide

• ListNotebookInstanceLifecycleConfigs

• ListNotebookInstances

• ListSubscribedWorkteams

• ListTags

• ListProcessingJobs

• ListTrainingJobs

• ListTrainingJobsForHyperParameterTuningJob

• ListTransformJobs

• ListWorkteams

• Search

You can control access to the operations that the user can tag or the tags that they can use. You
can specify permissions for the following use cases:

• Adding permissions to tag the resources created using any operation and permissions to use any
tag

• Adding permissions to tag the resources created using specific operations and permissions to use
any tag

• Adding permissions to tag the resources created using any operation and permissions to specific
tags

• Adding permissions to tag the resources created using specific operations and permissions to
specific tags

Permissions for any operation and any tag

Add the following statement to an IAM policy to grant your users permissions to add any tag for
any operation.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:Create*"

Identity-Based Policy Examples 5719

Amazon SageMaker Developer Guide

],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddTags"
],
 "Resource": "arn:aws:sagemaker:region:account:*/*",
 "Condition": {
 "Null": {
 "sagemaker:TaggingAction" : "false"
 }
 }
 }
]
}

Permissions for a specific operation with specific tags

The following statement gives the user permission to add the cc123 tag to resources created
using the CreateModel operation. You can modify the statement to suit your own needs and
add it to the IAM policy attached to the role of your users.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateModel"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/cost-center": ["cc123"]
 },
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": ["purpose"]
 }
 }
 },

Identity-Based Policy Examples 5720

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddTags"
],
 "Resource": "arn:aws:sagemaker:region:account:*/*",
 "Condition": {
 "Null": {
 "sagemaker:TaggingAction" : "false"
 }
 }
 }
]
}

Permissions for a specific operation and any tag

The following statement gives your users permissions to add any tag to resources created using
the CreateModel operation.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateModel"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddTags"
],
 "Resource": "arn:aws:sagemaker:region:account:model/*",
 "Condition": {
 "String": {
 "sagemaker:TaggingAction" : ["CreateModel"]
 }
 }
 }

Identity-Based Policy Examples 5721

Amazon SageMaker Developer Guide

]
}

Limit Access to Searchable Resources with Visibility Conditions

Use visibility conditions to limit the access of your users to specific tagged resources within an AWS
account. Your users can access only those resources for which they have permissions. When your
users are searching through their resources, they can limit the search results to specific resources.

You might want your users to only see and interact with the resources associated with specific
Amazon SageMaker Studio or Amazon SageMaker Studio Classic domains. You can use visibility
conditions to limit their access to a single domain or multiple domains.

{
 "Sid": "SageMakerApis",
 "Effect": "Allow",
 "Action": "sagemaker:Search",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:SearchVisibilityCondition/Tags.sagemaker:example-domain-arn/
EqualsIfExists": "arn:aws:sagemaker:AWS Region:111122223333:domain/example-domain-1",
 "sagemaker:SearchVisibilityCondition/Tags.sagemaker:example-domain-arn/
EqualsIfExists": "arn:aws:sagemaker:AWS Region:111122223333:domain/example-domain-2"
 }
 }
}

The general format of a visibility condition is "sagemaker:SearchVisibilityCondition/
Tags.key": "value". You can provided the key-value pair for any tagged resource.

{
 "MaxResults": number,
 "NextToken": "string",
 "Resource": "string", # Required Parameter
 "SearchExpression": {
 "Filters": [

Identity-Based Policy Examples 5722

Amazon SageMaker Developer Guide

 {
 "Name": "string",
 "Operator": "string",
 "Value": "string"
 }
],
 "NestedFilters": [
 {
 "Filters": [
 {
 "Name": "string",
 "Operator": "string",
 "Value": "string"
 }
],
 "NestedPropertyName": "string"
 }
],
 "Operator": "string",
 "SubExpressions": [
 "SearchExpression"
]
 },
 "IsCrossAccount": "string",
 "VisibilityConditions" : [List of conditions for visibility
 {"Key": "Tags.sagemaker:example-domain-arn", "Value": "arn:aws:sagemaker:AWS
 Region:111122223333:domain/example-domain-1"},
 {"Key": "Tags.sagemaker:example-domain-arn", "Value": "arn:aws:sagemaker:AWS
 Region:111122223333:domain/example-domain-2"}
]
],
 "SortBy": "string",
 "SortOrder": "string"
}

The visibility condition within uses the same "sagemaker:SearchVisibilityCondition/
Tags.key": "value" formatting specified in the policy. Your users can specify the key-value
pairs used for any tagged resource.

If a user includes the VisibilityConditions parameter in their Search request, but the access
policy that applies to that user doesn't contain any matching conditions keys that were specified in
VisibilityConditions, the Search request is still allowed and will run.

Identity-Based Policy Examples 5723

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html

Amazon SageMaker Developer Guide

If a VisibilityConditions parameter is not specified in the user's Search API request, but the
access policy that applies to that user contains condition keys related to VisibilityConditions,
that user's Search request is denied.

Cross-Service Confused Deputy Prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, the confused
deputy problem can arise due to cross-service impersonation. Cross-service impersonation
can occur when one service (the calling service) invokes another service (the called service) and
leverages the called service's elevated permissions to act on resources the calling service has no
authorization to access. To prevent unauthorized access through the confused deputy problem,
AWS provides tools to help secure your data across services. These tools help you control the
permissions granted to service principals, limiting their access to only the resources in your account
that are required. By carefully managing the access privileges of service principals, you can help
mitigate the risk of services improperly accessing data or resources to which they should not have
permissions.

Read on for general guidance or navigate to an example for a specific SageMaker feature:

Topics

• Limit Permissions With Global Condition Keys

• SageMaker Edge Manager

• SageMaker Images

• SageMaker Inference

• SageMaker Batch Transform Jobs

• SageMaker Marketplace

• SageMaker Neo

• SageMaker Pipelines

• SageMaker Processing Jobs

• SageMaker Studio

• SageMaker Training Jobs

Cross-Service Confused Deputy Prevention 5724

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy

Amazon SageMaker Developer Guide

Limit Permissions With Global Condition Keys

We recommend using the aws:SourceArn and aws:SourceAccount global condition keys in
resource policies to limit the permissions to the resource that Amazon SageMaker gives another
service. If you use both global condition keys and the aws:SourceArn value contains the account
ID, the aws:SourceAccount value and the account in the aws:SourceArn value must use the
same account ID when used in the same policy statement. Use aws:SourceArn if you want only
one resource to be associated with the cross-service access. Use aws:SourceAccount if you want
to allow any resource in that account to be associated with the cross-service use.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition key with the full ARN of the resource. If you don't know the
full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:sagemaker:*:123456789012:*.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition keys in SageMaker to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 # Specify an action and resource policy for another service
 "Action": "service:ActionName",
 "Resource": [
 "arn:aws:service:::ResourceName/*"
],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:partition:sagemaker:region:123456789012:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }

Cross-Service Confused Deputy Prevention 5725

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon SageMaker Developer Guide

}

SageMaker Edge Manager

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker Edge Manager created by
account number 123456789012 in the us-west-2 Region.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "sagemaker.amazonaws.com" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sagemaker:us-west-2:123456789012:*"
 }
 }
 }
}

You can replace the aws:SourceArn in this template with the full ARN of one specific packaging
job to further limit permissions.

SageMaker Images

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker Images. Use this template
with either Image or ImageVersion. This example uses an ImageVersion record ARN with
the account number 123456789012. Note that because the account number is part of the
aws:SourceArn value, you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "sagemaker.amazonaws.com" },
 "Action": "sts:AssumeRole",
 "Condition": {

Cross-Service Confused Deputy Prevention 5726

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Image.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ImageVersion.html

Amazon SageMaker Developer Guide

 "ArnLike": {
 "aws:SourceArn": "arn:partition:sagemaker:us-west-2:123456789012:image-version"
 }
 }
 }
}

Do not replace the aws:SourceArn in this template with the full ARN of a specific image or image
version. The ARN must be in the format provided above and specify either image or image-
version. The partition placeholder should designate either an AWS commercial partition (aws)
or an AWS in China partition (aws-cn), depending on where the image or image version is running.
Similarly, the region placeholder in the ARN can be any valid Region where SageMaker images are
available.

SageMaker Inference

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker real-time, serverless, and
asynchronous inference. Note that because the account number is part of the aws:SourceArn
value, you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "sagemaker.amazonaws.com" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sagemaker:us-west-2:123456789012:*"
 }
 }
 }
}

Do not replace the aws:SourceArn in this template with the full ARN of a specific model or
endpoint. The ARN must be in the format provided above. The asterisk in the ARN template does
not stand for wildcard and should not be changed.

Cross-Service Confused Deputy Prevention 5727

https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference

Amazon SageMaker Developer Guide

SageMaker Batch Transform Jobs

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker batch transform jobs created by
account number 123456789012 in the us-west-2 Region. Note that because the account number
is in the ARN, you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sagemaker:us-west-2:123456789012:transform-job/*"
 }
 }
 }
]
}

You can replace the aws:SourceArn in this template with the full ARN of one specific batch
transform job to further limit permissions.

SageMaker Marketplace

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker Marketplace resources created
by account number 123456789012 in the us-west-2 Region. Note that because the account
number is in the ARN, you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Cross-Service Confused Deputy Prevention 5728

https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html

Amazon SageMaker Developer Guide

 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sagemaker:us-west-2:123456789012:*"
 }
 }
 }
]
}

Do not replace the aws:SourceArn in this template with the full ARN of a specific algorithm or
model package. The ARN must be in the format provided above. The asterisk in the ARN template
does stand for wildcard and covers all training jobs, models, and batch transform jobs from
validation steps, as well as algorithm and model packages published to SageMaker Marketplace.

SageMaker Neo

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker Neo compilation jobs created by
account number 123456789012 in the us-west-2 Region. Note that because the account number
is in the ARN, you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sagemaker:us-west-2:123456789012:compilation-job/*"
 }
 }
 }
]
}

Cross-Service Confused Deputy Prevention 5729

Amazon SageMaker Developer Guide

You can replace the aws:SourceArn in this template with the full ARN of one specific compilation
job to further limit permissions.

SageMaker Pipelines

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker Pipelines using pipeline
execution records from one or more pipelines. Note that because the account number is in the ARN,
you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:partition:sagemaker:region:123456789012:pipeline/
mypipeline/*"
 }
 }
 }
]
}

Do not replace the aws:SourceArn in this template with the full ARN of a specific pipeline
execution. The ARN must be in the format provided above. The partition placeholder should
designate either an AWS commercial partition (aws) or an AWS in China partition (aws-cn),
depending on where the pipeline is running. Similarly, the region placeholder in the ARN can be
any valid Region where SageMaker Pipelines is available.

The asterisk in the ARN template does stand for wildcard and covers all pipeline executions of a
pipeline named mypipeline. If you want to allow the AssumeRole permissions for all pipelines
in account 123456789012 rather than one specific pipeline, then the aws:SourceArn would be
arn:aws:sagemaker:*:123456789012:pipeline/*.

Cross-Service Confused Deputy Prevention 5730

https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-sdk.html
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html

Amazon SageMaker Developer Guide

SageMaker Processing Jobs

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker processing jobs created by
account number 123456789012 in the us-west-2 Region. Note that because the account number
is in the ARN, you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sagemaker:us-west-2:123456789012:processing-job/*"
 }
 }
 }
]
}

You can replace the aws:SourceArn in this template with the full ARN of one specific processing
job to further limit permissions.

SageMaker Studio

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker Studio created by account
number 123456789012 in the us-west-2 Region. Note that because the account number is part
of the aws:SourceArn value, you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"

Cross-Service Confused Deputy Prevention 5731

Amazon SageMaker Developer Guide

 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sagemaker:us-west-2:123456789012:*"
 }
 }
 }
]
}

Do not replace the aws:SourceArn in this template with the full ARN of a specific Studio
application, user profile, or domain. The ARN must be in the format provided in the previous
example. The asterisk in the ARN template does not stand for wildcard and should not be changed.

SageMaker Training Jobs

The following example shows how you can use the aws:SourceArn global condition key to
prevent the cross-service confused deputy problem for SageMaker training jobs created by account
number 123456789012 in the us-west-2 Region. Note that because the account number is in the
ARN, you do not need to specify an aws:SourceAccount value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sagemaker:us-west-2:123456789012:training-job/*"
 }
 }
 }
]
}

You can replace the aws:SourceArn in this template with the full ARN of one specific training job
to further limit permissions.

Cross-Service Confused Deputy Prevention 5732

Amazon SageMaker Developer Guide

Next Up

For more information on managing execution roles, see SageMaker Roles.

SageMaker Roles

Amazon SageMaker performs operations on your behalf using other AWS services. You must
grant SageMaker permissions to use these services and the resources they act upon. You grant
SageMaker these permissions using an AWS Identity and Access Management (IAM) execution role.
For more information on IAM roles, see IAM roles.

To create and use an execution role, you can use the following procedures.

Create execution role

Use the following procedure to create an execution role with the IAM managed policy,
AmazonSageMakerFullAccess, attached. If your use case requires more granular permissions,
use other sections on this page to create an execution role that meets your business needs. You can
create an execution role using the SageMaker console or the AWS CLI.

Important

The IAM managed policy, AmazonSageMakerFullAccess, used in the following
procedure only grants the execution role permission to perform certain Amazon S3 actions
on buckets or objects with SageMaker, Sagemaker, sagemaker, or aws-glue in the
name. To learn how to add an additional policy to an execution role to grant it access to
other Amazon S3 buckets and objects, see Add Additional Amazon S3 Permissions to a
SageMaker Execution Role.

Note

You can create an execution role directly when you create a SageMaker domain or a
notebook instance.

• For information on how to create a SageMaker domain, see Custom onboarding to
Amazon SageMaker domain using IAM Identity Center.

• For information on how to create a notebook instance, see Step 1: Create an Amazon
SageMaker Notebook Instance.

SageMaker Roles 5733

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon SageMaker Developer Guide

To create a new execution role from the SageMaker console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles and then choose Create role.

3. Keep AWS service as the Trusted entity type and then use the down arrow to find SageMaker
in Use cases for other AWS services.

4. Choose SageMaker – Execution and then choose Next.

5. The IAM managed policy, AmazonSageMakerFullAccess, is automatically attached to the
role. To see the permissions included in this policy, choose the plus (+) sign next to the policy
name. Choose Next.

6. Enter a Role name and a Description.

7. (Optional) Add additional permissions and tags to the role.

8. Choose Create role.

9. On the Roles section of the IAM console, find the role you just created. If needed, use the text
box to search for the role using the role name.

10. On the role summary page, make note of the ARN.

To create a new execution role from the AWS CLI

Before you create an execution role using the AWS CLI, make sure to update and configure it by
following the instructions in AWS CLI Prerequisites, then continue with the instructions in Onboard
from the AWS CLI.

Once you have created an execution role, you can associate it with a SageMaker domain, a user
profile, or with a Jupyter notebook instance.

• To learn about how to associate an execution role with an existing SageMaker domain, see Edit
domain settings.

• To learn about how to associate an execution role with an existing user profile, see Add and
Remove User Profiles.

• To learn about how to associate an execution role with an existing notebook instance, see
Update a Notebook Instance.

You can also pass the ARN of an execution role to your API call. For example, using Amazon
SageMaker Python SDK, you can pass the ARN of your execution role to an estimator. In the code

SageMaker Roles 5734

https://console.aws.amazon.com/iam/
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

sample that follows, we create an estimator using the XGBoost algorithm container and pass the
ARN of the execution role as a parameter. For the full example on GitHub, see Customer Churn
Prediction with XGBoost.

import sagemaker, boto3
from sagemaker import image_uris

sess = sagemaker.Session()
region = sess.boto_region_name
bucket = sess.default_bucket()
prefix = "sagemaker/DEMO-xgboost-churn"
container = sagemaker.image_uris.retrieve("xgboost", region, "1.7-1")

xgb = sagemaker.estimator.Estimator(
 container,
 execution-role-ARN,
 instance_count=1,
 instance_type="ml.m4.xlarge",
 output_path="s3://{}/{}/output".format(bucket, prefix),
 sagemaker_session=sess,
)

...

Add Additional Amazon S3 Permissions to a SageMaker Execution Role

When you use a SageMaker feature with resources in Amazon S3, such as input data, the execution
role you specify in your request (for example CreateTrainingJob) is used to access these
resources.

If you attach the IAM managed policy, AmazonSageMakerFullAccess, to an execution role, that
role has permission to perform certain Amazon S3 actions on buckets or objects with SageMaker,
Sagemaker, sagemaker, or aws-glue in the name. It also has permission to perform the
following actions on any Amazon S3 resource:

"s3:CreateBucket",
"s3:GetBucketLocation",
"s3:ListBucket",
"s3:ListAllMyBuckets",
"s3:GetBucketCors",
"s3:PutBucketCors"

SageMaker Roles 5735

https://github.com/aws/amazon-sagemaker-examples/blob/89c54681b7e0f83ce137b34b879388cf5960af93/introduction_to_applying_machine_learning/xgboost_customer_churn/xgboost_customer_churn.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/89c54681b7e0f83ce137b34b879388cf5960af93/introduction_to_applying_machine_learning/xgboost_customer_churn/xgboost_customer_churn.ipynb

Amazon SageMaker Developer Guide

To give an execution role permissions to access one or more specific buckets in Amazon S3, you
can attach a policy similar to the following to the role. This policy grants an IAM role permission
to perform all actions that AmazonSageMakerFullAccess allows but restricts this access
to the buckets DOC-EXAMPLE-BUCKET1 and DOC-EXAMPLE-BUCKET2. Refer to the security
documentation for the specific SageMaker feature you are using to learn more about the Amazon
S3 permissions required for that feature.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:AbortMultipartUpload"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1/*",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET2/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetBucketCors",
 "s3:PutBucketCors"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketAcl",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET1",

SageMaker Roles 5736

Amazon SageMaker Developer Guide

 "arn:aws:s3:::DOC-EXAMPLE-BUCKET2"
]
 }
]
}

Get execution role

You can use the SageMaker console or the AWS CLI to retrieve the ARN of the execution role
attached to a SageMaker domain, a user profile, or a notebook instance.

• To find the ARN of the IAM execution role attached to a SageMaker domain, see View and edit
domains.

• To find the ARN of the IAM execution role attached to a user profile, see View User Profiles and
User Profile Details.

• To find the ARN of the IAM execution role attached to a notebook instance:

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the left navigation pane, choose Notebook then Notebook instances.

3. From the list of notebooks, select the notebook that you want to view.

4. The ARN is in the Permissions and encryption section.

Alternatively, Amazon SageMaker Python SDK users can retrieve the ARN of the execution role
attached to their user profile or a notebook instance by running the following code:

import sagemaker
sagemaker_session = sagemaker.Session()
role = sagemaker.get_execution_role()

Note

The execution role is available only when running a notebook within SageMaker. If you run
get_execution_role in a notebook not on SageMaker, expect a "region" error.

SageMaker Roles 5737

https://console.aws.amazon.com/iam/
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

Passing Roles

Actions like passing a role between services are a common function within SageMaker. You can find
more details on Actions, Resources, and Condition Keys for SageMaker in the IAM User Guide.

You pass the role (iam:PassRole) when making these API calls: CreateAutoMLJob,
CreateCompilationJob, CreateDomain, CreateFeatureGroup, CreateFlowDefiniton,
CreateHyperParameterTuningJob, CreateImage, CreateLabelingJob, CreateModel,
CreateMonitoringSchedule, CreateNotebookInstance, CreateProcessingJob,
CreateTrainingJob, CreateUserProfile, RenderUiTemplate, UpdateImage, and
UpdateNotebookInstance.

You attach the following trust policy to the IAM role which grants SageMaker principal permissions
to assume the role, and is the same for all of the execution roles:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

The permissions that you need to grant to the role vary depending on the API that you call. The
following sections explain these permissions.

Note

Instead of managing permissions by crafting a permission policy, you can use the AWS-
managed AmazonSageMakerFullAccess permission policy. The permissions in this policy
are fairly broad, to allow for any actions you might want to perform in SageMaker. For
a listing of the policy including information about the reasons for adding many of the
permissions, see AWS managed policy: AmazonSageMakerFullAccess. If you prefer to create
custom policies and manage permissions to scope the permissions only to the actions you
need to perform with the execution role, see the following topics.

SageMaker Roles 5738

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-actions-as-permissions
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCompilationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFeatureGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateImage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateMonitoringSchedule.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RenderUiTemplate.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateImage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateNotebookInstance.html

Amazon SageMaker Developer Guide

Important

If you're running into issues, see Troubleshooting Amazon SageMaker Identity and Access.

For more information about IAM roles, see IAM Roles in the IAM User Guide.

Topics

• CreateAutoMLJob API: Execution Role Permissions

• CreateDomain API: Execution Role Permissions

• CreateImage and UpdateImage APIs: Execution Role Permissions

• CreateNotebookInstance API: Execution Role Permissions

• CreateHyperParameterTuningJob API: Execution Role Permissions

• CreateProcessingJob API: Execution Role Permissions

• CreateTrainingJob API: Execution Role Permissions

• CreateModel API: Execution Role Permissions

• SageMaker geospatial capabilities roles

CreateAutoMLJob API: Execution Role Permissions

For an execution role that you can pass in a CreateAutoMLJob API request, you can attach the
following minimum permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }

SageMaker Roles 5739

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon SageMaker Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:DescribeModel",
 "sagemaker:InvokeEndpoint",
 "sagemaker:ListTags",
 "sagemaker:DescribeEndpoint",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:CreateEndpoint",
 "sagemaker:DeleteModel",
 "sagemaker:DeleteEndpointConfig",
 "sagemaker:DeleteEndpoint",
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

If you specify a private VPC for your AutoML job, add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",

SageMaker Roles 5740

Amazon SageMaker Developer Guide

 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
]
}

If your input is encrypted using server-side encryption with an AWS KMS–managed key (SSE-KMS),
add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
]
}

If you specify a KMS key in the output configuration of your AutoML job, add the following
permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt"
]
}

If you specify a volume KMS key in the resource configuration of your AutoML job, add the
following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
]
}

CreateDomain API: Execution Role Permissions

The execution role for domains with IAM Identity Center and the user/execution role for IAM
domains need the following permissions when you pass an AWS KMS customer managed key as the

SageMaker Roles 5741

Amazon SageMaker Developer Guide

KmsKeyId in the CreateDomain API request. The permissions are enforced during the CreateApp
API call.

For an execution role that you can pass in the CreateDomain API request, you can attach the
following permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:region:account-id:key/kms-key-id"
 }
]
}

Alternatively, if the permissions are specified in a KMS policy, you can attach the following policy to
the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::account-id:role/ExecutionRole"
]
 },
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*"
 }
]
}

SageMaker Roles 5742

Amazon SageMaker Developer Guide

CreateImage and UpdateImage APIs: Execution Role Permissions

For an execution role that you can pass in a CreateImage or UpdateImage API request, you can
attach the following permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

CreateNotebookInstance API: Execution Role Permissions

The permissions that you grant to the execution role for calling the CreateNotebookInstance
API depend on what you plan to do with the notebook instance. If you plan to use it to invoke
SageMaker APIs and pass the same role when calling the CreateTrainingJob and CreateModel
APIs, attach the following permissions policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {

SageMaker Roles 5743

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "sagemaker:*",
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability",
 "ecr:SetRepositoryPolicy",
 "ecr:CompleteLayerUpload",
 "ecr:BatchDeleteImage",
 "ecr:UploadLayerPart",
 "ecr:DeleteRepositoryPolicy",
 "ecr:InitiateLayerUpload",
 "ecr:DeleteRepository",
 "ecr:PutImage",
 "ecr:CreateRepository",
 "cloudwatch:PutMetricData",
 "cloudwatch:GetMetricData",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents",
 "s3:CreateBucket",
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "robomaker:CreateSimulationApplication",
 "robomaker:DescribeSimulationApplication",
 "robomaker:DeleteSimulationApplication",
 "robomaker:CreateSimulationJob",
 "robomaker:DescribeSimulationJob",
 "robomaker:CancelSimulationJob",
 "ec2:CreateVpcEndpoint",
 "ec2:DescribeRouteTables",
 "elasticfilesystem:DescribeMountTargets"
],
 "Resource": "*"
 },
 {

SageMaker Roles 5744

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "codecommit:GitPull",
 "codecommit:GitPush"
],
 "Resource": [
 "arn:aws:codecommit:*:*:*sagemaker*",
 "arn:aws:codecommit:*:*:*SageMaker*",
 "arn:aws:codecommit:*:*:*Sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

To tighten the permissions, limit them to specific Amazon S3 and Amazon ECR resources, by
restricting "Resource": "*", as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:*",
 "ecr:GetAuthorizationToken",
 "cloudwatch:PutMetricData",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:GetLogEvents"

SageMaker Roles 5745

Amazon SageMaker Developer Guide

],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::inputbucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object1",
 "arn:aws:s3:::outputbucket/path",
 "arn:aws:s3:::inputbucket/object2",
 "arn:aws:s3:::inputbucket/object3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"

SageMaker Roles 5746

Amazon SageMaker Developer Guide

],
 "Resource": [
 "arn:aws:ecr:region::repository/my-repo1",
 "arn:aws:ecr:region::repository/my-repo2",
 "arn:aws:ecr:region::repository/my-repo3"
]
 }
]
}

If you plan to access other resources, such as Amazon DynamoDB or Amazon Relational Database
Service, add the relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

• Scope the s3:ListBucket permission to the specific bucket that you specify as
InputDataConfig.DataSource.S3DataSource.S3Uri in a CreateTrainingJob request.

• Scope s3:GetObject , s3:PutObject, and s3:DeleteObject permissions as follows:

• Scope to the following values that you specify in a CreateTrainingJob request:

InputDataConfig.DataSource.S3DataSource.S3Uri

OutputDataConfig.S3OutputPath

• Scope to the following values that you specify in a CreateModel request:

PrimaryContainer.ModelDataUrl

SuplementalContainers.ModelDataUrl

• Scope ecr permissions as follows:

• Scope to the AlgorithmSpecification.TrainingImage value that you specify in a
CreateTrainingJob request.

• Scope to the PrimaryContainer.Image value that you specify in a CreateModel request:

The cloudwatch and logs actions are applicable for "*" resources. For more information, see
CloudWatch Resources and Operations in the Amazon CloudWatch User Guide.

SageMaker Roles 5747

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format

Amazon SageMaker Developer Guide

CreateHyperParameterTuningJob API: Execution Role Permissions

For an execution role that you can pass in a CreateHyperParameterTuningJob API request, you
can attach the following permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

Instead of the specifying "Resource": "*", you could scope these permissions to specific
Amazon S3, Amazon ECR, and Amazon CloudWatch Logs resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },

SageMaker Roles 5748

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::inputbucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object",
 "arn:aws:s3:::outputbucket/path"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "arn:aws:ecr:region::repository/my-repo"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/sagemaker/TrainingJobs*"
 }
]
}

SageMaker Roles 5749

Amazon SageMaker Developer Guide

If the training container associated with the hyperparameter tuning job needs to access other data
sources, such as DynamoDB or Amazon RDS resources, add relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

• Scope the s3:ListBucket permission to a specific bucket that you specify as the
InputDataConfig.DataSource.S3DataSource.S3Uri in a CreateTrainingJob request.

• Scope the s3:GetObject and s3:PutObject permissions to the following objects that you
specify in the input and output data configuration in a CreateHyperParameterTuningJob
request:

InputDataConfig.DataSource.S3DataSource.S3Uri

OutputDataConfig.S3OutputPath

• Scope Amazon ECR permissions to the registry path
(AlgorithmSpecification.TrainingImage) that you specify in a
CreateHyperParameterTuningJob request.

• Scope Amazon CloudWatch Logs permissions to log group of SageMaker training jobs.

The cloudwatch actions are applicable for "*" resources. For more information, see CloudWatch
Resources and Operations in the Amazon CloudWatch User Guide.

If you specify a private VPC for your hyperparameter tuning job, add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
]
}

SageMaker Roles 5750

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format

Amazon SageMaker Developer Guide

If your input is encrypted using server-side encryption with an AWS KMS–managed key (SSE-KMS),
add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
]
}

If you specify a KMS key in the output configuration of your hyperparameter tuning job, add the
following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt"
]
}

If you specify a volume KMS key in the resource configuration of your hyperparameter tuning job,
add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
]
}

CreateProcessingJob API: Execution Role Permissions

For an execution role that you can pass in a CreateProcessingJob API request, you can attach
the following permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

SageMaker Roles 5751

Amazon SageMaker Developer Guide

 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

Instead of the specifying "Resource": "*", you could scope these permissions to specific
Amazon S3 and Amazon ECR resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::inputbucket"

SageMaker Roles 5752

Amazon SageMaker Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object",
 "arn:aws:s3:::outputbucket/path"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "arn:aws:ecr:region::repository/my-repo"
 }
]
}

If CreateProcessingJob.AppSpecification.ImageUri needs to access other data sources,
such as DynamoDB or Amazon RDS resources, add relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

• Scope the s3:ListBucket permission to a specific bucket that you specify as the
ProcessingInputs in a CreateProcessingJob request.

• Scope the s3:GetObject and s3:PutObject permissions to the objects that will be
downloaded or uploaded in the ProcessingInputs and ProcessingOutputConfig in a
CreateProcessingJob request.

• Scope Amazon ECR permissions to the registry path (AppSpecification.ImageUri) that you
specify in a CreateProcessingJob request.

The cloudwatch and logs actions are applicable for "*" resources. For more information, see
CloudWatch Resources and Operations in the Amazon CloudWatch User Guide.

SageMaker Roles 5753

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format

Amazon SageMaker Developer Guide

If you specify a private VPC for your processing job, add the following permissions. Don't scope in
the policy with any conditions or resource filters. Otherwise, the validation checks that occur during
the creation of the processing job fail.

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
]
}

If your input is encrypted using server-side encryption with an AWS KMS–managed key (SSE-KMS),
add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
]
}

If you specify a KMS key in the output configuration of your processing job, add the following
permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt"
]
}

If you specify a volume KMS key in the resource configuration of your processing job, add the
following permissions:

SageMaker Roles 5754

Amazon SageMaker Developer Guide

{
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
]
}

CreateTrainingJob API: Execution Role Permissions

For an execution role that you can pass in a CreateTrainingJob API request, you can attach the
following permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

Instead of the specifying "Resource": "*", you could scope these permissions to specific
Amazon S3 and Amazon ECR resources:

{
 "Version": "2012-10-17",
 "Statement": [

SageMaker Roles 5755

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::inputbucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object",
 "arn:aws:s3:::outputbucket/path"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "arn:aws:ecr:region::repository/my-repo"
 }
]
}

SageMaker Roles 5756

Amazon SageMaker Developer Guide

If CreateTrainingJob.AlgorithSpecifications.TrainingImage needs to access other
data sources, such as DynamoDB or Amazon RDS resources, add relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

• Scope the s3:ListBucket permission to a specific bucket that you specify as the
InputDataConfig.DataSource.S3DataSource.S3Uri in a CreateTrainingJob request.

• Scope the s3:GetObject and s3:PutObject permissions to the following objects that you
specify in the input and output data configuration in a CreateTrainingJob request:

InputDataConfig.DataSource.S3DataSource.S3Uri

OutputDataConfig.S3OutputPath

• Scope Amazon ECR permissions to the registry path
(AlgorithmSpecification.TrainingImage) that you specify in a CreateTrainingJob
request.

The cloudwatch and logs actions are applicable for "*" resources. For more information, see
CloudWatch Resources and Operations in the Amazon CloudWatch User Guide.

If you specify a private VPC for your training job, add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
]
}

If your input is encrypted using server-side encryption with an AWS KMS–managed key (SSE-KMS),
add the following permissions:

SageMaker Roles 5757

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format

Amazon SageMaker Developer Guide

{
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
]
}

If you specify a KMS key in the output configuration of your training job, add the following
permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt"
]
}

If you specify a volume KMS key in the resource configuration of your training job, add the
following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant"
]
}

CreateModel API: Execution Role Permissions

For an execution role that you can pass in a CreateModel API request, you can attach the
following permission policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",

SageMaker Roles 5758

Amazon SageMaker Developer Guide

 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*"
 }
]
}

Instead of the specifying "Resource": "*", you can scope these permissions to specific Amazon
S3 and Amazon ECR resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::inputbucket/object"
]
 },
 {
 "Effect": "Allow",

SageMaker Roles 5759

Amazon SageMaker Developer Guide

 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": [
 "arn:aws:ecr:region::repository/my-repo",
 "arn:aws:ecr:region::repository/my-repo"
]
 }
]
}

If CreateModel.PrimaryContainer.Image need to access other data sources, such as Amazon
DynamoDB or Amazon RDS resources, add relevant permissions to this policy.

In the preceding policy, you scope the policy as follows:

• Scope S3 permissions to objects that you specify in the PrimaryContainer.ModelDataUrl in
a CreateModel request.

• Scope Amazon ECR permissions to a specific registry path that you specify as the
PrimaryContainer.Image and SecondaryContainer.Image in a CreateModel request.

The cloudwatch and logs actions are applicable for "*" resources. For more information, see
CloudWatch Resources and Operations in the Amazon CloudWatch User Guide.

Note

If you plan to use the SageMaker deployment guardrails feature for model deployment
in production, ensure that your execution role has permission to perform the
cloudwatch:DescribeAlarms action on your auto-rollback alarms.

If you specify a private VPC for your model, add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",

SageMaker Roles 5760

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/iam-access-control-overview-cw.html#CloudWatch_ARN_Format
https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails.html

Amazon SageMaker Developer Guide

 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
]
}

SageMaker geospatial capabilities roles

As a managed service, Amazon SageMaker geospatial capabilities performs operations on your
behalf on the AWS hardware that is managed by SageMaker. Use AWS Identity and Access
Management to grant users, groups, and roles access to SageMaker geospatial.

An IAM Administrator can grant these permissions to user, group, or role using the AWS
Management Console, AWS CLI, or one of the AWS SDKs.

To use SageMaker geospatial you need the following IAM permissions.

1. An SageMaker execution role.

To use the SageMaker geospatial specific API operations your SageMaker execution role must
include the SageMaker geospatial service principal, sagemaker-geospatial.amazonaws.com
in the execution role's trust policy. This allows the SageMaker execution role to perform actions
in your AWS account on your behalf.

2. A user, group, or role that has access Amazon SageMaker Studio Classic and SageMaker
geospatial

To get started with SageMaker geospatial you can use the AWS managed policy:
AmazonSageMakerGeospatialFullAccess. This grants will grant a user, group, or role
full access to SageMaker geospatial. To see the policy and learn more about which actions,
resources, and conditions are available, see AWS managed policy: AmazonSageMakerFullAccess.

To get started with Studio Classic and creating a Amazon SageMaker domain, see Amazon
SageMaker domain overview.

SageMaker Roles 5761

Amazon SageMaker Developer Guide

Use the following topics to create a new SageMaker execution role, update an existing SageMaker
execution role, and learn how to manage permissions using SageMaker geospatial specific IAM
actions, resources, and conditions.

Topics

• Creating an new SageMaker execution role

• Adding the SageMaker geospatial service principal to an existing SageMaker execution role

• StartEarthObservationJob API: Execution role permissions

• StartVectorEnrichmentJob API: Execution role permissions

• ExportEarthObservationJob API: Execution role permissions

• ExportVectorEnrichmentJob API: Execution Role Permissions

Creating an new SageMaker execution role

To work with SageMaker geospatial capabilities, you must set up a user, group, or role, and an
execution role. A user role is an AWS identity with permissions policies that determine what
the user can and cannot do within AWS. An execution role is an IAM role that grants the service
permission to access your AWS resources. An execution role consists of permissions and trust policy.
The trust policy specifies which principals have the permission to assume the role.

SageMaker geospatial also requires a different service principal, sagemaker-
geospatial.amazonaws.com. If you are an existing SageMaker customer, you must add this
additional service principal to your trust policy.

Use the following procedure to create an new execution role with the IAM managed policy,
AmazonSageMakerGeospatialFullAccess, attached. If your use case requires more granular
permissions, use other sections of this guide to create an execution role that meets your business
needs.

Important

The IAM managed policy, AmazonSageMakerGeospatialFullAccess, used in the
following procedure, only grants the execution role permission to perform certain Amazon
S3 actions on buckets or objects with SageMaker, Sagemaker, sagemaker, or aws-
glue in the name. To learn how to update the execution role's policy to grant it access to

SageMaker Roles 5762

Amazon SageMaker Developer Guide

other Amazon S3 buckets and objects, see Add Additional Amazon S3 Permissions to a
SageMaker Execution Role.

To create a new role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Select Roles and then select Create role.

3. Select SageMaker.

4. Select Next: Permissions.

5. The IAM managed policy, AmazonSageMakerGeospatialFullAccess is automatically
attached to this role. To see the permissions included in this policy, select the sideways arrow
next to the policy name. Select Next: Tags.

6. (Optional) Add tags and select Next: Review.

7. Give the role a name in the text field under Role name and select Create role.

8. In the Roles section of the IAM console, select the role you just created in step 7. If needed, use
the text box to search for the role using the role name you entered in step 7.

9. On the role summary page, make note of the ARN.

Adding the SageMaker geospatial service principal to an existing SageMaker execution role

To use the SageMaker geospatial specific API operations your SageMaker execution role must
include the SageMaker geospatial service principal, sagemaker-geospatial.amazonaws.com
in the execution role's trust policy. This allows the SageMaker execution role to perform actions in
your AWS account on your behalf.

Actions like passing a role between services are common within SageMaker. For more details,

To add the SageMaker geospatial service principal to an existing SageMaker execution role update
the existing policy to include the SageMaker geospatial service principal as shown in the following
trust policy. By attaching the service principal to the trust policy a SageMaker execution role can
now run the SageMaker geospatial specific APIs on your behalf.

To learn more about SageMaker geospatial specific IAM actions, resources, and conditions, see
Actions, Resources, and Condition Keys for SageMaker in the IAM User Guide.

{

SageMaker Roles 5763

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsagemaker.html#amazonsagemaker-actions-as-permissions

Amazon SageMaker Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "sagemaker-geospatial.amazonaws.com",
 "sagemaker.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

StartEarthObservationJob API: Execution role permissions

For an execution role that you can pass in a StartEarthObservationJob API request, you can
attach the following minimum permissions policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucketMultipartUploads"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": "sagemaker-geospatial:GetEarthObservationJob",
 "Resource": "arn:aws:sagemaker-geospatial:*:*:earth-observation-job/*"
 },
 {

SageMaker Roles 5764

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": "sagemaker-geospatial:GetRasterDataCollection",
 "Resource": "arn:aws:sagemaker-geospatial:*:*:raster-data-collection/*"
 }
]
 }

If your input Amazon S3 bucket is encrypted using server-side encryption with an AWS KMS
managed key (SSE-KMS), see Using Amazon S3 Bucket Keys for more information.

StartVectorEnrichmentJob API: Execution role permissions

For an execution role that you can pass in a StartVectorEnrichmentJob API request, you can
attach the following minimum permissions policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucketMultipartUploads"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": "sagemaker-geospatial:GetVectorEnrichmentJob",
 "Resource": "arn:aws:sagemaker-geospatial:*:*:vector-enrichment-job/*"
 }
]
 }

If your input Amazon S3 bucket is encrypted using server-side encryption with an AWS KMS
managed key (SSE-KMS), see Using Amazon S3 Bucket Keys for more information.

SageMaker Roles 5765

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html

Amazon SageMaker Developer Guide

ExportEarthObservationJob API: Execution role permissions

For an execution role that you can pass in a ExportEarthObservationJob API request, you can
attach the following minimum permissions policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucketMultipartUploads"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": "sagemaker-geospatial:GetEarthObservationJob",
 "Resource": "arn:aws:sagemaker-geospatial:*:*:earth-observation-job/*"
 }
]
 }

If your input Amazon S3 bucket is encrypted using server-side encryption with an AWS KMS
managed key (SSE-KMS), see Using Amazon S3 Bucket Keys for more information.

ExportVectorEnrichmentJob API: Execution Role Permissions

For an execution role that you can pass in a ExportVectorEnrichmentJob API request, you can
attach the following minimum permissions policy to the role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

SageMaker Roles 5766

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html

Amazon SageMaker Developer Guide

 "Action": [
 "s3:AbortMultipartUpload",
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucketMultipartUploads"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": "sagemaker-geospatial:GetVectorEnrichmentJob",
 "Resource": "arn:aws:sagemaker-geospatial:*:*:vector-enrichment-job/*"
 }
]
 }

If your input Amazon S3 bucket is encrypted using server-side encryption with an AWS KMS
managed key (SSE-KMS), see Using Amazon S3 Bucket Keys.

Amazon SageMaker Role Manager

Machine learning (ML) administrators striving for least-privilege permissions with Amazon
SageMaker must account for a diversity of industry perspectives, including the unique least-
privilege access needs required for personas such as data scientists, machine learning operation
(MLOps) engineers, and more. Use Amazon SageMaker Role Manager to build and manage
persona-based IAM roles for common machine learning needs directly through the Amazon
SageMaker console.

Amazon SageMaker Role Manager provides 3 preconfigured role personas and predefined
permissions for 12 common ML activities. Explore the provided personas and their suggested
policies, or create and maintain roles for personas unique to your business needs. If you require
additional customization, specify networking and encryption permissions for Amazon Virtual
Private Cloud resources and AWS Key Management Service encryption keys in Step 1. Enter role
information of the Amazon SageMaker Role Manager.

Topics

• Using the role manager (console)

Role Manager 5767

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://aws.amazon.com/kms/

Amazon SageMaker Developer Guide

• Using the role manager (AWS CDK)

• Persona reference

• ML activity reference

• Launch Studio Classic

• Role Manager FAQs

Using the role manager (console)

You can use the Amazon SageMaker Role Manager from the following locations on the left-hand
navigation of the Amazon SageMaker console:

• Getting started – Quickly add permissions policies for your users.

• domains – Add permissions policies for users within a Amazon SageMaker domain.

• Notebooks – Add least permissions for users who create and run notebooks.

• Training – Add least permissions for users who create and manage training jobs.

• Inference – Add least permissions for users who deploy and manage models for inference.

You can use the following are procedures to start the process of creating a role from different
locations in the SageMaker console.

Getting started

If you're using SageMaker for the first time, we recommend creating a role from the Getting
started section.

To create a role using Amazon SageMaker Role Manager, do the following.

1. Open the Amazon SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose Role manager.

4. Choose Create a role.

domains

You can create a role using Amazon SageMaker Role Manager when you start the process of
creating a Amazon SageMaker domain.

Role Manager 5768

Amazon SageMaker Developer Guide

To create a role using Amazon SageMaker Role Manager, do the following.

1. Open the Amazon SageMaker console.

2. On the left navigation pane, choose Admin configurations.

3. Under Admin configurations, choose domains.

4. Choose Create domain.

5. Choose Create role using the role creation wizard.

Notebook

You can create a role using Amazon SageMaker Role Manager when you start the process of
creating a notebook.

To create a role using Amazon SageMaker Role Manager, do the following.

1. Open the Amazon SageMaker console.

2. On the left-hand navigation, select Notebook.

3. Choose Notebook instances.

4. Choose Create notebook instance.

5. Choose Create role using the role creation wizard.

Training

You can create a role using Amazon SageMaker Role Manager when you start the process of
creating a training job.

To create a role using Amazon SageMaker Role Manager, do the following.

1. Open the Amazon SageMaker console.

2. On the left-hand navigation, choose Training.

3. Select Training jobs.

4. Choose Create training job.

5. Choose Create role using the role creation wizard.

Role Manager 5769

Amazon SageMaker Developer Guide

Inference

You can create a role using Amazon SageMaker Role Manager when you start the process of
deploying a model for inference.

To create a role using Amazon SageMaker Role Manager, do the following.

1. Open the Amazon SageMaker console.

2. On the left-hand navigation, choose Inference.

3. Select Models.

4. Choose Create model.

5. Choose Create role using the role creation wizard.

After you've completed one of the preceding procedures, use the information in the following
sections to help you create the role.

Prerequisites

To use Amazon SageMaker Role Manager, you must have permission to create an IAM role. This
permission is usually available to ML administrators and roles with least-privilege permissions for
ML practitioners.

You can temporarily assume an IAM role in the AWS Management Console by switching roles. For
more information about methods for using roles, see Using IAM roles in the IAM User Guide.

Step 1. Enter role information

Provide a name to use as the unique suffix of your new SageMaker role. By default, the prefix
"sagemaker-" is added to every role name for easier search in the IAM console. For example, if
you name your role test-123 during role creation, your role shows up as sagemaker-test-123
in the IAM console. You can optionally add a description of your role to provide additional details.

Then, choose from one of the available personas to get suggested permissions for personas such as
data scientists, data engineers, or machine learning operations (MLOps) engineers. For information
on available personas and their suggested permissions, see Persona reference. To create a role
without any suggested permissions to guide you, choose Custom Role Settings.

Role Manager 5770

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

Amazon SageMaker Developer Guide

Note

We recommend that you first use the role manager to create a SageMaker Compute Role
so that SageMaker compute resources have the ability to perform tasks such as training
and inference. Use the SageMaker Compute Role persona to create this role with the role
manager. After creating a SageMaker Compute Role, take note of its ARN for future use.

Network and encryption conditions

We recommend that you activate VPC customization to use VPC configurations, subnets, and
security groups with IAM policies associated with your new role. When VPC customization is
activated, IAM policies for ML activities that interact with VPC resources are scoped down for least-
privilege access. VPC customization is not activated by default. For more details on recommended
networking architecture, see Networking architecture in the AWS Technical Guide.

You can also use a KMS key to encrypt, decrypt, and re-encrypt data for regulated workloads with
highly sensitive data. When AWS KMS customization is activated, IAM policies for ML activities that
support custom encryption keys are scoped down for least-privilege access. For more information,
see Encryption with AWS KMS in the AWS Technical Guide.

Step 2. Configure ML activities

Each Amazon SageMaker Role Manager ML activity includes suggested IAM permissions to provide
access to relevant AWS resources. Some ML activities require that you add service role ARNs to
complete setup. For information on predefined ML activities and their permissions, see ML activity
reference. For information on adding service roles, see Service roles.

Based on the chosen persona, certain ML activities are already selected. You can deselect any
suggested ML activities or select additional activities to create your own role. If you selected the
Custom Role Settings persona, then no ML activities are preselected in this step.

You can add any additional AWS or customer-managed IAM policies to your role in Step 3: Add
additional policies and tags.

Service roles

Some AWS services require a service role to perform actions on your behalf. If the ML activity that
you selected requires you to pass a service role, then you must provide the ARN for that service
role.

Role Manager 5771

https://docs.aws.amazon.com/whitepapers/latest/build-secure-enterprise-ml-platform/networking-architecture.html
https://docs.aws.amazon.com/whitepapers/latest/build-secure-enterprise-ml-platform/encryption-with-kms.html

Amazon SageMaker Developer Guide

You can either create a new service role or use an existing one, such as a service role created with
the SageMaker Compute Role persona. You can find the ARN of an existing role by selecting the
role name in the Roles section of the IAM console. To learn more about service roles, see Creating a
role for an AWS service.

Step 3: Add additional policies and tags

You can add any existing AWS or customer-managed IAM policies to your new role. For information
on existing SageMaker policies, see AWS Managed Policies for Amazon SageMaker. You can also
check your existing policies in the Roles section of the IAM console.

Optionally, use tag-based policy conditions to assign metadata information to categorize and
manage AWS resources. Each tag is represented by a key-value pair. For more information, see
Controlling access to AWS resources using tags.

Review role

Take the time to review all of the information associated with your new role. Choose Previous to
go back and edit any of the information. When you are ready to create your role, choose Create
role. This generates a role with permissions for your selected ML activities. You can view your new
role in the Roles section of the IAM console.

Using the role manager (AWS CDK)

Use the AWS Cloud Development Kit (AWS CDK) with Amazon SageMaker Role Manager to
programmatically create roles and set permissions. You can use the AWS CDK to accomplish any
task that you could perform using the AWS Management Console. The programmatic access of the
CDK makes it easier to provide permissions that give your users access to specific resources. For
more information about the AWS CDK, see What is AWS CDK?

Important

You must use the SageMaker Compute Role persona to create a SageMaker Compute
Role. For more information about the compute persona, see SageMaker compute persona.
For code that you can use to create the compute role within the AWS CDK, see Grant
permissions to a Compute persona.

The following are examples of tasks that you can perform in the AWS CDK:

Role Manager 5772

https://console.aws.amazon.com/iamv2/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html
https://console.aws.amazon.com/iamv2/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://console.aws.amazon.com/iamv2/
https://docs.aws.amazon.com/cdk/v2/guide/home.html

Amazon SageMaker Developer Guide

• Create IAM roles with granular permissions for machine learning (ML) personas, such as Data
Scientists and MLOps Engineers.

• Grant permissions to CDK constructs from ML personas or ML activities.

• Set ML activity condition parameters.

• Enable global Amazon VPC and AWS Key Management Service conditions and set values for
them.

• Choose from all versions of the ML activities for your users without causing disruptions in their
access.

There are common AWS tasks related to machine learning (ML) with SageMaker that require
specific IAM permissions. The permissions to perform the tasks are defined as ML activities in
Amazon SageMaker Role Manager. ML activities specify a set of permissions that are linked to
the IAM role. For example, the ML activity for Amazon SageMaker Studio Classic has all of the
permissions that a user needs to access Studio Classic. For more information about ML activities,
see ML activity reference.

When you're creating roles, you first define the constructs for the ML persona or the ML activity. A
construct is a resource within the AWS CDK stack. For example, a construct could be an Amazon S3
bucket, an Amazon VPC subnet, or an IAM role.

As you're creating the persona or activity, you can limit the permissions associated with that
persona or activity to specific resources. For example, you can customize the activity to only
provide permissions for a specific subnet within an Amazon VPC.

After you've defined permissions, you can create roles and then pass those roles to create other
resources, such as SageMaker notebook instances.

The following are code examples in Typescript for tasks that you can accomplish using the CDK.
When you create an activity, you specify an ID and the options for the activity's construct. The
options are dictionaries that specify the required parameters for the activities, such as an Amazon
S3. You pass an empty dictionary for activities that don't have required parameters.

Grant permissions to a Compute persona

The following code creates a Data Scientist ML persona with a set of ML activities specific to
the persona. The permissions from ML activities only apply to the Amazon VPC and AWS KMS
configurations specified in the persona construct. The following code creates a class for a Data

Role Manager 5773

Amazon SageMaker Developer Guide

Scientist persona. The ML activities are defined in the activities list. The VPC permissions and the
KMS permissions are defined as optional parameters outside of the activities list.

After you’ve defined the class, you can create a role as a construct within the AWS CDK stack. You
can also create a notebook instance. The person who is using the IAM role that you’ve created in
the following code can access the notebook instance when they log in to their AWS account.

export class myCDKStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const persona = new Persona(this, 'example-persona-id', {
 activities: [
 Activity.accessAwsServices(this, 'example-id1', {})
]
 });

 const role = persona.createRole(this, 'example-IAM-role-id', 'example-IAM-role-
name');

 }
}

Grant permissions to a Data Scientist persona

The following code creates a Data Scientist ML persona with a set of ML activities specific to
the persona. The permissions from ML activities only apply to the VPC and KMS configurations
specified in the persona construct. The following code creates a class for a Data Scientist persona.
The ML activities are defined in the activities list. The Amazon VPC permissions and the AWS KMS
permissions are defined as optional parameters outside of the activities list.

After you’ve defined the class, you can create a role as a construct within the AWS CDK stack. You
can also create a notebook instance. The person who is using the IAM role that you’ve created in
the following code can access the notebook instance when they log in to their AWS account.

export class myCDKStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

Role Manager 5774

Amazon SageMaker Developer Guide

 const persona = new Persona(this, 'example-persona-id', {
 activities: [
 Activity.runStudioAppsV2(this, 'example-id1', {}),
 Activity.manageJobs(this, 'example-id2', {rolesToPass:
 [iam.Role.fromRoleName('example-IAM-role-name')]}),
 Activity.manageModels(this, 'example-id3', {rolesToPass:
 [iam.Role.fromRoleName('example-IAM-role-name')]}),
 Activity.manageExperiments(this, 'example-id4', {}),
 Activity.visualizeExperiments(this, 'example-id5', {}),
 Activity.accessS3Buckets(this, 'example-id6', {s3buckets:
 [s3.S3Bucket.fromBucketName('DOC-EXAMPLE-BUCKET')]})
],
 // optional: to configure VPC permissions
 subnets: [ec2.Subnet.fromSubnetId('example-VPC-subnet-id')],
 securityGroups: [ec2.SecurityGroup.fromSecurityGroupId('example-VPC-security-
group-id')],
 // optional: to configure KMS permissions
 dataKeys: [kms.Key.fromKeyArn('example-KMS-key-ARN')],
 volumeKeys: [kms.Key.fromKeyArn('example-KMS-key-ARN')],
 });

 const role = persona.createRole(this, 'example-IAM-role-id', 'example-IAM-role-
name');

 const notebookInstance = new CfnNotebookInstance(this, 'example-notebook-instance-
name', { RoleArn: role.RoleArn, ...});
 }
}

Grant permissions to an ML Ops persona

The following code creates an ML Ops persona with a set of ML activities specific to the persona.
The permissions from ML activities only apply to the Amazon VPC and AWS KMS configurations
specified in the persona construct. The following code creates a class for an ML Ops persona. The
ML activities are defined in the activities list. The VPC permissions and the KMS permissions are
defined as optional parameters outside of the activities list.

After you’ve defined the class, you can create a role as a construct within the AWS CDK stack. You
can also create an Amazon SageMaker Studio Classic user profile. The person who is using the IAM
role that you’ve created in the following code can open SageMaker Studio Classic when they log in
to their AWS account.

Role Manager 5775

Amazon SageMaker Developer Guide

export class myCDKStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const persona = new Persona(this, 'example-persona-id', {
 activities: [
 Activity.runStudioAppsV2(this, 'example-id1', {}),
 Activity.manageModels(this, 'example-id2', {rolesToPass:
 [iam.Role.fromRoleName('example-IAM-role-name')]}),
 Activity.manageEndpoints(this, 'example-id3',{rolesToPass:
 [iam.Role.fromRoleName('example-IAM-role-name')]}),
 Activity.managePipelines(this, 'example-id4', {rolesToPass:
 [iam.Role.fromRoleName('example-IAM-role-name')]}),
 Activity.visualizeExperiments(this, 'example-id5', {})
],
 subnets: [ec2.Subnet.fromSubnetId('example-VPC-subnet-id')],
 securityGroups: [ec2.SecurityGroup.fromSecurityGroupId('example-VPC-security-
group-id')],
 dataKeys: [kms.Key.fromKeyArn('example-KMS-key-ARN')],
 volumeKeys: [kms.Key.fromKeyArn('example-KMS-key-ARN')],
 });

 const role = persona.createRole(this, 'example-IAM-role-id', 'example-IAM-role-
name');

 let userProfile = new CfnNUserProfile(this, 'example-Studio Classic-profile-name',
 { RoleName: role.RoleName, ... });
 }
}

Grant permissions to a construct

The following code creates an ML Ops persona with a set of ML activities specific to the persona.
The following code creates a class for a ML Ops persona. The ML activities are defined in the
activities list.

After you’ve defined the class, you can create a role as a construct within the AWS CDK stack. You
can also create a notebook instance. The code grants permissions from the ML activities to the IAM
role of the Lambda function.

Role Manager 5776

Amazon SageMaker Developer Guide

export class myCDKStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const persona = new Persona(this, 'example-persona-id', {
 activities: [
 Activity.runStudioAppsV2(this, 'example-id1', {}),
 Activity.manageModels(this, 'example-id2', {rolesToPass:
 [iam.Role.fromRoleName('example-IAM-role-name')]}),
 Activity.manageEndpoints(this, 'example-id3',{rolesToPass:
 [iam.Role.fromRoleName('example-IAM-role-name')]}),
 Activity.managePipelines(this, 'example-id4', {rolesToPass:
 [iam.Role.fromRoleName('example-IAM-role-name')]}),
 Activity.visualizeExperiments(this, 'example-id5', {})
],
 });

 const lambdaFn = lambda.Function.fromFunctionName('example-lambda-function-name');
 persona.grantPermissionsTo(lambdaFn);
 }
}

Grant permissions for a single ML activity

The following code creates an ML activity and creates a role from the activity. The permissions
from the activity only apply to the VPC and KMS configuration that you specify for the user.

export class myCDKStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const activity = Activity.manageJobs(this, 'example-activity-id', {
 rolesToPass: [iam.Role.fromRoleName('example-IAM-role-name')],
 subnets: [ec2.Subnet.fromSubnetId('example-VPC-subnet-id')],
 securityGroups: [ec2.SecurityGroup.fromSecurityGroupId('example-VPC-security-
group-id')],
 dataKeys: [kms.Key.fromKeyArn('example-KMS-key-ARN')],
 volumeKeys: [kms.Key.fromKeyArn('example-KMS-key-ARN')],
 });

Role Manager 5777

Amazon SageMaker Developer Guide

 const role = activity.createRole(this, 'example-IAM-role-id', 'example-IAM-role-
name');
 }
}

Create a role and give it permissions for a single activity

The following code creates an IAM role for a single ML activity.

export class myCDKStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const activity = Activity.manageJobs(this, 'example-activity-id', {
 rolesToPass: [iam.Role.fromRoleName('example-IAM-role-name')],
 });

 activity.create_role(this, 'example-IAM-role-id', 'example-IAM-role-name')
 }
}

Persona reference

Amazon SageMaker Role Manager provides suggested permissions for a number of ML personas.
These include user execution roles for common ML practitioner responsibilities as well as service
execution roles for common AWS service interactions needed to work with SageMaker.

Each persona has suggested permissions in the form of selected ML activities. For information on
predefined ML activities and their permissions, see ML activity reference.

Data scientist persona

Use this persona to configure permissions to perform general machine learning development and
experimentation in a SageMaker environment. This persona includes the following preselected ML
activities:

• Run Studio Classic Applications

Role Manager 5778

Amazon SageMaker Developer Guide

• Manage ML Jobs

• Manage Models

• Manage Experiments

• Search and Visualize Experiments

• Amazon S3 Bucket Access

MLOps persona

Choose this persona to configure permissions for operational activities. This persona includes the
following preselected ML activities:

• Run Studio Classic Applications

• Manage Models

• Manage Endpoints

• Manage Pipelines

• Search and Visualize Experiments

SageMaker compute persona

Note

We recommend that you first use the role manager to create a SageMaker Compute Role
so that SageMaker compute resources can perform tasks such as training and inference.
Use the SageMaker Compute Role persona to create this role with the role manager. After
creating a SageMaker Compute Role, take note of its ARN for future use.

This persona includes the following preselected ML activity:

• Access Required AWS Services

ML activity reference

ML activities are common AWS tasks related to machine learning with SageMaker that require
specific IAM permissions. Each persona suggests related ML activities when creating a role with

Role Manager 5779

https://docs.aws.amazon.com/sagemaker/latest/dg/role-manager-personas.html

Amazon SageMaker Developer Guide

Amazon SageMaker Role Manager. You can select any additional ML activities or deselect any
suggested ML activities to create a role that meets your unique business needs.

Amazon SageMaker Role Manager provides predefined permissions for the following ML activities:

ML activity Description

Access Required AWS Services Permissions to access Amazon S3, Amazon
ECR, Amazon CloudWatch, and Amazon EC2.
Required for execution roles for jobs and
endpoints.

Run Studio Classic Applications Permissions to operate within a Studio Classic
environment. Required for domain and user
profile execution roles.

Manage ML Jobs Permissions to audit, query lineage, and
visualize experiments.

Manage Models Permissions to manage SageMaker jobs across
their lifecycles.

Manage Endpoints Permissions to manage SageMaker endpoint
deployments and updates.

Manage Pipelines Permissions to manage SageMaker pipelines
and pipeline executions.

Manage Experiments Permissions to manage SageMaker experimen
ts and trials.

Search and Visualize Experiments Permissions to audit, query lineage, and
visualize experiments.

Manage Model Monitoring Permissions to manage monitoring schedules
for SageMaker Model Monitor.

S3 Full Access Permissions to perform all Amazon S3
operations.

Role Manager 5780

Amazon SageMaker Developer Guide

ML activity Description

S3 Bucket Access Permissions to perform operations on
specified S3 buckets.

Query Athena Workgroups Permissions to run and manage Amazon
Athena queries.

Launch Studio Classic

Use your persona-focused roles to launch Studio Classic. If you are an administrator, you can give
your users access to Studio Classic and have them assume their persona role either directly through
the AWS Management Console or through the AWS IAM Identity Center.

Launch Studio Classic with AWS Management Console

For data scientists or other users to assume their given persona through the AWS Management
Console, they require a console role to get to the Studio Classic environment.

You cannot use Amazon SageMaker Role Manager to create a role that grants permissions to the
AWS Management Console. However, after creating a service role in the role manager, you can go
to the IAM console to edit the role and add a user access role. The following is an example of a role
that provides user access to the AWS Management Console:

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Sid": "DescribeCurrentDomain",
 "Effect": "Allow",
 "Action": "sagemaker:DescribeDomain",
 "Resource": "arn:aws:sagemaker:<REGION>:<ACCOUNT-ID>:domain/<STUDIO-DOMAIN-
ID>"
 },
 {
 "Sid": "RemoveErrorMessagesFromConsole",
 "Effect": "Allow",
 "Action":
 [

Role Manager 5781

Amazon SageMaker Developer Guide

 "servicecatalog:ListAcceptedPortfolioShares",
 "sagemaker:GetSagemakerServicecatalogPortfolioStatus",
 "sagemaker:ListModels",
 "sagemaker:ListTrainingJobs",
 "servicecatalog:ListPrincipalsForPortfolio",
 "sagemaker:ListNotebookInstances",
 "sagemaker:ListEndpoints"
],
 "Resource": "*"
 },
 {
 "Sid": "RequiredForAccess",
 "Effect": "Allow",
 "Action":
 [
 "sagemaker:ListDomains",
 "sagemaker:ListUserProfiles"
],
 "Resource": "*"
 },
 {
 "Sid": "CreatePresignedURLForAccessToDomain",
 "Effect": "Allow",
 "Action": "sagemaker:CreatePresignedDomainUrl",
 "Resource": "arn:aws:sagemaker:<REGION>:<ACCOUNT-ID>:user-profile/<STUDIO-
DOMAIN-ID>/<PERSONA_NAME>"
 }
]
}

In the Studio Classic control panel, choose Add User to create a new user. In the General Settings
section, give your user a name and set the Default execution role for the user to be the role that
you created using Amazon SageMaker Role Manager.

On the next screen, choose the appropriate Jupyter Lab version, and whether to turn on SageMaker
Jumpstart and SageMaker Project templates. Then choose Next. On the SageMaker Canvas settings
page, choose whether to turn on SageMaker Canvas support, and additionally whether to allow for
timeseries forecasting in SageMaker Canvas. Then choose Submit.

Your new user should now be visible in the Studio Classic control panel. To test this user, choose
Studio from the Launch app dropdown list in the same row as the user’s name.

Role Manager 5782

Amazon SageMaker Developer Guide

Launch Studio Classic with IAM Identity Center

To assign IAM Identity Center users to execution roles, the user must first exist in the IAM Identity
Center directory. For more information, see Manage identities in IAM Identity Center in the AWS
IAM Identity Center.

Note

Your IAM Identity Center Authentication directory and Studio Classic domain must be in the
same AWS Region.

1. To assign IAM Identity Center users to your Studio Classic domain, choose Assign users and
Groups in the Studio Classic control panel. On the Assign users and groups screen select your
data scientist user, and then choose Assign Users and Groups.

2. After the user is added to the Studio Classic control panel, choose the user to open the user
details screen.

3. On the User details screen, choose Edit.

4. On the Edit user profile screen, under General settings, modify the Default execution role to
match the user execution role you’ve created for your data scientists.

5. Choose Next through the rest of the settings pages, and choose Submit to save your changes.

When your data scientist or other user logs into the IAM Identity Center portal, they see a tile for
this Studio Classic domain. Choosing that tile logs them into Studio Classic with their assigned user
execution role.

Role Manager FAQs

Refer to the following FAQ items for answers to commonly asked questions about Amazon
SageMaker Role Manager.

Q. How can I access Amazon SageMaker Role Manager?

A: You can access Amazon SageMaker Role Manager through multiple location in the Amazon
SageMaker console. For information about accessing role manager and using it to create a role, see
Using the role manager (console).

Role Manager 5783

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

Amazon SageMaker Developer Guide

Q. What are personas?

A: Personas are preconfigured groups of permissions based on common machine learning (ML)
responsibitilies. For example, the data science persona suggests permissions for general machine
learning development and experimentation in a SageMaker environment, while the MLOps persona
suggests permissions for ML activities related to operations.

Q. What are ML activities?

A: ML activities are common AWS tasks related to machine learning with SageMaker that require
specific IAM permissions. Each persona suggests related ML activities when creating a role with
Amazon SageMaker Role Manager. ML activities include tasks such as Amazon S3 full access or
searching and visualizing experiments. For more information, see ML activity reference.

Q. Are the roles that I create with the role manager AWS Identity and Access Management (IAM)
roles?

A: Yes. Roles created using the Amazon SageMaker Role Manager are IAM roles with customized
access policies. You can view created roles in the Roles section of the IAM console.

Q. How can I view the roles that I created using Amazon SageMaker Role Manager?

A: You can view created roles in the Roles section of the IAM console. By default, the prefix
"sagemaker-" is added to every role name for easier search in the IAM console. For example, if
you named your role test-123 during role creation, your role shows up as sagemaker-test-123
in the IAM console.

Q. Can I modify a role made with Amazon SageMaker Role Manager once it is created?

A: Yes. You can modify the roles and policies created by Amazon SageMaker Role Manager through
the IAM console. For more information, see Modifying a role in the AWS Identity and Access
Management User Guide.

Q. Can I attach my own policies to roles created using Amazon SageMaker Role Manager?

A: Yes. You can attach any AWS or customer-managed IAM policies from your account to the role
that you create using Amazon SageMaker Role Manager.

Q. How many policies can I add to a role that I create with Amazon SageMaker Role Manager?

A: The maximum limit for attaching managed policies to an IAM role or user is 20. The maximum
character size limit for managed policies is 6,144. For more information, see IAM object quotas and
IAM and AWS Security Token Service quotas name requirements, and character limits.

Role Manager 5784

https://console.aws.amazon.com/iamv2/
https://console.aws.amazon.com/iamv2/
https://console.aws.amazon.com/iamv2/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html

Amazon SageMaker Developer Guide

Q. Can I add conditions to ML activities?

A: Any conditions that you provide in Step 1. Enter role information of the Amazon SageMaker
Role Manager, such as subnets, security groups, or KMS keys, are automatically passed to
any ML activities selected in Step 2. Configure ML activities. You can also add additional
conditions to ML activities if necessary. For example, you might also add InstanceTypes or
IntercontainerTrafficEncryption conditions to the Manage Training Jobs activity.

Q. Can I use tagging to manage access to any AWS resource?

A:You can add tags to your role in Step 3: Add additional policies and tags of the Amazon
SageMaker Role Manager. To successfully manage AWS resources using tags, you must add the
same tag to both the role and any associated policies. For example, you can add a tag to a role and
to an Amazon S3 bucket. Then, because the role passes the tag to the SageMaker session, only a
user with that role can access that S3 bucket. You can add tags to a policy through the IAM console.
For more information, see Tagging IAM roles in the AWS Identity and Access Management User
Guide.

Q. Can I use Amazon SageMaker Role Manager to create a role to access the AWS Management
Console?

A: No. However, after creating a service role in the role manager, you can go to the IAM console to
edit the role and add a human access role in IAM console.

Q. What is difference between a user federation role and a SageMaker execution role?

A: A user federation role is directly assumed by a user to access AWS resources such as access to the
AWS Management Console. A SageMaker execution role is assumed by the SageMaker service to
perform a function on behalf of a user or an automation tool. For example, when a user opens a
Studio Classic instance, Studio Classic assumes the execution role associated with the user profile
in order to access AWS resources on the behalf of the user. If the user profile does not specify an
execution role, then the execution role is specified at the Amazon SageMaker domain level.

Q. If I am using a custom web application that accesses Studio Classic through a presigned url,
what role is used?

A: If you use a custom web application to access Studio Classic, then you have a hybrid user
federation role and SageMaker execution role. Be sure that this role has least privilege permissions
for both what the user can do and what Studio Classic can do on the associated user’s behalf.

Role Manager 5785

https://console.aws.amazon.com/iamv2/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags_roles.html

Amazon SageMaker Developer Guide

Q: Can I use Amazon SageMaker Role Manager with AWS IAM Identity Center authentication for
my Studio Classic domain?

A: AWS IAM Identity Center Studio Classic Cloud Applications use a Studio Classic execution role to
grant permissions to federated users. This execution role can be specified at the Studio Classic IAM
Identity Center user profile level or the default domain level. User identities and groups must be
synchronized into IAM Identity Center and the Studio Classic user profile must be created with IAM
Identity Center user assignment using CreateUserProfile. For more information, see Launch Studio
Classic with IAM Identity Center.

Access control for notebooks

You must use different procedures to control access to Amazon SageMaker Studio Classic
notebooks and SageMaker notebook instances because they have different runtime environments.
Studio Classic uses file system permissions and containers to control access to Studio Classic
notebooks and isolation of users. A SageMaker notebook instance gives users that login to the
notebook instance default root access. The following topics describe how to change permissions
for both kinds of notebooks.

Topics

• Access control and setting permissions for SageMaker Studio notebooks

• Control root access to a SageMaker notebook instance

Access control and setting permissions for SageMaker Studio notebooks

Amazon SageMaker Studio uses filesystem and container permissions for access control and
isolation of Studio users and notebooks. This is one of the major differences between Studio
notebooks and SageMaker notebook instances. This topic describes how permissions are set up to
avoid security threats, what SageMaker does by default, and how the customer can customize the
permissions. For more information about Studio notebooks and their runtime environment, see
Use Amazon SageMaker Studio Classic Notebooks.

SageMaker app permissions

A run-as user is a POSIX user/group which is used to run the JupyterServer app and KernelGateway
apps inside the container.

The run-as user for the JupyterServer app is sagemaker-user (1000) by default. This user has sudo
permissions to enable the installation of dependencies such as yum packages.

Access Control 5786

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html

Amazon SageMaker Developer Guide

The run-as user for the KernelGateway apps is root (0) by default. This user is able to install
dependencies using pip/apt-get/conda.

Due to user remapping, neither user is able to access resources or make changes to the host
instance.

User remapping

SageMaker performs user-remapping to map a user inside the container to a user on the host
instance outside the container. The range of user IDs (0 - 65535) in the container are mapped to
non-privileged user IDs above 65535 on the instance. For example, sagemaker-user (1000) inside
the container might map to user (200001) on the instance, where the number in parentheses is
the user ID. If the customer creates a new user/group inside the container, it won't be privileged
on the host instance regardless of the user/group ID. The root user of the container is also mapped
to a non-privileged user on the instance. For more information, see Isolate containers with a user
namespace.

Note

Files created by the user sagemaker-user may look like they are owned by sagemaker-
studio (uid 65534). This is a side effect of a fast app creation mode where SageMaker
container images are pre-pulled, allowing applications to start in under a minute. If
your application requires the file owner uid and the process owner uid to match, ask the
customer service to remove your account number from the image pre-pull feature.

Custom image permissions

Customers can bring their own custom SageMaker images. These images can specify a different
run-as user/group to launch the KernelGateway app. The customer can implement fine grained
permission control inside the image, for example, to disable root access or perform other actions.
The same user remapping applies here. For more information, see Bring your own SageMaker
image.

Container isolation

Docker keeps a list of default capabilities that the container can use. SageMaker doesn’t add
additional capabilities. SageMaker adds specific route rules to block requests to Amazon EFS and
the instance metadata service (IMDS) from the container. Customers can’t change these route rules
from the container. For more information, see Runtime privilege and Linux capabilities.

Access Control 5787

https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

Amazon SageMaker Developer Guide

App metadata access

Metadata used by running apps are mounted to the container with read-only permission.
Customers aren’t able to modify this metadata from the container. For the available metadata, see
Get Studio Classic Notebook and App Metadata.

User isolation on EFS

When you onboard to Studio, SageMaker creates an Amazon Elastic File System (EFS) volume for
your domain that is shared by all Studio users in the domain. Each user gets their own private
home directory on the EFS volume. This home directory is used to store the user's notebooks, Git
repositories, and other data. To prevent other users in the domain from accessing the user's data,
SageMaker creates a globally unique user ID for the user's profile and applies it as a POSIX user/
group ID for the user’s home directory.

EBS access

An Amazon Elastic Block Store (Amazon EBS) volume is attached to the host instance and shared
across all images. It's used for the root volume of the notebooks and stores temporary data
that's generated inside the container. The storage isn't persisted when the instance running the
notebooks is deleted. The root user inside the container can't access the EBS volume.

IMDS access

Due to security concerns, access to the Amazon Elastic Compute Cloud (Amazon EC2) Instance
Metadata Service (IMDS) is unavailable in SageMaker Studio. For more information on IMDS, see
Instance metadata and user data.

Control root access to a SageMaker notebook instance

By default, when you create a notebook instance, users that log into that notebook instance have
root access. Data science is an iterative process that might require the data scientist to test and use
different software tools and packages, so many notebook instance users need to have root access
to be able to install these tools and packages. Because users with root access have administrator
privileges, users can access and edit all files on a notebook instance with root access enabled.

If you don't want users to have root access to a notebook instance, when you call
CreateNotebookInstance or UpdateNotebookInstance operations, set the RootAccess
field to Disabled. You can also disable root access for users when you create or update a
notebook instance in the Amazon SageMaker console. For information, see Step 1: Create an
Amazon SageMaker Notebook Instance.

Access Control 5788

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateNotebookInstance.html

Amazon SageMaker Developer Guide

Note

Lifecycle configurations need root access to be able to set up a notebook instance. Because
of this, lifecycle configurations associated with a notebook instance always run with root
access even if you disable root access for users.

Note

For security reasons, Rootless Docker is installed on root-disabled notebook instances
instead of regular Docker. For more information, see Run the Docker daemon as a non-root
user (Rootless mode)

Amazon SageMaker API Permissions: Actions, Permissions, and
Resources Reference

When you are setting up access control and writing a permissions policy that you can attach to
an IAM identity (an identity-based policy), use the following as a reference. The each Amazon
SageMaker API operation, the corresponding actions for which you can grant permissions to
perform the action, and the AWS resource for which you can grant the permissions. You specify the
actions in the policy's Action field, and you specify the resource value in the policy's Resource
field.

Note

Except for the ListTags API, resource-level restrictions are not available on List- calls .
Any user calling a List- API will see all resources of that type in the account.

To express conditions in your Amazon SageMaker policies, you can use AWS-wide condition keys.
For a complete list of AWS-wide keys, see Available Keys in the IAM User Guide.

Warning

Some SageMaker API actions may still be accessible through theSearch API. For example,
if a user has an IAM policy that denies permissions to a Describe call for a particular
SageMaker resource, that user can still access the description information through the

Amazon SageMaker API Permissions Reference 5789

https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/security/rootless/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html

Amazon SageMaker Developer Guide

Search API. To fully restrict user access to Describe calls, you must also restrict access to
the Search API. For a list of SageMaker resources that are accessible through the Search API,
see the SageMaker Search AWS CLI Command Reference.

Amazon SageMaker API Operations and Required Permissions for Actions

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DeleteEar
thObserva
tionJob

sagemaker-geospati
al:DeleteEarthObse
rvationJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :earth-observation-
job/id

DeleteVec
torEnrich
mentJob

sagemaker-geospati
al:DeleteVectorEnr
ichmentJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :vector-enrichment-
job/id

ExportEar
thObserva
tionJob

sagemaker-geospati
al:ExportEarthObse
rvationJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :earth-observation-
job/id

ExportVec
torEnrich
mentJob

sagemaker-geospati
al:ExportVectorEnr
ichmentJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :vector-enrichment-
job/id

GetEarthO
bservationJob

sagemaker-geospati
al:GetEarthObserva
tionJob

arn:aws:sagemaker-
geospatia
l: region:account-i

Amazon SageMaker API Permissions Reference 5790

https://docs.aws.amazon.com/cli/latest/reference/sagemaker/search.html#options
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ExportEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ExportEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ExportEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ExportVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ExportVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ExportVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_GetEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_GetEarthObservationJob.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

d :earth-observation-
job/id

GetRaster
DataCollection

sagemaker-geospati
al:GetRasterDataCo
llection

arn:aws:sagemaker-
geospatia
l: region:account-i
d :raster-data-colle
ction/public/ id

GetTile sagemaker-geospati
al:GetTile

arn:aws:sagemaker-
geospatia
l: region:account-i
d :earth-observation-
job/id

GetVector
EnrichmentJob

sagemaker-geospati
al:GetVectorEnrich
mentJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :vector-enrichment-
job/id

ListEarth
Observati
onJobs

sagemaker-geospati
al:ListEarthObserv
ationJobs

*

ListRaste
rDataColl
ections

sagemaker-geospati
al:ListRasterDataC
ollections

*

Amazon SageMaker API Permissions Reference 5791

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_DeleteEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_GetTile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_GetVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_GetVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListEarthObservationJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListEarthObservationJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListEarthObservationJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListRasterDataCollections.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListRasterDataCollections.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListRasterDataCollections.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

ListTagsF
orResource

sagemaker-geospati
al:ListTagsForResource

arn:aws:sagemaker-
geospatia
l: region:account-i
d :earth-observation-
job/id

arn:aws:sagemaker-
geospatia
l: region:account-i
d :vector-enrichment-
job/id

ListVecto
rEnrichme
ntJobs

sagemaker-geospati
al:ListVectorEnric
hmentJobs

*

SearchRas
terDataCo
llection

sagemaker-geospati
al:SearchRasterDat
aCollection

arn:aws:sagemaker-
geospatia
l: region:account-i
d :raster-data-colle
ction/public/ id

StartEart
hObservat
ionJob

sagemaker-geospati
al:StartEarthObser
vationJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :earth-observation-
job/id

StartVect
orEnrichm
entJob

sagemaker-geospati
al:StartVectorEnri
chmentJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :vector-enrichment-
job/id

Amazon SageMaker API Permissions Reference 5792

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListTagsForResource.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListTagsForResource.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListVectorEnrichmentJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListVectorEnrichmentJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_ListVectorEnrichmentJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_SearchRasterDataCollection.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_SearchRasterDataCollection.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_SearchRasterDataCollection.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StartEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StartEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StartEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StartVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StartVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StartVectorEnrichmentJob.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

StopEarth
ObservationJob

sagemaker-geospati
al:StopEarthObserv
ationJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :earth-observation-
job/id

StopVecto
rEnrichmentJob

sagemaker-geospati
al:StopVectorEnric
hmentJob

arn:aws:sagemaker-
geospatia
l: region:account-i
d :vector-enrichment-
job/id

TagResource sagemaker-geospati
al:TagResource

arn:aws:sagemaker-
geospatia
l: region:account-i
d :earth-observation-
job/id

arn:aws:sagemaker-
geospatia
l: region:account-i
d :vector-enrichment-
job/id

Amazon SageMaker API Permissions Reference 5793

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StopEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StopEarthObservationJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StopVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_StopVectorEnrichmentJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_TagResource.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

UntagResource sagemaker-geospati
al:UntagResource

arn:aws:sagemaker-
geospatia
l: region:account-i
d :earth-observation-
job/id

arn:aws:sagemaker-
geospatia
l: region:account-i
d :vector-enrichment-
job/id

AddTags sagemaker:AddTags arn:aws:sagemaker:
region:account-id :*

CreateApp sagemaker:CreateApp arn:aws:sagemaker:
region:account-i

d :app/domain-id /user-
profile-name /app-
type/appName

CreateApp
ImageConfig

sagemaker:CreateAp
pImageConfig

arn:aws:sagemaker:
region:account-id :app-

image-config/ appImageC
onfigName

Amazon SageMaker API Permissions Reference 5794

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_geospatial_UntagResource.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateApp.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAppImageConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAppImageConfig.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreateAut
oMLJob

sagemaker:CreateAu
toMLJob

iam:PassRole

The following permission is
required only if any of the
associated ResourceConfig
have a specified VolumeKms
KeyId and the associated
role does not have a policy that
permits this action:

kms:CreateGrant

arn:aws:sagemaker:
region:account-i

d :automl-job/ autoMLJob
Name

CreateAut
oMLJobV2

sagemaker:CreateAu
toMLJobV2

iam:PassRole

The following permission is
required only if any of the
associated ResourceConfig
have a specified VolumeKms
KeyId and the associated
role does not have a policy that
permits this action:

kms:CreateGrant

arn:aws:sagemaker:
region:account-i

d :automl-job/ autoMLJob
Name

Amazon SageMaker API Permissions Reference 5795

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreateDomain sagemaker:CreateDomain

iam:CreateServiceL
inkedRole

iam:PassRole

Required if a KMS customer
managed key is specified for
KmsKeyId:

elasticfilesystem:
CreateFileSystem

kms:CreateGrant

kms:Decrypt

kms:DescribeKey

kms:GenerateDataKe
yWithoutPlainText

Required to create a domain that
supports RStudio:

sagemaker:CreateApp

arn:aws:sagemaker:
region:account-i

d :domain/domain-id

CreateEndpoint sagemaker:CreateEn
dpoint

kms:CreateGrant
(required only if the associate
d EndPointConfig has a
KmsKeyId specified)

arn:aws:sagemaker:
region:account-i

d :endpoint/ endpointName

arn:aws:sagemaker:
region:account-

id :endpoint-
config/endpointConfigName

Amazon SageMaker API Permissions Reference 5796

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreateEnd
pointConfig

sagemaker:CreateEn
dpointConfig

arn:aws:sagemaker:
region:account-

id :endpoint-
config/endpointConfigName

CreateFlo
wDefinition

sagemaker:CreateFl
owDefinition

iam:PassRole

arn:aws:sagemaker:
region:account-id :flow-

definition/ flowDefin
itionName

CreateHum
anTaskUi

sagemaker:CreateHu
manTaskUi

arn:aws:sagemaker:
region:account-id :human-

task-ui/ humanTaskUiName

CreateInf
erenceRec
ommendati
onsJob

sagemaker:CreateIn
ferenceRecommendat
ionsJob

iam:PassRole

The following permissions are
required only if you specify an
encryption key:

kms:CreateGrant

kms:Decrypt

kms:DescribeKey

kms:GenerateDataKey

arn:aws:sagemaker:
region:account-i

d :inference-recomme
ndations-job/ inference
RecommendationsJobName

Amazon SageMaker API Permissions Reference 5797

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHumanTaskUi.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreateHyp
erParamet
erTuningJob

sagemaker:CreateHy
perParameterTuningJob

iam:PassRole

The following permission is
required only if any of the
associated ResourceConfig
have a specified VolumeKms
KeyId and the associated
role does not have a policy that
permits this action:

kms:CreateGrant

arn:aws:sagemaker:
region:account-id :hyper-

parameter-tuning-job
/ hyperParameterTuni
ngJobName

CreateImage sagemaker:CreateImage

iam:PassRole

arn:aws:sagemaker:
region:account-id :image/

*

CreateIma
geVersion

sagemaker:CreateIm
ageVersion

arn:aws:sagemaker:
region:account-id :image-

version/ imageName /*

CreateLab
elingJob

sagemaker:CreateLabelingJob

iam:PassRole

arn:aws:sagemaker:
region:account-i

d :labeling-job/ labelingJ
obName

CreateModel sagemaker:CreateModel

iam:PassRole

arn:aws:sagemaker:
region:account-i

d :model/modelName

CreateMod
elPackage

sagemaker:CreateMo
delPackage

arn:aws:sagemaker:
region:account-id :model-

package/ modelPackageName

Amazon SageMaker API Permissions Reference 5798

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateImage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateImageVersion.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateImageVersion.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreateMod
elPackageGroup

sagemaker:CreateMo
delPackageGroup

arn:aws:sagemaker:
region:account-id :model-

package-group/ modelPack
ageGroupName

Amazon SageMaker API Permissions Reference 5799

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackageGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackageGroup.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreateNot
ebookInstance

sagemaker:CreateNo
tebookInstance

iam:PassRole

The following permissions are
required only if you specify a
VPC for your notebook instance:

ec2:CreateNetworkI
nterface

ec2:DescribeSecuri
tyGroups

ec2:DescribeSubnets

ec2:DescribeVpcs

The following permission is
required only if you specify a
VPC and an elastic inference
accelerator for your notebook
instance:

ec2:DescribeVpcEnd
points

The following permissions are
required only if you specify an
encryption key:

kms:DescribeKey

kms:CreateGrant

arn:aws:sagemaker:
region:account-i

d :notebook-instance
/ notebookInstanceName

Amazon SageMaker API Permissions Reference 5800

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

The following permission is
required only if you specify an
AWS Secrets Manager secret to
access a private Git repository:

secretsmanager:Get
SecretValue

CreatePipeline sagemaker:CreatePi
peline

iam:PassRole

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name

arn:aws-parti
tion :iam::account-i
d :role/role-name

CreatePre
signedDom
ainUrl

sagemaker:CreatePr
esignedDomainUrl

arn:aws:sagemaker:
region:account-id :app/

domain-id/ userProfi
leName /*

CreatePre
signedNot
ebookInst
anceUrl

sagemaker:CreatePr
esignedNotebookIns
tanceUrl

arn:aws:sagemaker:
region:account-i

d :notebook-instance
/ notebookInstanceName

Amazon SageMaker API Permissions Reference 5801

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePipeline.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedDomainUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedDomainUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedDomainUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreatePro
cessingJob

sagemaker:CreatePr
ocessingJob

iam:PassRole

kms:CreateGrant
(required only if the associated
ProcessingResources has
a specified VolumeKmsKeyId
and the associated role does not
have a policy that permits this
action)

ec2:CreateNetworkI
nterface (required only if you
specify a VPC)

arn:aws:sagemaker:
region:account-

id :processing-
job/processingJobName

CreateSpace sagemaker:CreateSpace arn:aws:sagemaker:
region:account-i

d :space/domain-id
/spaceName

CreateStu
dioLifecy
cleConfig

sagemaker:CreateSt
udioLifecycleConfig

arn:aws:sagemaker:
region:account-i

d :studio-lifecycle-
config/.*

Amazon SageMaker API Permissions Reference 5802

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateSpace.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateStudioLifecycleConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateStudioLifecycleConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateStudioLifecycleConfig.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreateTra
iningJob

sagemaker:CreateTr
ainingJob

iam:PassRole

kms:CreateGrant
(required only if the associate
d ResourceConfig has a
specified VolumeKmsKeyId
and the associated role does not
have a policy that permits this
action)

arn:aws:sagemaker:
region:account-i

d :training-job/ trainingJ
obName

CreateTra
nsformJob

sagemaker:CreateTr
ansformJob

kms:CreateGrant
(required only if the associated
TransformResources has
a specified VolumeKmsKeyId
and the associated role does not
have a policy that permits this
action)

arn:aws:sagemaker:
region:account-

id :transform-
job/transformJobName

CreateUse
rProfile

sagemaker:CreateUs
erProfile

iam:PassRole

arn:aws:sagemaker:
region:account-i

d :user-profile/domain-
id/userProfileName

Amazon SageMaker API Permissions Reference 5803

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

CreateWorkforce sagemaker:CreateWo
rkforce

cognito-idp:Descri
beUserPoolClient

cognito-idp:Update
UserPool

cognito-idp:Descri
beUserPool

cognito-idp:Update
UserPoolClient

arn:aws:sagemaker:
region:account-i

d :workforce/*

CreateWorkteam sagemaker:CreateWo
rkteam

cognito-idp:Descri
beUserPoolClient

cognito-idp:Update
UserPool

cognito-idp:Descri
beUserPool

cognito-idp:Update
UserPoolClient

arn:aws:sagemaker:
region:account-i

d :workteam/private-
crowd/ work team name

DeleteApp sagemaker:DeleteApp arn:aws:sagemaker:
region:account-i

d :app/domain-id /user-
profile-name /app-
type/appName

Amazon SageMaker API Permissions Reference 5804

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteApp.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DeleteApp
ImageConfig

sagemaker:DeleteAp
pImageConfig

arn:aws:sagemaker:
region:account-id :app-

image-config/ appImageC
onfigName

DeleteDomain sagemaker:DeleteDomain arn:aws:sagemaker:
region:account-i

d :domain/domainId

DeleteEndpoint sagemaker:DeleteEn
dpoint

arn:aws:sagemaker:
region:account-i

d :endpoint/ endpointName

DeleteEnd
pointConfig

sagemaker:DeleteEn
dpointConfig

arn:aws:sagemaker:
region:account-

id :endpoint-
config/endpointConfigName

DeleteFlo
wDefinition

sagemaker:DeleteFl
owDefinition

arn:aws:sagemaker:
region:account-id :flow-

definition/ flowDefin
itionName

DeleteHumanLoop sagemaker:DeleteHu
manLoop

arn:aws:sagemaker:
region:account-id :human-

loop/ humanLoopName

DeleteImage sagemaker:DeleteImage arn:aws:sagemaker:
region:account-i

d :image/imageName

Amazon SageMaker API Permissions Reference 5805

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteAppImageConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteAppImageConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteDomain.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteFlowDefinition.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_DeleteHumanLoop.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteImage.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DeleteIma
geVersion

sagemaker:DeleteIm
ageVersion

arn:aws:sagemaker:
region:account-id :image-

version/ imageName
/versionNumber

DeleteModel sagemaker:DeleteModel arn:aws:sagemaker:
region:account-i

d :model/modelName

DeleteMod
elPackage

sagemaker:DeleteMo
delPackage

arn:aws:sagemaker:
region:account-id :model-

package/ modelPackageName

DeleteMod
elPackageGroup

sagemaker:DeleteMo
delPackageGroup

arn:aws:sagemaker:
region:account-id :model-

package-group/ modelPack
ageGroupName

DeleteMod
elPackage
GroupPolicy

sagemaker:DeleteMo
delPackageGroupPolicy

arn:aws:sagemaker:
region:account-id :model-

package-group/ modelPack
ageGroupName

Amazon SageMaker API Permissions Reference 5806

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteImageVersion.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteImageVersion.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModelPackage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModelPackage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModelPackageGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModelPackageGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModelPackageGroupPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModelPackageGroupPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModelPackageGroupPolicy.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DeleteNot
ebookInstance

sagemaker:DeleteNo
tebookInstance

The following permission is
required only if you specified a
VPC for your notebook instance:

ec2:DeleteNetworkI
nterface

The following permissions are
required only if you specified an
encryption key when you created
the notebook instance:

kms:DescribeKey

arn:aws:sagemaker:
region:account-i

d :notebook-instance
/ notebookInstanceName

DeletePipeline sagemaker:DeletePi
peline

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name

DeleteSpace sagemaker:DeleteSpace arn:aws:sagemaker:
region:account-i

d :space/domain-id
/spaceName

DeleteTags sagemaker:DeleteTags arn:aws:sagemaker:
region:account-id :*

DeleteUse
rProfile

sagemaker:DeleteUs
erProfile

arn:aws:sagemaker:
region:account-i

d :user-profile/domain-
id/userProfileName

Amazon SageMaker API Permissions Reference 5807

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeletePipeline.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteSpace.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteTags.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteUserProfile.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DeleteWorkforce sagemaker:DeleteWo
rkforce

arn:aws:sagemaker:
region:account-i

d :workforce/*

DeleteWorkteam sagemaker:DeleteWo
rkteam

arn:aws:sagemaker:
region:account-i

d :workteam/private-
crowd/*

DescribeApp sagemaker:DescribeApp arn:aws:sagemaker:
region:account-i

d :app/domain-id /user-
profile-name /app-
type/appName

DescribeA
ppImageConfig

sagemaker:Describe
AppImageConfig

arn:aws:sagemaker:
region:account-id :app-

image-config/ appImageC
onfigName

DescribeA
utoMLJob

sagemaker:Describe
AutoMLJob

arn:aws:sagemaker:
region:account-i

d :automl-job/ autoMLJob
Name

DescribeA
utoMLJobV2

sagemaker:Describe
AutoMLJobV2

arn:aws:sagemaker:
region:account-i

d :automl-job/ autoMLJob
Name

DescribeDomain sagemaker:Describe
Domain

arn:aws:sagemaker:
region:account-i

d :domain/domainId

Amazon SageMaker API Permissions Reference 5808

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeApp.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAppImageConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAppImageConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeDomain.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DescribeE
ndpoint

sagemaker:Describe
Endpoint

arn:aws:sagemaker:
region:account-i

d :endpoint/ endpointName

DescribeE
ndpointConfig

sagemaker:Describe
EndpointConfig

arn:aws:sagemaker:
region:account-

id :endpoint-
config/endpointConfigName

DescribeF
lowDefinition

sagemaker:Describe
FlowDefinition

arn:aws:sagemaker:
region:account-id :flow-

definition/ flowDefin
itionName

DescribeH
umanLoop

sagemaker:Describe
HumanLoop

arn:aws:sagemaker:
region:account-id :human-

loop/ humanLoopName

DescribeH
umanTaskUi

sagemaker:Describe
HumanTaskUi

arn:aws:sagemaker:
region:account-id :human-

task-ui/ humanTaskUiName

DescribeH
yperParam
eterTuningJob

sagemaker:Describe
HyperParameterTuni
ngJob

arn:aws:sagemaker:
region:account-id :hyper-

parameter-tuning-job
/ hyperParameterTuni
ngJob

DescribeImage sagemaker:DescribeImage arn:aws:sagemaker:
region:account-i

d :image/imageName

Amazon SageMaker API Permissions Reference 5809

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFlowDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFlowDefinition.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_DescribeHumanLoop.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_DescribeHumanLoop.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHumanTaskUi.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHumanTaskUi.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeImage.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DescribeI
mageVersion

sagemaker:Describe
ImageVersion

arn:aws:sagemaker:
region:account-id :image-

version/ imageName
/versionNumber

DescribeL
abelingJob

sagemaker:Describe
LabelingJob

arn:aws:sagemaker:
region:account-i

d :labeling-job/ labelingJ
obName

DescribeModel sagemaker:DescribeModel arn:aws:sagemaker:
region:account-i

d :model/modelName

DescribeM
odelPackage

sagemaker:Describe
ModelPackage

arn:aws:sagemaker:
region:account-id :model-

package/ modelPackageName

DescribeM
odelPacka
geGroup

sagemaker:Describe
ModelPackageGroup

arn:aws:sagemaker:
region:account-id :model-

package-group/ modelPack
ageGroupName

DescribeN
otebookIn
stance

sagemaker:Describe
NotebookInstance

arn:aws:sagemaker:
region:account-i

d :notebook-instance
/ notebookInstanceName

DescribeP
ipeline

sagemaker:Describe
Pipeline

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name

Amazon SageMaker API Permissions Reference 5810

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeImageVersion.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeImageVersion.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackageGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackageGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackageGroup.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipeline.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipeline.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DescribeP
ipelineDe
finitionF
orExecution

sagemaker:Describe
PipelineDefinition
ForExecution

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name /execution/ execution
-id

DescribeP
ipelineEx
ecution

sagemaker:Describe
PipelineExecution

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name /execution/ execution
-id

DescribeP
rocessingJob

sagemaker:Describe
ProcessingJob

arn:aws:sagemaker:
region:account-

id :processing-
job/processingjobname

DescribeSpace sagemaker:DescribeSpace arn:aws:sagemaker:
region:account-i

d :space/domain-id
/spaceName

DescribeS
ubscribed
Workteam

sagemaker:Describe
SubscribedWorkteam

aws-marketplace:Vi
ewSubscriptions

arn:aws:sagemaker:
region:account-i

d :workteam/vendor-c
rowd/*

DescribeT
rainingJob

sagemaker:Describe
TrainingJob

arn:aws:sagemaker:
region:account-i

d :training-job/ trainingj
obname

Amazon SageMaker API Permissions Reference 5811

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineDefinitionForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineDefinitionForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineDefinitionForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineDefinitionForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeSpace.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeSubscribedWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeSubscribedWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeSubscribedWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

DescribeT
ransformJob

sagemaker:Describe
TransformJob

arn:aws:sagemaker:
region:account-

id :transform-
job/transformjobname

DescribeU
serProfile

sagemaker:Describe
UserProfile

arn:aws:sagemaker:
region:account-i

d :user-profile/domain-
id/userProfileName

DescribeW
orkforce

sagemaker:Describe
Workforce

arn:aws:sagemaker:
region:account-i

d :workforce/*

DescribeW
orkteam

sagemaker:Describe
Workteam

arn:aws:sagemaker:
region:account-i

d :workteam/private-
crowd/*

GetModelP
ackageGro
upPolicy

sagemaker:GetModel
PackageGroupPolicy

arn:aws:sagemaker:
region:account-id :model-

package-group/ modelPack
ageGroupName

InvokeEndpoint sagemaker:InvokeEn
dpoint

arn:aws:sagemaker:
region:account-i

d :endpoint/ endpointName

ListAppIm
ageConfigs

sagemaker:ListAppI
mageConfigs

arn:aws:sagemaker:
region:account-id :app-

image-config/*

Amazon SageMaker API Permissions Reference 5812

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetModelPackageGroupPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetModelPackageGroupPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetModelPackageGroupPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListAppImageConfigs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListAppImageConfigs.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

ListApps sagemaker:ListApps arn:aws:sagemaker:
region:account-i

d :app/domain-id /user-
profile-name /*

ListDomains sagemaker:ListDomains arn:aws:sagemaker:
region:account-i

d :domain/*

ListEndpo
intConfigs

sagemaker:ListEndp
ointConfigs

*

ListEndpoints sagemaker:ListEndpoints *

ListFlowD
efinitions

sagemaker:ListFlow
Definitions

*

ListHumanLoops sagemaker:ListHuma
nLoops

*

ListHuman
TaskUis

sagemaker:ListHuma
nTaskUis

*

ListHyper
Parameter
TuningJobs

sagemaker:ListHype
rParameterTuningJobs

arn:aws:sagemaker:
region:account-id :hyper-

parameter-tuning-job
/ hyperParameterTuni
ngJob

ListImages sagemaker:ListImages *

ListImage
Versions

sagemaker:ListImag
eVersions

arn:aws:sagemaker:
region:account-id :image/

*

Amazon SageMaker API Permissions Reference 5813

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListApps.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListDomains.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpointConfigs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpointConfigs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpoints.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListFlowDefinitions.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListFlowDefinitions.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_ListHumanLoops.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListHumanTaskUis.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListHumanTaskUis.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListHyperParameterTuningJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListHyperParameterTuningJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListHyperParameterTuningJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListImages.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListImageVersions.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListImageVersions.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

ListLabel
ingJobs

sagemaker:ListLabe
lingJobs

*

ListLabel
ingJobsFo
rWorkteam

sagemaker:ListLabe
lingJobForWorkteam

*

ListModel
PackageGroups

sagemaker:ListMode
lPackageGroups

arn:aws:sagemaker:
region:account-id

:model-package-gro
up/ ModelPackageGroupN
ame

ListModel
Packages

sagemaker:ListMode
lPackages

arn:aws:sagemaker:
region:account-id

:model-package/ ModelPack
ageName

ListModels sagemaker:ListModels *

ListNoteb
ookInstances

sagemaker:ListNote
bookInstances

*

ListPipel
ineExecutions

sagemaker:ListPipe
lineExecutions

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name

ListPipel
ineExecut
ionSteps

sagemaker:ListPipe
lineExecutionSteps

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name /execution/ execution
-id

Amazon SageMaker API Permissions Reference 5814

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListLabelingJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListLabelingJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListLabelingJobsForWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListLabelingJobsForWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListLabelingJobsForWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModelPackageGroups.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModelPackageGroups.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModelPackages.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModelPackages.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModels.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListNotebookInstances.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListNotebookInstances.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineExecutions.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineExecutions.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineExecutionSteps.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineExecutionSteps.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineExecutionSteps.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

ListPipel
ineParame
tersForEx
ecution

sagemaker:ListPipe
lineParametersForE
xecution

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name /execution/ execution
-id

ListPipelines sagemaker:ListPipelines *

ListProce
ssingJobs

sagemaker:ListProc
essingJobs

*

ListSpaces sagemaker:ListSpaces arn:aws:sagemaker:
region:account-i

d :space/domain-id /*

ListSubsc
ribedWorkteams

sagemaker:ListSubs
cribedWorkteams

aws-marketplace:Vi
ewSubscriptions

*

ListTags sagemaker:ListTags arn:aws:sagemaker:
region:account-id :*

ListTrain
ingJobs

sagemaker:ListTrai
ningJobs

*

ListTrain
ingJobsFo
rHyperPar
ameterTun
ingJob

sagemaker:ListTrai
ningJobsForHyperPa
rameterTuningJob

arn:aws:sagemaker:
region:account-id :hyper-

parameter-tuning-job
/ hyperParameterTuni
ngJob

ListTrans
formJobs

sagemaker:ListTran
sformJobs

*

Amazon SageMaker API Permissions Reference 5815

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineParametersForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineParametersForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineParametersForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelineParametersForExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListPipelines.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListProcessingJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListProcessingJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListSpaces.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListSubscribedWorkteams.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListSubscribedWorkteams.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTags.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobsForHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobsForHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobsForHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobsForHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobsForHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTransformJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTransformJobs.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

ListUserP
rofiles

sagemaker:ListUser
Profiles

arn:aws:sagemaker:
region:account-id :user-

profile/domain-id/*

ListWorkforces sagemaker:ListWork
forces

*

ListWorkteams sagemaker:ListWorkteams *

PutModelP
ackageGro
upPolicy

sagemaker:PutModel
PackageGroupPolicy

arn:aws:sagemaker:
region:account-id :model-

package-group/ modelPack
ageGroupName

RetryPipe
lineExecution

sagemaker:RetryPip
elineExecution

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name /execution/ execution
-id

Search sagemaker:Search *

SendPipel
ineExecut
ionStepFailure

sagemaker:SendPipe
lineExecutionStepF
ailure

*

SendPipel
ineExecut
ionStepSuccess

sagemaker:SendPipe
lineExecutionStepS
uccess

*

StartHumanLoop sagemaker:StartHum
anLoop

arn:aws:sagemaker:
region:account-id :human-

loop/ humanLoopName

Amazon SageMaker API Permissions Reference 5816

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListUserProfiles.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListUserProfiles.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListWorkforces.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListWorkteams.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PutModelPackageGroupPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PutModelPackageGroupPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PutModelPackageGroupPolicy.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RetryPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RetryPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SendPipelineExecutionStepFailure.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SendPipelineExecutionStepFailure.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SendPipelineExecutionStepFailure.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SendPipelineExecutionStepSuccess.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SendPipelineExecutionStepSuccess.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SendPipelineExecutionStepSuccess.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_StartHumanLoop.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

StartNote
bookInstance

sagemaker:StartNot
ebookInstance

The following permissions are
required only if you specified
a VPC when you created your
notebook instance:

ec2:CreateNetworkI
nterface

ec2:DescribeNetwor
kInterfaces

ec2:DescribeSecuri
tyGroups

ec2:DescribeSubnets

ec2:DescribeVpcs

The following permission is
required only if you specify a
VPC and an elastic inference
accelerator for your notebook
instance:

ec2:DescribeVpcEnd
points

The following permissions are
required only if you specified an
encryption key when you created
the notebook instance:

kms:DescribeKey

arn:aws:sagemaker:
region:account-i

d :notebook-instance
/ notebookInstanceName

Amazon SageMaker API Permissions Reference 5817

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StartNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StartNotebookInstance.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

kms:CreateGrant

The following permission is
required only if you specified an
AWS Secrets Manager secret to
access a private Git repository
when you created the notebook
instance:

secretsmanager:Get
SecretValue

StartPipe
lineExecution

sagemaker:StartPip
elineExecution

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name

StopHumanLoop sagemaker:StopHumanLoop arn:aws:sagemaker:
region:account-id :human-

loop/ humanLoopName

StopHyper
Parameter
TuningJob

sagemaker:StopHype
rParameterTuningJob

arn:aws:sagemaker:
region:account-id :hyper-

parameter-tuning-job
/ hyperParameterTuni
ngJob

StopLabelingJob sagemaker:StopLabe
lingJob

arn:aws:sagemaker:
region:account-i

d :labeling-job/ labelingJ
obName

Amazon SageMaker API Permissions Reference 5818

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StartPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StartPipelineExecution.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/API_StopHumanLoop.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopLabelingJob.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

StopNoteb
ookInstance

sagemaker:StopNote
bookInstance

arn:aws:sagemaker:
region:account-i

d :notebook-instance
/ notebookInstanceName

StopPipel
ineExecution

sagemaker:StopPipe
lineExecution

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name /execution/ execution
-id

StopProce
ssingJob

sagemaker:StopProc
essingJob

arn:aws:sagemaker:
region:account-

id :processing-
job/processingJobName

StopTrainingJob sagemaker:StopTrai
ningJob

arn:aws:sagemaker:
region:account-i

d :training-job/ trainingJ
obName

StopTrans
formJob

sagemaker:StopTran
sformJob

arn:aws:sagemaker:
region:account-

id :transform-
job/transformJobName

UpdateApp
ImageConfig

sagemaker:UpdateAp
pImageConfig

arn:aws:sagemaker:
region:account-id :app-

image-config/ appImageC
onfigName

UpdateDomain sagemaker:UpdateDomain arn:aws:sagemaker:
region:account-i

d :domain/domainId

Amazon SageMaker API Permissions Reference 5819

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopPipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopTransformJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateAppImageConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateAppImageConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateDomain.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

UpdateEndpoint sagemaker:UpdateEn
dpoint

arn:aws:sagemaker:
region:account-i

d :endpoint/ endpointName

UpdateEnd
pointWeig
htsAndCap
acities

sagemaker:UpdateEn
dpointWeightsAndCa
pacities

arn:aws:sagemaker:
region:account-i

d :endpoint/ endpointName

UpdateImage sagemaker:UpdateImage

iam:PassRole

arn:aws:sagemaker:
region:account-i

d :image/imageName

UpdateMod
elPackage

sagemaker:UpdateMo
delPackage

arn:aws:sagemaker:
region:account-id :model-

package/ modelPackageName

UpdateNot
ebookInstance

sagemaker:UpdateNo
tebookInstance

iam:PassRole

arn:aws:sagemaker:
region:account-i

d :notebook-instance
/ notebookInstanceName

UpdatePipeline sagemaker:UpdatePi
peline

iam:PassRole

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name

arn:aws-parti
tion :iam::account-i
d :role/role-name

Amazon SageMaker API Permissions Reference 5820

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateImage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateModelPackage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateModelPackage.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdatePipeline.html

Amazon SageMaker Developer Guide

Amazon SageMaker
API Operations

Required Permissions (API
Actions)

Resources

UpdatePip
elineExecution

sagemaker:UpdatePi
pelineExecution

arn:aws-parti
tion :sagemake
r: region:account-i
d :pipeline/ pipeline-
name /execution/ execution
-id

UpdateSpace sagemaker:UpdateSpace arn:aws:sagemaker:
region:account-i

d :space/domain-id
/spaceName

UpdateUse
rProfile

sagemaker:UpdateUs
erProfile

arn:aws:sagemaker:
region:account-i

d :user-profile/domain-
id/userProfileName

UpdateWorkforce sagemaker:UpdateWo
rkforce

arn:aws:sagemaker:
region:account-i

d :workforce/*

UpdateWorkteam sagemaker:UpdateWo
rkteam

arn:aws:sagemaker:
region:account-i

d :workteam/private-
crowd/*

Amazon SageMaker API and Required Permissions for Actions

API Operation: AddTags

Required Permissions (API Action): sagemaker:AddTags

Resources: *

Amazon SageMaker API Permissions Reference 5821

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdatePipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdatePipelineExecution.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateSpace.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateUserProfile.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html

Amazon SageMaker Developer Guide

API Operation: CreateEndpoint

Required Permissions (API Action): sagemaker:CreateEndpoint

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName

API Operation: CreateEndpointConfig

Required Permissions (API Action): sagemaker:CreateEndpointConfig

Resources: arn:aws:sagemaker:region:account-id:endpoint-
config/endpointConfigName

API Operation: CreateModel

Required Permissions (API Action): sagemaker:CreateModel, iam:PassRole

Resources: arn:aws:sagemaker:region:account-id:model/modelName

API Operation: CreateLabelingJob

Required Permissions (API Action): sagemaker:CreateLabelingJob, iam:PassRole

Resources: arn:aws:sagemaker:region:account-id:labeling-job/labelingJobName

API Operation: CreateNotebookInstance

Required Permissions (API Action): sagemaker:CreateNotebookInstance,
iam:PassRole, ec2:CreateNetworkInterface, ec2:AttachNetworkInterface,
ec2:ModifyNetworkInterfaceAttribute, ec2:DescribeAvailabilityZones,
ec2:DescribeInternetGateways, ec2:DescribeSecurityGroups,
ec2:DescribeSubnets, ec2:DescribeVpcs, kms:CreateGrant

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: CreateTrainingJob

Required Permissions (API Action): sagemaker:CreateTrainingJob, iam:PassRole

Resources: arn:aws:sagemaker:region:account-id:training-job/trainingJobName

API Operation: CreateWorkforce

Required Permissions (API Action): sagemaker:CreateWorkforce, cognito-
idp:DescribeUserPoolClient, cognito-idp:UpdateUserPool, cognito-
idp:DescribeUserPool, cognito-idp:UpdateUserPoolClient

Amazon SageMaker API Permissions Reference 5822

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkforce.html

Amazon SageMaker Developer Guide

Resources: arn:aws:sagemaker:region:account-id:workforce/*

API Operation: CreateWorkteam

Required Permissions (API Action): sagemaker:CreateWorkteam, cognito-
idp:DescribeUserPoolClient, cognito-idp:UpdateUserPool, cognito-
idp:DescribeUserPool, cognito-idp:UpdateUserPoolClient

Resources:arn:aws:sagemaker:region:account-id:workteam/private-crowd/work
team name

API Operation: DeleteEndpoint

Required Permissions (API Action): sagemaker:DeleteEndpoint

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName

API Operation: DeleteEndpointConfig

Required Permissions (API Action): sagemaker:DeleteEndpointConfig

Resources: arn:aws:sagemaker:region:account-id:endpoint-
config/endpointConfigName

API Operation: DeleteModel

Required Permissions (API Action): sagemaker:DeleteModel

Resources: arn:aws:sagemaker:region:account-id:model/modelName

API Operation: DeleteNotebookInstance

Required Permissions (API Action): sagemaker:DeleteNotebookInstance,
ec2:DeleteNetworkInterface, ec2:DetachNetworkInterface,
ec2:DescribeAvailabilityZones, ec2:DescribeInternetGateways,
ec2:DescribeSecurityGroups, ec2:DescribeSubnets, ec2:DescribeVpcs

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: DeleteTags

Required Permissions (API Action): sagemaker:DeleteTags

Resources: *

Amazon SageMaker API Permissions Reference 5823

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteTags.html

Amazon SageMaker Developer Guide

API Operation: DeleteWorkteam

Required Permissions (API Action): sagemaker:DeleteWorkforce

Resources: arn:aws:sagemaker:region:account-id:workforce/private-crowd/*

API Operation: DeleteWorkteam

Required Permissions (API Action): sagemaker:DeleteWorkteam

Resources: arn:aws:sagemaker:region:account-id:workteam/private-crowd/*

API Operation: DescribeEndpoint

Required Permissions (API Action): sagemaker:DescribeEndpoint

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName

API Operation: DescribeEndpointConfig

Required Permissions (API Action): sagemaker:DescribeEndpointConfig

Resources: arn:aws:sagemaker:region:account-id:endpoint-
config/endpointConfigName

API Operation: DescribeLabelingJob

Required Permissions (API Action): sagemaker:DescribeLabelingJob

Resources: arn:aws:sagemaker:region:account-id:labeling-job/labelingJobName

API Operation: DescribeModel

Required Permissions (API Action): sagemaker:DescribeModel

Resources: arn:aws:sagemaker:region:account-id:model/modelName

API Operation: DescribeNotebookInstance

Required Permissions (API Action): sagemaker:DescribeNotebookInstance

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: DescribeSubscribedWorkforce

Required Permissions (API Action): sagemaker:DescribeSubscribedWorkforce, aws-
marketplace:ViewSubscriptions

Amazon SageMaker API Permissions Reference 5824

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkforce.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeSubscribedWorkforce.html

Amazon SageMaker Developer Guide

Resources: arn:aws:sagemaker:region:account-id:workforce/*

API Operation: DescribeSubscribedWorkteam

Required Permissions (API Action): sagemaker:DescribeSubscribedWorkteam, aws-
marketplace:ViewSubscriptions

Resources: arn:aws:sagemaker:region:account-id:workteam/vendor-crowd/*

API Operation: DescribeTrainingJob

Required Permissions (API Action): sagemaker:DescribeTrainingJob

Resources: arn:aws:sagemaker:region:account-id:training-job/trainingJobName

API Operation: DescribeWorkteam

Required Permissions (API Action): sagemaker:DescribeWorkteam

Resources: arn:aws:sagemaker:region:account-id:workteam/private-crowd/*

API Operation: CreatePresignedNotebookInstanceUrl

Required Permissions (API Action): sagemaker:CreatePresignedNotebookInstanceUrl

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: runtime_InvokeEndpoint

Required Permissions (API Action): sagemaker:InvokeEndpoint

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName

API Operation: ListEndpointConfigs

Required Permissions (API Action): sagemaker:ListEndpointConfigs

Resources: *

API Operation: ListEndpoints

Required Permissions (API Action): sagemaker:ListEndpoints

Resources: *

API Operation: ListLabelingJobs

Required Permissions (API Action): sagemaker:ListLabelingJobs

Amazon SageMaker API Permissions Reference 5825

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeSubscribedWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpointConfigs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpoints.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListLabelingJobs.html

Amazon SageMaker Developer Guide

Resources: *

API Operation: ListLabelingJobsForWorkteam

Required Permissions (API Action): sagemaker:ListLabelingJobsForWorkteam

Resources: *

API Operation: ListModels

Required Permissions (API Action): sagemaker:ListModels

Resources: *

API Operation: ListNotebookInstances

Required Permissions (API Action): sagemaker:ListNotebookInstances

Resources: *

API Operation: ListSubscribedWorkteams

Required Permissions (API Action): sagemaker:ListSubscribedWorkteam, aws-
marketplace:ViewSubscriptions

Resources: *

API Operation: ListTags

Required Permissions (API Action): sagemaker:ListTags

Resources: *

API Operation: ListTrainingJobs

Required Permissions (API Action): sagemaker:ListTrainingJobs

Resources: *

API Operation: ListWorkteams

Required Permissions (API Action): sagemaker:ListWorkforces

Resources: *

API Operation: ListWorkteams

Required Permissions (API Action): sagemaker:ListWorkteams

Amazon SageMaker API Permissions Reference 5826

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListLabelingJobsForWorkteam.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListModels.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListNotebookInstances.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListSubscribedWorkteams.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTags.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrainingJobs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListWorkforces.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListWorkteams.html

Amazon SageMaker Developer Guide

Resources: *

API Operation: StartNotebookInstance

Required Permissions (API Action): sagemaker:StartNotebookInstance,
ec2:CreateNetworkInterface, ec2:AttachNetworkInterface,
ec2:ModifyNetworkInterfaceAttribute, ec2:DescribeAvailabilityZones,
ec2:DescribeInternetGateways, ec2:DescribeSecurityGroups,
ec2:DescribeSubnets, ec2:DescribeVpcs, kms:CreateGrant

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: StopLabelingJob

Required Permissions (API Action): sagemaker:StopLabelingJob

Resources: arn:aws:sagemaker:region:account-id:labeling-job/labelingJobName

API Operation: StopNotebookInstance

Required Permissions (API Action): sagemaker:StopNotebookInstance

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

API Operation: StopTrainingJob

Required Permissions (API Action): sagemaker:StopTrainingJob

Resources: arn:aws:sagemaker:region:account-id:training-job/trainingJobName

API Operation: UpdateEndpoint

Required Permissions (API Action): sagemaker:UpdateEndpoints

Resources: arn:aws:sagemaker:region:account-id:endpoint/endpointName

API Operation: UpdateNotebookInstance

Required Permissions (API Action): sagemaker:UpdateNotebookInstance, iam:PassRole

Resources: arn:aws:sagemaker:region:account-id:notebook-
instance/notebookInstanceName

Amazon SageMaker API Permissions Reference 5827

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StartNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopNotebookInstance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateNotebookInstance.html

Amazon SageMaker Developer Guide

API Operation: UpdateWorkteam

Required Permissions (API Action): sagemaker:UpdateWorkteam

Resources: arn:aws:sagemaker:region:account-id:workteam/private-crowd/*

AWS Managed Policies for Amazon SageMaker

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
to which the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

Important

We recommend that you use the most restricted policy that allows you to perform your use
case.

The following AWS managed policies, which you can attach to users in your account, are specific to
Amazon SageMaker:

• AmazonSageMakerFullAccess – Grants full access to Amazon SageMaker and SageMaker
geospatial resources and the supported operations. This does not provide unrestricted

AWS Managed Policies for SageMaker 5828

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkteam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon SageMaker Developer Guide

Amazon S3 access, but supports buckets and objects with specific sagemaker tags. This
policy allows all IAM roles to be passed to Amazon SageMaker, but only allows IAM roles with
"AmazonSageMaker" in them to be passed to the AWS Glue, AWS Step Functions, and AWS
RoboMaker services.

• AmazonSageMakerReadOnly – Grants read-only access to Amazon SageMaker resources.

The following AWS managed policies can be attached to users in your account but are not
recommended:

• AdministratorAccess – Grants all actions for all AWS services and for all resources in the
account.

• DataScientist – Grants a wide range of permissions to cover most of the use cases (primarily
for analytics and business intelligence) encountered by data scientists.

You can review these permissions policies by signing in to the IAM console and searching for them.

You can also create your own custom IAM policies to allow permissions for Amazon SageMaker
actions and resources as you need them. You can attach these custom policies to the users or
groups that require them.

Topics

• AWS managed policy: AmazonSageMakerFullAccess

• AWS managed policy: AmazonSageMakerReadOnly

• AWS managed policies for Amazon SageMaker Canvas

• AWS managed policies for Amazon SageMaker Cluster

• AWS managed policies for Amazon SageMaker Feature Store

• AWS managed policies for Amazon SageMaker geospatial

• AWS Managed Policies for Amazon SageMaker Ground Truth

• AWS Managed Policies for SageMaker Model Governance

• AWS Managed Policies for Model Registry

• AWS Managed Policies for SageMaker Notebooks

• AWS Managed Policies for SageMaker Pipelines

• AWS Managed Policies for SageMaker projects and JumpStart

AWS Managed Policies for SageMaker 5829

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_data-scientist

Amazon SageMaker Developer Guide

• SageMaker Updates to AWS Managed Policies

AWS managed policy: AmazonSageMakerFullAccess

This policy grants administrative permissions that allow a principal full access to all Amazon
SageMaker and SageMaker geospatial resources and operations. The policy also provides select
access to related services. This policy allows all IAM roles to be passed to Amazon SageMaker, but
only allows IAM roles with "AmazonSageMaker" in them to be passed to the AWS Glue, AWS Step
Functions, and AWS RoboMaker services. This policy does not include permissions to create an
Amazon SageMaker domain. For information on the policy needed to create a domain, see Create
an Administrative User and Group .

Permissions details

This policy includes the following permissions.

• application-autoscaling – Allows principals to automatically scale a SageMaker real-time
inference endpoint.

• athena – Allows principals to query a list of data catalogs, databases, and table metadata from
Amazon Athena.

• aws-marketplace – Allows principals to view AWS AI Marketplace subscriptions. You need this
if you want to access SageMaker software subscribed in AWS Marketplace.

• cloudformation – Allows principals to get AWS CloudFormation templates for using
SageMaker JumpStart solutions and Pipelines. SageMaker JumpStart creates resources necessary
to run end-to-end machine learning solutions that tie SageMaker to other AWS services.
SageMaker Pipelines creates new projects that are backed by Service Catalog.

• cloudwatch – Allows principals to post CloudWatch metrics, interact with alarms, and upload
logs to CloudWatch Logs in your account.

• codebuild – Allows principals to store AWS CodeBuild artifacts for SageMaker Pipeline and
Projects.

• codecommit – Needed for AWS CodeCommit integration with SageMaker notebook instances.

• cognito-idp – Needed for Amazon SageMaker Ground Truth to define private workforce and
work teams.

• ec2 – Needed for SageMaker to manage Amazon EC2 resources and network interfaces when
you specify an Amazon VPC for your SageMaker jobs, models, endpoints, and notebook
instances.

AWS Managed Policies for SageMaker 5830

Amazon SageMaker Developer Guide

• ecr – Needed to pull and store Docker artifacts for Amazon SageMaker Studio Classic (custom
images), training, processing, batch inference, and inference endpoints. This is also required to
use your own container in SageMaker. Additional permissions for SageMaker JumpStart solutions
are required to create and remove custom images on behalf of users.

• elastic-inference – Allows principals to connect to Amazon Elastic Inference for using
SageMaker notebook instances and endpoints.

• elasticfilesystem – Allows principals to access Amazon Elastic File System. This is needed
for SageMaker to use data sources in Amazon Elastic File System for training machine learning
models.

• fsx – Allows principals to access Amazon FSx. This is needed for SageMaker to use data sources
in Amazon FSx for training machine learning models.

• glue – Needed for inference pipeline pre-processing from within SageMaker notebook instances.

• groundtruthlabeling – Needed for Ground Truth labeling jobs. The groundtruthlabeling
endpoint is accessed by the Ground Truth console.

• iam – Needed to give the SageMaker console access to available IAM roles and create service-
linked roles.

• kms – Needed to give the SageMaker console access to available AWS KMS keys and retrieve
them for any specified AWS KMS aliases in jobs and endpoints.

• lambda – Allows principals to invoke and get a list of AWS Lambda functions.

• logs – Needed to allow SageMaker jobs and endpoints to publish log streams.

• redshift – Allows principals to access Amazon Redshift cluster credentials.

• redshift-data – Allows principals to use data from Amazon Redshift to run, describe, and
cancel statements; get statement results; and list schemas and tables.

• robomaker – Allows principals to have full access to create, get descriptions, and delete AWS
RoboMaker simulation applications and jobs. This is also needed to run reinforcement learning
examples on notebook instances.

• s3, s3express – Allows principals to have full access to Amazon S3 and Amazon S3 Express
resources pertaining to SageMaker, but not all of Amazon S3 or Amazon S3 Express.

• sagemaker – Allows principals to list tags on SageMaker user profiles and add tags to
SageMaker apps. Allows access only to SageMaker flow-definitions of sagemaker:WorkteamType
"private-crowd" or "vendor-crowd".

• sagemaker and sagemaker-geospatial – Allows principals read-only access to SageMaker
domains and user profiles.

AWS Managed Policies for SageMaker 5831

Amazon SageMaker Developer Guide

• secretsmanager – Allows principals to have full access to AWS Secrets Manager. The principals
can securely encrypt, store, and retrieve credentials for databases and other services. This is also
needed for SageMaker notebook instances with SageMaker code repositories that use GitHub.

• servicecatalog – Allows principals to use Service Catalog. The principals can create, get
a list of, update, or terminate provisioned products, such as servers, databases, websites, or
applications deployed using AWS resources. This is needed for SageMaker JumpStart and
Projects to find and read service catalog products and launch AWS resources in users.

• sns – Allows principals to get a list of Amazon SNS topics. This is needed for endpoints with
Async Inference enabled for notifying users that their inference has completed.

• states – Needed for SageMaker JumpStart and Pipelines to use a service catalog to create step
function resources.

• tag – Needed for SageMaker Pipelines to render in Studio Classic. Studio Classic needs resources
tagged with particular sagemaker:project-id tag-key. This requires the tag:GetResources
permission.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllNonAdminSageMakerActions",
 "Effect": "Allow",
 "Action": [
 "sagemaker:*",
 "sagemaker-geospatial:*"
],
 "NotResource": [
 "arn:aws:sagemaker:*:*:domain/*",
 "arn:aws:sagemaker:*:*:user-profile/*",
 "arn:aws:sagemaker:*:*:app/*",
 "arn:aws:sagemaker:*:*:space/*",
 "arn:aws:sagemaker:*:*:flow-definition/*"
]
 },
 {
 "Sid": "AllowAddTagsForApp",
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddTags"
],

AWS Managed Policies for SageMaker 5832

Amazon SageMaker Developer Guide

 "Resource": [
 "arn:aws:sagemaker:*:*:app/*"
]
 },
 {
 "Sid": "AllowStudioActions",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:DescribeDomain",
 "sagemaker:ListDomains",
 "sagemaker:DescribeUserProfile",
 "sagemaker:ListUserProfiles",
 "sagemaker:DescribeSpace",
 "sagemaker:ListSpaces",
 "sagemaker:DescribeApp",
 "sagemaker:ListApps"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowAppActionsForUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp",
 "sagemaker:DeleteApp"
],
 "Resource": "arn:aws:sagemaker:*:*:app/*/*/*/*",
 "Condition": {
 "Null": {
 "sagemaker:OwnerUserProfileArn": "true"
 }
 }
 },
 {
 "Sid": "AllowAppActionsForSharedSpaces",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp",
 "sagemaker:DeleteApp"
],
 "Resource": "arn:aws:sagemaker:*:*:app/${sagemaker:DomainId}/*/*/*",
 "Condition": {
 "StringEquals": {

AWS Managed Policies for SageMaker 5833

Amazon SageMaker Developer Guide

 "sagemaker:SpaceSharingType": [
 "Shared"
]
 }
 }
 },
 {
 "Sid": "AllowMutatingActionsOnSharedSpacesWithoutOwner",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateSpace",
 "sagemaker:UpdateSpace",
 "sagemaker:DeleteSpace"
],
 "Resource": "arn:aws:sagemaker:*:*:space/${sagemaker:DomainId}/*",
 "Condition": {
 "Null": {
 "sagemaker:OwnerUserProfileArn": "true"
 }
 }
 },
 {
 "Sid": "RestrictMutatingActionsOnSpacesToOwnerUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateSpace",
 "sagemaker:UpdateSpace",
 "sagemaker:DeleteSpace"
],
 "Resource": "arn:aws:sagemaker:*:*:space/${sagemaker:DomainId}/*",
 "Condition": {
 "ArnLike": {
 "sagemaker:OwnerUserProfileArn": "arn:aws:sagemaker:*:*:user-profile/
${sagemaker:DomainId}/${sagemaker:UserProfileName}"
 },
 "StringEquals": {
 "sagemaker:SpaceSharingType": [
 "Private",
 "Shared"
]
 }
 }
 },
 {

AWS Managed Policies for SageMaker 5834

Amazon SageMaker Developer Guide

 "Sid": "RestrictMutatingActionsOnPrivateSpaceAppsToOwnerUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp",
 "sagemaker:DeleteApp"
],
 "Resource": "arn:aws:sagemaker:*:*:app/${sagemaker:DomainId}/*/*/*",
 "Condition": {
 "ArnLike": {
 "sagemaker:OwnerUserProfileArn": "arn:aws:sagemaker:*:*:user-profile/
${sagemaker:DomainId}/${sagemaker:UserProfileName}"
 },
 "StringEquals": {
 "sagemaker:SpaceSharingType": [
 "Private"
]
 }
 }
 },
 {
 "Sid": "AllowFlowDefinitionActions",
 "Effect": "Allow",
 "Action": "sagemaker:*",
 "Resource": [
 "arn:aws:sagemaker:*:*:flow-definition/*"
],
 "Condition": {
 "StringEqualsIfExists": {
 "sagemaker:WorkteamType": [
 "private-crowd",
 "vendor-crowd"
]
 }
 }
 },
 {
 "Sid": "AllowAWSServiceActions",
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:DeleteScheduledAction",
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:DescribeScalableTargets",
 "application-autoscaling:DescribeScalingActivities",

AWS Managed Policies for SageMaker 5835

Amazon SageMaker Developer Guide

 "application-autoscaling:DescribeScalingPolicies",
 "application-autoscaling:DescribeScheduledActions",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:PutScheduledAction",
 "application-autoscaling:RegisterScalableTarget",
 "aws-marketplace:ViewSubscriptions",
 "cloudformation:GetTemplateSummary",
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:GetMetricData",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:PutMetricData",
 "codecommit:BatchGetRepositories",
 "codecommit:CreateRepository",
 "codecommit:GetRepository",
 "codecommit:List*",
 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:AdminDeleteUser",
 "cognito-idp:AdminDisableUser",
 "cognito-idp:AdminEnableUser",
 "cognito-idp:AdminRemoveUserFromGroup",
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:List*",
 "cognito-idp:UpdateUserPool",
 "cognito-idp:UpdateUserPoolClient",
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:CreateVpcEndpoint",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcEndpoints",

AWS Managed Policies for SageMaker 5836

Amazon SageMaker Developer Guide

 "ec2:DescribeVpcs",
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:CreateRepository",
 "ecr:Describe*",
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer",
 "ecr:StartImageScan",
 "elastic-inference:Connect",
 "elasticfilesystem:DescribeFileSystems",
 "elasticfilesystem:DescribeMountTargets",
 "fsx:DescribeFileSystems",
 "glue:CreateJob",
 "glue:DeleteJob",
 "glue:GetJob*",
 "glue:GetTable*",
 "glue:GetWorkflowRun",
 "glue:ResetJobBookmark",
 "glue:StartJobRun",
 "glue:StartWorkflowRun",
 "glue:UpdateJob",
 "groundtruthlabeling:*",
 "iam:ListRoles",
 "kms:DescribeKey",
 "kms:ListAliases",
 "lambda:ListFunctions",
 "logs:CreateLogDelivery",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogDelivery",
 "logs:Describe*",
 "logs:GetLogDelivery",
 "logs:GetLogEvents",
 "logs:ListLogDeliveries",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery",
 "robomaker:CreateSimulationApplication",
 "robomaker:DescribeSimulationApplication",
 "robomaker:DeleteSimulationApplication",
 "robomaker:CreateSimulationJob",
 "robomaker:DescribeSimulationJob",
 "robomaker:CancelSimulationJob",
 "secretsmanager:ListSecrets",

AWS Managed Policies for SageMaker 5837

Amazon SageMaker Developer Guide

 "servicecatalog:Describe*",
 "servicecatalog:List*",
 "servicecatalog:ScanProvisionedProducts",
 "servicecatalog:SearchProducts",
 "servicecatalog:SearchProvisionedProducts",
 "sns:ListTopics",
 "tag:GetResources"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowECRActions",
 "Effect": "Allow",
 "Action": [
 "ecr:SetRepositoryPolicy",
 "ecr:CompleteLayerUpload",
 "ecr:BatchDeleteImage",
 "ecr:UploadLayerPart",
 "ecr:DeleteRepositoryPolicy",
 "ecr:InitiateLayerUpload",
 "ecr:DeleteRepository",
 "ecr:PutImage"
],
 "Resource": [
 "arn:aws:ecr:*:*:repository/*sagemaker*"
]
 },
 {
 "Sid": "AllowCodeCommitActions",
 "Effect": "Allow",
 "Action": [
 "codecommit:GitPull",
 "codecommit:GitPush"
],
 "Resource": [
 "arn:aws:codecommit:*:*:*sagemaker*",
 "arn:aws:codecommit:*:*:*SageMaker*",
 "arn:aws:codecommit:*:*:*Sagemaker*"
]
 },
 {
 "Sid": "AllowCodeBuildActions",
 "Action": [
 "codebuild:BatchGetBuilds",

AWS Managed Policies for SageMaker 5838

Amazon SageMaker Developer Guide

 "codebuild:StartBuild"
],
 "Resource": [
 "arn:aws:codebuild:*:*:project/sagemaker*",
 "arn:aws:codebuild:*:*:build/*"
],
 "Effect": "Allow"
 },
 {
 "Sid": "AllowStepFunctionsActions",
 "Action": [
 "states:DescribeExecution",
 "states:GetExecutionHistory",
 "states:StartExecution",
 "states:StopExecution",
 "states:UpdateStateMachine"
],
 "Resource": [
 "arn:aws:states:*:*:statemachine:*sagemaker*",
 "arn:aws:states:*:*:execution:*sagemaker*:*"
],
 "Effect": "Allow"
 },
 {
 "Sid": "AllowSecretManagerActions",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:CreateSecret"
],
 "Resource": [
 "arn:aws:secretsmanager:*:*:secret:AmazonSageMaker-*"
]
 },
 {
 "Sid": "AllowReadOnlySecretManagerActions",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue"
],
 "Resource": "*",
 "Condition": {

AWS Managed Policies for SageMaker 5839

Amazon SageMaker Developer Guide

 "StringEquals": {
 "secretsmanager:ResourceTag/SageMaker": "true"
 }
 }
 },
 {
 "Sid": "AllowServiceCatalogProvisionProduct",
 "Effect": "Allow",
 "Action": [
 "servicecatalog:ProvisionProduct"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowServiceCatalogTerminateUpdateProvisionProduct",
 "Effect": "Allow",
 "Action": [
 "servicecatalog:TerminateProvisionedProduct",
 "servicecatalog:UpdateProvisionedProduct"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "servicecatalog:userLevel": "self"
 }
 }
 },
 {
 "Sid": "AllowS3ObjectActions",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:AbortMultipartUpload"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*",
 "arn:aws:s3:::*aws-glue*"
]
 },
 {

AWS Managed Policies for SageMaker 5840

Amazon SageMaker Developer Guide

 "Sid": "AllowS3GetObjectWithSageMakerExistingObjectTag",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringEqualsIgnoreCase": {
 "s3:ExistingObjectTag/SageMaker": "true"
 }
 }
 },
 {
 "Sid": "AllowS3GetObjectWithServiceCatalogProvisioningExistingObjectTag",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringEquals": {
 "s3:ExistingObjectTag/servicecatalog:provisioning": "true"
 }
 }
 },
 {
 "Sid": "AllowS3BucketActions",
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetBucketCors",
 "s3:PutBucketCors"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowS3BucketACL",

AWS Managed Policies for SageMaker 5841

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "s3:GetBucketAcl",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Sid": "AllowLambdaInvokeFunction",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:*SageMaker*",
 "arn:aws:lambda:*:*:function:*sagemaker*",
 "arn:aws:lambda:*:*:function:*Sagemaker*",
 "arn:aws:lambda:*:*:function:*LabelingFunction*"
]
 },
 {
 "Sid": "AllowCreateServiceLinkedRoleForSageMakerApplicationAutoscaling",
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/sagemaker.application-
autoscaling.amazonaws.com/AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "sagemaker.application-autoscaling.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AllowCreateServiceLinkedRoleForRobomaker",
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "robomaker.amazonaws.com"

AWS Managed Policies for SageMaker 5842

Amazon SageMaker Developer Guide

 }
 }
 },
 {
 "Sid": "AllowSNSActions",
 "Effect": "Allow",
 "Action": [
 "sns:Subscribe",
 "sns:CreateTopic",
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:*:*:*SageMaker*",
 "arn:aws:sns:*:*:*Sagemaker*",
 "arn:aws:sns:*:*:*sagemaker*"
]
 },
 {
 "Sid": "AllowPassRoleForSageMakerRoles",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*AmazonSageMaker*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "glue.amazonaws.com",
 "robomaker.amazonaws.com",
 "states.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "AllowPassRoleToSageMaker",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"

AWS Managed Policies for SageMaker 5843

Amazon SageMaker Developer Guide

 }
 }
 },
 {
 "Sid": "AllowAthenaActions",
 "Effect": "Allow",
 "Action": [
 "athena:ListDataCatalogs",
 "athena:ListDatabases",
 "athena:ListTableMetadata",
 "athena:GetQueryExecution",
 "athena:GetQueryResults",
 "athena:StartQueryExecution",
 "athena:StopQueryExecution"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "AllowGlueCreateTable",
 "Effect": "Allow",
 "Action": [
 "glue:CreateTable"
],
 "Resource": [
 "arn:aws:glue:*:*:table/*/sagemaker_tmp_*",
 "arn:aws:glue:*:*:table/sagemaker_featurestore/*",
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/*"
]
 },
 {
 "Sid": "AllowGlueUpdateTable",
 "Effect": "Allow",
 "Action": [
 "glue:UpdateTable"
],
 "Resource": [
 "arn:aws:glue:*:*:table/sagemaker_featurestore/*",
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/sagemaker_featurestore"
]
 },

AWS Managed Policies for SageMaker 5844

Amazon SageMaker Developer Guide

 {
 "Sid": "AllowGlueDeleteTable",
 "Effect": "Allow",
 "Action": [
 "glue:DeleteTable"
],
 "Resource": [
 "arn:aws:glue:*:*:table/*/sagemaker_tmp_*",
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/*"
]
 },
 {
 "Sid": "AllowGlueGetTablesAndDatabases",
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabases",
 "glue:GetTable",
 "glue:GetTables"
],
 "Resource": [
 "arn:aws:glue:*:*:table/*",
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/*"
]
 },
 {
 "Sid": "AllowGlueGetAndCreateDatabase",
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase"
],
 "Resource": [
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/sagemaker_featurestore",
 "arn:aws:glue:*:*:database/sagemaker_processing",
 "arn:aws:glue:*:*:database/default",
 "arn:aws:glue:*:*:database/sagemaker_data_wrangler"
]
 },
 {
 "Sid": "AllowRedshiftDataActions",
 "Effect": "Allow",

AWS Managed Policies for SageMaker 5845

Amazon SageMaker Developer Guide

 "Action": [
 "redshift-data:ExecuteStatement",
 "redshift-data:DescribeStatement",
 "redshift-data:CancelStatement",
 "redshift-data:GetStatementResult",
 "redshift-data:ListSchemas",
 "redshift-data:ListTables"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "AllowRedshiftGetClusterCredentials",
 "Effect": "Allow",
 "Action": [
 "redshift:GetClusterCredentials"
],
 "Resource": [
 "arn:aws:redshift:*:*:dbuser:*/sagemaker_access*",
 "arn:aws:redshift:*:*:dbname:*"
]
 },
 {
 "Sid": "AllowListTagsForUserProfile",
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:user-profile/*"
]
 },
 {
 "Sid": "AllowCloudformationListStackResources",
 "Effect": "Allow",
 "Action": [
 "cloudformation:ListStackResources"
],
 "Resource": "arn:aws:cloudformation:*:*:stack/SC-*"
 },
 {
 "Sid": "AllowS3ExpressObjectActions",
 "Effect": "Allow",

AWS Managed Policies for SageMaker 5846

Amazon SageMaker Developer Guide

 "Action": [
 "s3express:CreateSession"
],
 "Resource": [
 "arn:aws:s3express:*:*:bucket/*SageMaker*",
 "arn:aws:s3express:*:*:bucket/*Sagemaker*",
 "arn:aws:s3express:*:*:bucket/*sagemaker*",
 "arn:aws:s3express:*:*:bucket/*aws-glue*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "AllowS3ExpressCreateBucketActions",
 "Effect": "Allow",
 "Action": [
 "s3express:CreateBucket"
],
 "Resource": [
 "arn:aws:s3express:*:*:bucket/*SageMaker*",
 "arn:aws:s3express:*:*:bucket/*Sagemaker*",
 "arn:aws:s3express:*:*:bucket/*sagemaker*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "AllowS3ExpressListBucketActions",
 "Effect": "Allow",
 "Action": [
 "s3express:ListAllMyDirectoryBuckets"
],
 "Resource": "*"
 }
]
}

AWS Managed Policies for SageMaker 5847

Amazon SageMaker Developer Guide

AWS managed policy: AmazonSageMakerReadOnly

This policy grants read-only access to Amazon SageMaker through the AWS Management Console
and SDK.

Permissions details

This policy includes the following permissions.

• application-autoscaling – Allows users to browse descriptions of scalable SageMaker real-
time inference endpoints.

• aws-marketplace – Allows users to view AWS AI Marketplace subscriptions.

• cloudwatch – Allows users to receive CloudWatch alarms.

• cognito-idp – Needed for Amazon SageMaker Ground Truth to browse descriptions and lists of
private workforce and work teams.

• ecr – Needed to read Docker artifacts for training and inference.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:Describe*",
 "sagemaker:List*",
 "sagemaker:BatchGetMetrics",
 "sagemaker:GetDeviceRegistration",
 "sagemaker:GetDeviceFleetReport",
 "sagemaker:GetSearchSuggestions",
 "sagemaker:BatchGetRecord",
 "sagemaker:GetRecord",
 "sagemaker:Search",
 "sagemaker:QueryLineage",
 "sagemaker:GetLineageGroupPolicy",
 "sagemaker:BatchDescribeModelPackage",
 "sagemaker:GetModelPackageGroupPolicy"
],
 "Resource": "*"
 },
 {

AWS Managed Policies for SageMaker 5848

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "application-autoscaling:DescribeScalableTargets",
 "application-autoscaling:DescribeScalingActivities",
 "application-autoscaling:DescribeScalingPolicies",
 "application-autoscaling:DescribeScheduledActions",
 "aws-marketplace:ViewSubscriptions",
 "cloudwatch:DescribeAlarms",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:ListGroups",
 "cognito-idp:ListIdentityProviders",
 "cognito-idp:ListUserPoolClients",
 "cognito-idp:ListUserPools",
 "cognito-idp:ListUsers",
 "cognito-idp:ListUsersInGroup",
 "ecr:Describe*"
],
 "Resource": "*"
 }
]
}

AWS managed policies for Amazon SageMaker Canvas

These AWS managed policies add permissions required to use Amazon SageMaker Canvas. The
policies are available in your AWS account and are used by execution roles created from the
SageMaker console.

Topics

• AWS managed policy: AmazonSageMakerCanvasFullAccess

• AWS managed policy: AmazonSageMakerCanvasDataPrepFullAccess

• AWS managed policy: AmazonSageMakerCanvasDirectDeployAccess

• AWS managed policy: AmazonSageMakerCanvasAIServicesAccess

• AWS managed policy: AmazonSageMakerCanvasBedrockAccess

• AWS managed policy: AmazonSageMakerCanvasForecastAccess

• Amazon SageMaker updates to Amazon SageMaker Canvas managed policies

AWS Managed Policies for SageMaker 5849

Amazon SageMaker Developer Guide

AWS managed policy: AmazonSageMakerCanvasFullAccess

This policy grants permissions that allow full access to Amazon SageMaker Canvas through the
AWS Management Console and SDK. The policy also provides select access to related services [for
example, Amazon Simple Storage Service (Amazon S3), AWS Identity and Access Management
(IAM), Amazon Virtual Private Cloud (Amazon VPC), Amazon Elastic Container Registry (Amazon
ECR), Amazon CloudWatch Logs, Amazon Redshift, AWS Secrets Manager, Amazon SageMaker
Autopilot, SageMaker Model Registry, and Amazon Forecast].

This policy is intended to help customers experiment and get started with all the capabilities of
SageMaker Canvas. For more fine-grained control, we suggest customers build their own scoped
down versions as they move to production workloads. For more information, see IAM policy types:
How and when to use them.

Permissions details

This AWS managed policy includes the following permissions.

• sagemaker – Allows principals to create and host SageMaker models on resources whose
ARN contains "Canvas", "canvas", or "model-compilation-". Additionally, users can register their
SageMaker Canvas model to SageMaker Model Registry in the same AWS account.

• ec2 – Allows principals to create Amazon VPC endpoints.

• ecr – Allows principals to get information about a container image.

• glue – Allows principals to retrieve the tables in the catalog.

• iam – Allows principals to pass an IAM role to Amazon SageMaker and Amazon Forecast. Also
allows principals to create a service-linked role.

• logs – Allows principals to publish logs from training jobs and endpoints.

• s3 – Allows principals to add and retrieve objects from Amazon S3 buckets. These objects are
limited to those whose name includes "SageMaker", "Sagemaker", or "sagemaker". Also allows
principals to retrieve objects from Amazon S3 buckets whose ARN starts with "jumpstart-cache-
prod-" in specific regions.

• secretsmanager – Allows principals to store customer credentials to connect to a Snowflake
database using Secrets Manager.

• redshift – Allows principals to get credentials for a "sagemaker_access*" dbuser on any
Amazon Redshift cluster if that user exists.

• redshift-data – Allows principals to run queries on Amazon Redshift using the Amazon
Redshift Data API. This only provides access to the Redshift Data APIs themselves and does not

AWS Managed Policies for SageMaker 5850

https://aws.amazon.com/blogs/security/iam-policy-types-how-and-when-to-use-them/
https://aws.amazon.com/blogs/security/iam-policy-types-how-and-when-to-use-them/

Amazon SageMaker Developer Guide

directly provide access to your Amazon Redshift clusters. For more information, see Using the
Amazon Redshift Data API.

• forecast – Allows principals to use Amazon Forecast.

• application-autoscaling – Allows principals to automatically scale a SageMaker inference
endpoint.

• rds – Allows principals to return information about provisioned Amazon RDS instances.

• cloudwatch – Allows principals to create and manage Amazon CloudWatch alarms.

• athena – Allows principals to create, read, and manage Amazon Athena queries, catalogs, and
executions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SageMakerUserDetailsAndPackageOperations",
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeDomain",
 "sagemaker:DescribeUserProfile",
 "sagemaker:ListTags",
 "sagemaker:ListModelPackages",
 "sagemaker:ListModelPackageGroups",
 "sagemaker:ListEndpoints"
],
 "Resource": "*"
 },
 {
 "Sid": "SageMakerPackageGroupOperations",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateModelPackageGroup",
 "sagemaker:CreateModelPackage",
 "sagemaker:DescribeModelPackageGroup",
 "sagemaker:DescribeModelPackage"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:model-package/*",
 "arn:aws:sagemaker:*:*:model-package-group/*"
]
 },

AWS Managed Policies for SageMaker 5851

https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html

Amazon SageMaker Developer Guide

 {
 "Sid": "SageMakerTrainingOperations",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateCompilationJob",
 "sagemaker:CreateEndpoint",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:CreateModel",
 "sagemaker:CreateProcessingJob",
 "sagemaker:CreateAutoMLJob",
 "sagemaker:CreateAutoMLJobV2",
 "sagemaker:DeleteEndpoint",
 "sagemaker:DescribeCompilationJob",
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:DescribeModel",
 "sagemaker:DescribeProcessingJob",
 "sagemaker:DescribeAutoMLJob",
 "sagemaker:DescribeAutoMLJobV2",
 "sagemaker:ListCandidatesForAutoMLJob",
 "sagemaker:AddTags",
 "sagemaker:DeleteApp"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:*Canvas*",
 "arn:aws:sagemaker:*:*:*canvas*",
 "arn:aws:sagemaker:*:*:*model-compilation-*"
]
 },
 {
 "Sid": "SageMakerHostingOperations",
 "Effect": "Allow",
 "Action": [
 "sagemaker:DeleteEndpointConfig",
 "sagemaker:DeleteModel",
 "sagemaker:InvokeEndpoint",
 "sagemaker:UpdateEndpointWeightsAndCapacities",
 "sagemaker:InvokeEndpointAsync"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:*Canvas*",
 "arn:aws:sagemaker:*:*:*canvas*"
]
 },

AWS Managed Policies for SageMaker 5852

Amazon SageMaker Developer Guide

 {
 "Sid": "EC2VPCOperation",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateVpcEndpoint",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeVpcEndpointServices"
],
 "Resource": "*"
 },
 {
 "Sid": "ECROperations",
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Sid": "IAMGetOperations",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole"
],
 "Resource": "arn:aws:iam::*:role/*"
 },
 {
 "Sid": "IAMPassOperation",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },

AWS Managed Policies for SageMaker 5853

Amazon SageMaker Developer Guide

 {
 "Sid": "LoggingOperation",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/sagemaker/*"
 },
 {
 "Sid": "S3Operations",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:CreateBucket",
 "s3:GetBucketCors",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Sid": "ReadSageMakerJumpstartArtifacts",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": [
 "arn:aws:s3:::jumpstart-cache-prod-us-west-2/*",
 "arn:aws:s3:::jumpstart-cache-prod-us-east-1/*",
 "arn:aws:s3:::jumpstart-cache-prod-us-east-2/*",
 "arn:aws:s3:::jumpstart-cache-prod-eu-west-1/*",
 "arn:aws:s3:::jumpstart-cache-prod-eu-central-1/*",
 "arn:aws:s3:::jumpstart-cache-prod-ap-south-1/*",
 "arn:aws:s3:::jumpstart-cache-prod-ap-northeast-2/*",
 "arn:aws:s3:::jumpstart-cache-prod-ap-northeast-1/*",
 "arn:aws:s3:::jumpstart-cache-prod-ap-southeast-1/*",
 "arn:aws:s3:::jumpstart-cache-prod-ap-southeast-2/*"
]
 },

AWS Managed Policies for SageMaker 5854

Amazon SageMaker Developer Guide

 {
 "Sid": "S3ListOperations",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Sid": "GlueOperations",
 "Effect": "Allow",
 "Action": "glue:SearchTables",
 "Resource": [
 "arn:aws:glue:*:*:table/*/*",
 "arn:aws:glue:*:*:database/*",
 "arn:aws:glue:*:*:catalog"
]
 },
 {
 "Sid": "SecretsManagerARNBasedOperation",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:CreateSecret",
 "secretsmanager:PutResourcePolicy"
],
 "Resource": [
 "arn:aws:secretsmanager:*:*:secret:AmazonSageMaker-*"
]
 },
 {
 "Sid": "SecretManagerTagBasedOperation",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "secretsmanager:ResourceTag/SageMaker": "true"
 }

AWS Managed Policies for SageMaker 5855

Amazon SageMaker Developer Guide

 }
 },
 {
 "Sid": "RedshiftOperations",
 "Effect": "Allow",
 "Action": [
 "redshift-data:ExecuteStatement",
 "redshift-data:DescribeStatement",
 "redshift-data:CancelStatement",
 "redshift-data:GetStatementResult",
 "redshift-data:ListSchemas",
 "redshift-data:ListTables",
 "redshift-data:DescribeTable"
],
 "Resource": "*"
 },
 {
 "Sid": "RedshiftGetCredentialsOperation",
 "Effect": "Allow",
 "Action": [
 "redshift:GetClusterCredentials"
],
 "Resource": [
 "arn:aws:redshift:*:*:dbuser:*/sagemaker_access*",
 "arn:aws:redshift:*:*:dbname:*"
]
 },
 {
 "Sid": "ForecastOperations",
 "Effect": "Allow",
 "Action": [
 "forecast:CreateExplainabilityExport",
 "forecast:CreateExplainability",
 "forecast:CreateForecastEndpoint",
 "forecast:CreateAutoPredictor",
 "forecast:CreateDatasetImportJob",
 "forecast:CreateDatasetGroup",
 "forecast:CreateDataset",
 "forecast:CreateForecast",
 "forecast:CreateForecastExportJob",
 "forecast:CreatePredictorBacktestExportJob",
 "forecast:CreatePredictor",
 "forecast:DescribeExplainabilityExport",
 "forecast:DescribeExplainability",

AWS Managed Policies for SageMaker 5856

Amazon SageMaker Developer Guide

 "forecast:DescribeAutoPredictor",
 "forecast:DescribeForecastEndpoint",
 "forecast:DescribeDatasetImportJob",
 "forecast:DescribeDataset",
 "forecast:DescribeForecast",
 "forecast:DescribeForecastExportJob",
 "forecast:DescribePredictorBacktestExportJob",
 "forecast:GetAccuracyMetrics",
 "forecast:InvokeForecastEndpoint",
 "forecast:GetRecentForecastContext",
 "forecast:DescribePredictor",
 "forecast:TagResource",
 "forecast:DeleteResourceTree"
],
 "Resource": [
 "arn:aws:forecast:*:*:*Canvas*"
]
 },
 {
 "Sid": "RDSOperation",
 "Effect": "Allow",
 "Action": "rds:DescribeDBInstances",
 "Resource": "*"
 },
 {
 "Sid": "IAMPassOperationForForecast",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "forecast.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AutoscalingOperations",
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:RegisterScalableTarget"
],

AWS Managed Policies for SageMaker 5857

Amazon SageMaker Developer Guide

 "Resource": "arn:aws:application-autoscaling:*:*:scalable-target/*",
 "Condition": {
 "StringEquals": {
 "application-autoscaling:service-namespace": "sagemaker",
 "application-autoscaling:scalable-dimension":
 "sagemaker:variant:DesiredInstanceCount"
 }
 }
 },
 {
 "Sid": "AsyncEndpointOperations",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:DescribeAlarms",
 "sagemaker:DescribeEndpointConfig"
],
 "Resource": "*"
 },
 {
 "Sid": "SageMakerCloudWatchUpdate",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": [
 "arn:aws:cloudwatch:*:*:alarm:TargetTracking*"
],
 "Condition": {
 "StringEquals": {
 "aws:CalledViaLast": "application-autoscaling.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AutoscalingSageMakerEndpointOperation",
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/sagemaker.application-
autoscaling.amazonaws.com/AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "sagemaker.application-
autoscaling.amazonaws.com"

AWS Managed Policies for SageMaker 5858

Amazon SageMaker Developer Guide

 }
 }
 }
]
}

AWS managed policy: AmazonSageMakerCanvasDataPrepFullAccess

This policy grants permissions that allow full access to the data preparation functionality of
Amazon SageMaker Canvas. The policy also provides least privilege permissions for the services
that integrate with the data preparation functionality [for example, Amazon Simple Storage
Service (Amazon S3), AWS Identity and Access Management (IAM), Amazon EMR, Amazon
EventBridge, Amazon Redshift, AWS Key Management Service (AWS KMS) and AWS Secrets
Manager].

Permissions details

This AWS managed policy includes the following permissions.

• sagemaker – Allows principals to access processing jobs, training jobs, inference pipelines,
AutoML jobs, and feature groups.

• athena – Allows principals to query a list of data catalogs, databases, and table metadata from
Amazon Athena.

• elasticmapreduce – Allows principals to read and list Amazon EMR clusters.

• events – Allows principals to create, read, update, and add targets to Amazon EventBridge rules
for scheduled jobs.

• glue – Allows principals to get and search tables from databases in the AWS Glue catalog.

• iam – Allows principals to pass an IAM role to Amazon SageMaker and EventBridge.

• kms – Allows principals to retrieve AWS KMS aliases stored in jobs and endpoints, and access the
associated KMS key.

• logs – Allows principals to publish logs from training jobs and endpoints.

• redshift – Allows principals to get credentials to access an Amazon Redshift database.

• redshift-data – Allows principals to run, cancel, describe, list, and get the results of Amazon
Redshift queries. Also allows principals to list Amazon Redshift schemas and tables.

• s3 – Allows principals to add and retrieve objects from Amazon S3 buckets. These objects are
limited to those whose name includes "SageMaker", "Sagemaker", or "sagemaker"; or is tagged
with "SageMaker", case-insensitive.

AWS Managed Policies for SageMaker 5859

Amazon SageMaker Developer Guide

• secretsmanager – Allows principals to store and retrieve customer database credentials using
Secrets Manager.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SageMakerListFeatureGroupOperation",
 "Effect": "Allow",
 "Action": "sagemaker:ListFeatureGroups",
 "Resource": "*"
 },
 {
 "Sid": "SageMakerFeatureGroupOperations",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateFeatureGroup",
 "sagemaker:DescribeFeatureGroup"
],
 "Resource": "arn:aws:sagemaker:*:*:feature-group/*"
 },
 {
 "Sid": "SageMakerProcessingJobOperations",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateProcessingJob",
 "sagemaker:DescribeProcessingJob",
 "sagemaker:AddTags"
],
 "Resource": "arn:aws:sagemaker:*:*:processing-job/*canvas-data-prep*"
 },
 {
 "Sid": "SageMakerProcessingJobListOperation",
 "Effect": "Allow",
 "Action": "sagemaker:ListProcessingJobs",
 "Resource": "*"
 },
 {
 "Sid": "SageMakerPipelineOperations",
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribePipeline",

AWS Managed Policies for SageMaker 5860

Amazon SageMaker Developer Guide

 "sagemaker:CreatePipeline",
 "sagemaker:UpdatePipeline",
 "sagemaker:DeletePipeline",
 "sagemaker:StartPipelineExecution",
 "sagemaker:ListPipelineExecutionSteps",
 "sagemaker:DescribePipelineExecution"
],
 "Resource": "arn:aws:sagemaker:*:*:pipeline/*canvas-data-prep*"
 },
 {
 "Sid": "KMSListOperations",
 "Effect": "Allow",
 "Action": "kms:ListAliases",
 "Resource": "*"
 },
 {
 "Sid": "KMSOperations",
 "Effect": "Allow",
 "Action": "kms:DescribeKey",
 "Resource": "arn:aws:kms:*:*:key/*"
 },
 {
 "Sid": "S3Operations",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:GetBucketCors",
 "s3:GetBucketLocation",
 "s3:AbortMultipartUpload"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {

AWS Managed Policies for SageMaker 5861

Amazon SageMaker Developer Guide

 "Sid": "S3GetObjectOperation",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "s3:ExistingObjectTag/SageMaker": "true"
 },
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "S3ListOperations",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Sid": "IAMListOperations",
 "Effect": "Allow",
 "Action": "iam:ListRoles",
 "Resource": "*"
 },
 {
 "Sid": "IAMGetOperations",
 "Effect": "Allow",
 "Action": "iam:GetRole",
 "Resource": "arn:aws:iam::*:role/*"
 },
 {
 "Sid": "IAMPassOperation",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "sagemaker.amazonaws.com",
 "events.amazonaws.com"

AWS Managed Policies for SageMaker 5862

Amazon SageMaker Developer Guide

]
 }
 }
 },
 {
 "Sid": "EventBridgePutOperation",
 "Effect": "Allow",
 "Action": [
 "events:PutRule"
],
 "Resource": "arn:aws:events:*:*:rule/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/sagemaker:is-canvas-data-prep-job": "true"
 }
 }
 },
 {
 "Sid": "EventBridgeOperations",
 "Effect": "Allow",
 "Action": [
 "events:DescribeRule",
 "events:PutTargets"
],
 "Resource": "arn:aws:events:*:*:rule/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/sagemaker:is-canvas-data-prep-job": "true"
 }
 }
 },
 {
 "Sid": "EventBridgeTagBasedOperations",
 "Effect": "Allow",
 "Action": [
 "events:TagResource"
],
 "Resource": "arn:aws:events:*:*:rule/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/sagemaker:is-canvas-data-prep-job": "true",
 "aws:ResourceTag/sagemaker:is-canvas-data-prep-job": "true"
 }
 }

AWS Managed Policies for SageMaker 5863

Amazon SageMaker Developer Guide

 },
 {
 "Sid": "EventBridgeListTagOperation",
 "Effect": "Allow",
 "Action": "events:ListTagsForResource",
 "Resource": "*"
 },
 {
 "Sid": "GlueOperations",
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabases",
 "glue:GetTable",
 "glue:GetTables",
 "glue:SearchTables"
],
 "Resource": [
 "arn:aws:glue:*:*:table/*",
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/*"
]
 },
 {
 "Sid": "EMROperations",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:ListInstanceGroups"
],
 "Resource": "arn:aws:elasticmapreduce:*:*:cluster/*"
 },
 {
 "Sid": "EMRListOperation",
 "Effect": "Allow",
 "Action": "elasticmapreduce:ListClusters",
 "Resource": "*"
 },
 {
 "Sid": "AthenaListDataCatalogOperation",
 "Effect": "Allow",
 "Action": "athena:ListDataCatalogs",
 "Resource": "*"
 },
 {

AWS Managed Policies for SageMaker 5864

Amazon SageMaker Developer Guide

 "Sid": "AthenaQueryExecutionOperations",
 "Effect": "Allow",
 "Action": [
 "athena:GetQueryExecution",
 "athena:GetQueryResults",
 "athena:StartQueryExecution",
 "athena:StopQueryExecution"
],
 "Resource": "arn:aws:athena:*:*:workgroup/*"
 },
 {
 "Sid": "AthenaDataCatalogOperations",
 "Effect": "Allow",
 "Action": [
 "athena:ListDatabases",
 "athena:ListTableMetadata"
],
 "Resource": "arn:aws:athena:*:*:datacatalog/*"
 },
 {
 "Sid": "RedshiftOperations",
 "Effect": "Allow",
 "Action": [
 "redshift-data:DescribeStatement",
 "redshift-data:CancelStatement",
 "redshift-data:GetStatementResult"
],
 "Resource": "*"
 },
 {
 "Sid": "RedshiftArnBasedOperations",
 "Effect": "Allow",
 "Action": [
 "redshift-data:ExecuteStatement",
 "redshift-data:ListSchemas",
 "redshift-data:ListTables"
],
 "Resource": "arn:aws:redshift:*:*:cluster:*"
 },
 {
 "Sid": "RedshiftGetCredentialsOperation",
 "Effect": "Allow",
 "Action": "redshift:GetClusterCredentials",
 "Resource": [

AWS Managed Policies for SageMaker 5865

Amazon SageMaker Developer Guide

 "arn:aws:redshift:*:*:dbuser:*/sagemaker_access*",
 "arn:aws:redshift:*:*:dbname:*"
]
 },
 {
 "Sid": "SecretsManagerARNBasedOperation",
 "Effect": "Allow",
 "Action": "secretsmanager:CreateSecret",
 "Resource": "arn:aws:secretsmanager:*:*:secret:AmazonSageMaker-*"
 },
 {
 "Sid": "SecretManagerTagBasedOperation",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:AmazonSageMaker-*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/SageMaker": "true",
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid": "RDSOperation",
 "Effect": "Allow",
 "Action": "rds:DescribeDBInstances",
 "Resource": "*"
 },
 {
 "Sid": "LoggingOperation",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/sagemaker/studio:*"
 }
]
}

AWS Managed Policies for SageMaker 5866

Amazon SageMaker Developer Guide

AWS managed policy: AmazonSageMakerCanvasDirectDeployAccess

This policy grants permissions needed for Amazon SageMaker Canvas to create and manage
Amazon SageMaker endpoints.

Permissions details

This AWS managed policy includes the following permissions.

• sagemaker – Allows principals to create and manage SageMaker endpoints with an ARN
resource name that starts with "Canvas" or "canvas".

• cloudwatch – Allows principals to retrieve Amazon CloudWatch metric data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SageMakerEndpointPerms",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateEndpoint",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:DeleteEndpoint",
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:InvokeEndpoint",
 "sagemaker:UpdateEndpoint"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:Canvas*",
 "arn:aws:sagemaker:*:*:canvas*"
]
 },
 {
 "Sid": "ReadCWInvocationMetrics",
 "Effect": "Allow",
 "Action": "cloudwatch:GetMetricData",
 "Resource": "*"
 }
]
}

AWS Managed Policies for SageMaker 5867

Amazon SageMaker Developer Guide

AWS managed policy: AmazonSageMakerCanvasAIServicesAccess

This policy grants permissions for Amazon SageMaker Canvas to use Amazon Textract, Amazon
Rekognition, Amazon Comprehend, and Amazon Bedrock.

Permissions details

This AWS managed policy includes the following permissions.

• textract – Allows principals to use Amazon Textract to detect documents, expenses, and
identities within an image.

• rekognition – Allows principals to use Amazon Rekognition to detect labels and text within an
image.

• comprehend – Allows principals to use Amazon Comprehend to detect sentiment and dominant
language, and named and personally identifiable information (PII) entities within a text
document.

• bedrock – Allows principals to use Amazon Bedrock to list and invoke foundation models.

• iam – Allows principals to pass an IAM role to Amazon Bedrock.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Textract",
 "Effect": "Allow",
 "Action": [
 "textract:AnalyzeDocument",
 "textract:AnalyzeExpense",
 "textract:AnalyzeID",
 "textract:StartDocumentAnalysis",
 "textract:StartExpenseAnalysis",
 "textract:GetDocumentAnalysis",
 "textract:GetExpenseAnalysis"
],
 "Resource": "*"
 },
 {
 "Sid": "Rekognition",
 "Effect": "Allow",
 "Action": [

AWS Managed Policies for SageMaker 5868

Amazon SageMaker Developer Guide

 "rekognition:DetectLabels",
 "rekognition:DetectText"
],
 "Resource": "*"
 },
 {
 "Sid": "Comprehend",
 "Effect": "Allow",
 "Action": [
 "comprehend:BatchDetectDominantLanguage",
 "comprehend:BatchDetectEntities",
 "comprehend:BatchDetectSentiment",
 "comprehend:DetectPiiEntities",
 "comprehend:DetectEntities",
 "comprehend:DetectSentiment",
 "comprehend:DetectDominantLanguage"
],
 "Resource": "*"
 },
 {
 "Sid": "Bedrock",
 "Effect": "Allow",
 "Action": [
 "bedrock:InvokeModel",
 "bedrock:ListFoundationModels",
 "bedrock:InvokeModelWithResponseStream"
],
 "Resource": "*"
 },
 {
 "Sid": "CreateBedrockResourcesPermission",
 "Effect": "Allow",
 "Action": [
 "bedrock:CreateModelCustomizationJob",
 "bedrock:CreateProvisionedModelThroughput",
 "bedrock:TagResource"
],
 "Resource": [
 "arn:aws:bedrock:*:*:model-customization-job/*",
 "arn:aws:bedrock:*:*:custom-model/*",
 "arn:aws:bedrock:*:*:provisioned-model/*"
],
 "Condition": {
 "ForAnyValue:StringEquals": {

AWS Managed Policies for SageMaker 5869

Amazon SageMaker Developer Guide

 "aws:TagKeys": [
 "SageMaker",
 "Canvas"
]
 },
 "StringEquals": {
 "aws:RequestTag/SageMaker": "true",
 "aws:RequestTag/Canvas": "true",
 "aws:ResourceTag/SageMaker": "true",
 "aws:ResourceTag/Canvas": "true"
 }
 }
 },
 {
 "Sid": "GetStopAndDeleteBedrockResourcesPermission",
 "Effect": "Allow",
 "Action": [
 "bedrock:GetModelCustomizationJob",
 "bedrock:GetCustomModel",
 "bedrock:GetProvisionedModelThroughput",
 "bedrock:StopModelCustomizationJob",
 "bedrock:DeleteProvisionedModelThroughput"
],
 "Resource": [
 "arn:aws:bedrock:*:*:model-customization-job/*",
 "arn:aws:bedrock:*:*:custom-model/*",
 "arn:aws:bedrock:*:*:provisioned-model/*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/SageMaker": "true",
 "aws:ResourceTag/Canvas": "true"
 }
 }
 },
 {
 "Sid": "FoundationModelPermission",
 "Effect": "Allow",
 "Action": [
 "bedrock:CreateModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:*::foundation-model/*"
]

AWS Managed Policies for SageMaker 5870

Amazon SageMaker Developer Guide

 },
 {
 "Sid": "BedrockFineTuningPassRole",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/*"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "bedrock.amazonaws.com"
 }
 }
 }
]
}

AWS managed policy: AmazonSageMakerCanvasBedrockAccess

This policy grants permissions commonly needed to use Amazon SageMaker Canvas with Amazon
Bedrock.

Permissions details

This AWS managed policy includes the following permissions.

• s3 – Allows principals to add and retrieve objects from Amazon S3 buckets in the "sagemaker-*/
Canvas" directory.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3CanvasAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [

AWS Managed Policies for SageMaker 5871

Amazon SageMaker Developer Guide

 "arn:aws:s3:::sagemaker-*/Canvas",
 "arn:aws:s3:::sagemaker-*/Canvas/*"
]
 },
 {
 "Sid": "S3BucketAccess",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::sagemaker-*"
]
 }
]
}

AWS managed policy: AmazonSageMakerCanvasForecastAccess

This policy grants permissions commonly needed to use Amazon SageMaker Canvas with Amazon
Forecast.

Permissions details

This AWS managed policy includes the following permissions.

• s3 – Allows principals to add and retrieve objects from Amazon S3 buckets. These objects are
limited to those whose name starts with "sagemaker-".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::sagemaker-*/Canvas",
 "arn:aws:s3:::sagemaker-*/canvas"
]

AWS Managed Policies for SageMaker 5872

Amazon SageMaker Developer Guide

 }
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::sagemaker-*"
]
 }
]
}

Amazon SageMaker updates to Amazon SageMaker Canvas managed policies

View details about updates to AWS managed policies for SageMaker Canvas since this service
began tracking these changes.

Policy Version Change Date

AmazonSageMakerCan
vasBedrockAccess - New
policy

1 Initial policy February 2, 2024

AmazonSageMakerCan
vasFullAccess - Update to
an existing policy

9 Add sagemaker
:ListEndpoints
permission.

January 24, 2024

AmazonSageMakerCan
vasFullAccess - Update to
an existing policy

8 Add sagemaker
:UpdateEn
dpointWei
ghtsAndCa
pacities , sagemaker
:Describe
EndpointConfig ,
sagemaker:InvokeEn
dpointAsync ,
athena:ListDataCat
alogs , athena:Ge
tQueryExe

December 8, 2023

AWS Managed Policies for SageMaker 5873

Amazon SageMaker Developer Guide

Policy Version Change Date

cution , athena:Ge
tQueryResults ,
athena:StartQueryE
xecution , athena:St
opQueryExecution ,
athena:ListDatabas
es , cloudwatc
h:DescribeAlarms ,
cloudwatch:PutMetr
icAlarm , cloudwatc
h:DeleteAlarms ,
and iam:Creat
eServiceL
inkedRole permissio
ns.

AmazonSageMakerCan
vasDataPrepFullAccess
- Update to an existing
policy

2 Small update to enforce
the intents of the
previous policy, version
1; no permissions added
or deleted.

December 7, 2023

AWS Managed Policies for SageMaker 5874

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerCan
vasAIServicesAccess -
Update to an existing
policy

3 Add bedrock:I
nvokeMode
lWithResp
onseStream ,
bedrock:GetModelCu
stomizationJob ,
bedrock:StopModelC
ustomizat
ionJob , bedrock:G
etCustomModel ,
bedrock:GetProvisi
onedModel
Throughput ,
bedrock:DeleteProv
isionedMo
delThroug
hput , bedrock:T
agResource ,
bedrock:CreateMode
lCustomiz
ationJob , bedrock:C
reateProv
isionedMo
delThroughput ,
and iam:PassRole
permissions.

November 29, 2023

AmazonSageMakerCan
vasDataPrepFullAccess -
New policy

1 Initial policy October 26, 2023

AmazonSageMakerCan
vasDirectDeployAccess -
New policy

1 Initial policy October 6, 2023

AWS Managed Policies for SageMaker 5875

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerCan
vasFullAccess - Update to
an existing policy

7 Add sagemaker
:DeleteEn
dpointConfig ,
sagemaker:DeleteMo
del , and sagemaker
:InvokeEndpoint
permissions. Also
add s3:GetObj
ect permission for
SageMaker JumpStart
 resources in specific
regions.

September 29, 2023

AmazonSageMakerCan
vasAIServicesAccess -
Update to an existing
policy

2 Add bedrock:I
nvokeModel and
bedrock:ListFounda
tionModels
permissions.

September 29, 2023

AmazonSageMakerCan
vasFullAccess - Update to
an existing policy

6 Add rds:Descr
ibeDBInstances
permission.

August 29, 2023

AmazonSageMakerCan
vasFullAccess - Update to
an existing policy

5 Add application-
autoscaling:Put
ScalingPolicy
and application-
autoscaling:Reg
isterScal
ableTarget
permissions.

July 24, 2023

AWS Managed Policies for SageMaker 5876

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerCan
vasFullAccess - Update to
an existing policy

4 Add sagemaker
:CreateMo
delPackage ,
sagemaker:CreateMo
delPackageGroup ,
sagemaker:Describe
ModelPackage ,
sagemaker:Describe
ModelPack
ageGroup , sagemaker
:ListMode
lPackages , and
sagemaker:ListMode
lPackageGroups
permissions.

May 4, 2023

AmazonSageMakerCan
vasFullAccess - Update to
an existing policy

3 Add sagemaker
:CreateAu
toMLJobV2 ,
sagemaker:Describe
AutoMLJobV2 , and
glue:SearchTables
permissions.

March 24, 2023

AmazonSageMakerCan
vasAIServicesAccess -
New policy

1 Initial policy March 23, 2023

AmazonSageMakerCan
vasFullAccess - Update to
an existing policy

2 Add forecast:
DeleteRes
ourceTree permissio
n.

December 6, 2022

AWS Managed Policies for SageMaker 5877

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerCan
vasFullAccess - New
policy

1 Initial policy September 8, 2022

AmazonSageMakerCan
vasForecastAccess - New
policy

1 Initial policy August 24, 2022

AWS managed policies for Amazon SageMaker Cluster

These AWS managed policies add permissions required to use SageMaker Cluster. The policies
are available in your AWS account and are used by execution roles created from the SageMaker
console.

Topics

• AWS managed policy: AmazonSageMakerClusterInstanceRolePolicy

• Amazon SageMaker updates to Amazon SageMaker Cluster managed policies

AWS managed policy: AmazonSageMakerClusterInstanceRolePolicy

This policy grants permissions commonly needed to use Amazon SageMaker Cluster.

Permissions details

This AWS managed policy includes the following permissions.

• cloudwatch – Allows principals to post Amazon CloudWatch metrics.

• logs – Allows principals to publish CloudWatch log streams.

• s3 – Allows principals to list and retrieve lifecycle script files from an Amazon S3 bucket in your
account. These buckets are limited to those whose name starts with "sagemaker-".

• ssmmessages – Allows principals to open a connection to AWS Systems Manager.

{
 "Version" : "2012-10-17",
 "Statement" : [

AWS Managed Policies for SageMaker 5878

Amazon SageMaker Developer Guide

 {
 "Sid" : "CloudwatchLogStreamPublishPermissions",
 "Effect" : "Allow",
 "Action" : [
 "logs:PutLogEvents",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams"
],
 "Resource" : [
 "arn:aws:logs:*:*:log-group:/aws/sagemaker/Clusters/*:log-stream:*"
]
 },
 {
 "Sid" : "CloudwatchLogGroupCreationPermissions",
 "Effect" : "Allow",
 "Action" : [
 "logs:CreateLogGroup"
],
 "Resource" : [
 "arn:aws:logs:*:*:log-group:/aws/sagemaker/Clusters/*"
]
 },
 {
 "Sid" : "CloudwatchPutMetricDataAccess",
 "Effect" : "Allow",
 "Action" : [
 "cloudwatch:PutMetricData"
],
 "Resource" : [
 "*"
],
 "Condition" : {
 "StringEquals" : {
 "cloudwatch:namespace" : "/aws/sagemaker/Clusters"
 }
 }
 },
 {
 "Sid" : "DataRetrievalFromS3BucketPermissions",
 "Effect" : "Allow",
 "Action" : [
 "s3:ListBucket",
 "s3:GetObject"
],

AWS Managed Policies for SageMaker 5879

Amazon SageMaker Developer Guide

 "Resource" : [
 "arn:aws:s3:::sagemaker-*"
],
 "Condition" : {
 "StringEquals" : {
 "aws:ResourceAccount" : "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Sid" : "SSMConnectivityPermissions",
 "Effect" : "Allow",
 "Action" : [
 "ssmmessages:CreateControlChannel",
 "ssmmessages:CreateDataChannel",
 "ssmmessages:OpenControlChannel",
 "ssmmessages:OpenDataChannel"
],
 "Resource" : "*"
 }
]
}

Amazon SageMaker updates to Amazon SageMaker Cluster managed policies

View details about updates to AWS managed policies for SageMaker Cluster since this service
began tracking these changes. For automatic alerts about changes to this page, subscribe to the
RSS feed on the SageMaker Document history page.

Policy Version Change Date

AmazonSageMakerClu
sterInstanceRolePolicy -
New policy

1 Initial policy November 29, 2023

AWS managed policies for Amazon SageMaker Feature Store

These AWS managed policies add permissions required to use Feature Store. The policies are
available in your AWS account and are used by execution roles created from the SageMaker
console.

AWS Managed Policies for SageMaker 5880

Amazon SageMaker Developer Guide

Topics

• AWS managed policy: AmazonSageMakerFeatureStoreAccess

• Amazon SageMaker updates to Amazon SageMaker Feature Store managed policies

AWS managed policy: AmazonSageMakerFeatureStoreAccess

This policy grants permissions required to enable the offline store for an Amazon SageMaker
Feature Store feature group.

Permissions details

This AWS managed policy includes the following permissions.

• s3 – Allows principals to write data into an offline store Amazon S3 bucket. These buckets are
limited to those whose name includes "SageMaker", "Sagemaker", or "sagemaker".

• s3 – Allows principals to read existing manifest files maintained in the metadata folder of an
offline store S3 bucket.

• glue – Allows principals to read and update AWS Glue tables. These permissions are limited to
tables in the sagemaker_featurestore folder.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetBucketAcl",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

AWS Managed Policies for SageMaker 5881

Amazon SageMaker Developer Guide

 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*/metadata/*",
 "arn:aws:s3:::*Sagemaker*/metadata/*",
 "arn:aws:s3:::*sagemaker*/metadata/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:UpdateTable"
],
 "Resource": [
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/sagemaker_featurestore",
 "arn:aws:glue:*:*:table/sagemaker_featurestore/*"
]
 }
]
}

Amazon SageMaker updates to Amazon SageMaker Feature Store managed policies

View details about updates to AWS managed policies for Feature Store since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the SageMaker Document history page.

Policy Version Change Date

AmazonSageMakerFea
tureStoreAccess - Update
to an existing policy

3 Add s3:GetObject ,
glue:GetTable , and
glue:UpdateTable
permissions.

December 5, 2022

AmazonSageMakerFea
tureStoreAccess - Update
to an existing policy

2 Add s3:PutObj
ectAcl permission.

February 23, 2021

AWS Managed Policies for SageMaker 5882

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerFea
tureStoreAccess - New
policy

1 Initial policy December 1, 2020

AWS managed policies for Amazon SageMaker geospatial

These AWS managed policies add permissions required to use SageMaker geospatial. The policies
are available in your AWS account and are used by execution roles created from the SageMaker
console.

Topics

• AWS managed policy: AmazonSageMakerGeospatialFullAccess

• AWS managed policy: AmazonSageMakerGeospatialExecutionRole

• Amazon SageMaker updates to Amazon SageMaker geospatial managed policies

AWS managed policy: AmazonSageMakerGeospatialFullAccess

This policy grants permissions that allow full access to Amazon SageMaker geospatial through the
AWS Management Console and SDK.

Permissions details

This AWS managed policy includes the following permissions.

• sagemaker-geospatial – Allows principals full access to all SageMaker geospatial resources.

• iam – Allows principals to pass an IAM role to SageMaker geospatial.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sagemaker-geospatial:*",
 "Resource": "*"
 },
 {

AWS Managed Policies for SageMaker 5883

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": ["iam:PassRole"],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "sagemaker-geospatial.amazonaws.com"
]
 }
 }
 }
]
}

AWS managed policy: AmazonSageMakerGeospatialExecutionRole

This policy grants permissions commonly needed to use SageMaker geospatial.

Permissions details

This AWS managed policy includes the following permissions.

• s3 – Allows principals to add and retrieve objects from Amazon S3 buckets. These objects are
limited to those whose name contains "SageMaker", "Sagemaker", or "sagemaker".

• sagemaker-geospatial – Allows principals to access Earth observation jobs through the
GetEarthObservationJob API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucketMultipartUploads"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"

AWS Managed Policies for SageMaker 5884

Amazon SageMaker Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": "sagemaker-geospatial:GetEarthObservationJob",
 "Resource": "arn:aws:sagemaker-geospatial:*:*:earth-observation-job/*"
 },
 {
 "Effect": "Allow",
 "Action": "sagemaker-geospatial:GetRasterDataCollection",
 "Resource": "arn:aws:sagemaker-geospatial:*:*:raster-data-collection/*"
 }
]
}

Amazon SageMaker updates to Amazon SageMaker geospatial managed policies

View details about updates to AWS managed policies for SageMaker geospatial since this service
began tracking these changes.

Policy Version Change Date

AmazonSageMakerGeo
spatialExecutionRole -
Updated policy

2 Add sagemaker-
geospatial:GetRas
terDataCollection
permission.

May 10, 2023

AmazonSageMakerGeo
spatialFullAccess - New
policy

1 Initial policy November 30, 2022

AmazonSageMakerGeo
spatialExecutionRole -
New policy

1 Initial policy November 30, 2022

AWS Managed Policies for Amazon SageMaker Ground Truth

These AWS managed policies add permissions required to use SageMaker Ground Truth. The
policies are available in your AWS account and are used by execution roles created from the
SageMaker console.

AWS Managed Policies for SageMaker 5885

Amazon SageMaker Developer Guide

Topics

• AWS managed policy: AmazonSageMakerGroundTruthExecution

• Amazon SageMaker updates to SageMaker Ground Truth managed policies

AWS managed policy: AmazonSageMakerGroundTruthExecution

This AWS managed policy grants permissions commonly needed to use SageMaker Ground Truth.

Permissions details

This policy includes the following permissions.

• lambda – Allows principals to invoke Lambda functions whose name includes "sagemaker" (case-
insensitive), "GtRecipe", or "LabelingFunction".

• s3 – Allows principals to add and retrieve objects from Amazon S3 buckets. These objects are
limited to those whose case-insensitive name contains "groundtruth" or "sagemaker", or are
tagged with "SageMaker".

• cloudwatch – Allows principals to post CloudWatch metrics.

• logs – Allows principals to create and access log streams, and post log events.

• sqs – Allows principals to create Amazon SQS queues, and send and receive Amazon SQS
messages. These permissions are limited to queues whose name includes "GroundTruth".

• sns – Allows principals to subscribe to and publish messages to Amazon SNS topics whose case-
insensitive name contains "groundtruth" or "sagemaker".

• ec2 – Allows principals to create, describe, and delete Amazon VPC endpoints whose VPC
endpoint service name contains "sagemaker-task-resources" or "labeling".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CustomLabelingJobs",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:*GtRecipe*",

AWS Managed Policies for SageMaker 5886

Amazon SageMaker Developer Guide

 "arn:aws:lambda:*:*:function:*LabelingFunction*",
 "arn:aws:lambda:*:*:function:*SageMaker*",
 "arn:aws:lambda:*:*:function:*sagemaker*",
 "arn:aws:lambda:*:*:function:*Sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*GroundTruth*",
 "arn:aws:s3:::*Groundtruth*",
 "arn:aws:s3:::*groundtruth*",
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "s3:ExistingObjectTag/SageMaker": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": "*"
 },
 {
 "Sid": "CloudWatch",

AWS Managed Policies for SageMaker 5887

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "*"
 },
 {
 "Sid": "StreamingQueue",
 "Effect": "Allow",
 "Action": [
 "sqs:CreateQueue",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl",
 "sqs:ReceiveMessage",
 "sqs:SendMessage",
 "sqs:SetQueueAttributes"
],
 "Resource": "arn:aws:sqs:*:*:*GroundTruth*"
 },
 {
 "Sid": "StreamingTopicSubscribe",
 "Effect": "Allow",
 "Action": "sns:Subscribe",
 "Resource": [
 "arn:aws:sns:*:*:*GroundTruth*",
 "arn:aws:sns:*:*:*Groundtruth*",
 "arn:aws:sns:*:*:*groundTruth*",
 "arn:aws:sns:*:*:*groundtruth*",
 "arn:aws:sns:*:*:*SageMaker*",
 "arn:aws:sns:*:*:*Sagemaker*",
 "arn:aws:sns:*:*:*sageMaker*",
 "arn:aws:sns:*:*:*sagemaker*"
],
 "Condition": {
 "StringEquals": {
 "sns:Protocol": "sqs"
 },
 "StringLike": {
 "sns:Endpoint": "arn:aws:sqs:*:*:*GroundTruth*"

AWS Managed Policies for SageMaker 5888

Amazon SageMaker Developer Guide

 }
 }
 },
 {
 "Sid": "StreamingTopic",
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:*:*:*GroundTruth*",
 "arn:aws:sns:*:*:*Groundtruth*",
 "arn:aws:sns:*:*:*groundTruth*",
 "arn:aws:sns:*:*:*groundtruth*",
 "arn:aws:sns:*:*:*SageMaker*",
 "arn:aws:sns:*:*:*Sagemaker*",
 "arn:aws:sns:*:*:*sageMaker*",
 "arn:aws:sns:*:*:*sagemaker*"
]
 },
 {
 "Sid": "StreamingTopicUnsubscribe",
 "Effect": "Allow",
 "Action": [
 "sns:Unsubscribe"
],
 "Resource": "*"
 },
 {
 "Sid": "WorkforceVPC",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateVpcEndpoint",
 "ec2:DescribeVpcEndpoints",
 "ec2:DeleteVpcEndpoints"
],
 "Resource": "*",
 "Condition": {
 "StringLikeIfExists": {
 "ec2:VpceServiceName": [
 "*sagemaker-task-resources*",
 "aws.sagemaker*labeling*"
]
 }

AWS Managed Policies for SageMaker 5889

Amazon SageMaker Developer Guide

 }
 }
]
}

Amazon SageMaker updates to SageMaker Ground Truth managed policies

View details about updates to AWS managed policies for Amazon SageMaker Ground Truth since
this service began tracking these changes.

Policy Version Change Date

AmazonSageMakerGro
undTruthExecution -
Update to an existing
policy

3 Add ec2:Creat
eVpcEndpoint ,
ec2:DescribeVpcEnd
points , and
ec2:DeleteVpcEndpo
ints permissions.

April 29, 2022

AmazonSageMakerGro
undTruthExecution -
Update to an existing
policy

2 Remove sqs:SendM
essageBatch
permission.

April 11, 2022

AmazonSageMakerGro
undTruthExecution - New
policy

1 Initial policy July 20, 2020

AWS Managed Policies for SageMaker Model Governance

This AWS managed policy adds permissions required to use SageMaker Model Governance. The
policy is available in your AWS account and is used by execution roles created from the SageMaker
console.

Topics

• AWS managed policy: AmazonSageMakerModelGovernanceUseAccess

• Amazon SageMaker updates to SageMaker Model Governance managed policies

AWS Managed Policies for SageMaker 5890

Amazon SageMaker Developer Guide

AWS managed policy: AmazonSageMakerModelGovernanceUseAccess

This AWS managed policy grants permissions needed to use all Amazon SageMaker Governance
features. The policy is available in your AWS account.

This policy includes the following permissions.

• s3 – Retrieve objects from Amazon S3 buckets. Retrievable objects are limited to those whose
case-insensitive name contains the string "sagemaker".

• kms – List the AWS KMS keys to use for content encryption.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListMonitoringAlerts",
 "sagemaker:ListMonitoringExecutions",
 "sagemaker:UpdateMonitoringAlert",
 "sagemaker:StartMonitoringSchedule",
 "sagemaker:StopMonitoringSchedule",
 "sagemaker:ListMonitoringAlertHistory",
 "sagemaker:DescribeModelPackage",
 "sagemaker:DescribeModelPackageGroup",
 "sagemaker:CreateModelCard",
 "sagemaker:DescribeModelCard",
 "sagemaker:UpdateModelCard",
 "sagemaker:DeleteModelCard",
 "sagemaker:ListModelCards",
 "sagemaker:ListModelCardVersions",
 "sagemaker:CreateModelCardExportJob",
 "sagemaker:DescribeModelCardExportJob",
 "sagemaker:ListModelCardExportJobs"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTrainingJobs",
 "sagemaker:DescribeTrainingJob",

AWS Managed Policies for SageMaker 5891

Amazon SageMaker Developer Guide

 "sagemaker:ListModels",
 "sagemaker:DescribeModel",
 "sagemaker:Search",
 "sagemaker:AddTags",
 "sagemaker:DeleteTags",
 "sagemaker:ListTags"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:ListAliases"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:CreateBucket",
 "s3:GetBucketLocation",
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 }
]
}

AWS Managed Policies for SageMaker 5892

Amazon SageMaker Developer Guide

Amazon SageMaker updates to SageMaker Model Governance managed policies

View details about updates to AWS managed policies for SageMaker Model Governance since this
service began tracking these changes. For automatic alerts about changes to this page, subscribe to
the RSS feed on the SageMaker Document history page.

Policy Version Change Date

AmazonSageMakerMod
elGovernanceUseAccess
- Update to an existing
policy

2 Add sagemaker
:Describe
ModelPackage and
DescribeModelPacka
geGroup permissions.

July 17, 2023

AmazonSageMakerMod
elGovernanceUseAccess -
New policy

1 Initial policy November 30, 2022

AWS Managed Policies for Model Registry

These AWS managed policies adds permissions required to use Model Registry. The policies
are available in your AWS account and are used by execution roles created from the Amazon
SageMaker console.

Topics

• AWS managed policy: AmazonSageMakerModelRegistryFullAccess

• Amazon SageMaker updates to Model Registry managed policies

AWS managed policy: AmazonSageMakerModelRegistryFullAccess

This AWS managed policy grants permissions needed to use all Model Registry features inside an
Amazon SageMaker domain. This policy is attached to an execution role when configuring Model
Registry settings to enable Model Registry permissions.

This policy includes the following permissions.

• ecr – Allows principals to retrieve information, including metadata, about Amazon Elastic
Container Registry (Amazon ECR) images.

AWS Managed Policies for SageMaker 5893

Amazon SageMaker Developer Guide

• iam – Allows principals to pass the execution role to the Amazon SageMaker service.

• resource-groups – Allows principals to create, list, tag, and delete AWS Resource Groups.

• s3 – Allows principals to retrieve objects from the Amazon Simple Storage Service (Amazon S3)
buckets where model versions are stored. Retrievable objects are limited to those whose case-
insensitive name contains the string "sagemaker".

• sagemaker – Allows principals to catalog, manage, and deploy models using the SageMaker
model registry.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeAction",
 "sagemaker:DescribeInferenceRecommendationsJob",
 "sagemaker:DescribeModelPackage",
 "sagemaker:DescribeModelPackageGroup",
 "sagemaker:DescribePipeline",
 "sagemaker:DescribePipelineExecution",
 "sagemaker:ListAssociations",
 "sagemaker:ListArtifacts",
 "sagemaker:ListModelMetadata",
 "sagemaker:ListModelPackages",
 "sagemaker:Search",
 "sagemaker:GetSearchSuggestions"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddTags",
 "sagemaker:CreateModel",
 "sagemaker:CreateModelPackage",
 "sagemaker:CreateModelPackageGroup",
 "sagemaker:CreateEndpoint",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:CreateInferenceRecommendationsJob",
 "sagemaker:DeleteModelPackage",
 "sagemaker:DeleteModelPackageGroup",

AWS Managed Policies for SageMaker 5894

Amazon SageMaker Developer Guide

 "sagemaker:DeleteTags",
 "sagemaker:UpdateModelPackage"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:DescribeImages"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },

AWS Managed Policies for SageMaker 5895

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "tag:GetResources"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "resource-groups:GetGroupQuery"
],
 "Resource": "arn:aws:resource-groups:*:*:group/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "resource-groups:ListGroupResources"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "resource-groups:CreateGroup",
 "resource-groups:Tag"
],
 "Resource": "arn:aws:resource-groups:*:*:group/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "sagemaker:collection"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "resource-groups:DeleteGroup",
 "Resource": "arn:aws:resource-groups:*:*:group/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/sagemaker:collection": "true"
 }
 }
 }

AWS Managed Policies for SageMaker 5896

Amazon SageMaker Developer Guide

]
}

Amazon SageMaker updates to Model Registry managed policies

View details about updates to AWS managed policies for Model Registry since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the SageMaker Document history page.

Policy Version Change Date

AmazonSageMakerMod
elRegistryFullAccess -
New policy

1 Initial policy April 12, 2023

AWS Managed Policies for SageMaker Notebooks

These AWS managed policies add permissions required to use SageMaker Notebooks. The policies
are available in your AWS account and are used by execution roles created from the SageMaker
console.

Topics

• AWS managed policy: AmazonSageMakerNotebooksServiceRolePolicy

• Amazon SageMaker updates to SageMaker Notebooks managed policies

AWS managed policy: AmazonSageMakerNotebooksServiceRolePolicy

This AWS managed policy grants permissions commonly needed to use Amazon SageMaker
Notebooks. The policy is added to the AmazonSageMaker-ExecutionRole that is created when
you onboard to Amazon SageMaker Studio Classic. For more information on service-linked roles,
see Service-Linked Roles.

Permissions details

This policy includes the following permissions.

• elasticfilesystem – Allows principals to create and delete Amazon Elastic File System (EFS)
file systems, access points, and mount targets. These are limited to those tagged with the key

AWS Managed Policies for SageMaker 5897

Amazon SageMaker Developer Guide

ManagedByAmazonSageMakerResource. Allows principals to describe all EFS file systems, access
points, and mount targets. Allows principals to create or overwrite tags for EFS access points and
mount targets.

• ec2 – Allows principals to create network interfaces and security groups for Amazon Elastic
Compute Cloud (EC2) instances. Also allows principals to create and overwrite tags for these
resources.

• sso – Allows principals to add and delete managed application instances to AWS IAM Identity
Center.

• sagemaker – Allows principals to create and read SageMaker user profiles.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "elasticfilesystem:CreateAccessPoint",
 "Resource": "arn:aws:elasticfilesystem:*:*:file-system/*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/ManagedByAmazonSageMakerResource": "*",
 "aws:RequestTag/ManagedByAmazonSageMakerResource": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticfilesystem:DeleteAccessPoint"
],
 "Resource": "arn:aws:elasticfilesystem:*:*:access-point/*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/ManagedByAmazonSageMakerResource": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "elasticfilesystem:CreateFileSystem",
 "Resource": "*",

AWS Managed Policies for SageMaker 5898

Amazon SageMaker Developer Guide

 "Condition": {
 "StringLike": {
 "aws:RequestTag/ManagedByAmazonSageMakerResource": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticfilesystem:CreateMountTarget",
 "elasticfilesystem:DeleteFileSystem",
 "elasticfilesystem:DeleteMountTarget"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/ManagedByAmazonSageMakerResource": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticfilesystem:DescribeAccessPoints",
 "elasticfilesystem:DescribeFileSystems",
 "elasticfilesystem:DescribeMountTargets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "elasticfilesystem:TagResource",
 "Resource": [
 "arn:aws:elasticfilesystem:*:*:access-point/*",
 "arn:aws:elasticfilesystem:*:*:file-system/*"
],
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/ManagedByAmazonSageMakerResource": "*"
 }
 }
 },
 {
 "Effect": "Allow",

AWS Managed Policies for SageMaker 5899

Amazon SageMaker Developer Guide

 "Action": "ec2:CreateTags",
 "Resource": [
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateSecurityGroup",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DeleteSecurityGroup",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "ec2:ResourceTag/ManagedByAmazonSageMakerResource": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "sso:CreateManagedApplicationInstance",
 "sso:DeleteManagedApplicationInstance",

AWS Managed Policies for SageMaker 5900

Amazon SageMaker Developer Guide

 "sso:GetManagedApplicationInstance"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateUserProfile",
 "sagemaker:DescribeUserProfile"
],
 "Resource": "*"
 }
]
}

Amazon SageMaker updates to SageMaker Notebooks managed policies

View details about updates to AWS managed policies for Amazon SageMaker since this service
began tracking these changes.

Policy Version Change Date

AmazonSageMakerNot
ebooksServiceRolePolicy

7 Added elasticfi
lesystem:
TagResource
permission.

March 9, 2023

AmazonSageMakerNot
ebooksServiceRolePolicy

6 Added permissions for
elasticfilesystem:
CreateAcc
essPoint , elasticfi
lesystem:
DeleteAcc
essPoint , and
elasticfilesystem:
DescribeA
ccessPoints .

January 12, 2023

AWS Managed Policies for SageMaker 5901

Amazon SageMaker Developer Guide

Policy Version Change Date

 SageMaker started
tracking changes for its
AWS managed policies.

June 1, 2021

AWS Managed Policies for SageMaker Pipelines

These AWS managed policies add permissions required to use SageMaker Pipelines. The policies
are available in your AWS account and are used by execution roles created from the SageMaker
console.

Topics

• AWS managed policy: AmazonSageMakerPipelinesIntegrations

• Amazon SageMaker updates to SageMaker Pipelines managed policies

AWS managed policy: AmazonSageMakerPipelinesIntegrations

This AWS managed policy grants permissions commonly needed to use Callback steps and Lambda
steps in SageMaker Pipelines. The policy is added to the AmazonSageMaker-ExecutionRole
that is created when you onboard to Amazon SageMaker Studio Classic. The policy can be attached
to any role used for authoring or executing a pipeline.

This policy grants appropriate AWS Lambda, Amazon Simple Queue Service (Amazon SQS),
Amazon EventBridge, and IAM permissions needed when building pipelines that invoke Lambda
functions or include callback steps, which can be used for manual approval steps or running
custom workloads.

The Amazon SQS permissions allow you to create the Amazon SQS queue needed for receiving
callback messages, and also to send messages to that queue.

The Lambda permissions allow you to create, read, update, and delete the Lambda functions used
in the pipeline steps, and also to invoke those Lambda functions.

This policy grants the Amazon EMR permissions needed to run a pipelines Amazon EMR step.

Permissions details

This policy includes the following permissions.

AWS Managed Policies for SageMaker 5902

Amazon SageMaker Developer Guide

• elasticmapreduce – Read, add, and cancel steps in a running Amazon EMR cluster. Read,
create, and terminate a new Amazon EMR cluster.

• events – Read, create, update, and add targets to an EventBridge rule
named SageMakerPipelineExecutionEMRStepStatusUpdateRule and
SageMakerPipelineExecutionEMRClusterStatusUpdateRule.

• iam – Pass an IAM role to the AWS Lambda service, Amazon EMR and Amazon EC2.

• lambda – Create, read, update, delete, and invoke Lambda functions. These permissions are
limited to functions whose name includes "sagemaker".

• sqs – Create an Amazon SQS queue; send an Amazon SQS message. These permissions are
limited to queues whose name includes "sagemaker".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction",
 "lambda:DeleteFunction",
 "lambda:GetFunction",
 "lambda:InvokeFunction",
 "lambda:UpdateFunctionCode"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:*sagemaker*",
 "arn:aws:lambda:*:*:function:*sageMaker*",
 "arn:aws:lambda:*:*:function:*SageMaker*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sqs:CreateQueue",
 "sqs:SendMessage"
],
 "Resource": [
 "arn:aws:sqs:*:*:*sagemaker*",
 "arn:aws:sqs:*:*:*sageMaker*",
 "arn:aws:sqs:*:*:*SageMaker*"
]

AWS Managed Policies for SageMaker 5903

Amazon SageMaker Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "lambda.amazonaws.com",
 "elasticmapreduce.amazonaws.com",
 "ec2.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:DescribeRule",
 "events:PutRule",
 "events:PutTargets"
],
 "Resource": [
 "arn:aws:events:*:*:rule/
SageMakerPipelineExecutionEMRStepStatusUpdateRule",
 "arn:aws:events:*:*:rule/
SageMakerPipelineExecutionEMRClusterStatusUpdateRule"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:AddJobFlowSteps",
 "elasticmapreduce:CancelSteps",
 "elasticmapreduce:DescribeStep",
 "elasticmapreduce:RunJobFlow",
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:TerminateJobFlows",
 "elasticmapreduce:ListSteps"
],
 "Resource": [
 "arn:aws:elasticmapreduce:*:*:cluster/*"

AWS Managed Policies for SageMaker 5904

Amazon SageMaker Developer Guide

]
 }
]
}

Amazon SageMaker updates to SageMaker Pipelines managed policies

View details about updates to AWS managed policies for Amazon SageMaker since this service
began tracking these changes.

Policy Version Change Date

AmazonSageMakerPip
elinesIntegrations -
Update to an existing
policy

3 Added permissions for
elasticmapreduce:R
unJobFlows ,
elasticmapreduce:T
erminateJobFlows ,
elasticmapreduce:L
istSteps , and
elasticmapreduce:D
escribeCluster .

February 17, 2023

AmazonSageMakerPip
elinesIntegrations -
Update to an existing
policy

2 Added permissio
ns for lambda:Ge
tFunction ,
events:DescribeRul
e , events:PutRule ,
events:PutTargets ,
elasticmapreduce:A
ddJobFlowSteps ,
elasticmapreduce:C
ancelSteps , and
elasticmapreduce:D
escribeStep .

April 20, 2022

AmazonSageMakerPip
elinesIntegrations - New
policy

1 Initial policy July 30, 2021

AWS Managed Policies for SageMaker 5905

Amazon SageMaker Developer Guide

AWS Managed Policies for SageMaker projects and JumpStart

These AWS managed policies add permissions to use built-in Amazon SageMaker project templates
and JumpStart solutions. The policies are available in your AWS account and are used by execution
roles created from the SageMaker console.

SageMaker projects and JumpStart use AWS Service Catalog to provision AWS resources in
customers' accounts. Some created resources need to assume an execution role. For example, if
AWS Service Catalog creates a CodePipeline pipeline on behalf of a customer for a SageMaker
machine learning CI/CD project, then that pipeline requires an IAM role.

The AmazonSageMakerServiceCatalogProductsLaunchRole role has the permissions
required to launch the SageMaker portfolio of products from AWS Service Catalog.
The AmazonSageMakerServiceCatalogProductsUseRole role has the permissions
required to use the SageMaker portfolio of products from AWS Service Catalog.
The AmazonSageMakerServiceCatalogProductsLaunchRole role passes an
AmazonSageMakerServiceCatalogProductsUseRole role to the provisioned AWS Service
Catalog product resources.

Topics

• AWS managed policy: AmazonSageMakerAdmin-ServiceCatalogProductsServiceRolePolicy

• AWS managed policy:
AmazonSageMakerPartnerServiceCatalogProductsApiGatewayServiceRolePolicy

• AWS managed policy:
AmazonSageMakerPartnerServiceCatalogProductsCloudFormationServiceRolePolicy

• AWS managed policy:
AmazonSageMakerPartnerServiceCatalogProductsLambdaServiceRolePolicy

• AWS managed policy: AmazonSageMakerServiceCatalogProductsApiGatewayServiceRolePolicy

• AWS managed policy:
AmazonSageMakerServiceCatalogProductsCloudformationServiceRolePolicy

• AWS managed policy: AmazonSageMakerServiceCatalogProductsCodeBuildServiceRolePolicy

• AWS managed policy: AmazonSageMakerServiceCatalogProductsCodePipelineServiceRolePolicy

• AWS managed policy: AmazonSageMakerServiceCatalogProductsEventsServiceRolePolicy

• AWS managed policy: AmazonSageMakerServiceCatalogProductsFirehoseServiceRolePolicy

• AWS managed policy: AmazonSageMakerServiceCatalogProductsGlueServiceRolePolicy

• AWS managed policy: AmazonSageMakerServiceCatalogProductsLambdaServiceRolePolicy

AWS Managed Policies for SageMaker 5906

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole
https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsUseRole

Amazon SageMaker Developer Guide

• Amazon SageMaker updates to AWS Service Catalog AWS managed policies

AWS managed policy: AmazonSageMakerAdmin-ServiceCatalogProductsServiceRolePolicy

This service role policy is used by the AWS Service Catalog service to provision products from
the Amazon SageMaker portfolio. The policy grants permissions to a set of related AWS services
including AWS CodePipeline, AWS CodeBuild, AWS CodeCommit, AWS Glue, AWS CloudFormation,
and others.

The AmazonSageMakerAdmin-ServiceCatalogProductsServiceRolePolicy policy is
intended to be used by the AmazonSageMakerServiceCatalogProductsLaunchRole role
created from the SageMaker console. The policy adds permissions to provision AWS resources for
SageMaker projects and JumpStart using Service Catalog to a customer's account.

Permissions details

This policy includes the following permissions.

• apigateway – Allows the role to call API Gateway endpoints that are tagged with
sagemaker:launch-source.

• cloudformation – Allows AWS Service Catalog to create, update and delete CloudFormation
stacks.

• codebuild – Allows the role assumed by AWS Service Catalog and passed to CloudFormation to
create, update and delete CodeBuild projects.

• codecommit – Allows the role assumed by AWS Service Catalog and passed to CloudFormation
to create, update and delete CodeCommit repositories.

• codepipeline – Allows the role assumed by AWS Service Catalog and passed to
CloudFormation to create, update and delete CodePipelines.

• codestar-connections – Allows the role to pass AWS CodeStar connections.

• cognito-idp – Allows the role to create, update, and delete groups and user pools. Also allows
tagging resources.

• ecr – Allows the role assumed by AWS Service Catalog and passed to CloudFormation to create
and delete Amazon ECR repositories. Also allows tagging resources.

• events – Allows the role assumed by AWS Service Catalog and passed to CloudFormation to
create and delete EventBridge rules. Used for tying together the various components of the CICD
pipeline.

AWS Managed Policies for SageMaker 5907

Amazon SageMaker Developer Guide

• firehose – Allows the role to interact with Firehose streams.

• glue – Allows the role to interact with AWS Glue.

• iam – Allows the role to pass roles prepended with AmazonSageMakerServiceCatalog. This is
needed when Projects provisions a AWS Service Catalog product, as a role needs to be passed to
AWS Service Catalog.

• lambda – Allows the role to interact with AWS Lambda. Also allows tagging resources.

• logs – Allows the role to create, delete and access log streams.

• s3 – Allows the role assumed by AWS Service Catalog and passed to CloudFormation to access
Amazon S3 buckets where the Project template code is stored.

• sagemaker – Allows the role to interact with various SageMaker services. This is done both
in CloudFormation during template provisioning, as well as in CodeBuild during CICD pipeline
execution. Also allows tagging the following resources: endpoints, endpoint configurations,
models, pipelines, projects, and model packages.

• states – Allows the role to create, delete, and update Step Functions prepended with
sagemaker.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:POST",
 "apigateway:PUT",
 "apigateway:PATCH",
 "apigateway:DELETE"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/sagemaker:launch-source": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [

AWS Managed Policies for SageMaker 5908

Amazon SageMaker Developer Guide

 "apigateway:POST"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringLike": {
 "aws:TagKeys": [
 "sagemaker:launch-source"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:PATCH"
],
 "Resource": [
 "arn:aws:apigateway:*::/account"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:UpdateStack",
 "cloudformation:DeleteStack"
],
 "Resource": "arn:aws:cloudformation:*:*:stack/SC-*",
 "Condition": {
 "ArnLikeIfExists": {
 "cloudformation:RoleArn": [
 "arn:aws:sts::*:assumed-role/AmazonSageMakerServiceCatalog*"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribeStackEvents",
 "cloudformation:DescribeStacks"
],
 "Resource": "arn:aws:cloudformation:*:*:stack/SC-*"
 },

AWS Managed Policies for SageMaker 5909

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:GetTemplateSummary",
 "cloudformation:ValidateTemplate"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:CreateProject",
 "codebuild:DeleteProject",
 "codebuild:UpdateProject"
],
 "Resource": [
 "arn:aws:codebuild:*:*:project/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:CreateCommit",
 "codecommit:CreateRepository",
 "codecommit:DeleteRepository",
 "codecommit:GetRepository",
 "codecommit:TagResource"
],
 "Resource": [
 "arn:aws:codecommit:*:*:sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:ListRepositories"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codepipeline:CreatePipeline",
 "codepipeline:DeletePipeline",

AWS Managed Policies for SageMaker 5910

Amazon SageMaker Developer Guide

 "codepipeline:GetPipeline",
 "codepipeline:GetPipelineState",
 "codepipeline:StartPipelineExecution",
 "codepipeline:TagResource",
 "codepipeline:UpdatePipeline"
],
 "Resource": [
 "arn:aws:codepipeline:*:*:sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "cognito-idp:CreateUserPool",
 "cognito-idp:TagResource"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringLike": {
 "aws:TagKeys": [
 "sagemaker:launch-source"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "cognito-idp:CreateGroup",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:DeleteGroup",
 "cognito-idp:DeleteUserPool",
 "cognito-idp:DeleteUserPoolClient",
 "cognito-idp:DeleteUserPoolDomain",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:UpdateUserPool",
 "cognito-idp:UpdateUserPoolClient"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/sagemaker:launch-source": "*"

AWS Managed Policies for SageMaker 5911

Amazon SageMaker Developer Guide

 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:CreateRepository",
 "ecr:DeleteRepository",
 "ecr:TagResource"
],
 "Resource": [
 "arn:aws:ecr:*:*:repository/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:DescribeRule",
 "events:DeleteRule",
 "events:DisableRule",
 "events:EnableRule",
 "events:PutRule",
 "events:PutTargets",
 "events:RemoveTargets"
],
 "Resource": [
 "arn:aws:events:*:*:rule/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "firehose:CreateDeliveryStream",
 "firehose:DeleteDeliveryStream",
 "firehose:DescribeDeliveryStream",
 "firehose:StartDeliveryStreamEncryption",
 "firehose:StopDeliveryStreamEncryption",
 "firehose:UpdateDestination"
],
 "Resource": "arn:aws:firehose:*:*:deliverystream/sagemaker-*"
 },
 {
 "Effect": "Allow",
 "Action": [

AWS Managed Policies for SageMaker 5912

Amazon SageMaker Developer Guide

 "glue:CreateDatabase",
 "glue:DeleteDatabase"
],
 "Resource": [
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/sagemaker-*",
 "arn:aws:glue:*:*:table/sagemaker-*",
 "arn:aws:glue:*:*:userDefinedFunction/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateClassifier",
 "glue:DeleteClassifier",
 "glue:DeleteCrawler",
 "glue:DeleteJob",
 "glue:DeleteTrigger",
 "glue:DeleteWorkflow",
 "glue:StopCrawler"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateWorkflow"
],
 "Resource": [
 "arn:aws:glue:*:*:workflow/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateJob"
],
 "Resource": [
 "arn:aws:glue:*:*:job/sagemaker-*"
]
 },
 {

AWS Managed Policies for SageMaker 5913

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "glue:CreateCrawler",
 "glue:GetCrawler"
],
 "Resource": [
 "arn:aws:glue:*:*:crawler/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateTrigger",
 "glue:GetTrigger"
],
 "Resource": [
 "arn:aws:glue:*:*:trigger/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/service-role/AmazonSageMakerServiceCatalog*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:CreateFunction",
 "lambda:DeleteFunction",
 "lambda:GetFunction",
 "lambda:GetFunctionConfiguration",
 "lambda:InvokeFunction",
 "lambda:RemovePermission"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:sagemaker-*"
]
 },
 {

AWS Managed Policies for SageMaker 5914

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": "lambda:TagResource",
 "Resource": [
 "arn:aws:lambda:*:*:function:sagemaker-*"
],
 "Condition": {
 "ForAllValues:StringLike": {
 "aws:TagKeys": [
 "sagemaker:*"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogGroup",
 "logs:DeleteLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:PutRetentionPolicy"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/apigateway/AccessLogs/*",
 "arn:aws:logs:*:*:log-group::log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:ExistingObjectTag/servicecatalog:provisioning": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": [
 "arn:aws:s3:::sagemaker-*"

AWS Managed Policies for SageMaker 5915

Amazon SageMaker Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:DeleteBucketPolicy",
 "s3:GetBucketPolicy",
 "s3:PutBucketAcl",
 "s3:PutBucketNotification",
 "s3:PutBucketPolicy",
 "s3:PutBucketPublicAccessBlock",
 "s3:PutBucketLogging",
 "s3:PutEncryptionConfiguration",
 "s3:PutBucketTagging",
 "s3:PutObjectTagging",
 "s3:PutBucketCORS"
],
 "Resource": "arn:aws:s3:::sagemaker-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateEndpoint",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:CreateModel",
 "sagemaker:CreateWorkteam",
 "sagemaker:DeleteEndpoint",
 "sagemaker:DeleteEndpointConfig",
 "sagemaker:DeleteModel",
 "sagemaker:DeleteWorkteam",
 "sagemaker:DescribeModel",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeWorkteam",
 "sagemaker:CreateCodeRepository",
 "sagemaker:DescribeCodeRepository",
 "sagemaker:UpdateCodeRepository",
 "sagemaker:DeleteCodeRepository"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:*"
]

AWS Managed Policies for SageMaker 5916

Amazon SageMaker Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddTags"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:endpoint/*",
 "arn:aws:sagemaker:*:*:endpoint-config/*",
 "arn:aws:sagemaker:*:*:model/*",
 "arn:aws:sagemaker:*:*:pipeline/*",
 "arn:aws:sagemaker:*:*:project/*",
 "arn:aws:sagemaker:*:*:model-package/*"
],
 "Condition": {
 "ForAllValues:StringLike": {
 "aws:TagKeys": [
 "sagemaker:*"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateImage",
 "sagemaker:DeleteImage",
 "sagemaker:DescribeImage",
 "sagemaker:UpdateImage",
 "sagemaker:ListTags"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:image/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "states:CreateStateMachine",
 "states:DeleteStateMachine",
 "states:UpdateStateMachine"
],
 "Resource": [
 "arn:aws:states:*:*:stateMachine:sagemaker-*"

AWS Managed Policies for SageMaker 5917

Amazon SageMaker Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": "codestar-connections:PassConnection",
 "Resource": "arn:aws:codestar-connections:*:*:connection/*",
 "Condition": {
 "StringEquals": {
 "codestar-connections:PassedToService": "codepipeline.amazonaws.com"
 }
 }
 }
]
}

AWS managed policy:
AmazonSageMakerPartnerServiceCatalogProductsApiGatewayServiceRolePolicy

This policy is used by Amazon API Gateway within the AWS Service Catalog provisioned products
from the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that
the AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
API Gateway that require a role.

Permissions details

This policy includes the following permissions.

• lambda – Invoke a function created by a partner template.

• sagemaker – Invoke an endpoint created by a partner template.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:*:*:function:sagemaker-*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/sagemaker:project-name": "false",
 "aws:ResourceTag/sagemaker:partner": "false"
 },

AWS Managed Policies for SageMaker 5918

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "sagemaker:InvokeEndpoint",
 "Resource": "arn:aws:sagemaker:*:*:endpoint/*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/sagemaker:project-name": "false",
 "aws:ResourceTag/sagemaker:partner": "false"
 },
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 }
]
}

AWS managed policy:
AmazonSageMakerPartnerServiceCatalogProductsCloudFormationServiceRolePolicy

This policy is used by AWS CloudFormation within the AWS Service Catalog provisioned products
from the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that
the AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
AWS CloudFormation that require a role.

Permissions details

This policy includes the following permissions.

• iam – Pass the AmazonSageMakerServiceCatalogProductsLambdaRole and
AmazonSageMakerServiceCatalogProductsApiGatewayRole roles.

• lambda – Create, update, delete, and invoke AWS Lambda functions; retrieve, publish, and delete
versions of a Lambda layer.

• apigateway – Create, update, and delete Amazon API Gateway resources.

• s3 – Retrieve the lambda-auth-code/layer.zip file from an Amazon Simple Storage Service
(Amazon S3) bucket.

AWS Managed Policies for SageMaker 5919

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsLambdaRole"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "lambda.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsApiGatewayRole"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "apigateway.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:DeleteFunction",
 "lambda:UpdateFunctionCode",
 "lambda:ListTags",
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:sagemaker-*"

AWS Managed Policies for SageMaker 5920

Amazon SageMaker Developer Guide

],
 "Condition": {
 "Null": {
 "aws:ResourceTag/sagemaker:project-name": "false",
 "aws:ResourceTag/sagemaker:partner": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction",
 "lambda:TagResource"
],
 "Resource": [
 "arn:aws:lambda:*:*:function:sagemaker-*"
],
 "Condition": {
 "Null": {
 "aws:ResourceTag/sagemaker:project-name": "false",
 "aws:ResourceTag/sagemaker:partner": "false"
 },
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": [
 "sagemaker:project-name",
 "sagemaker:partner"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:PublishLayerVersion",
 "lambda:GetLayerVersion",
 "lambda:DeleteLayerVersion",
 "lambda:GetFunction"
],
 "Resource": [
 "arn:aws:lambda:*:*:layer:sagemaker-*",
 "arn:aws:lambda:*:*:function:sagemaker-*"
]
 },
 {

AWS Managed Policies for SageMaker 5921

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "apigateway:GET",
 "apigateway:DELETE",
 "apigateway:PATCH",
 "apigateway:POST",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:*::/restapis/*",
 "arn:aws:apigateway:*::/restapis"
],
 "Condition": {
 "Null": {
 "aws:ResourceTag/sagemaker:project-name": "false",
 "aws:ResourceTag/sagemaker:partner": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:POST",
 "apigateway:PUT"
],
 "Resource": [
 "arn:aws:apigateway:*::/restapis",
 "arn:aws:apigateway:*::/tags/*"
],
 "Condition": {
 "Null": {
 "aws:ResourceTag/sagemaker:project-name": "false",
 "aws:ResourceTag/sagemaker:partner": "false"
 },
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": [
 "sagemaker:project-name",
 "sagemaker:partner"
]
 }
 }
 },
 {
 "Effect": "Allow",

AWS Managed Policies for SageMaker 5922

Amazon SageMaker Developer Guide

 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::sagemaker-*/lambda-auth-code/layer.zip"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 }
]
}

AWS managed policy:
AmazonSageMakerPartnerServiceCatalogProductsLambdaServiceRolePolicy

This policy is used by AWS Lambda within the AWS Service Catalog provisioned products from
the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that the
AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
Lambda that require a role.

Permissions details

This policy includes the following permissions.

• secretsmanager – Retrieve data from partner provided secrets for a partner template.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "arn:aws:secretsmanager:*:*:secret:*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/sagemaker:partner": false
 },
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"

AWS Managed Policies for SageMaker 5923

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

 }
 }
 }
]
}

AWS managed policy: AmazonSageMakerServiceCatalogProductsApiGatewayServiceRolePolicy

This policy is used by Amazon API Gateway within the AWS Service Catalog provisioned products
from the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that
the AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
API Gateway that require a role.

Permissions details

This policy includes the following permissions.

• logs – Create and read CloudWatch Logs groups, streams, and events; update events; describe
various resources.

These permissions are limited to resources whose log group prefix starts with "aws/apigateway/".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogDelivery",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:DescribeResourcePolicies",
 "logs:DescribeDestinations",
 "logs:DescribeExportTasks",
 "logs:DescribeMetricFilters",
 "logs:DescribeQueries",
 "logs:DescribeQueryDefinitions",
 "logs:DescribeSubscriptionFilters",
 "logs:GetLogDelivery",

AWS Managed Policies for SageMaker 5924

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

 "logs:GetLogEvents",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/apigateway/*"
 }
]
}

AWS managed policy:
AmazonSageMakerServiceCatalogProductsCloudformationServiceRolePolicy

This policy is used by AWS CloudFormation within the AWS Service Catalog provisioned products
from the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that
the AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
AWS CloudFormation that require a role.

Permissions details

This policy includes the following permissions.

• sagemaker – Allow access to various SageMaker resources excluding domains, user-profiles,
apps, and flow definitions.

• iam – Pass the AmazonSageMakerServiceCatalogProductsCodeBuildRole and
AmazonSageMakerServiceCatalogProductsExecutionRole roles.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddAssociation",
 "sagemaker:AddTags",
 "sagemaker:AssociateTrialComponent",
 "sagemaker:BatchDescribeModelPackage",
 "sagemaker:BatchGetMetrics",
 "sagemaker:BatchGetRecord",
 "sagemaker:BatchPutMetrics",
 "sagemaker:CreateAction",

AWS Managed Policies for SageMaker 5925

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

 "sagemaker:CreateAlgorithm",
 "sagemaker:CreateApp",
 "sagemaker:CreateAppImageConfig",
 "sagemaker:CreateArtifact",
 "sagemaker:CreateAutoMLJob",
 "sagemaker:CreateCodeRepository",
 "sagemaker:CreateCompilationJob",
 "sagemaker:CreateContext",
 "sagemaker:CreateDataQualityJobDefinition",
 "sagemaker:CreateDeviceFleet",
 "sagemaker:CreateDomain",
 "sagemaker:CreateEdgePackagingJob",
 "sagemaker:CreateEndpoint",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:CreateExperiment",
 "sagemaker:CreateFeatureGroup",
 "sagemaker:CreateFlowDefinition",
 "sagemaker:CreateHumanTaskUi",
 "sagemaker:CreateHyperParameterTuningJob",
 "sagemaker:CreateImage",
 "sagemaker:CreateImageVersion",
 "sagemaker:CreateInferenceRecommendationsJob",
 "sagemaker:CreateLabelingJob",
 "sagemaker:CreateLineageGroupPolicy",
 "sagemaker:CreateModel",
 "sagemaker:CreateModelBiasJobDefinition",
 "sagemaker:CreateModelExplainabilityJobDefinition",
 "sagemaker:CreateModelPackage",
 "sagemaker:CreateModelPackageGroup",
 "sagemaker:CreateModelQualityJobDefinition",
 "sagemaker:CreateMonitoringSchedule",
 "sagemaker:CreateNotebookInstance",
 "sagemaker:CreateNotebookInstanceLifecycleConfig",
 "sagemaker:CreatePipeline",
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:CreatePresignedNotebookInstanceUrl",
 "sagemaker:CreateProcessingJob",
 "sagemaker:CreateProject",
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateTransformJob",
 "sagemaker:CreateTrial",
 "sagemaker:CreateTrialComponent",
 "sagemaker:CreateUserProfile",
 "sagemaker:CreateWorkforce",

AWS Managed Policies for SageMaker 5926

Amazon SageMaker Developer Guide

 "sagemaker:CreateWorkteam",
 "sagemaker:DeleteAction",
 "sagemaker:DeleteAlgorithm",
 "sagemaker:DeleteApp",
 "sagemaker:DeleteAppImageConfig",
 "sagemaker:DeleteArtifact",
 "sagemaker:DeleteAssociation",
 "sagemaker:DeleteCodeRepository",
 "sagemaker:DeleteContext",
 "sagemaker:DeleteDataQualityJobDefinition",
 "sagemaker:DeleteDeviceFleet",
 "sagemaker:DeleteDomain",
 "sagemaker:DeleteEndpoint",
 "sagemaker:DeleteEndpointConfig",
 "sagemaker:DeleteExperiment",
 "sagemaker:DeleteFeatureGroup",
 "sagemaker:DeleteFlowDefinition",
 "sagemaker:DeleteHumanLoop",
 "sagemaker:DeleteHumanTaskUi",
 "sagemaker:DeleteImage",
 "sagemaker:DeleteImageVersion",
 "sagemaker:DeleteLineageGroupPolicy",
 "sagemaker:DeleteModel",
 "sagemaker:DeleteModelBiasJobDefinition",
 "sagemaker:DeleteModelExplainabilityJobDefinition",
 "sagemaker:DeleteModelPackage",
 "sagemaker:DeleteModelPackageGroup",
 "sagemaker:DeleteModelPackageGroupPolicy",
 "sagemaker:DeleteModelQualityJobDefinition",
 "sagemaker:DeleteMonitoringSchedule",
 "sagemaker:DeleteNotebookInstance",
 "sagemaker:DeleteNotebookInstanceLifecycleConfig",
 "sagemaker:DeletePipeline",
 "sagemaker:DeleteProject",
 "sagemaker:DeleteRecord",
 "sagemaker:DeleteTags",
 "sagemaker:DeleteTrial",
 "sagemaker:DeleteTrialComponent",
 "sagemaker:DeleteUserProfile",
 "sagemaker:DeleteWorkforce",
 "sagemaker:DeleteWorkteam",
 "sagemaker:DeregisterDevices",
 "sagemaker:DescribeAction",
 "sagemaker:DescribeAlgorithm",

AWS Managed Policies for SageMaker 5927

Amazon SageMaker Developer Guide

 "sagemaker:DescribeApp",
 "sagemaker:DescribeAppImageConfig",
 "sagemaker:DescribeArtifact",
 "sagemaker:DescribeAutoMLJob",
 "sagemaker:DescribeCodeRepository",
 "sagemaker:DescribeCompilationJob",
 "sagemaker:DescribeContext",
 "sagemaker:DescribeDataQualityJobDefinition",
 "sagemaker:DescribeDevice",
 "sagemaker:DescribeDeviceFleet",
 "sagemaker:DescribeDomain",
 "sagemaker:DescribeEdgePackagingJob",
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:DescribeExperiment",
 "sagemaker:DescribeFeatureGroup",
 "sagemaker:DescribeFlowDefinition",
 "sagemaker:DescribeHumanLoop",
 "sagemaker:DescribeHumanTaskUi",
 "sagemaker:DescribeHyperParameterTuningJob",
 "sagemaker:DescribeImage",
 "sagemaker:DescribeImageVersion",
 "sagemaker:DescribeInferenceRecommendationsJob",
 "sagemaker:DescribeLabelingJob",
 "sagemaker:DescribeLineageGroup",
 "sagemaker:DescribeModel",
 "sagemaker:DescribeModelBiasJobDefinition",
 "sagemaker:DescribeModelExplainabilityJobDefinition",
 "sagemaker:DescribeModelPackage",
 "sagemaker:DescribeModelPackageGroup",
 "sagemaker:DescribeModelQualityJobDefinition",
 "sagemaker:DescribeMonitoringSchedule",
 "sagemaker:DescribeNotebookInstance",
 "sagemaker:DescribeNotebookInstanceLifecycleConfig",
 "sagemaker:DescribePipeline",
 "sagemaker:DescribePipelineDefinitionForExecution",
 "sagemaker:DescribePipelineExecution",
 "sagemaker:DescribeProcessingJob",
 "sagemaker:DescribeProject",
 "sagemaker:DescribeSubscribedWorkteam",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:DescribeTransformJob",
 "sagemaker:DescribeTrial",
 "sagemaker:DescribeTrialComponent",

AWS Managed Policies for SageMaker 5928

Amazon SageMaker Developer Guide

 "sagemaker:DescribeUserProfile",
 "sagemaker:DescribeWorkforce",
 "sagemaker:DescribeWorkteam",
 "sagemaker:DisableSagemakerServicecatalogPortfolio",
 "sagemaker:DisassociateTrialComponent",
 "sagemaker:EnableSagemakerServicecatalogPortfolio",
 "sagemaker:GetDeviceFleetReport",
 "sagemaker:GetDeviceRegistration",
 "sagemaker:GetLineageGroupPolicy",
 "sagemaker:GetModelPackageGroupPolicy",
 "sagemaker:GetRecord",
 "sagemaker:GetSagemakerServicecatalogPortfolioStatus",
 "sagemaker:GetSearchSuggestions",
 "sagemaker:InvokeEndpoint",
 "sagemaker:InvokeEndpointAsync",
 "sagemaker:ListActions",
 "sagemaker:ListAlgorithms",
 "sagemaker:ListAppImageConfigs",
 "sagemaker:ListApps",
 "sagemaker:ListArtifacts",
 "sagemaker:ListAssociations",
 "sagemaker:ListAutoMLJobs",
 "sagemaker:ListCandidatesForAutoMLJob",
 "sagemaker:ListCodeRepositories",
 "sagemaker:ListCompilationJobs",
 "sagemaker:ListContexts",
 "sagemaker:ListDataQualityJobDefinitions",
 "sagemaker:ListDeviceFleets",
 "sagemaker:ListDevices",
 "sagemaker:ListDomains",
 "sagemaker:ListEdgePackagingJobs",
 "sagemaker:ListEndpointConfigs",
 "sagemaker:ListEndpoints",
 "sagemaker:ListExperiments",
 "sagemaker:ListFeatureGroups",
 "sagemaker:ListFlowDefinitions",
 "sagemaker:ListHumanLoops",
 "sagemaker:ListHumanTaskUis",
 "sagemaker:ListHyperParameterTuningJobs",
 "sagemaker:ListImageVersions",
 "sagemaker:ListImages",
 "sagemaker:ListInferenceRecommendationsJobs",
 "sagemaker:ListLabelingJobs",
 "sagemaker:ListLabelingJobsForWorkteam",

AWS Managed Policies for SageMaker 5929

Amazon SageMaker Developer Guide

 "sagemaker:ListLineageGroups",
 "sagemaker:ListModelBiasJobDefinitions",
 "sagemaker:ListModelExplainabilityJobDefinitions",
 "sagemaker:ListModelMetadata",
 "sagemaker:ListModelPackageGroups",
 "sagemaker:ListModelPackages",
 "sagemaker:ListModelQualityJobDefinitions",
 "sagemaker:ListModels",
 "sagemaker:ListMonitoringExecutions",
 "sagemaker:ListMonitoringSchedules",
 "sagemaker:ListNotebookInstanceLifecycleConfigs",
 "sagemaker:ListNotebookInstances",
 "sagemaker:ListPipelineExecutionSteps",
 "sagemaker:ListPipelineExecutions",
 "sagemaker:ListPipelineParametersForExecution",
 "sagemaker:ListPipelines",
 "sagemaker:ListProcessingJobs",
 "sagemaker:ListProjects",
 "sagemaker:ListSubscribedWorkteams",
 "sagemaker:ListTags",
 "sagemaker:ListTrainingJobs",
 "sagemaker:ListTrainingJobsForHyperParameterTuningJob",
 "sagemaker:ListTransformJobs",
 "sagemaker:ListTrialComponents",
 "sagemaker:ListTrials",
 "sagemaker:ListUserProfiles",
 "sagemaker:ListWorkforces",
 "sagemaker:ListWorkteams",
 "sagemaker:PutLineageGroupPolicy",
 "sagemaker:PutModelPackageGroupPolicy",
 "sagemaker:PutRecord",
 "sagemaker:QueryLineage",
 "sagemaker:RegisterDevices",
 "sagemaker:RenderUiTemplate",
 "sagemaker:Search",
 "sagemaker:SendHeartbeat",
 "sagemaker:SendPipelineExecutionStepFailure",
 "sagemaker:SendPipelineExecutionStepSuccess",
 "sagemaker:StartHumanLoop",
 "sagemaker:StartMonitoringSchedule",
 "sagemaker:StartNotebookInstance",
 "sagemaker:StartPipelineExecution",
 "sagemaker:StopAutoMLJob",
 "sagemaker:StopCompilationJob",

AWS Managed Policies for SageMaker 5930

Amazon SageMaker Developer Guide

 "sagemaker:StopEdgePackagingJob",
 "sagemaker:StopHumanLoop",
 "sagemaker:StopHyperParameterTuningJob",
 "sagemaker:StopInferenceRecommendationsJob",
 "sagemaker:StopLabelingJob",
 "sagemaker:StopMonitoringSchedule",
 "sagemaker:StopNotebookInstance",
 "sagemaker:StopPipelineExecution",
 "sagemaker:StopProcessingJob",
 "sagemaker:StopTrainingJob",
 "sagemaker:StopTransformJob",
 "sagemaker:UpdateAction",
 "sagemaker:UpdateAppImageConfig",
 "sagemaker:UpdateArtifact",
 "sagemaker:UpdateCodeRepository",
 "sagemaker:UpdateContext",
 "sagemaker:UpdateDeviceFleet",
 "sagemaker:UpdateDevices",
 "sagemaker:UpdateDomain",
 "sagemaker:UpdateEndpoint",
 "sagemaker:UpdateEndpointWeightsAndCapacities",
 "sagemaker:UpdateExperiment",
 "sagemaker:UpdateImage",
 "sagemaker:UpdateModelPackage",
 "sagemaker:UpdateMonitoringSchedule",
 "sagemaker:UpdateNotebookInstance",
 "sagemaker:UpdateNotebookInstanceLifecycleConfig",
 "sagemaker:UpdatePipeline",
 "sagemaker:UpdatePipelineExecution",
 "sagemaker:UpdateProject",
 "sagemaker:UpdateTrainingJob",
 "sagemaker:UpdateTrial",
 "sagemaker:UpdateTrialComponent",
 "sagemaker:UpdateUserProfile",
 "sagemaker:UpdateWorkforce",
 "sagemaker:UpdateWorkteam"
],
 "NotResource": [
 "arn:aws:sagemaker:*:*:domain/*",
 "arn:aws:sagemaker:*:*:user-profile/*",
 "arn:aws:sagemaker:*:*:app/*",
 "arn:aws:sagemaker:*:*:flow-definition/*"
]
 },

AWS Managed Policies for SageMaker 5931

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsCodeBuildRole",
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsExecutionRole"
]
 }
]
}

AWS managed policy: AmazonSageMakerServiceCatalogProductsCodeBuildServiceRolePolicy

This policy is used by AWS CodeBuild within the AWS Service Catalog provisioned products from
the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that the
AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
CodeBuild that require a role.

Permissions details

This policy includes the following permissions.

• sagemaker – Allow access to various SageMaker resources.

• codecommit – Upload CodeCommit archives to CodeBuild pipelines, get upload status, and
cancel uploads; get branch and commit information. These permissions are limited to resources
whose name starts with "sagemaker-".

• ecr – Create Amazon ECR repositories and container images; upload image layers. These
permissions are limited to repositories whose name starts with "sagemaker-".

ecr – Read all resources.

• iam – Pass the following roles:

• AmazonSageMakerServiceCatalogProductsCloudformationRole to AWS
CloudFormation.

• AmazonSageMakerServiceCatalogProductsCodeBuildRole to AWS CodeBuild.

• AmazonSageMakerServiceCatalogProductsCodePipelineRole to AWS CodePipeline.

AWS Managed Policies for SageMaker 5932

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

• AmazonSageMakerServiceCatalogProductsEventsRole to Amazon EventBridge.

• AmazonSageMakerServiceCatalogProductsExecutionRole to Amazon SageMaker.

• logs – Create and read CloudWatch Logs groups, streams, and events; update events; describe
various resources.

These permissions are limited to resources whose name prefix starts with "aws/codebuild/".

• s3 – Create, read, and list Amazon S3 buckets. These permissions are limited to buckets whose
name starts with "sagemaker-".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:CancelUploadArchive",
 "codecommit:GetBranch",
 "codecommit:GetCommit",
 "codecommit:GetUploadArchiveStatus",
 "codecommit:UploadArchive"
],
 "Resource": "arn:aws:codecommit:*:*:sagemaker-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:DescribeImageScanFindings",
 "ecr:DescribeRegistry",
 "ecr:DescribeImageReplicationStatus",
 "ecr:DescribeRepositories",
 "ecr:DescribeImageReplicationStatus",
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer"
],
 "Resource": [
 "*"
]
 },

AWS Managed Policies for SageMaker 5933

Amazon SageMaker Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "ecr:CompleteLayerUpload",
 "ecr:CreateRepository",
 "ecr:InitiateLayerUpload",
 "ecr:PutImage",
 "ecr:UploadLayerPart"
],
 "Resource": [
 "arn:aws:ecr:*:*:repository/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsEventsRole",
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsCodePipelineRole",
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsCloudformationRole",
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsCodeBuildRole",
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsExecutionRole"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "events.amazonaws.com",
 "codepipeline.amazonaws.com",
 "cloudformation.amazonaws.com",
 "codebuild.amazonaws.com",
 "sagemaker.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",

AWS Managed Policies for SageMaker 5934

Amazon SageMaker Developer Guide

 "Action": [
 "logs:CreateLogDelivery",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogDelivery",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:DescribeResourcePolicies",
 "logs:DescribeDestinations",
 "logs:DescribeExportTasks",
 "logs:DescribeMetricFilters",
 "logs:DescribeQueries",
 "logs:DescribeQueryDefinitions",
 "logs:DescribeSubscriptionFilters",
 "logs:GetLogDelivery",
 "logs:GetLogEvents",
 "logs:ListLogDeliveries",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/codebuild/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:GetBucketAcl",
 "s3:GetBucketCors",
 "s3:GetBucketLocation",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutBucketCors",
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::aws-glue-*",
 "arn:aws:s3:::sagemaker-*"

AWS Managed Policies for SageMaker 5935

Amazon SageMaker Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:AddAssociation",
 "sagemaker:AddTags",
 "sagemaker:AssociateTrialComponent",
 "sagemaker:BatchDescribeModelPackage",
 "sagemaker:BatchGetMetrics",
 "sagemaker:BatchGetRecord",
 "sagemaker:BatchPutMetrics",
 "sagemaker:CreateAction",
 "sagemaker:CreateAlgorithm",
 "sagemaker:CreateApp",
 "sagemaker:CreateAppImageConfig",
 "sagemaker:CreateArtifact",
 "sagemaker:CreateAutoMLJob",
 "sagemaker:CreateCodeRepository",
 "sagemaker:CreateCompilationJob",
 "sagemaker:CreateContext",
 "sagemaker:CreateDataQualityJobDefinition",
 "sagemaker:CreateDeviceFleet",
 "sagemaker:CreateDomain",
 "sagemaker:CreateEdgePackagingJob",
 "sagemaker:CreateEndpoint",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:CreateExperiment",
 "sagemaker:CreateFeatureGroup",
 "sagemaker:CreateFlowDefinition",
 "sagemaker:CreateHumanTaskUi",
 "sagemaker:CreateHyperParameterTuningJob",
 "sagemaker:CreateImage",
 "sagemaker:CreateImageVersion",
 "sagemaker:CreateInferenceRecommendationsJob",
 "sagemaker:CreateLabelingJob",
 "sagemaker:CreateLineageGroupPolicy",
 "sagemaker:CreateModel",
 "sagemaker:CreateModelBiasJobDefinition",
 "sagemaker:CreateModelExplainabilityJobDefinition",
 "sagemaker:CreateModelPackage",
 "sagemaker:CreateModelPackageGroup",
 "sagemaker:CreateModelQualityJobDefinition",
 "sagemaker:CreateMonitoringSchedule",

AWS Managed Policies for SageMaker 5936

Amazon SageMaker Developer Guide

 "sagemaker:CreateNotebookInstance",
 "sagemaker:CreateNotebookInstanceLifecycleConfig",
 "sagemaker:CreatePipeline",
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:CreatePresignedNotebookInstanceUrl",
 "sagemaker:CreateProcessingJob",
 "sagemaker:CreateProject",
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateTransformJob",
 "sagemaker:CreateTrial",
 "sagemaker:CreateTrialComponent",
 "sagemaker:CreateUserProfile",
 "sagemaker:CreateWorkforce",
 "sagemaker:CreateWorkteam",
 "sagemaker:DeleteAction",
 "sagemaker:DeleteAlgorithm",
 "sagemaker:DeleteApp",
 "sagemaker:DeleteAppImageConfig",
 "sagemaker:DeleteArtifact",
 "sagemaker:DeleteAssociation",
 "sagemaker:DeleteCodeRepository",
 "sagemaker:DeleteContext",
 "sagemaker:DeleteDataQualityJobDefinition",
 "sagemaker:DeleteDeviceFleet",
 "sagemaker:DeleteDomain",
 "sagemaker:DeleteEndpoint",
 "sagemaker:DeleteEndpointConfig",
 "sagemaker:DeleteExperiment",
 "sagemaker:DeleteFeatureGroup",
 "sagemaker:DeleteFlowDefinition",
 "sagemaker:DeleteHumanLoop",
 "sagemaker:DeleteHumanTaskUi",
 "sagemaker:DeleteImage",
 "sagemaker:DeleteImageVersion",
 "sagemaker:DeleteLineageGroupPolicy",
 "sagemaker:DeleteModel",
 "sagemaker:DeleteModelBiasJobDefinition",
 "sagemaker:DeleteModelExplainabilityJobDefinition",
 "sagemaker:DeleteModelPackage",
 "sagemaker:DeleteModelPackageGroup",
 "sagemaker:DeleteModelPackageGroupPolicy",
 "sagemaker:DeleteModelQualityJobDefinition",
 "sagemaker:DeleteMonitoringSchedule",
 "sagemaker:DeleteNotebookInstance",

AWS Managed Policies for SageMaker 5937

Amazon SageMaker Developer Guide

 "sagemaker:DeleteNotebookInstanceLifecycleConfig",
 "sagemaker:DeletePipeline",
 "sagemaker:DeleteProject",
 "sagemaker:DeleteRecord",
 "sagemaker:DeleteTags",
 "sagemaker:DeleteTrial",
 "sagemaker:DeleteTrialComponent",
 "sagemaker:DeleteUserProfile",
 "sagemaker:DeleteWorkforce",
 "sagemaker:DeleteWorkteam",
 "sagemaker:DeregisterDevices",
 "sagemaker:DescribeAction",
 "sagemaker:DescribeAlgorithm",
 "sagemaker:DescribeApp",
 "sagemaker:DescribeAppImageConfig",
 "sagemaker:DescribeArtifact",
 "sagemaker:DescribeAutoMLJob",
 "sagemaker:DescribeCodeRepository",
 "sagemaker:DescribeCompilationJob",
 "sagemaker:DescribeContext",
 "sagemaker:DescribeDataQualityJobDefinition",
 "sagemaker:DescribeDevice",
 "sagemaker:DescribeDeviceFleet",
 "sagemaker:DescribeDomain",
 "sagemaker:DescribeEdgePackagingJob",
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:DescribeExperiment",
 "sagemaker:DescribeFeatureGroup",
 "sagemaker:DescribeFlowDefinition",
 "sagemaker:DescribeHumanLoop",
 "sagemaker:DescribeHumanTaskUi",
 "sagemaker:DescribeHyperParameterTuningJob",
 "sagemaker:DescribeImage",
 "sagemaker:DescribeImageVersion",
 "sagemaker:DescribeInferenceRecommendationsJob",
 "sagemaker:DescribeLabelingJob",
 "sagemaker:DescribeLineageGroup",
 "sagemaker:DescribeModel",
 "sagemaker:DescribeModelBiasJobDefinition",
 "sagemaker:DescribeModelExplainabilityJobDefinition",
 "sagemaker:DescribeModelPackage",
 "sagemaker:DescribeModelPackageGroup",
 "sagemaker:DescribeModelQualityJobDefinition",

AWS Managed Policies for SageMaker 5938

Amazon SageMaker Developer Guide

 "sagemaker:DescribeMonitoringSchedule",
 "sagemaker:DescribeNotebookInstance",
 "sagemaker:DescribeNotebookInstanceLifecycleConfig",
 "sagemaker:DescribePipeline",
 "sagemaker:DescribePipelineDefinitionForExecution",
 "sagemaker:DescribePipelineExecution",
 "sagemaker:DescribeProcessingJob",
 "sagemaker:DescribeProject",
 "sagemaker:DescribeSubscribedWorkteam",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:DescribeTransformJob",
 "sagemaker:DescribeTrial",
 "sagemaker:DescribeTrialComponent",
 "sagemaker:DescribeUserProfile",
 "sagemaker:DescribeWorkforce",
 "sagemaker:DescribeWorkteam",
 "sagemaker:DisableSagemakerServicecatalogPortfolio",
 "sagemaker:DisassociateTrialComponent",
 "sagemaker:EnableSagemakerServicecatalogPortfolio",
 "sagemaker:GetDeviceFleetReport",
 "sagemaker:GetDeviceRegistration",
 "sagemaker:GetLineageGroupPolicy",
 "sagemaker:GetModelPackageGroupPolicy",
 "sagemaker:GetRecord",
 "sagemaker:GetSagemakerServicecatalogPortfolioStatus",
 "sagemaker:GetSearchSuggestions",
 "sagemaker:InvokeEndpoint",
 "sagemaker:InvokeEndpointAsync",
 "sagemaker:ListActions",
 "sagemaker:ListAlgorithms",
 "sagemaker:ListAppImageConfigs",
 "sagemaker:ListApps",
 "sagemaker:ListArtifacts",
 "sagemaker:ListAssociations",
 "sagemaker:ListAutoMLJobs",
 "sagemaker:ListCandidatesForAutoMLJob",
 "sagemaker:ListCodeRepositories",
 "sagemaker:ListCompilationJobs",
 "sagemaker:ListContexts",
 "sagemaker:ListDataQualityJobDefinitions",
 "sagemaker:ListDeviceFleets",
 "sagemaker:ListDevices",
 "sagemaker:ListDomains",
 "sagemaker:ListEdgePackagingJobs",

AWS Managed Policies for SageMaker 5939

Amazon SageMaker Developer Guide

 "sagemaker:ListEndpointConfigs",
 "sagemaker:ListEndpoints",
 "sagemaker:ListExperiments",
 "sagemaker:ListFeatureGroups",
 "sagemaker:ListFlowDefinitions",
 "sagemaker:ListHumanLoops",
 "sagemaker:ListHumanTaskUis",
 "sagemaker:ListHyperParameterTuningJobs",
 "sagemaker:ListImageVersions",
 "sagemaker:ListImages",
 "sagemaker:ListInferenceRecommendationsJobs",
 "sagemaker:ListLabelingJobs",
 "sagemaker:ListLabelingJobsForWorkteam",
 "sagemaker:ListLineageGroups",
 "sagemaker:ListModelBiasJobDefinitions",
 "sagemaker:ListModelExplainabilityJobDefinitions",
 "sagemaker:ListModelMetadata",
 "sagemaker:ListModelPackageGroups",
 "sagemaker:ListModelPackages",
 "sagemaker:ListModelQualityJobDefinitions",
 "sagemaker:ListModels",
 "sagemaker:ListMonitoringExecutions",
 "sagemaker:ListMonitoringSchedules",
 "sagemaker:ListNotebookInstanceLifecycleConfigs",
 "sagemaker:ListNotebookInstances",
 "sagemaker:ListPipelineExecutionSteps",
 "sagemaker:ListPipelineExecutions",
 "sagemaker:ListPipelineParametersForExecution",
 "sagemaker:ListPipelines",
 "sagemaker:ListProcessingJobs",
 "sagemaker:ListProjects",
 "sagemaker:ListSubscribedWorkteams",
 "sagemaker:ListTags",
 "sagemaker:ListTrainingJobs",
 "sagemaker:ListTrainingJobsForHyperParameterTuningJob",
 "sagemaker:ListTransformJobs",
 "sagemaker:ListTrialComponents",
 "sagemaker:ListTrials",
 "sagemaker:ListUserProfiles",
 "sagemaker:ListWorkforces",
 "sagemaker:ListWorkteams",
 "sagemaker:PutLineageGroupPolicy",
 "sagemaker:PutModelPackageGroupPolicy",
 "sagemaker:PutRecord",

AWS Managed Policies for SageMaker 5940

Amazon SageMaker Developer Guide

 "sagemaker:QueryLineage",
 "sagemaker:RegisterDevices",
 "sagemaker:RenderUiTemplate",
 "sagemaker:Search",
 "sagemaker:SendHeartbeat",
 "sagemaker:SendPipelineExecutionStepFailure",
 "sagemaker:SendPipelineExecutionStepSuccess",
 "sagemaker:StartHumanLoop",
 "sagemaker:StartMonitoringSchedule",
 "sagemaker:StartNotebookInstance",
 "sagemaker:StartPipelineExecution",
 "sagemaker:StopAutoMLJob",
 "sagemaker:StopCompilationJob",
 "sagemaker:StopEdgePackagingJob",
 "sagemaker:StopHumanLoop",
 "sagemaker:StopHyperParameterTuningJob",
 "sagemaker:StopInferenceRecommendationsJob",
 "sagemaker:StopLabelingJob",
 "sagemaker:StopMonitoringSchedule",
 "sagemaker:StopNotebookInstance",
 "sagemaker:StopPipelineExecution",
 "sagemaker:StopProcessingJob",
 "sagemaker:StopTrainingJob",
 "sagemaker:StopTransformJob",
 "sagemaker:UpdateAction",
 "sagemaker:UpdateAppImageConfig",
 "sagemaker:UpdateArtifact",
 "sagemaker:UpdateCodeRepository",
 "sagemaker:UpdateContext",
 "sagemaker:UpdateDeviceFleet",
 "sagemaker:UpdateDevices",
 "sagemaker:UpdateDomain",
 "sagemaker:UpdateEndpoint",
 "sagemaker:UpdateEndpointWeightsAndCapacities",
 "sagemaker:UpdateExperiment",
 "sagemaker:UpdateImage",
 "sagemaker:UpdateModelPackage",
 "sagemaker:UpdateMonitoringSchedule",
 "sagemaker:UpdateNotebookInstance",
 "sagemaker:UpdateNotebookInstanceLifecycleConfig",
 "sagemaker:UpdatePipeline",
 "sagemaker:UpdatePipelineExecution",
 "sagemaker:UpdateProject",
 "sagemaker:UpdateTrainingJob",

AWS Managed Policies for SageMaker 5941

Amazon SageMaker Developer Guide

 "sagemaker:UpdateTrial",
 "sagemaker:UpdateTrialComponent",
 "sagemaker:UpdateUserProfile",
 "sagemaker:UpdateWorkforce",
 "sagemaker:UpdateWorkteam"
],
 "Resource": [
 "arn:aws:sagemaker:*:*:endpoint/*",
 "arn:aws:sagemaker:*:*:endpoint-config/*",
 "arn:aws:sagemaker:*:*:model/*",
 "arn:aws:sagemaker:*:*:pipeline/*",
 "arn:aws:sagemaker:*:*:project/*",
 "arn:aws:sagemaker:*:*:model-package/*"
]
 }
]
}

AWS managed policy:
AmazonSageMakerServiceCatalogProductsCodePipelineServiceRolePolicy

This policy is used by AWS CodePipeline within the AWS Service Catalog provisioned products from
the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that the
AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
CodePipeline that require a role.

Permissions details

This policy includes the following permissions.

• cloudformation – Create, read, delete, and update CloudFormation stacks; create, read, delete,
and execute change sets; set stack policy. These permissions are limited to resources whose name
starts with "sagemaker-".

• s3 – Create, read, list, and delete Amazon S3 buckets; add, read, and delete objects from the
buckets; read and set the CORS configuration; read the access control list (ACL); and read the
AWS Region the bucket resides in.

These permissions are limited to buckets whose name starts with "sagemaker-" or "aws-glue-.

• iam – Pass the AmazonSageMakerServiceCatalogProductsCloudformationRole role.

• codebuild – Get CodeBuild build information and start builds. These permissions are limited to
project and build resources whose name starts with "sagemaker-".

AWS Managed Policies for SageMaker 5942

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

• codecommit – Upload CodeCommit archives to CodeBuild pipelines, get upload status, and
cancel uploads; get branch and commit information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateChangeSet",
 "cloudformation:CreateStack",
 "cloudformation:DescribeChangeSet",
 "cloudformation:DeleteChangeSet",
 "cloudformation:DeleteStack",
 "cloudformation:DescribeStacks",
 "cloudformation:ExecuteChangeSet",
 "cloudformation:SetStackPolicy",
 "cloudformation:UpdateStack"
],
 "Resource": "arn:aws:cloudformation:*:*:stack/sagemaker-*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:role/service-role/
AmazonSageMakerServiceCatalogProductsCloudformationRole"

AWS Managed Policies for SageMaker 5943

Amazon SageMaker Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"
],
 "Resource": [
 "arn:aws:codebuild:*:*:project/sagemaker-*",
 "arn:aws:codebuild:*:*:build/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "codecommit:CancelUploadArchive",
 "codecommit:GetBranch",
 "codecommit:GetCommit",
 "codecommit:GetUploadArchiveStatus",
 "codecommit:UploadArchive"
],
 "Resource": "arn:aws:codecommit:*:*:sagemaker-*"
 }
]
}

AWS managed policy: AmazonSageMakerServiceCatalogProductsEventsServiceRolePolicy

This policy is used by Amazon EventBridge within the AWS Service Catalog provisioned products
from the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that
the AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
EventBridge that require a role.

Permissions details

This policy includes the following permissions.

• codepipeline – Start a CodeBuild execution. These permissions are limited to pipelines whose
name starts with "sagemaker-".

{

AWS Managed Policies for SageMaker 5944

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codepipeline:StartPipelineExecution",
 "Resource": "arn:aws:codepipeline:*:*:sagemaker-*"
 }
]
}

AWS managed policy: AmazonSageMakerServiceCatalogProductsFirehoseServiceRolePolicy

This policy is used by Amazon Data Firehose within the AWS Service Catalog provisioned products
from the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that
the AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
Firehose that require a role.

Permissions details

This policy includes the following permissions.

• firehose – Send Firehose records. These permissions are limited to resources whose delivery
stream name starts with "sagemaker-".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Resource": "arn:aws:firehose:*:*:deliverystream/sagemaker-*"
 }
]
}

AWS Managed Policies for SageMaker 5945

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

AWS managed policy: AmazonSageMakerServiceCatalogProductsGlueServiceRolePolicy

This policy is used by AWS Glue within the AWS Service Catalog provisioned products from the
Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that the
AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
Glue that require a role.

Permissions details

This policy includes the following permissions.

• glue – Create, read, and delete AWS Glue partitions, tables, and table versions. These
permissions are limited to those resources whose name starts with "sagemaker-". Create and
read AWS Glue databases. These permissions are limited to databases whose name is "default",
"global_temp", or starts with "sagemaker-". Get user defined functions.

• s3 – Create, read, list, and delete Amazon S3 buckets; add, read, and delete objects from the
buckets; read and set the CORS configuration; read the access control list (ACL), and read the
AWS Region the bucket resides in.

These permissions are limited to buckets whose name starts with "sagemaker-" or "aws-glue-".

• logs – Create, read, and delete CloudWatch Logs log group, streams, and deliveries; and create a
resource policy.

These permissions are limited to resources whose name prefix starts with "aws/glue/".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:BatchCreatePartition",
 "glue:BatchDeletePartition",
 "glue:BatchDeleteTable",
 "glue:BatchDeleteTableVersion",
 "glue:BatchGetPartition",
 "glue:CreateDatabase",
 "glue:CreatePartition",
 "glue:CreateTable",
 "glue:DeletePartition",

AWS Managed Policies for SageMaker 5946

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

 "glue:DeleteTable",
 "glue:DeleteTableVersion",
 "glue:GetDatabase",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:GetTable",
 "glue:GetTables",
 "glue:GetTableVersion",
 "glue:GetTableVersions",
 "glue:SearchTables",
 "glue:UpdatePartition",
 "glue:UpdateTable",
 "glue:GetUserDefinedFunctions"
],
 "Resource": [
 "arn:aws:glue:*:*:catalog",
 "arn:aws:glue:*:*:database/default",
 "arn:aws:glue:*:*:database/global_temp",
 "arn:aws:glue:*:*:database/sagemaker-*",
 "arn:aws:glue:*:*:table/sagemaker-*",
 "arn:aws:glue:*:*:tableVersion/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:GetBucketAcl",
 "s3:GetBucketCors",
 "s3:GetBucketLocation",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutBucketCors"
],
 "Resource": [
 "arn:aws:s3:::aws-glue-*",
 "arn:aws:s3:::sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

AWS Managed Policies for SageMaker 5947

Amazon SageMaker Developer Guide

 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::aws-glue-*",
 "arn:aws:s3:::sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogDelivery",
 "logs:Describe*",
 "logs:GetLogDelivery",
 "logs:GetLogEvents",
 "logs:ListLogDeliveries",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/glue/*"
 }
]
}

AWS managed policy: AmazonSageMakerServiceCatalogProductsLambdaServiceRolePolicy

This policy is used by AWS Lambda within the AWS Service Catalog provisioned products from
the Amazon SageMaker portfolio. The policy is intended to be attached to an IAM role that the
AmazonSageMakerServiceCatalogProductsLaunchRole passes to the AWS resources created by
Lambda that require a role.

Permissions details

This policy includes the following permissions.

• sagemaker – Allow access to various SageMaker resources.

AWS Managed Policies for SageMaker 5948

https://console.aws.amazon.com/iam/home?#/roles/AmazonSageMakerServiceCatalogProductsLaunchRole

Amazon SageMaker Developer Guide

• ecr – Create and delete Amazon ECR repositories; create, read, and delete container images;
upload image layers. These permissions are limited to repositories whose name starts with
"sagemaker-".

• events – Create, read, and delete Amazon EventBridge rules; and create and remove targets.
These permissions are limited to rules whose name starts with "sagemaker-".

• s3 – Create, read, list, and delete Amazon S3 buckets; add, read, and delete objects from the
buckets; read and set the CORS configuration; read the access control list (ACL), and read the
AWS Region the bucket resides in.

These permissions are limited to buckets whose name starts with "sagemaker-" or "aws-glue-".

• iam – Pass the AmazonSageMakerServiceCatalogProductsExecutionRole role.

• logs – Create, read, and delete CloudWatch Logs log group, streams, and deliveries; and create a
resource policy.

These permissions are limited to resources whose name prefix starts with "aws/lambda/".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:DescribeImages",
 "ecr:BatchDeleteImage",
 "ecr:CompleteLayerUpload",
 "ecr:CreateRepository",
 "ecr:DeleteRepository",
 "ecr:InitiateLayerUpload",
 "ecr:PutImage",
 "ecr:UploadLayerPart"
],
 "Resource": [
 "arn:aws:ecr:*:*:repository/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:DeleteRule",

AWS Managed Policies for SageMaker 5949

Amazon SageMaker Developer Guide

 "events:DescribeRule",
 "events:PutRule",
 "events:PutTargets",
 "events:RemoveTargets"
],
 "Resource": [
 "arn:aws:events:*:*:rule/sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:GetBucketAcl",
 "s3:GetBucketCors",
 "s3:GetBucketLocation",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:PutBucketCors"
],
 "Resource": [
 "arn:aws:s3:::aws-glue-*",
 "arn:aws:s3:::sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::aws-glue-*",
 "arn:aws:s3:::sagemaker-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

AWS Managed Policies for SageMaker 5950

Amazon SageMaker Developer Guide

 "sagemaker:AddAssociation",
 "sagemaker:AddTags",
 "sagemaker:AssociateTrialComponent",
 "sagemaker:BatchDescribeModelPackage",
 "sagemaker:BatchGetMetrics",
 "sagemaker:BatchGetRecord",
 "sagemaker:BatchPutMetrics",
 "sagemaker:CreateAction",
 "sagemaker:CreateAlgorithm",
 "sagemaker:CreateApp",
 "sagemaker:CreateAppImageConfig",
 "sagemaker:CreateArtifact",
 "sagemaker:CreateAutoMLJob",
 "sagemaker:CreateCodeRepository",
 "sagemaker:CreateCompilationJob",
 "sagemaker:CreateContext",
 "sagemaker:CreateDataQualityJobDefinition",
 "sagemaker:CreateDeviceFleet",
 "sagemaker:CreateDomain",
 "sagemaker:CreateEdgePackagingJob",
 "sagemaker:CreateEndpoint",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:CreateExperiment",
 "sagemaker:CreateFeatureGroup",
 "sagemaker:CreateFlowDefinition",
 "sagemaker:CreateHumanTaskUi",
 "sagemaker:CreateHyperParameterTuningJob",
 "sagemaker:CreateImage",
 "sagemaker:CreateImageVersion",
 "sagemaker:CreateInferenceRecommendationsJob",
 "sagemaker:CreateLabelingJob",
 "sagemaker:CreateLineageGroupPolicy",
 "sagemaker:CreateModel",
 "sagemaker:CreateModelBiasJobDefinition",
 "sagemaker:CreateModelExplainabilityJobDefinition",
 "sagemaker:CreateModelPackage",
 "sagemaker:CreateModelPackageGroup",
 "sagemaker:CreateModelQualityJobDefinition",
 "sagemaker:CreateMonitoringSchedule",
 "sagemaker:CreateNotebookInstance",
 "sagemaker:CreateNotebookInstanceLifecycleConfig",
 "sagemaker:CreatePipeline",
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:CreatePresignedNotebookInstanceUrl",

AWS Managed Policies for SageMaker 5951

Amazon SageMaker Developer Guide

 "sagemaker:CreateProcessingJob",
 "sagemaker:CreateProject",
 "sagemaker:CreateTrainingJob",
 "sagemaker:CreateTransformJob",
 "sagemaker:CreateTrial",
 "sagemaker:CreateTrialComponent",
 "sagemaker:CreateUserProfile",
 "sagemaker:CreateWorkforce",
 "sagemaker:CreateWorkteam",
 "sagemaker:DeleteAction",
 "sagemaker:DeleteAlgorithm",
 "sagemaker:DeleteApp",
 "sagemaker:DeleteAppImageConfig",
 "sagemaker:DeleteArtifact",
 "sagemaker:DeleteAssociation",
 "sagemaker:DeleteCodeRepository",
 "sagemaker:DeleteContext",
 "sagemaker:DeleteDataQualityJobDefinition",
 "sagemaker:DeleteDeviceFleet",
 "sagemaker:DeleteDomain",
 "sagemaker:DeleteEndpoint",
 "sagemaker:DeleteEndpointConfig",
 "sagemaker:DeleteExperiment",
 "sagemaker:DeleteFeatureGroup",
 "sagemaker:DeleteFlowDefinition",
 "sagemaker:DeleteHumanLoop",
 "sagemaker:DeleteHumanTaskUi",
 "sagemaker:DeleteImage",
 "sagemaker:DeleteImageVersion",
 "sagemaker:DeleteLineageGroupPolicy",
 "sagemaker:DeleteModel",
 "sagemaker:DeleteModelBiasJobDefinition",
 "sagemaker:DeleteModelExplainabilityJobDefinition",
 "sagemaker:DeleteModelPackage",
 "sagemaker:DeleteModelPackageGroup",
 "sagemaker:DeleteModelPackageGroupPolicy",
 "sagemaker:DeleteModelQualityJobDefinition",
 "sagemaker:DeleteMonitoringSchedule",
 "sagemaker:DeleteNotebookInstance",
 "sagemaker:DeleteNotebookInstanceLifecycleConfig",
 "sagemaker:DeletePipeline",
 "sagemaker:DeleteProject",
 "sagemaker:DeleteRecord",
 "sagemaker:DeleteTags",

AWS Managed Policies for SageMaker 5952

Amazon SageMaker Developer Guide

 "sagemaker:DeleteTrial",
 "sagemaker:DeleteTrialComponent",
 "sagemaker:DeleteUserProfile",
 "sagemaker:DeleteWorkforce",
 "sagemaker:DeleteWorkteam",
 "sagemaker:DeregisterDevices",
 "sagemaker:DescribeAction",
 "sagemaker:DescribeAlgorithm",
 "sagemaker:DescribeApp",
 "sagemaker:DescribeAppImageConfig",
 "sagemaker:DescribeArtifact",
 "sagemaker:DescribeAutoMLJob",
 "sagemaker:DescribeCodeRepository",
 "sagemaker:DescribeCompilationJob",
 "sagemaker:DescribeContext",
 "sagemaker:DescribeDataQualityJobDefinition",
 "sagemaker:DescribeDevice",
 "sagemaker:DescribeDeviceFleet",
 "sagemaker:DescribeDomain",
 "sagemaker:DescribeEdgePackagingJob",
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:DescribeExperiment",
 "sagemaker:DescribeFeatureGroup",
 "sagemaker:DescribeFlowDefinition",
 "sagemaker:DescribeHumanLoop",
 "sagemaker:DescribeHumanTaskUi",
 "sagemaker:DescribeHyperParameterTuningJob",
 "sagemaker:DescribeImage",
 "sagemaker:DescribeImageVersion",
 "sagemaker:DescribeInferenceRecommendationsJob",
 "sagemaker:DescribeLabelingJob",
 "sagemaker:DescribeLineageGroup",
 "sagemaker:DescribeModel",
 "sagemaker:DescribeModelBiasJobDefinition",
 "sagemaker:DescribeModelExplainabilityJobDefinition",
 "sagemaker:DescribeModelPackage",
 "sagemaker:DescribeModelPackageGroup",
 "sagemaker:DescribeModelQualityJobDefinition",
 "sagemaker:DescribeMonitoringSchedule",
 "sagemaker:DescribeNotebookInstance",
 "sagemaker:DescribeNotebookInstanceLifecycleConfig",
 "sagemaker:DescribePipeline",
 "sagemaker:DescribePipelineDefinitionForExecution",

AWS Managed Policies for SageMaker 5953

Amazon SageMaker Developer Guide

 "sagemaker:DescribePipelineExecution",
 "sagemaker:DescribeProcessingJob",
 "sagemaker:DescribeProject",
 "sagemaker:DescribeSubscribedWorkteam",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:DescribeTransformJob",
 "sagemaker:DescribeTrial",
 "sagemaker:DescribeTrialComponent",
 "sagemaker:DescribeUserProfile",
 "sagemaker:DescribeWorkforce",
 "sagemaker:DescribeWorkteam",
 "sagemaker:DisableSagemakerServicecatalogPortfolio",
 "sagemaker:DisassociateTrialComponent",
 "sagemaker:EnableSagemakerServicecatalogPortfolio",
 "sagemaker:GetDeviceFleetReport",
 "sagemaker:GetDeviceRegistration",
 "sagemaker:GetLineageGroupPolicy",
 "sagemaker:GetModelPackageGroupPolicy",
 "sagemaker:GetRecord",
 "sagemaker:GetSagemakerServicecatalogPortfolioStatus",
 "sagemaker:GetSearchSuggestions",
 "sagemaker:InvokeEndpoint",
 "sagemaker:InvokeEndpointAsync",
 "sagemaker:ListActions",
 "sagemaker:ListAlgorithms",
 "sagemaker:ListAppImageConfigs",
 "sagemaker:ListApps",
 "sagemaker:ListArtifacts",
 "sagemaker:ListAssociations",
 "sagemaker:ListAutoMLJobs",
 "sagemaker:ListCandidatesForAutoMLJob",
 "sagemaker:ListCodeRepositories",
 "sagemaker:ListCompilationJobs",
 "sagemaker:ListContexts",
 "sagemaker:ListDataQualityJobDefinitions",
 "sagemaker:ListDeviceFleets",
 "sagemaker:ListDevices",
 "sagemaker:ListDomains",
 "sagemaker:ListEdgePackagingJobs",
 "sagemaker:ListEndpointConfigs",
 "sagemaker:ListEndpoints",
 "sagemaker:ListExperiments",
 "sagemaker:ListFeatureGroups",
 "sagemaker:ListFlowDefinitions",

AWS Managed Policies for SageMaker 5954

Amazon SageMaker Developer Guide

 "sagemaker:ListHumanLoops",
 "sagemaker:ListHumanTaskUis",
 "sagemaker:ListHyperParameterTuningJobs",
 "sagemaker:ListImageVersions",
 "sagemaker:ListImages",
 "sagemaker:ListInferenceRecommendationsJobs",
 "sagemaker:ListLabelingJobs",
 "sagemaker:ListLabelingJobsForWorkteam",
 "sagemaker:ListLineageGroups",
 "sagemaker:ListModelBiasJobDefinitions",
 "sagemaker:ListModelExplainabilityJobDefinitions",
 "sagemaker:ListModelMetadata",
 "sagemaker:ListModelPackageGroups",
 "sagemaker:ListModelPackages",
 "sagemaker:ListModelQualityJobDefinitions",
 "sagemaker:ListModels",
 "sagemaker:ListMonitoringExecutions",
 "sagemaker:ListMonitoringSchedules",
 "sagemaker:ListNotebookInstanceLifecycleConfigs",
 "sagemaker:ListNotebookInstances",
 "sagemaker:ListPipelineExecutionSteps",
 "sagemaker:ListPipelineExecutions",
 "sagemaker:ListPipelineParametersForExecution",
 "sagemaker:ListPipelines",
 "sagemaker:ListProcessingJobs",
 "sagemaker:ListProjects",
 "sagemaker:ListSubscribedWorkteams",
 "sagemaker:ListTags",
 "sagemaker:ListTrainingJobs",
 "sagemaker:ListTrainingJobsForHyperParameterTuningJob",
 "sagemaker:ListTransformJobs",
 "sagemaker:ListTrialComponents",
 "sagemaker:ListTrials",
 "sagemaker:ListUserProfiles",
 "sagemaker:ListWorkforces",
 "sagemaker:ListWorkteams",
 "sagemaker:PutLineageGroupPolicy",
 "sagemaker:PutModelPackageGroupPolicy",
 "sagemaker:PutRecord",
 "sagemaker:QueryLineage",
 "sagemaker:RegisterDevices",
 "sagemaker:RenderUiTemplate",
 "sagemaker:Search",
 "sagemaker:SendHeartbeat",

AWS Managed Policies for SageMaker 5955

Amazon SageMaker Developer Guide

 "sagemaker:SendPipelineExecutionStepFailure",
 "sagemaker:SendPipelineExecutionStepSuccess",
 "sagemaker:StartHumanLoop",
 "sagemaker:StartMonitoringSchedule",
 "sagemaker:StartNotebookInstance",
 "sagemaker:StartPipelineExecution",
 "sagemaker:StopAutoMLJob",
 "sagemaker:StopCompilationJob",
 "sagemaker:StopEdgePackagingJob",
 "sagemaker:StopHumanLoop",
 "sagemaker:StopHyperParameterTuningJob",
 "sagemaker:StopInferenceRecommendationsJob",
 "sagemaker:StopLabelingJob",
 "sagemaker:StopMonitoringSchedule",
 "sagemaker:StopNotebookInstance",
 "sagemaker:StopPipelineExecution",
 "sagemaker:StopProcessingJob",
 "sagemaker:StopTrainingJob",
 "sagemaker:StopTransformJob",
 "sagemaker:UpdateAction",
 "sagemaker:UpdateAppImageConfig",
 "sagemaker:UpdateArtifact",
 "sagemaker:UpdateCodeRepository",
 "sagemaker:UpdateContext",
 "sagemaker:UpdateDeviceFleet",
 "sagemaker:UpdateDevices",
 "sagemaker:UpdateDomain",
 "sagemaker:UpdateEndpoint",
 "sagemaker:UpdateEndpointWeightsAndCapacities",
 "sagemaker:UpdateExperiment",
 "sagemaker:UpdateImage",
 "sagemaker:UpdateModelPackage",
 "sagemaker:UpdateMonitoringSchedule",
 "sagemaker:UpdateNotebookInstance",
 "sagemaker:UpdateNotebookInstanceLifecycleConfig",
 "sagemaker:UpdatePipeline",
 "sagemaker:UpdatePipelineExecution",
 "sagemaker:UpdateProject",
 "sagemaker:UpdateTrainingJob",
 "sagemaker:UpdateTrial",
 "sagemaker:UpdateTrialComponent",
 "sagemaker:UpdateUserProfile",
 "sagemaker:UpdateWorkforce",
 "sagemaker:UpdateWorkteam"

AWS Managed Policies for SageMaker 5956

Amazon SageMaker Developer Guide

],
 "Resource": [
 "arn:aws:sagemaker:*:*:action/*",
 "arn:aws:sagemaker:*:*:algorithm/*",
 "arn:aws:sagemaker:*:*:app-image-config/*",
 "arn:aws:sagemaker:*:*:artifact/*",
 "arn:aws:sagemaker:*:*:automl-job/*",
 "arn:aws:sagemaker:*:*:code-repository/*",
 "arn:aws:sagemaker:*:*:compilation-job/*",
 "arn:aws:sagemaker:*:*:context/*",
 "arn:aws:sagemaker:*:*:data-quality-job-definition/*",
 "arn:aws:sagemaker:*:*:device-fleet/*/device/*",
 "arn:aws:sagemaker:*:*:device-fleet/*",
 "arn:aws:sagemaker:*:*:edge-packaging-job/*",
 "arn:aws:sagemaker:*:*:endpoint/*",
 "arn:aws:sagemaker:*:*:endpoint-config/*",
 "arn:aws:sagemaker:*:*:experiment/*",
 "arn:aws:sagemaker:*:*:experiment-trial/*",
 "arn:aws:sagemaker:*:*:experiment-trial-component/*",
 "arn:aws:sagemaker:*:*:feature-group/*",
 "arn:aws:sagemaker:*:*:human-loop/*",
 "arn:aws:sagemaker:*:*:human-task-ui/*",
 "arn:aws:sagemaker:*:*:hyper-parameter-tuning-job/*",
 "arn:aws:sagemaker:*:*:image/*",
 "arn:aws:sagemaker:*:*:image-version/*/*",
 "arn:aws:sagemaker:*:*:inference-recommendations-job/*",
 "arn:aws:sagemaker:*:*:labeling-job/*",
 "arn:aws:sagemaker:*:*:model/*",
 "arn:aws:sagemaker:*:*:model-bias-job-definition/*",
 "arn:aws:sagemaker:*:*:model-explainability-job-definition/*",
 "arn:aws:sagemaker:*:*:model-package/*",
 "arn:aws:sagemaker:*:*:model-package-group/*",
 "arn:aws:sagemaker:*:*:model-quality-job-definition/*",
 "arn:aws:sagemaker:*:*:monitoring-schedule/*",
 "arn:aws:sagemaker:*:*:notebook-instance/*",
 "arn:aws:sagemaker:*:*:notebook-instance-lifecycle-config/*",
 "arn:aws:sagemaker:*:*:pipeline/*",
 "arn:aws:sagemaker:*:*:pipeline/*/execution/*",
 "arn:aws:sagemaker:*:*:processing-job/*",
 "arn:aws:sagemaker:*:*:project/*",
 "arn:aws:sagemaker:*:*:training-job/*",
 "arn:aws:sagemaker:*:*:transform-job/*",
 "arn:aws:sagemaker:*:*:workforce/*",
 "arn:aws:sagemaker:*:*:workteam/*"

AWS Managed Policies for SageMaker 5957

Amazon SageMaker Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::*:service-role/
AmazonSageMakerServiceCatalogProductsExecutionRole"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DeleteLogDelivery",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:DescribeResourcePolicies",
 "logs:DescribeDestinations",
 "logs:DescribeExportTasks",
 "logs:DescribeMetricFilters",
 "logs:DescribeQueries",
 "logs:DescribeQueryDefinitions",
 "logs:DescribeSubscriptionFilters",
 "logs:GetLogDelivery",
 "logs:GetLogEvents",
 "logs:ListLogDeliveries",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/lambda/*"
 }
]
}

AWS Managed Policies for SageMaker 5958

Amazon SageMaker Developer Guide

Amazon SageMaker updates to AWS Service Catalog AWS managed policies

View details about updates to AWS managed policies for Amazon SageMaker since this service
began tracking these changes.

Policy Version Change Date

AmazonSageMakerPar
tnerServiceCatalog
ProductsApiGateway
ServiceRolePolicy

1 Initial policy August 1, 2023

AmazonSageMakerPar
tnerServiceCatalog
ProductsCloudForma
tionServiceRolePolicy

1 Initial policy August 1, 2023

AmazonSageMakerPar
tnerServiceCatalog
ProductsLambdaServ
iceRolePolicy

1 Initial policy August 1, 2023

AmazonSageMakerSer
viceCatalogProduct
sGlueServiceRolePolicy

2 Add permission for
glue:GetUserDefine
dFunctions .

August 26, 2022

AmazonSageMakerAdm
in-ServiceCatalogP
roductsServiceRolePolicy

7 Add permission for
sagemaker:AddTags .

August 2, 2022

AmazonSageMakerAdm
in-ServiceCatalogP
roductsServiceRolePolicy

6 Add permission for
lambda:TagResource

.

July 14, 2022

AmazonSageMakerSer
viceCatalogProduct
sLambdaServiceRole
Policy

1 Initial policy April 4, 2022

AWS Managed Policies for SageMaker 5959

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerSer
viceCatalogProduct
sApiGatewayService
RolePolicy

1 Initial policy March 24, 2022

AmazonSageMakerSer
viceCatalogProduct
sCloudformationSer
viceRolePolicy

1 Initial policy March 24, 2022

AmazonSageMakerSer
viceCatalogProduct
sCodeBuildServiceR
olePolicy

1 Initial policy March 24, 2022

AmazonSageMakerAdm
in-ServiceCatalogP
roductsServiceRolePolicy

5 Add new permission for
ecr-idp:TagResourc
e .

March 21, 2022

AmazonSageMakerSer
viceCatalogProduct
sCodePipelineServi
ceRolePolicy

1 Initial policy February 22, 2022

AmazonSageMakerSer
viceCatalogProduct
sEventsServiceRolePolicy

1 Initial policy February 22, 2022

AmazonSageMakerSer
viceCatalogProduct
sFirehoseServiceRo
lePolicy

1 Initial policy February 22, 2022

AmazonSageMakerSer
viceCatalogProduct
sGlueServiceRolePolicy

1 Initial policy February 22, 2022

AWS Managed Policies for SageMaker 5960

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerAdm
in-ServiceCatalogP
roductsServiceRolePolicy

4 Add permissions for
cognito-idp:TagRes
ource and s3:PutBuc
ketCORS .

February 16, 2022

AmazonSageMakerAdm
in-ServiceCatalogP
roductsServiceRolePolicy

3 Add new permissions for
sagemaker .

Create, read, update,
and delete SageMaker
Images.

September 15, 2021

AmazonSageMakerAdm
in-ServiceCatalogP
roductsServiceRolePolicy

2 Add permissions for
sagemaker and
codestar-connectio
ns .

Create, read, update, and
delete code repositories.

Pass AWS CodeStar
connections to AWS
CodePipeline.

July 1, 2021

AmazonSageMakerAdm
in-ServiceCatalogP
roductsServiceRolePolicy

1 Initial policy November 27, 2020

SageMaker Updates to AWS Managed Policies

View details about updates to AWS managed policies for SageMaker since this service began
tracking these changes.

AWS Managed Policies for SageMaker 5961

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerFul
lAccess - Update to an
existing policy

25 Add sagemaker
:CreateApp ,
sagemaker:Describe
App , sagemaker
:DeleteApp ,
sagemaker:CreateSp
ace , sagemaker
:UpdateSpace ,
sagemaker:DeleteSp
ace , s3express
:CreateSession ,
s3express:CreateBu
cket , and s3express
:ListAllM
yDirectoryBuckets
permissions.

November 30, 2023

AmazonSageMakerFul
lAccess - Update to an
existing policy

24 Add sagemaker-
geospatial:* ,
sagemaker:AddTags ,
sagemaker-ListTags

, sagemaker-
DescribeSpace , and
sagemaker:ListSpac
es permissions.

November 30, 2022

AmazonSageMakerFul
lAccess - Update to an
existing policy

23 Add glue:Upda
teTable .

June 29, 2022

AmazonSageMakerFul
lAccess - Update to an
existing policy

22 Add cloudform
ation:Lis
tStackResources .

May 1, 2022

AWS Managed Policies for SageMaker 5962

Amazon SageMaker Developer Guide

Policy Version Change Date

AmazonSageMakerRea
dOnly - Update to an
existing policy

11 Add sagemaker
:QueryLineage ,
sagemaker:GetLinea
geGroupPolicy ,
sagemaker:BatchDes
cribeMode
lPackage , sagemaker
:GetModel
PackageGr
oupPolicy permissio
ns.

December 1, 2021

AmazonSageMakerFul
lAccess - Update to an
existing policy

21 Add sns:Publi
sh permissions for
endpoints with Async
Inference enabled.

September 8, 2021

AmazonSageMakerFul
lAccess - Update to an
existing policy

20 Update iam:PassRole
resources and permissio
ns.

July 15, 2021

AmazonSageMakerRea
dOnly - Update to an
existing policy

10 New API BatchGetR
ecord added for
SageMaker Feature
Store.

June 10, 2021

 SageMaker started
tracking changes for its
AWS managed policies.

June 1, 2021

Troubleshooting Amazon SageMaker Identity and Access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with SageMaker and IAM.

Troubleshooting 5963

Amazon SageMaker Developer Guide

Topics

• I Am Not Authorized to Perform an Action in SageMaker

• I Am Not Authorized to Perform iam:PassRole

• I Want to Allow People Outside of My AWS Account to Access My SageMaker Resources

I Am Not Authorized to Perform an Action in SageMaker

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your sign-in credentials.

The following example error occurs when the mateojackson IAM user tries
to use the console to view details about a training job but does not have
sagemaker:sagemaker:DescribeTrainingJob permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not
 authorized to perform: sagemaker:DescribeTrainingJob on resource: my-
example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the
TrainingJob resource using the sagemaker:DescribeTrainingJob action.

I Am Not Authorized to Perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to SageMaker.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in SageMaker. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

Troubleshooting 5964

Amazon SageMaker Developer Guide

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I Want to Allow People Outside of My AWS Account to Access My SageMaker
Resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether SageMaker supports these features, see How Amazon SageMaker Works with
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and Monitoring

You can monitor Amazon SageMaker using Amazon CloudWatch, which collects raw data and
processes it into readable, near real-time metrics. These statistics are kept for 15 months, so that
you can access historical information and gain a better perspective on how your web application
or service is performing. You can also set alarms that watch for certain thresholds and send
notifications or take actions when those thresholds are met. For more information, see Monitor
Amazon SageMaker with Amazon CloudWatch.

Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, AWS CloudTrail, and other sources. You can collect and track metrics, create

Logging and Monitoring 5965

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon SageMaker Developer Guide

customized dashboards, and set alarms that notify you or take actions when a specified metric
reaches a threshold that you specify. CloudWatch Logs can monitor information in the log files and
notify you when certain thresholds are met. You can also archive your log data in highly durable
storage. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.

AWS CloudTrail provides a record of actions taken by a user, role, or an AWS service in SageMaker.
Using the information collected by CloudTrail, you can determine the request that was made to
SageMaker, the IP address from which the request was made, who made the request, when it was
made, and additional details. For more information, Log Amazon SageMaker API Calls with AWS
CloudTrail.

Note

CloudTrail does not monitor calls to runtime_InvokeEndpoint.

You can create rules in Amazon CloudWatch Events to react to status changes in status in a
SageMaker training, hyperperparameter tuning, or batch transform job. For more information, see
Automating Amazon SageMaker with Amazon EventBridge.

Compliance validation for Amazon SageMaker

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance validation 5966

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html

Amazon SageMaker Developer Guide

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon SageMaker

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon SageMaker offers several features to help
support your data resiliency and backup needs.

Resilience 5967

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon SageMaker Developer Guide

Infrastructure Security in Amazon SageMaker

As a managed service, Amazon SageMaker is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon SageMaker through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Topics

• SageMaker Scans AWS Marketplace Training and Inference Containers for Security Vulnerabilities

• Connect to Resources From Within a VPC

• Run Training and Inference Containers in Internet-Free Mode

• Connect to SageMaker Within your VPC

• Give SageMaker Access to Resources in your Amazon VPC

SageMaker Scans AWS Marketplace Training and Inference Containers
for Security Vulnerabilities

To meet our security requirements, all the pre-built SageMaker images, including AWS Deep
Learning Containers, the SageMaker machine learning framework containers, and the SageMaker
built-in algorithm containers, and algorithms and model packages listed in AWS Marketplace
are scanned for Common Vulnerabilities and Exposures (CVE). CVE is a list of publicly known
information about security vulnerability and exposure. The National Vulnerability Database (NVD)
provides CVE details such as severity, impact rating, and fix information. Both CVE and NVD

Infrastructure Security 5968

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths.html

Amazon SageMaker Developer Guide

are available for public consumption and free for security tools and services to use. For more
information, see CVE Frequently Asked Questions (FAQs).

Connect to Resources From Within a VPC

Important

The following information applies to both Amazon SageMaker Studio and Amazon
SageMaker Studio Classic. The same concepts of connecting to resources within a VPC
apply to both Studio and Studio Classic.

Amazon SageMaker Studio and SageMaker notebook instances allow direct internet access
by default. This allows you to download popular packages and notebooks, customize your
development environment, and work efficiently. However, this could provide an additional avenue
for unauthorized access to your data. For example, if you install malicious code on your computer
in the form of a publicly available notebook or a publicly available source code library, it could
access your data. You can choose to restrict which traffic can access the internet by launching your
Amazon SageMaker Studio and SageMaker notebook instances in a Amazon Virtual Private Cloud
(Amazon VPC) of your choosing.

An Amazon Virtual Private Cloud is a virtual network dedicated to your AWS account. With an
Amazon VPC, you can control the network access and internet connectivity of your Amazon
SageMaker Studio and notebook instances. You can disable direct internet access to add an
additional layer of security.

The following topics describe how to connect your SageMaker Studio instances and notebook
instances to resources in a VPC.

Topics

• Connect Amazon SageMaker Studio in a VPC to External Resources

• Connect SageMaker Studio Notebooks in a VPC to External Resources

• Connect a Notebook Instance in a VPC to External Resources

Connect to Resources From Within a VPC 5969

https://www.cve.org/ResourcesSupport/FAQs
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon SageMaker Developer Guide

Connect Amazon SageMaker Studio in a VPC to External Resources

Important

As of November 30, 2023, the previous Amazon SageMaker Studio experience is now
named Amazon SageMaker Studio Classic. The following section is specific to using the
updated Studio experience. For information about using the Studio Classic application, see
Amazon SageMaker Studio Classic.

The following topic gives information on how to connect Amazon SageMaker Studio in a VPC to
external resources.

Topics

• Default communication with the internet

• VPC only communication with the internet

Default communication with the internet

By default, Amazon SageMaker Studio provides a network interface that allows communication
with the internet through a VPC managed by SageMaker. Traffic to AWS services like Amazon S3
and CloudWatch goes through an internet gateway, as does traffic that accesses the SageMaker API
and SageMaker runtime. Traffic between the domain and your Amazon EFS volume goes through
the VPC that you specified when you onboarded to the domain or called the CreateDomain API.

VPC only communication with the internet

To prevent SageMaker from providing internet access to Studio, you can disable internet access
by specifying the VPC only network access type when you onboard to Studio or call the
CreateDomain API. As a result, you won't be able to run Studio unless your VPC has an interface
endpoint to the SageMaker API and runtime, or a NAT gateway with internet access, and your
security groups allow outbound connections.

Note

The network access type can be changed after domain creation using the --app-
network-access-type parameter of the update-domain command.

Connect to Resources From Within a VPC 5970

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sagemaker/update-domain.html

Amazon SageMaker Developer Guide

Requirements to use VPC only mode

When you choose VpcOnly, follow these steps:

1. You must use private subnets only. You cannot use public subnets in VpcOnly mode.

2. Ensure your subnets have the required number of IP addresses needed. The expected number
of IP addresses needed per user can vary based on use case. We recommend between 2 and
4 IP addresses per user. The total IP address capacity for a domain is the sum of available IP
addresses for each subnet provided when the domain is created. Ensure that your estimated IP
address usage does not exceed the capacity supported by the number of subnets you provide.
Additionally, using subnets distributed across many availability zones can aid in IP address
availability. For more information, see VPC and subnet sizing for IPv4.

Note

You can configure only subnets with a default tenancy VPC in which your instance
runs on shared hardware. For more information on the tenancy attribute for VPCs, see
Dedicated Instances.

3.
Warning

When using VpcOnly mode, you partly own the networking configuration for
the domain. We recommend the security best practice of applying least-privilege
permissions to the inbound and outbound access that security group rules provide.
Overly permissive inbound rule configurations could allow users with access to the VPC
to interact with the applications of other user profiles without authentication.

Set up one or more security groups with inbound and outbound rules that allow the following
traffic:

• NFS traffic over TCP on port 2049 between the domain and the Amazon EFS volume.

• TCP traffic within the security group. This is required for connectivity between the Jupyter
Server application and the Kernel Gateway applications. You must allow access to at least
ports in the range 8192-65535.

Connect to Resources From Within a VPC 5971

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/efs/latest/ug/network-access.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-other-instances

Amazon SageMaker Developer Guide

Create a distinct security group for each user profile and add inbound access from that same
security group. We do not recommend reusing a domain-level security group for user profiles.
If the domain-level security group allows inbound access to itself, then all applications in the
domain would have access to all other applications in the domain.

4. If you want to allow internet access, you must use a NAT gateway with access to the internet,
for example through an internet gateway.

5. If you don't want to allow internet access, create interface VPC endpoints (AWS PrivateLink) to
allow Studio to access the following services with the corresponding service names. You must
also associate the security groups for your VPC with these endpoints.

• SageMaker API : com.amazonaws.region.sagemaker.api

• SageMaker runtime: com.amazonaws.region.sagemaker.runtime. This is required to
run Studio notebooks and to train and host models.

• Amazon S3: com.amazonaws.region.s3.

• To use SageMaker Projects: com.amazonaws.region.servicecatalog.

• Any other AWS services you require.

If you use the SageMaker Python SDK to run remote training jobs, you must also create the
following Amazon VPC endpoints.

• AWS Security Token Service: com.amazonaws.region.sts

• Amazon CloudWatch: com.amazonaws.region.logs. This is required to allow SageMaker
Python SDK to get the remote training job status from Amazon CloudWatch.

6. If using the domain in VpcOnly mode from an on-premises network, establish private
connectivity from the network of the host running Studio in the browser and the target
Amazon VPC. This is required because the Studio UI invokes AWS endpoints using API calls
with temporary AWS credentials. These temporary credentials are associated with the
execution role of the logged user profile. If the domain is configured in VpcOnly mode in an
on-premises network, the execution role might define IAM policy conditions that enforce the
execution of AWS service API calls only through the configured Amazon VPC endpoints.This
causes API calls executed from the Studio UI to fail. We recommend resolving this using an
AWS Site-to-Site VPN or AWS Direct Connectconnection.

Connect to Resources From Within a VPC 5972

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-working-with
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://sagemaker.readthedocs.io/en/stable/
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

Amazon SageMaker Developer Guide

Note

For a customer working within VPC mode, company firewalls can cause connection issues
with Studio or applications. Make the following checks if you encounter one of these issues
when using Studio from behind a firewall.

• Verify that the Studio URL and URLs for all of your applications are in your network's
allowlist. For example:

*.studio.region.sagemaker.aws
*.console.aws.a2z.com

• Verify that the websocket connections are not blocked. Jupyter uses websockets.

For more information

• Security groups for your VPC

• Connect to SageMaker Within your VPC

• VPC with public and private subnets (NAT)

Connect SageMaker Studio Notebooks in a VPC to External Resources

The following topic gives information on how to connect Studio Notebooks in a VPC to external
resources.

Default communication with the internet

By default, SageMaker Studio provides a network interface that allows communication with the
internet through a VPC managed by SageMaker. Traffic to AWS services like Amazon S3 and
CloudWatch goes through an internet gateway, as does traffic that accesses the SageMaker API
and SageMaker runtime. Traffic between the domain and your Amazon EFS volume goes through
the VPC that you specified when you onboarded to Studio or called the CreateDomain API. The
following diagram shows the default configuration.

Connect to Resources From Within a VPC 5973

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html

Amazon SageMaker Developer Guide

VPC only communication with the internet

To prevent SageMaker from providing internet access to your Studio notebooks, you can disable
internet access by specifying the VPC only network access type when you onboard to Studio or
call the CreateDomain API. As a result, you won't be able to run a Studio notebook unless your
VPC has an interface endpoint to the SageMaker API and runtime, or a NAT gateway with internet
access, and your security groups allow outbound connections. The following diagram shows a
configuration for using VPC-only mode.

Connect to Resources From Within a VPC 5974

https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html

Amazon SageMaker Developer Guide

Requirements to use VPC only mode

When you choose VpcOnly, follow these steps:

1. You must use private subnets only. You cannot use public subnets in VpcOnly mode.

2. Ensure your subnets have the required number of IP addresses needed. The expected number
of IP addresses needed per user can vary based on use case. We recommend between 2 and 4
IP addresses per user. The total IP address capacity for a Studio domain is the sum of available
IP addresses for each subnet provided when the domain is created. Ensure that your estimated
IP address usage does not exceed the capacity supported by the number of subnets you
provide. Additionally, using subnets distributed across many availability zones can aid in IP
address availability. For more information, see VPC and subnet sizing for IPv4.

Note

You can configure only subnets with a default tenancy VPC in which your instance
runs on shared hardware. For more information on the tenancy attribute for VPCs, see
Dedicated Instances.

3.
Warning

When using VpcOnly mode, you partly own the networking configuration for
the domain. We recommend the security best practice of applying least-privilege
permissions to the inbound and outbound access that security group rules provide.
Overly permissive inbound rule configurations could allow users with access to the VPC
to interact with the applications of other user profiles without authentication.

Set up one or more security groups with inbound and outbound rules that allow the following
traffic:

• NFS traffic over TCP on port 2049 between the domain and the Amazon EFS volume.

• TCP traffic within the security group. This is required for connectivity between the Jupyter
Server application and the Kernel Gateway applications. You must allow access to at least
ports in the range 8192-65535.

Connect to Resources From Within a VPC 5975

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/efs/latest/ug/network-access.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-other-instances

Amazon SageMaker Developer Guide

Create a distinct security group for each user profile and add inbound access from that same
security group. We do not recommend reusing a domain-level security group for user profiles.
If the domain-level security group allows inbound access to itself, then all applications in the
domain would have access to all other applications in the domain.

4. If you want to allow internet access, you must use a NAT gateway with access to the internet,
for example through an internet gateway.

5. If you don't want to allow internet access, create interface VPC endpoints (AWS PrivateLink) to
allow Studio to access the following services with the corresponding service names. You must
also associate the security groups for your VPC with these endpoints.

• SageMaker API : com.amazonaws.region.sagemaker.api

• SageMaker runtime: com.amazonaws.region.sagemaker.runtime. This is required to
run Studio notebooks and to train and host models.

• Amazon S3: com.amazonaws.region.s3.

• To use SageMaker Projects: com.amazonaws.region.servicecatalog.

• Any other AWS services you require.

If you use the SageMaker Python SDK to run remote training jobs, you must also create the
following Amazon VPC endpoints.

• AWS Security Token Service: com.amazonaws.region.sts

• Amazon CloudWatch: com.amazonaws.region.logs. This is required to allow SageMaker
Python SDK to get the remote training job status from Amazon CloudWatch.

Note

For a customer working within VPC mode, company firewalls can cause connection issues
with SageMaker Studio or between JupyterServer and the KernelGateway. Make the
following checks if you encounter one of these issues when using SageMaker Studio from
behind a firewall.

• Check that the Studio URL is in your networks allowlist.

• Check that the websocket connections are not blocked. Jupyter uses websocket under
the hood. If the KernelGateway application is InService, JupyterServer may not be able

Connect to Resources From Within a VPC 5976

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-working-with
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://sagemaker.readthedocs.io/en/stable/

Amazon SageMaker Developer Guide

to connect to the KernelGateway. You should see this problem when opening System
Terminal as well.

For more information

• Securing Amazon SageMaker Studio connectivity using a private VPC.

• Security groups for your VPC

• Connect to SageMaker Within your VPC

• VPC with public and private subnets (NAT)

Connect a Notebook Instance in a VPC to External Resources

The following topic gives information on how to connect your notebook instance in a VPC to
external resources.

Default communication with the internet

When your notebook allows direct internet access, SageMaker provides a network interface that
allows the notebook to communicate with the internet through a VPC managed by SageMaker.
Traffic within your VPC's CIDR goes through elastic network interface created in your VPC. All
the other traffic goes through the network interface created by SageMaker, which is essentially
through the public internet. Traffic to gateway VPC endpoints like Amazon S3 and DynamoDB goes
through the public internet, while traffic to interface VPC interface endpoints still goes through
your VPC. If you want to use gateway VPC endpoints, you might want to disable direct internet
access.

VPC communication with the internet

To disable direct internet access, you can specify a VPC for your notebook instance. By doing so,
you prevent SageMaker from providing internet access to your notebook instance. As a result, the
notebook instance can't train or host models unless your VPC has an interface endpoint (AWS
PrivateLink) or a NAT gateway and your security groups allow outbound connections.

For information about creating a VPC interface endpoint to use AWS PrivateLink for your notebook
instance, see Connect to a Notebook Instance Through a VPC Interface Endpoint. For information
about setting up a NAT gateway for your VPC, see VPC with Public and Private Subnets (NAT) in
the Amazon Virtual Private Cloud User Guide. For information about security groups, see Security
Groups for Your VPC. For more information about networking configurations in each networking

Connect to Resources From Within a VPC 5977

https://aws.amazon.com/blogs/machine-learning/securing-amazon-sagemaker-studio-connectivity-using-a-private-vpc
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

Amazon SageMaker Developer Guide

mode and configuring network on premise, see Understanding Amazon SageMaker notebook
instance networking configurations and advanced routing options.

Security and Shared Notebook Instances

A SageMaker notebook instance is designed to work best for an individual user. It is designed to
give data scientists and other users the most power for managing their development environment.

A notebook instance user has root access for installing packages and other pertinent software. We
recommend that you exercise judgement when granting individuals access to notebook instances
that are attached to a VPC that contains sensitive information. For example, you might grant a user
access to a notebook instance with an IAM policy, as shown in the following example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sagemaker:CreatePresignedNotebookInstanceUrl",
 "Resource": "arn:aws:sagemaker:region:account-id:notebook-instance/
myNotebookInstance"
 }
]
}

Run Training and Inference Containers in Internet-Free Mode

SageMaker training and deployed inference containers are internet-enabled by default. This allows
containers to access external services and resources on the public internet as part of your training
and inference workloads. However, this could provide an avenue for unauthorized access to your
data. For example, a malicious user or code that you accidentally install on the container (in the
form of a publicly available source code library) could access your data and transfer it to a remote
host.

If you use an Amazon VPC by specifying a value for the VpcConfig parameter when you call
CreateTrainingJob, CreateHyperParameterTuningJob, or CreateModel, you can protect
your data and resources by managing security groups and restricting internet access from your
VPC. However, this comes at the cost of additional network configuration, and has the risk of
configuring your network incorrectly. If you do not want SageMaker to provide external network
access to your training or inference containers, you can enable network isolation.

Run Training and Inference Containers in Internet-Free Mode 5978

https://aws.amazon.com/blogs/machine-learning/understanding-amazon-sagemaker-notebook-instance-networking-configurations-and-advanced-routing-options/
https://aws.amazon.com/blogs/machine-learning/understanding-amazon-sagemaker-notebook-instance-networking-configurations-and-advanced-routing-options/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html

Amazon SageMaker Developer Guide

Network Isolation

You can enable network isolation when you create your training job or model by setting the value
of the EnableNetworkIsolation parameter to True when you call CreateTrainingJob,
CreateHyperParameterTuningJob, or CreateModel.

Note

Network isolation is required to run training jobs and models using resources from AWS
Marketplace. For additional security, AWS Marketplace images run within an Amazon VPC.
They only have access to data within their local file systems.

If you enable network isolation, the containers can't make any outbound network calls, even to
other AWS services such as Amazon S3. Additionally, no AWS credentials are made available to
the container runtime environment. In the case of a training job with multiple instances, network
inbound and outbound traffic is limited to the peers of each training container. SageMaker still
performs download and upload operations against Amazon S3 using your SageMaker execution
role in isolation from the training or inference container.

The following managed SageMaker containers do not support network isolation because they
require access to Amazon S3:

• Chainer

• SageMaker Reinforcement Learning

Network isolation with a VPC

Network isolation can be used in conjunction with a VPC. In this scenario, the download and upload
of customer data and model artifacts are routed through your VPC subnet. However, the training
and inference containers themselves continue to be isolated from the network, and do not have
access to any resource within your VPC or on the internet.

Connect to SageMaker Within your VPC

You can connect directly to the SageMaker API or to Amazon SageMaker Runtime through an
interface endpoint in your virtual private cloud (VPC) instead of connecting over the internet.
When you use a VPC interface endpoint, communication between your VPC and the SageMaker API
or Runtime is conducted entirely and securely within an AWS network.

Connect to SageMaker Within your VPC 5979

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html

Amazon SageMaker Developer Guide

Connect to SageMaker through a VPC interface endpoint

The SageMaker API and SageMaker Runtime support Amazon Virtual Private Cloud (Amazon VPC)
interface endpoints that are powered by AWS PrivateLink. Each VPC endpoint is represented by
one or more Elastic Network Interfaces with private IP addresses in your VPC subnets. For example,
an application inside your VPC uses AWS PrivateLink to communicate with SageMaker Runtime.
SageMaker Runtime in turn communicates with the SageMaker endpoint. Using AWS PrivateLink
allows you to invoke your SageMaker endpoint from within your VPC, as shown in the following
diagram.

The VPC interface endpoint connects your VPC directly to the SageMaker API or SageMaker
Runtime using AWS PrivateLink without using an internet gateway, NAT device, VPN connection,
or AWS Direct Connect connection. The instances in your VPC do not need to connect to the public
internet in order to communicate with the SageMaker API or SageMaker Runtime.

You can create an AWS PrivateLink interface endpoint to connect to SageMaker or to SageMaker
Runtime using either the AWS Management Console or AWS Command Line Interface (AWS CLI).
For instructions, see Access an AWS service using an interface VPC endpoint.

If you haven't enabled a private Domain Name System (DNS) hostname for your VPC endpoint,
after you have created a VPC endpoint, specify the internet endpoint URL to the SageMaker API
or SageMaker Runtime. Example code using AWS CLI commands to specify the endpoint-url
parameter follows.

Connect to SageMaker Within your VPC 5980

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html#create-interface-endpoint

Amazon SageMaker Developer Guide

aws sagemaker list-notebook-instances --endpoint-
url VPC_Endpoint_ID.api.sagemaker.Region.vpce.amazonaws.com

aws sagemaker list-training-jobs --endpoint-
url VPC_Endpoint_ID.api.sagemaker.Region.vpce.amazonaws.com

aws sagemaker-runtime invoke-endpoint --endpoint-url
 https://VPC_Endpoint_ID.runtime.sagemaker.Region.vpce.amazonaws.com \
 --endpoint-name Endpoint_Name \
 --body "Endpoint_Body" \
 --content-type "Content_Type" \
 Output_File

If you enable private DNS hostnames for your VPC endpoint, you don't need to specify the
endpoint URL because the default hostname (https://api.sagemaker.Region.amazon.com)
resolves to your VPC endpoint. Similarly, the default SageMaker Runtime DNS hostname (https://
runtime.sagemaker.Region.amazonaws.com) also resolves to your VPC endpoint.

The SageMaker API and SageMaker Runtime support VPC endpoints in all AWS Regions where
both Amazon VPC and SageMaker ares available. SageMaker supports making calls to all of its
Operations inside your VPC. If you use the AuthorizedUrl from the
CreatePresignedNotebookInstanceUrl command, your traffic will go over the public internet.
You can't only use a VPC endpoint to access the presigned URL, the request must go through the
internet gateway.

By default, your users can share the presigned URL to people outside of your corporate network.
For additional security, you must add IAM permissions to restrict the URL only be usable within
your network. For information about IAM permissions, see How AWS PrivateLink works with IAM.

Note

When setting up a VPC interface endpoint for the SageMaker Runtime service (https://
runtime.sagemaker.Region.amazonaws.com), you must ensure that the VPC interface
endpoint is activated in the Availability Zone of your client in order for private DNS
resolution to work. Otherwise, you may see DNS failures when attempting to resolve the
URL.

To learn more about AWS PrivateLink, see the AWS PrivateLink documentation. Refer to AWS
PrivateLink Pricing for the price of VPC endpoints. To learn more about VPC and endpoints,

Connect to SageMaker Within your VPC 5981

https://docs.aws.amazon.com/general/latest/gr/rande.html#vpc_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#sagemaker_region
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/vpc/latest/privatelink/security_iam_service-with-iam.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#what-is-privatelink
https://aws.amazon.com/privatelink/pricing/
https://aws.amazon.com/privatelink/pricing/

Amazon SageMaker Developer Guide

see Amazon VPC. For information about how to use identity-based AWS Identity and Access
Management policies to restrict access to the SageMaker API and SageMaker Runtime, see Control
Access to the SageMaker API by Using Identity-based Policies.

Using SageMaker training and hosting with resources inside your VPC

SageMaker uses your execution role to download and upload information from an Amazon S3
bucket and Amazon Elastic Container Registry (Amazon ECR), in isolation from your training or
inference container. If you have resources that are located inside your VPC, you can still grant
SageMaker access to those resources. The following sections explain how to make your resources
available to SageMaker with or without network isolation.

Without network isolation enabled

If you haven't set network isolation on your training job or model, SageMaker can access resources
using either of the following methods.

• SageMaker training and deployed inference containers can access the internet by default.
SageMaker containers are able to access external services and resources on the public internet
as part of your training and inference workloads. SageMaker containers are not able to access
resources inside your VPC without a VPC configuration, as shown in the following illustration.

Connect to SageMaker Within your VPC 5982

https://aws.amazon.com/vpc/

Amazon SageMaker Developer Guide

• Use a VPC configuration to communicate with resources inside your VPC through an elastic
network interface (ENI). The communication between the container and the resources in your
VPC takes place securely within your VPC network, as shown in the following illustration. In this
case, you manage networking access to your VPC resources and internet.

Connect to SageMaker Within your VPC 5983

Amazon SageMaker Developer Guide

With network isolation

If you employ network isolation, the SageMaker container can't communicate with resources
inside your VPC or make any network calls, as shown in the following illustration. If you provide a
VPC configuration, the download and upload operations will be run through your VPC. For more
information about hosting and training with network isolation while using a VPC, see Network
Isolation.

Connect to SageMaker Within your VPC 5984

Amazon SageMaker Developer Guide

Create a VPC Endpoint Policy for SageMaker

You can create a policy for Amazon VPC endpoints for SageMaker to specify the following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
User Guide.

Connect to SageMaker Within your VPC 5985

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon SageMaker Developer Guide

Note

VPC endpoint policies aren't supported for Federal Information Processing Standard (FIPS)
SageMaker runtime endpoints for runtime_InvokeEndpoint.

The following example VPC endpoint policy specifies that all users who have access to the VPC
interface endpoint are allowed to invoke the SageMaker hosted endpoint named myEndpoint.

{
 "Statement": [
 {
 "Action": "sagemaker:InvokeEndpoint",
 "Effect": "Allow",
 "Resource": "arn:aws:sagemaker:us-west-2:123456789012:endpoint/myEndpoint",
 "Principal": "*"
 }
]
}

In this example, the following are denied:

• Other SageMaker API actions, such as sagemaker:CreateEndpoint and
sagemaker:CreateTrainingJob.

• Invoking SageMaker hosted endpoints other than myEndpoint.

Note

In this example, users can still take other SageMaker API actions from outside the VPC. For
information about how to restrict API calls to those from within the VPC, see Control Access
to the SageMaker API by Using Identity-based Policies.

Create a VPC Endpoint Policy for Amazon SageMaker Feature Store

To create a VPC Endpoint for Amazon SageMaker Feature Store, use the following endpoint
template, substituting your VPC_Endpoint_ID.api and Region:

Connect to SageMaker Within your VPC 5986

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html

Amazon SageMaker Developer Guide

VPC_Endpoint_ID.api.featurestore-
runtime.sagemaker.Region.vpce.amazonaws.com

Connect to SageMaker Studio Classic Through an Interface VPC Endpoint

You can connect to Amazon SageMaker Studio Classic from your Amazon Virtual Private Cloud
(Amazon VPC) through an interface endpoint in your VPC instead of connecting over the internet.
When you use an interface VPC endpoint (interface endpoint), communication between your VPC
and Studio Classic is conducted entirely and securely within the AWS network.

SageMaker Studio Classic supports interface endpoints that are powered by AWS PrivateLink.
Each interface endpoint is represented by one or more Elastic network interfaces with private IP
addresses in your VPC subnets.

Studio Classic supports interface endpoints in all AWS Regions where both Amazon SageMaker and
Amazon VPC are available.

Topics

• Create a VPC Endpoint

• Create a VPC Endpoint Policy for SageMaker Studio Classic

• Allow Access Only from Within Your VPC

Create a VPC Endpoint

You can create an interface endpoint to connect to Studio Classic with either the AWS console or
the AWS Command Line Interface (AWS CLI). For instructions, see Creating an interface endpoint.
Make sure that you create interface endpoints for all of the subnets in your VPC from which you
want to connect to Studio Classic.

When you create an interface endpoint, ensure that the security groups on your endpoint allow
inbound access for HTTPS traffic from the security groups associated with SageMaker Studio
Classic. For more information, see Control access to services with VPC endpoints.

Note

In addition to creating an interface endpoint to connect to SageMaker Studio Classic,
create an interface endpoint to connect to the Amazon SageMaker API. When users call

Connect to SageMaker Within your VPC 5987

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/vpc/pricing/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoints-security-groups

Amazon SageMaker Developer Guide

CreatePresignedDomainUrl to get the URL to connect to Studio Classic, that call goes
through the interface endpoint used to connect to the SageMaker API.

When you create the interface endpoint, specify aws.sagemaker.Region.studio as the
service name. After you create the interface endpoint, enable private DNS for your endpoint.
When you connect to SageMaker Studio Classic from within the VPC using the SageMaker API,
the AWS CLI, or the console, you connect through the interface endpoint instead of the public
internet. You also need to set up a custom DNS with private hosted zones for the Amazon VPC
endpoint so SageMaker Studio Classic can access the SageMaker API using the api.sagemaker.
$region.amazonaws.com endpoint rather than using the VPC endpoint URL. For instructions on
setting up a private hosted zone, see Working with private hosted zones.

Create a VPC Endpoint Policy for SageMaker Studio Classic

You can attach an Amazon VPC endpoint policy to the interface VPC endpoints that you use to
connect to SageMaker Studio Classic. The endpoint policy controls access to Studio Classic. You can
specify the following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

To use a VPC endpoint with SageMaker Studio Classic, your endpoint policy must allow the
CreateApp operation on the KernelGateway app type. This allows traffic that is routed to through
the VPC endpoint to call the CreateApp API. The following example VPC endpoint policy shows
how to allow the CreateApp operation.

{
 "Statement": [
 {
 "Action": "sagemaker:CreateApp",
 "Effect": "Allow",
 "Resource": "arn:aws:sagemaker:us-west-2:acct-id:app/domain-id/*",
 "Principal": "*"
 }
]
}

Connect to SageMaker Within your VPC 5988

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedDomainUrl.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html

Amazon SageMaker Developer Guide

For more information, see Controlling access to services with VPC endpoints.

The following example of a VPC endpoint policy specifies that all users that have access to the
endpoint are allowed to access the user profiles in the SageMaker domain with the specified
domain ID. Access to other domains is denied.

{
 "Statement": [
 {
 "Action": "sagemaker:CreatePresignedDomainUrl",
 "Effect": "Allow",
 "Resource": "arn:aws:sagemaker:us-west-2:acct-id:user-profile/domain-id/*",
 "Principal": "*"
 }
]
}

Allow Access Only from Within Your VPC

Users outside your VPC can connect to SageMaker Studio Classic over the internet even if you set
up an interface endpoint in your VPC.

To allow access to only connections made from within your VPC, create an AWS Identity and Access
Management (IAM) policy to that effect. Add that policy to every user, group, or role used to access
Studio Classic. This feature is only supported in IAM mode, and is not supported in IAM Identity
Center mode. The following examples demonstrate how to create such policies.

Important

If you apply an IAM policy similar to one of the following examples, users can't access
SageMaker Studio Classic or the specified SageMaker APIs through the SageMaker console.
To access Studio Classic, users must use a presigned URL or call the SageMaker APIs
directly.

Example 1: Allow connections only within the subnet of an interface endpoint

The following policy allows connections only to callers within the subnet where you created the
interface endpoint.

{

Connect to SageMaker Within your VPC 5989

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon SageMaker Developer Guide

 "Id": "sagemaker-studio-example-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable SageMaker Studio Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:DescribeUserProfile"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceVpc": "vpc-111bbaaa"
 }
 }
 }
]
}

Example 2: Allow connections only through interface endpoints using aws:sourceVpce

The following policy allows connections only to those made through the interface endpoints
specified by the aws:sourceVpce condition key. For example, the first interface endpoint could
allow access through the SageMaker console. The second interface endpoint could allow access
through the SageMaker API.

{
 "Id": "sagemaker-studio-example-2",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable SageMaker Studio Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:DescribeUserProfile"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:sourceVpce": [
 "vpce-111bbccc",

Connect to SageMaker Within your VPC 5990

Amazon SageMaker Developer Guide

 "vpce-111bbddd"
]
 }
 }
 }
]
}

This policy includes the DescribeUserProfile action. Typically you call
DescribeUserProfile to make sure that the status of the user profile is InService before you
try to connect to the domain. For example:

aws sagemaker describe-user-profile \
 --domain-id domain-id \
 --user-profile-name profile-name

Response:

{
 "DomainId": "domain-id",
 "UserProfileArn": "arn:aws:sagemaker:us-west-2:acct-id:user-profile/domain-id/
profile-name",
 "UserProfileName": "profile-name",
 "HomeEfsFileSystemUid": "200001",
 "Status": "InService",
 "LastModifiedTime": 1605418785.555,
 "CreationTime": 1605418477.297
}

aws sagemaker create-presigned-domain-url
 --domain-id domain-id \
 --user-profile-name profile-name

Response:

{
 "AuthorizedUrl": "https://domain-id.studio.us-west-2.sagemaker.aws/auth?
token=AuthToken"
}

Connect to SageMaker Within your VPC 5991

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeUserProfile.html

Amazon SageMaker Developer Guide

For both of these calls, if you are using a version of the AWS SDK that was released before August
13, 2018, you must specify the endpoint URL in the call. For example, the following example shows
a call to create-presigned-domain-url:

aws sagemaker create-presigned-domain-url
 --domain-id domain-id \
 --user-profile-name profile-name \
 --endpoint-url vpc-endpoint-id.api.sagemaker.Region.vpce.amazonaws.com

Example 3: Allow connections from IP addresses using aws:SourceIp

The following policy allows connections only from the specified range of IP addresses using the
aws:SourceIp condition key.

{
 "Id": "sagemaker-studio-example-3",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable SageMaker Studio Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:DescribeUserProfile"
],
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 }
 }
]
}

Example 4: Allow connections from IP addresses through an interface endpoint using
aws:VpcSourceIp

Connect to SageMaker Within your VPC 5992

Amazon SageMaker Developer Guide

If you are accessing SageMaker Studio Classic through an interface endpoint, you can use the
aws:VpcSourceIp condition key to allow connections only from the specified range of IP
addresses within the subnet where you created the interface endpoint as shown in the following
policy:

{
 "Id": "sagemaker-studio-example-4",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable SageMaker Studio Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:DescribeUserProfile"
],
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:VpcSourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 },
 "StringEquals": {
 "aws:SourceVpc": "vpc-111bbaaa"
 }
 }
 }
]
}

Connect to a Notebook Instance Through a VPC Interface Endpoint

You can connect to your notebook instance from your VPC through an interface endpoint in your
Virtual Private Cloud (VPC) instead of connecting over the public internet. When you use a VPC
interface endpoint, communication between your VPC and the notebook instance is conducted
entirely and securely within the AWS network.

SageMaker notebook instances support Amazon Virtual Private Cloud (Amazon VPC) interface
endpoints that are powered by AWS PrivateLink. Each VPC endpoint is represented by one or more
Elastic Network Interfaces with private IP addresses in your VPC subnets.

Connect to SageMaker Within your VPC 5993

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#what-is-privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon SageMaker Developer Guide

Note

Before you create an interface VPC endpoint to connect to a notebook instance, create an
interface VPC endpoint to connect to the SageMaker API. That way, when users call
CreatePresignedNotebookInstanceUrl to get the URL to connect to the notebook instance,
that call also goes through the interface VPC endpoint. For information, see Connect to
SageMaker Within your VPC.

You can create an interface endpoint to connect to your notebook instance with either the AWS
Management Console or AWS Command Line Interface (AWS CLI) commands. For instructions,
see Creating an Interface Endpoint. Make sure that you create an interface endpoint for all of the
subnets in your VPC from which you want to connect to the notebook instance.

When you create the interface endpoint, specify aws.sagemaker.Region.notebook as the service
name. After you create a VPC endpoint, enable private DNS for your VPC endpoint. Anyone using
the SageMaker API, the AWS CLI, or the console to connect to the notebook instance from within
the VPC connects to the notebook instance through the VPC endpoint instead of the public
internet.

SageMaker notebook instances support VPC endpoints in all AWS Regions where both Amazon VPC
and SageMaker are available.

Topics

• Connect Your Private Network to Your VPC

• Create a VPC Endpoint Policy for SageMaker Notebook Instances

• Restrict Access to Connections from Within Your VPC

Connect Your Private Network to Your VPC

To connect to your notebook instance through your VPC, you either have to connect from an
instance that is inside the VPC, or connect your private network to your VPC by using an AWS
Virtual Private Network (AWS VPN) or AWS Direct Connect. For information about AWS VPN, see
VPN Connections in the Amazon Virtual Private Cloud User Guide. For information about AWS Direct
Connect, see Creating a Connection in the AWS Direct Connect User Guide.

Connect to SageMaker Within your VPC 5994

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/general/latest/gr/rande.html#vpc_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#sagemaker_region
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/create-connection.html

Amazon SageMaker Developer Guide

Create a VPC Endpoint Policy for SageMaker Notebook Instances

You can create a policy for Amazon VPC endpoints for SageMaker notebook instances to specify
the following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
User Guide.

The following example of a VPC endpoint policy specifies that all users that have access to the
endpoint are allowed to access the notebook instance named myNotebookInstance.

{
 "Statement": [
 {
 "Action": "sagemaker:CreatePresignedNotebookInstanceUrl",
 "Effect": "Allow",
 "Resource": "arn:aws:sagemaker:us-west-2:123456789012:notebook-instance/
myNotebookInstance",
 "Principal": "*"
 }
]
}

Access to other notebook instances is denied.

Restrict Access to Connections from Within Your VPC

Even if you set up an interface endpoint in your VPC, individuals outside the VPC can connect to
the notebook instance over the internet.

Important

If you apply an IAM policy similar to one of the following, users can't access the specified
SageMaker APIs or the notebook instance through the console.

Connect to SageMaker Within your VPC 5995

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon SageMaker Developer Guide

To restrict access to only connections made from within your VPC, create an AWS Identity and
Access Management policy that restricts access to only calls that come from within your VPC. Then
add that policy to every AWS Identity and Access Management user, group, or role used to access
the notebook instance.

Note

This policy allows connections only to callers within a subnet where you created an
interface endpoint.

{
 "Id": "notebook-example-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable Notebook Access",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl",
 "sagemaker:DescribeNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceVpc": "vpc-111bbaaa"
 }
 }
 }
]
}

If you want to restrict access to the notebook instance to only connections made using the
interface endpoint, use the aws:SourceVpce condition key instead of aws:SourceVpc:

{
 "Id": "notebook-example-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable Notebook Access",

Connect to SageMaker Within your VPC 5996

Amazon SageMaker Developer Guide

 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedNotebookInstanceUrl",
 "sagemaker:DescribeNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:sourceVpce": [
 "vpce-111bbccc",
 "vpce-111bbddd"
]
 }
 }
 }
]
}

Both of these policy examples assume that you have also created an interface endpoint for the
SageMaker API. For more information, see Connect to SageMaker Within your VPC. In the second
example, one of the values for aws:SourceVpce is the ID of the interface endpoint for the
notebook instance. The other is the ID of the interface endpoint for the SageMaker API.

The policy examples here include
DescribeNotebookInstance, because typically you would call DescribeNotebookInstance to
make sure that the NotebookInstanceStatus is InService before you try to connect to it. For
example:

aws sagemaker describe-notebook-instance \
 --notebook-instance-name myNotebookInstance

{
 "NotebookInstanceArn":
 "arn:aws:sagemaker:us-west-2:1234567890ab:notebook-instance/mynotebookinstance",
 "NotebookInstanceName": "myNotebookInstance",
 "NotebookInstanceStatus": "InService",
 "Url": "mynotebookinstance.notebook.us-west-2.sagemaker.aws",
 "InstanceType": "ml.m4.xlarge",
 "RoleArn":
 "arn:aws:iam::1234567890ab:role/service-role/AmazonSageMaker-
ExecutionRole-12345678T123456",

Connect to SageMaker Within your VPC 5997

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeNotebookInstance.html

Amazon SageMaker Developer Guide

 "LastModifiedTime": 1540334777.501,
 "CreationTime": 1523050674.078,
 "DirectInternetAccess": "Disabled"
}
aws sagemaker create-presigned-notebook-instance-url --notebook-instance-name
 myNotebookInstance

{
 "AuthorizedUrl": "https://mynotebookinstance.notebook.us-west-2.sagemaker.aws?
authToken=AuthToken
}

Note

The presigned-notebook-instance-url, AuthorizedUrl, generated can be used
from anywhere on the internet.

For both of these calls, if you did not enable private DNS hostnames for your VPC endpoint, or
if you are using a version of the AWS SDK that was released before August 13, 2018, you must
specify the endpoint URL in the call. For example, the call to create-presigned-notebook-
instance-url is:

aws sagemaker create-presigned-notebook-instance-url
 --notebook-instance-name myNotebookInstance --endpoint-url
 VPC_Endpoint_ID.api.sagemaker.Region.vpce.amazonaws.com

Connect Your Private Network to Your VPC

To call the SageMaker API and SageMaker Runtime through your VPC, you have to connect from
an instance that is inside the VPC or connect your private network to your VPC by using an AWS
Virtual Private Network (AWS VPN) or AWS Direct Connect. For information about AWS VPN, see
VPN Connections in the Amazon Virtual Private Cloud User Guide. For information about AWS Direct
Connect, see Creating a Connection in the AWS Direct Connect User Guide.

Give SageMaker Access to Resources in your Amazon VPC

SageMaker runs the following job types in an Amazon Virtual Private Cloud by default.

Give SageMaker Access to Resources in your Amazon VPC 5998

https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/create-connection.html

Amazon SageMaker Developer Guide

• Processing

• Training

• Model hosting

• Batch transform

• Amazon SageMaker Clarify

• SageMaker Compilation

However, containers for these jobs access AWS resources—such as the Amazon Simple Storage
Service (Amazon S3) buckets where you store training data and model artifacts—over the internet.

To control access to your data and job containers, we recommend that you create a private VPC
and configure it so that they aren't accessible over the internet. For information about creating and
configuring a VPC, see Getting Started With Amazon VPC in the Amazon VPC User Guide. Using a
VPC helps to protect your job containers and data because you can configure your VPC so that it
is not connected to the internet. Using a VPC also allows you to monitor all network traffic in and
out of your job containers by using VPC flow logs. For more information, see VPC Flow Logs in the
Amazon VPC User Guide.

You specify your private VPC configuration when you create jobs by specifying subnets and security
groups. When you specify the subnets and security groups, SageMaker creates elastic network
interfaces that are associated with your security groups in one of the subnets. Network interfaces
allow your job containers to connect to resources in your VPC. For information about network
interfaces, see Elastic Network Interfaces in the Amazon VPC User Guide.

You specify a VPC configuration within the VpcConfig object of the CreateProcessingJob
operation or CreateTrainingJob operation. Specifying a VPC configuration when you create a
training job gives your model access to resources within your VPC.

Specifying a VPC configuration alone doesn't change the invocation path. To connect to Amazon
SageMaker within a VPC, create a VPC endpoint and invoke it. For more information, see Connect
to SageMaker Within your VPC.

Topics

• Give SageMaker Processing Jobs Access to Resources in Your Amazon VPC

• Give SageMaker Training Jobs Access to Resources in Your Amazon VPC

• Give SageMaker Hosted Endpoints Access to Resources in Your Amazon VPC

Give SageMaker Access to Resources in your Amazon VPC 5999

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/getting-started-ipv4.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Amazon SageMaker Developer Guide

• Give Batch Transform Jobs Access to Resources in Your Amazon VPC

• Give Amazon SageMaker Clarify Jobs Access to Resources in Your Amazon VPC

• Give SageMaker Compilation Jobs Access to Resources in Your Amazon VPC

• Give Inference Recommender Jobs Access to Resources in Your Amazon VPC

Give SageMaker Processing Jobs Access to Resources in Your Amazon VPC

To control access to your data and processing jobs, create a Amazon VPC with private subnets.
For information about creating and configuring a VPC, see Get Started With Amazon VPC in the
Amazon VPC User Guide.

You can monitor all network traffic in and out of your processing containers by using VPC flow logs.
For more information, see VPC Flow Logs in the Amazon VPC User Guide.

This document explains how to add Amazon VPC configurations for processing jobs.

Configure a Processing Job for Amazon VPC Access

You configure the processing job by specifying the subnets and security group IDs within the
VPC. You don’t need to specify the subnet for the processing container. Amazon SageMaker
automatically pulls the processing container from Amazon ECR. For more information about
processing containers, see Process data.

When creating a processing job, you can specify subnets and security groups in your VPC using
either the SageMaker console or the API.

To use the API, you specify the subnets and security group IDs in the NetworkConfig.VpcConfig
parameter of the CreateProcessingJob operation. SageMaker uses the subnet and security group
details to create the network interfaces and attaches them to the processing containers. The
network interfaces provide the processing containers with a network connection within your VPC.
This allows the processing job to connect to resources that exist in your VPC.

The following is an example of the VpcConfig parameter that you include in your call to the
CreateProcessingJob operation:

VpcConfig: {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"

Give SageMaker Access to Resources in your Amazon VPC 6000

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-getting-started.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html

Amazon SageMaker Developer Guide

],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
}

Configure Your Private VPC for SageMaker Processing

When configuring the private VPC for your SageMaker processing jobs, use the following
guidelines. For information about setting up a VPC, see Working with VPCs and Subnets in the
Amazon VPC User Guide.

Topics

• Ensure That Subnets Have Enough IP Addresses

• Create an Amazon S3 VPC Endpoint

• Use a Custom Endpoint Policy to Restrict Access to S3

• Configure Route Tables

• Configure the VPC Security Group

• Connect to Resources Outside Your VPC

• Monitor Amazon SageMaker Processing Jobs with CloudWatch Logs and Metrics

Ensure That Subnets Have Enough IP Addresses

Your VPC subnets should have at least two private IP addresses for each instance in a processing
job. For more information, see VPC and Subnet Sizing for IPv4 in the Amazon VPC User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC so that processing containers don't have access to the internet, they
can't connect to the Amazon S3 buckets that contain your data unless you create a VPC endpoint
that allows access. By creating a VPC endpoint, you allow your processing containers to access
the buckets where you store your data. We recommend that you also create a custom policy that
allows only requests from your private VPC to access to your S3 buckets. For more information, see
Endpoints for Amazon S3.

To create an S3 VPC endpoint:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

Give SageMaker Access to Resources in your Amazon VPC 6001

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/working-with-vpcs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://console.aws.amazon.com/vpc/

Amazon SageMaker Developer Guide

2. In the navigation pane, choose Endpoints, then choose Create Endpoint

3. For Service Name, choose com.amazonaws.region.s3, where region is the name of the
region where your VPC resides.

4. For VPC, choose the VPC you want to use for this endpoint.

5. For Configure route tables, select the route tables to be used by the endpoint. The VPC
service automatically adds a route to each route table you select that points any S3 traffic to
the new endpoint.

6. For Policy, choose Full Access to allow full access to the S3 service by any user or service
within the VPC. Choose Custom to restrict access further. For information, see Use a Custom
Endpoint Policy to Restrict Access to S3.

Use a Custom Endpoint Policy to Restrict Access to S3

The default endpoint policy allows full access to S3 for any user or service in your VPC. To further
restrict access to S3, create a custom endpoint policy. For more information, see Using Endpoint
Policies for Amazon S3. You can also use a bucket policy to restrict access to your S3 buckets to
only traffic that comes from your Amazon VPC. For information, see Using Amazon S3 Bucket
Policies.

Restrict Package Installation on the Processing Container

The default endpoint policy allows users to install packages from the Amazon Linux and Amazon
Linux 2 repositories on the processing container. If you don't want users to install packages from
that repository, create a custom endpoint policy that explicitly denies access to the Amazon Linux
and Amazon Linux 2 repositories. The following is an example of a policy that denies access to
these repositories:

{
 "Statement": [
 {
 "Sid": "AmazonLinuxAMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::packages.*.amazonaws.com/*",
 "arn:aws:s3:::repo.*.amazonaws.com/*"

Give SageMaker Access to Resources in your Amazon VPC 6002

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon SageMaker Developer Guide

]
 }
]
}

{
 "Statement": [
 { "Sid": "AmazonLinux2AMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::amazonlinux.*.amazonaws.com/*"
]
 }
]
}

Configure Route Tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for
example, http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use
default DNS settings, ensure that the URLs that you use to specify the locations of the data in
your processing jobs resolve by configuring the endpoint route tables. For information about VPC
endpoint route tables, see Routing for Gateway Endpoints in the Amazon VPC User Guide.

Configure the VPC Security Group

In distributed processing, you must allow communication between the different containers in
the same processing job. To do that, configure a rule for your security group that allows inbound
connections between members of the same security group. For more information, see Security
Group Rules.

Connect to Resources Outside Your VPC

If you're connecting your models to resources outside the VPC that they're running in, do one of
the following:

• Connect to other AWS services – If your model needs access to an AWS service that supports
interface Amazon VPC endpoints, create an endpoint to connect to that service. For a list of

Give SageMaker Access to Resources in your Amazon VPC 6003

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon SageMaker Developer Guide

services that support interface endpoints, see AWS services that integrate with AWS PrivateLink
in the AWS PrivateLink User Guide. For information about creating an interface VPC endpoint,
see Access an AWS service using an interface VPC endpoint in the AWS PrivateLink User Guide.

• Connect to resources over the internet – If your models are running on instances in an Amazon
VPC that does not have a subnet with access to the internet, the models won't have access to
resources on the internet. If your model needs access to an AWS service that doesn't support
interface VPC endpoints, or to a resource outside of AWS, ensure that you are running your
models in a private subnet that has access to the internet using a public NAT gateway in a
public subnet. After you have your models running in the private subnet, configure your security
groups and network access control lists (NACLs) to allow outbound connections from the private
subnet to the public NAT gateway in the public subnet. For information, see NAT gateways in the
Amazon VPC User Guide.

Monitor Amazon SageMaker Processing Jobs with CloudWatch Logs and Metrics

Amazon SageMaker provides Amazon CloudWatch logs and metrics to monitor training jobs.
CloudWatch provides CPU, GPU, memory, GPU memory, and disk metrics, and event logging. For
more information about monitoring Amazon SageMaker processing jobs, see Monitor Amazon
SageMaker with Amazon CloudWatch and SageMaker Jobs and Endpoint Metrics.

Give SageMaker Training Jobs Access to Resources in Your Amazon VPC

Note

For training jobs, you can configure only subnets with a default tenancy VPC in which your
instance runs on shared hardware. For more information on the tenancy attribute for VPCs,
see Dedicated Instances.

Configure a Training Job for Amazon VPC Access

To control access to your training jobs, run them in an Amazon VPC with private subnets that don’t
have internet access.

You configure the training job to run in the VPC by specifying its subnets and security group IDs.
You don’t need to specify the subnet for the container of the training job. Amazon SageMaker
automatically pulls the training container image from Amazon ECR.

Give SageMaker Access to Resources in your Amazon VPC 6004

https://docs.aws.amazon.com/vpc/latest/privatelink/aws-services-privatelink-support.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html

Amazon SageMaker Developer Guide

When you create a training job, you can specify the subnets and security groups in your VPC using
the Amazon SageMaker console or the API.

To use the API, you specify the subnets and security group IDs in the VpcConfig parameter of the
CreateTrainingJob operation. SageMaker uses the subnet and security group details to create the
network interfaces and attaches them to the training containers. The network interfaces provide
the training containers with a network connection within your VPC. This allows the training job to
connect to resources that exist in your VPC.

The following is an example of the VpcConfig parameter that you include in your call to the
CreateTrainingJob operation:

VpcConfig: {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }

Configure Your Private VPC for SageMaker Training

When configuring the private VPC for your SageMaker training jobs, use the following guidelines.
For information about setting up a VPC, see Working with VPCs and Subnets in the Amazon VPC
User Guide.

Topics

• Ensure That Subnets Have Enough IP Addresses

• Create an Amazon S3 VPC Endpoint

• Use a Custom Endpoint Policy to Restrict Access to S3

• Configure Route Tables

• Configure the VPC Security Group

• Connect to Resources Outside Your VPC

• Monitor Amazon SageMaker Training Jobs with CloudWatch Logs and Metrics

Give SageMaker Access to Resources in your Amazon VPC 6005

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/working-with-vpcs.html

Amazon SageMaker Developer Guide

Ensure That Subnets Have Enough IP Addresses

Training instances that don't use an Elastic Fabric Adapter (EFA) should have at least 2 private IP
addresses. Training instances that use an EFA should have at least 5 private IP addresses. For more
information, see Multiple IP addresses in the Amazon EC2 User Guide.

Your VPC subnets should have at least two private IP addresses for each instance in a training job.
For more information, see VPC and Subnet Sizing for IPv4 in the Amazon VPC User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC so that training containers don't have access to the internet, they
can't connect to the Amazon S3 buckets that contain your training data unless you create a VPC
endpoint that allows access. By creating a VPC endpoint, you allow your training containers to
access the buckets where you store your data and model artifacts. We recommend that you also
create a custom policy that allows only requests from your private VPC to access to your S3
buckets. For more information, see Endpoints for Amazon S3.

To create an S3 VPC endpoint:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints, then choose Create Endpoint

3. For Service Name, search for com.amazonaws.region.s3, where region is the name of the
region where your VPC resides.

4. Choose the Gateway type.

5. For VPC, choose the VPC you want to use for this endpoint.

6. For Configure route tables, select the route tables to be used by the endpoint. The VPC
service automatically adds a route to each route table you select that points any S3 traffic to
the new endpoint.

7. For Policy, choose Full Access to allow full access to the S3 service by any user or service
within the VPC. Choose Custom to restrict access further. For information, see Use a Custom
Endpoint Policy to Restrict Access to S3.

Use a Custom Endpoint Policy to Restrict Access to S3

The default endpoint policy allows full access to S3 for any user or service in your VPC. To further
restrict access to S3, create a custom endpoint policy. For more information, see Using Endpoint
Policies for Amazon S3. You can also use a bucket policy to restrict access to your S3 buckets to

Give SageMaker Access to Resources in your Amazon VPC 6006

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/MultipleIP.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3

Amazon SageMaker Developer Guide

only traffic that comes from your Amazon VPC. For information, see Using Amazon S3 Bucket
Policies.

Restrict Package Installation on the Training Container

The default endpoint policy allows users to install packages from the Amazon Linux and Amazon
Linux 2 repositories on the training container. If you don't want users to install packages from that
repository, create a custom endpoint policy that explicitly denies access to the Amazon Linux and
Amazon Linux 2 repositories. The following is an example of a policy that denies access to these
repositories:

{
 "Statement": [
 {
 "Sid": "AmazonLinuxAMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::packages.*.amazonaws.com/*",
 "arn:aws:s3:::repo.*.amazonaws.com/*"
]
 }
]
}

{
 "Statement": [
 { "Sid": "AmazonLinux2AMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::amazonlinux.*.amazonaws.com/*"
]
 }
]
}

Give SageMaker Access to Resources in your Amazon VPC 6007

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon SageMaker Developer Guide

Configure Route Tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for
example, http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use default
DNS settings, ensure that the URLs that you use to specify the locations of the data in your training
jobs resolve by configuring the endpoint route tables. For information about VPC endpoint route
tables, see Routing for Gateway Endpoints in the Amazon VPC User Guide.

Configure the VPC Security Group

In distributed training, you must allow communication between the different containers in
the same training job. To do that, configure a rule for your security group that allows inbound
connections between members of the same security group. For EFA-enabled instances, ensure
that both inbound and outbound connections allow all traffic from the same security group. For
information, see Security Group Rules in the Amazon Virtual Private Cloud User Guide.

Connect to Resources Outside Your VPC

If you configure your VPC so that it doesn't have internet access, training jobs that use that VPC
do not have access to resources outside your VPC. If your training job needs access to resources
outside your VPC, provide access with one of the following options:

• If your training job needs access to an AWS service that supports interface VPC endpoints, create
an endpoint to connect to that service. For a list of services that support interface endpoints, see
VPC Endpoints in the Amazon Virtual Private Cloud User Guide. For information about creating
an interface VPC endpoint, see Interface VPC Endpoints (AWS PrivateLink) in the Amazon Virtual
Private Cloud User Guide.

• If your training job needs access to an AWS service that doesn't support interface VPC endpoints
or to a resource outside of AWS, create a NAT gateway and configure your security groups to
allow outbound connections. For information about setting up a NAT gateway for your VPC, see
Scenario 2: VPC with Public and Private Subnets (NAT) in the Amazon Virtual Private Cloud User
Guide.

Monitor Amazon SageMaker Training Jobs with CloudWatch Logs and Metrics

Amazon SageMaker provides Amazon CloudWatch logs and metrics to monitor training jobs.
CloudWatch provides CPU, GPU, memory, GPU memory, and disk metrics, and event logging.
For more information about monitoring Amazon SageMaker training jobs, see Monitor Amazon
SageMaker with Amazon CloudWatch and SageMaker Jobs and Endpoint Metrics.

Give SageMaker Access to Resources in your Amazon VPC 6008

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

Amazon SageMaker Developer Guide

Give SageMaker Hosted Endpoints Access to Resources in Your Amazon VPC

Configure a Model for Amazon VPC Access

To specify subnets and security groups in your private VPC, use the VpcConfig request parameter
of the CreateModel API, or provide this information when you create a model in the SageMaker
console. SageMaker uses this information to create network interfaces and attach them to
your model containers. The network interfaces provide your model containers with a network
connection within your VPC that is not connected to the internet. They also enable your model to
connect to resources in your private VPC.

Note

You must create at least two subnets in different availability zones in your private VPC,
even if you have only one hosting instance.

The following is an example of the VpcConfig parameter that you include in your call to
CreateModel:

VpcConfig: {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }

Configure Your Private VPC for SageMaker Hosting

When configuring the private VPC for your SageMaker models, use the following guidelines. For
information about setting up a VPC, see Working with VPCs and Subnets in the Amazon VPC User
Guide.

Topics

• Ensure That Subnets Have Enough IP Addresses

Give SageMaker Access to Resources in your Amazon VPC 6009

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/working-with-vpcs.html

Amazon SageMaker Developer Guide

• Create an Amazon S3 VPC Endpoint

• Use a Custom Endpoint Policy to Restrict Access to Amazon S3

• Add Permissions for Endpoint Access for Containers Running in a VPC to Custom IAM Policies

• Configure Route Tables

• Connect to Resources Outside Your VPC

Ensure That Subnets Have Enough IP Addresses

Training instances that don't use an Elastic Fabric Adapter (EFA) should have at least 2 private IP
addresses. Training instances that use an EFA should have at least 5 private IP addresses. For more
information, see Multiple IP addresses in the Amazon EC2 User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC so that model containers don't have access to the internet, they can't
connect to the Amazon S3 buckets that contain your data unless you create a VPC endpoint that
allows access. By creating a VPC endpoint, you allow your model containers to access the buckets
where you store your data and model artifacts . We recommend that you also create a custom
policy that allows only requests from your private VPC to access to your S3 buckets. For more
information, see Endpoints for Amazon S3.

To create an Amazon S3 VPC endpoint:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints, then choose Create Endpoint

3. For Service Name, choose com.amazonaws.region.s3, where region is the name of the AWS
Region where your VPC resides.

4. For VPC, choose the VPC that you want to use for this endpoint.

5. For Configure route tables, choose the route tables for the endpoint to use. The VPC service
automatically adds a route to each route table that you choose that points Amazon S3 traffic
to the new endpoint.

6. For Policy, choose Full Access to allow full access to the Amazon S3 service by any user or
service within the VPC. To restrict access further, choose Custom. For more information, see
Use a Custom Endpoint Policy to Restrict Access to Amazon S3.

Give SageMaker Access to Resources in your Amazon VPC 6010

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/MultipleIP.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://console.aws.amazon.com/vpc/

Amazon SageMaker Developer Guide

Use a Custom Endpoint Policy to Restrict Access to Amazon S3

The default endpoint policy allows full access to Amazon Simple Storage Service (Amazon S3) for
any user or service in your VPC. To further restrict access to Amazon S3, create a custom endpoint
policy. For more information, see Using Endpoint Policies for Amazon S3.

You can also use a bucket policy to restrict access to your S3 buckets to only traffic that comes
from your Amazon VPC. For information, see Using Amazon S3 Bucket Policies.

Restrict Package Installation on the Model Container with a Custom Endpoint Policy

The default endpoint policy allows users to install packages from the Amazon Linux and Amazon
Linux 2 repositories on the model container. If you don't want users to install packages from those
repositories, create a custom endpoint policy that explicitly denies access to the Amazon Linux and
Amazon Linux 2 repositories. The following is an example of a policy that denies access to these
repositories:

{
 "Statement": [
 {
 "Sid": "AmazonLinuxAMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::packages.*.amazonaws.com/*",
 "arn:aws:s3:::repo.*.amazonaws.com/*"
]
 }
]
}

{
 "Statement": [
 { "Sid": "AmazonLinux2AMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",

Give SageMaker Access to Resources in your Amazon VPC 6011

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon SageMaker Developer Guide

 "Resource": [
 "arn:aws:s3:::amazonlinux.*.amazonaws.com/*"
]
 }
]
}

Add Permissions for Endpoint Access for Containers Running in a VPC to Custom IAM Policies

The SageMakerFullAccess managed policy includes the permissions that you need to use
models configured for Amazon VPC access with an endpoint. These permissions allow SageMaker
to create an elastic network interface and attach it to model containers running in a VPC. If you
use your own IAM policy, you must add the following permissions to that policy to use models
configured for VPC access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:CreateNetworkInterface"
],
 "Resource": "*"
 }
]
}

For more information about the SageMakerFullAccess managed policy, see AWS managed
policy: AmazonSageMakerFullAccess.

Give SageMaker Access to Resources in your Amazon VPC 6012

Amazon SageMaker Developer Guide

Configure Route Tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for
example, http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use default
DNS settings, ensure that the URLs that you use to specify the locations of the data in your models
resolve by configuring the endpoint route tables. For information about VPC endpoint route tables,
see Routing for Gateway Endpoints in the Amazon VPC User Guide.

Connect to Resources Outside Your VPC

If you configure your VPC so that it doesn't have internet access, models that use that VPC do not
have access to resources outside your VPC. If your model needs access to resources outside your
VPC, provide access with one of the following options:

• If your model needs access to an AWS service that supports interface VPC endpoints, create an
endpoint to connect to that service. For a list of services that support interface endpoints, see
VPC Endpoints in the Amazon VPC User Guide. For information about creating an interface VPC
endpoint, see Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

• If your model needs access to an AWS service that doesn't support interface VPC endpoints
or to a resource outside of AWS, create a NAT gateway and configure your security groups to
allow outbound connections. For information about setting up a NAT gateway for your VPC, see
Scenario 2: VPC with Public and Private Subnets (NAT) in the Amazon Virtual Private Cloud User
Guide.

Give Batch Transform Jobs Access to Resources in Your Amazon VPC

To control access to your data and batch transform jobs, we recommend that you create a private
Amazon VPC and configure it so that your jobs aren't accessible over the public internet. You
specify your private VPC configuration when you create a model by specifying subnets and security
groups. You then specify the same model when you create a batch transform job. When you specify
the subnets and security groups, SageMaker creates elastic network interfaces that are associated
with your security groups in one of the subnets. Network interfaces allow your model containers
to connect to resources in your VPC. For information about network interfaces, see Elastic Network
Interfaces in the Amazon VPC User Guide.

This document explains how to add Amazon VPC configurations for batch transform jobs.

Give SageMaker Access to Resources in your Amazon VPC 6013

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ElasticNetworkInterfaces.html

Amazon SageMaker Developer Guide

Configure a Batch Transform Job for Amazon VPC Access

To specify subnets and security groups in your private VPC, use the VpcConfig request
parameter of the CreateModel API, or provide this information when you create a model in the
SageMaker console. Then specify the same model in the ModelName request parameter of the
CreateTransformJob API, or in the Model name field when you create a transform job in the
SageMaker console. SageMaker uses this information to create network interfaces and attach them
to your model containers. The network interfaces provide your model containers with a network
connection within your VPC that is not connected to the internet. They also enable your transform
job to connect to resources in your private VPC.

The following is an example of the VpcConfig parameter that you include in your call to
CreateModel:

VpcConfig: {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }

If you are creating a model using the CreateModel API operation, the IAM execution role that you
use to create your model must include the permissions described in CreateModel API: Execution
Role Permissions, including the following permissions required for a private VPC.

When creating a model in the console, if you select Create a new role in the Model Settings
section, the AmazonSageMakerFullAccess policy used to create the role already contains these
permissions. If you select Enter a custom IAM role ARN or Use existing role, the role ARN that you
specify must have an execution policy attached with the following permissions.

{
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",

Give SageMaker Access to Resources in your Amazon VPC 6014

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess$jsonEditor

Amazon SageMaker Developer Guide

 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"

Configure Your Private VPC for SageMaker Batch Transform

When configuring the private VPC for your SageMaker batch transform jobs, use the following
guidelines. For information about setting up a VPC, see Working with VPCs and Subnets in the
Amazon VPC User Guide.

Topics

• Ensure That Subnets Have Enough IP Addresses

• Create an Amazon S3 VPC Endpoint

• Use a Custom Endpoint Policy to Restrict Access to S3

• Configure Route Tables

• Configure the VPC Security Group

• Connect to Resources Outside Your VPC

Ensure That Subnets Have Enough IP Addresses

Your VPC subnets should have at least two private IP addresses for each instance in a transform
job. For more information, see VPC and Subnet Sizing for IPv4 in the Amazon VPC User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC so that model containers don't have access to the internet, they can't
connect to the Amazon S3 buckets that contain your data unless you create a VPC endpoint that
allows access. By creating a VPC endpoint, you allow your model containers to access the buckets
where you store your data and model artifacts . We recommend that you also create a custom
policy that allows only requests from your private VPC to access to your S3 buckets. For more
information, see Endpoints for Amazon S3.

To create an S3 VPC endpoint:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

Give SageMaker Access to Resources in your Amazon VPC 6015

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/working-with-vpcs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://console.aws.amazon.com/vpc/

Amazon SageMaker Developer Guide

2. In the navigation pane, choose Endpoints, then choose Create Endpoint

3. For Service Name, choose com.amazonaws.region.s3, where region is the name of the
region where your VPC resides.

4. For VPC, choose the VPC you want to use for this endpoint.

5. For Configure route tables, select the route tables to be used by the endpoint. The VPC
service automatically adds a route to each route table you select that points any S3 traffic to
the new endpoint.

6. For Policy, choose Full Access to allow full access to the S3 service by any user or service
within the VPC. Choose Custom to restrict access further. For information, see Use a Custom
Endpoint Policy to Restrict Access to S3.

Use a Custom Endpoint Policy to Restrict Access to S3

The default endpoint policy allows full access to S3 for any user or service in your VPC. To further
restrict access to S3, create a custom endpoint policy. For more information, see Using Endpoint
Policies for Amazon S3. You can also use a bucket policy to restrict access to your S3 buckets to
only traffic that comes from your Amazon VPC. For information, see Using Amazon S3 Bucket
Policies.

Restrict Package Installation on the Model Container

The default endpoint policy allows users to install packages from the Amazon Linux and Amazon
Linux 2 repositories on the training container. If you don't want users to install packages from that
repository, create a custom endpoint policy that explicitly denies access to the Amazon Linux and
Amazon Linux 2 repositories. The following is an example of a policy that denies access to these
repositories:

{
 "Statement": [
 {
 "Sid": "AmazonLinuxAMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::packages.*.amazonaws.com/*",

Give SageMaker Access to Resources in your Amazon VPC 6016

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon SageMaker Developer Guide

 "arn:aws:s3:::repo.*.amazonaws.com/*"
]
 }
]
}

{
 "Statement": [
 { "Sid": "AmazonLinux2AMIRepositoryAccess",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Deny",
 "Resource": [
 "arn:aws:s3:::amazonlinux.*.amazonaws.com/*"
]
 }
]
}

Configure Route Tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for
example, http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use
default DNS settings, ensure that the URLs that you use to specify the locations of the data in your
batch transform jobs resolve by configuring the endpoint route tables. For information about VPC
endpoint route tables, see Routing for Gateway Endpoints in the Amazon VPC User Guide.

Configure the VPC Security Group

In distributed batch transform, you must allow communication between the different containers
in the same batch transform job. To do that, configure a rule for your security group that allows
inbound and outbound connections between members of the same security group. Members of
the same security group should be able to communicate with each other across all ports. For more
information, see Security Group Rules.

Connect to Resources Outside Your VPC

If you configure your VPC so that it doesn't have internet access, batch transform jobs that use that
VPC do not have access to resources outside your VPC. If your batch transform job needs access to
resources outside your VPC, provide access with one of the following options:

Give SageMaker Access to Resources in your Amazon VPC 6017

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon SageMaker Developer Guide

• If your batch transform job needs access to an AWS service that supports interface VPC
endpoints, create an endpoint to connect to that service. For a list of services that support
interface endpoints, see VPC Endpoints in the Amazon VPC User Guide. For information about
creating an interface VPC endpoint, see Interface VPC Endpoints (AWS PrivateLink) in the
Amazon VPC User Guide.

• If your batch transform job needs access to an AWS service that doesn't support interface VPC
endpoints or to a resource outside of AWS, create a NAT gateway and configure your security
groups to allow outbound connections. For information about setting up a NAT gateway for your
VPC, see Scenario 2: VPC with Public and Private Subnets (NAT) in the Amazon Virtual Private
Cloud User Guide.

Give Amazon SageMaker Clarify Jobs Access to Resources in Your Amazon VPC

To control access to your data and SageMaker Clarify jobs, we recommend that you create a
private Amazon VPC and configure it so that your jobs aren't accessible over the public internet.
For information about creating and configuring an Amazon VPC for processing jobs, see Give
SageMaker Processing Jobs Access to Resources in Your Amazon VPC.

This document explains how to add additional Amazon VPC configurations that meet the
requirements for SageMaker Clarify jobs.

Topics

• Configure a SageMaker Clarify Job for Amazon VPC Access

• Configure Your Private Amazon VPC for SageMaker Clarify jobs

Configure a SageMaker Clarify Job for Amazon VPC Access

You need to specify subnets and security groups when configuring your private Amazon VPC
for SageMaker Clarify jobs and to enable the job to get inferences from the SageMaker model
when computing post-training bias metrics and feature contributions that help explain model
predictions.

Topics

• SageMaker Clarify Job Amazon VPC Subnets and Security Groups

• Configure a Model Amazon VPC for Inference

Give SageMaker Access to Resources in your Amazon VPC 6018

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html
https://docs.aws.amazon.com/sagemaker/latest/dg/process-vpc
https://docs.aws.amazon.com/sagemaker/latest/dg/process-vpc

Amazon SageMaker Developer Guide

SageMaker Clarify Job Amazon VPC Subnets and Security Groups

Subnets and security groups in your private Amazon VPC can be assigned to a SageMaker Clarify
job in various ways, depending on how you create the job.

• SageMaker console: Provide this information when you create the job in the SageMaker
Dashboard. From the Processing menu, choose Processing jobs, then choose Create processing
job. Select the VPC option in the Network panel and provide the subnets and security groups
using the drop-down lists. Make sure network isolation option provided in this panel is turned
off.

• SageMaker API: Use the NetworkConfig.VpcConfig request parameter of the
CreateProcessingJob API, as shown in the following example:

"NetworkConfig": {
 "VpcConfig": {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }
}

• SageMaker Python SDK: Use the NetworkConfig parameter of the
SageMakerClarifyProcessor API or Processor API, as shown in the following example:

from sagemaker.network import NetworkConfig
network_config = NetworkConfig(
 subnets=[
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2",
],
 security_group_ids=[
 "sg-0123456789abcdef0",
],
)

Give SageMaker Access to Resources in your Amazon VPC 6019

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html?highlight=Processor#sagemaker.clarify.SageMakerClarifyProcessor
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html?highlight=Processor#sagemaker.processing.Processor

Amazon SageMaker Developer Guide

SageMaker uses the information to create network interfaces and attach them to the SageMaker
Clarify job. The network interfaces provide a SageMaker Clarify job with a network connection
within your Amazon VPC that is not connected to the public internet. They also enable the
SageMaker Clarify job to connect to resources in your private Amazon VPC.

Note

The network isolation option of the SageMaker Clarify job must be turned off (by default
the option is turned off) so that the SageMaker Clarify job can communicate with the
shadow endpoint.

Configure a Model Amazon VPC for Inference

In order to compute post-training bias metrics and explainability, the SageMaker Clarify job needs
to get inferences from the SageMaker model that is specified by the model_name parameter of
the analysis configuration for the SageMaker Clarify processing job. Alternatively, if you use the
SageMakerClarifyProcessor API in the SageMaker Python SDK, the job needs to get the
model_name specified by the ModelConfig class. To accomplish this, the SageMaker Clarify job
creates an ephemeral endpoint with the model, known as a shadow endpoint, and then applies the
Amazon VPC configuration of the model to the shadow endpoint.

To specify subnets and security groups in your private Amazon VPC to the SageMaker model, use
the VpcConfig request parameter of the CreateModel API or provide this information when you
create the model using the SageMaker dashboard in the console. The following is an example of
the VpcConfig parameter that you include in your call to CreateModel:

"VpcConfig": {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
}

You can specify the number of instances of the shadow endpoint to launch with the
initial_instance_count parameter of the analysis configuration for the SageMaker Clarify

Give SageMaker Access to Resources in your Amazon VPC 6020

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-configure-processing-jobs.html#clarify-processing-job-configure-analysis
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html?highlight=Processor#sagemaker.clarify.ModelConfig
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-configure-processing-jobs.html#clarify-processing-job-configure-analysis

Amazon SageMaker Developer Guide

processing job. Alternatively, if you use the SageMakerClarifyProcessor API in the SageMaker
Python SDK, the job needs to get the instance_count specified by the ModelConfig class.

Note

Even if you only request one instance when creating the shadow endpoint, you need at
least two subnets in the model's ModelConfig in distinct availability zones. Otherwise the
shadow endpoint creation fails with the following error:
ClientError: Error hosting endpoint sagemaker-clarify-endpoint-XXX: Failed. Reason: Unable
to locate at least 2 availability zone(s) with the requested instance type YYY that overlap
with SageMaker subnets.

If your model requires model files in Amazon S3, then the model Amazon VPC needs to have an
Amazon S3 VPC endpoint. For more information about creating and configuring an Amazon VPC
for SageMaker models, see Give SageMaker Hosted Endpoints Access to Resources in Your Amazon
VPC.

Configure Your Private Amazon VPC for SageMaker Clarify jobs

In general, you can follow the steps in Configure Your Private VPC for SageMaker Processing to
configure your private Amazon VPC for SageMaker Clarify jobs. Here are some highlights and
special requirements for SageMaker Clarify jobs.

Topics

• Connect to Resources Outside Your Amazon VPC

• Configure the Amazon VPC Security Group

Connect to Resources Outside Your Amazon VPC

If you configure your Amazon VPC so that it does not have public internet access, then some
additional setup is required to grant SageMaker Clarify jobs access to resources and services
outside of your Amazon VPC. For example, an Amazon S3 VPC endpoint is required because a
SageMaker Clarify job needs to load a dataset from an S3 bucket as well as save the analysis results
to an S3 bucket. For more information, see Create an Amazon S3 VPC Endpoint for the creation
guide. In addition, if a SageMaker Clarify job needs to get inferences from the shadow endpoint,
then it needs to call several more AWS services.

Give SageMaker Access to Resources in your Amazon VPC 6021

https://sagemaker.readthedocs.io/en/stable/api/training/processing.html?highlight=Processor#sagemaker.clarify.ModelConfig
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html?highlight=Processor#sagemaker.clarify.ModelConfig
https://docs.aws.amazon.com/sagemaker/latest/dg/process-vpc.html#process-vpc-vpc
https://docs.aws.amazon.com/sagemaker/latest/dg/process-vpc.html#process-vpc-s3

Amazon SageMaker Developer Guide

• Create an Amazon SageMaker API service VPC endpoint: The SageMaker Clarify job
needs to call the Amazon SageMaker API service to manipulate the shadow endpoint, or
to describe a SageMaker model for Amazon VPC validation. You can follow the guidance
provided in the Securing all Amazon SageMaker API calls with AWS PrivateLink blog to
create an Amazon SageMaker API VPC endpoint that allows the SageMaker Clarify job to
make the service calls. Note that the service name of Amazon SageMaker API service is
com.amazonaws.region.sagemaker.api, where region is the name of the Region where
your Amazon VPC resides.

• Create an Amazon SageMaker Runtime VPC Endpoint: The SageMaker Clarify job
needs to call the Amazon SageMaker runtime service, which routes the invocations to
the shadow endpoint. The setup steps are similar to those for the Amazon SageMaker
API service. Note that the service name of Amazon SageMaker Runtime service is
com.amazonaws.region.sagemaker.runtime, where region is the name of the Region
where your Amazon VPC resides.

Configure the Amazon VPC Security Group

SageMaker Clarify jobs support distributed processing when two or more processing instances are
specified in one of the following ways:

• SageMaker console: The Instance count is specified in the Resource configuration part of the
Job settings panel on the Create processing job page.

• SageMaker API: The InstanceCount is specified when you create the job with the
CreateProcessingJob API.

• SageMaker Python SDK: The instance_count is specified when using the
SageMakerClarifyProcessor API or the Processor API.

In distributed processing, you must allow communication between the different instances in the
same processing job. To do that, configure a rule for your security group that allows inbound
connections between members of the same security group. For information, see Security group
rules.

Give SageMaker Access to Resources in your Amazon VPC 6022

https://aws.amazon.com/blogs/machine-learning/securing-all-amazon-sagemaker-api-calls-with-aws-privatelink/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html?highlight=Processor#sagemaker.clarify.SageMakerClarifyProcessor
https://sagemaker.readthedocs.io/en/stable/api/training/processing.html?highlight=Processor#sagemaker.processing.Processor
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon SageMaker Developer Guide

Give SageMaker Compilation Jobs Access to Resources in Your Amazon VPC

Note

For compilation jobs, you can configure only subnets with a default tenancy VPC in which
your job runs on shared hardware. For more information on the tenancy attribute for VPCs,
see Dedicated Instances.

Configure a Compilation Job for Amazon VPC Access

To specify subnets and security groups in your private VPC, use the VpcConfig request parameter
of the CreateCompilationJob API, or provide this information when you create a compilation
job in the SageMaker console. SageMaker Neo uses this information to create network interfaces
and attach them to your compilation jobs. The network interfaces provide compilation jobs with a
network connection within your VPC that is not connected to the internet. They also enable your
compilation job to connect to resources in your private VPC. The following is an example of the
VpcConfig parameter that you include in your call to CreateCompilationJob:

VpcConfig: {"Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }

Configure Your Private VPC for SageMaker Compilation

When configuring the private VPC for your SageMaker compilation jobs, use the following
guidelines. For information about setting up a VPC, see Working with VPCs and Subnets in the
Amazon VPC User Guide.

Topics

• Ensure That Subnets Have Enough IP Addresses

• Create an Amazon S3 VPC Endpoint

• Use a Custom Endpoint Policy to Restrict Access to S3

Give SageMaker Access to Resources in your Amazon VPC 6023

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCompilationJob.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/working-with-vpcs.html

Amazon SageMaker Developer Guide

• Configure Route Tables

• Configure the VPC Security Group

Ensure That Subnets Have Enough IP Addresses

Your VPC subnets should have at least two private IP addresses for each instance in a compilation
job. For more information, see VPC and Subnet Sizing for IPv4 in the Amazon VPC User Guide.

Create an Amazon S3 VPC Endpoint

If you configure your VPC to block access to the internet, SageMaker Neo can't connect to the
Amazon S3 buckets that contain your models unless you create a VPC endpoint that allows access.
By creating a VPC endpoint, you allow your SageMaker Neo compilation jobs to access the buckets
where you store your data and model artifacts . We recommend that you also create a custom
policy that allows only requests from your private VPC to access to your S3 buckets. For more
information, see Endpoints for Amazon S3.

To create an S3 VPC endpoint:

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints, then choose Create Endpoint

3. For Service Name, search for com.amazonaws.region.s3, where region is the name of the
region where your VPC resides.

4. Choose the Gateway type.

5. For VPC, choose the VPC you want to use for this endpoint.

6. For Configure route tables, select the route tables to be used by the endpoint. The VPC
service automatically adds a route to each route table you select that points any S3 traffic to
the new endpoint.

7. For Policy, choose Full Access to allow full access to the S3 service by any user or service
within the VPC. Choose Custom to restrict access further. For information, see Use a Custom
Endpoint Policy to Restrict Access to S3.

Use a Custom Endpoint Policy to Restrict Access to S3

The default endpoint policy allows full access to S3 for any user or service in your VPC. To further
restrict access to S3, create a custom endpoint policy. For more information, see Using Endpoint

Give SageMaker Access to Resources in your Amazon VPC 6024

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3

Amazon SageMaker Developer Guide

Policies for Amazon S3. You can also use a bucket policy to restrict access to your S3 buckets to
only traffic that comes from your Amazon VPC. For information, see Using Amazon S3 Bucket
Policies. The following is a sample customized policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": "s3:GetObject",
 "Resource": [
 "arn:aws:s3:::your-sample-bucket",
 "arn:aws:s3:::your-sample-bucket/*"
],
 "Condition": {
 "StringNotEquals": {
 "aws:SourceVpce": [
 "vpce-01234567890123456"
]
 }
 }
 }
]
}

Add Permissions for Compilation Job Running in a Amazon VPC to Custom IAM Policies

The SageMakerFullAccess managed policy includes the permissions that you need to use
models configured for Amazon VPC access with an endpoint. These permissions allow SageMaker
Neo to create an elastic network interface and attach it to compilation job running in a Amazon
VPC. If you use your own IAM policy, you must add the following permissions to that policy to use
models configured for Amazon VPC access.

{"Version": "2012-10-17",
 "Statement": [
 {"Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeDhcpOptions",

Give SageMaker Access to Resources in your Amazon VPC 6025

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-policies-s3
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html#vpc-endpoints-s3-bucket-policies

Amazon SageMaker Developer Guide

 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:CreateNetworkInterface",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "*"
 }
]
}

For more information about the SageMakerFullAccess managed policy, see AWS managed
policy: AmazonSageMakerFullAccess.

Configure Route Tables

Use default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for
example, http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use
default DNS settings, ensure that the URLs that you use to specify the locations of the data in
your compilation jobs resolve by configuring the endpoint route tables. For information about VPC
endpoint route tables, see Routing for Gateway Endpoints in the Amazon VPC User Guide.

Configure the VPC Security Group

In your security group for the compilation job, you must allow outbound communication to your
Amazon S3 Amazon VPC endpoints and the subnet CIDR ranges used for the compilation job. For
information, see Security Group Rules and Control access to services with Amazon VPC endpoints.

Give Inference Recommender Jobs Access to Resources in Your Amazon VPC

Note

Inference Recommender requires you to register your model with Model Registry. Note
that Model Registry doesn't allow your model artifacts or Amazon ECR image to be VPC
restricted.
Inference Recommender also has a requirement that your sample payload Amazon S3
object is not VPC restricted. For inference recommendation jobs, you can't create a custom

Give SageMaker Access to Resources in your Amazon VPC 6026

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-access.html

Amazon SageMaker Developer Guide

policy that allows only requests from your private VPC to access to your Amazon S3
buckets.

To specify subnets and security groups in your private VPC, use the
RecommendationJobVpcConfig request parameter of the CreateInferenceRecommendationsJob
API, or specify your subnets and security groups when you create a recommendation job in the
SageMaker console.

Inference Recommender uses this information to create endpoints. When provisioning
endpoints, SageMaker creates network interfaces and attaches them to your endpoints.
The network interfaces provide your endpoints with a network connection to your VPC.
The following is an example of the VpcConfig parameter that you include in a call to
CreateInferenceRecommendationsJob:

VpcConfig: {
 "Subnets": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1",
 "subnet-0123456789abcdef2"
],
 "SecurityGroupIds": [
 "sg-0123456789abcdef0"
]
 }

Refer to the following topics for more information on configuring your Amazon VPC for use with
Inference Recommender jobs.

Topics

• Ensure that subnets have enough IP addresses

• Create an Amazon S3 VPC endpoint

• Add permissions for Inference Recommender jobs running in an Amazon VPC to custom IAM
policies

• Configure route tables

• Configure the VPC security group

Give SageMaker Access to Resources in your Amazon VPC 6027

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html

Amazon SageMaker Developer Guide

Ensure that subnets have enough IP addresses

Your VPC subnets should have at least two private IP addresses for each instance in an inference
recommendation job. For more information about subnets and private IP addresses, see How
Amazon VPC works in the Amazon VPC User Guide.

Create an Amazon S3 VPC endpoint

If you configure your VPC to block access to the internet, Inference Recommender can't connect
to the Amazon S3 buckets that contain your models unless you create a VPC endpoint that allows
access. By creating a VPC endpoint, you allow your SageMaker inference recommendation jobs to
access the buckets where you store your data and model artifacts.

To create an Amazon S3 VPC endpoint, use the following procedure:

1. Open the Amazon VPC console.

2. In the navigation pane, choose Endpoints, and then choose Create Endpoint.

3. For Service Name, search for com.amazonaws.region.s3, where region is the name of the
Region where your VPC resides.

4. Choose the Gateway type.

5. For VPC, choose the VPC you want to use for this endpoint.

6. For Configure route tables, select the route tables to be used by the endpoint. The VPC
service automatically adds a route to each route table you select that points any Amazon S3
traffic to the new endpoint.

7. For Policy, choose Full Access to allow full access to the Amazon S3 service by any user or
service within the VPC.

Add permissions for Inference Recommender jobs running in an Amazon VPC to custom IAM
policies

The AmazonSageMakerFullAccess managed policy includes the permissions that you need
to use models configured for Amazon VPC access with an endpoint. These permissions allow
Inference Recommender to create an elastic network interface and attach it to the inference
recommendation job running in an Amazon VPC. If you use your own IAM policy, you must add the
following permissions to that policy to use models configured for Amazon VPC access.

{
 "Version": "2012-10-17",

Give SageMaker Access to Resources in your Amazon VPC 6028

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Subnets.html#vpc-sizing-ipv4
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

 "Statement": [
 {"Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:CreateNetworkInterface",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "*"
 }
]
}

Configure route tables

Use the default DNS settings for your endpoint route table, so that standard Amazon S3 URLs (for
example: http://s3-aws-region.amazonaws.com/MyBucket) resolve. If you don't use the
default DNS settings, ensure that the URLs that you use to specify the locations of the data in your
inference recommendation jobs resolve by configuring the endpoint route tables. For information
about VPC endpoint route tables, see Routing gateway endpoints in the Amazon VPC User Guide.

Configure the VPC security group

In your security group for the inference recommendation job, you must allow outbound
communication to your Amazon S3 VPC endpoints and the subnet CIDR ranges used for the
inference recommendation job. For information, see Security Group Rules and Control access to
services with Amazon VPC endpoints in the Amazon VPC User Guide.

Give SageMaker Access to Resources in your Amazon VPC 6029

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-gateway.html#vpc-endpoints-routing
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-access.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-access.html

Amazon SageMaker Developer Guide

Sell algorithms and packages in the AWS Marketplace

Amazon SageMaker integrates with AWS Marketplace, enabling developers to charge other
SageMaker users for the use of their algorithms and model packages. AWS Marketplace is a
curated digital catalog that makes it easy for customers to find, buy, deploy, and manage third-
party software and services that customers need to build solutions and run their businesses.
AWS Marketplace includes thousands of software listings in popular categories, such as security,
networking, storage, machine learning, business intelligence, database, and DevOps. It simplifies
software licensing and procurement with flexible pricing options and multiple deployment
methods.

For information, see AWS Marketplace Documentation.

Topics

• SageMaker Algorithms

• SageMaker Model Packages

• Sell Amazon SageMaker Algorithms and Model Packages

• Find and Subscribe to Algorithms and Model Packages on AWS Marketplace

• Use Algorithm and Model Package Resources

SageMaker Algorithms

An algorithm enables you to perform end-to-end machine learning. It has two logical components:
training and inference. Buyers can use the training component to create training jobs in SageMaker
and build a machine learning model. SageMaker saves the model artifacts generated by the
algorithm during training to an Amazon S3 bucket. For more information, see Train a Model with
Amazon SageMaker.

Buyers use the inference component with the model artifacts generated during a training job to
create a deployable model in their SageMaker account. They can use the deployable model for
real-time inference by using SageMaker hosting services. Or, they can get inferences for an entire
dataset by running batch transform jobs. For more information, see Deploy a Model in Amazon
SageMaker.

Topics 6030

https://docs.aws.amazon.com/marketplace/index.html#lang/en_us

Amazon SageMaker Developer Guide

SageMaker Model Packages

Buyers use a model package to build a deployable model in SageMaker. They can use the
deployable model for real-time inference by using SageMaker hosting services. Or, they can
get inferences for an entire dataset by running batch transform jobs. For more information, see
Deploy a Model in Amazon SageMaker. As a seller, you can build your model artifacts by training
in SageMaker, or you can use your own model artifacts from a model that you trained outside of
SageMaker. You can charge buyers for inference.

Use your own algorithms and models with the AWS
Marketplace

The following sections show how to create algorithm and model package resources that you can
use locally and publish to the AWS Marketplace.

Topics

• Create Algorithm and Model Package Resources

• Use Algorithm and Model Package Resources

Create Algorithm and Model Package Resources

After your training and/or inference code is packaged in Docker containers, create algorithm and
model package resources that you can use in your Amazon SageMaker account and, optionally,
publish on AWS Marketplace.

Topics

• Create an Algorithm Resource

• Create a Model Package Resource

Create an Algorithm Resource

To create an algorithm resource that you can use to run training jobs in Amazon SageMaker and
publish on AWS Marketplace specify the following information:

• The Docker containers that contains the training and, optionally, inference code.

SageMaker Model Packages 6031

Amazon SageMaker Developer Guide

• The configuration of the input data that your algorithm expects for training.

• The hyperparameters that your algorithm supports.

• Metrics that your algorithm sends to Amazon CloudWatch during training jobs.

• The instance types that your algorithm supports for training and inference, and whether it
supports distributed training across multiple instances.

• Validation profiles, which are training jobs that SageMaker uses to test your algorithm's training
code and batch transform jobs that SageMaker runs to test your algorithm's inference code.

To ensure that buyers and sellers can be confident that products work in SageMaker, we require
that you validate your algorithms before listing them on AWS Marketplace. You can list products
in the AWS Marketplace only if validation succeeds. To validate your algorithms, SageMaker uses
your validation profile and sample data to run the following validations tasks:

1. Create a training job in your account to verify that your training image works with SageMaker.

2. If you included inference code in your algorithm, create a model in your account using the
algorithm's inference image and the model artifacts produced by the training job.

3. If you included inference code in your algorithm, create a transform job in your account using
the model to verify that your inference image works with SageMaker.

When you list your product on AWS Marketplace, the inputs and outputs of this validation
process persist as part of your product and are made available to your buyers. This helps buyers
understand and evaluate the product before they buy it. For example, buyers can inspect the
input data that you used, the outputs generated, and the logs and metrics emitted by your code.
The more comprehensive your validation specification, the easier it is for customers to evaluate
your product.

Note

In your validation profile, provide only data that you want to expose publicly.

Validation can take up to a few hours. To see the status of the jobs in your account, in the
SageMaker console, see the Training jobs and Transform jobs pages. If validation fails, you can
access the scan and validation reports from the SageMaker console. If any issues are found, you
will have to create the algorithm again.

Create Algorithm and Model Package Resources 6032

Amazon SageMaker Developer Guide

Note

To publish your algorithm on AWS Marketplace, at least one validation profile is required.

You can create an algorithm by using either the SageMaker console or the SageMaker API.

Topics

• Create an Algorithm Resource (Console)

• Create an Algorithm Resource (API)

Create an Algorithm Resource (Console)

To create an algorithm resource (console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. From the left menu, choose Training.

3. From the dropdown menu, choose Algorithms, then choose Create algorithm.

4. On the Training specifications page, provide the following information:

a. For Algorithm name, type a name for your algorithm. The algorithm name must be
unique in your account and in the AWS region. The name must have 1 to 64 characters.
Valid characters are a-z, A-Z, 0-9, and - (hyphen).

b. Type a description for your algorithm. This description appears in the SageMaker console
and in the AWS Marketplace.

c. For Training image, type the path in Amazon ECR where your training container is
stored.

d. For Support distributed training, Choose Yes if your algorithm supports training on
multiple instances. Otherwise, choose No.

e. For Support instance types for training, choose the instance types that your algorithm
supports.

f. For Channel specification, specify up to 8 channels of input data for your algorithm. For
example, you might specify 3 input channels named train, validation, and test. For
each channel, specify the following information:

Create Algorithm and Model Package Resources 6033

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

i. For Channel name, type a name for the channel. The name must have 1 to 64
characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

ii. To require the channel for your algorithm, choose Channel required.

iii. Type a description for the channel.

iv. For Supported input modes, choose Pipe mode if your algorithm supports streaming
the input data, and File mode if your algorithm supports downloading the input data
as a file. You can choose both.

v. For Supported content types, type the MIME type that your algorithm expects for
input data.

vi. For Supported compression type, choose Gzip if your algorithm supports Gzip
compression. Otherwise, choose None.

vii. Choose Add channel to add another data input channel, or choose Next if you are
done adding channels.

5. On the Tuning specifications page, provide the following information:

a. For Hyperparameter specification, specify the hyperparameters that your algorithm
supports by editing the JSON object. For each hyperparameter that your algorithm
supports, construct a JSON block similar to the following:

{
"DefaultValue": "5",
"Description": "The first hyperparameter",
"IsRequired": true,
"IsTunable": false,
"Name": "intRange",
"Range": {
"IntegerParameterRangeSpecification": {
"MaxValue": "10",
"MinValue": "1"
},
"Type": "Integer"
}

In the JSON, supply the following:

i. For DefaultValue, specify a default value for the hyperparameter, if there is one.

ii. For Description, specify a description for the hyperparameter.

Create Algorithm and Model Package Resources 6034

Amazon SageMaker Developer Guide

iii. For IsRequired, specify whether the hyperparameter is required.

iv. For IsTunable, specify true if this hyperparameter can be tuned when a user runs
a hyperparameter tuning job that uses this algorithm. For information, see Perform
Automatic Model Tuning with SageMaker.

v. For Name, specify a name for the hyperparameter.

vi. For Range, specify one of the following:

• IntegerParameterRangeSpecification - the values of the hyperparameter
are integers. Specify minimum and maximum values for the hyperparameter.

•

• ContinuousParameterRangeSpecification - the values of the
hyperparameter are floating-point values. Specify minimum and maximum values
for the hyperparameter.

• CategoricalParameterRangeSpecification - the values of the
hyperparameter are categorical values. Specify a list of all of the possible values.

vii. For Type, specify Integer, Continuous, or Categorical. The value must
correspond to the type of Range that you specified.

b. For Metric definitions, specify any training metrics that you want your algorithm to emit.
SageMaker uses the regular expression that you specify to find the metrics by parsing
the logs from your training container during training. Users can view these metrics when
they run training jobs with your algorithm, and they can monitor and plot the metrics
in Amazon CloudWatch. For information, see Monitor and Analyze Training Jobs Using
Amazon CloudWatch Metrics. For each metric, provide the following information:

i. For Metric name, type a name for the metric.

ii. For Regex, type the regular expression that SageMaker uses to parse training logs so
that it can find the metric value.

iii. For Objective metric support choose Yes if this metric can be used as the objective
metric for a hyperparameter tuning job. For information, see Perform Automatic
Model Tuning with SageMaker.

iv. Choose Add metric to add another metric, or choose Next if you are done adding
metrics.

6. On the Inference specifications page, provide the following information if your algorithm
supports inference:

Create Algorithm and Model Package Resources 6035

Amazon SageMaker Developer Guide

a. For Location of inference image, type the path in Amazon ECR where your inference
container is stored.

b. For Container DNS host name, type the name of a DNS host for your image.

c. For Supported instance types for real-time inference, choose the instance types that
your algorithm supports for models deployed as hosted endpoints in SageMaker. For
information, see Deploy models for inference.

d. For Supported instance types for batch transform jobs, choose the instance types
that your algorithm supports for batch transform jobs. For information, see Use Batch
Transform.

e. For Supported content types, type the type of input data that your algorithm expects for
inference requests.

f. For Supported response MIME types, type the MIME types that your algorithm supports
for inference responses.

g. Choose Next.

7. On the Validation specifications page, provide the following information:

a. For Publish this algorithm on AWS Marketplace, choose Yes to publish the algorithm on
AWS Marketplace.

b. For Validate this resource, choose Yes if you want SageMaker to run training jobs and/or
batch transform jobs that you specify to test the training and/or inference code of your
algorithm.

Note

To publish your algorithm on AWS Marketplace, your algorithm must be validated.

c. For IAM role, choose an IAM role that has the required permissions to run training jobs
and batch transform jobs in SageMaker, or choose Create a new role to allow SageMaker
to create a role that has the AmazonSageMakerFullAccess managed policy attached.
For information, see SageMaker Roles.

d. For Validation profile, specify the following:

• A name for the validation profile.

Create Algorithm and Model Package Resources 6036

Amazon SageMaker Developer Guide

• A Training job definition. This is a JSON block that describes a training job. This
is in the same format as the TrainingJobDefinition input parameter of the
CreateAlgorithm API.

• A Transform job definition. This is a JSON block that describes a batch transform job.
This is in the same format as the TransformJobDefinition input parameter of the
CreateAlgorithm API.

e. Choose Create algorithm.

Create an Algorithm Resource (API)

To create an algorithm resource by using the SageMaker API, call the CreateAlgorithm API.

Create a Model Package Resource

To create a model package resource that you can use to create deployable models in Amazon
SageMaker and publish on AWS Marketplace specify the following information:

• The Docker container that contains the inference code, or the algorithm resource that was used
to train the model.

• The location of the model artifacts. Model artifacts can either be packaged in the same Docker
container as the inference code or stored in Amazon S3.

• The instance types that your model package supports for both real-time inference and batch
transform jobs.

• Validation profiles, which are batch transform jobs that SageMaker runs to test your model
package's inference code.

Before listing model packages on AWS Marketplace, you must validate them. This ensures that
buyers and sellers can be confident that products work in Amazon SageMaker. You can list
products on AWS Marketplace only if validation succeeds.

The validation procedure uses your validation profile and sample data to run the following
validations tasks:

1. Create a model in your account using the model package's inference image and the optional
model artifacts that are stored in Amazon S3.

Create Algorithm and Model Package Resources 6037

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAlgorithm.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAlgorithm.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAlgorithm.html

Amazon SageMaker Developer Guide

Note

A model package is specific to the region in which you create it. The S3 bucket where
the model artifacts are stored must be in the same region where your created the
model package.

2. Create a transform job in your account using the model to verify that your inference image
works with SageMaker.

3. Create a validation profile.

Note

In your validation profile, provide only data that you want to expose publicly.

Validation can take up to a few hours. To see the status of the jobs in your account, in the
SageMaker console, see the Transform jobs pages. If validation fails, you can access the scan and
validation reports from the SageMaker console. After fixing issues, recreate the algorithm. When
the status of the algorithm is COMPLETED, find it in the SageMaker console and start the listing
process

Note

To publish your model package on AWS Marketplace, at least one validation profile is
required.

You can create an model package either by using the SageMaker console or by using the
SageMaker API.

Topics

• Create a Model Package Resource (Console)

• Create a Model Package Resource (API)

Create Algorithm and Model Package Resources 6038

Amazon SageMaker Developer Guide

Create a Model Package Resource (Console)

To create a model package in the SageMaker console:

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. From the left menu, choose Inference.

3. Choose Marketplace model packages, then choose Create marketplace model package.

4. On the Inference specifications page, provide the following information:

a. For Model package name, type a name for your model package. The model package
name must be unique in your account and in the AWS region. The name must have 1 to 64
characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).

b. Type a description for your model package. This description appears in the SageMaker
console and in the AWS Marketplace.

c. For Inference specification options, choose Provide the location of the inference image
and model artifacts to create a model package by using an inference container and model
artifacts. Choose Provide the algorithm used for training and its model artifacts to
create a model package from an algorithm resource that you created or subscribe to from
AWS Marketplace.

d. If you chose Provide the location of the inference image and model artifacts for
Inference specification options, provide the following information for Container
definition and Supported resources:

i. For Location of inference image, type the path to the image that contains your
inference code. The image must be stored as a Docker container in Amazon ECR.

ii. For Location of model data artifacts, type the location in S3 where your model
artifacts are stored.

iii. For Container DNS host name , type the name of the DNS host to use for your
container.

iv. For Supported instance types for real-time inference, choose the instance types
that your model package supports for real-time inference from SageMaker hosted
endpoints.

v. For Supported instance types for batch transform jobs, choose the instance types
that your model package supports for batch transform jobs.

vi. Supported content types, type the content types that your model package expects
for inference requests.

Create Algorithm and Model Package Resources 6039

https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

vii. For Supported response MIME types, type the MIME types that your model package
uses to provide inferences.

e. If you chose Provide the algorithm used for training and its model artifacts for
Inference specification options, provide the following information:

i. For Algorithm ARN, type the Amazon Resource Name (ARN) of the algorithm resource
to use to create the model package.

ii. For Location of model data artifacts, type the location in S3 where your model
artifacts are stored.

f. Choose Next.

5. On the Validation and scanning page, provide the following information:

a. For Publish this model package on AWS Marketplace, choose Yes to publish the model
package on AWS Marketplace.

b. For Validate this resource, choose Yes if you want SageMaker to run batch transform jobs
that you specify to test the inference code of your model package.

Note

To publish your model package on AWS Marketplace, your model package must be
validated.

c. For IAM role, choose an IAM role that has the required permissions to run batch transform
jobs in SageMaker, or choose Create a new role to allow SageMaker to create a role that
has the AmazonSageMakerFullAccess managed policy attached. For information, see
SageMaker Roles.

d. For Validation profile, specify the following:

• A name for the validation profile.

• A Transform job definition. This is a JSON block that describes a batch transform job.
This is in the same format as the TransformJobDefinition input parameter of the
CreateAlgorithm API.

6. Choose Create marketplace model package.

Create Algorithm and Model Package Resources 6040

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAlgorithm.html

Amazon SageMaker Developer Guide

Create a Model Package Resource (API)

To create a model package by using the SageMaker API, call the CreateModelPackage API.

Use Algorithm and Model Package Resources

You can create algorithms and model packages as resources in your Amazon SageMaker account,
and you can find and subscribe to algorithms and model packages on AWS Marketplace.

Use algorithms to:

• Run training jobs. For information, see Use an Algorithm to Run a Training Job.

• Run hyperparameter tuning jobs. For information, see Use an Algorithm to Run a
Hyperparameter Tuning Job.

• Create model packages. After you use an algorithm resource to run a training job or a
hyperparameter tuning job, you can use the model artifacts that these jobs output along with
the algorithm to create a model package. For information, see Create a Model Package Resource.

Note

If you subscribe to an algorithm on AWS Marketplace, you must create a model package
before you can use it to get inferences by creating hosted endpoint or running a batch
transform job.

Use Algorithm and Model Package Resources 6041

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html

Amazon SageMaker Developer Guide

Use model packages to:

• Create models that you can use to get real-time inference or run batch transform jobs. For
information, see Use a Model Package to Create a Model.

• Create hosted endpoints to get real-time inference. For information, see Deploy the Model to
SageMaker Hosting Services.

• Create batch transform jobs. For information, see (Optional) Make Prediction with Batch
Transform.

Topics

• Use an Algorithm to Run a Training Job

• Use an Algorithm to Run a Hyperparameter Tuning Job

• Use a Model Package to Create a Model

Use Algorithm and Model Package Resources 6042

Amazon SageMaker Developer Guide

Use an Algorithm to Run a Training Job

You can create use an algorithm resource to create a training job by using the Amazon SageMaker
console, the low-level Amazon SageMaker API, or the Amazon SageMaker Python SDK.

Topics

• Use an Algorithm to Run a Training Job (Console)

• Use an Algorithm to Run a Training Job (API)

• Use an Algorithm to Run a Training Job (Amazon SageMaker Python SDK)

Use an Algorithm to Run a Training Job (Console)

To use an algorithm to run a training job (console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Algorithms.

3. Choose an algorithm that you created from the list on the My algorithms tab or choose an
algorithm that you subscribed to on the AWS Marketplace subscriptions tab.

4. Choose Create training job.

The algorithm you chose will automatically be selected.

5. On the Create training job page, provide the following information:

a. For Job name, type a name for the training job.

b. For IAM role, choose an IAM role that has the required permissions to run training jobs
in SageMaker, or choose Create a new role to allow SageMaker to create a role that has
the AmazonSageMakerFullAccess managed policy attached. For information, see
SageMaker Roles.

c. For Resource configuration, provide the following information:

i. For Instance type, choose the instance type to use for training.

ii. For Instance count, type the number of ML instances to use for the training job.

iii. For Additional volume per instance (GB), type the size of the ML storage volume
that you want to provision. ML storage volumes store model artifacts and incremental
states.

Use Algorithm and Model Package Resources 6043

https://sagemaker.readthedocs.io
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

iv. For Encryption key, if you want Amazon SageMaker to use an AWS Key Management
Service key to encrypt data in the ML storage volume attached to the training
instance, specify the key.

v. For Stopping condition, specify the maximum amount of time in seconds, minutes,
hours, or days, that you want the training job to run.

d. For VPC, choose a Amazon VPC that you want to allow your training container to access.
For more information, see Give SageMaker Training Jobs Access to Resources in Your
Amazon VPC.

e. For Hyperparameters, specify the values of the hyperparameters to use for the training
job.

f. For Input data configuration, specify the following values for each channel of input
data to use for the training job. You can see what channels the algorithm you're using for
training support, and the content type, supported compression type, and supported input
modes for each channel, under Channel specification section of the Algorithm summary
page for the algorithm.

i. For Channel name, type the name of the input channel.

ii. For Content type, type the content type of the data that the algorithm expects for
the channel.

iii. For Compression type, choose the data compression type to use, if any.

iv. For Record wrapper, choose RecordIO if the algorithm expects data in the
RecordIO format.

v. For S3 data type, S3 data distribution type, and S3 location, specify the appropriate
values. For information about what these values mean, see S3DataSource.

vi. For Input mode, choose File to download the data from to the provisioned ML
storage volume, and mount the directory to a Docker volume. Choose PipeTo stream
data directly from Amazon S3 to the container.

vii. To add another input channel, choose Add channel. If you are finished adding input
channels, choose Done.

g. For Output location, specify the following values:

i. For S3 output path, choose the S3 location where the training job stores output, such
as model artifacts.

Use Algorithm and Model Package Resources 6044

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html

Amazon SageMaker Developer Guide

Note

You use the model artifacts stored at this location to create a model or model
package from this training job.

ii. For Encryption key, if you want SageMaker to use a AWS KMS key to encrypt output
data at rest in the S3 location.

h. For Tags, specify one or more tags to manage the training job. Each tag consists of a key
and an optional value. Tag keys must be unique per resource.

i. Choose Create training job to run the training job.

Use an Algorithm to Run a Training Job (API)

To use an algorithm to run a training job by using the SageMaker API, specify either
the name or the Amazon Resource Name (ARN) as the AlgorithmName field of the
AlgorithmSpecification object that you pass to CreateTrainingJob. For information about
training models in SageMaker, see Train a Model with Amazon SageMaker.

Use an Algorithm to Run a Training Job (Amazon SageMaker Python SDK)

Use an algorithm that you created or subscribed to on AWS Marketplace to create a training job,
create an AlgorithmEstimator object and specify either the Amazon Resource Name (ARN)
or the name of the algorithm as the value of the algorithm_arn argument. Then call the fit
method of the estimator. For example:

from sagemaker import AlgorithmEstimator
data_path = os.path.join(DATA_DIR, 'marketplace', 'training')

algo = AlgorithmEstimator(
algorithm_arn='arn:aws:sagemaker:us-east-2:012345678901:algorithm/my-algorithm',
 role='SageMakerRole',
 instance_count=1,
 instance_type='ml.c4.xlarge',
 sagemaker_session=sagemaker_session,
 base_job_name='test-marketplace')

train_input = algo.sagemaker_session.upload_data(
path=data_path, key_prefix='integ-test-data/marketplace/train')

Use Algorithm and Model Package Resources 6045

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

algo.fit({'training': train_input})

Use an Algorithm to Run a Hyperparameter Tuning Job

A hyperparameter tuning job finds the best version of a model by running many training jobs on
your dataset using the algorithm and ranges of hyperparameters that you specify. It then chooses
the hyperparameter values that result in a model that performs the best, as measured by a metric
that you choose. For more information, see Perform Automatic Model Tuning with SageMaker.

You can create use an algorithm resource to create a hyperparameter tuning job by using the
Amazon SageMaker console, the low-level Amazon SageMaker API, or the Amazon SageMaker
Python SDK.

Topics

• Use an Algorithm to Run a Hyperparameter Tuning Job (Console)

• Use an Algorithm to Run a Hyperparameter Tuning Job (API)

• Use an Algorithm to Run a Hyperparameter Tuning Job (Amazon SageMaker Python SDK)

Use an Algorithm to Run a Hyperparameter Tuning Job (Console)

To use an algorithm to run a hyperparameter tuning job (console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Algorithms.

3. Choose an algorithm that you created from the list on the My algorithms tab or choose an
algorithm that you subscribed to on the AWS Marketplace subscriptions tab.

4. Choose Create hyperparameter tuning job.

The algorithm you chose will automatically be selected.

5. On the Create hyperparameter tuning job page, provide the following information:

a. For Warm start, choose Enable warm start to use the information from previous
hyperparameter tuning jobs as a starting point for this hyperparameter tuning job. For
more information, see Run a Warm Start Hyperparameter Tuning Job.

i. Choose Identical data and algorithm if your input data is the same as the input data
for the parent jobs of this hyperparameter tuning job, or choose Transfer learning to
use additional or different input data for this hyperparameter tuning job.

Use Algorithm and Model Package Resources 6046

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

ii. For Parent hyperparameter tuning job(s), choose up to 5 hyperparameter tuning
jobs to use as parents to this hyperparameter tuning job.

b. For Hyperparameter tuning job name, type a name for the tuning job.

c. For IAM role, choose an IAM role that has the required permissions to run hyperparameter
tuning jobs in SageMaker, or choose Create a new role to allow SageMaker to create a role
that has the AmazonSageMakerFullAccess managed policy attached. For information,
see SageMaker Roles.

d. For VPC, choose a Amazon VPC that you want to allow the training jobs that the tuning
job launches to access. For more information, see Give SageMaker Training Jobs Access to
Resources in Your Amazon VPC.

e. Choose Next.

f. For Objective metric, choose the metric that the hyperparameter tuning job uses to
determine the best combination of hyperparameters, and choose whether to minimize or
maximize this metric. For more information, see View the Best Training Job.

g. For Hyperparameter configuration, choose ranges for the tunable hyperparameters that
you want the tuning job to search, and set static values for hyperparameters that you
want to remain constant in all training jobs that the hyperparameter tuning job launches.
For more information, see Define Hyperparameter Ranges.

h. Choose Next.

i. For Input data configuration, specify the following values for each channel of input data
to use for the hyperparameter tuning job. You can see what channels the algorithm you're
using for hyperparameter tuning supports, and the content type, supported compression
type, and supported input modes for each channel, under Channel specification section
of the Algorithm summary page for the algorithm.

i. For Channel name, type the name of the input channel.

ii. For Content type, type the content type of the data that the algorithm expects for
the channel.

iii. For Compression type, choose the data compression type to use, if any.

iv. For Record wrapper, choose RecordIO if the algorithm expects data in the
RecordIO format.

v. For S3 data type, S3 data distribution type, and S3 location, specify the appropriate
values. For information about what these values mean, see S3DataSource.

Use Algorithm and Model Package Resources 6047

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_S3DataSource.html

Amazon SageMaker Developer Guide

vi. For Input mode, choose File to download the data from to the provisioned ML
storage volume, and mount the directory to a Docker volume. Choose PipeTo stream
data directly from Amazon S3 to the container.

vii. To add another input channel, choose Add channel. If you are finished adding input
channels, choose Done.

j. For Output location, specify the following values:

i. For S3 output path, choose the S3 location where the training jobs that this
hyperparameter tuning job launches store output, such as model artifacts.

Note

You use the model artifacts stored at this location to create a model or model
package from this hyperparameter tuning job.

ii. For Encryption key, if you want SageMaker to use a AWS KMS key to encrypt output
data at rest in the S3 location.

k. For Resource configuration, provide the following information:

i. For Instance type, choose the instance type to use for each training job that the
hyperparameter tuning job launches.

ii. For Instance count, type the number of ML instances to use for each training job that
the hyperparameter tuning job launches.

iii. For Additional volume per instance (GB), type the size of the ML storage volume
that you want to provision each training job that the hyperparameter tuning job
launches. ML storage volumes store model artifacts and incremental states.

iv. For Encryption key, if you want Amazon SageMaker to use an AWS Key Management
Service key to encrypt data in the ML storage volume attached to the training
instances, specify the key.

l. For Resource limits, provide the following information:

i. For Maximum training jobs, specify the maximum number of training jobs that you
want the hyperparameter tuning job to launch. A hyperparameter tuning job can
launch a maximum of 500 training jobs.

Use Algorithm and Model Package Resources 6048

Amazon SageMaker Developer Guide

ii. For Maximum parallel training jobs, specify the maximum number of concurrent
training jobs that the hyperparameter tuning job can launch. A hyperparameter
tuning job can launch a maximum of 10 concurrent training jobs.

iii. For Stopping condition, specify the maximum amount of time in seconds, minutes,
hours, or days, that you want each training job that the hyperparameter tuning job
launches to run.

m. For Tags, specify one or more tags to manage the hyperparameter tuning job. Each tag
consists of a key and an optional value. Tag keys must be unique per resource.

n. Choose Create jobs to run the hyperparameter tuning job.

Use an Algorithm to Run a Hyperparameter Tuning Job (API)

To use an algorithm to run a hyperparameter tuning job by using the SageMaker API, specify either
the name or the Amazon Resource Name (ARN) of the algorithm as the AlgorithmName field of
the AlgorithmSpecification object that you pass to CreateHyperParameterTuningJob.
For information about hyperparameter tuning in SageMaker, see Perform Automatic Model Tuning
with SageMaker.

Use an Algorithm to Run a Hyperparameter Tuning Job (Amazon SageMaker Python SDK)

Use an algorithm that you created or subscribed to on AWS Marketplace to create a
hyperparameter tuning job, create an AlgorithmEstimator object and specify either the
Amazon Resource Name (ARN) or the name of the algorithm as the value of the algorithm_arn
argument. Then initialize a HyperparameterTuner object with the AlgorithmEstimator
you created as the value of the estimator argument. Finally, call the fit method of the
AlgorithmEstimator. For example:

from sagemaker import AlgorithmEstimator
from sagemaker.tuner import HyperparameterTuner

data_path = os.path.join(DATA_DIR, 'marketplace', 'training')

algo = AlgorithmEstimator(
 algorithm_arn='arn:aws:sagemaker:us-east-2:764419575721:algorithm/scikit-
decision-trees-1542410022',
 role='SageMakerRole',
 instance_count=1,
 instance_type='ml.c4.xlarge',
 sagemaker_session=sagemaker_session,

Use Algorithm and Model Package Resources 6049

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

 base_job_name='test-marketplace')

train_input = algo.sagemaker_session.upload_data(
 path=data_path, key_prefix='integ-test-data/marketplace/train')

algo.set_hyperparameters(max_leaf_nodes=10)
tuner = HyperparameterTuner(estimator=algo, base_tuning_job_name='some-name',
 objective_metric_name='validation:accuracy',
 hyperparameter_ranges=hyperparameter_ranges,
 max_jobs=2, max_parallel_jobs=2)

tuner.fit({'training': train_input}, include_cls_metadata=False)
tuner.wait()

Use a Model Package to Create a Model

Use a model package to create a deployable model that you can use to get real-time inferences by
creating a hosted endpoint or to run batch transform jobs. You can create a deployable model from
a model package by using the Amazon SageMaker console, the low-level SageMaker API), or the
Amazon SageMaker Python SDK.

Topics

• Use a Model Package to Create a Model (Console)

• Use a Model Package to Create a Model (API)

• Use a Model Package to Create a Model (Amazon SageMaker Python SDK)

Use a Model Package to Create a Model (Console)

To create a deployable model from a model package (console)

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Model packages.

3. Choose a model package that you created from the list on the My model packages tab or
choose a model package that you subscribed to on the AWS Marketplace subscriptions tab.

4. Choose Create model.

5. For Model name, type a name for the model.

Use Algorithm and Model Package Resources 6050

https://sagemaker.readthedocs.io
https://console.aws.amazon.com/sagemaker/

Amazon SageMaker Developer Guide

6. For IAM role, choose an IAM role that has the required permissions to call other services on
your behalf, or choose Create a new role to allow SageMaker to create a role that has the
AmazonSageMakerFullAccess managed policy attached. For information, see SageMaker
Roles.

7. For VPC, choose a Amazon VPC that you want to allow the model to access. For more
information, see Give SageMaker Hosted Endpoints Access to Resources in Your Amazon VPC.

8. Leave the default values for Container input options and Choose model package.

9. For environment variables, provide the names and values of environment variables you want
to pass to the model container.

10. For Tags, specify one or more tags to manage the model. Each tag consists of a key and an
optional value. Tag keys must be unique per resource.

11. Choose Create model.

After you create a deployable model, you can use it to set up an endpoint for real-time inference
or create a batch transform job to get inferences on entire datasets. For information about hosting
endpoints in SageMaker, see Deploy Models for Inference.

Use a Model Package to Create a Model (API)

To use a model package to create a deployable model by using the SageMaker API, specify the
name or the Amazon Resource Name (ARN) of the model package as the ModelPackageName field
of the ContainerDefinition object that you pass to the CreateModel API.

After you create a deployable model, you can use it to set up an endpoint for real-time inference
or create a batch transform job to get inferences on entire datasets. For information about hosted
endpoints in SageMaker, see Deploy Models for Inference.

Use a Model Package to Create a Model (Amazon SageMaker Python SDK)

To use a model package to create a deployable model by using the SageMaker Python SDK,
initialize a ModelPackage object, and pass the Amazon Resource Name (ARN) of the model
package as the model_package_arn argument. For example:

from sagemaker import ModelPackage
model = ModelPackage(role='SageMakerRole',
 model_package_arn='training-job-scikit-decision-trees-1542660466-6f92',
 sagemaker_session=sagemaker_session)

Use Algorithm and Model Package Resources 6051

https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

After you create a deployable model, you can use it to set up an endpoint for real-time inference
or create a batch transform job to get inferences on entire datasets. For information about hosting
endpoints in SageMaker, see Deploy Models for Inference.

Sell Amazon SageMaker Algorithms and Model Packages

Selling Amazon SageMaker algorithms and model packages is a three-step process:

1. Develop your algorithm or model, and package it in a Docker container. For information, see
Develop Algorithms and Models in Amazon SageMaker.

2. Create an algorithm or model package resource in SageMaker. For information, see Create
Algorithm and Model Package Resources.

3. Register as a seller on AWS Marketplace and list your algorithm or model package on AWS
Marketplace. For information about registering as a seller, see Getting Started as a Seller in the
User Guide for AWS Marketplace Providers. For information about listing and monetizing your
algorithms and model packages, see Listing Algorithms and Model Packages in AWS Marketplace
for Machine Learning in the User Guide for AWS Marketplace Providers.

Topics

• Develop Algorithms and Models in Amazon SageMaker

• Create Algorithm and Model Package Resources

• List Your Algorithm or Model Package on AWS Marketplace

Sell Amazon SageMaker Algorithms and Model Packages 6052

https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html
https://docs.aws.amazon.com/marketplace/latest/userguide/listing-algorithms-and-model-packages-in-aws-marketplace-for-machine-learning.html
https://docs.aws.amazon.com/marketplace/latest/userguide/listing-algorithms-and-model-packages-in-aws-marketplace-for-machine-learning.html

Amazon SageMaker Developer Guide

Develop Algorithms and Models in Amazon SageMaker

Before you can create algorithm and model package resources to use in Amazon SageMaker or list
on AWS Marketplace, you have to develop them and package them in Docker containers.

Note

When algorithms and model packages are created for listing on AWS Marketplace,
SageMaker scans the containers for security vulnerabilities on supported operating
systems.
Only the following operating system versions are supported:

• Debian: 6.0, 7, 8, 9, 10

• Ubuntu: 12.04, 12.10, 13.04, 14.04, 14.10, 15.04, 15.10, 16.04, 16.10, 17.04, 17.10,
18.04, 18.10

• CentOS: 5, 6, 7

• Oracle Linux: 5, 6, 7

• Alpine: 3.3, 3.4, 3.5

• Amazon Linux

Topics

• Develop Algorithms in SageMaker

• Develop Models in SageMaker

Develop Algorithms in SageMaker

An algorithm should be packaged as a docker container and stored in Amazon ECR to use it
in SageMaker. The Docker container contains the training code used to run training jobs and,
optionally, the inference code used to get inferences from models trained by using the algorithm.

For information about developing algorithms in SageMaker and packaging them as containers,
see Use Docker containers to build models. For a complete example of how to create an algorithm
container, see the sample notebook at https://sagemaker-examples.readthedocs.io/en/latest/
advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.html. You can also find
the sample notebook in a SageMaker notebook instance. The notebook is in the Advanced

Develop Algorithms and Models in Amazon SageMaker 6053

https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.html
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/scikit_bring_your_own/scikit_bring_your_own.html

Amazon SageMaker Developer Guide

Functionality section, and is named scikit_bring_your_own.ipynb. For information about
using the sample notebooks in a notebook instance, see Example Notebooks.

Always thoroughly test your algorithms before you create algorithm resources to publish on AWS
Marketplace.

Note

When a buyer subscribes to your containerized product, the Docker containers run in an
isolated (internet-free) environment. When you create your containers, do not rely on
making outgoing calls over the internet. Calls to AWS services are also not allowed.

Develop Models in SageMaker

A deployable model in SageMaker consists of inference code, model artifacts, an IAM role that is
used to access resources, and other information required to deploy the model in SageMaker. Model
artifacts are the results of training a model by using a machine learning algorithm. The inference
code must be packaged in a Docker container and stored in Amazon ECR. You can either package
the model artifacts in the same container as the inference code, or store them in Amazon S3.

You create a model by running a training job in SageMaker, or by training a machine learning
algorithm outside of SageMaker. If you run a training job in SageMaker, the resulting
model artifacts are available in the ModelArtifacts field in the response to a call to
the DescribeTrainingJob operation. For information about how to develop a SageMaker
model container, see Use your own inference code. For a complete example of how to
create a model container from a model trained outside of SageMaker, see the sample
notebook at https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/
xgboost_bring_your_own_model/xgboost_bring_your_own_model.html. You can also find
the sample notebook in a SageMaker notebook instance. The notebook is in the Advanced
Functionality section, and is named xgboost_bring_your_own_model.ipynb. For information
about using the sample notebooks in a notebook instance, see Example Notebooks.

Always thoroughly test your models before you create model packages to publish on AWS
Marketplace.

Develop Algorithms and Models in Amazon SageMaker 6054

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/xgboost_bring_your_own_model/xgboost_bring_your_own_model.html
https://sagemaker-examples.readthedocs.io/en/latest/advanced_functionality/xgboost_bring_your_own_model/xgboost_bring_your_own_model.html

Amazon SageMaker Developer Guide

Note

When a buyer subscribes to your containerized product, the Docker containers run in an
isolated (internet-free) environment. When you create your containers, do not rely on
making outgoing calls over the internet. Calls to AWS services are also not allowed.

List Your Algorithm or Model Package on AWS Marketplace

After creating and validating your algorithm or model in Amazon SageMaker, list your product on
AWS Marketplace. The listing process makes your products available in the AWS Marketplace and
the SageMaker console.

To list products on AWS Marketplace, you must be a registered seller. To register, use the self-
registration process from the AWS Marketplace Management Portal (AMMP). For information, see
Getting Started as a Seller in the User Guide for AWS Marketplace Providers. When you start the
product listing process from the Amazon SageMaker console, we check your seller registration
status. If you have not registered, we direct you to do so.

To start the listing process, do one of the following:

• From the SageMaker console, choose the product, choose Actions, and choose Publish new ML
Marketplace listing. This carries over your product reference, the Amazon Resource Name (ARN),
and directs you to the AMMP to create the listing.

• Go to ML listing process, manually enter the Amazon Resource Name (ARN), and start your
product listing. This process carries over the product metadata that you entered when
creating the product in SageMaker. For an algorithm listing, the information includes the
supported instance types and hyperparameters. In addition, you can enter a product description,
promotional information, and support information as you would with other AWS Marketplace
products.

Find and Subscribe to Algorithms and Model Packages on AWS
Marketplace

With AWS Marketplace, you can browse and search for hundreds of machine learning algorithms
and models in a broad range of categories, such as computer vision, natural language processing,

List Your Algorithm or Model Package on AWS Marketplace 6055

https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html
https://aws.amazon.com/marketplace/management/ml-products/

Amazon SageMaker Developer Guide

speech recognition, text, data, voice, image, video analysis, fraud detection, predictive analysis, and
more.

To find algorithms on AWS Marketplace

1. Open the Amazon SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Algorithms, then choose Find algorithms.

This takes you to the AWS Marketplace algorithms page. For information about finding and
subscribing to algorithms on AWS Marketplace, see Machine Learning Products in the AWS
Marketplace User Guide for AWS Consumers.

To find model packages on AWS Marketplace

1. Open the SageMaker console at https://console.aws.amazon.com/sagemaker/.

2. Choose Model packages, then choose Find model packages.

This takes you to the AWS Marketplace model packages page. For information about finding
and subscribing to model packages on AWS Marketplace, see Machine Learning Products in the
AWS Marketplace User Guide for AWS Consumers.

Use Algorithms and Model Packages

For information about using algorithms and model packages that you subscribe to in SageMaker,
see Use Algorithm and Model Package Resources.

Use Algorithms and Model Packages 6056

https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/marketplace/latest/buyerguide/aws-machine-learning-marketplace.html
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/marketplace/latest/buyerguide/aws-machine-learning-marketplace.html

Amazon SageMaker Developer Guide

Note

When you create a training job, inference endpoint, and batch transform job from an
algorithm or model package that you subscribe to on AWS Marketplace, the training and
inference containers do not have access to the internet. Because the containers do not have
access to the internet, the seller of the algorithm or model package does not have access to
your data.

Use Algorithms and Model Packages 6057

Amazon SageMaker Developer Guide

Monitor AWS resources provisioned while using Amazon
SageMaker

Monitoring is an important part of maintaining the reliability, availability, and performance of
SageMaker and your other AWS solutions. AWS provides the following monitoring tools to watch
SageMaker, report when something is wrong, and take automatic actions when appropriate:

• Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS
in real time. You can collect and track metrics, create customized dashboards, and set alarms
that notify you or take actions when a specified metric reaches a threshold that you specify.
For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from EC2
instances, AWS CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

• CloudWatch Events delivers a near real-time stream of system events that describe changes in
AWS resources. Create CloudWatch Events rules react to a status change in a SageMaker training,
hyperparameter tuning, or batch transform job

Topics

• Monitor Amazon SageMaker with Amazon CloudWatch

• Log Amazon SageMaker Events with Amazon CloudWatch

• Log Amazon SageMaker API Calls with AWS CloudTrail

• Monitoring user resource access from Amazon SageMaker Studio Classic

• Automating Amazon SageMaker with Amazon EventBridge

6058

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon SageMaker Developer Guide

Monitor Amazon SageMaker with Amazon CloudWatch

You can monitor Amazon SageMaker using Amazon CloudWatch, which collects raw data and
processes it into readable, near real-time metrics. These statistics are kept for 15 months, so that
you can access historical information and gain a better perspective on how your web application or
service is performing. However, the Amazon CloudWatch console limits the search to metrics that
were updated in the last 2 weeks. This limitation ensures that the most current jobs are shown in
your namespace. To graph metrics without using a search, specify its exact name in the source view.
You can also set alarms that watch for certain thresholds, and send notifications or take actions
when those thresholds are met. For more information, see the Amazon CloudWatch User Guide.

SageMaker Metrics and Dimensions

• SageMaker Endpoint Invocation Metrics

• SageMaker Inference Component Metrics

• SageMaker Multi-Model Endpoint Metrics

• SageMaker Jobs and Endpoint Metrics

• SageMaker Inference Recommender Jobs Metrics

• SageMaker Ground Truth Metrics

• Amazon SageMaker Feature Store Metrics

• SageMaker Pipelines Metrics

SageMaker Endpoint Invocation Metrics

The AWS/SageMaker namespace includes the following request metrics from calls to
InvokeEndpoint.

Metrics are available at a 1-minute frequency.

The following illustration shows how a SageMaker endpoint interacts with the Amazon SageMaker
Runtime API. The overall time between sending a request to an endpoint and receiving a response
depends on the following three components.

• Network latency – the time that it takes between making a request to the SageMaker Runtime
Runtime API and receiving a response back from the SageMaker Runtime Runtime API.

Monitoring with CloudWatch 6059

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html

Amazon SageMaker Developer Guide

• Overhead latency – the time that it takes to transport a request to the model container from the
SageMaker Runtime Runtime API and transport the response back to the SageMaker Runtime
Runtime API.

• Model latency – the time that it takes the model container to process the request and return a
response.

For more information about total latency, see Best practices for load testing Amazon SageMaker
real-time inference endpoints. For information about how long CloudWatch metrics are retained
for, see GetMetricStatistics in the Amazon CloudWatch API Reference.

Endpoint Invocation Metrics

Metric Description

Invocatio
n4XXErrors

The number of InvokeEndpoint requests where the model returned
a 4xx HTTP response code. For each 4xx response, 1 is sent; otherwise,
0 is sent.

Units: None

Endpoint Invocation Metrics 6060

https://aws.amazon.com/blogs/machine-learning/best-practices-for-load-testing-amazon-sagemaker-real-time-inference-endpoints/
https://aws.amazon.com/blogs/machine-learning/best-practices-for-load-testing-amazon-sagemaker-real-time-inference-endpoints/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon SageMaker Developer Guide

Metric Description

Valid statistics: Average, Sum

Invocatio
n5XXErrors

The number of InvokeEndpoint requests where the model returned
a 5xx HTTP response code. For each 5xx response, 1 is sent; otherwise,
0 is sent.

Units: None

Valid statistics: Average, Sum

Invocatio
nModelErrors

The number of model invocation requests which did not result in 2XX
HTTP response. This includes 4XX/5XX status codes, low-level socket
errors, malformed HTTP responses, and request timeouts. For each
error response, 1 is sent; otherwise, 0 is sent.

Units: None

Valid statistics: Average, Sum

Invocations The number of InvokeEndpoint requests sent to a model endpoint.

To get the total number of requests sent to a model endpoint, use the
Sum statistic.

Units: None

Valid statistics: Sum

Invocatio
nsPerCopy

The number of invocations normalized by each copy of an inference
 component.

Valid statistics: Sum

Endpoint Invocation Metrics 6061

Amazon SageMaker Developer Guide

Metric Description

Invocatio
nsPerInstance

The number of invocations sent to a model, normalized by InstanceC
ount in each ProductionVariant. 1/numberOfInstances is sent
as the value on each request, where numberOfInstances is the
number of active instances for the ProductionVariant behind the
endpoint at the time of the request.

Units: None

Valid statistics: Sum

ModelLatency The interval of time taken by a model to respond to a SageMaker
Runtime API request. This interval includes the local communication
times taken to send the request and to fetch the response from the
model container and the time taken to complete the inference in the
container.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelSetupTime The time it takes to launch new compute resources for a serverless
endpoint. The time can vary depending on the model size, how long it
takes to download the model, and the start-up time of the container.

Units: Microseconds

Valid statistics: Average, Min, Max, Sample Count, Percentiles

Endpoint Invocation Metrics 6062

Amazon SageMaker Developer Guide

Metric Description

OverheadLatency The interval of time added to the time taken to respond to a client
request by SageMaker overheads. This interval is measured from the
time SageMaker receives the request until it returns a response to
the client, minus the ModelLatency . Overhead latency can vary
depending on multiple factors, including request and response payload
sizes, request frequency, and authentication/authorization of the
request.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Dimensions for Endpoint Invocation Metrics

Dimension Description

EndpointName,
VariantName

Filters endpoint invocation metrics for a ProductionVariant of the
specified endpoint and variant.

Inference
ComponentName

Filters inference component invocation metrics.

SageMaker Inference Component Metrics

The /aws/sagemaker/InferenceComponents namespace includes the following metrics from
calls to InvokeEndpoint for endpoints that host inference components.

Metrics are available at a 1-minute frequency.

Metric Description

CPUUtiliz
ationNorm
alized

The value of the CPUUtilizationNormalized metric reported
by each copy of the inference component. The value ranges between
0%–100%. If you set the NumberOfCpuCoresRequired parameter
in the settings for the inference component copy, the metric presents

SageMaker Inference Component Metrics 6063

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html

Amazon SageMaker Developer Guide

Metric Description

the utilization over the reservation. Otherwise, the metric presents the
utilization over the limit.

GPUMemory
Utilizati
onNormalized

The value of the GPUMemoryUtilizationNormalized metric
reported by each copy of the inference component.

GPUUtiliz
ationNorm
alized

The value of the GPUUtilizationNormalized metric reported
by each copy of the inference component. If you set the NumberOfA
cceleratorDevicesRequired parameter in the settings for the
inference component copy, the metric presents the utilization over the
reservation. Otherwise, the metric presents the utilization over the
limit.

MemoryUti
lizationN
ormalized

The value of MemoryUtilizationNormalized reported by
each copy of the inference component. If you set the MinMemory
RequiredInMb parameter in the settings for the inference
component copy, the metrics present the utilization over the reservati
on. Otherwise, the metrics present the utilization over the limit.

Dimensions for Inference Component Metrics

Dimension Description

Inference
ComponentName

Filters inference component metrics.

SageMaker Multi-Model Endpoint Metrics

The AWS/SageMaker namespace includes the following model loading metrics from calls to
InvokeEndpoint.

Metrics are available at a 1-minute frequency.

Multi-Model Endpoint Metrics 6064

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html

Amazon SageMaker Developer Guide

For information about how long CloudWatch metrics are retained for, see GetMetricStatistics in the
Amazon CloudWatch API Reference.

Multi-Model Endpoint Model Loading Metrics

Metric Description

ModelLoad
ingWaitTime

The interval of time that an invocation request has waited for the
target model to be downloaded, or loaded, or both in order to perform
inference.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelUnlo
adingTime

The interval of time that it took to unload the model through the
container's UnloadModel API call.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelDown
loadingTime

The interval of time that it took to download the model from Amazon
Simple Storage Service (Amazon S3).

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelLoad
ingTime

The interval of time that it took to load the model through the
container's LoadModel API call.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

ModelCacheHit The number of InvokeEndpoint requests sent to the multi-model
endpoint for which the model was already loaded.

The Average statistic shows the ratio of requests for which the model
was already loaded.

Multi-Model Endpoint Metrics 6065

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon SageMaker Developer Guide

Metric Description

Units: None

Valid statistics: Average, Sum, Sample Count

Dimensions for Multi-Model Endpoint Model Loading Metrics

Dimension Description

EndpointName,
VariantName

Filters endpoint invocation metrics for a ProductionVariant of the
specified endpoint and variant.

The /aws/sagemaker/Endpoints namespaces include the following instance metrics from calls
to InvokeEndpoint.

Metrics are available at a 1-minute frequency.

For information about how long CloudWatch metrics are retained for, see GetMetricStatistics in the
Amazon CloudWatch API Reference.

Multi-Model Endpoint Model Instance Metrics

Metric Description

LoadedMod
elCount

The number of models loaded in the containers of the multi-model
endpoint. This metric is emitted per instance.

The Average statistic with a period of 1 minute tells you the average
number of models loaded per instance.

The Sum statistic tells you the total number of models loaded across all
instances in the endpoint.

The models that this metric tracks are not necessarily unique because a
model might be loaded in multiple containers at the endpoint.

Units: None

Multi-Model Endpoint Metrics 6066

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon SageMaker Developer Guide

Metric Description

Valid statistics: Average, Sum, Min, Max, Sample Count

Dimensions for Multi-Model Endpoint Model Loading Metrics

Dimension Description

EndpointName,
VariantName

Filters endpoint invocation metrics for a ProductionVariant of the
specified endpoint and variant.

SageMaker Jobs and Endpoint Metrics

The /aws/sagemaker/ProcessingJobs, /aws/sagemaker/TrainingJobs, /aws/
sagemaker/TransformJobs, and /aws/sagemaker/Endpoints namespaces include the
following metrics for the training jobs and endpoint instances.

Metrics are available at a 1-minute frequency.

Note

Amazon CloudWatch supports high-resolution custom metrics and its finest resolution is
1 second. However, the finer the resolution, the shorter the lifespan of the CloudWatch
metrics. For the 1-second frequency resolution, the CloudWatch metrics are available for
3 hours. For more information about the resolution and the lifespan of the CloudWatch
metrics, see GetMetricStatistics in the Amazon CloudWatch API Reference.

Tip

If you want to profile your training job with a finer resolution down to 100-millisecond (0.1
second) granularity and store the training metrics indefinitely in Amazon S3 for custom
analysis at any time, consider using Amazon SageMaker Debugger. SageMaker Debugger
provides built-in rules to automatically detect common training issues; it detects hardware
resource utilization issues (such as CPU, GPU, and I/O bottlenecks) and non-converging
model issues (such as overfit, vanishing gradients, and exploding tensors). SageMaker

Jobs and Endpoint Metrics 6067

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html

Amazon SageMaker Developer Guide

Debugger also provides visualizations through Studio Classic and its profiling report.
To explore the Debugger visualizations, see SageMaker Debugger Insights Dashboard
Walkthrough, Debugger Profiling Report Walkthrough, and Analyze Data Using the
SMDebug Client Library.

Processing Job, Training Job, Batch Transform Job, and Endpoint Instance Metrics

Metric Description

CPUReservation The sum of CPUs reserved by containers on an instance. The value
ranges between 0%–100%. In the settings for an inference component,
you set the CPU reservation with the NumberOfCpuCoresRequired
parameter. For example, if there 4 CPUs, and 2 are reserved, the
CPUReservation metric is 50%.

CPUUtilization The sum of each individual CPU core's utilization. The CPU utilization
of each core range is 0–100. For example, if there are four CPUs, the
CPUUtilization range is 0%–400%. For processing jobs, the value
is the CPU utilization of the processing container on the instance.

For training jobs, the value is the CPU utilization of the algorithm
container on the instance.

For batch transform jobs, the value is the CPU utilization of the
transform container on the instance.

For endpoint variants, the value is the sum of the CPU utilization of the
primary and supplementary containers on the instance.

Note

For multi-instance jobs, each instance reports CPU utilization
metrics. However, the default view in CloudWatch shows the
average CPU utilization across all instances.

Units: Percent

Jobs and Endpoint Metrics 6068

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio-insights-walkthrough.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-on-studio-insights-walkthrough.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-profiling-report.html#debugger-profiling-report-walkthrough
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-analyze-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-analyze-data.html

Amazon SageMaker Developer Guide

Metric Description

CPUUtiliz
ationNorm
alized

The normalized sum of the utilization of each individual CPU core. The
value ranges between 0%–100%. For example, if there are four CPUs,
and the CPUUtilization metric is 200%, then the CPUUtiliz
ationNormalized metric is 50%.

DiskUtilization The percentage of disk space used by the containers on an instance
uses. This value range is 0%–100%. This metric is not supported for
batch transform jobs.
For processing jobs, the value is the disk space utilization of the
processing container on the instance.

For training jobs, the value is the disk space utilization of the algorithm
container on the instance.

For endpoint variants, the value is the sum of the disk space utilization
of the primary and supplementary containers on the instance.

Units: Percent

Note

For multi-instance jobs, each instance reports disk utilization
metrics. However, the default view in CloudWatch shows the
average disk utilization across all instances.

Jobs and Endpoint Metrics 6069

Amazon SageMaker Developer Guide

Metric Description

GPUMemory
Utilization

The percentage of GPU memory used by the containers on an instance.
The value range is 0–100 and is multiplied by the number of GPUs.
For example, if there are four GPUs, the GPUMemoryUtilization
range is 0%–400%.
For processing jobs, the value is the GPU memory utilization of the
processing container on the instance.

For training jobs, the value is the GPU memory utilization of the
algorithm container on the instance.

For batch transform jobs, the value is the GPU memory utilization of
the transform container on the instance.

For endpoint variants, the value is the sum of the GPU memory utilizati
on of the primary and supplementary containers on the instance.

Note

For multi-instance jobs, each instance reports GPU memory
utilization metrics. However, the default view in CloudWatch
shows the average GPU memory utilization across all instances.

Units: Percent

GPUMemory
Utilizati
onNormalized

The normalized percentage of GPU memory used by the containers on
an instance. The value ranges between 0%–100%. For example, if there
are four GPUs, and the GPUMemoryUtilization metric is 200%,
then the GPUMemoryUtilizationNormalized metric is 50%.

GPUReservation The sum of GPUs reserved by containers on an instance. The value
ranges between 0%–100%. In the settings for an inference component
, you set the GPU reservation by NumberOfAcceleratorDevicesR
equired . For example, if there are 4 GPUs and 2 are reserved, the
GPUReservation metric is 50%.

Jobs and Endpoint Metrics 6070

Amazon SageMaker Developer Guide

Metric Description

GPUUtilization The percentage of GPU units that are used by the containers on an
instance. The value can range betweenrange is 0–100 and is multiplie
d by the number of GPUs. For example, if there are four GPUs, the
GPUUtilization range is 0%–400%.
For processing jobs, the value is the GPU utilization of the processing
container on the instance.

For training jobs, the value is the GPU utilization of the algorithm
container on the instance.

For batch transform jobs, the value is the GPU utilization of the
transform container on the instance.

For endpoint variants, the value is the sum of the GPU utilization of the
primary and supplementary containers on the instance.

Note

For multi-instance jobs, each instance reports GPU utilization
metrics. However, the default view in CloudWatch shows the
average GPU utilization across all instances.

Units: Percent

GPUUtiliz
ationNorm
alized

The normalized percentage of GPU units that are used by the container
s on an instance. The value ranges between 0%–100%. For example, if
there are four GPUs, and the GPUUtilization metric is 200%, then
the GPUUtilizationNormalized metric is 50%.

MemoryRes
ervation

The sum of memory reserved by containers on an instance. The value
ranges between 0%–100%. In the settings for an inference component
, you set the memory reservation with the MinMemoryRequiredI
nMb parameter. For example, if a 32 GiB instance reserved 1024 MB,
the MemoryReservation metric is 29.8%.

Jobs and Endpoint Metrics 6071

Amazon SageMaker Developer Guide

Metric Description

MemoryUti
lization

The percentage of memory that is used by the containers on an
instance. This value range is 0%–100%.
For processing jobs, the value is the memory utilization of the processin
g container on the instance.

For training jobs, the value is the memory utilization of the algorithm
container on the instance.

For batch transform jobs, the value is the memory utilization of the
transform container on the instance.

For endpoint variants, the value is the sum of the memory utilization of
the primary and supplementary containers on the instance.

Units: Percent

Note

For multi-instance jobs, each instance reports memory utilizati
on metrics. However, the default view in CloudWatch shows the
average memory utilization across all instances.

Dimensions for Processing Job, Training Job and Batch Transform Job Instance Metrics

Dimension Description

Host For processing jobs, the value for this dimension has the format
[processing-job-name]/algo-[instance-number-i
n-cluster] . Use this dimension to filter instance metrics for the
specified processing job and instance. This dimension format is present
only in the /aws/sagemaker/ProcessingJobs namespace.

For training jobs, the value for this dimension has the format
[training-job-name]/algo-[instance-number-in-
cluster] . Use this dimension to filter instance metrics for the

Jobs and Endpoint Metrics 6072

Amazon SageMaker Developer Guide

Dimension Description

specified training job and instance. This dimension format is present
only in the /aws/sagemaker/TrainingJobs namespace.

For batch transform jobs, the value for this dimension has the format
[transform-job-name]/[instance-id] . Use this dimension
to filter instance metrics for the specified batch transform job and
instance. This dimension format is present only in the /aws/sage
maker/TransformJobs namespace.

SageMaker Inference Recommender Jobs Metrics

The /aws/sagemaker/InferenceRecommendationsJobs namespace includes the following
metrics for inference recommendation jobs.

Inference Recommender Metrics

Metric Description

ClientInv
ocations

The number of InvokeEndpoint requests sent to a model endpoint,
 as observed by Inference Recommender.

Units: None

Valid statistics: Sum

ClientInv
ocationErrors

The number of InvokeEndpoint requests that failed, as observed by
Inference Recommender.

Units: None

Valid statistics: Sum

ClientLatency The interval of time taken between sending an InvokeEndpoint call
and receiving a response as observed by Inference Recommender. Note
that the time is in milliseconds, whereas the ModelLatency endpoint
invocation metric is in microseconds.

Inference Recommender Metrics 6073

Amazon SageMaker Developer Guide

Metric Description

Units: Milliseconds

Valid statistics: Average, Sum, Min, Max, Sample Count, Percentiles

NumberOfUsers The number of concurrent users sending InvokeEndpoint requests
to the model endpoint.

Units: None

Valid statistics: Max, Min, Average

Dimensions for Inference Recommender Job Metrics

Dimension Description

JobName Filters Inference Recommender job metrics for the specified Inference
Recommender job.

EndpointName Filters Inference Recommender job metrics for the specified endpoint.

SageMaker Ground Truth Metrics

Ground Truth Metrics

Metric Description

ActiveWorkers A single active worker on a private work team submitted, released, or
declined a task. To get the total number of active workers, use the Sum
statistic. Ground Truth attempts to deliver each individual ActiveWor
kers event once. If this delivery is unsuccessful, this metric may not
report the total number of active workers

Units: None

Valid statistics: Sum, Sample Count

Ground Truth Metrics 6074

Amazon SageMaker Developer Guide

Metric Description

DatasetOb
jectsAuto
Annotated

The number of dataset objects auto-annotated in a labeling job. This
metric is only emitted when automated labeling is enabled. To view the
labeling job progress, use the Max metric.

Units: None

Valid statistics: Max

DatasetOb
jectsHuma
nAnnotated

The number of dataset objects annotated by a human in a labeling job.
To view the labeling job progress, use the Max metric.

Units: None

Valid statistics: Max

DatasetOb
jectsLabe
lingFailed

The number of dataset objects that failed labeling in a labeling job. To
view the labeling job progress, use the Max metric.

Units: None

Valid statistics: Max

JobsFailed A single labeling job failed. To get the total number of labeling jobs
that failed, use the Sum statistic.

Units: None

Valid statistics: Sum, Sample Count

JobsSucceeded A single labeling job succeeded. To get the total number of labeling
jobs that succeeded, use the Sum statistic.

Units: None

Valid statistics: Sum, Sample Count

Ground Truth Metrics 6075

Amazon SageMaker Developer Guide

Metric Description

JobsStopped A single labeling jobs was stopped. To get the total number of labeling
jobs that were stopped, use the Sum statistic.

Units: None

Valid statistics: Sum, Sample Count

TasksAccepted A single task was accepted by a worker. To get the total number
of tasks accepted by workers, use the Sum statistic. Ground Truth
attempts to deliver each individual TaskAccepted event once. If this
delivery is unsuccessful, this metric may not report the total number of
tasks accepted.

Units: None

Valid statistics: Sum, Sample Count

TasksDeclined A single task was declined by a worker. To get the total number of tasks
declined by workers, use the Sum statistic. Ground Truth attempts to
deliver each individual TasksDeclined event once. If this delivery
is unsuccessful, this metric may not report the total number of tasks
declined.

Units: None

Valid Statistics: Sum, Sample Count

TasksReturned A single task was returned. To get the total number of tasks returned,
use the Sum statistic. Ground Truth attempts to deliver each individua
l TasksReturned event once. If this delivery is unsuccessful, this
metric may not report the total number of tasks returned.

Units: None

Valid statistics: Sum, Sample Count

Ground Truth Metrics 6076

Amazon SageMaker Developer Guide

Metric Description

TasksSubmitted A single task was submitted/completed by a private worker. To get
the total number of tasks submitted by workers, use the Sum statistic
. Ground Truth attempts to deliver each individual TasksSubmitted
event once. If this delivery is unsuccessful, this metric may not report
the total number of tasks submitted.

Units: None

Valid statistics: Sum, Sample Count

TimeSpent Time spent on a task completed by a private worker. This metric does
not include time when a worker paused or took a break. Ground Truth
attempts to deliver each TimeSpent event once. If this delivery is
unsuccessful, this metric may not report the total amount of time
spent.

Units: Seconds

Valid statistics: Sum, Sample Count

TotalData
setObject
sLabeled

The number of dataset objects labeled successfully in a labeling job. To
view the labeling job progress, use the Max metric.

Units: None

Valid statistics: Max

Dimensions for Dataset Object Metrics

Dimension Description

LabelingJobName Filters dataset object count metrics for a labeling job.

Amazon SageMaker Feature Store Metrics

Feature Store Consumption Metrics

Feature Store Metrics 6077

Amazon SageMaker Developer Guide

Metric Description

ConsumedR
eadReques
tsUnits

The number of consumed read units over the specified time period.
You can retrieve the consumed read units for a feature store runtime
operation and its corresponding feature group.

Units: None

Valid statistics: All

ConsumedW
riteReque
stsUnits

The number of consumed write units over the specified time period.
You can retrieve the consumed write units for a feature store runtime
operation and its corresponding feature group.

Units: None

Valid statistics: All

ConsumedR
eadCapaci
tyUnits

The number of provisioned read capacity units consumed over the
specified time period. You can retrieve the consumed read capacity
units for a feature store runtime operation and its corresponding
feature group.

Units: None

Valid statistics: All

ConsumedW
riteCapac
ityUnits

The number of provisioned write capacity units consumed over the
specified time period. You can retrieve the consumed write capacity
units for a feature store runtime operation and its corresponding
feature group.

Units: None

Valid statistics: All

Dimensions for Feature Store Consumption Metrics

Feature Store Metrics 6078

Amazon SageMaker Developer Guide

Dimension Description

FeatureGr
oupName ,
OperationName

Filters feature store runtime consumption metrics of the feature group
and the operation that you've specified.

Feature Store Operational Metrics

Metric Description

Invocations The number of requests made to the feature store runtime operations
over the specified time period.

Units: None

Valid statistics: Sum

Operation
4XXErrors

The number of requests made to the Feature Store runtime operations
where the operation returned a 4xx HTTP response code. For each 4xx
response, 1 is sent; otherwise, 0 is sent.

Units: None

Valid statistics: Average, Sum

Operation
5XXErrors

The number of requests made to the feature store runtime operations
where the operation returned a 5xx HTTP response code. For each 5xx
response, 1 is sent; otherwise, 0 is sent.

Units: None

Valid statistics: Average, Sum

Throttled
Requests

The number of requests made to the feature store runtime operation
s where the request got throttled. For each throttled request, 1 is sent;
otherwise, 0 is sent.

Units: None

Feature Store Metrics 6079

Amazon SageMaker Developer Guide

Metric Description

Valid statistics: Average, Sum

Latency The time interval to process requests made to the Feature Store
runtime operations. This interval is measured from the time SageMaker
receives the request until it returns a response to the client.

Units: Microseconds

Valid statistics: Average, Sum, Min, Max, Sample Count, Percentiles

Dimensions for Feature Store Operational Metrics

Dimension Description

FeatureGr
oupName ,
OperationName

Filters feature store runtime operational metrics of the feature group
and the operation that you've specified. You can use these dimensions
for non batch operations, such as GetRecord, PutRecord, and DeleteRec
ord.

OperationName Filters feature store runtime operational metrics for the operation that
you've specified. You can use this dimension for batch operations such
as BatchGetRecord.

SageMaker Pipelines Metrics

The AWS/Sagemaker/ModelBuildingPipeline namespace includes the following metrics for
pipeline executions.

Two categories of Pipelines execution metrics are available:

• Execution Metrics across All Pipelines – Account level pipeline execution metrics (for all
pipelines in the current account)

• Execution Metrics by Pipeline – Pipeline execution metrics per pipeline

Metrics are available at a 1-minute frequency.

Pipelines Metrics 6080

Amazon SageMaker Developer Guide

Pipelines Execution Metrics

Metric Description

Execution
Started

The number of pipeline executions that started.

Units: Count

Valid statistics: Average, Sum

ExecutionFailed The number of pipeline executions that failed.

Units: Count

Valid statistics: Average, Sum

Execution
Succeeded

The number of pipeline executions that succeeded.

Units: Count

Valid statistics: Average, Sum

Execution
Stopped

The number of pipeline executions that stopped.

Units: Count

Valid statistics: Average, Sum

Execution
Duration

The duration in milliseconds that the pipeline execution ran.

Units: Milliseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Dimensions for Execution Metrics by Pipeline

Dimension Description

PipelineName Filters pipeline execution metrics for a specified pipeline.

Pipelines Metrics 6081

Amazon SageMaker Developer Guide

Pipelines Step Metrics

The AWS/Sagemaker/ModelBuildingPipeline namespace includes the following metrics for
pipeline steps.

Metrics are available at a 1-minute frequency.

Metric Description

StepStarted The number of steps that started.

Units: Count

Valid statistics: Average, Sum

StepFailed The number of steps that failed.

Units: Count

Valid statistics: Average, Sum

StepSucceeded The number of steps that succeeded.

Units: Count

Valid statistics: Average, Sum

StepStopped The number of steps that stopped.

Units: Count

Valid statistics: Average, Sum

StepDuration The duration in milliseconds that the step ran.

Units: Milliseconds

Valid statistics: Average, Sum, Min, Max, Sample Count

Dimensions for Pipelines Step Metrics

Pipelines Metrics 6082

Amazon SageMaker Developer Guide

Dimension Description

PipelineName ,
StepName

Filters step metrics for a specified pipeline and step.

Log Amazon SageMaker Events with Amazon CloudWatch

To help you debug your compilation jobs, processing jobs, training jobs, endpoints, transform
jobs, notebook instances, and notebook instance lifecycle configurations, anything an algorithm
container, a model container, or a notebook instance lifecycle configuration sends to stdout or
stderr is also sent to Amazon CloudWatch Logs. In addition to debugging, you can use these for
progress analysis.

Logs

The following table lists all of the logs provided by Amazon SageMaker.

Logs

Log Group Name Log Stream Name

/aws/sagemaker/
CompilationJ
obs

[compilation-job-name]

[production-variant-name]/[instance-id]

(For Asynchronous Inference endpoints) [production-variant-
name]/[instance-id]/data-log

/aws/sagemaker/
Endpoints/[E
ndpointName]

(For Inference Pipelines) [production-variant-name]/[
instance-id]/[container-name provided in SageMaker
 model]

/aws/sagemaker/
groundtruth/
WorkerActivity

aws/sagemaker/groundtruth/worker-activity/[re
quester-AWS-Id]-[region]/[timestamp]

Logging with CloudWatch 6083

Amazon SageMaker Developer Guide

Log Group Name Log Stream Name

[inference-recommendations-job-name]/execution

[inference-recommendations-job-name]/Compilat
ionJob/[compilation-job-name]

/aws/sagemaker/
InferenceRec
ommendati
onsJobs

[inference-recommendations-job-name]/Endpoint/
[endpoint-name]

/aws/sagemaker/
LabelingJobs

[labeling-job-name]

[notebook-instance-name]/[LifecycleConfigHook]/aws/sagemaker/
NotebookInst
ances [notebook-instance-name]/jupyter.log

/aws/sagemaker/
ProcessingJobs

[processing-job-name]/[hostname]-[epoch_times
tamp]

[domain-id]/[user-profile-name]/[app-type]/[app-
name]

/aws/sagemaker/
studio

[domain-id]/domain-shared/rstudioserverpro/de
fault

/aws/sagemaker/
TrainingJobs

[training-job-name]/algo-[instance-number-in-
cluster]-[epoch_timestamp]

[transform-job-name]/[instance-id]-[epoch_tim
estamp]

[transform-job-name]/[instance-id]-[epoch_tim
estamp]/data-log

/aws/sagemaker/
TransformJobs

[transform-job-name]/[instance-id]-[epoch_tim
estamp]/[container-name provided in SageMaker
model] (For Inference Pipelines)

Logging with CloudWatch 6084

Amazon SageMaker Developer Guide

Note

1. The /aws/sagemaker/NotebookInstances/[LifecycleConfigHook] log stream
is created when you create a notebook instance with a lifecycle configuration. For more
information, see Customize a Notebook Instance Using a Lifecycle Configuration Script.
2. For Inference Pipelines, if you don't provide container names, the platform uses
container-1, container-2, and so on, corresponding to the order provided in the
SageMaker model.

For more information about logging events with CloudWatch logging, see What is Amazon
CloudWatch Logs? in the Amazon CloudWatch User Guide.

Log Amazon SageMaker API Calls with AWS CloudTrail

Amazon SageMaker is integrated with AWS CloudTrail, a service that provides a record of
actions taken by a user, role, or an AWS service in SageMaker. CloudTrail captures all API calls
for SageMaker, with the exception of InvokeEndpoint and InvokeEndpointAsync, as events. The
calls captured include calls from the SageMaker console and code calls to the SageMaker API
operations. If you create a trail, you can enable continuous delivery of CloudTrail events to an
Amazon S3 bucket, including events for SageMaker. If you don't configure a trail, you can still view
the most recent events in the CloudTrail console in Event history. Using the information collected
by CloudTrail, you can determine the request that was made to SageMaker, the IP address from
which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

By default, log data is stored in CloudWatch Logs indefinitely. However, you can configure
how long to store log data in a log group. For information, see Change Log Data Retention in
CloudWatch Logs in the Amazon CloudWatch Logs User Guide.

SageMaker Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Amazon SageMaker, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing Events with CloudTrail Event History.

Log SageMaker API Calls with CloudTrail 6085

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpointAsync.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon SageMaker Developer Guide

For an ongoing record of events in your AWS account, including events for Amazon SageMaker,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All SageMaker actions, with the exception of InvokeEndpoint and InvokeEndpointAsync,
are logged by CloudTrail and are documented in the Operations. For example, calls to the
CreateTrainingJob, CreateEndpoint and CreateNotebookInstance actions generate
entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Operations Performed by Automatic Model Tuning

SageMaker supports logging non-API service events to your CloudTrail log files for automatic
model tuning jobs. These events are related to your tuning jobs but, are not the direct result
of a customer request to the public AWS API. For example, when you create a hyperparameter
tuning job by calling CreateHyperParameterTuningJob, SageMaker creates training jobs to
evaluate various combinations of hyperparameters to find the best result. Similarly, when you call
StopHyperParameterTuningJob to stop a hyperparameter tuning job, SageMaker might stop
any of the associated running training jobs. Non-API events for your tuning jobs are logged to

Operations Performed by Automatic Model Tuning 6086

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpointAsync.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopHyperParameterTuningJob.html

Amazon SageMaker Developer Guide

CloudTrail to help you improve governance, compliance, and operational and risk auditing of your
AWS account.

Log entries that result from non-API service events have an eventType of AwsServiceEvent
instead of AwsApiCall.

Understanding SageMaker Log File Entries

A trail is a configuration that enables delivery of events as log files to an S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request
from any source and includes information about the requested action, the date and time of the
action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

The following examples a log entry for the CreateEndpoint action, which creates an endpoint to
deploy a trained model.

{
 "eventVersion":"1.05",
 "userIdentity": {
 "type":"IAMUser",
 "principalId":"AIXDAYQEXAMPLEUMLYNGL",
 "arn":"arn:aws:iam::123456789012:user/intern",
 "accountId":"123456789012",
 "accessKeyId":"ASXIAGXEXAMPLEQULKNXV",
 "userName":"intern"
 },
 "eventTime":"2018-01-02T13:39:06Z",
 "eventSource":"sagemaker.amazonaws.com",
 "eventName":"CreateEndpoint",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"USER_AGENT",
 "requestParameters": {
 "endpointName":"ExampleEndpoint",
 "endpointConfigName":"ExampleEndpointConfig"
 },
 "responseElements": {
 "endpointArn":"arn:aws:sagemaker:us-west-2:123456789012:endpoint/
exampleendpoint"
 },
 "requestID":"6b1b42b9-EXAMPLE",

Understanding SageMaker Log File Entries 6087

Amazon SageMaker Developer Guide

 "eventID":"a6f85b21-EXAMPLE",
 "eventType":"AwsApiCall",
 "recipientAccountId":"444455556666"
}

The following example is a log entry for the CreateModel action, which creates one or more
containers to host a previously trained model.

{
 "eventVersion":"1.05",
 "userIdentity": {
 "type":"IAMUser",
 "principalId":"AIXDAYQEXAMPLEUMLYNGL",
 "arn":"arn:aws:iam::123456789012:user/intern",
 "accountId":"123456789012",
 "accessKeyId":"ASXIAGXEXAMPLEQULKNXV",
 "userName":"intern"
 },
 "eventTime":"2018-01-02T15:23:46Z",
 "eventSource":"sagemaker.amazonaws.com",
 "eventName":"CreateModel",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"USER_AGENT",
 "requestParameters": {
 "modelName":"ExampleModel",
 "primaryContainer": {
 "image":"174872318107.dkr.ecr.us-west-2.amazonaws.com/kmeans:latest"
 },
 "executionRoleArn":"arn:aws:iam::123456789012:role/EXAMPLEARN"
 },
 "responseElements": {
 "modelArn":"arn:aws:sagemaker:us-west-2:123456789012:model/
barkinghappy2018-01-02t15-23-32-275z-ivrdog"
 },
 "requestID":"417b8dab-EXAMPLE",
 "eventID":"0f2b3e81-EXAMPLE",
 "eventType":"AwsApiCall",
 "recipientAccountId":"444455556666"
}

Understanding SageMaker Log File Entries 6088

Amazon SageMaker Developer Guide

Monitoring user resource access from Amazon SageMaker
Studio Classic

With Amazon SageMaker Studio Classic, you can monitor user resource access. To view resource
access activity, you can configure AWS CloudTrail to monitor and record user activities by following
the steps in Log Amazon SageMaker API Calls with AWS CloudTrail.

However, the AWS CloudTrail logs for resource access only list the Studio Classic execution IAM role
as the identifier. This level of logging is enough to audit user activity when each user profile has a
distinct execution role. However, when a single execution IAM role is shared between several user
profiles, you can't get information about the specific user that accessed the AWS resources.

You can get information about which specific user performed an action in an AWS CloudTrail log
when using a shared execution role, using the sourceIdentity configuration to propagate the
Studio Classic user profile name. For more information about source identity, see Monitor and
control actions taken with assumed roles.

Prerequisites

• Install and configure the AWS Command Line Interface following the steps in Installing or
updating the latest version of the AWS CLI.

• Ensure that Studio Classic users in your domain don’t have a policy that allows them to update or
modify the domain.

• To turn on or turn off sourceIdentity propagation, all apps in the domain must be in the
Stopped or Deleted state. For more information about how to stop and shut down apps, see
Shut down and Update Studio Classic Apps.

• All execution roles must have the following trust policy permissions:

• Any role that the domain's execution role assumes must have the sts:SetSourceIdentity
permission in the trust policy as follows.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"

Monitoring user resource access from Amazon SageMaker Studio Classic 6089

https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-update-apps.html

Amazon SageMaker Developer Guide

 },
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
]
 }
]
}

• When you assume a role with another role, called role chaining, do the following:

• Permissions for sts:SetSourceIdentity are required in both the permissions policy
of the principal that is assuming the role, and in the role trust policy of the target role.
Otherwise, the assume role operation will fail.

• This role chaining can happen in Studio Classic or any other downstream service, such as
Amazon EMR. For more information about role chaining, see Roles terms and concepts.

Considerations when using sourceIdentity

When you make AWS API calls from Studio Classic notebooks, SageMaker Canvas, or Amazon
SageMaker Data Wrangler, the sourceIdentity is only recorded in CloudTrail if those calls are
made using the Studio Classic execution role session or any chained role from that session.

When these API calls invoke other services to perform additional operations, sourceIdentity
logging depends on the specific implementation of the invoked services.

• Amazon SageMaker Training, Processing, and Pipeline: When you create a job using these
features, the job creation APIs are not able to ingest the sourceIdentity that exists in the
session. As a result, any AWS API calls made from these jobs do not record sourceIdentity in
CloudTrail logs.

• Amazon EMR: When connecting to Amazon EMR from Studio Classic using runtime roles,
administrators must explicitly set the PropagateSourceIdentity field. This ensures that Amazon
EMR applies the sourceIdentity from the calling credentials to a job or query session. The
sourceIdentity is then recorded in CloudTrail logs.

Note

The following exceptions apply when using sourceIdentity.

Considerations when using sourceIdentity 6090

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-role-chaining
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-steps-runtime-roles.html

Amazon SageMaker Developer Guide

• SageMaker Studio Classic shared spaces do not support sourceIdentity passthrough.
AWS API calls made from SageMaker shared spaces do not record sourceIdentity in
CloudTrail logs.

• If AWS API calls are made from sessions that are created by users or other services
and the sessions are not based on the Studio Classic execution role session, then the
sourceIdentity is not recorded in CloudTrail logs.

Turn on sourceIdentity

The ability to propagate the user profile name as the sourceIdentity in Studio Classic is turned
off by default.

To enable the ability to propagate the user profile name as the sourceIdentity, use the AWS CLI
during domain creation and domain update. This feature is enabled at the domain level and not at
the user profile level.

After you enable this configuration, administrators can view the user profile in the AWS
CloudTrail log for the service accessed. The user profile is given as the sourceIdentity value
in the userIdentity section. For more information about using AWS CloudTrail logs with
SageMaker, see Log Amazon SageMaker API Calls with AWS CloudTrail.

You can use the following code to enable the propagation of the user profile name as the
sourceIdentity during domain creation using the create-domain API.

create-domain
--domain-name <value>
--auth-mode <value>
--default-user-settings <value>
--subnet-ids <value>
--vpc-id <value>
[--tags <value>]
[--app-network-access-type <value>]
[--home-efs-file-system-kms-key-id <value>]
[--kms-key-id <value>]
[--app-security-group-management <value>]
[--domain-settings "ExecutionRoleIdentityConfig=USER_PROFILE_NAME"]
[--cli-input-json <value>]

Turn on sourceIdentity 6091

https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html

Amazon SageMaker Developer Guide

[--generate-cli-skeleton <value>]

You can enable the propagation of the user profile name as the sourceIdentity during domain
update using the update-domain API.

To update this configuration, all apps in the domain must be in the Stopped or Deleted state.
For more information about how to stop and shut down apps, see Shut down and Update Studio
Classic Apps.

Use the following code to enable the propagation of the user profile name as the
sourceIdentity.

update-domain
--domain-id <value>
[--default-user-settings <value>]
[--domain-settings-for-update "ExecutionRoleIdentityConfig=USER_PROFILE_NAME"]
[--cli-input-json <value>]
[--generate-cli-skeleton <value>]

Turn off sourceIdentity

You can also turn off the propagation of the user profile name as the
sourceIdentity using the AWS CLI. This occurs during domain update by passing
the ExecutionRoleIdentityConfig=DISABLED value for the --domain-settings-for-
update parameter as part of the update-domain API call.

In the AWS CLI, use the following code to disable the propagation of the user profile name as the
sourceIdentity.

update-domain
 --domain-id <value>
[--default-user-settings <value>]
[--domain-settings-for-update "ExecutionRoleIdentityConfig=DISABLED"]
[--cli-input-json <value>]
[--generate-cli-skeleton <value>]

Turn off sourceIdentity 6092

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-update-apps.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-update-apps.html

Amazon SageMaker Developer Guide

Automating Amazon SageMaker with Amazon EventBridge

Amazon EventBridge monitors status change events in Amazon SageMaker. EventBridge enables
you to automate SageMaker and respond automatically to events such as a training job status
change or endpoint status change. Events from SageMaker are delivered to EventBridge in near
real time. You can write simple rules to indicate which events are of interest to you, and what
automated actions to take when an event matches a rule. For an example of how to create a rule,
see Schedule a Pipeline with Amazon EventBridge.

Note

SageMaker may send multiple events to EventBridge for each state change. This behavior is
expected and does not necessarily indicate an error.

Some examples of the actions that can be automatically triggered include the following:

• Invoking an AWS Lambda function

• Invoking Amazon EC2 Run Command

• Relaying the event to Amazon Kinesis Data Streams

• Activating an AWS Step Functions state machine

• Notifying an Amazon SNS topic or an AWS SMS queue

SageMaker events monitored by EventBridge

• SageMaker model state change

• Training job state change

• Hyperparameter tuning job state change

• Transform job state change

• Endpoint state change

• Feature group state change

• Model package state change

• Pipeline execution state change

• Pipeline step state change

• Processing job state change

Automating with EventBridge 6093

Amazon SageMaker Developer Guide

• SageMaker image state change

• SageMaker image version state change

• Endpoint deployment state change

• Model card state change

SageMaker model state change

Indicates a change in the state of a SageMaker model. The state changes when a SageMaker model
is either created or deleted.

{
"source": ["aws.sagemaker"],
"detail-type": ["SageMaker Model State Change"]
"Resources" : ["arn:aws:sagemaker:us-east-1:123456789012:model/model-name"]
}

If a model is specified under Resources, an event will be generated and sent to EventBridge
when the state of this model changes. If you do not specify a value for Resources, an event will
generate when the status of any of the SageMaker models associated with your account changes.

Training job state change

Indicates a change in the status of a SageMaker training job.

If the value of TrainingJobStatus is Failed, the event contains the FailureReason field,
which provides a description of why the training job failed.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "SageMaker Training Job State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:sagemaker:us-east-1:123456789012:training-job/kmeans-1"
],
 "detail": {
 "TrainingJobName": "89c96cc8-dded-4739-afcc-6f1dc936701d",

Model state change 6094

Amazon SageMaker Developer Guide

 "TrainingJobArn": "arn:aws:sagemaker:us-east-1:123456789012:training-job/
kmeans-1",
 "TrainingJobStatus": "Completed",
 "SecondaryStatus": "Completed",
 "HyperParameters": {
 "Hyper": "Parameters"
 },
 "AlgorithmSpecification": {
 "TrainingImage": "TrainingImage",
 "TrainingInputMode": "TrainingInputMode"
 },
 "RoleArn": "arn:aws:iam::123456789012:role/SMRole",
 "InputDataConfig": [
 {
 "ChannelName": "Train",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3DataType",
 "S3Uri": "S3Uri",
 "S3DataDistributionType": "S3DataDistributionType"
 }
 },
 "ContentType": "ContentType",
 "CompressionType": "CompressionType",
 "RecordWrapperType": "RecordWrapperType"
 }
],
 "OutputDataConfig": {
 "KmsKeyId": "KmsKeyId",
 "S3OutputPath": "S3OutputPath"
 },
 "ResourceConfig": {
 "InstanceType": "InstanceType",
 "InstanceCount": 3,
 "VolumeSizeInGB": 20,
 "VolumeKmsKeyId": "VolumeKmsKeyId"
 },
 "VpcConfig": {

 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 60
 },
 "CreationTime": "1583831889050",

Training job state change 6095

Amazon SageMaker Developer Guide

 "TrainingStartTime": "1583831889050",
 "TrainingEndTime": "1583831889050",
 "LastModifiedTime": "1583831889050",
 "SecondaryStatusTransitions": [

],
 "Tags": {

 }
 }
}

Hyperparameter tuning job state change

Indicates a change in the status of a SageMaker hyperparameter tuning job.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "SageMaker HyperParameter Tuning Job State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:sagemaker:us-east-1:123456789012:tuningJob/x"
],
 "detail": {
 "HyperParameterTuningJobName": "016bffd3-6d71-4d3a-9710-0a332b2759fc",
 "HyperParameterTuningJobArn": "arn:aws:sagemaker:us-east-1:123456789012:tuningJob/
x",
 "TrainingJobDefinition": {
 "StaticHyperParameters": {},
 "AlgorithmSpecification": {
 "TrainingImage": "trainingImageName",
 "TrainingInputMode": "inputModeFile",
 "MetricDefinitions": [
 {
 "Name": "metricName",
 "Regex": "regex"
 }
]
 },

HyperParameter tuning job state change 6096

Amazon SageMaker Developer Guide

 "RoleArn": "roleArn",
 "InputDataConfig": [
 {
 "ChannelName": "channelName",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "s3DataType",
 "S3Uri": "s3Uri",
 "S3DataDistributionType": "s3DistributionType"
 }
 },
 "ContentType": "contentType",
 "CompressionType": "gz",
 "RecordWrapperType": "RecordWrapper"
 }
],
 "VpcConfig": {
 "SecurityGroupIds": [
 "securityGroupIds"
],
 "Subnets": [
 "subnets"
]
 },
 "OutputDataConfig": {
 "KmsKeyId": "kmsKeyId",
 "S3OutputPath": "s3OutputPath"
 },
 "ResourceConfig": {
 "InstanceType": "instanceType",
 "InstanceCount": 10,
 "VolumeSizeInGB": 500,
 "VolumeKmsKeyId": "volumeKeyId"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 3600
 }
 },
 "HyperParameterTuningJobStatus": "status",
 "CreationTime": "1583831889050",
 "LastModifiedTime": "1583831889050",
 "TrainingJobStatusCounters": {
 "Completed": 1,
 "InProgress": 0,

HyperParameter tuning job state change 6097

Amazon SageMaker Developer Guide

 "RetryableError": 0,
 "NonRetryableError": 0,
 "Stopped": 0
 },
 "ObjectiveStatusCounters": {
 "Succeeded": 1,
 "Pending": 0,
 "Failed": 0
 },
 "Tags": {}
 }
}

Transform job state change

Indicates a change in the status of a SageMaker batch transform job.

If the value of TransformJobStatus is Failed, the event contains the FailureReason field,
which provides a description of why the training job failed.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "SageMaker Transform Job State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2018-10-06T12:26:13Z",
 "region": "us-east-1",
 "resources": ["arn:aws:sagemaker:us-east-1:123456789012:transform-job/myjob"],
 "detail": {
 "TransformJobName": "4b52bd8f-e034-4345-818d-884bdd7c9724",
 "TransformJobArn": "arn:aws:sagemaker:us-east-1:123456789012:transform-job/myjob",
 "TransformJobStatus": "another status... GO",
 "FailureReason": "failed why 1",
 "ModelName": "i am a beautiful model",
 "MaxConcurrentTransforms": 5,
 "MaxPayloadInMB": 10,
 "BatchStrategy": "Strategizing...",
 "Environment": {
 "environment1": "environment2"
 },
 "TransformInput": {
 "DataSource": {

Transform job state change 6098

Amazon SageMaker Developer Guide

 "S3DataSource": {
 "S3DataType": "s3DataType",
 "S3Uri": "s3Uri"
 }
 },
 "ContentType": "content type",
 "CompressionType": "compression type",
 "SplitType": "split type"
 },
 "TransformOutput": {
 "S3OutputPath": "s3Uri",
 "Accept": "accept",
 "AssembleWith": "assemblyType",
 "KmsKeyId": "kmsKeyId"
 },
 "TransformResources": {
 "InstanceType": "instanceType",
 "InstanceCount": 3
 },
 "CreationTime": "2018-10-06T12:26:13Z",
 "TransformStartTime": "2018-10-06T12:26:13Z",
 "TransformEndTime": "2018-10-06T12:26:13Z",
 "Tags": {}
 }
}

Endpoint state change

Indicates a change in the status of a SageMaker hosted real-time inference endpoint.

The following shows an event with an endpoint in the IN_SERVICE state.

{
 "version": "0",
 "id": "d2921b5a-b0ad-cace-a8e3-0f159d018e06",
 "detail-type": "SageMaker Endpoint State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "1583831889050",
 "region": "us-west-2",
 "resources": [
 "arn:aws:sagemaker:us-west-2:123456789012:endpoint/myendpoint"
],

Endpoint state change 6099

Amazon SageMaker Developer Guide

 "detail": {
 "EndpointName": "MyEndpoint",
 "EndpointArn": "arn:aws:sagemaker:us-west-2:123456789012:endpoint/myendpoint",
 "EndpointConfigName": "MyEndpointConfig",
 "ProductionVariants": [
 {
 "DesiredWeight": 1.0,
 "DesiredInstanceCount": 1.0
 }
],
 "EndpointStatus": "IN_SERVICE",
 "CreationTime": 1592411992203.0,
 "LastModifiedTime": 1592411994287.0,
 "Tags": {

 }
 }
}

Feature group state change

Indicates a change either in the FeatureGroupStatus or the OfflineStoreStatus of a
SageMaker feature group.

{
 "version": "0",
 "id": "93201303-abdb-36a4-1b9b-4c1c3e3671c0",
 "detail-type": "SageMaker Feature Group State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2021-01-26T01:22:01Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:sagemaker:us-east-1:123456789012:feature-group/sample-feature-group"
],
 "detail": {
 "FeatureGroupArn": "arn:aws:sagemaker:us-east-1:123456789012:feature-group/sample-
feature-group",
 "FeatureGroupName": "sample-feature-group",
 "RecordIdentifierFeatureName": "RecordIdentifier",
 "EventTimeFeatureName": "EventTime",
 "FeatureDefinitions": [
 {

Feature group state change 6100

Amazon SageMaker Developer Guide

 "FeatureName": "RecordIdentifier",
 "FeatureType": "Integral"
 },
 {
 "FeatureName": "EventTime",
 "FeatureType": "Fractional"
 }
],
 "CreationTime": 1611624059000,
 "OnlineStoreConfig": {
 "EnableOnlineStore": true
 },
 "OfflineStoreConfig": {
 "S3StorageConfig": {
 "S3Uri": "s3://offline/s3/uri"
 },
 "DisableGlueTableCreation": false,
 "DataCatalogConfig": {
 "TableName": "sample-feature-group-1611624059",
 "Catalog": "AwsDataCatalog",
 "Database": "sagemaker_featurestore"
 }
 },
 "RoleArn": "arn:aws:iam::123456789012:role/SageMakerRole",
 "FeatureGroupStatus": "Active",
 "Tags": {}
 }
}

Model package state change

Indicates a change in the status of a SageMaker model package.

{
 "version": "0",
 "id": "844e2571-85d4-695f-b930-0153b71dcb42",
 "detail-type": "SageMaker Model Package State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2021-02-24T17:00:14Z",
 "region": "us-east-2",
 "resources": [

Model package state change 6101

Amazon SageMaker Developer Guide

 "arn:aws:sagemaker:us-east-2:123456789012:model-package/versionedmp-p-
idy6c3e1fiqj/2"
],
 "source": [
 "aws.sagemaker"
],
 "detail": {
 "ModelPackageGroupName": "versionedmp-p-idy6c3e1fiqj",
 "ModelPackageVersion": 2,
 "ModelPackageArn": "arn:aws:sagemaker:us-east-2:123456789012:model-package/
versionedmp-p-idy6c3e1fiqj/2",
 "CreationTime": "2021-02-24T17:00:14Z",
 "InferenceSpecification": {
 "Containers": [
 {
 "Image": "257758044811.dkr.ecr.us-east-2.amazonaws.com/sagemaker-
xgboost:1.0-1-cpu-py3",
 "ImageDigest":
 "sha256:4dc8a7e4a010a19bb9e0a6b063f355393f6e623603361bd8b105f554d4f0c004",
 "ModelDataUrl": "s3://sagemaker-project-p-idy6c3e1fiqj/versionedmp-p-
idy6c3e1fiqj/AbaloneTrain/pipelines-4r83jejmhorv-TrainAbaloneModel-xw869y8C4a/output/
model.tar.gz"
 }
],
 "SupportedContentTypes": [
 "text/csv"
],
 "SupportedResponseMIMETypes": [
 "text/csv"
]
 },
 "ModelPackageStatus": "Completed",
 "ModelPackageStatusDetails": {
 "ValidationStatuses": [],
 "ImageScanStatuses": []
 },
 "CertifyForMarketplace": false,
 "ModelApprovalStatus": "Rejected",
 "MetadataProperties": {
 "GeneratedBy": "arn:aws:sagemaker:us-east-2:123456789012:pipeline/versionedmp-p-
idy6c3e1fiqj/execution/4r83jejmhorv"
 },
 "ModelMetrics": {
 "ModelQuality": {

Model package state change 6102

Amazon SageMaker Developer Guide

 "Statistics": {
 "ContentType": "application/json",
 "S3Uri": "s3://sagemaker-project-p-idy6c3e1fiqj/versionedmp-p-idy6c3e1fiqj/
script-2021-02-24-10-55-15-413/output/evaluation/evaluation.json"
 }
 }
 },
 "LastModifiedTime": "2021-02-24T17:00:14Z"
 }
}

Pipeline execution state change

Indicates a change in the status of a SageMaker pipeline execution.

currentPipelineExecutionStatus and previousPipelineExecutionStatuscan be one
the following values:

• Executing

• Succeeded

• Failed

• Stopping

• Stopped

{
 "version": "0",
 "id": "315c1398-40ff-a850-213b-158f73kd93ir",
 "detail-type": "SageMaker Model Building Pipeline Execution Status Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2021-03-15T16:10:11Z",
 "region": "us-east-1",
 "resources": ["arn:aws:sagemaker:us-east-1:123456789012:pipeline/myPipeline-123",
 "arn:aws:sagemaker:us-east-1:123456789012:pipeline/myPipeline-123/execution/
p4jn9xou8a8s"],
 "detail": {
 "pipelineExecutionDisplayName": "SomeDisplayName",
 "currentPipelineExecutionStatus": "Succeeded",
 "previousPipelineExecutionStatus": "Executing",
 "executionStartTime": "2021-03-15T16:03:13Z",

Pipeline execution state change 6103

Amazon SageMaker Developer Guide

 "executionEndTime": "2021-03-15T16:10:10Z",
 "pipelineExecutionDescription": "SomeDescription",
 "pipelineArn": "arn:aws:sagemaker:us-east-1:123456789012:pipeline/myPipeline-123",
 "pipelineExecutionArn": "arn:aws:sagemaker:us-east-1:123456789012:pipeline/
myPipeline-123/execution/p4jn9xou8a8s"
 }
}

Pipeline step state change

Indicates a change in the status of a SageMaker pipeline step.

If there is a cache hit, the event contains the cacheHitResult field. currentStepStatus and
previousStepStatuscan be one the following values:

• Starting

• Executing

• Succeeded

• Failed

• Stopping

• Stopped

If the value of currentStepStatus is Failed, the event contains the failureReason field,
which provides a description of why the step failed.

{
 "version": "0",
 "id": "ea37ccbb-5e2b-05e9-4073-1daazc940304",
 "detail-type": "SageMaker Model Building Pipeline Execution Step Status Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2021-03-15T16:10:10Z",
 "region": "us-east-1",
 "resources": ["arn:aws:sagemaker:us-east-1:123456789012:pipeline/myPipeline-123",
 "arn:aws:sagemaker:us-east-1:123456789012:pipeline/myPipeline-123/execution/
p4jn9xou8a8s"],
 "detail": {
 "metadata": {
 "processingJob": {

Pipeline step state change 6104

Amazon SageMaker Developer Guide

 "arn": "arn:aws:sagemaker:us-east-1:123456789012:processing-job/pipelines-
p4jn9xou8a8s-myprocessingstep1-tmgxry49ug"
 }
 },
 "stepStartTime": "2021-03-15T16:03:14Z",
 "stepEndTime": "2021-03-15T16:10:09Z",
 "stepName": "myprocessingstep1",
 "stepType": "Processing",
 "previousStepStatus": "Executing",
 "currentStepStatus": "Succeeded",
 "pipelineArn": "arn:aws:sagemaker:us-east-1:123456789012:pipeline/myPipeline-123",
 "pipelineExecutionArn": "arn:aws:sagemaker:us-east-1:123456789012:pipeline/
myPipeline-123/execution/p4jn9xou8a8s"
 }
}

Processing job state change

Indicates a change in the status of a SageMaker Processing job.

The following example event is for a failed Processing job, where the ProcessingJobStatus
value is Failed.

{
 "version": "0",
 "id": "0a15f67d-aa23-0123-0123-01a23w89r01t",
 "detail-type": "SageMaker Processing Job State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2019-05-31T21:49:54Z",
 "region": "us-east-1",
 "resources": ["arn:aws:sagemaker:us-west-2:037210630506:processing-job/integ-test-
analytics-algo-54ee3282-5899-4aa3-afc2-7ce1d02"],
 "detail": {
 "ProcessingInputs": [{
 "InputName": "InputName",
 "S3Input": {
 "S3Uri": "s3://input/s3/uri",
 "LocalPath": "/opt/ml/processing/input/local/path",
 "S3DataType": "MANIFEST_FILE",
 "S3InputMode": "PIPE",
 "S3DataDistributionType": "FULLYREPLICATED"
 }

Processing job state change 6105

Amazon SageMaker Developer Guide

 }],
 "ProcessingOutputConfig": {
 "Outputs": [{
 "OutputName": "OutputName",
 "S3Output": {
 "S3Uri": "s3://output/s3/uri",
 "LocalPath": "/opt/ml/processing/output/local/path",
 "S3UploadMode": "CONTINUOUS"
 }
 }],
 "KmsKeyId": "KmsKeyId"
 },
 "ProcessingJobName": "integ-test-analytics-algo-54ee3282-5899-4aa3-afc2-7ce1d02",
 "ProcessingResources": {
 "ClusterConfig": {
 "InstanceCount": 3,
 "InstanceType": "ml.c5.xlarge",
 "VolumeSizeInGB": 5,
 "VolumeKmsKeyId": "VolumeKmsKeyId"
 }
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 2000
 },
 "AppSpecification": {
 "ImageUri": "012345678901.dkr.ecr.us-west-2.amazonaws.com/processing-uri:latest"
 },
 "NetworkConfig": {
 "EnableInterContainerTrafficEncryption": true,
 "EnableNetworkIsolation": false,
 "VpcConfig": {
 "SecurityGroupIds": ["SecurityGroupId1", "SecurityGroupId2",
 "SecurityGroupId3"],
 "Subnets": ["Subnet1", "Subnet2"]
 }
 },
 "RoleArn": "arn:aws:iam::037210630506:role/SageMakerPowerUser",
 "ExperimentConfig": {},
 "ProcessingJobArn": "arn:aws:sagemaker:us-west-2:037210630506:processing-job/integ-
test-analytics-algo-54ee3282-5899-4aa3-afc2-7ce1d02",
 "ProcessingJobStatus":"Failed",
 "FailureReason":"InternalServerError: We encountered an internal error. Please try
 again.",
 "ProcessingEndTime":1704320746000,

Processing job state change 6106

Amazon SageMaker Developer Guide

 "ProcessingStartTime":1704320734000,
 "LastModifiedTime":1704320746000,
 "CreationTime":1704320199000
 }
}

SageMaker image state change

Indicates a change in the status of a SageMaker image.

{
 "version": "0",
 "id": "cee033a3-17d8-49f8-865f-b9ebf485d9ee",
 "detail-type": "SageMaker Image State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2021-04-29T01:29:59Z",
 "region": "us-east-1",
 "resources": ["arn:aws:sagemaker:us-west-2:123456789012:image/
cee033a3-17d8-49f8-865f-b9ebf485d9ee"],
 "detail": {
 "ImageName": "cee033a3-17d8-49f8-865f-b9ebf485d9ee",
 "ImageArn": "arn:aws:sagemaker:us-west-2:123456789012:image/
cee033a3-17d8-49f8-865f-b9ebf485d9ee",
 "ImageStatus": "Creating",
 "Version": 1.0,
 "Tags": {}
 }
}

SageMaker image version state change

Indicates a change in the status of a SageMaker image version.

{
 "version": "0",
 "id": "07fc4615-ebd7-15fc-1746-243411f09f04",
 "detail-type": "SageMaker Image Version State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2021-04-29T01:29:59Z",
 "region": "us-east-1",

SageMaker image state change 6107

Amazon SageMaker Developer Guide

 "resources": ["arn:aws:sagemaker:us-west-2:123456789012:image-
version/07800032-2d29-48b7-8f82-5129225b2a85"],
 "detail": {
 "ImageArn": "arn:aws:sagemaker:us-west-2:123456789012:image/a70ff896-c832-4fe8-
add6-eba25a0f43e6",
 "ImageVersionArn": "arn:aws:sagemaker:us-west-2:123456789012:image-
version/07800032-2d29-48b7-8f82-5129225b2a85",
 "ImageVersionStatus": "Creating",
 "Version": 1.0,
 "Tags": {}
 }
}

For more information about the status values and their meanings for SageMaker jobs, endpoints,
and pipelines, see the following links:

• AlgorithmStatus

• EndpointStatus

• FeatureGroupStatus

• HyperParameterTuningJobStatus

• LabelingJobStatus

• ModelPackageStatus

• NotebookInstanceStatus

• PipelineExecutionStatus

• StepStatus

• ProcessingJobStatus

• TrainingJobStatus

• TransformJobStatus

For more information, see the Amazon EventBridge User Guide.

SageMaker image version state change 6108

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAlgorithm.html#sagemaker-DescribeAlgorithm-response-AlgorithmStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html#sagemaker-DescribeEndpoint-response-EndpointStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeFeatureGroup.html#sagemaker-DescribeFeatureGroup-response-FeatureGroupStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeHyperParameterTuningJob.html#sagemaker-DescribeHyperParameterTuningJob-response-HyperParameterTuningJobStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeLabelingJob.html#sagemaker-DescribeLabelingJob-response-LabelingJobStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeModelPackage.html#sagemaker-DescribeModelPackage-response-ModelPackageStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeNotebookInstance.html#sagemaker-DescribeNotebookInstance-response-NotebookInstanceStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribePipelineExecution.html#sagemaker-DescribePipelineExecution-response-PipelineExecutionStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PipelineExecutionStep.html#sagemaker-Type-PipelineExecutionStep-StepStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeProcessingJob.html#sagemaker-DescribeProcessingJob-response-ProcessingJobStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html#sagemaker-DescribeTrainingJob-response-TrainingJobStatus
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTransformJob.html#sagemaker-DescribeTransformJob-response-TransformJobStatus
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

Amazon SageMaker Developer Guide

Endpoint deployment state change

Important

The following examples may not work for all endpoints. For a list of features that may
exclude your endpoint, see the Exclusions page.

Indicates a state change for an endpoint deployment. The following example shows an endpoint
updating with a blue/green canary deployment.

{
 "version": "0",
 "id": "0bd4a141-0a02-9d8a-f977-3924c3fb259c",
 "detail-type": "SageMaker Endpoint Deployment State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2021-10-25T01:52:12Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:sagemaker:us-west-2:651393343886:endpoint/sample-endpoint"
],
 "detail": {
 "EndpointName": "sample-endpoint",
 "EndpointArn": "arn:aws:sagemaker:us-west-2:651393343886:endpoint/sample-
endpoint",
 "EndpointConfigName": "sample-endpoint-config-1",
 "ProductionVariants": [
 {
 "VariantName": "AllTraffic",
 "CurrentWeight": 1,
 "DesiredWeight": 1,
 "CurrentInstanceCount": 3,
 "DesiredInstanceCount": 3
 }
],
 "EndpointStatus": "UPDATING",
 "CreationTime": 1635195148181,
 "LastModifiedTime": 1635195148181,
 "Tags": {},
 "PendingDeploymentSummary": {
 "EndpointConfigName": "sample-endpoint-config-2",

Endpoint deployment state change 6109

Amazon SageMaker Developer Guide

 "StartTime": Timestamp,
 "ProductionVariants": [
 {
 "VariantName": "AllTraffic",
 "CurrentWeight": 1,
 "DesiredWeight": 1,
 "CurrentInstanceCount": 1,
 "DesiredInstanceCount": 3,
 "VariantStatus": [
 {
 "Status": "Baking",
 "StatusMessage": "Baking for 600 seconds
 (TerminationWaitInSeconds) with traffic enabled on canary capacity of 1 instance(s).",
 "StartTime": 1635195269181,
 }
]
 }
]
 }
 }
}

The following example indicates a state change for an endpoint deployment, which is being
updated with new capacity on an existing endpoint configuration.

{
 "version": "0",
 "id": "0bd4a141-0a02-9d8a-f977-3924c3fb259c",
 "detail-type": "SageMaker Endpoint Deployment State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2021-10-25T01:52:12Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:sagemaker:us-west-2:651393343886:endpoint/sample-endpoint"
],
 "detail": {
 "EndpointName": "sample-endpoint",
 "EndpointArn": "arn:aws:sagemaker:us-west-2:651393343886:endpoint/sample-
endpoint",
 "EndpointConfigName": "sample-endpoint-config-1",
 "ProductionVariants": [
 {

Endpoint deployment state change 6110

Amazon SageMaker Developer Guide

 "VariantName": "AllTraffic",
 "CurrentWeight": 1,
 "DesiredWeight": 1,
 "CurrentInstanceCount": 3,
 "DesiredInstanceCount": 6,
 "VariantStatus": [
 {
 "Status": "Updating",
 "StatusMessage": "Scaling out desired instance count to 6.",
 "StartTime": 1635195269181,
 }
]
 }
],
 "EndpointStatus": "UPDATING",
 "CreationTime": 1635195148181,
 "LastModifiedTime": 1635195148181,
 "Tags": {},
 }

The following secondary deployment statuses are also available for endpoints (found in the
VariantStatus object.

• Creating: creating instances for the production variant.

Example message: "Launching X instance(s)."

• Deleting: terminating instances for the production variant.

Example message: "Terminating X instance(s)."

• Updating: updating capacity for the production variant.

Example messages: "Launching X instance(s).", "Scaling out desired instance
count to X."

• ActivatingTraffic: turning on traffic for the production variant.

Example message: "Activating traffic on canary capacity of X instance(s)."

• Baking: waiting period to monitor the CloudWatch alarms in the auto-rollback configuration.

Example message: "Baking for X seconds (TerminationWaitInSeconds) with
traffic enabled on full capacity of Y instance(s)."

Endpoint deployment state change 6111

Amazon SageMaker Developer Guide

Model card state change

Indicates a change in the status of an Amazon SageMaker Model Card. For more information about
model cards, see Amazon SageMaker Model Cards.

{
 "version": "0",
 "id": "aa7a9c4f-2caa-4d04-a6de-e67227ba4302",
 "detail-type": "SageMaker Model Card State Change",
 "source": "aws.sagemaker",
 "account": "123456789012",
 "time": "2022-11-30T00:00:00Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:sagemaker:us-east-1:123456789012:model-card/example-card"
],
 "detail": {
 "ModelCardVersion": 2,
 "LastModifiedTime": "2022-12-03T00:09:44.893854735Z",
 "LastModifiedBy": {
 "DomainId": "us-east-1",
 "UserProfileArn": "arn:aws:sagemaker:us-east-1:123456789012:user-profile/
user",
 "UserProfileName": "user"
 },
 "CreationTime": "2022-12-03T00:09:33.084Z",
 "CreatedBy": {
 "DomainId": "us-east-1",
 "UserProfileArn": "arn:aws:sagemaker:us-east-1:123456789012:user-profile/
user",
 "UserProfileName": "user"
 },
 "ModelCardName": "example-card",
 "ModelId": "example-model",
 "ModelCardStatus": "Draft",
 "AccountId": "123456789012",
 "SecurityConfig": {}
 }
}

Model card state change 6112

Amazon SageMaker Developer Guide

Amazon SageMaker Reference

Topics

• Machine Learning Frameworks and Languages

• API Reference

• SageMaker Distribution Images

• Document History for Amazon SageMaker

• Docker Registry Paths and Example Code

Machine Learning Frameworks and Languages

You can use Python and R natively in Amazon SageMaker notebook kernels. There are also kernels
that support specific frameworks. A very popular way to get started with SageMaker is to use the
Amazon SageMaker Python SDK. It provides open source Python APIs and containers that make it
easy to train and deploy models in SageMaker, as well as examples for use with several different
machine learning and deep learning frameworks.

For information about using specific frameworks or how to use R in SageMaker, see the following
topics.

Languages SDKs and user guides:

• Amazon SageMaker Python SDK

• R

• API Reference

Machine learning and deep learning frameworks guides:

• Apache MXNet

• Apache Spark

• Chainer

• Hugging Face

ML Frameworks and Languages 6113

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths.html
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• PyTorch

• Scikit-learn

• SparkML Serving

• TensorFlow

• Triton Inference Server

Use Apache MXNet with Amazon SageMaker

You can use SageMaker to train and deploy a model using custom MXNet code. The Amazon
SageMaker Python SDK MXNet estimators and models and the SageMaker open-source MXNet
container make writing a MXNet script and running it in SageMaker easier.

What do you want to do?

I want to train a custom MXNet model in SageMaker.

For documentation, see Train a Model with MXNet.

I have an MXNet model that I trained in SageMaker, and I want to deploy it to a hosted endpoint.

For more information, see Deploy MXNet models.

I have an MXNet model that I trained outside of SageMaker, and I want to deploy it to a SageMaker
endpoint

For more information, see Deploy Endpoints from Model Data.

I want to see the API documentation for Amazon SageMaker Python SDK MXNet classes.

For more information, see MXNet Classes.

I want to find the SageMaker MXNet container repository.

For more information, see SageMaker MXNet Container GitHub repository.

I want to find information about MXNet versions supported by AWS Deep Learning Containers.

For more information, see Available Deep Learning Container Images.

For general information about writing MXNet script mode training scripts and using MXNet script
mode estimators and models with SageMaker, see Using MXNet with the SageMaker Python SDK.

Apache MXNet 6114

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html#train-a-model-with-mxnet
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html#deploy-mxnet-models
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html#deploy-endpoints-from-model-data
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/frameworks/mxnet/sagemaker.mxnet.html
https://github.com/aws/sagemaker-mxnet-container
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://sagemaker.readthedocs.io/en/stable/using_mxnet.html

Amazon SageMaker Developer Guide

Use Apache Spark with Amazon SageMaker

Amazon SageMaker Spark is an open source Spark library that helps you construct Spark machine
learning (ML) pipelines with SageMaker. This simplifies the integration of Spark ML stages with
SageMaker stages, like model training and hosting. For information about SageMaker Spark, see
the SageMaker Spark GitHub repository.

The SageMaker Spark library is available in Python and Scala. You can use SageMaker Spark to
train models in SageMaker using org.apache.spark.sql.DataFrame data frames in your Spark
clusters. After model training, you can also host the model using SageMaker hosting services.

The SageMaker Spark library, com.amazonaws.services.sagemaker.sparksdk, provides the
following classes, among others:

• SageMakerEstimator—Extends the org.apache.spark.ml.Estimator interface. You can
use this estimator for model training in SageMaker.

• KMeansSageMakerEstimator, PCASageMakerEstimator, and
XGBoostSageMakerEstimator—Extend the SageMakerEstimator class.

• SageMakerModel—Extends the org.apache.spark.ml.Model class. You can use this
SageMakerModel for model hosting and obtaining inferences in SageMaker.

You can download the source code for both Python Spark (PySpark) and Scala libraries from the
SageMaker Spark GitHub repository.

For installation and examples of the SageMaker Spark library, see SageMaker Spark for Scala
examples or SageMaker Spark for Python (PySpark) examples.

If you use Amazon EMR on AWS to manage Spark clusters, see Apache Spark. For more information
on using Amazon EMR in SageMaker, see Prepare data using Amazon EMR.

Topics

• Integrate Your Apache Spark Application with SageMaker

• SageMaker Spark for Scala examples

• SageMaker Spark for Python (PySpark) examples

Apache Spark 6115

https://github.com/aws/sagemaker-spark
https://github.com/aws/sagemaker-spark
https://aws.amazon.com/emr/features/spark/

Amazon SageMaker Developer Guide

Integrate Your Apache Spark Application with SageMaker

The following is high-level summary of the steps for integrating your Apache Spark application
with SageMaker.

1. Continue data preprocessing using the Apache Spark library that you are familiar
with. Your dataset remains a DataFrame in your Spark cluster. Load your data
into a DataFrame and preprocess it so that you have a features column with
org.apache.spark.ml.linalg.Vector of Doubles, and an optional label column with
values of Double type.

2. Use the estimator in the SageMaker Spark library to train your model. For example, if you
choose the k-means algorithm provided by SageMaker for model training, you call the
KMeansSageMakerEstimator.fit method.

Provide your DataFrame as input. The estimator returns a SageMakerModel object.

Note

SageMakerModel extends the org.apache.spark.ml.Model.

The fit method does the following:

a. Converts the input DataFrame to the protobuf format by selecting the features and
label columns from the input DataFrame and uploading the protobuf data to an
Amazon S3 bucket. The protobuf format is efficient for model training in SageMaker.

b. Starts model training in SageMaker by sending a SageMaker CreateTrainingJob
request. After model training has completed, SageMaker saves the model artifacts to an
S3 bucket.

SageMaker assumes the IAM role that you specified for model training to perform tasks on
your behalf. For example, it uses the role to read training data from an S3 bucket and to
write model artifacts to a bucket.

c. Creates and returns a SageMakerModel object. The constructor does the following tasks,
which are related to deploying your model to SageMaker.

i. Sends a CreateModel request to SageMaker.

ii. Sends a CreateEndpointConfig request to SageMaker.

Apache Spark 6116

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html

Amazon SageMaker Developer Guide

iii. Sends a CreateEndpoint request to SageMaker, which then launches the specified
resources, and hosts the model on them.

3. You can get inferences from your model hosted in SageMaker with the
SageMakerModel.transform.

Provide an input DataFrame with features as input. The transform method transforms it
to a DataFrame containing inferences. Internally, the transform method sends a request to
the InvokeEndpoint SageMaker API to get inferences. The transform method appends the
inferences to the input DataFrame.

SageMaker Spark for Scala examples

Amazon SageMaker provides an Apache Spark library (SageMaker Spark) that you can use to
integrate your Apache Spark applications with SageMaker. For example, you might use Apache
Spark for data preprocessing and SageMaker for model training and hosting. For information about
the SageMaker Apache Spark library, see Use Apache Spark with Amazon SageMaker.

Download Spark for Scala

You can download the source code and examples for both Python Spark (PySpark) and Scala
libraries from the SageMaker Spark GitHub repository.

For detailed instructions on installing the SageMaker Spark library, see SageMaker Spark.

SageMaker Spark SDK for Scala is available in the Maven central repository. Add the Spark library
to your project by adding the following dependency to your pom.xml file:

• If your project is built with Maven, add the following to your pom.xml file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>sagemaker-spark_2.11</artifactId>
 <version>spark_2.2.0-1.0</version>
</dependency>

• If your project depends on Spark 2.1, add the following to your pom.xml file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>sagemaker-spark_2.11</artifactId>

Apache Spark 6117

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InvokeEndpoint.html
https://github.com/aws/sagemaker-spark/tree/master/sagemaker-spark-sdk
https://github.com/aws/sagemaker-spark
https://github.com/aws/sagemaker-spark/tree/master/sagemaker-spark-sdk

Amazon SageMaker Developer Guide

 <version>spark_2.1.1-1.0</version>
</dependency>

Spark for Scala example

This section provides example code that uses the Apache Spark Scala library provided by
SageMaker to train a model in SageMaker using DataFrames in your Spark cluster. This is then
followed by examples on how to Use Custom Algorithms for Model Training and Hosting on
Amazon SageMaker with Apache Spark and Use the SageMakerEstimator in a Spark Pipeline.

The following example hosts the resulting model artifacts using SageMaker hosting services.
For more details on this example, see Getting Started: K-Means Clustering on SageMaker with
SageMaker Spark SDK Specifically, this example does the following:

• Uses the KMeansSageMakerEstimator to fit (or train) a model on data

Because the example uses the k-means algorithm provided by SageMaker to train a model,
you use the KMeansSageMakerEstimator. You train the model using images of handwritten
single-digit numbers (from the MNIST dataset). You provide the images as an input DataFrame.
For your convenience, SageMaker provides this dataset in an Amazon S3 bucket.

In response, the estimator returns a SageMakerModel object.

• Obtains inferences using the trained SageMakerModel

To get inferences from a model hosted in SageMaker, you call the
SageMakerModel.transform method. You pass a DataFrame as input. The method
transforms the input DataFrame to another DataFrame containing inferences obtained from
the model.

For a given input image of a handwritten single-digit number, the inference identifies a cluster
that the image belongs to. For more information, see K-Means Algorithm.

import org.apache.spark.sql.SparkSession
import com.amazonaws.services.sagemaker.sparksdk.IAMRole
import com.amazonaws.services.sagemaker.sparksdk.algorithms
import com.amazonaws.services.sagemaker.sparksdk.algorithms.KMeansSageMakerEstimator

val spark = SparkSession.builder.getOrCreate

Apache Spark 6118

https://github.com/aws/sagemaker-spark?tab=readme-ov-file#getting-started-k-means-clustering-on-sagemaker-with-sagemaker-spark-sdk
https://github.com/aws/sagemaker-spark?tab=readme-ov-file#getting-started-k-means-clustering-on-sagemaker-with-sagemaker-spark-sdk

Amazon SageMaker Developer Guide

// load mnist data as a dataframe from libsvm
val region = "us-east-1"
val trainingData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/")
val testData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/")

val roleArn = "arn:aws:iam::account-id:role/rolename"

val estimator = new KMeansSageMakerEstimator(
 sagemakerRole = IAMRole(roleArn),
 trainingInstanceType = "ml.p2.xlarge",
 trainingInstanceCount = 1,
 endpointInstanceType = "ml.c4.xlarge",
 endpointInitialInstanceCount = 1)
 .setK(10).setFeatureDim(784)

// train
val model = estimator.fit(trainingData)

val transformedData = model.transform(testData)
transformedData.show

The example code does the following:

• Loads the MNIST dataset from an S3 bucket provided by SageMaker (awsai-sparksdk-
dataset) into a Spark DataFrame (mnistTrainingDataFrame):

// Get a Spark session.

val spark = SparkSession.builder.getOrCreate

// load mnist data as a dataframe from libsvm
val region = "us-east-1"
val trainingData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/")
val testData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/")

Apache Spark 6119

Amazon SageMaker Developer Guide

val roleArn = "arn:aws:iam::account-id:role/rolename"
trainingData.show()

The show method displays the first 20 rows in the data frame:

+-----+--------------------+
|label| features|
+-----+--------------------+
5.0	(784,[152,153,154...
0.0	(784,[127,128,129...
4.0	(784,[160,161,162...
1.0	(784,[158,159,160...
9.0	(784,[208,209,210...
2.0	(784,[155,156,157...
1.0	(784,[124,125,126...
3.0	(784,[151,152,153...
1.0	(784,[152,153,154...
4.0	(784,[134,135,161...
3.0	(784,[123,124,125...
5.0	(784,[216,217,218...
3.0	(784,[143,144,145...
6.0	(784,[72,73,74,99...
1.0	(784,[151,152,153...
7.0	(784,[211,212,213...
2.0	(784,[151,152,153...
8.0	(784,[159,160,161...
6.0	(784,[100,101,102...
9.0	(784,[209,210,211...
+-----+--------------------+
only showing top 20 rows

In each row:

• The label column identifies the image's label. For example, if the image of the handwritten
number is the digit 5, the label value is 5.

• The features column stores a vector (org.apache.spark.ml.linalg.Vector) of
Double values. These are the 784 features of the handwritten number. (Each handwritten
number is a 28 x 28-pixel image, making 784 features.)

• Creates a SageMaker estimator (KMeansSageMakerEstimator)

Apache Spark 6120

Amazon SageMaker Developer Guide

The fit method of this estimator uses the k-means algorithm provided by SageMaker to train
models using an input DataFrame. In response, it returns a SageMakerModel object that you
can use to get inferences.

Note

The KMeansSageMakerEstimator extends the SageMaker SageMakerEstimator,
which extends the Apache Spark Estimator.

val estimator = new KMeansSageMakerEstimator(
 sagemakerRole = IAMRole(roleArn),
 trainingInstanceType = "ml.p2.xlarge",
 trainingInstanceCount = 1,
 endpointInstanceType = "ml.c4.xlarge",
 endpointInitialInstanceCount = 1)
 .setK(10).setFeatureDim(784)

The constructor parameters provide information that is used for training a model and deploying
it on SageMaker:

• trainingInstanceType and trainingInstanceCount—Identify the type and number of
ML compute instances to use for model training.

• endpointInstanceType—Identifies the ML compute instance type to use when hosting the
model in SageMaker. By default, one ML compute instance is assumed.

• endpointInitialInstanceCount—Identifies the number of ML compute instances initially
backing the endpoint hosting the model in SageMaker.

• sagemakerRole—SageMaker assumes this IAM role to perform tasks on your behalf. For
example, for model training, it reads data from S3 and writes training results (model artifacts)
to S3.

Note

This example implicitly creates a SageMaker client. To create this client, you must
provide your credentials. The API uses these credentials to authenticate requests to

Apache Spark 6121

Amazon SageMaker Developer Guide

SageMaker. For example, it uses the credentials to authenticate requests to create a
training job and API calls for deploying the model using SageMaker hosting services.

• After the KMeansSageMakerEstimator object has been created, you set the following
parameters, are used in model training:

• The number of clusters that the k-means algorithm should create during model training. You
specify 10 clusters, one for each digit, 0 through 9.

• Identifies that each input image has 784 features (each handwritten number is a 28 x 28-
pixel image, making 784 features).

• Calls the estimator fit method

// train
val model = estimator.fit(trainingData)

You pass the input DataFrame as a parameter. The model does all the work of training the
model and deploying it to SageMaker. For more information see, Integrate Your Apache Spark
Application with SageMaker. In response, you get a SageMakerModel object, which you can use
to get inferences from your model deployed in SageMaker.

You provide only the input DataFrame. You don't need to specify the registry path to the k-
means algorithm used for model training because the KMeansSageMakerEstimator knows it.

• Calls the SageMakerModel.transform method to get inferences from the model deployed in
SageMaker.

The transform method takes a DataFrame as input, transforms it, and returns another
DataFrame containing inferences obtained from the model.

val transformedData = model.transform(testData)
transformedData.show

For simplicity, we use the same DataFrame as input to the transform method that we used for
model training in this example. The transform method does the following:

• Serializes the features column in the input DataFrame to protobuf and sends it to the
SageMaker endpoint for inference.

• Deserializes the protobuf response into the two additional columns (distance_to_cluster
and closest_cluster) in the transformed DataFrame.

Apache Spark 6122

Amazon SageMaker Developer Guide

The show method gets inferences to the first 20 rows in the input DataFrame:

+-----+--------------------+-------------------+---------------+
|label| features|distance_to_cluster|closest_cluster|
+-----+--------------------+-------------------+---------------+
5.0	(784,[152,153,154...	1767.897705078125	4.0
0.0	(784,[127,128,129...	1392.157470703125	5.0
4.0	(784,[160,161,162...	1671.5711669921875	9.0
1.0	(784,[158,159,160...	1182.6082763671875	6.0
9.0	(784,[208,209,210...	1390.4002685546875	0.0
2.0	(784,[155,156,157...	1713.988037109375	1.0
1.0	(784,[124,125,126...	1246.3016357421875	2.0
3.0	(784,[151,152,153...	1753.229248046875	4.0
1.0	(784,[152,153,154...	978.8394165039062	2.0
4.0	(784,[134,135,161...	1623.176513671875	3.0
3.0	(784,[123,124,125...	1533.863525390625	4.0
5.0	(784,[216,217,218...	1469.357177734375	6.0
3.0	(784,[143,144,145...	1736.765869140625	4.0
6.0	(784,[72,73,74,99...	1473.69384765625	8.0
1.0	(784,[151,152,153...	944.88720703125	2.0
7.0	(784,[211,212,213...	1285.9071044921875	3.0
2.0	(784,[151,152,153...	1635.0125732421875	1.0
8.0	(784,[159,160,161...	1436.3162841796875	6.0
6.0	(784,[100,101,102...	1499.7366943359375	7.0
9.0	(784,[209,210,211...	1364.6319580078125	6.0
+-----+--------------------+-------------------+---------------+

You can interpret the data, as follows:

• A handwritten number with the label 5 belongs to cluster 4 (closest_cluster).

• A handwritten number with the label 0 belongs to cluster 5.

• A handwritten number with the label 4 belongs to cluster 9.

• A handwritten number with the label 1 belongs to cluster 6.

Topics

• Use Custom Algorithms for Model Training and Hosting on Amazon SageMaker with Apache
Spark

• Use the SageMakerEstimator in a Spark Pipeline

Apache Spark 6123

Amazon SageMaker Developer Guide

Use Custom Algorithms for Model Training and Hosting on Amazon SageMaker with Apache
Spark

In SageMaker Spark for Scala examples, you use the kMeansSageMakerEstimator because the
example uses the k-means algorithm provided by Amazon SageMaker for model training. You
might choose to use your own custom algorithm for model training instead. Assuming that you
have already created a Docker image, you can create your own SageMakerEstimator and specify
the Amazon Elastic Container Registry path for your custom image.

The following example shows how to create a KMeansSageMakerEstimator from the
SageMakerEstimator. In the new estimator, you explicitly specify the Docker registry path to
your training and inference code images.

import com.amazonaws.services.sagemaker.sparksdk.IAMRole
import com.amazonaws.services.sagemaker.sparksdk.SageMakerEstimator
import
 com.amazonaws.services.sagemaker.sparksdk.transformation.serializers.ProtobufRequestRowSerializer
import
 com.amazonaws.services.sagemaker.sparksdk.transformation.deserializers.KMeansProtobufResponseRowDeserializer

val estimator = new SageMakerEstimator(
 trainingImage =
 "811284229777.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
 modelImage =
 "811284229777.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
 requestRowSerializer = new ProtobufRequestRowSerializer(),
 responseRowDeserializer = new KMeansProtobufResponseRowDeserializer(),
 hyperParameters = Map("k" -> "10", "feature_dim" -> "784"),
 sagemakerRole = IAMRole(roleArn),
 trainingInstanceType = "ml.p2.xlarge",
 trainingInstanceCount = 1,
 endpointInstanceType = "ml.c4.xlarge",
 endpointInitialInstanceCount = 1,
 trainingSparkDataFormat = "sagemaker")

In the code, the parameters in the SageMakerEstimator constructor include:

• trainingImage —Identifies the Docker registry path to the training image containing your
custom code.

• modelImage —Identifies the Docker registry path to the image containing inference code.

Apache Spark 6124

Amazon SageMaker Developer Guide

• requestRowSerializer —Implements
com.amazonaws.services.sagemaker.sparksdk.transformation.RequestRowSerializer.

This parameter serializes rows in the input DataFrame to send them to the model hosted in
SageMaker for inference.

• responseRowDeserializer —Implements

com.amazonaws.services.sagemaker.sparksdk.transformation.ResponseRowDeserializer.

This parameter deserializes responses from the model, hosted in SageMaker, back into a
DataFrame.

• trainingSparkDataFormat —Specifies the data format that Spark uses when uploading
training data from a DataFrame to S3. For example, "sagemaker" for protobuf format, "csv"
for comma-separated values, and "libsvm" for LibSVM format.

You can implement your own RequestRowSerializer and ResponseRowDeserializer to
serialize and deserialize rows from a data format that your inference code supports, such as .libsvm
or ..csv.

Use the SageMakerEstimator in a Spark Pipeline

You can use org.apache.spark.ml.Estimator estimators and
org.apache.spark.ml.Model models, and SageMakerEstimator estimators and
SageMakerModel models in org.apache.spark.ml.Pipeline pipelines, as shown in the
following example:

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.PCA
import org.apache.spark.sql.SparkSession
import com.amazonaws.services.sagemaker.sparksdk.IAMRole
import com.amazonaws.services.sagemaker.sparksdk.algorithms
import com.amazonaws.services.sagemaker.sparksdk.algorithms.KMeansSageMakerEstimator

val spark = SparkSession.builder.getOrCreate

// load mnist data as a dataframe from libsvm
val region = "us-east-1"
val trainingData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/")

Apache Spark 6125

Amazon SageMaker Developer Guide

val testData = spark.read.format("libsvm")
 .option("numFeatures", "784")
 .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/")

// substitute your SageMaker IAM role here
val roleArn = "arn:aws:iam::account-id:role/rolename"

val pcaEstimator = new PCA()
 .setInputCol("features")
 .setOutputCol("projectedFeatures")
 .setK(50)

val kMeansSageMakerEstimator = new KMeansSageMakerEstimator(
 sagemakerRole = IAMRole(integTestingRole),
 requestRowSerializer =
 new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures"),
 trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures"),
 trainingInstanceType = "ml.p2.xlarge",
 trainingInstanceCount = 1,
 endpointInstanceType = "ml.c4.xlarge",
 endpointInitialInstanceCount = 1)
 .setK(10).setFeatureDim(50)

val pipeline = new Pipeline().setStages(Array(pcaEstimator, kMeansSageMakerEstimator))

// train
val pipelineModel = pipeline.fit(trainingData)

val transformedData = pipelineModel.transform(testData)
transformedData.show()

The parameter trainingSparkDataFormatOptions configures Spark to serialize to protobuf
the "projectedFeatures" column for model training. Additionally, Spark serializes to protobuf the
"label" column by default.

Because we want to make inferences using the "projectedFeatures" column, we pass the column
name into the ProtobufRequestRowSerializer.

The following example shows a transformed DataFrame:

+-----+--------------------+--------------------+-------------------+---------------+
|label| features| projectedFeatures|distance_to_cluster|closest_cluster|
+-----+--------------------+--------------------+-------------------+---------------+

Apache Spark 6126

Amazon SageMaker Developer Guide

5.0	(784,[152,153,154...	[880.731433034386...	1500.470703125	0.0
0.0	(784,[127,128,129...	[1768.51722024166...	1142.18359375	4.0
4.0	(784,[160,161,162...	[704.949236329314...	1386.246826171875	9.0
1.0	(784,[158,159,160...	[-42.328192193771...	1277.0736083984375	5.0
9.0	(784,[208,209,210...	[374.043902028333...	1211.00927734375	3.0
2.0	(784,[155,156,157...	[941.267714528850...	1496.157958984375	8.0
1.0	(784,[124,125,126...	[30.2848596410594...	1327.6766357421875	5.0
3.0	(784,[151,152,153...	[1270.14374062052...	1570.7674560546875	0.0
1.0	(784,[152,153,154...	[-112.10792566485...	1037.568359375	5.0
4.0	(784,[134,135,161...	[452.068280676606...	1165.1236572265625	3.0
3.0	(784,[123,124,125...	[610.596447285397...	1325.953369140625	7.0
5.0	(784,[216,217,218...	[142.959601818422...	1353.4930419921875	5.0
3.0	(784,[143,144,145...	[1036.71862533658...	1460.4315185546875	7.0
6.0	(784,[72,73,74,99...	[996.740157435754...	1159.8631591796875	2.0
1.0	(784,[151,152,153...	[-107.26076167417...	960.963623046875	5.0
7.0	(784,[211,212,213...	[619.771820430940...	1245.13623046875	6.0
2.0	(784,[151,152,153...	[850.152101817161...	1304.437744140625	8.0
8.0	(784,[159,160,161...	[370.041887230547...	1192.4781494140625	0.0
6.0	(784,[100,101,102...	[546.674328209335...	1277.0908203125	2.0
9.0	(784,[209,210,211...	[-29.259112927426...	1245.8182373046875	6.0
+-----+--------------------+--------------------+-------------------+---------------+

SageMaker Spark for Python (PySpark) examples

Amazon SageMaker provides an Apache Spark Python library (SageMaker PySpark) that you
can use to integrate your Apache Spark applications with SageMaker. For example, you might
use Apache Spark for data preprocessing and SageMaker for model training and hosting. For
information about the SageMaker Apache Spark library, see Use Apache Spark with Amazon
SageMaker.

Download PySpark

You can download the source code for both Python Spark (PySpark) and Scala libraries from the
SageMaker Spark GitHub repository.

For instructions on installing the SageMaker Spark library, use any the following options or visit
SageMaker PySpark.

• Install using pip:

pip install sagemaker_pyspark

Apache Spark 6127

https://github.com/aws/sagemaker-spark/tree/master/sagemaker-pyspark-sdk
https://github.com/aws/sagemaker-spark
https://github.com/aws/sagemaker-spark/tree/master/sagemaker-pyspark-sdk

Amazon SageMaker Developer Guide

• Install from the source:

git clone git@github.com:aws/sagemaker-spark.git
cd sagemaker-pyspark-sdk
python setup.py install

• You can also create a new notebook in a notebook instance that uses either the Sparkmagic
(PySpark) or the Sparkmagic (PySpark3) kernel and connect to a remote Amazon EMR
cluster.

Note

The Amazon EMR cluster must be configured with an IAM role that has the
AmazonSageMakerFullAccess policy attached. For information about configuring
roles for an EMR cluster, see Configure IAM Roles for Amazon EMR Permissions to AWS
Services in the Amazon EMR Management Guide.

PySpark examples

For examples on using SageMaker PySpark, see:

• Using Amazon SageMaker with Apache Spark in Read the Docs.

• SageMaker Spark GitHub repository.

To run the notebooks on a notebook instance, see Example Notebooks. To run the notebooks on
Studio, see Create or Open an Amazon SageMaker Studio Classic Notebook.

Use Chainer with Amazon SageMaker

You can use SageMaker to train and deploy a model using custom Chainer code. The SageMaker
Python SDK Chainer estimators and models and the SageMaker open-source Chainer container
make writing a Chainer script and running it in SageMaker easier.

What do you want to do?

I want to train a custom Chainer model in SageMaker.

For a sample Jupyter notebook, see the Chainer example notebooks in the Amazon SageMaker
Examples GitHub repository.

Chainer 6128

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-iam-roles.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-iam-roles.html
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-spark/index.html
https://github.com/aws/sagemaker-spark
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/mxnet_mnist

Amazon SageMaker Developer Guide

For documentation, see Train a Model with Chainer.

I have a Chainer model that I trained in SageMaker, and I want to deploy it to a hosted endpoint.

For more information, see Deploy Chainer models.

I have a Chainer model that I trained outside of SageMaker, and I want to deploy it to a SageMaker
endpoint

For more information, see Deploy Endpoints from Model Data.

I want to see the API documentation for Amazon SageMaker Python SDK Chainer classes.

For more information, see Chainer Classes.

I want to find information about SageMaker Chainer containers.

For more information, see the SageMaker Chainer Container GitHub repository.

For information about supported Chainer versions, and for general information about writing
Chainer training scripts and using Chainer estimators and models with SageMaker, see Using
Chainer with the SageMaker Python SDK.

Use Hugging Face with Amazon SageMaker

Amazon SageMaker enables customers to train, fine-tune, and run inference using Hugging Face
models for Natural Language Processing (NLP) on SageMaker. You can use Hugging Face for both
training and inference. This functionality is available through the development of Hugging Face
AWS Deep Learning Containers. These containers include Hugging Face Transformers, Tokenizers
and the Datasets library, which allows you to use these resources for your training and inference
jobs. For a list of the available Deep Learning Containers images, see Available Deep Learning
Containers Images. These Deep Learning Containers images are maintained and regularly updated
with security patches.

To use the Hugging Face Deep Learning Containers with the SageMaker Python SDK for training,
see the Hugging Face SageMaker Estimator. With the Hugging Face Estimator, you can use the
Hugging Face models as you would any other SageMaker Estimator. However, using the SageMaker
Python SDK is optional. You can also orchestrate your use of the Hugging Face Deep Learning
Containers with the AWS CLI and AWS SDK for Python (Boto3).

For more information on Hugging Face and the models available in it, see the Hugging Face
documentation.

Hugging Face 6129

https://sagemaker.readthedocs.io/en/stable/using_chainer.html#train-a-model-with-chainer
https://sagemaker.readthedocs.io/en/stable/using_chainer.html#deploy-chainer-models
https://sagemaker.readthedocs.io/en/stable/using_chainer.html#deploy-endpoints-from-model-data
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/sagemaker.chainer.html
https://github.com/aws/sagemaker-chainer-container
https://sagemaker.readthedocs.io/en/stable/using_chainer.html
https://sagemaker.readthedocs.io/en/stable/using_chainer.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/what-is-dlc.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html
https://huggingface.co/
https://huggingface.co/

Amazon SageMaker Developer Guide

Training

To run training, you can use any of the thousands of models available in Hugging Face and
fine-tune them for your specific use case with additional training. With SageMaker, you can use
standard training or take advantage of SageMaker Distributed Data and Model Parallel training.
As with other SageMaker training jobs using custom code, you can capture your own metrics by
passing a metrics definition to the SageMaker Python SDK as shown in Defining Training Metrics
(SageMaker Python SDK) . The captured metrics are then accessible via CloudWatch and as a
Pandas DataFrame via the TrainingJobAnalytics method. Once your model is trained and fine-
tuned, you can use it like any other model to run inference jobs.

How to run training with the Hugging Face Estimator

You can implement the Hugging Face Estimator for training jobs using the SageMaker Python SDK.
The SageMaker Python SDK is an open source library for training and deploying machine learning
models on SageMaker. For more information on the Hugging Face Estimator, see the SageMaker
Python SDK documentation.

With the SageMaker Python SDK, you can run training jobs using the Hugging Face Estimator in the
following environments:

• SageMaker Studio: Amazon SageMaker Studio is the first fully integrated development
environment (IDE) for machine learning (ML). SageMaker Studio provides a single, web-based
visual interface where you can perform all ML development steps required to prepare, build,
train and tune, deploy and manage models. For information on using Jupyter Notebooks in
Studio, see Use Amazon SageMaker Studio Notebooks.

• SageMaker Notebook Instances: An Amazon SageMaker notebook instance is a machine learning
(ML) compute instance running the Jupyter Notebook App. This app lets you run Jupyter
Notebooks in your notebook instance to prepare and process data, write code to train models,
deploy models to SageMaker hosting, and test or validate your models without SageMaker
Studio features like Debugger, Model Monitoring, and a web-based IDE.

• Locally: If you have connectivity to AWS and have appropriate SageMaker permissions, you can
use the SageMaker Python SDK locally to launch remote training and inference jobs for Hugging
Face in SageMaker on AWS. This works on your local machine, as well as other AWS services with
a connected SageMaker Python SDK and appropriate permissions.

Hugging Face 6130

https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/training-metrics.html#define-train-metrics-sdk
https://docs.aws.amazon.com/sagemaker/latest/dg/training-metrics.html#define-train-metrics-sdk
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html
https://sagemaker.readthedocs.io/en/stable/api/training/analytics.html#sagemaker.analytics.TrainingJobAnalytics
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html

Amazon SageMaker Developer Guide

Inference

For inference, you can use your trained Hugging Face model or one of the pretrained Hugging Face
models to deploy an inference job with SageMaker. With this collaboration, you only need one line
of code to deploy both your trained models and pre-trained models with SageMaker. You can also
run inference jobs without having to write any custom inference code. With custom inference code,
you can customize the inference logic by providing your own Python script.

How to deploy an inference job using the Hugging Face Deep Learning Containers

You have two options for running inference with SageMaker. You can run inference using a model
that you trained, or deploy a pre-trained Hugging Face model.

• Run inference with your trained model: You have two options for running inference with
your own trained model. You can run inference with a model that you trained using an existing
Hugging Face model with the SageMaker Hugging Face Deep Learning Containers, or you can
bring your own existing Hugging Face model and deploy it using SageMaker. When you run
inference with a model that you trained with the SageMaker Hugging Face Estimator, you can
deploy the model immediately after training completes or you can upload the trained model to
an Amazon S3 bucket and ingest it when running inference later. If you bring your own existing
Hugging Face model, you must upload the trained model to an Amazon S3 bucket and ingest
that bucket when running inference as shown in Deploy your Hugging Face Transformers for
inference example.

• Run inference with a pre-trained HuggingFace model: You can use one of the thousands of
pre-trained Hugging Face models to run your inference jobs with no additional training needed.
To run inference, you select the pre-trained model from the list of Hugging Face models, as
outlined in Deploy pre-trained Hugging Face Transformers for inference example.

What do you want to do?

The following Jupyter Notebooks in the Hugging Face notebooks repository illustrate how to use
the Hugging Face Deep Learning Containers with SageMaker in various use cases.

I want to train and deploy a text classification model using Hugging Face in SageMaker with
PyTorch.

For a sample Jupyter Notebook, see the PyTorch Getting Started Demo.

Hugging Face 6131

https://github.com/huggingface/notebooks/blob/master/sagemaker/10_deploy_model_from_s3/deploy_transformer_model_from_s3.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/10_deploy_model_from_s3/deploy_transformer_model_from_s3.ipynb
https://huggingface.co/models
https://github.com/huggingface/notebooks/blob/master/sagemaker/11_deploy_model_from_hf_hub/deploy_transformer_model_from_hf_hub.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/01_getting_started_pytorch/sagemaker-notebook.ipynb

Amazon SageMaker Developer Guide

I want to train and deploy a text classification model using Hugging Face in SageMaker with
TensorFlow.

For a sample Jupyter Notebook, see the TensorFlow Getting Started example.

I want to run distributed training with data parallelism using Hugging Face and SageMaker
Distributed.

For a sample Jupyter Notebook, see the Distributed Training example.

I want to run distributed training with model parallelism using Hugging Face and SageMaker
Distributed.

For a sample Jupyter Notebook, see the Model Parallelism example.

I want to use a spot instance to train and deploy a model using Hugging Face in SageMaker.

For a sample Jupyter Notebook, see the Spot Instances example.

I want to capture custom metrics and use SageMaker Checkpointing when training a text
classification model using Hugging Face in SageMaker.

For a sample Jupyter Notebook, see the Training with Custom Metrics example.

I want to train a distributed question-answering TensorFlow model using Hugging Face in
SageMaker.

For a sample Jupyter Notebook, see the Distributed TensorFlow Training example.

I want to train a distributed summarization model using Hugging Face in SageMaker.

For a sample Jupyter Notebook, see the Distributed Summarization Training example.

I want to train an image classification model using Hugging Face in SageMaker.

For a sample Jupyter Notebook, see the Vision Transformer Training example.

I want to deploy my trained Hugging Face model in SageMaker.

For a sample Jupyter Notebook, see the Deploy your Hugging Face Transformers for inference
example.

I want to deploy a pre-trained Hugging Face model in SageMaker.

For a sample Jupyter Notebook, see the Deploy pre-trained Hugging Face Transformers for
inference example.

Hugging Face 6132

https://github.com/huggingface/notebooks/blob/master/sagemaker/02_getting_started_tensorflow/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/03_distributed_training_data_parallelism/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/04_distributed_training_model_parallelism/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/05_spot_instances/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/06_sagemaker_metrics/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/07_tensorflow_distributed_training_data_parallelism/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/08_distributed_summarization_bart_t5/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/09_image_classification_vision_transformer/sagemaker-notebook.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/10_deploy_model_from_s3/deploy_transformer_model_from_s3.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/10_deploy_model_from_s3/deploy_transformer_model_from_s3.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/11_deploy_model_from_hf_hub/deploy_transformer_model_from_hf_hub.ipynb
https://github.com/huggingface/notebooks/blob/master/sagemaker/11_deploy_model_from_hf_hub/deploy_transformer_model_from_hf_hub.ipynb

Amazon SageMaker Developer Guide

Use PyTorch with Amazon SageMaker

You can use Amazon SageMaker to train and deploy a model using custom PyTorch code. The
SageMaker Python SDK PyTorch estimators and models and the SageMaker open-source PyTorch
container make writing a PyTorch script and running it in SageMaker easier.

What do you want to do?

I want to train a custom PyTorch model in SageMaker.

For a sample Jupyter notebook, see the PyTorch example notebook in the Amazon SageMaker
Examples GitHub repository.

For documentation, see Train a Model with PyTorch.

I have a PyTorch model that I trained in SageMaker, and I want to deploy it to a hosted endpoint.

For more information, see Deploy PyTorch models.

I have a PyTorch model that I trained outside of SageMaker, and I want to deploy it to a SageMaker
endpoint

For more information, see Deploy your own PyTorch model.

I want to see the API documentation for Amazon SageMaker Python SDK PyTorch classes.

For more information, see PyTorch Classes.

I want to find the SageMaker PyTorch container repository.

For more information, see SageMaker PyTorch Container GitHub repository.

I want to find information about PyTorch versions supported by AWS Deep Learning Containers.

For more information, see Available Deep Learning Container Images.

For general information about writing PyTorch training scripts and using PyTorch estimators and
models with SageMaker, see Using PyTorch with the SageMaker Python SDK.

R User Guide to Amazon SageMaker

This document will walk you through ways of leveraging Amazon SageMaker features using R. This
guide introduces SageMaker's built-in R kernel, how to get started with R on SageMaker, and finally
several example notebooks.

PyTorch 6133

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/pytorch_mnist
https://sagemaker.readthedocs.io/en/stable/using_pytorch.html#train-a-model-with-pytorch
https://sagemaker.readthedocs.io/en/stable/using_pytorch.html#deploy-pytorch-models
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#bring-your-own-model
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/sagemaker.pytorch.html
https://github.com/aws/sagemaker-pytorch-container
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://sagemaker.readthedocs.io/en/stable/using_pytorch.html

Amazon SageMaker Developer Guide

The examples are organized in three levels, Beginner, Intermediate, and Advanced. They start
from Getting Started with R on SageMaker, continue to end-to-end machine learning with R on
SageMaker, and then finish with more advanced topics such as SageMaker Processing with R script,
and Bring-Your-Own (BYO) R algorithm to SageMaker.

For information on how to bring your own custom R image to Studio, see Bring your own
SageMaker image. For a similar blog article, see Bringing your own R environment to Amazon
SageMaker Studio.

RStudio Support in SageMaker

Amazon SageMaker supports RStudio as a fully-managed integrated development environment
(IDE) integrated with Amazon SageMaker domain. With RStudio integration, you can launch an
RStudio environment in the domain to run your RStudio workflows on SageMaker resources. For
more information, see RStudio on Amazon SageMaker.

R Kernel in SageMaker

SageMaker notebook instances support R using a pre-installed R kernel. Also, the R kernel has the
reticulate library, an R to Python interface, so you can use the features of SageMaker Python SDK
from within an R script.

• reticulatelibrary: provides an R interface to the Amazon SageMaker Python SDK. The reticulate
package translates between R and Python objects.

Get Started with R in SageMaker

• Create a Notebook Instance using the t2.medium instance type and default storage size. You
can pick a faster instance and more storage if you plan to continue using the instance for more
advanced examples, or create a bigger instance later.

• Wait until the status of the notebook is In Service, and then click Open Jupyter.

R 6134

https://sagemaker-examples.readthedocs.io/en/latest/r_examples/r_sagemaker_hello_world/r_sagemaker_hello_world.html
https://aws.amazon.com/blogs/machine-learning/bringing-your-own-r-environment-to-amazon-sagemaker-studio/
https://aws.amazon.com/blogs/machine-learning/bringing-your-own-r-environment-to-amazon-sagemaker-studio/
https://rstudio.github.io/reticulate/
https://sagemaker.readthedocs.io
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-create-ws.html

Amazon SageMaker Developer Guide

• Create a new notebook with R kernel from the list of available environments.

• When the new notebook is created, you should see an R logo in the upper right corner of the
notebook environment, and also R as the kernel under that logo. This indicates that SageMaker
has successfully launched the R kernel for this notebook.

• Alternatively, when you are in a Jupyter notebook, you can use Kernel menu, and then select R
from Change Kernel option.

R 6135

Amazon SageMaker Developer Guide

Example Notebooks

Prerequisites

Getting Started with R on SageMaker: This sample notebook describes how you can develop
R scripts using Amazon SageMaker‘s R kernel. In this notebook you set up your SageMaker
environment and permissions, download the abalone dataset from the UCI Machine Learning
Repository, do some basic processing and visualization on the data, then save the data as .csv
format to S3.

Beginner Level

SageMaker Batch Transform using R Kernel: This sample Notebook describes how to conduct a
batch transform job using SageMaker’s Transformer API and the XGBoost algorithm. The notebook
also uses the Abalone dataset.

Intermediate Level

Hyperparameter Optimization for XGBoost in R: This sample notebook extends the previous
beginner notebooks that use the abalone dataset and XGBoost. It describes how to do model
tuning with hyperparameter optimization. You will also learn how to use batch transform for
batching predictions, as well as how to create a model endpoint to make real-time predictions.

Amazon SageMaker Processing with R: SageMaker Processing lets you preprocess, post-process and
run model evaluation workloads. This example shows you how to create an R script to orchestrate a
Processing job.

Advanced Level

Train and Deploy Your Own R Algorithm in SageMaker: Do you already have an R algorithm, and
you want to bring it into SageMaker to tune, train, or deploy it? This example walks you through

R 6136

https://sagemaker-examples.readthedocs.io/en/latest/r_examples/r_sagemaker_hello_world/r_sagemaker_hello_world.html
https://archive.ics.uci.edu/ml/datasets/abalone
https://archive.ics.uci.edu/datasets
https://archive.ics.uci.edu/datasets
https://sagemaker-examples.readthedocs.io/en/latest/r_examples/r_batch_transform/r_xgboost_batch_transform.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://sagemaker-examples.readthedocs.io/en/latest/r_examples/r_xgboost_hpo_batch_transform/r_xgboost_hpo_batch_transform.html
https://sagemaker.readthedocs.io/en/stable/tuner.html
https://sagemaker-examples.readthedocs.io/en/latest/r_examples/r_in_sagemaker_processing/r_in_sagemaker_processing.html
https://aws.amazon.com/blogs/aws/amazon-sagemaker-processing-fully-managed-data-processing-and-model-evaluation/
https://sagemaker-examples.readthedocs.io/en/latest/r_examples/r_byo_r_algo_hpo/tune_r_bring_your_own.html

Amazon SageMaker Developer Guide

how to customize SageMaker containers with custom R packages, all the way to using a hosted
endpoint for inference on your R-origin model.

Use Scikit-learn with Amazon SageMaker

You can use Amazon SageMaker to train and deploy a model using custom Scikit-learn code. The
SageMaker Python SDK Scikit-learn estimators and models and the SageMaker open-source Scikit-
learn containers make writing a Scikit-learn script and running it in SageMaker easier.

Requirements

Scikit-learn 1.2 has the following dependencies.

Dependency Minimum version

Python 3.8

NumPy 1.17.3

SciPy 1.3.2

joblib 1.1.1

threadpoolctl 2.0.0

The SageMaker Scikit-learn container supports the following Scikit-learn versions.

Supported Scikit-learn version Minimum Python version

1.2-1 3.8

1.0-1 3.7

0.23-1 3.6

0.20.0 2.7 or 3.4

For general information about writing Scikit-learn training scripts and using Scikit-learn estimators
and models with SageMaker, see Using Scikit-learn with the SageMaker Python SDK.

Scikit-learn 6137

https://sagemaker.readthedocs.io/en/stable/using_sklearn.html

Amazon SageMaker Developer Guide

What do you want to do?

Note

Matplotlib v2.2.3 or newer is required to run the SageMaker Scikit-learn example
notebooks.

I want to use Scikit-learn for data processing, feature engineering, or model evaluation in
SageMaker.

For a sample Jupyter notebook, see https://github.com/awslabs/
amazon-sagemaker-examples/tree/master/sagemaker_processing/
scikit_learn_data_processing_and_model_evaluation.

For documentation, see ReadTheDocs.

I want to train a custom Scikit-learn model in SageMaker.

For a sample Jupyter notebook, see https://github.com/awslabs/amazon-sagemaker-
examples/tree/master/sagemaker-python-sdk/scikit_learn_iris.

For documentation, see Train a Model with Scikit-learn.

I have a Scikit-learn model that I trained in SageMaker, and I want to deploy it to a hosted
endpoint.

For more information, see Deploy Scikit-learn models.

I have a Scikit-learn model that I trained outside of SageMaker, and I want to deploy it to a
SageMaker endpoint

For more information, see Deploy Endpoints from Model Data.

I want to see the API documentation for Amazon SageMaker Python SDK Scikit-learn classes.

For more information, see Scikit-learn Classes.

I want to see information about SageMaker Scikit-learn containers.

For more information, see SageMaker Scikit-learn Container GitHub repository.

Scikit-learn 6138

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_processing/scikit_learn_data_processing_and_model_evaluation
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_processing/scikit_learn_data_processing_and_model_evaluation
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker_processing/scikit_learn_data_processing_and_model_evaluation
https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html#data-pre-processing-and-model-evaluation-with-scikit-learn
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_iris
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-python-sdk/scikit_learn_iris
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html#train-a-model-with-sklearn
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html#deploy-sklearn-models
https://sagemaker.readthedocs.io/en/stable/using_sklearn.html#deploy-endpoints-from-model-data
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/sagemaker.sklearn.html
https://github.com/aws/sagemaker-scikit-learn-container

Amazon SageMaker Developer Guide

Use SparkML Serving with Amazon SageMaker

The Amazon SageMaker Python SDK SparkML Serving model and predictor and the Amazon
SageMaker open-source SparkML Serving container support deploying Apache Spark ML pipelines
serialized with MLeap in SageMaker to get inferences.

For information about using the SparkML Serving container to deploy models to SageMaker, see
SageMaker Spark ML Container GitHub repository. For information about the Amazon SageMaker
Python SDK SparkML Serving model and predictors, see the SparkML Serving Model and Predictor
API documentation.

Use TensorFlow with Amazon SageMaker

You can use Amazon SageMaker to train and deploy a model using custom TensorFlow code.
The SageMaker Python SDK TensorFlow estimators and models and the SageMaker open-source
TensorFlow containers make writing a TensorFlow script and running it in SageMaker easier.

Use TensorFlow Version 1.11 and Later

For TensorFlow versions 1.11 and later, the Amazon SageMaker Python SDK supports script mode
training scripts.

What do you want to do?

I want to train a custom TensorFlow model in SageMaker.

For a sample Jupyter notebook, see TensorFlow script mode training and serving.

For documentation, see Train a Model with TensorFlow.

I have a TensorFlow model that I trained in SageMaker, and I want to deploy it to a hosted
endpoint.

For more information, see Deploy TensorFlow Serving models.

I have a TensorFlow model that I trained outside of SageMaker, and I want to deploy it to a
SageMaker endpoint

For more information, see Deploying directly from model artifacts.

I want to see the API documentation for Amazon SageMaker Python SDK TensorFlow classes.

For more information, see TensorFlow Estimator.

SparkML Serving 6139

https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-sparkml-serving-container
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/sagemaker.sparkml.html
https://sagemaker.readthedocs.io/en/stable/sagemaker.sparkml.html
https://sagemaker.readthedocs.io
https://sagemaker-examples.readthedocs.io/en/latest/sagemaker-python-sdk/tensorflow_script_mode_training_and_serving/tensorflow_script_mode_training_and_serving.html
https://sagemaker.readthedocs.io/en/stable/using_tf.html#train-a-model-with-tensorflow
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploy-tensorflow-serving-models
https://sagemaker.readthedocs.io/en/stable/using_tf.html#deploying-directly-from-model-artifacts
https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/sagemaker.tensorflow.html

Amazon SageMaker Developer Guide

I want to find the SageMaker TensorFlow container repository.

For more information, see SageMaker TensorFlow Container GitHub repository.

I want to find information about TensorFlow versions supported by AWS Deep Learning Containers.

For more information, see Available Deep Learning Container Images.

For general information about writing TensorFlow script mode training scripts and using
TensorFlow script mode estimators and models with SageMaker, see Using TensorFlow with the
SageMaker Python SDK.

Use TensorFlow Legacy Mode for Versions 1.11 and Earlier

The Amazon SageMaker Python SDK provides a legacy mode that supports TensorFlow versions
1.11 and earlier. Use legacy mode TensorFlow training scripts to run TensorFlow jobs in SageMaker
if:

• You have existing legacy mode scripts that you do not want to convert to script mode.

• You want to use a TensorFlow version earlier than 1.11.

For information about writing legacy mode TensorFlow scripts to use with the SageMaker Python
SDK, see TensorFlow SageMaker Estimators and Models.

Use Triton Inference Server with Amazon SageMaker

SageMaker enables customers to deploy a model using custom code with NVIDIA Triton Inference
Server. This functionality is available through the development of Triton Inference Server
Containers. These containers include NVIDIA Triton Inference Server, support for common ML
frameworks, and useful environment variables that let you optimize performance on SageMaker.
For a list of all available Deep Learning Containers images, see Available Deep Learning Containers
Images. Deep Learning Containers images are maintained and regularly updated with security
patches.

You can use the Triton Inference Server Container with SageMaker Python SDK as you would any
other container in your SageMaker models. However, using the SageMaker Python SDK is optional.
You can use Triton Inference Server Containers with the AWS CLI and AWS SDK for Python (Boto3).

For more information on NVIDIA Triton Inference Server see the Triton documentation.

Triton Inference Server 6140

https://github.com/aws/sagemaker-tensorflow-container
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://sagemaker.readthedocs.io/en/stable/using_tf.html
https://sagemaker.readthedocs.io/en/stable/using_tf.html
https://sagemaker.readthedocs.io
https://github.com/aws/sagemaker-python-sdk/tree/v1.12.0/src/sagemaker/tensorflow#tensorflow-sagemaker-estimators-and-models
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/what-is-dlc.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/what-is-dlc.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://docs.nvidia.com/deeplearning/triton-inference-server/#

Amazon SageMaker Developer Guide

Inference

Note

The Triton Python backend uses shared memory (SHMEM) to connect your code to Triton.
SageMaker Inference provides up to half of the instance memory as SHMEM so you can use
an instance with more memory for larger SHMEM size.

For inference, you can use your trained ML models with Triton Inference Server to deploy an
inference job with SageMaker.

Some of the key features of Triton Inference Server Container are:

• Support for multiple frameworks: Triton can be used to deploy models from all major ML
frameworks. Triton supports TensorFlow GraphDef and SavedModel, ONNX, PyTorch TorchScript,
TensorRT, and custom Python/C++ model formats.

• Model pipelines: Triton model ensemble represents a pipeline of one model with pre/post
processing logic and the connection of input and output tensors between them. A single
inference request to an ensemble triggers the execution of the entire pipeline.

• Concurrent model execution: Multiple instances of the same model can run simultaneously on
the same GPU or on multiple GPUs.

• Dynamic batching: For models that support batching, Triton has multiple built-in scheduling and
batching algorithms that combine individual inference requests together to improve inference
throughput. These scheduling and batching decisions are transparent to the client requesting
inference.

• Diverse CPU and GPU support: The models can be executed on CPUs or GPUs for maximum
flexibility and to support heterogeneous computing requirements.

What do you want to do?

I want to deploy my trained PyTorch model in SageMaker.

For a sample Jupyter Notebook, see the Deploy your PyTorch Resnet50 model with Triton
Inference Server example.

Triton Inference Server 6141

https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-triton/resnet50/triton_resnet50.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-triton/resnet50/triton_resnet50.ipynb

Amazon SageMaker Developer Guide

I want to deploy my trained Hugging Face model in SageMaker.

For a sample Jupyter Notebook, see the Deploy your PyTorch BERT model with Triton Inference
Server example.

API Reference

Making API calls directly from code is cumbersome, and requires you to write code to authenticate
your requests. Amazon SageMaker provides the following alternatives:

Topics

• Programming Model for Amazon SageMaker

• APIs, CLI, and SDKs

Programming Model for Amazon SageMaker

Making API calls directly from code is cumbersome, and requires you to write code to authenticate
your requests. Amazon SageMaker provides the following alternatives:

• Use the SageMaker console–With the console, you don't write any code. You use the console UI
to start model training or deploy a model. The console works well for simple jobs, where you use
a built-in training algorithm and you don't need to preprocess training data.

• Modify the example Jupyter notebooks–SageMaker provides several Jupyter notebooks that
train and deploy models using specific algorithms and datasets. Start with a notebook that has a
suitable algorithm and modify it to accommodate your data source and specific needs.

• Write model training and inference code from scratch–SageMaker provides multiple AWS
SDK languages (listed in the overview) and the Amazon SageMaker Python SDK, a high-level
Python library that you can use in your code to start model training jobs and deploy the resulting
models.

API Reference 6142

https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-triton/nlp_bert/triton_nlp_bert.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-triton/nlp_bert/triton_nlp_bert.ipynb
https://sagemaker.readthedocs.io

Amazon SageMaker Developer Guide

• The SageMaker Python SDK–This Python library simplifies model training and deployment. In
addition to authenticating your requests, the library abstracts platform specifics by providing
simple methods and default parameters. For example:

• To deploy your model, you call only the deploy() method. The method creates a
SageMaker model artifact, an endpoint configuration, then deploys the model on an
endpoint.

• If you use a custom framework script for model training, you call the fit() method. The
method creates a .gzip file of your script, uploads it to an Amazon S3 location, and then
runs it for model training, and other tasks. For more information, see Machine Learning
Frameworks and Languages.

• To set defaults for SageMaker API calls made by the SageMaker Python SDK, you use a
default configuration dictionary. For more information, see Configuring and using defaults
with the SageMaker Python SDK.

• The AWS SDKs – The SDKs provide methods that correspond to the SageMaker API (see
Operations). Use the SDKs to programmatically start a model training job and host the
model in SageMaker. SDK clients handle authentication for you, so you don't need to write
authentication code. They are available in multiple languages and platforms. For more
information, see the preceding list in the overview.

In Get started, you train and deploy a model using an algorithm provided by SageMaker. That
exercise shows how to use both of these libraries. For more information, see Get started.

• Integrate SageMaker into your Apache Spark workflow–SageMaker provides a library for
calling its APIs from Apache Spark. With it, you can use SageMaker-based estimators in an
Apache Spark pipeline. For more information, see Use Apache Spark with Amazon SageMaker.

Programming Model for Amazon SageMaker 6143

https://sagemaker.readthedocs.io/en/stable/overview.html#configuring-and-using-defaults-with-the-sagemaker-python-sdk
https://sagemaker.readthedocs.io/en/stable/overview.html#configuring-and-using-defaults-with-the-sagemaker-python-sdk
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Operations.html

Amazon SageMaker Developer Guide

APIs, CLI, and SDKs

Amazon SageMaker provides APIs, SDKs, and a command line interface that you can use to create
and manage notebook instances and train and deploy models.

• Amazon SageMaker Python SDK (Recommended)

• Amazon SageMaker API Reference

• Amazon Augmented AI API Reference

• AWS Command Line Interface

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

• AWS SDK for Python (Boto)

• AWS SDK for Ruby

• Amazon SageMaker Spark

You can also get code examples from the Amazon SageMaker example notebooks GitHub
repository.

• Example notebooks

SageMaker Distribution Images

SageMaker Distribution is a collection of Docker images, which includes popular libraries and
packages for machine learning, data science, and data analytics visualization. The Docker images
include deep learning frameworks such as the following:

• PyTorch

• TensorFlow

• Keras

APIs, CLI, and SDKs 6144

https://sagemaker.readthedocs.io
https://sagemaker.readthedocs.io/en/stable/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Reference.html
https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/sagemaker/index.html#cli-aws-sagemaker
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SageMaker/NSageMaker.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-sagemaker/html/class_aws_1_1_sage_maker_1_1_sage_maker_client.html
https://docs.aws.amazon.com/sdk-for-go/api/service/sagemaker/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sagemaker/AmazonSageMaker.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SageMaker.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-sagemaker-2017-07-24.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SageMaker.html
https://github.com/aws/sagemaker-spark/blob/master/README.md
https://github.com/awslabs/amazon-sagemaker-examples

Amazon SageMaker Developer Guide

It also includes popular Python packages such as the following:

• numpy

• scikit-learn

• pandas

Within the container, you can use the following IDEs:

• JupyterLab

• Code Editor, based on Code-OSS (Visual Studio Code Open Source)

Each SageMaker Distribution image has a GPU variant and a CPU variant.

SageMaker Distribution is available in:

• Studio

• Studio Lab

The packages included in the container are guaranteed to be compatible with each other and the
runtime is built to work anywhere. You can use the container to run Amazon SageMaker Studio
notebooks or SageMaker training jobs. You can also run the container on a local laptop. Use
SageMaker Distribution to quickly get started with ML development in your local environment.
Seamlessly transition to tasks such as the batch execution of training jobs without needing to
reconfigure your runtime environment.

For the list of all supported libraries within SageMaker distribution and their corresponding
versions, see the SageMaker Distribution GitHub. You can also use the pre-built and ready-to-use
SageMaker Distribution images from the Amazon Elastic Container Registry Gallery.

Supported packages and versions

For the list of the packages that are installed in a version of SageMaker Distribution, see the
RELEASE.md file in the build_artifacts directory of the SageMaker DistributionGitHub repository.

SageMaker Distribution Image Support Policy

Major A major version
release of Amazon

Half-yearly

Supported packages and versions 6145

https://github.com/aws/sagemaker-distribution
https://gallery.ecr.aws/sagemaker/sagemaker-distribution
https://github.com/aws/sagemaker-distribution/blob/main/build_artifacts
https://github.com/aws/sagemaker-distribution

Amazon SageMaker Developer Guide

SageMaker Distribut
ion upgrades all of its
core dependencies to
the latest compatibl
e version. SageMaker
Distribution can
add or remove
packages in a major
version release. Major
versions are denoted
by the first number in
the version string. For
example, 1.0, 2.0, 3.0.

Minor A minor version
release of Amazon
SageMaker Distribut
ion ensures that all
of its core dependenc
ies are updated to
the latest compatible
minor version within
the same major
version. SageMaker
Distribution can
add new packages
during a minor
version release.
Minor versions are
denoted by the
second number in the
version string. For
example, 1.1, 1.2, or
2.1

Monthly (addition
al minor versions
released on an add
needed basis as well)

Supported packages and versions 6146

Amazon SageMaker Developer Guide

Patch A patch version
release of Amazon
SageMaker Distribut
ion ensures that all
its core dependenc
ies are updated to
the latest compatible
patch version within
the same minor
version. SageMaker
Distribution does
not add or remove
packages during a
patch version release.

7 days (overnight
fixes also deployed
based on the
severity)

Important

• SageMaker Distribution v0.x.y is only used in Studio Classic. SageMaker Distribution v1.x.y
is only used in JupyterLab.

• We try to update the Studio images with new versions regularly. If the packages in the
Distribution image are out of date, we recommend waiting for the next update.

• Some dependencies, such as Python, are treated differently. Amazon SageMaker
Distribution allows for a minor upgrade of Python with a release. For example, you can
upgrade Python 3.10 to Python 3.11 when you upgrade from version 4.8 to 5.0.

Document History for Amazon SageMaker

Change Description Date

AWS managed policy updates
- New policy

SageMaker added the
following new AWS managed
policy.

February 2, 2024

SageMaker Document History 6147

Amazon SageMaker Developer Guide

• AmazonSageMakerCan
vasBedrockAccess

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerCan
vasFullAccess

January 24, 2024

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerCan
vasFullAccess

December 8, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerCan
vasDataPrepFullAccess

December 7, 2023

SageMaker Document History 6148

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasBedrockAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasBedrockAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasDataPrepFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasDataPrepFullAccess

Amazon SageMaker Developer Guide

New features re:Invent 2023 The following new features
were introduced at re:Invent
2023.

• SageMaker Canvas Chat for
data prep

• Code Editor

• Deep learning containers
for large model inference

• Deploy models for real-time
inference

• SageMaker Distribution
Images

• domain onboarding
simplification

• Amazon S3 Express One
Zone

• Foundation model evaluatio
ns (FMEval)

• SageMakerHyperPod

• JupyterAI

• JupyterLab in Studio

• SageMakerNotebook Jobs

• SageMaker Pipelines

• SageMakersmart sifting

• SageMakerStudio

November 30, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy at re:Invent 2023.

• AmazonSageMakerFul
lAccess

November 30, 2023

SageMaker Document History 6149

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat-fine-tune.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat-fine-tune.html
https://docs.aws.amazon.com/sagemaker/latest/dg/code-editor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/large-model-inference-dlc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/large-model-inference-dlc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deploy-models.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deploy-models.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-distribution.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-distribution.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-foundation-model-evaluate.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-foundation-model-evaluate.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-hyperpod.html
https://docs.aws.amazon.com/sagemaker/latest/dg/jupyterai.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-jl.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-step-decorator.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-smart-sifting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess

Amazon SageMaker Developer Guide

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policies at re:Invent 2023.

• AmazonSageMakerCan
vasAIServicesAccess

• AmazonSageMakerCan
vasDataPrepFullAccess

November 29, 2023

AWS managed policy updates
- New policies

SageMaker added the
following new AWS managed
policy at re:Invent 2023.

• AmazonSageMakerClu
sterInstanceRolePolicy

November 29, 2023

AWS managed policy updates
- New policy

SageMaker added the
following new AWS managed
policy.

• AmazonSageMakerCan
vasDataPrepFullAccess

October 26, 2023

AWS managed policy updates
- New policy

SageMaker added the
following new AWS managed
policy.

• AmazonSageMakerCan
vasDirectDeployAccess

October 6, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policies.

• AmazonSageMakerCan
vasFullAccess

• AmazonSageMakerCan
vasAIServicesAccess

September 29, 2023

SageMaker Document History 6150

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasDataPrepFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasDataPrepFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-cluster.html#security-iam-awsmanpol-AmazonSageMakerClusterInstanceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-cluster.html#security-iam-awsmanpol-AmazonSageMakerClusterInstanceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasDataPrepFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasDataPrepFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasDirectDeployAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasDirectDeployAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess.html

Amazon SageMaker Developer Guide

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerCan
vasFullAccess

August 29, 2023

AWS managed policy updates
- New policies

SageMaker added the
following new AWS managed
policies.

• AmazonSageMakerPar
tnerServiceCatalog
ProductsApiGateway
ServiceRolePolicy

• AmazonSageMakerPar
tnerServiceCatalog
ProductsCloudForma
tionServiceRolePolicy

• AmazonSageMakerPar
tnerServiceCatalog
ProductsLambdaServ
iceRolePolicy

August 1, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerCan
vasFullAccess

July 24, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerMod
elGovernanceUseAccess

July 17, 2023

SageMaker Document History 6151

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsApiGatewayServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsApiGatewayServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsApiGatewayServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsApiGatewayServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsCloudFormationServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsCloudFormationServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsCloudFormationServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsCloudFormationServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsLambdaServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsLambdaServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsLambdaServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-AmazonSageMakerPartnerServiceCatalogProductsLambdaServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-governance.html#security-iam-awsmanpol-governance-AmazonSageMakerModelGovernanceUseAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-governance.html#security-iam-awsmanpol-governance-AmazonSageMakerModelGovernanceUseAccess

Amazon SageMaker Developer Guide

Refactored Table of Contents SageMaker Developer Guide
Table of Contents refactore
d to better reflect the new
content.

June 1, 2023

SageMaker ECR Paths Docker Registry Paths and
Example Code published.

May 25, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerGeo
spatialExecutionRole.

May 10, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerCan
vasFullAccess

May 4, 2023

AWS managed policy updates
- New policy

SageMaker added the
following new AWS managed
policy.

• AmazonSageMakerMod
elRegistryFullAccess

April 12, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerCan
vasFullAccess

March 24, 2023

SageMaker Document History 6152

https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg-ecr-paths/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-geospatial.html#security-iam-awsmanpol-AmazonSageMakerGeospatialExecutionRole
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-geospatial.html#security-iam-awsmanpol-AmazonSageMakerGeospatialExecutionRole
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-model-registry.html#security-iam-awsmanpol-AmazonSageMakerModelRegistryFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-model-registry.html#security-iam-awsmanpol-AmazonSageMakerModelRegistryFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html

Amazon SageMaker Developer Guide

AWS managed policy updates
- New policy

SageMaker added the
following new AWS managed
policy.

• AmazonSageMakerCan
vasAIServicesAccess

March 23, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerNot
ebooksServiceRolePolicy

March 9, 2023

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policy.

• AmazonSageMakerNot
ebooksServiceRolePolicy

January 12, 2023

SageMaker Document History 6153

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-notebooks.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-notebooks.html#security-iam-awsmanpol-AmazonSageMakerCanvasAIServicesAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-notebooks.html#security-iam-awsmanpol-AmazonSageMakerNotebooksServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-notebooks.html#security-iam-awsmanpol-AmazonSageMakerNotebooksServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-notebooks.html#security-iam-awsmanpol-AmazonSageMakerNotebooksServiceRolePolicy
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-notebooks.html#security-iam-awsmanpol-AmazonSageMakerNotebooksServiceRolePolicy

Amazon SageMaker Developer Guide

New features re:Invent 2022 The following new features
were introduced at re:Invent
2022.

• SageMaker geospatial
capabilities

• SageMaker Model Cards

• SageMaker Model
Dashboard

• SageMaker Role Manager

• Collaboration with shared
spaces

• Inference shadow tests

• Notebook-based Workflows

• Data Wrangler data
preparation widget

• AutoML step in Amazon
SageMaker Model Building
Pipelines

• Studio Classic Git extension

November 30, 2022

AWS managed policy updates
- Updates to existing policies

SageMaker updated the
following AWS managed
policies at re:Invent 2022.

• AmazonSageMakerFul
lAccess

• AmazonSageMakerFea
tureStoreAccess

• AmazonSageMakerCan
vasFullAccess

November 30, 2022

SageMaker Document History 6154

https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial.html
https://docs.aws.amazon.com/sagemaker/latest/dg/geospatial.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-dashboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-dashboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/role-manager.html
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-space.html
https://docs.aws.amazon.com/sagemaker/latest/dg/domain-space.html
https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-auto-run.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-interactively-prepare-data-notebook.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-interactively-prepare-data-notebook.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-automl
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-git-attach.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonSageMakerFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-feature-store.html#security-iam-awsmanpol-AmazonSageMakerFeatureStoreAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-feature-store.html#security-iam-awsmanpol-AmazonSageMakerFeatureStoreAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasFullAccess.html

Amazon SageMaker Developer Guide

AWS managed policy updates
- New policies

SageMaker added the
following new AWS managed
policies at re:Invent 2022.

• AmazonSageMakerGeo
spatialFullAccess

• AmazonSageMakerGeo
spatialExecutionRole

• AmazonSageMakerMod
elGovernanceUseAccess

November 30, 2022

New features re:Invent 2021 The following new features
were introduced at re:Invent
2021.

• SageMaker Canvas

• SageMaker Ground Truth
Plus

• SageMaker Inference
Recommender

• SageMaker Serverless
Endpoints

• SageMaker Studio Lab

• SageMaker Studio
Notebooks and Amazon
EMR

• SageMaker Training
Compiler

December 1, 2021

Autopilot time series data Amazon SageMaker Autopilot
accepts time series as model
inputs. For more informati
on, see Amazon SageMaker
Autopilot data and problem
types.

October 25, 2021

SageMaker Document History 6155

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-geospatial.html#security-iam-awsmanpol-AmazonSageMakerGeospatialFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-geospatial.html#security-iam-awsmanpol-AmazonSageMakerGeospatialFullAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-geospatial.html#security-iam-awsmanpol-AmazonSageMakerGeospatialExecutionRole
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-geospatial.html#security-iam-awsmanpol-AmazonSageMakerGeospatialExecutionRole
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-governance.html#security-iam-awsmanpol-governance-AmazonSageMakerModelGovernanceUseAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-governance.html#security-iam-awsmanpol-governance-AmazonSageMakerModelGovernanceUseAccess
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gtp.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gtp.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-recommender.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lab.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-emr-cluster.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-emr-cluster.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-emr-cluster.html
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html
https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html

Amazon SageMaker Developer Guide

AWS managed policies Started tracking changes for
SageMaker managed policies.

June 10, 2021

New features re:Invent 2020 The following new features
were introduced at re:Invent
2020.

• Amazon SageMaker Model
Building Pipelines

• Automate MLOps with
SageMaker Projects

• SageMaker Edge Manager

• SageMaker Clarify

• SageMaker Data Wrangler

• SageMaker Feature Store

• SageMaker Studio
JumpStart

• Register and Deploy Models
with Model Registry

• SageMaker Distributed

• Deep Profiling with
SageMaker Debugger

December 1, 2020

Studio Notebooks SageMaker Studio Notebooks April 28, 2020

SageMaker Document History 6156

https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-sc.html#security-iam-awsmanpol-sc-updates
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects.html
https://docs.aws.amazon.com/sagemaker/latest/dg/edge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html

Amazon SageMaker Developer Guide

New features re:Invent 2019 The following new features
were introduced at re:Invent
2019.

• SageMaker Studio

• SageMaker Studio
Notebooks (preview)

• SageMaker Experiments

• SageMaker Autopilot

• SageMaker Debugger

• SageMaker Model Monitor

December 3, 2019

New features re:Invent 2018 The following new features
were introduced at re:Invent
2018.

• Amazon SageMaker Ground
Truth

• Amazon Elastic Inference

• SageMaker Resources in
AWS Marketplace

• SageMaker Inference
Pipelines

• SageMaker Neo

• Search Amazon SageMaker
Experiments

• Reinforcement Learning

• Associate Git Repositories
with SageMaker Notebook
Instances

• Semantic Segmentation
Algorithm

• Augmented Manifest Files
in Training Jobs

November 28, 2018

SageMaker Document History 6157

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipelines.html
https://docs.aws.amazon.com/sagemaker/latest/dg/Neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/search.html
https://docs.aws.amazon.com/sagemaker/latest/dg/search.html
https://docs.aws.amazon.com/sagemaker/latest/dg/reinforcement-learning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html

Amazon SageMaker Developer Guide

Configuring notebook
instances

Use shell scripts to configure
notebook instances when you
create or start them. For more
information, see Customize a
Notebook Instance.

May 1, 2018

Application Auto Scaling
support

Amazon SageMaker now
supports Application Auto
Scaling for production
variants. For information,
see Automatically Scaling
SageMaker Models

February 28, 2018

TensorFlow 1.5 and MXNet
1.0 support

Amazon SageMaker Deep
Learning containers now
support TensorFlow 1.5 and
Apache MXNet 1.0.

February 27, 2018

BlazingText algorithm Amazon SageMaker now
supports the BlazingText
algorithm.

January 18, 2018

KMS encryption Amazon SageMaker now
supports KMS encryption for
hosting instances and training
model artifacts at rest.

January 17, 2018

CloudTrail support Amazon SageMaker now
supports logging with AWS
CloudTrail.

January 11, 2018

DeepAR Forecasting
algorithm

Amazon SageMaker now
supports the DeepAR
algorithm for time series
forecasting.

January 8, 2018

SageMaker launch Amazon SageMaker launched
at re:Invent 2017.

November 28, 2017

SageMaker Document History 6158

https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/sagemaker/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html

Amazon SageMaker Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

6159

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon SageMaker
	Table of Contents
	What is Amazon SageMaker?
	Pricing for Amazon SageMaker
	Are you a first-time user of Amazon SageMaker?
	Overview of machine learning with Amazon SageMaker
	Amazon SageMaker Features
	New features for re:Invent 2023
	Machine learning environments
	Major features

	Get started
	Set Up Amazon SageMaker Prerequisites
	Create an AWS Account
	Create an Administrative User and Group
	AWS CLI Prerequisites

	Amazon SageMaker domain overview
	Amazon SageMaker domain
	Maintenance of applications
	Prerequisites
	Multiple domains overview
	Automatic tag propagation
	Domain resource display filtering
	Backfilling domain tags

	Domain resource isolation
	Console
	AWS CLI

	Setting defaults for a domain
	Domain default settings
	Context keys

	Attaching a Custom File System to a domain or User Profile
	Prerequisites
	Attaching a custom file system with the AWS CLI

	Environment
	View and edit domains
	View domains
	Console
	AWS CLI

	Edit domain settings
	Console
	AWS CLI

	Delete an Amazon SageMaker domain
	Requirements
	EFS files
	Delete an Amazon SageMaker domain (console)
	Delete an Amazon SageMaker domain (AWS CLI)

	Domain user profiles
	Add and Remove User Profiles
	Add user profiles
	Add user profiles from the console
	Create user profiles from the AWS CLI

	Remove user profiles
	Remove user profiles from the console
	Remove user profiles from the AWS CLI

	View User Profiles and User Profile Details
	View user profiles
	View user profiles from the console
	View user profiles from the AWS CLI

	View user profile details
	View user profile details from the console
	View user profile details from the AWS CLI

	IAM Identity Center Groups in a domain
	View groups and users
	Add groups and users
	SageMaker console
	AWS CLI

	Remove groups

	Quick onboard to Amazon SageMaker domain
	Quick setup for single users
	Onboard to the domain quickly using Set up for single user from the SageMaker landing page
	Onboard to the domain quickly using Set up for single user from the domain page

	Default settings

	Custom onboarding to Amazon SageMaker domain using IAM Identity Center
	Onboard from the console
	Onboard from the AWS CLI
	Access the domain after onboarding
	Set up IAM Identity Center for use with Amazon SageMaker domain

	Custom onboarding to Amazon SageMaker domain using IAM
	Onboard using console
	Onboard using the AWS CLI

	Choose an Amazon VPC

	Supported Regions and Quotas
	Quotas

	Use automated ML, no-code, or low-code
	SageMaker Autopilot
	Create a regression or classification job for tabular data using the AutoML API
	Required parameters
	Optional parameters
	How to set the training mode of an AutoML job
	How to select features and algorithms for training an AutoML job
	Features selection
	Algorithms selection

	How to specify the training and validation datasets of an AutoML job
	How to set the problem type of an AutoML job
	How to add sample weights to an AutoML job

	Migrate a CreateAutoMLJob to CreateAutoMLJobV2
	Autopilot datasets and problem types
	Autopilot datasets, data types, and formats
	Autopilot problem types
	Regression
	Binary classification
	Multiclass classification

	Training modes and algorithm support
	Training modes
	Algorithms support

	Metrics and validation
	Autopilot metrics
	Autopilot weighted metrics
	Cross-validation in Autopilot
	K-fold splitting
	HPO mode
	Ensembling mode

	Amazon SageMaker Autopilot model deployment and prediction
	Real-time inferencing
	Deploy using the Autopilot User Interface (UI)
	Deploy using SageMaker APIs
	Deploy models from different accounts

	Batch inferencing
	Deploy a model using Autopilot UI
	Deploy using SageMaker APIs
	Deploy models from different accounts

	Models generated by Amazon SageMaker Autopilot
	Prerequisites
	Share your Autopilot model
	View model details
	View an Autopilot Model Performance Report
	Autopilot Job details
	Model quality report
	Metrics tables
	Graphical model performance information
	The area under the receiver operating characteristic curve
	Confusion matrix
	Gain curve
	Lift curve
	Precision-recall curve
	Area under precision-recall curve (AUPRC)
	Actual against predicted plot
	Standardized residual plot
	Residual histogram

	Amazon SageMaker Autopilot notebooks generated to manage AutoML tasks
	Amazon SageMaker Autopilot Data exploration report
	Dataset Summary
	Target Analysis
	Data Sample
	Duplicate rows
	Cross column correlations
	Anomalous Rows
	Missing values, cardinality, and descriptive statistics

	Candidate definition notebook

	Configure inference output in generated containers
	Inference container definitions for regression and classification problem types
	Container definitions for hyperparameter optimization (HPO) mode
	Container definitions for ensembling mode

	Inference responses per problem type
	Inference responses for classification models
	Inference responses for classification models in HPO mode
	AWS SDK for Python (Boto3)
	SageMaker SDK for Python

	Inference responses for classification models in ensembling mode
	AWS SDK for Python (Boto3)
	SageMaker SDK for Python

	Tutorials and example notebooks
	Example notebooks: Explore modeling with Amazon SageMaker Autopilot
	Videos: Use Autopilot to automate and explore the machine learning process
	Start an AutoML job with Amazon SageMaker Autopilot
	Review data exploration and feature engineering automated in Autopilot.
	Tune models to optimize performance
	Choose and deploy the best model
	Amazon SageMaker Autopilot tutorial

	Tutorials: Get started with Amazon SageMaker Autopilot

	Create an AutoML job for image classification using the API
	Required parameters
	Optional parameters
	How to specify the training and validation datasets of an AutoML job
	How to specify the automatic model deployment configuration for an AutoML job

	Datasets format and objective metric for image classification
	Datasets formats
	Objective metric

	Autopilot model deployment and prediction
	Real-time inferencing

	Explainability report
	Model performance report
	Autopilot job details
	Model quality report
	Metrics tables
	Graphical model performance information
	Confusion matrix

	Create an AutoML job for text classification using the API
	Required parameters
	Optional parameters
	How to specify the training and validation datasets of an AutoML job
	How to specify the automatic model deployment configuration for an AutoML job

	Datasets format and objective metric for text classification
	Datasets formats
	Objective metric

	Autopilot model deployment and prediction
	Real-time inferencing

	Explainability report
	Model performance report
	Autopilot job details
	Model quality report
	Metrics tables
	Graphical model performance information
	Confusion matrix

	Create an AutoML job for time-series forecasting using the API
	Prerequisites
	Required parameters
	Optional parameters
	How to specify custom quantiles
	How to aggregate data for different forecast frequencies
	How to handle missing values in your input datasets
	How to specify an objective metric
	How to incorporate national holiday information to your dataset
	How to enable automatic deployment

	Time-series datasets format and missing values filling methods
	Datasets format for time-series forecasting
	Handle missing values
	Choose a filling logic
	Filling logic

	National holiday calendars
	Country Codes

	Objective metrics
	Algorithms support for time-series forecasting
	Autopilot model deployment and forecasts
	Real-time forecasting
	Batch forecasting

	Amazon SageMaker Autopilot data exploration notebook
	Reports generated by Amazon SageMaker Autopilot
	Explainability report
	Interpret Impact scores
	Find the explainability report

	Model performance report
	Backtests results report

	Amazon SageMaker Autopilot time-series forecasting resource limits

	Create an AutoML job to fine-tune text generation models using the API
	Prerequisites
	Required parameters
	Optional parameters
	How to specify the training and validation datasets of an AutoML job
	How to enable automatic deployment
	How to set the EULA acceptance when fine-tuning a model using the AutoML API
	How to set hyperparameters to optimize the learning process of a model

	Supported large language models for fine-tuning
	Dataset file types and input data format
	Supported dataset file types
	Input data format for instruction-based fine-tuning

	Optimize the learning process of your text generation models with hyperparameters
	Metrics for fine-tuning large language models in Autopilot
	Autopilot model deployment and predictions
	Real-time text generation
	Request format for text generation models real-time inference

	Create a Regression or Classification Autopilot experiment for tabular data using the Studio Classic UI
	Configure the default parameters of an Autopilot experiment (for administrators)
	List of default parameters supported
	Set default Autopilot experiment parameters

	Amazon SageMaker Autopilot example notebooks
	Amazon SageMaker Autopilot quotas
	Quotas that you can increase
	Resource quotas

	API Reference guide for Amazon SageMaker Autopilot
	

	SageMaker JumpStart
	Open and use JumpStart in Studio
	Open JumpStart in Studio
	Use JumpStart in Studio
	Manage JumpStart in Studio

	Open and use JumpStart in Studio Classic
	Open JumpStart in Studio Classic
	Use JumpStart in Studio Classic
	Manage JumpStart in Studio Classic

	JumpStart Foundation Models
	Explore the latest foundation models
	Publicly available foundation models
	Publicly available text generation models
	Publicly available text generation model table

	Publicly available image generation models

	Proprietary foundation models

	How to use JumpStart foundation models
	Use foundation models in Studio
	Fine-tune foundation models in Studio
	Model settings
	Data settings
	Hyperparameters
	Deployment
	Security
	Additional information

	Deploy foundation models in Studio
	Evaluate foundation models in Studio

	Use foundation models in Amazon SageMaker Studio Classic
	Use foundation models with the SageMaker Python SDK
	Fine-tune publicly available foundation models with the JumpStartEstimator class
	Check default instance types
	Check default hyperparameters
	Check default metric definitions

	Deploy publicly available foundation models with the JumpStartModel class
	Check default instance types
	Use inference components to deploy multiple models to a shared endpoint
	Check valid input and output inference formats
	Check supported content and accept types

	Use proprietary foundation models with the SageMaker Python SDK

	Discover foundation models in the SageMaker Console

	Model sources and license agreements
	Licenses and model sources
	End-user license agreements
	EULA acceptance in Amazon SageMaker Studio
	EULA acceptance in Amazon SageMaker Studio Classic

	EULA acceptance with the SageMaker Python SDK
	EULA acceptance when deploying a JumpStart model
	EULA acceptance when fine-tuning a JumpStart model
	EULA acceptance SageMaker Python SDK versions earlier than 2.198.0

	Customize a foundation model
	Prompt engineering for foundation models
	Zero-shot learning
	Few-shot learning
	Supported inference parameters

	Fine-tune a foundation model
	Foundation models available for fine-tuning
	Commonly supported fine-tuning hyperparameters
	Domain adaptation fine-tuning
	Prepare and upload training data for domain adaptation fine-tuning
	Split data for training and testing
	Upload fine-tuning data to Amazon S3

	Create a training job for instruction-based fine-tuning
	Example notebooks

	Instruction-based fine-tuning
	Models compatible with instruction-based fine-tuning
	Prepare and upload training data for instruction-based fine-tuning
	Split data for training and testing
	Upload fine-tuning data to Amazon S3

	Create a training job for instruction-based fine-tuning
	Example notebooks

	Retrieval Augmented Generation (RAG)
	Example notebooks

	Evaluate a text generation foundation model in Studio
	Example notebooks
	Text generation
	Image generation
	Model customization

	Task-Specific Models
	Deploy a Model
	Model deployment configuration
	Model deployment security
	IAM role
	Amazon VPC
	Encryption keys

	Configure default values for JumpStart models
	Default value configuration YAML file

	Fine-Tune a Model
	Fine-Tuning data source
	Fine-Tuning deployment configuration
	Hyperparameters
	Training output
	Configure default values for model training

	Share Models

	Shared Models and Notebooks
	Access shared models and notebooks
	Add shared content
	Filter shared content
	Share tabular models with SageMaker Canvas users

	Share models and notebooks through the Studio Classic UI
	Add a model
	Basic information
	Enable training
	Enable deployment

	Add a notebook
	Basic information
	Add notebook

	Solution Templates
	Demand forecasting
	Credit rating prediction
	Fraud detection
	Computer vision
	Extract and analyze data from documents
	Predictive maintenance
	Churn prediction
	Personalized recommendations
	Reinforcement learning
	Healthcare and life sciences
	Financial pricing
	Causal inference
	Launch a Solution
	Advanced parameters

	Amazon SageMaker JumpStart Industry: Financial
	Amazon SageMaker JumpStart Industry Python SDK
	Amazon SageMaker JumpStart Industry: Financial Solution
	Amazon SageMaker JumpStart Industry: Financial Models
	Amazon SageMaker JumpStart Industry: Financial Example Notebooks
	Amazon SageMaker JumpStart Industry: Financial Blog Posts
	Amazon SageMaker JumpStart Industry: Financial Related Research
	Amazon SageMaker JumpStart Industry: Financial Additional Resources

	Use machine learning environments offered by SageMaker
	Amazon SageMaker Studio
	Migrating from Amazon SageMaker Studio Classic
	Prerequisites
	Set Studio as the default experience
	Limit access to default applications in Studio
	Update your CORS policy to access Amazon S3 buckets
	Migrate workflows from Studio Classic to JupyterLab
	Migrate from Data Wrangler in Studio Classic to SageMaker Canvas
	Migrate from Autopilot in Studio Classic to SageMaker Canvas
	Revert to Studio Classic experience

	Launch Amazon SageMaker Studio
	Prerequisites
	Launch from the Amazon SageMaker console
	Launch using the AWS CLI
	Launch if Studio is the default experience
	Launch if Amazon SageMaker Studio Classic is your default experience

	Amazon SageMaker Studio UI overview
	Amazon SageMaker Studio navigation bar
	Amazon SageMaker Studio navigation pane
	Studio content pane

	Applications supported in Amazon SageMaker Studio
	Amazon SageMaker Studio spaces
	Access spaces
	Accessing spaces from the Amazon SageMaker console
	Accessing spaces from Studio
	Accessing spaces using the AWS CLI
	IAM authentication
	Accessing a space in IAM Identity Center authentication

	Perform common tasks
	Use NVMe stores with Amazon SageMaker Studio
	Considerations
	Access NVMe instance stores

	Local mode support in Amazon SageMaker Studio
	Prerequisites
	Setting EnableDockerAccess
	Docker support
	Docker operations supported
	Docker installation
	Internet access
	No internet access

	View and stop running instances
	View application details
	Stop a running application

	Amazon SageMaker Studio pricing
	Troubleshooting

	Amazon SageMaker Studio Classic
	Studio Classic Features
	Amazon SageMaker Studio Classic UI Overview
	Studio Classic Home page
	Studio Classic layout
	Left sidebar
	Left navigation panel
	Main working area

	Launch Amazon SageMaker Studio Classic
	Launch Studio Classic Using the Amazon SageMaker Console
	Prerequisite
	Launch Studio Classic if Studio is your default experience
	Launch Studio Classic if Studio Classic is your default experience
	Launch Studio Classic from the domain details page
	Launch Studio Classic from the Studio Classic landing page

	Launch Studio Classic Using the AWS CLI

	JupyterLab Versioning
	JupyterLab 3
	Important changes to JupyterLab 3

	Restricting default JupyterLab version using an IAM policy condition key
	Setting a default JupyterLab version
	From the console
	From the AWS CLI
	Create or update domain
	Create or update user profile

	View and update the JupyterLab version of an application from the console
	Installing JupyterLab and Jupyter Server extensions
	Installing Extension from within Studio Classic
	Installing Extensions using a lifecycle configuration script
	Existing lifecycle configuration script
	New lifecycle configuration script

	Use the Amazon SageMaker Studio Classic Launcher
	Notebooks and compute resources
	Utilities and files

	Collaborate with shared spaces
	Create a shared space
	Add shared space support to an existing domain
	Console
	AWS CLI

	Create a shared space
	Create from Studio
	Create from the console
	Create from AWS CLI

	List and Describe shared spaces
	List shared spaces
	List shared spaces from Studio
	List shared spaces from the console
	List shared spaces from the AWS CLI

	View shared space details
	View shared spaces details from Studio
	View shared space details from the console
	View shared space details from the AWS CLI

	Edit a shared space
	Delete a shared space
	Console
	AWS CLI

	Use Amazon SageMaker Studio Classic Notebooks
	How Are Amazon SageMaker Studio Classic Notebooks Different from Notebook Instances?
	Get Started
	Launch Amazon SageMaker
	Next Steps

	Amazon SageMaker Studio Classic Tour
	Create or Open an Amazon SageMaker Studio Classic Notebook
	Open a notebook in Studio Classic
	Create a Notebook from the File Menu
	Create a Notebook from the Launcher
	List of the available instance types, images, and kernels

	Use the Studio Classic Notebook Toolbar
	Install External Libraries and Kernels in Amazon SageMaker Studio Classic
	Package installation tools
	Conda
	Pip
	Unsupported

	Install packages using lifecycle configurations

	Share and Use an Amazon SageMaker Studio Classic Notebook
	Share a Notebook
	Use a Shared Notebook
	Shared spaces and realtime collaboration

	Get Studio Classic Notebook and App Metadata
	Get Studio Classic Notebook Metadata
	Get App Metadata

	Get Notebook Differences
	Get the Difference Between the Last Checkpoint
	Get the Difference Between the Last Commit

	Manage Resources
	Change an Instance Type
	Change an Image or a Kernel
	Shut Down Resources
	Shut Down an Open Notebook
	Shut Down Resources

	Usage Metering
	Available Resources
	Available Studio Classic Instance Types
	CPU instances
	Instances with 1 or more GPUs

	Available Amazon SageMaker Images
	Image ARN format
	Supported URI tags
	Supported images
	Images slated for deprecation

	Customize Amazon SageMaker Studio Classic
	Bring your own SageMaker image
	Key terminology
	Custom SageMaker image specifications
	Sample Dockerfile

	Prerequisites
	Add a Docker image compatible with Studio Classic to Amazon ECR
	Create a custom SageMaker image
	Create a SageMaker image from the console
	Create a SageMaker image from the AWS CLI

	Attach a custom SageMaker image
	Attach the SageMaker image to a domain
	Attach the SageMaker image using the Console
	Attach the SageMaker image using the AWS CLI
	Attach the SageMaker image to a new domain
	Attach the SageMaker image to your current domain

	Attach the SageMaker image to a shared space
	View the attached image in SageMaker

	Launch a custom SageMaker image in Amazon SageMaker Studio Classic
	Clean up resources
	Clean up resources from the SageMaker console
	Clean up resources from the AWS CLI

	Use lifecycle configurations with Amazon SageMaker Studio Classic
	Create and associate a lifecycle configuration
	Create a lifecycle configuration from the AWS CLI
	Prerequisites
	Step 1: Create a lifecycle configuration
	Step 2: Attach the lifecycle configuration to your domain, user profile, or shared space
	Step 3: Launch application with lifecycle configuration

	Create a lifecycle configuration from the SageMaker console
	Prerequisites
	Step 1: Create a new lifecycle configuration
	Step 2: Attach the lifecycle configuration to a domain or user profile
	Attach to a domain
	Attach to your user profile

	Step 3: Launch an application with the lifecycle configuration
	Step 4: View logs for a lifecycle configuration

	Set default lifecycle configurations
	Default lifecycle configuration inheritance
	Set defaults from the AWS CLI
	Prerequisites
	Set a default lifecycle configuration when creating a new resource
	Set a default lifecycle configuration for an existing resource

	Set defaults from the SageMaker console
	Prerequisites
	Set a default lifecycle configuration for a domain
	Set a default lifecycle configuration for a user profile

	Debug lifecycle configurations
	Verify lifecycle configuration process from CloudWatch Logs
	JupyterServer app failure
	KernelGateway app failure
	Lifecycle configuration timeout

	Update and detach lifecycle configurations
	Prerequisites
	Detach using the AWS CLI

	Attach Suggested Git Repos to Studio Classic
	Attach a Git Repository from the AWS CLI
	Prerequisites
	Attach the Git repo to a domain or user profile
	Attach to a domain
	Attach to a user profile

	Attach a Git Repository from the SageMaker Console
	Prerequisites
	Attach the Git repo to a domain or user profile
	Attach to a domain
	Attach to a user profile

	Detach Git Repos
	Detach a Git repo using the AWS CLI
	Detach from a domain
	Detach from a user profile

	Detach the Git repo using the SageMaker console
	Detach from a domain
	Detach from a user profile

	Perform Common Tasks in Amazon SageMaker Studio Classic
	Upload Files to SageMaker Studio Classic
	Clone a Git Repository in SageMaker Studio Classic
	Stop a Training Job in SageMaker Studio Classic
	Use TensorBoard in Amazon SageMaker Studio Classic
	Prerequisites
	Set Up TensorBoardCallback
	Install TensorBoard
	Launch TensorBoard

	Using CodeWhisperer and CodeGuru extensions with SageMaker
	What is Amazon CodeWhisperer?
	What is Amazon CodeGuru?

	Manage Your Amazon EFS Storage Volume in SageMaker Studio Classic
	Provide Feedback on SageMaker Studio Classic
	Shut Down and Update SageMaker Studio Classic and Studio Classic Apps
	Shut down and Update SageMaker Studio Classic
	Shut down and update from the SageMaker console
	Shut down and update from Studio
	Shut down and update from inside Studio Classic

	Shut down and Update Studio Classic Apps

	Amazon SageMaker Studio Classic Pricing
	Troubleshooting Amazon SageMaker Studio Classic
	Studio Classic application issues
	KernelGateway application issues

	SageMaker JupyterLab
	JupyterLab user guide
	Configure space
	Customize your environment using a package manager
	Create and activate your custom environment
	Clean up a conda environment
	Create a conda environment with a specific Python version
	Create a conda environment with a specific set of packages
	Clone conda from an existing environment
	Clone conda from a reference YAML file
	Share environments between instance types

	JupyterLab administrator guide
	Give your users access to private spaces
	Change the default storage size for your JupyterLab users
	Using lifecycle configurations with JupyterLab
	Create and associate a lifecycle configuration
	Create a lifecycle configuration (AWS CLI)
	Prerequisites
	Step 1: Create a lifecycle configuration
	Step 2: Attach the lifecycle configuration to your Amazon SageMaker domain (domain) and user profile

	Create a lifecycle configuration (Console)
	Step 1: Create a lifecycle configuration
	Step 2: Attach the lifecycle configuration to your Amazon SageMaker domain (domain) and user profile

	Debug lifecycle configurations
	Verify lifecycle configuration process from CloudWatch Logs
	Lifecycle configuration timeout

	Detach lifecycle configurations
	Detach using the AWS CLI

	Attach Git repos
	Attach a Git repository (AWS CLI)
	Prerequisites
	Attach the Git repo to a Amazon SageMaker domain (domain) or user profile
	Attach to a Amazon SageMaker domain
	Attach to a user profile

	Clone a Git repo in Amazon SageMaker Studio

	Detach Git repo URLs
	Detach a Git repo using the AWS CLI
	Detach from an Amazon SageMaker domain
	Detach from a user profile

	Customize environments using custom images
	Provide users with access to custom images
	Step 1: Create the Dockerfile
	Step 2: Build the Dockerfile
	Step 3: Push the image to the Amazon Elastic Container Registry repository
	Step 4: Attach image to the Amazon SageMaker domain of your users

	Dockerfile specifications
	Running the image
	Specifications for the user and file system
	Health check and URL for applications

	Updating the SageMaker Distribution Image
	Update the image (UI)
	Update the image (AWS CLI)

	Delete unused resources
	Quotas

	Migrating from SageMaker Studio Classic to SageMaker Studio
	Migrate user data from Amazon SageMaker Studio Classic to Amazon SageMaker Studio
	Bring lifecycle configurations from Studio to JupyterLab
	Migrate JupyterLab extensions

	Amazon SageMaker Notebook Instances
	Maintenance
	Use Notebook Instances to build models
	Machine Learning with the SageMaker Python SDK
	Tutorial Overview
	Step 1: Create an Amazon SageMaker Notebook Instance
	(Optional) Change SageMaker Notebook Instance Settings
	(Optional) Advanced Settings for SageMaker Notebook Instances

	Step 2: Create a Jupyter Notebook
	Step 3: Download, Explore, and Transform a Dataset
	Load Adult Census Dataset Using SHAP
	Overview the Dataset
	Split the Dataset into Train, Validation, and Test Datasets
	Convert the Train and Validation Datasets to CSV Files
	Upload the Datasets to Amazon S3

	Step 4: Train a Model
	Choose the Training Algorithm
	Create and Run a Training Job

	Step 5: Deploy the Model to Amazon EC2
	Deploy the Model to SageMaker Hosting Services
	(Optional) Use SageMaker Predictor to Reuse the Hosted Endpoint
	(Optional) Make Prediction with Batch Transform

	Step 6: Evaluate the Model
	Evaluate the Model Deployed to SageMaker Hosting Services

	Step 7: Clean Up

	Amazon Linux 2 notebook instances
	Supported instance types
	Available Kernels
	AL1 Maintenance Phase Plan
	Migrating to Amazon Linux 2

	JupyterLab versioning
	JupyterLab 3
	Important changes to JupyterLab 3

	Creating a notebook with your JupyterLab version
	View the JupyterLab version of a notebook from the console

	Create a Notebook Instance
	Access Notebook Instances
	Update a Notebook Instance
	Customize a Notebook Instance Using a Lifecycle Configuration Script
	Lifecycle Configuration Best Practices
	Install External Libraries and Kernels in Notebook Instances
	Package installation tools
	Conda
	Pip
	Unsupported

	Notebook Instance Software Updates
	Control an Amazon EMR Spark Instance Using a Notebook

	Example Notebooks
	Use or View Example Notebooks in Jupyter Classic
	Use or View Example Notebooks in Jupyterlab

	Set the Notebook Kernel
	Associate Git Repositories with SageMaker Notebook Instances
	Add a Git Repository to Your Amazon SageMaker Account
	Add a Git Repository to Your SageMaker Account (Console)
	Add a Git Repository to Your Amazon SageMaker Account (CLI)

	Create a Notebook Instance with an Associated Git Repository
	Create a Notebook Instance with an Associated Git Repository (Console)
	Create a Notebook Instance with an Associated Git Repository (CLI)

	Associate a CodeCommit Repository in a Different AWS Account with a Notebook Instance
	Use Git Repositories in a Notebook Instance

	Notebook Instance Metadata
	Monitor Jupyter Logs in Amazon CloudWatch Logs

	Amazon SageMaker Studio Lab
	Amazon SageMaker Studio Lab components overview
	Landing page
	Studio Lab account
	Project overview page
	Preview page
	Project
	Compute instance type
	Project runtime
	Session

	Onboard to Amazon SageMaker Studio Lab
	Request a Studio Lab account
	Referral codes

	Create a Studio Lab account
	Sign in to Studio Lab

	Manage your account
	Change your password
	Delete your account
	Customer information

	Launch your Amazon SageMaker Studio Lab project runtime
	Start your project runtime
	Stop your project runtime
	View remaining compute time
	Change your compute type

	Use Amazon SageMaker Studio Lab starter assets
	Studio Lab pre-installed environments
	Use the Amazon SageMaker Studio Lab project runtime
	Amazon SageMaker Studio Lab UI overview
	Left sidebar
	File and resource browser
	Main work area

	Create or open an Amazon SageMaker Studio Lab notebook
	Open a Studio Lab notebook
	Create a notebook from the file menu
	Create a notebook from the Launcher

	Use the Amazon SageMaker Studio Lab notebook toolbar
	Manage your environment
	Your default environment
	View environments
	Create, activate, and use new conda environments
	Using sample Studio Lab environments
	Customize your environment
	Refresh Studio Lab

	Use external resources in Amazon SageMaker Studio Lab
	Use GitHub resources
	Studio Lab sample notebooks
	Clone a GitHub repo
	Clone individual notebooks from GitHub
	Option 1: Copy notebook with an Open in Studio Lab button
	Option 2: Clone any GitHub notebook

	Add an Open in Studio Lab button to your notebook
	Import files from your computer
	Connect to Amazon S3

	Get notebook differences
	Get the difference between the last checkpoint
	Get the difference between the last commit

	Export an Amazon SageMaker Studio Lab environment to Amazon SageMaker Studio Classic
	Step 1: Export your Studio Lab conda environment
	Step 2: Save your Studio Lab artifacts
	Step 3: Import your Studio Lab artifacts to Studio Classic
	Step 4: Install your Studio Lab conda environments in Studio Classic

	Shut down resources
	Shut down an open notebook
	Shut down resources

	Troubleshooting

	Amazon SageMaker Canvas
	Are you a first-time SageMaker Canvas user?
	Getting started with using Amazon SageMaker Canvas
	Prerequisites for setting up Amazon SageMaker Canvas
	Onboard to domain
	Give yourself permissions to use specific features in Canvas

	Step 1: Log in to SageMaker Canvas
	Step 2: Use SageMaker Canvas to get predictions

	Setting Up and Managing Amazon SageMaker Canvas (for IT Administrators)
	Grant Your Users Permissions to Upload Local Files
	domain setup method
	Amazon S3 bucket method

	Set Up SageMaker Canvas for Your Users
	Add the SageMaker Canvas application to Okta
	Set up ID federation in IAM
	Configure SageMaker Canvas in Okta
	Add optional policies on access control in IAM

	Configure your Amazon S3 storage
	Before you begin
	New domain setup method
	New user profile setup method
	Existing user method

	Grant permissions for cross-account Amazon S3 storage
	Requirements
	Permissions for cross-account Amazon S3 buckets
	Permissions for cross-account Amazon S3 buckets encrypted with AWS KMS

	Encrypt Your SageMaker Canvas Data with AWS KMS
	Encrypt your data in SageMaker Canvas
	Prerequisites
	Prerequisites for time series forecasting
	Encrypt your data in the SageMaker Canvas application
	Encrypt your SageMaker Canvas data saved in Amazon S3

	Import encrypted datasets from Amazon S3
	FAQs
	Q: Does SageMaker Canvas retain my KMS key?
	Q: I specified a KMS key when setting up my domain. Why did my dataset fail to import in SageMaker Canvas?
	Q: How do I find the Region’s default SageMaker Amazon S3 bucket for my account?
	Q: Can I change the default SageMaker Amazon S3 bucket used to store SageMaker Canvas data?
	Q: What does SageMaker Canvas store in the default SageMaker Amazon S3 bucket?
	Q: What use cases are supported for using KMS keys with SageMaker Canvas?
	Q: Can I encrypt time series forecasting models in SageMaker Canvas?

	Grant Your Users Permissions to Build Custom Image and Text Prediction Models
	Grant Your Users Permissions to Perform Time Series Forecasting
	domain setup method
	User setup method
	IAM role setup method

	Grant Users Permissions to Fine-tune Foundation Models
	Grant Ready-to-use models permissions
	Create a trust relationship with Amazon Bedrock

	Update SageMaker Canvas for Your Users
	Request a Quota Increase
	Request an increase for instances to build custom models

	Grant Users Permissions to Import Amazon Redshift Data
	Add Amazon Redshift permissions to your IAM role
	Associate the IAM role with your Amazon Redshift cluster

	Grant Users Permissions to Collaborate with Studio Classic
	Grant Your Users Permissions to Send Predictions to Amazon QuickSight
	Manage applications
	Check for active applications
	Delete an application
	Relaunch an application

	Configure Amazon SageMaker Canvas in a VPC without internet access
	Configure Amazon SageMaker Canvas in a VPC without internet access
	Step 1: Onboard to Amazon SageMaker domain
	Step 2: Configure VPC endpoints and access
	Step 3: Grant IAM permissions
	(Optional) Step 4: Override security group settings for specific users

	Set up connections to data sources with OAuth
	Set up OAuth for Salesforce Data Cloud
	Set up OAuth for Snowflake

	Import data into Canvas
	Create a dataset
	Import tabular data
	Import image data
	Import document data
	View your dataset details

	Update a dataset
	Manually update a dataset
	Configure automatic updates for a dataset
	View your automatic dataset update jobs
	Edit your automatic dataset update configuration
	Delete your automatic dataset update configuration

	Connect to data sources
	Permissions
	Connect to a database stored in AWS
	Connect to data in Amazon S3, Amazon Athena, or Amazon RDS
	Connect to an Amazon DocumentDB database
	Connect to an Amazon Redshift database

	Connect to your data with JDBC connectors
	Connect to data sources with OAuth
	Connect to a SaaS platform
	Use Snowflake with Canvas
	Use SaaS connectors with Canvas

	Join data that you've imported into SageMaker Canvas
	Use sample datasets
	Sample datasets
	Re-import a deleted sample dataset

	Prepare data
	Create a Data Flow
	Import data into a data flow
	The Data Flow UI
	Add a Step to Your Data Flow
	Delete a Step from Your Data Flow

	Perform exploratory data analysis (EDA)
	Get insights on data and data quality
	Summary
	Target column
	Quick model
	Feature summary
	Samples
	Definitions

	Histogram
	Scatter plot
	Table summary
	Quick model
	Target leakage
	Multicollinearity
	Detect anomalies in time series data
	Seasonal trend decomposition in time series data
	Create custom visualizations

	Transform data
	Transform UI
	Join Datasets
	Concatenate Datasets
	Balance Data
	Custom Transforms
	Custom Formula
	Reduce Dimensionality within a Dataset
	Encode Categorical
	Ordinal Encode
	One-Hot Encode
	Similarity encode

	Featurize Text
	Character Statistics
	Vectorize

	Transform Time Series
	Group by a Time Series
	Resample Time Series Data
	Handle Missing Time Series Data
	Validate the Timestamp of Your Time Series Data
	Standardizing the Length of the Time Series
	Extract Features from Your Time Series Data
	Use Lagged Features from Your Time Series Data
	Create a Datetime Range In Your Time Series
	Use a Rolling Window In Your Time Series

	Featurize Datetime
	Format String
	Handle Outliers
	Robust standard deviation numeric outliers
	Standard Deviation Numeric Outliers
	Quantile Numeric Outliers
	Min-Max Numeric Outliers
	Replace Rare

	Handle Missing Values
	Fill Missing
	Impute Missing
	Add Indicator for Missing
	Drop Missing

	Manage Columns
	Manage Rows
	Manage Vectors
	Process Numeric
	Sampling
	Search and Edit
	Split data
	Parse Value as Type
	Validate String
	Unnest JSON Data
	Explode Array
	Transform Image Data
	Filter data

	Chat for data prep
	Process data
	Export data
	Export data using a processing job
	Export data flow
	Create a schedule to automatically process new data
	Refit transforms to the entire dataset and export them

	Automate data preparation in SageMaker Canvas
	Automate data preparation using SageMaker Pipelines
	Use a Jupyter Notebook to Create a Pipeline

	Automate data preparation using an inference endpoint
	Use a Jupyter notebook to create an inference endpoint

	Automate data preparation using Python Code

	Use generative AI with foundation models
	Prerequisites
	Prerequisites for foundation models
	Prerequisites for document querying

	Start a new conversation to generate, extract, or summarize content
	Extract information from documents with document querying
	Model management
	Compare model outputs
	Fine-tune foundation models
	Before you begin
	Fine-tune a foundation model
	Select a dataset
	Fine-tune the model
	Analyze the fine-tuned model
	Test a fine-tuned model in a chat

	Operationalize fine-tuned models

	Use Ready-to-use models
	Get started
	Make predictions with Ready-to-use models
	Make predictions for text data
	Single predictions
	Batch predictions

	Make predictions for image data
	Single predictions
	Batch predictions

	Make predictions for document data
	Single predictions
	Batch predictions

	Use custom models
	Build a custom model
	Build a model
	Build a custom numeric or categorical prediction model
	Build a custom image prediction model
	Build a custom text prediction model
	Build a time series forecasting model

	Advanced model building configurations
	Advanced numeric and categorical prediction model settings
	Objective metric
	Training method
	Algorithms
	Data split
	Max candidates
	Max job runtime

	Advanced time series forecasting model settings
	Aggregation
	Forecast quantiles

	Preview your model
	Preview a model
	Validate data
	Random sample

	Edit an image dataset
	View the properties for each image (label, size, dimensions)
	Add, rename, or delete labels in the dataset
	Assign labels to unlabeled images
	Reassign labels to images
	Sort your images by label
	Add or delete images from the dataset

	Explore and analyze your data
	Explore your data using visualization techniques
	Scatter plot
	Bar chart
	Box plot

	Explore your data using analytics
	Create a correlation matrix
	1. Choose your columns
	2. Choose your correlation type
	3. Filter your correlations
	4. Choose the visualization method
	5. Choose a color palette

	Prepare data with advanced transformations
	Drop columns
	Filter rows
	Filter rows by missing values
	Filter rows by outliers
	Filter rows by custom values

	Functions and operators
	Manage rows
	Sort rows
	Shuffle rows
	Drop duplicate rows
	Remove rows by missing values
	Remove rows by outliers
	Remove rows by custom values

	Rename columns
	Manage columns
	Replace missing values
	Replace outliers
	Change data type

	Prepare time series data
	Resample time series data
	Use datetime extraction

	Evaluate Your Model's Performance in Amazon SageMaker Canvas
	Evaluate your model's performance
	Evaluate categorical prediction models
	Evaluate numeric prediction models
	Evaluate time series forecasting models
	Evaluate image prediction models
	Evaluate text prediction models

	Use advanced metrics in your analyses
	Performance

	View model candidates in the model leaderboard
	Metrics reference
	Metrics for numeric prediction
	Metrics for categorical prediction
	Metrics for image and text prediction
	Metrics for time series forecasts

	Make predictions for your data
	Make single predictions
	Make single predictions with numeric and categorical prediction models
	Make single predictions with image prediction models
	Make single predictions with text prediction models

	Make batch predictions
	Make manual batch predictions
	Make manual batch predictions with numeric and categorical prediction models
	Make manual batch predictions with image prediction models
	Make manual batch predictions with text prediction models

	Make automatic batch predictions
	View your automatic batch prediction jobs
	Edit your automatic batch prediction configuration
	Delete your automatic batch prediction configuration

	Send predictions to Amazon QuickSight
	Before you begin
	Supported data formats
	Send your batch predictions to Amazon QuickSight

	Download a model notebook
	Send your model to Amazon QuickSight
	Time Series Forecasts in Amazon SageMaker Canvas
	Future values in your input dataset
	Handling missing values
	Types of forecasts
	Gain additional insights from your forecast
	Make a time series forecast

	Updating a Model in Amazon SageMaker Canvas
	Operationalize your models
	Register a model version in the SageMaker model registry
	Permissions management
	Register a model version to the SageMaker model registry

	Deploy your models to an endpoint
	Permissions management
	Deploy a model
	View your deployments
	Update a deployment configuration
	Test your deployment
	Invoke your endpoint
	Numeric and categorical prediction models
	Image prediction models
	Text prediction models

	Delete a model deployment

	Manage automations
	View your automations
	Edit your automatic configurations
	Edit your automatic dataset update configuration
	Edit your automatic batch prediction configuration

	Delete an automatic configuration

	Collaborate with data scientists
	Prerequisites
	Canvas users: Share a model with Studio Classic users
	Studio Classic users: Receive a model in Studio Classic from Canvas users
	Share feedback
	Share an updated model with the Canvas user
	Share an alternate model with the Canvas user

	Canvas users: Receive model updates from a Studio Classic user

	Bring your own model to SageMaker Canvas
	Prerequisites
	Studio Classic users: Share a model to SageMaker Canvas
	Autopilot
	JumpStart
	Model Registry
	Shared models and notebooks

	Canvas users: Receive a shared model in SageMaker Canvas

	Logging out of Amazon SageMaker Canvas
	Log out of Canvas
	Automatically shut down Canvas

	Limitations and troubleshooting
	Troubleshooting issues with granting permissions through the SageMaker console
	1. Remove all but one trusted service from the role.
	2. Use a different role with one or fewer trusted services.
	3. Manually attach the AWS managed policy to the execution role instead of using the toggle in the SageMaker domain settings.

	Limitations for collaboration
	Limitations for collaborating on time series forecasting models
	Limitations for collaborating on numeric and categorical prediction models

	Limitations for bring your own model (BYOM)
	Bring your own model from SageMaker JumpStart
	Bring your own model from Autopilot
	Bring your own model from Model Registry

	Manage billing and cost in SageMaker Canvas

	Amazon SageMaker geospatial capabilities
	How can I use SageMaker geospatial capabilities?
	Are you a first-time user of SageMaker geospatial?
	Getting started with Amazon SageMaker geospatial
	Accessing SageMaker geospatial
	Create an Amazon SageMaker Studio Classic notebook using the geospatial image
	Access the Sentinel-2 raster data collection and create an earth observation job to perform land segmentation
	Using list_raster_data_collections to find available data collections
	Searching the Sentinel-2 raster data collection using search_raster_data_collection
	Visualizing your search_raster_data_collection using matplotlib
	Starting an earth observation job (EOJ) that performs land segmentation on a series of Satellite images
	Calculating the change in the Lake Mead surface area

	Using a processing jobs for custom geospatial workloads
	Overview: Run processing jobs using ScriptProcessor and a SageMaker geospatial container
	Using ScriptProcessor to calculate the Normalized Difference Vegetation Index (NDVI) using Sentinel-2 satellite data
	Query the Sentinel-2 raster data collection using SearchRasterDataCollection
	Create an input manifest file using the Id key from the search_raster_data_collection API response
	Write a script that calculates the NDVI
	Creating an instance of the ScriptProcessor class
	Visualizing your results using matplotlib

	Earth Observation Jobs
	Create an Earth Observation Job Using a Amazon SageMaker Studio Classic Notebook with a SageMaker geospatial Image
	Types of Operations
	Availability of EOJ Operations

	Vector Enrichment Jobs
	Visualization Using SageMaker geospatial capabilities
	Legends for EOJ in the SageMaker geospatial UI

	Amazon SageMaker geospatial Map SDK
	add_dataset API
	update_dataset API
	add_layer API
	update_layer API
	visualize_eoj_aoi API
	visualize_eoj_input API
	visualize_eoj_output API

	SageMaker geospatial capabilities FAQ
	SageMaker geospatial Security and Permissions
	Configuration and Vulnerability Analysis in SageMaker geospatial
	Security Best Practices for SageMaker geospatial capabilities
	Use Amazon SageMaker geospatial capabilities in Your Amazon Virtual Private Cloud
	VPC only communication with the internet
	Requirements to use VPC only mode

	Use AWS KMS Permissions for Amazon SageMaker geospatial capabilities
	Server-Side Encryption with Amazon SageMaker geospatial managed key (Default)
	Server-Side Encryption with customer managed KMS key (Optional)
	How SageMaker geospatial capabilities uses grants in AWS KMS
	Create a customer managed key
	Monitoring your encryption keys for SageMaker geospatial capabilities

	Types of compute instances
	SageMaker geospatial supported notebook instance types
	SageMaker geospatial libraries

	Data collections
	Image band information from the USGS Landsat and Sentinel-2 data collections

	RStudio on Amazon SageMaker
	Region availability
	RStudio components
	Differences from Posit Workbench
	Manage RStudio on Amazon SageMaker
	RStudio license
	Upgrade the RStudio Version
	Latest version updates
	Versioning
	Upgrade to the new version
	Downgrade to the existing version
	Changes to BYOI Images

	Network and Storage
	RStudioServerPro instance type
	RStudio Connect URL
	RStudio Package Manager
	Create an Amazon SageMaker domain with RStudio using the AWS CLI
	Prerequisites
	Create DomainExecution role
	Create Amazon SageMaker domain with RStudio App
	Authentication methods
	Connection types

	Verify domain creation

	Add RStudio support to an existing domain
	Prerequisites
	Add RStudio support to an existing domain
	Step 1: Delete all apps in the domain
	Step 2 - Update all user profiles with the new list of security groups
	Step 3 - Activate RStudio by calling the UpdateDomain API
	Step 4 - Add RStudio access for existing users
	Step 5 – Deactivate RStudio access for new users

	Bring your own image to RStudio on SageMaker
	Key terminology
	Prerequisites
	Custom RStudio image specifications
	RStudio PBC requirements
	Amazon SageMaker Studio Classic requirements

	Create a custom RStudio image
	Add a SageMaker-compatible RStudio Docker container image to Amazon ECR
	Create a SageMaker image from the console
	Create an image from the AWS CLI

	Attach a custom SageMaker image
	Attach an image version to your domain using the console
	Attach an existing image version to your domain using the AWS CLI
	Attach the SageMaker image to a new domain
	Attach the SageMaker image to an existing domain

	Launch a custom SageMaker image in RStudio
	Clean up image resources
	Clean up resources from the SageMaker console
	Clean up resources from the AWS CLI

	Manage users
	Methods to create a user
	Update existing user

	RStudio administrative dashboard
	Launch the RStudio administrative dashboard
	Dashboard tab
	Sessions tab
	Users tab
	Stats tab
	Logs tab

	Shut down and restart RStudio
	Suspend your RSessions
	Delete your RSessions
	Delete your RStudioServerPro app

	Manage billing and cost
	Diagnose issues and get support
	Upgrade your version
	View Metrics and Logs
	View your RStudio logs from the RStudio administrative dashboard
	View your RStudio logs from Amazon CloudWatch Logs

	Use RStudio on Amazon SageMaker
	Collaborate in RStudio
	Base R image
	RSession application colocation
	Open RStudio Launcher and launch RSessions
	Open RStudio Launcher
	Open RStudio Launcher from the Amazon SageMaker Console
	Open RStudio Launcher from Amazon SageMaker Studio
	Open RStudio Launcher from the AWS CLI

	Launch RSessions
	Suspend your RSessions
	Delete your RSessions

	Publish to RStudio Connect
	Access Amazon SageMaker features with RStudio on Amazon SageMaker

	Get started with Code Editor in Amazon SageMaker Studio
	Code Editor user guide
	Check the version of Code Editor
	Code Editor application instances and images
	Launch a Code Editor application in Studio
	Launch a Code Editor application using the AWS CLI
	Clone a repository in Code Editor
	Code Editor Connections and Extensions
	Connections to AWS
	Extensions

	Log out and shut down resources
	Stop your space through Studio
	Shut down resources using the AWS CLI

	Code Editor adminstrator guide
	Prerequisites
	Give your users access to private spaces
	Change the default storage size
	Code Editor lifecycle configurations
	Create and attach lifecycle configurations in Studio
	Debug lifecycle configurations in Studio
	Detach lifecycle configurations in Studio
	Create a lifecycle configuration to clone repositories into a Code Editor application
	Create a lifecycle configuration to install Code Editor extensions

	SageMaker HyperPod
	SageMaker HyperPod prerequisites
	SageMaker HyperPod quotas
	View Amazon SageMaker HyperPod quotas using the AWS Management Console
	To increase Amazon SageMaker HyperPod quotas using the AWS Management Console

	Set up IAM users and roles for SageMaker HyperPod users and resources
	Set up IAM users for cluster administrators
	Set up IAM users for cluster users
	IAM permissions to all resources

	IAM role for SageMaker HyperPod
	(Optional) Additional permissions for using SageMaker HyperPod with Amazon Virtual Private Cloud

	Set up AWS Systems Manager and Run As for cluster user access control
	Enable Run As in your AWS account
	Prepare a script for setting up Linux users

	(Optional) Set up SageMaker HyperPod with your Amazon VPC
	(Optional) Set up SageMaker HyperPod with Amazon FSx for Lustre

	Getting started with SageMaker HyperPod
	Using the SageMaker HyperPod console UI
	Create your first SageMaker HyperPod cluster with Slurm
	Delete the cluster and clean resources

	Using the AWS CLI commands for the SageMaker HyperPod APIs
	Create your first SageMaker HyperPod cluster with Slurm
	Delete the cluster and clean resources

	Operate SageMaker HyperPod
	Using the SageMaker HyperPod console UI
	Create a SageMaker HyperPod cluster
	Browse your SageMaker HyperPod clusters
	View details of each SageMaker HyperPod cluster
	Edit a SageMaker HyperPod cluster
	Delete a SageMaker HyperPod cluster

	Using the AWS CLI
	Create a new cluster
	Describe a cluster
	List details of cluster nodes
	Describe details of a cluster node
	List clusters
	Update cluster configuration
	Update the SageMaker HyperPod platform software of a cluster
	Use the backup script provided by SageMaker HyperPod

	Delete a cluster

	SageMaker HyperPod lifecycle configuration best practices
	Prepare lifecycle scripts for setting up Slurm on SageMaker HyperPod
	High-level overview
	Start with base lifecycle scripts provided by HyperPod
	What particular configurations HyperPod manages in Slurm configuration files
	Mount Amazon FSx for Lustre to your HyperPod cluster
	Validate the JSON configuration files before running create-cluster
	Develop lifecycle scripts interactively on a cluster node
	Update a cluster with new or updated lifecycle scripts
	Considerations

	Run jobs on SageMaker HyperPod clusters
	Access the SageMaker HyperPod cluster nodes
	Schedule a Slurm job on a SageMaker HyperPod cluster
	Schedule jobs for distributed training workloads on SageMaker HyperPod
	Using SMDDP on a SageMaker HyperPod
	Adapt your PyTorch training script to utilize the SMDDP library
	For PyTorch DDP or FSDP
	For DeepSpeed or Megatron-DeepSpeed

	SageMaker HyperPod cluster resiliency
	Cluster health check
	Auto-resume
	How to replace a faulty instance outside of SageMaker HyperPod auto-resume

	SageMaker HyperPod cluster management
	Logging SageMaker HyperPod events
	Logging SageMaker HyperPod at instance level
	Tagging resources
	Using the SageMaker HyperPod console UI
	Using the SageMaker HyperPod APIs
	Using the AWS CLI tagging commands for SageMaker

	SageMaker HyperPod references
	SageMaker HyperPod pricing
	SageMaker HyperPod APIs
	SageMaker HyperPod forms
	Configuration form for provisioning Slurm nodes on HyperPod

	SageMaker HyperPod DLAMI
	SageMaker HyperPod API permissions reference
	SageMaker HyperPod commands in AWS CLI
	SageMaker HyperPod Python modules in AWS SDK for Python (Boto3)

	SageMaker HyperPod FAQ
	Amazon SageMaker HyperPod release notes
	SageMaker HyperPod release notes: March 14, 2024
	SageMaker HyperPod release notes: February 15, 2024
	SageMaker HyperPod release notes: November 29, 2023

	Use generative AI in SageMaker notebook environments
	Install Jupyter AI
	Jupyter AI Features
	From the chat user interface AI assistant
	From notebook cells

	Configure your model provider
	Configure your model provider in the chat UI
	Pass extra model parameters and custom parameters to your request

	Configure your model provider in a notebook

	Use Jupyter AI in JupyterLab or Studio Classic
	Use language models from the chat UI
	Use language models from notebook cells

	Label data with a human-in-the-loop
	Use Amazon SageMaker Ground Truth to Label Data
	Are You a First-time User of Ground Truth?
	Getting started
	Step 1: Before You Begin
	Next

	Step 2: Create a Labeling Job
	Next

	Step 3: Select Workers
	Next

	Step 4: Configure the Bounding Box Tool
	Next

	Step 5: Monitoring Your Labeling Job

	Label Images
	Bounding Box
	Creating a Bounding Box Labeling Job (Console)
	Create a Bounding Box Labeling Job (API)
	Provide a Template for Bounding Box Labeling Jobs

	Bounding Box Output Data

	Image Semantic Segmentation
	Creating a Semantic Segmentation Labeling Job (Console)
	Create a Semantic Segmentation Labeling Job (API)
	Provide a Template for Semantic Segmentation Labeling Jobs

	Semantic Segmentation Output Data

	Auto-Segmentation Tool
	Tool Preview
	Tool Availability

	Image Classification (Single Label)
	Create an Image Classification Labeling Job (Console)
	Create an Image Classification Labeling Job (API)
	Provide a Template for Image Classification Labeling Jobs

	Image Classification Output Data

	Image Classification (Multi-label)
	Create a Multi-Label Image Classification Labeling Job (Console)
	Create a Multi-Label Image Classification Labeling Job (API)
	Provide a Template for Multi-label Image Classification

	Multi-label Image Classification Output Data

	Image Label Verification

	Use Ground Truth to Label Text
	Named Entity Recognition
	Create a Named Entity Recognition Labeling Job (Console)
	Create a Named Entity Recognition Labeling Job (API)
	Provide Worker Instructions in a Label Category Configuration File

	Named Entity Recognition Output Data

	Text Classification (Single Label)
	Create a Text Classification Labeling Job (Console)
	Create a Text Classification Labeling Job (API)
	Provide a Template for Text Classification Labeling Jobs

	Text Classification Output Data

	Text Classification (Multi-label)
	Create a Multi-Label Text Classification Labeling Job (Console)
	Create a Multi-Label Text Classification Labeling Job (API)
	Create a Template for Multi-label Text Classification

	Multi-label Text Classification Output Data

	Label Videos and Video Frames
	Video Classification
	Create a Video Classification Labeling Job (Console)
	Create a Video Classification Labeling Job (API)
	Provide a Template for Video Classification

	Video Classification Output Data

	Label Video Frames
	Video Frame Object Detection
	Preview the Worker UI
	Create a Video Frame Object Detection Labeling Job
	Create a Labeling Job (Console)
	Create a Labeling Job (API)

	Create Video Frame Object Detection Adjustment or Verification Labeling Job
	Output Data Format

	Video Frame Object Tracking
	Preview the Worker UI
	Create a Video Frame Object Tracking Labeling Job
	Create a Labeling Job (Console)
	Create a Labeling Job (API)

	Create a Video Frame Object Tracking Adjustment or Verification Labeling Job
	Output Data Format

	Video Frame Labeling Job Overview
	Input Data
	Job Completion Times
	Task Types
	Workforces
	Worker User Interface (UI)
	Label Category and Frame Attributes
	Label Category Attributes
	Frame level Attributes

	Worker Instructions
	Declining Tasks

	Video Frame Job Permission Requirements
	Add a CORS Permission Policy to S3 Bucket

	Worker Instructions
	Work on Video Frame Object Tracking Tasks
	Your Task
	Navigate the UI
	Bulk Edit Label and Frame Attributes
	Tool Guide
	Icons Guide
	Shortcuts
	Release, Stop and Resume, and Decline Tasks
	Saving Your Work and Submitting

	Work on Video Frame Object Detection Tasks
	Your Task
	Navigate the UI
	Bulk Edit Label and Frame Attributes
	Tool Guide
	UI Icon Guide
	Shortcuts
	Release, Stop and Resume, and Decline Tasks
	Saving Your Work and Submitting

	Use Ground Truth to Label 3D Point Clouds
	3D Point Clouds
	LiDAR
	Sensor Fusion

	Label 3D Point Clouds
	Assistive Labeling Tools for Point Cloud Annotation

	Next Steps
	3D Point Cloud Task types
	3D Point Cloud Object Detection
	View the Worker Task Interface
	Create a 3D Point Cloud Object Detection Labeling Job
	Create a Labeling Job (Console)
	Create a Labeling Job (API)

	Create a 3D Point Cloud Object Detection Adjustment or Verification Labeling Job
	Output Data Format

	3D Point Cloud Object Tracking
	View the Worker Task Interface
	Worker Tools

	Create a 3D Point Cloud Object Tracking Labeling Job
	Create a Labeling Job (API)
	Create a Labeling Job (Console)

	Create a 3D Point Cloud Object Tracking Adjustment or Verification Labeling Job
	Output Data Format

	3D Point Cloud Semantic Segmentation
	View the Worker Task Interface
	Create a 3D Point Cloud Semantic Segmentation Labeling Job
	Create a Labeling Job (Console)
	Create a Labeling Job (API)

	Create a 3D Point Cloud Semantic Segmentation Adjustment or Verification Labeling Job
	Output Data Format

	3D-2D Point Cloud Object Tracking
	View the Worker Task Interface
	Worker Tools

	Input Data Format
	Create a 3D-2D Point Cloud Object Tracking Labeling Job
	Create a Labeling Job (API)

	Output Data

	3D Point Cloud Labeling Jobs Overview
	Job Pre-processing Time
	Job Completion Times
	Workforces
	Worker User Interface (UI)
	Label Category Attributes
	Label Category Attributes
	Frame Attributes

	Worker Instructions
	Declining Tasks

	3D Point Cloud Labeling Job Permission Requirements
	Add a CORS Permission Policy to S3 Bucket

	Worker Instructions
	3D Point Cloud Semantic Segmentation
	Your Task
	Navigate the UI
	Icon Guide
	Shortcuts
	Release, Stop and Resume, and Decline Tasks
	Saving Your Work and Submitting

	3D Point Cloud Object Detection
	Your Task
	Navigate the UI
	Icon Guide
	Shortcuts
	Release, Stop and Resume, and Decline Tasks
	Saving Your Work and Submitting

	3D Point Cloud Object Tracking
	Your Task
	Navigate the UI
	Delete Cuboids

	Bulk Edit Label Category and Frame Attributes
	Icon Guide
	Shortcuts
	Release, Stop and Resume, and Decline Tasks
	Saving Your Work and Submitting

	Verify and Adjust Labels
	Requirements to Create Verification and Adjustment Labeling Jobs
	Create a Label Verification Job (Console)
	Create an Image Label Verification Job (Console)
	Create a Point Cloud or Video Frame Label Verification Job (Console)

	Create a Label Adjustment Job (Console)
	Create an Image Label Adjustment Job (Console)
	Create a Point Cloud or Video Frame Label Adjustment Job (Console)

	Start a Label Verification or Adjustment Job (API)
	
	Bounding Box and Semantic Segmentation
	3D Point Cloud and Video Frame

	Label Verification and Adjustment Data in the Output Manifest
	Cautions and Considerations
	Color Information Requirements for Semantic Segmentation Jobs
	Filter Your Data Before Starting the Job

	Creating Custom Labeling Workflows
	Step 1: Setting up your workforce
	Next

	Step 2: Creating your custom worker task template
	Starting with a base template
	Developing templates locally
	Using External Assets
	Track your variables
	A simple sample
	Adding automation with Liquid
	Variable filters
	Autoescape and explicit escape
	escape_once
	skip_autoescape
	to_json
	grant_read_access

	End-to-end demos

	Step 3: Processing with AWS Lambda
	Pre-annotation and Post-annotation Lambda Function Requirements
	Pre-annotation Lambda
	Examples of Pre-annotation Lambda Functions

	Post-annotation Lambda

	Required Permissions To Use AWS Lambda With Ground Truth
	Grant Permission to Create and Select an AWS Lambda Function
	Grant IAM Execution Role Permission to Invoke AWS Lambda Functions
	Grant Post-Annotation Lambda Permissions to Access Annotation

	Create Lambda Functions for a Custom Labeling Workflow
	Test Pre-Annotation and Post-Annotation Lambda Functions
	Prerequisites
	Test the Pre-annotation Lambda Function
	Test the Post-Annotation Lambda Function

	Demo Template: Annotation of Images with crowd-bounding-box
	Starter Bounding Box custom template
	Your own Bounding Box custom template
	Your manifest file
	Your pre-annotation Lambda function
	Your post-annotation Lambda function
	The output of your labeling job

	Demo Template: Labeling Intents with crowd-classifier
	Starter Intent Detection custom template
	Your Intent Detection custom template
	Styling Your Elements

	Your pre-annotation Lambda function
	Your post-annotation Lambda function
	Your labeling job output

	Custom Workflows via the API

	Create a Labeling Job
	Built-in Task Types
	Creating Instruction Pages
	Short Instructions
	Full Instructions
	Add example images to your instructions

	Create a Labeling Job (Console)
	
	Next Steps

	Create a Labeling Job (API)
	Examples

	Create a Streaming Labeling Job
	Create Amazon SNS Input and Output Topics
	Create an Input Topic
	Create an Output Topic
	Add Encryption to Your Output Topic (Optional)

	Subscribe an Endpoint to Your Amazon SNS Output Topic

	Set up Amazon S3 Bucket Event Notifications
	Create a Manifest File (Optional)
	Example: Use SageMaker API To Create Streaming Labeling Job
	Stop a Streaming Labeling Job

	Create a Labeling Category Configuration File with Label Category and Frame Attributes
	Label Category Configuration File Schema
	Label and label category attribute quotas

	Example: Label Category Configuration Files for 3D Point Cloud Labeling Jobs
	Example: Label Category Configuration Files for Video Frame Labeling Jobs
	Creating Worker Instructions

	Use Input and Output Data
	Input Data
	Use an Input Manifest File
	Automated Data Setup
	Supported Data Formats
	Ground Truth Streaming Labeling Jobs
	How It Works
	Send Data to a Streaming Labeling Job
	Send Data Objects Using Amazon SNS
	Send Data Objects using Amazon S3

	Manage Labeling Requests with an Amazon SQS Queue
	Receive Output Data from a Streaming Labeling Job
	Duplicate Message Handling
	Specify A Deduplication Key and ID in an Amazon SNS Message
	Find Deduplication Key and ID in Your Output Data

	Input Data Quotas
	Input File Size Quota
	Input Image Resolution Quotas
	Label Category Quotas
	3D Point Cloud and Video Frame Labeling Job Quotas

	Filter and Select Data for Labeling
	Use the Full Dataset
	Choose a Random Sample
	Specify a Subset

	3D Point Cloud Input Data
	Accepted Raw 3D Data Formats
	Compact Binary Pack Format
	ASCII Format
	Point Cloud Resolution Limits

	Create an Input Manifest File for a 3D Point Cloud Labeling Job
	Create a Point Cloud Frame Input Manifest File
	Include Vehicle Pose Information in Your Input Manifest
	Include Camera Data in Your Input Manifest
	Point Cloud Frame Limits

	Create a Point Cloud Sequence Input Manifest
	Parameters for Individual Point Cloud Frames
	Include Vehicle Pose Information in Your Input Manifest
	Include Camera Data in Your Input Manifest
	Sequence File and Point Cloud Frame Limits

	Understand Coordinate Systems and Sensor Fusion
	Coordinate System Requirements for Labeling Jobs
	Using Point Cloud Data in a World Coordinate System
	What is a World Coordinate System?
	Convert 3D Point Cloud Data to a WCS

	Sensor Fusion
	Extrinsic Matrix
	Intrinsic Matrix
	Image Distortion
	Ego Vehicle
	Pose

	Compute Orientation Quaternions and Position
	Ground Truth Sensor Fusion Transformations
	LiDAR Extrinsic
	Camera Calibrations: Extrinsic, Intrinsic and Distortion
	Camera Extrinsic
	Intrinsic and Distortion

	Video Frame Input Data
	Choose Video Files or Video Frames for Input Data
	Provide Video Frames
	Provide Video Files

	Input Data Setup
	Automated Video Frame Input Data Setup
	Provide Video Files and Extract Frames
	Provide Video Frames

	Manual Input Data Setup
	Create a Video Frame Input Manifest File
	Create a Video Frame Sequence Input Manifest
	Create a Video Frame Sequence File

	Output Data
	Output Directories
	Active Learning Directory
	Annotations Directory
	Inference Directory
	Manifest Directory
	Training Directory

	Confidence Score
	Worker Metadata
	Output Metadata
	Classification Job Output
	Multi-label Classification Job Output
	Bounding Box Job Output
	Named Entity Recognition
	Label Verification Job Output
	Semantic Segmentation Job Output
	Video Frame Object Detection Output
	Video Frame Object Tracking Output
	3D Point Cloud Semantic Segmentation Output
	3D Point Cloud Object Detection Output
	3D Point Cloud Object Tracking Output
	3D-2D Object Tracking Point Cloud Object Tracking Output

	Enhanced Data Labeling
	Control the Flow of Data Objects Sent to Workers
	Use MaxConcurrentTaskCount to Control the Flow of Data Objects
	Use Amazon SQS to Control the Flow of Data Objects to Streaming Labeling Jobs

	Consolidate Annotations
	Create Your Own Annotation Consolidation Function
	Assess Similarity
	Assess the Most Probable Label

	Automate Data Labeling
	How it Works
	Accuracy of Automated Labels

	Create an Automated Data Labeling Job (Console)
	Create an Automated Data Labeling Job (API)
	Amazon EC2 Instances Required for Automated Data Labeling
	Set up an active learning workflow with your own model

	Chaining Labeling Jobs
	
	Key Term: Label Attribute Name
	Start a Chained Job (Console)
	Job Overview Panel

	Start a Chained Job (API)
	Use a Partially Labeled Dataset

	Ground Truth Security and Permissions
	CORS Permission Requirement
	Assign IAM Permissions to Use Ground Truth
	Use IAM Managed Policies with Ground Truth
	Grant IAM Permission to Use the Amazon SageMaker Ground Truth Console
	Ground Truth Console Permissions
	Custom Labeling Workflow Permissions
	Private Workforce Permissions
	Vendor Workforce Permissions

	Create a SageMaker Execution Role for a Ground Truth Labeling Job
	Built-In Task Types (Non-streaming) Execution Role Requirements
	Built-In Task Types (Streaming) Execution Role Requirements
	Execution Role Requirements for Custom Task Types
	Automated Data Labeling Permission Requirements

	Encrypt Output Data and Storage Volume with AWS KMS
	Encrypt Output Data using KMS
	Encrypt Automated Data Labeling ML Compute Instance Storage Volume

	Using Amazon SageMaker Ground Truth in an Amazon Virtual Private Cloud
	Run an Amazon SageMaker Ground Truth Labeling Job in an Amazon Virtual Private Cloud
	Prerequisites to Run a Ground Truth Labeling Job in a VPC
	Allow Ground Truth to Access VPC Restricted Amazon S3 Buckets
	Create an Automated Data Labeling Job in a VPC

	Use Amazon VPC Mode from a Private Worker Portal
	Prerequisites
	Using the SageMaker console to manage a VPC config
	Adding a VPC configuration to your workforce
	Create a private workforce

	Removing a VPC configuration from your workforce
	Deleting a workforce through the console

	Using the SageMaker AWS API to manage a VPC config
	Create a workforce with a VPC configuration
	Adding a VPC configuration your workforce
	Removing a VPC configuration from your workforce
	Restrict public access to the worker portal while maintaining access through a VPC

	Output Data and Storage Volume Encryption
	Use Your KMS Key to Encrypt Output Data
	Use Your KMS Key to Encrypt Automated Data Labeling Storage Volume (API Only)

	Workforce Authentication and Restrictions
	Restrict Access to Workforce Types

	Monitor Labeling Job Status
	Send Events to CloudWatch Events
	Set Up a Target to Process Events
	Labeling Job Expiration
	Declining Tasks

	Use Amazon SageMaker Ground Truth Plus to Label Data
	Getting Started with Amazon SageMaker Ground Truth Plus.
	Set Up Amazon SageMaker Ground Truth Plus Prerequisites
	Sign up for an AWS account
	Create an administrative user

	Core Components of Amazon SageMaker Ground Truth Plus

	Request a Project
	Create a Project Team
	Open the Project Portal
	Create a Batch
	Review Metrics
	Review Batches
	Accept or Reject Batches

	Create and Manage Workforces
	Using the Amazon Mechanical Turk Workforce
	Use Mechanical Turk with Ground Truth
	Use Mechanical Turk with Amazon A2I
	When is Mechanical Turk Not Supported?

	Managing Vendor Workforces
	Use a Private Workforce
	Create and Manage Amazon Cognito Workforce
	Create a Private Workforce (Amazon Cognito)
	Create a Private Workforce (Amazon SageMaker Console)
	Create an Amazon Cognito Workforce When Creating a Labeling Job
	Create an Amazon Cognito Workforce Using the Labeling Workforces Page

	Create a Private Workforce (Amazon Cognito Console)

	Manage a Private Workforce (Amazon Cognito)
	Manage a Workforce (Amazon SageMaker Console)
	Create a Work Team Using the SageMaker Console
	Subscriptions

	Add or Remove Workers
	Add Workers to the Workforce
	Add a Worker to a Work Team
	Disable and Remove a Worker from the Workforce

	Manage a Private Workforce (Amazon Cognito Console)
	Create Work Teams (Amazon Cognito Console)
	Subscriptions

	Add and Remove Workers (Amazon Cognito Console)
	Add a Worker to a Work Team
	Disable and Remove a Worker From a Work Team

	Create and Manage OIDC IdP Workforce
	Create a Private Workforce (OIDC IdP)
	Send Required and Optional Claims to Ground Truth and Amazon A2I
	Create an OIDC IdP Workforce
	Configure your OIDC IdP

	Validate Your OIDC IdP Workforce Authentication Response
	Next Steps

	Manage a Private Workforce (OIDC IdP)
	Prerequisites
	Add work teams
	Add or remove IdP groups from work teams
	Delete a work team
	Manage Individual Workers
	Update, Delete, and Describe Your Workforce

	Manage Private Workforce Using the Amazon SageMaker API
	Find Your Workforce Name
	Restrict Worker Access to Tasks to Allowable IP Addresses
	Update OIDC Identity Provider Workforce Configuration
	Delete a Private Workforce

	Track Worker Performance
	Enable Tracking
	Examine Logs
	Use Log Metrics

	Create and manage Amazon SNS topics for your work teams
	Create the Amazon SNS topic
	Manage worker subscriptions

	Crowd HTML Elements Reference
	SageMaker Crowd HTML Elements
	crowd-alert
	Attributes
	dismissible
	type

	Element Hierarchy
	See Also

	crowd-badge
	Attributes
	for
	icon
	label

	Element Hierarchy
	See Also

	crowd-button
	Attributes
	disabled
	form-action
	href
	icon
	icon-align
	icon-url
	loading
	target
	variant

	Element Hierarchy
	See Also

	crowd-bounding-box
	Attributes
	header
	initial-value
	labels
	name
	src

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	boundingBoxes
	inputImageProperties

	See Also

	crowd-card
	Attributes
	heading
	image

	Element Hierarchy
	See Also

	crowd-checkbox
	Attributes
	checked
	disabled
	name
	required
	value

	Element Hierarchy
	Output
	See Also

	crowd-classifier
	Attributes
	categories
	header
	name

	Element Hierarchy
	Regions
	classification-target
	full-instructions
	short-instructions

	Output
	See Also

	crowd-classifier-multi-select
	Attributes
	categories
	header
	name
	exclusion-category

	Element Hierarchy
	Regions
	classification-target
	full-instructions
	short-instructions

	Output
	See Also

	crowd-entity-annotation
	Attributes
	header
	initial-value
	labels
	name
	text

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	entities

	See Also

	crowd-fab
	Attributes
	disabled
	icon
	label
	title

	Element Hierarchy
	See Also

	crowd-form
	Element Hierarchy
	Element Events
	See Also

	crowd-icon-button
	Attributes
	disabled
	icon

	Element Hierarchy
	See Also

	crowd-image-classifier
	Attributes
	categories
	header
	name
	overlay
	src

	Element Hierarchy
	Regions
	full-instructions
	short-instructions
	worker-comment
	header
	link-text
	placeholder

	Output
	See Also

	crowd-image-classifier-multi-select
	Attributes
	categories
	header
	name
	src
	exclusion-category

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	See Also

	crowd-input
	Attributes
	allowed-pattern
	auto-focus
	auto-validate
	disabled
	error-message
	label
	max-length
	min-length
	name
	placeholder
	required
	type
	value

	Element Hierarchy
	Output
	See Also

	crowd-instance-segmentation
	Attributes
	header
	labels
	name
	src

	initial-value
	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	labeledImage
	instances
	inputImageProperties

	See Also

	crowd-instructions
	Attributes
	link-text
	link-type

	Element Hierarchy
	Regions
	detailed-instructions
	negative-example
	positive-example
	short-summary

	See Also

	crowd-keypoint
	Attributes
	header
	initial-value
	labels
	name
	src

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	inputImageProperties
	keypoints

	See Also

	crowd-line
	Attributes
	header
	initial-value
	labels
	label-colors
	name
	src

	Regions
	full-instructions
	short-instructions

	Element Hierarchy
	Output
	inputImageProperties
	lines

	See Also

	crowd-modal
	Attributes
	link-text
	link-type

	Element Hierarchy
	See Also

	crowd-polygon
	Attributes
	header
	labels
	name
	src
	initial-value

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	polygons
	inputImageProperties

	See Also

	crowd-polyline
	Attributes
	header
	initial-value
	labels
	label-colors
	name
	src

	Regions
	full-instructions
	short-instructions

	Element Hierarchy
	Output
	inputImageProperties
	polylines

	See Also

	crowd-radio-button
	Attributes
	checked
	disabled
	name
	value

	Element Hierarchy
	Output
	See Also

	crowd-radio-group
	Attributes
	Element Hierarchy
	Output
	See Also

	crowd-semantic-segmentation
	Attributes
	header
	initial-value
	labels
	name
	src

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Output
	labeledImage
	labelMappings
	initialValueModified
	inputImageProperties

	See Also

	crowd-slider
	Attributes
	disabled
	editable
	max
	min
	name
	pin
	required
	secondary-progress
	step
	value

	Element Hierarchy
	See Also

	crowd-tab
	Attributes
	header

	Element Hierarchy
	See Also

	crowd-tabs
	Attributes
	Element Hierarchy
	See Also

	crowd-text-area
	Attributes
	allowed-pattern
	auto-focus
	auto-validate
	char-counter
	disabled
	error-message
	label
	max-length
	max-rows
	name
	placeholder
	rows
	value

	Element Hierarchy
	Output
	See Also

	crowd-toast
	Attributes
	duration
	text

	Element Hierarchy
	See Also

	crowd-toggle-button
	Attributes
	checked
	disabled
	invalid
	name
	required
	value

	Element Hierarchy
	Output
	See Also

	Augmented AI Crowd HTML Elements
	crowd-textract-analyze-document
	Attributes
	header
	src
	initialValue
	blockTypes
	keys
	no-key-edit
	no-geometry-edit

	Element Hierarchy
	Regions
	full-instructions
	short-instructions

	Example of a Worker Template Using the crowd Element
	Output

	crowd-rekognition-detect-moderation-labels
	Attributes
	header
	src
	categories
	exclusion-category

	Element Hierarchy
	AWS Regions
	full-instructions
	short-instructions

	Example Worker Template with the crowd Element
	Output

	Using Amazon Augmented AI for Human Review
	Get Started with Amazon Augmented AI
	Core Components of Amazon A2I
	Task Types
	Human Review Workflow (Flow Definition)
	Human Loops

	Prerequisites to Using Augmented AI
	Tutorial: Get Started in the Amazon A2I Console
	Prerequisites
	Step 1: Create a Work Team
	Step 2: Create a Human Review Workflow
	Step 3: Start a Human Loop
	Step 4: View Human Loop Status in Console
	Step 5: Download Output Data

	Tutorial: Get Started Using the Amazon A2I API
	Create a Private Work Team
	Create a Human Review Workflow
	Create a Human Task UI
	Create JSON to specify activation conditions
	Create a human review workflow

	Create a Human Loop

	Use Cases and Examples Using Amazon A2I
	Use SageMaker Notebook Instance with Amazon A2I Jupyter Notebook
	Use Amazon Augmented AI with Amazon Textract
	Get Started: Integrate a Human Review into an Amazon Textract Analyze Document Job
	End-to-End Example Using Amazon Textract and Amazon A2I
	A2I Textract Worker Console Preview

	Use Amazon Augmented AI with Amazon Rekognition
	Get Started: Integrate a Human Review into an Amazon Rekognition Image Moderation Job
	End-to-end Demo Using Amazon Rekognition and Amazon A2I
	A2I Rekognition Worker Console Preview

	Use Amazon Augmented AI with Custom Task Types
	End-to-end Tutorial Using Amazon A2I Custom Task Types

	Create a Human Review Workflow
	Create a Human Review Workflow (Console)
	Next Steps

	Create a Human Review Workflow (API)
	Next Steps

	JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI
	Use Human Loop Activation Conditions JSON Schema with Amazon Textract
	ImportantFormKeyConfidenceCheck Inputs and Results
	MissingImportantFormKey Inputs and Results
	Sampling Inputs and Results
	Examples

	Use Human Loop Activation Conditions JSON Schema with Amazon Rekognition
	ModerationLabelConfidenceCheck Inputs
	Sampling Inputs
	Examples

	Delete a Human Review Workflow
	Delete a Flow Definition Using the Console or the SageMaker API

	Create and Start a Human Loop
	Create and Start a Human Loop for a Built-in Task Type
	Create an Amazon Textract Human Loop
	Create an Amazon Rekognition Human Loop

	Create and Start a Human Loop for a Custom Task Type
	Next Steps:

	Delete a Human Loop
	Human Loop Data Retention and Deletion
	Stop and Delete a Flow Definition Using the Console or the Amazon A2I API

	Create and Manage Worker Task Templates
	Create and Delete Worker Task Templates
	Create a Worker Task Template
	Delete a Worker Task Template

	Create Custom Worker Task Templates
	Develop Templates Locally
	Use External Assets
	Track Your Variables
	Custom Template Example for Amazon Textract
	Custom Template Example for Amazon Rekognition
	Add Automation with Liquid
	Use Variable Filters
	Autoescape and Explicit Escape
	escape_once
	skip_autoescape
	to_json
	grant_read_access

	Preview a Worker Task Template

	Creating Good Worker Instructions
	Create Good Worker Instructions
	Add Example Images to Your Instructions

	Monitor and Manage Your Human Loop
	Amazon A2I Output Data
	Output Data From Built-In Task Types
	Output Data From Custom Task Types
	Track Worker Activity

	Permissions and Security in Amazon Augmented AI
	CORS Permission Requirement
	Add Permissions to the IAM Role Used to Create a Flow Definition
	Create a User That Can Invoke Amazon A2I API Operations
	Create a User With Permissions to Invoke Amazon A2I, Amazon Textract, and Amazon Rekognition API Operations
	Enable Worker Task Template Previews
	Using Amazon A2I with AWS KMS Encrypted Buckets
	Additional Permissions and Security Resources

	Use Amazon CloudWatch Events in Amazon Augmented AI
	Send Events from Your Human Loop to CloudWatch Events
	Set Up a Target to Process Events
	Use Human Review Output
	More Information

	Use APIs in Amazon Augmented AI
	Programmatic Tutorials

	Prepare data
	Prepare ML Data with Amazon SageMaker Data Wrangler
	Get Started with Data Wrangler
	Prerequisites
	Access Data Wrangler
	Update Data Wrangler
	Demo: Data Wrangler Titanic Dataset Walkthrough
	Upload Dataset to S3 and Import
	Data Flow
	Prepare and Visualize
	Data Exploration
	Drop Unused Columns
	Clean up Missing Values
	Custom Pandas: Encode

	Custom SQL: SELECT Columns

	Export to a Data Wrangler Notebook
	Export to Data Wrangler Job Notebook
	Training XGBoost Classifier
	Shut down Data Wrangler

	Import
	Import data from Amazon S3
	Import data from Athena
	Query Athena within Data Wrangler
	Managing query results
	Setting data retention periods

	Import data from Amazon Redshift
	Import data from Amazon EMR
	Creating a AWS Secrets Manager secret for your cluster

	Import data from Databricks (JDBC)
	Import data from Salesforce Data Cloud
	Administrator setup
	Data Scientist Guide

	Import data from Snowflake
	Administrator Guide
	(Optional) Configure Snowflake Data Import Permissions
	Setting up Snowflake OAuth Access
	Private Connectivity between Data Wrangler and Snowflake via AWS PrivateLink
	Create a VPC
	Set up Snowflake AWS PrivateLink Integration
	Configure DNS for Snowflake Endpoints in your VPC
	Configure Route 53 Resolver Inbound Endpoint for your VPC
	SageMaker VPC Endpoints
	
	

	

	Provide information to the data scientist

	Data Scientist Guide

	Import Data From Software as a Service (SaaS) Platforms
	Using Amazon AppFlow to transfer your data

	Imported Data Storage
	Amazon Redshift Import Storage
	Amazon Athena Import Storage

	Create and Use a Data Wrangler Flow
	Instances
	The Data Flow UI
	Add a Step to Your Data Flow
	Delete a Step from Your Data Flow
	Edit a Step in Your Data Wrangler Flow

	Get Insights On Data and Data Quality
	Summary
	Target column
	Quick model
	Feature summary
	Samples
	Definitions

	Automatically Train Models on Your Data Flow
	Transform Data
	Transform UI
	Join Datasets
	Concatenate Datasets
	Balance Data
	Custom Transforms
	Custom Formula
	Reduce Dimensionality within a Dataset
	Encode Categorical
	Ordinal Encode
	One-Hot Encode
	Similarity encode

	Featurize Text
	Character Statistics
	Vectorize

	Transform Time Series
	Group by a Time Series
	Resample Time Series Data
	Handle Missing Time Series Data
	Validate the Timestamp of Your Time Series Data
	Standardizing the Length of the Time Series
	Extract Features from Your Time Series Data
	Use Lagged Features from Your Time Series Data
	Create a Datetime Range In Your Time Series
	Use a Rolling Window In Your Time Series

	Featurize Datetime
	Format String
	Handle Outliers
	Robust standard deviation numeric outliers
	Standard Deviation Numeric Outliers
	Quantile Numeric Outliers
	Min-Max Numeric Outliers
	Replace Rare

	Handle Missing Values
	Fill Missing
	Impute Missing
	Add Indicator for Missing
	Drop Missing

	Manage Columns
	Manage Rows
	Manage Vectors
	Process Numeric
	Sampling
	Search and Edit
	Split data
	Parse Value as Type
	Validate String
	Unnest JSON Data
	Explode Array
	Transform Image Data
	Filter data
	Map Columns for Amazon Personalize

	Analyze and Visualize
	Histogram
	Scatter Plot
	Table Summary
	Quick Model
	Target Leakage
	Multicollinearity
	Detect Anomalies In Time Series Data
	Seasonal Trend Decomposition In Time Series Data
	Bias Report
	Create Custom Visualizations

	Reusing Data Flows for Different Datasets
	Applying a Data Wrangler flow to files using patterns
	Applying a Data Wrangler flow to files using numeric values
	Applying a Data Wrangler flow to files using strings
	Applying a Data Wrangler flow to different datetime ranges

	Export
	Export to Amazon S3
	Export to SageMaker Pipelines
	Use a Jupyter Notebook to Create a Pipeline

	Export to an Inference Endpoint
	Use a Jupyter Notebook to create an inference endpoint

	Export to Python Code
	Export to Amazon SageMaker Feature Store
	Refit Transforms to The Entire Dataset and Export Them
	Create a Schedule to Automatically Process New Data

	Use an Interactive Data Preparation Widget in an Amazon SageMaker Studio Classic Notebook to Get Data Insights
	Getting started with running the widget
	Reference for the insights and transforms in the widget

	Security and Permissions
	Add a Bucket Policy To Restrict Access to Datasets Imported to Data Wrangler
	Create an Allowlist for Data Wrangler
	Grant an IAM Role Permission to Use Data Wrangler
	Snowflake and Data Wrangler
	Data Encryption with AWS KMS
	Amazon S3 customer managed key setup for Data Wrangler imported data storage
	Encrypting the Data That You Export

	Amazon AppFlow Permissions
	Using Lifecycle Configurations in Data Wrangler

	Release Notes
	Troubleshoot
	Troubleshooting issues with Amazon EMR
	Troubleshooting with Salesforce
	Lifecycle configuration error
	Unable to access Salesforce Data Cloud from the Data Wrangler flow
	Blank page showing redirect_uri_mismatch
	Shared spaces
	OAuth Redirect Error
	Data Wrangler takes a long time to load
	User fails to export their data with an Invalid batch Id error
	Users can't export a very large dataset
	Users can't export data due to invalid refresh token
	Queries failing or tables not loading
	OAUTH_APP_BLOCKED during Studio Classic redirect
	OAUTH_APP_DENIED during Studio Classic redirect

	Increase Amazon EC2 Instance Limit
	Update Data Wrangler
	Shut Down Data Wrangler

	Prepare Data at Scale with Studio Classic using Amazon EMR or AWS Glue
	Prepare data using Amazon EMR
	Configure networking (for administrators)
	Studio Classic and Amazon EMR are deployed in separate VPCs
	Amazon SageMaker Studio Classic and Amazon EMR are in the same VPC
	Amazon SageMaker Studio Classic and Amazon EMR communicate over public internet

	Create an Amazon EMR cluster from Studio Classic notebooks
	Configure Amazon EMR templates in AWS Service Catalog (for administrators)
	Launch an Amazon EMR cluster from Studio Classic

	Use Amazon EMR clusters from Studio Classic notebooks
	Supported images and kernels to connect to an Amazon EMR cluster from SageMaker Studio Classic
	Bring your own image
	Configure the discoverability of Amazon EMR clusters (for administrators)
	Discover Amazon EMR clusters from SageMaker Studio Classic
	Connect to an Amazon EMR cluster from SageMaker Studio Classic
	Connect to an Amazon EMR cluster automatically
	Enter the connection command to an Amazon EMR cluster manually
	Connect to an Amazon EMR cluster over HTTPS
	Connect to an Amazon EMR cluster from Studio Classic using runtime IAM roles
	Prerequisites
	Cross-account connection scenarios
	Set up Studio Classic to use runtime IAM roles
	Configure runtime role authentication when your Amazon EMR cluster and Studio Classic are in the same account
	Configure runtime role authentication when your cluster and Studio Classic are in different accounts
	Configure Lake Formation access
	Preload your execution roles into Studio Classic

	Terminate an Amazon EMR cluster from Studio Classic

	Access Spark UI from Studio Classic
	Set up SSH tunneling for Spark UI access
	Presigned URLs

	Walkthroughs and whitepapers
	Additional Configuration for cross accounts use cases (for administrators)
	Troubleshooting
	Troubleshoot Livy connections hanging or failing

	Prepare data using AWS Glue Interactive Sessions
	Get Started with AWS Glue Interactive Sessions
	Permissions for AWS Glue Interactive Sessions in SageMaker Studio Classic
	Tag propagation
	Enable tag propagation
	Additional information

	Launch your AWS Glue interactive session on SageMaker Studio Classic
	Configure your AWS Glue interactive session in SageMaker Studio Classic

	AWS Glue Interactive Session Pricing

	Process data
	Use Amazon SageMaker Processing Sample Notebooks
	Monitor Amazon SageMaker Processing Jobs with CloudWatch Logs and Metrics
	Data Processing with Apache Spark
	Running a Spark Processing Job

	Data Processing with scikit-learn
	Data Processing with Framework Processors
	Hugging Face Framework Processor
	MXNet Framework Processor
	PyTorch Framework Processor
	TensorFlow Framework Processor
	XGBoost Framework Processor

	Use Your Own Processing Code
	Run Scripts with Your Own Processing Container
	Build Your Own Processing Container (Advanced Scenario)
	How Amazon SageMaker Processing Runs Your Processing Container Image
	How Amazon SageMaker Processing Configures Input and Output For Your Processing Container
	How Amazon SageMaker Processing Provides Logs and Metrics for Your Processing Container
	How Amazon SageMaker Processing Configures Your Processing Container
	Save and Access Metadata Information About Your Processing Job
	Run Your Processing Container Using the SageMaker Python SDK

	Create, store, and share features with Amazon SageMaker Feature Store
	How Feature Store works
	Create feature groups
	Find, discover, and share features
	Real-time inference for features stored in the online store
	Offline store for model training and batch inference
	Feature data ingestion
	Resilience in Feature Store
	Get started with Amazon SageMaker Feature Store
	Feature Store concepts
	Concepts overview diagram
	Ingestion diagrams

	Adding policies to your IAM role
	Use Feature Store with SDK for Python (Boto3)
	Introduction to Feature Store example notebook
	Step 1: Set up your SageMaker session
	Step 2: Inspect your data
	Step 3: Create feature groups
	Step 4: Ingest data into a feature group
	Step 5: Clean up
	Step 6: Next steps
	Step 7: Code examples for programmers

	Fraud detection with Feature Store example notebook
	Step 1: Set up your Feature Store session
	Step 2: Load datasets and partition data into feature groups
	Step 3: Set up feature groups
	Step 4: Set up record identifier and event time features
	Step 5: Load feature definitions
	Step 6: Create a feature group
	Step 7: Work with feature groups
	Describe a feature group
	List feature groups
	Put records in a feature group
	Get records from a feature group
	Generate hive DDL commands
	Build a training dataset
	Write and execute an Athena query
	Delete a feature group

	Using Amazon SageMaker Feature Store in the console
	Create a feature group from the console
	Create feature groups if Studio is your default experience (console)
	Create feature groups if Studio Classic is your default experience (console)

	View feature group details from the console
	View feature group details if Studio is your default experience (console)
	View feature group details if Studio Classic is your default experience (console)

	Update a feature group from the console
	Update a feature group if Studio is your default experience (console)
	Update a feature group if Studio Classic is your default experience (console)

	View pipeline executions from the console
	View pipeline executions if Studio is your default experience (console)
	View pipeline executions if Studio Classic is your default experience (console)

	View lineage from the console
	View lineage if Studio is your default experience (console)
	View lineage if Studio Classic is your default experience (console)

	Delete a feature group
	Delete a feature group using the console
	Delete feature group if Studio is your default experience (console)
	Delete feature group if Studio Classic is your default experience (console)

	Delete feature group example Python code

	Data sources and ingestion
	Stream ingestion
	Data Wrangler with Feature Store
	Export your Data Wrangler data flow to Feature Store if Studio is your default experience (console)
	Export your Data Wrangler data flow to Feature Store if Studio Classic is your default experience (console)

	Batch ingestion with Amazon SageMaker Feature Store Spark
	Feature Store Spark installation
	Retrieving the JAR for Feature Store Spark
	Example implementations

	Feature Processing
	Feature Store Feature Processor SDK
	Running Feature Store Feature Processor remotely
	Creating and running Feature Store Feature Processor pipelines
	Scheduled and event based executions for Feature Processor pipelines
	Schedule based executions
	Event based executions

	Monitor Amazon SageMaker Feature Store Feature Processor pipelines
	IAM permissions and execution roles
	Feature Processor restrictions, limits, and quotas
	Data sources
	Feature Processor SDK data sources
	FeatureGroupDataSource
	Feature Store provided data source definitions

	Custom data sources
	Custom data source examples
	Amazon Redshift Clusters (JDBC) custom data source examples
	Snowflake custom data source examples
	Databricks (JDBC) custom data source examples
	Streaming custom data source examples

	Example Feature Processing code for common use cases
	Joining data from multiple data sources
	Sliding window aggregates
	Tumbling window aggregates
	Promotion from the offline store to online store
	Transformations with the Pandas library
	Continuous executions and automatic retries using event based triggers

	Time to live (TTL) duration for records
	Cross account feature group discoverability and access
	Enabling cross account discoverability
	Share your feature group catalog
	Share the feature group catalog using the AWS SDK for Python (Boto3)

	Search discoverable resources
	Search discoverable feature groups example

	Enabling cross account access
	Share online feature groups with AWS Resource Access Manager
	Share your feature group entities
	Share online store feature groups using the AWS SDK for Python (Boto3)

	Use online store shared resources with access permissions
	View shared resources on the AWS RAM console
	Read and write actions with a shared feature groups example

	Cross account offline store access
	Step 1: Set up the offline store access role in Account A
	Step 2: Set up an offline store Amazon S3 bucket in Account B
	Step 3: Set up an offline store AWS KMS encryption key in Account A
	Step 4: Create a feature group in Account A

	Feature Store storage configurations
	Online store
	Standard tier storage type
	In-memory tier storage type

	Offline store
	Glue table format
	Iceberg table format

	Throughput modes
	On-demand throughput mode
	Provisioned throughput mode
	Throughput mode metrics
	Throughput mode limits

	Collection types
	Add features and records to a feature group
	API
	Example code
	Step 1: Add features to a feature group
	Step 2: Add a new record to the feature group

	Find features in your feature groups
	How to search for your features
	Search for features if Studio is your default experience (console)
	Search for features if Studio Classic is your default experience (console)
	Search for your features using SDK for Python (Boto3)

	Find feature groups in your Feature Store
	How to find feature groups
	Find feature groups if Studio is your default experience (console)
	Find feature groups if Studio Classic is your default experience (console)
	Find feature groups using SDK for Python (Boto3)

	Adding searchable metadata to your features
	How to add searchable metadata to your features
	Add searchable metadata to features if Studio is your default experience (console)
	Add searchable metadata to your features if Studio Classic is your default experience (console)
	Add searchable metadata to your features using SDK for Python (Boto3)
	Example code
	Step 1: Setup
	Step 2: Create a feature group and add features
	Step 3: Add metadata

	Create a dataset from your feature groups
	Using the Amazon SageMaker Python SDK to get your data from your feature groups
	Sample Amazon Athena queries

	Delete records from your feature groups
	Delete records from the online store
	Online store soft delete example
	Online store hard delete example

	Delete records from the offline store
	Obtain your Iceberg table name
	Amazon Athena offline store soft and hard delete example
	Apache Spark offline store soft and hard delete example

	Logging Feature Store operations by using AWS CloudTrail
	Management events
	Data events

	Security and access control
	Using AWS KMS permissions for Amazon SageMaker Feature Store
	Authorizing use of a customer managed Key for your online store
	Customer managed key policy

	Using grants to authorize Feature Store
	Monitoring Feature Store interaction with AWS KMS
	Accessing data in your online store
	Authorizing use of a customer managed key for your offline store

	Quotas, naming rules and data types
	Quota terminologies
	Limits and quotas
	Naming rules
	Data types

	Amazon SageMaker Feature Store offline store data format
	Amazon SageMaker Feature Store offline store URI structures

	Amazon SageMaker Feature Store resources
	Feature Store example notebooks and workshops
	Feature Store Python SDK and API

	Train machine learning models
	The simplest training workflow in SageMaker
	Full view of the SageMaker Training workflow and features
	Before training
	During training
	After training

	Train a Model with Amazon SageMaker
	Choose an Algorithm
	Choose an algorithm implementation
	Use a built-in algorithm
	Use script mode in a supported framework
	Use a custom Docker image

	Problem types for the basic machine learning paradigms
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Use Amazon SageMaker Built-in Algorithms or Pre-trained Models
	Pre-trained Models and Solution Templates
	Supervised Learning
	Unsupervised Learning
	Textual Analysis
	Image Processing
	Common Information About Built-in Algorithms
	Common Data Formats for Built-in Algorithms
	Common Data Formats for Training
	Content Types Supported by Built-In Algorithms
	Using Pipe Mode
	Using CSV Format
	Using RecordIO Format
	Trained Model Deserialization

	Common Data Formats for Inference
	Convert Data for Inference Request Serialization
	Convert Data for Inference Response Deserialization
	Common Request Formats for All Algorithms
	JSON Request Format
	JSONLINES Request Format
	CSV Request Format
	RECORDIO Request Format

	Use Batch Transform with Built-in Algorithms

	Instance Types for Built-in Algorithms
	Logs for Built-in Algorithms
	Common Errors

	Built-in SageMaker Algorithms for Tabular Data
	AutoGluon-Tabular
	How to use SageMaker AutoGluon-Tabular
	Input and Output interface for the AutoGluon-Tabular algorithm
	Amazon EC2 instance recommendation for the AutoGluon-Tabular algorithm
	AutoGluon-Tabular sample notebooks
	How AutoGluon-Tabular works
	AutoGluon-Tabular hyperparameters
	Tuning an AutoGluon-Tabular model

	CatBoost
	How to use SageMaker CatBoost
	Input and Output interface for the CatBoost algorithm
	Amazon EC2 instance recommendation for the CatBoost algorithm
	CatBoost sample notebooks
	How CatBoost Works
	CatBoost hyperparameters
	Tune a CatBoost model
	Evaluation metrics computed by the CatBoost algorithm
	Tunable CatBoost hyperparameters

	Factorization Machines Algorithm
	Input/Output Interface for the Factorization Machines Algorithm
	EC2 Instance Recommendation for the Factorization Machines Algorithm
	Factorization Machines Sample Notebooks
	How Factorization Machines Work
	Factorization Machines Hyperparameters
	Tune a Factorization Machines Model
	Metrics Computed by the Factorization Machines Algorithm
	Tunable Factorization Machines Hyperparameters

	Factorization Machines Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format

	K-Nearest Neighbors (k-NN) Algorithm
	Input/Output Interface for the k-NN Algorithm
	k-NN Sample Notebooks
	How the k-NN Algorithm Works
	Step 1: Sample
	Step 2: Perform Dimension Reduction
	Step 3: Build an Index
	Serialize the Model

	EC2 Instance Recommendation for the k-NN Algorithm
	k-NN Hyperparameters
	Tune a k-NN Model
	Metrics Computed by the k-NN Algorithm
	Tunable k-NN Hyperparameters

	Data Formats for k-NN Training Input
	CSV Data Format
	RECORDIO Data Format

	k-NN Request and Response Formats
	INPUT: CSV Request Format
	INPUT: JSON Request Format
	INPUT: JSONLINES Request Format
	INPUT: RECORDIO Request Format
	OUTPUT: JSON Response Format
	OUTPUT: JSONLINES Response Format
	OUTPUT: VERBOSE JSON Response Format
	OUTPUT: RECORDIO-PROTOBUF Response Format
	OUTPUT: VERBOSE RECORDIO-PROTOBUF Response Format
	SAMPLE OUTPUT for the k-NN Algorithm

	LightGBM
	How to use SageMaker LightGBM
	Input and Output interface for the LightGBM algorithm
	Amazon EC2 instance recommendation for the LightGBM algorithm
	LightGBM sample notebooks
	How LightGBM works
	LightGBM hyperparameters
	Tune a LightGBM model
	Evaluation metrics computed by the LightGBM algorithm
	Tunable LightGBM hyperparameters

	Linear Learner Algorithm
	Input/Output interface for the linear learner algorithm
	EC2 instance recommendation for the linear learner algorithm
	Linear learner sample notebooks
	How linear learner works
	Step 1: Preprocess
	Step 2: Train
	Step 3: Validate and set the threshold

	Linear learner hyperparameters
	Tune a linear learner model
	Metrics computed by the linear learner algorithm
	Tuning linear learner hyperparameters

	Linear learner response formats
	JSON response formats
	JSONLINES response formats
	RECORDIO response formats

	TabTransformer
	How to use SageMaker TabTransformer
	Input and Output interface for the TabTransformer algorithm
	Amazon EC2 instance recommendation for the TabTransformer algorithm
	TabTransformer sample notebooks
	How TabTransformer works
	TabTransformer hyperparameters
	Tune a TabTransformer model
	Evaluation metrics computed by the TabTransformer algorithm
	Tunable TabTransformer hyperparameters

	XGBoost Algorithm
	Supported versions
	How to Use SageMaker XGBoost
	Input/Output Interface for the XGBoost Algorithm
	EC2 Instance Recommendation for the XGBoost Algorithm
	Training
	CPU training
	GPU training

	Distributed training
	Distributed CPU training
	Divide input data across instances

	Distributed GPU training
	Variations in output

	Inference

	XGBoost Sample Notebooks
	How XGBoost Works
	XGBoost Hyperparameters
	Tune an XGBoost Model
	Evaluation Metrics Computed by the XGBoost Algorithm
	Tunable XGBoost Hyperparameters

	Deprecated Versions of XGBoost and their Upgrades
	Upgrade XGBoost Version 0.90 to Version 1.5
	Upgrade SageMaker Python SDK Version 1.x to Version 2.x
	Change the image tag to 1.5-1
	Change Docker Image for Boto3
	Update Hyperparameters and Learning Objectives

	XGBoost Version 0.72
	Input/Output Interface for the XGBoost Release 0.72
	EC2 Instance Recommendation for the XGBoost Release 0.72
	XGBoost Release 0.72 Sample Notebooks
	XGBoost Release 0.72 Hyperparameters
	Tune an XGBoost Release 0.72 Model
	Metrics Computed by the XGBoost Release 0.72 Algorithm
	Tunable XGBoost Release 0.72 Hyperparameters

	Built-in SageMaker Algorithms for Text Data
	BlazingText algorithm
	Input/Output Interface for the BlazingText Algorithm
	Training and Validation Data Format
	Training and Validation Data Format for the Word2Vec Algorithm
	Training and Validation Data Format for the Text Classification Algorithm
	Train with File Mode
	Train with Augmented Manifest Text Format

	Model Artifacts and Inference
	Model Artifacts for the Word2Vec Algorithm
	Sample JSON Request

	Model Artifacts for the Text Classification Algorithm
	Sample JSON Request

	EC2 Instance Recommendation for the BlazingText Algorithm
	BlazingText Sample Notebooks
	BlazingText Hyperparameters
	Word2Vec Hyperparameters
	Text Classification Hyperparameters

	Tune a BlazingText Model
	Metrics Computed by the BlazingText Algorithm
	Tunable BlazingText Hyperparameters
	Tunable Hyperparameters for the Word2Vec Algorithm
	Tunable Hyperparameters for the Text Classification Algorithm

	Latent Dirichlet Allocation (LDA) Algorithm
	Choosing between Latent Dirichlet Allocation (LDA) and Neural Topic Model (NTM)
	Input/Output Interface for the LDA Algorithm
	EC2 Instance Recommendation for the LDA Algorithm
	LDA Sample Notebooks
	How LDA Works
	LDA Hyperparameters
	Tune an LDA Model
	Metrics Computed by the LDA Algorithm
	Tunable LDA Hyperparameters

	Neural Topic Model (NTM) Algorithm
	Input/Output Interface for the NTM Algorithm
	EC2 Instance Recommendation for the NTM Algorithm
	NTM Sample Notebooks
	NTM Hyperparameters
	Tune an NTM Model
	Metrics Computed by the NTM Algorithm
	Tunable NTM Hyperparameters

	NTM Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format

	Object2Vec Algorithm
	I/O Interface for the Object2Vec Algorithm
	EC2 Instance Recommendation for the Object2Vec Algorithm
	Object2Vec Sample Notebooks
	How Object2Vec Works
	Step 1: Process Data
	Step 2: Train a Model
	Step 3: Produce Inferences

	Object2Vec Hyperparameters
	Tune an Object2Vec Model
	Metrics Computed by the Object2Vec Algorithm
	Regressor Metrics Computed by the Object2Vec Algorithm
	Classification Metrics Computed by the Object2Vec Algorithm

	Tunable Object2Vec Hyperparameters

	Data Formats for Object2Vec Training
	Input: JSON Lines Request Format

	Data Formats for Object2Vec Inference
	GPU optimization: Classification or Regression
	Input: Classification or Regression Request Format
	Output: Classification or Regression Response Format

	Encoder Embeddings for Object2Vec
	GPU optimization: Encoder Embeddings
	Input: Encoder Embeddings
	Output: Encoder Embeddings

	Sequence-to-Sequence Algorithm
	Input/Output Interface for the Sequence-to-Sequence Algorithm
	EC2 Instance Recommendation for the Sequence-to-Sequence Algorithm
	Sequence-to-Sequence Sample Notebooks
	How Sequence-to-Sequence Works
	Sequence-to-Sequence Hyperparameters
	Tune a Sequence-to-Sequence Model
	Metrics Computed by the Sequence-to-Sequence Algorithm
	Tunable Sequence-to-Sequence Hyperparameters

	Text Classification - TensorFlow
	How to use the SageMaker Text Classification - TensorFlow algorithm
	Input and output interface for the Text Classification - TensorFlow algorithm
	Incremental training
	Inference with the Text Classification - TensorFlow algorithm

	Amazon EC2 instance recommendation for the Text Classification - TensorFlow algorithm
	Text Classification - TensorFlow sample notebooks
	How Text Classification - TensorFlow Works
	TensorFlow Hub Models
	Text Classification - TensorFlow Hyperparameters
	Tune a Text Classification - TensorFlow model
	Metrics computed by the Text Classification - TensorFlow algorithm
	Tunable Text Classification - TensorFlow hyperparameters

	Built-in SageMaker Algorithms for Time-Series Data
	DeepAR Forecasting Algorithm
	Input/Output Interface for the DeepAR Algorithm
	Best Practices for Using the DeepAR Algorithm
	EC2 Instance Recommendations for the DeepAR Algorithm
	DeepAR Sample Notebooks
	How the DeepAR Algorithm Works
	How Feature Time Series Work in the DeepAR Algorithm

	DeepAR Hyperparameters
	Tune a DeepAR Model
	Metrics Computed by the DeepAR Algorithm
	Tunable Hyperparameters for the DeepAR Algorithm

	DeepAR Inference Formats
	DeepAR JSON Request Formats
	DeepAR JSON Response Formats
	Batch Transform with the DeepAR Algorithm

	Unsupervised Built-in SageMaker Algorithms
	IP Insights
	Input/Output Interface for the IP Insights Algorithm
	EC2 Instance Recommendation for the IP Insights Algorithm
	GPU Instances for the IP Insights Algorithm
	CPU Instances for the IP Insights Algorithm

	IP Insights Sample Notebooks
	How IP Insights Works
	IP Insights Hyperparameters
	Tune an IP Insights Model
	Metrics Computed by the IP Insights Algorithm
	Tunable IP Insights Hyperparameters

	IP Insights Data Formats
	IP Insights Training Data Formats
	IP Insights Training Data Input Formats
	INPUT: CSV

	IP Insights Inference Data Formats
	IP Insights Input Request Formats
	INPUT: CSV Format
	INPUT: JSON Format
	INPUT: JSONLINES Format

	IP Insights Output Response Formats
	OUTPUT: JSON Response Format
	OUTPUT: JSONLINES Response Format

	K-Means Algorithm
	Input/Output Interface for the K-Means Algorithm
	EC2 Instance Recommendation for the K-Means Algorithm
	K-Means Sample Notebooks
	How K-Means Clustering Works
	Step 1: Determine the Initial Cluster Centers
	Step 2: Iterate over the Training Dataset and Calculate Cluster Centers
	Step 3: Reduce the Clusters from K to k

	K-Means Hyperparameters
	Tune a K-Means Model
	Metrics Computed by the K-Means Algorithm
	Tunable K-Means Hyperparameters

	K-Means Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format
	CSV Response Format

	Principal Component Analysis (PCA) Algorithm
	Input/Output Interface for the PCA Algorithm
	EC2 Instance Recommendation for the PCA Algorithm
	PCA Sample Notebooks
	How PCA Works
	Mode 1: Regular
	Mode 2: Randomized

	PCA Hyperparameters
	PCA Response Formats
	JSON Response Format
	JSONLINES Response Format
	RECORDIO Response Format

	Random Cut Forest (RCF) Algorithm
	Input/Output Interface for the RCF Algorithm
	Instance Recommendations for the RCF Algorithm
	RCF Sample Notebooks
	How RCF Works
	Sample Data Randomly
	Train a RCF Model and Produce Inferences
	Choose Hyperparameters
	References

	RCF Hyperparameters
	Tune an RCF Model
	Metrics Computed by the RCF Algorithm
	Tunable RCF Hyperparameters

	RCF Response Formats
	JSON Response Format
	JSONLINES Response Format

	RECORDIO Response Format

	Built-in SageMaker Algorithms for Computer Vision
	Image Classification - MXNet
	Input/Output Interface for the Image Classification Algorithm
	Train with RecordIO Format
	Train with Image Format
	Train with Augmented Manifest Image Format
	Incremental Training
	Inference with the Image Classification Algorithm

	EC2 Instance Recommendation for the Image Classification Algorithm
	Image Classification Sample Notebooks
	How Image Classification Works
	Image Classification Hyperparameters
	Tune an Image Classification Model
	Metrics Computed by the Image Classification Algorithm
	Tunable Image Classification Hyperparameters

	Image Classification - TensorFlow
	How to use the SageMaker Image Classification - TensorFlow algorithm
	Input and output interface for the Image Classification - TensorFlow algorithm
	Incremental training
	Inference with the Image Classification - TensorFlow algorithm

	Amazon EC2 instance recommendation for the Image Classification - TensorFlow algorithm
	Image Classification - TensorFlow sample notebooks
	How Image Classification - TensorFlow Works
	TensorFlow Hub Models
	Image Classification - TensorFlow Hyperparameters
	Tune an Image Classification - TensorFlow model
	Metrics computed by the Image Classification - TensorFlow algorithm
	Tunable Image Classification - TensorFlow hyperparameters

	Object Detection - MXNet
	Input/Output Interface for the Object Detection Algorithm
	Train with the RecordIO Format
	Train with the Image Format
	Train with Augmented Manifest Image Format
	Incremental Training

	EC2 Instance Recommendation for the Object Detection Algorithm
	Object Detection Sample Notebooks
	How Object Detection Works
	Object Detection Hyperparameters
	Tune an Object Detection Model
	Metrics Computed by the Object Detection Algorithm
	Tunable Object Detection Hyperparameters

	Object Detection Request and Response Formats
	Request Format
	Response Formats
	OUTPUT: JSON Response Format

	Object Detection - TensorFlow
	How to use the SageMaker Object Detection - TensorFlow algorithm
	Input and output interface for the Object Detection - TensorFlow algorithm
	Incremental training
	Inference with the Object Detection - TensorFlow algorithm

	Amazon EC2 instance recommendation for the Object Detection - TensorFlow algorithm
	Object Detection - TensorFlow sample notebooks
	How Object Detection - TensorFlow Works
	TensorFlow Models
	Object Detection - TensorFlow Hyperparameters
	Tune an Object Detection - TensorFlow model
	Metrics computed by the Object Detection - TensorFlow algorithm
	Tunable Object Detection - TensorFlow hyperparameters

	Semantic Segmentation Algorithm
	Semantic Segmentation Sample Notebooks
	Input/Output Interface for the Semantic Segmentation Algorithm
	How Training Works
	Training with the Augmented Manifest Format
	Incremental Training
	Produce Inferences

	EC2 Instance Recommendation for the Semantic Segmentation Algorithm
	Semantic Segmentation Hyperparameters
	Tuning a Semantic Segmentation Model
	Metrics Computed by the Semantic Segmentation Algorithm
	Tunable Semantic Segmentation Hyperparameters

	Use Reinforcement Learning with Amazon SageMaker
	What are the differences between reinforcement, supervised, and unsupervised learning paradigms?
	Why is Reinforcement Learning Important?
	Markov Decision Process (MDP)
	Key Features of Amazon SageMaker RL
	Reinforcement Learning Sample Notebooks
	Sample RL Workflow Using Amazon SageMaker RL
	RL Environments in Amazon SageMaker
	Use OpenAI Gym Interface for Environments in SageMaker RL
	Use Open-Source Environments
	Use Commercial Environments

	Distributed Training with Amazon SageMaker RL
	Hyperparameter Tuning with Amazon SageMaker RL

	Run your local code as a SageMaker training job
	Set up your environment
	Run your code from Amazon SageMaker Studio Classic
	Run your code from an Amazon SageMaker notebook
	Run your code from within your local IDE

	Invoking a function
	Use an @remote decorator to invoke a function
	How to change the value of a local variable
	Data serialization and deserialization
	Best practices for Python classes with limited support for remote data serialization
	Best practices for Dask
	How to pass a Dask DataFrame into your remote function
	How to convert summary statistics from a Dask DataFrame into a Pandas DataFrame

	Best practices for the XGBoost DMatric class
	How to pass a data object to your remote function and train with XGBoost

	Best practices for TensorFlow datasets and sub-classes
	Best practices for PyTorch models

	Where SageMaker stores your serialized data
	Access to your serialized data

	Use the RemoteExecutor API to invoke a function
	Future class for the RemoteExecutor API

	Configuration file
	Customize your runtime environment
	Container image compatibility
	Logging parameters and metrics with Amazon SageMaker Experiments
	Use the @remote decorator to integrate with SageMaker Experiments
	Create an experiment with SageMaker Experiments
	Load current SageMaker Experiments with a job initiated by the @remote decorator

	Load a current experiment run within a job initiated with the RemoteExecutor API
	Unsupported uses for SageMaker Experiments while annotating your code with an @remote decorator

	Using modular code with the @remote decorator
	Best practices in structuring your working directory

	Private repository for runtime dependencies
	How to use a custom PyPI repository managed with AWS CodeArtifact
	How to use a custom conda channel hosted on Amazon S3

	Example notebooks

	Manage Machine Learning with Amazon SageMaker Experiments
	Supported AWS Regions
	Create an Amazon SageMaker Experiment
	Overview
	Create an experiment with the SageMaker Python SDK
	Create an experiment using SageMaker script mode
	View your experiment in Studio
	View your experiment in Studio Classic
	View unassigned runs

	View, search, and compare experiment runs
	View experiments and runs
	Compare and analyze runs
	Log charts

	SageMaker integrations
	Automatic experiment creation
	Autopilot
	HPO
	Pipelines

	Bias and explainability reports
	Debugging

	Example notebooks for Amazon SageMaker Experiments
	Track experiments in a notebook environment
	Track bias and explainability for your experiments with SageMaker Clarify
	Track experiments for SageMaker training jobs using script mode

	Monitor experiment training metrics with AWS CloudTrail
	Clean Up Amazon SageMaker Experiment Resources
	Clean Up Using the SageMaker Python SDK (Recommended)
	Clean Up Using the Python SDK (Boto3)
	Clean Up Using the Experiments SDK

	Additional supported SDK
	Create an Amazon SageMaker Experiment with the SageMaker Experiments SDK

	Experiments FAQs
	Q. What is the recommended method to create an experiment?
	Q. Can I create an experiment using SageMaker script mode?
	Q. What SageMaker jobs automatically create experiments?
	Q. What kind of SageMaker jobs can I create an experiment for?
	Q. Why do I see experiments and runs in the Experiments Studio Classic UI that I did not create using the SageMaker Python SDK?
	Q. Is the SageMaker Experiments SDK still supported?
	Q. Can I use distributed training with my experiments?
	Q. What are unassigned runs?
	Q. Do I need to pass the experiment run context to the training script when running a SageMaker training job?
	Q. How do I add a new run to an experiment analysis?

	Search Using the Amazon SageMaker Console and API
	Organize, Find, and Evaluate Training Jobs (Console)
	Use Tags to Track Training Jobs (Console)
	Find Training Jobs (Console)
	Evaluate Models (Console)

	Find and Evaluate Training Jobs (API)
	Find Training Jobs (API)
	Evaluate Models (API)
	Get Suggestions for a Search (API)

	Verify the Datasets Used by Your Training Jobs
	Trace Model Lineage
	Trace Model Lineage (Console)
	Trace Model Lineage (API)

	Perform Automatic Model Tuning with SageMaker
	How Hyperparameter Tuning Works
	Grid Search
	Random Search
	Bayesian Optimization
	Hyperband
	Hyperband with early stopping

	Define metrics and environment variables
	Define metrics
	Use a built-in algorithm for training
	Use a custom algorithm for training

	Specify environment variables

	Define Hyperparameter Ranges
	Static hyperparameters
	Dynamic hyperparameters
	Autotune
	Hyperparameter scaling types

	Track and set completion criteria for your tuning job
	Set completion criteria for your tuning job
	Selecting completion criteria
	Combining different completion criteria

	Track tuning job progress
	Stopping your tuning job manually

	Tune Multiple Algorithms with Hyperparameter Optimization to Find the Best Model
	Get Started
	Create a Hyperparameter Optimization Tuning Job for One or More Algorithms (Console)
	Components of a tuning job
	Tuning job settings
	Training job definitions
	Configure algorithm and parameters
	Define data input and output
	Configure training job resources
	Add or clone a training job

	Tuning job configuration

	HPO tuning job example
	Create training job definitions
	Define resources and settings for your tuning job
	Tune a single training algorithm
	Tune multiple training algorithms

	Run your HPO tuning job

	Manage Hyperparameter Tuning and Training Jobs

	Example: Hyperparameter Tuning Job
	Prerequisites
	Create a Notebook Instance
	Next Step

	Get the Amazon SageMaker Boto 3 Client
	Next Step

	Get the SageMaker Execution Role
	Next Step

	Use an Amazon S3 bucket for input and output
	Next Step

	Download, Prepare, and Upload Training Data
	Download and Explore the Training Dataset
	Prepare and Upload Data
	Next Step

	Configure and Launch a Hyperparameter Tuning Job
	Settings for the hyperparameter tuning job
	Configure the training jobs
	Name and launch the hyperparameter tuning job
	Monitor the Progress of a Hyperparameter Tuning Job
	View the Status of the Hyperparameter Tuning Job

	View the Status of the Training Jobs
	View the Best Training Job
	Next Step

	Clean up

	Stop Training Jobs Early
	How Early Stopping Works
	Algorithms That Support Early Stopping

	Run a Warm Start Hyperparameter Tuning Job
	Types of Warm Start Tuning Jobs
	Warm Start Tuning Restrictions
	Warm Start Tuning Sample Notebook
	Create a Warm Start Tuning Job
	Create a Warm Start Tuning Job (Low-level SageMaker API for Python (Boto 3))
	Create a Warm Start Tuning Job (SageMaker Python SDK)

	Resource Limits for Automatic Model Tuning
	Resource limit example

	Best Practices for Hyperparameter Tuning
	Choosing a tuning strategy
	Choosing the number of hyperparameters
	Choosing hyperparameter ranges
	Using the correct scales for hyperparameters
	Choosing the best number of parallel training jobs
	Running training jobs on multiple instances
	Using a random seed to reproduce hyperparameter configurations

	Refine data during training with Amazon SageMaker smart sifting
	How SageMaker smart sifting works
	Supported frameworks and AWS Regions
	Supported Frameworks
	PyTorch

	AWS Regions
	Instance types

	Apply SageMaker smart sifting to your training script
	PyTorch
	Hugging Face Transformers
	Simple setup
	Custom setup

	Best practices, considerations, and troubleshooting
	Security in SageMaker smart sifting
	SageMaker smart sifting Python SDK reference
	SageMaker smart sifting configuration modules
	SageMaker smart sifting data batch transform modules
	SageMaker smart sifting loss implementation module
	SageMaker smart sifting data loader wrapper module

	SageMaker smart sifting release notes
	SageMaker smart sifting release notes: November 29, 2023

	Debug and improve model performance
	Use TensorBoard to debug and analyze training jobs in Amazon SageMaker
	Supported frameworks and AWS Regions
	Prerequisites
	Prepare a training job with a TensorBoard output data configuration
	Step 1: Modify your training script
	Step 2: Construct a SageMaker training launcher with TensorBoard data configuration

	How to access TensorBoard on SageMaker
	Open TensorBoard using the sagemaker.interactive_apps.tensorboard module
	Option 1: For SageMaker Studio Classic
	Option 2: For non-Studio Classic environments

	Open TensorBoard using the get_app_url function as an estimator class method
	Option 1: For SageMaker Studio Classic
	Option 2: For non-Studio Classic environments

	Open TensorBoard through the SageMaker console
	Option 1: Launch TensorBoard from the domain details page
	Option 2: Launch TensorBoard from the TensorBoard landing page

	Access and visualize training output data in TensorBoard
	Explore training output data visualized in TensorBoard
	Delete unused TensorBoard applications
	Considerations

	Use Amazon SageMaker Debugger to debug and improve model performance
	Amazon SageMaker Debugger Features
	Supported Frameworks and Algorithms
	AWS Regions
	Use Debugger with Custom Training Containers
	Debugger Open-Source GitHub Repositories

	Amazon SageMaker Debugger Architecture
	Get Started with Debugger Tutorials
	Debugger Tutorial Videos
	Debug Models with Amazon SageMaker Debugger in Studio
	Deep Dive on Amazon SageMaker Debugger and SageMaker Model Monitor

	Debugger Example Notebooks
	Debugger Example Notebooks for Profiling Training Jobs
	Debugger Example Notebooks for Analyzing Model Parameters

	Debugger Advanced Demos and Visualization
	Train and Tune Your Models with Amazon SageMaker Experiments and Debugger
	Using SageMaker Debugger to Monitor a Convolutional Autoencoder Model Training
	Using SageMaker Debugger to Monitor Attentions in BERT Model Training
	Using SageMaker Debugger to Visualize Class Activation Maps in Convolutional Neural Networks (CNNs)

	Debug Training Jobs Using Amazon SageMaker Debugger
	Step 1: Adapt Your Training Script to Register a Hook
	Adapt Your PyTorch Training Script
	For PyTorch 1.12.0

	Adapt Your TensorFlow Training Script
	Register the hook in your TensorFlow Keras training script

	Step 2: Launch and Debug Training Jobs Using SageMaker Python SDK
	Construct a SageMaker Estimator with Debugger-specific parameters
	Configure SageMaker Debugger to Save Tensors
	Configure Tensor Collections Using the CollectionConfig API
	Configure the DebuggerHookConfig API to Save Tensors
	Example Notebooks and Code Samples to Configure Debugger Hook
	Tensor Visualization Example Notebooks
	Save Tensors Using Debugger Built-in Collections
	Save Tensors Using Debugger Modified Built-in Collections
	Save Tensors Using Debugger Custom Collections

	Configure Debugger Built-in Rules
	Use Debugger Built-in Rules with the Default Parameter Settings
	Use Debugger Built-in Rules with Custom Parameter Values
	Example Notebooks and Code Samples to Configure Debugger Rules
	Debugger Built-in Rules Example Notebooks
	Debugger Built-in Rules Example Code
	Use Debugger Built-in Rules with Parameter Modifications

	Turn Off Debugger
	Useful SageMaker Estimator Classmethods for Debugger

	SageMaker Debugger Interactive Report for XGBoost
	SageMaker Debugger XGBoost Training Report
	Construct a SageMaker XGBoost Estimator with the Debugger XGBoost Report Rule
	Download the Debugger XGBoost Training Report
	Debugger XGBoost Training Report Walkthrough
	Distribution of True Labels of the Dataset
	Loss versus Step Graph
	Feature Importance
	Confusion Matrix
	Evaluation of the Confusion Matrix
	Accuracy Rate of Each Diagonal Element Over Iteration
	Receiver Operating Characteristic Curve
	Distribution of Residuals at the Last Saved Step
	Absolute Validation Error per Label Bin Over Iteration

	Action on Amazon SageMaker Debugger Rules
	Debugger Built-in Actions for Rules
	Step 1: Set Up Amazon SNS, Create an SMDebugRules Topic, and Subscribe to the Topic
	Step 2: Set Up Your IAM Role to Attach Required Policies
	Step 3: Configure Debugger Rules with the Built-in Actions
	Considerations for Using the Debugger Built-in Actions

	Create Actions on Rules Using Amazon CloudWatch and AWS Lambda
	CloudWatch Logs for Debugger Rules and Training Jobs
	Set Up Debugger for Automated Training Job Termination Using CloudWatch and Lambda
	Step 1: Create a Lambda Function
	Step 2: Configure the Lambda function
	Step 3: Create a CloudWatch Events Rule and Link to the Lambda Function for Debugger

	Run Example Notebooks to Test Automated Training Job Termination
	Disable the CloudWatch Events Rule to Stop Using the Automated Training Job Termination

	Visualize Amazon SageMaker Debugger Output Tensors in TensorBoard

	List of Debugger Built-in Rules
	Debugger Rule
	CreateXgboostReport
	DeadRelu
	ExplodingTensor
	PoorWeightInitialization
	SaturatedActivation
	VanishingGradient
	WeightUpdateRatio
	AllZero
	ClassImbalance
	LossNotDecreasing
	Overfit
	Overtraining
	SimilarAcrossRuns
	StalledTrainingRule
	TensorVariance
	UnchangedTensor
	CheckInputImages
	NLPSequenceRatio
	Confusion
	FeatureImportanceOverweight
	TreeDepth

	Create Debugger Custom Rules for Training Job Analysis
	Prerequisites for Creating Debugger Custom Rules
	Use the Debugger Client Library smdebug to Create a Custom Rule Python Script
	Use the Debugger APIs to Run Your Own Custom Rules

	Use Debugger with Custom Training Containers
	Prepare to Build a Custom Training Container
	Register Debugger Hook to Your Training Script
	Create and Configure a Dockerfile
	Build and Push the Custom Training Container to Amazon ECR
	Run and Debug Training Jobs Using the Custom Training Container

	Configure Debugger Using Amazon SageMaker API
	JSON (AWS CLI)
	To configure a Debugger rule for debugging model parameters
	To configure a Debugger built-in rule for profiling system and framework metrics
	Update Debugger Profiling Configuration Using the UpdateTrainingJob API Operation
	Add Debugger Custom Rule Configuration to the CreateTrainingJob API Operation

	AWS Boto3
	To configure a Debugger rule for debugging model parameters
	To configure a Debugger built-in rule for profiling system and framework metrics
	Update Debugger Profiling Configuration Using the UpdateTrainingJob API Operation
	Add Debugger Custom Rule Configuration to the CreateTrainingJob API Operation

	Best Practices for Amazon SageMaker Debugger
	Choose a Machine Learning Framework
	Use Studio Debugger Insights Dashboard
	Download Debugger Reports and Gain More Insights
	Capture Data from Your Training Job and Save Data to Amazon S3
	Analyze the Data with a Fleet of Debugger Built-in Rules
	Take Actions Based on the Built-in Rule Status
	Dive Deep into the Data Using the SMDebug Client Library
	Monitor and Analyze Training Job Metrics
	Monitoring System Utilization and Detect Bottlenecks
	Profiling Framework Operations
	Debugging Model Output Tensors

	Amazon SageMaker Debugger Advanced Topics and Reference Documentation
	Amazon SageMaker Debugger API Operations
	Use Debugger Docker Images for Built-in or Custom Rules
	Amazon SageMaker Debugger Registry URLs for Built-in Rule Evaluators
	Amazon SageMaker Debugger Registry URLs for Custom Rule Evaluators

	Amazon SageMaker Debugger Exceptions
	Considerations for Amazon SageMaker Debugger
	Considerations for Distributed Training
	Considerations for Monitoring System Bottlenecks and Profiling Framework Operations
	Considerations for Debugging Model Output Tensors

	Amazon SageMaker Debugger Usage Statistics
	Debugger Profiling Report Usage
	(Recommended) Option 1: Opt Out before Running a Training Job
	Option 2: Opt Out after a Training Job Has Completed

	Access a training container through AWS Systems Manager for remote debugging
	Set up IAM permissions
	IAM role
	IAM user

	How to enable remote debugging for a SageMaker training job
	Access your training container
	SSM access with AWS PrivateLink

	Log SSM session commands and results
	Troubleshooting issues by checking error logs from SSM
	Considerations

	Release notes for debugging capabilities of Amazon SageMaker
	December 21, 2023
	September 7, 2023
	April 4, 2023
	March 16, 2023
	February 21, 2023
	December 1, 2020
	December 3, 2019

	Profile and optimize computational performance
	Use Amazon SageMaker Profiler to profile activities on AWS compute resources
	Supported framework images, AWS Regions, and instance types
	SageMaker framework images pre-installed with SageMaker Profiler
	PyTorch images
	TensorFlow images

	SageMaker Profiler Python package binary files
	PyTorch
	TensorFlow

	Supported AWS Regions
	Supported instance types

	Prerequisites
	Prepare and run a training job with SageMaker Profiler
	Step 1: Adapt your training script using the SageMaker Profiler Python modules
	Step 2: Create a SageMaker framework estimator and activate SageMaker Profiler
	(Optional) Install the SageMaker Profiler Python package

	Open the SageMaker Profiler UI application
	Option 1: Launch the SageMaker Profiler UI from the domain details page
	Option 2: Launch the SageMaker Profiler UI application from the SageMaker Profiler landing page in the SageMaker console
	Option 3: Use the application launcher function in the SageMaker Python SDK

	Explore the profile output data visualized in the SageMaker Profiler UI
	Load profile
	Dashboard
	Timeline interface
	Information
	Settings

	Frequently asked questions about using SageMaker Profiler
	Considerations

	Monitor AWS compute resource utilization in Amazon SageMaker Studio Classic
	Configure an estimator with parameters for basic profiling using the Amazon SageMaker Debugger Python modules
	Code template for configuring a SageMaker estimator object with the SageMaker Debugger Python modules in the SageMaker Python SDK
	Configure settings for basic profiling of system resource utilization
	Configure for framework profiling
	Start a training job with the default framework profiling
	Start a training job with the default system monitoring and customized framework profiling for target steps or a target time range
	Start a training job with the default system monitoring and customized framework profiling with different profiling options

	Updating Debugger system monitoring and framework profiling configuration while a training job is running
	Turn off Debugger

	Configure built-in profiler rules managed by Amazon SageMaker Debugger
	Use SageMaker Debugger built-in profiler rules with their default parameter settings
	Use Debugger built-in profiler rules with custom parameter values

	List of Debugger built-in profiler rules
	Profiler rules
	ProfilerReport
	BatchSize
	CPUBottleneck
	GPUMemoryIncrease
	IOBottleneck
	LoadBalancing
	LowGPUUtilization
	OverallSystemUsage
	MaxInitializationTime
	OverallFrameworkMetrics
	StepOutlier

	Amazon SageMaker Debugger UI in Amazon SageMaker Studio Classic Experiments
	Open the Amazon SageMaker Debugger Insights dashboard
	Amazon SageMaker Debugger Insights dashboard controller
	SageMaker Debugger Insights controller UI

	Explore the Amazon SageMaker Debugger Insights dashboard
	System metrics
	Resource utilization summary
	Resource utilization time series plots

	Rules

	Shut down the Amazon SageMaker Debugger Insights instance

	SageMaker Debugger interactive report
	SageMaker Debugger profiling report
	Download the SageMaker Debugger profiling report
	Debugger profiling report walkthrough
	Training job summary
	System usage statistics
	Framework metrics summary
	Overview: CPU Operators
	Overview: GPU operators

	Rules summary
	Analyzing the training loop – step durations
	GPU utilization analysis
	Batch size
	CPU bottlenecks
	I/O bottlenecks
	Load balancing in multi-GPU training
	GPU memory analysis

	Analyze data using the Debugger Python client library
	Access the profile data
	Plot the system metrics and framework metrics data
	Access the profiling data using the pandas data parsing tool
	Access the Python profiling stats data
	Merge timelines of multiple profile trace files
	Profiling data loaders

	Release notes for profiling capabilities of Amazon SageMaker
	December 14, 2023
	August 24, 2023

	Distributed training in Amazon SageMaker
	Before you get started
	Availability zones and network backplane
	GPU instances with faster network and high-throughput storage

	Get started with distributed training in Amazon SageMaker
	Basic distributed training concepts
	Advanced concepts
	Strategies
	Train with data parallel and model parallel

	Optimize distributed training
	Batch Size
	Mini-batch size

	Scenarios
	Scaling from a Single GPU to Many GPUs
	Scaling from a single instance to multiple instances
	Custom training scripts

	Run distributed training with the SageMaker distributed data parallelism library
	Introduction to the SageMaker distributed data parallelism library
	SMDDP collective communication operations optimized for AWS compute resources and network infrastructure
	SMDDP AllReduce collective operation
	SMDDP AllGather collective operation

	Supported frameworks, AWS Regions, and instances types
	Supported frameworks
	PyTorch
	PyTorch Lightning
	Hugging Face Transformers
	TensorFlow (deprecated)

	AWS Regions
	Supported instance types

	How to run a distributed training job with the SageMaker distributed data parallelism library
	Step 1: Adapt your training script to use the SMDDP collective operations
	Use the SMDDP library in your PyTorch training script
	For PyTorch DDP or FSDP
	For DeepSpeed or Megatron-DeepSpeed

	Use the SMDDP library in your PyTorch Lightning training script
	PyTorch Lightning == v2.1.0 and PyTorch == 2.0.1

	Use the SMDDP library in your TensorFlow training script (deprecated)

	Step 2: Launch a distributed training job using the SageMaker Python SDK
	Using framework estimators in the SageMaker Python SDK
	Using the SageMaker generic estimator to extend prebuilt containers
	Create your own Docker container with the SageMaker distributed data parallel library

	Configuration tips for the SageMaker distributed data parallelism library
	Data preprocessing
	Single versus multiple nodes
	Debug scaling efficiency with Debugger
	Batch size
	Custom MPI options
	Use Amazon FSx and set up an optimal storage and throughput capacity

	Amazon SageMaker distributed data parallelism library FAQ
	Troubleshooting for distributed training in Amazon SageMaker
	Using SageMaker distributed data parallel with Amazon SageMaker Debugger and checkpoints
	An unexpected prefix attached to model parameter keys
	SageMaker distributed training job stalling during initialization
	SageMaker distributed training job stalling at the end of training
	Observing scaling efficiency degradation due to Amazon FSx throughput bottlenecks
	SageMaker distributed training job with PyTorch returns deprecation warnings

	SageMaker data parallelism library release notes
	The SageMaker distributed data parallelism library v2.2.0
	The SageMaker distributed data parallelism library v2.1.0
	The SageMaker distributed data parallelism library v2.0.1

	SageMaker model parallelism library v2
	Introduction to model parallelism
	What is model parallelism?
	Estimate memory requirements before using model parallelism
	How the library employs model parallelism and memory saving techniques
	Sharded data parallelism
	Tensor parallelism
	Activation checkpointing and offloading
	Choosing the right techniques for your model

	Supported frameworks and AWS Regions
	Supported frameworks
	Use SMP v2 with open source libraries

	AWS Regions
	Supported instance types

	Get started with the SageMaker model parallelism library v2
	Step 1: Adapt your PyTorch FSDP training script
	Step 2: Launch a training job

	Core features of the SageMaker model parallelism library v2
	Hybrid sharded data parallelism
	Compatibility with the SMDDP library optimized for AWS infrastructure
	Mixed precision training
	Mixed precision training with FP8 on P5 instances using Transformer Engine
	Mixed precision training with half-precision data types using PyTorch FSDP

	Delayed parameter initialization
	Activation checkpointing
	Activation offloading
	Tensor parallelism
	Hugging Face Transformer models compatible with the SMP tensor parallelism
	Configure tensor parallelism
	Saving and loading Hugging Face Transformer checkpoints

	Fine-tuning
	Fine-tuning a pre-trained Hugging Face Transformer model with SMP tensor parallelism

	FlashAttention
	Use FlashAttention kernels for self attention
	Use FlashAttention kernels for grouped-query attention

	Save and load checkpoints while using SMP
	Sharded checkpoints
	Full model checkpoints

	SageMaker distributed model parallelism best practices
	Setting up the right configuration for distributed training
	Configuration tips
	Reference configurations

	Monitoring and logging a training job using the SageMaker console and Amazon CloudWatch
	Permissions

	The SageMaker model parallel library v2 reference
	SMP v2 core feature configuration parameters
	Reference for the SMP v2 torch.sagemaker package
	torch.sagemaker.delayed_param.DelayedParamIniter
	torch.sagemaker.nn.attn.FlashSelfAttention
	torch.sagemaker.nn.attn.FlashGroupedQueryAttention
	torch.sagemaker.nn.huggingface.llama_flashattn.LlamaFlashAttention
	torch.sagemaker.transform
	torch.sagemaker util functions and properties

	Upgrade from SMP v1 to SMP v2

	Release notes for the SageMaker model parallelism library
	The SageMaker model parallelism library v2.2.0
	The SageMaker model parallelism library v2.1.0
	The SageMaker model parallelism library v2.0.0

	(Archived) SageMaker model parallelism library v1.x
	Introduction to Model Parallelism
	What is Model Parallelism?
	Estimate Memory Requirements Before Using Model Parallelism
	How the Library Employs Model Parallelism and Memory Saving Techniques
	Sharded data parallelism (available for PyTorch)
	Pipeline parallelism (available for PyTorch and TensorFlow)
	Tensor parallelism (available for PyTorch)
	Optimizer state sharding (available for PyTorch)
	Activation offloading and checkpointing (available for PyTorch)
	Choosing the right techniques for your model

	Supported Frameworks and AWS Regions
	Supported Frameworks
	AWS Regions
	Supported Instance Types

	Core Features of the SageMaker Model Parallelism Library
	Sharded Data Parallelism
	How to apply sharded data parallelism to your training job
	Adapt your PyTorch training script
	Set up the SageMaker PyTorch estimator

	Reference configurations
	Sharded data parallelism with SMDDP Collectives
	Mixed precision training with sharded data parallelism
	Sharded data parallelism with tensor parallelism
	Example 1
	Example 2
	How to activate sharded data parallelism with tensor parallelism

	Tips and considerations for using sharded data parallelism

	Pipelining a Model
	Pipeline Execution Schedule
	Interleaved Pipeline
	Simple Pipeline
	Pipelining Execution in Specific Frameworks
	Pipeline Execution with TensorFlow
	Pipeline Execution with PyTorch

	Tensor Parallelism
	How Tensor Parallelism Works
	How the library adapts tensor parallelism to PyTorch nn.Linear module

	Run a SageMaker Distributed Model Parallel Training Job with Tensor Parallelism
	Tensor parallelism alone
	Tensor parallelism combined with pipeline parallelism

	Support for Hugging Face Transformer Models
	Supported Models Out of the Box

	Ranking Mechanism when Using a Combination of Pipeline Parallelism and Tensor Parallelism

	Optimizer State Sharding
	How to Use Optimizer State Sharding

	Activation Checkpointing
	How to Use Activation Checkpointing

	Activation Offloading
	How to Use Activation Offloading

	FP16 Training with Model Parallelism
	Support for FlashAttention

	Run a SageMaker Distributed Training Job with Model Parallelism
	Step 1: Modify Your Own Training Script Using SageMaker's Distributed Model Parallel Library
	Split the model of your training script using the SageMaker model parallelism library
	Automated model splitting
	How it works
	Automated model splitting with PyTorch
	Automated model splitting with TensorFlow
	Comparison of automated model splitting between frameworks

	Manual Model Splitting

	Modify a TensorFlow training script
	Automated splitting with TensorFlow
	Automated splitting with TensorFlow and Horovod for hybrid model and data parallelism
	Manual splitting with TensorFlow
	Unsupported framework features

	Modify a PyTorch Training Script
	Automated splitting with PyTorch
	Manual splitting with PyTorch
	Considerations
	Unsupported framework features

	Step 2: Launch a Training Job Using the SageMaker Python SDK
	Using the SageMaker TensorFlow and PyTorch Estimators
	Extend a Pre-built Docker Container that Contains SageMaker's Distributed Model Parallel Library
	Create Your Own Docker Container with the SageMaker Distributed Model Parallel Library

	Checkpointing and Fine-Tuning a Model with Model Parallelism
	Checkpointing a distributed model
	Checkpointing a distributed PyTorch model (for the SageMaker model parallelism library v1.10.0 and later)
	Checkpointing a distributed PyTorch model (for the SageMaker model parallelism library between v1.6.0 and v1.9.0)
	Checkpointing a distributed TensorFlow model

	Fine-tuning a distributed model

	SageMaker Distributed Model Parallelism Best Practices
	Setting Up the Right Configuration for a Given Model
	Reference configurations

	Modifying Your Training Script
	Monitoring and Logging a Training Job Using the SageMaker Console and Amazon CloudWatch
	Permissions

	The SageMaker Distributed Model Parallelism Library Configuration Tips and Pitfalls
	Batch Size and Number of Microbatches
	Manual Partitioning
	Data Preparation
	Returning Tensors from smp.DistributedModel
	The @smp.step Decorator
	Delaying Parameter Initialization
	Tensor Parallelism for PyTorch

	Model Parallel Troubleshooting
	Considerations for Using SageMaker Debugger with the SageMaker Model Parallelism Library
	Saving Checkpoints
	Convergence Using Model Parallel and TensorFlow
	Stalling or Crashing Distributed Training Jobs
	Receiving NCCL Error for a PyTorch Training Job
	Receiving RecursionError for a PyTorch Training Job

	Amazon SageMaker Distributed Training Notebook Examples
	Blogs and Case Studies
	PyTorch Examples
	TensorFlow Examples
	HuggingFace Examples
	How to Access or Download the SageMaker Distributed Training Notebook Examples
	Option 1: Use a SageMaker notebook instance
	Option 2: Clone the SageMaker example repository to SageMaker Studio or notebook instance

	Distributed computing with SageMaker best practices
	Option 1: Use a SageMaker built-in algorithm that supports distributed training
	Option 2: Run a custom ML code in the SageMaker managed training or processing environment
	If your ML code uses a deep learning framework
	If your ML code involves tabular data processing

	Option 3: Write your own custom distributed training code
	Option 4: Launch multiple jobs in parallel or sequentially

	Amazon SageMaker Training Compiler
	What Is SageMaker Training Compiler?
	How It Works
	Supported Frameworks, AWS Regions, Instance Types, and Tested Models
	Supported Frameworks
	PyTorch
	TensorFlow

	AWS Regions
	Supported Instance Types
	Tested Models
	PyTorch 1.13.1
	PyTorch 1.12.0
	TensorFlow 2.11.0
	TensorFlow 2.10.0
	TensorFlow 2.9.1
	Transformers 4.21.1 with PyTorch 1.11.0
	Transformers 4.17.0 with PyTorch 1.10.2
	Transformers 4.11.0 with PyTorch 1.9.0
	Transformers 4.17.0 with TensorFlow 2.6.3
	Transformers 4.11.0 with TensorFlow 2.5.1

	Bring Your Own Deep Learning Model
	PyTorch
	PyTorch Models with Hugging Face Transformers
	Large Language Models Using the Hugging Face Transformers Trainer Class
	For single GPU training
	For distributed training
	Best Practices to Use SageMaker Training Compiler with Trainer

	Large Language Models Using PyTorch Directly (without the Hugging Face Transformers Trainer API)
	For single GPU training
	For distributed training
	Best Practices to Use SageMaker Training Compiler with PyTorch/XLA
	Understand the lazy mode in PyTorch/XLA
	Minimize the number of compilation-and-executions using pl.MpDeviceLoader/pl.ParallelLoader and xm.step_closure
	Use AMP and syncfree optimizers

	TensorFlow
	TensorFlow Models
	Using Keras (Recommended)
	For single GPU training

	Without Keras
	For single GPU training

	TensorFlow Models with Hugging Face Transformers
	Using Keras
	For single GPU training
	For distributed training

	Without Keras
	For single GPU training
	For distributed training

	Enable SageMaker Training Compiler
	Run PyTorch Training Jobs with SageMaker Training Compiler
	Using the SageMaker Python SDK
	For single GPU training
	For distributed training

	Using the SageMaker CreateTrainingJob API Operation

	Run TensorFlow Training Jobs with SageMaker Training Compiler
	Using the SageMaker Python SDK
	For single GPU training
	For distributed training

	Using the SageMaker Python SDK and Extending SageMaker Framework Deep Learning Containers
	Create a Dockerfile
	Build and push to ECR
	Run using the SageMaker Python SDK Estimator

	Enable SageMaker Training Compiler Using the SageMaker CreateTrainingJob API Operation

	SageMaker Training Compiler Example Notebooks and Blogs
	Blogs and Case Studies
	Examples Notebooks

	SageMaker Training Compiler Best Practices and Considerations
	Best Practices
	Considerations
	Performance degradation due to logging, checkpointing, and profiling
	Incorrect use of the PyTorch/XLA APIs when using PyTorch directly

	SageMaker Training Compiler FAQ
	SageMaker Training Compiler Troubleshooting
	Training job is not converging as expected when compared to the native framework training job
	Convergence issues occurring in single-GPU training
	Convergence issues occurring in distributed training

	Training job fails due to missing PyTorcl/XLA configuration
	SageMaker Training Compiler doesn't reduce the total training time

	Amazon SageMaker Training Compiler Release Notes
	SageMaker Training Compiler Release Notes: February 13, 2023
	SageMaker Training Compiler Release Notes: January 9, 2023
	SageMaker Training Compiler Release Notes: December 8, 2022
	SageMaker Training Compiler Release Notes: October 4, 2022
	SageMaker Training Compiler Release Notes: September 1, 2022
	SageMaker Training Compiler Release Notes: June 14, 2022
	SageMaker Training Compiler Release Notes: April 26, 2022
	SageMaker Training Compiler Release Notes: April 12, 2022
	SageMaker Training Compiler Release Notes: February 21, 2022
	SageMaker Training Compiler Release Notes: December 01, 2021

	Access Training Data
	SageMaker Input Modes and AWS Cloud Storage
	Choosing Data Input Mode Using the SageMaker Python SDK
	Configure Data Input Channel to Use Amazon FSx for Lustre
	Sync Amazon S3 and Amazon FSx for Lustre
	Set the Amazon FSx file system path as the data input channel for SageMaker training
	Tips and Considerations When Configuring FSx for Lustre

	Best Practices for Choosing Data Source and Input Mode
	When to use Amazon EFS
	Use file mode for small datasets
	Serializing many small files
	When to use fast file mode
	When to use Amazon FSx for Lustre

	Train Using a Heterogeneous Cluster
	How to Configure a Heterogeneous Cluster
	Using the SageMaker Python SDK
	Using the Low-Level SageMaker APIs

	Distributed Training with a Heterogeneous Cluster
	Modify Your Training Script to Assign Instance Groups
	Query instance group information during the initialization phase of a SageMaker training job

	Considerations
	Examples, Blogs, and Case Studies

	Use Incremental Training in Amazon SageMaker
	Perform Incremental Training (Console)
	Perform Incremental Training (API)

	Use Managed Spot Training in Amazon SageMaker
	Using Managed Spot Training
	Managed Spot Training Lifecycle

	Train Using SageMaker Managed Warm Pools
	How it works
	Warm pool lifecycle
	Warm pool creation
	Matching training jobs
	Maximum warm pool duration
	Using persistent cache
	Billing

	Warm pool resource limits
	Request a warm pool quota increase

	How to use SageMaker managed warm pools
	Using the SageMaker Python SDK
	Create a warm pool
	Update a warm pool
	Terminate a warm pool

	Using the Amazon SageMaker console
	Using the low-level SageMaker APIs
	SageMaker API
	AWS CLI

	IAM condition key

	Considerations

	Monitor and Analyze Training Jobs Using Amazon CloudWatch Metrics
	Defining Training Metrics
	Define Metrics Using the SageMaker Python SDK
	Define Metrics Using the SageMaker Console
	Define Metrics Using the Low-level SageMaker API

	Monitoring Training Job Metrics (CloudWatch Console)
	Monitoring Training Job Metrics (SageMaker Console)
	Example: Viewing a Training and Validation Curve

	Use Amazon SageMaker Training Storage Paths for Training Datasets, Checkpoints, Model Artifacts, and Outputs
	Overview
	Uncompressed model output
	Tips and Considerations for Setting Up Storage Paths
	SageMaker Environment Variables and Default Paths for Training Storage Locations

	Provide Dataset Metadata to Training Jobs with an Augmented Manifest File
	Augmented Manifest File Format
	Stream Augmented Manifest File Data
	Use an Augmented Manifest File (Console)
	Use an Augmented Manifest File (API)

	Use checkpoints in Amazon SageMaker
	Checkpoints for frameworks and algorithms in SageMaker
	Enable checkpointing
	Browse checkpoint files
	Resume training from a checkpoint
	Cluster repairs for GPU errors
	Considerations for checkpointing

	Deploy models for inference
	Before you begin
	Steps for model deployment
	Inference options
	Advanced endpoint options
	Bring your own model
	Next steps
	Monitoring
	CI/CD for model deployment
	Deployment guardrails
	Inferentia
	Optimize model performance
	Autoscaling

	Deploy a Model in Amazon SageMaker
	Create a model in Amazon SageMaker with ModelBuilder
	Build your model with ModelBuilder
	Define serialization and deserialization methods
	Customize model loading and handling of requests
	Build your model and deploy
	Bring your own container (BYOC)
	Using ModelBuilder in local mode
	Troubleshooting local mode

	ModelBuilder examples

	Validate a Machine Learning Model
	Amazon SageMaker Inference Recommender
	How it Works
	How to Get Started
	Example notebooks
	Prerequisites
	Recommendation jobs
	Get instant prospective instances
	Get an inference recommendation
	Create an inference recommendation
	Get your inference recommendation job results
	Stop your inference recommendation

	Get an inference recommendation for an existing endpoint
	Prerequisites
	Create an inference recommendation job for an existing endpoint
	Get your inference recommendation job results
	Stop your instance endpoint recommendation

	Get compiled recommendations with Neo
	Get started

	Interpret recommendation results
	Get autoscaling policy recommendations
	Prerequisites
	Create an autoscaling configuration recommendation
	Review your autoscaling configuration recommendation results

	Run a custom load test
	Create a load test job
	Get your load test results
	Stop your load test

	Troubleshoot Inference Recommender errors
	How to troubleshoot
	Common errors
	Check CloudWatch
	Check benchmarks

	Real-time inference
	Deploy models for real-time inference
	Before you begin
	Shared resource utilization with multiple models
	Inference components

	Deploy models with SageMaker Studio
	Prepare your artifacts and permissions
	Create a deployable model
	Deploy your model

	Deploy models with the Python SDKs
	Set up
	Overview
	Configure
	Deploy

	Deploy models with the AWS CLI
	Overview
	Configure
	Deploy

	Invoke models for real-time inference
	Invoke Your Endpoint Using Amazon SageMaker Studio
	Invoke Your Endpoint by Using the AWS SDK for Python (Boto3)
	Invoke to Get an Inference Response
	Invoke to Stream an Inference Response

	Invoke Your Endpoint by Using the AWS CLI

	Manage your endpoints
	Manage endpoints in SageMaker Studio
	Variants (or Models)
	Settings
	Test inference
	Auto-scaling

	Manage endpoints in the SageMaker console
	Monitoring
	Settings
	Alarms

	Hosting options
	Host a single model
	Host multiple models in one container behind one endpoint
	Supported algorithms, frameworks, and instances
	Supported algorithms, frameworks, and instances for multi-model endpoints using CPU backed instances
	Supported algorithms, frameworks, and instances for multi-model endpoints using GPU backed instances

	Sample notebooks for multi-model endpoints
	How multi-model endpoints work
	Setting SageMaker multi-model endpoint model caching behavior
	Instance recommendations for multi-model endpoint deployments
	Create a Multi-Model Endpoint
	Create a multi-model endpoint (console)
	Create a multi-model endpoint using CPUs with the AWS SDK for Python (Boto3)
	Create a multi-model endpoint using GPUs with the AWS SDK for Python (Boto3)

	Invoke a Multi-Model Endpoint
	Retry Requests on ModelNotReadyException Errors

	Add or Remove Models
	Build Your Own Container for SageMaker Multi-Model Endpoints
	Bring your own dependencies for multi-model endpoints on CPU backed instances
	Bring your own dependencies for multi-model endpoints on GPU backed instances
	Use the SageMaker Inference Toolkit
	Custom Containers Contract for Multi-Model Endpoints
	Load Model API
	List Model API
	Get Model API
	Unload Model API
	Invoke Model API

	Multi-Model Endpoint Security
	CloudWatch Metrics for Multi-Model Endpoint Deployments
	CloudWatch metrics for CPU backed multi-model endpoints
	CloudWatch metrics for GPU multi-model endpoint deployments

	Set Auto Scaling Policies for Multi-Model Endpoint Deployments
	Define a scaling policy
	Use a predefined metric
	Use a custom metric
	Example custom metric for a CPU backed multi-model endpoint
	Example custom metric for a GPU backed multi-model endpoint

	Add a cooldown period

	Host multiple models which use different containers behind one endpoint
	Create a multi-container endpoint (Boto 3)
	Update a multi-container endpoint
	Delete a multi-container endpoint
	Use a multi-container endpoint with direct invocation
	Invoke a multi-container endpoint with direct invocation
	Security with multi-container endpoints with direct invocation
	Metrics for multi-container endpoints with direct invocation
	Autoscale multi-container endpoints
	Troubleshoot multi-container endpoints
	Ping Health Check Errors
	Missing accept-bind-to-port=true Docker label

	Host models along with pre-processing logic as serial inference pipeline behind one endpoint
	Sample Notebooks for Inference Pipelines
	Feature Processing with Spark ML and Scikit-learn
	Feature Processing with Spark ML
	Feature Processing with Scikit-Learn

	Create a Pipeline Model
	Run Real-time Predictions with an Inference Pipeline
	Create and Deploy an Inference Pipeline Endpoint
	Request Real-Time Inference from an Inference Pipeline Endpoint
	Realtime inference pipeline example

	Run Batch Transforms with Inference Pipelines
	Inference Pipeline Logs and Metrics
	Use Metrics to Monitor Multi-container Models
	Use Logs to Monitor an Inference Pipeline

	Troubleshoot Inference Pipelines
	Troubleshoot Amazon ECR Permissions for Inference Pipelines
	Use CloudWatch Logs to Troubleshoot SageMaker Inference Pipelines
	Use Error Messages to Troubleshoot Inference Pipelines

	Delete Endpoints and Resources
	Delete Endpoint
	Delete Endpoint Configuration
	Delete Model

	Automatically Scale Amazon SageMaker Models
	Auto scaling overview
	Prerequisites
	Scaling policy overview
	Scale based on a schedule
	Minimum and maximum scaling limits
	Cooldown period
	Permissions
	Service-linked role
	Related resources

	Configure model auto scaling with the console
	Register a model
	Register a model (AWS CLI)
	Register a model (Application Auto Scaling API)

	Define a scaling policy
	Specify a predefined metric (CloudWatch metric: InvocationsPerInstance)
	Define a custom metric (CloudWatch metric: CPUUtilization)
	Define a custom metric (CloudWatch metric: ExplanationsPerInstance)
	Specify cooldown periods

	Apply a scaling policy
	Apply a target tracking scaling policy (AWS CLI)
	Apply a scaling policy (Application Auto Scaling API)

	Edit a scaling policy
	Edit a scaling policy (console)
	Edit a scaling policy (AWS CLI or Application Auto Scaling API)
	Temporarily turn off scaling policies

	Delete a scaling policy
	Delete all scaling policies and deregister the model (console)
	Delete a scaling policy (AWS CLI or Application Auto Scaling API)
	Delete a scaling policy (AWS CLI)
	Delete a scaling policy (Application Auto Scaling API)

	Check the status of a scaling activity by describing scaling activities
	Describe scaling activities (AWS CLI)
	Identify blocked scaling activities from instance quotas (AWS CLI)

	Load testing your auto scaling configuration
	Determine the performance characteristics
	Calculate the target load

	Use AWS CloudFormation to create a scaling policy
	Update or delete endpoints that use auto scaling
	Update endpoints that use auto scaling
	Delete endpoints configured for auto scaling

	Host instance storage volumes
	Safely validate models in production
	Production variants
	Test models by specifying traffic distribution
	Test models by invoking specific variants
	Model A/B test example
	Step 1: Create and deploy models
	Step 2: Invoke the deployed models
	Step 3: Evaluate model performance
	Step 4: Increase traffic to the best model

	Shadow variants
	Deploy shadow variants

	Online Explainability with SageMaker Clarify
	How Clarify Online Explainability Works
	Pre-check the model container
	Model container input
	Model container output
	Model container validation

	Configure and create an endpoint
	The EnableExplanations expression
	Synthetic dataset

	Invoke the endpoint
	Request
	Response

	Code examples: SDK for Python
	Tabular data
	Text data

	Troubleshooting guide

	Serverless Inference
	How it works
	Container support
	Memory size
	Concurrent invocations
	Minimizing cold starts
	Feature exclusions

	Getting started
	Example notebooks and blogs

	Create, invoke, update, and delete a serverless endpoint
	Prerequisites
	Create a serverless endpoint
	Create a model
	To create a model (using Model Registry)
	To create a model (using API)
	To create a model (using the console)

	Create an endpoint configuration
	To create an endpoint configuration (using API)
	To create an endpoint configuration (using the console)

	Create an endpoint
	To create an endpoint (using API)
	To create an endpoint (using the console)

	Invoke a serverless endpoint
	To invoke an endpoint

	Update a serverless endpoint
	Update the endpoint
	To update the endpoint (using Boto3)
	To update the endpoint (using the console)

	Describe a serverless endpoint
	To describe an endpoint (using API)
	To describe an endpoint (using the console)

	Delete a serverless endpoint
	To delete an endpoint (using API)
	To delete an endpoint (using the console)

	Monitor a serverless endpoint
	Monitoring with CloudWatch
	Common endpoint metrics
	Common serverless endpoint metrics
	Serverless endpoint with Provisioned Concurrency metrics

	Logs

	Automatically scale Provisioned Concurrency for a serverless endpoint
	Register a model
	Register a model (AWS CLI)
	Register a model (Application Auto Scaling API)

	Define a scaling policy
	Apply a scaling policy
	Apply a target-tracking scaling policy
	Apply a target-tracking scaling policy (AWS CLI)
	Apply a target-tracking scaling policy (Application Auto Scaling API)
	Apply a target-tracking scaling policy (AWS Management Console)

	Scheduled scaling
	Scheduled scaling (AWS CLI)
	Scheduled scaling (Application Auto Scaling API)

	Delete a scaling policy
	Delete a scaling policy (AWS CLI)
	Delete a scaling policy (Application Auto Scaling API)

	Deregister a model
	Deregister a model (AWS CLI)
	Deregister a model (Application Auto Scaling API)
	Deregister a model (AWS Management Console)

	Troubleshooting
	Container issues

	Asynchronous inference
	How It Works
	How Do I Get Started?
	Create, invoke, and update an Asynchronous Endpoint
	Prerequisites
	Create an Asynchronous Inference Endpoint
	Create a Model
	Create an Endpoint Configuration
	Create Endpoint

	Invoke an Asynchronous Endpoint
	Update an Asynchronous Endpoint
	Delete an Asynchronous Endpoint

	Monitor asynchronous endpoint
	Monitoring with CloudWatch
	Common Endpoint Metrics
	Asynchronous Inference Endpoint Metrics

	Logs

	Check prediction results
	Amazon SNS Topics
	Check Your S3 Bucket

	Autoscale an asynchronous endpoint
	Define a scaling policy
	Define a scaling policy that scales to zero
	Optional: Define a scaling policy that scales up from zero for new requests

	Troubleshooting
	Q: I have autoscaling enabled. How can I find the instance count behind the endpoint at any given point?
	Q: What are the common tunable environment variables for SageMaker containers?
	Q: How do I make sure my container supports Asynchronous Inference?
	Q: What are the limits specific to Asynchronous Inference, and can they be adjusted?
	Q: What metrics are best to define for autoscaling on Asynchronous Inference? Can I have multiple scaling policies?
	Q: Why is my asynchronous endpoint terminating an instance as Unhealthy and the update requests from autoscaling are failing?
	Q: Can MaxConcurrentInvocationsPerInstance work for my BYOC model container with the ningx/gunicorn/flask settings?
	Q: How can I debug model server errors (500) on my asynchronous endpoint?
	Q: How can I know if MaxConcurrentInvocationsPerInstance=1 takes effect? Are there any metrics that I can check?
	Q: How can I track the success and failures of my invocation requests? What are the best practices?
	Q: Can I define a scaling policy that scales up from zero instances upon receiving a new request?
	Q: I’m getting an error that the instance type is not supported for Asynchronous Inference. What are the instance types Asynchronous Inference supports?

	Use Batch Transform
	Use Batch Transform to Get Inferences from Large Datasets
	Speed up a Batch Transform Job
	Use Batch Transform to Test Production Variants
	Batch Transform Sample Notebooks
	Associate Prediction Results with Input Records
	Workflow for Associating Inferences with Input Records
	Use Data Processing in Batch Transform Jobs
	Supported JSONPath Operators
	Batch Transform Examples
	Example: Output Only Inferences
	Example: Output Inferences Joined with Input Data
	Example: Output Inferences Joined with Input Data and Exclude the ID Column from the Input (CSV)
	Example: Output Inferences Joined with an ID Column and Exclude the ID Column from the Input (CSV)

	Storage in Batch Transform
	Troubleshooting
	Max timeout errors
	Incomplete output
	Job shows as failed

	Model parallelism and large model inference
	Deep learning containers for large model inference
	Supported instance types

	SageMaker endpoint parameters for large model inference
	Large model inference tutorials
	Large model inference with DeepSpeed and DJL Serving
	Large model inference container image with DJL Serving
	Preparing your model artifacts
	Deploy the model using the SageMaker SDK

	Large model inference with FasterTransformer and DJL Serving
	Large model inference container image with FasterTransformer backend for DJL Serving
	Preparing your model artifacts
	Deploy the model using the SageMaker SDK

	Large model inference with TorchServe
	Deep learning containers with TorchServe
	Getting started
	Prerequisites
	Configure model settings and parameters
	Customize handlers

	Prepare your model artifacts
	Deploy the model using the SageMaker Python SDK

	Additional resources to get started

	Configurations and settings
	DJL Serving general settings
	Hugging Face handler settings
	LMI-Dist handler settings
	vLLM handler settings
	DeepSpeed handler settings
	FasterTransformer handler settings
	Neuronx LMI handler settings
	TensorRT-LLM handler settings

	Choosing instance types for large model inference
	Determining possible instance types
	Determining possible instance types based on data type
	Estimating a lower bound for the memory required to host a model
	Determining possible instances based on number of partitions
	Choosing an engine
	HuggingFace Accelerate
	DeepSpeed or FasterTransformer

	Adjusting loaded model memory estimate for sequence length and batch size

	Finalizing possible instance types

	Deploying uncompressed models
	Large model inference FAQs
	Q: When should I use LMI DLCs?
	Q: Who can I contact if something doesn't work?
	Q: Can I use large model inference deep learning containers (LMI DLCs) outside of SageMaker?
	Q: What model formats can I use with LMI DLCs?
	Q: How can I switch between model parallelization libraries such as Hugging Face Accelerate and DeepSpeed?

	Large model inference troubleshooting
	Downloading a model to my instance takes a long time
	Inference latency or throughput performance is poor
	SageMaker endpoint failed to start with a timeout or out of memory error

	Release notes for large model inference deep learning containers
	LMI DLC Release Notes: November 27, 2023 (1)
	LMI DLC Release Notes: November 27, 2023 (2)
	LMI DLC Release Notes: November 27, 2023 (3)
	LMI DLC Release Notes: August 4, 2023 (1)
	LMI DLC Release Notes: August 4, 2023 (2)
	LMI DLC Release Notes: August 4, 2023 (3)
	LMI DLC Release Notes: March 7, 2023
	LMI DLC Release Notes: February 24, 2023
	LMI DLC Release Notes: December 16, 2022
	LMI DLC Release Notes: November 4, 2022

	Update models in production
	How to get started
	Auto-Rollback Configuration and Monitoring
	Alarm Examples
	Monitor invocation errors on both old and new fleets
	Monitor model latency on the new fleet

	Blue/Green Deployments
	Traffic Shifting Modes
	Get Started
	All At Once Traffic Shifting
	Prerequisites
	Configure All At Once Traffic Shifting
	How to update an endpoint (API)
	How to update an endpoint with an existing blue/green update policy (API)
	How to update an endpoint (CLI)

	Canary Traffic Shifting
	Prerequisites
	Configure Canary Traffic Shifting
	How to update an endpoint (API)
	How to update an endpoint with an existing blue/green update policy (API)
	How to update an endpoint (CLI)

	Linear Traffic Shifting
	Prerequisites
	Configure Linear Traffic Shifting
	How to update an endpoint (API)
	How to update an endpoint with an existing blue/green update policy (API)
	How to update an endpoint (CLI)

	Rolling Deployments
	How it works
	Prerequisites
	Determine the rolling batch size
	Configure a rolling deployment
	Failure handling

	Exclusions

	Shadow tests
	Create a shadow test
	Prerequisites
	Enter shadow test details
	Enter shadow test settings

	View, monitor, and edit shadow tests
	View shadow tests
	Monitor a shadow test
	Start a shadow test early
	Complete a shadow test early
	Delete a shadow test
	Edit a shadow test

	Complete a shadow test
	Complete a shadow test early
	Promote a shadow variant

	Best Practices
	Exclusions

	Access containers through SSM
	Allowlist
	Enable SSM access
	IAM configuration
	Endpoint IAM permissions
	User IAM permissions

	SSM access with AWS PrivateLink
	Logging with Amazon CloudWatch Logs
	Accessing model containers

	Deploy models with model servers
	Deploy models with TorchServe
	Getting started
	Adding a package
	Create TorchServe model artifacts
	Using single model endpoints to deploy with TorchServe
	Using multi-model endpoints to deploy with TorchServe
	Metrics

	Deploy models with DJL Serving
	Getting started
	Customize your container
	Prepare your model artifacts
	Use single model endpoints to deploy with DJL Serving
	Use multi-model endpoints to deploy with DJL Serving

	Deploy models with Triton Inference Server
	Hosting modes
	Inference payload types
	Using config.pbtxt to set the model config
	Publishing default Triton metrics to Amazon CloudWatch
	Environment variables

	Deploy models at the edge with SageMaker Edge Manager
	Why Use Edge Manager?
	How Does it Work?
	How Do I Use SageMaker Edge Manager?
	Getting Started
	Setting Up
	Sign up for an AWS account
	Create an administrative user
	Create roles and storage

	Train, Compile, and Package Your Model
	Create and Register Fleets and Authenticate Devices
	Download and Set Up Edge Manager
	Run Agent

	Set Up Devices and Fleets
	Create a Fleet
	Create a Fleet (Boto3)
	Create a Fleet (Console)

	Register a Device
	Register a Device (Boto3)
	Register a Device (Console)

	Check Status

	Package Model
	Prerequisites
	Package a Model (Amazon SageMaker Console)
	Package a Model (Boto3)

	The Edge Manager Agent
	Download and Set Up the Edge Manager Agent Manually
	How the agent works
	Installing the Edge Manager agent
	Running the Edge Manager agent

	Deploy the Model Package and Edge Manager Agent with AWS IoT Greengrass
	Prerequisites
	Create the AWS IoT Greengrass V2 Components
	Create an autogenerated component
	Create a Hello World custom component

	Deploy the components to your device
	To deploy your components (console)
	To deploy your components (AWS CLI)

	Deploy the Model Package Directly with SageMaker Edge Manager Deployment API
	Create an edge deployment plan
	Start the edge deployment
	Check the status of the deployment

	Manage Model
	Load Model
	Unload Model
	List Models
	Describe Model
	Capture Data
	Get Capture Status
	Predict

	SageMaker Edge Manager end of life
	FAQs
	Q: What happens to my Amazon SageMaker Edge Manager after the EOL date?
	Q: Will I be billed for Edge Manager resources remaining in my account after the EOL date?
	Q: How do I delete my Amazon SageMaker Edge Manager resources?
	Q: How can I continue deploying models on the edge?

	Delete Edge Manager resources

	Optimize model performance using Neo
	What is SageMaker Neo?
	How it Works
	Use Neo to Compile a Model
	Prepare Model for Compilation
	What input data shapes does SageMaker Neo expect?
	Keras
	MXNet/ONNX
	PyTorch
	TensorFlow
	TFLite
	XGBoost

	Saving Models for SageMaker Neo
	Keras
	MXNet
	PyTorch
	TensorFlow
	Built-In Estimators

	Compile a Model (AWS Command Line Interface)
	Compile a Model (Amazon SageMaker Console)
	Compile a Model (Amazon SageMaker SDK)

	Cloud Instances
	Supported Instance Types and Frameworks
	Cloud Instances
	Instance Types
	AWS Inferentia
	AWS Inferentia2 and AWS Trainium

	Amazon Elastic Inference

	Deploy a Model
	Prerequisites
	Deploy a Compiled Model Using SageMaker SDK
	If you compiled your model using the SageMaker SDK
	If you compiled your model using MXNet or PyTorch
	If you compiled your model using Boto3, SageMaker console, or the CLI for TensorFlow

	Deploy a Compiled Model Using Boto3
	Deploy the Model

	Deploy a Compiled Model Using the AWS CLI
	Deploy the Model
	Create a Model
	Create an Endpoint Configuration
	Create an Endpoint

	Deploy a Compiled Model Using the Console
	Deploy the Model

	Request Inferences from a Deployed Service
	Request Inferences from a Deployed Service (Amazon SageMaker SDK)
	PyTorch and MXNet
	TensorFlow

	Request Inferences from a Deployed Service (Boto3)
	Request Inferences from a Deployed Service (AWS CLI)

	Inference Container Images
	Amazon SageMaker XGBoost
	Keras
	MXNet
	ONNX
	PyTorch
	TensorFlow

	Edge Devices
	Supported Frameworks, Devices, Systems, and Architectures
	Supported Frameworks
	Supported Devices, Chip Architectures, and Systems
	Devices
	Systems and Chip Architectures

	Tested Models
	DarkNet
	MXNet
	Keras
	ONNX
	PyTorch (FP32)
	TensorFlow
	TensorFlow-Lite

	Deploy Models
	Deploy a Compiled Model (DLR)
	Deploy a Model (AWS IoT Greengrass)

	Getting Started with Neo on Edge Devices
	Prerequisites
	Step 1: Compile the Model
	Step 2: Set Up Your Device
	Step 3: Make Inferences on Your Device

	Troubleshoot Errors
	Error Classification Types
	Client permission error
	Load error
	Compilation error

	Troubleshoot Neo Compilation Errors
	How to Use This Page
	Framework-Related Errors
	Keras
	MXNet
	TensorFlow
	PyTorch

	Infrastructure-Related Errors
	Check your compilation log

	Troubleshoot Neo Inference Errors
	Troubleshoot Ambarella Errors
	Setting up the Configuration File
	Calibration Images
	Mean and Scale
	Check your compilation log

	Use Amazon SageMaker Elastic Inference (EI)
	Migrate from Amazon Elastic Inference to other instances
	PyTorch
	TensorFlow
	MXNet

	How EI Works
	Choose an EI Accelerator Type
	Use EI in a SageMaker Notebook Instance
	Use EI on a Hosted Endpoint
	Frameworks that Support EI
	Use EI with SageMaker Built-in Algorithms
	EI Sample Notebooks
	Set Up to Use EI
	Set Up Required Permissions
	Use a Custom VPC to Connect to EI
	Set up Security Groups to Connect to EI
	Set up a VPC Interface Endpoint to Connect to EI

	Attach EI to a Notebook Instance
	Set Up to Use EI
	Use EI in Local Mode in SageMaker
	Use EI in Local Mode with SageMaker TensorFlow Estimators and Models
	Use EI in Local Mode with SageMaker Apache MXNet Estimators and Models
	Use EI in Local Mode with SageMaker PyTorch Estimators and Models

	Use EI on Amazon SageMaker Hosted Endpoints
	Use EI with a SageMaker TensorFlow Container
	Use an Estimator Object
	Use a Model Object

	Use EI with a SageMaker MXNet Container
	Use an Estimator Object
	Use a Model Object

	Use EI with a SageMaker PyTorch Container
	Use an Estimator Object
	Use a Model Object

	Use EI with Your Own Container
	Import the EI Version of TensorFlow, MXNet, or PyTorch into Your Docker Container
	Create an EI Endpoint with AWS SDK for Python (Boto 3)
	Create an Endpoint Configuration
	Create an Endpoint

	Best practices
	Best practices for deploying models on SageMaker Hosting Services
	Deploy Multiple Instances Across Availability Zones

	Monitor Security Best Practices
	Low latency real-time inference with AWS PrivateLink
	Deploy AWS PrivateLink
	Deploy SageMaker endpoint in a VPC
	Invoke the SageMaker endpoint

	Migrate inference workload from x86 to AWS Graviton
	Push container images to Amazon ECR
	Create a SageMaker Model
	Create an endpoint configuration
	Create an endpoint

	Troubleshoot Amazon SageMaker model deployments
	Detection Errors in the Active CPU Count
	Issues with deploying a model.tar.gz file
	Primary container did not pass ping health checks

	Inference cost optimization best practices
	Best practices
	Pick the best inference option for the job.
	Opt in to a SageMaker Savings Plan.
	Optimize your model to run better.
	Use the most optimal instance type and size for real-time inference.
	Improve efficiency and costs by combining multiple endpoints into a single endpoint for real-time inference.
	Set up autoscaling to match your workload requirements for real-time and asynchronous inference.

	Best practices to minimize interruptions during GPU driver upgrades
	Current versions and supported instance families
	Troubleshoot your model container with GPU capabilities
	GPU card detection failure or NVIDIA initialization error
	CannotStartContainerError

	Best practices for working with mismatched driver versions
	The driver my container depends on is lower than the version on the ML GPU instance
	The driver my container depends on is greater than the version on the ML GPU instances
	If you bring your own (BYO) model containers
	If you use a CUDA compatibility layer

	Best practices for endpoint security and health with Amazon SageMaker
	Don't delete resources while your endpoints use them
	Follow these procedures to update your endpoints

	Supported features
	Resources
	Blogs, example notebooks, and additional resources
	Blogs and case studies
	Example notebooks
	Additional resources

	Troubleshooting and reference
	Model Hosting FAQs
	General Hosting
	Q: What deployment options does Amazon SageMaker provide?
	Q: How do I choose a model deployment option in SageMaker?
	Q: I’ve heard SageMaker Inference is expensive. What’s the best way to optimize my cost when hosting models?
	Q: Why should I use Amazon SageMaker Inference Recommender?
	Q: What is a model server?
	Q: What is Bring Your Own Container with Amazon SageMaker?
	Q: Do I need to train my models on SageMaker to host them on SageMaker endpoints?
	Q: How should I structure my model if I want to deploy on SageMaker but not train on SageMaker?
	Q: When invoking a SageMaker endpoint, I can provide a ContentType and Accept MIME Type. Which one is used to identify the data type being sent and received?
	Q: What are the supported data formats for SageMaker Inference?
	Q: How do I invoke my endpoint with binary data such as videos or images?

	Real-Time Inference
	Q: How do I create a SageMaker endpoint?
	Q: Do I need to use the SageMaker Python SDK to create/invoke endpoints?
	Q: What is the difference between Multi-Model Endpoints (MME) and Multi Model Server (MMS)?
	Q: What are the different model deployment architectures supported by Real-Time Inference?

	Serverless Inference
	Q: What is Amazon SageMaker Serverless Inference?
	Q: Why should I use Serverless Inference?
	Q: How do I choose the right memory size for my serverless endpoint?

	Batch Transform
	Q: How does Batch Transform split my data?
	Q: What is the maximum timeout for Batch Transform and payload limit for a single record?
	Q: How do I speed up a Batch Transform job?
	Q: What are the data formats natively supported in Batch Transform?

	Asynchronous Inference
	Q: What is Amazon SageMaker Asynchronous Inference?
	Q: How do I scale my endpoints to 0 when there’s no traffic?

	Implement MLOps
	Why Should You Use MLOps?
	Challenges with MLOps
	Benefits of MLOps

	SageMaker Experiments
	SageMaker Workflows
	Amazon SageMaker Model Building Pipelines
	SageMaker Pipelines Overview
	Pipeline Structure and Execution
	Pipeline Structure
	Pipeline Execution using Parallelism Configuration

	IAM Access Management
	Pipeline Role Permissions
	Pipeline Step Permissions
	Customize access management for SageMaker Pipelines jobs
	Apply job prefixes to an IAM policy
	Apply job prefixes to pipeline instantiations

	Service Control Policies with Pipelines

	Cross-Account Support for SageMaker Pipelines
	Set up cross-account pipeline sharing
	Create a resource share
	Get responses to your resource share invitation

	Permission policies for SageMaker Pipelines resources
	Default read-only permissions
	Extended pipeline execution permissions

	Access shared pipeline entities through direct API calls

	Pipeline Parameters
	Pipeline Steps
	Step Types
	@step decorator
	Processing Step
	Training Step
	Tuning Step
	AutoML Step
	Model Step
	Create a model
	Register a model

	CreateModel Step
	RegisterModel Step
	Transform Step
	Condition Step
	Callback Step
	Lambda Step
	ClarifyCheck Step
	Configuring the ClarifyCheck step
	Controlling step behaviors for drift check
	Working with baselines

	QualityCheck Step
	Configuring the QualityCheck step
	Controlling step behaviors for drift check
	Working with baselines

	EMR Step
	Notebook Job Step
	Fail Step
	Limitations for using FailStep

	Step Properties
	Step Parallelism
	Data Dependency Between Steps
	Custom Dependency Between Steps
	Use a Custom Image in a Step

	Lift-and-shift Python code with the @step decorator
	Create a pipeline with @step-decorated functions
	Convert a function to a step
	Create dependencies between the steps
	Data dependencies through input arguments
	Define custom dependencies
	Pass data to and from a @step-decorated function to a traditional pipeline step

	Use ConditionStep with @step-decorated steps
	Define a pipeline using the DelayedReturn output of steps
	Create a pipeline

	Run a pipeline
	Retrieve results from a pipeline run locally
	Run a pipeline locally

	Configure your pipeline
	Best Practices
	Use warm pools
	Structure your directory

	Limitations
	Function argument limitations
	Function imports
	Referencing child members of function return value
	Existing pipeline features that are not supported

	Pass Data Between Steps
	Pass data between steps with Amazon S3
	Pass data between steps with property files

	Caching Pipeline Steps
	Turn on step caching
	Turn off step caching
	Default cache key attributes by pipeline step type
	Processing step
	Training step
	Tuning step
	AutoML step
	Transform step
	ClarifyCheck Step
	QualityCheck Step
	EMR Step

	Cached data access control

	Retry Policy for Pipeline Steps
	Supported exception types for the retry policy
	The JSON schema for the retry policy
	Configuring a retry policy

	Selective execution of pipeline steps
	Selective execution with a user-specified pipeline reference
	Selective execution with the latest pipeline execution as a reference
	Selective execution without a reference pipeline
	Reuse runtime parameter values from a reference execution

	Baseline calculation, drift detection and lifecycle with ClarifyCheck and QualityCheck steps in Amazon SageMaker Model Building Pipelines
	Baseline calculation and registration for ClarifyCheck and QualityCheck steps
	Drift Detection against Previous Baselines in SageMaker Pipelines
	Baseline and model version lifecycle and evolution with SageMaker Pipelines

	Schedule Pipeline Runs
	Schedule a Pipeline with Amazon EventBridge
	Prerequisites
	Create an EventBridge rule using the EventBridge console
	Create an EventBridge rule using the AWS CLI

	Schedule a pipeline with the SageMaker Python SDK
	Required permissions
	Create a pipeline schedule
	Attach the trigger to your pipeline
	Describe current triggers
	Cleanup trigger resources

	Amazon SageMaker Experiments Integration
	Default Behavior
	Disable Experiments Integration
	Specify a Custom Experiment Name
	Specify a Custom Run Group Name

	Local Mode
	Troubleshooting Amazon SageMaker Model Building Pipelines

	Create and Manage SageMaker Pipelines
	Define a Pipeline
	Prerequisites
	Set Up Your Environment

	Create a Pipeline
	Step 1: Download the Dataset
	Step 2: Define Pipeline Parameters
	Step 3: Define a Processing Step for Feature Engineering
	Step 4: Define a Training step
	Step 5: Define a Processing Step for Model Evaluation
	Step 6: Define a CreateModelStep for Batch Transformation
	Step 7: Define a TransformStep to Perform Batch Transformation
	Step 8: Define a RegisterModel Step to Create a Model Package
	Step 9: Define a Condition Step to Verify Model Accuracy
	Step 10: Create a pipeline

	Run a pipeline
	Prerequisites
	Step 1: Start the Pipeline
	Step 2: Examine a Pipeline Execution
	Step 3: Override Default Parameters for a Pipeline Execution
	Step 4: Stop and Delete a Pipeline Execution

	View, Track, and Execute SageMaker Pipelines in SageMaker Studio
	View a Pipeline
	View a Pipeline Execution
	Download a Pipeline Definition
	View Experiment Entities Created by SageMaker Pipelines
	Start (and Stop) a Pipeline Execution
	Track the Lineage of a SageMaker ML Pipeline

	Kubernetes Orchestration
	SageMaker Operators for Kubernetes
	What is an operator?
	How does AWS Controllers for Kubernetes (ACK) work?
	Permissions overview

	Latest SageMaker Operators for Kubernetes
	Install SageMaker Operators for Kubernetes
	Use SageMaker Operators for Kubernetes
	Reference

	Old SageMaker Operators for Kubernetes
	Install SageMaker Operators for Kubernetes
	IAM role-based setup and operator deployment
	Prerequisites
	Cluster-scoped deployment
	Create an OIDC provider for your cluster
	Get the OIDC ID
	Create an IAM role
	Attach the AmazonSageMakerFullAccess policy to the role
	Deploy the operator
	Deploy the operator using YAML
	Deploy the operator using Helm Charts

	Verify the operator deployment

	Namespace-scoped deployment
	Create an OIDC provider for your Amazon EKS cluster
	Get your OIDC ID
	Create your IAM role
	Attach the AmazonSageMakerFullAccess policy to your role
	Deploy the operator to your namespace
	Deploy the operator to your namespace using YAML
	Deploy the operator to your namespace using Helm Charts

	Verify the operator deployment to your namespace

	Install the SageMaker logs kubectl plugin

	Clean up resources
	Delete operators
	Delete cluster-based operators
	Operators installed using YAML
	Operators installed using Helm Charts

	Delete namespace-based operators
	Operators installed with YAML
	Operators installed with Helm Charts

	Troubleshooting
	Debugging a failed job
	Deleting an operator CRD

	Images and SMlogs in each Region

	Use Amazon SageMaker Jobs
	The TrainingJob operator
	Create a TrainingJob using a YAML file
	Create a TrainingJob Using a Helm Chart
	Create the TrainingJob
	Verify your training Helm Chart

	List TrainingJobs
	TrainingJob status values
	Secondary status values

	Describe a TrainingJob
	View logs from TrainingJobs
	Delete TrainingJobs

	The HyperParameterTuningJob operator
	Create a HyperparameterTuningJob using a YAML file
	Create a HyperparameterTuningJob using a Helm Chart
	Create the HyperparameterTuningJob
	Verify chart installation

	List HyperparameterTuningJobs
	Hyperparameter tuning job status values
	Status counters
	Best TrainingJob
	Spawned TrainingJobs

	Describe a HyperparameterTuningJob
	View logs from HyperparameterTuningJobs
	Delete a HyperparameterTuningJob

	The BatchTransformJob operator
	Create a BatchTransformJob using a YAML File
	Create a BatchTransformJob using a Helm Chart
	Get the Helm installer directory
	Configure the Helm Chart
	Create a BatchTransformJob

	List BatchTransformJobs
	Batch transform status values

	Describe a BatchTransformJob
	View logs from BatchTransformJobs
	Delete a BatchTransformJob

	The HostingDeployment operator
	Configure a HostingDeployment resource
	Create a HostingDeployment
	List HostingDeployments
	HostingDeployment status values

	Describe a HostingDeployment
	Invoking the endpoint
	Update HostingDeployment
	Delete the HostingDeployment

	The ProcessingJob operator
	Create a ProcessingJob using a YAML file
	List ProcessingJobs
	Describe a ProcessingJob
	Delete a ProcessingJob

	HostingAutoscalingPolicy (HAP) Operator
	Create a HostingAutoscalingPolicy using a YAML file
	Sample 1: Apply a predefined metric to a single endpoint variant
	Sample 2: Apply a custom metric to a single endpoint variant
	Sample 3: Apply a scaling policy to multiple endpoints and variants
	Considerations for HostingAutoscalingPolicies for multiple endpoints and variants

	List HostingAutoscalingPolicies
	Describe a HostingAutoscalingPolicy
	Update a HostingAutoscalingPolicy
	Delete a HostingAutoscalingPolicy
	Update or delete an endpoint with a HostingAutoscalingPolicy

	Migrate resources to the latest Operators
	Prerequisites
	Adopt resources
	HostingAutoscalingPolicy resources
	HostingDeployment resources

	Clean up old resources
	Step 1: Uninstall the old operator
	Step 2: Remove finalizers and delete old resources

	Use the new SageMaker Operators for Kubernetes

	Announcing the End of Support of the Original Version of SageMaker Operators for Kubernetes
	End of Support Frequently Asked Questions
	Why are we ending support for the original version of SageMaker Operators for Kubernetes?
	Where can I find more information about the new SageMaker Operators for Kubernetes and ACK?
	What does end of support (EOS) mean?
	How can I migrate my workload to the new SageMaker Operators for Kubernetes for training and inference?
	Which version of ACK should I migrate to?
	Are the initial SageMaker Operators for Kubernetes and the new Operators (ACK service controller for Amazon SageMaker) functionally equivalent?

	SageMaker Components for Kubeflow Pipelines
	What are Kubeflow Pipelines?
	What are Kubeflow Pipeline components?
	Why use SageMaker Components for Kubeflow Pipelines?
	SageMaker Components for Kubeflow Pipelines versions
	List of SageMaker Components for Kubeflow Pipelines
	Ground Truth components
	Data processing components
	Training components
	Inference components

	IAM permissions
	Converting pipelines to use SageMaker
	Install Kubeflow Pipelines
	Choose an installation option
	Full Kubeflow on AWS Deployment
	Standalone Kubeflow Pipelines Deployment
	Set up a gateway node
	Set up an Amazon EKS cluster
	Install Kubeflow Pipelines

	Configure your pipeline permissions to access SageMaker
	Configuration for SageMaker components version 2
	Configuration for SageMaker components version 1

	Access the KFP UI (Kubeflow Dashboard)
	Full Kubeflow on AWS Deployment
	Standalone Kubeflow Pipelines Deployment
	Set up port forwarding to the KFP UI service
	Access the KFP UI service
	(Optional) Grant SageMaker notebook instances access to Amazon EKS, and run KFP pipelines from your notebook.

	Use SageMaker components
	Create a SageMaker execution role
	Full Kubeflow on AWS Deployment
	Standalone Kubeflow Pipelines Deployment
	Prepare datasets
	Compile and deploy your pipeline
	Install KFP SDK
	Compile your pipeline
	Upload and run the pipeline using the KFP CLI
	Upload and run the pipeline using the KFP UI

	Run predictions
	Configure permissions to run predictions
	Run predictions

	View results and logs
	Cleanup

	SageMaker Notebook Jobs
	Installation Guide
	Install policies and permissions for Studio
	Additional IAM permissions
	Permissions needed if your Studio execution and notebook job roles differ
	Permissions needed to access Amazon S3 resources through a S3 VPC endpoint
	Permissions needed to use a custom KMS key (optional)

	Install policies and permissions for local Jupyter environments
	IAM user permissions
	Job execution role permissions

	Create a notebook job
	Create a notebook job with SageMaker Python SDK
	Steps to create a notebook job
	View your notebook jobs in the Studio UI dashboard
	View your pipeline graph in Studio
	Passing parameters to your notebook
	Connecting to an Amazon EMR cluster in your input notebook
	Set up default options

	Create a notebook job in Studio
	Set up default options for local notebooks

	Create a workflow of notebook jobs
	Pass information to and from your notebook step
	Pass environment variables
	Pass parameters
	Retrieve information from a previous step

	Invoke another notebook in your notebook job

	Available options
	Parameterize your notebook
	Connect to an Amazon EMR cluster from your notebook
	Pass parameters to your EMR connection command
	Pass user credentials to your Kerberos, LDAP, or HTTP Basic Auth-authenticated Amazon EMR cluster

	Track notebook jobs and job definitions
	View notebook jobs
	View a single job

	View notebook job definitions
	View a single job definition

	Troubleshooting guide
	Job definition doesn’t create jobs
	Auto visualizations disabled in SparkMagic notebooks

	Constraints and considerations
	JupyterLab version
	Installation of packages that require kernel restart
	Kernel and language names registered with Jupyter
	Parameters and environment variable limits
	Viewing jobs and job definitions
	Image
	Image constraints for SageMaker Notebook Jobs (Studio)
	Image constraints for SageMaker Python SDK notebook jobs

	VPC subnets used during job creation
	Service limits

	Pricing for SageMaker Notebook Jobs

	Amazon SageMaker ML Lineage Tracking
	Lineage Tracking Entities
	Amazon SageMaker–Created Tracking Entities
	Tracking Entities for SageMaker Jobs
	Tracking Entities for Model Packages
	Tracking Entities for Endpoints

	Manually Create Tracking Entities
	Manually Create Entities
	Manually Track a Workflow
	Limits

	Querying Lineage Entities
	Getting Started with Querying Lineage Entities

	Cross-Account Lineage Tracking
	Set Up Cross-Account Lineage Tracking
	Your cross-account lineage tracking resource policy

	Tracking Cross-Account Lineage Entities
	Accessing lineage resources from a different accounts
	Authorization for querying cross-account lineage entities

	Register and Deploy Models with Model Registry
	Model Registry Models, Model Versions, and Model Groups
	Create a Model Group
	Create a Model Group (Boto3)
	Create a Model Group (console)

	Delete a Model Group
	Delete a Model Group (console)

	Register a Model Version
	Register a Model Version (SageMaker Pipelines)
	Register a Model Version (Boto3)
	Register a Model Version (console)
	Register a Model Version from a Different Account
	Required IAM resource policies
	Apply resource policies to accounts

	View Model Groups and Versions
	View a List of Model Versions in a Group
	View a List of Model Versions in a Group (Boto3)
	View a List of Model Versions in a Group (console)

	View the Details of a Model Version
	View the Details of a Model Version (Boto3)
	View the Details of a Model Version (console)

	Compare Model Versions
	Compare Model Versions (Amazon SageMaker Studio Classic)

	View and Manage Model Group and Model Version Tags
	View and manage model group tags
	Manage model version tags

	Share Models with SageMaker Canvas Users
	Delete a Model Version
	Delete a Model Version (console)

	Update the Approval Status of a Model
	Update the Approval Status of a Model (Boto3)
	Update the Approval Status of a Model (console)

	Deploy a Model from the Registry
	Deploy a Model from the Registry (SageMaker SDK)
	Deploy a Model from the Registry (Boto3)
	Deploy a Model Version from a Different Account

	View the Deployment History of a Model

	Model Registry Collections
	Prerequisites
	Create a Collection
	Add Model Groups to a Collection
	Remove Model Groups or Collections from a Collection
	Move a Model Group Between Collections
	View a Model Group's Parent Collection
	Constraints
	Collection and Model Group tagging

	Amazon SageMaker Model Registry FAQ
	Q. How should I organize my models into Model Groups and model packages in the SageMaker Model Registry?
	Q. How does the SageMaker Model Registry differ from Amazon Elastic Container Registry (Amazon ECR)?
	Q. How do I tag model packages in the SageMaker Model Registry?
	Q. How should I assign or tag model package groups in the SageMaker Model Registry to a project?

	Model Deployment in SageMaker
	SageMaker Model Monitor
	Automate MLOps with SageMaker Projects
	What is a SageMaker Project?
	When Should You Use a SageMaker Project?
	What is in a SageMaker Project?
	Do I Need to Create a Project to Use SageMaker Pipelines?

	SageMaker Studio Permissions Required to Use Projects
	Create an MLOps Project using Amazon SageMaker Studio Classic
	MLOps Project Templates
	Use SageMaker-Provided Project Templates
	MLOps template for model building, training, and deployment
	MLOps template for model building, training, deployment, and Amazon SageMaker Model Monitor
	MLOps template for Amazon SageMaker Model Monitor

	MLOps template for image building, model building, and model deployment
	MLOps template for model building, training, and deployment with third-party Git repositories using CodePipeline
	MLOps template for model building, training, and deployment with third-party Git repositories using Jenkins
	Model deployment for Salesforce
	Update SageMaker Projects to Use Third-Party Git Repositories

	Create Custom Project Templates

	View Project Resources
	Update an MLOps Project in Amazon SageMaker Studio Classic
	Delete an MLOps Project using Amazon SageMaker Studio Classic
	SageMaker MLOps Project Walkthrough
	Step 1: Create the Project
	Step 2: Clone the Code Repository
	Step 3: Make a Change in the Code
	Step 4: Approve the Model
	(Optional) Step 5: Deploy the Model Version to Production
	Step 6: Clean Up Resources

	SageMaker MLOps Project Walkthrough Using Third-party Git Repos
	Step 1: Set up the GitHub connection
	Step 2: Create the Project
	Step 3: Make a Change in the Code
	Step 4: Approve the Model
	(Optional) Step 5: Deploy the Model Version to Production
	Step 6: Clean Up Resources

	Amazon SageMaker MLOps FAQ
	Q. Do I need to use the SageMaker Python SDK to create a SageMaker pipeline?
	Q. Why do I see a repack step in my SageMaker pipeline?
	Q. Can I use SageMaker Experiments with SageMaker Pipelines?
	Q. SageMaker Project templates have a model deploy repository that uses CloudFormation (CFN) to create an endpoint. Are there ways to deploy the model without using CloudFormation?
	Q. How do we pass the model file Amazon S3 URL from the train step to the model register step in a SageMaker pipeline at run time?
	Q. If I am extending a prebuilt container to train an estimator or for a ProcessingStep on SageMaker Pipelines, is it necessary to copy the script to the container in the Dockerfile?
	Q. What’s the recommended way to manage dependencies for different SageMaker Pipelines steps?
	Q. How do I provide SageMaker Project access to specific user profiles in Amazon SageMaker Studio Classic?
	Q. Where do I see the properties associated with each SageMaker pipeline step so that I can use them in subsequent steps?
	Q. In SageMaker Pipelines, can I specify a unique output path for a pipeline step so that its output data will not be overridden by future runs?
	Q. What’s the best way to reproduce my model in SageMaker?
	Q. If I try to delete a SageMaker project created from a SageMaker template and receive an error due to non-empty Amazon S3 buckets or Amazon ECR repositories, how can I delete the project?

	Monitor data and model quality
	Monitoring a Model in Production
	How Model Monitor Works
	Model Monitor Sample Notebooks

	Capture data
	Capture data from real-time endpoint
	How to enable data capture
	Deploy your model
	View Captured Data

	Capture data from batch transform job
	How to enable data capture
	How to view data captured
	InferenceId Generation

	Monitor data quality
	Create a Baseline
	Schedule data quality monitoring jobs
	Data quality monitoring for models deployed to real-time endpoints
	Data quality monitoring for batch transform jobs

	Schema for Statistics (statistics.json file)
	CloudWatch Metrics
	Schema for Violations (constraint_violations.json file)

	Monitor model quality
	Create a Model Quality Baseline
	Schedule Model Quality Monitoring Jobs
	Model monitor offsets
	Model quality monitoring for models deployed to real-time endpoints
	Model quality monitoring for batch transform jobs

	Ingest Ground Truth Labels and Merge Them With Predictions
	Model Quality Metrics
	Regression Metrics
	Binary Classification Metrics
	Multiclass Metrics

	Model Quality CloudWatch Metrics

	Monitor Bias Drift for Models in Production
	Model Monitor Sample Notebook
	Create a Bias Drift Baseline
	Bias Drift Violations
	Configure Parameters to Monitor Bias Drift
	Example JSON Configuration Files for CSV and JSON Lines Datasets
	CSV Datasets
	JSON Lines Datasets

	Schedule Bias Drift Monitoring Jobs
	Bias drift monitoring for models deployed to real-time endpoint
	Bias drift monitoring for batch transform jobs

	Inspect Reports for Data Bias Drift
	CloudWatch Metrics for Bias Drift Analysis

	Monitor Feature Attribution Drift for Models in Production
	Model Monitor Example Notebook
	Create a SHAP Baseline for Models in Production
	Model Feature Attribution Drift Violations
	Configure Parameters to Monitor Attribution Drift
	Example JSON Configuration Files for CSV and JSON Lines Datasets
	CSV Datasets
	JSON Lines Datasets

	Schedule Feature Attribute Drift Monitoring Jobs
	Feature attribution drift monitoring for models deployed to real-time endpoint
	Feature attribution drift monitoring for batch transform jobs

	Inspect Reports for Feature Attribute Drift in Production Models
	CloudWatch Metrics for Feature Drift Analysis

	Schedule monitoring jobs
	The cron expression for monitoring schedule
	Configuring service control policies for monitoring schedules

	Amazon SageMaker Model Monitor prebuilt container
	Interpret results
	List Executions
	Inspect a Specific Execution
	List Generated Reports
	Violations Report

	Visualize results for real-time endpoints in Amazon SageMaker Studio
	Advanced topics
	Customize monitoring
	Preprocessing and Postprocessing
	Preprocessing Script
	Custom Sampling
	Custom logging for preprocessing script

	Postprocessing Script

	Bring Your Own Containers
	Container Contract Inputs
	Container Contract Outputs
	Schema for Statistics (statistics.json file)
	Schema for Constraints (constraints.json file)

	CloudWatch Metrics for Bring Your Own Containers

	Create a Monitoring Schedule for a Real-time Endpoint with an AWS CloudFormation Custom Resource
	Custom Resource
	Lambda Custom Resource Code

	Model Monitor FAQs

	Evaluate, explain, and detect bias in models
	Use SageMaker Clarify to evaluate foundation models
	What are foundation model evaluations?
	Get started with model evaluations
	Foundation model evaluation overview
	Foundation model evaluation task types
	Open-ended generation
	Text summarization
	Question answering
	Classification

	Types of foundation model evaluations
	Human evaluations
	Automatic evaluations

	Foundation model evaluation summary

	Use a human evaluation
	Set up your environment
	Prerequisites
	Setting up your permissions

	Run a human evaluation
	View your human analysis results

	Use an automatic evaluation
	Use an automatic evaluation in a UI
	Format your input dataset
	Set up your environment
	Run an automatic evaluation in a UI
	View analysis results from your automatic evaluation

	Use the fmeval library to run an automatic evaluation
	Get started using the fmeval library
	Set up your environment
	Configure ModelRunner
	Use a SageMaker JumpStart model
	Use an Amazon Bedrock model

	Evaluate your model
	Accuracy
	Factual knowledge
	Prompt stereotyping
	Semantic robustness
	Toxicity

	Customize your workflow using the fmeval library
	Use a custom input dataset
	Use a custom ModelRunner

	Notebook tutorials
	How to evaluate a SageMaker JumpStart model for prompt stereotyping
	Set up your environment
	Send a sample inference request
	Set up FMEval
	Run your model evaluation
	View your analysis results

	How to evaluate an Amazon Bedrock model for text summarization accuracy
	Set up your environment
	Run your model evaluation
	View your analysis results

	Additional notebooks

	FMEval Troubleshooting guide
	Error uploading your data from an Amazon S3 bucket
	The processing job failed to complete
	Insufficient quota
	Insufficient memory
	Did not pass ping check

	You can't find foundation model evaluations in the SageMaker console
	Your model does not support prompt stereotyping

	Use SageMaker Clarify to explain and detect bias
	What is fairness and model explainability for machine learning predictions?
	Best practices to evaluate fairness and explainability in the ML lifecycle
	Guide to the SageMaker explanations and bias documentation

	How SageMaker Clarify Processing Jobs Work
	Configure a SageMaker Clarify Processing Job
	Configure a SageMaker Clarify processing job using the SageMaker API
	Configure a SageMaker Clarify processing job using the AWS SDK for Python
	Configure a SageMaker Clarify processing job using the SageMaker Python SDK
	Get Started with a SageMaker Clarify Container
	Configure the Analysis
	Schema for the analysis configuration file
	Requirements for the analysis configuration file
	Parameters for analysis configuration files

	Example analysis configuration files
	Analysis configuration for a CSV dataset
	Compute all of the pre-training bias metrics
	Compute all of the post-training bias metrics
	Compute the SHAP values
	Compute partial dependence plots (PDPs)
	Compute both bias metrics and feature importance

	Analysis configuration for a JSON Lines dataset
	Compute pre-training bias metrics
	Compute all the bias metrics
	Compute the SHAP values
	Compute partials dependence plots (PDPs)
	Compute both bias metrics and feature importance

	Analysis configuration for a JSON dataset
	Compute pre-training bias metrics
	Compute all the bias metrics
	Compute the SHAP values
	Compute partial dependence plots (PDPs)
	Compute both bias metrics and feature importance

	Analysis configuration for natural language processing explainability
	Analysis configuration for computer vision explainability

	Data Format Compatibility Guide
	Tabular data
	Tabular dataset prerequisites
	Tabular dataset prerequisites in CSV format
	Tabular dataset prerequisites in JSON format
	Tabular dataset prerequisites in JSON Lines format
	Tabular dataset prerequisites in Parquet format

	Endpoint requests for tabular data
	Endpoint request in CSV format
	Endpoint request is in JSON Lines format
	Endpoint request is in JSON format

	Endpoint response for tabular data
	Endpoint Response is in CSV format
	Endpoint response is in CSV format and contains probability only
	Endpoint response is in CSV format and contains predicted label only
	Endpoint response is in CSV format and contains predicted label and probability
	Endpoint response is in CSV format and contains predicted labels and probabilities (multiclass)

	Endpoint Response is in JSON Lines format
	Endpoint response is in JSON Lines format and contains probability only
	Endpoint response is in JSON Lines format and contains predicted label only
	Endpoint response is in JSON Lines format and contains predicted label and probability
	Endpoint response is in JSON Lines format and contains predicted labels and probabilities (multiclass)

	Endpoint Response is in JSON format
	Endpoint response is in JSON format and contains probability only
	Endpoint response is in JSON format and contains predicted label only
	Endpoint response is JSON format and contains predicted label and probability
	Endpoint response is in JSON format and contains predicted labels and probabilities (multiclass)

	Pre-check endpoint request and response for tabular data
	Endpoint request and response in CSV format
	Endpoint request and response in JSON Lines format
	Endpoint request and response in mixed formats

	Image data
	Image dataset prerequisites
	Endpoint request for image data
	Endpoint response for image data
	Image classification problem
	Object detection problem

	Pre-check endpoint request and response for image data
	Image classification problem
	Object detection problem

	Run SageMaker Clarify Processing Jobs for Bias Analysis and Explainability
	Analyze tabular data in CSV format
	How to compute all pre-training bias metrics for a CSV dataset
	How to compute all post-training bias metrics for a CSV dataset
	How to compute all bias metrics for a CSV dataset
	How to compute SHAP values for a CSV dataset
	How to compute partial dependence plots (PDPs) for a CSV dataset
	How to compute both SHAP values and PDPs for a CSV dataset

	Analyze tabular data in JSON Lines format
	Analyze tabular data for NLP explainability
	Analyze image data for computer vision explainability
	How to explain an image classification model
	How to explain an object detection model

	How to run parallel SageMaker Clarify processing jobs

	Get Analysis Results
	Bias analysis
	Schema for the analysis file
	Bias analysis report

	SHAP analysis
	Schema for the SHAP analysis file
	Schema for the generated baseline file
	Schema for local SHAP values from tabular dataset explainability analysis
	Schema for local SHAP values from NLP explainability analysis
	SHAP analysis report

	Computer vision (CV) explainability analysis
	Partial dependence plots (PDPs) analysis
	Schema for the analysis file
	PDP analysis report

	Troubleshoot SageMaker Clarify Processing Jobs
	Processing job fails to finish
	Processing job is taking too long to run
	Processing job finishes without results and you get a CloudWatch warning message
	Error message for invalid analysis configuration
	Bias metric computation fails for several or all metrics
	Mismatch between analysis config and dataset/model input/output
	Model returns 500 Internal Server Error or container falls back to per-record predictions due to model error
	Execution role is invalid
	Failed to download data
	Could not connect to SageMaker

	Sample notebooks
	Getting started
	Special cases

	Detect Pre-training Data Bias
	Amazon SageMaker Clarify Terms for Bias and Fairness
	Sample Notebooks
	Measure Pre-training Bias
	Class Imbalance (CI)
	Difference in Proportions of Labels (DPL)
	Kullback-Leibler Divergence (KL)
	Jensen-Shannon Divergence (JS)
	Lp-norm (LP)
	Total Variation Distance (TVD)
	Kolmogorov-Smirnov (KS)
	Conditional Demographic Disparity (CDD)

	Generate Reports for Bias in Pre-training Data in SageMaker Studio

	Detect Post-training Data and Model Bias
	Measure Post-training Data and Model Bias
	Difference in Positive Proportions in Predicted Labels (DPPL)
	Disparate Impact (DI)
	Difference in Conditional Acceptance (DCAcc)
	Difference in Conditional Rejection (DCR)
	Specificity difference (SD)
	Recall Difference (RD)
	Difference in Acceptance Rates (DAR)
	Difference in Rejection Rates (DRR)
	Accuracy Difference (AD)
	Treatment Equality (TE)
	Conditional Demographic Disparity in Predicted Labels (CDDPL)
	Counterfactual Fliptest (FT)
	Generalized entropy (GE)

	Model Explainability
	Sample Notebooks
	Feature Attributions that Use Shapley Values
	SHAP Baselines for Explainability

	Use SageMaker Clarify explainability with SageMaker Autopilot

	Use governance to document and track model performance
	Amazon SageMaker Role Manager
	Amazon SageMaker Model Cards
	Amazon SageMaker Model Dashboard
	Amazon SageMaker Model Cards
	Prerequisites
	Intended uses of a model
	Risk ratings
	Model card JSON schema
	Model card JSON schema sample file

	Create a model card
	Create a model card using the SageMaker console
	Step 1: Enter model details and intended use
	Step 2: Enter training details
	Step 3: Enter evaluation details
	Step 4: Enter additional details
	Save model card

	Create a model card using the SageMaker Python SDK
	Create a model that isn't in the model registry
	Step 1: Define model overview
	Step 2: Define training details
	Define evaluation details
	Step 3: Define intended uses
	Define additional information
	Step 4: Create model card

	Create a model card for your model in the SageMaker Model Registry

	Manage model cards
	Manage model cards using the console
	Edit a model card
	Export a model card
	Delete a model card

	Manage model cards using the SageMaker Python SDK
	Use model cards through the SageMaker Python SDK
	Edit a model card
	Export a model card
	Delete a model card
	Sample notebooks

	Cross-account support for Amazon SageMaker Model Cards
	Set up cross-account model card sharing
	Set up AWS KMS permissions for the shared account
	Get responses to your resource share invitation
	Set up IAM user permissions in the shared account

	Use model cards through the low-level APIs
	SageMaker API
	AWS CLI

	Model card FAQs
	Q. What is model risk?
	Q. What is the intended use of a model?
	Q. Does SageMaker autopopulate information in my model card?
	Q. Can I customize a model card?
	Q. Can I edit a model card once it is created?
	Q. Can I create model cards for models that were not trained using SageMaker?
	Q. Can I export or share model cards?
	Q. Do I need to register my model in the Model Registry to use model cards?
	Q. What is the difference between model cards and Model Registry?
	Q. Are model card versions related to model versions in the Model Registry?
	Q. Are model cards integrated with SageMaker Model Monitor?

	Amazon SageMaker Model Dashboard
	Model Dashboard elements
	View Model Monitor schedules and alerts
	View scheduled monitors
	Activate or deactivate a model monitor
	View and edit alerts
	View alert history or job reports
	Edit alert criteria

	View a model lineage graph
	Introduction to entities
	Entity properties
	Entity queries

	View a model’s lineage graph

	View Endpoint Status
	View status and configuration for an endpoint

	Model Dashboard FAQ
	Q. What is Model Dashboard?
	Q. What are the prerequisites to use Model Dashboard?
	Q. Who should use Model Dashboard?
	Q. How do I use Model Dashboard?
	Q. What is Amazon SageMaker Model Monitor?
	Q. What types of model monitors does SageMaker support?
	Q. What inference methods does SageMaker Model Monitor support?
	Q. How can I get started with SageMaker Model Monitor?
	Q. How does Model Monitor work?
	Q. When and how do you bring your own container (BYOC) for Model Monitor?
	Q. Where can I find examples of BYOC for Model Monitor?
	Q. How do I integrate Model Monitor with SageMaker Pipelines?
	Q. Are there any performance concerns using DataCapture?

	Use Docker containers to build models
	Scenarios for Running Scripts, Training Algorithms, or Deploying Models with SageMaker
	Use cases for using pre-built Docker containers with SageMaker
	Use cases for extending a pre-built Docker container
	Use case for building your own container

	Docker Container Basics
	Use Pre-built SageMaker Docker images
	Prebuilt SageMaker Docker Images for Deep Learning
	Using the SageMaker Python SDK
	Extending Prebuilt SageMaker Docker Images

	Prebuilt Amazon SageMaker Docker Images for Scikit-learn and Spark ML
	Using the SageMaker Python SDK
	Specifying the Prebuilt Images Manually
	Finding Available Images

	Train a Deep Graph Network
	What Is a Deep Graph Network?
	Get Started
	Run a Graph Network Training Example
	Examples
	Use a Deep Learning Container with DGL
	Bring Your Own Container with DGL

	Extend a Pre-built Container
	Requirements to Extend a Pre-built Container
	Extend SageMaker Containers to Run a Python Script
	Step 1: Create an SageMaker Notebook Instance
	Step 2: Create and Upload the Dockerfile and Python Training Scripts
	Step 3: Build the Container
	Step 4: Test the Container
	Step 5: Push the Container to Amazon Elastic Container Registry (Amazon ECR)
	Step 6: Clean up Resources

	Adapting your own Docker container to work with SageMaker
	Individual Framework Libraries
	Using the SageMaker Training and Inference Toolkits
	SageMaker Toolkits Containers Structure
	Single Versus Multiple Containers

	Adapting your own training container
	Step 1: Create a SageMaker notebook instance
	Step 2: Create and upload the Dockerfile and Python training scripts
	Step 3: Build the container
	Step 4: Test the container
	Step 5: Push the container to Amazon Elastic Container Registry (Amazon ECR)
	Step 6: Clean up resources
	Blogs and Case Studies
	Adapt your training job to access images in a private Docker registry
	Create and store your images in a private Docker registry
	Configure your VPC and SageMaker training job
	Create a training job using an image from your private Docker registry
	Use a SageMaker estimator to run a training job
	Use a Docker registry that requires authentication for training
	Create the Lambda function
	Grant the correct role permission to your Lambda function
	Create an interface VPC endpoint for Lambda

	Adapting Your Own Inference Container
	Troubleshooting your container deployment
	Name error
	Insufficient quota
	Upstream timed out error

	Create a container with your own algorithms and models
	Use Your Own Training Algorithms
	How Amazon SageMaker Runs Your Training Image
	Run a training job with an entrypoint script bundled inside the Docker container
	Bundle your shell script in a Docker container
	Bundle your Python script in a Docker container

	Run a training job with an entrypoint script outside the Docker container
	Provide your entrypoint script in an Amazon S3 bucket
	Configure the input data channel using AWS CLI with a JSON file
	Configure the input data channel using AWS CLI directly

	How Amazon SageMaker Provides Training Information
	Hyperparameters
	Environment Variables
	Input Data Configuration
	Training Data
	Distributed Training Configuration

	Run Training with EFA
	Prerequisites
	Install EFA and required packages
	Considerations when creating your container
	Verify that your EFA device is recognized
	Running a training job with EFA

	How Amazon SageMaker Signals Algorithm Success and Failure
	How Amazon SageMaker Processes Training Output

	Use your own inference code
	Use Your Own Inference Code with Hosting Services
	How SageMaker Runs Your Inference Image
	How SageMaker Loads Your Model Artifacts
	How Your Container Should Respond to Inference Requests
	How Your Container Should Respond to Health Check (Ping) Requests
	Use a Private Docker Registry for Real-Time Inference Containers
	Store Images in a Private Docker Registry other than Amazon Elastic Container Registry
	Use an Image from a Private Docker Registry for Real-time Inference
	Allow SageMaker to authenticate to a private Docker registry
	Create the Lambda function
	Give your execution role permission to Lambda
	Create an interface VPC endpoint for Lambda

	Use Your Own Inference Code with Batch Transform
	How SageMaker Runs Your Inference Image
	How SageMaker Loads Your Model Artifacts
	How Containers Serve Requests
	How Your Container Should Respond to Inference Requests
	How Your Container Should Respond to Health Check (Ping) Requests

	Examples and More Information: Use Your Own Algorithm or Model
	Setup
	Host models trained in Scikit-learn
	Package TensorFlow and Scikit-learn models for use in SageMaker
	Train and deploy a neural network on SageMaker
	Training using pipe mode
	Bring your own R model
	Extend a pre-built PyTorch container Image
	Train and debug training jobs on a custom container

	Troubleshooting your Docker containers

	Configure security in Amazon SageMaker
	Data Privacy in Amazon SageMaker
	Types of information collected
	How to opt out of metadata collection
	Opt out of metadata collection using the AWS Command Line Interface (AWS CLI)
	Opt out of metadata collection using the AWS SDK for Python (Boto3)
	Opt out of metadata collection using the SageMaker Python SDK
	Opt out of metadata collection account-wide

	Additional information

	Data Protection in Amazon SageMaker
	Protect Data at Rest Using Encryption
	Studio notebooks
	Notebook instances, SageMaker jobs, and Endpoints
	SageMaker geospatial capabilities

	Protecting Data in Transit with Encryption
	Protect Communications with RStudio on Amazon SageMaker
	Protect Communications Between ML Compute Instances in a Distributed Training Job
	Enable Inter-container Traffic Encryption (API)
	Enable Inter-container Traffic Encryption (Console)
	Enable Inter-container Traffic Encryption in a Training Job
	Enable Inter-container Traffic Encryption in a Hyperparameter Tuning Job

	Key Management
	Internetwork Traffic Privacy

	Identity and Access Management for Amazon SageMaker
	Audience
	Authenticating with Identities
	AWS account root user
	Federated identity
	IAM Users and Groups
	IAM Roles

	Managing Access Using Policies
	Identity-Based Policies
	Resource-Based Policies
	Access Control Lists (ACLs)
	Other Policy Types
	Multiple Policy Types

	How Amazon SageMaker Works with IAM
	SageMaker Identity-Based Policies
	Actions
	Resources
	Condition Keys
	Examples

	SageMaker Resource-Based Policies
	Authorization Based on SageMaker Tags
	SageMaker IAM Roles
	Using Temporary Credentials with SageMaker
	Service-Linked Roles
	Service Roles
	Choosing an IAM Role in SageMaker

	Amazon SageMaker Identity-Based Policy Examples
	Policy Best Practices
	Using the SageMaker Console
	Permissions Required to Use the Amazon SageMaker Console
	Permissions Required to Use the Amazon SageMaker Ground Truth Console
	Permissions Required to Use the Amazon Augmented AI (Preview) Console

	Allow Users to View Their Own Permissions
	Control Creation of SageMaker Resources with Condition Keys
	Control Access to SageMaker Resources by Using File System Condition Keys
	Restrict an IAM User to Specific Directories and Access Modes
	Restrict a User to a Specific File System

	Restrict Training to a Specific VPC
	Restrict Access to Workforce Types for Ground Truth Labeling Jobs and Amazon A2I Human Review Workflows
	Enforce Encryption of Input Data
	Enforce Encryption of Notebook Instance Storage Volume
	Enforce Network Isolation for Training Jobs
	Enforce a Specific Instance Type for Training Jobs
	Enforce a Specific EI Accelerator for Training Jobs
	Enforce Disabling Internet Access and Root Access for Creating Notebook Instances

	Control Access to the SageMaker API by Using Identity-based Policies
	Restrict Access to SageMaker API and Runtime to Calls from Within Your VPC

	Limit Access to SageMaker API and Runtime Calls by IP Address
	Limit Access to a Notebook Instance by IP Address
	Control Access to SageMaker Resources by Using Tags
	Provide Permissions for Tagging SageMaker Resources Upon Creation
	Limit Access to Searchable Resources with Visibility Conditions

	Cross-Service Confused Deputy Prevention
	Limit Permissions With Global Condition Keys
	SageMaker Edge Manager
	SageMaker Images
	SageMaker Inference
	SageMaker Batch Transform Jobs
	SageMaker Marketplace
	SageMaker Neo
	SageMaker Pipelines
	SageMaker Processing Jobs
	SageMaker Studio
	SageMaker Training Jobs

	SageMaker Roles
	Create execution role
	Add Additional Amazon S3 Permissions to a SageMaker Execution Role

	Get execution role
	Passing Roles
	CreateAutoMLJob API: Execution Role Permissions
	CreateDomain API: Execution Role Permissions
	CreateImage and UpdateImage APIs: Execution Role Permissions
	CreateNotebookInstance API: Execution Role Permissions
	CreateHyperParameterTuningJob API: Execution Role Permissions
	CreateProcessingJob API: Execution Role Permissions
	CreateTrainingJob API: Execution Role Permissions
	CreateModel API: Execution Role Permissions
	SageMaker geospatial capabilities roles
	Creating an new SageMaker execution role
	Adding the SageMaker geospatial service principal to an existing SageMaker execution role
	StartEarthObservationJob API: Execution role permissions
	StartVectorEnrichmentJob API: Execution role permissions
	ExportEarthObservationJob API: Execution role permissions
	ExportVectorEnrichmentJob API: Execution Role Permissions

	Amazon SageMaker Role Manager
	Using the role manager (console)
	Getting started
	domains
	Notebook
	Training
	Inference
	Prerequisites
	Step 1. Enter role information
	Network and encryption conditions

	Step 2. Configure ML activities
	Service roles

	Step 3: Add additional policies and tags
	Review role

	Using the role manager (AWS CDK)
	Grant permissions to a Compute persona
	Grant permissions to a Data Scientist persona
	Grant permissions to an ML Ops persona
	Grant permissions to a construct
	Grant permissions for a single ML activity
	Create a role and give it permissions for a single activity

	Persona reference
	Data scientist persona
	MLOps persona
	SageMaker compute persona

	ML activity reference
	Launch Studio Classic
	Launch Studio Classic with AWS Management Console
	Launch Studio Classic with IAM Identity Center

	Role Manager FAQs
	Q. How can I access Amazon SageMaker Role Manager?
	Q. What are personas?
	Q. What are ML activities?
	Q. Are the roles that I create with the role manager AWS Identity and Access Management (IAM) roles?
	Q. How can I view the roles that I created using Amazon SageMaker Role Manager?
	Q. Can I modify a role made with Amazon SageMaker Role Manager once it is created?
	Q. Can I attach my own policies to roles created using Amazon SageMaker Role Manager?
	Q. How many policies can I add to a role that I create with Amazon SageMaker Role Manager?
	Q. Can I add conditions to ML activities?
	Q. Can I use tagging to manage access to any AWS resource?
	Q. Can I use Amazon SageMaker Role Manager to create a role to access the AWS Management Console?
	Q. What is difference between a user federation role and a SageMaker execution role?
	Q. If I am using a custom web application that accesses Studio Classic through a presigned url, what role is used?
	Q: Can I use Amazon SageMaker Role Manager with AWS IAM Identity Center authentication for my Studio Classic domain?

	Access control for notebooks
	Access control and setting permissions for SageMaker Studio notebooks
	Control root access to a SageMaker notebook instance

	Amazon SageMaker API Permissions: Actions, Permissions, and Resources Reference
	AWS Managed Policies for Amazon SageMaker
	AWS managed policy: AmazonSageMakerFullAccess
	AWS managed policy: AmazonSageMakerReadOnly
	AWS managed policies for Amazon SageMaker Canvas
	AWS managed policy: AmazonSageMakerCanvasFullAccess
	AWS managed policy: AmazonSageMakerCanvasDataPrepFullAccess
	AWS managed policy: AmazonSageMakerCanvasDirectDeployAccess
	AWS managed policy: AmazonSageMakerCanvasAIServicesAccess
	AWS managed policy: AmazonSageMakerCanvasBedrockAccess
	AWS managed policy: AmazonSageMakerCanvasForecastAccess
	Amazon SageMaker updates to Amazon SageMaker Canvas managed policies

	AWS managed policies for Amazon SageMaker Cluster
	AWS managed policy: AmazonSageMakerClusterInstanceRolePolicy
	Amazon SageMaker updates to Amazon SageMaker Cluster managed policies

	AWS managed policies for Amazon SageMaker Feature Store
	AWS managed policy: AmazonSageMakerFeatureStoreAccess
	Amazon SageMaker updates to Amazon SageMaker Feature Store managed policies

	AWS managed policies for Amazon SageMaker geospatial
	AWS managed policy: AmazonSageMakerGeospatialFullAccess
	AWS managed policy: AmazonSageMakerGeospatialExecutionRole
	Amazon SageMaker updates to Amazon SageMaker geospatial managed policies

	AWS Managed Policies for Amazon SageMaker Ground Truth
	AWS managed policy: AmazonSageMakerGroundTruthExecution
	Amazon SageMaker updates to SageMaker Ground Truth managed policies

	AWS Managed Policies for SageMaker Model Governance
	AWS managed policy: AmazonSageMakerModelGovernanceUseAccess
	Amazon SageMaker updates to SageMaker Model Governance managed policies

	AWS Managed Policies for Model Registry
	AWS managed policy: AmazonSageMakerModelRegistryFullAccess
	Amazon SageMaker updates to Model Registry managed policies

	AWS Managed Policies for SageMaker Notebooks
	AWS managed policy: AmazonSageMakerNotebooksServiceRolePolicy
	Amazon SageMaker updates to SageMaker Notebooks managed policies

	AWS Managed Policies for SageMaker Pipelines
	AWS managed policy: AmazonSageMakerPipelinesIntegrations
	Amazon SageMaker updates to SageMaker Pipelines managed policies

	AWS Managed Policies for SageMaker projects and JumpStart
	AWS managed policy: AmazonSageMakerAdmin-ServiceCatalogProductsServiceRolePolicy
	AWS managed policy: AmazonSageMakerPartnerServiceCatalogProductsApiGatewayServiceRolePolicy
	AWS managed policy: AmazonSageMakerPartnerServiceCatalogProductsCloudFormationServiceRolePolicy
	AWS managed policy: AmazonSageMakerPartnerServiceCatalogProductsLambdaServiceRolePolicy
	AWS managed policy: AmazonSageMakerServiceCatalogProductsApiGatewayServiceRolePolicy
	AWS managed policy: AmazonSageMakerServiceCatalogProductsCloudformationServiceRolePolicy
	AWS managed policy: AmazonSageMakerServiceCatalogProductsCodeBuildServiceRolePolicy
	AWS managed policy: AmazonSageMakerServiceCatalogProductsCodePipelineServiceRolePolicy
	AWS managed policy: AmazonSageMakerServiceCatalogProductsEventsServiceRolePolicy
	AWS managed policy: AmazonSageMakerServiceCatalogProductsFirehoseServiceRolePolicy
	AWS managed policy: AmazonSageMakerServiceCatalogProductsGlueServiceRolePolicy
	AWS managed policy: AmazonSageMakerServiceCatalogProductsLambdaServiceRolePolicy
	Amazon SageMaker updates to AWS Service Catalog AWS managed policies

	SageMaker Updates to AWS Managed Policies

	Troubleshooting Amazon SageMaker Identity and Access
	I Am Not Authorized to Perform an Action in SageMaker
	I Am Not Authorized to Perform iam:PassRole
	I Want to Allow People Outside of My AWS Account to Access My SageMaker Resources

	Logging and Monitoring
	Compliance validation for Amazon SageMaker
	Resilience in Amazon SageMaker
	Infrastructure Security in Amazon SageMaker
	SageMaker Scans AWS Marketplace Training and Inference Containers for Security Vulnerabilities
	Connect to Resources From Within a VPC
	Connect Amazon SageMaker Studio in a VPC to External Resources
	Default communication with the internet
	VPC only communication with the internet
	Requirements to use VPC only mode

	Connect SageMaker Studio Notebooks in a VPC to External Resources
	Default communication with the internet
	VPC only communication with the internet
	Requirements to use VPC only mode

	Connect a Notebook Instance in a VPC to External Resources
	Default communication with the internet
	VPC communication with the internet
	Security and Shared Notebook Instances

	Run Training and Inference Containers in Internet-Free Mode
	Network Isolation
	Network isolation with a VPC

	Connect to SageMaker Within your VPC
	Connect to SageMaker through a VPC interface endpoint
	Using SageMaker training and hosting with resources inside your VPC
	Without network isolation enabled
	With network isolation

	Create a VPC Endpoint Policy for SageMaker
	Create a VPC Endpoint Policy for Amazon SageMaker Feature Store
	Connect to SageMaker Studio Classic Through an Interface VPC Endpoint
	Create a VPC Endpoint
	Create a VPC Endpoint Policy for SageMaker Studio Classic
	Allow Access Only from Within Your VPC

	Connect to a Notebook Instance Through a VPC Interface Endpoint
	Connect Your Private Network to Your VPC
	Create a VPC Endpoint Policy for SageMaker Notebook Instances
	Restrict Access to Connections from Within Your VPC

	Connect Your Private Network to Your VPC

	Give SageMaker Access to Resources in your Amazon VPC
	Give SageMaker Processing Jobs Access to Resources in Your Amazon VPC
	Configure a Processing Job for Amazon VPC Access
	Configure Your Private VPC for SageMaker Processing
	Ensure That Subnets Have Enough IP Addresses
	Create an Amazon S3 VPC Endpoint
	Use a Custom Endpoint Policy to Restrict Access to S3
	Restrict Package Installation on the Processing Container

	Configure Route Tables
	Configure the VPC Security Group
	Connect to Resources Outside Your VPC
	Monitor Amazon SageMaker Processing Jobs with CloudWatch Logs and Metrics

	Give SageMaker Training Jobs Access to Resources in Your Amazon VPC
	Configure a Training Job for Amazon VPC Access
	Configure Your Private VPC for SageMaker Training
	Ensure That Subnets Have Enough IP Addresses
	Create an Amazon S3 VPC Endpoint
	Use a Custom Endpoint Policy to Restrict Access to S3
	Restrict Package Installation on the Training Container

	Configure Route Tables
	Configure the VPC Security Group
	Connect to Resources Outside Your VPC
	Monitor Amazon SageMaker Training Jobs with CloudWatch Logs and Metrics

	Give SageMaker Hosted Endpoints Access to Resources in Your Amazon VPC
	Configure a Model for Amazon VPC Access
	Configure Your Private VPC for SageMaker Hosting
	Ensure That Subnets Have Enough IP Addresses
	Create an Amazon S3 VPC Endpoint
	Use a Custom Endpoint Policy to Restrict Access to Amazon S3
	Restrict Package Installation on the Model Container with a Custom Endpoint Policy

	Add Permissions for Endpoint Access for Containers Running in a VPC to Custom IAM Policies
	Configure Route Tables
	Connect to Resources Outside Your VPC

	Give Batch Transform Jobs Access to Resources in Your Amazon VPC
	Configure a Batch Transform Job for Amazon VPC Access
	Configure Your Private VPC for SageMaker Batch Transform
	Ensure That Subnets Have Enough IP Addresses
	Create an Amazon S3 VPC Endpoint
	Use a Custom Endpoint Policy to Restrict Access to S3
	Restrict Package Installation on the Model Container

	Configure Route Tables
	Configure the VPC Security Group
	Connect to Resources Outside Your VPC

	Give Amazon SageMaker Clarify Jobs Access to Resources in Your Amazon VPC
	Configure a SageMaker Clarify Job for Amazon VPC Access
	SageMaker Clarify Job Amazon VPC Subnets and Security Groups
	Configure a Model Amazon VPC for Inference

	Configure Your Private Amazon VPC for SageMaker Clarify jobs
	Connect to Resources Outside Your Amazon VPC
	Configure the Amazon VPC Security Group

	Give SageMaker Compilation Jobs Access to Resources in Your Amazon VPC
	Configure a Compilation Job for Amazon VPC Access
	Configure Your Private VPC for SageMaker Compilation
	Ensure That Subnets Have Enough IP Addresses
	Create an Amazon S3 VPC Endpoint
	Use a Custom Endpoint Policy to Restrict Access to S3
	Add Permissions for Compilation Job Running in a Amazon VPC to Custom IAM Policies

	Configure Route Tables
	Configure the VPC Security Group

	Give Inference Recommender Jobs Access to Resources in Your Amazon VPC
	Ensure that subnets have enough IP addresses
	Create an Amazon S3 VPC endpoint
	Add permissions for Inference Recommender jobs running in an Amazon VPC to custom IAM policies
	Configure route tables
	Configure the VPC security group

	Sell algorithms and packages in the AWS Marketplace
	Topics
	SageMaker Algorithms
	SageMaker Model Packages
	Use your own algorithms and models with the AWS Marketplace
	Create Algorithm and Model Package Resources
	Create an Algorithm Resource
	Create an Algorithm Resource (Console)
	Create an Algorithm Resource (API)

	Create a Model Package Resource
	Create a Model Package Resource (Console)
	Create a Model Package Resource (API)

	Use Algorithm and Model Package Resources
	Use an Algorithm to Run a Training Job
	Use an Algorithm to Run a Training Job (Console)
	Use an Algorithm to Run a Training Job (API)
	Use an Algorithm to Run a Training Job (Amazon SageMaker Python SDK)

	Use an Algorithm to Run a Hyperparameter Tuning Job
	Use an Algorithm to Run a Hyperparameter Tuning Job (Console)
	Use an Algorithm to Run a Hyperparameter Tuning Job (API)
	Use an Algorithm to Run a Hyperparameter Tuning Job (Amazon SageMaker Python SDK)

	Use a Model Package to Create a Model
	Use a Model Package to Create a Model (Console)
	Use a Model Package to Create a Model (API)
	Use a Model Package to Create a Model (Amazon SageMaker Python SDK)

	Sell Amazon SageMaker Algorithms and Model Packages
	Topics
	Develop Algorithms and Models in Amazon SageMaker
	Develop Algorithms in SageMaker
	Develop Models in SageMaker

	List Your Algorithm or Model Package on AWS Marketplace

	Find and Subscribe to Algorithms and Model Packages on AWS Marketplace
	Use Algorithms and Model Packages

	Monitor AWS resources provisioned while using Amazon SageMaker
	Monitor Amazon SageMaker with Amazon CloudWatch
	SageMaker Endpoint Invocation Metrics
	SageMaker Inference Component Metrics
	SageMaker Multi-Model Endpoint Metrics
	SageMaker Jobs and Endpoint Metrics
	SageMaker Inference Recommender Jobs Metrics
	SageMaker Ground Truth Metrics
	Amazon SageMaker Feature Store Metrics
	SageMaker Pipelines Metrics

	Log Amazon SageMaker Events with Amazon CloudWatch
	Log Amazon SageMaker API Calls with AWS CloudTrail
	SageMaker Information in CloudTrail
	Operations Performed by Automatic Model Tuning
	Understanding SageMaker Log File Entries

	Monitoring user resource access from Amazon SageMaker Studio Classic
	Prerequisites
	Considerations when using sourceIdentity
	Turn on sourceIdentity
	Turn off sourceIdentity

	Automating Amazon SageMaker with Amazon EventBridge
	SageMaker model state change
	Training job state change
	Hyperparameter tuning job state change
	Transform job state change
	Endpoint state change
	Feature group state change
	Model package state change
	Pipeline execution state change
	Pipeline step state change
	Processing job state change
	SageMaker image state change
	SageMaker image version state change
	Endpoint deployment state change
	Model card state change

	Amazon SageMaker Reference
	Machine Learning Frameworks and Languages
	Use Apache MXNet with Amazon SageMaker
	What do you want to do?

	Use Apache Spark with Amazon SageMaker
	Integrate Your Apache Spark Application with SageMaker
	SageMaker Spark for Scala examples
	Use Custom Algorithms for Model Training and Hosting on Amazon SageMaker with Apache Spark
	Use the SageMakerEstimator in a Spark Pipeline

	SageMaker Spark for Python (PySpark) examples

	Use Chainer with Amazon SageMaker
	What do you want to do?

	Use Hugging Face with Amazon SageMaker
	Training
	How to run training with the Hugging Face Estimator

	Inference
	How to deploy an inference job using the Hugging Face Deep Learning Containers

	What do you want to do?

	Use PyTorch with Amazon SageMaker
	What do you want to do?

	R User Guide to Amazon SageMaker
	RStudio Support in SageMaker
	R Kernel in SageMaker
	Get Started with R in SageMaker
	Example Notebooks

	Use Scikit-learn with Amazon SageMaker
	What do you want to do?

	Use SparkML Serving with Amazon SageMaker
	Use TensorFlow with Amazon SageMaker
	Use TensorFlow Version 1.11 and Later
	What do you want to do?

	Use TensorFlow Legacy Mode for Versions 1.11 and Earlier

	Use Triton Inference Server with Amazon SageMaker
	Inference
	What do you want to do?

	API Reference
	Programming Model for Amazon SageMaker
	APIs, CLI, and SDKs

	SageMaker Distribution Images
	Supported packages and versions

	Document History for Amazon SageMaker

	AWS Glossary

